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With the rapid development of deep learning, Electroencephalograph(EEG)

emotion recognition has played a significant role in a�ective brain-computer

interfaces. Many advanced emotion recognition models have achieved excellent

results. However, current research is mostly conducted in laboratory settings

for emotion induction, which lacks su�cient ecological validity and di�ers

significantly from real-world scenarios. Moreover, emotion recognition models

are typically trained and tested on datasets collected in laboratory environments,

with little validation of their e�ectiveness in real-world situations. VR, providing a

highly immersive and realistic experience, is an ideal tool for emotional research.

In this paper, we collect EEG data from participants while they watched VR

videos. We propose a purely Transformer-based method, EmoSTT. We use two

separate Transformer modules to comprehensively model the temporal and

spatial information of EEG signals. We validate the e�ectiveness of EmoSTT on a

passive paradigm collected in a laboratory environment and an active paradigm

emotion dataset collected in a VR environment. Compared with state-of-the-art

methods, our method achieves robust emotion classification performance and

can be well transferred between di�erent emotion elicitation paradigms.

KEYWORDS

electroencephalograph, virtual reality, transformer, emotion recognition,

brain-computer interface

1 Introduction

Affective Brain-Computer Interfaces (aBCIs) is a system that inducts, recognize, and

regulate human emotions, which involves computer science, psychology, cognitive science,

and more, aiming to enhance computers’ ability to understand and respond to human

emotional states during human-computer interaction (Tao and Tan, 2005). The Inputs of

aBCIs typically include functional magnetic resonance imaging (fMRI), functional near-

infrared spectroscopy (fNIRS), and electroencephalography (EEG). Among these, EEG

non-invasively captures electrical activity on the scalp, offering high temporal resolution

and relatively easy signal acquisition (Alarcao and Fonseca, 2017). Consequently, it

has been widely applied in medical rehabilitation, education, and other fields (Zheng

et al., 2023; Li et al., 2020). In the field of medical rehabilitation, aBCI can objectively

and accurately assess emotional states, providing a valuable supplement to traditional

diagnostic methods that are highly subjective, such as behavioral observations and

questionnaires. In transportation, EEG signals can monitor drivers’ negative emotional

states like anxiety and anger in real time, providing timely warnings and adjustments to

reduce traffic accidents (Zepf et al., 2020).

In these applications, emotion recognition is the most critical component (Hu et al.,

2019). However, due to EEG signals’ sensitivity to noise, numerous artifacts are introduced,

posing significant challenges to emotion recognition. Traditional machine learning models
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extract features related to emotional states from EEG signals,

such as power spectral density (PSD) (Solomon Jr, 1991) and

differential entropy (DE) (Duan et al., 2013), and then feed them

into classifiers like SVM (Wang et al., 2011), KNN (Mehmood

and Lee, 2015), and MLP (Li et al., 2022a), achieving decoding

of EEG. With the advancement of deep learning, researchers have

developed various models to decode emotions from EEG, including

supervised emotion recognition models based on convolutional

neural networks (CNN) (Hwang et al., 2020), recurrent neural

networks (RNN) (Alhagry et al., 2017), graph convolutional neural

networks (GCN) (Song et al., 2018), and Transformers (Sun et al.,

2022), which have made significant progress. CNNs perform well

in classification tasks, particularly in fields like image (Bhatt et al.,

2021), video (Xu et al., 2015), and speech processing (Hema and

Marquez, 2023). RNNs excel at handling sequential data but face

limitations in parallel training and global information capture (Ma

et al., 2023). In contrast, Transformer models utilize self-attention

mechanisms to effectively capture crucial long-term dependencies

in time series (Chitty-Venkata et al., 2023).

Initially applied in natural language processing and computer

vision with remarkable results, Transformers have recently begun

to be employed in EEG encoding and decoding tasks (Abibullaev

et al., 2023). By capturing long-term temporal relationships in EEG

sequences, they extract robust feature representations. However,

most studies focus solely on modeling either the temporal or spatial

dimensions of EEG, allowing for the learning of relationships

between different channels or time frames (Peng et al., 2023).When

using a temporal-spatial Transformer, each channel of each frame

is treated as a token. This approach leads to a significant increase

in the number of tokens when processing long EEG sequences

or multi-channel data, resulting in substantial computational

demands.

