Skip to main content

ORIGINAL RESEARCH article

Front. Mol. Neurosci., 05 October 2011
Sec. Brain Disease Mechanisms
This article is part of the Research Topic Acetylcholinesterase: Old Questions and New Developments View all 12 articles

Cholinesterase-targeting microRNAs identified in silico affect specific biological processes


      Geula Hanin, Geula Hanin1,2Hermona Soreq,* Hermona Soreq1,2*
  • 1 The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
  • 2 Edmond and Lily Safra Center of Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

MicroRNAs (miRs) have emerged as important gene silencers affecting many target mRNAs. Here, we report the identification of 244 miRs that target the 3′-untranslated regions of different cholinesterase transcripts: 116 for butyrylcholinesterase (BChE), 47 for the synaptic acetylcholinesterase (AChE-S) splice variant, and 81 for the normally rare splice variant AChE-R. Of these, 11 and 6 miRs target both AChE-S and AChE-R, and AChE-R and BChE transcripts, respectively. BChE and AChE-S showed no overlapping miRs, attesting to their distinct modes of miR regulation. Generally, miRs can suppress a number of targets; thereby controlling an entire battery of functions. To evaluate the importance of the cholinesterase-targeted miRs in other specific biological processes we searched for their other experimentally validated target transcripts and analyzed the gene ontology enriched biological processes these transcripts are involved in. Interestingly, a number of the resulting categories are also related to cholinesterases. They include, for BChE, response to glucocorticoid stimulus, and for AChE, response to wounding and two child terms of neuron development: regulation of axonogenesis and regulation of dendrite morphogenesis. Importantly, all of the AChE-targeting miRs found to be related to these selected processes were directed against the normally rare AChE-R splice variant, with three of them, including the neurogenesis regulator miR-132, also directed against AChE-S. Our findings point at the AChE-R splice variant as particularly susceptible to miR regulation, highlight those biological functions of cholinesterases that are likely to be subject to miR post-transcriptional control, demonstrate the selectivity of miRs in regulating specific biological processes, and open new venues for targeted interference with these specific processes.

Introduction

MicroRNAs (miRs) are small RNA molecules which target many mRNA transcripts, leading to their post-transcriptional silencing (Bartel, 2009). Many mRNAs can be silenced by multiple miRs and miRs often target more than one mRNA participating in a particular biological function (Bartel, 2009). Together, this suggests that the miR networks affecting specific mRNA transcripts may provide useful information on the biological roles in which these transcripts are involved. Cholinesterases are involved in many biological functions (Massoulie, 2002). However, miR-132 is the only miR so far that has been experimentally validated as targeting AChE, with consequences on inflammatory responses (Shaked et al., 2009). To delineate additional miRs which might regulate cholinesterase functions, we explored the 3′-untranslated regions (3′-UTR) of human cholinesterase transcripts (acetyl- and butyrylcholinesterase, AChE, BChE; Soreq and Seidman, 2001).

Given that several of the proteins involved in a specific function are often repressed by the same miR (Girardot et al., 2010), changes in a particular miR might down-regulate the entire process. Hence, we surmised that those functions that are shared by cholinesterases and the other targets of the cholinesterase-complementary miRs would be more susceptible for being affected by miR control than other processes. That concept is schematically presented as a workflow in Figure 1.

FIGURE 1
www.frontiersin.org

Figure 1. The study’s flow chart. MicroRNAs complementary to the 3′-UTR domains of AChE and BChE transcripts were identified using several algorithms and other validated targets for those miRs were searched for and analyzed for common biological processes in which both these miR targets and cholinesterases are involved.

Materials and Methods

MicroRNA candidates were identified on each of the 3′-UTR sequences of AChE and BChE, which are 235, 1030, and 478 nucleotides long for BChE, the major “synaptic” AChE-S variant and the stress-inducible AChE-R variant, respectively (Figure 2A). We used the PicTar1, miRanda2, miRbase3, and microCosm4 algorithms to identify these transcript-specific miRs. All predictions ensured a threshold P-value < 0.05, and analysis specifications allowed both evolutionarily conserved and non-conserved miRs, which enabled us to include primate-targeting miRs as well.

FIGURE 2
www.frontiersin.org

Figure 2. Cholinesterase-targeted miRs show distinct 3′UTR distributions and partial overlaps. (A) The length of the studied 3′UTR domains. (B) Each 3′-UTR is targeted by many different miRs, part of which shared by BChE/AChE-R and AChE-R/AChE-S. (C) Gene and transcript compositions (exons shown as boxes, introns – as lines) and miR distribution patterns on the 3′-UTR domain (not to scale). Overlaps are color coded. MiR (diamonds) localizations are marked. Black stars show miR-132 position.

Validation of miR-target interactions generally involved a 3′UTR luciferase assay. In some cases, it was complemented by protein blots, real-time RT-qPCR, microarrays, transgenic technology, β-galactosidase, or GFP-tagged targets. See, for example the Shaked et al. (2009) report for several of the latter technologies used to explore the miR-132 target AChE, and (Hansen et al., 2010) for the “classical” 3′-UTR and transgenic approaches, in exploring p250GAP which is also a miR-132 target.

To search for gene ontology (GO) categories which are also relevant for the other mRNA targets of cholinesterase-related miRs, we used the DAVID functional annotation clustering tool5. For each of the miRs identified as targeting one of the cholinesterases we searched for other experimentally validated targets; and we then used the lists of the other validated targets as gene lists for the DAVID search. Each list was normalized to the entire human genome, which served as a background.

Results

We identified 116, 81, and 47 miRs (24, 8, and 20 miRs/100 nucleotides) that are complementary to the 3′-UTR domains of the BChE, AChE-R, and AChE-S transcripts, respectively. Of these, 6 miRs target both BChE and AChE-R whereas 11 miRs are common to both AChE-R and AChE-S, but BChE and AChE-S do not share any miR (Figure 2B). Positions of the identified miRs are presented in Figure 2C, with miR-132 targeting a similar seed domain localized at the very 3′-end of the 3′-UTR in both the AChE-S and AChE-R transcripts. Of the cholinesterase-targeting miRs, seven had multiple binding sites to the target AChE-S, nine to AChE-R, and seven to the BChE transcript, suggesting that they have a higher prospect for being functional (John et al., 2004). Compatible with the different conceptual principles on which each of the algorithms employed is based, only 8.6, 17, and 13.7% (7/81), (8/47), (16/116) of the miRs identified as targeting AChE-R, AChE-S, and BChE, respectively, were predicted by more than one of the algorithms. For AChE-R, these are hsa-miR-28-5p, −423-3p, −484, −483-5p, −663, −582-3p, −380*. For AChE-S, hsa-miR-194, −939, −658, −608,-615-5p, −423-5p −920, and let-7f-2* and for BChE, hsa-miR-203, −218, −221, −222, −181a, −181b, −181c, −181d, −494, −200b, −200c, −576-3p, −16-2*, −625, −195*, −889.

These cholinesterase-targeting miRs and their other validated non-cholinesterase targets are listed in Tables 13 with the corresponding functions attributed to these other targets. The relevant citations appear in Tables A1A4 in Appendix. Of note, numerous cholinesterase-targeting miRs have no experimentally validated targets at this time, yet others have more than one validated target and associate with more than one biological function. Examples include miR-124 which targets both the AChE-S and IQGAP1-(Furuta et al., 2010), a GTPase activating protein which promotes neurite outgrowth (Table 1). Additionally miR-152 and miR-148a, which target AChE-R, also target the calmodulin regulating kinase CaMKIIα (Liu et al., 2010; Table 2). Lastly, the BChE-targeting cluster of miRs-222 and −221 also target the neuronal early immediate protein c-fos (Ichimura et al., 2010; Table 3).

TABLE 1
www.frontiersin.org

Table 1. Additional targets of AChE-S targeting microRNAs.

TABLE 2
www.frontiersin.org

Table 2. Additional targets of microRNAs targeting AChE-R.

TABLE 3
www.frontiersin.org

Table 3. Additional targets of BChE-targeting microRNAs.

We focused our survey on those functions of those miRs for which experimental validation is available. Table 4 presents these miRs which are shared for AChE-R and AChE-S or AChE-R and BChE and some of their additional targets, highlighting the multitude of miR targets with predicted regulatory functions (e.g., the chromatin modulator zinc finger proteins ZEB1 and ZEB2 targeted by miR-200b, miR-200c, and miR-429 that are also directed to both AChE-R and AChE-S; Gregory et al., 2008). Likewise, the AChE-S-targeted miR-132 (Shaked et al., 2009; Soreq and Wolf, 2011) also targets the GTPase regulator p250GAP involved in neurite extension (Vo et al., 2005; Hansen et al., 2010; Table 4).

TABLE 4
www.frontiersin.org

Table 4. Additional targets of ChE-targeting miRs (common to more than one ChE).

The process-regulation hypothesis of miR function predicts the existence of biological functions in which both cholinesterases, and those other targets which share miRs with cholinesterases, would be involved. To challenge this hypothesis, we first identified the GO categories in which AChE and BChE are involved, and found 24 and 11 biological processes for these two proteins, respectively. Twenty-three, 13, and 18 enriched biological processes emerged as shared processes for the other validated targets of AChE-R, AChE-S, and BChE-targeting miRs, respectively (P-value threshold < 0.05).

