Skip to main content

SYSTEMATIC REVIEW article

Front. Psychol., 02 September 2022
Sec. Cognition
This article is part of the Research Topic Human Factors in Transport and Road Safety View all 9 articles

Is safety in the eye of the beholder? Discrepancies between self-reported and proxied data on road safety behaviors—A systematic review

  • 1ESIC Business & Marketing School, Valencia, Spain
  • 2DATS (Development and Advising in Traffic Safety) Research Group, INTRAS (Research Institute on Traffic and Road Safety), University of Valencia, Valencia, Spain

Recent studies have problematized on the lack of agreement between self-reported and proxied data in the field of road safety-related behaviors. Overall, and although these studies are still scarce, most of them suggest that the way we perceive our own road behavior is systematically different from the perspective from which we perceive others' behavior, and vice versa. The aim of this review paper was to target the number and type of studies that have researched the behavioral perceptions of different groups of road users, contrasting self-reported behavioral data with those reported by other users (proxied), and their outcomes. This systematic review followed the PRISMA methodology, which allows for the identification of relevant articles based on the research term. A total number of 222 indexed articles were filtered, and a final selection of 19 articles directly addressing the issue was obtained. Search strategies were developed and conducted in MEDLINE, WOS, Scopus and APA databases. It is remarkable how road users perceive themselves as behaviorally “safer” than the rest of road users in what concerns the knowledge of traffic norms and their on-road performance. In addition, and regardless of the type of user used as a source, self-reported data suggest their perceived likelihood to suffer a traffic crash is lesser if compared to any other user. On the other hand, proxied reports tend to undervalue third users' performance, and to perceive riskier behaviors and crash-related risks among them. The outputs of this systematic review support the idea that the perception of road users' behavior and its related risks substantially differ according to the source. It is also necessary to increase the number, coverage and rigor of studies on this matter, perhaps through complementary and mixed measures, in order to properly understand and face the bias on road users' risk-related behaviors.

Introduction

Typically, literature approaches the concept of “risk” as the probability of occurrence held by an event, or its potential consequences (or both of them), that are generally negative (Zio, 2018). In the majority of cases, human beings are somehow implied either in what causes the event or in suffering its consequences (Glendon et al., 2006). Further, risks are usually (an implicitly) appraised in terms of probability, referring in most cases to the likelihood of experiencing a negative outcome (Gao et al., 2015). Specifically in the field of traffic safety, the most common type of hazard typically perceived by road users are traffic crashes (AKA “accidents”).

It is known that ~1.35 million people die because of road traffic crashes every year (WHO, 2018). Road behaviors have gained ground during the last two decades as key contributors for traffic crashes, resulting in the development of behavioral-based approaches to assess road risks among different groups of users, such as: drivers—the most frequently addressed type of road users (Reason et al., 1990; Af Wåhlberg et al., 2015; Useche et al., 2017), motorcyclists and moped riders (Elliott et al., 2007; Steg and Van Brussel, 2009), bicycle riders (Feenstra et al., 2011; Hezaveh et al., 2018; Useche et al., 2018), and even pedestrians (Deb et al., 2017; Useche et al., 2020, 2021b).

Overall, the outcomes of these behavioral-based studies, most of them performed on the basis of behavioral self-reports, agree on the fact that risky behaviors may predict crash rates and/or causality-related consequences of crashes, such as crash severity and some potential ways to prevent crashes preceded by road misbehaviors. Another interesting highlight is that the level of risk perceived by some groups of users is rather inconstant, and can largely vary depending on their personal and social characteristics (Hansson, 2010; Ngueutsa and Kouabenan, 2017).

Heterogeneity and bias in safety-related behavioral perception

Literature sources largely agree on the fact that perception is a considerably subjective and multidimensional issue that cannot be separated from the social-environmental context where road behaviors take place (Keage and Loetscher, 2018). Therefore, there might be many factors directly influencing perception, e.g., previous experiences (Lujala et al., 2015), values, norms, cultural contexts (Venuleo et al., 2017), awareness and credibility of hazards (Van Zoonen and Van der Meer, 2015), uncertainty (Karl, 2018), emotional conditions (Hu et al., 2015), and cognitive and heuristic biases (Tsohou et al., 2015). Some of which can be considered by researchers during data collection and analysis phases, but can hardly all be controlled.

Although most empirical studies in the matter support the idea that road user behave in a way that is consistent and coherent with their personal perception (Sheeran et al., 2014; Nasaescu et al., 2020), it is difficult to prove the strength of the consistence between predisposition factors and actual behaviors (Af Wåhlberg et al., 2015). In this regard, it is safe to say that having a greater risk perception (adjusted to the real dangerousness of the event) is essential to “guarantee,” to some extent, a reduced likelihood to perform risky behaviors (Ferrer and Klein, 2015). However, if cognitive bias are introduced, behavioral adjustments will hardly happen: people tend to either overestimate or underestimate the probability of an issue happening, even though their own behavior and integrity might be compromised if, for instance, a risk is assumed (Lodder et al., 2016). This is, perhaps, one of the main shortcomings present in the behavioral-based research of traffic crashes; road users with both positive and negative attitudes, perceptions or predispositions toward road safety may actually engage in risky behaviors such as exceeding speed limits, drinking alcohol, or talking on the phone while driving, although to a different extent (Ram and Chand, 2016).

Specifically in regard to choosing “the most reliable” data sources on the field of road safety behaviors, it is worth arguing that source suitability might largely depend on the person whose behavior is reported. In other words, the perspective from which road users perceive their own behaviors becomes systematically different from the way they perceive other users' ones. Cullen et al. (2015), have shown how individuals tend to have different information on ourselves than we have on others, and this may lead to different interpretations of the perceived events.

Also, empirical literature has endorsed the assumption that a perceived action will have a stronger affective feeling if it is performed by oneself rather than by someone else (Hommel, 2018). This tends to strengthen cognitive biases, such as the Lake Wobegon effect, which basically consists of overestimating one's own positive abilities, and underestimating negative qualities instead (Lim, 2019). This contributes to establishing a difference in the perception of one's own behaviors and the ones performed by other people, generally holding a more favorable opinion of oneself, which can be non-adjusted to reality (Vickers and Kent, 2015).