Moreover, in the field of affective computing, emotional

induction paradigms can be divided into laboratory settings

(passive induction paradigms) and natural settings (active

induction paradigms) (Meuleman and Rudrauf, 2021). However,

current research is almost exclusively conducted in laboratory

settings, where the passively induced emotional changes differ from

the actively generated emotional changes in real-world scenarios

(Miranda-Correa et al., 2018; Katsigiannis and Ramzan, 2017).

Moreover, most emotion recognition studies have focused on

training and testing models on a single dataset within a laboratory

environment, with few studies validating the effectiveness of

emotion recognition models in natural settings (Marín-Morales

et al., 2020). Virtual reality (VR) can provide a highly immersive

and realistic virtual environment, allowing for the assessment of

emotional experiences in a more realistic scenario, making it an

ideal paradigm for affective research (Marín-Morales et al., 2020).

In this paper, we conducted an emotional induction experiment

in a VR environment and collected corresponding EEG data. We

propose an emotion recognition method based on spatial and

temporal Transformers (EmoSTT). EmoSTT employs two separate

Transformers to model the temporal and spatial dimensions of

EEG data, without being affected by the excessive number of

tokens caused by long time sequences or multi-channel EEG

data. The temporal and spatial Transformer blocks can learn

the correlations between EEG time series and across channels,

extracting hidden feature representations with spatial-temporal

dependencies. Finally, the feature representations are fed into a

simple fully connected layer to decode emotional states. Lastly,

we validated the model’s effectiveness on datasets of different

emotional induction paradigms.

2 Related work

2.1 EEG-based emotion recognition

Traditional machine learning-based emotion recognition

typically involves preprocessing, feature extraction, feature

smoothing, training classifiers, and testing (Jenke et al.,

2014). Signal features can be categorized into time-domain,

frequency-domain, and spatial-domain features. Among these,

frequency-domain features are most relevant to emotions, and DE

features have been proven to offer the best emotion recognition

performance (Jenke et al., 2014). It commonly use the Short

Time Fourier Transform (STFT) to convert sequential EEG

signals into the frequency domain, thereby extracting features

from five frequency bands: δ band (1–3Hz), θ band (4–7Hz),

α band (8–13Hz), β band (14–30Hz), and γ band (31–50Hz)

(Mohammadi et al., 2017). Additionally, deep learning models are

dedicated to designing neural networks that extract generalizable

features. Li et al. (2016) further proposed a hybrid deep learning

architecture (Convolutional and Recurrent Neural Network,

C-RNN) for emotion recognition. The model extracts task-relevant

features, explores channel correlations, and integrates contextual

information across these frames, achieving excellent results on the

DEAP dataset (Koelstra et al., 2011). Li et al. (2019) introduced

a Spatial-Temporal Neural Network with Regional to Global

(R2G-STNN) based on Bidirectional Long Short-Term Memory

(BiLSTM), which conducts hierarchical feature learning from

regional to global through spatial and temporal neural network

models to extract discriminative spatiotemporal EEG features.

Zhong et al. (2020) proposed a Regularized Graph Neural Network

(RGNN) that considers the biological topology between different

brain regions to capture local and global relationships between

different EEG channels. Additionally, two regularizers were

proposed, namely Node Domain Adversarial Training (NodeDAT)

and Emotion-Aware Distribution Learning (EmotionDL), to

better handle individual differences and noisy label issues.

Song et al. (2022) proposed a novel compact convolutional

Transformer network called EEG-Conformer for improving

emotion recognition performance of EEG signals. EEG-Conformer

combines convolutional modules to capture local temporal and

spatial features, as well as self-attention modules to extract global

correlations.

2.2 Active and passive emotion elicitation
paradigms

However, the aforementioned methods are all trained and

tested on data collected in traditional laboratory settings. These

represent passive emotional changes, which differ from the

active emotional changes that individuals generate in real-world

scenarios, potentially leading to differences in EEG signals between
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these two paradigms (Somarathna et al., 2022). The ecological

validity in emotional induction is crucial for affective research

(Mohammadi and Vuilleumier, 2020). The passive emotional

induction paradigm in traditional laboratory settings has weak

induction effects (Soleymani et al., 2011). In contrast, virtual reality

(VR) can simulate controlled environments with high immersion,

presence, and interactivity, evoking emotions more naturally and

authentically (Cao et al., 2021). Previous studies have validated

the effectiveness of VR emotional induction paradigms (Li et al.,

2022b). However, due to the lack of active paradigm emotional

EEG datasets, research on emotion recognition models in active

paradigms is very limited.

3 Methods

3.1 Pipeline

The overall framework of the model is depicted in Figure 1.

