Skip to main content

ORIGINAL RESEARCH article

Front. Earth Sci.
Sec. Atmospheric Science
Volume 12 - 2024 | doi: 10.3389/feart.2024.1417705
This article is part of the Research Topic Tropical Cyclone Modeling and Prediction: Advances in Model Development and Its Applications View all 13 articles

Multi-season evaluation of hurricane analysis and forecast system (HAFS) quantitative precipitation forecasts

Provisionally accepted
  • 1 National Center for Atmospheric Research (UCAR), Boulder, Colorado, United States
  • 2 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, United States
  • 3 Global Systems Laboratory, Boulder, Colorado, United States

The final, formatted version of the article will be published soon.

    Quantitative precipitation forecasts (QPF) from numerical weather prediction models need systematic verification to enable rigorous assessment and informed use, as well as model improvements. The United States (US) National Oceanic and Atmospheric Administration (NOAA) recently made a major update to its regional tropical cyclone modeling capabilities, introducing two new operational configurations of the Hurricane Analysis and Forecast System (HAFS). NOAA performed multiseason retrospective forecasts using the HAFS configurations during the period that the Hurricane Weather and Forecasting (HWRF) model was operational, which was used to assess HAFS performance for key tropical cyclone forecast metrics. However, systematic QPF verification was not an integral part of the initial evaluation.The first systematic QPF evaluation of the operational HAFS version 1 configurations is presented here for the 2021 and 2022 season re-forecasts as well as the first HAFS operational season, 2023. A suite of techniques, tools, and metrics within the enhanced Model Evaluation Tools (METplus) software suite are used. This includes shifting forecasts to mitigate track errors, regridding model and observed fields to a storm relative coordinate system, as well as object oriented verification. The HAFS configurations have better performance than HWRF for equitable threat score (ETS), but larger over forecast biases than HWRF. Storm relative and object oriented verification show the HAFS configurations have larger precipitation areas and less intense precipitation near the TC center as compared to observations and HWRF. HAFS QPF performance decreased for the 2023 season, but the general spatial patterns of the model QPF were very similar to 2021-2022.

    Keywords: Hafs, tropical cyclones, verification, Quantitative precipitation forecasts, Numerical modeling

    Received: 15 Apr 2024; Accepted: 09 Oct 2024.

    Copyright: © 2024 Newman, Nelson, Biswas and Pan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Kathryn M. Newman, National Center for Atmospheric Research (UCAR), Boulder, 80301, Colorado, United States

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.