
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Allergy
Sec. Allergy Diagnosis
Volume 6 - 2025 | doi: 10.3389/falgy.2025.1565283
This article is part of the Research Topic Novel and Promising Laboratory Biomarkers for Allergic Disease Diagnosis and Prognosis: Clinical Applicability View all 4 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Hereditary angioedema (HAE) is an autosomal dominant genetic disorder caused by mutations in the C1 esterase inhibitor gene, SERPING1, leading to overproduction of bradykinin and debilitating swelling attacks. Variants in the SERPING1 gene are typically detected in a clinical setting by DNA sequencing or multiplex ligation-dependent probe amplification (MLPA), with over 893 total variants identified. Approximately 5% of patients with C1-esterase inhibitor deficiencies do not have detectable SERPING1 pathogenic variants. We further investigated a family with laboratory-confirmed HAE type I despite previous negative genetic test results for SERPING1 mutations.We consented and collected whole blood samples from three family members with clinical diagnoses of HAE. The samples underwent genomic DNA extraction and evaluation for purity prior to sequencing. The DNA samples were processed through a semi-automated whole exome library prep pipeline and sequenced. SERPING1 MLPA was performed to assess exon-level copy number variation (CNV) for exons 1 through 8. Additionally, we incorporated a well-established bioinformatics technique called soft clipping into our variant analysis pipeline to detect structural variants.Results: Clinical variant analysis revealed two common benign variants of SERPING1 in the proband. NGS and MLPA did not detect any SERPING1 pathogenic variants or genomic rearrangements, but additional structural variant analysis identified a high rate of soft clipping in exon 6 of the SERPING1 gene. Sanger sequencing of exon 6 revealed a heterozygous 56-base-pair deletion (NC_000011.10: g.57606508-57606563del, NM_000062(SERPING1): c.990_1029+16del) spanning the 3' exon-intron boundary in all three subjects. Summary: Without additional techniques following NGS and MLPA, such as a soft clipping analysis method, many difficult-to-detect large insertions and deletions may go undetected. We propose that a systematic approach to undetected HAE-causing mutation analysis, incorporating soft clipping as part of an overall strategy, would be more effective in identifying a small percentage of causal variants in approximately 5% of C1-esterase inhibitor HAE cases where no mutation is found by standard laboratory procedures, especially when there are high clinical suspicions of a familiar disorder.
Keywords: SERPING1, Hereditary angioedema (HAE), Multiplex ligation-dependent probe amplification (MLPA), C1-inhibitor (C1INH), soft clipping, Next generation sequencing (NGS)
Received: 22 Jan 2025; Accepted: 31 Mar 2025.
Copyright: © 2025 Wetherby, Chiao, Faulkner, Guo, Hou, Yu, Chen, Wan and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
H. Henry Li, Virant Diagnostics, Inc., Wheaton, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.