Skip to main content

PERSPECTIVE article

Front. Aging, 07 January 2025
Sec. Molecular Mechanisms of Aging
This article is part of the Research Topic Unraveling the Complexity of Aging: An In-Depth Examination of its Hallmarks View all 3 articles

Hallmarks of aging: middle-aging hypovascularity, tissue perfusion and nitric oxide perspective on healthspan

  • Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia

Aging is a complex process marked by various changes at both cellular and systemic levels, impacting the functioning and lifespan of organisms. Over time, researchers have pinpointed several significant hallmarks of aging that lead to the gradual deterioration of tissue function, regulation, and homeostasis associated with aging in humans. Despite this, the intricate interactions and cumulative effects of these hallmarks are still mostly uncharted territory. Understanding this complex web is a major challenge in Geroscience, yet it is crucial for developing effective strategies that promote healthy aging, reduce medical costs, and ensure the sustainability of health systems. Gaining insights in this area is essential for creating interventions that can slow the aging process, enhance healthspan, and decrease the likelihood of age-related diseases. The integration of knowledge from various fields concerning the middle-aging nitric oxide (NO)-mediated hypovascularity hypoxia hemodynamic hypothesis points to a systems-based approach to the biological hallmarks of aging. Key evidence suggests a systemic connection between the endocrine system (specifically sex hormones), endogenous NO deficiency, and the vascular system, which serves as a network of microvascular structures crucial for tissue perfusion functions at cellular level. These processes also involve oxidative stress and inflammation triggered by hypoxia.

1 Introduction

These are the 12 interconnected hallmarks of aging that encompass genomic instability, telomere shortening, epigenetic modifications, protein imbalance, impaired macro-autophagy, disrupted nutrient-sensing pathways, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis (López-Otín et al., 2023).

The intricate interplay and cumulative impact of these features remain largely unexplored in the context of age-related diseases progression and healthspan in humans (Rolland et al., 2023; Addie et al., 2024; Fekete et al., 2024).

The middle-aging hypovascularity hypoxia hypothesis presents evidence linking menopause or andropause in middle-aging to decreased blood flow (hemodynamic) due to endogenous NO-mediated microvascular (hypovascularity) and oxygenation reduction (hypoxia) (Phua, 2023). A decrease in NO-mediated microvascular structure (microvasculature-hypovascularity) in tissues with hypoxia and hemodynamic factors reveal a complex biological dysregulation linked to the emergence of vascular aging and tissue hypoperfusion. Over time, vascular aging involves the deterioration in vascular structure and function and ultimately leads to cumulative tissue (cellular) damage in the heart, brain, kidney, and other organs (Climie et al., 2023).

The intricate relationships and cumulative effects of these aging hallmarks are best understood through the lens of Geroscience (Rolland et al., 2023; Addie et al., 2024; Fekete et al., 2024), and the methodologies from population health epidemiology (LaMorte, 2021). This integrated knowledge translation establishes connections across different levels of biological organization, highlighting causal relationships (LaMorte, 2021) and triangulating evidence (Hammerton and Munafò, 2021; Munafò et al., 2021) for a clearer understanding of unifying biological structures and functions entities (Herman et al., 2022). It provides a comprehensive and deeper understanding of how various biological (heterogeneity) processes are carried out across different systems-based levels (Landay et al., 2021; Falshaw et al., 2024) (systemic-cellular) during human aging.

2 Systemic level: sex hormones, nitric oxide deficiency and vascular aging hypovascularity

2.1 Sex hormones and nitric oxide deficiency

Both the prostate degeneration and middle-aging hypovascularity hypotheses indicate a decline in sex hormones and the NO-production during middle-aging (Phua, 2021; Phua, 2023). This period is marked by the cessation of estrogen production due to menopause (Cignarella et al., 2024) and a rise in serum testosterone deficiency (andropause) (Llukani et al., 2017; Erenpreiss et al., 2020; Kanabar et al., 2022). Advancing age is linked to lower overall NO-production in the body (Siervo et al., 2024), and the diminished bioavailability of NO in postmenopausal women is well established (Fredette et al., 2018; Somani et al., 2019).

In contrast, estrogen or menopause replacement therapy has been shown to significantly elevate plasma NO levels in postmenopausal women (Majmudar et al., 2000; Akhan et al., 2002). Similarly, testosterone replacement therapy results in a notable increase in NO-production (Campelo et al., 2012; Hotta et al., 2019; Gur et al., 2020; Akseh et al., 2021).

2.2 Nitric oxide deficiency and vascular aging hypovascularity

Testosterone or estrogen replacement therapy can effectively reverse the testosterone deprivation caused by orchiectomy in rats’ experiments with urethral hypovascularity (Yura et al., 2020; Gerbie et al., 2021). Hypogonadal status patients have been found to have decreased peri-urethral vascularity (Hofer et al., 2017).

Vascular aging, characterized by the many hypovascularity descriptions, is strongly linked to the progression of various age-related diseases, as highlighted by observational studies. Tissue hypoperfusion has been associated with Alzheimer’s disease (Salminen, 2021) and vascular cognitive impairment (Rajeev et al., 2023). Additionally, macro-micro-angiopathy is connected to diabetes (Madonna et al., 2017) and associated erectile dysfunction (Defeudis et al., 2022). Capillary rarefaction is related to sarcopenia (Hayashi, 2021; Jeon et al., 2021; Hendrickse et al., 2022) and has repercussions for renal and cardiovascular disease (Steegh et al., 2024). Decreased densities of microvessel and microvascular structures are indicative of diabetic myocardial injuries (Wang et al., 2024) and overall cardiovascular health issues (Wang et al., 2024).

In two 60-day studies, canine orchiectomy was found to reduce prostate vascularization (hypovascularity) (Angrimani et al., 2020), perfusion (hypoperfusion), and blood flow volume (Yoon et al., 2020). The findings observed offer a distinctive explanation of the interplay among endocrine system (specifically sex hormones), endogenous NO-production, and the vascular system at both the systemic regional and the local cellular tissue levels. The local cellular tissue vascular system (niches) is exemplified by the microvascular hemodynamic structure that facilitates perfusion function to the tissue. This establishes a cohesive unifying relationship between structure and function across all levels of biological organization (Herman et al., 2022).

This underscores the critical relationship between systemic regional systems and local cellular tissue vascular niches, which synergistically influence the advancement of aging-related chronic diseases. These interactions (systemic-cellular) result in a progressive pathobiological condition characterized by vascular aging hypovascularity and impaired tissue perfusion (hypoperfusion).

3 Cellular tissue level: vascular aging hypovascularity and tissue hypoperfusion-driven pathobiology

3.1 Systemic diseases and vascular aging hypovascularity

Microcirculatory dysfunction due to vascular aging is now recognized as a systemic issue (Feuer et al., 2022; Meariman et al., 2023; Wagner et al., 2023). Reduced blood flow plays a significant role in exacerbating various pathological conditions, such as angina pectoris, atherosclerosis, coronary artery and microvascular disease (Tracy et al., 2021). The topic of “Menopause and Your Heart” explores the metabolic syndrome, which heightens the risk of diabetes, hypertension, and weight gain (British Heart Foundation, 2024). The decline in estrogen production affects metabolism, raising the likelihood of obesity and diabetes (Cignarella et al., 2024). Additionally, capillary rarefaction is linked to obesity, metabolic disorders, and glucose homeostasis (Paavonsalo et al., 2020).

Estrogen plays a crucial role in maintaining the integrity of blood vessels in bone during both pregnancy and menopause (Rodrigues et al., 2022). Research indicates that the modulation of estrogen via estradiol stimulates the release of vasoactive substances, including NO and prostacyclin, while also promoting the production of angiotensin1-7 along the angiotensin axis (Novella et al., 2019). The production of angiotensin1-7 leads to a range of beneficial effects, such as vasodilation, reduced inflammation, prevention of fibrosis, inhibition of angiogenesis, and lower blood pressure (Touyz and Montezano, 2018), as well as improvements in glucose and lipid balance (Lelis et al., 2019).

Structural changes in small resistance arteries are regarded as the gold standard for evaluating hypertension, as opposed to the typical microvascular remodeling (Rizzoni et al., 2023). On the other hand, some researchers attribute hypertension to capillary and microvascular rarefaction (Mourad and Laville, 2006; Liang et al., 2019; le Noble et al., 2023). Hypertension associated with cancer therapies underscores the significant impact of factors such as decreased NO-generation, oxidative stress, endothelin-1, prostaglandins, endothelial dysfunction, heightened sympathetic activity, and microvascular rarefaction (Cohen et al., 2023).

Likewise, Chinese patients undergoing androgen deprivation therapy for prostate cancer face an increased risk of developing new instances of hypertension, diabetes, and hyperlipidemia (Wong et al., 2022). Similarly, it increases the risk of weight gain, emotional changes, cardiovascular disease, diabetes and osteoporosis (MacLennan et al., 2023).

3.2 Microvascular hemodynamic structure and hypoperfusion-driven pathobiology

Significantly, most human tissues are exposed to in vivo oxygen levels between 2% and 6% (bioavailability), commonly known as physoxia (McKeown, 2014) or physioxia (Adebayo and Nakshatri, 2022; Alva et al., 2022), due to blood flow circulation (Premont et al., 2020). The microcirculation within microvascular networks plays a crucial role in ensuring adequate tissue perfusion, delivering essential oxygen and nutrients, facilitating waste removal, and supporting immune functions. Such microcirculation is critical for cellular tissue function, regulation, and overall homeostasis (Guven et al., 2020; Munoz et al., 2020; Hsia, 2023; Satish and Tadi, 2023). However, the aging process is marked by a gradual decline in tissue perfusion (Wolters et al., 2017; Staffaroni et al., 2019).

This NO-mediated vascular aging hypovascularity and tissue hypoperfusion-driven impairment in delivering oxygen and nutrients, facilitating waste removal and immune function, triggers the concurrent activation of multiple aging hallmarks pathobiology mechanisms (Figure 1).

Figure 1
www.frontiersin.org

Figure 1. Aging nitric oxide deficiency and aging hypovascularity hypoperfusion.

