
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
REVIEW article
Front. Bioeng. Biotechnol.
Sec. Nanobiotechnology
Volume 13 - 2025 | doi: 10.3389/fbioe.2025.1511197
This article is part of the Research Topic Modelling of Intravascular Drug Delivery Using Nanocarriers View all articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Iron is essential for vital cellular processes, including DNA synthesis, repair, and proliferation, necessitating enhanced iron uptake and intracellular accumulation.Tumor cells, in particular, exhibit a pronounced elevation in iron uptake to sustain their continuous proliferation, migration and invasion. This elevated iron acquisition is facilitated predominantly through the upregulation of transferrin receptors, which are closely associated with tumorigenesis and tumor progression. Incorporating transferrin into drug delivery systems has been shown to enhance cytotoxic effects in drug-sensitive cancer cells, offering a potential method to surpass the limitations of current cancer therapies. Intracellular iron predominantly exists as ferritin heavy chain (FTH), ferritin light chain (FTL), and labile iron pool (LIP). The innovation of nanocarriers incorporating iron chelating agents has attracted considerable interest. Iron chelators such as Deferoxamine (DFO), Deferasirox (DFX), and Dp44mT have demonstrated significant promise in cancer treatment by inducing iron deficiency within tumor cells. This review explores recent advancements in nanotechnology aimed at targeting iron metabolism in cancer cells and discusses their potential applications in cancer treatment strategies.
Keywords: iron metabolism, Transferrin Receptors, cancer therapy, Iron chelators, nanocarriers
Received: 14 Oct 2024; Accepted: 20 Feb 2025.
Copyright: © 2025 Li, Zhang, Cheng, Lou and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Bin Li, Zhongda Hospital, Southeast University, Nanjing, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.