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End-to-end deep learning
pipeline for real-time Bragg peak
segmentation: from training to
large-scale deployment

Cong Wang*, Valerio Mariani, Frédéric Poitevin,

Matthew Avaylon and Jana Thayer

SLAC National Accelerator Laboratory, Menlo Park, CA, United States

X-ray crystallography reconstruction, which transforms discrete X-ray di�raction

patterns into three-dimensionalmolecular structures, relies critically on accurate

Bragg peak finding for structure determination. As X-ray free electron laser (XFEL)

facilities advance towardMHz data rates (1million images per second), traditional

peak finding algorithms that require manual parameter tuning or exhaustive grid

searches across multiple experiments become increasingly impractical. While

deep learning approaches o�er promising solutions, their deployment in high-

throughput environments presents significant challenges in automated dataset

labeling, model scalability, edge deployment e�ciency, and distributed inference

capabilities. We present an end-to-end deep learning pipeline with three key

components: (1) a data engine that combines traditional algorithms with our

peak matching algorithm to generate high-quality training data at scale, (2)

a modular architecture that scales from a few million to hundreds of million

parameters, enabling us to train large expert-level models o	inewhile deploying

smaller, distilled models at the edge, and (3) a decoupled producer-consumer

architecture that separates specialized data source layer from model inference,

enabling flexible deployment across diverse computing environments. Using this

integrated approach, our pipeline achieves accuracy comparable to traditional

methods tuned by human experts while eliminating the need for experiment-

specific parameter tuning. Although current throughput requires optimization

for MHz facilities, our system’s scalable architecture and demonstrated model

compression capabilities provide a foundation for future high-throughput XFEL

deployments.

KEYWORDS

deep learning in crystallography, real-time Bragg peak finding, model distillation,

producer-consumer architecture, X-ray free electron lasers

1 Introduction

X-ray free electron lasers (XFEL) serial crystallography has revolutionized structural
biology by enabling radiation damage-free structural determination through the
diffraction-before-destruction approach (Neutze et al., 2000; Chapman et al., 2006, 2011).
Time-resolved serial femtosecond crystallography at facilities like the Linac Coherent
Light Source (LCLS) has led to many breakthrough studies in understanding biochemical
reactions at femtosecond resolution (Aquila et al., 2012; Kupitz et al., 2014; Nango et al.,
2016; Pande et al., 2016; Young et al., 2016; Suga et al., 2017; Kern et al., 2018; Ibrahim
et al., 2020; Suga et al., 2020). The crystallography pipeline begins with Bragg peak finding,
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a critical first step that underpins subsequent analyses. Accurate
peak finding directly impacts crystal indexing, which determines
the crystal orientation and unit cell parameters. These results
then feed into peak integration to measure reflection intensities,
followed by merging and scaling procedures to obtain structure
factors necessary for final structure determination. The precision
of this entire workflow hinges on the initial peak finding step,
making robust and efficient peak detection crucial for high-quality
structural analysis.

Bragg peak finding algorithms have seen several key
developments. Early template matching approaches (Wilkinson
et al., 1988) struggled with efficiency and low signal-to-noise
ratio (SNR) peaks, while region-growing techniques (Bolotovsky
et al., 1995; Barty et al., 2014) faced challenges with XFEL
data, particularly for weak peaks at higher scattering angles.
Notable progress came with the Robust Peak Finder (RPF)
(Hadian-Jazi et al., 2017, 2021), which implemented the Modified
Selective Statistical Estimator (MSSE) method, offering improved
automation and parallel processing capabilities. Current software
solutions like Cheetah (Barty et al., 2014), DIALS (Winter
et al., 2018), and Psocake (Yoon, 2020) have integrated various
peak finding approaches, with recent developments exploring
neural network-based methods. However, these neural network
approaches, such as BraggNet (Ronneberger et al., 2015) and
BraggNN (Liu et al., 2021), while promising, have been limited
to analyzing single peaks within small windows, leaving room for
advancement in multiple peak detection capabilities across large
area detectors.

The advancement of XFEL facilities toward higher repetition
rates has created an urgent need for more sophisticated
crystallography processing solutions. While existing peak finding
algorithms have served the crystallography community well
and can potentially be optimized for MHz data rates, they
rely heavily on manual parameter tuning and exhaustive grid
searches across multiple experiments. This requirement for expert
intervention can create significant delays in the analytical pipeline
and become increasingly impractical as facilities advance toward
MHz-scale operations. Neural networks trained with human
supervision at scale offer a data-driven alternative, eliminating
the need for manual parameter optimization while maintaining
expert-level performance. However, the key challenge lies in
scaling these end-to-end solutions to handle diverse experimental
conditions, detector configurations, and biochemical samples while
maintaining robust performance.

In this work, we develop an end-to-end deep learning pipeline
for real-time Bragg peak segmentation without human expert
intervention through three key developments: an automated
dataset generation pipeline, a flexible model architecture
supporting both large-scale training and model distillation
for efficient edge deployment, and a decoupled producer-consumer
architecture for scaling the inference. The pipeline eliminates hours
of manual parameter tuning while achieving a 37.5% indexing
yield that exceeds expert-tuned methods (36.4%). When deployed
on 40 GPUs, our system processes 183 1920-by-1920 images
per second, surpassing current LCLS data rates (120 Hz). While
further optimization is needed for MHz-scale operations, our
architecture demonstrates robust performance even under extreme

model compression (from 673 to 16M parameters) and enables
independent scaling of data ingestion and processing components.

