About this Research Topic
Neuromorphic system has been the subject of many classic studies. Because of the rapid development in modern microelectronics, there are opportunities for the electronic implementation of neuromorphic systems. Neuromorphic computing is an important research area that has significant influence on the development of artificial intelligence. There are many applications of neuromorphic computing in computer vision, pattern recognition, natural language processing, and robotics.
Memristor-based neuromorphic computing has been introduced as a new breakthrough technique and is expected to solve current computational bottlenecks. Memristive neuromorphic system exhibits advanced features, such as a much lower power supply voltage requirement, lower power consumption, and a nano-scale size. Therefore, a very promising memristive era is opening for future practical systems.
Besides the rapid development of the field, there are still different issues that should be further investigated. Exploiting the favorable performance merits of mem-elements concerning their non-volatility and switching speed is still an open topic. In addition, the optimization of area and energy dissipation for large array integration architecture is a challenging task.
There is a need to propose memristive deep neural networks combining recent advances in the machine learning areas, such as deep learning, with nonlinear dynamics and novel features of memristor elements. Moreover, there is an increasing demand for a practical solution to integrate such systems in low-cost, energy-saving devices for various Internet of Things (IoT) applications.
This Research Topic aims at representing and discussing advanced topics of neuromorphic mem-computation. We welcome submissions related to such current field focusing on, but not limited to, the following topics:
- Nonlinear analysis of neuromorphic mem-systems.
- Analog and digital memristor-based circuits, systems and architectures.
- Neuromorphic circuits and systems.
- In-memory computing.
- Novel architectures with CMOS integration.
- Memristor-based sensory platforms.
- Nonlinear dynamics, chaos, and complexity.
- Emerging artificial intelligence applications exploiting memristor.
Keywords: Memristor, Neural Network, Brain, Neural Computing, Artificial Intelligence
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.