
TYPE Original Research
PUBLISHED 05 November 2024
DOI 10.3389/feart.2024.1417705

OPEN ACCESS

EDITED BY

Zhan Zhang,
NCEP Environmental Modeling Center (EMC),
United States

REVIEWED BY

Srinivas Desamsetti,
National Centre for Medium Range Weather
Forecasting, India
Andrew Hazelton,
University of Miami, United States
Timothy Marchok,
NOAA Geophysical Fluid Dynamics
Laboratory, United States

*CORRESPONDENCE

Kathryn M. Newman,
knewman@ucar.edu

RECEIVED 15 April 2024
ACCEPTED 09 October 2024
PUBLISHED 05 November 2024

CITATION

Newman KM, Nelson B, Biswas M and Pan L
(2024) Multi-season evaluation of hurricane
analysis and forecast system (HAFS)
quantitative precipitation forecasts.
Front. Earth Sci. 12:1417705.
doi: 10.3389/feart.2024.1417705

COPYRIGHT

© 2024 Newman, Nelson, Biswas and Pan.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Multi-season evaluation of
hurricane analysis and forecast
system (HAFS) quantitative
precipitation forecasts

Kathryn M. Newman1*, Brianne Nelson1, Mrinal Biswas1 and
Linlin Pan2,3

1National Science Foundation (NSF) National Center for Atmospheric Research (NCAR), Boulder, CO,
United States, 2National Oceanic and Atmospheric Administration (NOAA) Global Systems Laboratory
(GSL), Boulder, CO, United States, 3Colorado University, Cooperative Institute for Research in
Environmental Sciences (CIRES), Boulder, CO, United States

Quantitative precipitation forecasts (QPF) from numerical weather prediction
models need systematic verification to enable rigorous assessment and
informed use, as well as model improvements. The United States (US) National
Oceanic and Atmospheric Administration (NOAA) recently made a major update
to its regional tropical cyclone modeling capabilities, introducing two new
operational configurations of the Hurricane Analysis and Forecast System
(HAFS). NOAA performed multi-season retrospective forecasts using the HAFS
configurations during the period that the Hurricane Weather and Forecasting
(HWRF) model was operational, which was used to assess HAFS performance
for key tropical cyclone forecast metrics. However, systematic QPF verification
was not an integral part of the initial evaluation. The first systematic QPF
evaluation of the operational HAFS version 1 configurations is presented here
for the 2021 and 2022 season re-forecasts as well as the first HAFS operational
season, 2023. A suite of techniques, tools, and metrics within the enhanced
Model Evaluation Tools (METplus) software suite are used. This includes shifting
forecasts to mitigate track errors, regridding model and observed fields to
a storm relative coordinate system, as well as object oriented verification.
The HAFS configurations have better performance than HWRF for equitable
threat score (ETS), but larger over forecast biases than HWRF. Storm relative
and object oriented verification show the HAFS configurations have larger
precipitation areas and less intense precipitation near the TC center as compared
to observations and HWRF. HAFS QPF performance decreased for the 2023
season, but the general spatial patterns of the model QPF were very similar to
2021-2022.

KEYWORDS

HAFS, tropical cyclones, verification, quantitative precipitation forecasts, numerical
modeling

1 Introduction

Quantitative precipitation forecasts (QPF) from numerical weather prediction (NWP)
models are used across a range of forecast and impact planning applications, as
well as for model development cycles. Systematic QPF verification that examines
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overall performance, biases, and spatial patterns enables informed
use for forecast applications and future model improvements.
QPF verification on an event level is more challenging than
model verification for continuous fields (e.g., temperature) because
continuous fields often have less skewed distributions (e.g.,
more Gaussian) while precipitation is discontinuous with many
zero values, highly right-skewed, with many small non-zero
values and few large (but consequential) values (Rossa et al.,
2008). Because precipitation has a highly skewed distribution
and is spatiotemporally discontinuous, more advanced verification
techniques, including spatially insensitive or spatially aware metrics
are needed, particularly for event based precipitation verification
(Ebert and McBride, 2000; Ebert and Gallus, 2009; Gilleland et al.,
2009; Wolff et al., 2014; Clark et al., 2016; Matyas et al., 2018;
Zick, 2020; Newman et al., 2023). Even with these challenges,
bulk QPF verification for global and regional NWP forecasts is
routinely done across major modeling centers (e.g., McBride and
Ebert, 2000; Haiden et al., 2012).

