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Multi-omics data integration has become increasingly crucial for a deeper
understanding of the complexity of biological systems. However, effectively
integrating and analyzing multi-omics data remains challenging due to their
heterogeneity and high dimensionality. Existing methods often struggle with
noise, redundant features, and the complex interactions between different
omics layers, leading to suboptimal performance. Additionally, they face
difficulties in adequately capturing intra-omics interactions due to simplistic
concatenation techiniques, and they risk losing critical inter-omics interaction
information when using hierarchical attention layers. To address these
challenges, we propose a novel Denoised Multi-Omics Integration approach
that leverages the Transformer multi-head self-attention mechanism (DMOIT).
DMOIT consists of three key modules: a generative adversarial imputation
network for handling missing values, a sampling-based robust feature
selection module to reduce noise and redundant features, and a multi-head
self-attention (MHSA) based feature extractor with a noval architecture that
enchance the intra-omics interaction capture. We validated model
porformance using cancer datasets from the Cancer Genome Atlas (TCGA),
conducting two tasks: survival time classification across different cancer types
and estrogen receptor status classification for breast cancer. Our results show
that DMOIT outperforms traditional machine learning methods and the state-of-
the-art integration method MoGCN in terms of accuracy and weighted F1 score.
Furthermore, we compared DMOIT with various alternative MHSA-based
architectures to further validate our approach. Our results show that DMOIT
consistently outperforms these models across various cancer types and different
omics combinations. The strong performance and robustness of DMOIT
demonstrate its potential as a valuable tool for integrating multi-omics data
across various applications.
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1 Introduction

With the advent of high-throughput sequencing technologies, various types of omics
data, including genomics, transcriptomics, and proteomics data, have become increasingly
accessible. The pathogenesis of diseases often involves complex interactions across multiple
biological levels and factors. Consequently, single-omics data provide only partial insights
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into biological processes, often failing to capture other critical factors
and leading to an incomplete understanding of disease mechanisms.
In contrast, multi-omics approaches offer the potential to reveal new
biological insights that are not apparent when single-omics data are
used alone (Yan et al., 2018). Therefore, the integration of multiple
omics data is essential for achieving a comprehensive and
complementary understanding of complex disease occurrence and
progression, thereby further advancing personalized medicine
(Hasin et al., 2017). However, integrating multi-omics data
presents several challenges. Firstly, there is significant
heterogeneity among different omics data types (genomics,
transcriptomics, and proteomics), making integration complex
due to varying data formats and scales (López de Maturana et al.,
2019). Additionally, missing values and noise in the data can impact
accuracy (Flores et al., 2023), while the large scale of multi-omics
datasets demands substantial computational resources and efficient
algorithms (Fondi and Liò, 2015). Lastly, combining information
across different biological levels adds another layer of complexity,
and interpreting and visualizing the integrated results can be
challenging (Krassowski et al., 2020).

In the past decade, researchers have made significant progress in
developing tools for multi-omics data integration. Dimension
reduction-based methods have been foundational in multi-omics
data integration. For example, canonical correlation analysis (Qi
et al., 2021) is commonly used to evaluate the correlation between
feature sets in different omics data. principal component analysis
transforms relevant variables into linearly uncorrelated principal
components through orthogonal transformation. However, those
approaches typically assume linear relationships between features
and fail to capture nonlinear relationships. Deep learning-based
models can better capture complex nonlinear relationships due to
multi-level neural network architecture, making them crucial tools
in multi-omics data integration (He et al., 2023). Convolutional
neural networks and Recurrent neural networks are utilized to
handle high-dimensional and nonlinear multi-omics data,
extracting complex features from them (Kang et al., 2022). In
addition, encoder-decoder models, such as variational
autoencoder (Hira et al., 2021) and generative adversarial
network (Ahmed et al., 2022) are widely used for the integration
and generation of multi-omics data, achieving dimensionality
reduction by obtaining intermediate latent feature
representations. Graph convolutional networks (Li et al., 2022)
facilitate efficient information dissemination and aggregation by
modeling the complex relationships and graph structure
characteristics between data and are also applied to multi-omics
data integration.

In recent years, the attention mechanism has become a hot topic
in deep learning-based integration methods. Researchers (Gong
et al., 2023) have applied attention mechanisms to reduce
dimensionality and learn feature representations for each omics
data type. Another study (Pang et al., 2023) introduced a
hierarchical attention layer based on the biological central dogma
to enhance data integration effectiveness. These methods
demonstrate the enormous potential of attention mechanisms in
multi-omics data integration. Additionally, some researchers
(Zhang et al., 2022) constructed a Graph attention network and
group-level attention mechanism to learn embedding
representations. However, existing attention-based methods often

face limitations. Some approaches (Gong et al., 2023) typically
simply input each omics data into a separate attention layer,
focusing only on the intra-omics interactions and ignoring the
inter-omics interaction. Other approaches concatenate multiple
omics datasets before applying a single attention layer (Wang
et al., 2024; Pan et al., 2023). Given the heterogeneity of omics
data, this approach may not effectively attend to each data type,
making it challenging to capture intra-omics integrations.
Additionally, due to the high dimensionality of omics data,
single-head self-attention mechanisms might be inadequate in
capturing subtle interactions. Overall, these methods may not
fully exploit the potential value in multi-omics data.