2 Methods

2.1 PeakNet data engine

The Data Engine implements a self-improving workflow
that combines traditional crystallographic analysis tools with
deep learning to automate high-quality dataset generation.
Figure 1 provides a schematic overview of our pipeline,
illustrating how diffraction patterns flow through peak
finding using established software (Psocake or Cheetah),
crystal indexing via CrystFEL (White et al., 2012), and peak
matching before entering the distributed labeling system.
While the circular workflow design enables continuous system
improvement through iterative training dataset curation and
model refinement, the current work focuses on demonstrating
the initial implementation using our first comprehensive
training dataset.

2.1.1 Data labeling workflow
The data labeling process begins with traditional peak finding

and indexing using established crystallographic tools. Diffraction
patterns are processed using Psocake or Cheetah peak finder,
followed by CrystFEL for indexing, generating both CrystFEL-
compatible HDF5 files and CrystFEL stream files containing
peak information. The system’s key innovation lies in PeakDiff,
an algorithm that validates peaks by solving a set matching
problem between found and predicted peaks using scipy’s
linear_sum_assignment implementation (Virtanen et al.,
2020). Figure 2 visualizes the results of this peak matching
process, showing how the algorithm establishes correspondences
between peaks detected by Psocake (yellow squares) and PeakNet
(red triangles). The cyan circles highlighting successful matches
demonstrate the algorithm’s ability to quantitatively evaluate
consistency between arbitrary sets of peak positions, whether
they come from different detection methods, crystal indexing
predictions, or other sources.

Quality metrics for pattern selection are derived from the peak
matching results, with recall measured as the ratio of overlapping
peaks to predicted peaks, and precision as the ratio of overlapping
peaks to detected peaks. It’s important to note that low recall values
are expected in crystallography, as many theoretically predicted
peaks from crystal indexing may not be visible in the diffraction
pattern due to experimental factors such as weak diffraction
intensities, limited detector sensitivity, or crystal quality. As a result,
high-precision patterns, indicating strong agreement between
detected and predicted peaks, are prioritized for inclusion in the
training dataset. However, the selection process also considers peak
quantity thresholds to avoid biasing the dataset toward trivial cases.
Figure 3 illustrates this selection process, showing the relationship
between found and predicted peaks, as well as the precision-
recall distribution used to identify high-quality diffraction patterns.
This balanced approach ensures the initial training set comprises
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FIGURE 1

Schematic overview of the data engine, our automated training data generation pipeline. Di�raction patterns are processed through parallel peak

finding paths, matched by solving a set-matching problem, and curated based on quality metrics. The selected images are feed into the distributed

labeling for segmentation mask generation. The circular workflow enables continuous system improvement through iterative data collection and

model refinement.

well-indexed images with representative peak distributions, while
maintaining the capability to incorporate more challenging cases
through iterative curation with the Data Engine.

2.1.2 Segmentation label generation
For semantic segmentation training, pixel-level labels are

generated using a distributed peak profile fitting pipeline. The Data
Engine identifies high-quality diffraction patterns by matching
detected and predicted peaks. For each candidate peak, detailed
fitting, as shown in Figure 4, is performed on a small window
(typically 9 × 9 pixels) centered on its position extracted from the
detector image.

The peak fitting employs a two-dimensional pseudo-Voigt
profile that combines Gaussian and Lorentzian components with
a planar background:

I(y, x) = A[ηL(y, x)+ (1− η)G(y, x)]+ ay+ bx+ c

where A is the amplitude, η is the mixing parameter between
Lorentzian (L) and Gaussian (G) components, and (a, b, c) define
the planar background. The Gaussian and Lorentzian components
are given by:

G(y, x) = exp

(

−
(y− cy)2

2σ 2
y

−
(x− cx)2

2σ 2
x

)

L(y, x) =
1

1+ (y−cy)2

γ 2
y

+ (x−cx)2

γ 2
x

Here, (cy, cx) represent the peak center coordinates in the y and
x directions, σy and σx represent the standard deviations of the
Gaussian component in the y and x directions, while γy and γx

are the half-width at half-maximum parameters of the Lorentzian
component in the respective directions, controlling the peak width
and shape in each dimension.

The fitting is implemented using the lmfit package (Newville
et al., 2024), which provides robust non-linear least squares
optimization with parameter bounds and constraints. To mitigate
the influence of high-intensity pixels, the residuals (model − data)
are weighted by 1/

√
I + 1 where I is the pixel intensity.

Peak filtering employs reduced chi-square (χ2
red) statistics

for quality assessment. The resulting binary masks undergo
a final validation step where peaks exceeding specified
reduced chi-square thresholds are rejected to ensure
label quality.

