1 Introduction
As we all know, nonlinear partial differential equation models are applied to almost every corner of social life. For example, various nonlinear soliton equations can be used to describe wave phenomena in many natural sciences and engineering fields such as fluid physics, solid state physics, laser physics, astrophysics, geophysics, lattice vibration, optical fiber communication, quantum mechanics, geomechanics, oceanography, superconductivity, field theory, transportation, etc. Since fractional order nonlinear systems can describe these nonlinear processes more accurately than integer order systems, studying the solution of fractional order nonlinear systems is particularly important in the development of natural sciences, and has always been a hot topic for domestic and foreign scholars. Till now, people have given many forms of fractional derivative definitions for different situations. For example, Riemann-Liouville definition [1], Caputo definition [2], Jumaries’s definition [3], Atangana’s definition [4], Atangana-Baleanu-Riemann definition [5], conformable definition [6], Abu-Shady-Kaabar definition [7], He’s definition [8], etc. [9–15]. Each definition has its own advantages and disadvantages, for example, the Riemann-Liouville definition is to consider the derivative of the integral factor, the Caputo definition is to consider the integration of the derivative factor, the Jumaries’s definition is to consider the influence of the initial value and the He’s definition takes into account the more general problem of initial values, etc., and their efficiency varies in the process of solving some specific problems. In order to find the analytical solutions of nonlinear fractional partial differential equations, many domestic and foreign scholars have made great efforts, and the existing methods mainly include the Bäcklund transformation method [16], the homogeneous equilibrium method [17], the Riccati equation expansion method [18], the F-expansion method [19], the Jacobi elliptic function expansion method [20], the generalized expansion method [21], the Darboux transform method [22], the Lie symmetry method [23], the Adomian decomposition method [24], The homotopy perturbation method [25], the variational iterative method [26], and so on [27–29]. These methods have their own advantages and characteristics, providing powerful tools for exploring the solutions of complex nonlinear equations.
Furthermore, the applications of these solutions are not limited to traditional fields. In the era of rapid development of nano/micro technology, they have potential applications in nano/micro devices and systems, especially in MEMS (Micro-Electro-Mechanical Systems) [30]. MEMS technology combines mechanical elements, sensors, actuators, and electronics on a microscale, and understanding the behavior of fractional partial differential equations can contribute to the design, optimization, and performance improvement of MEMS devices [31]. For example, in the field of sensors, fractional order models can help analyze and predict the response of micro-sensors to various stimuli more accurately. In actuators, the solutions of fractional equations can provide insights into the dynamic behavior and control strategies [32]. Additionally, in integrated micro-systems, the understanding of fractional order phenomena can enhance the functionality and reliability of the overall system [33, 34].
The study of fractional order nonlinear partial differential equations and their solutions is not only of theoretical significance but also has practical applications in a wide range of fields, especially in the emerging field of nano/micro devices and systems such as MEMS. Our research is based on the definition of M-fractional derivative proposed by Sousa and Oliveira recently [35], this new fractional derivative definition generalizes the conformable derivative by a truncated Mittag-Leffler function of one parameter [6]. By adopting the ideas of generalized Jacobi elliptic function method [36], modified (G′/G,1/G)-expansion method [38, 39] and G′/(bG′+G+a)-expansion method [40], using the homogeneous equilibrium principle [41] and mathematical symbolic calculation software, to study a class of generalized time-space fractional coupled Hirota-Satsuma KdV system arising in interaction of two long waves with different dispersion effects under the definition of M-fractional derivative,
{uαt=14u3βxxx+3uuβx+3(−v2+w)βx,vαt=−12v3βxxx−3uvβx,wαt=−12w3βxxx−3uwβx,0<α,β≤1.(1) where (⋅)αt=Dγ1,αM,t(⋅),(⋅)βx=Dγ2,βM,x(⋅),(⋅)3βxxx=Dγ2,βM,x(Dγ2,βM,x(Dγ2,βM,x(⋅))) mean the M-fractional derivative [35, 39, 42, 43], u=u(x,t),v=v(x,t),w=w(x,t). If we select α=1,β=1, we get the well-known integer order coupled Hirota-Satsuma KdV equation. The equation is mainly used to describe the interaction between two columns of long waves with different dispersion relations [44]. Ref. [45] studies the case when w=0, and Ref. [46] obtains the general form when w≠0 through a matrix spectrum problem. Ref. [47] studies its elliptic sine function solution by direct expansion method. Refs. [48, 49] use the modified Riccati expansion method and the extended elliptic function expansion method to study its exact solutions in various forms. Ref. [50] studies the Darboux transformation of the equation, and the branch structure of the equation is studied by the theory of plane dynamic system in reference [51]. Under the definition of conformable fractional derivative with β=1, Ref. [52] studies the analytical solutions of system (1) by using auxiliary equation method and series expansion method, and Ref. [53] uses (G′/G) expansion method to study the solitary wave solution and trigonometric function periodic solution of system (1). Additional relevant studies on the system can be referred to Refs. [54–58]. Let’s first introduce several relevant definitions and properties.
Definition 1. For a function f(t):[0,∞)→R, We defined the M-fractional derivative operator of f(t) of order α as [35].
Dγ,αM,tf(t)=limε→0f(tEγ(εt−α))−f(t)ε,γ≥0,0<α≤1.(2) where Eγ(t)=∞∑k=0tkΓ(γk+1) is a Mittag-Leffler function of parameter γ.
Property 1. The M-fractional derivative operator of f(t) of order α have the following important properties [35, 39, 42, 43]:
(1) Dγ,αM,tf(t)=t−αΓ(γ+1)df(t)dt.
(2) Dγ,αM,t(af(t)+bg(t))=aDγ,αM,tf(t)+bDγ,αM,tg(t),∀a,b∈R.
(3) Dγ,αM,t(f(t)g(t))=f(t)Dγ,αM,tg(t)+g(t)Dγ,αM,tf(t).
(4) Dγ,αM,t(f(t)/g(t))=[g(t)Dγ,αM,tf(t)−f(t)Dγ,αM,tg(t)]/g2(t).
(5) Dγ,αM,t(f∘g)(t)=f′(g(t))Dγ,αM,tg(t)=t−αΓ(γ+1)f′(g(t))dg(t)dt.
Definition 2. The M-fractional derivative system (1) determined by Definition 1 and Equation 2 performs the following travelling wave transformation:
u=u(x,t)=u(ξ),v=v(x,t)=v(ξ),w=w(x,t)=w(ξ)(3) ξ=Γ(γ2+1)β2kx+Γ(γ1+1)αCtα+ξ0,γ1,γ2≥0,0<α,β≤1(4) where k,C are undetermined constants, γ1,γ2ξ0 are arbitrary constants.