The few examples of individual hallmarks mentioned below illustrate the interactive presence of multiple aging hallmarks driven by hypovascularity and hypoperfusion pathobiology. A lack of oxygen delivery (hypoxia) leads to a decrease in metabolic rate due to the inability of mitochondria to perform oxidative phosphorylation (Wilson, 2017; Vercellino and Sazanov, 2022; Mao et al., 2024), resulting in a shift toward aerobic glycolysis, known as the Warburg effect (Pascale et al., 2020; Martins Pinto et al., 2023). Patients with suspected coronary microvascular disease exhibit unique microcirculatory resistance and myocardial metabolic profiles, both at rest and in response to physical activity (Noaman et al., 2023).

Impairments in nutrient supply involve the dysregulation of nutrient sensing, which impacts cellular metabolism, cellular senescence (proliferation), glands secretion (such as insulin), and promotes increased autophagy activity (González et al., 2020; Parmar et al., 2022; Huynh et al., 2023). Microvascular rarefaction may lead to an imbalance between perfusion and metabolic demand in metabolic syndrome, as local metabolic requirements are not adequately fulfilled due to insufficient nutrient and oxygen supply (Wong et al., 2022).

Furthermore, the microvascular hemodynamic vascular and lymphatic systems responsible for cellular waste removal become compromised, resulting in the buildup of wasteosomes (Riba et al., 2022). Corpora amylacea, which are starch-like bodies, are associated with tau in Alzheimer’s disease (Riba et al., 2023; Dallmeier et al., 2024) and are prevalent in cases of prostate enlargement (Sun and Bao, 2013; Badea et al., 2015; Ichimata et al., 2024). This blood stasis can clarify the hormetic-biphasic dose/concentration relationships of NO (Calabrese et al., 2023b) and defines the limits of lifespan (Calabrese et al., 2023a). The immunological aspect of pathobiology is characterized by a deterioration of immune function, commonly referred to as immunosenescence (Rodrigues et al., 2021; Sayed et al., 2021; Lee K.-A. et al., 2022).

In humans, vascular aging is characterized by a decline in microvasculature (hypovascularity) (Wei et al., 2017; Chua et al., 2024; Kellner et al., 2024), perfusion (hypoperfusion) (Lin et al., 2019; Liu et al., 2021), and hemodynamic (Kavroulakis et al., 2021; Leidhin et al., 2021; Roberts et al., 2023).

Applying the principles of population health epidemiology often leads to viewing components like microvasculature, perfusion, and hemodynamic purely as associations rather than as causal relationships (LaMorte, 2021). However, these components create a cohesive unifying framework linking structures and functions (Herman et al., 2022) within the context of the pathobiological effects driven by hypoperfusion, which can significantly influence cellular tissue healthspan. By triangulating related evidence (Hammerton and Munafò, 2021; Munafò et al., 2021), we can recognize these systemic endocrine-NO-vascular systems (Landay et al., 2021) as having causal links to cellular tissue microvascular hemodynamic structures and perfusion functions (microvasculature-perfusion-hemodynamic). This triangulation is particularly relevant in understanding the heterogeneity of biological aging and allows for more precise big picture causal inferences regarding the stages of disease progression, from onset to early preclinical induction phases and latency through to manifest and late clinical stages (LaMorte, 2021) (Figure 2).

Figure 2
www.frontiersin.org

Figure 2. Triangulation causality in heterogeneity biological aging.

3.3 Retinal microvasculature and aging biomarkers

Currently, there is a research gap in the validation of aging biomarkers that are suitable for clinical application (Bao et al., 2023; Moqri et al., 2024), particularly regarding their relationship with vascular aging and microvessel diseases (microvasculature) (Rizzoni et al., 2019; Mun et al., 2023).

The aging retinal microvasculature (Abay et al., 2022) presents a valuable opportunity for the translational validation of aging biomarkers. Numerous studies have investigated its structural and blood flow changes, revealing connections to vascular aging (Gómez-Sánchez et al., 2022), sex hormones (Malan et al., 2015; Aribas et al., 2022), and androgen deprivation therapy (Shin et al., 2020). Additionally, it shows correlations with chronic illnesses including dementia risk (Rebouças et al., 2023), chronic kidney disease/hypertension (Frost et al., 2021; Fursova et al., 2021), cardiovascular disease (Zhong et al., 2022; Kellner et al., 2024), diabetes (Kim et al., 2022; Marques et al., 2022), and hypertension (Zeng et al., 2022).

This necessitates the development of novel statistical analyses to determine a correlation coefficient index and ratio between retinal microvascular density and various aging biomarkers. These biomarkers include those related to oxidative stress, inflammation, oxygen levels, hypoxia-inducible factors, NO levels, amyloidosis (amyloid-beta), autophagy, epithelial-mesenchymal transition, sex hormones, and their associated symptoms. Such an approach would facilitate more accurate early prediction, intervention, screening, and monitoring, leading to a refined assessment of biological aging.

4 Nitric oxide bioavailability and healthspan

4.1 Nitric oxide: health and disease

In a healthy normative state, the NO-cyclic 3′-5′ guanosine monophosphate signaling pathway plays a critical role on smooth muscle tone, platelet activity, cardiac contractility, renal function and fluid balance, and cell growth (Mónica et al., 2016). NO has important roles in the regulation of kidney, cardiovascular and metabolic functions (Carlström, 2021). NO promotes and maintains vasodilation (Böger and Hannemann, 2020), angiogenesis (Zhang et al., 2023), and vascular function (Tejero et al., 2019; Costa et al., 2021; Loscalzo, 2024).

Conversely, decreasing levels of NO play a significant role in the development of hypertension (da Silva et al., 2021; Bryan, 2022) and are linked to the progression of age-related diseases (Bryan et al., 2023).

The contrasting effects of NO on health and disease highlight the potential of early NO-based therapeutic interventions to enhance healthspan and avert the emergence of cumulative health issues. Therefore, it is essential to investigate the genetic expression of NO and the adaptations to low-oxygen environments in high-altitude populations (Lee et al., 2020; Li et al., 2021; Pooja et al., 2021; Yu et al., 2022), as increased NO-production is a common reaction to hypoxic stress (Feelisch, 2018). Additionally, studies indicate that native highlanders experience lower mortality rates from cardiovascular diseases, diabetes, and cancer (Thiersch and Swenson, 2018; Wander et al., 2020; Burtscher et al., 2021).

Healthspan interventions primarily aim to counteract this age-related NO-deficiency (Sverdlov et al., 2014; Pourbagher-Shahri et al., 2021). However, the bioavailability and expression of different NO enhancers and signaling donors (Mintz et al., 2021; Andrabi et al., 2023) have not been extensively investigated in relation to early healthspan interventions.

4.2 Nitric oxide: sex hormones

Notably, research suggests that hormonal therapies may reduce all-cause mortality during menopause (Hodis and Mack, 2022; Qian et al., 2022; Qu et al., 2023; Xing et al., 2023) and andropause (Wang et al., 2021; Muehlenbein et al., 2022; Stallone and Oloyo, 2023; Yeap et al., 2024). This aligns with the enhanced NO-production associated with sex hormone replacement therapies. Furthermore, the timing hypothesis indicates that the beneficial effects of hormone therapy are most pronounced when treatment begins early (Mehta et al., 2019; Nudy et al., 2019).

4.3 Nitric oxide: phosphodiesterase-5 inhibitors

Phosphodiesterase-5 inhibitors (PDE5i) are integral to the NO-soluble guanylyl cyclase-cyclic guanosine 3′,5′-monophosphate signaling pathway (ElHady et al., 2023; Samidurai et al., 2023), aiding in the restoration of NO signaling (Lee M.-K. et al., 2022).

Regular use of PDE5i has been linked to a reduced risk of overall mortality and lower mortality rates among men with type2 diabetes (Anderson et al., 2016), as well as for men using it to treat erectile dysfunction, showing a decrease in major adverse cardiovascular events (Kloner et al., 2023). Long-term use of PDE5i, whether in men with or without pre-existing coronary artery disease, also correlates with a diminished risk of cardiovascular incidents and overall mortality (Soulaidopoulos et al., 2024).

Furthermore, the PDE5i tadalafil has been shown to significantly enhance cognitive performance (Otari et al., 2023). The initiation of PDE5i therapy in men with erectile dysfunction was associated with a lower risk of Alzheimer’s disease, especially among those who frequently received prescriptions (Adesuyan et al., 2024).

4.4 Nitric oxide: lifestyle choices

There is a clear connection between the production of endogenous NO and lifestyle choices that promote healthy aging. These choices include consuming dietary nitrates, participating in regular exercise, and using NO-enhancer supplements.

Consuming dietary nitrates enhances the nitrate-nitrite-nitric oxide pathway and has been shown to support healthy aging (Rocha, 2021) through the interactions between oral and gut microbiota and stomach acidity (Jones et al., 2021; Bryan et al., 2022; Bryan et al., 2023). Following a Mediterranean diet is linked to increase NO-production (Shannon et al., 2018; Mohajeri and Cicero, 2023). Long-term dietary nitrate treatment does not appear to affect lifespan in rats nor does it raise cancer risk; however, it may enhance vascular function, potentially extending healthspan (Carvalho et al., 2021).

Regular physical activity positively influences NO-generation (Tsukiyama et al., 2017; Bishop et al., 2023) and microvascular function (De Ciuceis et al., 2023; Hong and Park, 2024). Additionally, supplementation with L-arginine or L-citrulline has been shown to improve endogenous NO regulation and production (Rashid et al., 2020; Bahadoran et al., 2021; Kiani et al., 2022). Nonetheless, it is crucial to consider the potential long-term negative effects of L-arginine supplementation, especially within the elderly population (Huang et al., 2020).

4.5 Nitric oxide: medications

Nicorandil medication demonstrates cardioprotective and antianginal effects through its dual action as an ATP-dependent potassium channel agonist, which supports microvascular dilatation, and by promoting NO-mediated vasodilation in medium to large blood vessels (Goel et al., 2023). In vitro studies demonstrated that TOP-N53, a dual-action NO-donor and PDE5-inhibitor, can extend both lifespan and healthspan in Caenorhabditis elegans worms (Rudgalvyte et al., 2024).

