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Iron is essential for vital cellular processes, including DNA synthesis, repair, and
proliferation, necessitating enhanced iron uptake and intracellular accumulation.
Tumor cells, in particular, exhibit a pronounced elevation in iron uptake to sustain
their continuous proliferation, migration and invasion. This elevated iron
acquisition is facilitated predominantly through the upregulation of transferrin
receptors, which are closely associated with tumorigenesis and tumor
progression. Incorporating transferrin into drug delivery systems has been
shown to enhance cytotoxic effects in drug-sensitive cancer cells, offering a
potential method to surpass the limitations of current cancer therapies.
Intracellular iron predominantly exists as ferritin heavy chain (FTH), ferritin light
chain (FTL), and labile iron pool (LIP). The innovation of nanocarriers
incorporating iron chelating agents has attracted considerable interest. Iron
chelators such as Deferoxamine (DFO), Deferasirox (DFX), and Dp44mT have
demonstrated significant promise in cancer treatment by inducing iron deficiency
within tumor cells. This review explores recent advancements in nanotechnology
aimed at targeting iron metabolism in cancer cells and discusses their potential
applications in cancer treatment strategies.
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1 Introduction

Iron plays an essential role in regulating various activities within human life, including
hemoglobin synthesis, energy metabolism, and DNA synthesis (Morales and Xue, 2021).
Cells maintain iron content within a specific range to support normal cellular functions.
Abnormal iron levels can significantly impact cells. Low iron levels can disrupt various
biological processes, including enzymes activity, oxygen transport, heme synthesis, and
detoxification processes (Biz and Mahadevan, 2021; Carpenter and Payne, 2014; Dutt et al.,
2022; Ruiz et al., 2021). Conversely, high iron concentrations can pose a cancer risk due to
its prooxidant activity, which can cause oxidative DNA damage. Iron predominantly exists
in a protein-bound form, including in heme compounds like hemoglobin, ferritin (FT),
hemosiderin, and myoglobin in erythrocytes (Salnikow, 2021). Only a small fraction of
unbound iron exists in the cytoplasm, referred to as the labile iron pool (LIP) (Boccio et al.,
2003; Vogt et al., 2021). Given iron’s crucial role in life activities, sophisticated feedback
mechanisms for iron homeostasis are present in the body, including iron absorption by
organs, systemic transportation, and cellular uptake and storage.
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Iron metabolism plays a dual role in cancer biology, both
promoting the proliferation and metastasis of tumor cells and
inducing ferroptosis to inhibit their malignant traits (Wang et al.,
2016; Rochette et al., 2022). Iron is critical for cell proliferation, and
tumor cells, compared to normal cells, require increased iron uptake
to maintain their growth, migration and invasion. Epidemiological
studies have established a positive correlation between dietary iron
intake and systemic iron levels with the incidence of various cancers,
including colorectal, pancreatic, lung, and bladder cancers (Huang
et al., 2023; Khan and Sharma, 2023; Wang et al., 2022; Qin et al.,
2024). Divalent metal transport 1 (DMT1), a cellular iron
transporter, facilitates iron uptake by small intestinal epithelial
cells and mediates the transfer of iron from endosomes to the
cytoplasm (Yanatori and Kishi, 2019). Targeted knockout of
DMT1 inhibits iron uptake by colon epithelial cells, disrupts the
iron-regulated signaling pathway mediated by CDK1, JAK1 and
STAT3, and consequently suppresses tumor cell proliferation in
colon cancer mouse models, thereby reducing tumor burden (Cheli
et al., 2018). conversely, high concentrations of iron can exert
cytotoxic effects, leading to ferroptosis. Various ferroptotic
inducers, including piperazine and pharmaceutical agents like
sorafenib, statins, and sulfasalazine, along with cytokines such as
IFN-γ and TGF-β1, have been demonstrated to induce ferroptosis in
tumor cells, thus hindering tumor proliferation (Yang et al., 2014).
Tumor cells, however, have developed strategies to evade ferroptosis,
such as preventing membrane damage and reducing intracellular
peroxide accumulation through the uptake of extracellular cysteine,
thereby circumventing ferroptosis. These insights highlight the
complex role of iron metabolism in cancer development and
therapy (Figure 1).