Substituting Equations 3, 4 into Equation 1, we obtain the following system of ordinary differential equations:
{Cu′=2k3u‴+6kuu′−12kvv′+6kw′,Cv′=−4k3v‴−6kuv′,Cw′=−4k3w‴−6kuw′.(5) where
u′=dudξ,u‴=d3udξ3,v′=dvdξ,v‴=d3vdξ3,w′=dwdξ,w‴=d3wdξ3. 2 Description of the two methods
2.1 The modified (G′/G,1/G)-expansion method
Consider the following nonlinear M-fractional nonlinear partial differential equations:
{E1(u,uαt,uβx,uuβx,v,vαt,vβx,vvβx,w,wαt,wβx,wwβx,uvβx,uwβx,vwβx,⋯)=0,E2(u,uαt,uβx,uuβx,v,vαt,vβx,vvβx,w,wαt,wβx,wwβx,uvβx,uwβx,vwβx,⋯)=0,E3(u,uαt,uβx,uuβx,v,vαt,vβx,vvβx,w,wαt,wβx,wwβx,uvβx,uwβx,vwβx,⋯)=0.(6) By using the wave transformation (4), Equation 6 is converted into a nonlinear ordinary differential equations (ODE):
{O1(u,u′,uu′,v,v′,vv′,w,w′,ww′,uv′,uw′,vw′,⋯)=0,O2(u,u′,uu′,v,v′,vv′,w,w′,ww′,uv′,uw′,vw′,⋯)=0,O3(u,u′,uu′,v,v′,vv′,w,w′,ww′,uv′,uw′,vw′,⋯)=0.(7) Assume that Equation 7 has the following solution:
{u=M∑i=0aiψi+M∑j=1bjϕj+M−1∑i=1ciψiϕ,v=N∑i=0diψi+N∑j=1ejϕj+N−1∑i=1fiψiϕ,w=P∑i=0giψi+P∑j=1hjϕj+P−1∑i=1liψiϕ.(8) where M,N,P are balance numbers, ϕ=ϕ(ξ)=G′G,ψ=ψ(ξ)=1G, ai,bj,ci,di,ej,fi,gi,hj,li and variable function ξ=ξ(x,t) are determined later. The G is a solution of the following auxiliary ODE:
where ε=±1,μ is an arbitrary real number. It satisfies the following constrained conditions:
ϕ′=ε−εμψ−ϕ2,ψ′=−ϕψ,ϕ2=ε−2εμψ−ε(b2−εc2−μ2)ψ2.(10) where arbitrary constants μ,b,c satisfied the relation c2+b2+μ2≠0. Equations 9, 10 admit the following solutions
Case 1: When ε=1, we have G=bcoshξ+csinhξ+μ, thus
ϕ=G′G=bsinhξ+ccoshξbcoshξ+csinhξ+μ,ψ=1G=1bcoshξ+csinhξ+μ.(11) Case 2: When ε=−1, we have G=bcosξ+csinξ+μ, thus
ϕ=G′G=−bsinξ+ccosξbcosξ+csinξ+μ,ψ=1G=1bcosξ+csinξ+μ.(12) Substituting Equations 8, 10 into Equation 7 and setting coefficients of ϕiψj(i=0,1,j=0,1,2,3,4,⋯) to zero yield a set of algebraic equations (AEs) for ai,bj,ci,di,ej,fi,gi,hj,li,b,c,μ,k,C. After solving the AEs and substituting each of the solutions ϕ(ξ),ψ(ξ) from Equations 11, 12 along with (4) into Equation 1, we can get the analytical solutions of Equation 1.
2.2 The G′/(bG′+G+a)-expansion method
Assume that Equation 7 has the following solution
{u=M∑i=0ai(G′bG′+G+a)i,v=N∑i=0bi(G′bG′+G+a)i,w=P∑i=0ci(G′bG′+G+a)i.(13) where M,N,P are balance numbers. Parameters ai,bi,ci are determined later. G=G(ξ) satisfies the following second-order ordinary differential equation:
Set F=G′bG′+G+a, then F satisfies
F′=(λ−μ−1)F2+1b(2μ−λ)F−1b2μ(15) Equations 14, 15 admit the following solutions.
Case 1: When Δ=λ2−4μ>0, we have the solitary wave solution
G=−a+C1e12b(−λ−√Δ)ξ+C2e12b(−λ+√Δ)ξ(16) F=C1(λ+√Δ)+C2(λ−√Δ)e√ΔbξbC1(λ−2+√Δ)+bC2(λ−2−√Δ)e√Δbξ(17) Case 2: When Δ=λ2−4μ<0, we have the periodic wave solution
G=e−λ2bξ(C1cos(√−Δ2bξ)+C2sin(√−Δ2bξ))−a(18) F=(λC1−√−ΔC2)cos(√−Δ2bξ)+(λC2+√−ΔC1)sin(√−Δ2bξ)b((λ−2)C1−√−ΔC2)cos(√−Δ2bξ)+b((λ−2)C2+√−ΔC1)sin(√−Δ2bξ)(19) Case 3: When Δ=λ2−4μ=0, we have the rational function solution
G=C1e−λ2bξ+C2ξe−λ2bξ−a(20) F=2bC2−λC1−λC2ξ2b2C2+b(2−λ)(C1+C2)ξ(21) Substituting Equations 13, 15 into Equation 7 and setting coefficients of Fi(i=0,1,2,3,4,⋯) zero yield a set of AEs for ai,bi,ci,b,λ,μ,k,C, after solving the AEs with the aid of mathematical software, the wave solutions of Equation 1 can be obtained by these solutions and Equations 4, 16–21.
3 Exact solutions to the Hirota-Satsuma KdV equation
3.1 Solving Eq. (1) by the modified (G′/G,1/G)-expansion method
From the homogeneous equilibrium principle [41], we can get M=2,N=2,P=2 in Equation 8. We assume that Equation 5 has solutions in the following form
{u=a0+a1ψ+a2ψ2+a3ϕ+a4ψϕ+a5ϕ2,v=b0+b1ψ+b2ψ2+b3ϕ+b4ψϕ+b5ϕ2,w=c0+c1ψ+c2ψ2+c3ϕ+c4ψϕ+c5ϕ2.(22) where ai,bi,ci(i=0,⋯,5) are undetermined constants.
Substituting Equations 22, 10 into Equation 5, and setting the coefficients of ϕiψj(i=0,1,j=0,1,2,3,4,⋯) to zero yield a set of algebraic equations (AEs) for ai,bi,ci,b,c,μ,k,C.