Effective data preprocessing is also critical for optimizing
performance in multi-omics integration frameworks. The
characteristics of high-dimensional omics data, such as missing
values and significant noise, make multi-omics data integration
challenging. It has been proven that missing values in high-
dimensional omics data can adversely affect downstream analyses
(Flores et al., 2023). Therefore, addressing missing values is essential
for maintain data quality. However, existing attention-based multi-
omics integration methods often rely on simplistic imputation
strategies such as zero, mean, or median imputation. These
methods often fail to account for the complex correlations within
omics data, potentially introducing unnecessary noise from imputed
values. Moreover, discarding features with missing values might
result in losing important information. Additionally, high-
dimensional data also often contain numerous redundant features
that may be selected by chance and degrade performance. Therefore,
feature selection is a vital preprocessing step aimed at reducing noisy
features and effectively decreasing dimensionality. While many
integration frameworks select features based solely on the highest
variance, which can lead to the inclusion of noisy and unstable
features due to noise, outliers, and data disturbances.

To improve feature relevance, reduce noise, and capture both
intra- and inter-omics interactions, we propose DMOIT, a novel
denoised multi-omics integration approach. As shown in Figure 1,
DMOIT includes three main modules. First, the Generative
Adversarial Imputation Network (GAIN) (Yoon et al., 2018)
module is introduced to learn feature distributions and impute
missing values. Second, the Robust Feature Selection (RFS)
module, based on bootstrap sampling, is employed to identify a
denoised and stable feature set. Finally, a feature extractor leveraging
the transformer multi-head self-attention (MHSA) mechanism is
constructed to integrate multi-omics data, capturing both intra- and
inter-omics interactions. Empirical studies across various cancer
types and omics combinations demonstrate that DMOIT
significantly enhances performance in multi-omics data
integration and analysis.

2 Materials and methods

2.1 Data acquisition and preprocessing

We evaluated our proposed framework using three types of
omics data: mRNA expression profiles, DNA methylation (Met),
and copy number variation (CNV). The datasets were obtained from
the UCSC Xena web browser, a resource that includes multi-omics
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and clinical data of cancer patients from The Cancer Genome Atlas
(TCGA) project. We filtered samples with complete data for all three
types of omics and clinical information. To enhance the reliability of
our results, we focused on the top four TCGA cancer types with the
most samples after filtering, including breast invasive carcinoma
(BRCA), head and neck squamous cell carcinoma (HNSC), liver
hepatocellular carcinoma (LIHC), and stomach adenocarcinoma
(STAD). To validate the effectiveness and robustness of our
proposed model, we applied DMOIT to survival time
classification tasks across these four cancer types and the
estrogen receptor (ER) status classification task for BRCA. In our
survival time classification task, rather than using the median
survival time, we set the threshold to the nearest integer to the
median to better align with practical clinical applications. Patients
with survival times greater than the threshold are labeled as long-
term survivors (LTS), while those with shorter survival times are
labeled as non-long-term survivors (non-LTS). The distribution of
survival time labels for the specific cancer types shown in Table 1.
For the estrogen receptor (ER) status classification task, we obtained
the clinical information from cBioPortal (Gao et al., 2013),

categorizing 199 patients as ER positive (ER+) and 55 as ER
negative (ER-). During data preprocessing, we first removed
features with high missing value rates. Specifically, CNV data
was not included in the imputation process because they did not
contain any missing data. For the mRNA and Met data, we removed
features with 100% missing value rate and then applied min-max
scaling to mitigate the impact of magnitude differences between
features and ensure that features contribute equally during variance
filtering and enhances the performance of subsequent machine
learning models. For CNV data, we marked the variations into
three types: no (0), decreased copy number (−1), and increased copy
number (Yan et al., 2018). A bootstrap sampling-based feature
selection module was applied to filter the denoised feature set. A
detailed explanation follows in the subsequent sections. We then
imputed the mRNA and Met data using the GAIN model. Details of
data preprocessing are provided in Supplementary Figures S1, S2.

2.2 Robust feature selection module

High-dimensional data often exhibits characteristics such as
noise and redundant features. Noise can introduce random
variations that obscure the true signal in the data, while
redundant features can lead to overfitting and increased
computational complexity. These issues may further result in
unstable feature selection outcomes and degrade model
performance. Traditionally, researchers integrating multi-omics
data have relied on a single variance filter for feature pre-
selection. However, including noisy samples—especially those
with extreme values due to errors in sequencing technology or
data entry—can skew the results during the single variance filtering

FIGURE 1
Overview of the proposed multi-omics integration framework. Note: This framework is primarily divided into three modules. The first module
utilizes the GAIN model for imputation, the second module is for feature selection based on bootstrap sampling, and the third module is an integration
module based on multi-head self-attention mechanism.

TABLE 1 Sample distributions of long-term survivors (LTS) and non-long-
term survivors (non-LTS) across the four cancer types.

