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Editorial on the Research Topic

Climate, Land Use, and Fire: Can Models Inform Management?

INTRODUCTION

Changes in fire regimes, including changes in fire intensity, frequency, and seasonality have resulted
from anthropogenic activities including shifts in land use, land management practices, urbanization
of the wildlands, and human-caused climate change (e.g., Bowman et al., 2020; Coop et al., 2020).
The clear human fingerprint on fire activity in many regions (Archibald et al., 2013) indicates that
landscape management may alter the trajectory of fire regimes in a changing climate. This hopeful
call to action requires a sound understanding of landscape management effects on across different
fire regimes in the context of other human and biophysical factors. It is challenging to isolate the
individual contributions of these factors given their diverse spatial and temporal footprints.
However, a diversity of modeling efforts can be used to improve understanding of changing fire
regimes, to assess vulnerability to societal and ecosystem values, and to help design and test effective
management options that would mitigate undesirable outcomes (e.g., fire impacts to communities,
degradation of air quality, change in ecosystem structure, feedbacks to global climate) while
preserving many of the ecological benefits of fire. Recent trends in extreme fire seasons
including the 2019–2020 Southeast Australian bushfires (Nolan et al., 2020) and the 2020
Western United States fires (Higuera and Abatzoglou, 2020) catalyze the need to deliver useful
science-based information to decision-makers for devising effective adaptive strategies to reduce the
impacts from future extreme fire seasons.

Humans have long influenced fire regimes, albeit in complex and heterogeneous ways (e.g., Pyne
1993). Land use changes have continued in recent decades as agricultural expansion and
intensification have reduced burned area in grasslands and savannas (e.g., Andela et al., 2017),
while land exploitation and deforestation have increased fire occurrence in peatlands (e.g., Normile
2019) and forests (e.g., Escobar 2019). While fire is a biophysical process, human behavior and
decisions drive many global fire regimes and changes thereof. Humans dictate many fire regimes
though a number of vehicles: adding ignitions in places and at times of year that ecosystems have not
been subject to in the past (e.g., Syphard and Keeley 2014; Balch et al., 2017); introducing invasive
species that cause surface fuel continuity where patchiness prevented fire spread (e.g., Brooks et al.,
2004); suppressing fire thereby allowing for fuel accumulation and expansion of fire sensitive species
(e.g., Novacki and Abrams 2008); establishing fire-prone homogeneous tree plantations (e.g., Zald
and Dunn 2018); and expanding the wildland urban interface (e.g., Mietkiewicz et al., 2020). Human
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migration as a result of climate change, economics, and local
conflicts for dwindling resources (e.g., Cattaneo et al., 2019)
suggest continued changes in human fingerprint on fire
regimes across much of the planet.

SYNTHESIS OF STUDIES

This Research Topic included seven articles that used a diversity
of modeling approaches to assess how climate, land use, and other
anthropogenic factors influence fire regimes to inform managers
and land stewards. Studies focused on different fire prone
environments across the globe from Brazil to the southwestern
United States and Canada, from southeastern Australia to the
Mediterranean basin. Because fire impacts vary widely across
ecosystems, geographies and scales, a hierarchy of modelling
approaches is required to meet the different goals of fire
management, for instance reduction of fire risk, conservation
of threatened ecosystem types and biodiversity, increase in
carbon storage, or mitigation of anthropogenic climate change.
The contributions that constitute this Research Topic highlight
both a search for better understanding of fire-ecosystem
responses to a constellation of anthropogenic factors and the
development of vehicles that deliver usable information and tools
to landmanagers and decisionmakers preparing for both the next
fire season as well as that of the next several decades.

Since fuels reduction is a hot topic issue and is often
brandished as the one size fits all solution to the extreme fire
behavior, we highlight two articles (Clarke et al., 2020; O’Connor
et al., 2020) that show the importance of fuels reduction in one
dryland ecosystem and the only short term success in another. A
second grouping of studies highlighted the various ways in which
modeling can more broadly inform management decisions,
including a review of various modeling efforts to help
managers assess and address ecosystem stability (Loehman
et al., 2020), the identification of non-stationarity in extreme
fire seasons that emphasizes the need for modernizing fire risk
approaches (Barbero et al., 2020), and the importance of
ecosystem threshold behavior in savanna ecosystems to
changing fire frequency that will require agile models
forecasting such drastic change in conditions (Gomes et al.,
2020). Two final papers highlight next steps for the fire
modeling community: the well known goal of improving earth
system models that are used to simulate future climate and could
be used to assess the climate mitigation potential of fire
management to inform international policy (D’Onofrio et al.,
2020); the potential of linking fire regime characteristics with fire
management decisions in modeling efforts to create more useful
tools to address the challenges ahead (Taylor 2020).

Influence of Fuel Reduction Efforts
Clarke et al. (2020) used a pyrogeographic approach and machine
learning to compare the influence of four fundamental switches
(fuel load, fuel dryness, fire weather, and ignitions) on large fire
probability across both forests and grasslands in southeastern
Australia. They found nonlinear responses—notably with
increased fuel dryness in forested environments. Furthermore,

a reduction in fuel load from 24 to 16 t ha−1 in forests yielded a
50% decrease in large fire probability. Their results suggest that
landscape-scale reductions in fuel load—well in excess of levels
currently applied—have the potential to ameliorate the climate
change-driven rise in the probability of large forest fires.

O’Connor et al. (2020) simulated the interactions of climate,
fire, and active management along an ecological gradient of
shrublands, woodlands, and forests on a mountain range in
Arizona. Their results showed the overwhelming impacts of
climate change in arid environments with or without
disturbance. Desert grassland and shrub communities were
maintained or even expanded while woodland and forests
receded to climate refugia sites regardless of management
actions. Recommended fuel treatments showed potential to
mitigate the severity of fire effects and to slow the transition
from forest to shrubland but without preventing it entirely.

Tying Modeling Results With Management
Decisions
Loehman et al. (2020) described three modeling approaches
applicable for land management: historical comparisons to
create a frame of reference, future comparative modeling to
explore plausible futures, and threshold detection modeling
to warn managers about possible loss of ecosystem stability.
As rapid climate change alters disturbance regime limiting the
usefulness of looking back at previous behaviors and likely
overwhelming current land management strategies, they
emphasize the critical need for collaboration between modelers
and field ecologists to integrate local knowledge that describes
emerging novel ecosystems.

Barbero et al. (2020) quantified changes in fire weather
conditions including extreme fire seasons imparted by
anthropogenic climate change over France. Using
counterfactual simulations that excluded first-order estimates
of modeled changes in climate, they estimated that 47–72% of
the observed trends in various fire weather indices across
Mediterranean France during 1958–2017 were attributable to
anthropogenic climate change. Finally, they demonstrated that
climate change has significantly altered the probability of
extreme fire seasons. For example, fire weather conditions
similar to those observed during the extreme 2003 fire season
were estimated to be 25 times more likely today compared to
pre-industrial climate. This work highlights the importance of
modernizing fire risk proxies during an era of changing
environmental conditions.

Gomes et al. (2020) investigated the responses of plant
biomass to frequent fires in the Brazilian savanna (Cerrado).
The biennial fire use in agricultural practices is also a source of
ignition for the surrounding natural vegetation. They used the
BEFIRE (Behaviour and Effect of Fire) model which includes
relationships between fire frequency, plant biomass and fire
emissions based on data compiled from experimental burnings
in the Cerrado region. The study showed that under biennial fire
regimes only herbs and grasses were able to recover most of their
biomass between fire events, while such a regime led to
degradation and the altered coexistence of the different plant
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types in shrub and tree ecosystems. The model simulations
should inform fire management to increase the resilience of
the threatened biome.

Next Steps for Modeling
D’Onofrio et al. (2020) evaluated dynamic global vegetation
models using remote sensing data in terms of the vegetation-
climate-fire relationships. By analyzing these relationships it was
possible to critique model structures and inform development
options based on model-data comparison. Possible
improvements related to the representation of fire, drought
and grass-tree competition were identified to improve models
used for future projections of vegetation and the carbon cycle as
well as in Earth SystemModels. The representation of fire in such
models is important to understand the effects of changing fire
regimes but also the potential influence of human fire
management on future climate and ecosystem properties.

Taylor (2020) investigated the relationship between wildfire
activity and management decisions across spatio-temporal scales
in Canada. Time series analysis methods were applied to
investigate the temporal scales of fire weather and activity
while fire management decision problems were identified
through interviews with fire management agencies. The scales
of fire activity were connected to the spatio-temporal dimensions
of fire management decisions, e.g., the larger spatio-temporal
scales of area burned or fire frequency matched the spatio-
temporal scales of resource capacity while the scales of
resource utilization were close to the scales that matter for fire
spread. The results implied that the different areas of fire
planning needed to take into account different aspects of
fire regime changes. Taylor proposed that this framework
relating the scales of fire activity to fire management decisions
could be extended to include mechanisms such as increasing
atmospheric CO2.

CONCLUDING REMARKS

Continued efforts are needed to understand the roles played by
top-down climate factors and bottom-up land-management in
the tapestry of changing global fire regimes. Investigating
different scenarios of human activities, including
management, may be as important as investigating climate
scenarios to understand the potential and the boundaries of
the human leverage. Integration of scientific understanding
with practitioners’ local knowledge is the key to develop
effective management strategies for different landscapes at
actionable scales to achieve desirable fire regime outcomes
(e.g., reduced fire risks, conservation of ecosystem
services)—particularly under otherwise non-stationary
environmental and societal conditions. Studies such as those
highlighted in this Research Topic showcase that models
provide advances in understanding and provide outcomes
that can inform management while being critically
challenged and improved by collaborations with field
practitioners. Ongoing changes in environmental and
societal landscapes and their collective impacts on fire
regimes reinforces the need to develop tools that provide
guidance how fire management can be used to mitigate fire
risk. Bringing together modelers, field ecologists, managers,
and practitioners to share their respective knowledge will not
only facilitate the development of effective adaptation strategies
but also create better science. As Thomas Kuhn simply stated it,
the answers you get depend upon the questions you ask and
managers do have many questions for the scientists.
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Complex, reciprocal interactions among climate, disturbance, and vegetation

dramatically alter spatial landscape patterns and influence ecosystem dynamics.

As climate and disturbance regimes shift, historical analogs and past empirical studies

may not be entirely appropriate as templates for future management. The need for a

better understanding of the potential impacts of climate changes on ecosystems is

reaching a new level of urgency, especially in highly perturbed or vulnerable ecological

systems. Simulation models are extremely useful tools for guiding management

decisions in an era of rapid change, thus providing potential solutions for wicked

problems in land management—those that are difficult to solve and inherently resistant

to easily definable solutions. We identify three experimental approaches for landscape

modeling that address management challenges in the context of uncertain climate

futures and complex ecological interactions: (1) an historical comparative approach, (2)

a future comparative approach, and (3) threshold detection. We provide examples of

each approach from previously published studies of simulated climate, disturbance, and

landscape dynamics in forested landscapes of the western United States, modeled with

the FireBGCv2 ecosystem process model. Cumulatively, model outcomes indicate that

typical land management strategies will likely not be sufficient to counteract the impacts

of rapid climate change and altered disturbance regimes that threaten the stability

of ecosystems. Without implementation of new, adaptive management strategies,

future landscapes are very likely to be different than historical or contemporary ones,

with significant and sometimes persistent changes triggered by interactions of climate

and wildfire.

Keywords: HRV, FRV, landscape modeling, ecosystem management, climate change, land management,

landscape ecology, historical ecology

INTRODUCTION

Globally, climate changes have altered the timing, extent, frequency, and severity of wildfires
(Westerling et al., 2006; Krawchuk et al., 2009; van Mantgem et al., 2013; Abatzoglou et al.,
2018). Wildfire disturbance often occurs against a backdrop of more gradual changes resulting
from shifting climate patterns (Hamann and Wang, 2006; Danby and Hik, 2007; Kelly and
Goulden, 2008; Case and Lawler, 2017). In systems in which both biological and physical
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elements are simultaneously or serially perturbed, highly
visible, rapidly occurring, and persistent changes in landscape
composition and structure can occur. Interacting stressors of
climate and uncharacteristic fire disturbance can trigger abrupt
changes in ecosystems, including emergence of novel species
assemblages, local extinctions, major shifts in forest composition,
reduced biodiversity, and loss of ecosystem resilience (Root et al.,
2003; Johnstone et al., 2010; Brown et al., 2015; Abatzoglou
and Williams, 2016; Franklin et al., 2016; Loehman et al., 2018;
Stevens-Rumann et al., 2018).

Highly perturbed ecological systems may exhibit complex,
emergent behavior and non-linear feedbacks that produce novel
and unanticipated landscape responses (Temperli et al., 2013;
Buma, 2015; Coop et al., 2016). These may include profound
shifts in successional dynamics, species composition, and loss
of landscape carbon (Goetz et al., 2007; Johnstone et al.,
2010; Brown and Johnstone, 2012; Thom et al., 2017). Climate
changes, fire, and plant species or communities can interact in
a complex of synergistic and antagonistic effects that amplify
the negative impacts of natural disturbance on ecosystems
(Figure 1). For example, in ecosystems with sufficient fuels
to carry fire, warmer, drier climates are expected to increase
fuel aridity, flammability, and fire activity (Gergel et al., 2017;
McKenzie and Littell, 2017). The resulting larger extent of
wildfire area burned and higher severity of wildfires can increase
the proportion of the landscape in the early stages of post-
fire recovery (Falk et al., 2019). If the post-fire bioclimatic
environment is unfavorable for seedling establishment (e.g., with
severe drought), forests may transition to alternative states such
as shrub- or grasslands (Guiterman et al., 2018; Davis et al.,
2019). Thus, interactions of altered climate and changing fire
regimes impact vegetation regeneration, community structure
and composition, and the amount, type, and flammability of
fuels (Abatzoglou and Williams, 2016; Coop et al., 2016).
Climate influence on wildfire regimes and ecosystems occurs
in the context of other human impacts; for example, in the
southwestern U.S., forests and fire regimes have been altered
by more than 100 years of livestock grazing, logging, and
fire exclusion, leading to high risk of severe fire associated
with increased surface fuel loads and reduced structural and
spatial heterogeneity of vegetation, especially in dry conifer
forests with frequent-fire regimes (Covington and Moore, 1994;
Allen et al., 2002; Allen, 2007; Reynolds et al., 2013). However,
increased fire activity in fire-adapted but low-productivity
ecosystems can be self-limiting, as fire-consumption of fuels
can limit occurrence, extent, and effects of subsequent fires
(Collins et al., 2007; Parks et al., 2015).

Forecasting ecological futures and evaluating potential
impacts of human activities is a critical but challenging task
in land management. Development of effective management
strategies in the context of changing climate and wildfire
regimes is a central challenge in natural resource planning, and
may require new, agile approaches (Lawler, 2009; Falk, 2013).
The rapid rate of contemporary climate change is exceeding
the range of natural climate variability and accelerating the
rate at which habitats are degraded and species are lost
(Overpeck et al., 2003; Thomas et al., 2004; Hannah et al.,

FIGURE 1 | In fire-prone ecosystems, landscape vegetation patterns are

determined by reciprocal interactions with fire and interactions within and

among species and the surrounding environment. Climate and weather,

vegetation, and fire interact in a complex of synergistic and antagonistic effects

that amplify the impacts of disturbance on ecosystems. Climate influences

landscape vegetation patterns and fuel characteristics at long time scales,

whereas weather is short-term driver of fuel flammability and fire behavior.

Globally, positive feedbacks may exist between climate warming, fire activity,

carbon loss, and future climate change. This combination of scale dependent

and spatially overlapping processes produces complex spatial patterns that

are a central challenge in natural resource planning. Accounting for this

complexity may require new approaches such as process-based simulation

models that integrate multiple feedbacks, simultaneous interactions, and

anthropogenic influences.

2005; Allen et al., 2015). From local to global scales, these
changes co-occur with anthropogenic ecosystem disruptions
including landscape fragmentation and urbanization, pollution,
grazing, deforestation, non-native species invasions, and a new
and unique “human pyrome,” or global expression of a fire
regime (Vitousek, 1997; Millar et al., 2007; Archibald et al.,
2013; Alencar et al., 2015; Blackhall et al., 2015). Whereas
historically land management professionals used results from
empirical studies coupled with their own expertise to plan
and evaluate management activities, climate and fire futures—
and ecological responses—may have few analogs in the past
(Whitlock et al., 2003; Marlon et al., 2009). As a result,
past empirical studies and the accrued wisdom of the last
century may not completely inform management strategies for
tomorrow’s landscapes (Gustafson, 2013; Keane et al., 2015).
Although continental-scale climate changes (e.g., increasing
mean temperature) can be modeled with a high degree of
accuracy and consistency, climate predictions at regional to
local scales (scales that are relevant for land management) are
more uncertain (Xie et al., 2015). This is particularly true for
precipitation change, which is highly variable spatially in sign and
amplitude. For these reasons, land management problems are
“wicked” problems—those that are difficult to solve because of
incomplete or variable information and are inherently resistant
to clear definitions and easily identifiable, predefined solutions
(Rittel and Webber, 1973; DeFries and Nagendra, 2017).
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Simulation models—predictive relationships representing
natural phenomena that are used for the purposes of exploration,
scenario-building, projection, prediction, and forecasting
(Reinhardt and Dickinson, 2010; Perera et al., 2015a)—are
extremely effective tools for guiding management decisions
in an era of rapid change (Cuddington et al., 2013). Models
can be used to extrapolate limited empirical data over larger
areas and longer time spans to provide greater spatiotemporal
scope for management decisions (Keane, 2012), visualize the
effects of alternative management strategies (Turner et al.,
1995), explicitly incorporate ecological feedbacks, simulate
interactions among various elements of the modeled system
(e.g., climate, weather, biota, disturbances), and project
emergent ecosystem responses as a result of changing conditions
(Loehman et al., 2018). In the past, ecological modeling for
resource management was limited by sufficient ecological
knowledge necessary to build models, the lack of computer
resources to run the models, and limited technical expertise
to execute models (McKenzie et al., 2014; Keane et al., 2015).
Today, there are numerous spatial and non-spatial ecological
models that can be used to explore effects of management
actions (Keane et al., 2004; He, 2008). Moreover, many of
today’s modelers incorporate climate into models’ design,
enabling them to be used for future climate change forecasts
(Canelles et al., 2019; Gupta and Sharma, 2019).

Box (1979) observed that no real-world system can be
exactly represented by a model, suggesting that we ask
not whether any model is “true,” but rather whether it is
illuminating and useful. Landscape and ecosystem models
range in complexity from simple conceptual models such as
state-and-transition models that simulate vegetation dynamics
using discrete successional pathways (Wimberly, 2002; Tipton
et al., 2018) to complex biogeochemical models that explain
vegetation processes and related energy and matter exchanges
between vegetation, soil, and the atmosphere (Keane et al.,
2011; Dong et al., 2019). Simple models are easier to use
and interpret but have a limited set of output variables that
are often highly dependent on input parameters (Jørgensen
and Bendoricchio, 2001). Complex models require abundant
training, greater computing resources, longer simulation times,
and more data to implement, but provide greater exploratory
power and an extensive array of output variables (Grant
and Swannack, 2011). Complex models also provide the
ability to explicitly simulate emergent and dynamic processes
(Lucash et al., 2018). There are tradeoffs between model
complexity and practical utility for any particular problem,
and a model’s structure should be consistent with both the
question(s) asked and the assessments being made by researchers
and managers (Jackson et al., 2000). Recent advances in
complex simulation modeling include a shift toward mechanistic
models that are based on understanding and quantifying
ecological processes, the integration of complex feedbacks
and non-stationary behavior due to stochastic dynamics
and changes in climate, and incorporation of disturbance
interactions and anthropogenic influences (Perera et al.,
2015b).

EXPERIMENTAL APPROACHES FOR
LANDSCAPE MODELING

We identify three experimental approaches for landscape
modeling that address the wicked management challenges
resulting from uncertain climate futures and complex ecological
interactions: historical comparative, future comparative, and
threshold detection approaches. An historical comparative
approach compares contemporary or projected future conditions
to the range and variation of historical conditions (“historical
range and variation,” or HRV). Historical, baseline conditions
are generally defined as the period prior to European settlement,
often corresponding to the availability of tree-ring or other
long-term ecological records (Millar et al., 2007), although
increasing recognition of the extent and importance of earlier
human-caused landscape transformations (Bowman et al., 2011;
Barak et al., 2016; Liebmann et al., 2016; Roos et al., 2018)
warrants extending the HRV envelope to earlier periods in
time. Historical conditions have been used extensively and
successfully as references, benchmarks, or targets in ecosystem
management (Hessburg et al., 1999; Keane et al., 2007; Dickinson,
2014), and as resilience metrics for evaluating ecosystems or
landscapes to inform potential strategies and tactics (Keane et al.,
2018). HRV assumes that variations of historical characteristics
represent the broad envelope of responses possible for a resilient
ecosystem under natural perturbations of climate, competitive
stress, disturbances, and other stressors (Keane et al., 2018),
and that potential responses to changing conditions can be
represented by past responses to ecological conditions (Millar
et al., 2007; Veblen et al., 2009). Simulation models are ideal tools
for historical comparative approaches because comprehensive
quantification of landscape HRV demands temporally deep,
spatially explicit historical data, which are otherwise rarely
available and difficult to obtain (Humphries and Bourgeron,
2001; Dickinson, 2014). Simulation modeling can also define
the range and variability of future conditions (“future range
and variation,” or FRV), and identify possible target areas
for management in the overlap between HRV and FRV
(Hansen et al., 2014; Keane et al., 2019).

In a future comparative approach, multiple scenarios
(“futures”) are simulated over decades or centuries and results
are used to evaluate ecosystem responses to perturbations and
assess impacts of management (Figure 2). Future comparative
experiments typically use fully factorial statistical designs
where each major factor (e.g., climate change, management
approach) has several implementation levels (e.g., different
climate model projections and management prescriptions or
treatment intensities), combinations of factors and levels are
individual scenarios, and response variables are statistically
compared across scenarios (Holsinger et al., 2014; Clark et al.,
2017; Loehman et al., 2018). Including multiple interpretations
of future climate accounts for some of the inherent uncertainty
and variation in climate projections that result from emissions-
scenario uncertainty, model-response uncertainty, and natural
variability (Lugato and Berti, 2008; Deser et al., 2012). Future
comparative modeling creates a robust, risk-free decision
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FIGURE 2 | The future comparative modeling approach evaluates ecosystem responses under a range of climate futures and management strategies. Scenario

comparisons can include impacts of several climates and a single management strategy (A), different management strategies within a single modeled climate (B), or

factorial comparisons of several climate futures and management strategies (C). Adapted from Friggens et al. (2019).

space wherein managers can explore consequences of potential
adaptation strategies within the context of plausible climate
futures (Peterson et al., 2003; Moss et al., 2010).

The threshold detection approach identifies critical thresholds
of climate or disturbance that induce rapid and persistent
transformations of ecological systems (e.g., loss of resilience)
(Holling, 1973). In many cases, ecological attributes show
minimal change until a critical environmental threshold is
reached (Qian et al., 2003). Process-based simulation modeling
is deemed one of the only methods available to generate the
spatially and temporally extensive data streams necessary to
detect disturbance thresholds, and explicitly represent the
important cross-scale process interactions that drive ecological
tipping points (Reyer et al., 2015; Keane et al., 2019). For example,
in climate-sensitive and fire-prone ecosystems, water limitations
and warming temperatures can radically alter ecosystems and
trigger wildfires that are uncharacteristically severe or frequent,
capable of abruptly reorganizing vegetation and fuel patterns
and setting the stage for future, novel fire regimes (Drever et al.,
2006; Allen et al., 2010, 2015; Turner, 2010). Mechanistically
linking incremental climate changes or degree of fire severity
or frequency of burning to specific ecological outcomes using
observational data alone is difficult, as these data may not
explain which aspect of disturbance drives ecosystem responses,
and future climates (Kreyling et al., 2014). Threshold shifts
can be detected using a gradient design with multiple, finely
incremented factor levels (e.g., degree or amount of change in
one or more climate variables) spanning the range of possible
values for the factor. Threshold detection is an important aspect
of ecological risk assessment and environmental management
intended to prevent severe social, economic and environmental

impacts that occur when biophysical thresholds are
crossed (Kelly et al., 2015).

MODELING COMPLEX CLIMATE,
WILDFIRE, AND VEGETATION
INTERACTIONS

Here, we illustrate historical comparative, future comparative,
and threshold detection modeling approaches using simulations
of climate change, vegetation, and disturbance interactions in
forested landscapes across the western United States. These were
all produced using the FireBGCv2 landscape-scale, ecosystem-
fire process model, a platform ideal for informing land
management in an era of rapid and uncharted environmental
change, as it provides insights that would not arise from
simpler, non-spatial, and empirical models (Bestelmeyer et al.,
2011; Scheller, 2018). As described in Keane et al. (2011),
the model operates across hierarchical spatial scales from
landscape, stand, plot, and species to individual trees with
attributes such as species, age, height, diameter at breast
height (DBH), and leaf area. Modeled climate, wildland fire,
and landscape vegetation are dynamically and reciprocally
linked; long-term records of daily temperature, precipitation,
and radiation influence fuel production and moisture, which
determine landscape ignition potential, fire frequency and
size, and fire behavior. Climate and weather influence the
productivity and mortality rates of individual plant species—
and thus stand composition and structure—with feedbacks to
the fire regime via fuel type, fuel amount, and fuel arrangement.
Fire regimes in turn affect vegetation species’ regeneration,
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composition, successional trajectories, and productivity directly
through fire-caused mortality and successional patterns, and
indirectly through influence on availability of light, water,
and other necessary resources. During initialization, FireBGCv2
standardizes input site-specific mean fire return intervals (MFRI)
with the Keetch Byram Drought Index (KBDI, Keetch and
Byram, 1968), computed from the input weather records. Climate
changes and impacts on fire and vegetation can be simulated
in the model via daily weather streams that represent future
climates, either acquired directly from downscaled climate
models or calculated as adjustments to observed daily weather.
Fire ignition probabilities are computed each year for each
simulation landscape pixel based on the degree of departure
of each modeling year’s weather and the standardized KDBI-
MFRI distribution. Once a fire ignition has occurred, its spread
is quasi-mechanistically simulated along gradients of slope and
wind. Spread is halted if a fire encounters a pixel with a
lower fine fuel loading than the user-specified threshold for fire
spread, or fuels that are too moist to sustain fire. Otherwise,
fires spread until they reach a stochastically determined fire
size computed from the current year’s weather and a user-
defined mean fire size parameter. Ultimately, fire spread ends
when a fire reaches the edge of the simulation landscape or
a pixel with insufficient fine fuel to carry fire, or when it has
met the stochastically computed fire size. In FireBGCv2 climate
changes influence fire patterns along a number of pathways. Fire
frequency increases with increasing KBDI, warmer and drier
weather lowers fuel moistures and increases the probability of
spreading fires, and changes in the amount of type of fuel on
the simulation landscape changes the spatial arrangement and
behavioral characteristics of fires. Individual treemortality occurs
as the result of wildfire damage, hydrologic stress, crowding,
light reduction, and randommortality. Fire-caused tree mortality
is modeled as a function of bark thickness (a user-defined,
species-specific parameter) and scorch height, and can be used
to assess fire severity where the degree of crown scorch and
cambial kill depends on fire intensity and duration. Thermal
limits are defined for each species in the model (GDD, base
3◦C) and temperatures outside of these limits affect trees through
a reduction in the annual growth increment and eventual
mortality. Tree regeneration is driven by soil moisture, litter
depth, and climate-influenced cone crop production.

Historical Comparative Simulation
Modeling
Keane et al. (2018) provided a comparative, historical reference
for contemporary and future ecological states, where substantial
departures of FRV from HRV indicated loss of resilience.
Response variables—vegetation composition and structure, tree
basal area, coarse and fine woody debris, outflow, net primary
productivity, and area burned—were derived for the East Fork
of the Bitterroot River watershed, a 128,000-ha landscape in the
interior northern Rocky Mountains, USA, for an historical time
period not influenced by land management or fire suppression,
and three future scenarios that combined future climate [CRM-
C5 RCP8.5 (+ 5.5◦C, 95% baseline precipitation)] with varying

FIGURE 3 | Principal components analysis (PCA) of multivariate model

responses for the East Fork of the Bitterroot River watershed, Montana, USA,

for an historical time period (HRV, blue dots) and three future scenarios that

combined future climate (CRM-C5 RCP8.5) with three levels of fire

suppression (0%, 50%, 98%, red dots). Red or blue circles contain 68% of the

variation in the spread of the points for the three scenarios; the green asterisk

represents the present state of the landscape in multivariate space.

Overlapping HRV and FRV zones suggest less departure from historical

conditions and greater landscape resilience; increasing distance between HRV

and FRV occurred with higher fire suppression levels, suggesting that

suppression may not be an effective management strategy under changing

climates. Adapted from Keane et al. (2018).
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levels of fire suppression (0%, FRV1; 50%, FRV2; 98%, FRV3).
These were compared in a multivariate framework (principal
components analysis, PCA) that indicated that the East Fork
landscape departed from its HRV benchmark under all levels
of fire suppression enacted within a future climate (Figure 3).
Zones of overlap among the three future scenarios and HRV
were smaller with increasing fire suppression levels, suggesting
that suppression is limited in its ability to ameliorate undesired
wildfire impacts given the potentiating effects of warmer, drier
climates on fire frequency and severity. Results from Keane et al.
(2018) are consistent with recent publications on the effectiveness
of fire management activities under changing climates; in
particular, indications that treatments may be less effective in
systems where future fire patterns are influenced more by climate
than by fuels (Littell et al., 2009), and recommendations for
adaptive management approaches that include increased use of

prescribed fire, much reduced fire suppression, and recognition
of the limited ability of fuel treatments to alter regional fire
patterns (Schoennagel et al., 2017).