5 Discussion

This article uses a multi-disciplinary systems-based (Landay et al., 2021) approach that integrates the principles of a unified framework of biological structures and functions that occur across all levels of biological organization (Herman et al., 2022). It also examines overarching big picture causal relationships (LaMorte, 2021) and triangulates related evidence (Hammerton and Munafò, 2021; Munafò et al., 2021).

Comprehending the processes of human aging, particularly the linked factors of declining sex hormones (endocrine), NO-deficiency, and reduced microvascular blood flow leading to hypoxia in middle age (Phua, 2023), create a timely opportunity for interventions aimed at improving NO levels, microvascular health, and overall hemodynamic tissue perfusion wellness.

Biological aging is characterized by a gradual decline in complex biological systems, including the endocrine system (especially sex hormones), the body’s production of NO, and the vascular system. This deterioration negatively affects local microvascular hemodynamic structures in cellular tissues, which are essential for adequate blood flow perfusion. The resulting hypovascularity and decreased blood flow, influenced by NO levels, disrupt the delivery of oxygen and nutrients to cells, hinder waste removal, and impair immune function. The cumulative aging pathologies in cellular tissues stem from the interconnected pathogenic effects of hypovascularity and the interactive multiple aging hallmarks pathobiology related to inadequate tissue perfusion (hypoperfusion) (Figures 1, 2).

Recognizing these interconnected interactions in human aging opens the door for future AI-driven strategies focused on aging-related changes in retinal microvasculature (Csipo et al., 2024) and aging biomarkers as comprehensive health indices for aging hallmarks. Such early interventions targeting the cellular tissue healthspan gap (Garmany et al., 2021), can promote healthy aging choices, lower medical expenses, and enhance the sustainability of healthcare systems.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Ethics statement

Ethical approval was not required for the study involving humans in accordance with the local legislation and institutional requirements. Written informed consent to participate in this study was not required from the participants or the participants’ legal guardians/next of kin in accordance with the national legislation and the institutional requirements. Ethical approval was not required for the study involving animals in accordance with the local legislation and institutional requirements because Animals’ data from preexisting/retrospective publications.

Author contributions

TP: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.

Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Author disclaimer

The views expressed are those of the author’s knowledge of the scientific background and not necessarily those of the Department of Health or the Institution.

References

Abay, R. N., Akdeniz, G. Ş., Katipoğlu, Z., and Kerimoğlu, H. (2022). Normative data assessment of age-related changes in macular and optic nerve head vessel density using optical coherence tomography angiography. Photodiagnosis Photodyn. Ther. 37, 102624. doi:10.1016/j.pdpdt.2021.102624

PubMed Abstract | CrossRef Full Text | Google Scholar

Addie, S., Kohanski, R., Ferrucci, L., Carter, C., and Carrington-Lawrence, S. (2024). Considering the future of geroscience: goals and opportunities stemming from the fourth geroscience summit. journals gerontology. Ser. A, Biol. Sci. Med. Sci. 79, glae179. doi:10.1093/gerona/glae179

PubMed Abstract | CrossRef Full Text | Google Scholar

Adebayo, A. K., and Nakshatri, H. (2022). Modeling preclinical cancer studies under physioxia to enhance clinical translation. Cancer Res. 82 (23), 4313–4321. doi:10.1158/0008-5472.CAN-22-2311

PubMed Abstract | CrossRef Full Text | Google Scholar

Adesuyan, M., Jani, Y. H., Alsugeir, D., Howard, R., Ju, C., Wei, L., et al. (2024). Phosphodiesterase type 5 inhibitors in men with erectile dysfunction and the risk of alzheimer disease: a cohort study. Neurology 102 (4), e209131. doi:10.1212/WNL.0000000000209131

PubMed Abstract | CrossRef Full Text | Google Scholar

Akhan, S. E., Gürel, T., Has, R., Iyibozkurt, A. C., and Turfanda, A. (2002). Effects of long-term oral hormone replacement therapy on plasma nitric oxide and beta-endorphin levels in postmenopausal women. Gynecol. obstetric investigation 54 (4), 196–200. doi:10.1159/000068382

PubMed Abstract | CrossRef Full Text | Google Scholar

Akseh, S., Karimi, M. A., Safaie, N., Valizadeh, A., Rahmanpour, D., Pezeshkian, M., et al. (2021). The serum levels of testosterone in coronary artery disease patients; relation to NO, eNOS, endothelin-1, and disease severity. Hormone Mol. Biol. Clin. investigation 43 (1), 55–61. doi:10.1515/hmbci-2021-0026

PubMed Abstract | CrossRef Full Text | Google Scholar

Alva, R., Gardner, G. L., Liang, P., and Stuart, J. A. (2022). Supraphysiological oxygen levels in mammalian cell culture: current state and future perspectives. Cells 11 (19), 3123. doi:10.3390/cells11193123

PubMed Abstract | CrossRef Full Text | Google Scholar

Anderson, S. G., Hutchings, D. C., Woodward, M., Rahimi, K., Rutter, M. K., Kirby, M., et al. (2016). Phosphodiesterase type-5 inhibitor use in type 2 diabetes is associated with a reduction in all-cause mortality. Heart British Card. Soc. 102 (21), 1750–1756. doi:10.1136/heartjnl-2015-309223

PubMed Abstract | CrossRef Full Text | Google Scholar

Andrabi, S. M., Sharma, N. S., Karan, A., Shahriar, S. M. S., Cordon, B., Ma, B., et al. (2023). Nitric oxide: physiological functions, delivery, and biomedical applications. Adv. Sci. Weinheim, Baden-Wurttemberg, Ger. 10 (30), e2303259. doi:10.1002/advs.202303259

PubMed Abstract | CrossRef Full Text | Google Scholar

Angrimani, D. S. R., Francischini, M. C. P., Brito, M. M., and Vannucchi, C. I. (2020). Prostatic hyperplasia: vascularization, hemodynamic and hormonal analysis of dogs treated with finasteride or orchiectomy. PloS one 15 (6), e0234714. doi:10.1371/journal.pone.0234714

PubMed Abstract | CrossRef Full Text | Google Scholar

Aribas, E., Ahmadizar, F., Mutlu, U., Ikram, M. K., Bos, D., Laven, J. S. E., et al. (2022). Sex steroids and markers of micro- and macrovascular damage among women and men from the general population. Eur. J. Prev. Cardiol. 29 (9), 1322–1330. doi:10.1093/eurjpc/zwaa031

PubMed Abstract | CrossRef Full Text | Google Scholar

Badea, P., Petrescu, A., Moldovani, L., and Zarnescu, O. (2015). Structural heterogenity of intraluminal content of the prostate: a histochemical and ultrastructural study. Microsc. Microanal. 21 (2), 368–376. doi:10.1017/S1431927615000197

PubMed Abstract | CrossRef Full Text | Google Scholar

Bahadoran, Z., Mirmiran, P., Kashfi, K., and Ghasemi, A. (2021). Endogenous flux of nitric oxide: citrulline is preferred to Arginine. Acta physiol. Oxf. Engl. 231 (3), e13572. doi:10.1111/apha.13572

PubMed Abstract | CrossRef Full Text | Google Scholar

Bao, H., Cao, J., Chen, M., Chen, M., Chen, W., Chen, X., et al. (2023). Biomarkers of aging. Sci. China. Life Sci. 66 (5), 893–1066. doi:10.1007/s11427-023-2305-0

PubMed Abstract | CrossRef Full Text | Google Scholar

Bishop, N. C., Burton, J. O., Graham-Brown, M. P. M., Stensel, D. J., Viana, J. L., and Watson, E. L. (2023). Exercise and chronic kidney disease: potential mechanisms underlying the physiological benefits. Nat. Rev. Nephrol. 19 (4), 244–256. doi:10.1038/s41581-022-00675-9

PubMed Abstract | CrossRef Full Text | Google Scholar

Böger, R., and Hannemann, J. (2020). Dual role of the L-arginine-ADMA-NO pathway in systemic hypoxic vasodilation and pulmonary hypoxic vasoconstriction. Pulm. Circ. 10 (2), 2045894020918850. doi:10.1177/2045894020918850

PubMed Abstract | CrossRef Full Text | Google Scholar

British Heart Foundation (2024). Menopause and your heart, Women with heart condition. Available at: https://www.bhf.org.uk/informationsupport/support/women-with-a-heart-condition/menopause-and-heart-disease# (Accessed July 29, 2024).

Google Scholar

Bryan, N. S. (2022). Nitric oxide deficiency is a primary driver of hypertension. Biochem. Pharmacol. 206, 115325. doi:10.1016/j.bcp.2022.115325

PubMed Abstract | CrossRef Full Text | Google Scholar

Bryan, N. S., Ahmed, S., Lefer, D. J., Hord, N., and von Schwarz, E. R. (2023). Dietary nitrate biochemistry and physiology. An update on clinical benefits and mechanisms of action. Nitric oxide Biol. Chem. 132, 1–7. doi:10.1016/j.niox.2023.01.003

PubMed Abstract | CrossRef Full Text | Google Scholar

Bryan, N. S., Burleigh, M. C., and Easton, C. (2022). The oral microbiome, nitric oxide and exercise performance. Nitric oxide Biol. Chem. 125–126, 23–30. doi:10.1016/j.niox.2022.05.004

PubMed Abstract | CrossRef Full Text | Google Scholar

Burtscher, J., Millet, G., and Burtscher, M. (2021) Does living at moderate altitudes in Austria affect mortality rates of various causes? An ecological study, BMJ open, 11(6), e048520. doi:10.1136/bmjopen-2020-048520

PubMed Abstract | CrossRef Full Text | Google Scholar

Calabrese, E. J., Agathokleous, E., Dhawan, G., Kapoor, R., Dhawan, V., Manes, P. K., et al. (2023b). Nitric oxide and hormesis. Nitric. Oxide. Biol. Chem. 133, 1–17. doi:10.1016/j.niox.2023.02.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Calabrese, E. J., Osakabe, N., Di Paola, R., Siracusa, R., Fusco, R., D'Amico, R., et al. (2023a). Hormesis defines the limits of lifespan. Ageing. Res. Rev. 91, 102074. doi:10.1016/j.arr.2023.102074