However, QPF verification for specific features such as
tropical cyclones (TCs) is even more challenging beyond
general QPF verification. Feature specific spatial displacement
error corrections and spatially aware verification techniques
are more critical for TC QPF verification because TCs are
relatively localized features with large spatial gradients of
precipitation intensity that are tied to internal dynamics, and
NWP forecasts often have large spatial displacement errors. Several
TC specific QPF verification methodologies to address these
challenges have been developed over the past one to 2 decades
(Marchok et al., 2007; Cheung and Coauthors, 2018; Chen et al.,
2018; Yu et al., 2020; Ko et al., 2020; Newman et al., 2023;
Stackhouse et al., 2023). These methods and systems can
be applied to large-sample TC QPF forecasts and provide
useable information about QPF performance for model
improvement (Newman et al., 2023).

Recently, the United States (US) National Oceanic and
Atmospheric Administration (NOAA) National Centers for
Environmental Prediction (NCEP) made a major update to
its regional tropical cyclone (TC) NWP capabilities. Two
configurations of the new Hurricane Analysis and Forecast
System (HAFS) were made operational in advance of the 2023
season. Extensive model development and testing was performed
by NCEP and the broader TC research community before the
HAFS configurations were made operational (Dong et al., 2020;
Hazelton and Coauthors, 2021; Zhang et al., 2023; Hazelton,
2022). The pre-implementation testing included a multi-season
retrospective forecast evaluation with both HAFS configurations,
with case samples corresponding to operational forecasts from the
Hurricane Weather and Forecasting (HWRF) model. Accumulated
precipitation was archived across forecast lead times from the
models for the operational and retrospective forecasts, but was
not systematically examined as part of the operational model
implementation decision making process.

Here we present the first systematic, large-sample QPF
verification of the HAFS and HWRF forecasts for the 2021 and
2022 season retrospective forecasts along with evaluation of the
two operational HAFS configurations during the 2023 season,
the first operational season for HAFS. We use a set of the TC
and QPF specific tools within the enhanced Model Evaluation

Tools (METplus) software system (Jensen et al., 2023; Brown and
Coauthors, 2021). Newman et al. (2023) describe the development
and application of the METplus TC and QPF tools for large-sample
TC QPF verification. These tools include capabilities to shift model
forecasts to mitigate track errors, regridding model and observed
fields to a storm relative cylindrical coordinate system, as well as
use of the object oriented verification using the MET Method for
Object-Based Diagnostic Evaluation (Davis et al., 2006) tool applied
to TC precipitation objects. This initial application of the suite of
METplus QPF verification tools for TCs lays the foundation for
future implementation of more comprehensive QPF verification
within the HAFS workflow and broader TC research and forecasting
communities, as HAFS and METplus are open-source, community
capabilities.

2 Data and methods

2.1 Datasets

2.1.1 Models
ThreeNOAANCEPoperational regional hurricanemodels were

used for this evaluation. The Hurricane Weather Research and
Forecast (HWRF, Tallapragada, 2016; Mehra et al., 2018; Biswas,
2018) model became operational during the 2007 hurricane season
(Tallapragada, 2016). Here we use the HWRF operational version
for the 2021-2022 hurricane season. HWRF uses a triple-nested
domain configuration with horizontal resolutions of 13.5 km for
the parent domain, 4.5 km for the intermediate nest and 1.5 km
for the inner nest. HWRF includes self-cycled hybrid Ensemble
Kalman Filter (EnKF) data assimilation, ocean and wave coupling.
The physics parameterizations used in the HWRF model are
summarized in Table 1. Next, NOAA’s Unified Forecast System
(UFS)-based hurricane application using the Finite-Volume Cubed-
Sphere (FV3) dynamical core, the Hurricane Analysis and Forecast
System (HAFS), became operational in June 2023.This new regional
hurricane system is scheduled to fully replace the HWRF model,
as well as the operational Hurricanes in a Multi-scale Ocean
coupled Non-hydrostatic model (HMON; Mehra et al., 2018), with
two distinct configurations. These configurations are referred to
as HAFS-A and HAFS-B, using the 4-letter identifiers HFSA
and HFSB, respectively. Both HAFS configurations are run with
one moving nest, with horizontal grid spacing of 6 km for the
parent and 2 km for the inner nest. Similar to HWRF, the HAFS
system is run with ensemble variational data assimilation, ocean
and wave coupling. Table 1 highlights the physics differences
between the HAFS configurations. Most notable are the differences
in the planetary boundary layer (PBL) scheme options and
the microphysics schemes used. The use of distinctly different
microphysics schemes in the HWRF, HFSA, and HFSB is an
important consideration when evaluating the QPF performance of
each system. A notable difference between the NOAA Geophysical
Fluid Dynamics Laboratory (GFDL) microphysics used in HFSA
and the Thompson microphysics used in HFSB is that the
GFDL microphysics is a single-moment bulk cloud microphysics
scheme whereas the Thompson microphysics is a double-moment
scheme. The double-moment framework gives more flexibility
for predicted particle size distribution, which may lead to better
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TABLE 1 Summary of key physics parameterizations for each model configuration.