Dataset Total samples LTS Non - LTS

BRCA 783 416 367

HNSC 514 370 144

LIHC 368 251 117

STAD 366 223 143
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step. This can lead to an overemphasis on certain features, causing
the selection of unreliable or misleading data. To address this, we
incorporated a robust feature selection (RFS) module that assesses
features stability using the bootstrapping resampling technique, a
widely recognized method for evaluating feature reliability. Our
approach was inspired by the work of Cho et al. (2010), who
employed a bootstrap method to select stable feature sets and
proposed a new measure called Bootstrap Selection Stability.
Furthermore, previous studies have demonstrated that the feature
selection results can be significantly influenced by data disturbances;
even minor alterations in the sample data can lead to the substantial
changes in outcomes. To address this issue, Pes (2020) also proposed
employing bootstrap sampling to conduct multiple feature
selections, subsequently identifying a stable dataset based on the
frequency of selection. This highlights the necessity for robust
feature selection methods, especially in multi-omics analyses. In
our RFS module, we generated ten bootstrap samples for each type
of omics data. Bootstrap sampling involves creating multiple subsets
of the original data via random sampling with replacement.
Bootstrap sampling simulates data variability and helps to assess
the consistency of feature importance under different perturbations.
For each bootstrap sample, we filtered the features with the highest
variance, as these are typically more informative. We then selected
the top features based on their frequency of selection across all
bootstrap samples. The RFS module ensures that only consistently
selected features are chosen, thus enhancing the relevance and
robustness of the final feature set.

2.3 Generative adversarial imputation
network in multi-omics integration

Previous studies (Gunady et al., 2019; Xu et al., 2020; Wang et al.,
2023) have shown that generative adversarial network (GAN)-based
methods achieve promising results in imputingmRNA expression data.
However, the stability of GANs in multi-omics data integration has not
been extensively investigated. Given GANs’ ability to learn and mimic
any data distribution (Yoon et al., 2018), we hypothesized that they
could handle multi-omics data imputation effectively, mitigating noise
from missing values. GANs work by training two networks
simultaneously: a generator that generates realistic data, and a
discriminator that distinguishes between real and synthetic samples.
This adversarial training process enables GANs to learn the underlying
data distribution accurately and generate realistic data samples that
closely align with the true data, thereby reducing noise and improving
imputation quality. To avoid introducing additional noise from
imputing true observations, we imputed only the missing values in
the original data after completing the data generation process. In our
study, we imputed mRNA and MET data based on the learned
distribution. CNV data was not included in the imputation process
because they did not contain any missing data.

2.4 Multi-head self-attention based multi-
omics data integration

Self-attention allows the model to weigh the importance of
different features within the same omics dataset. This capability

is crucial for capturing the intricate dependencies and interactions
between features both within individual layers and across different
omics layers. The self-attention mechanism is mathematically
described as follows (Vaswani et al., 2017):

Attention Q,K,V( ) � softmax
QKT��
dk

√( )V
where Q (query), K (key), and V (value) are matrices derived from
the same set of omics features, and where dk represents the
dimensionality of the keys. This mechanism enables the model to
focus on different features and determine which features are most
relevant to each other. Expanding on self-attention, the multi-head
self-attention (MHSA) mechanism incorporates multiple attention
heads to capture a variety of relationships among features. The
MHSA mechanism is described as follows:

MultiHead Q,K,V( ) � Concat head1, head2 , . . . , headh( )Wo

where each head is calculated as:

headi � Attention QWQ
i ,KW

K
i ,VW

V
i( )

Here, WQ
i ,W

K
i , and WV

i are learned weight projection
matrices for the i-th head, and Wo is a weight matrix applied
to the concatenated outputs of all heads. In the DMOIT
framework, we design an MHSA mechanism-based feature
extractor with a novel architecture to effectively integrate
multi-omics data. Compared with the single-head self-
attention mechanism, the MHSA can effectively capture
features from various perspectives and subspaces by
processing the input data through multiple attention heads,
thereby enhancing the model’s ability to detect complex
interactions and improving its robustness and stability.
Additionally, the MHSA enables parallel computation,
significantly increasing efficiency and providing notable
advantages, particularly for large-scale multi-omics datasets.
Our architecture leverages the MSHA mechanism to capture
both intra- and inter-omics integrations effectively.
Specifically, each omics dataset is input into separate encoders
to fully learn the intra-omics interactions, reducing noise and
improving the signal quality. Simultaneously, the concatenated
omics data are fed into a shared MHSA-based encoder to capture
the inter-omics interactions. This approach ensures that
interactions between different omics types are preserved and
effectively learned without losing any information. The outputs
from the individual and shared encoders are then combined and
passed into a multilayer perceptron (MLP) for final prediction.
This dual architecture ensures comprehensive learning of both
intra- and inter-omics interactions, providing a thorough
analysis of individual omics data while maintaining the
integrity of inter-omics interactions.

