The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Genet.
Sec. Computational Genomics
Volume 15 - 2024 |
doi: 10.3389/fgene.2024.1488683
This article is part of the Research Topic Computational Approaches Integrate Multi-Omics Data for Disease Diagnosis and Treatment View all 3 articles
DMOIT: Denoised multi-omics integration approach based on transformer multi-head self-attention mechanism
Provisionally accepted- Seoul National University, Seoul, Republic of Korea
Multi-omics data integration has become increasingly crucial for a deeper understanding of the complexity of biological systems. However, effectively integrating and analyzing multi-omics data remains challenging due to their heterogeneity and high dimensionality. Existing methods often struggle with noise, redundant features, and the complex interactions between different omics layers, leading to suboptimal performance. Additionally, they face difficulties in adequately capturing intra-omics interactions due to simplistic concatenation techiniques, and they risk losing critical inter-omics interaction information when using hierarchical attention layers. To address these challenges, we propose a novel Denoised Multi-Omics Integration approach that leverages the Transformer multi-head self-attention mechanism (DMOIT). DMOIT consists of three key modules: a generative adversarial imputation network for handling missing values, a sampling-based robust feature selection module to reduce noise and redundant features, and a multi-head self-attention (MHSA) based feature extractor with a noval architecture that enchance the intra-omics interaction capture. We validated model porformance using cancer datasets from the The Cancer Genome Atlas (TCGA), conducting two tasks: survival time classification across different cancer types and estrogen receptor status classification for breast cancer. Our results show that DMOIT outperforms traditional machine learning methods and the state-of-the-art integration method MoGCN in terms of accuracy and weighted F1 score. Furthermore, we compared DMOIT with various alternative MHSA-based architectures to further validate our approach. Our results show that DMOIT consistently outperforms these models across various cancer types and different omics combinations. The strong performance and robustness of DMOIT demonstrate its potential as a valuable tool for integrating multi-omics data across various applications.
Keywords: Multi-omics integration, Survival Time Prediction, deep learning, machine learning, Multi-head self attention
Received: 30 Aug 2024; Accepted: 25 Nov 2024.
Copyright: © 2024 Liu and Park. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Zhe Liu, Seoul National University, Seoul, Republic of Korea
Taesung Park, Seoul National University, Seoul, Republic of Korea
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.