Loehman (2016) modeled changes in fire occurrence in a
Ponderosa pine-dominated landscape in the Jemez Mountains
of north-central New Mexico in response to prehistoric human
activities of fuelwood gathering and tree harvest—activities
that disrupted landscape fuel continuity, reduced surface and
canopy fuel loads, and altered fire occurrence. In simulations
with relatively small, spatially concentrated populations (<500
people, ca. 1200-1325 AD) human impact on landscape fire
occurrence occurred mainly within the area of occupation,
but as populations increased (>5,000 people, ca. 1350-1525
AD) and expanded, human activities reduced fire occurrence
in outlying, unoccupied areas (Figure 4)—consistent with
contemporary observations of decreased fire frequency in upper

FIGURE 4 | Fire occurrence (cumulative fires/400 years) simulated for two historical time periods in the Jemez Mountains, New Mexico, U.S. As compared with a

scenario in which prehistoric human activities were not included, modeled surface and canopy fuelwood gathering and tree harvest reduced fire occurrence

proportional to population size (< 500 people or > 5,000 people) and extent of activity area (indicated by black polygons). Changes to fire regimes occurred because

of human-influenced changes in the amount, type, and arrangement of fuels, against a backdrop of climate variability. Adapted from Loehman (2016).
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elevation, western U.S. forests attributed to fire suppression
and disrupted fire spread from lower elevations (Margolis
and Balmat, 2009). This study and a related, growing body
of research highlights the significant role of anthropogenic
burning in some landscapes, even in environments with
abundant natural ignitions (Guyette et al., 2002; Liebmann
et al., 2016; Roos et al., 2019). In these places, contemporary
ecological patterns and processes that are thought to be
natural may in fact be highly influenced by past human land
use legacies.

Future Comparative Simulation Modeling
Future comparative FireBGCv2 modeling studies address
ecosystem impacts of climate change (Clark et al., 2017) or

climate change and management activities (Loehman et al.,
2018) on fire-prone ecosystems. In Yellowstone National Park,
Wyoming, U.S modeled warmer future climates, especially
>2◦C, increased the amount of fire on the landscape, resulting in
decreased forest cover and a change in species composition from
lodgepole pine- to Douglas-fir-dominated stands (Figure 5)
(Clark et al., 2017). Species conversion was attributed to complex
mechanisms related to increased fire activity and greater fire and
drought tolerance of Douglas-fir as compared with lodgepole

pine. This future pathway was not identified in other simulations
of climate and fire impacts within the region (Smithwick et al.,
2011; Westerling et al., 2011), because the models used did not
incorporate complex and long-term dynamics and feedbacks of
climate, vegetation, and wildfire.

FIGURE 5 | Time series of simulation landscape variables: forest cover (A), area burned (B), lodgepole pine basal area (C), and Douglas-fir basal area (D). Black lines

represent means of replicate model simulations, gray-shaded areas represent ±1 standard deviation, and black dots in (B) represent total area burned for a given

year. Warmer future climates, especially >2◦C, increased the amount of fire on the landscape, resulting in decreased forest cover and a change in dominant species

composition from lodgepole pine- to Douglas-fir-dominated stands. Adapted from Clark et al. (2017).
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FIGURE 6 | Basal area (m2/ha) of ponderosa pine and dry mixed conifer sites for a Ponderosa pine-dominated landscape in the Jemez Mountains, New Mexico, U.S.

Scenarios are factorial combinations of management (“business as usual,” BAU; three-fold (3×BAU) or six-fold (6×BAU) annual increase in BAU; 90% fire

suppression) and climate (Contemporary; Warm-Dry; Hot-Arid). Shaded regions show median (darker line) and 25th and 75th percentiles (lighter shading) among

model replicates for each scenario. With Hot-Arid climate, basal area decreased early in the simulation period ca. AD 2025, and by AD 2100 was about 10 percent of

its starting amount. Basal area was maintained with Warm-Dry climate and any of the four management factors. Adapted from Loehman et al. (2018).

Loehman et al. (2018) tracked simulated changes in forest
basal area in response to climate and management activities in
a fire-adapted and fire-prone forested landscape in the Jemez
Mountains of north-central New Mexico, U.S. Basal area is
an indicator of forest cover and stand structure that reflects
both climate conditions that influence tree growth and survival
and fire effects on tree mortality and stand establishment.
Management activities, developed from local prescriptions and
burn plans, included thinning and prescribed fire treatments
implemented annually in dry forest stands of the simulation area.
“Business as usual” (BAU) management activities corresponded
to a 66-years treatment rotation, and future management
was modeled as a three-fold (3xBAU, 22-years treatment
rotation) or 6-fold (6×BAU, 11-years treatment rotation)
annual increase in BAU, or a fire suppression treatment (90%
suppression level). Among three modeled climate scenarios—
Contemporary, Warm-Dry (CCSM4 RCP 4.5), and Hot-Arid
(HadGEM2ES RCP 8.5)—basal area declined substantially over
the Hot-Arid as compared with Contemporary or Warm-Dry
climate (Figure 6). Loss of basal area throughout the 100-year
climate period was attributed to tree mortality, regeneration
failure, and compositional and structural shifts to shrublands and
early successional forests caused by wildfires, climate stress, and
changes in the distribution of bioclimatic space suitable for plant
growth. Although fuel treatments have been shown to be highly
effective at reducing potential fire severity at stand scales (Pollet
and Omi, 2002; Wimberly et al., 2009), thinning/prescribed
burning treatments at BAU or intensified application rates were
not sufficient to offset impacts of warming climate on forests at a
landscape scale.

Detection of Critical Thresholds
Keane and Loehman (2012) systematically varied climate drivers
to detect climatic thresholds related to changes in landscape
vegetation and fire regimes. Modeling scenarios were 42
combinations of temperature factors (ranging from 1 to 6 degrees
Celsius (◦C) in 1-degree increments) and precipitation factors

(ranging from 70 to 130 percent in 10-percent increments)
used to modify long-term, daily baseline instrumental weather.
This approach, commonly referred to as the “delta” method,
retains the inherent variability in observed climate data (has a
high level of climate realism) but only accounts for changes to
the mean climate signal (Ekström et al., 2015). Climate shifts
spanned the range of climate model projections for Yellowstone
National Park, Wyoming, U.S., but provided a finer gradient
of temperature and precipitation change than climate models
based on discrete emissions scenarios. Simulation detected
several climatic tipping points beyond which landscape patterns
and fire regimes were significantly and persistently different
from reference conditions. These included substantial decreased
forest cover caused by warmer, drier climate conditions, with a
buffering effect of precipitation for moderate warming levels of 3
degrees or less (Figure 7), as well as an increase in annual burned
area increased with increasing temperature.

DISCUSSION

Climate changes are widely recognized as the largest threat
to biodiversity, species survival, and ecosystem integrity
across most of Earth’s biomes (Hulme, 2005; Thuiller et al.,
2008; Maclean and Wilson, 2011), challenging historical
interpretations, foundational assumptions, and attribution of
ecological and evolutionary change. Approaches that consider
the full ensemble of processes and feedbacks in biological
systems and their intersection with human land-use legacies
and policy are necessary to address the fundamental challenges
of 21st century land management—anticipating risk, fostering
resilience, and acting within the context of uncertainty
(Carpenter et al., 2009; Seidl, 2014). The need for a better
understanding of the potential impacts of climate changes on
ecosystems is reaching new levels of urgency. A common
finding among recent papers evaluating the effectiveness of fire
management and forest restoration activities in the western
U.S. under changing climates is the limited ability of current
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FIGURE 7 | Forest cover (A, percent of simulation area) and area burned (B, ha) simulated for Yellowstone National Park, Wyoming, U.S., for scenarios combining

warming of 1–6 degrees Celsius (◦C) and precipitation change of 70–130%. Forest cover and area burned responses for each scenario are means across simulation

periods and replicates. Adapted from Keane and Loehman (2012).

strategies to ameliorate undesired wildfire impacts in many
ecological systems (Stephens et al., 2012; Svenning and Sandel,
2013; Schoennagel et al., 2017). As a path forward, Stephens et al.
(2013) suggested that new strategies to mitigate and adapt to
increased fire are needed to sustain fire-prone forest landscapes
(e.g., promote resilience) including the restoration of historical
stand conditions in high frequency, low-to-moderate severity
fire regimes, while allowing for shifts away from historical
forest structure and composition in forests with low-frequency,
high-severity fire regimes. As observed by Svenning and Sandel
(2013), facilitating the adaptation of forests to changing climate
and fire regimes may ultimately create more resilient systems
as vegetation communities come into equilibrium with climate.
Schoennagel et al. (2017) indicated the importance of adaptive
management approaches that include increased use of prescribed
fire, much reduced fire suppression, and recognition of the
limited ability of fuel treatments to alter regional fire patterns.

Simulation modeling provides useful guidance for managers
in the context of rapid and unanticipated landscape changes.
Three modeling approaches are particularly applicable for
land management: historical comparisons that increase our
understanding of the dynamic nature of landscapes and provide
a frame of reference for assessing contemporary patterns and
processes (Swetnam et al., 1999); future comparative modeling
that enables risk-free exploration of management impacts within
the context of plausible climate futures (Peterson et al., 2003;
Moss et al., 2010); and threshold detection that identifies critical
disturbance thresholds that lead to loss of ecosystem stability.
Model outcomes can be used to game multiple scenarios and
gain critical insight on the range of magnitudes and direction of
possible future changes (Millar et al., 2007), define the critical
array of multiple and interacting links that define a complex
system (Game et al., 2014), and encourage action to address
looming management challenges in systems characterized by
overwhelming complexity (DeFries and Nagendra, 2017).

Although the simulation modeling projects described here
were developed for different objectives and geographies, they

indicate a consistent set of outcomes across a diversity of
landscapes and ecosystems within the western U.S. First,
future landscapes are likely to be different than historical or
contemporary landscapes. Shifts in vegetation and fire regimes
were associated with nearly all simulated levels of climate
change, but in particular for scenarios with both increased
warming and increased drying. Such changes are consistent
with projections of future climate in the western United States,
which is expected to warm by ∼2–4◦C during the 21st century,
with associated increased frequency and persistence of drought
conditions (Diffenbaugh et al., 2005; Christensen et al., 2007).
Second, interactions of climate and wildfire are likely to cause
more rapidly occurring and persistent changes in landscapes than
climate change alone. As noted by Flannigan et al. (2000; p. 227),
“The almost instantaneous response of the fire regime to changes
in climate has the potential to overshadow importance of direct
effects of global warming on species distribution, migration,
substitution and extinction... fire is a catalyst for vegetation
change.” Third, current land management strategies are likely
not sufficient to counteract the impacts of rapid climate change
and altered disturbance regimes that threaten the stability of
ecosystems (Falk et al., 2007).

Simulation modeling is a dynamic field, challenged by
ecological complexities and emerging, non-analog system
drivers and responses. At the center of future modeling
research is a need for ongoing empirical studies that provide
comprehensive calibration data and parameters that reflect
emerging environments. Models developed using empirical
data representative of historical conditions become less robust
under climate change, because species dynamics—for example,
seedling establishment rates after wildfire—are different in novel,
non-equilibrium environments (Scheller, 2018). The balance
of data needs vs. model advancement reflects an imperative
for collaboration between field ecologists, who provide data
and equations, and modelers, who must then integrate that
knowledge to provide descriptions of phenomena at different
spatial and temporal scales. It is critical that extensive field
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programs be intimately integrated with simulation efforts to
ensure sufficient parameter and validation data are measured
for model applications. Temporally deep, spatially explicit
databases created from extensive field measurements are needed
to quantify input parameters, describe initial conditions, and
provide a reference for model testing and validation, especially
as landscape fire models are ported across large geographic
areas and to new ecosystems (Cary et al., 2006). For example,
Hessl et al. (2004) compiled a number of ecophysiological
parameters for use in mechanistic ecosystem models, which
has increased parameter standardization and decreased the
time modelers spend on parameterization. New sampling
methods and techniques for collecting data are needed to
ensure that essential variables are measured at the proper
scales; once collected, data should be stored in standardized,
accessible databases so that they are easily accessible for complex
modeling tasks. Comparative modeling studies using such
standardized data sets can identify key uncertainties and areas
for model improvement and increase our understanding of
the key processes and parameters affecting diverse ecosystems
(Cary et al., 2006; French et al., 2011).
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Variations in global patterns of burning and fire regimes are relatively well measured,
however, the degree of influence of the complex suite of biophysical and human drivers
of fire remains controversial and incompletely understood. Such an understanding is
required in order to support current fire management and to predict the future trajectory
of global fire patterns in response to changes in these determinants. In this study
we explore and compare the effects of four fundamental controls on fire, namely the
production of biomass, its drying, the influence of weather on the spread of fire and
sources of ignition. Our study area is southern Australia, where fire is currently limited by
either fuel production or fuel dryness. As in most fire-prone environments, the majority of
annual burned area is due to a relatively small number of large fires. We train and test an
Artificial Neural Network’s ability to predict spatial patterns in the probability of large fires
(>1,250 ha) in forests and grasslands as a function of proxies of the four major controls
on fire activity. Fuel load is represented by predicted forested biomass and remotely
sensed grass biomass, drying is represented by fraction of the time monthly potential
evapotranspiration exceeds precipitation, weather is represented by the frequency of
severe fire weather conditions and ignitions are represented by the average annual
density of reported ignitions. The response of fire to these drivers is often non-linear.
Our results suggest that fuel management will have limited capacity to alter future fire
occurrence unless it yields landscape-scale changes in fuel amount, and that shifts
between, rather than within, vegetation community types may be more important. We
also find that increased frequency of severe fire weather could increase the likelihood of
large fires in forests but decrease it in grasslands. These results have the potential to
support long-term strategic planning and risk assessment by fire management agencies.

Keywords: wildfire, drivers, biomass, fuel moisture, dryness, fire weather, ignition, Australia

INTRODUCTION

Fires in vegetation are controlled by four fundamental constraints: the production of biomass,
its subsequent drying, the influence of weather on the spread of fire and sources of ignition
(Archibald et al., 2009; Bradstock, 2010; Moritz et al., 2012). These constraints can be characterised
as switches, all of which must be on for landscape fire to occur (Bradstock, 2010). Different fire
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regimes are characterised by differences in the proportion of
time that each factor is ‘switched on’, with wildfire occurrence
effectively limited by the factor least frequently switched on
(‘the limiting switch’). The four factors are in turn a function of
biophysical (e.g., climatic, edaphic, topographic, and vegetation
variations) and anthropogenic influences, such as population
density, land clearing and management practises (McKenzie
and Kennedy, 2012; Giglio et al., 2013; Bistinas et al., 2014;
Chuvieco et al., 2014). The strength and direction of such
influences on fire varies substantially across biomes, climate
types and continents, resulting in significant global, continental
and regional scale variations in fire and fire regime patterns
(Chuvieco et al., 2008; Archibald et al., 2013; Giglio et al., 2013;
Pausas and Ribeiro, 2013). While such variations in the emergent
global patterns of burning and fire regimes are relatively well
measured, the degree of influence of the complex suite of
biophysical and human drivers of fire remains controversial
and incompletely understood (Bowman et al., 2011; Marlon
et al., 2013; McWethy et al., 2013). A detailed understanding
of the sensitivity of fire to potential changes in anthropogenic
and biophysical determinants of fire is therefore needed to
support fire management and predict the future trajectory of
global fire patterns.

Numerous studies have attempted to account for the influence
of key climatic, vegetation, and human influences on fire via
conventional statistical approaches. For example, temperature,
precipitation, water availability, atmospheric dryness, and
vegetation type have been related to area burned in either
univariate or multivariate, linear modelling approaches (e.g.,
Krawchuk et al., 2009; Williams et al., 2015; Nolan et al., 2016;
Hoyos et al., 2017; Syphard et al., 2017). The influence of
measures of population density, land clearing and agricultural
activities have been explored using similar approaches, either
independently or in concert with climatic and vegetation
influences (Chuvieco et al., 2008; Archibald et al., 2013; Bistinas
et al., 2014). Derived statistical models of this kind have been
incorporated in a variety of coupled dynamic global vegetation
and fire models and used to predict both contemporary and
future patterns of fire and fire emissions (Aldersley et al., 2011;
Kloster et al., 2012).

Despite the insights produced by these approaches, the
comparative sensitivity of fire to the full range of determinants
(i.e., fuel production, dryness, fire weather, and ignitions) is
uncertain at a macro-scale (sub-continental to global). Until the
relative sensitivity of fire to each of these determinants is known,
it is difficult to ultimately predict how area burned and resultant
fire regimes may respond to climatic and human changes. For
example, while changes in climate may have caused area burned
to increase as a function of increasing dryness in recent decades in
some forested ecosystems (e.g., Bradstock et al., 2014; Abatzoglou
and Williams, 2016; Holden et al., 2018), there is recognition
of negative feedbacks such as lowered biomass production (e.g.,
Turco et al., 2018; Trauernicht, 2019) or positive feedbacks
changed ignition patterns stemming from warming and drying
climatic conditions (Mariani et al., 2018).

In this study we explore and compare the effects of all
four fundamental controls on fire across temperate regions of

southern Australia, representative of ecosystems where long-
term fire activity is currently limited by either fuel production
or fuel dryness (Boer et al., 2016). We use a relatively long-
term (i.e., circa. 40 years) chronology of mapped fire records,
which provides deeper temporal resolution (e.g., double the
length) of fire compared with many studies based on the remote
sensing archive. We focus on large fire probability because
large fires typically account for the bulk of area burned and
thus the structure of fire regimes (Reed and McKelvey, 2002;
Malamud et al., 2005; Boer et al., 2008; Cui and Perera, 2008).
Large fires also are often associated with major human and
environmental impacts, such as loss of life and property in
southern Australia (Gill, 2005) and elsewhere (Stephens et al.,
2014). An understanding of the joint influences of the major
controls on large fire activity therefore has the potential to
inform management and provide a basis for predicting the future
of risks to assets and environments as a function of climatic,
environmental and human changes. We specifically ask:

• Are the controls on large fire probability consistent with
expectations that biomass/fuel production, fuel dryness,
ambient weather, and ignitions act as limiting constraints
(i.e., when proxies of all four of these influences are
concurrently examined)?

• How is large fire probability in two major pyromes, forests
and grasslands, related to geographic variation in proxies
of these four fundamental determinants?

• What are the long-term implications that emerge from
a formal understanding of these influences, in terms of
management and climatic and human change?

MATERIALS AND METHODS

Study Area
The study area is the southern Australian states of NSW
(including the Australian Capital Territory), Victoria, South
Australia and Tasmania, and the southwest corner of Western
Australia (Figure 1). These regions were selected as they have
long-term records of agency-mapped and validated fire history
(>40 years). All other areas of Australia have focused on
remote sensing methods to develop fire histories and do not
span the same temporal range. The study covers 515,800 km2

of southern Australia incorporating 60 bioregions (Hutchinson
et al., 2005) ranging from arid to alpine ecosystems. Elevation
ranges from 0 to 2,000 m above sea level. Climates vary
widely across the study region with mean annual precipitation
ranging from 112 to 3,250 mm/year and mean annual
temperatures ranging from 6 to 24◦C (Australian Bureau of
Meteorology1). Extant fire regimes in the study area span a
wide range of frequencies (typically falling into groups of
mostly every 5–20 years or every 20–100 years), intensities
(from 0 to 100 kW m−1 to > 50,000 kW m−1) and
dominant fire seasons (spring-summer to summer-autumn)
(Murphy et al., 2013).

1www.bom.gov.au
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FIGURE 1 | Study area, response variable and predictors. Study area (A) comprises southern Australian states and territories including southwest Western Australia.
Response variable (B) is areas with a maximum burned area greater than 50% (1,250 ha). Predictors are biomass (C), dryness (D), fire weather (E), and ignitions (F).
Predictor units are: (C) steady state litter or grass biomass in t ha−1; (D) proportion of the fire season where PET > precipitation; (E) proportion of the fire season
where FFDI > 50; (F) number of ignitions per fire season.

We divided the study area into two basic pyromes based
on dominant fuel types: grass or litter. The study area was
partitioned into litter or grass fuel types using a data set
consisting of field observations of fuel and vegetation attributes
from 113 sites across Australia (Murphy et al., 2019) which
shows a strong negative relationship between the maximum
grass fuel percentage (i.e., the total fine dead fuel mass)

and local tree cover (%) (Boer et al., 2016). We used this
relationship to identify tree cover values associated with high
grass fuel percentage (>50%, based on the 90th percentile of
all grass fuel observations). Focusing on southern Australia
(N = 40), the threshold was determined to be 38.5%, above
which we classed the fuel type as litter and below which we
classed it as grass.
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Data Sources
Fire history datasets were obtained from fire agencies in Western
Australia, South Australia, Victoria, New South Wales and
Tasmania (Table 1). These datasets are typically polygons of area
burnt by wildfire for the period 1975–2014 inclusive. For the
purpose of analysis, the study area was divided into a regular 5 km
grid using the Albers Equal Area projection (n = 20,632). Within
each 5 × 5 km grid cell, we calculated the area burnt per year
by wildfire and used these data to calculate the maximum area
burnt over the 40 year period. To represent large fire occurrence,
we created a binary variable where 1 represented a cell with a
maximum burned area greater than 1,250 ha (i.e., half of the grid
cell size) and 0 represented cells with no fire or with maximum
burned area less than 1,250 ha during the entire study period.
Fires included in this threshold account for 83% of the total
maximum annual area burned. Note that by this definition it is
possible for a single fire event to be represented as a large fire in
multiple grid cells.

Environmental data were sourced to represent the four
fundamental controls on fire activity (Table 1). Restricting the
analysis to proxies of each of these controls, rather than a large
pool of potentially relevant predictors, allowed for an explicit
analysis of their role as determinants of area burned. Biomass
was estimated separately for litter and grass systems. Litter
biomass was modelled using established relationships between
steady state surface fine fuel load, mean annual temperature
and mean annual rainfall for the period 1990–2009 (Hijmans
et al., 2005; Thomas et al., 2014). Biomass in grass-dominated
fuel systems was estimated using a water balance and plant

TABLE 1 | Data sources.

Driver Data type Source Time

Fire
occurrence

Mapped fire
history

Department of Biodiversity,
Conservation and Attractions,
Department of Fire and Emergency
Services (WA); Department of
Environment, Water and Natural
Resources (SA); Department of
Environment, Land, Water and
Planning (VIC); NSW National Parks
and Wildlife Service, NSW Rural
Fire Service (NSW); ACT Parks and
Conservation Service (ACT);
Tasmanian Fire Service (TAS)

1975–2014

Biomass Litter Hijmans et al., 2005 1990–2009

Biomass Grass Carter et al., 2003 (available at
www.longpaddock.qld.gov.au)

2000–2009

Fuel
dryness

Potential
evapotran-
spiration,
precipitation

Jeffrey et al., 2001 (available at
www.longpaddock.qld.gov.au)

1990–2009

Fire
weather

Temperature,
humidity

Jeffrey et al., 2001 (available at
www.longpaddock.qld.gov.au)

1990–2009

Fire
weather

Wind
speed

McVicar et al., 2008 1990–2009

Ignition Mapped
ignitions

AFAC, 2012 2001–2012

growth model, which integrates satellite imaging, grass biomass
observations and climate data, for the period 2000–2009 (Carter
et al., 2003). Dryness and weather measures focus on the austral
fire season of spring and summer, when the majority of fire
activity in this region takes place (Russell-Smith et al., 2007;
Murphy et al., 2013; Williamson et al., 2016). We define fuel
dryness as the proportion of the fire season where monthly
potential evapotranspiration (PET) exceeds precipitation for the
period 1990–2009. This measure of dryness, along with a measure
of productivity, explained a large fraction of the variation (adj R2:
0.89) in maximum fire activity in forested and grassy systems in
Australia (Boer et al., 2016).

We define fire weather as the proportion of the fire season
where the McArthur Forest Fire Danger Index (FFDI) exceeds
50. FFDI is a measure of the difficulty of fire suppression that
incorporates temperature, relative humidity, wind speed and
a drought factor based largely on recent rainfall (McArthur,
1967; Noble et al., 1980). FFDI was calculated with the drought
factor fixed (at 10) in order to separate the effects of ambient
weather and recent dryness (Bradstock et al., 2009). On this
adjusted scale, a value of 50 is indicative of extreme conditions,
with the vast majority of property loss from major fires in
Australia occurred during times when FFDI was above 50
(Blanchi et al., 2010). FFDI was calculated from maximum
daily temperature, minimum daily relative humidity and mean
daily wind speed for the period 1990–2009 (Jeffrey et al.,
2001; McVicar et al., 2008). The proportion of the fire season
with days over 50 was calculated from this daily dataset.
Ignitions were represented by the frequency of ignitions per
fire season as reported in the Australian Incident Reporting
Standard from 2001 to 2012 (AFAC, 2012). While these represent
the best available ignition data for the study area, as with
similar ignition datasets in other countries they are subject to
a range of limitations including missing data and uncertainty
in location and cause (Collins et al., 2015; Costafreda-Aumedes
et al., 2017). Wind speed (original scale 1 km), litter biomass
(250 m), ignitions (points) and burned area (polygons) were re-
sampled to the 5 km grid. Biomass and ignition data were log
transformed for modelling purposes because they were skewed.
Using these transformed variables, the strongest correlations were
between biomass and dryness in forests (−0.88; Supplementary
Figure 1), dryness and fire weather in grasslands (0.67)
and fire weather and ignitions in grasslands (Supplementary
Figure 2; see Supplementary Figures 3 and 4 for untransformed
correlation matrices).

Data Analysis
We used Artificial Neural Networks (ANN), a useful tool for
dealing with complex non-linear relationships in environmental
systems (Lek and Guegan, 1999; Gevrey et al., 2003). Wildfires
provide numerous examples of modelling problems where the
explicit form of the relationship between key variables is not
known, thus making them ideal subjects for the use of ANNs
(Vasilakos et al., 2009). The use of neural nets in wildfire research
dates back over 20 years (Vega-Garcia et al., 1996) and is now
widely applied along with other machine learning approaches
on topics including fire weather (Lagerquist et al., 2017), fire
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FIGURE 2 | Predicted response of large fire probability (1975–2014) in forests to each of the four major determinants of fire: biomass (A), dryness (B), fire weather
(C), and ignitions (D). X-axis units are: (A) steady state litter fuel load in t ha−1; (B) proportion of the fire season where PET > precipitation; (C) proportion of the fire
season where FFDI > 50; (D) number of ignitions per fire season. Dotted lines show 95% confidence interval.

severity mapping (Harris and Taylor, 2017; Collins et al., 2018)
and wildfire prediction (Dutta et al., 2013; Gray et al., 2018).

We fitted single-layer-hidden-layer neural networks using
the nnet package (Venables and Ripley, 2002) in R-statistical
program v3.4.4 (R Development Core Team, 2018). The response
was the occurrence of a large fire within a cell as a binary
variable. Due to the low proportions of cells in which large
fires occurred (11% forests, 0.6% grasslands), 0 values were
down weighted to balance data sizes. Probabilities presented
are therefore relative probabilities not absolute probabilities.
We used a k-fold cross validation approach where data were
randomly split into 10 groups, a model was built on 90% of the
data and the remaining 10% were used for model validation, with
the process repeated 10 times. Reproducibility was achieved by
using the same randomly chosen initial seed. Model prediction
accuracy was measured using the area under the curve (AUC)
of the receiver operating characteristic (ROC) plot (Hanley
and McNeil, 1982), averaged over the 10 folds. AUC values
range from 0.5 to 1, where 0.5 implies random prediction
and 1 represents perfect prediction. Model performance was

considered poor at AUC values below 0.7, moderate at AUC
values between 0.7 and 0.9 and strong at AUC values above 0.9
(McCune and Grace, 2002).

RESULTS

In environments of litter-dominated fuels, the fitted neural
networks predicting the influence of the four controls on
large fire probability in forests had an average AUC value
of 0.70 across the 10 folds. The relationship between large
forest fire probability and biomass was positive at steady state
litter fuel load values up to about 24 t ha−1 and negative
above that (Figure 2A). The relationship between large forest
fire probability and dryness was positive and close to linear
(Figure 2B). The relationship between fire weather and the
probability of large forest fires was positive and resembled
a logarithmic growth curve, though with broad confidence
envelopes (Figure 2C). The relationship between large fire
probability and ignition was highly non-linear (Figure 2D).
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FIGURE 3 | As for Figure 2, but for grasslands. X axis units are: (A) mean annual grass biomass in t ha−1; (B) proportion of the fire season where
PET > precipitation; (C) proportion of the fire season where FFDI > 50; (D) number of ignitions per fire season.

For ignition rates >∼0.1 ignitions per fire season, there
was no relationship with large fire occurrence but at the
lowest level (<∼0.01 ignitions per fire season), fire probability
increased exponentially though with high uncertainty. Between
∼0.01 and ∼0.1 ignitions per fire season there was a weakly
negative relationship between ignitions and the probability of
large forest fires.

In environments of grass-dominated fuels, the average AUC
value across the 10 folds for fitted neural networks in grasslands
was 0.80. The relationship between large grass fire probability
and biomass was negative and close to linear (Figure 3A). The
relationship between dryness and large grass fire probability
was moderately positive, increasingly strongly at high dryness
values and then decreasing equally sharply at the very highest
dryness values (Figure 3B). Conversely, at low fire weather values
there was a strongly positive relationship with fire probability
but this was negative at moderate values and then remained
stable at the highest fire weather values (Figure 3B). Similar
to forest fires but at a much lower threshold (∼0.005 vs 0.1),
the lowest ignition rates were associated with high probabilities

of large grass fires, but within large confidence envelopes.
Above these rates the probability of large fires was insensitive
to further increases in ignition rate (Figure 3D). Forests and
grasslands had markedly different distributions of the four
proxies: biomass and ignition rates were much higher in forests,
while grasslands were dryer and had much more severe fire
weather conditions (Figures 2, 3).

DISCUSSION

The relationship between the four fundamental controls of fire
and the probability of large fires that was produced by the
derived artificial neural network model broadly conformed to
first principles and published evidence. In forests, dryness and
fire weather were positively related to the probability of large
fires. However, most other relationships between individual
determinants and large fire probability in both forests and
grasslands were more complex. The models fitted here build
on the understanding developed from other modelling studies
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of the drivers of large fires and the relative importance of
biomass and dryness in global fire activity. Our results are
generally consistent with Meyn et al. (2007), who found that
decreasing fuel moisture (increasing dryness) was important
in promoting fire in a wide range of forests and other
biomass-rich, rarely dry vegetation types, and Krawchuk and
Moritz (2011), who found that mesic areas where biomass is
relatively abundant experienced more fire activity as fuels dried,
as indexed by soil moisture. Kelley et al. (2019) identified
some forests (though not all) where fire regimes have shifted
consistent with this relationship between fire activity and fuel
moisture trends.