2.5 Comparative multi-omics data
integration methods

We employed four traditional machine learning
models—logistic regression (LR), random forest (RF), support
vector machine (SVM), and extreme gradient boosting
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(XGBoost)-as baseline models, handling multiple omics datasets by
concatenating the datasets. Additionally, we included a state-of-the-
art method MoGCN. To validate our proposed architecture, we
compared it with three alternative MHSA-based feature extractors
with different architectures (Figure 2). In these frameworks, omics
data is first input into a linear layer before entering the multi-layer
attention layers to enhance its representation.

• Model 1 (M1): This model inputs each omics dataset
separately into an MHSA layer to capture intra-omics
interactions. The outputs from each encoder are then
concatenated and passed through an MLP for classification.
While M1 excels at capturing intra-omics interactions, it does
not address inter-omics interactions.

• Model 2 (M2): Here, multiple omics datasets are concatenated
before being input into a single MHSA layer. M2 effectively
learns inter-omics interactions and maintains information
completeness. However, due to varying noise levels and
heterogeneity among omics datasets, it may struggle to
adequately attend to each type of omics data, making it
challenging to capture intra-omics interactions.

• Model 3 (M3): This model processes each omics dataset with
separate MHSA layers to learn intra-omics interactions. The
outputs from these layers are then concatenated and fed into
an additional MHSA layer to further capture inter-omics
interactions. While M3 aims to capture both intra- and
inter-omics interactions, there is a risk of losing some
inter-omics interaction information during the initial
independent processing.

2.6 Evaluation methods

We designed two classification tasks to validate each module in
our proposed framework: a survival time classification across four
cancer types and an ER status classification for breast cancer. Both
tasks used 5-fold cross-validation to ensure the robustness of our
results. Model performance was evaluated using the mean accuracy
and weighted F1-score metrics from the cross-validation.

2.7 Training of the DMOIT and other MHSA-
based comparison models

The MHSA-based models were developed using PyTorch
(version 2.1.2) and scikit-learn. We trained the model for
50 epochs and used a grid search to identify the optimal
parameters, utilizing the Adam optimizer for training. To balance
performance and computational efficiency, the encoders in each
model share identical parameters. The grid parameter combinations
are detailed in Table 2.

3 Results

3.1 Evaluation of the GAIN
imputation method

Omics data are typically high-dimensional and often contain a
large proportion of missing values. In the dataset we downloaded
from UCSC Xena, these missing values were treated as zeros.
However, it remains uncertain whether these zeros are
biologically meaningful or the result of technical issues during
sequencing. In this study, we compared the impact of non-
imputed data (where missing values were retained as zeros)
versus data imputed using various imputation methods on
survival time classification tasks. We applied these methods to

FIGURE 2
Multi-Omics data integration methods based onmulti-head self-attention mechanism. Note: This figure shows four different frameworks based on
the multi-head self-attention mechanism. (A)M1: Each omics dataset is independently input into its corresponding encoder. (B)M2: Multiple omics data
are concatenated and then input into a single encoder. (C) M3: Each omics dataset is independently input into its corresponding encoder, and the
concatenated feature representations are then input into the next layer’s encoder. (D) Our proposed approach, DMOIT.

TABLE 2 Hyperparameter settings for grid search.

Hyperparameter Possible values

learn_rate [0.001, 0.01]

batch_size [32, 64, 128]

num_heads [2, 4, 8]

num_blocks [1, 2, 3]

dropout_rate [0.01, 0.1]

dense_dim [32, 64, 128]
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imputed mRNA and Met omics data from four cancer types, using
the XGBoost classifier due to its superior performance among all the
traditional machine learning models we tested and considering the
computational demands of deep learning approaches. Traditional
imputation methods, such as mean, median, and K-nearest neighbor
(KNN) (Pujianto et al., 2019), commonly used in previous studies,
fail to distinguish between biological zeros and technical zeros,
treating them uniformly. In contrast, GAN-based imputation is
more likely to preserve biologically meaningful zeros by learning the
underlying feature distribution, which in turn enhances the
performance of downstream analyses. As shown in Table 3, the
mean accuracy and weighted F1 score from 5-fold cross-validation
on the test set, as well as the overall averages for each omics dataset
and across the four cancer types, demonstrate the effectiveness of
different imputation methods. Among the methods tested, the
GAN-based GAIN module achieved the highest average testing
accuracy of 0.655 and average weighted F1 score of 0.614,

outperforming KNN imputation (accuracy: 0.640, F1: 0.600),
mean imputation (accuracy: 0.641, F1: 0.596), median (accuracy:
0.648, F1: 0.606), and zero imputation (accuracy: 0.641, F1: 0.596).
These findings also suggest that GANs have potential for
generalizing to other omics types and highlight their promise for
robust and reliable imputation across diverse omics datasets.

3.2 Evaluation of the bootstrap-based robust
feature selection module

To evaluate the effectiveness of robust feature selection (RFS)
module within the DMOIT framework, we compared it with a direct
feature selection method that identifies the top features without
bootstrap sampling. Both approaches were assessed through survival
time classification tasks with the XGBoost classifier across four
cancer types. As shown in Table 4, the RFS module consistently

TABLE 3 Performance of different imputation methods.