Ferroptosis is an emerging mode of programmed cell death,
distinctively characterized by iron-dependent lipid peroxidation and
the substantial accumulation of reactive oxygen species (ROS) (Mou
et al., 2019; Tang and Kroemer, 2020). Unlike necrosis and
apoptosis, ferroptosis exhibits unique morphological and
functional characteristics. It lacks typical necrotic features such as
cytoplasmic and organelle swelling and membrane rupture, as well
as apoptotic features like cell shrinkage, chromatin condensation,
and apoptotic body formation (Ai et al., 2024). Instead, ferroptosis
primarily manifests as mitochondrial shrinkage, increased
membrane density, reduced or absent mitochondrial cristae,
rupture of the extracorporeal membrane, depletion of the
reducing agent glutathione (GSH), and increased ROS levels
(Mou et al., 2019). Research on drug development targeting
ferroptosis is gaining traction as a promising anticancer
therapeutic strategy (Yang et al., 2014; Greenshields et al., 2017).
A variety of approaches, including the application of clinical drugs,
experimental small molecule compounds, ferroptosis-related genes,
and nanomaterials, have been explored to induce ferroptosis in
tumor cells (Liang et al., 2023). These advancements underscore the
potential of targeting ferroptosis as an innovative approach in
cancer treatment.

Nanoparticles are employed in the delivery and control of
therapeutic agents due to their outstanding characteristics. These
include targeted delivery, which ensures precise delivery to specific
sites, and controlled release, which allows for sustained therapeutic
effects. Nanoparticles also exhibit high biocompatibility and low
toxicity, thereby minimizing adverse effects on healthy tissues.

Additionally, their ability to degrade within a clinically acceptable
timeframe mitigates the risk of long-term accumulation in the body.
These properties position nanoparticles as a promising platform in
the development of advanced therapeutic strategies (Zaimy et al.,
2017; Baetke et al., 2015). The utilization of nanoparticles as carriers
for chemical or biological materials presents a significant
opportunity to enhance the efficacy of existing ferroptosis
inducers and facilitate the development of novel inducers for
cancer treatment. By leveraging the targeted delivery and
controlled release capabilities of nanoparticles, it is possible to
improve the therapeutic index of ferroptosis inducers, thereby
maximizing their anticancer effects while minimizing off-target
toxicity. Furthermore, the adaptability of nanoparticles allows for
the incorporation of a wide range of active agents, paving the way for
innovative approaches in the induction of ferroptosis and the
advancement of cancer therapies (Alavi and Hamidi, 2019;
Ashrafizadeh et al., 2019).

The integration of innovative approaches in cancer therapy has
driven considerable interest in exploring the unique characteristics of
tumor cell biology, particularly in relation to iron metabolism.
Tumors exhibit an elevated iron uptake compared to normal cells,
a trait that not only supports their proliferation but also positions iron
metabolism as a promising therapeutic target (Morales and Xue,
2021). Ferroptosis, a form of programmed cell death characterized by
iron-dependent lipid peroxidation, represents a key area of interest for
its potential to selectively eliminate cancer cells. Current strategies to
induce ferroptosis focus on either depriving tumor of iron or
augmenting iron levels to induce cytotoxicity. While both methods
hold promise, further research is needed to determine their relative
efficacy in clinical settings. In this context, nanoparticle technology
emerges as a powerful tool, offering enhanced delivery and control of
ferroptosis inducers through its characteristics of targeted and
controlled release, biocompatibility, and low toxicity. By coupling
nanoparticles with chemical or biological agents, the effectiveness of
existing ferroptosis inducers may be significantly improved (Zaffaroni
and Beretta, 2021). Moreover, manipulating proteins involved in the
ferroptosis pathway can modulate intracellular iron levels and disrupt
the cellular REDOX balance, triggering ferroptosis in tumor cells. The
potential to combine these novel tactics with traditional anti-tumor
therapies could yield synergistic effects, enhancing overall treatment
efficacy and potentially overcoming resistance associated with
conventional methods. This review explores the multifaceted
approaches to targeting iron metabolism and ferroptosis in cancer
therapy, highlighting the potential of nanoparticles and pathway-
specific interventions to revolutionize treatment paradigms.

