
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. High Perform. Comput.
Sec. High Performance Big Data Systems
Volume 3 - 2025 | doi: 10.3389/fhpcp.2025.1536471
This article is part of the Research Topic AI/ML-Enhanced High-Performance Computing Techniques and Runtime Systems for Scientific Image and Dataset Analysis View all 3 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
X-ray crystallography reconstruction, which transforms discrete X-ray diffraction patterns into three-dimensional molecular structures, relies critically on accurate Bragg peak finding for structure determination. As X-ray free electron laser (XFEL) facilities advance towards MHz data rates (1 million images per second), traditional peak finding algorithms that require manual parameter tuning or exhaustive grid searches across multiple experiments become increasingly impractical. While deep learning approaches offer promising solutions, their deployment in highthroughput environments presents significant challenges in automated dataset labeling, model scalability, edge deployment efficiency, and distributed inference capabilities. We present an end-to-end deep learning pipeline with three key components: (1) a data engine that combines traditional algorithms with our peak matching algorithm to generate high-quality training data at scale, (2) a modular architecture that scales from a few million to hundreds of million parameters, enabling us to train large expert-level models offline while deploying smaller, distilled models at the edge, and (3) a decoupled producer-consumer architecture that separates specialized data source layer from model inference, enabling flexible deployment across diverse computing environments. Using this integrated approach, our pipeline achieves accuracy comparable to traditional methods tuned by human experts while eliminating the need for experiment-specific parameter tuning. Although current throughput requires optimization for MHz facilities, our system's scalable architecture and demonstrated model compression capabilities provide a foundation for future high-throughput XFEL deployments.
Keywords: Deep Learning in Crystallography, Real-time Bragg Peak Finding, model distillation, Producer-Consumer Architecture, X-ray free electron lasers
Received: 29 Nov 2024; Accepted: 20 Feb 2025.
Copyright: © 2025 Wang, Mariani, Poitevin, Avaylon and Thayer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Cong Wang, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.