ψ:Cεμa3−2k3ε2μa3−6kεμa0a3+6kεa1a3−Cϵa4+2k3ε2a4+6kεa0a4−18kε2μa3a5+6kε2a4a5+12kεμb0b3−12kεb1b3−12kεb0b4+36kε2μb3b5−12kε2b4b5−6kεμc3+6kεc4=0,ϕψ:−Ca1+2k3εa1+6ka0a1−6kεμa23+6kεa3a4+2Cεμa5−4k3ε2μa5−12kεμa0a5+6kεa1a5−12kε2μa25−12kb0b1+12kεμb23−12kεb3b4+24kεμb0b5−12kεb1b5+24kε2μb25+6kc1−12kεμc5=0,ψ2:b2Cεa3−c2Cε2a3−8b2k3ε2a3+8c2k3ε3a3−Cεμ2a3+14k3ε2μ2a3−6b2kεa0a3+6c2kε2a0a3+6kεμ2a0a3−18kεμa1a3+12kεa2a3+3Cεμa4−30k3ε2μa4−18kεμa0a4+12kεa1a4−18b2kε2a3a5+18c2kε3a3a5+54kε2μ2a3a5−42kε2μa4a5+12b2kεb0b3−12c2kε2b0b3−12kεμ2b0b3+36kεμb1b3−24kεb2b3+36kεμb0b4−24kεb1b4+36b2kε2b3b5−36c2kε3b3b5−108kε2μ2b3b5+84kε2μb4b5−6b2kεc3+6c2kε2c3+6kεμ2c3−18kεμc4=0,ϕψ2:−12k3εμa1+6ka21−2Ca2+16k3εa2+12ka0a2−6b2kεa23+6c2kε2a23+6kεμ2a23−24kεμa3a4+6kεa24+2b2Cεa5−2c2Cε2a5−16b2k3ε2a5+16c2k3ε3a5−2Cεμ2a5+40k3ε2μ2a5−12b2kεa0a5+12c2kε2a0a5+12kεμ2a0a5−24kεμa1a5+12kεa2a5−12b2kε2a25+12c2kε3a25+36kε2μ2a25−12kb21−24kb0b2+12b2kεb23−12c2kε2b23−12kεμ2b23+48kεμb3b4−12kεb24+24b2kεb0b5−24c2kε2b0b5−24kεμ2b0b5+48kεμb1b5−24kεb2b5+24b2kε2b25−24c2kε3b25−72kε2μ2b25+12kc2−12b2kεc5+12c2kε2c5+12kεμ2c5=0,ψ3:24b2k3ε2μa3−24c2k3ε3μa3−24k3ε2μ3a3−12b2kεa1a3+12c2kε2a1a3+12kεμ2a1a3−30kεμa2a3+2b2Cεa4−2c2Cε2a4−40b2k3ε2a4+40c2k3ε3a4−2Cεμ2a4+100k3ε2μ2a4−12b2kεa0a4+12c2kε2a0a4+12kεμ2a0a4−30kεμa1a4+18kεa2a4+54b2kε2μa3a5−54c2kε3μa3a5−54kε2μ3a3a5−30b2kε2a4a5+30c2kε3a4a5+90kε2μ2a4a5+24b2kεb1b3−24c2kε2b1b3−24kεμ2b1b3+60kεμb2b3+24b2kεb0b4−24c2kε2b0b4−24kεμ2b0b4+60kεμb1b4−36kεb2b4−108b2kε2μb3b5+108c2kε3μb3b5+108kε2μ3b3b5+60b2kε2b4b5−60c2kε3b4b5−180kε2μ2b4b5−12b2kεc4+12c2kε2c4+12kεμ2c4=0,ϕψ3:−12b2k3εa1+12c2k3ε2a1+12k3εμ2a1−60k3εμa2+18ka1a2−18b2kεa3a4+18c2kε2a3a4+18kεμ2a3a4−18kεμa24+84b2k3ε2μa5−84c2k3ε3μa5−84k3ε2μ3a5−18b2kεa1a5+18c2kε2a1a5+18kεμ2a1a5−36kεμa2a5+36b2kε2μa25−36c2kε3μa25−36kε2μ3a25−36kb1b2+36b2kεb3b4−36c2kε2b3b4−36kεμ2b3b4+36kεμb24+36b2kεb1b5−36c2kε2b1b5−36kεμ2b1b5+72kεμb2b5−72b2kε2μb25+72c2kε3μb25+72kε2μ3b25=0, ψ4:12b4k3ε2a3−24b2c2k3ε3a3+12c4k3ε4a3−24b2k3ε2μ2a3+24c2k3ε3μ2a3+12k3ε2μ4a3−18b2kεa2a3+18c2kε2a2a3+18kεμ2a2a3+120b2k3ε2μa4−120c2k3ε3μa4−120k3ε2μ3a4−18b2kεa1a4+18c2kε2a1a4+18kεμ2a1a4−42kεμa2a4+18b4kε2a3a5−36b2c2kε3a3a5+18c4kε4a3a5−36b2kε2μ2a3a5+36c2kε3μ2a3a5+18kε2μ4a3a5+78b2kε2μa4a5−78c2kε3μa4a5−78kε2μ3a4a5+36b2kεb2b3−36c2kε2b2b3−36kεμ2b2b3+36b2kεb1b4−36c2kε2b1b4−36kεμ2b1b4+84kεμb2b4−36b4kε2b3b5+72b2c2kε3b3b5−36c4kε4b3b5+72b2kε2μ2b3b5−72c2kε3μ2b3b5−36kε2μ4b3b5−156b2kε2μb4b5+156c2kε3μb4b5+156kε2μ3b4b5=0,ϕψ4:−48b2k3εa2+48c2k3ε2a2+48k3εμ2a2+12ka22−12b2kεa24+12c2kε2a24+12kεμ2a24+48b4k3ε2a5−96b2c2k3ε3a5+48c4k3ε4a5−96b2k3ε2μ2a5+96c2k3ε3μ2a5+48k3ε2μ4a5−24b2kεa2a5+24c2kε2a2a5+24kεμ2a2a5+12b4kε2a25−24b2c2kε3a25+12c4kε4a25−24b2kε2μ2a25+24c2kε3μ2a25+12kε2μ4a25−24kb22+24b2kεb24−24c2kε2b24−24kεμ2b24+48b2kεb2b5−48c2kε2b2b5−48kεμ2b2b5−24b4kε2b25+48b2c2kε3b25−24c4kε4b25+48b2kε2μ2b25−48c2kε3μ2b25−24kε2μ4b25=0,ψ5:48b4k3ε2a4−96b2c2k3ε3a4+48c4k3ε4a4−96b2k3ε2μ2a4+96c2k3ε3μ2a4+48k3ε2μ4a4−24b2kεa2a4+24c2kε2a2a4+24kεμ2a2a4+24b4kε2a4a5−48b2c2kε3a4a5+24c4kε4a4a5−48b2kε2μ2a4a5+48c2kε3μ2a4a5+24kε2μ4a4a5+48b2kεb2b4−48c2kε2b2b4−48kεμ2b2b4−48b4kε2b4b5+96b2c2kε3b4b5−48c4kε4b4b5+96b2kε2μ2b4b5−96c2kε3μ2b4b5−48kε2μ4b4b5=0,ψ:−6kεa3b1+Cεμb3+4k3ε2μb3+6kεμa0b3+