2 Iron Homeostasis in Cancer: CSCs,
EMT, and Chemoresistance

2.1 Iron regulation of cells

Iron metabolism in the human body encompasses several
processes, including absorption, transport, utilization, loss,
circulation, regulation, and storage. Maintaining Iron homeostasis
is crucial to ensure adequate iron for essential biological functions
while preventing toxicity from excess iron (Boccio et al., 2003). The
oxidation state of iron significantly influences its absorption in the
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gastrointestinal tract, requiring it to be in the ferrous form (Fe2+) or
bound to transporters for absorption. Dietary ferric iron (Fe3+)
must be reduced to ferrous iron before uptake through divalent
metal transporter 1 (DMT1) into intestinal epithelial cells. In
contrast, If haem iron can be absorbed directly absorbed via
haem carrier protein 1(HCP1) (Cheli et al., 2018). Upon
absorption into intestinal epithelial cells, a portion of iron is
stored as ferritin, while the remaining iron is transported into
the circulation through ferroportin, located on the basolateral
membrane. During this process, iron is reoxidized to its ferric
form with the assistance of ferroportin auxiliary proteins,
enabling it to bind to transferrin in the bloodstream. This
binding facilitates the transport of iron to target organs for its
biological roles. Hepcidin and transferrin are pivotal regulators of
iron transport from cells to systemic circulation. Hepcidin,
synthesized by the liver, is upregulated in response to increased
iron levels, such as elevated iron stores and serum iron levels, as well
as during infection and chronic inflammation, thereby playing a
crucial role in maintaining iron homeostasis. Elevated hepcidin
levels interact directly with membrane-bound iron transport
protein (FPN), facilitating internalization and subsequent
degradation. This process ultimately inhibits the efflux of iron
into the bloodstream, thereby reducing circulating iron levels and
contributing to iron homeostasis regulation (Nemeth and Ganz,
2021). Iron regulatory proteins (IRPs) bind to iron responsive
elements (IREs), which are sequences found in mRNAs that
encode iron-related genes. This binding controls the expression
of these genes, including hypoxia inducible factor 2α (HIF2α) and
transferrin receptor 1 (TfR1). Through this IRP/IRE

posttranscriptional regulatory system, the cellular iron storage
and homeostasis are effectively managed, ensuring appropriate
iron levels for various cellular functions (Khan and Sharma,
2023; Sanchez et al., 2006). Iron is transported through the
bloodstream by binding to transferrin, which delivers it to target
organs. At these sites, iron binds to transferrin receptors on the cell
surface and is internalized via clathrin-dependent endocytosis. Iron
was delivered to different parts of the cell including the
mitochondria by proteins poly (rC)-binding proteins 1 and 2
(PCBP1 and PCBP2) (Frey et al., 2014; Ryu et al., 2017).
Mitoferrin 1 imports iron from intermembrane space to
mitochondrial matrix for the synthesis of Fe S clusters. Once
inside the cell, iron dissociates from transferrin and is reduced
back to its ferrous form (Fe2+). The ferrous iron is then transported
into the cytoplasm by DMT1 and can either be utilized in the
mitochondria for various biochemical processes or stored as ferritin
for future use (Barra et al., 2024; Gao et al., 2019).

2.2 Iron homeostasis in cancer cells

High concentrations of iron are associated with carcinogenesis, a
finding supported by epidemiological studies. In cancer cells, iron
homeostasis is disrupted, resulting in elevated intracellular iron
levels. Cancer cells, characterized by their rapid proliferation and
heightened energy metabolism, exhibit a substantially increased
demand for iron (Marques et al., 2014). To accommodate this
demand, these cells predominantly store iron in the form of
ferritin, consisting of both ferritin light chain (FTL) and heavy

