Skip to main content

ORIGINAL RESEARCH article

Front. Appl. Math. Stat., 24 September 2024
Sec. Dynamical Systems
This article is part of the Research Topic Approximation Methods and Analytical Modeling Using Partial Differential Equations View all 21 articles

Inverse problem for semilinear wave equation with strong damping

  • Department of Computational Mathematics and Programming, Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, Lviv, Ukraine

The initial-boundary and the inverse coefficient problems for the semilinear hyperbolic equation with strong damping are considered in this study. The conditions for the existence and uniqueness of solutions in Sobolev spaces to these problems have been established. The inverse problem involves determining the unknown time-dependent parameter in the right-hand side function of the equation using an additional integral type overdetermination condition.

1 Introduction

Propagation of sound in a viscous gas and other similar processes of the same nature can be described by the model hyperbolic equation of the third order, which includes a mixed derivative with respect to spatial and time variables

utt=ηΔxut+Δxu,    (1)

where η is a positive constant, and ηΔxut represents low viscosity.

Many important physical phenomena can be modeled with the use of Equation 1 and its generalizations. These are, in particular, processes that occur in viscous media (propagation of disturbances in viscoelastic and viscous-plastic rods, movement of a viscous compressible fluid, sound propagation in a viscous gas), wave processes in different media, acoustic waves in environments where wave propagation disrupts the state of thermodynamic and mechanical equilibrium, liquid filtration processes in porous media, heat transfer in a heterogeneous environment, moisture transfer in soils, and longitudinal vibrations in a homogenous bar with viscosity. The term Δxut indicates that the level of stress is proportional to the level of strains and to the strain rate [15].

Due to its wide range of applications, different problems for Equation 1 were investigated by many authors. For example, the unique solvability of the direct initial-boundary value problems for Equation 1 and its nonlinear generalizations with power nonlinearities have been studied in other research [1, 2, 411].

The inverse problems, with the integral overdetermination conditions, of identifying of the coefficients in the right-hand side function of hyperbolic equations without damping or for other types of equations have been investigated in many studies [1218]. Their unique solvability has been solved with the use of the methods such as integral equations, the Green function, regularization, and the Shauder principle [14] and successive approximations [18]. The unique solvability of a two-dimensional inverse problem for the linear third-order hyperbolic equation with constant coefficients and with the unknown time-dependent lower coefficient has been proved in Mehraliyev et al. [19].

The main objective of this study is to determine the sufficient conditions for the existence and uniqueness of the solution to the inverse problem for the third-order semilinear hyperbolic equation with an unknown time- dependent function on its right-hand side. The unknown function is determined from the equation, subject to initial, boundary, and integral type overdetermination conditions. To prove the main results of the study, we use the properties of the solution for the corresponding initial-boundary value problem and the method of successive approximations. These results are new for semilinear n-dimensional third-order hyperbolic equations with non-constant coefficients and an unknown function on their right-hand side. The unique solvability of the initial-boundary value problem has been proved using of the method of Galerkin approximations and the methods of monotonicity and compactness.

2 Problem setting

Let Ω ⊂ ℝn, n ∈ ℕ, be a bounded domain with the smooth boundary ∂Ω ∈ C1 and 0 < T < ∞. Denote Qτ = Ω × (0, τ), τ ∈ (0, T]; Qt1, t2 = Ω × (t1, t2), t1, t2 ∈ (0, T]. In this study, we consider the following inverse problem: find the sufficient conditions for the existence of a pair of functions (u(x, t), g(t)) that satisfies the equation with strong damping (in the sense of Definition 3.1).

utt-i,j=1n(aij(x,t)uxi)xj-i,j=1n(bij(x,t)uxit)xj+φ1(x,u)+φ2(x,ut)=f1(x)g(t)+f2(x,t),   xΩ, t[0,T],    (2)

and the initial, boundary, and overdetermination conditions

u(x,0)=u0(x),    ut(x,0)=u1(x),    xΩ,    (3)
u|Ω×(0,T)=0,    (4)
ΩK(x)u(x,t)dx=E(t),    t[0,T].    (5)

We shall use Lebesgue and Sobolev spaces L(·), L2(·), H1(·): = W1, 2(·), Ck(·), C([0, T];L2(G)), H01(·):=W01,2(·) (see, e.g., Gajewski et al. [20]).

Suppose that the data of the problem (25) satisfy the following conditions.

(H1): aij, bij, aijt, bijt, bij,xiC([0,T];L(Ω)), aij(x, t) = aji(x, t), bij(x, t) = bji(x, t), and

α0||ξ||2i,j=1naij(x,t)ξiξjα1||ξ||2,β0||ξ||2i,j=1nbij(x,t)ξiξjβ1||ξ||2,

for all ξ ∈ ℝn, almost all x ∈ Ω, all t ∈ [0, T], and i, j = 1, ..., n, where α0, α1 and β0, β1 are positive constants.

(H2): functions φ1(x, ξ), φ2(x, ξ) are measurable with respect to x ∈ Ω for all ξ ∈ ℝ1 and continuously differentiable concerning ξ ∈ ℝ. Moreover,

|φi(x,ξ)|Li,1|ξ|,   |φi(x,ξ)-φi(x,η)|Li,0|ξ-η|, i=1,2,
(φ2(x,ξ)-φ2(x,η))(ξ-η)0

for almost all x ∈ Ω and ξ, η ∈ ℝ, where Li,0, Li,1 are positive constants.

(H3): f1L2(Ω), f2C([0,T];L2(Ω)), u0H01(Ω),  u1H01(Ω).

(H4): EC2([0, T]), ΩK(x)u0(x)dx=E(0), ΩK(x)u1(x)dx=E(0).

(H5): KH2(Ω)H01(Ω).

Denote f~(x,t):=f1(x)g(t)+f2(x,t).

Let γ0 = γ0(Ω) be a coefficient in Friedrich's inequality.

Ω|v(x)|2dxγ0Ωi=1n|vxi(x)|2dx,  vH01(Ω).    (6)

3 Initial-boundary value problem

Definition 3.1. A function u(x, t) is considered to be a solution of problem 2–4 if uC([0,T];H01(Ω)), utL2(0,T;H01(Ω))C([0,T];L2(Ω)), uttL2(QT), u satisfies (3), and

Qτ(uttv+i,j=1naij(x,t)uxivxj+i,j=1nbij(x,t)uxitvxj+φ1(x,u)v                       +φ2(x,ut)vf˜(x,t)v)dxdt=0    (7)

for all functions vL2(0,T;H01(Ω)) and τ ∈ (0, T].