We found that the relationship between biomass and large fire
probability in forests was initially positive but became negative
at higher values. In contrast, increasing biomass in grasslands
tended to be associated with decreased risk of large fires,
perhaps because regions with low biomass are more sensitive
to substantial but rare precipitation pulses that promote fuel
build-up and continuity (O’Donnell et al., 2011). The relationship
between dryness and large fire probability was positive for
all dryness values in forests, but was positive in grasslands
only up to values of ∼90% of the fire season having PET
exceeding precipitation. Above this value of 90%, the relationship
between dryness and large fires in grasslands was negative,
suggesting that conditions conducive to extreme fuel dryness
in grasslands may be insufficient for the extensive biomass
growth required to support large fires. The positive relationship
between fire weather and probability of large fires in forests is
consistent with a number of studies globally spanning many
forest types (Stavros et al., 2014; Rodrigues et al., 2019). In
contrast, for grass-dominated fuels, modelled decreases in large
fire probability with increasing fire weather severity suggest
a possible association between the high FFDI experienced for
extended periods in arid areas due to high temperatures and
low humidity, and biomass levels insufficient to support large
fire (King et al., 2013; Supplementary Figure 2). Further, grass
fuels by their nature are well aerated and dry quickly relative
to litter fuels, which are horizontal and packed against the
soil surface thereby retaining more moisture. The model used
here is limited in its ability to capture the contrasting and
potentially interacting effects between biomass, dryness and fire
weather, three fundamental determinants of large fire probability,
in environments of grass-dominated fuels. In both grassy and
forested systems, the probability of large fires was highest at very
low ignition rates, albeit with considerable uncertainty around
probability estimates. Above very low ignition rates, increasing
ignition rates did not increase the probability of large fires. This
pattern may reflect biases in the locality of ignitions, which tend
to have highest probabilities near densely populated areas where
large fires are less likely e.g., the wildland urban interface around
towns and cities (Faivre et al., 2014; Collins et al., 2015; Clarke
et al., 2019). Our analysis cannot deal with spatial issues of this
kind and if we assume that the ignition relationship primarily
reflects population density effects, then large fire probability
is essentially insensitive to variation in ignitions, once this
population size effect is notionally removed. The relationships
we found between large fire probability and the fundamental

controls on fire were derived at different scales in forests and
grasslands and thus are not strictly equivalent. Biomass values
and ignition rates were much higher in forests than in grasslands,
whereas dryness and fire weather values were much higher in
grasslands than forests.

In this modelling study we did not attempt to explain
seasonal or inter-annual variability in fire activity in terms
of corresponding temporal variability in each fundamental
determinant of fire (Abatzoglou et al., 2018; Kelley et al.,
2019). Nevertheless, because we used multi-decadal fire and
predictor records, the relationships implicitly reflected this
variation. Our model also integrated information at large spatial
scales across southern Australia within two broad vegetation
categories, grasslands and forests. Major structural and climatic
variation exists within each of these categories. For example,
the model does not distinguish between different woody fuel
types (e.g., woodland, dry forest, wet forest) and therefore the
results reflected the entire sub-continental domain of woody fuel
types, rather than the responses specific locations or regions.
An extension of this modelling approach to address monthly
to seasonal timescales and variation in vegetation structure
may yield insights into the sensitivity of large fire probability
to its fundamental determinants at a level potentially more
relevant to fire managers. Further research could more directly
explore the potential interactions between human effects, such
as vegetation clearing/modification or infrastructure patterns, on
each of the four primary determinants of fire probability, as done
in other studies (Bistinas et al., 2014; Kelley et al., 2019) or the
consider alternative proxy(s) for each determinant. A range of
empirical relationships have been derived and could be used for
this purpose, such as links between weather and fuel moisture

FIGURE 4 | Potential future trajectory of large fire risk in currently forested
areas. Shifts from litter-dominated to grass-dominated fuels may lead to a
decrease in fire probability, even as risk in both systems would rise in
response to increasing dryness or fire weather.
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(Meyn et al., 2007; Resco de Dios et al., 2015) or fire weather and
ignition (Penman et al., 2013).

In forests, the sensitivity of large fire probability to biomass
suggests the potential to decrease burned area by reducing
fuel load through management, consistent with evidence from
empirical and modelling studies across southern Australia (Boer
et al., 2009; Price et al., 2015). The modelled relationship
between biomass and large fire probability is positive from
∼10 to 24 t ha−1 and implies that reducing fuel load from
24 to 16t ha−1 leads to a reduction in large fire probability
of about 50%, from 0.8 to 0.4. However, this averages across
many vegetation types and ignores finer scale processes such
as the location and rate of prescribed burning. For example,
Cirulis et al. (2019) found that a 50% reduction in burnt area
was possible at prescribed burning treatment rates of 10% p.a.
in forests in the Australian Capital Territory, but that the
same treatment rate would result in just a 20% decrease in
burnt area for forests in the southeast of Tasmania. Further,
there are limits to the risk reduction available through fuel
management, due to cost and resource constraints, prevailing
weather conditions, smoke effects on human health (e.g.,
Borchers Arriagada et al., 2019; Gazzard et al., 2019) and
other factors such as potential negative impacts of unseasonal
fire on plant populations via early or late season burning
(Miller et al., 2019).

Climate change may alter fuel loads through changing
temperature and rainfall patterns or through potential
fertilisation effects of increased atmospheric carbon dioxide, but
the magnitude of changes projected for this region (Thomas et al.,
2014; Clarke et al., 2016) is generally lower than that required
to significantly alter fire probability, based on the relationships
we found between biomass and large fire probability in forests.
While there have been relatively few studies of climate change
impacts explicitly addressing fuel moisture, they suggest the
potential for future increases in fuel dryness in many areas
(Matthews et al., 2012; Liu, 2017). Our results indicate that
increased dryness under climate change could potentially
increase probability of large fires in forests, but have little
effect (or even negative effects at very high dryness values)
on large fire probability in grass-dominated fuels (Boer et al.,
2016). The unprecedented burnt area of the 2019–2020 forest
fires in eastern Australia, characterised by extreme preceding
dryness, are consistent with this (Boer et al., 2020; Nolan et al.,
2020). Our results suggest potentially opposing implications
of projected increases in the severity of fire weather under
climate change (Clarke and Evans, 2019; Dowdy et al., 2019). In
forests, increasing fire weather could lead to higher probability
of large fires, although this does not factor in potential shifts in
seasonality (Miller et al., 2019). In contrast, our results indicated
that in grasslands, increased severity of fire weather could
decrease the probability of large fires (potentially indirectly via
reduced biomass), at least for areas experiencing extreme fire
danger conditions for more than ∼5% of the fire season. Our
results indicate potentially complex effects of human populations
on ignitions and large fire probability that need to be further
unpacked in order to understand future changes in human
populations and land use.

Our findings suggest that changes between, rather than within,
vegetation communities, may have the greater potential to alter
existing fire regimes. Over the domain of dryness and fire
weather present in forests, shifts from litter-dominated to grass-
dominated fuels may lead to a decrease in fire probability, even
as risk in both systems would rise in response to increasing
dryness or fire weather (Figure 4). Hence shifts from litter-
driven forest systems to grass systems may be accompanied by
fundamental changes in the prevailing fire regime and the relative
importance of the four determinants (Bowman et al., 2013;
Halofsky et al., 2013; Jiang et al., 2013; Boer et al., 2019). While
increased dryness and fire weather both acted to increase large
fire risk in forests, the other two determinants (biomass growth
and dryness) had generally opposing effects in environments
dominated by grass fuels. Such changes would have significant
implications for not only fire management, but other factors
such as biodiversity and carbon emissions. These interpretations
assume a stationary fire-climate relationship, an assumption that
is not tested here.

This study has the potential for further development
and application by fire management agencies, not just
because large fires are a significant issue, but also because
the modelling approach and results we have developed
begin to quantify the links between the fundamental
biophysical determinants of fire and key outcomes such as
probability of large fires. Such an approach, with further
refinements such as seasonal analyses, may help to improve
short-term (e.g., seasonal forecasting, emergency warnings)
and long-term (projection of climate change impacts)
management of fire to achieve core objectives such as
risk reduction for people and property and maintenance
of ecosystem processes and services. This will ultimately
contribute to a broader agency understanding of climate
change vulnerability and impacts, and greater societal
resilience and ability to co-exist with fire (Moritz et al., 2014;
McWethy et al., 2019).

DATA AVAILABILITY STATEMENT

Fire history datasets are in a publicly accessible repository:
www.data.gov.au. Ignition data was obtained from NSW
Rural Fire Service and access requests should be directed
to webmaster@rfs.nsw.gov.au. WorldClim data is available at:
https://www.worldclim.org/. Wind speed data is available at
www.csiro.au. AussieGrass and SILO climate data are available
at www.longpaddock.qld.gov.au.

AUTHOR CONTRIBUTIONS

TP, MB, GC, JF, OP, and RB contributed conception and
design of the study. TP, MB, OP, and HC contributed data
preparation and analysis. RB, TP, and MB wrote sections of
the manuscript. HC wrote the first draft of the manuscript. All
authors contributed to manuscript revision, read and approved
the submitted version.

Frontiers in Earth Science | www.frontiersin.org 8 April 2020 | Volume 8 | Article 9028

http://www.data.gov.au
https://www.worldclim.org/
http://www.csiro.au
http://www.longpaddock.qld.gov.au
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00090 April 3, 2020 Time: 13:8 # 9

Clarke et al. Proximal Drivers of Large Fires

FUNDING

OP’s salary was provided by the NSW Rural Fire Service. MB was
partly financially supported by the Bushfires and Natural Hazards
Cooperative Research Centre.

ACKNOWLEDGMENTS

Thank you to the fire agencies in Western Australia,
South Australia, Victoria, New South Wales, the Australian

Capital Territory and Tasmania for providing fire history
and ignition data. This manuscript was developed through
a series of workshops at the Creswick campus of the
University of Melbourne.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/feart.
2020.00090/full#supplementary-material

REFERENCES
Abatzoglou, J. T., and Williams, A. P. (2016). Impact of anthropogenic climate

change on wildfire across western US forests. Proc. Natl. Acad. Sci. .U.S.A. 113,
11770–11775. doi: 10.1073/pnas.1607171113

Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M., and Kolden, C. A.
(2018). Global patterns of interannual climate-fire relationships. Global. Change
Biol. 24, 5164–5175. doi: 10.1111/gcb.14405

AFAC (2012). Australian Incident Reporting Standard (AIRS), Instructions for
Incident Reporting. Melbourne: Australasian Fire and Emergency Service
Authorities Council.

Aldersley, A., Murray, S. J., and Cornell, S. E. (2011). Global and regional analysis
of climate and human drivers of wildfire. Sci. Total Environ. 409, 3472–3481.
doi: 10.1016/j.scitotenv.2011.05.032

Archibald, S., Lehmann, C. E. R., Gomez-Dans, J. L., and Bradstock, R. A. (2013).
Defining pyromes and global syndromes of fire regimes. Proc. Natl. Acad. Sci.
U.S.A. 110, 6442–6447. doi: 10.1073/pnas.1211466110

Archibald, S., Roy, D. P., van Wilgen, B. W., and Scholes, R. J. (2009). What limits
fire? An examination of drivers of burnt area in Southern Africa. Global Change
Biol. 15, 613–630. doi: 10.1111/j.1365-2486.2008.01754.x

Bistinas, I., Harrison, S. P., Prentice, I. C., and Pereira, J. M. C. (2014). Causal
relationships versus emergent patterns in the global controls of fire frequency.
Biogeosciences 11, 5087–5101. doi: 10.5194/bg-11-5087-2014

Blanchi, R., Lucas, C., Leonard, J., and Finkele, K. (2010). Meteorological
conditions and wildfire-related house loss in Australia. Int. J. Wildland Fire 19,
914–926. doi: 10.1071/wf08175

Boer, M., Bowman, D., Murphy, B., Cary, G., Cochrane, M., Fensham, R., et al.
(2016). Future changes in climatic water balance drive transformational shifts
in Australian fire regimes. Environ. Res. Lett. 11:065002.

Boer, M. M., Bradstock, R. A., Gill, A. M., Sadler, R. J., and Grierson, P. F. (2008).
Spatial scale invariance of southern Australian forest fires mirrors the scaling
behaviour of fire-driving weather events. Landscape Ecol. 23, 899–913.

Boer, M. M., Resco De Dios, V., and Bradstock, R. (2020). Unprecedented burn
area of Australian mega forest fires. Nat. Clim. Change 10, 171–172. doi: 10.
1038/s41558-020-0716-1

Boer, M. M., Resco De Dios, V., Stefaniak, E. Z., and Bradstock, R. A. (2019). A
hydroclimatic model for the distribution of fire on Earth. Biogeosci. Discuss.
doi: 10.5194/bg-2019-441

Boer, M. M., Sadler, R. J., Wittkuhn, R., McCaw, L., and Grierson, P. F. (2009).
Long-term impacts of prescribed burning on regional extent and incidence of
wildfires – evidence from fifty years of active fire management in SW Australian
forests. Forest Ecol. Manag. 259, 132–142.

Borchers Arriagada, N., Horsley, J. A., Palmer, A. J., Morgan, G. G., Tham, R., and
Johnston, F. H. (2019). Association between fire smoke fine particular matter
and asthma-related outcomes: systematic review and meta-analysis. Environ.
Res. 179:108777. doi: 10.1016/j.envres.2019.108777

Bowman, D., Murphy, B., Boer, M., Bradstock, R., Cary, G., Cochrane, M.,
et al. (2013). Forest fire management, climate change and the risk of
catastrophic carbon losses. Front. Ecol. Environ. 11:66–68. doi: 10.1890/13.
WB.005

Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’Antonio,
C. M., et al. (2011). The human dimension of fire regimes on Earth. J. Biogeogr.
38, 2223–2236. doi: 10.1111/j.1365-2699.2011.02595.x

Bradstock, R. (2010). A biogeographic model of fire regimes in Australia: current
and future implications. Global Ecol. Biogeogr. 19, 145–158.

Bradstock, R., Penman, T., Boer, M., Price, O., and Clarke, H. (2014). Divergent
responses of fire to recent warming and drying across south-eastern Australia.
Global Change Bio. 20, 1214–1228. doi: 10.1111/gcb.12449

Bradstock, R. A., Cohn, J., Gill, A. M., Bedward, M., and Lucas, C. (2009).
Prediction of the probability of large fires in the Sydney region of south-eastern
Australia using components of fire weather. In. J. Wildland Fire 18, 932–943.

Carter, J., Bruget, D., Hassett, R., Henry, B., Ahrens, D., Brook, K., et al.
(2003). “Australian grassland and rangeland assessment by spatial simulation
(Aussiegrass),” in Science for Drought, Proceedings of the National Drought
Forum, Vol. 2003, eds R. Stone and I. Partridge (Brisbane: Queensland
Department of Primary Industries), 152–159.

Chuvieco, E., Aguado, I., Jurdao, S., Pettinari, M. L., Yebra, M., Salas, J., et al.
(2014). Integrating geospatial information into fire risk assessment. Int. J.
Wildland Fire 23, 606–619. doi: 10.1071/WF12052

Chuvieco, E., Giglio, L., and Justice, C. (2008). Global characterization of fire
activity: toward defining fire regimes from Earth observation data. Global
Change Biol. 14, 1488–1502. doi: 10.1111/j.1365-2486.2008.01585.x

Cirulis, B., Clarke, H., Boer, M., Penman, T., Price, O., and Bradstock, R. (2019).
Quantification of inter-regional differences in risk mitigation from prescribed
burning across multiple management values. Int. J. Wildland Fire doi: 10.1071/
WF18135

Clarke, H., and Evans, J. P. (2019). Exploring the future change space for fire
weather in southeast Australia. Theor. Appl. Climatol. 136, 513–527. doi: 10.
1007/s00704-018-2507-4

Clarke, H., Gibson, R., Cirulis, B., Bradstock, R. A., and Penman, T. D. (2019).
Developing and testing models of the drivers of anthropogenic and lightning-
caused ignition in southeastern Australia. J. Environ. Manage. 235, 34–41. doi:
10.1016/j.jenvman.2019.01.055

Clarke, H., Pitman, A. J., Kala, J., Carouge, C., Haverd, V., and Evans, J. P. (2016).
An investigation of future fuel load and fire weather in Australia. Clim. Change
139, 591–605. doi: 10.1007/s10584-016-1808-9

Collins, K. M., Price, O. F., and Penman, T. D. (2015). Spatial and temporal patterns
of fire ignitions in southeastern Australia. Int. J. Wildland Fire 24, 1098–1108.

Collins, L., Griffioen, P., Newell, G., and Mellor, A. (2018). The utility of random
forests for wildfire severity mapping. Remote Sens. Environ. 216, 374–384.

Costafreda-Aumedes, S., Comas, C., and Vega-Garcia, C. (2017). Human-caused
fire occurrence modelling in perspective: a review. Int. J. Wildl. Fire 26, 983–998.
doi: 10.1071/WF17026

Cui, W., and Perera, A. H. (2008). What do we know about forest fire size
distribution, and why is this knowledge useful for forest management? Int. J.
Wildland Fire 17, 234–244. doi: 10.1071/WF06145

Dowdy, A. J., Ye, H., Pepler, A., Thatcher, M., Osbrough, S. L., Evans, J. P.,
et al. (2019). Future changes in extreme weather and pyroconvection risk
factors for Australian wildfires. Sci. Rep. 9:10073. doi: 10.1038/s41598-019-
46362-x

Dutta, R., Aryal, J., Das, A., and Kirkpatrick, J. B. (2013). Deep cognitive imaging
systems enable estimation of continental-scale fire incidence from climate data.
Sci. Rep. 3:3188. doi: 10.1038/srep03188

Faivre, N., Jin, Y., Goulden, M. L., and Randerson, J. T. (2014). Controls on the
spatial pattern of wildfire ignitions in Southern California. Int. J. Wildland Fire
23, 799–811. doi: 10.1071/WF13136

Frontiers in Earth Science | www.frontiersin.org 9 April 2020 | Volume 8 | Article 9029

https://www.frontiersin.org/articles/10.3389/feart.2020.00090/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2020.00090/full#supplementary-material
https://doi.org/10.1073/pnas.1607171113
https://doi.org/10.1111/gcb.14405
https://doi.org/10.1016/j.scitotenv.2011.05.032
https://doi.org/10.1073/pnas.1211466110
https://doi.org/10.1111/j.1365-2486.2008.01754.x
https://doi.org/10.5194/bg-11-5087-2014
https://doi.org/10.1071/wf08175
https://doi.org/10.1038/s41558-020-0716-1
https://doi.org/10.1038/s41558-020-0716-1
https://doi.org/10.5194/bg-2019-441
https://doi.org/10.1016/j.envres.2019.108777
https://doi.org/10.1890/13.WB.005
https://doi.org/10.1890/13.WB.005
https://doi.org/10.1111/j.1365-2699.2011.02595.x
https://doi.org/10.1111/gcb.12449
https://doi.org/10.1071/WF12052
https://doi.org/10.1111/j.1365-2486.2008.01585.x
https://doi.org/10.1071/WF18135
https://doi.org/10.1071/WF18135
https://doi.org/10.1007/s00704-018-2507-4
https://doi.org/10.1007/s00704-018-2507-4
https://doi.org/10.1016/j.jenvman.2019.01.055
https://doi.org/10.1016/j.jenvman.2019.01.055
https://doi.org/10.1007/s10584-016-1808-9
https://doi.org/10.1071/WF17026
https://doi.org/10.1071/WF06145
https://doi.org/10.1038/s41598-019-46362-x
https://doi.org/10.1038/s41598-019-46362-x
https://doi.org/10.1038/srep03188
https://doi.org/10.1071/WF13136
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00090 April 3, 2020 Time: 13:8 # 10

Clarke et al. Proximal Drivers of Large Fires

Gazzard, T., Walshe, T., Galvin, P., Salkin, O., Baker, M., Cross, B., et al. (2019).
What is the ‘appropriate’ fuel management regime for the Otway Ranges,
Victoria, Australia? Developing a long-term fuel management strategy using
the structured decision-making framework. Int. J. Wildland Fire doi: 10.1071/
WF18131

Gevrey, M., Dimopoulos, L., and Lek, S. (2003). Review and comparison of
methods to study the contribution of variables in artificial neural network
models. Ecol. Model. 160, 249–264. doi: 10.1016/S0304-3800(02)00257-0

Giglio, L., Randerson, J. T., and van der Werf, G. R. (2013). Analysis of daily,
monthly, and annual burned area using the fourth-generation global fire
emissions database (GFED4). J. Geophys. Res. Biogeosci. 118, 317–328. doi:
10.1002/jgrg.20042

Gill, A. M. (2005). Landscape fires as social disasters: an overview of ‘the bushfire
problem’. Glob. Environ. Change B 6, 65–80.

Gray, M. E., Zachmann, L. J., and Dickson, B. G. (2018). A weekly, continually
updated dataset of the probability of large wildfires across western US forests
and woodlands. Earth Syst. Sci. Data 10, 1715–1727. doi: 10.5194/essd-10-1715-
2018

Halofsky, J. E., Hemstrom, M. A., Conklin, D. R., Halofsky, J. S., Kerns, B. K., and
Bachelet, D. (2013). Assessing potential climate change effects on vegetation
using a linked model approach. Ecol. Model. 266, 131–143. doi: 10.1016/j.
ecolmodel.2013.07.003

Hanley, J. A., and McNeil, B. J. (1982). The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology 143, 29–36.

Harris, L., and Taylor, A. H. (2017). Previous burns and topography limit and
reinforce fire severity in a large wildfire. Ecosphere 8:e02019. doi: 10.1002/ecs2.
2019

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. (2005).
Very high resolution interpolated climate surfaces for global land areas. Int. J.
Climatol. 25, 1965–1978.

Holden, Z. A., Swanson, A., Luce, C. H., Jolly, W. M., Maneta, M., Oyler, J. W.,
et al. (2018). Decreasing fire season precipitation increased recent western US
forest wildfire activity. Proc. Natl. Acad. Sci. U.S.A. 115, E8349–E8357. doi:
10.1073/pnas.1802316115

Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos-Fabiel, M. A., Espinosa, J. M.,
Restrepo, J. C., et al. (2017). The environmental envelope of fires in the
Colombian Caribbean. Appl. Geogr. 84, 42–54. doi: 10.1016/j.apgeog.2017.
05.001

Hutchinson, M. F., McIntyre, S., Hobbs, R. J., Stein, J. L., Garnett, S., and Kinloch,
J. (2005). Integrating a global agro-climatic classification with bioregional
boundaries in Australia. Global Ecol. Biogeogr. 14, 197–212.

Jeffrey, S. J., Carter, J. O., Moodie, K. M., and Beswick, A. R. (2001). Using spatial
interpolation to construct a comprehensive archive of Australian climate data.
Environm. Model. Software 16, 309–330.

Jiang, X., Rauscher, S. A., Ringler, T. D., Lawrence, D. M., Williams, A. P., Allen,
C. D., et al. (2013). Projected future changes in vegetation in western North
America in the twenty-first century. J. Clim. 26, 3671–3636.

Kelley, D. I., Bistinas, I., Whitley, R., Burton, C., Marthews, T. R., and Dong, N.
(2019). How contemporary bioclimatic and human controls change global fire
regimes. Nat. Clim. Change 9, 690–696. doi: 10.1038/s41558-019-0540-7

King, K. J., Cary, G. J., Bradstock, R. A., and Marsden-Smedley, J. B. (2013).
Contrasting fire responses to climate and management: insights from two
Australian ecosystems. Global Change Biol. 19, 1223–1235. doi: 10.1111/gcb.
12115

Kloster, S., Mahowald, N. M., Randerson, J. T., and Lawrence, P. J. (2012). The
impacts of climate, land use, and demography on fires during the 21st century
simulated by CLM-CN. Biogeosciences 9, 509–525. doi: 10.5194/bg-9-509-2012

Krawchuk, M. A., and Moritz, M. A. (2011). Constraints on global fire activity vary
across a resource gradient. Ecology 92, 121–132.

Krawchuk, M. A., Moritz, M. A., Parisien, M. A., Van Dorn, J., and Hayhoe, K.
(2009). Global Pyrogeography: the Current and Future Distribution of Wildfire.
PLoS One 4:e5102. doi: 10.1371/journal.pone.0005102

Lagerquist, R., Flannigan, M. D., Wang, X., and Marshall, G. A. (2017). Automated
prediction of extreme fire weather from synoptic patterns in northern Alberta.
Canada. Can. J. For. Res. 47, 1175–1183. doi: 10.1139/cjfr-2017-0063

Lek, S., and Guegan, J. F. (1999). Artificial neural networks as a tool in ecological
modelling, an introduction. Ecol. Model. 120, 65–73. doi: 10.1016/S0304-
3800(99)00092-7

Liu, Y. Q. (2017). Responses of dead forest fuel moisture to climate change.
Ecohydrology 10:e1760. doi: 10.1002/eco.1760

Malamud, B. D., Millington, J. D. A., and Perry, G. L. W. (2005). Characterizing
wildfire regimes in the United States. Proc. Natl. Acad. Sci. U.S.A. 102, 4694–
4699. doi: 10.1073/PNAS.0500880102

Mariani, M., Holz, A., Veblen, T. T., Williamson, G., Fletcher, M.-S., and Bowman,
D. M. J. S. (2018). Climate change amplifications of climate-fire teleconnections
in the Southern Hemisphere. Geophys. Res. Lett. 45, 5071–5081. doi: 10.1029/
2018GL078294

Marlon, J. R., Bartlein, P. J., Daniau, A. L., Harrison, S. P., Maezumi, S. Y.,
Power, M. J., et al. (2013). Global biomass burning: a synthesis and review
of Holocene paleofire records and their controls. Q. Sci. Rev. 65, 5–25. doi:
10.1016/j.quascirev.2012.11.029

Matthews, S., Sullivan, A. L., Watson, P., and Williams, R. J. (2012). Climate change,
fuel and fire behaviour in a eucalypt forest. Global Change Biol. 18, 3212–3223.
doi: 10.1111/j.1365-2486.2012.02768.x

McArthur, A. G. (1967). Fire Behaviour in Eucalypt Forests. Forestry and Timber
Bureau, Leaflet No. 107. Canberra: Commonwealth of Australia.

McCune, B., and Grace, J. (2002). Analysis of Ecological Communities. Glenden
Beach, OR: MJM Software Design.

McKenzie, D., and Kennedy, M. C. (2012). Power laws reveal phase transitions
in landscape controls of fire regimes. Nat. Commun. 3, 726. doi: 10.1038/
ncomms1731

McVicar, T., Van Niel, T., Li, L., Roderick, M., Rayner, D., Ricciardulli, L., et al.
(2008). Wind speed climatology and trends for Australia, 1975-2006: capturing
the stilling phenomenon and comparison with near-surface reanalysis output.
Geophys. Res. Lett. 35:L20403.

McWethy, D. B., Higuera, P. E., Whitlock, C., Veblen, T. T., Bowman, D. M. J. S.,
Cary, G. J., et al. (2013). A conceptual framework for predicting temperate
ecosystem sensitivity to human impacts on fire regimes. Global Eco. Biogeogr.
22, 900–912. doi: 10.1111/geb.12038

McWethy, D. B., Schoennagel, T., Higuera, P. E., Krawchuk, M., Harvey, B. J.,
Metcalf, E. C., et al. (2019). Rethinking resilience to wildfire. Nat. Sustainab.
2, 797–804. doi: 10.1038/s41893-019-0353-8

Meyn, A., White, P. S., Buhk, C., and Jentsch, A. (2007). Environmental drivers of
large, infrequent wildfires: the emerging conceptual model. Prog. Phys. Geogr.
31, 287–312.

Miller, R. G., Tangney, R., Enright, N. J., Fontaine, J. B., Merritt, D. J., Ooi, M. K. J.,
et al. (2019). Mechanisms of fire seasonality effects on plant populations. Trends
Ecol. Evol. 34, 1104–1117. doi: 10.1016/j.tree.2019.07.009

Moritz, M. A., Batllori, E., Bradstock, R. A., Gill, A. M., Handmer, J., Hessburg,
P. F., et al. (2014). Learning to coexist with wildfire. Nature 515, 58–66. doi:
10.1038/nature13946

Moritz, M. A., Parisien, M. A., Batllori, E., Krawchuk, M. A., Van Dorn, J., Ganz,
D. J., et al. (2012). Climate change and disruptions to global fire activity.
Ecosphere 3:art49. doi: 10.1890/ES11-00345.1

Murphy, B. P., Bradstock, R. A., Boer, M. M., Carter, J., Cary, G. J., Cochrane,
M. A., et al. (2013). Fire regimes of Australia: a pyrogeographic model system.
J. Biogeogr. 40, 1048–1058.

Murphy, B. P., Prior, L. D., Cochrane, M. A., Williamson, G. J., and Bowman,
D. M. J. S. (2019). Biomass consumption by surface fires across Earth’s most
fire prone continent. Global Change Biol. 25, 254–268. doi: 10.1111/gcb.14460

Noble, I. R., Bary, G. A. V., and Gill, A. M. (1980). McArthur’s fire-danger meters
expressed as equations. Aust. J. Ecol. 5, 201–203.

Nolan, R. H., Boer, M. M., Collins, L., Resco de Dios, V., Clarke, H., Jenkins,
M., et al. (2020). Causes and consequences of eastern Australia’s 2019–20
season of mega-fires. Global Change Biol. 26, 1039–1041. doi: 10.1111/gcb.
14987

Nolan, R. H., de Dios, V. R., Boer, M. M., Caccamo, G., Goulden, M. L.,
and Bradstock, R. A. (2016). Predicting dead fine fuel moisture at
regional scales using vapour pressure deficit from MODIS and gridded
weather data. Remote Sens. Environ. 174, 100–108. doi: 10.1016/j.rse.2015.
12.010

O’Donnell, A. J., Boer, M. M., McCaw, W. L., and Grierson, P. F. (2011). Vegetation
and landscape connectivity control wildfire intervals in unmanaged semi-arid
shrublands and woodlands in Australia. J., Biogeogr. 38, 112–124.