Out of over 20 ontology categories attributed to AChE, only two are shared with the categories attributed to the other validated targets of the cholinesterase-targeting miRs. These are: Response to wounding (GO: 0009611; 68 transcripts) and Neuron development (GO: 0048666), and specifically its AChE-relevant child terms Regulation of axonogenesis (GO: 0050770; 78 transcripts) and regulation of dendrite morphogenesis (GO: 0048814; 27 transcripts). Surprisingly, all 10 miRs that regulate Response to wounding and Neuron development selectively target the normally rare, stress-responsive AChE-R transcript, (miR-186, −125b, −200c, −199a-5p, −199b-5p, −125a, −214, −7, −663, −31, and −148a) whereas only three of these miRs also target the prevalent AChE-S mRNA (miR-194, −24, and −132). For BChE, we found only one shared category out of 11 relevant ontology groups: Response to glucocorticoid stimulus (GO: 0051384; 119 transcripts), and no overlap with the AChE-relevant categories (Figures 3A,B).

FIGURE 3
www.frontiersin.org

Figure 3. MiR regulators of biological processes shared by cholinesterases and validated targets of these miRs. (A) miRs targeting transcripts participating in the AChE-S and AChE-R relevant response to wounding (yellow)and neuron development processes(blue) or both categories(green). (B) miRs targeting transcripts participating in the BChE-relevant response to glucocorticoid stimulus category.

Discussion

Using a variety of available algorithms, we found a plethora of cholinesterase-targeted miRs. Some of these were already validated as functionally capable of silencing other mRNA transcripts. A study of the functionally relevant biological processes in which these other targets are involved revealed a highly focused overlap with only few of the biological processes in which cholinesterases participate. Given that miRs regulate targets which share biological processes, cholinesterases appear to be primarily subject to miR regulation when involved in neuronal development, response to wounding, and glucocorticoid stimulus; and specific cholinergic processes are regulated by miRs targeting both AChE and other targets participating in the same biological process.

Several limitations should be considered in the context of this study. First, the currently available search algorithms for miR candidates appear to differ substantially, which casts a shadow on the veracity of such identification. Second, research bias has focused much of the efforts in the miR field toward cancer research, whereas neuroscience-focused miRs were relatively neglected. Therefore, we might have overlooked important miRs simply because they have not yet been validated experimentally. This being said, that many of the biological functions in which cholinesterases are involved show no relevant cholinesterase-targeting miR sequences suggests other modes of regulation of cholinesterase levels for most of these functions [e.g., transcriptional (Hill and Treisman, 1995), epigenetic (Allshire and Karpen, 2008), or post-translational processes (Fukushima et al., 2009)]. Alternatively, or in addition, miRs might exist which control these functions, but have no role in cancer biology and are therefore not yet characterized. MiR regulation of cholinesterase functions will therefore need to be re-inspected in the near future.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

The authors are grateful to E. R. Bennett, Jerusalem, for critical evaluation of this manuscript. This work was supported by the Legacy Heritage Biomedical Science Partnership Program of the Israel Science Foundation (Grant No. 1876/08, to Hermona Soreq).

Footnotes

References

Allshire, R. C., and Karpen, G. H. (2008). Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat. Rev. Genet. 9, 923–937.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Fukushima, N., Furuta, D., Hidaka, Y., Moriyama, R., and Tsujiuchi, T. (2009). Post-translational modifications of tubulin in the nervous system. J. Neurochem. 109, 683–693.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Furuta, M., Kozaki, K. I., Tanaka, S., Arii, S., Imoto, I., and Inazawa, J. (2010). miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis 31, 766–776.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Girardot, M., Pecquet, C., Boukour, S., Knoops, L., Ferrant, A., Vainchenker, W., Giraudier, S., and Constantinescu, S. N. (2010). miR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets. Blood 116, 437–445.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., Vadas, M. A., Khew-Goodall, Y., and Goodall, G. J. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Hansen, K. F., Sakamoto, K., Wayman, G. A., Impey, S., and Obrietan, K. (2010). Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS ONE 5, e15497.

CrossRef Full Text

Hill, C. S., and Treisman, R. (1995). Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 80, 199–211.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Ichimura, A., Ruike, Y., Terasawa, K., Shimizu, K., and Tsujimoto, G. (2010). MicroRNA-34a inhibits cell proliferation by repressing mitogen-activated protein kinase kinase 1 during megakaryocytic differentiation of K562 cells. Mol. Pharmacol. 77, 1016–1024.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., and Marks, D. S. (2004). Human MicroRNA targets. PLoS Biol. 2, e363.

CrossRef Full Text

Liu, X., Zhan, Z., Xu, L., Ma, F., Li, D., Guo, Z., Li, N., and Cao, X. (2010). MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKII alpha. J. Immunol. 185, 7244–7251.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Massoulie, J. (2002). The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11, 130–143.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Shaked, I., Meerson, A., Wolf, Y., Avni, R., Greenberg, D., Gilboa-Geffen, A., and Soreq, H. (2009). MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31, 965–973.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Soreq, H., and Seidman, S. (2001). Acetylcholinesterase – new roles for an old actor. Nat. Rev. Neurosci. 2, 294–302.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Soreq, H., and Wolf, Y. (2011). NeurimmiRs: micro-RNAs in the neuroimmune interface. Trends Mol. Med. [Epub ahead of print].

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H., and Impey, S. (2005). A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 102, 16426–16431.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Appendix

TABLE A1
www.frontiersin.org

Table A1. Additional targets of AChE-S targeting microRNAs.

TABLE A2
www.frontiersin.org

Table A2. Additional targets of microRNAs targeting AChE-R.

TABLE A3
www.frontiersin.org

Table A3. Additional targets of BChE-targeting microRNAs.

TABLE A4
www.frontiersin.org

Table A4. Additional targets of ChE-targeting miRs (common to more than one ChE).

References

Agrawal, R., Tran, U., and Wessely, O. (2009). The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development 136, 3927–3936.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Alajez, N. M., Lenarduzzi, M., Ito, E., Hui, A. B., Shi, W., Bruce, J., Yue, S., Huang, S. H., Xu, W., Waldron, J., O’sullivan, B., and Liu, F. F. (2011). MiR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. Cancer Res. 71, 2381–2391.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Alvarez-Saavedra, M., Antoun, G., Yanagiya, A., Oliva-Hernandez, R., Cornejo-Palma, D., Perez-Iratxeta, C., Sonenberg, N., and Cheng, H. Y. (2011). miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum. Mol. Genet. 20, 731–751.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Anand, S., Majeti, B. K., Acevedo, L. M., Murphy, E. A., Mukthavaram, R., Scheppke, L., Huang, M., Shields, D. J., Lindquist, J. N., Lapinski, P. E., King, P. D., Weis, S. M., and Cheresh, D. A. (2010). MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat. Med. 16, 909–914.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Aprelikova, O., Yu, X., Palla, J., Wei, B. R., John, S., Yi, M., Stephens, R., Simpson, R. M., Risinger, J. I., Jazaeri, A., and Niederhuber, J. (2010). The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle 9, 4387–4398.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Arvanitis, D. N., Jungas, T., Behar, A., and Davy, A. (2010). Ephrin-B1 reverse signaling controls a posttranscriptional feedback mechanism via miR-124. Mol. Cell. Biol. 30, 2508–2517.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Baroukh, N., Ravier, M. A., Loder, M. K., Hill, E. V., Bounacer, A., Scharfmann, R., Rutter, G. A., and Van Obberghen, E. (2007). MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J. Biol. Chem. 282, 19575–19588.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Ben-Ami, O., Pencovich, N., Lotem, J., Levanon, D., and Groner, Y. (2009). A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis. Proc. Natl. Acad. Sci. U.S.A. 106, 238–243.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Bhatnagar, N., Li, X., Padi, S. K., Zhang, Q., Tang, M. S., and Guo, B. (2010). Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis. 1, e105.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Bhattacharya, S. D., Garrison, J., Guo, H., Mi, Z., Markovic, J., Kim, V. M., and Kuo, P. C. (2010). Micro-RNA-181a regulates osteopontin-dependent metastatic function in hepatocellular cancer cell lines. Surgery 148, 291–297.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Braconi, C., Huang, N., and Patel, T. (2010a). MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 51, 881–890.

Braconi, C., Valeri, N., Gasparini, P., Huang, N., Taccioli, C., Nuovo, G., Suzuki, T., Croce, C. M., and Patel, T. (2010b). Hepatitis C virus proteins modulate microRNA expression and chemosensitivity in malignant hepatocytes. Clin. Cancer Res. 16, 957–966.