Theorem 3.2. Under the assumptions (H1)–(H3) and gL2(0, T), aijt ≤ 0 for all i, j = 1, 2, …, n, the problem (24) has a unique solution.

Proof. First, using Galerkin method, we prove the existence of a solution for the problem. Let {wk}k=1,k=1,2,..., be a basis in H01(Ω), orthonormal in L2(Ω). We will consider the sequence of functions

uN(x,t)=k=1NckN(t)wk(x), N=1,2,...,

where the set (c1N(t),....,cNN(t)) is a solution of the initial value problem

Ω(uttNwk+i,j=1naij(x,t)uxiNwxjk+i,j=1nbij(x,t)uxitNwxjk+φ1(x,uN)wk+φ2(x,utN)wk)dx=Ωf˜(x,t)wkdx,ckN(0)=u0,kN,  cktN(0)=u1,kN,  k=1,...,N.    (8)

Here u0N(x)=k=1Nu0,kNwk(x), u1N(x)=k=1Nu1,kNwk(x) and

limN||u0-u0N||H01(Ω)=0, limN||u1-u1N||H01(Ω)=0.

The solution of system (8) exists on some interval [0, τ0] (Carathéodory's Theorem [21, p. 43]). The estimation (13) from below implies that this solution could be extended on [0, T]. Multiplying each equation of (8) on function (ckN(t)) respectively, summing up for k from 1 to N and integrating to t on interval [0, τ], τ ≤ τ0, we obtain

Qτ(uttNutN+i,j=1naij(x,t)uxiNuxjtN+i,j=1nbij(x,t)uxitNuxjtN+φ1(x,uN)utN+φ2(x,utN)utN) dx dt=Qτf˜(x,t)utNdx dt.    (9)

After transformations of terms from (9), we get

12Ω|utN(x,τ)|2dx+12Ωi,j=1naij(x,t)uxiN(x,τ)uxjN(x,τ)dx-12Qτi,j=1naijt(x,t)uxiNuxjNdx  dt+Qτi,j=1nbij(x,t)uxitNuxjtNdx  dt+Qτφ1(x,uN)utNdx  dt+Qτφ2(x,utN)utNdx  dt=12Ω|u1N(x)|2dx+12Ωi,j=1naij(x,t)u0xiN(x)u0xjN(x)dx+Qτf~(x,t)utNdx  dt.    (10)

Note that

Qτ(φ1(x,uN)+φ2(x,utN))utNdx  dtQτ(L1,1|uN||utN|+L2,1|utN|2) dx dt12Qτ(L1,12|uN|2+(2L2,1+1)|utN|2) dx dt12Qτ(L1,12γ0i=1n|uxiN|2+(2L2,1+1)|utN|2) dx dt,

then from (10) we obtain

Ω|utN(x,τ)|2dx+α0Ωi=1n|uxiN(x,τ)|2dx+2β0Qτi=1n|uxitN|2dx  dtΩ|u1(x)|2dx+α1Ωi=1n|u0xi(x)|2dx+Qτ(f~(x,t))2dx  dt+2(L2,1+1)Qτ|utN|2dx  dt+(L1,12γ0+α2)Qτi=1n|uxiN|2dx  dt.    (11)

We rewrite the last inequality in the form

Ω(|utN(x,τ)|2+i=1n|uxiN(x,τ)|2)dxA1+A2Qτ(|utN|2+i=1n|uxiN|2)dx  dt,    (12)

where

A1:=1min{1,α0}(Ω|u1(x)|2dx+α1Ωi=1n|u0xi(x)|2dx+QTf˜2(x,t)dx  dt)
A2:=max{2(L2,1+1);(L1,12γ0+α2)}min{1,α0}.

Then by Grönwall's lemma, from (12), we get

Ω(|utN(x,τ)|2+i=1n|uxiN(x,τ)|2)dxA1eA2T.    (13)

Therefore, from (11) we also get

Qτi=1n|uxitN|2dx  dtA1(1+A2TeA2T)min{1,α0}2β0.    (14)

Multiplying each equation of (8) on function (ckN(t)) respectively, summing up with respect to k from 1 to N and integrating on interval [0, τ], τ ≤ T, we obtain

Qτ((uttN)2+i,j=1naij(x,t)uxiNuxjttN+i,j=1nbij(x,t)uxitNuxjttN+φ1(x,uN)uttN+φ2(x,utN)uttN) dx dt=Qτf˜(x,t)uttN dx dt.    (15)

After transformations in all terms from (15), we get

12Qτ|uttN|2dx  dt+β04Ωi=1n|uxitN(x,τ)|2dxnα12β0Ωi=1n|uxiN(x,τ)|2dx+Ωi=1n(nα122|u0xiN(x)|2+β1+12|u1xiN(x)|2)dx+2β2+β0+4α14Qτi=1n|uxitN|2dx  dt+(α22β0+3L1,12γ02)Qτi=1n|uxiN|2dx  dt+3L2,12Qτ|ut|2dx  dt+32Qτ|f~(x,t)|2dx  dt,    (16)

where i,j=1nbijt(x,t)ξiξjβ2||ξ||2, β2>0, α2=maxi,jsupt[0,T]|aijt(x,t)|. Taking into account (13), (14), from (16) we obtain

Qτ|uttN|2dx  dt+β02Ωi=1n|uxitN(x,τ)|2dxA3,    (17)

where

A3:=A14β0(8nα12eA2T+max{8α22+12L1,12β0γ0;12β0L2,1}TeA2T+(2β2+β0+4α1)××(1+A2TeA2T)min{1,α0})+Ωi=1n(nα12|u0xi(x)|2+(β1+1)|u1xi(x)|2)dx+3QT|f˜(x,t)|2dx dt.

The right-hand sides of the estimates (13), (14), and (17) are positive constants, independent of N. Therefore, there exists a subsequence of {uN}N=1 (which will be denoted by the same notation), such that as N → ∞

uNu *-weakly in L(0,T,H01(Ω)),utNut *-weakly in L(0,T,H01(Ω)),uNu weakly in L2(0,T,H01(Ω)),utNut weakly in L2(0,T,H01(Ω)),uttNutt weakly in L2(QT).    (18)

It follows from (18) that uNu  in  L2(QT), and therefore, φ1(x,uN)φ1(x,u)weakly in L2(QT) as N → ∞. Besides, uC([0,T];H01(Ω)), utC([0,T];L2(Ω)) and φ2(x,utN)χ weakly in L2(QT).