Pausas, J. G., and Ribeiro, E. (2013). The global fire productivity relationship.
Global Ecol. Biogeogr. 22, 728–736. doi: 10.1111/geb.12043

Frontiers in Earth Science | www.frontiersin.org 10 April 2020 | Volume 8 | Article 9030

https://doi.org/10.1071/WF18131
https://doi.org/10.1071/WF18131
https://doi.org/10.1016/S0304-3800(02)00257-0
https://doi.org/10.1002/jgrg.20042
https://doi.org/10.1002/jgrg.20042
https://doi.org/10.5194/essd-10-1715-2018
https://doi.org/10.5194/essd-10-1715-2018
https://doi.org/10.1016/j.ecolmodel.2013.07.003
https://doi.org/10.1016/j.ecolmodel.2013.07.003
https://doi.org/10.1002/ecs2.2019
https://doi.org/10.1002/ecs2.2019
https://doi.org/10.1073/pnas.1802316115
https://doi.org/10.1073/pnas.1802316115
https://doi.org/10.1016/j.apgeog.2017.05.001
https://doi.org/10.1016/j.apgeog.2017.05.001
https://doi.org/10.1038/s41558-019-0540-7
https://doi.org/10.1111/gcb.12115
https://doi.org/10.1111/gcb.12115
https://doi.org/10.5194/bg-9-509-2012
https://doi.org/10.1371/journal.pone.0005102
https://doi.org/10.1139/cjfr-2017-0063
https://doi.org/10.1016/S0304-3800(99)00092-7
https://doi.org/10.1016/S0304-3800(99)00092-7
https://doi.org/10.1002/eco.1760
https://doi.org/10.1073/PNAS.0500880102
https://doi.org/10.1029/2018GL078294
https://doi.org/10.1029/2018GL078294
https://doi.org/10.1016/j.quascirev.2012.11.029
https://doi.org/10.1016/j.quascirev.2012.11.029
https://doi.org/10.1111/j.1365-2486.2012.02768.x
https://doi.org/10.1038/ncomms1731
https://doi.org/10.1038/ncomms1731
https://doi.org/10.1111/geb.12038
https://doi.org/10.1038/s41893-019-0353-8
https://doi.org/10.1016/j.tree.2019.07.009
https://doi.org/10.1038/nature13946
https://doi.org/10.1038/nature13946
https://doi.org/10.1890/ES11-00345.1
https://doi.org/10.1111/gcb.14460
https://doi.org/10.1111/gcb.14987
https://doi.org/10.1111/gcb.14987
https://doi.org/10.1016/j.rse.2015.12.010
https://doi.org/10.1016/j.rse.2015.12.010
https://doi.org/10.1111/geb.12043
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00090 April 3, 2020 Time: 13:8 # 11

Clarke et al. Proximal Drivers of Large Fires

Penman, T. D., Price, O. F., and Bradstock, R. (2013). Modelling the determinants
of ignition in the Sydney Basin, Australia: implications for future management.
Int. J. Wildland Fire 22, 469–478.

Price, O. F., Penman, T. D., Bradstock, R. A., Boer, M., and Clarke, H. (2015).
Biogeographical variation in the potential effectiveness of prescribed fire in
south-eastern Australia. J. Biogeogr. 42, 2234–2245.

R Development Core Team (2018). R: A Language and Environment for Statistical
Computing. Vienna: The R Foundation for Statistical Computing. Available at:
http://www.R-project.org/

Reed, W. J., and McKelvey, K. S. (2002). Power-law behaviour and parametric
models for the size-distribution of forest fires. Ecol. Model. 150, 239.

Resco de Dios, V., Fellows, A. W., Nolan, R. H., Boer, M. M., Bradstock, R. A.,
Domingo, F., et al. (2015). A semi-mechanistic model for predicting the
moisture content of fine litter. Agric. For. Meteorol. 203, 64–73. doi: 10.1016/
j.agrformet.2015.01.002

Rodrigues, M., Costafreda-Aumedes, S., Comas, C., and Vega-Garcia, C. (2019).
Spatial stratification of wildfire drivers towards enhanced definition of large-
fire regime zoning and fire seasons. Sci. Total Environ. 689, 634–644. doi:
10.1016/j.scitotenv.2019.06.467

Russell-Smith, J., Yates, C. P., Whitehead, P. J., Smith, R., Craig, R., Allan,
G. E., et al. (2007). Bushfires ’down under’: patterns and implications
of contemporary Australian landscape burning. Int. J. Wildland Fire 16,
361–377.

Stavros, E. N., Abatzoglou, J., Larkin, N. K., McKenzie, D., and Steel, E. A. (2014).
Climate and very large wildland fires in the contiguous western USA. Int. J.
Wildland Fire 23, 899–914. doi: 10.1071/Wf13169

Stephens, S. L., Burrows, N., Buyantuyev, A., Gray, R. W., Keane, R. E., Kubian,
R., et al. (2014). Temperate and boreal forest mega-fires: characteristics and
challenges. Front. Ecol. Environ. 12:115–122.

Syphard, A. D., Keeley, J. E., Pfaff, A. H., and Ferschweiler, K. (2017). Human
presence diminishes the importance of climate in driving fire activity across the
United States. Proc. Natl. Acad. Sci. U.S.A. 114, 201713885. doi: 10.1073/pnas.
1713885114

Thomas, P. B., Watson, P. J., Bradstock, R. A., Penman, T. D., and Price, O. F.
(2014). Modelling litter fine fuel dynamics across climate gradients in eucalypt
forests of south-eastern Australia. Ecography 37, 827–837.

Trauernicht, C. (2019). Vegetation—Rainfall interactions reveal how climate
variability and climate change alter spatial patterns of wildland fire probability
on Big Island. Hawaii. Sci. Total Environ. 650, 459–469. doi: 10.1016/j.scitotenv.
2018.08.347

Turco, M., Rosa-Cánovas, J. J., Bedia, J., Jerez, S., Montávez, J. P., Llasat, M. C.,
et al. (2018). Exacerbated fires in Mediterranean Europe due to anthropogenic
warming projected with nonstationary climate-fire models. Nat. Commun.
9:3821. doi: 10.1038/s41467-018-06358-z

Vasilakos, C., Kalabokidis, K., Hatzopoulos, J., and Matsinos, I. (2009). Identifying
wildland fire ignition factors through sensitivity analysis of a neural network.
Nat. Hazards 50, 125–143.

Vega-Garcia, C., Lee, B. S., Woodard, P. M., and Titus, S. J. (1996). Applying
neural network technology to human-caused wildfire occurrence prediction.
Applications 10, 9–18.

Venables, W. N., and Ripley, B. D. (2002). Modern Applied Statistics with S. Berlin:
Springer.

Williams, A. P., Seager, R., Macalady, A. K., Berkelhammer, M., Crimmins, M. A.,
Swetnam, T. W., et al. (2015). Correlations between components of the water
balance and burned area reveal new insights for predicting forest fire area in the
southwest United States. Int. J. Wildland Fire 24, 14–26.

Williamson, G. J., Prior, L. D., Jolly, W. M., Cochrane, M. A., Murphy, B. P., and
Bowman, D. M. J. S. (2016). Measurement of inter- and intra-annual variability
of landscape fire activity at a continental scale: the Australian case. Environ. Res.
Lett. 11:035003. doi: 10.1088/1748-9326/11/3/035003

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Clarke, Penman, Boer, Cary, Fontaine, Price and Bradstock.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Earth Science | www.frontiersin.org 11 April 2020 | Volume 8 | Article 9031

http://www.R-project.org/
https://doi.org/10.1016/j.agrformet.2015.01.002
https://doi.org/10.1016/j.agrformet.2015.01.002
https://doi.org/10.1016/j.scitotenv.2019.06.467
https://doi.org/10.1016/j.scitotenv.2019.06.467
https://doi.org/10.1071/Wf13169
https://doi.org/10.1073/pnas.1713885114
https://doi.org/10.1073/pnas.1713885114
https://doi.org/10.1016/j.scitotenv.2018.08.347
https://doi.org/10.1016/j.scitotenv.2018.08.347
https://doi.org/10.1038/s41467-018-06358-z
https://doi.org/10.1088/1748-9326/11/3/035003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


ORIGINAL RESEARCH
published: 17 April 2020

doi: 10.3389/feart.2020.00104

Frontiers in Earth Science | www.frontiersin.org 1 April 2020 | Volume 8 | Article 104

Edited by:

Vimal Mishra,

Indian Institute of Technology

Gandhinagar, India

Reviewed by:

Xander Wang,

University of Prince Edward Island,

Canada

Mari Rachel Tye,

National Center for Atmospheric

Research (UCAR), United States

*Correspondence:

Renaud Barbero

renaud.barbero@inrae.fr

Specialty section:

This article was submitted to

Interdisciplinary Climate Studies,

a section of the journal

Frontiers in Earth Science

Received: 17 January 2020

Accepted: 23 March 2020

Published: 17 April 2020

Citation:

Barbero R, Abatzoglou JT, Pimont F,

Ruffault J and Curt T (2020) Attributing

Increases in Fire Weather to

Anthropogenic Climate Change Over

France. Front. Earth Sci. 8:104.

doi: 10.3389/feart.2020.00104

Attributing Increases in Fire Weather
to Anthropogenic Climate Change
Over France
Renaud Barbero 1*, John T. Abatzoglou 2,3, François Pimont 4, Julien Ruffault 4 and

Thomas Curt 1

1 INRAE, Ecosystemes Méditerranéens et Risques, Aix-en-Provence, France, 2Department of Geography, University of Idaho,

Moscow, ID, United States, 3Management of Complex Systems Department, University of California, Merced, Merced, CA,

United States, 4 INRAE, Ecologie des Forêts Méditerranéennes, Avignon, France

Anthropogenic climate change is widely thought to have enhanced fire danger across

parts of the world, including Mediterranean regions through increased evaporative

demand and diminished precipitation during the fire season. Previous efforts have

detected increases in fire danger across parts of southern Europe but a formal attribution

of the role of anthropogenic climate forcing has not been undertaken. Here, we attempt

to disentangle the confounding effects of anthropogenic climate change and natural

variability on observed increases in fire danger in France over the past six decades,

with a focus on the fire-prone Mediterranean region. Daily fire weather and fire-related

drought indices were computed from a reanalyses dataset covering the 1958–2017

period. Anthropogenic signals in meteorological variables were isolated using 17 climate

models and then removed from observations to form a set of counterfactual observations

free of anthropogenic climate change. Our results show that anthropogenic climate

change is responsible for nearly half of the long-term increases in fire weather and

fire-related drought conditions across the Mediterranean region and have significantly

elevated the likelihood of summers with extreme fire danger. Fire danger conditions

such as those observed during the near-record breaking 2003 fire season have a

<0.2% annual probability (return interval >500 years) of occurrence in the absence

of anthropogenic climate change, compared to a probability of ∼10% (return interval

∼10 years) under today’s climate accounting for anthropogenic climate change. Our

approach provides modernized estimates of current fire danger levels and expected

return levels of extreme fire seasons considering climate change, which may help inform

fire management agencies and decision making.

Keywords: climate change, fire weather index, detection and attribution, Mediterranean, France

1. INTRODUCTION

Fire is a major hazard throughout the Euro-Mediterranean basin threatening ecosystems, society,
and taxing fire suppression resources. While most fire ignitions are due to human activities
(Ganteaume et al., 2013), atmospheric variability plays a key role in the flammability of fuel and
fire spread. The influence of weather and climate variability are particularly important for the
occurrence of large fires. Multi-week to multi-month periods of anomalously high moisture deficits
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increase landscape flammability (Abatzoglou et al., 2018; Barbero
et al., 2018; Ruffault et al., 2018b) though live (Pimont et al.,
2019a) and dead (Boer et al., 2017) fuel dessication. Additionally,
heat waves and strong gusty winds often lead to critical synoptic
fire weather conditions that have been shown to facilitate fire
spread across parts of Southern France (Hernandez et al., 2015;
Ruffault et al., 2017; Lahaye et al., 2018). Together, the alignment
of critical synoptic fire weather conditions in conjunction with
longer-term fuel moisture deficit promotes the occurrence of
large fires (Barbero et al., 2018). Co-occurring extremes in
fuel aridity and potential fire spread rates such as those which
occurred in summer 2003 (Trigo et al., 2005) contributed to
near record-breaking burned area with 740,379 ha burned across
Europe, including >74,000 ha in France (Trigo et al., 2006).

Climate change projections suggest widespread increase in fire
danger and fire weather extremes across much of the globe over
the twenty-first century (Abatzoglou et al., 2019). These trends
are already evident globally in the observational record (Jolly
et al., 2015), including across parts of France (Dupire et al., 2017;
Fréjaville and Curt, 2017; Curt and Fréjaville, 2018). Increases in
fire weather conditions have been attributed to anthropogenic
global warming in portions of western North America (Yoon
et al., 2015; Abatzoglou and Williams, 2016; Kirchmeier-Young
et al., 2017, 2018; Tan et al., 2018; Williams et al., 2019) but the
degree to which global warming has contributed to changes in
fire weather danger characteristics in France, and more generally
across the Euro-Mediterranean basin, has not been quantified.
The region is of particular interest as climate models project both
a strong warming—the so-called Mediterranean amplification—
(Brogli et al., 2019) and drier summers which are expected to
collectively exacerbate fire weather conditions (Turco et al., 2018;
Fargeon et al., 2020).

There is increasing interest in quantifying the role of
global warming on observed changes in the likelihoods of
extreme events (Easterling et al., 2016; Lloyd and Oreskes, 2018;
Bellprat et al., 2019; Stone et al., 2019). This is of interest
both scientifically and from a hazard preparedness perspective.
The latter is particularly important given that many estimates
of fire danger level used by agencies for both community
planning, hazard reduction, and preparedness are based on
retrospective efforts. Modernized efforts that include changes
in land use practices as well as changes in climate are thus
essential. On the scientific front, attribution studies typically
assess the relative contribution of a specific causal forcing,
namely the anthropogenic climate change due to greenhouse
gases, to a particular extreme event or changes in some pertinent
statistic (e.g., annual maxima or frequency of daily temperatures
exceeding the local 90th percentile). Such analyses are often
confounded by the large internal variability in the climate system
alongside known uncertainties in both the observational record
and regional climatic responses to the anthropogenic forcing
(Santer et al., 2019), with these issues being larger for regional-
to-local attribution efforts (Angélil et al., 2018).

Additional challenges arise when attributing long-term
changes in a multivariable phenomenon such as fire weather
conditions (Abatzoglou et al., 2019). Fire weather indices
integrate variables such as maximum temperature, precipitation,

minimum relative humidity, and wind speed (VanWagner, 1987)
and the response to each of these inputs is often non-linear.
Fire weather indices can thus reflect the combined influence
of weather and climate extremes occurring simultaneously,
such as a prolonged drought period intersecting with a
heatwave (Barbero et al., 2015). Some of these inputs may be
strongly influenced by anthropogenic climate forcing, some not
influenced at all, and some changes may offset one another
(Flannigan et al., 2016; Abatzoglou et al., 2019). In this regard,
the confluence of the background warming trend with dry
years across Mediterranean regions is thought to have altered
the likelihood of such compound events, as seen during 2003.
Quantifying the role of anthropogenic climate change in the
occurrence of compound extreme events is thus a significant
scientific challenge. While previous attribution efforts have
focused so far on temperature extremes (Uhe et al., 2016),
precipitation extremes (van Oldenborgh et al., 2017) or drought
(Philip et al., 2018), the attribution framework has been sparingly
applied to extreme fire weather conditions (Kirchmeier-Young
et al., 2018).

This study quantifies the degree to which anthropogenic
climate change has (i) contributed to observed increases in
fire weather conditions over the historical record in France
and in particular across the Mediterranean fire-prone region
and (ii) altered the probability of compound extremes such as
those that contributed to the exceptional 2003 fire season. Such
analysis may help update risk assessmentmodels and quantify the
modern risk of extreme fire seasons, including the additional risk
directly imposed by climate change. To answer these questions,
we paired observational data alongside a set of counterfactual
observations designed to reflect what we would have observed
in the absence of anthropogenic climate change as deduced
from climate simulations. As opposed to most previous studies
using a single model or an ensemble of runs of a given model,
we considered here multiple climate simulations to address
the structural uncertainty inherent to climate models, which
strengthens the confidence of the results.

2. DATA AND METHODS

2.1. Fire Weather Observations
We used the daily Fire Weather Index (FWI) from the
Canadian Forest Fire Danger Rating System (VanWagner, 1987)
to assess fire weather conditions. The FWI integrates both
current meteorological conditions (daily maximum temperature,
minimum relative humidity, wind speed, and 24-h accumulated
precipitation) as well as antecedent conditions and reflects the
effect of fuel moisture and potential fire spread rate on fire
behavior. We used the FWI given its widespread usage globally
(Di Giuseppe et al., 2016) and its well-established relationship
with fire activity globally (Abatzoglou et al., 2018), including the
occurrence of large fires in France (Barbero et al., 2018).

We complemented the FWI analyses using the Keetch
Byram Drought Index (KBDI) (Keetch and Byram, 1968),
a fire-related drought metric requiring only daily maximum
temperature and precipitation. The KBDI is a daily water
balance describing the drying rate of the soil as a cumulative
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estimate of moisture deficiency and is often considered as
a proxy of live fuel moisture (Ruffault et al., 2018a). The
KBDI is well-correlated with fire activity across parts of the
world (Dolling et al., 2005; Taufik et al., 2015; Yoon et al.,
2015). Here, we used an improved version of the KBDI to
minimize the structural underestimation of water loss during
the summer in Mediterranean regions (Ganatsas et al., 2011).
Multiple adjustments were suggested by Ganatsas et al. (2011)
including a different estimation of potential evapotranspiration
and threshold for canopy interception of precipitation.

We used the French reanalyses SAFRAN (Système d’Analyse
Fournissant des Renseignements Atmosphèriques à la Neige;
Analysis system providing data for the snow model), a quality-
controlled dataset available from 1958 to 2017 on a daily basis
and over an 8-km grid spanning France (Vidal et al., 2010). The
SAFRAN dataset provides all meteorological variables needed
to derive FWI and KBDI (namely daily maximum temperature,
precipitation, wind speed, and minimum relative humidity) and
has been extensively used in previous studies.

2.2. Counterfactual Observations
Long-term trends in climate may be affected by two components,
namely anthropogenic climate change (external forcing) and
natural variability of the climate system (internal forcing).
The relative role of each component cannot be distinguished
through observations as both internal and external forcing
may contribute equally to a warming trend, or alternatively,
the absence of long-term change may be the result of forcing
of opposite signs. Attribution studies are thus usually based
on expected responses to anthropogenic climate change, that
are commonly estimated using General Circulation Models
(GCMs). While regional climate models may provide additional
nuanced spatial information, output from regional models
is typically limited temporally and only available from a
few models. Spatial details resolved by the combination of
different regional/global models are also associated with large
uncertainties as regional models are notoriously known to inherit
the biases from their driving GCM. Additionally, previous
observational studies based on homogenized in situ time series
revealed a spatially uniform warming across France (Gibelin
et al., 2014), supporting the use of GCMs to examine the signal
of change (anomalies with respect to a baseline period). We thus
focused on using outputs from 17GCMs participating in the Fifth
Phase of the Coupled Model Intercomparison Project (CMIP5,
Table S1) given our objectives in examining long-term transient
simulations from pre-industrial through present. Our approach
is fairly conservative as it may avoid some of the uncertainties
in the spatial manifestation of anthropogenic climate change.
We additionally considered the anthropogenic climate signal
separately from each of the 17 GCMs to assess intermodel
uncertainty in the anthropogenic forcing signal (Fargeon et al.,
2020). All model output was regridded to a common 2.5◦ grid
and only land cells were retained as relative humidity is expected
to show contrasting responses between ocean and land (Byrne
and O’Gorman, 2016).

Modeled changes in maximum temperature, precipitation,
and minimum relative humidity at monthly timescales were

deduced from each model relative to the model average
during the quasi pre-industrial 1861–1910 baseline. Wind speed
remained unchanged as no systematic trend was detected in
CMIP5 experiments (Abatzoglou et al., 2019). We further
isolated the 50-year low-pass filtered anomalies relative to a
quasi pre-industrial 1861–1910 baseline (Figure 1), with the
50-year low-pass filter designed to minimize the influence
of internal multidecadal variability (Abatzoglou and Williams,

FIGURE 1 | (A) Example of the anthropogenic trend in maximum temperature

(expressed as anomalies with respect to the 1861–1910 baseline) simulated

by 17 GCMs (gray lines) in a given GCM grid cell at 42.5◦N-2.5◦E (see insert in

B) for the month of July. The anthropogenic trend is defined as the 50-year low

pass filter of maximum temperature anomalies. The thick black curve shows

the 50-year low pass filtered mean of the 17 GCMs. Observed anomalies in

SAFRAN (1958–2017) in the corresponding grid cells are shown in red.

Observed anomalies were computed with respect to counterfactual

observations based on the multimodel mean (black curve). (B) Same as (A)

but for precipitation (expressed as percent of anomalies with respect to the

1861–1910 baseline). (C) Same as (A) but for minimum relative humidity.
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2016; Williams et al., 2019). Figure 1 illustrates traces of 50-
year low-pass filtered signals of climate change for maximum
temperature, precipitation, and minimum relative humidity for
the month of July for a given GCM grid cell. In agreement
with previous findings (Terray and Boé, 2013), most models
simulate a strong summer warming alongside a decrease in
precipitation and minimum relative humidity. Anomalies were
treated as additive for maximum temperature and minimum
relative humidity, and multiplicative for precipitation following
previous studies (Abatzoglou andWilliams, 2016; Williams et al.,
2019). These anomalies were used to derive counterfactual
observations, that is the climate we would have observed in
the absence of anthropogenic climate change. Counterfactual
daily maximum temperature TMAXcf and daily minimum
relative humidity RMINcf were calculated as the observed daily
temperature TMAXobs and RMINobs (in SAFRAN) minus the
anthropogenic trend for a given month. Counterfactual daily
precipitation PRCPcf was calculated as PRCPcf = PRCPobs(1 −

(PRCPanomaly/100)) where PRCPobs represents daily precipitation
observed (in SAFRAN) and PRCPanomaly corresponds to the
anthropogenic trend in monthly precipitation expressed as
percent of anomalies in a given month. In addition to examining
the signal separately for each GCM, we calculated an additional
estimate of the anthropogenic trend by averaging the 50-year
low-pass filtered time series across the 17 models. For each grid
cell and each month, we thus consider a total of 18 (17 GCMs
+ the multimodel mean) estimates of anthropogenic trend in
climate variables. The spread among the models was estimated
though the inter-quartile range (75% CI) as larger ranges (i.e.,
95%) may encapsulate models that are outliers.

FWI and KBDI were calculated using daily observed data
(FWIobs,KBDIobs) and the 18 daily counterfactual observations
that exclude the anthropogenic climate signal (FWIcf , KBDIcf )
reflecting what we would have observed in the absence of global
warming. Linear trends in both observations and counterfactual
observations were computed and the contribution of the
anthropogenic forcing over the whole period was estimated as
100 × ((bobs − bcf )/bobs) where b denotes the slope of the
linear trend.

2.3. FWI and KBDI Attributes
We examined different attributes of FWI and KBDI that have
been shown to relate to fire activity. First, we examined FWI
and KBDI averaged over the primary fire season from May
to September (hereafter FWImean and KBDImean) as warm
season conditions correlate positively with total burned area
(Abatzoglou et al., 2018). Second, we examined the annual
occurrence of days with high FWI and KBDI as large fires
generally occur during periods of high fire danger (Barbero
et al., 2018; Lahaye et al., 2018) with possible fire outbreaks
below critical fuel moisture content levels (Pimont et al., 2019b).
While percentile-based threshold indices (e.g., 95th percentile)
typically measure the frequency of exceedance with respect to
local conditions, they may not be well-suited to tracking elevated
fire weather conditions in regions where the baseline climate is
unfavorable to fire (typically outside the Mediterranean region).
We thus examined the annual occurrence of days with FWI >20

(hereafter NFWI>20 with N denoting the number of days with
FWI >20) and KBDI >35 (hereafter NKBDI>35), as a measure
of critical fire danger levels. This is in agreement with previous
FWI thresholds used in the Euro-Mediterranean basin ranging
from FWI >15 (Moriondo et al., 2006; ) to FWI >30 (Fargeon
et al., 2020) and with thresholds used in Canada to define
weather conditions on days when fires grew significantly (Podur
and Wotton, 2011). This also corresponds to the lower limit of
conditions under which large fires develop in the French Alps
(Dupire et al., 2017) and in the French Mediterranean (Barbero
et al., 2018). All these analyses were conducted at the 8-km grid
cell level and were then aggregated across environmental regions.

Varied fire-climate relationships exist across France (Barbero
et al., 2018) ranging from typical Mediterranean fire-prone
conditions in the South to more moisture-limited conditions in
the North. Here, we focused mainly on the Mediterranean region
(see Figure 3) where the vast majority of fires and burned area
occur. Note that while a recent massive fire suppression policy
has contributed to a general decline in burned area across this
region, suppression has been mostly effective for smaller fires
(Evin et al., 2018) occurring under lower fire weather conditions.
The Mediterranean region was delimited using a European
environmental stratification based on climate, topography, and
geographical position (Metzger et al., 2005).

2.4. Estimating Annual Exceedance
Probability
While attribution studies generally focus on extreme values such
as annual maxima, such metrics are generally poorly related
to fire activity and have been shown to emerge more slowly
from natural variability (Abatzoglou et al., 2019). Here, we
sought to maximize the signal-to-noise ratio and capture both
the spatial and temporal extents of the risk that are relevant
to fire suppression strategies. Hence, FWImean and KBDImean

(FWI and KBDI averaged over the May-September fire season)
as well as NFWI>20 and NKBDI>35 were averaged across the
Mediterranean region (see section 2.3), where the vast majority
of burned area occurs. The resultant time series were then
fitted to an appropriate statistical distribution to strengthen the
quantile estimate. FWImean and KBDImean were fitted to a normal
distribution with the probability density function:

p(x) =
1

σ
√
2π

e−(x−µ)2
/

2σ 2
(1)

with mean µ and variance σ2 while NFWI>20 and NKBDI>35 were
fitted to a Weibull distribution. The Weibull distribution has
been commonly used for wind data (Curry et al., 2012), and
belongs to the exponential family. We used this distribution
instead of the Generalized Pareto Distribution (GPD), which
is frequently used in extreme-event attribution studies, as 20
and 35 cannot be considered as extreme values for FWI and
KDBI, respectively. Moreover, the use of a spatial average is a
priori inconsistent with GPD. We thus opted for the Weibull
distribution which may also be fitted to less extreme data. The
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Weibull probability density function is:

p(x) =
k

A

( x

A

)k−1
exp

[

−

( x

A

)k
]

(2)

where x ≥ 0 is the variable of interest (spatially averagedNFWI>20

or NKBDI>35), A > 0 is the scale parameter closely related to
the mean of the distribution and k > 0 is a dimensionless
shape parameter. We used the method of maximum likelihood
to estimate all the model parameters (Katz et al., 2002). The
goodness-of-fit was assessed using the quantile-quantile plot for
FWImean and KBDImean and the Weibull probability plot for
NFWI>20 or NKBDI>35. Figure S1 indicates that FWImean and
KBDImean likely come from a normal distribution while NFWI>20

and NKBDI>35 likely come from a Weibull distribution.
Using the inverse cumulative distribution function, we then

estimated the annual exceedance probability (AEP), which refers
to the probability of exceeding a given return level in any year.
For instance, a 1 in 100 year event has an AEP = 1%. The AEP
was preferred over the return period concept, as return periods
have been shown to obscure the intended probabilistic meaning
and are often misinterpreted by users (Grounds et al., 2018).

AEP were estimated under (i) counterfactual conditions
free of anthropogenic trends under the stationarity assumption
(assuming that AEP do not change over time), (ii) observed
conditions under the stationarity assumption and (iii) observed
conditions under the non-stationarity assumption with either
time or global mean surface temperature (GMST) as a covariate
of either the mean parameter µ for the normal distribution or
the scale parameter A for the Weibull distribution. In the former
cases (i) and (ii), the parameters of the fitted distribution are
constant and the AEP do not change with time. In the latter case
(iii), the µ parameter of the normal distribution and the scale
parameter A of the Weibull distribution change with time while
keeping the other parameters constant:

µ(t) = β0 + β1y(t) (3)

A(t) = β0 + β1y(t) (4)

with y(t) denoting a time-varying covariate and β0,β1

representing unknown parameters to be estimated. Here,
y(t) is either time or the GMST in year t acquired from the
National Aeronautics and Space Administration (NASA)
Goddard Institute for Space Science (GISS) surface temperature
analysis (Hansen et al., 2010) (see Figure S2). A 1,000-member
non-parametric bootstrap procedure was used to estimate 95%
confidence intervals for the fit and estimated AEP.

2.5. The 2003 Fire Weather Season
The 2003 summer was the warmest summer in Europe over
the last 500 years (Luterbacher et al., 2004). A blocking pattern
persisted over western Europe, partly due to the high soil
moisture deficits during previous month that have enhanced the
ratio of sensible to latent heat (Vautard et al., 2007). Together,
anomalously dry soils and the blocking pattern resulted in
large temperature anomalies across much of Europe, especially
in France (Trigo et al., 2005). Attribution studies have shown

that anthropogenic emissions largely contributed to this record-
breaking summer (Schär et al., 2004), making the mean summer
temperature across Europe twice as likely as it would have been
in the absence of anthropogenic forcing (Stott et al., 2004) and
increasingly likely in the future (Christidis et al., 2015). The
2003 heat wave was conducive to a fire outbreak across the
continent, including near record-breaking burned area and large
fire occurrences in France (Lahaye et al., 2018; Ganteaume and
Barbero, 2019).

We sought to determine to what extent the odds of extreme
fire weather conditions observed during the 2003 fire season
have changed as a result of anthropogenic climate change. For
that purpose, the levels of FWI and KBDI observed in 2003
provide benchmarks for estimating annual probabilities under
actual and counterfactual climates separately, in turn allowing
us to quantify how the anthropogenic forcing has changed
the likelihood of such an event. For each FWI and KBDI
attribute, we computed the risk ratio of the AEP corresponding
to a 2003-like year observed under today’s climate (2017
fit) to the AEP corresponding to a 2003-like year in each
counterfactual observations.