CrossRef Full Text

Braig, S., Mueller, D. W., Rothhammer, T., and Bosserhoff, A. K. (2010). MicroRNA miR-196a is a central regulator of HOX-B7 and BMP4 expression in malignant melanoma. Cell. Mol. Life Sci. 67, 3535–3548.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Bueno, M. J., Perez De Castro, I., Gomez De Cedron, M., Santos, J., Calin, G. A., Cigudosa, J. C., Croce, C. M., Fernandez-Piqueras, J., and Malumbres, M. (2008). Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 13, 496–506.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Cao, X., Pfaff, S. L., and Gage, F. H. (2007). A functional study of miR-124 in the developing neural tube. Genes Dev. 21, 531–536.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Cha, S. T., Chen, P. S., Johansson, G., Chu, C. Y., Wang, M. Y., Jeng, Y. M., Yu, S. L., Chen, J. S., Chang, K. J., Jee, S. H., Tan, C. T., Lin, M. T., and Kuo, M. L. (2010). MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. Cancer Res. 70, 2675–2685.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Chan, Y. C., Khanna, S., Roy, S., and Sen, C. K. (2011). miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J. Biol. Chem. 286, 2047–2056.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Chao, A., Tsai, C. L., Wei, P. C., Hsueh, S., Chao, A. S., Wang, C. J., Tsai, C. N., Lee, Y. S., Wang, T. H., and Lai, C. H. (2010). Decreased expression of microRNA-199b increases protein levels of SET (protein phosphatase 2A inhibitor) in human choriocarcinoma. Cancer Lett. 291, 99–107.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Chen, L., Yan, H. X., Yang, W., Hu, L., Yu, L. X., Liu, Q., Li, L., Huang, D. D., Ding, J., Shen, F., Zhou, W. P., Wu, M. C., and Wang, H. Y. (2009). The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J. Hepatol. 50, 358–369.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Chen, R., Alvero, A. B., Silasi, D. A., Kelly, M. G., Fest, S., Visintin, I., Leiser, A., Schwartz, P. E., Rutherford, T., and Mor, G. (2008). Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene 27, 4712–4723.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Cheng, H. Y., Papp, J. W., Varlamova, O., Dziema, H., Russell, B., Curfman, J. P., Nakazawa, T., Shimizu, K., Okamura, H., Impey, S., and Obrietan, K. (2007). microRNA modulation of circadian-clock period and entrainment. Neuron 54, 813–829.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Cheng, L. C., Pastrana, E., Tavazoie, M., and Doetsch, F. (2009). miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 12, 399–408.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Chou, Y. T., Lin, H. H., Lien, Y. C., Wang, Y. H., Hong, C. F., Kao, Y. R., Lin, S. C., Chang, Y. C., Lin, S. Y., Chen, S. J., Chen, H. C., Yeh, S. D., and Wu, C. W. (2010). EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res. 70, 8822–8831.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Cocco, E., Paladini, F., Macino, G., Fulci, V., Fiorillo, M. T., and Sorrentino, R. (2010). The expression of vasoactive intestinal peptide receptor 1 is negatively modulated by microRNA 525-5p. PLoS ONE 5, e12067.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Cochrane, D. R., Spoelstra, N. S., Howe, E. N., Nordeen, S. K., and Richer, J. K. (2009). MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol. Cancer Ther. 8, 1055–1066.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Cortez, M. A., Nicoloso, M. S., Shimizu, M., Rossi, S., Gopisetty, G., Molina, J. R., Carlotti, C. Jr., Tirapelli, D., Neder, L., Brassesco, M. S., Scrideli, C. A., Tone, L. G., Georgescu, M. M., Zhang, W., Puduvalli, V., and Calin, G. A. (2010). miR-29b and miR-125a regulate podoplanin and suppress invasion in glioblastoma. Genes Chromosomes Cancer 49, 981–990.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Cottonham, C. L., Kaneko, S., and Xu, L. (2010). miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J. Biol. Chem. 285, 35293–35302.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Cowden Dahl, K. D., Dahl, R., Kruichak, J. N., and Hudson, L. G. (2009). The epidermal growth factor receptor responsive miR-125a represses mesenchymal morphology in ovarian cancer cells. Neoplasia 11, 1208–1215.

Pubmed Abstract | Pubmed Full Text

Cuesta, R., Martinez-Sanchez, A., and Gebauer, F. (2009). miR-181a regulates cap-dependent translation of p27(kip1) mRNA in myeloid cells. Mol. Cell. Biol. 29, 2841–2851.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Da Costa Martins, P. A., Salic, K., Gladka, M. M., Armand, A. S., Leptidis, S., El Azzouzi, H., Hansen, A., Coenen-De Roo, C. J., Bierhuizen, M. F., Van Der Nagel, R., Van Kuik, J., De Weger, R., De Bruin, A., Condorelli, G., Arbones, M. L., Eschenhagen, T., and De Windt, L. J. (2010). MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat. Cell Biol. 12, 1220–1227.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

De Yebenes, V. G., Belver, L., Pisano, D. G., Gonzalez, S., Villasante, A., Croce, C., He, L., and Ramiro, A. R. (2008). miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J. Exp. Med. 205, 2199–2206.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Dentelli, P., Rosso, A., Orso, F., Olgasi, C., Taverna, D., and Brizzi, M. F. (2010). microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler. Thromb. Vasc. Biol. 30, 1562–1568.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Diakos, C., Zhong, S., Xiao, Y., Zhou, M., Vasconcelos, G. M., Krapf, G., Yeh, R. F., Zheng, S., Kang, M., Wiencke, J. K., Pombo-De-Oliveira, M. S., Panzer-Grumayer, R., and Wiemels, J. L. (2010). TEL-AML1 regulation of survivin and apoptosis via miRNA-494 and miRNA-320a. Blood 116, 4885–4893.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Duisters, R. F., Tijsen, A. J., Schroen, B., Leenders, J. J., Lentink, V., Van Der Made, I., Herias, V., Van Leeuwen, R. E., Schellings, M. W., Barenbrug, P., Maessen, J. G., Heymans, S., Pinto, Y. M., and Creemers, E. E. (2009). miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 104, 170–178.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Duursma, A. M., Kedde, M., Schrier, M., Le Sage, C., and Agami, R. (2008). miR-148 targets human DNMT3b protein coding region. RNA 14, 872–877.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Dyrskjot, L., Ostenfeld, M. S., Bramsen, J. B., Silahtaroglu, A. N., Lamy, P., Ramanathan, R., Fristrup, N., Jensen, J. L., Andersen, C. L., Zieger, K., Kauppinen, S., Ulhoi, B. P., Kjems, J., Borre, M., and Orntoft, T. F. (2009). Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res. 69, 4851–4860.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Edbauer, D., Neilson, J. R., Foster, K. A., Wang, C. F., Seeburg, D. P., Batterton, M. N., Tada, T., Dolan, B. M., Sharp, P. A., and Sheng, M. (2010). Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65, 373–384.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Ferretti, E., De Smaele, E., Miele, E., Laneve, P., Po, A., Pelloni, M., Paganelli, A., Di Marcotullio, L., Caffarelli, E., Screpanti, I., Bozzoni, I., and Gulino, A. (2008). Concerted microRNA control of hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J. 27, 2616–2627.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Ferretti, E., De Smaele, E., Po, A., Di Marcotullio, L., Tosi, E., Espinola, M. S., Di Rocco, C., Riccardi, R., Giangaspero, F., Farcomeni, A., Nofroni, I., Laneve, P., Gioia, U., Caffarelli, E., Bozzoni, I., Screpanti, I., and Gulino, A. (2009). MicroRNA profiling in human medulloblastoma. Int. J. Cancer 124, 568–577.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Forrest, A. R., Kanamori-Katayama, M., Tomaru, Y., Lassmann, T., Ninomiya, N., Takahashi, Y., De Hoon, M. J., Kubosaki, A., Kaiho, A., Suzuki, M., Yasuda, J., Kawai, J., Hayashizaki, Y., Hume, D. A., and Suzuki, H. (2010). Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 24, 460–466.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Fujita, Y., Kojima, K., Ohhashi, R., Hamada, N., Nozawa, Y., Kitamoto, A., Sato, A., Kondo, S., Kojima, T., Deguchi, T., and Ito, M. (2010). MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J. Biol. Chem. 285, 19076–19084.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Fukuda, Y., Kawasaki, H., and Taira, K. (2005). Exploration of human miRNA target genes in neuronal differentiation. Nucleic Acids Symp. Ser. (Oxf.) 49, 341–342.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Garofalo, M., Di Leva, G., Romano, G., Nuovo, G., Suh, S. S., Ngankeu, A., Taccioli, C., Pichiorri, F., Alder, H., Secchiero, P., Gasparini, P., Gonelli, A., Costinean, S., Acunzo, M., Condorelli, G., and Croce, C. M. (2009). miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16, 498–509.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Garofalo, M., Quintavalle, C., Di Leva, G., Zanca, C., Romano, G., Taccioli, C., Liu, C. G., Croce, C. M., and Condorelli, G. (2008). MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 27, 3845–3855.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Garzia, L., Andolfo, I., Cusanelli, E., Marino, N., Petrosino, G., De Martino, D., Esposito, V., Galeone, A., Navas, L., Esposito, S., Gargiulo, S., Fattet, S., Donofrio, V., Cinalli, G., Brunetti, A., Vecchio, L. D., Northcott, P. A., Delattre, O., Taylor, M. D., Iolascon, A., and Zollo, M. (2009). MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS ONE 4, e4998.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Ge, Y., Sun, Y., and Chen, J. (2011). IGF-II is regulated by microRNA-125b in skeletal myogenesis. J. Cell Biol. 192, 69–81.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Geisler, A., Jungmann, A., Kurreck, J., Poller, W., Katus, H. A., Vetter, R., Fechner, H., and Muller, O. J. (2011). microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors. Gene Ther. 18, 199–209.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Giraud-Triboult, K., Rochon-Beaucourt, C., Nissan, X., Champon, B., Aubert, S., and Pietu, G. (2011). Combined mRNA and microRNA profiling reveals that miR-148a and miR-20b control human mesenchymal stem cell phenotype via EPAS1. Physiol. Genomics 43, 77–86.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Goeppert, B., Schmezer, P., Dutruel, C., Oakes, C., Renner, M., Breinig, M., Warth, A., Vogel, M. N., Mittelbronn, M., Mehrabi, A., Gdynia, G., Penzel, R., Longerich, T., Breuhahn, K., Popanda, O., Plass, C., Schirmacher, P., and Kern, M. A. (2010). Down-regulation of tumor suppressor A kinase anchor protein 12 in human hepatocarcinogenesis by epigenetic mechanisms. Hepatology 52, 2023–2033.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Goswami, S., Tarapore, R. S., Teslaa, J. J., Grinblat, Y., Setaluri, V., and Spiegelman, V. S. (2010). MicroRNA-340-mediated degradation of microphthalmia-associated transcription factor mRNA is inhibited by the coding region determinant-binding protein. J. Biol. Chem. 285, 20532–20540.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Gramantieri, L., Fornari, F., Ferracin, M., Veronese, A., Sabbioni, S., Calin, G. A., Grazi, G. L., Croce, C. M., Bolondi, L., and Negrini, M. (2009). MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin. Cancer Res. 15, 5073–5081.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Guidi, M., Muinos-Gimeno, M., Kagerbauer, B., Marti, E., Estivill, X., and Espinosa-Parrilla, Y. (2010). Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells. BMC Mol. Biol. 11, 95.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Guo, S., Lu, J., Schlanger, R., Zhang, H., Wang, J. Y., Fox, M. C., Purton, L. E., Fleming, H. H., Cobb, B., Merkenschlager, M., Golub, T. R., and Scadden, D. T. (2010). MicroRNA miR-125a controls hematopoietic stem cell number. Proc. Natl. Acad. Sci. U.S.A. 107, 14229–14234.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Guo, X., Wu, Y., and Hartley, R. S. (2009). MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA Biol. 6, 575–583.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Gutierrez, O., Berciano, M. T., Lafarga, M., and Fernandez-Luna, J. L. (2011). A novel pathway of TEF regulation mediated by microRNA-125b contributes to the control of actin distribution and cell shape in fibroblasts. PLoS ONE 6, e17169.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Hackanson, B., Bennett, K. L., Brena, R. M., Jiang, J., Claus, R., Chen, S. S., Blagitko-Dorfs, N., Maharry, K., Whitman, S. P., Schmittgen, T. D., Lubbert, M., Marcucci, G., Bloomfield, C. D., and Plass, C. (2008). Epigenetic modification of CCAAT/enhancer binding protein alpha expression in acute myeloid leukemia. Cancer Res. 68, 3142–3151.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Haflidadottir, B. S., Bergsteinsdottir, K., Praetorius, C., and Steingrimsson, E. (2010). miR-148 regulates Mitf in melanoma cells. PLoS ONE 5, e11574.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Hashimoto, Y., Akiyama, Y., Otsubo, T., Shimada, S., and Yuasa, Y. (2010). Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis 31, 777–784.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Hu, G., Gong, A. Y., Liu, J., Zhou, R., Deng, C., and Chen, X. M. (2010). miR-221 suppresses ICAM-1 translation and regulates interferon-gamma-induced ICAM-1 expression in human cholangiocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G542–G550.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Huang, L., Luo, J., Cai, Q., Pan, Q., Zeng, H., Guo, Z., Dong, W., Huang, J., and Lin, T. (2011a). MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int. J. Cancer 128, 1758–1769.