Equations 8 and 18 imply the equality

Qτ(uttv+i,j=1naij(x,t)uxivxj+i,j=1nbij(x,t)uxitvxj+φ1(x,u)v+χv-f~(x,t)v)dx  dt=0    (19)

for all functions vL2(0,T;H01(Ω)) and τ ∈ (0, T].

Let us prove that χ = φ2(x, ut).

Note that ||φ1(x,uN+k)-φ1(x,uN)||L2(QT)L1,0||uN+k-uN||L2(QT) for all k ∈ ℕ. Due to (18), {u}k=1 is fundamental in L2(QT). So, for any ε > 0, there exists such a number N0 that for all N, k ∈ ℕ, N > N0 the inequality ||uN+k-uN||L2(QT)ε holds; thus, {φ1(x,u)}k=1 is also fundamental in L2(QT) and, therefore,

φ1(x,uN)φ1(x,u) in L2(QT) as N.    (20)

Consider the sequence

0XN=QT(φ2(x,utN)-φ2(x,ηt))(utN-ηt)dx  dt=QT(φ2(x,utN)utN-φ2(x,ηt)(utN-ηt)-φ2(x,utN)ηt)dx  dt,    (21)

where ηC([0,T];H01(Ω)), ηtL2(0,T;H01(Ω))C([0,T];L2(Ω)), ηttL2(QT). From (9), it follows that

QT   φ2(x,utN)utNdx dt=QT   (f˜(x,t)utNuttNutNi,j=1naij(x,t)uxiNuxjtNi,j=1nbij(x,t)uxitNuxjtNφ1(x,uN)utN) dx dt=12Ω((utN(x,T))2+i,j=1naij(x,T)uxiN(x,T)uxjN(x,T)) dx+12Ω((u1N(x))2+i,j=1naij(x,0)u0,xiN(x)u0,xjN(x)) dx+QT(f˜(x,t)utN+12i,j=1naijt(x,t)uxiNuxjN   i,j=1nbij(x,t)uxitNuxjtNφ1(x,uN)utN) dx dt.    (22)

After substitution (22) in (21), passing to the limit as N → ∞, taking into account (18), (20), and the assumptions of Theorem 3.2, we obtain

0lim infNXN12Ω(ut(x,T))2+i,j=1naij(x,T)uxi(x,T)uxj(x,T)) dx+12Ω((u1(x))2+i,j=1naij(x,0)u0,xi(x)u0,xj(x)) dx+QT(f˜(x,t)ut+12i,j=1naijt(x,t)uxiuxji,j=1nbij(x,t)uxituxjtφ1(x,u)utφ2(x,ηt)(utηt)χηt) dx dtQT(χφ2(x,ηt))(utηt) dx dt.

Choosing here η=u-ϰw, ϰ>0, wL2(0,T;H01(Ω))C([0,T];L2(Ω)), wtL2(0,T;H01(Ω))C([0,T];L2(Ω)),wttL2(QT), dividing the result on ϰ and then tending ϰ → 0 we obtain χ = φ2(x, ut). Hence, from (19), it follows (7).

Now we prove the uniqueness of the solution for the problems (24). On the contrary, suppose that there exist two solutions u(1)(x, t) and u(2)(x, t) of problems (24). Then ũ: = ũ(x, t) = u(1)(x, t)−u(2)(x, t) satisfies the conditions ũ(x, 0) ≡ 0, ũt(x, 0) ≡ 0, and the equality

Qτ(u˜ttv+i,j=1naij(x,t)u˜xivxj+i,j=1nbij(x,t)u˜xitvxj+(φ1(x,u(1))φ1(x,u(2)))v+(φ2(x,(u(1))t)φ2(x,(u(2))t))v) dx dt=0    (23)

holds for all vL2(0,T;H01(Ω)), τ ∈ (0, T].

After choosing v = ũt in (23) we get

Qτ(ũttũt+i,j=1naij(x,t)ũxiũxjt+i,j=1nbij(x,t)ũxitũxjt+(φ1(x,u(1))-φ1(x,u(2)))ũ+(φ2(x,(u(1))t)-φ2(x,(u(2))t))ũt)dx  dt=0.    (24)

From (24) by the same way as from (11) we got (12), we find the following estimate

Ω(|utN(x,τ)|2+i=1n|uxiN(x,τ)|2)dxA2Qτ(|utN|2+i=1n|uxiN|2)dx  dt.    (25)

Then from Grönwall's lemma and (25) we obtain Ω(|ũt(x,τ)|2+i=1n|ũxi(x,τ)|2)dx0 and Qτi=1n|ũxit(x,t)|2dxdt0, hence, ũ ≡ 0, and, therefore, u(1) = u(2) in QT.

4 Inverse problem

Definition 4.1. A pair of functions (u(x, t), g(t)) is a solution to the problem (25), if uC([0,T];H01(Ω)), utL2(0,T;H01(Ω))C([0,T];L2(Ω)), uttL2(QT), and gC([0, T]), and it satisfies (5) and

Qτ(uttv+i,j=1naij(x,t)uxivxj+i,j=1nbij(x,t)uxitvxj+φ1(x,u)v+φ2(x,ut)v) dx dt=Qτ(f1(x)g(t)+f2(x,t))v dx dt    (26)

holds for all functions vL2(0,T;H01(Ω)) and τ ∈ (0, T].

4.1 The equivalent problem

In this section, we shall find the equivalent problem for the problem (25).

Lemma 4.2. Let ΩK(x)f1(x)dx0, the assumptions of Theorem 3.2, (H4), and (H5) hold. A pair of functions (u(x, t), g(t)), where uC([0,T]],H01(Ω)), utL2(0,T;H01(Ω))C(0,T,L2(Ω)), uttL2(QT), gC([0, T]), is a solution to the problem (25) if and only if it satisfies (26) for all functions vL2(0,T;H01(Ω)), and for τ ∈ (0, T], the equality

g(t)ΩK(x)f1(x)dx=E(t)+Ω(i,j=1nKxj(x)aij(x,t)uxii,j=1n(Kxj(x)bij(x,t))xiut+K(x)φ1(x,u)+K(x)φ2(x,ut)K(x)f2(x,t)) dx    (27)

holds for t ∈ [0, T].