Note that risk ratios reported here depend on the selected
metric, the choice of exceedance threshold of critical fire weather
conditions, time period and spatial scale on which the FWI
and KBDI are aggregated. Given that increasing the spatial scale
generally reduces interannual variability which in turn increases
the risk ratio (Angélil et al., 2018; Leach et al., 2020; Yiou
et al., 2020), the risk ratios reported here in the Mediterranean
region are likely lower (larger) than those expected on broader
(smaller) regions.

3. RESULTS

FWImean (Figure 2A) and KBDImean (Figure 2C) during 2008-
2017 both show a strong latitudinal gradient, with higher
fire danger level in the French Mediterranean. Note that
KBDImean exhibits slight differences with FWImean in the
Mediterranean as the rate of moisture loss in the KBDI
increases with increasing annual rainfall. Likewise, the annual
frequency of critical days (e.g., NFWI>20) is the highest in the
Mediterranean (Figures 2E,G) and to a lesser extent in the west.
The difference between observed and counterfactual FWI (as
estimated here by the multimodel mean) suggests that both mean
conditions (Figures 2B,D) and critical fire weather conditions
(Figures 2F,H) were exacerbated in recent years in response to
anthropogenic climate change across the Mediterranean, and to
a lesser extent across the Southwest.

We then restricted our attention to the Mediterranean given
the strong signal of change across the region. Figure 3 indicates
that all metrics have seen a continued increase throughout the
period and lie above counterfactual data as from 2000s. The
anthropogenic forcing was found to contribute to about half
of the linear trend in FWI metrics (47% for FWImean and
50% for NFWI>20) and even more for KBDI metrics with a
contribution of 72% in NKBDI>35 probably due to the dominant
role of maximum temperature in the KBDI. In both FWI and
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FIGURE 2 | (A) Mean observed FWI from May-September during the last 10 years of the observational record (2008–2017). Note the non-linear color scale. (B)

Difference between observations and counterfactual observations as deduced from the multimodel mean during the last 10 years of the observational record

(2008–2017). (C) Same as (A) but for mean observed KBDI. (D) Same as (B) but for KBDI. (E) Average number of annual occurrence of daily FWI>20 during the last

10 years of the observational record (2008–2017). (F) Same as (B) but for the annual occurrence of daily FWI>20. (G) Same as (C) but for the annual occurrence of

daily KBDI>35. (H) Same as (F) but for KBDI>35.

KBDI, the anthropogenic contribution seems to be stronger
when considering the frequency of critical daily fire danger
conditions. These changes are mostly due to a warming trend
and a decrease in minimum relative humidity in more recent
decades (not shown). Note that the warming rate found here is
in agreement with previous studies based on homogenized in
situ stations (Gibelin et al., 2014) presenting a warming rate of
0.42◦C/decade during the summer period and with other large-
scale observational products such as CRUTEM4 (Jones et al.,
2012). By contrast, precipitation has seen a nominal decrease due
to anthropogenic climate change and the signal remains largely
dominated by interannual variability (not shown).

Return levels in FWImean in counterfactual observation as
deduced from the multimodel mean (gray) are much lower
than those under observations (orange) (Figure 4A). The 2003
summer has an AEP <0.2% (>500-year return period) in
counterfactual observations and an AEP ∼ 0.6% (∼ 167-year
return period) in observations under the stationarity assumption
(orange). Using a non-stationary distribution in actual 2017
climate (red), the AEP increases due to the underlying trend in
FWImean and a 2003-like summer has now an AEP∼ 3.5% (∼29-
year return period). When considering NFWI>20 (Figure 4C),

the AEP of a 2003-like summer is <0.2% in counterfactual
observations (gray) and actual today’s climate (red) suggests that
the AEP has increased to ∼ 10%, (∼ 10-year return period).
Similar results were obtained with KBDI (Figures 4B,D) with
however slight differences in the AEP. Likewise, similar results
were found when repeating the analysis with the GMST as a
covariate in a non-stationary context (Figure S3). Overall, these
results suggest that the AEP of high fire danger conditions
has increased over time. The stationarity assumption would
be a very conservative estimate of the current risk (based on
retrospective data).

Finally, we reported on changes in the probability of
occurrence of a 2003-like year between counterfactual
observations and observations with the non-stationary fit to 2017
(Figure 5). The different values summarized in boxplots were
obtained using individual GCMs to estimate the counterfactual
observations that allows for a more complete assessment of
model uncertainty (see Figure S4), instead of the multimodel
mean as done previously. We find that the risk ratio of fire
weather metrics increased dramatically through the inclusion of
anthropogenic forcing. Anthropogenic climate change has made
a 2003-like year about 25 (15–200, 75% CI) times more likely
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FIGURE 3 | (A) Mean FWI from May to September averaged across the Mediterranean region (see map) using observations (color) and counterfactual observations

(black) as deduced from the multimodel mean. The shaded gray area shows the 75% range of counterfactual observations as deduced from different GCMs. Linear

trends are also shown as well as the fractional contribution of anthropogenic climate change (ACC) calculated as 100× ((bobs − bcf )/bobs) where b denotes the slope

of the linear trend. The mean fractional contribution across models as well as the interquartile range are indicated. (B) Same as (A) but for KBDI. (C) Same as (A) but

for NFWI>20. (D) Same as (A) but for NKBDI>35.

in 2017 when considering NFWI>20 and 9 (6–23, 75% CI) times
more likely when considering NKBDI>35.

4. CONCLUSION AND DISCUSSION

Previous observational studies have reported on increase in fire
weather conditions globally (Jolly et al., 2015) and regionally
across portions of Europe (Turco et al., 2019). Here, we
disentangled the anthropogenic forcing from natural variability
and showed that anthropogenic climate change has increased
mean fire weather conditions across France alongside the
frequency of critical days as viewed through the lens of
two different fire weather indices, elevating the probability
of occurrence of a 2003-like fire weather season by orders of
magnitude under today’s climate. Based on the likelihood scale
of the risk ratio provided in Lewis et al. (2019), we conclude
that conditions observed in 2003 have become very much
more likely due to climate change. Although comparison with
previous studies examining the impact of anthropogenic climate
change on heat waves is confounded by methodological and
data differences, or the way an event is defined in space and
time, our results are in line with Christidis et al. (2015) who
showed that the 2003 heat wave has become increasingly more

probable with global warming. Further studies are needed to
compare relative changes in fire weather metrics with respect
to heat extremes. The exceptional character of extreme events
such as 2003 is hypothesized to be amplified when examined
through the lens of fire weather indices rather than heat alone,
particularly in regions experiencing decreased precipitation
during the fire season.

About half of the long-term increases in fire weather
conditions over the last 60 years was accounted for by
anthropogenic climate change, with larger contribution in the
frequency of critical days. Yet, this leaves a considerable part
of the variability which is not explained by anthropogenic
climate change. It should be kept in mind that this number
was estimated through a simple linear regression spanning
a period prior to 1980s with lower anthropogenic emissions.
The anthropogenic contribution is thus likely to increase when
restricting the analysis to more recent years. Using piecewise
linear fitting, polynomial or other non-linear fitting may also
describe more accurately historical changes. A potential source
of underestimation of the anthropogenic forcing may also arise
from a late and/or weak simulated warming over France in some
GCMs with respect to observations due to the combination of
natural variability and anthropogenic aeorosols cooling effect

Frontiers in Earth Science | www.frontiersin.org 7 April 2020 | Volume 8 | Article 10438

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Barbero et al. Fire Weather and Climate Change in France

FIGURE 4 | (A) Return levels in the mean FWI from May to September averaged across the Mediterranean region for different annual exceedance probabilities (AEP)

ranging from 50% (2-year return period) to 0.2% (500-year return period) estimated with a normal distribution using counterfactual observations as deduced from the

multimodel mean (gray), observations under the stationarity assumption (orange), and observations under the non-stationarity assumption with the fitted trend to 2017

(red). The 95% confidence intervals were estimated using a bootstrapping approach. The black horizontal line denotes the level observed in 2003 and the vertical lines

indicate the AEP in different fits (best estimate). (B) Same as (A) but for KBDI. (C) Same as (A) but for the annual number of occurrence of daily FWI>20 averaged

across the Mediterranean region. In this case, the AEP has been estimated with a Weibull distribution. (D) Same as (C) but for the annual number of occurrence of

daily KBDI>35.

FIGURE 5 | Annual exceedance probability risk ratio of a 2003-like year

across the Mediterranean region between observations with the fitted trend to

2017 and counterfactual observations for different FWI and KBDI attributes.

The boxplots indicate the range of changes obtained from different

counterfactual observations as deduced from different GCMs. This is slightly

different from Figure 4 where counterfactual observations were deduced from

the multimodel mean of the 17 GCMs. Boxes indicate the inter-quartile range,

vertical thick lines indicate the median and circles indicate the mean.

in 1950–1970s seen in a number of GCMs (Wilcox et al.,
2013). Aerosols have been shown to strongly modulate multi-
decadal trends in CMIP5 simulations and are often considered
as one of the main sources of inter-models uncertainty on
such timescales (Rotstayn et al., 2015). Uncertainty may also
arise from the climate reanalysis. Gridded reanalyses such as

SAFRAN provide a uniform spatial coverage but long-term
trends in climate variables may differ from in situ time series

(Vidal et al., 2010). Although the warming rate found here is

in agreement with that reported in Gibelin et al. (2014) based
on direct temperature measurements, other variables such as

precipitation may exhibit different signals from in situ data.
Further studies in other Euro-Mediterranean countries utilizing

different observational products may help validate our results
across broader scales.

An inherent limitation of the methodology here is the use

of climate simulations that do not explicitly distinguish changes

in the climate system driven by anthropogenic emissions from
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purely natural variability. The low-pass filter signal from GCMs
ideally removes interannual-to-decadal natural variability to
better isolate the anthropogenic signal, but natural variability
may still persist for individual ensemble members. Additionally,
inflating the amount of precipitation during wet days in regions
where climate models simulate precipitation decreases may
provide a reasonable estimate of monthly precipitation without
anthropogenic emissions, but this approach fails to account for
the effect of climate change on the frequency of wet days. This
is of particular importance as both KBDI and FWI exclude
precipitation amount below a given threshold. New climate
models, such as those submitted to the Climate of the twentieth
Century Plus Detection and Attribution project (C20C + D&A)
(Stone et al., 2019) now simulate the present-day climate with
and without anthropogenic emissions. Such simulations may
provide a more realistic estimate of the effect of anthropogenic
climate change on fire weather, albeit with a limited number of
climate simulations.

Additional global warming is projected to foster fire weather
conditions across the region into the twenty-first century
(Fargeon et al., 2020). Further compound analyses that consider
the covariance structure of KBDI and FWI may resolve future
changes to fuel moisture contents and fire weather. The co-
occurrence of such extremes is likely to continue in the future
and may have implications for fire activity as the climate-fire
relationship involves non-linear mechanisms (Williams et al.,
2019), possibly in response to the moisture-fire relationship
(Pimont et al., 2019a), such that subtle increases in fire weather
conditions may translate into disproportionate increase in fire
activity. These findings have implications for fire management
strategies that may necessitate adaptation measures to reduce
societal risk.

Further studies are required to better understand the
impact of anthropogenic climate change not only on fire
weather conditions but also on fire activity. The influence
of the weather and climate forcing on fire activity is now
well-understood and to some extent, well-reproduced by
probabilistic models (Barbero et al., 2018). Feeding such
models with both observations and counterfactual observations

may provide insights on the contribution of anthropogenic
emissions in fire activity during extreme seasons such as 2003
and would help bridge the gap between attribution studies
and climate-fire modeling studies. Finally, further analysis is
also required to disentangle the relative contribution of the
climate forcing and human activities such as suppression
policies that have been shown to obscure the functional
climate-fire relationship (Ruffault and Mouillot, 2015; Curt
and Fréjaville, 2018). Regardless, fire weather conditions have
become increasingly unfavorable to fire suppression and future
conditions are likely to overwhelm current fire management
capacity.
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Africa is largely influenced by fires, which play an important ecological role influencing
the distribution and structure of grassland, savanna and forest biomes. Here vegetation
strongly interacts with climate and other environmental factors, such as herbivory
and humans. Fire-enabled Dynamic Global Vegetation Models (DGVMs) display high
uncertainty in predicting the distribution of current tropical biomes and the associated
transitions, mainly due to the way they represent the main ecological processes and
feedbacks related to water and fire. The aim of this study is to evaluate the outcomes
of two state-of-the–art DGVMs, LPJ-GUESS and JSBACH, also currently used in two
Earth System Models (ESMs), in order to assess which key ecological processes need
to be included or improved to represent realistic interactions between vegetation cover,
precipitation and fires in sub-Saharan Africa. To this end, we compare models and
remote-sensing data, analyzing the relationships between tree and grass cover, mean
annual rainfall, average rainfall seasonality and average fire intervals, using generalized
linear models, and we compare the patterns of grasslands, savannas, and forests in
sub-Saharan Africa. Our analysis suggests that LPJ-GUESS (with a simple fire-model
and complex vegetation description) performs well in regions of low precipitation, while
in humid and mesic areas the representation of the fire process should probably be
improved to obtain more open savannas. JSBACH (with a complex fire-model and a
simple vegetation description) can simulate a vegetation-fire feedback that can maintain
open savannas at intermediate and high precipitation, although this feedback seems
to have stronger effects than observed, while at low precipitation JSBACH needs
improvements in the representation of tree-grass competition and drought effects. This
comparative process-based analysis permits to highlight the main factors that determine
the tropical vegetation distribution in models and observations in sub-Saharan Africa,
suggesting possible improvements in DGVMs and, consequently, in ESM simulations
for future projections. Given the need to use carbon storage in vegetation as a
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climate mitigation measure, these models represent a valuable tool to improve our
understanding of the sustainability of vegetation carbon pools as a carbon sink and
the vulnerability to disturbances such as fire.

Keywords: dynamic global vegetation models, sub-Saharan Africa, tree and grass cover, fire, precipitation,
tropical forest, savanna, tropical grassy biomes

INTRODUCTION

Understanding the ecological processes and feedbacks between
biotic and abiotic factors that determine vegetation distributions
and structure is essential for estimating vegetation responses to
climate and environmental changes. Dynamic global vegetation
models (DGVMs) aim at simulating the dynamical responses
of vegetation to past, present, and future climate through the
representation of several natural processes within terrestrial
ecosystems (including vegetation geography, physiology,
biochemistry, biophysics, dynamics) as well as the human
influence on land use (Prentice et al., 2007; Hurtt et al., 2011;
Bonan and Doney, 2018). Given the importance of vegetation
feedbacks for the dynamics of the climate system (Bonan, 2008;
Swann et al., 2018), DGVMs are more and more included in
state-of-the-art Earth System Models (ESMs), used for historical
simulations and climate projections, to represent the active
role of the biosphere in the Earth system (Bonan, 2008; Bonan
and Doney, 2018). Several DGVMs include a representation of
fire processes (Rabin et al., 2017), which are crucial in shaping
regional vegetation cover, but also have a strong influence on
carbon cycle and climate (Bowman et al., 2009). The level of
understanding and, consequently, implementation of wildfires
in Earth-system models is still limited with respect to the
many aspects in which fires influence the Earth system, for
instance the effects of aerosols, peatland fires, or vegetation traits
(Lasslop et al., 2019). Since anthropogenic land-use change is
an important forcing for the observed climate change (IPCC,
2013), especially for CO2 emissions, many DGVMs implement
not only natural ecosystems but also land-use change due to
human activity, such as pastoralism and agriculture. These
models are therefore a major tool to understand the relative
contributions of different drivers such as climate, vegetation,
and humans on fire occurrence and to quantify the effects of
fire on vegetation and on the carbon cycle. Results of such
models are useful to inform the general public but also policy
makers. However, many DGVMs display high uncertainties
in predicting the distribution of current tropical vegetation
biomes, and especially of grasslands and savannas, possibly due
to the way they represent the natural ecological mechanisms and
feedbacks between vegetation, climate and fire (Baudena et al.,
2015; Lasslop et al., 2018).

Climate-vegetation-fire relationships and vegetation
structure differ between continents (Lehmann et al.,
2014; Lasslop et al., 2018). We here focus on Africa
(following Baudena et al., 2015; D’Onofrio et al., 2018),
where most of the global annual burned area is observed
(about 68%, Roy et al., 2008) and most of the tropical

rainforest and many areas of savannas could be at risk of biome
changes (Staver et al., 2011b).

In Africa, tropical grasslands and savannas, so-called tropical
grassy biomes (TGBs), cover about one third of the land surface
(Parr et al., 2014). They are characterized by a continuous layer
of C4 grasses with possibly an overstory of shade-intolerant,
fire-tolerant trees with varying density (Ratnam et al., 2011;
Parr et al., 2014). At the wetter end of the TGB distribution
range savannas transition into tropical forests (TFs), which cover
about 11% of Africa (Parr et al., 2014) and are the world’s
second largest tropical forest after the Amazon (Malhi et al.,
2013). Tropical forests are characterized by a closed canopy with
shade-tolerant, fire-intolerant species (Ratnam et al., 2011). The
current ecological understanding identifies mean annual rainfall
(MAR) as the main factor determining the distributions of TGBs
and TFs and the transitions between them, followed by rainfall
seasonality: MAR drives vegetation processes directly, by limiting
the vegetation cover, and indirectly, by modulating the role of
other factors (Hirota et al., 2011; Lehmann et al., 2011; Staver
et al., 2011b; Case and Staver, 2018; D’Onofrio et al., 2018). Fire
has an important ecological role influencing tropical vegetation
(Bond et al., 2005; Higgins et al., 2007; Staver et al., 2011b). It is
especially relevant for mesic savannas, where C4 grasses promote
fires and maintain open canopies (Sankaran et al., 2005). In
areas with similar climatic conditions fire has been suggested to
maintain savannas and forests as alternative stable states through
a positive vegetation-fire feedback (Hirota et al., 2011; Staver
et al., 2011b; Staver and Levin, 2012). Furthermore, fire has
important effects not only on vegetation dynamics but also on
atmospheric composition, and Africa, along with South America,
provides the largest fire emissions (Ward et al., 2012; Voulgarakis
and Field, 2015; Veira et al., 2016). Since savannas are subject
to frequent fires, which are rare in forests, these two biomes
contribute differently to the emissions of carbon and aerosols
from the burning of biomass (Grace et al., 2006). TFs are well
known for their extremely high net primary productivity (NPP)
and carbon stock (worldwide, about a half of the world’s carbon
stored in terrestrial vegetation, e.g., Hubau et al., 2020). Although
less data are available for TGBs, globally they have especially large
carbon storage in their soils (up to a third of the world carbon in
soil; Grace et al., 2006).

Vegetation influences the climate through biogeophysical
fluxes (e.g., of water and energy) and biogeochemical fluxes
(e.g., of CO2) (Bonan, 2008; Brovkin et al., 2009; Bonan and
Doney, 2018). Changes in the ecosystem structure (e.g., due
to deforestation in tropical forests or woody encroachment in
savannas) or shifts between these biome states can alter the
exchanges between the ecosystems and the atmosphere and thus
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may impact the climate. The direction of these changes is unclear,
and predictions require accurate mechanistic modeling.

Furthermore, ongoing and expected increasing temperature
and CO2 levels, altered precipitation regimes, land-use change
(IPCC, 2013) and the observed decline in fire activity (Andela
et al., 2017) could have large impacts on vegetation ecosystems.
A complex set of interactions between these drivers could induce
changes in vegetation structure and function (Midgley and Bond,
2015), possibly leading to biome shifts (Gonzalez et al., 2010;
Hirota et al., 2011; Staver et al., 2011b). Shifts in vegetation
connected to changes in climate, CO2 or fires were observed over
the past 28,000 years in West Africa (Shanahan et al., 2016).
Over the past decades, woody encroachment was observed in
African savannas: one of the possible drivers is the increase of
atmospheric CO2, which can enhance C3 tree growth rate (and
regrowth after fire), decreasing the advantage of C4 grasses over
trees (Bond, 2008; Buitenwerf et al., 2012; Mitchard and Flintrop,
2013). At the same time deforestation of African forests was
observed in the 20th century (Aleman et al., 2018), and it is
continuing in the new century, although at a lower rate than in
other continents (Malhi et al., 2013 and references therein).

The inclusion in DGVMs of appropriate parameterizations
of natural ecological processes is essential for obtaining reliable
simulations and reducing the uncertainty of current and future
projections of vegetation and climate states (Baudena et al.,
2015; Bonan and Doney, 2018). In this study we analyze
and evaluate two state-of-the-art DGVMs: LPJ-GUESS (Smith
et al., 2001; Thonicke et al., 2001) and JSBACH (Lasslop
et al., 2014). These two models, currently implemented in the
EC-Earth ESM (Hazeleger et al., 2010, 2012) and the MPI
ESM (Mauritsen et al., 2019), respectively, are characterized by
different spatial resolutions (0.5◦ for LPJ-GUESS and 1.875◦ for
JSBACH in this study) and complexity of the representation
of vegetation and fire processes. LPJ-GUESS is a “second
generation” DGVM (Fisher et al., 2010) with representation
of vegetation demographics, coupled with the simple empirical
First Global Fire Model (Glob-FIRM; Thonicke et al., 2001),
which is commonly used in Earth system models (Kloster
and Lasslop, 2017). The JSBACH version used here includes a
simple representation of vegetation with grid-cell, areal-mean
plant functional types, coupled with the complex process-based,
rate-of-spread model SPITFIRE (Thonicke et al., 2010; Lasslop
et al., 2014). In contrast to the simple fire model of LPJ-GUESS,
this model includes for instance a representation of human
influences and differentiation of different fuel types. In this study,
LPJ-GUESS simulates only potential natural vegetation, while
JSBACH includes vegetation changes due to human land use and
land cover change.

The aims of this study are threefold: (1) to evaluate the
relationships and interactions between climate, vegetation and
fire from LPJ-GUESS and JSBACH in Sub-Saharan Africa, at
different spatial resolutions; (2) to assess for which changes
of environmental conditions the modeled results are reliable
and (3) to assess which key ecological mechanisms need to
be improved or included within these models, at different
levels of complexity. To this end, we compare the relationships
of tree and grass cover with MAR, rainfall seasonality and

fire and the patterns of TGB and TF from models against
remote-sensing data, building up on the DGVM evaluation
used in the studies of Baudena et al. (2015) and Lasslop
et al. (2018) and using the current knowledge of the main
factors and mechanisms determining the sub-Saharan African
vegetation distribution (Lehmann et al., 2011; Staver et al.,
2011a,b; D’Onofrio et al., 2018). Hereby we extend the existing
approaches by complementing the visual comparison of the
relationships with quantifications based on generalized linear
models (GLMs), and we deepen the analysis of Lasslop et al.
(2018), which analyzed the performance of JSBACH in all the
tropical areas, by including an evaluation of the model ability
to reproduce TGB and TF distributions and characteristics
following the observational analysis of D’Onofrio et al. (2018).

MATERIALS AND METHODS

We evaluate the model vegetation-climate-fire interactions in
sub-Saharan Africa (between 35◦ S and 15◦ N, comprising a
little area of Arabian peninsula) by analyzing and comparing
the relationships of percentages of tree (T) and grass cover
(G) with mean annual rainfall (MAR [mm year−1]), average
rainfall seasonality index (SI) (Walsh and Lawler, 1981) and
average fire intervals (AFI [year]). The analysis is performed for
both model data and observations. Additionally we investigate
the ability of models to simulate tropical grassy biomes (TGB)
and tropical forest biomes (TF) by comparing their modeled
and observed distributions and characteristics. The following
subsections report the model descriptions and simulation setup
(“DGVMs: Main Characteristics and Experimental Setup”), the
information about the observational datasets (“Observational
Datasets”), the descriptions of the variables, and the methods
applied to derive them for the comparison (“Variables for the
Comparison”) and the statistical analysis (“Statistical Analysis for
Model-Observation Comparison”).

DGVMs: Main Characteristics and
Experimental Setup
JSBACH
JSBACH [Jena Scheme for Biosphere–Atmosphere Coupling in
Hamburg (Raddatz et al., 2007)] includes the DYNVEG module
for natural vegetation dynamics (Brovkin et al., 2009; Reick et al.,
2013), a component for anthropogenic land use change (Reick
et al., 2013) based on the Harmonized Protocol by Hurtt et al.
(2011) and the SPITFIRE model for fire dynamics (Thonicke
et al., 2010) with modifications described in Lasslop et al.
(2016). Natural vegetation comprises eight plant functional types
(PTFs), five of which represent tropical vegetation: deciduous
and evergreen trees, C3 and C4 grasses, and raingreen shrub.
C3 grasses typically dominate the temperate regions, but there
can still be a mixture in tropical areas. The competition between
natural PFTs of the same group (i.e., woody or grass classes) is
based on NPP, whereas intergroup competition for uncolonized
habitable land is driven by disturbances (fire and windthrow). In
addition to natural PFTs JSBACH includes crops and pastures as
agricultural land cover PFTs, both with C3 and C4 photosynthetic
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pathways. The transitions between natural and anthropogenic
vegetation classes follow simple rules described in detail in Reick
et al. (2013). The interaction between fires and vegetation is
simulated by coupling the vegetation module with the complex
process-based fire model SPITFIRE. Using information about
vegetation composition, fuel amount of different fuel size classes
and characteristics (such as fuel bulk density and surface area
to volume ratio), and soil moisture from JSBACH, SPITFIRE
computes burnt area and plant mortality that reduce litter
carbon, vegetation biomass and cover fraction. Pasture PFTs
are handled as grassland by SPITFIRE but have a slightly
higher fuel bulk density with respect to natural grass, whereas
croplands are excluded from fire dynamics. Further details on the
implementation of the JSBACH-SPITFIRE coupling can be found
in Lasslop et al. (2014; 2016; 2018).

LPJ-GUESS
LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator;
Smith et al., 2001, to which we refer for a detailed description) is a
stand-alone 2nd generation DGVM that includes the Glob-FIRM
(Thonicke et al., 2001) module for fire dynamics. It simulates
vegetation distribution from plant specific environmental limits
and the competition for light, space, and soil resources. Global
natural plants are described by 12 PFTs, which include C4 grass,
a raingreen deciduous tree and two types of evergreen trees that
represent tropical vegetation. Only natural PFTs were considered
in this study. Vegetation dynamics are simulated within a
number of replicate patches representing cohorts of different
time-since-last-disturbance within each grid cell. These multiple
patches are simulated to account for variation in vegetation
dynamics due to stochastic processes such as establishment,
mortality and disturbance. In this study the model was run in
“cohort mode,” in which, for woody PFTs, individuals within
a cohort (age class) in the same patch are represented by a
single average individual. To estimate burned area and fire
effects on vegetation within LPJ-GUESS the fire-model Glob-
FIRM has been applied, which simulates fire occurrence based
on temperature, fuel load (litter), and moisture. In a fire both
live and litter biomass are consumed following a PFT-depending
mortality, where each PFT has a specific fire-resistance parameter
defining the minimum percentage of a cohort surviving a fire.

Experimental Setup and Model Outputs
JSBACH was run in offline mode, forced by climatological data
from a historical simulation of the MPI-ESM (version 1.1) over
the period 1850–2005, with a horizontal resolution of 1.875◦
× 1.875◦. The model was forced with climate model outputs,
because it is usually used in a coupled mode and therefore
vegetation parameters, for instance climatic limits, are not tuned
for observed meteorological forcing. The land-use transition data
were taken from Hurtt et al. (2011). The simulation used in this
study was the same as used in Lasslop et al. (2018) to which we
refer to for more detail.

LPJ-GUESS was run in the period 1901–2015, with a
horizontal resolution of 0.5◦ × 0.5◦. In this run 25 replicate
patches were simulated in each grid cell. Since our aim is
to evaluate the ability of models in simulating the main

ecological natural processes, which is crucial for studying,
e.g., the effects of climate-change mitigation solutions (e.g.,
Bastin et al., 2019), only natural (potential) vegetation was
simulated by LPJ-GUESS (i.e., no anthropogenic land use). The
CRU-NCEP5 dataset (Wei et al., 2014) was used as input of daily
meteorological data. The simulation (1901–2015) was performed
after 500 years of spin-up.

For the comparison with the observations, model variables
were obtained from the model outputs (variables T, G, and
AFI) and inputs (variables MAR and SI). These were computed
over the period 2000–2010 for LPJ-GUESS (as the observational
data, see below) and 1996–2005 for JSBACH. The simulations of
JSBACH adopted the CMIP5 protocol, where for instance land
use forcing ended in the year 2005, therefore the reference period
was a compromise between having the same reference period and
sufficient years to achieve robust mean values.

Observational Datasets
We compared the inputs/outputs of model simulations with
observational variables derived from remote sensing datasets
within the period 2000–2010. We use the rainfall product of the
tropical rainfall measuring mission (TRMM 3B42), with 0.25◦
original resolution, to derive MAR and SI. AFI was derived
from the monthly MCD45A1 (Collection 5.1) burnt area satellite
product, with original 500 m resolution, available from April 2000
(Roy et al., 2002, 2005, 2008). T and G were obtained from the
products “percent tree cover,” “percent non-tree vegetation” and
“percent non-vegetated” of MODIS vegetation continuous fields
(MOD44B VCF, version 051), with original 250 m resolution
(Townshend et al., 2011). Notice that for year 2000 we substituted
the original non-vegetated cover data with 100% – “non-tree
vegetation cover” – “tree cover” of the same year, following the
VCF layer definition, because of the presence of anomalous values
of the non-vegetated product in the African western part. To
identify tropical grassy and forest biomes we used the ESA global
land cover map (ESA CCI-LC, v 1.6.1; 5-year-averaged dataset
centered in 2010, with original 300 m resolution). These are the
same observational data described in D’Onofrio et al. (2018),
to which we refer to for more details. Observational data were
aggregated in space to the resolution of LPJ-GUESS (0.5◦) and of
JSBACH (1.875◦).

