
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
SYSTEMATIC REVIEW article
Front. Comput. Sci.
Sec. Theoretical Computer Science
Volume 7 - 2025 | doi: 10.3389/fcomp.2025.1504725
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Plagiarism in academic and creative writing continues to be a significant challenge, driven by the exponential growth of digital content. This paper presents a systematic survey of various types of plagiarism and the detection algorithms employed in text analysis. We categorize plagiarism into distinct types, including verbatim, paraphrasing, translation, and idea-based plagiarism, discussing the nuances that make detection complex. This survey critically evaluates existing literature, contrasting traditional methods like string-matching with advanced machine learning, natural language processing, and deep learning approaches. We highlight notable works focusing on cross-language plagiarism detection, source code plagiarism, and intrinsic detection techniques, identifying their contributions and limitations. Additionally, this paper explores emerging challenges such as detecting cross-language plagiarism and AI-generated content. By synthesizing the current landscape and emphasizing recent advancements, we aim to guide future research directions and enhance the robustness of plagiarism detection systems across various domains.
Keywords: Plagiarism detection, text analysis, Natural Language Processing, Plagiarism types, machine learning, AI-generated content
Received: 01 Oct 2024; Accepted: 24 Feb 2025.
Copyright: © 2025 Amirzhanov, Turan and Makhmutova. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Cemil Turan, Suleyman Demirel University, Kaskelen, Kazakhstan
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.