It is now well-known that the assembly of particles at fluid/fluid interfaces, and the resulting dynamical properties of such particle-laden interfaces can provide high stabilization of dispersed systems such as emulsions and foams. Here, we focus on the emerging case of “protein particles,” a novel family of bio particles. We provide an updated perspective about their definition, production, bulk and interface properties, highlighting the most recent results of the obtained bioparticle-laden interfaces, and how such protein particles can stabilize liquid dispersions. The ability of protein particles for undergoing a fast adsorption to fluid/fluid interfaces and for forming viscoelastic layers play a key role on the prevention of drainage, coalescence, or coarsening/ripening, which results in the formation of very stable particle-stabilized foams and emulsions. Therefore, protein particles are an excellent bio-based alternative to synthetic surfactants and other conventional stabilizers for ensuring the stabilization of a broad range of dispersed systems, opening new avenues for the design of new products with interest for cosmetic, food and biomedical industries.
Pea protein isolate (Pisum sativum L., PPI) has been much studied in the last decade because of its potential as a bio-based alternative for surfactants to produce innovative and environmentally friendly emulsion products. PPI is ideal due to its favorable nutritional properties, low allergenicity and low environmental impact. Despite its growing popularity, understanding the stabilisation mechanism of emulsions stabilized with PPI remains a key question that requires further investigation. Here, we use fluorescence lifetime microscopy with molecular rotors as local probes for interfacial viscosity of PPI stabilized emulsions. The fluorescence lifetime correlates to the local viscosity at the oil-water interface allowing us to probe the proteins at the interfacial region. We find that the measured interfacial viscosity is strongly pH-dependent, an observation that can be directly related to PPI aggregation and PPI reconformation. By means of molecular rotor measurements we can link the local viscosity of the PPI particles at the interface to the Pickering-like stabilisation mechanism. Finally, this can be compared to the local viscosity of PPI solutions at different pH conditions, showing the importance of the PPI treatment prior to emulsification.
Foam film’s properties have a high impact on the properties of the macroscopic foams. This work focusses on protein stabilized foam films. The direct comparison of three different proteins with a concentration normalized to the protein surface enables to distinguish between electrostatic, steric and network stabilization effects. In order to untangle those effects, we study and compare two globular proteins (β − lactoglobulin, BLG, and bovine serum albumin, BSA) and a disordered, flexible protein (whole casein, CN) at low ionic strengths with varying solution pH. Image intensity measurement as a recently developed image analysis method in this field allows to record spatially resolved disjoining pressure isotherms in a Thin Film Pressure Balance (TFPB). This reveals insights into the structure formation in inhomogeneous protein films. As a novel method we introduce tracking inhomogeneities (features) which enables the measurement of interfacial mobility and stiffness of foam films. Around the isoelectric point (IEP), Newton Black Films (NBF) form which are stable for the globular proteins while they are unstable for the disordered flexible one. This difference in film stability is explained by different characteristics of the network structures which is supported by findings in the bulk and at the surface of the respective protein solutions.