Variables for the Comparison
Rainfall Seasonality Index
The variable SI is the rainfall seasonality index proposed by
Walsh and Lawler (1981), which we obtained as the averages over

the years of the annual index defined as SIi = 1
Ri

12∑
n=1
|xn,i −

Ri
12 |

for year i, where xn,i is the rainfall of month n, and Ri is the
annual rainfall. This index can vary from 0, when annual rainfall
is uniformly distributed within the year, to 1.83, when annual
rainfall occurs in 1 month.

Average Fire Intervals
As fire variable we used the average fire intervals (AFI), which is
the expected return time of fire at any point in a grid cell (Johnson
and Van Wagner, 1985). This was obtained as the inverse of the
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average annual burnt area fraction (BA [year−1]) in each grid cell
(AFI = 1/BA). For the observational dataset, BA was computed as
in D’Onofrio et al. (2018) (using a method derived from Lehsten
et al., 2010). First, we converted the monthly maps to annual
maps setting to one all the 500 m pixels classified as burned one
or more times during the year, and to zero valid pixels that did
not experience any fire. Then, for each year we computed the
annual burned area fraction as the mean of the “burned” pixels
within each large-scale grid cell (0.5◦ and 1.875◦). Finally, we
averaged over the years. For both models AFI was obtained using
the annual burnt area outputs.

In the analysis we used the decadal logarithm of AFI,
log10(AFI), which corresponds to −log10(BA), because AFI
values covered different orders of magnitude. In order to avoid
infinite values when BA = 0, we added to modeled and observed
BA a small constant (i.e., AFI = −log10(BA+a), where a = 0.0001
year−1), such that maximum AFI is equal to 10000 years.

Vegetation Cover
For the observational datasets, we derived T and G averaging
in time and space the yearly percentage of tree and non-tree
vegetation cover MODIS products. Since MODIS does not detect
tree cover in the presence of trees smaller than 5 m (Bucini
and Hanan, 2007), assuming that these are mostly shrubs, we
used the ESA global land cover map (ESA CCI-LC, v 1.6.1;
5-year-averaged dataset centered in 2010) to remove grid cells
with equal or more than 50% of the area occupied by shrubland
(ESA CCI-LC codes 120, 122) (D’Onofrio et al., 2018). In this way
we assumed that the non-tree vegetation cover was representative
mostly of the grass cover.

Since LPJ-GUESS was set to simulate only natural vegetation,
and in order to mainly focalize on potential vegetation, we used
the same procedure to remove grid cells with more than 33%
of the areas affected by human activity, such as croplands and
urban areas, and/or also covered by inland and coastal water,
permanent snow or ice (ESA CCI-LC codes ≤40, 190, 210, 220)
to have reliable vegetation cover and fire values. Since our aim is
to evaluate the relationships between biotic and abiotic variables,
and not the spatial distributions of these variables, we did not
seek to have an exact correspondence between observational and
model data locations. However, in order to compare datasets with
approximately the same number of grid cells (and approximately
the same areas), we filtered out from the model datasets the same
grid cells excluded from the observation datasets based on the
ESA CCI-LC map. We also removed grid cells with MAR larger
than 2500 mm year−1 following D’Onofrio et al. (2018) from
the observational and model data, as in the observations at 0.5◦
resolution few grid cells (22 out of the selected 3156) had larger
precipitation values.

In order to have comparable vegetation cover between models
and observations we rescaled the observed tree cover (Tresc)
and consequently the observed grass cover (Gresc). In fact, in
the MODIS data the percentage of tree cover represents the
percentage of a grid cell covered by canopy, which refers to
the fraction of light obstructed by tree canopies equal to or
greater than 5 m in height, and reaches a maximum around 80%
(Hansen et al., 2003). In JSBACH percent tree cover represents

the crown cover which can reach 100%, while in LPJ-GUESS
it represents the annual maximum foliar projective cover that
can exceed 100% because of individual tree overlap. Thus, for
rescaling the observations, given that the MOD44B non-tree
vegetation layer (grass) is derived from tree and bare cover (B, the
percent non-vegetated product of MOD44B) as G = 100%-T-B,
we maintained the bare fraction and required that also the
rescaled tree and grass covers satisfy Tresc+B+Gresc = 100%, where
Tresc = αT is the tree cover rescaled by a factor α. Notice that in
this expression we require Tresc to be between 0 and 100%. We
can thus write that for all grid cells Tresc = αT ≤ 100%-B, from
which we can find α = min [(100%-B)/T], where the minimum is
computed over all the observational data analyzed. The rescaled
grass cover is then simply derived as Gresc = 100% – Tresc – B. In
the selected grid cells, α was equal to 1.2152 for the data at 1.875◦
resolution and to 1.1809 for the data at 0.5◦ resolution. In the
following, for the observations, T and G refer to Tresc and Gresc.

For the models, T and G were computed as the sum of
the mean cover of tree PFTs and grass PFTs, respectively. For
JSBACH we included shrub PFTs in the tree cover because,
since shrubs are woody vegetation, they are physiologically more
similar to trees than to grasses. In order to exclude croplands
as in the observations, for JSBACH we did not include the
cropland PFTs in the grass cover. Consequently, we rescaled
JSBACH average vegetation cover and average annual burnt area
dividing by the area not occupied by croplands, and we removed
grid cells where the area occupied by croplands was greater
than 1/3. Notice that, although pasture PFTs are anthropogenic
land cover types, we included them in the JSBACH grass cover
because they are part of real TGBs (Hempson et al., 2017).
In LPJ-GUESS, since total vegetation cover can exceed 100%,
for each year we rescaled the vegetation cover in each grid
cell when this occurred dividing it by the total vegetation (i.e.,
the sum of all PFT covers) in order to have values between
0 and 100%. With this rescaling we maintain the tree-grass
ratio in the grid cell, although there would be grass overlapped
by trees (when tree cover exceeds 100%). We argue that this
method is more appropriate than setting G = 0 when T ≥ 100%,
which, while appropriate for studies involving albedo, would lead
to a systematic underestimation of grass cover. However, this
approach can potentially lead to an overestimation of the grass
cover with respect to observations, since MODIS plausibly cannot
detect grass cover below the tree canopy.

The final observational datasets consisted in 3134 grid cells
at 0.5◦ resolution and 209 at 1.875◦ resolution. Hereafter these
two datasets are also called Obs. 0.5◦ and Obs. 1.875◦. The
final model datasets consisted in 3141 grid cells for LPJ-GUESS
and 208 grid cells for JSBACH. Hereafter we refer to input and
output data of the two DGVMs as the LPJ-GUESS dataset and
the JSBACH dataset.

Tropical Grassy Biome and Tropical Forest
For the observational datasets we identified grid cells with
major presence of TGBs and TFs using the ESA-CCI-LC map.
Following D’Onofrio et al., 2018, we classified a grid cell as
TGB when ≥50% of its area was covered by deciduous trees
and grassland classes (ESA CCI-LC codes 60–62, 130) and TF
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when covered by evergreen and flooded tree classes (ESA CCI-LC
codes 50, 160, 170).

For the model outputs, we classified a grid cell as TGB when
the sum of the covers of broadleaved raingreen tree PFTs and
of the C4 grass PTF in LPJ-GUESS, and of tropical broadleaved
deciduous tree PFT, C4 grass PFT and C4 pasture PFT in JSBACH
was ≥50% of the total vegetation in the grid cell. Grid cells
were identified as TF in both models when the total cover of
tropical broadleaved evergreen tree PFTs was ≥50% of the total
vegetation in the grid cell. This step was performed after the
rescaling of the data (see above). Notice that LPJ-GUESS has
two different PFTs for the tropical broadleaved evergreen trees
which differ in the shade tolerance trait and in longevity, which
we included in the TF definition because, although forest trees are
broadly characterized by shade tolerant trees, forest tree pioneer
species typically have a short life and are light demanding, thus
shade-intolerant (although not necessarily evergreen) (Ratnam
et al., 2011; Gignoux et al., 2016).

Statistical Analysis for
Model-Observation Comparison
We analyzed the dependences of T and G on MAR, SI and
log10(AFI) using Generalized Linear Models (GLMs) (McCullagh
and Nelder, 1989). In order to understand the importance of
each abiotic factor separately and to avoid combinations of
collinear variables, we computed only univariate GLMs with
terms up to the third order. We used a binomial error distribution
with a logit link function for fitting tree and grass cover
fractions (Dobson, 2002; Schwarz and Zimmermann, 2005).
GLMs were classified based on the Akaike information criterion
(AIC, Akaike, 1974), such that the best model had the lowest
AIC score. We selected only GLMs with AIC smaller than
the intercept-only model, while GLMs with AIC larger than
the intercept-only GLM were considered not significant. The
goodness-of-fit was evaluated with the fraction of deviance
explained, R2 (also named D2; Guisan and Zimmermann, 2000;
Schwarz and Zimmermann, 2005).

The prevalent mechanisms determining observed biome
occurrence and distribution change with MAR (Sankaran et al.,
2005; Lehmann et al., 2011) and in particular they vary
in three mean annual rainfall ranges (Accatino et al., 2010;
D’Onofrio et al., 2018). We thus performed the GLM analysis
also separately for three intervals of MAR, recalculated from
the observational datasets following the approach of D’Onofrio
et al., 2018: low (R1: MAR ≤ 590 mm year−1), intermediate
(R2: 590 mm year−1 < MAR < 1200 mm year−1) and high
(R3: MAR ≥ 1200 mm year−1) annual rainfall. The ranges
were identified from the changes of the relative tree-grass
dominance (represented by T-G) in its dependence on MAR
in the observational data (see Supplementary Figure S1A,C,
in Supplementary Material also for details on the threshold
selection). We found these thresholds to be quite similar for
the observational datasets at both resolutions and to be fairly
close to those of D’Onofrio et al. (2018). In order to evaluate
the DGVM performances with respect to the observations (that
we assumed to represent reality), we used the same intervals

for both observed and model data. In the analyses within
each of the three ranges, we computed univariate GLMs with
terms only at the first order. The GLM analysis performed
separately for the three MAR ranges was complemented with
the comparison of the variable distributions through box plots
and of the correlations between the abiotic variables (using
Pearson’s r coefficient).

In R1 there were 1247 grid cells for Obs. 0.5◦, 82 for Obs
1.875◦, 1186 for LPJ-GUESS and 58 for JSBACH; in R2 there were
953 grid cells for Obs. 0.5◦, 64 for Obs 1.875◦, 699 for LPJ-GUESS
and 52 for JSBACH; in R3 there were 934 grid cells, Obs. 0.5◦; 63
grid cells for Obs 1.875◦,1256 grid cells for LPJ-GUESS and 98
grid cells for JSBACH.

RESULTS

Overall Dependence of Vegetation Cover
Overall, the best predictor for observed T was MAR (as in
D’Onofrio et al., 2018), and this was captured by both JSBACH
and LPJ-GUESS (Figure 1 and Table 1). However, modeled T
grew over the entire MAR domain, although with a reduced
steepness at higher MAR (Figures 1B,D), where closed forest was
attained, while the fit for observed T reached a saturation at lower
rainfall values (around ca. 1700–2000 mm year−1, Figures 1A,C),
probably due to the larger spread of observed tree cover values
above these rainfall levels with respect to the models.

The best predictor for observed G was log10(AFI) (as in
D’Onofrio et al., 2018), at all resolutions, and overall G decreased
with fire intervals, i.e., it increased with fire frequency, and this
relationship had a predictive power (deviance explained) of 55%
(Figures 2A,C and Table 1). JSBACH data display the same
decrease, although steeper and with narrower spread with respect
to the observations (Figures 2C,D), and this GLM explained
90% of the deviance. In LPJ-GUESS data the best predictor
for G was MAR, whereas MAR was the least important factor
explaining G in the observations (Table S4), albeit with a similar
relationship (Figures 3A,B). In this model log10(AFI) was the
second-best predictor for G (Supplementary Table S4): modeled
G decreased with log10(AFI) up to about 100 years, with a steeper
slope than in the observations (Figures 2A,B). Furthermore, the
climatological average of fire intervals in LPJ-GUESS did not
present fires with average intervals smaller than ca. 3 year (i.e.,
with average burned area greater than ca. 0.33 year−1), but it
also had few grid cells with AFI greater than 1000 years. Still, we
verified that in individual years also lower or higher values of fire
intervals could be found.

Mean annual rainfall was the best predictor for the total
vegetation cover (i.e., T+G) in all datasets and both models
simulated the observed sigmoidal-like relationship (Figure 4
and Table 1 and D’Onofrio et al., 2018). Especially the
JSBACH relationship was in good agreement with observations
(Figures 4C,D). Total vegetation cover from LPJ-GUESS grew
with MAR with larger spread than the observations, especially
above ca. 500 mm year−1 (Figures 4A,B). Furthermore, it
showed a marked upper bound, which was noisier in the
observations (Figures 4A,B).
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FIGURE 1 | Percentage tree cover as a function of mean annual rainfall (MAR): (A) obs. 0.5◦, (B) LPJ GUESS, (C) obs. 1.875◦, and (D) JSBACH. Dashed vertical
lines delimit the ranges of low MAR (R1: MAR ≤ 590 mm year−1), intermediate MAR (R2: 590 mm year−1 < MAR < 1200 mm year−1) and high MAR (R3:
MAR ≥ 1200 mm year−1). Black lines are the GLM fit of tree cover with MAR (Table 2 and Supplementary Figures S6–S8). Lilac lines represent the GLM fit
performed over all data (Table 1). Lines are continuous when the fits are the best GLMs explaining tree cover variation within the MAR range (i.e., with minimum AIC).
If no fits are shown in a MAR range it means that there was no significant dependence of tree cover on MAR in that range. Green circles are grid cells with
predominance of forest (TF), red circles with predominance of tropical grassy biome (TGB). Blue circles are grid cells with other or no predominant PFTs/biome.

In the following, we report the results of the analysis
performed in the three MAR ranges separately. As explained
in the methods section, we used the MAR thresholds obtained
from the observational datasets. This choice was reasonable
as in the models the relative tree-grass dominance showed
qualitatively similar changes in the dependence on MAR
occurring at similar MAR thresholds as in the observations
(Supplementary Figure S1).

Low Mean Annual Rainfall
At low annual precipitation (MAR ≤ 590 mm year−1) in the
observations grasses always dominated over trees (i.e., G > T),
and in most of the grid cells on average rainfall seasonality was
marked with a long dry season and fires were rare (Figure 5; see
also D’Onofrio et al., 2018). There was a fairly good agreement
especially between LPJ-GUESS data and observations, and this
model was generally able to simulate the main relationships

of increasing tree and grass cover with MAR (Figures 1A,B,
3A,B, 6, 7), although it overestimated fire frequency. Overall,
JSBACH underestimated grass cover and overestimated tree
cover (Figure 5), but it was able to simulate the observed increase
of grass cover with MAR, although the best predictor for modeled
grass cover was fire (Figures 7C,D).

For the grid cells in this MAR range, observed grass cover was
larger than tree cover, which was very low. This was simulated
reasonably well by both models (Figures 5A–D). However, in
the models, the medians and ranges of grass distributions were
generally underestimated, while those of tree cover distributions
were overestimated with respect to the observations. These
discrepancies were stronger for JSBACH data, whose grass and
tree cover medians were very close to each other, and in some
grid cells, T was even larger than G (Supplementary Figure S1D).
For both the observations and the models the grid cells in this
precipitation range had the highest rainfall seasonality indices
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TABLE 1 | Results of GLM analyses for obs. 0.5◦, LPJ-GUESS, obs. 1.875◦ and JSBACH datasets.

Vegetation cover
fraction (y)

Dataset Best predictor (x) Best GLM R2

G Obs. 0.5◦ Log10(AFI) Logit(y) = 0.94−0.59x+0.2x2
−0.05x3 0.55

LPJ-GUESS MAR Logit(y) = −2.24+9.34·10−3x−9.97·10−6x2 + 2.55·10−9x3 0.62

Obs. 1.875◦ Log10(AFI) Logit(y) = 1.03−0.61x 0.55

JSBACH Log10(AFI) Logit(y) = 2.16−1.70x 0.90

T Obs. 0.5◦ MAR Logit(y) = −5.80+6.44·10−3x−1.60·10−6x2 0.66

LPJ-GUESS MAR Logit(y) = −5.04+6.26·10−3x−1.40·10−6x2 0.89

Obs. 1.875◦ MAR Logit(y) = −6.16+7.04·10−3x−1.82·10−6x2 0.70

JSBACH MAR Logit(y) = −2.66 +1.98·10−3x 0.54

T+G Obs. 0.5◦ MAR Logit(y) = −2.64+9.05·10−3x−5.20·10−6x2+9.69·10−10x3 0.80

LPJ-GUESS MAR Logit(y) = −2.13+8.19·10−3x−5.55·10−6x2+1.29·10−9x3 0.76

Obs. 1.875◦ MAR Logit(y) = −2.04+6.28·10−3x−2.07·10−6x2 0.84

JSBACH MAR Logit(y) = −2.09+5.5·10−3x 0.95

The independent variables are tree (T), grass (G) and total vegetation (T+G) cover. Predictors are MAR, average rainfall seasonality index (SI) and the logarithm of average
fire intervals (log10(AFI)). Only the best GLMs (i.e., with smaller Akaike information criterion (AIC), see Supplementary Tables S3–S5) are reported. The explained deviance
(R2) is reported for each case. See section “Materials and Methods” in the main text for a detailed description of the statistical models and selection procedures.

and generally rare fires (Figures 5E–H). In LPJ-GUESS, fires
were generally more frequent than in the observations for most
of the grid cells (Figure 5G). With respect to the observations,
average rainfall seasonality index was overestimated in JSBACH
data (Figure 5F), while SI from LPJ-GUESS dataset compared
relatively well (Figure 5E).

There was a quite good agreement between the correlation
coefficients between MAR, SI and log10(AFI) of model and
observational datasets, except for the correlation between
log10(AFI) and SI that was not significant for the observations
(r = 0.01, p-value > 0.05), but significant for JSBACH data
(r = 0.35, p-value < 0.05) (Supplementary Table S2).

When comparing the land cover type of grid cells, TGBs were
largely present in the observations and in the models, but in
JSBACH some grid cell had vegetation with predominance of
evergreen trees (Figure 1).

For the observations at 0.5◦ resolution, G and T mainly
depended on MAR, and increased with it (Figures 1A, 3A,
6A, 7A and Table 2; D’Onofrio et al., 2018). G and T also
decreased with SI and log10(AFI) (Figures 6A, 7A), whereas
at 1.875◦ resolution only the relationships for grass cover were
significant (Table 2 and Figures 3C, 7C). LPJ-GUESS simulated
the main relationships of increasing tree and grass cover with
annual rainfall, but for modeled T this increase was steeper and
explained higher deviance (R2 = 0.51) than in the observations
(R2 = 0.35; Figures 1, 6 and Table 2). LPJ-GUESS also simulated
the observed decrease of T with log10(AFI) and of G with
log10(AFI) and SI (although with much less predictive power than
in the observations), but it did not capture the observed decrease
of T with rainfall seasonality, whose GLM in the observations
explained a deviance of 0.24. In JSBACH the best predictor for G
was log10(AFI): grass cover decreased with fire intervals, and this
fit had a very large explanatory power (R2 = 0.91) (Figures 3D,
7D). Although MAR was the second factor determining JSBACH
grass cover variation (Figure 7D), it explained a large deviance
of G (R2 = 0.78), even larger than found in the observations

(R2 = 0.49). As for the observations at 1.875◦, T in JSBACH did
not depend significantly on any abiotic variable (Figure 6D).

Intermediate Mean Annual Rainfall
At intermediate annual rainfall (590 mm year−1 <
MAR < 1200 mm year−1), in the observations TGB was
the predominant vegetation type and most of the grid cells
had frequent fires (see also D’Onofrio et al., 2018). In the
observations at 0.5◦ resolution, according to the best GLMs,
trees depended weakly on MAR and grasses depended weakly
on fire (Table 2 and D’Onofrio et al., 2018) and there were
no significant dependencies in the observations at 1.875◦
resolution (Figures 6, 7). In LPJ-GUESS data, fire was the
most important factor for grasses and trees, explaining a
large deviance (R2 = 0.73 for grass and 0.78 for trees), but
high-frequency fires were underestimated and annual rainfall
had stronger importance than in the observations for both trees
and grasses (Figures 6A,B, 7A,B). JSBACH simulated the fire
occurrence better than LPJ-GUESS, but both tree and grass cover
depended too strongly on fire compared to the observations
(Figures 6C,D, 7C,D).

In the observations, at both resolutions grass cover still was
mostly larger than tree cover (Figures 5A–D, Supplementary
Figures S1A,C). While there was quite a good agreement
between vegetation cover distributions from the observations
and JSBACH (Figures 5B,D, but notice the broader modeled
G distribution with respect to the observations), vegetation
cover distributions from LPJ-GUESS were very different from
the observations at 0.5◦: modeled T and G had larger spread
in values, modeled T and G medians were higher and
lower, respectively, and closer to each other (Figures 5A,C),
and there was a larger number of grid cells with T > G
(Supplementary Figures S1A,B).

In the observations, in most of the grid cells fires occurred
more frequently than in the other MAR ranges (Figures 5G,H).
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FIGURE 2 | Grass cover as a function of average fire intervals (in logarithmic scale): (A) obs. 0.5◦, (B) LPJ-GUESS, (C) obs. 1.875◦, and (D) JSBACH. Green circles:
grid cells in R1 (MAR ≤ 590 mm year−1); Light blue circles: grid cells in R2 (590 mm year−1 < MAR < 1200 mm year−1); blue circles: grid cell in R3
(MAR ≥ 1200 mm year−1). Lines are the GLM fits of grass cover with log10(AFI) within the three MAR ranges (with the same colors as the circles) and over all data
(lilac line). Only significant fits are shown. Lines are continuous when the fits are the best GLMs explaining grass cover variation (i.e., with minimum AIC, Table 2).

Overall, both model datasets displayed this feature. However,
in LPJ-GUESS data, the log10(AFI) distribution was shifted
toward higher values of AFI, thus fires were mostly rarer
than in the observations, although the range of modeled
log10(AFI) distribution was narrower than in the observations
(Figure 5G). SI between the models and the observations were
quite comparable (Figures 5E,F).

In this MAR range, the explanatory variables from the
observations displayed very small correlation (Supplementary
Table S1). The correlation coefficients from the observation
and LPJ-GUESS datasets disagreed (Supplementary Table S1):
in LPJ-GUESS there was a positive and large correlation
between log10(AFI) and MAR (r = 0.69), which had a smaller
absolute value (although significant, p < 0.05) and was negative
in the observations (r = −0.16). The Pearson’s r between
abiotic variables from JSBACH data were smaller than in
the other MAR ranges, as in the observations. However, in
JSBACH log10(AFI) was negatively correlated significantly with

SI (with quite a large absolute value, r = −0.41, whereas this
correlation was not significant in the observations, p > 0.05;
Supplementary Table S2).

Analyzing the biome types, most of the grid cells from the
observational datasets were identified as TGBs (85% at 0.5◦
resolution and 78% at 1.875◦). The TGB predominance was
quite well simulated by LPJ-GUESS, with 75% of the grid cells
classified as TGB, whereas in JSBACH data this percentage
was lower (48%).

In the observations at 0.5◦, T depended mainly on MAR
and G on log10(AFI) (Table 2 and D’Onofrio et al., 2018):
T increased with annual rainfall and G decreased with fire
intervals, but these relationships had very low explanatory power
(R2 = 0.15 for G and R2 = 0.16 for T best GLMs, Figures 6A,
7A) especially if compared with the best GLMs in the other MAR
ranges. G also slightly decreased with MAR, but the fit had very
low explained deviance (Figure 7A, R2 = 0.05), and the 1AIC
between this GLM and the intercept-only model was smaller
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FIGURE 3 | Same as Figure 1 but for grass cover. The colors of the circles indicate the average fire intervals (AFI, see legend for values). Panels: (A) obs. 0.5◦,
(B) LPJ-GUESS, (C) obs. 1.875◦, and (D) JSBACH.

than 1 (1AIC = 0.27, Supplementary Table S6): therefore,
this dependence could be considered negligible (Burnham and
Anderson, 2002). In the observations at 1.875◦, G and T didn’t
depend on any of the factors which we considered (Figures 6C,
7C and Table 2). The best predictor for both G and T from
LPJ-GUESS was log10(AFI), followed by MAR. However, the
increase of T and decrease of G with these MAR and log10(AFI),
respectively, were steeper than in the observations (Figures 1A,B,
2A,B), and the explained deviances of these GLMs, especially for
T, were larger (Figures 6B,7B). Differently from the observations,
G and T depended significantly on SI in LPJ-GUESS (although
weakly) and on log10(AFI) in JSBACH, where this was the best
and only predictor (Table 2 and Figures 6D, 7D).

High Mean Annual Rainfall
At high precipitation (MAR ≥ 1200 mm year−1), in the
observations both TGB and TF occurred, with dominance of
TFs. The latter were characterized by higher tree cover, lower
grass cover, lower rainfall seasonality and rare fires than TGBs.
Considering all the grid cells in the range, tree and grass

cover were highly determined by rainfall seasonality and fire
intervals (Figures 6A,C, 7A,C; D’Onofrio et al., 2018). For
LPJ-GUESS data, fires and rainfall seasonality seemed to have
a strong impact on grass cover, but a weak impact on tree
cover. However, modeled tree and grass cover had narrower
spread in values than in the observations: the number of grid
cells with closed TFs was overestimated and with open TGBs
underestimated, while TFs and TGBs were not associated to
really different AFI as in the observations (Supplementary
Figure S5). JSBACH was able to simulate the presence of closed
TF and open TGB with both different rainfall seasonality and
fire intervals. However, compared to the observations, fire had
a greater importance in determining the variation of both tree
and grass cover, while rainfall seasonality had a lower predictive
power (Figures 6, 7) in JSBACH; in the presence of frequent
fires the values for grass cover and tree cover were generally
overestimated and underestimated, respectively (Figures 2C,D
and Supplementary Figures S2C,D).

Overall, in the observations tree cover dominated over grasses,
although there were many grid cells with more grass cover than
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FIGURE 4 | Total vegetation cover (tree cover+grass cover) as a function of MAR: (A) obs. 0.5◦, (B) LPJ-GUESS, (C) obs. 1.875◦, and (D) JSBACH. Continuous
lines are the best GLM fits of total vegetation cover with MAR (that was the best predictors for all datasets, see Table 1). Note that for Obs 1.875◦ we show the fit
with MAR at third order (the second best fit after the one with MAR at the second order, 1AIC = 1.55), because they have similar predictive power but the fit with
MAR3 looks better in agreement with the observations (Supplementary Table S5). Green circles are grid cells with predominance of tropical forest (TF), red circles
with predominance of tropical grassy biome (TGB). Blue circles are grid cells with other or no predominant PFT/biome.

tree cover (Figures 5A–D and Supplementary Figures S1A,C,
see also D’Onofrio et al., 2018). There was a quite good agreement
between JSBACH and observed vegetation cover distributions,
although maximum values of modeled grass cover were
overestimated (Figure 5B). Conversely, in LPJ-GUESS tree cover
was generally overestimated and grass cover underestimated,
and their distributions were narrower than in the observations
(Figures 5A,C and Supplementary Figure S1B).

For grid cells in this MAR range, the rainfall regime was less
seasonal than in the other MAR ranges for the observations
as well as for the forcing used in LPJ-GUESS and JSBACH
(Figure 5E), although for the latter the seasonality index
distribution was shifted toward greater values than in the
observations, i.e., toward more seasonal rainfall regimes
[notice that, on the contrary, when using daily metrics
of seasonality, precipitation in MPI-ESM was found to
underestimate seasonality of precipitation on average for all

tropical areas for high precipitation (Lasslop et al., 2018)]. As
in the first MAR range, fires were mostly rare, but frequent
fires occurred (Figures 5G,H), except for LPJ-GUESS. The
correlation coefficients between explanatory variables showed
a quite good agreement between observed and model datasets,
although in both JSBACH and LPJ-GUESS the absolute
values of the correlation coefficients between log10(AFI) and
MAR and SI and MAR are greater than in the observations
(Supplementary Tables S1, S2).

In the observations, the threshold of 1200 mm year−1

represented the transition to the forest biome, and the grid
cells classified as TF had typically more tree cover than
grass cover, whereas TGB grid cells had the opposite features
(Supplementary Figures S5A–D and D’Onofrio et al., 2018).
TF grid cells were also characterized by a less seasonal rainfall
regime and less frequent fires with respect to TGB grid cells
(Supplementary Figures S5E–H). The limit of 1200 mm year−1
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FIGURE 5 | Box plots of vegetation cover and abiotic variables in the three
mean annual rainfall ranges: (A,B) percentage tree cover, (C,D) percentage
grass cover, (E,F) rainfall seasonality index, (G,H) average fire intervals (in
logarithmic scale) from obs. 0.5◦ and LPJ-GUESS (left column) and from obs.
1.875◦ and JSBACH (right column). Vertical lines delimit the ranges of low
MAR (R1: MAR ≤ 590 mm year−1), intermediate MAR (R2: 590 mm
year−1 < MAR < 1200 mm year−1) and high MAR (R3: MAR ≥ 1200 mm
year−1). Red lines are the medians. The top and bottom of each box are the
25th and 75th percentiles, respectively. The extremes of the whiskers
correspond to the highest and lowest values within a range defined by the
75th and 25th quartiles +/–, respectively, 1.5 times their interquartile range.
Red symbols are outliers.

represented reasonably well the transition to TFs also for JSBACH
datasets (Figure 1D), whereas for LPJ-GUESS data this threshold
seemed to occur at lower annual rainfall, around 1000 mm

year−1, a value in line with other analyses of tree cover from
remote sensing datasets (Staver et al., 2011b). JSBACH was
somewhat able to simulate the main characteristics of observed
TFs and TGBs, although modeled T and G in TGB grid cells
varied more (Figures S5B,D). Indeed, some modeled TGB grid
cells had T larger than G (Figure 1D). Overall, LPJ-GUESS was
able to simulate quite well the tree and grass cover distributions
of observed TFs, but not of TGBs, which had lower grass
cover and higher tree cover compared to the observations
(Supplementary Figures S5A,C). This model also overestimated
the percentage of TF grid cells (82% versus 61% in obs. 0.5◦)
and underestimated that of TGB grid cells (16% versus 23% in
obs. 0.5◦). Furthermore, fire intervals in modeled TGB grid cells
were generally overestimated (Supplementary Figure S5G) and
TF fires were less rare than in the observations.