PubMed Abstract | CrossRef Full Text | Google Scholar

Campelo, A. E., Cutini, P. H., and Massheimer, V. L. (2012). Testosterone modulates platelet aggregation and endothelial cell growth through nitric oxide pathway. J. Endocrinol. 213 (1), 77–87. doi:10.1530/JOE-11-0441

PubMed Abstract | CrossRef Full Text | Google Scholar

Carlström, M. (2021). Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat. Rev. Nephrol. 17 (9), 575–590. doi:10.1038/s41581-021-00429-z

PubMed Abstract | CrossRef Full Text | Google Scholar

Carvalho, L. R. R. A., Guimarães, D. D., Flôr, A. F. L., Leite, E. G., Ruiz, C. R., de Andrade, J. T., et al. (2021). Effects of chronic dietary nitrate supplementation on longevity, vascular function and cancer incidence in rats. Redox Biol. 48, 102209. doi:10.1016/j.redox.2021.102209

PubMed Abstract | CrossRef Full Text | Google Scholar

Chua, J., Tan, B., Wong, D., Garhöfer, G., Liew, X. W., Popa-Cherecheanu, A., et al. (2024). Optical coherence tomography angiography of the retina and choroid in systemic diseases. Prog. Retin. eye Res. 103, 101292. doi:10.1016/j.preteyeres.2024.101292

PubMed Abstract | CrossRef Full Text | Google Scholar

Cignarella, A., Bolego, C., and Barton, M. (2024). Sex and sex steroids as determinants of cardiovascular risk. Steroids 206, 109423. doi:10.1016/j.steroids.2024.109423

PubMed Abstract | CrossRef Full Text | Google Scholar

Climie, R. E., Alastruey, J., Mayer, C. C., Schwarz, A., Laucyte-Cibulskiene, A., Voicehovska, J., et al. (2023). Vascular ageing: moving from bench towards bedside. Eur. J. Prev. Cardiol. 30 (11), 1101–1117. doi:10.1093/eurjpc/zwad028

PubMed Abstract | CrossRef Full Text | Google Scholar

Cohen, J. B., Brown, N. J., Brown, S. A., Dent, S., van Dorst, D. C. H., Herrmann, S. M., et al. (2023). Cancer therapy-related hypertension: a scientific statement from the American heart association. Hypertens. Dallas, Tex. 80 (3), e46–e57. doi:10.1161/HYP.0000000000000224

PubMed Abstract | CrossRef Full Text | Google Scholar

Costa, T. J., Barros, P. R., Arce, C., Santos, J. D., da Silva-Neto, J., Egea, G., et al. (2021). The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radic. Biol. and Med. 162, 615–635. doi:10.1016/j.freeradbiomed.2020.11.021

PubMed Abstract | CrossRef Full Text | Google Scholar

Csipo, T., Lipecz, A., Fulop, G. A., Hand, R. A., Ngo, B. T. N., Dzialendzik, M., et al. (2024) Advancing prediction of age-related vascular cognitive impairment based on peripheral and retinal vascular health in a pilot study: a novel comprehensive assessment developed for a prospective workplace-based cohort (The Semmelweis Study), GeroScience 41, 125, 136. doi:10.1007/s11357-019-00063-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Dallmeier, J. D., Gober, R., Vontell, R. T., Barreda, A., Dorfsman, D. A., Davis, D. A., et al. (2024). Corpora amylacea negatively correlate with hippocampal tau pathology in Alzheimer’s disease. Front. Neurosci. 18, 1286924. doi:10.3389/fnins.2024.1286924

PubMed Abstract | CrossRef Full Text | Google Scholar

da Silva, G. M., da Silva, M. C., Nascimento, D. V. G., Lima Silva, E. M., Gouvêa, F. F. F., de França Lopes, L. G., et al. (2021). Nitric oxide as a central molecule in hypertension: focus on the vasorelaxant activity of new nitric oxide donors. Biology 10 (10), 1041. doi:10.3390/biology10101041

PubMed Abstract | CrossRef Full Text | Google Scholar

De Ciuceis, C., Rizzoni, D., and Palatini, P. (2023). Microcirculation and physical exercise in hypertension. Hypertens. Dallas, Tex. 80 (4), 730–739. doi:10.1161/HYPERTENSIONAHA.122.19465

PubMed Abstract | CrossRef Full Text | Google Scholar

Defeudis, G., Mazzilli, R., Tenuta, M., Rossini, G., Zamponi, V., Olana, S., et al. (2022). Erectile dysfunction and diabetes: a melting pot of circumstances and treatments. Diabetes/metabolism Res. Rev. 38 (2), e3494. doi:10.1002/dmrr.3494

PubMed Abstract | CrossRef Full Text | Google Scholar

ElHady, A. K., El-Gamil, D. S., Abdel-Halim, M., and Abadi, A. H. (2023). Advancements in phosphodiesterase 5 inhibitors: unveiling present and future perspectives. Pharm. Basel, Switz. 16 (9), 1266. doi:10.3390/ph16091266

PubMed Abstract | CrossRef Full Text | Google Scholar

Erenpreiss, J., Fodina, V., Pozarska, R., Zubkova, K., Dudorova, A., and Pozarskis, A. (2020). Prevalence of testosterone deficiency among aging men with and without morbidities. aging male official J. Int. Soc. Study Aging Male 23 (5), 901–905. doi:10.1080/13685538.2019.1621832

PubMed Abstract | CrossRef Full Text | Google Scholar

Falshaw, N., Sagner, M., and Siow, R. C. (2024). The Longevity Med Summit: insights on healthspan from cell to society. Front. aging 5, 1417455. doi:10.3389/fragi.2024.1417455

PubMed Abstract | CrossRef Full Text | Google Scholar

Feelisch, M. (2018). Enhanced nitric oxide production is a universal response to hypoxic stress. Natl. Sci. Rev. 5 (4), 532–533. doi:10.1093/nsr/nwy041

CrossRef Full Text | Google Scholar

Fekete, M., Major, D., Feher, A., Fazekas-Pongor, V., and Lehoczki, A. (2024). Geroscience and pathology: a new frontier in understanding age-related diseases. Pathology Oncol. Res. POR 30, 1611623. doi:10.3389/pore.2024.1611623

PubMed Abstract | CrossRef Full Text | Google Scholar

Feuer, D. S., Handberg, E. M., Mehrad, B., Wei, J., Bairey Merz, C. N., Pepine, C. J., et al. (2022). Microvascular dysfunction as a systemic disease: a review of the evidence. Am. J. Med. Prepr. 135, 1059–1068. doi:10.1016/j.amjmed.2022.04.006

PubMed Abstract | CrossRef Full Text | Google Scholar

Fredette, N. C., Meyer, M. R., and Prossnitz, E. R. (2018). Role of GPER in estrogen-dependent nitric oxide formation and vasodilation. J. steroid Biochem. Mol. Biol. 176, 65–72. doi:10.1016/j.jsbmb.2017.05.006

PubMed Abstract | CrossRef Full Text | Google Scholar

Frost, S., Nolde, J. M., Chan, J., Joyson, A., Gregory, C., Carnagarin, R., et al. (2021). Retinal capillary rarefaction is associated with arterial and kidney damage in hypertension. Sci. Rep. 11 (1), 1001. doi:10.1038/s41598-020-79594-3

PubMed Abstract | CrossRef Full Text | Google Scholar

Fursova, A. Z., Derbeneva, A. S., Vasilyeva, M. A., Tarasov, M. S., Nikulich, I. F., and Galkina, E. V. (2021). Development, clinical manifestations and diagnosis of retinal changes in chronic kidney disease. Vestn. Oftalmol. 137 (1), 107–114. doi:10.17116/oftalma2021137011107

PubMed Abstract | CrossRef Full Text | Google Scholar

Garmany, A., Yamada, S., and Terzic, A. (2021). Longevity leap: mind the healthspan gap. NPJ Regen. Med. 6 (1), 57. doi:10.1038/s41536-021-00169-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Gerbie, E. Y., Bury, M. I., Chan, Y. Y., Morey, A. F., Sharma, A. K., Hofer, M. D., et al. (2021). Testosterone and estrogen repletion in a hypogonadal environment improves post-operative angiogenesis. Urology 152, 9.e1–9.e6. doi:10.1016/j.urology.2021.01.034

PubMed Abstract | CrossRef Full Text | Google Scholar

Goel, H., Carey, M., Elshaikh, A., Krinock, M., Goyal, D., and Nadar, S. K. (2023). Cardioprotective and antianginal efficacy of nicorandil: a comprehensive review. J. Cardiovasc. Pharmacol. 82 (2), 69–85. doi:10.1097/FJC.0000000000001436

PubMed Abstract | CrossRef Full Text | Google Scholar

Gómez-Sánchez, L., Gómez-Sánchez, M., Patino-Alonso, C., Recio-Rodríguez, J. I., González-Sánchez, J., Agudo-Conde, C., et al. (2022). Retinal blood vessel calibre and vascular ageing in a general Spanish population: a EVA study. Eur. J. Clin. investigation 52 (2), e13684. doi:10.1111/eci.13684

PubMed Abstract | CrossRef Full Text | Google Scholar

González, A., Hall, M. N., Lin, S. C., and Hardie, D. G. (2020). AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell metab. 31 (3), 472–492. doi:10.1016/j.cmet.2020.01.015

PubMed Abstract | CrossRef Full Text | Google Scholar

Gur, S., Alzweri, L., Yilmaz-Oral, D., Kaya-Sezginer, E., Abdel-Mageed, A. B., Dick, B., et al. (2020) Testosterone positively regulates functional responses and nitric oxide expression in the isolated human corpus cavernosum, Andrology 8, 1824, 1833. doi:10.1111/andr.12866

PubMed Abstract | CrossRef Full Text | Google Scholar

Guven, G., Hilty, M., and Ince, C. (2020) Microcirculation: physiology, pathophysiology, and clinical application., Blood Purif., 49(1–2), 143–150. doi:10.1159/000503775

PubMed Abstract | CrossRef Full Text | Google Scholar

Hammerton, G., and Munafò, M. R. (2021). Causal inference with observational data: the need for triangulation of evidence. Psychol. Med. 51 (4), 563–578. doi:10.1017/S0033291720005127