CrossRef Full Text

Huang, W., Liu, H., Wang, T., Zhang, T., Kuang, J., Luo, Y., Chung, S. S., Yuan, L., and Yang, J. Y. (2011b). Tonicity-responsive microRNAs contribute to the maximal induction of osmoregulatory transcription factor OREBP in response to high-NaCl hypertonicity. Nucleic Acids Res. 39, 475–485.

CrossRef Full Text

Huang, S., Wu, S., Ding, J., Lin, J., Wei, L., Gu, J., and He, X. (2010). MicroRNA-181a modulates gene expression of zinc finger family members by directly targeting their coding regions. Nucleic Acids Res. 38, 7211–7218.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Iliopoulos, D., Lindahl-Allen, M., Polytarchou, C., Hirsch, H. A., Tsichlis, P. N., and Struhl, K. (2010). Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol. Cell 39, 761–772.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Ilnytskyy, Y., Zemp, F. J., Koturbash, I., and Kovalchuk, O. (2008). Altered microRNA expression patterns in irradiated hematopoietic tissues suggest a sex-specific protective mechanism. Biochem. Biophys. Res. Commun. 377, 41–45.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Im, H. I., Hollander, J. A., Bali, P., and Kenny, P. J. (2010). MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat. Neurosci. 13, 1120–1127.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Imam, J. S., Buddavarapu, K., Lee-Chang, J. S., Ganapathy, S., Camosy, C., Chen, Y., and Rao, M. K. (2010). MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers. Oncogene 29, 4971–4979.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Incoronato, M., Garofalo, M., Urso, L., Romano, G., Quintavalle, C., Zanca, C., Iaboni, M., Nuovo, G., Croce, C. M., and Condorelli, G. (2010). miR-212 increases tumor necrosis factor-related apoptosis-inducing ligand sensitivity in non-small cell lung cancer by targeting the antiapoptotic protein PED. Cancer Res. 70, 3638–3646.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Jeyapalan, Z., Deng, Z., Shatseva, T., Fang, L., He, C., and Yang, B. B. (2011). Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res. 39, 3026–3041.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Ji, J., Zhao, L., Budhu, A., Forgues, M., Jia, H. L., Qin, L. X., Ye, Q. H., Yu, J., Shi, X., Tang, Z. Y., and Wang, X. W. (2010). Let-7g targets collagen type I alpha2 and inhibits cell migration in hepatocellular carcinoma. J. Hepatol. 52, 690–697.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Jiang, L., Liu, X., Chen, Z., Jin, Y., Heidbreder, C. E., Kolokythas, A., Wang, A., Dai, Y., and Zhou, X. (2010). MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem. J. 432, 199–205.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Juan, A. H., Kumar, R. M., Marx, J. G., Young, R. A., and Sartorelli, V. (2009). Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol. Cell 36, 61–74.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Junn, E., Lee, K. W., Jeong, B. S., Chan, T. W., Im, J. Y., and Mouradian, M. M. (2009). Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc. Natl. Acad. Sci. U.S.A. 106, 13052–13057.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Karres, J. S., Hilgers, V., Carrera, I., Treisman, J., and Cohen, S. M. (2007). The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131, 136–145.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinson, M., Lee, J., Fine, H., Chiocca, E. A., Lawler, S., and Purow, B. (2008). microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 68, 3566–3572.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Kikkawa, N., Hanazawa, T., Fujimura, L., Nohata, N., Suzuki, H., Chazono, H., Sakurai, D., Horiguchi, S., Okamoto, Y., and Seki, N. (2010). miR-489 is a tumour-suppressive miRNA target PTPN11 in hypopharyngeal squamous cell carcinoma (HSCC). Br. J. Cancer 103, 877–884.

Kim, B. M., Woo, J., Kanellopoulou, C., and Shivdasani, R. A. (2011). Regulation of mouse stomach development and Barx1 expression by specific microRNAs. Development 138, 1081–1086.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Kim, D., Song, J., and Jin, E. J. (2010). MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. J. Biol. Chem. 285, 26900–26907.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Kim, Y. J., Bae, S. W., Yu, S. S., Bae, Y. C., and Jung, J. S. (2009a). miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J. Bone Miner. Res. 24, 816–825.

CrossRef Full Text

Kim, Y. K., Yu, J., Han, T. S., Park, S. Y., Namkoong, B., Kim, D. H., Hur, K., Yoo, M. W., Lee, H. J., Yang, H. K., and Kim, V. N. (2009b). Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 37, 1672–1681.

CrossRef Full Text

Klein, M. E., Lioy, D. T., Ma, L., Impey, S., Mandel, G., and Goodman, R. H. (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat. Neurosci. 10, 1513–1514.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Ko, H. Y., Lee, D. S., and Kim, S. (2009). Noninvasive imaging of microRNA124a-mediated repression of the chromosome 14 ORF 24 gene during neurogenesis. FEBS J. 276, 4854–4865.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Komagata, S., Nakajima, M., Takagi, S., Mohri, T., Taniya, T., and Yokoi, T. (2009). Human CYP24 catalyzing the inactivation of calcitriol is post-transcriptionally regulated by miR-125b. Mol. Pharmacol. 76, 702–709.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Kotani, A., Ha, D., Hsieh, J., Rao, P. K., Schotte, D., Den Boer, M. L., Armstrong, S. A., and Lodish, H. F. (2009). miR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221. Blood 114, 4169–4178.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., Macmenamin, P., Da Piedade, I., Gunsalus, K. C., Stoffel, M., and Rajewsky, N. (2005). Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Lagos, D., Pollara, G., Henderson, S., Gratrix, F., Fabani, M., Milne, R. S., Gotch, F., and Boshoff, C. (2010). miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nat. Cell Biol. 12, 513–519.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Lal, A., Navarro, F., Maher, C. A., Maliszewski, L. E., Yan, N., O’day, E., Chowdhury, D., Dykxhoorn, D. M., Tsai, P., Hofmann, O., Becker, K. G., Gorospe, M., Hide, W., and Lieberman, J. (2009a). miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol. Cell 35, 610–625.