The results of the GLM analysis were somehow expected
given the analysis of the characteristics of TGB and TF grid
cells: according to the best GLMs for observed vegetation cover,
log10(AFI) and SI were the most important predictors (Table 2
and Supplementary Table S8). SI and log10(AFI), which were
highly anticorrelated in these high rainfall grid cells (r = −0.74
for obs. 0.5◦ and r = −0.77 for obs. 1.875◦, Supplementary
Tables S1, S2), and the GLMs with these variables had similar
predictive power for both observed T and G (Figures 6, 7).
Specifically, G decreased with log10(AFI) (Figure 2B) and
increased with SI, and the opposite dependences occurred for T
(Figures 6, 7). Notice that MAR had a really small role for the
observations at 0.5◦ and was not significant for the observations
at 1.875◦ (Figures 6A,C, 7A,C). The same dependencies were
simulated by LPJ-GUESS and JSBACH (Figures 6, 7). However,
with respect to the observations, in LPJ-GUESS log10(AFI)
and SI had a smaller effect on T while MAR had a greater
importance for both T and G (although small) (Figures 1B,
6B, 7B and Supplementary Table S8). Conversely, in JSBACH
data log10(AFI) had a stronger impact than SI in determining
G and T variations. When fires were frequent, modeled G had
higher values than in the observations (Figures 2, 3). Unlike
the observations at 1.875◦, in JSBACH data the dependencies of
T and G on MAR were significant, albeit with small predictive
power (Figures 6D, 7D).

DISCUSSION

In this study, we evaluated and validated the outcomes of
the DGVM LPJ-GUESS and JSBACH in sub-Saharan Africa,
using the approach of an observational analysis of the
climate-vegetation-fire relationships in this region (D’Onofrio
et al., 2018), which includes both grass and tree cover, unlike
previous similar analyses that considered only tree cover (e.g.,
Staver et al., 2011a,b).

Overall, both models were able to simulate the main factors
determining the vegetation cover, i.e., the general decrease of
grass cover with fire intervals and the general increase of tree
cover and total vegetation cover with MAR, with the exception
of grass cover in LPJ-GUESS that was found to mainly depend
on MAR. In general, the models were able to simulate the
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FIGURE 6 | Deviance explained (R2; color scale) of the GLMs of tree cover with the three abiotic predictors at low mean annual rainfall (MAR) (R1: MAR ≤ 590 mm
year−1), intermediate MAR (R2: 590 mm year−1 < MAR < 1200 mm year−1) and high MAR (R3: MAR ≥ 1200 mm year−1): (A) obs. 0.5◦, (B) LPJ-GUESS, (C) obs.
1.875◦, (D) JSBACH. Arrows indicate the tendencies of the relationships between tree cover and abiotic factors (increasing or decreasing). White grid cells indicate
that there were no significant relationships.

distribution of TGB and TF along MAR. However, by analyzing
the importance of the different predictors by MAR intervals,
we found differences between the observations and the models,
which are likely to reflect differences in the main ecological
mechanisms at play in model and reality.

At low annual precipitation (MAR ≤ 590 mm year−1),
where water availability is the most important factor regulating
the vegetation, the eco-hydrological processes are the main
mechanisms at play and LPJ-GUESS, which has a more complex
representation of vegetation dynamics than JSBACH, showed
the best agreement with the observations. In mesic and humid
areas (MAR > 590 mm year−1), fire processes became more
relevant and are important for maintaining open TGB and
for regulating the transition between TGB and TF. At high
precipitation (MAR ≥ 1200 mm year−1), JSBACH, which
has a more complex representation of fire processes than
LPJ-GUESS, was the best model in simulating the observed

marked differences in vegetation cover and average fire intervals
between TGB and TF.

At low annual precipitation (MAR ≤ 590 mm year−1),
grasses dominated over trees, and both vegetation types increased
mainly with MAR (only grasses at 1.875◦ resolution), indicating
that their growth was mainly water limited (Scholes et al.,
2002; Sankaran et al., 2005; D’Onofrio et al., 2018). In these
areas, where fires are generally rare and rainfall seasonality
is strong, trees and grasses compete mainly for water, and
grasses can be favored because, compared to trees, their roots
are closer to the surface, where most of the water is (Ward
et al., 2013 and references therein); furthermore, grasses can
have a strong competitive impact on tree seedlings (Baudena
et al., 2010; February et al., 2013; D’Onofrio et al., 2015). In
this MAR range, in general, LPJ-GUESS was able to simulate
the predominance of grasses (Figures 7A,B) and the water
limitation of vegetation growth (Figures 3A,B), although model
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FIGURE 7 | Same as Figure 6 but for grass cover.

data showed a clear MAR-controlled upper bound for grasses
that was not as evident in the observations. This represents
the optimum between growth-efficiency/death and actual water
availability, which depends only on rainfall in the model. This
difference between the model and the observations may be
partially due to only natural grass being simulated in LPJ-GUESS.
In JSBACH, grass cover, which was underestimated by this model,
increased with MAR as in the observations below 590 mm year−1,
but had a more important relationship with fire than in the
observations, whereas tree cover was overestimated [as already
reported by Baudena et al. (2015) and Lasslop et al. (2018)]. In
JSBACH, trees can be replaced by natural grass only after the
occurrence of a fire or of a wind throw, thanks to the faster rate
of establishment of natural grass with respect to shrubs and trees
(Reick et al., 2013). Trees can also have a disadvantage compared
to grass due to the climatological limits to their establishment
due to physiological constraints (Reick et al., 2013). However,
dry savannas do not strictly depend on fire, as this disturbance
can only influence the tree-grass ratio (Sankaran et al., 2005;
Accatino et al., 2010). Thus, JSBACH should be revised in order

to: (1) weaken the role of fire at low precipitation, for example
by explicitly including other mechanisms, related to demography
and eco-hydrology, that permit grasses to outcompete trees, such
as tree-grass competition for soil water (see also Lasslop et al.,
2018), similarly to what represented in e.g., LPJ-GUESS (see
below) and/or (2) improve the limitation of tree establishment
in very dry regions based on climatological limits (such as
precipitation thresholds or drought indices) or related to net
primary production. Nevertheless, we must note that the MODIS
vegetation cover product displays limitations at low tree cover
(Staver and Hansen, 2015). In order to interpret the JSBACH
results, we must also consider the mechanisms of land use change:
although we removed croplands from observations and JSBACH,
we kept pastures in JSBACH, since rangelands are part of African
savannas and grasslands (Hanotte, 2002; Hempson et al., 2017).
Indeed, in this range the modeled grass cover was mainly
composed of pastures (see Supplementary Figure S6), which are
included as anthropogenic land-cover change (Reick et al., 2013):
pastures first replace natural grasslands, and subsequently, once
no natural grasslands are left, the areas covered by trees.
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TABLE 2 | Results of the GLM analyses in the three mean annual rainfall (MAR) ranges: low MAR (R1, MAR ≤ 630 mm year−1), intermediate MAR (R2, 630 mm
year−1 < MAR < 1200 mm year−1) and high MAR (R3, MAR ≥ 1200 mm year−1) for obs. 0.5◦, LPJ-GUESS, obs. 1.875◦ and JSBACH datasets.

MAR Range Vegetation cover
fraction (y)

Dataset Best predictor (x) Best GLM R2

R1 G Obs. 0.5◦ MAR Logit(y) = −2.08+5.17 10−3x 0.46

LPJ-GUESS MAR Logit(y) = −1.53+3.72 10−3x 0.41

Obs. 1.875◦ MAR Logit(y) = −1.92+4.8 10−3x 0.49

JSBACH Log10(AFI) Logit(y) = 1.92−1.62x 0.91

T Obs. 0.5◦ MAR Logit(y) = −6.20+6.28 10−3x 0.35

LPJ-GUESS MAR Logit(y) = −4.82+5.21 10−3x 0.51

Obs. 1.875◦ – – –

JSBACH – – –

R2 G Obs. 0.5◦ Log10(AFI) Logit(y) = 0.81-0.29x 0.16

LPJ-GUESS Log10(AFI) Logit(y) = 3.51-3.25x 0.73

Obs. 1.875◦ – – –

JSBACH Log10(AFI) Logit(y) = 2.08−1.52x 0.56

T Obs. 0.5◦ MAR Logit(y) = −2.84+1.80 10−3x 0.15

LPJ-GUESS Log10(AFI) Logit(y) = −4.07+3.17x 0.78

Obs. 1.875◦ – – –

JSBACH Log10(AFI) Logit(y) = −2.87+1.87x 0.64

R3 G Obs. 0.5◦ Log10(AFI) Logit(y) = 1.32−0.76x 0.69

LPJ-GUESS Log10(AFI) Logit(y) = 2.49−2.51x 0.67

Obs. 1.875◦ Log10(AFI) Logit(y) = 1.32−0.91x 0.74

JSBACH Log10(AFI) Logit(y) = 2.12−1.69x 0.90

T Obs. 0.5◦ Log10(AFI) Logit(y) = −1.94+0.83x 0.66

LPJ-GUESS Log10(AFI) Logit(y) = −1.38+1.39x 0.33

Obs. 1.875◦ SI Logit(y) = 4.62−7.36x 0.74

JSBACH Log10(AFI) Logit(y) = −2.17+1.71x 0.91

The indipendent variables are tree (T) or grass (G) cover. Predictors are MAR, average rainfall seasonality index (SI) and the logarithm of average fire intervals (log10(AFI)).
Only the best GLM (i.e., with smaller Akaike information criterion (AIC), see Supplementary Table S6–S8) are reported. The explained deviance (R2) is reported for each
case. See section “Materials and Methods” in the main text for a detailed description of the statistical models and selection procedures.

Pastures are treated as grassland by SPITFIRE: fire reduces the
carbon content of biomass and litter in pastures (according to the
combustion completeness, which depends on the moisture) while
the pasture cover fraction remains unchanged. Land-use change
can modify the relative dominance between trees and grasses.
In general, at low precipitation without land-use change (both
pastoralism and agriculture), modeled tree cover would be higher
than with land-use change, as shown in the paper by Lasslop
et al. (2018) with a simulation performed using the land use of
1850 (with low anthropogenic vegetation cover) for the whole
simulation. A negative effect of pastoralism on tree cover is in
agreement with an observational analysis in sub-Saharan Africa
(Aleman et al., 2016).

At intermediate annual rainfall (590 mm
year−1 < MAR < 1200 mm year−1), TGBs with predominance
of grasses over trees were the main biome and fires were frequent.
At the spatial resolutions considered in this study, closed canopy
was not observed at these precipitation values, even though it
can occur at local scale (Sankaran et al., 2005), and tree cover
increased with MAR (at least at 0.5◦ resolution) indicating that
tree cover could be still water limited (Hirota et al., 2011; Staver
et al., 2011b; D’Onofrio et al., 2018). Conversely, grass cover was
no longer water limited and depended on fire intervals at 0.5◦,
although really weakly. These relationships were not significant

at 1.875◦ resolution (Figures 6, 7). Within this range the seasonal
rainfall regimes can enhance C4 grass-fuel availability in the dry
season favoring the occurrence of fires (Archibald et al., 2009;
Lehmann et al., 2011), which can maintain open TGBs through a
positive vegetation-fire feedback (Beckage et al., 2009) in which
savanna trees are also well adapted to fire (Ratnam et al., 2011).
In LPJ-GUESS, tree and grass cover were very different from the
observations: they had more variations, grasses didn’t dominate
over trees, and both varied more steeply with mean annual
rainfall (Figures 1, 3). Although fire had an important role in
determining modeled tree and grass variation in this MAR range,
these patterns could suggest that the grass-fire feedback is not
strong enough to keep grass cover as high as in the observations
for most of the grid cells. Therefore, one of the main ecological
mechanisms regulating the relative modeled tree-grass presence
can be related to the dynamics of soil water availability and,
for example, to the different water use of the two vegetation
forms. Indeed, in LPJ-GUESS grasses are shallow-rooted, with
90% of their roots in the soil layer closest to the surface (0.5 m),
whereas trees have a large proportion of their roots in the lower
soil layer (40%). Therefore, grasses could take advantage over
trees when annual rainfall is low, and soil water can be larger
in the shallow soil layer compared to the deeper one (Ward
et al., 2013 and references therein), with the opposite possibly
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occurring at higher annual precipitation. Modeled grass cover
can be positively related to fire frequency because it is itself
related, in this MAR range, to lower soil-moisture in the first
layer, which is the key driver of fire occurrence in GlobFIRM
and, moreover, the fire resistance of grasses is higher than that
of trees. Yet, our analysis suggests that fires were too rare to
have a strong effect on vegetation and to maintain it in a state
with more grasses than trees. A possible explanation is that
in GlobFIRM the percentage of killed individuals does not
consider whether the tree is small or high, which could allow
too many trees to grow to a safe height and, thus, avoid the
maintenance of open canopies when fire-resistant (deciduous)
trees are present. Furthermore, it is important to highlight that
the overestimation of modeled tree cover in this intermediate
MAR range may also be related to the lack of a representation of
pastures in LPJ-GUESS simulations. Pastoralism was observed
to negatively correlate with tree cover in sub-Saharan Africa
(Aleman et al., 2016) and a large abundance of livestock in
sub-Saharan Africa is present in this MAR range (Hempson
et al., 2015). However, livestock herbivores may also favor tree
cover mainly through suppression of fire (Hempson et al., 2017).
Conversely to LPJ-GUESS, JSBACH simulated the occurrence of
frequent fires that could maintain low tree cover and high grass
cover in most of the grid cells, probably thanks to the modeled
positive grass-fire feedback, although fire frequency was a little
underestimated in the model with respect to the observations.
However, we must note that in JSBACH, in this intermediate
MAR range, grass cover, average fire intervals and especially tree
cover would show a higher variability if the filtering of the data
based on ESA-CCI LC map had not been applied (we used this
filtering to have a number of grid cells and locations comparable
to the observations); still, this did not qualitatively change the
main patterns and conclusions (Supplementary Figure S8).
Note that in the observations at 1.875◦ resolution we can only
associate high grass cover with high fire frequency (Figure 5),
but we did not find any significant relationship of vegetation
cover with precipitation or fire explanatory variables.

The low explanatory power of the GLMs at 0.5◦, which became
not significant at 1.875◦, suggests that the ecological processes
shaping the vegetation, such as the vegetation-fire feedback, may
operate at a finer scale, as discussed by Pausas and de Dantas
(2017). The issue of scale and upscaling in ecology is not resolved
(e.g., Staver, 2018) and, thus, may have led to a mismatch between
the ecological scale of the fire processes and the spatial resolution
of both models, especially in JSBACH. Furthermore, the weak
or not significant relationships might also indicate that there
are other discarded factors explaining the tree and grass cover
variability, such as intra-seasonal rainfall variability (Good and
Caylor, 2011; Xu et al., 2018; D’Onofrio et al., 2019) related also to
soil texture (Case and Staver, 2018) or herbivores (both livestock
and wildlife), which are common in Africa and can have an effect
on vegetation comparable to fire and can themselves negatively
affect fire occurrence (Hempson et al., 2017).

At high precipitation (MAR ≥ 1200 mm year−1), both
forests and savannas occur in the observations and both rainfall
seasonality and fires play an important role in determining tree
and grass cover (Table 2 and Supplementary Table S8) and, thus,

the transition between these two biomes (D’Onofrio et al., 2018).
Furthermore, many studies indicate that TGB can occur under
similar climatic conditions as TF thanks to the vegetation-fire
feedback (Hirota et al., 2011; Staver et al., 2011b; D’Onofrio
et al., 2018), which avoids forest formation because forest trees
are fire-intolerant (Beckage et al., 2009; Ratnam et al., 2011;
Gignoux et al., 2016). By identifying forest and savanna states
using the grass and tree PFTs (D’Onofrio et al., 2018), we found
that LPJ-GUESS was able to simulate the presence of both TF and
TGB biomes at high precipitation, but they were characterized by
less marked differences in the distributions of fire frequency, tree
cover and grass cover than in the observations (Supplementary
Figure S5). Indeed, in this MAR range, in LPJ-GUESS fire
frequency was underestimated in TGBs and overestimated in
TFs, and, analogously to what we found in the intermediate
MAR range, the occurrence of grid cells with open TGBs was
underestimated, and vice versa for closed TF. However, we must
note that, although in tropical rainforests fires indeed have very
low frequency (Cochrane, 2003), satellite products are often not
able to detect them, because forest fires in the tropics are usually
understory fires and are covered by the canopy (Morton et al.,
2011). For tree cover, rainfall seasonality and fire had a low
explanatory power, probably due to the much lower variation
compared to the observations. Modeled grass cover depended
mainly on fire as in the observations, but the fact that there are
only few grid cells with high grass cover suggests again that the
grass-fire feedback is not strong enough. Indeed, fire is the main
factor maintaining open TGBs in humid areas (Bond et al., 2005),
whose occurrence is enhanced by rainfall seasonality (Archibald
et al., 2009). Thus, although part of the disagreement between the
model and the observations may also be related to the pastures
not being simulated in LPJ-GUESS, our analysis suggests that
changing the fire model in LPJ-GUESS is crucial.

Glob-FIRM is a first-generation fire model, developed before
the availability of global-scale satellite fire information data
(Hantson et al., 2016), it is based on empirical schemes and it
is only driven by soil moisture and vegetation characteristics.
Despite its simplicity, Glob-FIRM was able to simulate the
positive relationship between grass cover and average fire
frequency (in the second and third MAR ranges), but it presented
a narrower distribution of the fire variable, with values of average
fire intervals never smaller than 3 years and few times greater than
1000 years (Figure 2B).

In contrast, JSBACH simulated the presence of closed TF
and open TGB linked to both different rainfall seasonality and
fire intervals. In contrast to Glob-FIRM, SPITFIRE includes
the main mechanisms and factors permitting the savanna-forest
transition in humid areas (Lasslop et al., 2018): as shown by
sensitivity simulations with JSBACH-SPITFIRE, the fuel amount
and properties are key factors for obtaining the contrast of fire
regimes between forests and grasslands in Africa (Figure 8 in
Lasslop et al., 2014). However, in the third MAR range, fire
had a greater importance and effect than rainfall seasonality
in determining the variation of both tree and grass cover in
JSBACH compared to the observations. This was reflected in a
general overestimation of grass cover and underestimation of
tree cover in presence of frequent fires (Lasslop et al., 2018).
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Thus, in JSBACH, the grass-fire feedback was seemingly stronger
than necessary, and it would be even stronger without land
use change (Lasslop et al., 2018). We showed that grid cells
with higher grass cover, that corresponded to lower average fire
intervals, were characterized by lower pasture cover, i.e., the grass
cover was mainly composed of natural grass (Supplementary
Figure S6). In JSBACH, pastures have a higher fuel bulk
density, which reduces the burned area. This is supported by
analyses of global datasets that show that pastoralism negatively
affects fire occurrence in savannas and grasslands (Andela et al.,
2017). As already put forward by Lasslop et al. (2018), many
possible solutions for improving the fire-vegetation interactions
in JSBACH are possible, such as the amelioration of the
fire-tolerance/intolerance of savanna/forest trees, related to the
bark thickness, which could decrease the advantage of grass in
the presence of fires.

The analysis of sub-Saharan Africa permitted us to identify
areas of TGB as grid cells dominated by C4 grass and deciduous
trees, and areas of TF as grid cells dominated by evergreen
trees, which is a reliable assumption at the spatial resolution
which we considered (D’Onofrio et al., 2018). Both models
simulated the observed pattern of these biomes in relation to
MAR (Figure 1), with TGBs occurring along the entire MAR
gradient and TFs appearing above 1000 mm year−1 (Staver et al.,
2011b). However, in JSBACH some grid cells with very low
precipitation (below ca. 450 mm year−1) had a vegetation cover
composed mainly of evergreen trees (with tree cover lower than
25%). In general, it is well-established that evergreen species
dominate the humid tropical forest with high rainfall and low
seasonality (Walter, 1973; Bowman and Prior, 2005; Murphy and
Bowman, 2012). In Africa TGBs are broadly characterized by
deciduous trees and evergreen species can occur locally (Scholes
et al., 2002), thus, they are not expected to predominate at
the JSBACH grid-cell scale. This suggests that in JSBACH the
physiological constraints of the evergreen tree PFT, probably
related to water stress, should be revised and improved. However,
in other continents this may be different than in Africa, as
savanna trees may also be evergreen (Scholes and Archer, 1997;
Bowman and Prior, 2005). Savanna trees are also typically fire
tolerant and shade-intolerant, while forest trees have the opposite
characteristics (Ratnam et al., 2011). The tropical raingreen trees
included in LPJ-GUESS have these characteristics. However,
looking at the predominant type of tropical tree in TGB tree cover
(Supplementary Figure S7), we observed that many TGB grid
cells in the low and intermediate MAR ranges, where rainfall is
seasonal, have more evergreen than deciduous tree cover. Most of
these grid cells have very low tree cover, so this mismatch could be
also related to variability in the model. This mismatch occurred
also in JSBACH (Supplementary Figure S7) and this suggests
that also in LPJ-GUESS the characteristics of evergreen trees
related to water stress should be revised for the African continent.

CONCLUSION

The analysis of the two state-of-the-art DGVMs, one
including a complex vegetation description but with a

simple fire model (LPJ-GUESS), and one with the opposite
complexity characteristics (JSBACH), highlighted that a
detailed description of either vegetation or fire processes
alone is not sufficient to properly simulate the sub-Saharan
African vegetation, and that an accurate description of both
processes is necessary. Furthermore, our analysis suggests that
the importance of the processes depended, as expected,
on the MAR level, but also, more interestingly, on the
scale, indicating that an increase of resolution, especially
for JSBACH, might lead to a better representation of the
vegetation-fire feedback.

By identifying the crucial role of vegetation-fire processes and
their potential for improving the accuracy of numerical models,
our results may provide also added value to inform economists,
policy practitioners or decision makers:

Since both LPJ-GUESS and JSBACH are included in Earth
System Models, our analysis permits to suggest possible
improvements in DGVMs and, consequently, in ESMs for
future projections. This is of utmost importance for future
land use management under climate change, since DGVMs are
already used as support for policy making (e.g., Lee et al.,
2015; Daioglou et al., 2017; Sonntag et al., 2018). Finally,
several studies propose afforestation in savannas in Africa
(Sonntag et al., 2018; Bastin et al., 2019, compare also with
Griffith et al., 2017) as a measure to increase carbon stock to
remediate anthropogenic carbon emissions. As we showed here,
the distribution of vegetation is strongly connected to fire, and
thus we maintain that such plans crucially should represent
the effects of fires (Bond et al., 2019). The complex dynamics
connecting vegetation and fires should be thoroughly evaluated
before afforestation is recommended.
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Projected Climate-Fire Interactions
Drive Forest to Shrubland Transition
on an Arizona Sky Island
Christopher D. O’Connor1*†, Donald A. Falk1,2 and Gregg M. Garfin1

1 School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States, 2 Laboratory
of Tree-Ring Research, University of Arizona, Tucson, AZ, United States

Climate stressors on the forests of the American Southwest are shifting species
distributions across spatial scales, lengthening potential fire seasons, and increasing
the incidence of drought and insect-related die-off. A legacy of fire exclusion in forests
once adapted to frequent surface fires is exacerbating these changes. Reducing stand
densities and surface fuel loads has been proposed as a means of moderating fire
behavior while reducing competition for water, but it is not established whether thinning
treatments and restoration of surface fire regimes will be enough to offset the multiple
manifestations of a changing climate. We examined the potential for prescribed fuel
treatments and restoration of historical fire frequencies to mitigate the effects of climate
on forest species distributions, composition, total biomass, and fire severity. We used an
ecosystem process model to simulate the effects of projected climate, fire, and active
management interactions along an ecological gradient of shrublands, woodlands, and
forests on a mountain range in Arizona in the United States. We used historical climate
conditions as a baseline to compare results from projected climate for the period 2005–
2055 with and without fire and with no fuel treatments, a single-entry fuel treatment,
and a second fuel treatment after 20 years. Simulated desert grassland and shrub
communities remained compositionally stable and maintained or expanded their extents
while woodland and forest communities lost basal area and total biomass and receded
to the coolest and wettest aspects and drainages even without fire. Initial fuel treatments
reduced the extent and relative mortality of high-severity patches for the first two
decades, and secondary treatments at simulation year 20 extended these effects for the
remaining 30 years of simulation. Immediate and future fuel treatments showed potential
to mitigate the severity of fire effects under projected conditions and slow the transition
from forest to shrubland in some vegetation types, however, a reduction in basal
area and spatial extent of some forest species occurred regardless of management
actions. Results are being used to inform local land managers and partners of potential
landscape changes resulting from climate alone and from climate–fire interactions and
to coordinate active management of fuels across ownerships.

Keywords: climate change, fire severity, type conversion, FireBGCv2, ecosystem process modeling

Frontiers in Environmental Science | www.frontiersin.org 1 August 2020 | Volume 8 | Article 13763

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2020.00137
http://creativecommons.org/licenses/by/4.0/
mailto:christopher.d.oconnor@usda.gov
https://doi.org/10.3389/fenvs.2020.00137
http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2020.00137&domain=pdf&date_stamp=2020-08-21
https://www.frontiersin.org/articles/10.3389/fenvs.2020.00137/full
http://loop.frontiersin.org/people/802454/overview
http://loop.frontiersin.org/people/655465/overview
http://loop.frontiersin.org/people/1055605/overview
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-00137 August 21, 2020 Time: 15:20 # 2

O’Connor et al. Climate-Fire Interactions Drive Vegetation Transition

INTRODUCTION

Projected warming temperatures and increased moisture
variability are likely to cause changes to the frequency and
severity of disturbances in many forested ecosystems (Bentz
et al., 2010; Abatzoglou and Kolden, 2013; Harris et al., 2016;
Riley et al., 2019). In semiarid ecosystems, projected changes
to vapor pressure deficit and temperature regimes are expected
to significantly increase tree mortality, alter forest species
distributions, and limit tree size (Allen et al., 2010; Williams
et al., 2010, 2013; McDowell et al., 2011, 2016). However,
climate-induced changes to fire and insect-outbreak regimes
may multiply and accelerate the effects of climate acting alone
by causing rapid tree mortality, soil damage, and changes to
landscape structure (Dale et al., 2001; Crimmins and Comrie,
2005; Littell et al., 2010; Keane et al., 2015a). Thus, to understand
climate-induced vegetation changes on specific landscapes at
fine spatial scales under current and future conditions, it is
necessary to capture interactions between biophysical landscape
conditions that influence the growth of individual species and
the disturbance agents that have historically regulated species
and assemblage dynamics.

Climate regulates species geographic distributions profoundly
across scales of space and time (Turesson, 1925; Pearson et al.,
2004; Rehfeldt et al., 2006). Shifts in species ranges are widespread
in the paleoecological record, reflecting evolutionary adaptation
to changing climate that continues today (Davis and Shaw, 2001;
Colwell and Rangel, 2009; Cole et al., 2013). Topoclimatic and
edaphic variation across landscapes accounts for a substantial
fraction of variation in species distribution at landscape scales
(Zimmermann et al., 2009). Consequently, under the influence
of changing climate, species ranges are projected to shift across
scales from landscapes to entire species ranges (Chen et al., 2011;
Notaro et al., 2012). For sessile species, such as plants, these
shifts at any scale are the net demographic result of mortality
and recruitment failure at the trailing edge of the distribution
(extinction debt) and successful recruitment along the leading
edge (immigration or colonization credit) (Jackson and Sax, 2010;
Evans et al., 2016; Talluto et al., 2017). Species range shifts
from climate pressure alone can occur abruptly from transient
climate episodes, such as heat waves (Allen et al., 2015; Ruthrof
et al., 2018; Law et al., 2019), but broader changes in species
distributions are anticipated to occur over multiple decades, even
under the accelerated velocity of anthropogenic climate change
(Adams et al., 2009; Burrows et al., 2014).

Ecosystem disturbances, such as fire and insect outbreaks, can
accelerate changes in species distributions dramatically. Where
range shifts driven by climate alone may unfold over years to
decades, severe disturbances can trigger rapid and potentially
irreversible ecosystem change (O’Connor et al., 2014; Cobb
et al., 2017; Stevens-Rumann et al., 2018; Stevens et al., 2019).
High-severity wild-land fire commonly creates large areas of
overstory tree mortality, extensive soil damage, and vulnerability
to extreme hydrologic events (Neary et al., 1999; Yocom-
Kent et al., 2015). Tree seedlings of most conifers disperse
typically 100–200 m per generation, so recolonization of large
contiguous mortality patches can take multiple generations

(Haire and McGarigal, 2010). However, even when seeds reach
burned areas, soil and climate conditions may prevent successful
seedling establishment (Davis et al., 2019). Species adapted to
colonizing post-fire environments may become locally abundant
and even dominant, leading to abrupt and persistent type
conversion (Savage et al., 2013; Barton and Poulos, 2018;
Guiterman et al., 2018). As burned areas increase in size
and severity, such conversions resulting from wildfire–climate
interactions are likely to become more widespread (Picotte et al.,
2016; Reilly et al., 2017; Parks et al., 2018; Singleton et al., 2019).

Post-fire states vary widely, and the mechanisms that govern
these transitions are incompletely understood. Resilience is an
emergent property comprising multiple component processes
acting across scales of space, time, and biological organization
(Falk, 2017; Falk et al., 2019). When mortality is locally
widespread and soils have been severely altered, combinations
of climate and disturbance can result in forest-to-shrubland
conversion (Tepley et al., 2017, 2018; Serra-Diaz et al., 2018).