PubMed Abstract | CrossRef Full Text | Google Scholar

Hayashi, N. (2021) Chapter 11 - vascular aging and sarcopenia: interactions with physiological functions during exercise, in K. Sakuma (ed.) Sarcopenia. Elsevier, 249–265. doi:10.1016/B978-0-12-822146-4.00012-0

CrossRef Full Text | Google Scholar

Hendrickse, P. W., Wüst, R. C. I., Ganse, B., Giakoumaki, I., Rittweger, J., Bosutti, A., et al. (2022). Capillary rarefaction during bed rest is proportionally less than fibre atrophy and loss of oxidative capacity. J. cachexia, sarcopenia muscle 13 (6), 2712–2723. doi:10.1002/jcsm.13072

PubMed Abstract | CrossRef Full Text | Google Scholar

Herman, M. A., Aiello, B. R., DeLong, J. D., Garcia-Ruiz, H., González, A. L., Hwang, W., et al. (2022). A unifying framework for understanding biological structures and functions across levels of biological organization. Integr. Comp. Biol. 61 (6), 2038–2047. doi:10.1093/icb/icab167

PubMed Abstract | CrossRef Full Text | Google Scholar

Hodis, H. N., and Mack, W. J. (2022). Menopausal hormone replacement therapy and reduction of all-cause mortality and cardiovascular disease: it is about time and timing. Cancer J. (Sudbury, Mass.) 28 (3), 208–223. doi:10.1097/PPO.0000000000000591

PubMed Abstract | CrossRef Full Text | Google Scholar

Hofer, M. D., Kapur, P., Cordon, B. H., Hamoun, F., Russell, D., Scott, J. M., et al. (2017). Low testosterone levels result in decreased periurethral vascularity via an androgen receptor-mediated process: pilot study in urethral stricture tissue. Urology 105, 175–180. doi:10.1016/j.urology.2017.02.037

PubMed Abstract | CrossRef Full Text | Google Scholar

Hong, J., and Park, Y. (2024). Microvascular function and exercise training: functional implication of nitric oxide signaling and ion channels. Pulse Basel, Switz. 12 (1), 27–33. doi:10.1159/000538271

PubMed Abstract | CrossRef Full Text | Google Scholar

Hotta, Y., Kataoka, T., and Kimura, K. (2019). Testosterone deficiency and endothelial dysfunction: nitric oxide, asymmetric dimethylarginine, and endothelial progenitor cells. Sex. Med. Rev. 7 (4), 661–668. doi:10.1016/j.sxmr.2019.02.005

PubMed Abstract | CrossRef Full Text | Google Scholar

Hsia, C. C. W. (2023). Tissue perfusion and diffusion and cellular respiration: transport and utilization of oxygen. Seminars Respir. Crit. care Med. 44 (5), 594–611. doi:10.1055/s-0043-1770061

PubMed Abstract | CrossRef Full Text | Google Scholar

Huang, J., Ladeiras, D., Yu, Y., Ming, X. F., and Yang, Z. (2020). Detrimental effects of chronic L-arginine rich food on aging kidney. Front. Pharmacol. 11, 582155. doi:10.3389/fphar.2020.582155

PubMed Abstract | CrossRef Full Text | Google Scholar

Huynh, C., Ryu, J., Lee, J., Inoki, A., and Inoki, K. (2023). Nutrient-sensing mTORC1 and AMPK pathways in chronic kidney diseases. Nat. Rev. Nephrol. 19 (2), 102–122. doi:10.1038/s41581-022-00648-y

PubMed Abstract | CrossRef Full Text | Google Scholar

Ichimata, S., Hata, Y., Yoshinaga, T., Katoh, N., Kametani, F., Yazaki, M., et al. (2024). Amyloid-forming corpora amylacea and spheroid-type amyloid deposition: comprehensive analysis using immunohistochemistry, proteomics, and a literature review. Int. J. Mol. Sci. 25 (7), 4040. doi:10.3390/ijms25074040

PubMed Abstract | CrossRef Full Text | Google Scholar

Jeon, Y. K., Shin, M. J., Saini, S. K., Custodero, C., Aggarwal, M., Anton, S. D., et al. (2021). Vascular dysfunction as a potential culprit of sarcopenia. Exp. Gerontol. 145, 111220. doi:10.1016/j.exger.2020.111220

PubMed Abstract | CrossRef Full Text | Google Scholar

Jones, A. M., Vanhatalo, A., Seals, D. R., Rossman, M. J., Piknova, B., and Jonvik, K. L. (2021). Dietary nitrate and nitric oxide metabolism: mouth, circulation, skeletal muscle, and exercise performance. Med. Sci. sports Exerc. 53 (2), 280–294. doi:10.1249/MSS.0000000000002470

PubMed Abstract | CrossRef Full Text | Google Scholar

Kanabar, R., Mazur, A., Plum, A., and Schmied, J. (2022). Correlates of testosterone change as men age. aging male official J. Int. Soc. Study Aging Male 25 (1), 29–40. doi:10.1080/13685538.2021.2023493

PubMed Abstract | CrossRef Full Text | Google Scholar

Kavroulakis, E., Simos, N. J., Maris, T. G., Zaganas, I., Panagiotakis, S., and Papadaki, E. (2021). Evidence of age-related hemodynamic and functional connectivity impairment: a resting state fMRI study. Front. neurology 12, 633500. doi:10.3389/fneur.2021.633500

PubMed Abstract | CrossRef Full Text | Google Scholar

Kellner, R. L., Harris, A., Ciulla, L., Guidoboni, G., Verticchio Vercellin, A., Oddone, F., et al. (2024). The eye as the window to the heart: optical coherence tomography angiography biomarkers as indicators of cardiovascular disease. J. Clin. Med. 13 (3), 829. doi:10.3390/jcm13030829

PubMed Abstract | CrossRef Full Text | Google Scholar

Kiani, A. K., Bonetti, G., Medori, M. C., Caruso, P., Manganotti, P., Fioretti, F., et al. (2022). Dietary supplements for improving nitric-oxide synthesis. J. Prev. Med. Hyg. 63 (2 Suppl. 3), E239–E245. doi:10.15167/2421-4248/jpmh2022.63.2S3.2766

PubMed Abstract | CrossRef Full Text | Google Scholar

Kim, T.-Y., Song, Y. Y., Il-Jung, , Na, Y. J., Lee, Y. H., Kim, J. Y., et al. (2022). The impairment of the deep vascular complex in prolonged type 2 diabetes patients without clinical diabetic retinopathy. PloS one 17 (6), e0269182. doi:10.1371/journal.pone.0269182

PubMed Abstract | CrossRef Full Text | Google Scholar

Kloner, R. A., Stanek, E., Crowe, C. L., Singhal, M., Pepe, R. S., Bradsher, J., et al. (2023). Effect of phosphodiesterase type 5 inhibitors on major adverse cardiovascular events and overall mortality in a large nationwide cohort of men with erectile dysfunction and cardiovascular risk factors: a retrospective, observational study based on healthcare claims and national death index data. J. Sex. Med. 20 (1), 38–48. doi:10.1093/jsxmed/qdac005

PubMed Abstract | CrossRef Full Text | Google Scholar

LaMorte, W. (2021). Induction Period and latency. Boston, MA, United States: Boston University School of Public Health: Module 1 - Population Health. Available at: https://sphweb.bumc.bu.edu/otlt/MPH-Modules/PH717-QuantCore/PH717-Module1A-Populations/PH717-Module1A-Populations8.html (Accessed: October 12, 2024).

Google Scholar

Landay, A., Bartley, J., Banerjee, D., Hargis, G., Haynes, L., Keshavarzian, A., et al. (2021). Network topology of biological aging and geroscience-guided approaches to COVID-19. Front. aging 2, 695218. doi:10.3389/fragi.2021.695218

PubMed Abstract | CrossRef Full Text | Google Scholar

Lee, K.-A., Flores, R. R., Jang, I. H., Saathoff, A., and Robbins, P. D. (2022a). Immune senescence, immunosenescence and aging. Front. aging 3, 900028. doi:10.3389/fragi.2022.900028

PubMed Abstract | CrossRef Full Text | Google Scholar

Lee, M.-K., Lee, J. H., Sohn, S. Y., Lee, S. Y., Jeong, T. Y., and Kim, S. C. (2022b). Effect of low-dose tadalafil once daily on glycemic control in patients with type 2 diabetes and erectile dysfunction: a randomized, double-blind, placebo-controlled pilot study. Diabetology and metabolic syndrome 14 (1), 56. doi:10.1186/s13098-022-00825-w

PubMed Abstract | CrossRef Full Text | Google Scholar

Lee, P., Chandel, N. S., and Simon, M. C. (2020). Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. cell Biol. 21 (5), 268–283. doi:10.1038/s41580-020-0227-y

PubMed Abstract | CrossRef Full Text | Google Scholar

Leidhin, C. N., McMorrow, J., Carey, D., Newman, L., Williamson, W., Fagan, A. J., et al. (2021). Age-related normative changes in cerebral perfusion: data from the Irish longitudinal study on ageing (TILDA). NeuroImage 229, 117741. doi:10.1016/j.neuroimage.2021.117741

PubMed Abstract | CrossRef Full Text | Google Scholar

Lelis, D. de F., Freitas, D. F. d., Machado, A. S., Crespo, T. S., and Santos, S. H. S. (2019). Angiotensin-(1-7), adipokines and inflammation. Metabolism Clin. Exp. 95, 36–45. doi:10.1016/j.metabol.2019.03.006

PubMed Abstract | CrossRef Full Text | Google Scholar

le Noble, F. A. C., Mourad, J. J., Levy, B. I., and Struijker-Boudier, H. A. J. (2023). VEGF (vascular endothelial growth factor) inhibition and hypertension: does microvascular rarefaction play a role? Hypertens. (Dallas, Tex, 1979) 80 (5), 901–911. doi:10.1161/HYPERTENSIONAHA.122.19427

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, F., Qiao, Z., Duan, Q., and Nevo, E. (2021). Adaptation of mammals to hypoxia. Animal models Exp. Med. 4 (4), 311–318. doi:10.1002/ame2.12189