CrossRef Full Text

Lal, A., Pan, Y., Navarro, F., Dykxhoorn, D. M., Moreau, L., Meire, E., Bentwich, Z., Lieberman, J., and Chowdhury, D. (2009b). miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat. Struct. Mol. Biol. 16, 492–498.

CrossRef Full Text

Lan, F. F., Wang, H., Chen, Y. C., Chan, C. Y., Ng, S. S., Li, K., Xie, D., He, M. L., Lin, M. C., and Kung, H. F. (2011). Hsa-let-7g inhibits proliferation of hepatocellular carcinoma cells by downregulation of c-Myc and upregulation of p16(INK4A). Int. J. Cancer 128, 319–331.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Le, M. T., Teh, C., Shyh-Chang, N., Xie, H., Zhou, B., Korzh, V., Lodish, H. F., and Lim, B. (2009). MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 23, 862–876.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Leivonen, S. K., Makela, R., Ostling, P., Kohonen, P., Haapa-Paananen, S., Kleivi, K., Enerly, E., Aakula, A., Hellstrom, K., Sahlberg, N., Kristensen, V. N., Borresen-Dale, A. L., Saviranta, P., Perala, M., and Kallioniemi, O. (2009). Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene 28, 3926–3936.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Li, L. M., Hou, D. X., Guo, Y. L., Yang, J. W., Liu, Y., Zhang, C. Y., and Zen, K. (2011). Role of microRNA-214-targeting phosphatase and tensin homolog in advanced glycation end product-induced apoptosis delay in monocytes. J. Immunol. 186, 2552–2560.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Li, S. S., Yu, S. L., Kao, L. P., Tsai, Z. Y., Singh, S., Chen, B. Z., Ho, B. C., Liu, Y. H., and Yang, P. C. (2009a). Target identification of microRNAs expressed highly in human embryonic stem cells. J. Cell. Biochem. 106, 1020–1030.

CrossRef Full Text

Li, X. F., Yan, P. J., and Shao, Z. M. (2009b). Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene 28, 3937–3948.

CrossRef Full Text

Li, X., and Carthew, R. W. (2005). A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123, 1267–1277.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Liao, R., Sun, J., Zhang, L., Lou, G., Chen, M., Zhou, D., Chen, Z., and Zhang, S. (2008). MicroRNAs play a role in the development of human hematopoietic stem cells. J. Cell. Biochem. 104, 805–817.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Liu, H., Brannon, A. R., Reddy, A. R., Alexe, G., Seiler, M. W., Arreola, A., Oza, J. H., Yao, M., Juan, D., Liou, L. S., Ganesan, S., Levine, A. J., Rathmell, W. K., and Bhanot, G. V. (2010a). Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell renal cell carcinoma. BMC Syst. Biol. 4, 51.

CrossRef Full Text

Liu, J., Luo, X. J., Xiong, A. W., Zhang, Z. D., Yue, S., Zhu, M. S., and Cheng, S. Y. (2010b). MicroRNA-214 promotes myogenic differentiation by facilitating exit from mitosis via down-regulation of proto-oncogene N-ras. J. Biol. Chem. 285, 26599–26607.

CrossRef Full Text

Liu, X., Sempere, L. F., Ouyang, H., Memoli, V. A., Andrew, A. S., Luo, Y., Demidenko, E., Korc, M., Shi, W., Preis, M., Dragnev, K. H., Li, H., Direnzo, J., Bak, M., Freemantle, S. J., Kauppinen, S., and Dmitrovsky, E. (2010c). MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J. Clin. Invest. 120, 1298–1309.

CrossRef Full Text

Liu, X., Wang, A., Heidbreder, C. E., Jiang, L., Yu, J., Kolokythas, A., Huang, L., Dai, Y., and Zhou, X. (2010d). MicroRNA-24 targeting RNA-binding protein DND1 in tongue squamous cell carcinoma. FEBS Lett. 584, 4115–4120.

CrossRef Full Text

Liu, X., Zhan, Z., Xu, L., Ma, F., Li, D., Guo, Z., Li, N., and Cao, X. (2010e). MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIalpha. J. Immunol. 185, 7244–7251.

CrossRef Full Text

Liu, K., Liu, Y., Mo, W., Qiu, R., Wang, X., Wu, J. Y., and He, R. (2011). MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. Nucleic Acids Res. 39, 2869–2879.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Liu, X., Yu, J., Jiang, L., Wang, A., Shi, F., Ye, H., and Zhou, X. (2009). MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genomics Proteomics 6, 131–139.

Pubmed Abstract | Pubmed Full Text

Luna, C., Li, G., Qiu, J., Epstein, D. L., and Gonzalez, P. (2011). MicroRNA-24 regulates the processing of latent TGFbeta1 during cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN. J. Cell. Physiol. 226, 1407–1414.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Luthra, R., Singh, R. R., Luthra, M. G., Li, Y. X., Hannah, C., Romans, A. M., Barkoh, B. A., Chen, S. S., Ensor, J., Maru, D. M., Broaddus, R. R., Rashid, A., and Albarracin, C. T. (2008). MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers. Oncogene 27, 6667–6678.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Lwin, T., Lin, J., Choi, Y. S., Zhang, X., Moscinski, L. C., Wright, K. L., Sotomayor, E. M., Dalton, W. S., and Tao, J. (2010). Follicular dendritic cell-dependent drug resistance of non-Hodgkin lymphoma involves cell adhesion-mediated Bim down-regulation through induction of microRNA-181a. Blood 116, 5228–5236.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Ma, N., Wang, X., Qiao, Y., Li, F., Hui, Y., Zou, C., Jin, J., Lv, G., Peng, Y., Wang, L., Huang, H., Zhou, L., Zheng, X., and Gao, X. (2011). Coexpression of an intronic microRNA and its host gene reveals a potential role for miR-483-5p as an IGF2 partner. Mol. Cell. Endocrinol. 333, 96–101.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Makeyev, E. V., Zhang, J., Carrasco, M. A., and Maniatis, T. (2007). The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435–448.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Malhas, A., Saunders, N. J., and Vaux, D. J. (2010). The nuclear envelope can control gene expression and cell cycle progression via miRNA regulation. Cell Cycle 9, 531–539.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Malumbres, R., Sarosiek, K. A., Cubedo, E., Ruiz, J. W., Jiang, X., Gascoyne, R. D., Tibshirani, R., and Lossos, I. S. (2009). Differentiation stage-specific expression of microRNAs in B lymphocytes and diffuse large B-cell lymphomas. Blood 113, 3754–3764.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Marasa, B. S., Srikantan, S., Masuda, K., Abdelmohsen, K., Kuwano, Y., Yang, X., Martindale, J. L., Rinker-Schaeffer, C. W., and Gorospe, M. (2009). Increased MKK4 abundance with replicative senescence is linked to the joint reduction of multiple microRNAs. Sci. Signal. 2, ra69.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Mardaryev, A. N., Ahmed, M. I., Vlahov, N. V., Fessing, M. Y., Gill, J. H., Sharov, A. A., and Botchkareva, N. V. (2010). Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. FASEB J. 24, 3869–3881.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Martinez, I., Cazalla, D., Almstead, L. L., Steitz, J. A., and Dimaio, D. (2011). miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc. Natl. Acad. Sci. U.S.A. 108, 522–527.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Maru, D. M., Singh, R. R., Hannah, C., Albarracin, C. T., Li, Y. X., Abraham, R., Romans, A. M., Yao, H., Luthra, M. G., Anandasabapathy, S., Swisher, S. G., Hofstetter, W. L., Rashid, A., and Luthra, R. (2009). MicroRNA-196a is a potential marker of progression during Barrett’s metaplasia-dysplasia-invasive adenocarcinoma sequence in esophagus. Am. J. Pathol. 174, 1940–1948.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Mees, S. T., Mardin, W. A., Wendel, C., Baeumer, N., Willscher, E., Senninger, N., Schleicher, C., Colombo-Benkmann, M., and Haier, J. (2010). EP300 – a miRNA-regulated metastasis suppressor gene in ductal adenocarcinomas of the pancreas. Int. J. Cancer 126, 114–124.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Mellios, N., Huang, H. S., Grigorenko, A., Rogaev, E., and Akbarian, S. (2008). A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum. Mol. Genet. 17, 3030–3042.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Mishra, P. J., Song, B., Wang, Y., Humeniuk, R., Banerjee, D., Merlino, G., Ju, J., and Bertino, J. R. (2009). MiR-24 tumor suppressor activity is regulated independent of p53 and through a target site polymorphism. PLoS ONE 4, e8445.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Muinos-Gimeno, M., Espinosa-Parrilla, Y., Guidi, M., Kagerbauer, B., Sipila, T., Maron, E., Pettai, K., Kananen, L., Navines, R., Martin-Santos, R., Gratacos, M., Metspalu, A., Hovatta, I., and Estivill, X. (2011). Human microRNAs miR-22, miR-138-2, miR-148a, and miR-488 are associated with panic disorder and regulate several anxiety candidate genes and related pathways. Biol. Psychiatry 69, 526–533.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Murata, T., Takayama, K., Katayama, S., Urano, T., Horie-Inoue, K., Ikeda, K., Takahashi, S., Kawazu, C., Hasegawa, A., Ouchi, Y., Homma, Y., Hayashizaki, Y., and Inoue, S. (2010). miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis. 13, 356–361.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Nagel, R., Clijsters, L., and Agami, R. (2009). The miRNA-192/194 cluster regulates the period gene family and the circadian clock. FEBS J. 276, 5447–5455.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Naguibneva, I., Ameyar-Zazoua, M., Polesskaya, A., Ait-Si-Ali, S., Groisman, R., Souidi, M., Cuvellier, S., and Harel-Bellan, A. (2006). The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat. Cell Biol. 8, 278–284.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Nakamachi, Y., Kawano, S., Takenokuchi, M., Nishimura, K., Sakai, Y., Chin, T., Saura, R., Kurosaka, M., and Kumagai, S. (2009). MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum. (Munch.) 60, 1294–1304.