To handle the computational demands of processing millions
of peaks, the fitting pipeline is distributed across compute nodes
using Ray Core (Moritz et al., 2018). The system implements
a two-level elastic task scheduling: at the top level, diffraction
patterns are processed in configurable batches (e.g., 40 frames
per batch) with a fixed number of concurrent batch tasks (e.g.,
80 parallel batches). Within each batch, individual peak fitting
tasks are dynamically scheduled based on available resources. This
hierarchical scheduling approach efficiently handles the variable
processing times of different peaks, a common challenge in
crystallography where peak complexity varies significantly. In our
implementation, processing 40,000 peaks achieved a throughput
of ∼600 peaks per second when distributed across 200 CPU cores
(20 cores × 10 nodes). This distributed approach enables efficient
processing of large-scale datasets while maintaining consistent label
quality across diverse peak characteristics.
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FIGURE 2

Visualization of peak matching results using a set matching algorithm. The algorithm solves a linear sum assignment problem to establish

correspondences between any two sets of peak positions. In this example, peaks detected by Psocake (yellow squares) and PeakNet (red triangles)

are matched, with cyan circles indicating successfully matched peak pairs. This matching approach provides a quantitative basis for evaluating

consistency between arbitrary sets of peak positions, whether they come from di�erent detection methods, crystal indexing predictions, or other

sources.

2.2 Model architecture and supervised
pre-training

2.2.1 Modules in the architecture
The PeakNet architecture, as illustrated in the model

component of Figure 1, employs a scalable, modular design to
accommodate both large-scale pre-training and efficient edge
deployment scenarios. The network follows a three-component
structure: (1) a swappable convolutional neural network (CNN)
backbone for multi-scale feature extraction, (2) a bidirectional
feature pyramid network (BiFPN) (Tan et al., 2020) for feature
fusion, and (3) a prediction head for peak segmentation. This
modular approach allows each component to be independently
optimized or replaced while maintaining the overall pipeline
structure, enabling systematic exploration of different architectural
configurations without disrupting the end-to-end workflow.

The backbone utilizes the RegNet design principles
(Radosavovic et al., 2020), which provide a systematic approach

to model scaling through carefully balanced network depth,
width, and group width hyperparameters. This design choice
enables systematic exploration of the accuracy-efficiency trade-off
space while maintaining architectural consistency. The backbone
extracts hierarchical features at multi-spatial scales, creating a
rich representation of the crystallographic diffraction patterns.
Specifically, we adopt the ConvNeXtV2 (Woo et al., 2023) model as
the CNN backbone, which scales from 3.7M to 658M parameters,
and utilize the 658M parameter backbone for the supervised
pre-training.

The feature fusion stage implements a BiFPN, which enhances
information flow through bidirectional connections between
different feature scales. This component is independently scalable
in both width and depth (e.g. stack multiple BiFPN blocks),
offering increased flexibility for adjusting model capacity. This
approach preserves the network’s capability to capture both local
and global peak features effectively. Our implementation adopts
a modified BiFPN architecture where layer normalization replaces
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FIGURE 3

Analysis of peak detection quality metrics for dataset curation. (Left) Comparison between the number of found peaks using traditional peak finding

algorithms and predicted peaks from crystal indexing, showing the correlation and distribution of peak counts across the dataset. The clustering

around the diagonal indicates good agreement between detection and prediction methods, while outliers represent potential false positives or

missed peaks. (Right) Precision-recall analysis for image selection, where precision represents the ratio of overlapping peaks to detected peaks, and

recall is the ratio of overlapping peaks to predicted peaks. The dashed box highlights the high-precision region (precision > 0.8) used to prioritize

images for inclusion in the training dataset. This selection strategy ensures the initial training set comprises well-indexed images while maintaining

su�cient diversity in peak distributions.

batch normalization throughout the network, eliminating the need
for tracking running statistics during training. This modification
ensures themodel’s inference behavior depends solely on its learned
parameters rather than on accumulated training statistics, resulting
in more deterministic and reliable deployment.

The prediction head employs a dual-pathway architecture
optimized for precise peak segmentation. The first pathway
operates on downsampled feature maps for efficient segmentation
of large peaks, while the second pathway implements learnable
upsampling to generate full-resolution peak predictions that can
be as precise as a single pixel. Each pathway is made of a single
layer, minimizing computational overhead while maintaining
high localization accuracy. The prediction head’s architecture
remains constant across different model scales, ensuring consistent
output characteristics regardless of the backbone and BiFPN
configurations.

This modular and scalable architecture enables systematic
exploration of the model capacity spectrum, from high-capacity
models suitable for pre-training to efficient variants optimized for
real-time edge deployment at XFEL facilities.

2.2.2 Supervised pre-training
Training utilized a focal loss function with alpha-

balanced cross-entropy to address class imbalance inherent
in crystallographic data, where Bragg peaks typically occupy a

small fraction of detector pixels. The focal loss is defined as:

FL(pt) = −αt(1− pt)
γ log(pt) (1)

where pt is the model’s estimated probability for the target class,
αt is the alpha-balancing factor for class t, and γ is the focusing
parameter. We employed class-specific alpha values (αpeak = 0.75,
αbackground = 0.25) to account for the predominance of background
pixels, with γ = 2 to down-weight well-classified examples and
focus training on challenging cases.

The Data Engine enables continuous model improvement
through iterative dataset curation and refinement. At the time
of this manuscript’s preparation, we pre-trained the model using
supervised learning on PeakNet-20k, an in-house dataset of
∼20,000 diffraction patterns curated through the Data Engine.
This dataset represents diverse experimental conditions, including
various detector configurations, sample types, crystal qualities and
beam conditions. To enhance the model’s robustness to real-world
scenarios, we also incorporated challenging cases such as patterns
with detector artifacts and malfunctioning pixel areas. As the Data
Engine continues to process new experimental data, the dataset’s
quality and diversity will grow, enabling further improvements in
model performance.