FIGURE 1
Iron metabolism in cancer cells. Iron was transferred inside cancer cells via internalization by TFRC and DMT1. Iron was exported out with FPN.
Intracellular iron was stored as Ferritin and LIP. Cancer cells require large amount of iron than normal cells.
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chain (FTH). Additionally, cancer cells exhibit a significant increase
in the labile iron pool (LIP), which further contributes to their iron
dependency. Iron uptake from the microenvironment is
predominantly facilitated by the overexpression of TfR1 on the
cell surface. This increased expression of TfR1 is crucial in
enhancing cancer cell proliferation and invasion, making it an
important target for the development of therapeutic strategies in
cancer treatment. By focusing on TfR1, researchers aim to disrupt
the iron acquisition pathway essential for tumor growth, presenting
a promising avenue for effective cancer therapies. The Increased
expression of import proteins, such as DMT1 and TFR1, has been
demonstrated in colorectal cancer, leading to elevated intracellular
iron. The STEAP family of proteins, which are involved in iron
uptake and reduction within endosome, are also high expressed in
various tumors, including glioma, prostate, pancreatic, and breast
cancer (Rocha, 2021; Gomes et al., 2012; Chen et al., 2021). This
elevated expression highlights the importance of the STEAP
proteins in tumor iron metabolism and their potential as targets
for therapeutic interventions in these cancers. Tumor cells were
characterised of rapid self-renewal, therefore higher levels of
nutrition were required compared to normal cells. Mitochondria
was important organelles in process of energy synthesis. Iron plays
an important role in mitochondrial enzyme synthesis. Excess iron
was delivered to different parts of the cell including the
mitochondria by PCBP1 and PCBP2. Mitoferrin 1 imports iron
from intermembrane space to mitochondrial matrix for high
concentration of Fe S clusters (Chung et al., 2014). Excess iron in
mitochondria is also stored in ferritin (Levi and Arosio, 2004). Iron
efflux is controlled by FPN, which is regulated by hepcidin. In many
cancer cells, the low expression of FPN induces an increase level of
intracellular iron (Lehmann et al., 2023). This is further
compounded by the high expression of Hepcidin, which
suppresses FPN and reduces iron export. Contrary to this, most
cancer types exhibit high expression of iron import genes and low
expression of iron export and storage genes, leading to an
accumulation of iron within the cells. This dysregulation in iron
homeostasis contributes to cancer cell proliferation and survival
(Roth et al., 2019).

2.3 Iron homeostasis in relation to CSCs,
EMT, and chemoresistance

Iron is essential for DNA synthesis, repair, and cellular
proliferation, which results in increased in iron uptake and
elevated intracellular iron concentrations. Intracellular iron
consists of components like ferritin heavy chain (FTH), ferritin
light chain (FTL), and labile iron pool (LIP). The transferrin
receptor, a membrane protein that binds transferrin, facilitates
this high iron concentration typically observed in cancer cells (Jia
et al., 2024; Rosager et al., 2017). TFRC is highly expressed in MXR-
resistant cells, whereas its concentration is low in drug-resistant
patients (Yu et al., 2024). To explore the relationship between iron
metabolism and chemoresistance, studies on doxorubicin-resistant
and cisplatin-resistant MCF-7 cell lines have shown elevated
expression of TFRC1 and iron-regulating genes. Iron chelation
leads to decreased levels of cycline A, B and D, resulting in G1/S
phase arrest and inducing cell apoptosis (Kulp et al., 1996).

Depletion iron disrupts the iron metabolism in cancer cells,
which can help reduce drug resistance. The LIP is crucial for the
proliferation of cancer cells, and iron chelators can effectively bind
to the free iron within this pool, thereby inhibiting cell growth and
proliferation. This strategy not only hampers the metabolic
processes essential for cancer cell survival but also enhances the
effectiveness of chemotherapeutic agents by overcoming resistance
mechanisms. Iron chelator (DFO and DFX) enhance chemotherapy
sensitivity (Wang et al., 2019; Liu et al., 2022). While High
intracellular iron concentrations support the growth and
proliferation of malignant cells, iron chelating agents inhibit
tumor growth by depleting intracellular iron. Previous studies
have demonstrated the anticancer effects of the iron chelator
deferoxamine (DFO), which increases the chemotherapy
sensitivity of ovarian cancer by inducing apoptosis in tumor cells.
These findings suggest that depleting iron within cells can mitigate
chemotherapy resistance, highlighting the potential role of iron
chelation in cancer treatment strategies.

The stemness of cancer stem cells (CSCs) is associated with
elevated levels of ferritin, both FTH and FTL, capable of storing
more than 4,000 iron atoms. High ferritin levels are particularly
linked to breast CSCs, whereas knockdown of FTH disrupts the
expression of the cytokine oncostatin M and impairs stemness. FPN
regulates the export of excess intracellular iron, a process modulated
by hepcidin (HAMP). In breast cancer, high expression of HAMP
and an increased LIP are correlated with poor prognosis and an
invasive phenotype, alongside downregulated FPN expression.
Overall, CSCs maintain high iron concentrations by enhancing
iron uptake, reducing iron export, and stabilizing LIP
homeostasis, contributing to their malignancy and resistance
characteristics (Arruda et al., 2020).