HFSA HFSB HWRF

Land Surface Noah (Ek et al., 2003) Noah Noah

Surface Layer GFS, HWRF TC-specific sea surface
roughness (Zheng et al., 2017)

GFS, HWRF TC-specific sea surface
roughness

GFDL surface layer (updated for TCs)
(Bender et al., 2007)

Boundary layer SA-TKE-EDMF, TC-related calibration
(Han and Bretherton, 2019), mixing
length tuning (Wang et al., 2022)

SA-TKE-EDMF, TC-related calibration,
tc_pbl=1 (Chen et al., 2023), mixing

length tuning

GFS-EDMF (Han et al., 2016;
Wang et al., 2018)

Microphysics GFDL single-moment (Zhou et al.,
2022)

Thompson double-moment
(Thompson et al., 2004)

Ferrier-Aligo (Aligo et al., 2018)

Radiation RRTMG (Iacono et al., 2008) RRTMG modified RRTMG

Convection Scale-aware SAS calibrated entrainment Scale-aware SAS (Han et al., 2017) Scale-aware SAS (Han and Pan, 2011)

FIGURE 1
Schematic of (A) forecast field shifting using forecast minus analyzed track errors at three forecast valid times and (B) storm-relative distance masks
within MET. User-specified range intervals (100 km) shown in colors are computed relative to the storm center (black line with circle markers, 12-h
interval between markers) using the Gen-Vx-Mask Tool for both the model (left) and observations (right). Additional masking between the land
(hatching colors over gray background) and water (colors over white background) is highlighted here. Original images from Newman et al. (2023),
Figures 2, 4, ©American Meteorological Society. Used with permission.

representation of precipitation processes. Note, the HWRF model
uses the Ferrier-Aligo microphysics scheme, which is a single-
moment scheme, with a single precipitation ice class (combined
snow-graupel), diagnostic riming, and simplified sedimentation
and may be the most different as compared to the other two
microphysics schemes.

Retrospective forecasts of the North Atlantic basin 2021 and
2022 seasons for HFSA and HFSB, operational HWRF output from
the North Atlantic basin 2021 and 2022 seasons, along with the
operational output for the 2023 North Atlantic basin season for
HFSA and HFSB are used in the evaluation. Finally, the parent
domain was used for all three modeling systems. This was done to
ensure consistency in horizontal resolution of the QPF fields from
inner to outer regions of the storm.

2.1.2 Observations
QPF was verified against different observations over land and

water. The quality and availability of observations over land and the
ocean was a primary consideration. Over land, the Climatology-
Calibrated Precipitation Analysis (CCPA; Hou et al., 2014) dataset
was used for the verification. CCPA is a 5-km grid spacing, gauge
corrected radar observation product that combines gauge analysis
and stage IV data (Lin and Mitchell, 2005). Over water, model
QPF was verified against the IntegratedMulti-satellitE Retrievals for
GPM (IMERG; Huffman et al., 2020; Qi et al., 2021). IMERG is a
state-of-the-science 0.10° satellite precipitation product combining
spaceborne radar, passive microwave, and geostationary satellite
data. All models and observations were re-gridded to the common
IMERG grid.
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FIGURE 2
6-h accumulated precipitation (A, B) ETS and (C, D) frequency bias for thresholds of greater than or equal to (A, C) 0.1 inch and (B, D) 2.5 inches for
HFSA (blue), HFSB (green), and HWRF (purple) with bars denoting 95% parametric confidence intervals by lead time. Shifted (dashed) and unshifted
(solid) track forecasts verified over water for all storms during the 2021-2022 North Atlantic basin hurricane seasons.

The best track analysis (Jarvinen et al., 1984; Rappaport and
Coauthors, 2009; Landsea and Franklin, 2013), which is a subjective
analysis of the track position and maximum wind speeds based
on available observational data, was used for evaluation methods
requiring track location. Best track files were obtained from
the National Hurricane Center ftp server (https://ftp.nhc.noaa.
gov/atcf/btk/).

2.2 Methodology

All large-sample verification results are a homogeneous sample
that includes all forecast-observation pairs that have a best track and
event equalization across all three models (e.g., all models have the
same forecast valid times).

2.2.1 Tropical cyclone specific processing
Following the QPF verification methodology described in

Newman et al. (2023), TC-specific processing was employed. First,
similar to Marchok et al. (2007), a track shift was applied to forecast
data prior to grid-based verification in order to mitigate the effects

of the track error. Figure 1A is a schematic representation of this
process, where the model field, in this case precipitation, is shifted
laterally to account for the track difference between the model
forecast track as diagnosed by the GFDL vortex tracker (Marchok,
2021) and the best track analysis. A 600-km mask around the
best track location at each valid time was applied to focus on
the near-storm environment (Figure 1A). Additionally, Figure 1B
demonstrates the mask designating the land boundaries, which was
applied for the different observational datasets based on the storm
location over land or water.