Supervised pre-training utilizes a ConvNeXtV2 backbone
with 658M parameters, complemented by four BiFPN blocks
contributing an additional 14M parameters. Pre-training was
implemented using Fully Sharded Data Parallel (FSDP) on a
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FIGURE 4

Peak fitting workflow for generating segmentation labels. Each set shows: Input Data (detector image window), Model (fitted 2D pseudo-Voigt

function with χ2
red), Residual (with RMSD values), and Generated Label (binary segmentation mask). Eight di�erent peaks demonstrate the fitting

process across varying peak intensities and shapes.

single-node system equipped with 10 NVIDIA L40S GPUs,
with the software infrastructure designed to scale to larger
computational clusters as needed. To preserve spatial information
integrity, pre-training was conducted on fully assembled diffraction
patterns. To accommodate varying detector sizes, we implemented
a standardized pad-and-crop procedure, normalizing all input
images to 1, 920 × 1, 920 pixels, followed by z-standardization on
a per-image basis. While individual samples were processed with a
batch size of one, gradient accumulation was performed every 20
iterations to simulate the effects of a larger batch. The pre-training
also employed a base learning rate of 3 × 10−4 with cosine decay
scheduling and 20 warm-up iterations. To ensure training stability,
gradient norm clipping was enforced at a threshold of 1.0.

2.2.3 Model distillation for edge deployment and
distributed inference
2.2.3.1 Distillation

Model distillation was employed to transfer the capabilities of
the large-scale teacher model to a more compact student model
suitable for edge deployment. To optimize the distillation process,
pre-activation feature maps were generated for the entire PeakNet-
20k dataset using the teacher model and cached to disk, eliminating
the need for repeated teacher inference during training. The
cached feature maps were then processed to produce activation
maps through a temperature-scaled softmax activation, while
segmentation labels were further derived using argmax operations.

The distillation framework incorporates three complementary
loss functions: mean squared error (MSE) loss between teacher
and student feature maps, Kullback-Leibler (KL) divergence loss
between activation maps, and focal loss for segmentation map
prediction. Given teacher logits zt and student logits zs, the total
loss is computed as:

Ltotal = λmseLmse + λklLkl + λfocalLfocal, (2)

where λmse = 0.4, λkl = 0.4, and λfocal = 0.2 are weighting
coefficients for each loss component.

The mean squared error loss Lmse directly supervises feature
map alignment and is given by:

Lmse =
1

N

N
∑

i=1

(

z
(i)
t − z(i)s

)2
, (3)

where N is the number of feature map elements. This loss ensures
that the student model learns feature representations similar to
those of the teacher model at a fine-grained level.

Knowledge transfer is further facilitated through the Kullback-
Leibler divergence loss Lkl, which minimizes the difference
between the teacher’s and student’s probability distributions after
temperature scaling. The KL divergence loss is defined as:

Lkl = T2 · KL
(

pt(T) ‖ ps(T)
)

, (4)
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where the temperature-scaled softmax probabilities for the teacher
and student models are expressed as:

pt(T) = σ

( zt

T

)

, (5)

ps(T) = σ

( zs

T

)

, (6)

with σ (·) denoting the softmax function. The temperature scaling
factor T = 2.0 softens the probability distributions, which
is critical for transferring knowledge from the teacher to the
student (Hinton et al., 2015). The scaling factor T2 is applied to
preserve appropriate gradient magnitudes during backpropagation.
In alignment with PyTorch’s built-in KLDivLoss, the spatial
dimensions H and W of the feature maps are reshaped into the
batch dimension to properly account for the spatial structure of
the feature maps. The KL divergence loss is calculated using the
batchmean reduction method, which averages the loss over the
batch size.

The focal loss Lfocal provides additional supervision using
pseudo-labels derived from the teacher model’s activation map, as
detailed in Section 2.2.2. These “fake” hard labels are generated
by applying an argmax operation to the teacher’s activation
map, selecting the most likely class at each spatial location.
Unlike “true” hard labels from ground truth segmentation
annotations (which are not used in our current distillation
framework), these teacher-derived labels reflect the teacher
model’s predictions and are therefore subject to its limitations
and biases.

This composite loss function enables the student model
to learn both fine-grained feature representations and decision
boundaries from the teacher while maintaining robust peak
segmentation performance. The empirical weights λmse, λkl,
and λfocal were chosen to balance feature-level supervision
(Lmse), soft target learning (Lkl), and “fake” hard target
regularization (Lfocal).

Model distillation was performed using Fully Sharded Data
Parallel (FSDP) with Zero2 sharding strategy on a system with
10 NVIDIA L40s GPUs. While the smaller student models could
theoretically be trained using standard data parallel approaches, we
kept using FSDP for code base consistency between teacher and
student training, with only optimizer states and gradients being
sharded in the distillation process. To maintain consistency with
the teacher model training, we applied the same standardized pad-
and-crop procedure for 1920 × 1920 pixel images and per-image
z-standardization. The distillation process utilized a batch size of
4 with gradient accumulation every 10 steps to balance memory
constraints with effective batch statistics. Training employed a
base learning rate of 3 × 10−4 with cosine decay scheduling to
1 × 10−7 over 3,200 steps. Convergence was typically observed
after ∼1,400 steps, as indicated by stabilization of the composite
distillation loss. Additionally, we maintained the same gradient
norm clipping threshold of 1.0 as used in teacher model training
to ensure training stability.