Proof. Necessity: Let (u(x, t), g(t)) be a solution to the problem (25). From (26) and (5), it follows that

Ω(f1(x)g(t)K(x)+f2(x,t)K(x)-φ1(x,u)K(x)-φ2(x,ut)K(x)-i,j=1naij(x,t)uxiKxj(x)-i,j=1nbij(x,t)uxitKxj(x))dx=E(t), t(0,T].    (28)

By integrating by parts in (28) and using the condition (H4), we get the equality

g(t)ΩK(x)f1(x)dx+Ω(K(x)f2(x)-K(x)φ(x,u)-i,j=1naij(x,t)Kxj(x)uxi+i,j=1n(bij(x,t)Kxj(x))xiut)dx=E(t), t(0,T].    (29)

From (29), we can obtain (27).

Sufficiency: Let g*C([0, T]), u*C([0,T];H01(Ω)), ut*L2(0,T;H01(Ω))C([0,T];L2(Ω)), utt*L2(QT), and they satisfy (4), (26), and (27). Then u* is a solution to the problem (24) with g* instead of g in (2).

We set E*(t)=ΩK(x)u*(x,t)dx, t ≥ 0. In exactly the same way as in the proof of necessity, we obtain

g*(t)ΩK(x)f1(x) dx=(E*(t))+Ω(i,j=1nKxj(x)aij(x,t)uxi*i,j=1n(Kxj(x)bij(x,t))xiut*+K(x)φ1(x,u*)+K(x)φ2(x,ut*)K(x)f2(x,t))dx,      t(0,T].    (30)

On the other hand g*(t) and u*(x, t) satisfy (27)

g*(t)ΩK(x)f1(x)dx=(E(t)+Ω(i,j=1nKxj(x)aij(x,t)uxi*-i,j=1n(Kxj(x)bij(x,t))xiut*+K(x)φ1(x,u*)+K(x)φ2(x,ut*)-K(x)f2(x,t))dx),   t(0,T].    (31)

It follows from (30), (31) that

(E*(t))=E(t),    t(0,T].    (32)

Integrating (32) with the use of the equalities E*(0)=E(0)=ΩK(x)u0(x)dx, (E*)(0)=E(0)=ΩK(x)u1*(x)dx, implies E*(t) = E(t), t ≥ 0. Hence, u*(x, t) satisfies the overdetermination condition (5).

4.2 Main results

Let f1:=Ω(f1(x))2dx, α2:=maxi,jsupQT|aijt|. Denote

M1:=max{nmaxisup[0,T]Ω(j=1nKxj(x)aij(x,t))2dx           +L1,02γ0Ω(K(x))2dx;           L2,02Ω(K(x))2dx+sup[0,T]Ω(i,j=1n(Kxj(x)bij(x,t))xi)2 dx},
M2:=4M1(ΩK(x)f1(x)dx)2;
M3:=2f1γ0β0exp(max{2L2,0;2γ02L1,02β0+α2}T0min{1,α0});
M4:=M2M3,T0 is such a number that M4T0<1.

Theorem 4.3. Let ΩK(x)f1(x)dx0, aijt ≤ 0 for all i, j = 1, 2, …, n, and the assumptions (H1) – (H5) hold. Then there exists a unique solution to the problem (25).

Proof. I. In the first step, we shall prove the theorem for TT0.

We construct an approximation (um(x, t), gm(t)) of the solution of problem (25), where g1(t): = 0, the functions gm(t), m ≥ 2, satisfy the equality

gm(t)=(ΩK(x)f1(x) dx)1(E(t)+Ω(i,j=1nKxj(x)aij(x,t)uxim1i,j=1n(Kxj(x)bij(x,t))xiutm1+K(x)φ1(x,um1)+K(x)φ2(x,utm1)K(x)f2(x,t)) dx),     t[0,T0],    (33)

and um satisfies the equality

Qτ(uttmv+i,j=1naij(x,t)uximvxj+i,j=1nbij(x,t)uxitmvxj+φ1(x,um)v+φ2(x,utm)v)dx  dt=Qτ(f1(x)gm(t)+f2(x,t))vdx  dt,τ[0,T0],    m1,    (34)

for all vL2(0,T0;H01(Ω)), and the conditions

um(x,0)=u0(x),    utm(x,0)=u1(x),  xΩ.    (35)

It follows from Theorem 3.2 that for each m ∈ ℕ there exists a unique function umC([0,T0];H01(Ω)), utmL2(0,T0;H01(Ω))C([0,T0];L2(Ω)), uttmL2(QT0), that satisfies (34), (35). Now we show that {(um(x,t),gm(t))}m=1 converges to the solution of the problem (25). Denote

zm:=zm(x,t)=um(x,t)-um-1(x,t),rm(t):=gm(t)-gm-1(t),    m2.

Equation 33 for t ∈ (0, T0] and m ≥ 3, implies the equality

rm(t)=(ΩK(x)f1(x)dx)-1Ω(i,j=1nKxj(x)aij(x,t)zxim-1-i,j=1n(Kxj(x)bij(x,t))xiztm-1+K(x)(φ1(x,um-1)-φ1(x,um-2))+K(x)(φ2(x,utm-1)-φ2(x,utm-2)))dx.    (36)

We square both sides of equality (36) and integrate the result with respect to t, taking into account the hypotheses (H5), then we obtain

0τ(rm(t))2dt4(ΩK(x)f1(x)dx)20τ((Ωi,j=1nKxj(x)aij(x,t)zxim-1dx)2+(Ωi,j=1n(Kxj(x)bij(x,t))xiztm-1dx)2+(ΩK(x)(φ1(x,um-1)-φ1(x,um-2))dx)2+(ΩK(x)(φ2(x,utm-1)-φ2(x,utm-2))dx)2)dt, m3.        (37)

Then (37) implies the estimate

0τ(rm(t))2dtM2Qτ((ztm-1)2+i=1n(zxim-1)2)dx  dt,τ(0,T0],    m3.    (38)

It follows from (35) that zm(x,0)=0, ztm(x,0)=0,xΩ, m2. Hence, from (34) with v=ztm, τ ∈ (0, T0], we get

Qτ(zttmztm+i,j=1naij(x,t)zximzxjtm+i,j=1nbij(x,t)zxitmzxjtm+(φ1(x,um)-φ1(x,um-1))ztm+(φ2(x,utm)-φ2(x,utm-1))ztm)dx  dt=Qτf1(x)rm(t)ztmdx  dt, m1.    (39)

The last term in (39)

Qτf1(x)rm(t)ztmdx  dtβ04γ0Qτ(ztm)2dx  dt+f1γ0β00τ(rm(t))2dtβ04Qτi=1n(zxitm)2dx  dt+f1γ0β00τ(rm(t))2dt.