CrossRef Full Text

Nakano, H., Miyazawa, T., Kinoshita, K., Yamada, Y., and Yoshida, T. (2010). Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X(L) in colorectal cancer cells. Int. J. Cancer 127, 1072–1080.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Nguyen, H. T., Dalmasso, G., Yan, Y., Laroui, H., Dahan, S., Mayer, L., Sitaraman, S. V., and Merlin, D. (2010). MicroRNA-7 modulates CD98 expression during intestinal epithelial cell differentiation. J. Biol. Chem. 285, 1479–1489.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Pais, H., Nicolas, F. E., Soond, S. M., Swingler, T. E., Clark, I. M., Chantry, A., Moulton, V., and Dalmay, T. (2010). Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level. RNA 16, 489–494.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Pallasch, C. P., Patz, M., Park, Y. J., Hagist, S., Eggle, D., Claus, R., Debey-Pascher, S., Schulz, A., Frenzel, L. P., Claasen, J., Kutsch, N., Krause, G., Mayr, C., Rosenwald, A., Plass, C., Schultze, J. L., Hallek, M., and Wendtner, C. M. (2009). miRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia. Blood 114, 3255–3264.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Pan, W., Zhu, S., Yuan, M., Cui, H., Wang, L., Luo, X., Li, J., Zhou, H., Tang, Y., and Shen, N. (2010). MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J. Immunol. 184, 6773–6781.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Papaioannou, M. D., Lagarrigue, M., Vejnar, C. E., Rolland, A. D., Kuhne, F., Aubry, F., Schaad, O., Fort, A., Descombes, P., Neerman-Arbez, M., Guillou, F., Zdobnov, E. M., Pineau, C., and Nef, S. (2011). Loss of Dicer in Sertoli cells has a major impact on the testicular proteome of mice. Mol. Cell. Proteomics 10, M900587MCP900200.

Pubmed Abstract | Pubmed Full Text

Park, J. K., Henry, J. C., Jiang, J., Esau, C., Gusev, Y., Lerner, M. R., Postier, R. G., Brackett, D. J., and Schmittgen, T. D. (2011). miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem. Biophys. Res. Commun. 406, 518–523.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Pedrioli, D. M., Karpanen, T., Dabouras, V., Jurisic, G., Van De Hoek, G., Shin, J. W., Marino, D., Kalin, R. E., Leidel, S., Cinelli, P., Schulte-Merker, S., Brandli, A. W., and Detmar, M. (2010). miR-31 functions as a negative regulator of lymphatic vascular lineage-specific differentiation in vitro and vascular development in vivo. Mol. Cell. Biol. 30, 3620–3634.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Pekarsky, Y., Santanam, U., Cimmino, A., Palamarchuk, A., Efanov, A., Maximov, V., Volinia, S., Alder, H., Liu, C. G., Rassenti, L., Calin, G. A., Hagan, J. P., Kipps, T., and Croce, C. M. (2006). Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 66, 11590–11593.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Pichiorri, F., Suh, S. S., Rocci, A., De Luca, L., Taccioli, C., Santhanam, R., Zhou, W., Benson, D. M. Jr., Hofmainster, C., Alder, H., Garofalo, M., Di Leva, G., Volinia, S., Lin, H. J., Perrotti, D., Kuehl, M., Aqeilan, R. I., Palumbo, A., and Croce, C. M. (2010). Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18, 367–381.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Pierson, J., Hostager, B., Fan, R., and Vibhakar, R. (2008). Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J. Neurooncol. 90, 1–7.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Pineau, P., Volinia, S., Mcjunkin, K., Marchio, A., Battiston, C., Terris, B., Mazzaferro, V., Lowe, S. W., Croce, C. M., and Dejean, A. (2010). miR-221 overexpression contributes to liver tumorigenesis. Proc. Natl. Acad. Sci. U.S.A. 107, 264–269.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Pogribny, I. P., Filkowski, J. N., Tryndyak, V. P., Golubov, A., Shpyleva, S. I., and Kovalchuk, O. (2010). Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int. J. Cancer 127, 1785–1794.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Qin, W., Shi, Y., Zhao, B., Yao, C., Jin, L., Ma, J., and Jin, Y. (2010). miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS ONE 5, e9429.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Qiu, R., Liu, K., Liu, Y., Mo, W., Flynt, A. S., Patton, J. G., Kar, A., Wu, J. Y., and He, R. (2009). The role of miR-124a in early development of the Xenopus eye. Mech. Dev. 126, 804–816.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Rajabi, H., Jin, C., Ahmad, R., Mcclary, C., Joshi, M. D., and Kufe, D. (2010). Mucin 1 oncoprotein expression is suppressed by the mir-125b oncomir. Genes Cancer 1, 62–68.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Rane, S., He, M., Sayed, D., Vashistha, H., Malhotra, A., Sadoshima, J., Vatner, D. E., Vatner, S. F., and Abdellatif, M. (2009). Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ. Res. 104, 879–886.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Reddy, S. D., Ohshiro, K., Rayala, S. K., and Kumar, R. (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res. 68, 8195–8200.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Ren, X. P., Wu, J., Wang, X., Sartor, M. A., Qian, J., Jones, K., Nicolaou, P., Pritchard, T. J., and Fan, G. C. (2009). MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119, 2357–2366.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Saetrom, P., Biesinger, J., Li, S. M., Smith, D., Thomas, L. F., Majzoub, K., Rivas, G. E., Alluin, J., Rossi, J. J., Krontiris, T. G., Weitzel, J., Daly, M. B., Benson, A. B., Kirkwood, J. M., O’dwyer, P. J., Sutphen, R., Stewart, J. A., Johnson, D., and Larson, G. P. (2009). A risk variant in an miR-125b binding site in BMPR1B is associated with breast cancer pathogenesis. Cancer Res. 69, 7459–7465.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Salomonis, N., Schlieve, C. R., Pereira, L., Wahlquist, C., Colas, A., Zambon, A. C., Vranizan, K., Spindler, M. J., Pico, A. R., Cline, M. S., Clark, T. A., Williams, A., Blume, J. E., Samal, E., Mercola, M., Merrill, B. J., and Conklin, B. R. (2010). Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc. Natl. Acad. Sci. U.S.A. 107, 10514–10519.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Saunders, L. R., Sharma, A. D., Tawney, J., Nakagawa, M., Okita, K., Yamanaka, S., Willenbring, H., and Verdin, E. (2010). miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY) 2, 415–431.