PubMed Abstract | CrossRef Full Text | Google Scholar

Liang, J., Li, Y., Chen, L., Xia, W., Wu, G., Tong, X., et al. (2019). Systemic microvascular rarefaction is correlated with dysfunction of late endothelial progenitor cells in mild hypertension: a substudy of EXCAVATION-CHN1. J. Transl. Med. 17 (1), 368. doi:10.1186/s12967-019-2108-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Lin, Y., Jiang, H., Liu, Y., Rosa Gameiro, G., Gregori, G., Dong, C., et al. (2019). Age-related alterations in retinal tissue perfusion and volumetric vessel density. Investigative Ophthalmol. and Vis. Sci. 60 (2), 685–693. doi:10.1167/iovs.18-25864

PubMed Abstract | CrossRef Full Text | Google Scholar

Liu, B., Hu, Y., Ma, G., Xiao, Y., Zhang, B., Liang, Y., et al. (2021). Reduced retinal microvascular perfusion in patients with stroke detected by optical coherence tomography angiography. Front. aging Neurosci. 13, 628336. doi:10.3389/fnagi.2021.628336

PubMed Abstract | CrossRef Full Text | Google Scholar

Llukani, E., Katz, B. F., Agalliu, I., Lightfoot, A., Yu, S. J. S., Kathrins, M., et al. (2017). Low levels of serum testosterone in middle-aged men impact pathological features of prostate cancer. Prostate Int. 5 (1), 17–23. doi:10.1016/j.prnil.2016.12.003

PubMed Abstract | CrossRef Full Text | Google Scholar

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2023). Hallmarks of aging: an expanding universe. Cell 186 (2), 243–278. doi:10.1016/j.cell.2022.11.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Loscalzo, J. (2024). Nitric oxide in vascular biology: elegance in complexity. J. Clin. investigation 134 (4), e176747. doi:10.1172/JCI176747

PubMed Abstract | CrossRef Full Text | Google Scholar

MacLennan, S., Azevedo, N., Duncan, E., Dunsmore, J., Fullwood, L., Lumen, N., et al. (2023) Mapping European association of urology guideline practice across europe: an audit of androgen deprivation therapy use before prostate cancer surgery in 6598 cases in 187 hospitals across 31 European countries, Eur. Urol. 83, 393, 401. doi:10.1016/j.eururo.2022.12.031

PubMed Abstract | CrossRef Full Text | Google Scholar

Madonna, R., Balistreri, C. R., Geng, Y. J., and De Caterina, R. (2017). Diabetic microangiopathy: pathogenetic insights and novel therapeutic approaches. Vasc. Pharmacol. 90, 1–7. doi:10.1016/j.vph.2017.01.004

PubMed Abstract | CrossRef Full Text | Google Scholar

Majmudar, N. G., Robson, S. C., and Ford, G. A. (2000). Effects of the menopause, gender, and estrogen replacement therapy on vascular nitric oxide activity. J. Clin. Endocrinol. metabolism 85 (4), 1577–1583. doi:10.1210/jcem.85.4.6530

PubMed Abstract | CrossRef Full Text | Google Scholar

Malan, N. T., Smith, W., von Känel, R., Hamer, M., Schutte, A. E., and Malan, L. (2015). Low serum testosterone and increased diastolic ocular perfusion pressure: a risk for retinal microvasculature. VASA. Z. fur Gefasskrankh. 44 (6), 435–443. doi:10.1024/0301-1526/a000466

PubMed Abstract | CrossRef Full Text | Google Scholar

Mao, Y., Zhang, J., Zhou, Q., He, X., Zheng, Z., Wei, Y., et al. (2024). Hypoxia induces mitochondrial protein lactylation to limit oxidative phosphorylation. Cell Res. 34 (1), 13–30. doi:10.1038/s41422-023-00864-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Marques, I. P., Ferreira, S., Santos, T., Madeira, M. H., Santos, A. R., Mendes, L., et al. (2022). Association between neurodegeneration and macular perfusion in the progression of diabetic retinopathy: A 3-year longitudinal study Ophthalmologica 245 (4), 335–341. doi:10.1159/000522527

PubMed Abstract | CrossRef Full Text | Google Scholar

Martins Pinto, M., Paumard, P., Bouchez, C., Ransac, S., Duvezin-Caubet, S., Mazat, J. P., et al. (2023). The Warburg effect and mitochondrial oxidative phosphorylation: friends or foes? Biochimica biophysica acta. Bioenergetics 1864 (1), 148931. doi:10.1016/j.bbabio.2022.148931

PubMed Abstract | CrossRef Full Text | Google Scholar

McKeown, S. R. (2014). Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br. J. radiology 87 (1035), 20130676. doi:10.1259/bjr.20130676

PubMed Abstract | CrossRef Full Text | Google Scholar

Meariman, J. K., Zulli, H., Perez, A., Bajracharya, S. D., and Mohandas, R. (2023). Small vessel disease: connections between the kidney and the heart. Am. heart J. plus Cardiol. Res. Pract. 26, 100257. doi:10.1016/j.ahjo.2023.100257

PubMed Abstract | CrossRef Full Text | Google Scholar

Mehta, J. M., Chester, R. C., and Kling, J. M. (2019). The timing hypothesis: hormone therapy for treating symptomatic women during menopause and its relationship to cardiovascular disease. J. women’s health (2002) 28 (5), 705–711. doi:10.1089/jwh.2018.7201

PubMed Abstract | CrossRef Full Text | Google Scholar

Mintz, J., Vedenko, A., Rosete, O., Shah, K., Goldstein, G., Hare, J. M., et al. (2021). Current advances of nitric oxide in cancer and anticancer therapeutics. Vaccines 9 (2), 94. doi:10.3390/vaccines9020094

PubMed Abstract | CrossRef Full Text | Google Scholar

Mohajeri, M., and Cicero, A. F. G. (2023). Adherence to the mediterranean diet association with serum levels of nitric oxide, prostacyclin, and thromboxane B(2) among prinzmetal angina patients and healthy persons. Nutrients 15 (3), 738. doi:10.3390/nu15030738

PubMed Abstract | CrossRef Full Text | Google Scholar

Mónica, F. Z., Bian, K., and Murad, F. (2016). “The endothelium-dependent nitric oxide–cGMP pathway,” in Advances in pharmacology (United States), 1–27. doi:10.1016/bs.apha.2016.05.001

CrossRef Full Text | Google Scholar

Moqri, M., Herzog, C., Poganik, J. R., Ying, K., Justice, J. N., Belsky, D. W., et al. (2024). Validation of biomarkers of aging. Nat. Med. 30 (2), 360–372. doi:10.1038/s41591-023-02784-9

PubMed Abstract | CrossRef Full Text | Google Scholar

Mourad, J.-J., and Laville, M. (2006). Is hypertension a tissue perfusion disorder? Implications for renal and myocardial perfusion. J. Hypertens. Suppl. official J. Int. Soc. Hypertens. 24 (5), S10–S16. doi:10.1097/01.hjh.0000240041.43214.8a

PubMed Abstract | CrossRef Full Text | Google Scholar

Muehlenbein, M. P., Gassen, J., Shattuck, E. C., and Sparks, C. S. (2022). Lower testosterone levels are associated with higher risk of death in men. Evol. Med. Public Health. 11 (1), 30–40. doi:10.1093/emph/eoac044

PubMed Abstract | CrossRef Full Text | Google Scholar

Mun, J., Kang, H.-M., and Park, C. (2023). Cerebral chronic hypoperfusion in mice causes premature aging of the cerebrovasculature. Brain Res. Bull. 195, 47–54. doi:10.1016/j.brainresbull.2023.02.004

PubMed Abstract | CrossRef Full Text | Google Scholar

Munafò, M. R., Higgins, J. P. T., and Smith, G. D. (2021). Triangulating evidence through the inclusion of genetically informed designs. Cold Spring Harb. Perspect. Med. 11 (8), a040659. doi:10.1101/cshperspect.a040659

PubMed Abstract | CrossRef Full Text | Google Scholar

Munoz, C. J., Lucas, A., Williams, A. T., and Cabrales, P. (2020). A review on microvascular hemodynamics: the control of blood flow distribution and tissue oxygenation. Crit. care Clin. 36 (2), 293–305. doi:10.1016/j.ccc.2019.12.011

PubMed Abstract | CrossRef Full Text | Google Scholar

Noaman, S., Kaye, D. M., Nanayakkara, S., Dart, A. M., Yong, A. S. C., Ng, M., et al. (2023). Haemodynamic and metabolic adaptations in coronary microvascular disease. Heart British Card. Soc. 109 (15), 1166–1174. doi:10.1136/heartjnl-2022-322156

PubMed Abstract | CrossRef Full Text | Google Scholar

Novella, S., Pérez-Cremades, D., Mompeón, A., and Hermenegildo, C. (2019). Mechanisms underlying the influence of oestrogen on cardiovascular physiology in women. J. physiology 597 (19), 4873–4886. doi:10.1113/JP278063

PubMed Abstract | CrossRef Full Text | Google Scholar

Nudy, M., Chinchilli, V. M., and Foy, A. J. (2019). A systematic review and meta-regression analysis to examine the “timing hypothesis” of hormone replacement therapy on mortality, coronary heart disease, and stroke. Int. J. Cardiol. Heart and Vasc. 22, 123–131. doi:10.1016/j.ijcha.2019.01.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Otari, K. V., Patil, R. J., and Upasani, C. D. (2023). Improvement of cognitive dysfunction by a novel phosphodiesterase type 5 inhibitor, Tadalafil. Fundam. and Clin. Pharmacol. 37 (2), 263–274. doi:10.1111/fcp.12840

PubMed Abstract | CrossRef Full Text | Google Scholar

Paavonsalo, S., Hariharan, S., Lackman, M. H., and Karaman, S. (2020). Capillary rarefaction in obesity and metabolic diseases-organ-specificity and possible mechanisms. Cells 9 (12), 2683. doi:10.3390/cells9122683

PubMed Abstract | CrossRef Full Text | Google Scholar

Parmar, U. M., Jalgaonkar, M. P., Kulkarni, Y. A., and Oza, M. J. (2022). Autophagy-nutrient sensing pathways in diabetic complications. Pharmacol. Res. 184, 106408. doi:10.1016/j.phrs.2022.106408