Initially, the raw EEG signals undergo preprocessing, followed by

segmenting all signals into 1-second epochs. Consistent with (Duan

et al., 2013), for each 1-second segment, we employ the Short-

Time Fourier Transform (STFT) for frequency domain feature

extraction. We extract the DE features from the EEG data of all

participants X ∈ R
N×C×F as the pre-training dataset to input

our model, where N represents the number of samples in the

preprocessed EEG dataset, C refers to the number of EEG channels,

and F is the dimensionality of the DE features. Here, we set F =

5, corresponding to the five frequency bands: δ band (1–3Hz), θ

band (4–7Hz), α band (8–13Hz), β band (14–30Hz), and γ band

(31–50Hz). To better capture the temporal dimension of the EEG

data, we use an overlapping time window of length T to transform

the original signal X into the shape Xnew ∈ R
Nnew×T×C×F , which

serves as the input for the final pre-training model, each sample

is represented as xs ∈ R
T×C×F Here, Nnew represents the number

of samples in the dataset. T denotes the number of time frames,

which we set to 10, consistent with previous classical studies (Li

et al., 2022c) to facilitate comparison. To mitigate the variability

among features and enhance performance, we normalize training

and testing data based on the mean and standard deviation of the

training set. Subsequently, we utilize two separate Transformers to

extract the spatial and temporal features of the EEG signals. Below

is a detailed description of the method.

3.2 Spatial transformer

For the input to the spatial transformer Xnew ∈ R
Nnew×T×C×F ,

where each sample is represented as Xnew ∈ R
T×C×F . Then,

we then project the frequency domain dimension K to a hidden

dimension D using a linear projection matrix P ∈ R
k×D.

Since EEG signals record complex brain activities from

multiple electrode channels, there is a strong correlation between

different electrode channels. Therefore, using a spatial transformer

can effectively encode the spatial information of EEG signals.

For each given frame of data {xis ∈ R
C×D |i = 1, 2, ..., T}, where

C is the number of channels, each channel is treated as a patch,

and a learnable spatial position encoding ESPos ∈ R
C×Dis added

to xis. This preserves the position information of each channel,

which is crucial in transformers and is a standard and common

practice. Here, we use learnable sine-cosine trigonometric

functions as spatial position encoding. We utilize the attention

mechanism to extract the functional connectivity relationships

between different electrode channels by stacking multiple

transformer blocks. The computation process of self-attention is

as follows:

Attention(Q,K,V) = Softmax

(

QKT

√

dk

)

V (1)

In this context, Q, K, and V represent the query, key,

and value, respectively. For each input vector, three linear

transformations are applied to map it into the query vector, key

vector, and value vector. For each query vector, the similarity

to all key vectors is calculated using a dot product, resulting

in attention scores. To prevent the dot product from becoming

too large, it is divided by the square root of dk; subsequently,

the Softmax function is applied to normalize the results of the

aforementioned dot product. Finally, after obtaining the Softmax

matrix, it is multiplied by V to produce the final output.

Here, we utilize the multi-head attention mechanism (MHA),

which captures dependencies in different subspaces of the input

sequence by computing multiple sets of queries, keys, and values

in parallel. The outputs of these heads are then concatenated

and passed through a linear transformation to yield the final

output. As illustrated in Figure 2, in addition to the multi-

head attention mechanism, each Transformer encoder includes

multi-layer perceptrons (MLPs), with each component employing

residual connections and layer normalization to enhance the

model’s training efficiency and performance.

3.3 Temporal transformer

Subsequently, the output from the spatial Transformer module

is fed into the temporal encoder module. We add the same sine-

cosine positional encoding to keep track of the position of each

time frame. Like the spatial Transformer, we stack the same number

of Transformer blocks. Unlike RNN, transformers are better at

capturing long-term dependencies in EEG signals. The encoder also

includes multi-head attention (MHA) and multi-layer perceptrons

(MLPs). Finally, for the output of the temporal Transformer, we

pass it through a simple MLP block with layer normalization

and a linear layer to obtain the final classification output y ∈

R
C×K . In this paper, we use cross-entropy loss to minimize the

error between the predicted emotion categories and the true

emotion labels:

L = −
1

N

N
∑

n=1

K
∑

k=1

ykn log
(

ŷkn

)

(2)

where N represents the number of batch sizes and K represents

the number of categories. ykn is the true emotion label and ŷkn is the

predicted emotion category.
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FIGURE 1

The overall model framework of EmoSTT.

FIGURE 2

The left is the overall architecture of the transformer, and the right is

the multi-head attention module.