Pubmed Abstract | Pubmed Full Text

Saydam, O., Senol, O., Wurdinger, T., Mizrak, A., Ozdener, G. B., Stemmer-Rachamimov, A. O., Yi, M., Stephens, R. M., Krichevsky, A. M., Saydam, N., Brenner, G. J., and Breakefield, X. O. (2011). miRNA-7 attenuation in schwannoma tumors stimulates growth by upregulating three oncogenic signaling pathways. Cancer Res. 71, 852–861.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Schaar, D. G., Medina, D. J., Moore, D. F., Strair, R. K., and Ting, Y. (2009). miR-320 targets transferrin receptor 1 (CD71) and inhibits cell proliferation. Exp. Hematol. 37, 245–255.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Schickel, R., Park, S. M., Murmann, A. E., and Peter, M. E. (2010). miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol. Cell 38, 908–915.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Scott, G. K., Goga, A., Bhaumik, D., Berger, C. E., Sullivan, C. S., and Benz, C. C. (2007). Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J. Biol. Chem. 282, 1479–1486.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Sepramaniam, S., Armugam, A., Lim, K. Y., Karolina, D. S., Swaminathan, P., Tan, J. R., and Jeyaseelan, K. (2010). MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J. Biol. Chem. 285, 29223–29230.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Shao, M., Rossi, S., Chelladurai, B., Shimizu, M., Ntukogu, O., Ivan, M., Calin, G. A., and Matei, D. (2011). PDGF induced microRNA alterations in cancer cells. Nucleic Acids Res. 39, 4035–4047.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Shen, Q., Cicinnati, V. R., Zhang, X., Iacob, S., Weber, F., Sotiropoulos, G. C., Radtke, A., Lu, M., Paul, A., Gerken, G., and Beckebaum, S. (2010). Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Mol. Cancer 9, 227.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Shimizu, S., Takehara, T., Hikita, H., Kodama, T., Miyagi, T., Hosui, A., Tatsumi, T., Ishida, H., Noda, T., Nagano, H., Doki, Y., Mori, M., and Hayashi, N. (2010). The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J. Hepatol. 52, 698–704.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Small, E. M., Sutherland, L. B., Rajagopalan, K. N., Wang, S., and Olson, E. N. (2010). MicroRNA-218 regulates vascular patterning by modulation of Slit-Robo signaling. Circ. Res. 107, 1336–1344.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Smirnov, D. A., and Cheung, V. G. (2008). ATM gene mutations result in both recessive and dominant expression phenotypes of genes and microRNAs. Am. J. Hum. Genet. 83, 243–253.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Sober, S., Laan, M., and Annilo, T. (2010). MicroRNAs miR-124 and miR-135a are potential regulators of the mineralocorticoid receptor gene (NR3C2) expression. Biochem. Biophys. Res. Commun. 391, 727–732.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Song, L., Huang, Q., Chen, K., Liu, L., Lin, C., Dai, T., Yu, C., Wu, Z., and Li, J. (2010). miR-218 inhibits the invasive ability of glioma cells by direct downregulation of IKK-beta. Biochem. Biophys. Res. Commun. 402, 135–140.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Sossey-Alaoui, K., Downs-Kelly, E., Das, M., Izem, L., Tubbs, R., and Plow, E. F. (2010). WAVE3, an actin remodeling protein, is regulated by the metastasis suppressor microRNA, miR-31, during the invasion-metastasis cascade. Int. J. Cancer 129, 1331–1343.

CrossRef Full Text

Strum, J. C., Johnson, J. H., Ward, J., Xie, H., Feild, J., Hester, A., Alford, A., and Waters, K. M. (2009). MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol. Endocrinol. 23, 1876–1884.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Suarez, Y., Wang, C., Manes, T. D., and Pober, J. S. (2010). Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J. Immunol. 184, 21–25.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Surdziel, E., Cabanski, M., Dallmann, I., Lyszkiewicz, M., Krueger, A., Ganser, A., Scherr, M., and Eder, M. (2011). Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways. Blood 117, 4338–4348.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Taganov, K. D., Boldin, M. P., Chang, K. J., and Baltimore, D. (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. U.S.A. 103, 12481–12486.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Takagi, S., Nakajima, M., Kida, K., Yamaura, Y., Fukami, T., and Yokoi, T. (2010). MicroRNAs regulate human hepatocyte nuclear factor 4alpha, modulating the expression of metabolic enzymes and cell cycle. J. Biol. Chem. 285, 4415–4422.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Takagi, S., Nakajima, M., Mohri, T., and Yokoi, T. (2008). Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J. Biol. Chem. 283, 9674–9680.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Tan, Z., Randall, G., Fan, J., Camoretti-Mercado, B., Brockman-Schneider, R., Pan, L., Solway, J., Gern, J. E., Lemanske, R. F., Nicolae, D., and Ober, C. (2007). Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am. J. Hum. Genet. 81, 829–834.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Terasawa, K., Ichimura, A., Sato, F., Shimizu, K., and Tsujimoto, G. (2009). Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. FEBS J. 276, 3269–3276.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Thatcher, E. J., Paydar, I., Anderson, K. K., and Patton, J. G. (2008). Regulation of zebrafish fin regeneration by microRNAs. Proc. Natl. Acad. Sci. U.S.A. 105, 18384–18389.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Tili, E., Michaille, J. J., Adair, B., Alder, H., Limagne, E., Taccioli, C., Ferracin, M., Delmas, D., Latruffe, N., and Croce, C. M. (2010a). Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 31, 1561–1566.

CrossRef Full Text

Tili, E., Michaille, J. J., Alder, H., Volinia, S., Delmas, D., Latruffe, N., and Croce, C. M. (2010b). Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFbeta signaling pathway in SW480 cells. Biochem. Pharmacol. 80, 2057–2065.

CrossRef Full Text

Tili, E., Michaille, J. J., Cimino, A., Costinean, S., Dumitru, C. D., Adair, B., Fabbri, M., Alder, H., Liu, C. G., Calin, G. A., and Croce, C. M. (2007). Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol. 179, 5082–5089.

Pubmed Abstract | Pubmed Full Text

To, K. K., Zhan, Z., Litman, T., and Bates, S. E. (2008). Regulation of ABCG2 expression at the 3′ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol. Cell. Biol. 28, 5147–5161.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Tuddenham, L., Wheeler, G., Ntounia-Fousara, S., Waters, J., Hajihosseini, M. K., Clark, I., and Dalmay, T. (2006). The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 580, 4214–4217.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Ueda, R., Kohanbash, G., Sasaki, K., Fujita, M., Zhu, X., Kastenhuber, E. R., Mcdonald, H. A., Potter, D. M., Hamilton, R. L., Lotze, M. T., Khan, S. A., Sobol, R. W., and Okada, H. (2009). Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc. Natl. Acad. Sci. U.S.A. 106, 10746–10751.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Ueno, K., Hirata, H., Shahryari, V., Chen, Y., Zaman, M. S., Singh, K., Tabatabai, Z. L., Hinoda, Y., and Dahiya, R. (2011). Tumour suppressor microRNA-584 directly targets oncogene Rock-1 and decreases invasion ability in human clear cell renal cell carcinoma. Br. J. Cancer 104, 308–315.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Uhlmann, S., Zhang, J. D., Schwager, A., Mannsperger, H., Riazalhosseini, Y., Burmester, S., Ward, A., Korf, U., Wiemann, S., and Sahin, O. (2010). miR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene 29, 4297–4306.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Valastyan, S., Reinhardt, F., Benaich, N., Calogrias, D., Szasz, A. M., Wang, Z. C., Brock, J. E., Richardson, A. L., and Weinberg, R. A. (2009). A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137, 1032–1046.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Venugopal, S. K., Jiang, J., Kim, T. H., Li, Y., Wang, S. S., Torok, N. J., Wu, J., and Zern, M. A. (2010). Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased stellate cell activation. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G101–G106.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Veronese, A., Lupini, L., Consiglio, J., Visone, R., Ferracin, M., Fornari, F., Zanesi, N., Alder, H., D’elia, G., Gramantieri, L., Bolondi, L., Lanza, G., Querzoli, P., Angioni, A., Croce, C. M., and Negrini, M. (2010). Oncogenic role of miR-483-3p at the IGF2/483 locus. Cancer Res. 70, 3140–3149.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Villeneuve, L. M., Kato, M., Reddy, M. A., Wang, M., Lanting, L., and Natarajan, R. (2010). Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1. Diabetes 59, 2904–2915.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Viticchie, G., Lena, A. M., Latina, A., Formosa, A., Gregersen, L. H., Lund, A. H., Bernardini, S., Mauriello, A., Miano, R., Spagnoli, L. G., Knight, R. A., Candi, E., and Melino, G. (2011). MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle 10, 1121–1131.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Vreugdenhil, E., Verissimo, C. S., Mariman, R., Kamphorst, J. T., Barbosa, J. S., Zweers, T., Champagne, D. L., Schouten, T., Meijer, O. C., De Kloet, E. R., and Fitzsimons, C. P. (2009). MicroRNA 18 and 124a down-regulate the glucocorticoid receptor: implications for glucocorticoid responsiveness in the brain. Endocrinology 150, 2220–2228.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Wang, B., Hsu, S. H., Majumder, S., Kutay, H., Huang, W., Jacob, S. T., and Ghoshal, K. (2010a). TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 29, 1787–1797.

CrossRef Full Text

Wang, X., Zhang, X., Ren, X. P., Chen, J., Liu, H., Yang, J., Medvedovic, M., Hu, Z., and Fan, G. C. (2010b). MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury. Circulation 122, 1308–1318.

CrossRef Full Text

Wang, Q., Huang, Z., Xue, H., Jin, C., Ju, X. L., Han, J. D., and Chen, Y. G. (2008). MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood 111, 588–595.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Wang, Y., Yu, Y., Tsuyada, A., Ren, X., Wu, X., Stubblefield, K., Rankin-Gee, E. K., and Wang, S. E. (2011). Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 30, 1470–1480.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Wei, T., Orfanidis, K., Xu, N., Janson, P., Stahle, M., Pivarcsi, A., and Sonkoly, E. (2010). The expression of microRNA-203 during human skin morphogenesis. Exp. Dermatol. 19, 854–856.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Wong, Q. W., Ching, A. K., Chan, A. W., Choy, K. W., To, K. F., Lai, P. B., and Wong, N. (2010). MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin. Cancer Res. 16, 867–875.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Wu, D. W., Cheng, Y. W., Wang, J., Chen, C. Y., and Lee, H. (2010a). Paxillin predicts survival and relapse in non-small cell lung cancer by microRNA-218 targeting. Cancer Res. 70, 10392–10401.