Besides,

Qτ(φ1(x,um)-φ1(x,um-1))ztmdx  dtQτL1,0|zm||ztm|dx  dtQτ(L1,02γ0β0(zm)2+β04γ0(ztm)2)dx  dtQτ(L1,02γ02β0i=1n(zxim)2+β04i=1n(zxitm)2)dx  dt

and

Qτ(φ2(x,utm)-φ2(x,utm-1))ztmdx  dtL2,0Qτ|ztm|2dx  dt.

Then, taking into account (H1) – (H5), from (39) we get inequality

min{1,α0}Ω((ztm(x,τ))2+i=1n(zxim(x,τ))2)dx+β0Qτi=1n(zxitm)2dx  dtmax{2L2,0;2γ02L1,02β0+α2}Qτ((ztm)2+i=1n(zxim)2)dx  dt+2f1γ0β00τ(rm(t))2dt, m2.    (40)

According to Grönwall's Lemma, we obtain

Ω((ztm(x,τ))2+i=1n(zxim(x,τ))2)dxM30τ(rm(t))2dt, τ(0,T0], m2.    (41)

Interating (41) with respect to τ, we get the estimate

QT0((ztm)2+i=1n(zxim)2)dx  dtM3T00T0(rm(t))2dt, m2.    (42)

Besides, (40) and (42) for m ≥ 2 imply the estimates

QT0i=1n(zxitm)2dx  dtM5β00T0(rm(t))2dt    (43)

and

Ω((ztm(x,τ))2+i=1n(zxim(x,τ))2)dxM5min{1,α0}0T0(rm(t))2dt,    (44)

where M5:=max{2L2,0;2γ02L1,02+α2β0β0}M3T0+2f1γ0β0.

Note that r2(t) = g2(t). Then, taking into account (33), we have

0τ(r2(t))2dt=0τ(g2(t))2dt6(ΩK(x)f1(x)dx)-2(0τ(E(t))2dt+n2maxisupij=1nΩ(Kxj(x)aij(x,t))2dxQT0i=1n(uxi1)2dx  dt+n2maxisuptj=1nΩ(Kxj(x)bij(x,t))2dxQT0i=1n(uxit1)2dx  dt+L1,02Ω(K(x))2dxQT0|u1|2dx  dt+L2,02Ω(K(x))2dxQT0|ut1|2dx  dt+0τ(ΩK(x)f2(x,t)dx)2dt)M6,

where M6 is a positive constant. It follows from (42) and (38) that for m ≥ 3

0T0(rm(t))2dtM4T00T0(rm-1(t))2dt(M4T0)m-20T0(r2(t))2dtM6(M4T0)m-2.    (45)

By using (45) and the assumption M4T0 < 1, we can show the estimate

||gm+k-gm||L2(0,T0)i=m+1m+k(0T0(ri(t))2dt)12i=m+1m+kM612(M4T0)i-22M612(M4T0)m-121-(M4T0)12,    k,m3.    (46)

Due to (42)

QT0((ztm)2+i=1n(zxim)2)dx  dtM3T00T0(rm(t))2dtM3M6T0(M4T0)m-2,   m2.        (47)

Besides, (43) and (44) for m ≥ 2 imply the estimates

QT0i=1n(zxitm)2dx  dtM5M6(M4T0)m-2β0,    (48)

and

Ω((ztm(x,τ))2+i=1n(zxim(x,τ))2)dxM5M6(M4T0)m-2min{1,α0}.    (49)

And, therefore,

j=1n||uxjm+k-uxjm||L2(QT0)+||utm+k-utm||L2(QT0)i=m+1m+k(j=1n||zxji||L2(QT0)+||zti||L2(QT0))(n+1)i=m+1m+k(M3M6T0)12(M4T0)i-22(n+1)(M3M6T0)12(M4T0)m-121-(M4T0)12,    k, m2    (50)

and

j=1n||uxjtm+k-uxjtm||L2(QT0)i=m+1m+kj=1n||zxjti||L2(QT0)ni=m+1m+k(M5M6β0)12(M4T0)i-22n(M5M6β0)12(M4T0)m-121-(M4T0)12,    k, m2,    (51)

and for k ∈ ℕ, m ≥ 2

j=1n||uxjm+k-uxjm||C([0,T0];L2(Ω))+||utm+k-utm||C([0,T0];L2(Ω))i=m+1m+k(j=1n||zxji||C([0,T0];L2(Ω))+||zti||C([0,T0];L2(Ω)))(n+1)(M5M6min{1,α0})12i=m+1m+k(M4T0)i-22(n+1)(M5M6min{1,α0})12(M4T0)m-121-(M4T0)12.    (52)

Besides, we square both sides of equality (36), taking into account the hypotheses (H5) and obtain

(rm(t))24(ΩK(x)f1(x)dx)2((Ωi,j=1nKxj(x)aij(x,t)zxim-1dx)2+(Ωi,j=1n(Kxj(x)bij(x,t))xiztm-1dx)2+(ΩK(x)(φ1(x,um-1)-φ1(x,um-2))dx)2+(ΩK(x)(φ2(x,utm-1)-φ2(x,utm-2))dx)2),    m3.    (53)

From (53), we can conclude that:

(rm(t))2M2Ω((ztm-1(x,t))2+i=1n(zxim-1(x,t))2)dxM2M5M6min{1,α0}(M4T0)m-2, m3.    (54)

Therefore,

max[0,T0]||gm+k-gm||C([0,T0])i=m+1m+k||ri||C([0,T0])(M2M5M6min{1,α0})12i=m+1m+k(M4T0)i-22(M2M5M6min{1,α0})12(M4T0)m-121-(M4T0)12, k,m2.    (55)