PubMed Abstract | CrossRef Full Text | Google Scholar

Pascale, R. M., Calvisi, D. F., Simile, M. M., Feo, C. F., and Feo, F. (2020). The Warburg effect 97 Years after its discovery. Cancers 12 (10), 2819. doi:10.3390/cancers12102819

PubMed Abstract | CrossRef Full Text | Google Scholar

Phua, T. J. (2021). The etiology and pathophysiology genesis of benign prostatic hyperplasia and prostate cancer: a new perspective. Med. Basel, Switz. 8 (6), 30. doi:10.3390/medicines8060030

PubMed Abstract | CrossRef Full Text | Google Scholar

Phua, T. J. (2023). Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. Front. aging 4, 1196648. doi:10.3389/fragi.2023.1196648

PubMed Abstract | CrossRef Full Text | Google Scholar

Pooja, V. S., Sharma, V., Sharma, M., Varshney, R., Kumar, B., and Sethy, N. K. (2021). Association between 17β-estradiol receptors and nitric oxide signaling augments high-altitude adaptation of Ladakhi highlanders. High Alt. Med. and Biol. 22 (2), 174–183. doi:10.1089/ham.2020.0187

PubMed Abstract | CrossRef Full Text | Google Scholar

Pourbagher-Shahri, A. M., Farkhondeh, T., Talebi, M., Kopustinskiene, D. M., Samarghandian, S., and Bernatoniene, J. (2021). An overview of NO signaling pathways in aging. Mol. Basel, Switz. 26 (15), 4533. doi:10.3390/molecules26154533

PubMed Abstract | CrossRef Full Text | Google Scholar

Premont, R. T., Reynolds, J. D., Zhang, R., and Stamler, J. S. (2020). Role of nitric oxide carried by hemoglobin in cardiovascular physiology: developments on a three-gas respiratory cycle. Circulation Res. 126 (1), 129–158. doi:10.1161/CIRCRESAHA.119.315626

PubMed Abstract | CrossRef Full Text | Google Scholar

Qian, D., Wang, Z. F., Cheng, Y. C., Luo, R., Ge, S. W., and Xu, G. (2022). Early menopause may associate with a higher risk of CKD and all-cause mortality in postmenopausal women: an analysis of NHANES, 1999-2014. Front. Med. 9, 823835. doi:10.3389/fmed.2022.823835

PubMed Abstract | CrossRef Full Text | Google Scholar

Qu, L., Zuo, X., Yu, J., Duan, R., and Zhao, B. (2023). Association of inflammatory markers with all-cause mortality and cardiovascular mortality in postmenopausal women with osteoporosis or osteopenia. BMC women’s health 23 (1), 487. doi:10.1186/s12905-023-02631-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Rajeev, V., Chai, Y. L., Poh, L., Selvaraji, S., Fann, D. Y., Jo, D. G., et al. (2023). Chronic cerebral hypoperfusion: a critical feature in unravelling the etiology of vascular cognitive impairment. Acta neuropathol. Commun. 11 (1), 93. doi:10.1186/s40478-023-01590-1

PubMed Abstract | CrossRef Full Text | Google Scholar

Rashid, J., Kumar, S. S., Job, K. M., Liu, X., Fike, C. D., and Sherwin, C. M. T. (2020). Therapeutic potential of citrulline as an arginine supplement: a clinical pharmacology review. Paediatr. drugs 22 (3), 279–293. doi:10.1007/s40272-020-00384-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Rebouças, S. C. L., Cougnard-Gregoire, A., Arnould, L., Delyfer, M. N., Schweitzer, C., Korobelnik, J. F., et al. (2023). Retinal microvasculature and incident dementia over 10 years: the Three-City-Alienor cohort. Alzheimer’s and dementia Amsterdam, Neth. 15 (4), e12480. doi:10.1002/dad2.12480

PubMed Abstract | CrossRef Full Text | Google Scholar

Riba, M., Del Valle, J., Molina-Porcel, L., Pelegrí, C., and Vilaplana, J. (2022). Wasteosomes (corpora amylacea) as a hallmark of chronic glymphatic insufficiency. Proc. Natl. Acad. Sci. U. S. A. 119 (48), e2211326119. doi:10.1073/pnas.2211326119

PubMed Abstract | CrossRef Full Text | Google Scholar

Riba, M., Del Valle, J., Romera, C., Alsina, R., Molina-Porcel, L., Pelegrí, C., et al. (2023). Uncovering tau in wasteosomes (corpora amylacea) of Alzheimer’s disease patients. Front. aging Neurosci. 15, 1110425. doi:10.3389/fnagi.2023.1110425

PubMed Abstract | CrossRef Full Text | Google Scholar

Rizzoni, D., Agabiti-Rosei, C., Boari, G. E. M., Muiesan, M. L., and De Ciuceis, C. (2023). Microcirculation in hypertension: a therapeutic target to prevent cardiovascular disease? J. Clin. Med. 12 (15), 4892. doi:10.3390/jcm12154892

PubMed Abstract | CrossRef Full Text | Google Scholar

Rizzoni, D., Rizzoni, M., Nardin, M., Chiarini, G., Agabiti-Rosei, C., Aggiusti, C., et al. (2019). Vascular aging and disease of the small vessels. High blood Press. and Cardiovasc. Prev. official J. Italian Soc. Hypertens. 26 (3), 183–189. doi:10.1007/s40292-019-00320-w

PubMed Abstract | CrossRef Full Text | Google Scholar

Roberts, G. S., Peret, A., Jonaitis, E. M., Koscik, R. L., Hoffman, C. A., Rivera-Rivera, L. A., et al. (2023). Normative cerebral hemodynamics in middle-aged and older adults using 4D flow MRI: initial analysis of vascular aging. Radiology 307 (3), e222685. doi:10.1148/radiol.222685

PubMed Abstract | CrossRef Full Text | Google Scholar

Rocha, B. S. (2021). The nitrate-nitrite-nitric oxide pathway on healthy ageing: a review of pre-clinical and clinical data on the impact of dietary nitrate in the elderly. Front. aging 2, 778467. doi:10.3389/fragi.2021.778467

PubMed Abstract | CrossRef Full Text | Google Scholar

Rodrigues, J., Wang, Y. F., Singh, A., Hendriks, M., Dharmalingam, G., Cohen-Solal, M., et al. (2022). Oestrogen enforces the integrity of blood vessels in the bone during pregnancy and menopause. Nat. Cardiovasc. Res. 1, 918–932. Available at: https://pubmed.ncbi.nlm.nih.gov/36531334/

CrossRef Full Text | Google Scholar

Rodrigues, L. P., Teixeira, V. R., Alencar-Silva, T., Simonassi-Paiva, B., Pereira, R. W., Pogue, R., et al. (2021). Hallmarks of aging and immunosenescence: Connecting the dots. Cytokine. Growth. Factor. Rev. 59, 9–21. doi:10.1016/j.cytogfr.2021.01.006

PubMed Abstract | CrossRef Full Text | Google Scholar

Rolland, Y., Sierra, F., Ferrucci, L., Barzilai, N., De Cabo, R., Mannick, J., et al. (2023). Challenges in developing Geroscience trials. Nat. Commun. 14 (1), 5038. doi:10.1038/s41467-023-39786-7

PubMed Abstract | CrossRef Full Text | Google Scholar

Rudgalvyte, M., Atzei, P., de Brito Francisco, R., Naef, R., and Glauser, D. A. (2024). Dual-acting nitric oxide donor and phosphodiesterase inhibitor TOP-N53 increases lifespan and health span of Caenorhabditis elegans. microPublication Biol. 2024. doi:10.17912/micropub.biology.001090

PubMed Abstract | CrossRef Full Text | Google Scholar

Salminen, A. (2021). Hypoperfusion is a potential inducer of immunosuppressive network in Alzheimer’s disease. Neurochem. Int. 142, 104919. doi:10.1016/j.neuint.2020.104919

PubMed Abstract | CrossRef Full Text | Google Scholar

Samidurai, A., Xi, L., Das, A., and Kukreja, R. C. (2023). Beyond erectile dysfunction: cGMP-specific phosphodiesterase 5 inhibitors for other clinical disorders. Annu. Rev. Pharmacol. Toxicol. 63, 585–615. doi:10.1146/annurev-pharmtox-040122-034745

PubMed Abstract | CrossRef Full Text | Google Scholar

Satish, M., and Tadi, P. (2023). Physiology, vascular. Treasure Island (FL).

Google Scholar

Sayed, N., Huang, Y., Nguyen, K., Krejciova-Rajaniemi, Z., Grawe, A. P., Gao, T., et al. (2021). An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. aging 1, 598–615. doi:10.1038/s43587-021-00082-y

PubMed Abstract | CrossRef Full Text | Google Scholar

Shannon, O. M., Stephan, B. C. M., Minihane, A. M., Mathers, J. C., and Siervo, M. (2018). Nitric oxide boosting effects of the mediterranean diet: a potential mechanism of action. journals gerontology. Ser. A, Biol. Sci. Med. Sci. 73, 902–904. doi:10.1093/gerona/gly087

PubMed Abstract | CrossRef Full Text | Google Scholar

Shin, Y. K., Lee, G. W., Kang, S. W., Kim, S. J., and Kim, A. Y. (2020). Macular abnormalities associated with 5α-reductase inhibitor. JAMA Ophthalmol. 138 (7), 732–739. doi:10.1001/jamaophthalmol.2020.1279

PubMed Abstract | CrossRef Full Text | Google Scholar

Siervo, M., Hussin, A. M., Calella, P., Ashor, A., Shannon, O. M., Mendes, I., et al. (2024). Associations between aging and vitamin D status with whole-body nitric oxide production and markers of endothelial function. J. Nutr. 154 (2), 469–478. doi:10.1016/j.tjnut.2023.12.002

PubMed Abstract | CrossRef Full Text | Google Scholar

Somani, Y. B., Pawelczyk, J. A., De Souza, M. J., Kris-Etherton, P. M., and Proctor, D. N. (2019). Aging women and their endothelium: probing the relative role of estrogen on vasodilator function. Am. J. physiology. Heart circulatory physiology 317 (2), H395-H404–H404. doi:10.1152/ajpheart.00430.2018