CrossRef Full Text

Wu, H., Sun, S., Tu, K., Gao, Y., Xie, B., Krainer, A. R., and Zhu, J. (2010b). A splicing-independent function of SF2/ASF in microRNA processing. Mol. Cell 38, 67–77.

CrossRef Full Text

Wu, F., Zhu, S., Ding, Y., Beck, W. T., and Mo, Y. Y. (2009). MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clin. Cancer Res. 15, 1550–1557.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Wu, L., and Belasco, J. G. (2005). Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol. Cell. Biol. 25, 9198–9208.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Xi, S., Yang, M., Tao, Y., Xu, H., Shan, J., Inchauste, S., Zhang, M., Mercedes, L., Hong, J. A., Rao, M., and Schrump, D. S. (2010). Cigarette smoke induces C/EBP-beta-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells. PLoS ONE 5, e13764.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Xia, H., Qi, Y., Ng, S. S., Chen, X., Li, D., Chen, S., Ge, R., Jiang, S., Li, G., Chen, Y., He, M. L., Kung, H. F., Lai, L., and Lin, M. C. (2009a). microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res. 1269, 158–165.

CrossRef Full Text

Xia, H. F., He, T. Z., Liu, C. M., Cui, Y., Song, P. P., Jin, X. H., and Ma, X. (2009b). MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf. Cell. Physiol. Biochem. 23, 347–358.

CrossRef Full Text

Xia, W., Li, J., Chen, L., Huang, B., Li, S., Yang, G., Ding, H., Wang, F., Liu, N., Zhao, Q., Fang, T., Song, T., Wang, T., and Shao, N. (2010). MicroRNA-200b regulates cyclin D1 expression and promotes S-phase entry by targeting RND3 in HeLa cells. Mol. Cell. Biochem. 344, 261–266.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Xia, X. G., Zhou, H., Samper, E., Melov, S., and Xu, Z. (2006). Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice. PLoS Genet. 2, e10.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Xiao, J., Lin, H., Luo, X., and Wang, Z. (2011). miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J. 30, 524–532.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Xu, C., Liu, S., Fu, H., Li, S., Tie, Y., Zhu, J., Xing, R., Jin, Y., Sun, Z., and Zheng, X. (2010a). MicroRNA-193b regulates proliferation, migration and invasion in human hepatocellular carcinoma cells. Eur. J. Cancer 46, 2828–2836.

CrossRef Full Text

Xu, L., Wang, F., Xu, X. F., Mo, W. H., Xia, Y. J., Wan, R., Wang, X. P., and Guo, C. Y. (2010b). Down-regulation of miR-212 expression by DNA hypermethylation in human gastric cancer cells. Med. Oncol.

CrossRef Full Text

Xue, Q., Guo, Z. Y., Li, W., Wen, W. H., Meng, Y. L., Jia, L. T., Wang, J., Yao, L. B., Jin, B. Q., Wang, T., and Yang, A. G. (2011). Human activated CD4(+) T lymphocytes increase IL-2 expression by downregulating microRNA-181c. Mol. Immunol. 48, 592–599.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Yang, Z., Chen, S., Luan, X., Li, Y., Liu, M., Li, X., Liu, T., and Tang, H. (2009). MicroRNA-214 is aberrantly expressed in cervical cancers and inhibits the growth of HeLa cells. IUBMB Life 61, 1075–1082.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Yao, J., Liang, L., Huang, S., Ding, J., Tan, N., Zhao, Y., Yan, M., Ge, C., Zhang, Z., Chen, T., Wan, D., Yao, M., Li, J., Gu, J., and He, X. (2010). MicroRNA-30d promotes tumor invasion and metastasis by targeting Galphai2 in hepatocellular carcinoma. Hepatology 51, 846–856.

Pubmed Abstract | Pubmed Full Text

Yi, R., Poy, M. N., Stoffel, M., and Fuchs, E. (2008). A skin microRNA promotes differentiation by repressing “stemness.” Nature 452, 225–229.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Yoo, A. S., Staahl, B. T., Chen, L., and Crabtree, G. R. (2009). MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460, 642–646.

Pubmed Abstract | Pubmed Full Text

Yoon, S., Choi, Y. C., Lee, S., Jeong, Y., Yoon, J., and Baek, K. (2010). Induction of growth arrest by miR-542-3p that targets survivin. FEBS Lett. 584, 4048–4052.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Yu, J. Y., Reynolds, S. H., Hatfield, S. D., Shcherbata, H. R., Fischer, K. A., Ward, E. J., Long, D., Ding, Y., and Ruohola-Baker, H. (2009). Dicer-1-dependent Dacapo suppression acts downstream of insulin receptor in regulating cell division of Drosophila germline stem cells. Development 136, 1497–1507.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Zhang, C. Z., Zhang, J. X., Zhang, A. L., Shi, Z. D., Han, L., Jia, Z. F., Yang, W. D., Wang, G. X., Jiang, T., You, Y. P., Pu, P. Y., Cheng, J. Q., and Kang, C. S. (2010). MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol. Cancer 9, 229.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Zhang, H. Y., Zheng, S. J., Zhao, J. H., Zhao, W., Zheng, L. F., Zhao, D., Li, J. M., Zhang, X. F., Chen, Z. B., and Yi, X. N. (2011a). MicroRNAs 144, 145, and 214 are down-regulated in primary neurons responding to sciatic nerve transection. Brain Res. 1383, 62–70.

CrossRef Full Text

Zhang, L., Stokes, N., Polak, L., and Fuchs, E. (2011b). Specific MicroRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell 8, 294–308.

CrossRef Full Text

Zhang, Y., Gao, J. S., Tang, X., Tucker, L. D., Quesenberry, P., Rigoutsos, I., and Ramratnam, B. (2009). MicroRNA 125a and its regulation of the p53 tumor suppressor gene. FEBS Lett. 583, 3725–3730.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Zhao, J. J., Lin, J., Yang, H., Kong, W., He, L., Ma, X., Coppola, D., and Cheng, J. Q. (2008). MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J. Biol. Chem. 283, 31079–31086.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Zhao, X., Tang, Y., Qu, B., Cui, H., Wang, S., Wang, L., Luo, X., Huang, X., Li, J., Chen, S., and Shen, N. (2010). MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum. (Munch.) 62, 3425–3435.

CrossRef Full Text

Zhong, X., Li, N., Liang, S., Huang, Q., Coukos, G., and Zhang, L. (2010). Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. J. Biol. Chem. 285, 41961–41971.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Zhou, L., Qi, X., Potashkin, J. A., Abdul-Karim, F. W., and Gorodeski, G. I. (2008). MicroRNAs miR-186 and miR-150 down-regulate expression of the pro-apoptotic purinergic P2X7 receptor by activation of instability sites at the 3′-untranslated region of the gene that decrease steady-state levels of the transcript. J. Biol. Chem. 283, 28274–28286.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Zhou, M., Liu, Z., Zhao, Y., Ding, Y., Liu, H., Xi, Y., Xiong, W., Li, G., Lu, J., Fodstad, O., Riker, A. I., and Tan, M. (2010). MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J. Biol. Chem. 285, 21496–21507.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Zhu, H., Wu, H., Liu, X., Li, B., Chen, Y., Ren, X., Liu, C. G., and Yang, J. M. (2009). Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 5, 816–823.

Pubmed Abstract | Pubmed Full Text

Zhu, N., Zhang, D., Chen, S., Liu, X., Lin, L., Huang, X., Guo, Z., Liu, J., Wang, Y., Yuan, W., and Qin, Y. (2011). Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis 215, 286–293.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Zhu, W., Shan, X., Wang, T., Shu, Y., and Liu, P. (2010). miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int. J. Cancer 127, 2520–2529.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Zimmerman, E. I., Dollins, C. M., Crawford, M., Grant, S., Nana-Sinkam, S. P., Richards, K. L., Hammond, S. M., and Graves, L. M. (2010). Lyn kinase-dependent regulation of miR181 and myeloid cell leukemia-1 expression: implications for drug resistance in myelogenous leukemia. Mol. Pharmacol. 78, 811–817.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Keywords: AChE, BChE, microRNA

Citation: Hanin G and Soreq H (2011) Cholinesterase-targeting microRNAs identified in silico affect specific biological processes. Front. Mol. Neurosci. 4:28. doi: 10.3389/fnmol.2011.00028

Received: 25 July 2011; Paper pending published: 23 August 2011;
Accepted: 14 September 2011; Published online: 05 October 2011.

Edited by:

Karl Tsim, The Hong Kong University of Science and Technology, China

Reviewed by:

Sheriar Hormuzdi, University of Dundee, UK
Javier Saez-Valero, Universidad Miguel Hernandez, Spain

Copyright: © 2011 Hanin and Soreq. This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

*Correspondence: Hermona Soreq, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel. e-mail: soreq@cc.huji.ac.il

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.