2.2.2 METplus tools
The enhanced Model Evaluation Tools version 11.1.0 (METplus;

Jensen et al., 2023), was utilized for the verification. Newman et al.
(2023) describes the individual tools employed for TC QPF
verification, including the Gen-Vx-Mask tool for creating a 600 km
mask around the storm track at each forecast lead time and used
for the grid-to-grid verification, the Regrid-Data-Plane tool for
interpolating forecasts and observations to a common grid (which
is required by the MODE tool), the Shift-Data-Plane tool for the
track shifting methodology, the Pcp-Combine tool for generating
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FIGURE 3
6-h accumulated precipitation ETS for HFSA (a,d; blue), HFSB (b,e; green), and HWRF (c,f; purple) verified against CCPA over land (A–C) and IMERG
over water (D–F) for all storms during the 2021-2022 North Atlantic basin hurricane season by lead time. Precipitation thresholds range from greater
than or equal to 0.1 inch (lightest shade) to greater than or equal to 5.0 inches (darkest shade).

FIGURE 4
6-h accumulated precipitation frequency bias for HFSA (a,d; blue), HFSB (b,e; green), and HWRF (c,f; purple) verified against CCPA over land (A–C) and
IMERG over water (D–F) for all storms during the 2021-2022 North Atlantic basin hurricane season by lead time. Precipitation thresholds range from
greater than or equal to 0.1 inch (lightest shade) to greater than or equal to 5.0 inches (darkest shade).

precipitation accumulation intervals, theGrid-Stat tool formatching
gridded forecast and observation grid points, theTC-RMWto regrid
model and observation data onto a moving range-azimuth grid
centered along the points of the storm track, and the MODE tool

for identifying precipitation objects. The TC-RMW and MODE
tools allow for storm-centric and object oriented approaches, which
is a complementary approach to the track shifting methodology
described in Section 2.2.1.
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FIGURE 5
Mean 6-hourly precipitation accumulation (mm) for 16 initializations
of Hurricane Ian at the 12-h lead time for (A) IMERG, (B) HFSA, (C)
HFSB and (D) HWRF at the same valid times. Radii are normalized by
the radius of maximum wind.

3 Results

3.1 Verification of 2021–2022 North
Atlantic basin seasons

3.1.1 Description of storms
The 2021 North Atlantic basin hurricane season had twenty one

named storms, with seven reaching hurricane strength, including
four major hurricanes. Eight storms made landfall in the US,
including six tropical storms and two hurricanes (Brennan, 2021).
101 deaths were attributed directly to TC impacts, many due to
flooding, with nearly 80 billion dollars in US damage reported.
(National Hurricane Center, 2022). Significant rainfall occurred for
US landfalling storms. For example, Tropical Storm Fred impacted
the eastern US, with catastrophic flooding occurring in parts of the
southern Appalachian mountains with over 10.78 inches of rainfall
at Mt. Mitchell, North Carolina (Berg, 2021), while Hurricane
Nicholas brought heavy rainfall across the US states of Louisiana,
Mississippi, Georgia, and Florida with a maximum total rainfall of
17.29 inches at Hammond, Louisiana (Latto and Berg, 2022).

The 2022 North Atlantic basin hurricane season had fourteen
named storms, with nine reaching hurricane strength, including
three major hurricanes. Four storms made landfall in the US,
including one tropical storm and three hurricanes (Reinhart, 2022).
119 deaths were reported as a direct result of the tropical cyclones,
with 116 billion dollars in damage in the US alone (National
Hurricane Center, 2023). Several TCs had highly impactful rainfall
effects, for example, Hurricane Ian brought widespread rainfall
and flooding to Florida as well as the mid-Atlantic US states. The
maximum storm total rainfall observed during Hurricane Ian was
26.95 inches in Grove City, Florida (Bucci et al., 2023).