4 Experiments

4.1 Dataset

This paper validates the proposed method on a widely used

public dataset, SEED (Zheng and Lu, 2015), as well as on a self-

collected VR emotion dataset (VR-Emotion). Both datasets consist

of EEG signals collected from participants while they watch video

stimuli in a quiet laboratory or a VR environment. After viewing

the video stimuli, participants provide self-assessments of their

emotional responses, which serve as the labels for the EEG data.

Below is a brief introduction to the datasets:

4.1.1 SEED dataset
The SEED dataset primarily comprises EEG signals

corresponding to three types of emotions: positive, neutral,

and negative. The data were collected using a 62-channel device

from the ESI NeuroScan system, with a sampling rate of 1,000

Hz. To account for the impact of cultural differences on emotion

recognition research, all movie clips selected for this dataset

are in Mandarin. The three emotion experiments involved 15

participants (7 males and 8 females), all Chinese students from

Shanghai Jiao Tong University. To verify the stability of emotions

over different periods, each participant experimented three times,

with a one-week interval between each session, resulting in a

total of 45 experiments. Participants were required to watch 15

emotional stimulus videos in each experiment, corresponding to

the three emotion categories. Each video ranged from 185 to 238

seconds in length. Each second of EEG data corresponding to the

video is considered as one sample, so there are 3394 samples in

each session.

4.1.2 VR-emotion dataset
In previous experiments, we have verified the effectiveness

of the VR emotion induction paradigm (Li et al., 2022b). We

recorded EEG signals from participants using the ANT Neuro

EEG acquisition system while they watched VR video stimuli. The

following principles guided the selection of VR video stimuli: (1)

Each video should not be too long to avoid causing mental fatigue

in participants; (2) The content must be clear and understandable

without the need for translation; (3) The movie clips must evoke

a single target emotional state. Therefore, we selected 4 videos

from the Stanford public VR video dataset [2 for low valence/low

arousal (LVLA) and 2 for high valence/low arousal (HVLA)] (Li

et al., 2017). Due to the lack of high arousal/low valence (HALV)

videos, we chose 15 of YouTube’s most viewed horror videos.

We then invited 16 students majoring in psychology from Beijing

Normal University to rate the videos’ emotional arousal and valence

dimensions. For each video x, we calculated the normalized arousal

and valence scores by dividing the average score by the standard

deviation (µx/σx). Ultimately, we selected two horror videos with

extreme angles in the VA plane quadrant: “Real Run” and “The

Conjuring 2.” For the high arousal/high valence (HAHV) videos,

during the pre-experiment, all participants reported severe motion

sickness from these two videos, which could affect EEG analysis

(Jeong et al., 2019). To eliminate the impact of motion sickness in

the experiment, we chose the VR game “The Blu” from the Steam

platform. This game offers a more passive and intuitive experience,
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akin to watching a video, and has been proven to evoke high

arousal/positive valence emotions while providing an immersive

VR experience (Meuleman and Rudrauf, 2021). The game includes

three segments: “The Reef Migration,” “The Whale Encounter,”

and “The Hammerhead Cove.” We invited the same psychology

students to evaluate these three segments and ultimately selected

“The Whale Encounter” and “The Reef Migration” as the final

emotional stimulus materials.

The dataset comprises EEG data from 28 participants (16 males

and 12 females) collected while viewing 8 VR videos, using a 32-

channel EEG system with a sampling rate of 512 Hz. Each video is

approximately 3 min and 30 seconds long. EEG data corresponding

to every second of each video is considered a sample, amounting to

1,483 samples per participant.

4.2 EEG preprocessing and feature
extraction

The authors provided the original preprocessed DE features

for the SEED dataset, which we directly use as input in this

chapter. As for the VR-Emotion dataset, to obtain clean and high-

quality EEG signals, we require participants to avoid excessive

head movements while recording EEG signals in VR to ensure

signal stability and reliability. To prevent the HMD from exerting

pressure on the front-central electrodes, a lateral elastic band is used

to fix the HMD while the upper elastic band is loose. Additionally,

to avoid the potential impact of pressure from repeatedly wearing

the VR headset on the quality of the EEG signals, the subjective

questionnaire is presented directly on the VR screen, enabling

participants to complete it without removing the headset. For the

raw EEG data, we employ EEGLAB for EEG signal processing

(Delorme and Makeig, 2004). EEGLAB is an open-source Matlab

toolbox that provides algorithms for EEG preprocessing and feature

extraction. The specific steps are as follows: (1) First, the original

EEG data has a sampling frequency of 512 Hz, which is sufficient

to filter out interference from the monitor (50–60 Hz) and the

VR headset (90 Hz). The signals are then downsampled to 128 Hz

and re-referenced using bilateral mastoid electrodes (M1 and M2).