Seen differently, this discrepancy proves to be relevant in the traffic and road safety field, where overestimating one's own behaviors can have severe consequences such as traffic crashes (Cuenen et al., 2015). Mostly, studies in the field have focused on assessing the self-reported behaviors of users. However, there is a scarcity of literature contrasting the perception of users about themselves and about potential hazards with their perception of these elements in other road users.

In view of the aforementioned considerations, it is worth mentioning that the number of studies addressing the accordance/discordance between road users' behavioral data sources is yet undetermined.

Therefore, the aim of the present systematic review was to identify the number and type of studies that have researched the behaviors and attitudes of road users, in which the self-reported perceptions were contrasted with other users' perception on a specific road group. The core hypothesis of this review was that there would be a discrepancy in the perception of road safety-related behaviors depending on the group of road users. In addition, we estimated that the self-reported behavior would be better perceived by other road users, “better” meaning “more adequate,” with fewer infractions and fewer risky behaviors.

Methods

Study setting

Systematic reviews have been described as a process of mapping the existing literature, using a transparent and systematic process to define a research question, search for studies, assess their quality and synthesize findings, either qualitatively or quantitatively (Armstrong et al., 2011).

To conduct this systematic review, and given its parsimonious structure, we used the Arksey and O'Malley (2005) methodology. This framework provides recommendations and successive steps useful to clarify and enhance each stage of the review process. The five stages suggested by Arksey and O'Malley (2005) are:

(1) Identifying the Research Question,

(2) Finding Relevant Studies,

(3) Selecting the Studies,

(4) Charting the Data and Collating,

(5) Summarizing, and Reporting the Results.

Step 1: Identifying the research question

As previously mentioned, the purpose of the present scope review was to identify the number and type of studies researching risk perception, behaviors, and attitudes of different road users. In addition, their self-reported narratives with those manifested in other users was contrasted.

Since specialized literature claims that risky road (human) behavior is the primary predictor of crashes (Stephens et al., 2017; Puchades et al., 2018), road users' perspectives must be investigated. In this sense, we seek to find common patterns or trends that explain the discrepancies (or concordances) in the assessment of the different groups of road users.

After a first research—and considering the scarcity of studies available–, we opted for selecting all research focused on this topic, regardless of whether users were the objective of the study or not. Therefore, the population consisted of drivers, cyclists, pedestrians, and any other type of road users. The results included a summary and a topic analyses of all the chosen articles.

Step 2: Finding relevant studies

The present review was carried out following the PRISMA guidelines for the notification of systematic reviews (Moher et al., 2011). PRISMA begins the process by looking for records in each of the databases that were found during the searches. It then moves on to the overall number of records after removing duplicates, and finally to the individual studies in the qualitative and quantitative synthesis (Urrútia and Bonfill, 2010). This technique, which allows for an organized (but flexible) set of stages to be followed, has been widely employed in numerous research and systematic reviews on a variety of topics, including human behavior and traffic crashes in the context of various groups of road users (Heidari et al., 2019; Oviedo-Trespalacios et al., 2019).

The databases that were used for the preliminary search of the literature were the Web of Science, American Psychological Association (APA), Scopus and MEDLINE. These databases were chosen for their vast quantity of publications and their connection to behavioral-based studies, particularly in the domains of psychology, behavioral sciences, and practical road safety (Azami-Aghdash et al., 2018; Malakoutikhah et al., 2021). Other lists of systematic and extensive reviews of other primary research papers, which were theoretically eligible but not collected by our search engines, were also evaluated to identify possibly appropriate studies not indexed within the aforementioned data sources.

The search included literature published from the beginning of the database, and included the third week of February 2022. The terms we searched for included: “discrepancy of perception,” “oneself and others,” “drivers and non-drivers,” “drivers and pedestrians,” “cyclists,” “behavior,” “attitudes,” and “road users.” These terms were identified after a review of the titles and keywords of the articles we found during our preliminary search.

Step 3: Selecting the studies

Articles were excluded during this stage if they did not refer to our research objective by contrasting the perception of behavior and/or attitudes of different road users. Publications in the form of conferences/summaries, protocols, letters, editorials, case reports or case series were not selected. We also restricted our eligibility criteria to articles published in English and Spanish, publicly available or possibly requestable from the library system that was being used.

Initially, all authors independently assessed a subset of titles and summaries, and then met up in order to discuss and solve any discrepancies. This is a common approach in systematic reviews addressing road behavioral-based research. It covers and/or compares the case of various groups of users, which has been done in recent years with reviews on road user behaviors (Moran et al., 2019).

Step 4: Charting the data

The articles that fitted the inclusion criteria were critically reviewed using the descriptive-analytic Arksey and O'Malley (2005) method. For each eligible article that was included, the following data were extracted and registered: title of the article, author(s), year of publication, country of the study, study design, group of users that was analyzed, sample size, main findings and results (discrepancy/agreement found between groups). Similar information from the selected papers has been reported in prior systematic reviews regarding road user behavior (Spindler et al., 2018; Schönbach et al., 2020).

Step 5: Collating, summarizing, and reporting the results

The graphed data were summarized in tables and followed by the descriptive data, analyzed through a thematic-based organization strategy. For this purpose, papers were analyzed in the light of the column-based structure presented in Table 1.

TABLE 1
www.frontiersin.org

Table 1. General characteristics of eligible studies.

Results

Search results

Once the doubled (duplicate papers) or non-accessible elements were ruled out, the searched words identified a total number of 222 possible articles. A manual selection of the articles that adjusted to the objective of the review left us with 19 eligible articles. Figure 1 shows the data source searching and selection process.

FIGURE 1
www.frontiersin.org

Figure 1. PRISMA diagram. WOS, Web of Science; APA, American Psychological Association.

Characteristics of eligible research articles

Our search did not have time limits, therefore, there were 19 studies complying with the inclusion criteria, published in English between 2001 and 2022, which indicates that the study topic is a recent one. Moreover, the studies were conducted in different countries. Thus, there are 13 countries represented: United Kingdom (n = 5), Australia (n = 3), France (n = 2), Spain (n = 1), Greece (n = 1), Japan (n = 1), Saudi Arabia (n = 1), United States (n = 1), Canada (n = 1), The Netherlands (n = 1), New Zeeland (n = 1), and Ecuador (n = 1) (Figure 2).