3.1.2 Large sample verification
First, the track shifted grid-based QPF verification was

compared against grid-based QPF verification of the same sample
without track shifting applied to demonstrate the impact of track
shifting on grid-based evaluation metrics. Figures 2A–D shows the
equitable threat score (ETS) and frequency bias for 6 h accumulated
precipitation across forecast lead times for low thresholds of greater
than or equal to 0.1 inches (Figures 2A,C) and higher precipitation
thresholds of greater than or equal to 2.5 inches (Figures 2B, D)
with confidence intervals applied for the 95th percentile. For the
ETS, a value of 0 indicates no skill and a value of 1 represents a
perfect forecast as compared to random chance. The impact of the
shifting is less evident for lower thresholds when there are many
grid cells with precipitation than with the larger thresholds. The
shifting mitigates average spatial error, thus helping to stabilize
the skill scores at longer lead times due to ETS being a non-
neighborhood metric, in particular for the larger precipitation
thresholds.The overall lower magnitude of the ETS skill scores (ETS
of less than 0.2) may be attributed to issues with ETS calculations
of random chance adjustment with many rainy grid cells over
a small domain (Wang, 2014). For example, the ETS scores for
the full parent domain without storm area masking are higher
than those in Figures 2A, B (not shown).
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FIGURE 6
Boxplot of all 6-hourly precipitation accumulation (mm) grid points aggregated across 16 forecast initialization times from Hurricane Ian for the 12-h
lead time forecasts for (A) HFSA, (B) HFSB and (C) HWRF compared to IMERG. For each box, the notches indicate the median and the bottom and top
edges show the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers.

FIGURE 7
An example of MODE accumulated precipitation fields from the (A) 12 h HFSA forecast, (B) combined IMERG and CCPA observations, and (C) forecast
objects for Hurricane Ian, identified as one object cluster in red with observation objects overlaid using blue outlines. The forecast valid at 06 UTC 28
September 2022 (18 UTC 27 September initialization) is shown.

FIGURE 8
Log frequency of 6-h precipitation accumulations (mm) for (A) HFSA in blue, (B) HFSB in green, and (C) HWRF in purple compared to combined IMERG
and CCPA observations in black.

The frequency bias for the shifted and unshifted forecasts is
shown in Figures 2C, D. Frequency bias is defined with a value of 1
representing an unbiased forecast, values greater than one indicating
the precipitation is forecasted too frequently, and values less than one
indicating the precipitation is not forecasted frequently enough. The

general trend of over forecasting precipitation for lower thresholds
(Figure 2C) and under forecasting for larger thresholds (Figure 2D)
is evident for both the shifted and unshifted forecasts. Track shifting
does not have a large impact on the frequency bias results, with the
exception of the HWRF forecasts at the longest lead times. This could
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FIGURE 9
6-h accumulated precipitation ETS for HFSA ((A) blue) and HFSB ((B) green) verified against both CCPA over land and IMERG over water for all storms
during the 2023 North Atlantic basin hurricane season by lead time. Precipitation thresholds range from greater than or equal to 0.1 inch (lightest
shade) to greater than or equal to 5.0 inches (darkest shade).

FIGURE 10
6-h accumulated precipitation frequency bias for HFSA ((A) blue) and HFSB ((B) green) verified against both CCPA over land and IMERG over water for
all storms during the 2023 North Atlantic basin hurricane season by lead time. Precipitation thresholds range from greater than or equal to 0.1 inch
(lightest shade) to greater than or equal to 5.0 inches (darkest shade).

be attributable to large track errors at those longer lead times, but all
three configurations have similar magnitude track errors (not shown).
However, the storm structure in HWRF appears to be different from
HFSA and HFSB (see Sections 3.1.3.1). The HWRF storm structure
differences may have resulted in different precipitation feature shifting
behavioralongtheboundariesof the600-kmmaskwhenthelargershifts
at longer lead times were applied. The relatively small impact from the
track shifting methodology on the frequency bias results other than
situations where the spatial errors are very large is expected because
this statistic does not use spatial information, just the counts of rainy
and non-rainy grid cells.

For the remainder of the multi-season analysis, only the shifted
track forecasts will be shown. Figures 3A–F shows the ETS for 6 h
accumulated precipitation for a variety of thresholds ranging from
greater than or equal to 0.1 inches to greater than or equal to
5.0 inches for each of the 3 model configurations. The forecasts
over land (Figures 3A–C), verified against the CCPA, demonstrate
that the lowest skill occurs at the largest and smallest thresholds
(greater than or equal to 5 and 0.1 inches, respectively). Particularly
evident for the HAFS configurations, the intermediate precipitation
thresholds of greater than or equal to 0.5 inch to 1.5 inches have
precipitation forecasts with the highest skill. When comparing the
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FIGURE 11
Mean 6-hourly precipitation accumulation (mm) for 17 initializations of
Hurricane Idalia at the 12-h lead time for (A) IMERG, (B) HFSA, and (C)
HFSB at the same valid times. Radii are normalized by the radius of
maximum wind.

trends of the HAFS configurations to those of the HWRF model, the
HWRF model demonstrates more stable skill with increasing lead
time, whereas the HAFS configurations skill drops relatively more
with increasing lead time. For forecasts over water (Figures 3D–F),
verified against IMERG, the lowest skill across all three model
configurations occurs at the lowest threshold of greater than or equal
to 0.1 inch. This is likely attributed to the ETS calculation itself
as previously discussed. The track shifting over water results in a
fairly constant ETS throughout the 5-day forecast period. Similar
to the land-only verification results, the lower ETS values for the
HAFS configurations are associated with the largest thresholds,
with increasing ETS for the intermediate precipitation thresholds.
The HWRF configuration performs more similarly across all
precipitation thresholds above the lowest threshold.