PubMed Abstract | CrossRef Full Text | Google Scholar

Soulaidopoulos, S., Terentes-Printzios, D., Ioakeimidis, N., Tsioufis, K. P., and Vlachopoulos, C. (2024). Long-term effects of phosphodiesterase-5 inhibitors on cardiovascular outcomes and death: a systematic review and meta-analysis. Eur. heart J. Cardiovasc. Pharmacother. 10 (5), 403–412. doi:10.1093/ehjcvp/pvae029

PubMed Abstract | CrossRef Full Text | Google Scholar

Staffaroni, A. M., Cobigo, Y., Elahi, F. M., Casaletto, K. B., Walters, S. M., Wolf, A., et al. (2019). A longitudinal characterization of perfusion in the aging brain and associations with cognition and neural structure. Hum. brain Mapp. 40 (12), 3522–3533. doi:10.1002/hbm.24613

PubMed Abstract | CrossRef Full Text | Google Scholar

Stallone, J. N., and Oloyo, A. K. (2023). Cardiovascular and metabolic actions of the androgens: is testosterone a Janus-faced molecule? Biochem. Pharmacol. 208, 115347. doi:10.1016/j.bcp.2022.115347

PubMed Abstract | CrossRef Full Text | Google Scholar

Steegh, F. M. E. G., Keijbeck, A. A., de Hoogt, P. A., Rademakers, T., Houben, A. J. H. M., Reesink, K. D., et al. (2024). Capillary rarefaction: a missing link in renal and cardiovascular disease? Angiogenesis 27 (1), 23–35. doi:10.1007/s10456-023-09883-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Sun, Z., and Bao, Y. (2013). Eliminating sedimentation for the treatment of chronic pelvic pain syndrome. Exp. Ther. Med. 5 (5), 1339–1344. doi:10.3892/etm.2013.982

PubMed Abstract | CrossRef Full Text | Google Scholar

Sverdlov, A. L., Ngo, D. T. M., Chan, W. P. A., Chirkov, Y. Y., and Horowitz, J. D. (2014). Aging of the nitric oxide system: are we as old as our NO? J. Am. Heart Assoc. 3 (4), e000973. doi:10.1161/JAHA.114.000973

PubMed Abstract | CrossRef Full Text | Google Scholar

Tejero, J., Shiva, S., and Gladwin, M. T. (2019). Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol. Rev. 99 (1), 311–379. doi:10.1152/physrev.00036.2017

PubMed Abstract | CrossRef Full Text | Google Scholar

Thiersch, M., and Swenson, E. R. (2018). High altitude and cancer mortality. High Alt. Med. and Biol. 19 (2), 116–123. doi:10.1089/ham.2017.0061

PubMed Abstract | CrossRef Full Text | Google Scholar

Touyz, R. M., and Montezano, A. C. (2018). Angiotensin-(1-7) and vascular function: the clinical context. Hypertens. Dallas, Tex. 1979, 68–69. doi:10.1161/HYPERTENSIONAHA.117.10406

PubMed Abstract | CrossRef Full Text | Google Scholar

Tracy, E. P., Hughes, W., Beare, J. E., Rowe, G., Beyer, A., and LeBlanc, A. J. (2021). Aging-induced impairment of vascular function: mitochondrial redox contributions and physiological/clinical implications. Antioxid. Redox. Signal. 35 (12), 974–1015. doi:10.1089/ars.2021.0031

PubMed Abstract | CrossRef Full Text | Google Scholar

Tsukiyama, Y., Ito, T., Nagaoka, K., Eguchi, E., and Ogino, K. (2017). Effects of exercise training on nitric oxide, blood pressure and antioxidant enzymes. J. Clin. Biochem. Nutr. 60 (3), 180–186. doi:10.3164/jcbn.16-108

PubMed Abstract | CrossRef Full Text | Google Scholar

Vercellino, I., and Sazanov, L. A. (2022). The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. cell Biol. 23 (2), 141–161. doi:10.1038/s41580-021-00415-0

PubMed Abstract | CrossRef Full Text | Google Scholar

Wagner, J. U. G., Tombor, L. S., Malacarne, P. F., Kettenhausen, L. M., Panthel, J., Kujundzic, H., et al. (2023). Aging impairs the neurovascular interface in the heart. Sci. (New York, N.Y.) 381 (6660), 897–906. doi:10.1126/science.ade4961

PubMed Abstract | CrossRef Full Text | Google Scholar

Wander, K., Su, M., Mattison, P. M., Sum, C. Y., Witt, C. C., Shenk, M. K., et al. (2020). High-altitude adaptations mitigate risk for hypertension and diabetes-associated anemia. Am. J. Phys. Anthropol. 172 (2), 156–164. doi:10.1002/ajpa.24032

PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, J., Fan, X., Yang, M., Song, M., Wang, K., Giovannucci, E., et al. (2021). Sex-specific associations of circulating testosterone levels with all-cause and cause-specific mortality. Eur. J. Endocrinol. 184 (5), 723–732. doi:10.1530/EJE-20-1253

PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, P., Konja, D., Singh, S., Zhang, B., and Wang, Y. (2024). From macro- to micro-vasculature and its implications on cardiovascular health. Int. J. Mol. Sci. 25 (4), 1978. doi:10.3390/ijms25041978

PubMed Abstract | CrossRef Full Text | Google Scholar

Wei, Y., Jiang, H., Shi, Y., Qu, D., Gregori, G., Zheng, F., et al. (2017). Age-related alterations in the retinal microvasculature, microcirculation, and microstructure. Investigative Ophthalmol. and Vis. Sci. 58 (9), 3804–3817. doi:10.1167/iovs.17-21460

PubMed Abstract | CrossRef Full Text | Google Scholar

Wilson, D. F. (2017). Oxidative phosphorylation: regulation and role in cellular and tissue metabolism. J. physiology 595 (23), 7023–7038. doi:10.1113/JP273839

PubMed Abstract | CrossRef Full Text | Google Scholar

Wolters, F. J., Zonneveld, H. I., Hofman, A., van der Lugt, A., Koudstaal, P. J., Vernooij, M. W., et al. (2017). Cerebral perfusion and the risk of dementia: a population-based study. Circulation 136 (8), 719–728. doi:10.1161/CIRCULATIONAHA.117.027448

PubMed Abstract | CrossRef Full Text | Google Scholar

Wong, C., Chu, P., Teoh, J., Chiu, P., Yee, C. H., Chau, L., et al. (2022). Risks of metabolic diseases and androgen deprivation therapy for prostate cancer in a Chinese population: a prospective multi-centre cohort study. Int. Urol. Nephrol. 54 (5), 993–1000. doi:10.1007/s11255-022-03151-2

PubMed Abstract | CrossRef Full Text | Google Scholar

Xing, Z., Alman, A. C., and Kirby, R. S. (2023). Premature menopause and all-cause mortality and life span among women older than 40 Years in the NHANES I epidemiologic follow-up study: propensity score matching analysis. J. women’s health (2002) 32 (9), 950–959. doi:10.1089/jwh.2023.0189

PubMed Abstract | CrossRef Full Text | Google Scholar

Yeap, B. B., Marriott, R. J., Dwivedi, G., Adams, R. J., Antonio, L., Ballantyne, C. M., et al. (2024). Associations of testosterone and related hormones with all-cause and cardiovascular mortality and incident cardiovascular disease in men: individual participant data meta-analyses. Ann. Intern. Med. 177 (6), 768–781. doi:10.7326/M23-2781

PubMed Abstract | CrossRef Full Text | Google Scholar

Yoon, S., Alfajaro, M. M., Cho, K. O., Choi, U. S., Je, H., Jung, J., et al. (2020). Perfusion change in benign prostatic hyperplasia before and after castration in a canine model: contrast enhanced ultrasonography and CT perfusion study. Theriogenology 156, 97–106. doi:10.1016/j.theriogenology.2020.06.026

PubMed Abstract | CrossRef Full Text | Google Scholar

Yu, J. J., Non, A. L., Heinrich, E. C., Gu, W., Alcock, J., Moya, E. A., et al. (2022). Time domains of hypoxia responses and -omics insights. Front. physiology 13, 885295. doi:10.3389/fphys.2022.885295

PubMed Abstract | CrossRef Full Text | Google Scholar

Yura, E. M., Bury, M. I., Chan, Y., Morey, A. F., Sharma, A. K., and Hofer, M. D. (2020). Reversing urethral hypovascularity through testosterone and estrogen supplementation. Urology 146, 242–247. doi:10.1016/j.urology.2020.06.103

PubMed Abstract | CrossRef Full Text | Google Scholar

Zeng, R., Garg, I., Bannai, D., Kasetty, M., Katz, R., Park, J. Y., et al. (2022) ‘Retinal microvasculature and vasoreactivity changes in hypertension using optical coherence tomography-angiography 260, 3505, 3515. doi:10.1007/s00417-022-05706-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhong, P., Li, Z., Lin, Y., Peng, Q., Huang, M., Jiang, L., et al. (2022). Retinal microvasculature impairments in patients with coronary artery disease: An optical coherence tomography angiography study. Acta. Ophthalmol. 100 (2), 225, 233. doi:10.1111/aos.14806

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhang, J., Li, C., Zhang, Y., Wu, J., and Huang, Z. (2023). “Therapeutic potential of nitric oxide in vascular aging due to the promotion of angiogenesis. Chem. Biol. Drug Des. 102 (2), 395–407. doi:10.1111/cbdd.14248

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: aging hallmarks, geroscience, vascular aging, tissue perfusion, nitric oxide, healthspan, causal inference, triangulation of evidence

Citation: Phua TJ (2025) Hallmarks of aging: middle-aging hypovascularity, tissue perfusion and nitric oxide perspective on healthspan. Front. Aging 5:1526230. doi: 10.3389/fragi.2024.1526230

Received: 11 November 2024; Accepted: 17 December 2024;
Published: 07 January 2025.

Edited by:

Xurde M. Caravia, University of Texas Southwestern Medical Center, United States

Reviewed by:

Ana Navarro, Universidad de Oviedo Mieres, Spain
Neha Ahuja, University of Texas Southwestern Medical Center, United States

Copyright © 2025 Phua. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Teow J. Phua, dGVvd2pwaHVhQGdtYWlsLmNvbQ==

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.