FIGURE 2
www.frontiersin.org

Figure 2. Geographical distribution (country of origin) of the selected studies.

A huge variability can be found in the types of users studied in this research. There is only one case in which the perceptions of pedestrians, cyclists and drivers were contrasted. The most repeated comparisons were between pedestrians and drivers (n = 3), cyclists and non-cyclists (n = 2), and cyclists and drivers (n = 3). In the rest of cases, when road groups were contrasted, there was only one study contrasting pedestrians and cyclists, drivers and non-drivers, drivers and vehicle passengers, drivers and motorcycle riders, and cyclists compared to pedestrians and drivers.

Considering the scarcity of publications contrasting the same group of users, research that contrasted the self-perception of users with objective data was included, thus assessing their level of adjustment to real behaviors. There are 6 studies where the self-reported perception of drivers was compared, either through objective measurements of their behavior and attitudes assessed by means of their habitual trajectories, or through the use of simulators.

However, and closely related to idiosyncratic issues commonly affecting this type of studies, the design was cross-sectional in most of them where the researchers measured the variables without intervening. Thus, in these cases the use of a questionnaire was unanimous. It was what measured the assessments or perceptions of users regarding themselves or other road groups. The experimental studies were applied, in the majority of cases, only when drivers were analyzed. However, only one case was found of experimental design where road groups played a role. In this study, the analyzed element was the perception of drivers and passengers, since the sample had been divided in two groups that were showed a different video each before undergoing the tests.

For what concerns the approached topics, we can perceive a lot of variability. Nevertheless, they can be framed in three groups: perception of safety and road interactions, perception of the knowledge and compliance with norms, and perception of risky behaviors and traffic crashes.

Discussion

The core aim of this study was to assess the number and type of studies that have researched behavioral perceptions of different groups of road users. This was achieved contrasting self-reported behavioral data with those reported by other users (proxied), and their conclusions in these regards.

A first highlight provided by this systematic review is the scarcity of empirical research delving into individual perceptions on other road users' road behavior, i.e., proxied behavioral assessments. Rather, and as often observed in the field of traffic psychology, key issues such as road safety (and risky) behavior (e.g., Devlin and McGillivray, 2016; Meader et al., 2016), personality factors or traits (Guo et al., 2016; Zicat et al., 2018) and risk perception (Hoffmann et al., 2015; Oviedo-Trespalacios et al., 2017) have been predominantly assessed through self-reported data collection methods. This means that in current empirical literature on the matter, study participants commonly provide assessments on their own behaviors. However, it is really exceptional the case which the accordance/discrepancy between proxied and self-reported road behaviors is assessed.

In this regard, some studies have problematized on both the extent and high degree of the existing discrepancies between behavioral self-reports and the actually observed road risky behaviors of individuals. Thus, shedding light on the overestimation of one's own abilities as a predominant pattern (Af Wåhlberg et al., 2015; Chen et al., 2020). In fact, in this systematic review, some of the studies included clearly show the existing differences between self-reported behaviors and real behaviors, thus manifesting biases in the self-perception of drivers (Sullman and Taylor, 2010). Also, this pattern shows a certain level of concordance with the one found by studies that compare perceptions from different road users regarding risky or safety behaviors of single types of road users. In this type of studies, self-reported road behaviors are largely positive when road users grade their own behavior, while external raters' assessment tends to be comparatively critical (Wood et al., 2009; Arai et al., 2010; Li et al., 2016; Duarte and Mouro, 2019; Useche et al., 2021a).

Filling the source-related gap: The need of crossing data

In this sense, further development of research addressing other users' point of view of specific groups of road users could be interesting. This would enhance the measurement of the level of accordance/discordance between human data sources on road safety issues. A first light given by the literature is provided by the Weiner's attribution theory (Heider, 1958; Weiner, 2010), which states that people need to know the cause of the behaviors they observe or perform, since they use “common sense inference rules,” that might operate differently depending on who is being judged.

Moreover, other studies have illustrated how behaviors tend to be consistently attributed to certain (external or internal) causes. Therefore, fixed ideas and other acquired predispositions become potential sources of biased assessments and predictions (Eberly et al., 2011). For example, a person who assumes that “young cyclists behave irresponsibly” has a good chance of predicting that cyclists' reckless behavior will remain over time, even if it is considered that in 5–10 years young cyclists will not be the same. Therefore, personal interpretations and descriptions of the actions of other road users could be consequently linked to cognitive biases based in subjective experiences (Concha et al., 2012), being this a matter that traffic psychology should further develop.

Focusing on the available studies, it can be observed that users tend to have a better perception of themselves than of the rest of people. The study that compares the perceptions of drivers and passengers (Horswill and McKenna, 2006) is especially clarifying in this aspect. In this case, researchers gave each participant one role during the experiment. The results suggest that passengers considered the hypothetical driver less capable of dealing with high speed than themselves. Therefore, this fits into the evidence related to the optimism bias, in which drivers tend to believe that they are better than average (González-Iglesias et al., 2015; Nees, 2019). Thus, it can be deduced that, their perceptions on other road users may vary depending on the role they assume while considering themselves the ones most in control of the situation.

Risk-related perceptions on crash likelihood

This study also allowed us to notice that—in current literature—, there is often reported the fact that individuals believe they have fewer probabilities of suffering a traffic crash than others. In this sense, this phenomenon is also determined by the belief that one has more experience and/or capacities than the rest of a certain group of road users (Meng et al., 2015). Thus, one will be prone to avoid risky situations, and in case of finding him/herself in one, he/she will be able to escape without suffering a crash, which is quite unrealistic in many cases (Stavrinos et al., 2016).

Given the subjective nature of risk perception in traffic, it is often assessed in function of the available information, which makes it highly individual and dependent on previous crash-related experiences (Machado-León et al., 2016; Eboli et al., 2017). In this sense, interventions and campaigns that are adjusted to the perceived risk, and to the real dangers of a situation need to be developed (Faus et al., 2021). Paradoxically, an excess of self-confidence and downplaying suffering a crash are, indeed, risk factors for being involved in one (Cordellieri et al., 2016). Also, and coherent with the reviewed literature, the results of this review endorse the assumption that the overestimation of one's own abilities can lead to perform certain risk assumptions and risky behaviors, thus leading to road hazards (Devlin and McGillivray, 2016). One of the key factors for learning hazard prevention mechanisms is to be aware that causalities can occur (Ferrer and Klein, 2015). Therefore, it might be necessary to influence and highlight the importance of the human factor in crashes.