Frequency bias for track forecasts over land (Figures 4A–C),
verified against CCPA, show that the model accumulated
precipitation at the largest thresholds are forecasted well, with
frequency bias values near 1. The smaller precipitation thresholds
have overforecasted precipitation for all models and configurations.
When verifying the track forecasts over water (Figures 4D–F),
verified against IMERG, the largest precipitation thresholds are
often under forecasted for all models and configurations, while the
smallest precipitation thresholds are over forecasted by all models
and configurations. For allmodels and configurations, the frequency
bias behaviors remain relatively constant throughout the 5-day
forecast period. One exception is in the first 12–18 h, the HAFS
configurations have slightly decreasing frequency bias, while HWRF
has increasing values, particularly at larger thresholds, which could
be due to the differences in model initialization and spin-up.

3.1.3 Hurricane Ian
Hurricane Ian occurred from 23 to 30 September 2022 and

was the ninth named storm in the North Atlantic basin during
the 2022 hurricane season. Ian made landfall in southwestern
Florida as a category 4 intensity on the Saffir-Simpson scale on
28 September 2022 near Punta Gorda, Florida. Hurricane Ian was
responsible directly for 66 deaths and an estimated 112 billion
dollars in damage, making it Florida’s costliest hurricane and the
third most costliest hurricane in US history. Storm total rainfall
reports showed a maximum of 26.95 inches of rainfall at Grove
City, Florida (Bucci et al., 2023).

3.1.3.1 Storm-centric verification
Mean 6-hourly precipitation accumulation (mm) for 16

initializations of Hurricane Ian at the 12-h lead time for over
25 September 2022 at 00 UTC to 28 September 2022 at 18 UTC
are shown in Figures 5, 6. The 12 h forecast was chosen as a
representative example of the storm in a time period where
the forecast errors are not too large, but far enough away from
initialization shock issues. This is the period when Ian was a tropical
storm or hurricane in the Gulf of Mexico and making landfall in
southwestern Florida. The analysis is done using the TC-RMW
tool in METplus, which transforms the cartesian coordinates of
the model domain into storm-relative coordinates normalized by
the radius of maximum winds (RMW). The shading represents
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FIGURE 12
Boxplot of all 6-hourly precipitation accumulation (mm) grid points aggregated across 17 forecast initialization times from Hurricane Idalia for the 12-h
lead time forecasts for (A) HFSA, and (B) HFSB compared to IMERG. For each box, the notches indicate the median and the bottom and top edges
show the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers.

the precipitation accumulation in millimeters per 6 h. Relative
to the IMERG analysis, the model configurations show a smaller
storm and less precipitation in the eastern semicircle (Figure 5). The
HAFS configurations, HFSA and HFSB (Figures 5B, C) are fairly
similar in placement and intensity of the precipitation, with the
HFSA producing slightly higher precipitation accumulations in the
storm center as well as the western semicircle. The HWRF model
shows more compact, intense precipitation accumulations closer
to the center of the storm with less precipitation in the eastern
semicircle than the HAFS configurations. A notable feature is the
persistent outer band in the upper right quadrant around 5-10RMW,
which has the best placement in the HAFS configurations. We leave
distance in units of RMW as this normalization ties precipitation
features more directly to the dynamics of the storms. In some cases,
it may be more informative to convert back to physical distance,
which depends on the specific use-case and verification purpose.

The output from the TC-RMW tool was used in Figure 6, which
are box plots of accumulated precipitation using distance bins of
0.4 RMW. Relative to IMERG, the HAFS configurations show lower
precipitation accumulations, whereas the HWRF configuration has
larger accumulations closer to the RMW with a steep drop after
about 2-3 RMW. In general, the HAFS gradients, moving from the
center, better match those of IMERG. Comparing the two HAFS
configurations, the HFSA configuration shows a distribution and
mean that is closer to IMERG, in particular out to 3 RMW.

3.1.3.2 Object based verification
The Method for Object-based Diagnostic Evaluation (MODE)

within METplus is used for spatial verification of the precipitation
field. The MODE object identification algorithm mimics the subjective
matchingofobservedand forecastedobjectsbyhumanforecastersusing
a multistep process and fuzzy logic engine (Davis et al., 2006). The 6 h
accumulation for the 12 h forecast of Hurricane Ian valid at 06 UTC
28 September 2022 (18 UTC 27 September 2022 initialization) for a
specificconfigurationofMODEis showninFigure 7 fordemonstration.
Figure 7A is the forecasted accumulated precipitation from the HFSA

configuration with MODE filtering applied. Similarly, Figure 7B shows
the same field for the combined IMERG and CCPA datasets using
the MODE filtering algorithm. The IMERG and CCPA observations
were combined into a single observation based on the land mask in
order to support the MODE object identification. Figure 7C shows the
MODE object identification of the forecast objects in the shading and
observed objects in the outline. This MODE analysis configuration
was performed for all 12 h forecasts during the period of Hurricane
Ian used in Section 3.1.3.1.