Dataset Method Accuracy Weighted F1

BRCA zero 0.622 0.621

median 0.623 0.622

mean 0.622 0.621

KNN 0.617 0.614

GAIN 0.633 0.633

HNSC zero 0.704 0.612

median 0.708 0.61

mean 0.704 0.612

KNN 0.696 0.609

GAIN 0.708 0.623

LIHC zero 0.641 0.596

median 0.666 0.627

mean 0.641 0.596

KNN 0.671 0.632

GAIN 0.671 0.632

STAD zero 0.596 0.555

median 0.596 0.566

mean 0.596 0.555

KNN 0.577 0.546

GAIN 0.607 0.567

Mean across 4 cancer types zero 0.641 0.596

median 0.648 0.606

mean 0.641 0.596

KNN 0.640 0.600

GAIN 0.655 0.614

Note: The accuracy and weighted F1 score are the averages from 5-fold cross-validation of each cancer type and across four different cancer types. The bold values represent the highest accuracy/

F1 score for downstream classification tasks achieved across all datasets imputed by different imputation methods for the current cancer type.

Frontiers in Genetics frontiersin.org06

Liu and Park 10.3389/fgene.2024.1488683

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1488683


outperformed the direct selection method. For instance, in STAD,
accuracy increased from 0.569 to 0.601 and the weighted F1 score
rose from 0.534 to 0.559. In LUSC, accuracy improved from 0.686 to
0.694, with the weighted F1 score going up from 0.593 to 0.595.
Similar improvements were observed in LIHC, HNSC, and BRCA,
with notable gains in both accuracy and F1 scores. These results
demonstrate that the RFS module enhances feature selection by
effectively handling noise and selecting a stable feature set. It
mitigates the impact of data distribution imbalance and dataset-
specific sensitivities in high-dimensional data, leading to improved
feature relevance and overall performance.

3.3 Performance of DMOIT under different
omics combinations

To evaluate the effectiveness and stability of DMOIT in learning
intra- and inter-omics interactions, we compared it against four
traditional machine learning baseline models, the state-of-the-art
MoGCN method, and three alternative MHSA-based architectures,
as detailed in themethods section. This evaluation was conducted on
both survival time classification and ER status classification tasks.
We tested the generalization ability of these models by comparing
their performance across different omics combinations in various
cancer types, including single-omics data, paired combinations, and
an integrated dataset comprising all three omics types.

To validate how direct concatenation of multiple omics datasets
increases data heterogeneity, we first investigated the changes in data
properties before and after concatenation. Different features may
exhibit distinct data types; for instance, in our study, mRNA and
MET are continuous variables, while CNV is a discrete variable.
Additionally, distributional differences among omics of the same
data type may persist, indicating that heterogeneity is likely to
increase after concatenation, as illustrated in the histograms of mean
expression levels, coefficient of variation, and Shannon entropy shown
in Supplementary Figures S4–S6. This increased heterogeneity may
hinder the attention mechanism’s ability to fully capture intra-omics
interactions within a specific omics dataset. We further demonstrated
the complexity of omics data, particularly the hierarchical clustering and
nonlinear relationships among variables, which highlights the need for
multi-head attention mechanisms to learn the complex relationships
among omics features compared to statistical models and traditional
machine learning models. This is illustrated by the correlation heatmap
of BRCA mRNA omics in Supplementary Figure S7, as well as the

LOESS curve and polynomial fitting for the top 5mRNA biomarkers in
Supplementary Figures S8, S9. These factors present significant
challenges for multi-omics integration. Unlike simple concatenation,
DMOIT effectively addresses these issues using a multi-head attention
mechanism. By learning from each omics dataset individually, we
reduce the impact of heterogeneity on intra-omics interactions.
Meanwhile, the learning from concatenated data ensures the
completeness of inter-omics interactions.

In the survival time classification task (Table 5), DMOIT
achieved the highest accuracy and the weighted F1 score across
all the omics data combinations in HNSC and LIHC and performed
better in at least two out of four omics combinations in BRCA and
STAD. For the ER status classification task using all three omics
types (Table 6), DMOIT achieved the highest weighted F1 score of
0.937. Although its accuracy was slightly lower thanM3, it remains a
more efficient choice due to lower computational complexity.
Additionally, the original ER dataset exhibited class imbalance;
therefore, we conducted a simple experiment to test the impact
of varying degrees of data imbalance on DMOIT. We created
scenarios with ER positive-to-negative ratios of approximately 1:
1, 2:1, and 3:1 by randomly sampling from the larger set of ER-
positive cases. As shown in Table 7, DMOIT performed similarly
across different levels of imbalance, with accuracy and weighted
F1 scores as follows: for the 1:1 ratio, accuracy was 0.927 and the
weighted F1 score was 0.927; for the 2:1 ratio, accuracy was
0.933 and the weighted F1 score was 0.932; and for the 3:1 ratio,
accuracy was 0.914 and the weighted F1 score was 0.910. Our
findings reveal that MHSA-based models, particularly DMOIT,
consistently outperform both traditional models and MoGCN.
Among the four MHSA-based models, DMOIT consistently
exhibits superior performance across various cancer datasets and
omics combinations in most scenarios on different tasks,
highlighting its effectiveness and robustness in managing
complex intra- and inter-omics interactions. Furthermore, our
results indicate that mRNA provides the most informative data
among single-omics datasets and incorporating a third omics type
does not necessarily enhance performance.