2.2.3.2 Inference

The inference pipeline implements a producer-consumer
architecture using Ray Core (Moritz et al., 2018). Data flows
from Psana, our specialized LCLS data source infrastructure,

through distributed queues to inference workers and then
through a second queue to HDF5 file writers. Each GPU runs
one model instance, with configurable batch processing for
optimized throughput.

Final peak finding results are persisted in CrystFEL-compatible
HDF5 format, with aggregation to optimize I/O performance.
The system enables parallel processing across multiple nodes and
GPUs, with planned enhancements for dynamic load balancing and
fault recovery in future Ray-based implementations. Monitoring
capabilities track queue depths, GPU utilization, and processing
throughput, enabling real-time performance optimization and
system maintenance.

3 Results and discussion

3.1 Evaluation framework

We evaluate the effectiveness of Bragg peak finding algorithms
in crystallography through their impact on downstream structure
determination processes. Our evaluation framework centers on
three complementary metrics that capture different aspects of
pipeline performance. The hit rate, defined as the ratio of
potential crystal diffraction patterns to total collected images,
indicates detection sensitivity. However, high hit rates alone can be
misleading or even detrimental, potentially overwhelming storage
systems and computational resources with poor-quality patterns.
The indexing rate, measuring the proportion of hit images that
are successfully indexed, reveals how reliably the identified peaks
contribute to structure determination when processed through
identical indexing methods and parameter configurations. In fact,
a high hit rate combined with a low indexing rate often indicates
that the system is producing many false positives, identifying non-
crystallographic features as Bragg peaks. Finally, the indexing yield,
computed as the product of hit rate and indexing rate, provides
a holistic measure of the pipeline’s efficiency in converting raw
detector images into indexed crystal structures.

3.2 Performance analysis on recent LCLS
data

We evaluated our pipeline using a recent “road runner”
(Roedig et al., 2017) crystallography experimental run at
the Macromolecular Femtosecond Crystallography (MFX)
instrument in LCLS, processing 77,023 detector images using
an Epix10ka2M detector. To ensure fair comparison, all peak
finding approaches fed into identical indexing pipelines with
consistent parameters.

3.2.1 Baseline and teacher model performance
The traditional approach, utilizing expert-tuned parameters in

established crystallographic software, achieved an indexing yield of
36.38% through a hit rate of 50.02% and indexing rate of 72.73%.
This baseline represents a carefully optimized configuration
that typically requires several hours of trials and errors to
converge on optimal parameter settings when working with new
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FIGURE 5

Visualization of the PeakNet pipeline’s image processing and feature extraction capabilities on an example X-ray di�raction pattern. (A) Raw

di�raction pattern from an Epix10ka2M detector showing characteristic Bragg peaks, with an inset highlighting the detailed peak distribution and

detector panel boundaries. (B) Final segmentation output from the model, where bright spots indicate identified Bragg peaks. (C) Bragg peak

activation map showing the model’s learned feature representations for crystallographic peaks, with brighter regions indicating higher activation

values. (D) Non-Bragg-peak activation map highlighting the model’s ability to identify non Bragg peak features such as panel gaps and background

noise. The complementary nature of the activation maps (C, D) demonstrates the model’s ability to di�erentiate between genuine Bragg peaks and

other features, which is crucial for reliable peak segmentation in challenging experimental conditions.

sample types, crystal quality or detector configurations, even with
experienced crystallographers. While this manual optimization
process can be expedited when working with familiar samples
and detectors where approximate parameters are known, the
time investment required for each new experimental configuration
represents a significant bottleneck that our neural network
approach eliminates.

Our large-scale teacher model (658M parameters backbone)
matched the baseline’s overall effectiveness while operating at a
different balance point. The model achieved a higher indexing
yield (37.50%) with more aggressive hit finding (54.32% hit rate)
while maintaining a reasonable indexing rate (69.03%). This
improvement in indexing yield, the key metric for overall pipeline
efficiency, suggests that the model successfully learns to identify
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TABLE 1 Performance comparison of di�erent model configurations on a crystallography dataset with 77,023 images.