All grid points with precipitation within the identified objects
were used to calculate the frequency of 6 h precipitation accumulation
(Figures 8A–C). The HAFS configurations both have a peak in the
lightest precipitation and another area of precipitation greater than the
combined IMERG and CCPA observations around 75–100 mm, most
notably in the HFSA configuration. Conversely, the HWRF model is
dominated by the heavy precipitation, as seen with the over forecast
of precipitation accumulation near the storm center (Figures 6C, 8C),
which could be due to the Ferrier-Aligo microphysics used in HWRF.
The conclusions reached from the object based approach supports the
findings using the storm-centric approaches in Section 3.1.3.1.

3.2 Verification of 2023 North Atlantic
basin season

3.2.1 Description of storms
The 2023 North Atlantic basin hurricane season had

nineteen named storms, with seven reaching hurricane strength,
including three major hurricanes. Three storms made landfall
in the US, including two tropical storms and one hurricane
(National Hurricane Center, 2024). 15 deaths were attributed
directly to TC impacts during the 2023 season, withmany associated
with rainfall hazards (National Hurricane Center, 2024). Hurricane
Franklin brought major rainfall associated impacts and damages
to the Dominican Republic (Beven, 2024), and Hurricane Ophelia
produced flooding throughout North Carolina with a maximum
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FIGURE 13
Mean 6-hourly precipitation accumulation (mm) for 34 initializations
of Hurricane Lee at the 12-h lead time for (A) IMERG, (B) HFSA, and (C)
HFSB at the same valid times. Radii are normalized by the radius of
maximum wind.

rainfall report of 9.51 inches near Greenville, North Carolina
(Brown et al., 2024). The largest damage occurred in the US with
Hurricane Idalia, described in Section 3.2.3.

3.2.2 Large sample verification
With a limited number of landfalling cases during the 2023

Atlantic basin hurricane season, the sample sizes were too
small at the longest lead times to separate the land and water
verification. Therefore, Figures 9, 10 show track shifted statistics
from the combined forecasts over land and water, using the same
observational datasets as before. Additionally, while the HWRF
model was still run in limited capacity during the 2023 season,
the gridded output was not available and therefore not included
in this analysis. Figures 9A, B shows the ETS for 6 h precipitation
accumulations for the same precipitation thresholds described
in Section 3.1.2 and Figure 3. Again, the lowest ETS values are
associated with the largest and smallest (greater than or equal to
0.1 inch) thresholds for both the HFSA and HFSB. Precipitation
forecasts at the intermediate thresholds, ranging from greater than
or equal to 0.5 inches to greater than or equal to 1.5 inches,
consistently score higher. HFSB scores slightly higher than HFSA
for lead times longer than 72 h. The impact of track shifting
at longer lead times during the 2023 season did not prevent a
decrease in ETS with lead time, as shown in the 2021-2022 season
retrospective runs.

The frequency bias for the combined land and water verification
is shown in Figures 10A, B. The models again tend to under
forecast the largest precipitation thresholds, whereas the smallest
thresholds tend to be over forecasted. Precipitation forecasts for
thresholds of greater than or equal to 1.0–1.5 inch typically
perform well with frequency bias values around 1. In general,
the under forecasting of heavy precipitation is more extreme
during the 2023 season than during the retrospective runs for the
2021-2022 seasons.

3.2.3 Hurricane Idalia
Hurricane Idalia occurred from 26 to 31 August 2023 and

was the 10th named storm in the North Atlantic basin during
the 2023 hurricane season. Idalia rapidly intensified in the Gulf of
Mexico, making landfall in Florida’s big bend region as a category
3 hurricane. Idalia produced rainfall across the southeastern US
states, with a maximum total rainfall of 13.55 inches reported
at Holly Hill, SC. Idalia was responsible for 8 direct casualties,
and an estimated damage of 3.6 billion US dollars. The rural
region of Idalia’s landfall resulted in less damages than prior
landfalling US TCs, primarily affecting the agricultural industry
(Cangialosi and Alaka, 2024).