6kε2μa5b3−Cεb4−4k3ε2b4−6kεa0b4−6kε2a5b4+12kε2μa3b5=0,ϕψ:−Cb1−4k3εb1−6ka0b1−6kεa5b1+6kεμa3b3−6kεa3b4+2Cεμb5+8k3ε2μb5+12kεμa0b5+12kε2μa5b5=0,ψ2:12kεμa3b1−6kεa4b1−12kεa3b2+b2Cεb3−c2Cε2b3+16b2k3ε2b3−16c2k3ε3b3−Cεμ2b3−28k3ε2μ2b3+6b2kεa0b3−6c2kε2a0b3−6kεμ2a0b3+6kεμa1b3+6b2kε2a5b3−6c2kε3a5b3−18kε2μ2a5b3+3Cεμb4+60k3ε2μb4+18kεμa0b4−6kεa1b4+30kε2μa5b4+12b2kε2a3b5−12c2kε3a3b5−36kε2μ2a3b5+12kε2μa4b5=0,ϕψ2:24k3εμb1−6ka1b1+12kεμa5b1−2Cb2−32k3εb2−12ka0b2−12kεa5b2+6b2kεa3b3−6c2kε2a3b3−6kεμ2a3b3+6kεμa4b3+18kεμa3b4−6kεa4b4+2b2Cεb5−2c2Cε2b5+32b2k3ε2b5−32c2k3ε3b5−2Cεμ2b5−80k3ε2μ2b5+12b2kεa0b5−12c2kε2a0b5−12kεμ2a0b5+12kεμa1b5+12b2kε2a5b5−12c2kε3a5b5−36kε2μ2a5b5=0,ψ3:6b2kεa3b1−6c2kε2a3b1−6kεμ2a3b1+12kεμa4b1+24kεμa3b2−12kεa4b2−48b2k3ε2μb3+48c2k3ε3μb3+48k3ε2μ3b3+6b2kεa1b3−6c2kε2a1b3−6kεμ2a1b3+6kεμa2b3−18b2kε2μa5b3+18c2kε3μa5b3+18kε2μ3a5b3+2b2Cεb4−2c2Cε2b4+80b2k3ε2b4−80c2k3ε3b4−2Cεμ2b4−200k3ε2μ2b4+12b2kεa0b4−12c2kε2a0b4−12kεμ2a0b4+18kεμa1b4−6kεa2b4+18b2kε2a5b4−18c2kε3a5b4−54kε2μ2a5b4−36b2kε2μa3b5+36c2kε3μa3b5+36kε2μ3a3b5+12b2kε2a4b5−12c2kε3a4b5−36kε2μ2a4b5=0,ϕψ3:24b2k3εb1−24c2k3ε2b1−24k3εμ2b1−6ka2b1+6b2kεa5b1−6c2kε2a5b1−6kεμ2a5b1+120k3εμb2−12ka1b2+24kεμa5b2+6b2kεa4b3−6c2kε2a4b3−6kεμ2a4b3+12b2kεa3b4−12c2kε2a3b4−12kεμ2a3b4+18kεμa4b4−168b2k3ε2μb5+168c2k3ε3μb5+168k3ε2μ3b5+12b2kεa1b5−12c2kε2a1b5−12kεμ2a1b5+12kεμa2b5−36b2kε2μa5b5+36c2kε3μa5b5+36kε2μ3a5b5=0,ψ4:6b2kεa4b1−6c2kε2a4b1−6kεμ2a4b1+12b2kεa3b2−12c2kε2a3b2−12kεμ2a3b2+24kεμa4b2−24b4k3ε2b3+48b2c2k3ε3b3−24c4k3ε4b3+48b2k3ε2μ2b3−48c2k3ε3μ2b3−24k3ε2μ4b3+6b2kεa2b3−6c2kε2a2b3−6kεμ2a2b3−6b4kε2a5b3+12b2c2kε3a5b3−6c4kε4a5b3+12b2kε2μ2a5b3−12c2kε3μ2a5b3−6kε2μ4a5b3−240b2k3ε2μb4+240c2k3ε3μb4+240k3ε2μ3b4+12b2kεa1b4−12c2kε2a1b4−12kεμ2a1b4+18kεμa2b4−42b2kε2μa5b4+42c2kε3μa5b4+42kε2μ3a5b4−12b4kε2a3b5+24b2c2kε3a3b5−12c4kε4a3b5+24b2kε2μ2a3b5−24c2kε3μ2a3b5−12kε2μ4a3b5−36b2kε2μa4b5+36c2kε3μa4b5+36kε2μ3a4b5=0,ϕψ4:96b2k3εb2−96c2k3ε2b2−96k3εμ2b2−12ka2b2+12b2kεa5b2−12c2kε2a5b2−12kεμ2a5b2+12b2kεa4b4−12c2kε2a4b4−12kεμ2a4b4−96b4k3ε2b5+192b2c2k3ε3b5−96c4k3ε4b5+192b2k3ε2μ2b5−192c2k3ε3μ2b5−96k3ε2μ4b5+12b2kεa2b5−12c2kε2a2b5−12kεμ2a2b5−12b4kε2a5b5+24b2c2kε3a5b5−12c4kε4a5b5+24b2kε2μ2a5b5−24c2kε3μ2a5b5−12kε2μ4a5b5=0,ψ5:12b2kεa4b2−12c2kε2a4b2−12kεμ2a4b2−96b4k3ε2b4+192b2c2k3ε3b4−96c4k3ε4b4+192b2k3ε2μ2b4−192c2k3ε3μ2b4−96k3ε2μ4b4+12b2kεa2b4−12c2kε2a2b4−12kεμ2a2b4−12b4kε2a5b4+24b2c2kε3a5b4−12c4kε4a5b4+24b2kε2μ2a5b4−24c2kε3μ2a5b4−12kε2μ4a5b4−12b4kε2a4b5+24b2c2kε3a4b5−12c4kε4a4b5+24b2kε2μ2a4b5−24c2kε3μ2a4b5−12kε2μ4a4b5=0,ψ:−6kεa3c1+Cεμc3+4k3ε2μc3+6kεμa0c3+6kε2μa5c3−Cεc4−4k3ε2c4−6kεa0c4−6kε2a5c4+12kε2μa3c5=0,ϕψ:−Cc1−4k3εc1−6ka0c1−6kεa5c1+6kεμa3c3−6kεa3c4+2Cεμc5+8k3ε2μc5+12kεμa0c5+12kε2μa5c5=0, ψ2:12kεμa3c1−6kεa4c1−12kεa3c2+b2Cεc3−c2Cε2c3+16b2k3ε2c3−16c2k3ε3c3−Cεμ2c3−28k3ε2μ2c3+6b2kεa0c3−6c2kε2a0c3−6kεμ2a0c3+6kεμa1c3+6b2kε2a5c3−6c2kε3a5c3−18kε2μ2a5c3+3Cεμc4+60k3ε2μc4+18kεμa0c4−6kεa1c4+30kε2μa5c4+12b2kε2a3c5−12c2kε3a3c5−36kε2μ2a3c5+12kε2μa4c5=0,ϕψ2:24k3εμc1−6ka1c1+12kεμa5c1−2Cc2−32k3εc2−12ka0c2−12kεa5c2+6b2kεa3c3−6c2kε2a3c3−6kεμ2a3c3+6kεμa4c3+18kεμa3c4−6kεa4c4+2b2Cεc5−2c2Cε2c5+32b2k3ε2c5−32c2k3ε3c5−2Cεμ2c5−80k3ε2μ2c5+12b2kεa0c5−12c2kε2a0c5−12kεμ2a0c5+12kεμa1c5+12b2kε2a5c5