Post-transcriptional regulation of iron in cancer stem cells
(CSCs) is primarily mediated by iron regulatory proteins 1 and 2
(IRP1 and IRP2), which are RNA-binding proteins that play a
critical role in iron metabolism. In non-CSCs, the Lip is
enhanced by the proliferation-associated gene c-Myc. IRP1 bind
to IREs, modulating the expression of genes related to iron
metabolism and CSCs characteristics. CSCs are characterized by
increased iron influx and decreased iron efflux, resulting in elevated
intracellular iron. High levels of heavy-chain ferritin (H-ferritin) and
intracellular iron is closely associated with CSC features in cancer.
Iron supplementation significantly contributes to the maintenance
of stemness and promotes chemoresistance in CSCs. The elevated
iron levels in CSCs are critical, as evidenced by the upregulation of
TFRC and DMT1, which enhance iron uptake and intracellular
levels, thereby facilitating growth and maintaining CSC stemness
(Brown et al., 2019; Lee and Roh, 2023).

3 Iron-Targeting Nanotherapeutics for
Enhanced Cancer Treatment

3.1 Transferrin-conjugated nanocarriers
serve as precision drug delivery systems for
enhanced cancer therapy

Nanomaterial-based therapeutic compound delivery system
has been explored to enhance therapeutic specificity and
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minimize systemic toxicity through the design of targeted therapy
strategies. TFRC, which are iron-binding proteins located on cell
membrane, play a crucial role in transporting iron necessary for
cell proliferation. There receptors are expressed at low levels in
normal cells but are significantly upregulated in malignant cells,
including those from prostate, breast, pancreatic, leukemia,
colon, and lung cancers (Currie et al., 2023; Yang et al., 2022;
Liu et al., 2023; Zhang et al., 2024). In cancer cells, increased iron
uptake via transferrin receptors has been observed, with
accumulating evidence indicating that TFR1 is implicated in
tumorigenesis and progression. The association between
TFR1 and cancer underscores its potential as a drug target for
cancer therapy (Candelaria et al., 2021). There are two subtypes of
TFR, TFR1 and TFR2. TFR1 is generally expressed on the surface
of most cells, whereas TFR2 is predominantly expressed in liver
cells. These receptors are membrane glycoproteins that facilitate
iron uptake via transferrin-bound iron (Fe III). The Tf-TFR1
complex is internalized through endocytosis, after which Fe (III)
dissociates from TF. Given the high expression of TFRC in tumor
cells, specific ligands targeting TFRC have been utilized for
surface modification of nanomaterials, thereby to enhance
selectivity and accumulation, thereby improving
therapeutic efficacy.

The conjugation of transferrin with anti-transferrin receptor
peptides has been investigated to enable selective drug delivery for
tumor therapy (Nogueira-Librelotto et al., 2017). This drug delivery
system enhances cytotoxicity in both drug-sensitive and drug-
resistant cells, thus addressing limitations associated with current
cancer management strategies. Overall, targeted transferrin therapy,
leveraging the iron metabolism of cancer cells, has significantly
advanced nanoparticle research.

3.2 Iron chelation targeting strategies
affecting cancer treatment

Nanocarriers incorporating iron chelating agents have been
extensively investigated for their potential in cancer treatment.
Chelators such as DFO, deferasirox (DFX), and Dp44mT have
shown promise in inducing iron deficiency within tumor cells,
thereby inhibiting their proliferation (Ibrahim and O’Sullivan,
2020). However, the therapeutic efficacy of these iron chelating
agents is limited by their short half-lives. DFO exhibits a half-life
of approximately 20 min, which results in minimal impact on the
iron levels within tumor cells. Considering the non-specificity of
iron chelating agents in cancer therapy, the incorporation of
nanomaterials offers a promising strategy to extend the drug
cycle duration of these agents, leading to more effective cancer
treatment (Ibrahim and O’Sullivan, 2020). Nanoparticles were
engineered to prolong circulation time, enhance clearance,
improve biosafety, and increase cellular permeability. Given
the role of iron in promoting cancer progression in pancreatic
tumors, a nanomaterial based on iron chelation has been
developed. Liposomal drug delivery systems have been
explored for the encapsulation of YC-1, a known inhibitor
that targets DFO, transferrin (TF), and hypoxia-inducible
factor 1α (HIF-1α). Transferrin modified nanomaterials
enhance the expression specificity of membrane protein TFRC
(Figure 2). Additionally, the iron chelating agent DFO acts
synergistically with YC-1 to treat cancer. Pancreatic cancer
CSCs exhibit elevated iron levels, and this novel, effective
combined delivery of an iron chelator and YC-1 significantly
enhances the efficacy of chemotherapy for pancreatic cancer
(Lang et al., 2019).