Coherently, and although much more action remains pending in this regard, some studies have added certain highlights on the fact that giving feedback on the performance of drivers is positive for users, who then manifest better attitudes and behaviors during subsequent trips (Horswill et al., 2017). On one hand, influencing protection and prevention elements (and habits) can directly affect the likelihood of being involved in a crash (or at least in the behaviors preceding them; Useche et al., 2019).

On the other hand, methodological shortcomings on behavioral road-risk assessments seem to remain a key issue to consider, being a first step to increase the reliability and validity of studies on this matter.

Limitations and further research

This scoping review was carried out considering a large set of potential sources retrieved through relevant indexes and databases worldwide. However, the final number of original research papers accomplishing the selection criteria was considerably reduced. On one hand, it is true that this is (indeed) one of the conclusions to provide, i.e., that the literature on this matter is really scarce. On the other hand, it could considerably limit the broadness and scope of the other conclusions presented. Also, it is possible that non-indexed literature (regardless on the different discussions on the validity of the findings it could append) may provide further data on this important and understudied research problem.

As for further studies, research contrasting behavioral-related perceptions from different groups of road users could provide important highlights for understanding the actual behavior of users. Concretely, most of the existing research exclusively focuses on retrieving data on user's risky (but not on positive) behaviors. Therefore, protective behaviors could be addressed in future research experiences on this matter. Future studies could also try to integrate mixed data sources and methods more holistically while addressing behavioral contributors to traffic crashes among different groups of road users.

Conclusion

The results of this systematic review, apart from remarking the problematic scarcity of literature in this regard, suggest that the extent to which road users' behavior is perceived as safe highly depends on the individual assessed.

Furthermore, road behaviors from third parties are commonly perceived as “riskier,” while own-behavioral assessments tend to be more positive, undervaluing own road-risk assumptions and misbehaviors. Also, proxied reports tend to undervalue third users' performance, thus assuming greater crash-related risks among them.

The findings of this systematic review can have theoretical and practical implications for multiple entities and sectors of activity:

- Government authorities and public and private entities related to traffic, mobility and road safety can use the information provided to understand road users' behaviors and beliefs, and for the development of more effective preventive measures, which take into account road users' cognitive biases.

- Companies and organizations responsible for road safety education programmes, communication campaigns and social advertising can also benefit from the results of the study. This information could be used to develop actions that emphasize the possible distortions of drivers and other road users, and the impact that an unrealistic risk perception can have on the performance of risky behavior on the road and, consequently, on road accident rates.

In conclusion, it seems necessary to increase the number, coverage and rigor of studies on this matter. This could be achieved through complementary and mixed measures, in order to properly understand and face the bias on road users' risk-related behaviors, and thus that might contribute to reduce them.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

Author contributions

SU: conceptualization, methodology, data analysis, investigation, writing—original draft preparation, and writing—reviewing and editing. MF: writing—original draft preparation and writing—reviewing and editing. FA: visualization and supervision. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by the research grant ACIF/2020/035 (MF) from Generalitat Valenciana. Funding entities did not contribute to the study design or data collection, analysis and interpretation, or writing of the manuscript.

Acknowledgments

The authors wish to thank to Arash Javadinejad (licensed translator) for the professional edition of the final version of the manuscript. Also, thanks to the Generalitat Valenciana (Regional Government of the Valencian Community, Spain) for supporting this study.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Af Wåhlberg, A. E., Barraclough, P., and Freeman, J. (2015). The driver behaviour questionnaire as accident predictor – A methodological re-meta-analysis. J. Saf. Res. 55, 185–212. doi: 10.1016/j.jsr.2015.08.003

PubMed Abstract | CrossRef Full Text | Google Scholar

Almannaa, M. H., Alsahhaf, F. A., Ashqar, H. I., Elhenawy, M., Masoud, M., and Rakotonirainy, A. (2021). Perception analysis of e-scooter riders and non-riders in Riyadh, Saudi Arabia: survey outputs. Sustainability 13, 863. doi: 10.3390/su13020863

CrossRef Full Text | Google Scholar

Arai, A., Mizuno, Y., and Arai, Y. (2010). Differences in perceptions regarding driving between young and old drivers and non-drivers in Japan. Int. J. Geriatr. Psychiatry 25, 1239–1245. doi: 10.1002/gps.2457

PubMed Abstract | CrossRef Full Text | Google Scholar

Arksey, H., and O'Malley, L. (2005). Scoping studies: towards a methodological framework. Int. J. Soc. Res. Methodol. 8, 19–32. doi: 10.1080/1364557032000119616

CrossRef Full Text | Google Scholar

Armstrong, R., Hall, B. J., Doyle, J., and Waters, E. (2011). ‘Scoping the scope'of a cochrane review. J. Public Health 33, 147–150. doi: 10.1093/pubmed/fdr015

PubMed Abstract | CrossRef Full Text | Google Scholar

Azami-Aghdash, S., Aghaei, M. H., and Sadeghi-Bazarghani, H. (2018). Epidemiology of road traffic injuries among elderly people; a systematic review and meta-analysis. Bull. Emerg. Trauma 6, 279–291. doi: 10.29252/beat-060403

PubMed Abstract | CrossRef Full Text | Google Scholar

Blanchard, R. A., Myers, A. M., and Porter, M. M. (2010). Correspondence between self-reported and objective measures of driving exposure and patterns in older drivers. Accid. Anal. Prev. 42, 523–529. doi: 10.1016/j.aap.2009.09.018

PubMed Abstract | CrossRef Full Text | Google Scholar

Castanier, C., Paran, F., and Delhomme, P. (2012). Risk of crashing with a tram: perceptions of pedestrians, cyclists, and motorists. Transp. Res. F Traffic Psychol. Behav. 15, 387–394. doi: 10.1016/j.trf.2012.03.001

CrossRef Full Text | Google Scholar

Chaurand, N., and Delhomme, P. (2013). Cyclists and drivers in road interactions: a comparison of perceived crash risk. Accid. Anal. Prev. 50, 1176–1184. doi: 10.1016/j.aap.2012.09.005