−12c2kε3a5c5−36kε2μ2a5c5=0,ψ3:6b2kεa3c1−6c2kε2a3c1−6kεμ2a3c1+12kεμa4c1+24kεμa3c2−12kεa4c2−48b2k3ε2μc3+48c2k3ε3μc3+48k3ε2μ3c3+6b2kεa1c3−6c2kε2a1c3−6kεμ2a1c3+6kεμa2c3−18b2kε2μa5c3+18c2kε3μa5c3+18kε2μ3a5c3+2b2Cεc4−2c2Cε2c4+80b2k3ε2c4−80c2k3ε3c4−2Cεμ2c4−200k3ε2μ2c4+12b2kεa0c4−12c2kε2a0c4−12kεμ2a0c4+18kεμa1c4−6kεa2c4+18b2kε2a5c4−18c2kε3a5c4−54kε2μ2a5c4−36b2kε2μa3c5+36c2kε3μa3c5+36kε2μ3a3c5+12b2kε2a4c5−12c2kε3a4c5−36kε2μ2a4c5=0,ϕψ3:24b2k3εc1−24c2k3ε2c1−24k3εμ2c1−6ka2c1+6b2kεa5c1−6c2kε2a5c1−6kεμ2a5c1+120k3εμc2−12ka1c2+24kεμa5c2+6b2kεa4c3−6c2kε2a4c3−6kεμ2a4c3+12b2kεa3c4−12c2kε2a3c4−12kεμ2a3c4+18kεμa4c4−168b2k3ε2μc5+168c2k3ε3μc5+168k3ε2μ3c5+12b2kεa1c5−12c2kε2a1c5−12kεμ2a1c5+12kεμa2c5−36b2kε2μa5c5+36c2kε3μa5c5+36kε2μ3a5c5=0,ψ4:6b2kεa4c1−6c2kε2a4c1−6kεμ2a4c1+12b2kεa3c2−12c2kε2a3c2−12kεμ2a3c2+24kεμa4c2−24b4k3ε2c3+48b2c2k3ε3c3−24c4k3ε4c3+48b2k3ε2μ2c3−48c2k3ε3μ2c3−24k3ε2μ4c3+6b2kεa2c3−6c2kε2a2c3−6kεμ2a2c3−6b4kε2a5c3+12b2c2kε3a5c3−6c4kε4a5c3+12b2kε2μ2a5c3−12c2kε3μ2a5c3−6kε2μ4a5c3−240b2k3ε2μc4+240c2k3ε3μc4+240k3ε2μ3c4+12b2kεa1c4−12c2kε2a1c4−12kεμ2a1c4+18kεμa2c4−42b2kε2μa5c4+42c2kε3μa5c4+42kε2μ3a5c4−12b4kε2a3c5+24b2c2kε3a3c5−12c4kε4a3c5+24b2kε2μ2a3c5−24c2kε3μ2a3c5−12kε2μ4a3c5−36b2kε2μa4c5+36c2kε3μa4c5+36kε2μ3a4c5=0,ϕψ4:96b2k3εc2−96c2k3ε2c2−96k3εμ2c2−12ka2c2+12b2kεa5c2−12c2kε2a5c2−12kεμ2a5c2+12b2kεa4c4−12c2kε2a4c4−12kεμ2a4c4−96b4k3ε2c5+192b2c2k3ε3c5−96c4k3ε4c5+192b2k3ε2μ2c5−192c2k3ε3μ2c5−96k3ε2μ4c5+12b2kεa2c5−12c2kε2a2c5−12kεμ2a2c5−12b4kε2a5c5+24b2c2kε3a5c5−12c4kε4a5c5+24b2kε2μ2a5c5−24c2kε3μ2a5c5−12kε2μ4a5c5=0,ψ5:12b2kεa4c2−12c2kε2a4c2−12kεμ2a4c2−96b4k3ε2c4+192b2c2k3ε3c4−96c4k3ε4c4+192b2k3ε2μ2c4−192c2k3ε3μ2c4−96k3ε2μ4c4+12b2kεa2c4−12c2kε2a2c4−12kεμ2a2c4−12b4kε2a5c4+24b2c2kε3a5c4−12c4kε4a5c4+24b2kε2μ2a5c4−24c2kε3μ2a5c4−12kε2μ4a5c4−12b4kε2a4c5+24b2c2kε3a4c5−12c4kε4a4c5+24b2kε2μ2a4c5−24c2kε3μ2a4c5−12kε2μ4a4c5=0. Solving the equations by Mathematical software can get the following solutions, where the unstated parameters are taking any constant.
Case 1: When ε=1,
(1) a1=4k2μ,a2=a3=a4=a5=0,b1=2k2μ,b2=b3=b4=b5=0,c1=−4(2a0k2μ−b0k2μ+k4μ),c2=c3=c4=c5=0,b=±√c2+μ2,C=−2(3a0k+2k3).(2) a1=4k2μ,a2=4k2(b2−c2−μ2),a3=a4=a5=0,b1=±k√4k2(2b2−2c2−μ2)+8a0(b2−c2−μ2),b2=b3=b4=b5=0,c1=−4k(2a0kμ+k3μ±b0√k2(2b2−2c2−μ2)+2a0(b2−c2−μ2)),c2=c3=c4=c5=0,C=−2(3a0k+2k3). (3) a1=8k2μ,a2=−8k2μ2,a3=a4=a5=0,b1=−4k2μ,b2=4k2μ2,b3=b4=b5=0,c1=−8k2(2a0+b0+k2)μ, c2=8k2(2a0+b0+k2)μ2,c3=c4=c5=0,b=±c,C=−2(3a0k+2k3).(4) a1=a2=a3=a4=0,a5=−2k2,b1=b2=b3=b4=0,b5=±k2,c1=c2=c3=c4=0, c5=2(2a0k2±b0k2−2k4),b=±√c2+μ2,C=−2(3a0k−4k3).(5) a1=a3=a5=0,a2=2k2(b2−c2),a4=2√−b2k4+c2k4,b2=b4=b5=0,b1=√(b2−c2)k2(2a0+k2), b3=±√−k2(2a0+k2),c1=2b0√(b2−c2)k2(2a0+k2),c3=±2b0√−k2(2a0+k2),c2=c4=c5=0, μ=0,C=−6a0k−4k3. According to Equations 4, 11, 22, we can get the solutions of Equation 1 when
Case 2: when ,
According to Equations 4, 11, 22, we could get solutions of the system (1) as
By selecting different parameters, we can get some graphical simulation including the famous bell-shape soliton solutions and blow-up pattern wave solution of system (1) in Figures 1, 2. Some simulation of the above periodic wave solutions are shown in Figures 3, 4.
