About this Research Topic
In the past decade, a number of studies examined the effects of elevated CO2, increasing temperature, and rainfall on tea systems, and how low carbon technologies can help mitigate and adapt to climate change. However, science, practice, and policy still lags behind to efficiently manage climate change effects towards a sustainable tea industry. Research is called for to further explore the basic mechanisms responsible for tea plant growth, development, and quality as well as its ecosystem stability in the context of climate change. In addition, transdisciplinary research is called for to understand the implications of climate change on the social and economic aspects of the tea system from production through consumption.
This Research Topic is devoted, but not limited, to recent scientific progress on following areas:
1. Morpho-anatomical, physiological, biochemical and molecular level studies in the context of shifts in one or more climate change factors (including shifts in CO2, seasonality, temperature, water stress, light conditions).
2. Effect of environmental factors on targeted secondary metabolites that confer tea quality.
3. Studies aimed at elucidating the effect of herbivory and plant-pathogen interactions in tea plants.
4. Breeding of climate resilient tea cultivars to efficiently respond to single or multiple environmental factors.
5. Farm-level studies evaluating the effectiveness of different mitigation and adaptation strategies to manage for climate risk.
6. Transdisciplinary studies addressing sustainability aspects of tea systems based on environmental, economic, and social factors.
7. Development of evidence-based strategies and policies that reduce vulnerability of tea plant and its ecosystems to climate change towards supporting sustainability.
Note for authors: Studies falling into the categories below will not be considered for review unless they are expanded and provide further insights into the biological system or process being studied:
- Descriptive collections of transcripts, proteins or metabolites, including comparative sets as a result of different conditions or treatments.
- Descriptive studies that define gene families using basic phylogenetics and the assignment of cursory functional attributions (e.g. expression profiles, hormone or metabolites levels, promoter analysis, informatic parameters).
- Manuscripts on QTL mapping, by any method, require a dense marker coverage (tentatively N > 100 depending on the population size). Deviations from these requirements should be well-justified and explained in the cover letter.
- Manuscripts on genomic selection (GWAS) generally require relatively big sample sizes (tentatively N > 200) and precise information about the structure of the population due to relatedness and/or ancestral structure. Deviations from these requirements should be well-justified and explained in the cover letter.
- Phenotyping of complex quantitative traits must be conducted in at least 3 independent test environments, which can be the result of any combination of year/season with location (field, location, greenhouse, and/or growth chamber), and each test environment should consist of at least 3 replicates. Deviations from these requirements should be well-justified and explained in the cover letter.
Keywords: Camellia sinensis, Secondary Metabolism, Plant Physiology, Climate Change
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.