PubMed Abstract | CrossRef Full Text | Google Scholar

Chen, Y. T., Gélinas, I., Mazer, B., Myers, A., Vrkljan, B., Koppel, S., et al. (2020). Personal and clinical factors associated with older drivers' self-awareness of driving performance. Can. J. Aging 40, 82–96. doi: 10.1017/S071498082000001X

PubMed Abstract | CrossRef Full Text | Google Scholar

Concha, D., Ramírez, M. Á. B., Cuadra, I. G., Rovira, D. P., and Rodríguez, A. F. (2012). Sesgos cognitivos y su relación con el bienestar subjetivo. Salud Soc. 3, 115–129. doi: 10.22199/S07187475.2012.0002.00001

CrossRef Full Text | Google Scholar

Corbett, C. (2001). Explanations for “understating” in self-reported speeding behaviour. Transp. Res. F Traffic Psychol. Behav. 4, 133–150. doi: 10.1016/S1369-8478(01)00019-5

CrossRef Full Text | Google Scholar

Cordellieri, P., Baralla, F., Ferlazzo, F., Sgalla, R., Piccardi, L., and Giannini, A. M. (2016). Gender effects in young road users on road safety attitudes, behaviors and risk perception. Front. Psychol. 7, 1412. doi: 10.3389/fpsyg.2016.01412

PubMed Abstract | CrossRef Full Text | Google Scholar

Cuenen, A., Jongen, E. M., Brijs, T., Brijs, K., Lutin, M., Van Vlierden, K., et al. (2015). Does attention capacity moderate the effect of driver distraction in older drivers? Accid. Anal. Prev. 77, 12–20. doi: 10.1016/j.aap.2015.01.011

PubMed Abstract | CrossRef Full Text | Google Scholar

Cullen, K. L., Gentry, W. A., and Yammarino, F. J. (2015). Biased self-perception tendencies: Self-enhancement/self-diminishment and leader derailment in individualistic and collectivistic cultures. Appl. Psychol. 64, 161–207. doi: 10.1111/apps.12026

CrossRef Full Text | Google Scholar

Deb, S., Strawderman, L., DuBien, J., Smith, B., Carruth, D. W., and Garrison, T. M. (2017). Evaluating pedestrian behavior at crosswalks: Validation of a pedestrian behavior questionnaire for the U.S. population. Accident Anal. Prevent. 106, 191–201. doi: 10.1016/j.aap.2017.05.02

PubMed Abstract | CrossRef Full Text | Google Scholar

Devlin, A., and McGillivray, J. (2016). Self-regulatory driving behaviours amongst older drivers according to cognitive status. Transp. Res. F Traffic Psychol. Behav. 39, 1–9. doi: 10.1016/j.trf.2016.02.001

CrossRef Full Text | Google Scholar

Duarte, A. P., and Mouro, C. (2019). I Feel Safe Doing It! Prevalence, risk perception, and motives for risky driving in portugal. Port. J. Public Health 37, 82–90. doi: 10.1159/000505998

CrossRef Full Text | Google Scholar

Eberly, M. B., Holley, E. C., Johnson, M. D., and Mitchell, T. R. (2011). Beyond internal and external: a dyadic theory of relational attributions. Acad. Manag. Rev. 36, 731–753. doi: 10.5465/AMR.2011.65554734

CrossRef Full Text | Google Scholar

Eboli, L., Mazzulla, G., and Pungillo, G. (2017). How to define the accident risk level of car drivers by combining objective and subjective measures of driving style. Transp. Res. F Traffic Psychol. Behav. 49, 29–38. doi: 10.1016/j.trf.2017.06.004

CrossRef Full Text | Google Scholar

Elliott, M. A., Baughan, C. J., and Sexton, B. F. (2007). Errors and violations in relation to motorcyclists' crash risk. Accid. Anal. Prev. 39, 491–499. doi: 10.1016/j.aap.2006.08.012

PubMed Abstract | CrossRef Full Text | Google Scholar

Faus, M., Alonso, F., Fernández, C., and Useche, S. A. (2021). Are traffic announcements really effective? A systematic review of evaluations of crash-prevention communication campaigns. Safety 7, 66. doi: 10.3390/safety7040066

CrossRef Full Text | Google Scholar

Feenstra, H., Ruiter, R. A., Schepers, J., Peters, G. J., and Kok, G. (2011). Measuring risky adolescent cycling behaviour. Int. J. Inj. Control Saf. Promot. 18, 181–187. doi: 10.1080/17457300.2010.540334

PubMed Abstract | CrossRef Full Text | Google Scholar

Ferrer, R. A., and Klein, W. M. (2015). Risk perceptions and health behavior. Curr. Opin. Phycol. 5, 85–89. doi: 10.1016/j.copsyc.2015.03.012

PubMed Abstract | CrossRef Full Text | Google Scholar

Gao, Q., Tian, Y., and Tu, M. (2015). Exploring factors influencing Chinese user's perceived credibility of health and safety information on Weibo. Comput. Hum. Behav. 45, 21–31. doi: 10.1016/j.chb.2014.11.071

CrossRef Full Text | Google Scholar

García-Ramírez, Y. (2018). Percepción de la seguridad vial en la Ciudad de Loja (Ecuador). Cumbres. 4, 89–100. doi: 10.48190/cumbres.v4n1a8

CrossRef Full Text | Google Scholar

Glendon, A. I., Clarke, S., and McKenna, E. (2006). Human Safety and Risk Management. EEUU: Taylor Francis.