3.2 Solving Eq. (1) by the -expansion method
Suppose Equation 5 has solutions of the following form:
Where are constants to be determined.
Substituting Equations 23, 15 into Equation 5, and setting the coefficients to zero, we could get a set of algebraic equations about . Without losing generality, we let :
After solving the above AEs, we can get the following solutions, where the parameters not specified are arbitrary constants.
According to Equations 4, 17, 19, 21, 23, we obtain the following solutions for system (1):
We can determine the following solutions.
Case 1: , when or .
Case 2: , when .
Case 3: , when .
Selecting different parameters, we can get some graphical simulation of above solutions (Figures 5, 6) and (Figure 7) as follows:
3.3 Results and discussion
We have obtained many types of new analytical solutions of the system (1) by two efficient methods, which include the famous bell-shaped solitary wave , this smooth solution reveals a balance of nonlinear effects and dispersion effects, the blow-up wave which is distorted between the interval (0.190, 0.192) etc. There are also many forms of periodic waves, and these periodic wave solutions embody different properties. For example, the waveform of alternates up and down in both directions, periodicity of and are only reflected in one direction. If we choose different parameters and orders, we could find that the waveform of system (1) will evolve with time . The Figures (a) and (b) in Figure 8 show the evolutionary process of with time fractional order with parameters and respectively. Numerical simulations show that the waveform shifts to the right as the time order increases, and these properties may be of great significance for revealing the internal structure of system (1). However, In MEMS, the understanding of nonlinear wave phenomena and the availability of exact solutions can contribute to the design and optimization of various components. For example, in MEMS sensors, these solutions can help analyze the response to external stimuli and improve the sensitivity and accuracy.
4 Conclusion
In conclusion, by utilizing the modified -expansion method, the -expansion method and the travelling wave transform under the definition of M fractional derivative, twelve new types of exact solutions of the generalized time-space fractional coupled Hirota-Satsuma KdV system are obtained successfully. These solutions include complex solitary wave solutions, trigonometric periodic wave solutions, and rational function solutions. These solutions can be transformed into integer order cases under special parameter selection, and they have important theoretical guiding value for profoundly revealing the interaction between two nonlinear long waves with different dispersion effects. The waveforms of partial solutions and their characteristic images of time evolution are obtained by numerical simulation. It is proved by practice that these two methods can be applied to many other nonlinear equations including the MEMS. Additionally, in integrated MEMS systems, the knowledge of these solutions can enhance the functionality and reliability. However, the proposed definition of M-fractional derivatives still has some limitations, and it is difficult to characterize the necessary connection between two real number or complex number order derivatives. On the other hand, the unified definition of fractional derivatives definition needs to be further explored and developed for us in the future. Once our definition has been substantially refined, then we work on perturbation theory, dynamical system theory, soliton theory, etc., will be better developed [63–65]. How to extend this method to discretely-coupled nonlinear systems with arbitrary subhigher dimensions is still worth further study. This will open up new avenues for exploring more complex nonlinear phenomena and expanding the application scope of these methods in the field of nano/micro devices and systems.
Data availability statement
The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.
Author contributions
YC: Funding acquisition, Investigation, Supervision, Writing–original draft, Formal Analysis. SH: Methodology, Resources, Writing–review and editing, Conceptualization, Project administration. SY: Conceptualization, Data curation, Writing–original draft, Formal Analysis, Visualization. XC: Formal Analysis, Investigation, Methodology, Resources, Writing–review and editing. JY: Conceptualization, Project administration, Visualization, Writing–original draft.
Funding
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work is partially supported by the practical innovation training program projects for the university students of Jiangsu Province (Grant No. 202410299873X).
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Generative AI statement
The author(s) declare that no Generative AI was used in the creation of this manuscript.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Haq A. Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives. Chaos, Solitons and Fractals (2022) 157:111923. doi:10.1016/j.chaos.2022.111923
CrossRef Full Text | Google Scholar
2. Caputo M. Linear models of dissipation whose Q is almost frequency independent-II. Geophys J Int (1967) 13:529–39. doi:10.1111/j.1365-246x.1967.tb02303.x
CrossRef Full Text | Google Scholar
3. Guner O, Atik H, Kayyrzhanovich AA. New exact solution for space-time fractional differential equations via G'/G-expansion method. Optik (2017) 130:696–701. doi:10.1016/j.ijleo.2016.10.116
CrossRef Full Text | Google Scholar
4. Atangana A, Baleanu D, Alsaedi A. Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal. Open Phys (2016) 14:145–9. doi:10.1515/phys-2016-0010
CrossRef Full Text | Google Scholar
5. Atangana A, Koca I. Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos, Solitons and Fractals (2016) 89:447–54. doi:10.1016/j.chaos.2016.02.012
CrossRef Full Text | Google Scholar
6. Khalil R, Al Horani M, Yousef A, Sababheh M. A new definition of fractional derivative. J Comput Appl Mathematics (2014) 264:65–70. doi:10.1016/j.cam.2014.01.002
CrossRef Full Text | Google Scholar
7. Shady MA, Kaabar MKA. A novel computational tool for the fractional-order special functions arising from modeling scientific phenomena via Abu-Shady-Kaabar fractional derivative. Comput Math Methods Med (2022) 2022:2138775. doi:10.1155/2022/2138775