It follows from (46), (50), (51), (52), and (55) that for any ε > 0, there exists m0 such that for all k, m ∈ ℕ, m > m0, the following inequalities hold:

||gm+k-gm||L2(0,T0)ε,||gm+k-gm||C([0,T0])ε,j=1n||uxjtm+k-uxjtm||L2(QT0)ε,j=1n||uxjm+k-uxjm||L2(QT0)+||utm+k-utm||L2(QT0)ε,j=1n||uxjm+k-uxjm||C([0,T0];L2(Ω))+||utm+k-utm||C([0,T0];L2(Ω))ε

are true. Hence, the sequence {gm}m=1 is fundamental in L2(0,T0) and in C([0, T0]), {um}m=1 is fundamental in L2(0,T0;H01(Ω)) and in C(0,T0;H01(Ω)), and {utm}m=1 is fundamental in L2(0,T0;H01(Ω)) and in C([0,T0];L2(Ω)). Therefore, as m → ∞

gmg in C([0,T0]),    umu in C([0,T0];H01(Ω)),    utmut in L2(0,T0;H01(Ω))C([0,T0];L2(Ω)).    (56)

Theorem 3.2 implies the following estimate

QT0(uttm)2 dx dy dtA14β0(8nα12eA2T0+max{8α22+12L1,12β0γ0;12β0L2,1}T0eA2T0+(2β2+β0+4α1)(1+A2T0eA2T0)min{1,α0})+nα12Ωi=1n|u0xi(x)|2dx+(β1+1)Ωi=1n|u1xi(x)|2dx+3QT0|f1(x)gm(t)+f2(x,t)|2dx dt,         m2.    (57)

and, by virtue of (56) ||gm||C([0,T0])<M7, where M7 is independent on m, and therefore the right-hand side of (57) is bounded with the constant, independent on m. Hence, we can select a subsequence of sequence {um}m=1 (we preserve the same notation for this subsequence), such that

uttmutt weakly in L2(QT0)    as m.    (58)

Taking into account (56) and (58), from (33), (34) we get that the pair of functions (u(x, t), g(t)) satisfies (27) and (26). By virtue of Lemma 4.2 (u(x, t), g(t)) is a solution of the problem (25) in QT0.

II. Uniqueness of solution of the problem (25), with TT0.

Assume that (u(1)(x, t), g(1)(t)) and (u(2)(x, t), g(2)(t)) be two solutions of problem (25). Then the pair of functions (ũ(x,t),g~(t)), where ũ(x, t) = u(1)(x, t)−u(2)(x, t), g~(t)=g(1)(t)-g(2)(t), satisfies the conditions ũ(x, 0) ≡ 0, ũt(x, 0) ≡ 0, the equality

QT0(ũttv+i,j=1naij(x,t)ũxivxj+i,j=1nbij(x)ũxitvxj+(φ1(x,u(1))-φ1(x,u(2)))v+(φ2(x,(u(1))t)-φ2(x,(u(2))t))v)dx  dt=QT0f1(x)g~(t)vdx  dt,    (59)

for all vL2(0,T0;H01(Ω)) and the equality

g˜(t)=(ΩK(x)f1(x) dx)1(Ω(i,j=1nKxj(x)aij(x,t)u˜xii,j=1n(Kxj(x)bij(x,t))xiu˜t+K(x)(φ1(x,u(1))φ1(x,u(2)))+K(x)(φ2(x,(u(1))t)φ2(x,(u(2))t))) dx),  t[0,T0],    (60)

holds.

After choosing v = ũt in (59) we get

QT0(ũttũt+i,j=1naij(x,t)ũxiũxjt+i,j=1nbij(x,t)ũxitũxjt+(φ1(x,u(1))-φ1(x,u(2)))ũt+(φ2(x,(u(1))t)-φ2(x,(u(2))t))ũt)dx  dt=QT0f1(x)g~(t)ũtdx  dt.    (61)

It is easy to get from (60) and (H5) inequalities

0T0(g~(t))2dtM2QT0((ũt)2+i=1n(ũxi)2)dx  dt.    (62)

From (61) by the same way as from (39) we got (42), we find the following estimate

QT0((ũt)2+i=1n(ũxi)2)dx  dtM3T00T0(g~(t))2dt,    (63)

and taking into account (62) from (63), we obtain (1-M4T0)QT0((ũt)2+i=1n(ũxi)2)dxdt0. Since M4T0 < 1, we conclude that QT0((ũt)2+i=1n(ũxi)2)dxdt=0, hence, u(1) = u(2) in QT0. Then (62) implies g~(t)0, and, therefore, g(1)(t) ≡ g(2)(t) on [0, T0].

III. Let now T > 0 be arbitrary number.

Let us divide the interval [0, T] into a finite number of intervals [0, T1], [T1, 2T1], …, [(N − 1)T1, NT1], where NT1 = T, and T1T0. According to I and II, there exists a unique solution (u1(x, t), g0,1(t)) to the problem (25) in the domain QT1.

Now, we will prove that there exists a unique solution in the domain QT1, 2T1: = Ω × (T1; 2T1) for the problem for the Equation 2 with conditions (4) and (5) as t ∈ [T1; 2T1], and with the initial condition u(x, T1) = u1(x, T1), ut(x, T1) = u1t(x, T1), and x ∈ Ω.

Let us change the variables t = τ+T1, τ ∈ [0;T1] in this problem. We will denote G0(τ) = g(τ+T1), U(x, τ) = u(x, τ+T1), aij(1)(x,τ)=aij(x,τ+T1), bij(1)(x,τ)=bij(x,τ+T1), f2(1)(x,τ)=f2(x,τ+T1), and E(1)(τ)=E(τ+T1). For the pair (U(x, τ), G0(τ)) we obtain the problem:

Uττ-i,j=1n(aij(1)(x,τ)Uxi)xj-i,j=1n(bij(1)(x,τ)Uxiτ)xj+φ1(x,U)+φ2(x,Uτ)=f1(1)(x)G0(τ)+f2(1)(x,τ),  (x,τ)QT1    (64)
U(x,0)=u1(x,T1), Ut(x,0)=u1t(x,T1),  xΩ,    (65)
U|Ω×(0,T1)=0,        (66)
ΩK(x)U(x,τ)dx  dy=E(1)(τ),        τ[0,T1].    (67)