Google Scholar

González-Iglesias, B., Gómez-Fraguela, J. A., and Sobral, J. (2015). Potential determinants of drink driving in young adults. Traffic Inj. Prev. 16, 345–352. doi: 10.1080/15389588.2014.946500

PubMed Abstract | CrossRef Full Text | Google Scholar

Guo, M., Wei, W., Liao, G., and Chu, F. (2016). The impact of personality on driving safety among Chinese high-speed railway drivers. Accid. Anal. Prev. 92, 9–14. doi: 10.1016/j.aap.2016.03.014

PubMed Abstract | CrossRef Full Text | Google Scholar

Hansson, S. O. (2010). Risk: objective or subjective, facts or values. J. Risk Res. 13, 231–238. doi: 10.1080/13669870903126226

CrossRef Full Text | Google Scholar

Heidari, M., Aryankhesal, A., and Khorasani-Zavareh, D. (2019). Laypeople roles at road traffic crash scenes: a systematic review. Int. J. Inj. Control Saf. Promot. 26, 82–91. doi: 10.1080/17457300.2018.1481869

PubMed Abstract | CrossRef Full Text | Google Scholar

Heider, F. (1958). The Psychology of Interpersonal Relations. London: Psychology Press. doi: 10.1037/10628-000

CrossRef Full Text | Google Scholar

Hezaveh, A. M., Zavareh, M. F., Cherry, C. F., and Nordfjærn, T. (2018). Errors and violations in relation to bicyclists' crash risks: development of the Bicycle Rider Behavior Questionnaire (BRBQ). J. Transp. Health 8, 289–298. doi: 10.1016/j.jth.2017.11.003

CrossRef Full Text | Google Scholar

Hoffmann, A. O., Post, T., and Pennings, J. M. (2015). How investor perceptions drive actual trading and risk-taking behavior. J. Behav. Finance 16, 94–103. doi: 10.1080/15427560.2015.1000332

CrossRef Full Text | Google Scholar

Hommel, B. (2018). Representing oneself and others. Exp. Psychol. 65, 323–331. doi: 10.1027/1618-3169/a000433

PubMed Abstract | CrossRef Full Text | Google Scholar

Horswill, M. S., Garth, M., Hill, A., and Watson, M. O. (2017). The effect of performance feedback on drivers' hazard perception ability and self-ratings. Accid. Anal. Prev. 101, 135–142. doi: 10.1016/j.aap.2017.02.009

PubMed Abstract | CrossRef Full Text | Google Scholar

Horswill, M. S., and McKenna, F. P. (2006). The effect of perceived control on risk taking. J. Appl. Soc. Psychol. 29, 377–391. doi: 10.1111/j.1559-1816.1999.tb01392.x

CrossRef Full Text | Google Scholar

Hu, Y., Wang, D., Pang, K., Xu, G., and Guo, J. (2015). The effect of emotion and time pressure on risk decision-making. J. Risk Res. 18, 637–650. doi: 10.1080/13669877.2014.910688

CrossRef Full Text | Google Scholar

James, O., Swiderski, J. I., Hicks, J., Teoman, D., and Buehler, R. (2019). Pedestrians and e-scooters: an initial look at e-scooter parking and perceptions by riders and non-riders. Sustainability 11, 5591. doi: 10.3390/su11205591

CrossRef Full Text | Google Scholar

Johnson, M., Oxley, J., Newstead, S., and Charlton, J. (2014). Safety in numbers? Investigating Australian driver behaviour, knowledge and attitudes towards cyclists. Accid. Anal. Prev. 70, 148–154. doi: 10.1016/j.aap.2014.02.010

PubMed Abstract | CrossRef Full Text | Google Scholar

Kaparias, I., Bell, M. G., Miri, A., Chan, C., and Mount, B. (2012). Analysing the perceptions of pedestrians and drivers to shared space. Transp. Res. F Traffic Psychol. Behav. 15, 297–310. doi: 10.1016/j.trf.2012.02.001

CrossRef Full Text | Google Scholar

Karl, M. (2018). Risk and uncertainty in travel decision-making: tourist and destination perspective. J. Travel Res. 57, 129–146. doi: 10.1177/0047287516678337

CrossRef Full Text | Google Scholar

Keage, H. A., and Loetscher, T. (2018). Estimating everyday risk: Subjective judgments are related to objective risk, mapping of numerical magnitudes and previous experience. PLoS ONE 13, e0207356. doi: 10.1371/journal.pone.0207356

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, H., Wu, C., Chu, D., Zhong, M., and Li, Y. (2016). Drivers' hazard perception analysis based on logistic regression and Cochran–Mantel–Haenszel test. Adv. Mech. Eng. 8, 1–11. doi: 10.1177/1687814016670059

CrossRef Full Text | Google Scholar

Lim, K. F. (2019). “Improving evaluative judgement: Countering the Lake Wobegon effect,” in Proceedings of The Australian Conference on Science and Mathematics Education (Sydney, NSW). p. 69.

Google Scholar

Lodder, G. M. A., Goossens, L., Scholte, R. H. J., Engels, R. C. M. E., and Verhagen, M. (2016). Adolescent loneliness and social skills: Agreement and discrepancies between self-, meta-, and peer-evaluations. J. Youth Adolesc. 45, 2406–2416. doi: 10.1007/s10964-016-0461-y

PubMed Abstract | CrossRef Full Text | Google Scholar

Lujala, P., Lein, H., and Rød, J. K. (2015). Climate change, natural hazards, and risk perception: the role of proximity and personal experience. Local Environ. 20, 489–509. doi: 10.1080/13549839.2014.887666

CrossRef Full Text | Google Scholar

Machado-León, J. L., de Oña, J., de Oña, R., Eboli, L., and Mazzulla, G. (2016). Socio-economic and driving experience factors affecting drivers' perceptions of traffic crash risk. Transp. Res. F Traffic Psychol. Behav. 37, 41–51. doi: 10.1016/j.trf.2015.11.010

CrossRef Full Text | Google Scholar

Malakoutikhah, M., Rabiei, H., Hassanipour, S., and Jahangiri, M. (2021). The prevalence of unsafe behaviors in Iranian workers: a systematic review and meta-analysis. Iran. J. Public Health. 50, 257–270. doi: 10.18502/ijph.v50i2.5338

PubMed Abstract | CrossRef Full Text | Google Scholar

Meader, N., King, K., Moe-Byrne, T., Wright, K., Graham, H., Petticrew, M., et al. (2016). A systematic review on the clustering and co-occurrence of multiple risk behaviours. BMC Public Health 16, 657. doi: 10.1186/s12889-016-3373-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Meng, F., Li, S., Cao, L., Li, M., Peng, Q., Wang, C., et al. (2015). Driving fatigue in professional drivers: a survey of truck and taxi drivers. Traffic Inj Prev. 16, 474–483. doi: 10.1080/15389588.2014.973945