3.4 Biological findings from DMOIT in
estrogen receptor status

To identify potential biomarkers, we employed a permutation
importance approach to rank the most important features (Fisher

TABLE 4 Performance comparison of different feature selection methods.

Dataset Accuracy Weighted F1

RFS Direct RFS Direct

STAD 0.601 0.569 0.559 0.534

LIHC 0.666 0.649 0.622 0.61

HNSC 0.714 0.702 0.631 0.607

BRCA 0.627 0.609 0.626 0.608

Note: “Direct” denotes direct filtering of the features based on variance, and “RFS” denotes the bootstrap-based robust feature selection module. The accuracy and weighted F1 score are the

averages of 5-fold cross validation in the survival time classification task using XGBoost. The bold values represent the highest accuracy/F1 score between the two feature selection methods for

the current cancer type.
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TABLE 5 Performance of various machine learning models on multi-omics data for different cancer types in survival time classification task.

Cancer type Omics data Accuracy

LR RF SVM XGB M1 M2 M3 DMOIT MoGCN

BRCA mRNA 0.586 0.595 0.613 0.618 0.670 —

MET 0.544 0.561 0.531 0.598 0.618 —

CNV 0.498 0.503 0.494 0.516 0.595 —

mRNA + MET 0.590 0.586 0.582 0.633 0.667 0.667 0.669 0.669 0.530

mRNA + CNV 0.561 0.602 0.527 0.614 0.650 0.641 0.651 0.655 0.512

MET + CNV 0.535 0.542 0.493 0.593 0.605 0.613 0.612 0.607 0.506

mRNA + MET + CNV 0.563 0.604 0.516 0.627 0.662 0.649 0.669 0.653 0.525

HNSC mRNA 0.652 0.704 0.718 0.691 0.728 —

MET 0.665 0.712 0.720 0.702 0.730 —

CNV 0.615 0.691 0.712 0.687 0.730 —

mRNA + MET 0.667 0.720 0.720 0.708 0.728 0.730 0.732 0.732 0.510

mRNA + CNV 0.628 0.708 0.716 0.696 0.734 0.734 0.739 0.741 0.553

MET + CNV 0.650 0.710 0.720 0.706 0.737 0.737 0.737 0.739 0.531

mRNA + MET + CNV 0.636 0.716 0.720 0.714 0.737 0.736 0.739 0.740 0.533

LIHC mRNA 0.650 0.682 0.685 0.669 0.755 —

MET 0.628 0.671 0.679 0.660 0.739 —

CNV 0.611 0.636 0.682 0.639 0.717 —

mRNA + MET 0.633 0.682 0.679 0.671 0.755 0.745 0.750 0.763 0.658

mRNA + CNV 0.622 0.685 0.679 0.674 0.734 0.728 0.734 0.742 0.669

MET + CNV 0.650 0.668 0.674 0.655 0.731 0.712 0.725 0.739 0.663

mRNA + MET + CNV 0.644 0.685 0.677 0.666 0.747 0.731 0.736 0.748 0.649

STAD mRNA 0.555 0.623 0.601 0.590 0.670 —

MET 0.481 0.582 0.609 0.558 0.642 —

CNV 0.530 0.538 0.596 0.538 0.650 —

mRNA + MET 0.506 0.590 0.604 0.607 0.677 0.675 0.672 0.678 0.577

mRNA + CNV 0.511 0.607 0.598 0.577 0.642 0.645 0.647 0.648 0.585

MET + CNV 0.462 0.555 0.607 0.536 0.642 0.656 0.645 0.642 0.609

mRNA + MET + CNV 0.503 0.612 0.601 0.601 0.650 0.649 0.650 0.651 0.563

Cancer type Omics data Weighted F1-Score

LR RF SVM XGB M1 M2 M3 DMOIT MoGCN

BRCA mRNA 0.586 0.594 0.612 0.617 0.658 —

MET 0.543 0.556 0.521 0.594 0.598 —

CNV 0.493 0.474 0.452 0.503 0.557 —

mRNA + MET 0.590 0.584 0.579 0.633 0.634 0.655 0.655 0.655 0.541

mRNA + CNV 0.560 0.600 0.505 0.613 0.648 0.616 0.650 0.651 0.534

MET + CNV 0.535 0.535 0.468 0.590 0.577 0.572 0.578 0.574 0.544

mRNA + MET + CNV 0.562 0.602 0.500 0.626 0.649 0.618 0.660 0.619 0.548

(Continued on following page)
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et al., 2019). Specifically, we evaluated the contribution of each
feature by shuffling them one at a time during model training,
keeping the optimal parameters from the full feature set. We then

measured the performance drop in terms of the weighted F1 score to
assess how much each feature’s absence impacted the model’s
predictive ability (Supplementary Figure S3). We selected features

TABLE 5 (Continued) Performance of various machine learning models on multi-omics data for different cancer types in survival time classification task.