(2) Since EEG signals are low-frequency and electromyographic

artifacts are high-frequency, low-pass filtering removes the EMG

artifacts significantly. Furthermore, a bandpass filter (4–47 Hz) is

applied to the signal using the FIR filter in EEGLAB to filter out

eye movement artifacts better. (3) Visual inspection is performed

to remove abnormal signals with amplitudes exceeding±100µV, as

signals beyond this threshold are considered non-EEG signals. (4)

Independent Component Analysis (ICA) (Chaumon et al., 2015)

is then used to decompose the original signal into 32 independent

components (ICs). ICA is a method based on Blind Source

Separation (BSS). Using the SASICA plugin in EEGLAB and visual

inspection, we identify which components are related to emotion

and which are artifacts or other neural activity components (such

as eye blinks, muscle activity, or head movements). (5) Finally,

for each participant, an average of 9.37 components are removed,

yielding clean EEG signals.

Then, we extract DE features based on the preprocessed data

in the same way as the previous studies (Duan et al., 2013).

DE has been proven to be one of the most effective features

FIGURE 3

The confusion matrix of SEED dataset classification results.

for emotion recognition (Qiu et al., 2024; He et al., 2022). DE

features are an extended form of Shannon’s information entropy

−
∑

x p(x) log(p(x)) dx for continuous variables, and they are

calculated as follows:

DE = −

∫ b

a
p(x) log(p(x)) dx (3)

In this context, p(x) represents the probability density function

of continuous information, and |a, b| indicates the interval over

which the information is taken. For a segment of EEG signals

that approximately follow a Gaussian distribution N(µ, σ 2
i ) for a

specific length, its differential entropy equals the logarithm of its

energy spectrum in a particular frequency band.

DE = −

∫ ∞

−∞

1
√

2πσ 2
i

e
−

(x−µ)2

2σ2i log





1
√

2πσ 2
i

e
−

(x−µ)2

2σ2i





dx =
1

2
log(2πeσ 2

i ) (4)

4.3 Evaluation

To thoroughly evaluate the effectiveness of the emotion

recognition pre-training framework, this chapter conducts subject-

specific emotion recognition experiments on the SEED and VR-

Emotion datasets, that is, training an emotion classification model

separately for each individual’s EEG data from each experimental

session. Consistent with previous research methods (Zheng et al.,

2018; Liu et al., 2021), the training, fine-tuning, and testing data

come from a single session on the same subject. In the SEED

dataset, the first 9 trials of each session are used as training data

(with 3 trials for each emotion category to maintain data balance),
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TABLE 1 The ACC/F1 of subject-dependent experiments on the SEED dataset.

Method SVM RF DBN GRSLR GCNN

ACC/F1 83.99/78.93 78.46/76.58 86.08/79.89 87.39/80.74 87.40/81.33

Method DGCNN DANN BiDANN EmoSTT

ACC/F1 90.40/84.85 91.36/85.26 92.38/86.28 92.67/86.78

Bold indicates that our method achieved the best results.

and the last 6 trials are used as testing data. Consequently, there are

a total of 45 emotion recognitionmodels, and the final classification

accuracy is defined as the average accuracy obtained from these 45

models. For the VR-Emotion dataset, the first 6 trials of each subject

are used as the training set (3 for high arousal/low arousal and 3 for

low valence/high valence, to maintain data balance), and the last 2

trials are used as the test set. Thus, there are a total of 28 emotion

recognition models, and the final classification accuracy is defined

as the average accuracy obtained from these 28 models.

4.4 Implementation

This paper employs the PyTorch framework to train models

on an NVIDIA 4090 GPU. The model utilizes four Transformer

modules, with the number of attention heads set to 8 and the hidden

dimensionD set to 16.We adopt an exponential learning rate decay

scheme with an initial learning rate of 2×10−4 and a decay factor of

0.98 per epoch. Weight decay and batch size are set to 0.1 and 128,

respectively. The model is optimized using the AdamW optimizer.

For both temporal and spatial encoder, we use L = 6 transformer

blocks. The embedding dimensionD is set to 32, and themulti-head

number H is set to 6.