Model Backbone BiFPN Images Hits Indexable Hit rate Index rate Index yield

Human† – – 77,023 38,530 28,022 50.02% 72.73% 36.38%

Teacher Huge (658M) 4 77,023 41,837 28,882 54.32% 69.03% 37.50%

Student1 Tiny (28M) 4 77,023 30,901 24,761 40.12% 80.13% 32.15%

Student2 Atto (3M) 4 77,023 26,611 19,879 34.55% 74.70% 25.81%

Student3‡ Atto (3M) 2 77,023 52,767 25,338 68.51% 48.02% 32.90%

Student4 Tiny (28M) 2 77,023 73,609 25,475 95.57% 34.61% 33.07%

Student5 Atto (3M) 2 77,023 74,177 25,131 96.30% 33.88% 32.63%

The human baseline represents expert-tuned traditional peak finding methods. The teacher model uses a large backbone (658M parameters) with 4 BiFPN blocks, while student models explore
various lightweight configurations. Hit Rate indicates the percentage of images identified as containing diffraction patterns, Index Rate shows the success rate of indexing among hit images, and
Index Yield represents the overall pipeline efficiency (product of Hit Rate and Index Rate).
†The human expert used Cheetah for peak finding.
‡Model distilled using only Epix10ka2M detector data; all other student models were distilled using both Epix10ka2M and Rayonix detector data.

peaks that are more consistently useful for crystal indexing.
Figure 5 visualizes how the model processes a raw diffraction
pattern (Figure 5A) to generate precise peak segmentation
(Figure 5B) through its learned feature representations for
crystallographic peaks (Figure 5C) and non-peak features
(Figure 5D).

3.2.2 Student model analysis
Model distillation revealed systematic trends across student

models of varying capacities (Table 1). Model compression
consistently led to increased hit rates but decreased indexing rates,
suggesting reduced capacity impacts Bragg peak discrimination
of high-quality and marginal diffraction patterns. Student1 (tiny
backbone, four BiFPN blocks) achieved the most practical balance
with a 32.15% indexing yield, maintaining selective hit finding
(40.12%) with strong indexing performance (80.13%).

Notably, Student3, trained exclusively on Epix10ka2M detector
data, demonstrated how training on detector specific data can
partially mitigate compression trade-offs, achieving a 32.90%
indexing yield despite increased hit sensitivity (68.51%). In
contrast, highly compressed models (Student4, Student5) showed
concerning behavior with extremely high hit rates (>95%) but
poor indexing rates (∼34%), indicating degraded Bragg peak
quality discrimination.

3.2.3 Unit cell parameter analysis
The distributions of indexed unit cell parameters, as shown

in Figure 6, provide strong quantitative validation of our deep
learning approach. All models, including the heavily compressed
student variants, preserve the characteristic sharp peaks centered at
the expected values seen in human expert processing. The human
reference establishes baseline distributions with cell lengths a =
40.07 ± 3.91Å, b = 70.90 ± 0.50Å, c = 91.10 ± 0.28Å and angles
α = β = γ = 90.0◦ with standard deviations of 0.2◦, 0.3◦, and
0.3◦, respectively.

The teacher model demonstrates remarkable consistency with
these reference values, showing only minimal deviations in the
mean values (a = 40.82 ± 4.53Å, b = 70.89 ± 0.52Å, c = 91.09 ±
0.30Å) and maintaining identical angular precision (α = β = γ =

90.0 ± 0.2-0.3◦). Both student models maintain this high level of
accuracy, with the tiny backbone variant showing slight parameter
shifts (a = 39.98± 3.77Å, b = 70.88± 0.50Å, c = 91.08± 0.29Å)
and the atto backbone exhibiting marginally increased variability
(a = 39.27 ± 4.19Å, b = 70.82 ± 0.48Å, c = 91.00 ± 0.31Å)
while preserving the expected 90◦ angles with only minor increases
in angular uncertainty (up to 0.4◦ for γ ).

This consistency across cell parameters, particularly the
preservation of tight distributions around physically expected
values, confirms that our models are identifying genuine Bragg
peaks that enable accurate crystal indexing rather than spurious
features that happen to pass the indexing step. The slightly
broader distributions in student models, especially visible in
the a-axis parameters, suggest a modest degradation in peak
quality discrimination, consistent with the lower indexing rates
observed in Table 1. However, the effect remains minimal enough
to maintain reliable crystal indexing performance across all
model variants.

3.2.4 Architecture impact analysis
Our systematic exploration of model architectures revealed

several key insights about scaling behavior and performance
characteristics. The choice of backbone significantly influences
the operating point balance, with the huge backbone (Teacher)
achieving optimal indexing yield (37.50%) through balanced
operation (54.32% hit rate, 69.03% indexing rate). The
tiny backbone configuration (Student1) demonstrates more
conservative behavior with lower hit rate (40.12%) but higher
indexing rate (80.13%), while the atto backbone maintains
practical indexing yields (∼32%) when optimized for specific
detector configurations despite its minimal size.

BiFPN block count emerges as a critical factor in maintaining
Bragg peak discrimination capabilities. Student models with 4
BiFPN blocks maintain high indexing rates (>74%) with controlled
hit rates, while 2-block variants show degraded discrimination with
indexing rates below 50% and a tendency toward over-sensitive
Bragg peak detection evidenced in the elevated hit rate. This pattern
suggests that reduced feature fusion capacity significantly impacts
the model’s ability to distinguish genuine Bragg peaks, even with
identical backbones.
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FIGURE 6

Distribution of unit cell parameters (lengths a, b, c and angles α, β, γ ) from crystal indexing across di�erent peak finding approaches. The plots show

remarkably consistent distributions between human expert processing (top row) and subsequent model variants, with mean (µ) and standard

deviation (σ ) values annotated for each parameter. Both teacher (second row) and student models (third and fourth rows) maintain tight distributions

around expected values, with the teacher model showing marginally sharper peaks particularly in the angle parameters. The atto-backbone student

model exhibits slightly increased variability in angular parameters (σ up to 0.4◦) while maintaining accurate mean values, demonstrating successful

knowledge transfer even under extreme model compression.