Cancer type Omics data Weighted F1-Score

LR RF SVM XGB M1 M2 M3 DMOIT MoGCN

HNSC mRNA 0.619 0.595 0.602 0.597 0.620 —

MET 0.625 0.615 0.603 0.615 0.631 —

CNV 0.593 0.597 0.599 0.616 0.690 —

mRNA + MET 0.634 0.609 0.603 0.623 0.623 0.647 0.630 0.648 0.523

mRNA + CNV 0.616 0.597 0.601 0.612 0.656 0.652 0.667 0.678 0.558

MET + CNV 0.624 0.601 0.603 0.617 0.651 0.660 0.661 0.672 0.535

mRNA + MET + CNV 0.612 0.604 0.603 0.631 0.669 0.666 0.662 0.669 0.535

LIHC mRNA 0.629 0.627 0.595 0.633 0.722 —

MET 0.606 0.587 0.552 0.625 0.679 —

CNV 0.588 0.567 0.553 0.578 0.656 —

mRNA + MET 0.609 0.622 0.566 0.632 0.724 0.710 0.721 0.733 0.716

mRNA + CNV 0.605 0.632 0.552 0.631 0.682 0.660 0.697 0.701 0.664

MET + CNV 0.629 0.579 0.549 0.610 0.693 0.643 0.676 0.694 0.678

mRNA + MET + CNV 0.622 0.629 0.550 0.622 0.712 0.682 0.693 0.727 0.697

STAD mRNA 0.542 0.573 0.526 0.558 0.647 —

MET 0.473 0.519 0.461 0.521 0.572 —

CNV 0.523 0.473 0.459 0.511 0.616 —

mRNA + MET 0.491 0.541 0.468 0.566 0.630 0.623 0.637 0.638 0.607

mRNA + CNV 0.506 0.560 0.456 0.544 0.566 0.600 0.601 0.602 0.594

MET + CNV 0.458 0.492 0.460 0.501 0.592 0.569 0.578 0.574 0.557

mRNA + MET + CNV 0.496 0.555 0.457 0.559 0.604 0.594 0.605 0.592 0.576

Note: The omics data combinations used include mRNA, MET, CNV, and their integrations. The performance metrics are accuracy and weighted F1 score, averaged over 5-fold cross-validation.

The highest values for each metric in each cancer type and omics combination are highlighted in bold.

TABLE 6 Performance comparison of various models in the ER classification task using all three types of omics data.

Models Accuracy Weighted F1

LR 0.890 0.884

RF 0.917 0.914

SVM 0.878 0.866

Xgboost 0.925 0.923

M1 0.933 0.930

M2 0.933 0.933

M3 0.945 0.928

DMOIT 0.937 0.937

MoGCN 0.909 0.916

Note: The performance metrics are accuracy and the weighted F1 score, which are averaged over 5-fold cross-validation. The highest values for each metric are highlighted in bold.
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with relatively large decline compared to others, specifically the top
10 from the mRNA dataset, the top 15 from the MET dataset, and
the top 4 from the CNV dataset, as shown in Table 8.

We reviewed previous studies on the top important features
from the mRNA and CNV datasets. PLA2G6 and SLC25A26 have
been identified as involved in the development of various tumors (Li
et al., 2017; Gao et al., 2024), though their link to breast cancer is still
underexplored. Elevated expressions of FARS2 and TRUB2 have
been noted in breast cancer tissues, and C2orf15 expression
significantly correlates with breast cancer prognosis, although
their link to ER status needs further investigation (Sung et al.,
2022; Tau et al., 2024; Mi et al., 2024). SLC25A38 is known to
upregulate ER expression, while Rbx1 is essential for the degradation
of ERα protein, playing a critical role in estrogen signaling (Lu et al.,
2023; Marconett et al., 2010). NDUFC1, important in mitochondrial
metabolism, has been found to be more critical in ER + breast cancer
cells, suggesting a metabolic vulnerability in this subtype (Tau et al.,
2024). MRFAP1L1 and DYNC2LI1 show promise as potential
biomarkers, although no studies have yet indicated an association
with breast cancer. For CNV biomarkers, MRC2 amplification and
copy number gain in basal-like breast cancer may be linked to
tumorigenesis and progression. Since basal-like tumors are typically
ER-, this may suggest a potential connection (Wienke et al., 2007).
ATG2A exhibits mutations in breast cancer, FRMD8 plays a tumor-
suppressive role in breast cancer progression, ARSG is negatively
correlated with positive prognosis, and differentially expressed genes
upregulated by SAC3D1 are involved in regulating the cell cycle
pathways in breast cancer cells. However, no research has yet
examined the impact of copy number variations of these genes
on ER status (Wu et al., 2021; Wu et al., 2024; Alkhateeb et al., 2020;
Liu et al., 2020). GRB7 is overexpressed in breast cancer cell lines,
showing a strong correlation between mRNA levels and copy
number status. It is essential for the invasion and survival of
triple-negative breast cancer cells (Staaf et al., 2010; Giricz et al.,
2012). OVOL1 is highly expressed in ER + breast cancer (Fan et al.,
2022), while RHOD has a causal role specifically in ER + breast
cancer (Kazmi et al., 2022). SNX32 leads to frequent loss-of-function

mutations in breast cancer patients (Li et al., 2018). The novel Ras
membrane-bound regulator of Ras, Rce1, suggests a promising
strategy for targeting Ras in breast cancer (Hanker and Der,
2010), and KPNA2 overexpression significantly enhances the
invasion and migration capabilities of breast cancer cells (Han
and Wang, 2020). The role of LRFN4, BATF2, and HGSNAT in
breast cancer remains unexplored. These findings suggest that
DMOIT successfully identifies potential biomarkers, enhancing
its value in breast cancer studies.