PubMed Abstract | CrossRef Full Text | Google Scholar

Moher, D., Altman, D. G., Liberati, A., and Tetzlaff, J. (2011). PRISMA statement. Epidemiology 22, 128. doi: 10.1097/EDE.0b013e3181fe7825

PubMed Abstract | CrossRef Full Text | Google Scholar

Moran, C., Bennett, J. M., and Prabhakharan, P. (2019). Road user hazard perception tests: a systematic review of current methodologies. Accid. Anal. Prev. 129, 309–333. doi: 10.1016/j.aap.2019.05.021

PubMed Abstract | CrossRef Full Text | Google Scholar

Nasaescu, E., Zych, I., Ortega-Ruiz, R., Farrington, D. P., and Llorent, V. J. (2020). Longitudinal patterns of antisocial behaviors in early adolescence: a latent class and latent transition analysis. Eur. J. Psychol. Appl. Leg. Context 12, 85–92. doi: 10.5093/ejpalc2020a10

CrossRef Full Text | Google Scholar

Nees, M. A. (2019). Safer than the average human driver (who is less safe than me)? Examining a popular safety benchmark for self-driving cars. J. Saf. Res. 69, 61–68. doi: 10.1016/j.jsr.2019.02.002

PubMed Abstract | CrossRef Full Text | Google Scholar

Ngueutsa, R., and Kouabenan, D. R. (2017). Accident history, risk perception and traffic safe behaviour. Ergonomics 60, 1273–1282. doi: 10.1080/00140139.2016.1259508

PubMed Abstract | CrossRef Full Text | Google Scholar

Oviedo-Trespalacios, O., King, M., Haque, M. M., and Washington, S. (2017). Risk factors of mobile phone use while driving in Queensland: prevalence, attitudes, crash risk perception, and task-management strategies. PLoS ONE 12, e0183361. doi: 10.1371/journal.pone.0183361

PubMed Abstract | CrossRef Full Text | Google Scholar

Oviedo-Trespalacios, O., Truelove, V., Watson, B., and Hinton, J. A. (2019). The impact of road advertising signs on driver behaviour and implications for road safety: a critical systematic review. Transp. Res. Part A Policy Pract. 122, 85–98. doi: 10.1016/j.tra.2019.01.012

CrossRef Full Text | Google Scholar

Paschalidis, E., Basbas, S., Politis, I., and Prodromou, M. (2016). “Put the blame on… others!”: the battle of cyclists against pedestrians and car drivers at the urban environment. A cyclists' perception study. Transp. Res. F Traffic Psychol. Behav. 41, 243–260. doi: 10.1016/j.trf.2015.07.021

CrossRef Full Text | Google Scholar

Puchades, V. M., Pietrantoni, L., Fraboni, F., De Angelis, M., and Prati, G. (2018). Unsafe cycling behaviours and near crashes among Italian cyclists. Int. J. Inj. Control Saf. Promot. 25, 70–77. doi: 10.1080/17457300.2017.1341931

PubMed Abstract | CrossRef Full Text | Google Scholar

Ram, T., and Chand, K. (2016). Effect of drivers' risk perception and perception of driving tasks on road safety attitude. Transp. Res. F Traffic Psychol. Behav. 42, 162–176. doi: 10.1016/j.trf.2016.07.012

CrossRef Full Text | Google Scholar

Reason, J., Manstead, A., Stradling, S., Baxter, J., and Campbell, K. (1990). Errors and violations on the roads: A real distinction?. Ergonomics. 33, 1315–1332. doi: 10.1080/00140139008925335

PubMed Abstract | CrossRef Full Text | Google Scholar

Reimer, B., D'Ambrosio, L. A., Coughlin, J. F., Kafrissen, M. E., and Biederman, J. (2006). Using self-reported data to assess the validity of driving simulation data. Behav. Res. Methods 38, 314–324. doi: 10.3758/BF03192783

PubMed Abstract | CrossRef Full Text | Google Scholar

Rowden, P., Watson, B., Haworth, N., Lennon, A., Shaw, L., and Blackman, R. (2016). Motorcycle riders' self-reported aggression when riding compared with car driving. Transp. Res. F Traffic Psychol. Behav. 36, 92–103. doi: 10.1016/j.trf.2015.11.006

CrossRef Full Text | Google Scholar

Schönbach, D. M., Altenburg, T. M., Marques, A., Chinapaw, M. J., and Demetriou, Y. (2020). Strategies and effects of school-based interventions to promote active school transportation by bicycle among children and adolescents: a systematic review. Int. J. Behav. Nutr. Phys. Act. 17, 138. doi: 10.1186/s12966-020-01035-1

PubMed Abstract | CrossRef Full Text | Google Scholar

Sheeran, P., Harris, P. R., and Epton, T. (2014). Does heightening risk appraisals change people's intentions and behavior? A meta-analysis of experimental studies. Psychol. Bull. 140, 511–543. doi: 10.1037/a0033065

PubMed Abstract | CrossRef Full Text | Google Scholar

Spindler, D. J., Allen, M. S., Vella, S. A., and Swann, C. (2018). The psychology of elite cycling: a systematic review. J. Sports Sci. 36, 1943–1954. doi: 10.1080/02640414.2018.1426978

PubMed Abstract | CrossRef Full Text | Google Scholar

Stavrinos, D., Heaton, K., Welburn, S. C., McManus, B., Griffin, R., and Fine, P. R. (2016). Commercial truck driver health and safety: exploring distracted driving performance and self-reported driving skill. Workplace Health Saf. 64, 369–376. doi: 10.1177/2165079915620202

PubMed Abstract | CrossRef Full Text | Google Scholar

Steg, L., and Van Brussel, A. (2009). Accidents, aberrant behaviours, and speeding of young moped riders. Transp. Res. F Traffic Psychol. Behav. 12, 503–511. doi: 10.1016/j.trf.2009.09.001

CrossRef Full Text | Google Scholar

Stephens, A. N., Brown, J., de Rome, L., Baldock, M. R. J., Fernandes, R., and Fitzharris, M. (2017). The relationship between Motorcycle Rider Behaviour Questionnaire scores and crashes for riders in Australia. Accid. Anal. Prev. 102, 202–212. doi: 10.1016/j.aap.2017.03.007