3.2.5 Implications for deployment strategy
Our analysis reveals several key considerations for practical

deployment. While smaller models enable faster inference, their
tendency toward detecting more peaks per image results in high
hit rates but lower indexing rates, potentially creating downstream
processing bottlenecks that offset speed advantages. Furthermore,
maintaining adequate BiFPN capacity appears more critical than
backbone size for preserving discrimination capabilities. The
promising performance of detector-specific distillation (e.g.,
Student3) suggests the value of implementing systematic testing
frameworks to evaluate model performance across different

detector configurations. Such evaluation frameworks could
help identify cases where detector-specific fine-tuning might
complement our primary strategy of distillation using diverse,
multi-detector datasets.

3.3 Visual results

We present two sets of visualizations to demonstrate both the
model’s feature extraction capabilities and the effectiveness of our
model distillation approach.
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FIGURE 7

Feature extraction visualization across diverse di�raction patterns. Each panel shows a quartet visualization of: original detector image (leftmost),

non-Bragg-peak activation map, Bragg peak activation map, and final segmentation result (rightmost, yellow areas). The 12 random patterns

demonstrate the model’s ability to handle varying experimental conditions including di�erent peak densities, detector panel gaps, and background

intensities.

Figure 7 shows a collection of 12 representative diffraction
pattern segments, with each panel displaying the original detector
image alongside its corresponding non-Bragg-peak activation map,
Bragg peak activation map, and final segmentation result. The
activation maps reveal the model’s ability to differentiate between
crystallographic peaks and other features, with particularly robust
performance in challenging scenarios such as detector panel gaps,
varying peak densities, and strong background features.

Figure 8 provides a comparative analysis of model distillation
outcomes through four sets of triplet visualizations arranged
in a 2 × 2 grid. Each triplet shows results from the teacher
model (top row), tiny-backbone student (middle row), and atto-
backbone student (bottom row) applied to identical input patterns.
This comparison reveals several key insights into the effects of
model compression. The teacher model consistently produces
sharper, more concentrated activation patterns for Bragg peaks,
while student models exhibit progressively more diffuse activations
as model capacity decreases. Nevertheless, both student models
maintain reliable peak discrimination capabilities, as evidenced

by the consistency of their final segmentation results across most
cases. The visualization of challenging scenarios, particularly near
detector artifacts and panel boundaries, illustrates how model
compression affects robustness. In these complex regions, the
atto-backbone occasionally exhibits uncertainty where the teacher
model remains decisive, though it still maintains acceptable
peak detection performance. These visualizations support our
quantitative findings regarding the trade-offs between model
size and performance, while demonstrating that even highly
compressed student models retain core peak detection capabilities
through effective model distillation.

3.4 Inference runtime analysis

We evaluated the inference pipeline’s performance using a
dataset of 77,023 Epix10ka2M detector images across two distinct
computing environments. The baseline CPU implementation was
tested on a system with dual-socket AMD EPYC 7713 64-Core
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FIGURE 8

Comparative visualization of model distillation results. Four sets of di�raction patterns (arranged in a 2 × 2 grid) are shown, each processed by three

model variants: teacher model (top row), tiny-backbone student (middle row), and atto-backbone student (bottom row). Each row shows the

quartet visualization format: original image, non-Bragg-peak activation map, Bragg peak activation map, and final segmentation. Note how activation

patterns become more di�use with reduced model capacity, while maintaining consistent peak identification in the final segmentation. The selection

of patterns includes various challenging scenarios such as detector artifacts and panel boundaries to demonstrate robustness across model

compression levels.

TABLE 2 Runtime analysis comparing inference performance across di�erent model variants and configurations.

Model Parameters Hardware Batch size Time (min) Throughput (img/s)

Teacher 673M 40 L40S GPUs 2 12 107

Student (Tiny) 41M 40 L40S GPUs 4 10 128

Student (Atto) 16M 40 L40S GPUs 4 7 183

Cheetah – 32 CPU cores∗ – 10 128

∗AMD EPYC 7713. The teacher model represents the full-scale architecture, while student models show performance gains through model compression. Cheetah, a traditional CPU-based peak
finding algorithm, is included as a reference baseline (this measures only execution time with optimized parameters, not including the several hours typically required for parameter tuning by
expert users). Tests were conducted on a dataset of 77,023 Epix10ka2M detector images. Neural network models ran on NVIDIA L40S GPUs with AMD EPYC 9454 processors, while Cheetah
utilized AMD EPYC 7713 processors.

processors (3.7 GHzmax frequency, 32MB L3 cache per CCX). The
GPU-accelerated pipeline was evaluated on a cluster equipped with
AMDEPYC 9454 48-Core processors (3.8 GHzmax frequency) and
NVIDIA L40S GPUs.

The performance characteristics across model variants
(Table 2) reveal the trade-offs between model capacity and

inference speed. While the teacher model offers highest accuracy,
the atto-backbone student achieves 71% higher throughput at 183
images per second while maintaining acceptable peak detection
quality, as discussed in Section 3.2.