It is obvious that all coefficients of the Equation 64 and the functions f2(1)(x,τ), u1(x,T1), u1t(x,T1), E(1)(τ) satisfy the same conditions as the functions from (2) and (5). According to I and II, there exists a unique solution to the problem (6467) in QT1, and, thus for the problems for the Equation 2 with conditions (4) and (5) as t ∈ [T1; 2T1] and with the initial condition u(x, T1) = u1(x, T1), ut(x, T1) = u1t(x, T1), and x ∈ Ω, in the domain QT1, 2T1. Denote it by (u2(x, t), g0,2(t)). By following similar reasoning on the intervals [2T1; 3T1], …, [(N − 1)T1; NT1], we can prove the existence and uniqueness of weak solutions (uk(x, kt), g0,k(t)), k = 3, …, N, in the domain Q(k−1)T1,kT1: = Ω × ((k − 1)T1, kT1) of the inverse problem for the Equation 2 with conditions (4) and (5) as t ∈ [(k − 1)T1; kT1] and the initial condition u(x, (k − 1)T1) = uk−1(x, (k − 1)T1), x ∈ Ω. It is clear that a pair of functions (u(x, t), g0(t)), where

u(x,t)={u1(x,t),  if  (x,t)QT1;u2(x,t),  if  (x,t)QT1,2T1;uN(x,t),  if  (x,t)Q(N-1)T1,NT1,
g0(t)={g0,1(t),  if  t[0,T1];g0,2(t),  if  t[T1,2T1];g0,N(t),  if  t[(N-1)T1,NT1],

is a solution for the problem (25) in the domain QT.

IV. The uniqueness of solution is proved similar as in II, III: Assume that (u(1)(x, t), g(1)(t)) and (u(2)(x, t), g(2)(t)) be two solutions of problem (25). Then the pair of functions (ũ(x,t),g~(t)), where ũ(x, t) = u(1)(x, t)−u(2)(x, t), g~(t)=g(1)(t)-g(2)(t), satisfies the conditions ũ(x, 0) ≡ 0, ũt(x, 0) ≡ 0, the equality

Qτ(ũttv+i,j=1naij(x,t)ũxivxj+i,j=1nbij(x)ũxitvxj+(φ1(x,u(1))-φ1(x,u(2)))v+(φ2(x,(u(1))t)-φ2(x,(u(2))t))v)dx  dt=Qτf1(x)g~(t)vdx  dt,    (68)

for all vL2(0,T;H01(Ω)), τ ∈ (0, T], and the equality

g˜(t)=(ΩK(x)f1(x) dx)1(Ω(i,j=1nKxj(x)aij(x,t)u˜xii,j=1n(Kxj(x)bij(x,t))xiu˜t+K(x)(φ1(x,u(1))φ1(x,u(2)))+K(x)(φ2(x,(u(1))t)φ2(x,(u(2))t))) dx),  t[0,T],    (69)

holds.

Let us divide the interval [0, T] into a finite number of intervals [0, T1], [T1, 2T1], …, [(N − 1)T1, NT1], where NT1 = T, and T1T0.

Let us choose τ ∈ [0, T1] in (68). After choosing here v = ũt, we get

Qτ(u˜ttu˜t+i,j=1naij(x,t)u˜xiu˜xjt+i,j=1nbij(x,t)u˜xitu˜xjt+(φ1(x,u(1))φ1(x,u(2)))u˜t+(φ2(x,(u(1))t)φ2(x,(u(2))t))u˜t) dx dt=Qτf1(x)g˜(t)u˜t dx dt,   τ[0;T1].    (70)

It is easy to get from (69) and (H5) inequalities

0T1(g~(t))2dtM2QT1((ũt)2+i=1n(ũxi)2)dx  dt.    (71)

From (70), by the same way as from (39), we got (42). We find the following estimate:

QT1((ũt)2+i=1n(ũxi)2)dx  dtM3T10T1(g~(t))2dt,    (72)

and taking into account (71) from (72), we obtain (1-M4T1)QT1((ũt)2+i=1n(ũxi)2)dxdt0. Since M4T1 < 1, we conclude that QT1((ũt)2+i=1n(ũxi)2)dxdt=0, hence, u(1) = u(2) in QT1. Then (71) implies g~(t)0, and, therefore, g(1)(t) ≡ g(2)(t) on [0, T1].

Let us choose τ ∈ [0, 2T1] in (68). After choosing here v = ũt, we get

Qτ(u˜ttu˜t+i,j=1naij(x,t)u˜xiu˜xjt+i,j=1nbij(x,t)u˜xitu˜xjt+(φ1(x,u(1))φ1(x,u(2)))u˜t+(φ2(x,(u(1))t)φ2(x,(u(2))t))u˜t) dx dt=Qτf1(x)g˜(t)u˜t dx dt, τ[0;2T1].    (73)

Note that ũ ≡ 0 in QT1 and g~0 on [0;T1], therefore, from (73) it follows that

QT1,τ(u˜ttu˜t+i,j=1naij(x,t)u˜xiu˜xjt+i,j=1nbij(x,t)u˜xitu˜xjt+(φ1(x,u(1))φ1(x,u(2)))u˜t+(φ2(x,(u(1))t)φ2(x,(u(2))t))u˜t) dx dt=QT1,τf1(x)g˜(t)u˜t dx dt,  τ[T1;2T1].    (74)

It is easy to get from (69) and (H5) inequalities

T12T1(g~(t))2dtM2QT1,2T1((ũt)2+i=1n(ũxi)2)dx  dt.    (75)

From (74), by the same way as from (39), we got (42). We find the following estimate

QT1,2T1((ũt)2+i=1n(ũxi)2)dx  dtM3T1T12T1(g~(t))2dt,    (76)

and taking into account (75) from (76), we obtain (1-M4T1)QT1,2T1((ũt)2+i=1n(ũxi)2)dxdt0. Since M4T1 < 1, we conclude that QT1,2T1((ũt)2+i=1n(ũxi)2)dxdt=0, hence, u(1) = u(2) in QT1, 2T1. Then, (75) implies g~(t)0, and, therefore, g(1)(t) ≡ g(2)(t) on [T1, 2T1]. Therefore, u(1) = u(2) in Q2T1, g(1)(t) ≡ g(2)(t) on [0, 2T1].