PubMed Abstract | CrossRef Full Text | Google Scholar
9. He JH. A tutorial review on fractal spacetime and fractional calculus. Int J Theor Phys (2014) 53:3698–718. doi:10.1007/s10773-014-2123-8
CrossRef Full Text | Google Scholar
10. Nadeem M, Ahmad J, Nusrat F, Iambor LF. Fuzzy solutions of some variants of the fractional order Korteweg-de-Vries equations via an analytical method. Alexandria Eng J (2023) 80:8–21. doi:10.1016/j.aej.2023.08.012
CrossRef Full Text | Google Scholar
11. Tajadodi H. A Numerical approach of fractional advection-diffusion equation with Atangana Baleanu derivative. Chaos, Solitons and Fractals (2020) 130:109527. doi:10.1016/j.chaos.2019.109527
CrossRef Full Text | Google Scholar
12. Yusuf A, Inc M, Aliyu AI, Baleanu D. Optical solitons possessing beta derivative of the Chen-Lee-Liu equation in optical fibers. Front Phys (2019) 7:00034. doi:10.3389/fphy.2019.00034
CrossRef Full Text | Google Scholar
13. Khater MMA, Ghanbari B, Nisar KS, Kumar D. Novel exact solutions of the fractional Bogoyavlensky -Konopelchenko equation involving the Atangana-Baleanu-Riemann derivative. Alexandria Eng J (2020) 59:2957–67. doi:10.1016/j.aej.2020.03.032
CrossRef Full Text | Google Scholar
14. Madiha S, Muhammad A, Farah AA, Majeed A, Abdeljawad T, Alqudah MA. Numerical solutions of time fractional Burgers equation involving Atangana-Baleanu derivative via cubic B-spline functions. Results Phys (2022) 34:105244. doi:10.1016/j.rinp.2022.105244
CrossRef Full Text | Google Scholar
15. Nadeem M, Alsayaad Y. A new study for the investigation of nonlinear fractional drinfeld–sokolov–wilson equation. Math Probl Eng (2023) 2023(1):9274115. doi:10.1155/2023/9274115
CrossRef Full Text | Google Scholar
16. Hu XB, Wang DL, Tam HW. Lax pairs and Bäcklund transformations for a coupled Ramani equation and its related system. Appl Mathematics Lett (2000) 13:45–8. doi:10.1016/s0893-9659(00)00052-5
CrossRef Full Text | Google Scholar
17. Liu CP. A Modified homogeneous balance method and its applications. Commun Theor Phys (2011) 56(08):223–7. doi:10.1088/0253-6102/56/2/05
CrossRef Full Text | Google Scholar
18. Huang Q, Wang LZ, Zuo SL. Consistent riccati expansion method and its applications to nonlinear fractional partial differential equations. Commun Theor Phys (2016) 65(02):177–84. doi:10.1088/0253-6102/65/2/177
CrossRef Full Text | Google Scholar
19. Ebaid A, Aly EH. Exact solutions for the transformed reduced Ostrovsky equation via the -expansion method in terms of Weierstrass-elliptic and Jacobian-elliptic functions. Wave Motion (2012) 49:296–308. doi:10.1016/j.wavemoti.2011.11.003
CrossRef Full Text | Google Scholar
20. Hong BJ. New Jacobi elliptic functions solutions for the variable-coefficient mKdV equation. Appl Math Comput (2009) 215(8):2908–13. doi:10.1016/j.amc.2009.09.035
CrossRef Full Text | Google Scholar
21. Mohanty SK, Kravchenko OV, Dev AN. Exact traveling wave solutions of the Schamel Burgers equation by using generalized-improved and generalized (G'/G)-expansion methods. Results Phys (2022) 33:105124. doi:10.1016/j.rinp.2021.105124
CrossRef Full Text | Google Scholar
22. Matveev VA, Salle MA. Darboux transformations and solitons. Berlin, Heidelberg: Springer Verlag (1991).
Google Scholar
23. Nass AM. Lie symmetry analysis and exact solutions of fractional ordinary differential equations with neutral delay. Appl Mathematics Comput (2019) 347:370–80. doi:10.1016/j.amc.2018.11.002
CrossRef Full Text | Google Scholar
24. Rach R. On the Adomian(decomposition) method and comparisions with Picard’s method. J Math Anal Appl (1987) 128:480–3. doi:10.1112/S1461157017000018
CrossRef Full Text | Google Scholar
25. He JH. Homotopy perturbation technique. Comput Methods Appl Mech Eng (1999) 178:257–62. doi:10.1016/s0045-7825(99)00018-3
CrossRef Full Text | Google Scholar
26. Ramos JI. On the variational iteration method and other iterative techniques for nonlinear differential equations. Appl Mathematics Comput (2008) 199:39–69. doi:10.1016/j.amc.2007.09.024
CrossRef Full Text | Google Scholar
27. He CH, Liu HW, Liu C. A fractal-based approach to the mechanical properties of recycled aggregate concretes. Facta Universitatis, Ser Mech Eng (2024) 22(2):329–42. doi:10.22190/fume240605035h
CrossRef Full Text | Google Scholar
28. He CH, Liu C. Fractal dimensions of a porous concrete and its effect on the concrete’s strength. Facta Universitatis Ser Mech Eng (2023) 21(1):137–50. doi:10.22190/fume221215005h
CrossRef Full Text | Google Scholar
29. Yang XJ. New general fractional-order rheological models with kernels of Mittag-Leffler functions. Rom Rep Phys (2017) 69(4):118.
Google Scholar
30. Meng G, Zhang WM, Huang H, Li HG, Chen D. Micro-rotor dynamics for micro-electro-mechanical systems (MEMS). Chaos, Solitons and Fractals (2009) 40(2):538–62. doi:10.1016/j.chaos.2007.08.003
CrossRef Full Text | Google Scholar
31. Jindal SK, Varma MA, Thukral D. Comprehensive assessment of MEMS double touch mode capacitive pressure sensor on utilization of SiC film as primary sensing element: mathematical modelling and numerical simulation. Microelectronics J (2018) 73:30–6. doi:10.1016/j.mejo.2018.01.002
CrossRef Full Text | Google Scholar
32. Aghababa MP. Chaos in a fractional-order micro-electro-mechanical resonator and its suppression. Chin Phys B (2012) 21(10):100505. doi:10.1088/1674-1056/21/10/100505
CrossRef Full Text | Google Scholar
33. Yaghoubi Z, Adeli M. Adaptive observer-based control for fractional-order chaotic MEMS system. IET Control Theor Appl (2023) 17(11):1586–98. doi:10.1049/cth2.12495
CrossRef Full Text | Google Scholar
34. He JH. Periodic solution of a micro-electromechanical system. Facta Universititatis. Ser Mech Eng (2024) 22(2):187–98. doi:10.22190/fume240603034h
CrossRef Full Text | Google Scholar
35. Sousa JVDC, de Oliveira EC. A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int J Anal Appl (2018) 16(Number 1):83–96. doi:10.48550/arXiv.1704.08187
CrossRef Full Text | Google Scholar
36. Hong BJ, Wang JH. Exact solutions for the generalized Atangana-Baleanu-Riemann fractional (3 + 1)-dimensional Kadomtsev-Petviashvili equation. Symmetry (2023) 15(3):3–15. doi:10.3390/sym15010003
CrossRef Full Text | Google Scholar
38. Hong BJ. Abundant explicit solutions for the M-fractionalgeneralized coupled nonlinear Schrödinger KdV equations. J Low Frequency Noise,Vibration Active Control (2023) 42(3):1222–41. doi:10.1177/14613484221148411