FIGURE 2
Pattern diagram of transferrin-targeted nanomaterial. Surface of nanomaterial was modified with transferrin, linked with transferrin receptor of
cancer cells, resulting in internalization by endocytosis.
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Iron supply contributes to the growth and proliferation of stem
cells, and iron derivatives specifically target stem cells can induce
cancer cell death. Nanoparticulate deferoxamine (Nano DFO) has
been formulated into polyethylene glycol lipid nanocapsules (LNCs)
to enhance therapeutic efficacy. LNCs offer improved bioavailability,
biosafety and anticancer effects. Compared to conventional iron
chelating agents, the nanostructured formulation of DFO exhibits
superior anti-tumor activity both in vivo and in vitro. Despite its
effectiveness, the DFO family is still limited by challenges such as
rapid clearance, poor cellular permeability, and cytotoxicity. To
address these limitations, researchers have developed novel DFO
derivatives that target CSCs by conjugating DFO with caffeine, thus
improving permeability and targeting efficiency (Li et al., 2019). The
newly developed compound demonstrates excellent cellular
permeability and safety in depleting intracellular iron. The new
derivative, DFCAF, surpasses DFO in effectively targeting cellular
iron concentrations. DFCAF inhibits the growth and invasiveness of
CSCs by suppressing the expression of the TGF-β signaling pathway.

3.3 Induction of ferroptosis in cancer cells
via nanoparticle strategies

Ferroptosis is a distinctive form of cell death reliant on the
presence of iron and reactive oxygen species (ROS) (Park and
Chung, 2019). In recent years, nanomedicine has emerged as a
promising strategy for the effective treatment of various cancers
using engineered nanomaterial-based therapeutic reagents.
Increasing research has highlighted the significant relationship
between ferroptosis and nanomedicine. Due to their nanoscale size,
engineered nanomaterials can passively target tumor tissues through
enhanced permeability and retention (EPR) effects, facilitating cancer-
specific therapy (Alphandery, 2022). In addition, iron-containing
nanomaterials can enhance ROS accumulation following cellular
uptake, ultimately resulting in cell death and achieving therapeutic
effects. However, the ferroptosis inducer Solanine A presents
challenges due to its poor water solubility and high toxicity in
animal studies. Utilizing amphiphilic biodegradable ph-sensitive
nanocarrier can mitigate the adverse pharmacological profiles
associated with certain therapeutic agents (Hassannia et al., 2018).
For instance, In a leukemia cell xenotransplantation model, the
antitumor activity of the erastin analogue IKE was enhanced when
delivered via polyethylene glycol-polylactic-coglycolic acid
nanoparticles (Zhang et al., 2019). Additionally, in xenograft
models, ultra-small silica nanoparticles have been shown to induce
ferroptosis by increasing intracellular iron transfer and accumulation,
thereby inhibiting tumor growth (Kim et al., 2016). Li et al. (2022)
devised and developed engineered exosome that were endogenously
modified with brain tumor-targeting peptides and combined with
magnetic nanoparticles through antibody conjugation. This platform
enabled the loading of siGPX4 and Brequinar (BQR), an DHODH
inhibitor, on exosomal surfaces and mesoporous silicon, respectively.
Furthermore, amousemagnetic helmet constructed using 3Dprinting
technology facilitated the effective induction of ferroptosis for treating
brain gliomas. nevertheless, the long-term effects of nanoparticle
applications on human health require careful evaluation.

4 Conclusion

The advancements in nanotechnology have significantly
enhanced the potential for effective cancer treatment strategies.
Engineered nanomaterials, due to their nanoscale size and unique
properties, enable targeted delivery and enhanced retention in
tumor tissues, providing a promising platform for selective
cancer treatment. The integration of iron-containing
nanomaterials, amphiphilic biodegradable pH-sensitive carriers,
and sophisticated delivery systems such as modified exosomes
have demonstrated increased therapeutic efficacy in various
preclinical models by capitalizing on the ferroptosis pathway.
Despite these advancements, challenges remain, particularly
concerning the pharmacological profiles and potential long-term
effects on human health. Further research is essential to optimize
these systems and ensure their safety and effectiveness in clinical
settings. The continued exploration of nanoparticle-based strategies
holds great potential for transforming cancer treatment modalities,
providing new avenues for overcoming drug resistance and
enhancing patient outcomes.
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