What's Normal? Microbiomes in Human Milk and Infant Feces Are Related to Each Other but Vary Geographically: The INSPIRE Study
- 1Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
- 2Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
- 3Department of Anthropology, Washington State University, Pullman, WA, United States
- 4Statistical Programs, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, United States
- 5Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- 6Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- 7Department of Human Nutrition, Egerton University, Nakuru, Kenya
- 8Department of Women and Children's Health, King's College London, London, United Kingdom
- 9MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
- 10MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
- 11Department of Anthropology, Hawassa University, Hawassa, Ethiopia
- 12Faculty of Medicine, Lund University, Lund, Sweden
- 13Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
- 14Probisearch, Tres Cantos, Spain
- 15Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- 16Department of Nutrition, Food Science, and Food Technology, Complutense University of Madrid, Madrid, Spain
- 17Nutrition Research Institute, Lima, Peru
- 18Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, United States
- 19Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
A Corrigendum on
What's Normal? Microbiomes in Human Milk and Infant Feces Are Related to Each Other but Vary Geographically: The INSPIRE Study
by Lackey, K. A., Williams, J. E., Meehan, C. L., Zachek, J. A., Benda, E. D., Price, W. J., et al. (2019). Front. Nutr. 6:45. doi: 10.3389/fnut.2019.00045
In the original article, there was an error. The volume of milk subjected to DNA extraction was reported as 2.5 mL, which is an error in the decimal placement. The actual volume of milk used was 0.25 mL.
A correction has been made to the Materials and Methods section, subsection Extraction of DNA from Milk, paragraph 2:
“DNA in 0.25 mL of each milk sample collected in ETR was extracted using the kit accompanying the Milk Preservation Solution (Norgen Biotek, Thorold, Ontario) as per manufacturer's instructions, including the 2 h enzymatic lysis (20 mg/mL lysozyme). DNA was eluted in 100 μL elution buffer (included with the kit) and stored at −20°C until amplification. Nuclease-free water (500 μL; Ambion) was extracted as a negative control.”
Additionally, the reports of the sequencing reads in the results section were incorrect. A correction has been made to the Results section, subsection Sequencing Summary:
“The sequencing run for the 398 infant fecal samples generated 4,385,982 reads, with a mean (± standard deviation, SD) of 11,020 ± 6,632 reads and a range of 10 to 40,267 reads following initial processing using the DADA2 workflow. After additional filtering of any read that could not be classified to the genus level, and omitting any sample with <1,000 reads, the infant fecal dataset analyzed here contained 4,314,551 reads across 377 samples, with a mean (± SD) of 11,444 ± 6,198; and a range of 1,662–40,255 reads. For the 409 milk samples, sequencing generated 7,528,193 reads, with a mean (± SD) of 18,406 ± 18,389 reads and a range of 12−141,620 reads following initial processing using the DADA2 workflow. Using the same filtering criteria as the infant fecal dataset, the milk dataset used here contained 6,709,277 reads across 394 samples, with mean (± SD) of 17,029 ± 16,783, and a range of 1,302–130,700 reads. These curated datasets were used for all further analyses.”
The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
Keywords: human milk, breastmilk, feces, microbiome, international, infant, breastfeeding, maternal
Citation: Lackey KA, Williams JE, Meehan CL, Zachek JA, Benda ED, Price WJ, Foster JA, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, K. DG, Kvist LJ, Otoo GE, García-Carral C, Jiménez E, Ruiz L, Rodríguez JM, Pareja RG, Bode L, McGuire MA and McGuire MK (2020) Corrigendum: What's Normal? Microbiomes in Human Milk and Infant Feces Are Related to Each Other but Vary Geographically: The INSPIRE Study. Front. Nutr. 7:12. doi: 10.3389/fnut.2020.00012
Received: 20 December 2019; Accepted: 29 January 2020;
Published: 19 February 2020.
Edited and reviewed by: Aldo Corsetti, University of Teramo, Italy
Copyright © 2020 Lackey, Williams, Meehan, Zachek, Benda, Price, Foster, Sellen, Kamau-Mbuthia, Kamundia, Mbugua, Moore, Prentice, K., Kvist, Otoo, García-Carral, Jiménez, Ruiz, Rodríguez, Pareja, Bode, McGuire and McGuire. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Michelle K. McGuire, c21jZ3VpcmUmI3gwMDA0MDt1aWRhaG8uZWR1