CrossRef Full Text | Google Scholar
39. Hong BJ, Zhou JX, Zhu XC, Wang YT. Some Novel Optical Solutions for the Generalized M-Fractional Coupled NLS System. J Funct Spaces (2023) 2023:8283092. doi:10.1155/2023/8283092
CrossRef Full Text | Google Scholar
40. Hong BJ. Assorted exact explicit solutions for the generalized Atangana’s fractional BBM–Burgers equation with the dissipative term. Front Phys (2022) 10:1071200. doi:10.3389/fphy.2022.1071200
CrossRef Full Text | Google Scholar
41. Wang ML, Zhou YB, Li ZB. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys Lett A (1996) 16(2):67–75. doi:10.1016/0375-9601(96)00283-6
CrossRef Full Text | Google Scholar
42. Salahshour S, Ahmadian A, Abbasbandy S, Baleanu D. M-fractional derivative under interval uncertainty: theory, properties and applications. Chaos, Solitons and Fractals (2018) 117:84–93. doi:10.1016/j.chaos.2018.10.002
CrossRef Full Text | Google Scholar
43. Yao SW, Manzoor R, Zafar A, Inc M, Abbagari S, Houwe A. Exact soliton solutions to the Cahn-Allen equation and Predator-Prey model with truncated M-fractional derivative. Results Phys (2022) 37:105455. doi:10.1016/j.rinp.2022.105455
CrossRef Full Text | Google Scholar
44. Abazari R, Abazari M. Numerical simulation of generalized Hirota-Satsuma coupled KdV equation by RDTM and comparison with DTM. Commun Nonlinear Sci Numer Simulation (2012) 17:619–29. doi:10.1016/j.cnsns.2011.05.022
CrossRef Full Text | Google Scholar
45. Hirota R, Satsuma J. Soliton solutions of a coupled Korteweg-de Vries equation. Phys Lett A (1981) 85:407–8. doi:10.1016/0375-9601(81)90423-0
CrossRef Full Text | Google Scholar
46. Wu YT, Geng XG, Hu XB, Zhu SM. A generalized HirotaSatsuma coupled Korteweg-de Vries equation and miura transformations. Phys Lett A (1999) 255:259–64. doi:10.1016/s0375-9601(99)00163-2
CrossRef Full Text | Google Scholar
47. Fan EG, Hon BYC. Double periodic solutions with Jacobi elliptic functions for two generalized HirotaCSatsuma coupled KdV systems. Phys Lett A (2002) 292:335–7. doi:10.1016/S0375-9601(01)00815-5
CrossRef Full Text | Google Scholar
48. Lu DC, Hong BJ, Tian LX. New explicit exact solutions for the generalized coupled Hirota-Satsuma KdV system. Comput Mathematics Appl (2007) 53(8):1181–90. doi:10.1016/j.camwa.2006.08.047
CrossRef Full Text | Google Scholar
49. Hong BJ. New exact Jacobi elliptic functions solutions for the generalized coupled Hirota-Satsuma KdV system. Appl Mathematics Comput (2010) 217:472–9. doi:10.1016/j.amc.2010.05.079
CrossRef Full Text | Google Scholar
50. Hu HC, Liu QP. New Darboux transformation for HirotaCSatsuma coupled KdV system. Chaos Solitions and Fractals (2003) 17:921–8. doi:10.1016/S0960-0779(02)00309-0
CrossRef Full Text | Google Scholar
51. Wu LP, Chen SF, Pang CP. Bifurcations of traveling wave solutions for the generalized coupled Hirota-Satsuma KdV system. Nonlinear Anal (2008) 68:3860–9. doi:10.1016/j.na.2007.04.025
CrossRef Full Text | Google Scholar
52. Kurt A, Rezazadeh H, Senol M, Neirameh A, Tasbozan O, Eslami M, et al. Two effective approaches for solving fractional generalized Hirota-Satsuma coupled KdV system arising in interaction of long waves. J Ocean Eng Sci (2019) 4:24–32. doi:10.1016/j.joes.2018.12.004
CrossRef Full Text | Google Scholar
53. Rezazadeh H, Seadawy AR, Eslami M, Mirzazadeh M. Generalized solitary wave solutions to the time fractional generalized Hirota-Satsuma coupled KdV via new definition for wave transformation. J Ocean Eng Sci (2019) 4:77–84. doi:10.1016/j.joes.2019.01.002
CrossRef Full Text | Google Scholar
54. Yan ZY. The extended Jacobian elliptic function expansion method and its application in the generalized Hirota-Satsuma coupled KdV system. Chaos Solitions and Fractals (2003) 15:575–83. doi:10.1016/s0960-0779(02)00145-5
CrossRef Full Text | Google Scholar
55. Zayed EME, Zedan HA, Gepreel KA. On the solitary wave solutions for nonlinear Hirota-Satsuma coupled KdV of equations. Chaos Solitions and Fractals (2004) 22:285–303. doi:10.1016/j.chaos.2003.12.045
CrossRef Full Text | Google Scholar
56. Dogan K. Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation. Appl Mathematics Comput (2004) 147:69–78. doi:10.1016/s0096-3003(02)00651-3
CrossRef Full Text | Google Scholar
57. Chen Y, Yan ZY, Li B, Zhang HQ. New explicit solitary wave solutions and periodic wave solutions for the generalized coupled Hirota-Satsuma KdV system. Commun Theor Phys (2002) 38:261–6. doi:10.1088/0253-6102/38/3/261
CrossRef Full Text | Google Scholar
58. Feng Y, Zhang HQ. A new auxiliary function method for solving the generalized coupled Hirota-Satsuma KdV system. Appl Mathematics Comput (2008) 200:283–8. doi:10.1016/j.amc.2007.11.007
CrossRef Full Text | Google Scholar
59. Zuo JM, Zhang YM. Application of the G'/G-expansion method to solve coupled MKdV equations and coupled Hirota-Satsuma coupled KdV equations. Appl Mathematics Comput (2011) 217:5936–41. doi:10.1016/j.amc.2010.12.104
CrossRef Full Text | Google Scholar
60. Guo SM, Zhou YB. The extended G'/G-expansion method and its applications to the Whitham Broer-Kaup-Like equations and coupled Hirota-Satsuma KdV equations. Appl Mathematics Comput (2010) 215:3214–21. doi:10.1016/j.amc.2009.10.008
CrossRef Full Text | Google Scholar
61. Mirhosseini-Alizamini SM, Ullah N, Sabi J, Rezazadeh H, Inc M. New exact solutions for nonlinear Atangana conformable Boussinesq-like equations by new Kudryashov method. Int J Mod Phys B (2021) 35(12):2150163. doi:10.1142/s0217979221501630
CrossRef Full Text | Google Scholar
62. Hosseini K, Bekir A, Ansari R. New exact solutions of the conformable time-fractional Cahn- Allen and Cahn-Hilliard equations using the modified Kudryashov method. Optik (2017) 132:203–9. doi:10.1016/j.ijleo.2016.12.032
CrossRef Full Text | Google Scholar
63. Nadeem M, Li Z. Yang transform for the homotopy perturbation method: promise for fractal-fractional models. Fractals (2023) 31(07):2350068. doi:10.1142/s0218348x23500688
CrossRef Full Text | Google Scholar
64. Nadeem M, Ain QT, Alsayaad Y. Approximate solutions of multidimensional wave problems using an effective approach. J Funct Spaces (2023) 2023(1):5484241–9. doi:10.1155/2023/5484241
CrossRef Full Text | Google Scholar
65. Rafikov M, Balthazar JM. Optimal pest control problem in population dynamics. Comput Appl Mathematics (2005) 24(1):65–81. doi:10.1590/s1807-03022005000100004
CrossRef Full Text | Google Scholar