3.2.3.1 Storm-centric verification
Similar to Section 3.1.3.1, composites of 12 h forecasts of 6 h

precipitation accumulation from 26 August 2023 at 18 UTC to
30 August 2023 at 18 UTC, which covers when Idalia was a
tropical storm or hurricane, are shown in Figure 11. Both HAFS
configurations show a smaller storm core with less precipitation
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FIGURE 14
Boxplot of all 6-hourly precipitation accumulation (mm) grid points aggregated across 34 forecast initialization times from Hurricane Lee for the 12-h
lead time forecasts for (A) HFSA and (B) HFSB compared to IMERG. For each box, the notches indicate the median and the bottom and top edges show
the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers.

than the IMERG observations. The HAFS configurations are similar
to each other with placement of the most intense precipitation
just to the east of IMERG. The HFSB configuration shows higher
precipitation intensities compared to HFSA near the storm center.

Box plots of precipitation accumulation using distance bins from
the storm center normalized by RMW are shown in Figures 12A, B.
Using the median of the distribution at each range bin,
HFSA has an underestimation closer to the RMW, whereas
HFSB has an overestimation around the RMW. Both HFSA
and HFSB have slight underestimation of precipitation
beyond 3 RMW.

3.2.4 Hurricane Lee
Hurricane Lee occurred from 5 to 16 September 2023 and

was the 13th named storm in the North Atlantic basin during
the 2023 hurricane season. Lee formed in the eastern Atlantic
and rapidly intensified to a category 5 hurricane, remaining over
water before making landfall in Nova Scotia as a post tropical
system. The rainfall impacts occurred in eastern Maine and New
Brunswick, Canada (Blake and Nepaul, 2024).

3.2.4.1 Storm-centric verification
For Hurricane Lee, 6 h accumulated precipitation for 12 h

forecast composites are shown in Figure 13 covering 07 September
2023 at 00 UTC to 15 September 2023 at 06 UTC. This corresponds
to the period when Lee was a tropical storm or hurricane in
the North Atlantic basin. The HAFS configurations have a similar
placement shape to the precipitation with more precipitation in
the southeast quadrant. However, the intensity of the precipitation
relative to IMERG is tooweak in the southeast quadrant and stronger
than IMERG in both configurations. The HFSA configuration also
shows slightly higher precipitation accumulations relative to the
HFSB configuration.

The precipitation accumulation box plots shown in Figure 14
further demonstrate HFSA over estimated precipitation near RMW
(Figure 14A) using themedian of the distributions at each range bin,

whereas themean precipitation accumulations for HFSB near RMW
closely match those of IMERG (Figure 14B). Beyond 1 RMW, the
HAFS configurations are more similar.

4 Summary and discussion

Here we performed the first multi-season verification of
QPF from the new NOAA operational regional TC forecasting
system, HAFS. We use state-of-the-science methods to
mitigate track errors for traditional grid-to-grid comparison
methods, and spatially aware verification using both a storm-
relative coordinate system and an object oriented approach
(Newman et al., 2023).

Comparisons between the HAFS configurations and the HWRF
model show that the more complex microphysics in the HAFS
configurations better represent the tropical cyclone precipitation and
features of TCs than the legacy Ferrier-Aligo microphysics scheme
used in the HWRF model from the 2021-2022 North Atlantic basin
retrospective forecasts. Generally, the HAFS version 1 configurations
tend to over forecast precipitation for smaller thresholds and under
forecast precipitation for larger thresholds. During the 2023 season,
theHAFSv1configurationsdemonstrated the same trends as the2021-
2022 seasonal retrospective, which includes over forecasting light
precipitation and under forecasting larger accumulation thresholds,
along with similar spatial patterns and gradients moving away from
the storm center. However, the HAFSv1 configurations exhibited
larger underestimation of higher thresholds relative to the 2021-
2022 seasons. This could be from a variety of reasons (e.g., unique
differences in 2023 such as record SSTs) and may be worth further
investigation. Performance of the HAFS configurations varies across
the case studies, with HFSA performing better for Idalia while HFSB
performs better for Ian and Lee.

There are several considerations and avenues for future work
within this specific type of analysis and TC QPF verification
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more generally. We see future research opportunities using
these types of large-sample and case study QPF approaches for
further process-oriented studies (e.g., Ko et al., 2020) to better
understand relationships between model QPF spatial patterns and
rapid intensification/rapid weakening forecasts, representation of
internal core dynamics, and improved use of HAFS forecasts for
inland freshwater flood forecasting. For our specific methodology,
additional metrics or modifications to our existing metrics are
needed when assessing ETS or possibly other scores over smaller
verification domains when a large number of precipitating grid cells
are present in the verification domain. Examination of or inclusion
of different spatial interpolation techniques (e.g., Accadia et al.,
2003) should be done, as well as in-depth examination of
inherent intensity differences across models due to resolution or
other factors, as well as across observations. Finally, improved
automation and inclusion of QPF verification into the HAFS
verification workflow is underway to enable near-real time TC QPF
verification.
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