Furthermore, we assessed the joint effects of multiple omics
biomarkers using multiple linear regression. Specifically, we
analyzed the direction of the coefficient for the biomarker X1 in
the model Y � a1X1 when only a single omics biomarker was
present, and compared it to the direction of the coefficient for
X1 in the model Y = a1X1 + a2X2 + a3X3, which included three
omics biomarkers. We explored all 560 possible combinations, from
10 mRNA, 14 CNV, and 4 MET biomarkers. When X1 was an
mRNA biomarker, the inclusion of X2 and X3 did not change the
direction of X1’s coefficient. However, when X1 was an MET
biomarker, 78 out of 560 combinations resulted in a change.
Similarly, when CNV served as X1, 63 out of 560 combinations
caused a shift in the direction of X1. These findings suggest that the
joint effects of CNV and MET on mRNA may be relatively weak. In
contrast, the joint effects of MET and mRNA on CNV are stronger,
while the strongest joint effects are observed between CNV and
mRNA on MET.

4 Discussion

In this study, we propose DMOIT, a denoised multi-head self-
attention-based multi-omics integration framework that considers
both intra- and inter-omics interactions. DMOIT introduces the
GAIN module for imputation, the RFS module for feature
selection, and multi-head self-attention layers for feature
extraction. We investigated the effectiveness of each component
in DMOIT, finding that the GAIN module can be generalized well
across different omics types, effectively reducing noise from
inappropriate imputation methods. Additionally, the RFS
module successfully identifies stable and denoised features,
reducing redundancy and noise, which enhances the data
quality and improves downstream analyses performance.
Furthermore, our designed MHSA mechanism-based integration
model, outperforms traditional machine learning models and
other MHSA-based methods across diverse cancer types and
varying omics combinations.

However, our study has several limitations that warrant
consideration. First, deep learning-based methods operate as
black boxes and lack interpretability (Toussaint et al., 2024). This

TABLE 7 Performance of DMOIT across different class ratios in the ER
classification task.

ER (+): ER (−) Accuracy Weighted F1

1:1 0.927 0.927

2:1 0.933 0.932

3:1 0.914 0.910

199:55 0.937 0.937

TABLE 8 Potential biomarkers discovered through the DMOIT in the ER classification task.

Potential biomarkers

mRNA PLA2G6, SLC25A38, SLC25A26, FARS2, C2orf15, RBX1, MRFAP1L1, DYNC2LI1, NDUFC1, TRUB2

MET cg18021992, cg17387069, cg24500294, cg02776659

CNV MRC2, ATG2A, FRMD8, ARSG, GRB7, HGSNAT, SAC3D1, BATF2, SNX32, OVOL1, RHOD, LRFN4, RCE1, KPNA2
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characteristic makes it challenging to understand the underlying
decision-making processes and limits the insights that can be drawn
from the model. As a result, the practical application value of such
deep learning models in clinical settings may be restricted. To
address this issue, we propose that researchers in related fields
apply more knowledge from the realm of explainable AI to
enhance model interpretability and provide clinicians with
visualization tools that can aid in understanding model
predictions, thereby increasing the feasibility of clinical
applications. Second, this study focuses on optimizing integration
procedures based on high-dimensional data characteristics without
incorporating biological knowledge. By exclusively prioritizing data-
driven optimization, the framework risks missing out on valuable
biological insights that could enhance both its predictive power and
interpretability. Future studies should integrate biological insights into
feature selection and extraction processes, such as incorporating
pathway information into the attention mechanisms to enhance
model interpretability and provide more meaningful insights into
the biological mechanisms underlying the data (Crawford and
Greene, 2020). Furthermore, our experimental results showed that
DMOIT achieved optimal performance across all omics combinations
in the LIHC and HNSC datasets, but not for BRCA and STAD
datasets. This indicates that the model’s effectiveness may vary with
specific omics combinations and cancer types. Future studies should
explore different architecture configurations and assess how various
omics combinations influence interaction strength. Investing these
aspects will help refine the model to better accommodate diverse mics
data and improve its overall performance. Additionally, exploring the
model’s adaptability to other omics types and evaluating its
performance in different clinical settings could provide further
validation and improvements.

In conclusion, our proposed approach effectively integrates
multi-omics data by addressing noise reduction and feature
stability while considering both intra- and inter-omics
interactions. It demonstrates superior performance and stability,
making it a promising tool for multi-omics research.
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