Considering τ ∈ [0, 3T1], …   , τ ∈ [0, NT1] in (68), by the same arguments, we find that u(1) = u(2) in Q(k−1)T1,kT1, g(1)(t) ≡ g(2)(t) on [(k − 1)T1, kT1], k = 1, 2, …, N. Therefore, u(1) = u(2) in QT, g(1)(t) ≡ g(2)(t) on [0, T].

5 Conclusions

In this study, we have derived the necessary conditions for the existence and the uniqueness of the solution for the initial-boundary value problem, as well as the inverse problem, for semilinear hyperbolic equation of the third order with an unknown parameter in its right-hand side function. To determine the unknown function, an additional integral-type overdetermination condition have been introduced. These results were obtained by utilizing the properties of the solutions to the initial-boundary value problem and the method of successive approximations.

Data availability statement

Publicly available datasets were analyzed in this study. This data can be found at: no.

Author contributions

NP: Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.

Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Hai DD. On a strongly damped quasilinear wave equation. Demonstr Math. (1986) 19:327–40. doi: 10.1515/dema-1986-0208

Crossref Full Text | Google Scholar

2. Angt DD, Dinh APN. On the strongly damped wave equation: utt − Δu − Δut + f(u) = 0. Siam J Math Anal. (1988) 19:1409–18. doi: 10.1137/0519103

Crossref Full Text | Google Scholar

3. Dvornyk AV, Tkachenko VI. Almost periodic solutions of the wave equation with damping and impulsive action. Ukr Math J. (2023) 75:68–79. doi: 10.1007/s11253-023-02186-7

PubMed Abstract | Crossref Full Text | Google Scholar

4. Greenberg JM, McCamy RC, Mizel V. On the existence, uniqueness and stability of solutions of the equation σ(ux)uxx+λuxxt=ρ0utt. J Math Mech. (1968) 17:707–28.

Google Scholar

5. Graham A. On the existence of solutions to the equation utt = uxxt + σ(ux). J Differ Equ. (1980) 35:200–31. doi: 10.1016/0022-0396(80)90040-6

Crossref Full Text | Google Scholar

6. Carvalho AN, Cholewa JW. Strongly damped wave equations in W1, p(Ω) × Lp(Ω). Discrete Contin Dyn Syst. (2007) 2007:230–9. doi: 10.3934/proc.2007.2007.230

Crossref Full Text | Google Scholar

7. Dafermos CM. The mixed initial-boundary value problem for the equations of nonlinear one-dimensional viscoelasticity. J Differ Eq. (1969) 6:71–86. doi: 10.1016/0022-0396(69)90118-1

Crossref Full Text | Google Scholar

8. Domanska H, Lavrenyuk S, Protsakh N. Problem for nonlinear third order hyperbolic equation. Nauk Bull Chernivtsi Univ Math. (2005) 269:34–42.

Google Scholar

9. Ferreira J, Pereira DC. On a nonlinear degenerate evolution equation with strong damping. Int J Math Math Sci. (1992) 15:543–52. doi: 10.1155/S016117129200070X

PubMed Abstract | Crossref Full Text | Google Scholar

10. Gao H, Ma TF. Global solutions for a nonlinear wave equation with the p-Laplacian operator. EJQTDE. (1999) 11:1–13. doi: 10.14232/ejqtde.1999.1.11

Crossref Full Text | Google Scholar

11. Protsakh N. Mixed problem for anisotropic third order equation. Math Methods Fiz-Mech Fields. (2007) 50:40–53.

Google Scholar

12. Akhundov AY, Habibova AS. On the solvability of an inverse problem for a hyperbolic heat equation. Azerb J Math. (2023) 13:205–15.

Google Scholar

13. Oussaeif T-E, Bouziani A. Inverse problem for a hyperbolic equation with an integral overdetermination condition. Electron J Differ Eq. (2016) 2016:1–7.

Google Scholar

14. Lopushanska H, Lopushansky A. Inverse problem with a time-integral condition for a fractional diffusion equation. Math Methods Appl Sci. (2019) 42:3327–40. doi: 10.1002/mma.5587

Crossref Full Text | Google Scholar

15. Protsakh N. Determining of three unknown functions of a semilinear ultraparabolic equation. Math Methods Appl Sci. (2021) 44:617–33. doi: 10.1002/mma.6768

Crossref Full Text | Google Scholar

16. Protsakh N. Inverse problem for higher order ultraparabolic equation with unknown minor coefficient and right-hand side function. Miskolc Mathem Notes. (2020) 21:335–50. doi: 10.18514/MMN.2020.2879

Crossref Full Text | Google Scholar

17. Protsakh NP. Inverse problem for a semilinear ultraparabolic equation with unknown right-hand side. Ukr Math J. 66:371–90. doi: 10.1007/s11253-014-0937-4

Crossref Full Text | Google Scholar

18. Protsakh NP, Ptashnyk BY. Nonlinear Ultraparabolic Equations and Variational Inequalities. Kyiv: Naukova dumka. (2017).

Google Scholar

19. Mehraliyev YT, Sadikhzade SR, Ramazanova AT. Two-dimensional inverse boundary value problem for a third-order pseudo-hyperbolic equation with an additional integral condition. Eur J Pure Appl Math. (2023) 16:670–86. doi: 10.29020/nybg.ejpam.v16i2.4743

Crossref Full Text | Google Scholar

20. Gajewski H, Gröger K, Zacharias K. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Berlin: Akademie-Verlag, Mathematische Lehrbücher und Monographien (1974). doi: 10.1515/9783112717899

Crossref Full Text | Google Scholar

21. Coddington EA, Levinson N. Theory of Ordinary Differential Equations. New York, NY: TATA McGraw-Hill Publishing Co LTD. (1955).

Google Scholar

Keywords: semilinear wave equation, inverse coefficient problem, existence of solutions, initial-boundary value problem, strong damping

Citation: Protsakh N (2024) Inverse problem for semilinear wave equation with strong damping. Front. Appl. Math. Stat. 10:1467441. doi: 10.3389/fams.2024.1467441

Received: 19 July 2024; Accepted: 27 August 2024;
Published: 24 September 2024.

Edited by:

Tamara Fastovska, V. N. Karazin Kharkiv National University, Ukraine

Reviewed by:

Aysel Ramazanova, University of Duisburg-Essen, Germany
Mansur I. Ismailov, Gebze Technical University, Türkiye

Copyright © 2024 Protsakh. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Nataliya Protsakh, cHJvdHNha2gmI3gwMDA0MDt1a3IubmV0

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.