At LCLS, traditional crystallographic software pipelines are
tightly integrated with Psana, LCLS’s data access framework, using
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Message Passing Interface (MPI) to optimize runtime performance.
This tight coupling between Psana and peak-finding algorithms has
historically served the facility well, enabling efficient processing for
classical approaches. However, this architecture presents significant
limitations for neural network inference at scale, where GPU
utilization and batch processing are critical for performance. Our
system takes a fundamentally different approach by decoupling
Psana data source from model inference through a producer-
consumer architecture.

Our distributed inference system implements this decoupling
using a two-stage queue design. Detector images are ingested by
Psana running on 32 CPU cores, feeding into a primary queue
with 3,200-image capacity. This queue acts as a buffer between
the data source and processing, allowing the system to smooth
out variations in processing time and maintain consistent GPU
utilization. Multiple GPU workers process batched images in
parallel, with results flowing through a second-stage queue to
dedicated CrystFEL-compatible HDF5 file writers running on 10
CPU cores.

This decoupled architecture offers several advantages over
traditional MPI-based approaches at LCLS. First, it enables
independent scaling of data loading and processing components,
and additional GPU workers can be added without modifying
the Psana-based data ingestion pipeline. Second, the queuing
system facilitates efficient batch processing, critical for maximizing
GPU utilization with neural network inference. Finally, the
system’s modular design simplifies deployment and maintenance,
as components can be upgraded or modified independently.

While our current implementation achieves throughput
comparable to CPU-based methods, it falls short of the order-
of-magnitude speedups typically expected from GPU acceleration.
This performance gap stems from several factors, including data
transfer overhead, batching constraints, the sequential execution of
inference pipeline stages (loading data to GPUs, model inference,
and load results to the second queue), and limitations in
neural network execution efficiency (e.g., lack of JIT compilation
optimizations). However, the GPU-accelerated pipeline with its
decoupled producer-consumer architecture and demonstrated
model compression capabilities provides a foundation for future
optimizations needed to meet the high-throughput requirements
of next-generation facilities. These optimizations could include
concurrent execution of pipeline stages, such as through Ray’s task
scheduling system, along with other performance improvements
discussed in Section 3.5.

3.5 Future research directions

The architecture developed for Bragg peak detection has
potential applications in other scientific domains requiring real-
time analysis of high-throughput image data. At synchrotron
facilities, High Energy X-ray Diffraction Microscopy (HEDM) and
Cryo-crystallography experiments generate complex diffraction
patterns that require rapid peak identification for material
characterization and molecular structure determination. Similarly,
neutron diffraction experiments at spallation sources could benefit
from our pipeline’s ability to handle varying peak intensities

and background conditions. The Data Engine’s approach to
automated dataset generation could be adapted for these domains,
where traditional peak finding algorithms often require extensive
tuning specific to facilities, experimental conditions, detector
configurations, and sample characteristics.

Looking ahead, our work presents several opportunities for
further advancement across multiple aspects of the system. The
Data Engine’s circular workflow design provides a foundation
for continuous improvement of the training dataset and model
performance. Future iterations could leverage this capability to
systematically enhance peak detection accuracy across diverse
experimental conditions through dataset refinement and model
retraining, particularly when adapting to new sample types,
detector configurations and experimental setups.

A primary focus for future development is accelerating
inference speed through architectural innovations. This includes
exploring efficiency-optimized architectures like EfficientNet (Tan
and Le, 2020, 2021) and MobileNet (Howard et al., 2017; Sandler
et al., 2018; Howard et al., 2019; Qin et al., 2024), which
incorporate depthwise separable convolutions and compound
scaling. Other promising approaches include structured pruning
to reduce parameter count while preserving accuracy, mixed-
precision quantization for reducedmemory bandwidth, and dilated
convolutions to maintain receptive field size with fewer parameters.

Model distillation strategies also warrant further investigation.
While our current approach relies on teacher-derived “fake” hard
labels, future work could explore incorporating true hard labels
from ground truth annotations to potentially improve student
model performance. This direct supervision from ground truth
data could help student models better preserve peak discrimination
capabilities during model compression.

Preparing for MHz repetition rates at upcoming XFEL
upgrades remains a key priority. This will require both
architectural optimization and innovations in distributed
computing infrastructure. Potential approaches include hardware-
aware neural architecture search to identify optimal model
configurations for specific accelerator platforms and developing
streaming algorithms for real-time model inference. The producer-
consumer model potentially enables cross-site real-time analysis
where Advanced Scientific Computing Research (ASCR) facilities
can scale the compute infrastructure for inference, particularly
valuable for handling peak processing loads during intense
experimental campaigns.

4 Conclusion

This work demonstrates the feasibility of scaling deep
learning to solve real-time Bragg peak finding through a
comprehensive machine learning system. By integrating automated
data generation, flexible model architectures, and distributed
inference, our pipeline achieves a 37.5% indexing yield that
surpasses traditional expert-tuned methods while eliminating
manual parameter adjustment. The system’s decoupled producer-
consumer architecture enables practical deployment at XFEL
facilities, achieving 183 images per second throughput with
compressed models while maintaining robust peak discrimination.
While further optimization is needed for MHz-scale facilities, our
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systematic approach to the complete machine learning pipeline,
from training through deployment, establishes a foundation for
integrating deep neural networks into high-throughput scientific
applications.
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