PubMed Abstract | CrossRef Full Text | Google Scholar

Sullman, M. J., and Taylor, J. E. (2010). Social desirability and self-reported driving behaviours: should we be worried? Transp. Res. F Traffic Psychol. Behav. 13, 215–221. doi: 10.1016/j.trf.2010.04.004

CrossRef Full Text | Google Scholar

Thomas, J. A., and Walton, D. (2007). Measuring perceived risk: Self-reported and actual hand positions of SUV and car drivers. Transp. Res. F Traffic Psychol. Behav. 10, 201–207. doi: 10.1016/j.trf.2006.10.001

CrossRef Full Text | Google Scholar

Tsohou, A., Karyda, M., and Kokolakis, S. (2015). Analyzing the role of cognitive and cultural biases in the internalization of information security policies: recommendations for information security awareness programs. Comput. Secur. 52, 128–141. doi: 10.1016/j.cose.2015.04.006

CrossRef Full Text | Google Scholar

Urrútia, G., and Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Med. Clín. 135, 507–511. doi: 10.1016/j.medcli.2010.01.015

PubMed Abstract | CrossRef Full Text | Google Scholar

Useche, S., Gómez, V., and Cendales, B. (2017). Stress-related psychosocial factors at work, fatigue, and risky driving behavior in Bus Rapid Transport (BRT) drivers. Accident Anal. Prevent. 104, 106–114. doi: 10.1016/j.aap.2017.04.023

PubMed Abstract | CrossRef Full Text | Google Scholar

Useche, S. A., Alonso, F., and Montoro, L. (2020). Validation of the Walking Behavior Questionnaire (WBQ): a tool for measuring risky and safe walking from a behavioral perspective. J. Transp. Health 18, 10089. doi: 10.1016/j.jth.2020.100899

CrossRef Full Text | Google Scholar

Useche, S. A., Alonso, F., Montoro, L., and Garrigós, L. (2019). More aware, more protected: a cross- sectional study on road safety skills predicting the use of passive safety elements among Spanish teenagers. BMJ Open 9, 35007. doi: 10.1136/bmjopen-2019-035007

PubMed Abstract | CrossRef Full Text | Google Scholar

Useche, S. A., Gene-Morales, J., Siebert, F. W., Alonso, F., and Montoro, L. (2021a). “Not as Safe as I Believed”: differences in perceived and self-reported cycling behavior between riders and non-riders. Sustainability 13, 1614. doi: 10.3390/su13041614

CrossRef Full Text | Google Scholar

Useche, S. A., Hezaveh, A. M., Llamazares, F. J., and Cherry, C. (2021b). Not gendered but different from each other? A structural equation model for explaining risky road behaviors of female and male pedestrians. Accid. Anal. Prev. 150, 105942. doi: 10.1016/j.aap.2020.105942

PubMed Abstract | CrossRef Full Text | Google Scholar

Useche, S. A., Montoro, L., Tomas, J. M., and Cendales, B. (2018). Validation of the cycling behavior questionnaire: a tool for measuring cyclists' road behaviors. Transp. Res. F Traffic Psychol. Behav. 58, 1021–1030. doi: 10.1016/j.trf.2018.08.003

CrossRef Full Text | Google Scholar

Van Huysduynen, H. H., Terken, J., and Eggen, B. (2018). The relation between self-reported driving style and driving behaviour. A simulator study. Transp. Res. F Traffic Psychol. Behav. 56, 245–255. doi: 10.1016/j.trf.2018.04.017

CrossRef Full Text | Google Scholar

Van Zoonen, W., and Van der Meer, T. (2015). The importance of source and credibility perception in times of crisis: crisis communication in a socially mediated era. J. Public Relat. Res. 27, 371–388. doi: 10.1080/1062726X.2015.1062382

CrossRef Full Text | Google Scholar

Venuleo, C., Marinaci, T., and Mossi, P. (2017). Meaning and risk: the role of subjective cultures in the evaluation of hazardous behaviours. Psicol. della Salute 48–75. doi: 10.3280/PDS2017-001003

CrossRef Full Text | Google Scholar

Vickers, A. J., and Kent, D. M. (2015). The Lake Wobegon effect: why most patients are at below-average risk. Ann. Intern. Med. 162, 866–867. doi: 10.7326/M14-2767

PubMed Abstract | CrossRef Full Text | Google Scholar

Weiner, B. (2010). Attribution Theory. The Corsini encyclopedia of psychology 1–2. doi: 10.1002/9780470479216.corpsy0098

PubMed Abstract | CrossRef Full Text | Google Scholar

WHO (2018). Global Status Report on Road Safety 2018. Geneva: World Health Organization.

Google Scholar

Wood, J. M., Lacherez, P. F., Marszalek, R. P., and King, M. J. (2009). Drivers' and cyclists' experiences of sharing the road: incidents, attitudes and perceptions of visibility. Accid. Anal. Prev. 41, 772–776. doi: 10.1016/j.aap.2009.03.014

PubMed Abstract | CrossRef Full Text | Google Scholar

Zicat, E., Bennett, J. M., Chekaluk, E., and Batchelor, J. (2018). Cognitive function and young drivers: the relationship between driving, attitudes, personality and cognition. Transp. Res. F: Traffic Psychol. Behav. 55, 341–352. doi: 10.1016/j.trf.2018.03.013

CrossRef Full Text | Google Scholar

Zio, E. (2018). The future of risk assessment. Reliab. Eng. Syst. Saf. 177, 176–190. doi: 10.1016/j.ress.2018.04.020

CrossRef Full Text | Google Scholar

Keywords: road safety, human factors, risk behavior, proxies, behavior, systematic review

Citation: Useche SA, Faus M and Alonso F (2022) Is safety in the eye of the beholder? Discrepancies between self-reported and proxied data on road safety behaviors—A systematic review. Front. Psychol. 13:964387. doi: 10.3389/fpsyg.2022.964387

Received: 08 June 2022; Accepted: 04 August 2022;
Published: 02 September 2022.

Edited by:

Mariagrazia Capizzi, Université de Montpellier, France

Reviewed by:

Tatiana V. Kochetova, Moscow State University of Psychology and Education, Russia
Fernando Martín Poó, CONICET Institute of Basic, Applied and Technology Psychology (IPSIBAT), Argentina

Copyright © 2022 Useche, Faus and Alonso. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Sergio A. Useche, sergioalejandro.useche@esic.edu

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.