4.5 Results

4.5.1 SEED dataset
We validate the model’s classification results on the SEED

dataset using topic-related experiments. As shown in the Table 1,

we compared our model with several other supervised models. The

results indicate that our model achieved an accuracy of 92.67% and

an F1 score of 86.78% for positive, negative, and neutral emotions,

outperforming other supervised methods. This demonstrates that

the model can extract robust and highly discriminative features.

Figure 3 presents the confusion matrix of EmoSTT’s results on

the SEED dataset, where each row represents the true class and

each column represents the predicted class. The results indicate

that positive emotions are the most easily identified, achieving an

accuracy rate of 97.82%. The accuracy rates for neutral and negative

emotions are 89.96% and 90.23%, respectively. Additionally, we

observe that neutral and positive emotions are more likely to be

confused, a mix-up that may stem from the difficulty participants

face in distinguishing between these two emotions during the

emotion induction process.

In addition, we also list the average accuracy of three

experiments for each subject and compare them with DGCNN

(Song et al., 2018), as shown in the Table 2. It can be seen that the

TABLE 2 Comparison of accuracy with standard deviation between

DGCNN and EmoSTT.

Subject DGCNN EmoSTT

1 89.39± 0.93 96.72± 6.8.67

2 80.00± 1.95 88.92± 8.21

3 83.85± 1.34 96.47± 6.54

4 94.01± 1.87 92.94± 7.24

5 85.12± 1.09 88.07± 5.64

6 91.45± 0.78 90.95± 7.51

7 91.45± 1.41 96.10± 5.89

8 87.77± 1.74 91.72± 7.67

9 94.37± 1.66 92.35± 6.53

10 82.99± 1.50 79.06± 7.98

11 92.10± 0.67 95.58± 6.83

12 90.04± 1.99 92.68± 7.09

13 90.66± 1.04 93.63± 6.46

14 92.60± 1.25 95.29± 8.29

15 97.79± 0.46 99.49± 7.85

Aver 90.40/08.49 92.67/7.05

TABLE 3 Comparison of models on VR-emotion dataset for arousal and

valence.

Model VR-emotion (arousal) VR-emotion (valence)

SVM 64.58/60.34 68.36/64.21

RF 66.48/61.38 69.42/65.46

DGCNN 72.48/67.18 71.59/67.73

EmoSTT 75.67/70.83 76.47/71.29

The result is expressed as ACC/F1.

model achieves a relatively high average accuracy on the 15 subjects

of the SEED dataset, and the average accuracy of our proposed

EmoSTT is higher.

4.5.2 VR-emotion dataset
The results of the VR-Emotion dataset are shown in Table 3.

EmoSTT achieved accuracy of 75.67% and 76.47% in the arousal

and valence dimensions, respectively. The corresponding F1 scores

are 70.83% and 71.29%, respectively. It can be seen that the model

can also maintain robust performance under the active emotion

induction paradigm. For emotional arousal, it outperformed SVM,
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FIGURE 4

The confusion matrix of arousal and valence classification results of VR-emotion dataset.

RF, and DGCNN by 11.09%, 9.19%, and 3.21%, respectively. For

emotional valence, it surpassed SVM, RF, and DGCNN by 8.11%,

7.05%, and 4.88%, respectively.

For the VR-Emotion dataset, Figure 4 shows the confusion

matrix of the EmoSTT classification results. It can be seen that

high-arousal emotions are relatively easy to identify, reaching an

accuracy of 78.66%, which is 6.18% higher than the recognition

of low-arousal emotions. We speculate that this is because VR

videos are more advantageous in inducing high-arousal emotions.

In terms of valence, the recognition accuracy of low valence is

78.26%, which is 3.58% higher than the 74.68% of high valence.

5 Conclusion and future work

In this paper, we propose EmoSTT, an emotion recognition

model based on a pure Transformer model that can extract

temporal and spatial dependency features of EEG signals. Taking

advantage of the high ecological validity of the VR emotion

induction paradigm, we collect an emotional EEG dataset of

subjects watching VR videos. The performance of EmoSTT is

verified on datasets of two different emotion induction paradigms.

The model achieves an accuracy of 92.67% on the SEED passive

induction dataset, and 75.67% and 76.47% arousal and valence

classification accuracies on the VR-Emotion dataset, respectively.

The results show that the model can well transfer the emotion

recognition model in the laboratory environment to natural

environments such as VR. In the future, we will validate our

approach in a broader range of scenarios. This includes using more

natural VR interactive environments, ensuring signal stability, and

verifying the effectiveness of emotion induction as well as the

robustness of the model.
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