Over the next several decades, the southwestern United States
is expected to experience a trend of warming annual mean
temperatures (Gonzalez et al., 2018), accompanied by decreasing
spring season precipitation in the southern part of the region
and increasing percentage of heavy precipitation events (Janssen
et al., 2014). For the Southwest region, general circulation models
(GCMs) project a 4.80◦F (2.67◦C) increase in mean annual
temperature by midcentury (2036–2065) and an 8.65◦F (5.00◦C)
increase by late century (2071–2100) based on assumptions of
high rates of greenhouse gas emissions (RCP 8.5) (Vose et al.,
2017). Although changes to precipitation patterns are less certain,
particularly for the northern hemisphere summer, projected
temperature increases are projected to reduce snowfall water
equivalent and the number of snow days (Lute et al., 2015),
decrease snowpack through sublimation (Bureau of Reclamation,
2016b), and generate a decreasing fraction of snow compared
with rain (Klos et al., 2014; Bureau of Reclamation, 2016a),
especially in parts of the Southwest region where seasonal
temperatures are near freezing. GCM projections suggest that
the region along the United States–Mexico border is likely to
experience strong temperature increases, including increases in
the number of warm days and decreases in the number of days
below freezing (Vose et al., 2017). GCMs project the greatest
reductions in winter and spring precipitation in the Southwest for
the United States–Mexico border region (Easterling et al., 2017)
and show cold season aridification of the border region due to
decreasing precipitation (Jones and Gutzler, 2016); border region
warm season precipitation and aridification projections remain
largely within the historic range of variability. The effects of these
rapid changes to regional climate on vegetation (Harpold, 2016),
water supplies, and forest disturbances, such as wildfire and insect
outbreaks, are not well understood, making the information
available to landscape managers in the region insufficient for
planning decisions or adaptation.

In ecosystems adapted to frequent surface fires, mechanical
treatments that modify the abundance, structure, and
distribution of surface and canopy fuels have been shown to
reduce water stress (McDowell et al., 2007), restore fire resilience
(Fulé et al., 2005; Stephens et al., 2009; Kalies and Kent, 2016),
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and create stable carbon stores (Ager et al., 2010; Hurteau et al.,
2014). Simulation modeling of fire–fuel treatment interactions in
the Northern Rockies suggest that increased use of fuel-reduction
treatments has the potential to maintain the ecological resilience
of forested systems even with high levels of fire suppression
(Loehman et al., 2018; Keane et al., 2019). However, results from
simulations in pine and mixed-conifer forests of the American
Southwest under a range of projected climate conditions and
thinning intensities suggests that even a high frequency of
thinning treatments did little to offset climate-driven ecological
reorganizations, and treatments were only partially effective at
reducing fire severity (Loehman et al., 2018). Little is known
about the efficacy of thinning treatments in more biologically
diverse systems in which fire often propagates across bioclimatic
zones and climate effects may be more acute on species already
residing near the edge of their bioclimatic envelopes.

We parameterized a species-level landscape simulation model
to examine the effects of climate–fire interactions on landscape
vegetation communities in a Sky Island mountain range in
southeastern Arizona. We also evaluated the potential of fuel
treatments to mitigate climate–fire interactions and resulting
vegetation type change. Simulation goals were twofold: first, to
assess the sensitivity of forest ecosystems, fire effects, and carbon
stores to 50 years of projected future climate and, second, to
test the potential for proposed fuel-reduction treatments to alter
the rate and degree of forest changes through modification of
competitive interactions and moderation of fire behavior.

MATERIALS AND METHODS

Study Location
The Huachuca Mountains are a Madrean Sky Island mountain
range, approximately eight kilometers (five miles) north of
the United States–Mexico border. Vegetation is distributed
along gradients of elevation and aspect starting with a mix
of Chihuahuan desert scrub and mesquite grasslands near the
base elevation of 1199 m (3934 ft). Along the foothills and
shoulders of the range, extensive Madrean encinal woodlands
along the southern and western slopes are intermixed with
pinyon–juniper woodlands on the flats and northern and eastern
slopes. This system transitions to Mexican pine woodland with
oak understory at mid elevations and then to nearly pure stands
of southern Rocky Mountain ponderosa pine and mixed conifer
forest types with intermittent pure aspen stands just below the
peak elevation of 2885 m (9466 ft). Annual precipitation is 38 cm
(15 in) at the base and 51 cm (20 in) at the peak with mean winter
temperatures ranging from 2 to 16◦C (35◦F–60◦F) at the base and
−7–2◦C (20–35◦F) at the peak and mean summer temperatures
ranging from 18 to 35◦C (65–95◦F) at the base and 10–24◦C (50–
75◦F) at the peak with ranges representing average low and high
temperatures, respectively (Brown and Comrie, 2002; Morehouse
et al., 2006). Ownership is split among the USDA Forest Service,
United States Army, private lands, National Park Service, and The
Nature Conservancy.

Prior to EuroAmerican settlement in the late 19th century,
forests and grasslands of the Huachuca Mountains were shaped

by a frequent, typically low-severity fire regime (Danzer,
1998; Barton, 1999; Swetnam et al., 2001). Establishment of a
permanent EuroAmerican settlement at Fort Huachuca in 1882
led to the displacement of native tribes and the interruption
of several thousand years of naturally occurring and human-
augmented wildfires (Danzer et al., 1996). Subsequent expansion
of livestock grazing, road building, and resource extraction
further reinforced fire exclusion, leading to increasing forest
densities and changes to species distributions.

The risk of large, high-severity fires in the Huachuca
Mountains has been increasing as human-caused ignitions, fuel
loading, changes to forest species and structure, and periods of
prolonged drought transition forest ecosystems away from their
historical fire-adapted state (Danzer et al., 1996). A series of
large and uncharacteristically severe fires burned sections of the
range beginning in the early 2000s (the 2002 Ryan fire and 2011
Arlene fire), culminating in the 2011 Monument fire that burned
12,137 ha (29,991 acres) of forest and grassland, of which more
than two thirds burned at high severity (75% or more of surface
vegetation removed) (MTBS, 2016). Resulting changes to surface
cover and soil structure resulted in severe monsoon flooding and
secondary damage to homes and other infrastructure following
fire containment (Youberg and Pearthree, 2011).

Fort Huachuca has had an active prescribed fire and thinning
program in the lower elevation grasslands and woodlands along
the eastern front of the range for several decades; however,
little has been done to manage fuels in the forested systems
that have the greatest potential for damage from wildfires.
A 2014 study designed to identify appropriate locations for
thinning treatments to mitigate immediate wildfire hazards
to listed wildlife species found that targeted fuel-reduction
treatments could be used to reduce flame lengths and mitigate
other fire behavior characteristics associated with high fire
severity and mortality of large trees under assumptions of stable
climate (Hollingsworth, 2014). In the analysis detailed in the
following sections, we used fuel-treatment locations identified
from the 2014 study and thinning prescriptions developed
in cooperation with the adjoining National Forest and Fort
Huachuca wildlife biologists (Craig Wilcox and Deborah Brewer
personal communication).

Simulation Modeling
We used the FireBGCv2 landscape simulation model (Keane
et al., 2011) to assess the influence of changing climate on
vegetation and fire effects on the Huachuca Mountain landscape.
Simulations tracked growth changes in individual trees and
shrubs along a 1600 m elevational gradient comprising 10 distinct
ecological response units. FireBGCv2 is a tree- to landscape-
scale, spatially explicit, ecosystem process model designed for
use in montane environments with steep ecological gradients
and diverse terrain (Keane et al., 2011). The model tracks
the establishment, growth, mortality, and decay of hundreds
of thousands of individual trees across a simulated landscape.
Disturbance events, such as fire or fuel-management operations,
are integrated into the model and influence the growth of trees
only on the area of the landscape experiencing the disturbance.
On a topographically diverse landscape, such as the Huachuca
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Mountains, a series of different daily weather streams, modified
by elevation, aspect, and topographic index can be applied
to adjacent vertically stacked biomes (Figure 1). The model
merges vegetation simulation components from FOREST-BGC
(Running and Gower, 1991) and BIOME-BGC (Running and
Coughlan, 1988; Running and Hunt, 1993; Thornton, 1998), fire
initiation and spread outputs from FIRESUM (Keane et al., 1989,
1990), and a series of updated or additional components that
simulate weather streams and additional ecosystem processes
(Keane et al., 2011).

The FIRESUM model in FireBGCv2 uses a simplified,
spatially explicit cell percolation algorithm to simulate fire
spread, pixel-level fuel parameters to simulate fire intensity, and
species-specific physiological traits to determine fire effects on
individual trees (Keane et al., 1989). The fire-spread algorithm
is simpler and more computationally efficient than that used in
FLAMMAP (Finney, 2006), but it still incorporates topographic
influences and wind speed and direction to simulate realistic fire
progression. Vegetation parameters, fire effects, and allocation of
biomass are calculated at an annual time step.

Model Inputs and Species Calibration
Model inputs for species, tree, stand, fuel, and site files were
generated from a combination of vegetation and fuel plots, shared

databases on southwestern species, and published literature on
species-specific ecophysiological parameters and fuel traits. Plot-
based data from 156 vegetation and fuel plots (Miller et al.,
2003) and 27 supplemental 500 m2 forest inventory and age
plots were used to validate and adjust biophysical setting maps
from LANDFIRE (2014) to develop geo-referenced species and
stand databases (Figure 2) and to populate fuel parameters.
The network of supplemental plot locations for additional field
sampling was targeted for stand types underrepresented by the
original vegetation and fuel plot network. The methodology
of stand-type determination is detailed in the next section.
Supplemental plots were measured over the summer of 2014
and used the same sample protocols as the 2003 vegetation
plots to record tree species, diameter, height, canopy base
height, and estimated tree ages. Age estimates were based on
diameter-age relationships for each species, developed from
demographic reconstructions within plots and in the nearby
Pinaleño Mountains (O’Connor, 2013).

We developed a database of species parameters for the
16 most common tree, shrub, and grass components in 10
ecological response units (ERUs) representing Chihuahuan
desert scrub, semi-desert grassland, Madrean encinal woodland,
Madrean pine–oak woodland, pinyon–juniper grassland,
ponderosa woodland, mixed-conifer forest, aspen woodland,

FIGURE 1 | Structure of nested tree, plot, stand, and site layers that make up the FireBGCv2 simulation landscape (Keane et al., 2011). Tree, plot, and stand inputs
are developed from field sampling. Site and landscape inputs are developed from the LANDFIRE national vegetation model biophysical setting layer, digital elevation
model, and existing vegetation layers (LANDFIRE, 2014). Site-level fire history and fuel data were drawn from a combination of previous data sets (Danzer et al.,
1996; Miller et al., 2003) and new field-collected data.
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FIGURE 2 | Distribution of existing ecological response units and sampling plots for model calibration. Each of 10 ERUs received a different daily weather stream
based on elevation and solar exposure. Individual tree counts and size distributions from sampled plots were used to develop the simulation landscape.

montane riparian woodland, and non-vegetated/developed
(LANDFIRE, 2014). Population-level species parameters
(e.g., maximum diameter, maximum age, maximum height) were
calculated from field-collected plot measurements and life history
descriptions. Physiological parameters (e.g., bark thickness) and
physiological tolerances for each species were developed from
a series of databases maintained by the United States Forest
Service Fire Lab (R.A. Loehman et al. unpublished) and the
Ecological Restoration Institute at Northern Arizona University
(D. Laughlin unpublished) as well as more general parameters
published in Silvics of North America (Burns and Honkala,
1990), and BiomeBGC tables (White et al., 2000; Korol, 2001;
Hessl et al., 2004).

Individual species included for modeling were mesquite
(Vachellia farnesiana (L.) Wight & Arn.); alligator juniper
(Juniperus deppeana Steud.); Mexican pinyon (Pinus cembroides
Zucc.); pointleaf manzanita (Arctostaphylos pungens Knuth); a
complex of evergreen oaks, including Arizona white (Quercus
arizonica Sarg.), silverleaf (Quercus hypoleucoides A. Camus),

netleaf (Quercus rugose Née), and associated scrub oak (Quercus
turbinella Greene), a complex of broadleaf riparian species,
including sycamore (Platanus wrightii S. Watson), walnut
(Jugulans major Torr.), bigtooth maple (Acer grandidentatum
Nutt.), cottonwood (Populous fremontii S. Watson), and willow
(Salix gooddingii C.R. Ball); velvet ash (Fraxinus velutina Torr.);
Gambel oak (Quercus gambelii Nutt.); Chihuahua pine (Pinus
leiophylla Schiede & Deppe); Apache pine (Pinus engelmannii
Carrière); ponderosa/Arizona pine (Pinus ponderosa Engelm.
var. arizonica); white fir (Abies concolor (Gord. & Glend.)
Lindl. ex Hildebr.), Douglas fir (Pseudotsuga menziesii
(Mirb.) Franco var. glauca (Beissn.) Franco), southwestern
white pine (Pinus strobiformis Engelm.), aspen (Populus
tremuloides Michx.), and mixed grasses. In addition to
tree-form vegetation, we developed understory models for
shrub-form evergreen sumac (Rhus virens Lindh. ex A. Gray
var. choriophylla (Wooton & Standl.) L.D. Benson), scrub
oak, manzanita, mesquite, and New Mexico locust (Robinia
neomexicana A. Gray).
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We populated the simulated Huachuca Mountain landscape
with forest, shrubland, and grasslands representative of the
183 sample plots. ERUs were further differentiated into
46 stand types representing differences in height class and
aspect. At model initiation, the Huachuca landscape had
3141 unique stands differentiated by ERU, height, and aspect
(Supplementary Figure S1).

Model Calibration
The calibration modeling weather stream was drawn from
46 years (1961–2007) of continuous daily weather from
Coronado National Monument (Western Regional Climate
Center, 2014) (AZ_Coop station ID HRFA3, LAT 31.34550,
LON -110.25410, elev. 1604 m), located in the foothills along
the southern flank of the Huachuca Mountains. We used the
MT-CLIM program (Hungerford et al., 1989; Thornton and
Running, 1999) to project the Madrean Enceneal woodlands
weather stream onto the nine additional ERUs, accounting for
topographic and lapse rate effects. Precipitation for each ERU
was calibrated to the 30-year normal at each ERU elevational
band (PRISM, 2013).

Initial species calibrations were based solely on vegetation
succession dynamics. We simulated 300 years of vegetation
growth under 20th century climate without fire to assess
simulated species dynamics along gradients of moisture,
temperature, and interspecific competition. Species parameters
were further adjusted to reflect physiological limits and
competitive interactions among species that were observed in
sampled plots. Multiple runs of identical initiation conditions
yielded a range of results over 300 years of simulation because
mature tree seed production and dispersal, seedling survival, and
tree mortality are simulated stochastically from an independent
probability distribution for each species (Keane et al., 2011).
Species parameters were considered stable enough to move to
the next calibration phase when 80% or more of modeling
runs resulted in species spatial distributions and assemblages
representative of late successional development. For example,
after 300 years of simulation, stands that were originally
ponderosa and Mexican pine dominated with a white fir
understory component, matured into nearly pure stands of
shade-tolerant white fir with a few old remnant pine; and aspen
stands were replaced with a mix of more shade-tolerant Douglas
fir, white fir, and southwestern white pine.

Once species parameters were calibrated to the range of
moisture and temperature conditions across the landscape, we
calibrated fire dynamics based on a 400-year reconstruction
of fire history on the modeled landscape (Danzer, 1998). Median
fire return intervals and fire sizes were used as initial site file
fire parameters. Stand- and site-level fuel depths were generated
from plot measurements, and fuel model classifications and initial
inputs were drawn from Anderson (1982). Inclusion of fire in
the model resulted in a slight reduction in stand biomass and
a conversion from dense, shade-tolerant forest types to more
open fire-adapted species complexes representative of early 20th
century forest conditions (Supplementary Figure S2). Simulated
fire behavior and resulting fire effects arise from the fire behavior
and linked fire effects modules.

Analysis Area as a Subset of Total Simulation Area
Dynamics of vegetation and fire were simulated over the entire
Huachuca Mountain landscape to allow fire spread and species
emigration across the whole of the elevation gradient and among
ERUs. To assess the effects of climate, fire, and fuel treatments on
species dynamics and fire effects, we limited the results analysis
area to a subset of the landscape incorporating the 10 ERUs in the
immediate vicinity of fuel treatments (Figure 2).

Selection and Processing of Climate Projections
Modeling and climate model assessment for this research were
conducted prior to the release of the fourth National Climate
Assessment (NCA4) (Gonzalez et al., 2018; Reidmiller et al.,
2018), so all comparisons are made to the third National Climate
assessment (NCA3) (Garfin et al., 2014). To simulate changing
climate in a region where precipitation patterns are dominated
by the North American Monsoon (NAM), we used the subset
of three CMIP5 GCMs that had the lowest error rates for
NAM prediction from 1975 to 2005 (Sheffield et al., 2013). The
second-generation Canadian Earth Systems Model (CanESM2);
the Hadley Centre Global Environment Model, version 2–
Carbon Cycle (HadGEM2-CC); and the Hadley Centre Global
Environment Model, version 2–Earth System (HadGEM2-ES) are
run at coarse spatial resolution (on the order of 1–2◦ latitude and
longitude) and required downscaling for application to the study
landscape. The high density of local weather stations available
to develop GCM transfer functions for downscaling led us to
select the Multivariate Adaptive Constructed Analogs (MACA)
statistically downscaled product (Abatzoglou, 2013) to project
GCMs onto the Huachuca Mountain landscape at a spatial
resolution of 4 km.

We used a 50-year time horizon for model projections
for several reasons. The planning and funding horizons of
federal partners managing the landscape are typically 10 years
or less, so their greatest interest was in near-term climate
risk. Additionally, the transfer functions used for statistical
downscaling that help to constrain spurious results assume
constant circulation relationships that are less likely to hold over
simulations exceeding 50 years (Pielke and Wilby, 2012).

In consultation with land managers, we selected the IPCC
Representative Concentration Pathway (RCP) with a radiative
forcing of 8.5 W/m2 in the year 2100 for our modeling runs. This
pathway represents the radiative forcing effect of no proactive
reduction of global greenhouse gas (GHG) emissions (i.e., global
emissions policy characterized as “ongoing high rates of GHG
emissions”), which may be a conservative estimate of actual
greenhouse gas concentrations later in the century if little action
is taken globally to reduce GHG emissions. This scenario also
was designed to identify climate vulnerabilities and allow for
assessment of viable mitigating actions.

We assessed calibration between projected and historical
weather streams through a comparison of the temporal overlap
between data sets. Downscaled weather streams projected onto
the Madrean encinal ERU from 2005 to 2007 were not statistically
different from seasonal mean, maximum, and minimum
temperatures and average seasonal precipitation measured at
Coronado National Monument weather station (Figure 3).
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FIGURE 3 | Comparison of historical weather station and calibrated downscaled GCM outputs. Boxplot comparisons of (A) daily maximum temperature,
(B) minimum temperature, (C) average temperature, and (D) precipitation. Historical data are from Coronado National Monument, Arizona. GCMs are CMIP5 models
HadGEM2-ES, HadGEM2-CC, and CanESM2.

Projected climate conditions from the MACA model ensemble
from 2005 to 2055 were consistent with projections from
the NCA3 for the Southwest United States (Garfin et al.,
2014). Modeled average daily winter temperatures increased,
approximately 2.5◦C (4.5◦F) in the first half of the 21st century
with a similar trend to that reported in NCA3 in daily minimum
and maximum temperatures (Figure 4A). Modeled daily mean
summer temperatures exhibited a slightly lower rate of increase
by midcentury than NCA3 estimates, rising 1.5◦C (2.7◦F) on
average with greater variability in daily high temperatures and
lower variability in daily low temperatures (Figure 4B).

Projections of seasonal precipitation produced by the MACA
ensemble suggest relatively little change in the total amount
of winter precipitation for 2005–2055 and continued inter-
annual variability with more potential for winter drought
and flooding years by midcentury (Figure 4C). Monsoon
precipitation exhibits a slight increase in total volume and
variability of precipitation although significant divergence from

historical monsoon volume occurred in only one (CanESM2) of
the three GCM projections (Figure 4D).

Fuel-Treatment Details
Fuel-treatment scenarios assume thinning of 500 ha per year
starting at year 1 and continuing for 10 years for a single-entry
thinning and at years 1 and 20 for a double-entry thinning.
Treatment locations were identified in Hollingsworth (2014)
and reflect stands with road access and pre-thinning basal area
of 4–32 m2/ha. Treatments removed 40% of the basal area,
preferentially targeting small-diameter stems up to a maximum
diameter of 25 cm DBH with an assumption of 20% of slash left
on-site (Figure 2).

Model Simulation Scenarios
Following model calibration, we set up a series of climate
change risk scenarios for the 50-year period from 2005 to
2055 to assess potential effects of changing climate conditions,
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FIGURE 4 | Projected temperature and precipitation for the Huachuca Mountains, AZ, from 2005 to 2055 used for landscape model simulations. Winter temperature
(A) is the daily average, and precipitation (C) is the daily total for December, January, and February. Summer temperature (B) is the daily average, and precipitation
(D) is the daily total for July, August, and September. Projections are generated from the Multivariate Adaptive Climate Analogues (MACA) statistical regional
downscaling of an ensemble of three CMIP5 GCMs using the RCP 8.5 scenario (Abatzoglou, 2013). The GCM subset includes the Hadley Centre HadGEM2-ES and
HadGEM2-CC, and Canadian CanESM2 models.

fire, and thinning treatments on forest conditions. We assessed
the spatial distributions of dominant forest species, total basal
area, and total ecosystem carbon under scenarios of no fire,
with fire, no thinning, single-entry thinning, and double-entry
thinning. The experimental design included 12 runs of each
climate scenario–fire factor–treatment combination, resulting in
288 total landscape simulations. Historical climate results were
summarized from 12 replicates of each scenario, and projected
climate ensemble results were summarized from 36 replicates
(12 from each of three GCMs).

For change analysis, landscape simulation outputs were
compared to a baseline case of 50 years of landscape simulation
with no fire exclusion under historical climate conditions (1960–
2010). We used annual total ecosystem carbon to track gross
carbon dynamics as a general summary of climate, fire, and
thinning effects on woody biomass over the whole of the
simulation area and then used decadal summaries constrained to
the analysis area to track fine-scale interactions between climate,
vegetation, fire, and fuel treatments.

For each pixel of the analysis area, categorical variables, such as
dominant species by biomass, were summarized from the mode
of model replicates, whereas continuous variables, such as stem
basal area and fire-caused mortality, were calculated from the

median value of model replicates. To assess changes in median
basal area along the ecological gradient of vegetation types, we
grouped the 10 initial site simulations into four general vegetation
zones based on the majority of vegetative forms at the start of
simulations. We report changes in basal area at decadal time steps
in shrubland, woodland, forest, and riparian zones.

Fire-caused mortality, a proxy for burn severity, is calculated
at an annual time step in Fire BGCv2. We summarize these
results across modeling runs by standardizing to a decadal
rate of mortality (median percent mortality) over the 50-
year simulation period. Results were further summarized by
vegetation zone to assess the interactions between fire, climate,
vegetation type, and fuel treatments along the ecological gradient.
We present median and maximum fire-caused mortality rates
within vegetation zones.

RESULTS

At the landscape scale, total ecosystem carbon (TEC), a proxy for
biomass, was influenced strongly by climate and fire interactions
(Figure 5). In simulations under historical climate and without
fire, TEC gradually increased over the first four decades before
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FIGURE 5 | Change in total ecosystem carbon over 50 years of simulation under historical (Hist) and projected model ensemble (Ens) climate with and without fire
(Fire, No Fire) and with no fuel treatments, a single treatment (T1x), and double-entry fuel treatment (T2x).

plateauing near 7 kg/m2. Inclusion of fire in simulations of
historical climate resulted in a dynamic equilibrium between fire-
related losses and new growth at ∼3.5 kg/m2. In climate ensemble
projections without fire, TEC increased slowly for the first decade
and then leveled off with some minor variability at around
4 kg/m2 for the remainder of the simulation. Inclusion of fire
resulted a similar trend of dynamic equilibrium in TEC observed
under historical climate for the first 20 years of simulations,
followed by a slow, steady decline in TEC, reaching what may
have been a new equilibrium point for the last two decades of
simulation near 2.8 kg/m2. The effect of thinning treatments
on TEC under projected climate and without fire was negligible
with no discernable differences between simulations with or
without fuel treatments. Thinning treatment effects on TEC
when fire was included with projected climate were somewhat
counterintuitive. Under a single fuel treatment, TEC values were
similar to those of historical and projected climate values for the
first 20 years before declining at a faster rate than in the ensemble
TEC scenarios without thinning. The reduction in TEC slowed
near the end of the simulation period at a value of 2.2 kg/m2.
This effect was further amplified with the inclusion of a second
thinning treatment, for which TEC values diverged below those of
historical and projected climate scenarios within the first 15 years
but reached a relative equilibrium at ∼2.1 kg/m2 starting around
simulation year 35 and continuing to year 50.

Species Response to Climate, Fire, and
Fuel Treatments
Under historical climate conditions and without thinning
treatments, fire had little effect on the composition of
tree-dominated communities. However, there were shifts in

shrubland communities away from evergreen oak and toward
manzanita species as well as a general reduction in the
distribution of pinyon–juniper communities (Figure 6A). In
climate ensemble projections, climate alone was a potent driver
of vegetation changes with fire promoting species diversity and
thinning treatments prolonging the presence of a suite of fire-
adapted tree species.

Changes to Dominant Species Without Fire
Under projected climate alone, significant changes to forest
species composition began to occur at simulation year 20 when
evergreen oak and manzanita communities began to encroach on
formerly tree-dominated forests. By simulation year 30, Mexican
pine, ponderosa pine, pinyon, juniper, and white fir forests were
functionally extirpated; southwestern white pine retained a small
population; and the distribution of Douglas fir and riparian
species increased nominally for a decade before declining as well
(Figure 6B). A single-entry thinning treatment in climate-only
projections prolonged the retention of Douglas fir, white fir, and
ponderosa pine for an additional decade, but other species trends
were unchanged (Figure 6C). A second-entry thinning treatment
prolonged retention of white fir but reduced the abundance of
Douglas fir and ponderosa pine (Figure 6D).

Changes to Dominant Species With Fire
Under projected climate with fire, the composition of forest,
woodland, and shrub communities changed significantly, but
conversion from forest to shrubland was dependent on
management actions. Without thinning treatments, Mexican
pine and pinyon–juniper species were lost; however, ponderosa
pine was retained into the fifth decade of simulations, and the
proportion of the landscape dominated by Douglas fir and white
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FIGURE 6 | Species dynamics (relative abundance) over a 50-year time series with varying climate, disturbance, and management actions. Historical climate with fire
(A) is used as a baseline for comparison to projected climate ensemble without fire and (B) no fuel treatments, (C) single-entry thinning, and (D) double-entry
thinning as well as projected climate with fire and (E) no fuel treatments, (F) single-entry thinning, and (G) double-entry thinning.

fir increased over the simulation period. Shrub and evergreen oak
communities expanded modestly from 60 to 80% of landscape
area for the first 30 years before reaching an equilibrium
with tree-dominated communities (Figure 6E). Single-entry
thinning treatments further reduced shrub and evergreen oak
encroachment over the simulation period, resulting in a balance
of approximately 70% shrub- and evergreen oak–dominated
communities and 30% tree-dominated communities (Figure 6F).
Forest composition changes with a second-entry fuel treatment
mirrored those of no treatment for the first four decades of
simulation, followed by a precipitous decline in tree-dominated
area and increase in both evergreen oak and manzanita
shrublands (Figure 6G).

Climate, Fire, and Treatment Effects on Basal Area
Zones
Under historical climate with fire and without thinning
treatments, the basal area of upper-elevation forests increased
by 10% while vegetation in riparian, shrubland, and woodland

zones decreased by 50, 63, and 32%, respectively (Figure 7A and
Supplementary Table S1).

Fuel-management treatments were not effective for retaining
basal area under projected climate conditions in any of the four
vegetation zones. By simulation year 30, stem basal area within
the study area was reduced by more than half in simulations
without fire and by more than two thirds in simulations with
fire. Climate effects were the primary driver of reductions in
basal area in riparian, woodland, and shrubland vegetation zones.
Dramatic reductions in riparian (89–91%), woodland (88–100%),
and shrubland (73–82%) basal area were consistent with and
without fire and across thinning treatments (Figures 7B–G).
In the forested zone, fire had the greatest effect on stem basal
area followed by marginal effects of thinning treatments. The
reduction in forest basal area over the simulation period with
fire (40% with no treatments, 32% with single entry, 43% with
second entry) was more than double that of simulations without
fire (13% with no treatments, 16% with single or double entry)
(Figures 7B–G and Supplementary Table S1).
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FIGURE 7 | Effects of climate, fire, and fuel treatments on median basal area within vegetation zones. Stacked bar charts summarize changes to shrubland,
woodland, forest, and riparian vegetation zones at decadal time steps. Historical climate with fire (A) is used as a baseline for comparison to projected climate
ensemble without fire and (B) no fuel treatments, (C) single-entry thinning, and (D) double-entry thinning as well as projected climate with fire and (E) no fuel
treatments, (F) single-entry thinning, and (G) double-entry thinning. Basal area values within each vegetation zone are presented in Supplementary Table S1.

Climate, Vegetation, and Fuel-Treatment Effects on
Fire Severity
Projected climate effects on fire-caused mortality (relative fire
severity) varied by vegetation zone and fuel-treatment frequency.
Although median decadal mortality rates of 5 to 8% were
consistent across shrubland, woodland, forest, and riparian
systems regardless of treatment, maximum mortality rates within
vegetation zones were more sensitive to fuel treatments. Fire-
caused mortality declined by 6–7% of the no-treatment rate
with a single-entry thinning treatment and by 16–29% of the
no-treatment rate with a second-entry thinning treatment over
50 years of simulation (Figure 8).

Fire-caused mortality under historical climate conditions
was most strongly associated with vegetation zones in which
median decadal mortality rates in woodland and riparian zones
were insensitive to treatments, and shrubland and forest rates
ranged from 6 to 10% depending on treatments (Supplementary
Figure S3). Changes to maximum severity rates within vegetation
zones showed no trend.

DISCUSSION

The combined effects of climate, disturbance, and land
management are reshaping many ecosystems in North America.

Each of these three primary factors influences forest composition,
structure, and distribution individually, and their interacting
effects constitute a powerful influence on current and future
forests (Cobb et al., 2017; Schoennagel et al., 2017).

On the simulated landscape, forests of the Huachuca
Mountains are projected to undergo significant shifts in biomass,
species distributions, and patterns of fire over 50 years of
projected future climate. Total landscape biomass, summarized
as ecosystem carbon, is expected to remain relatively stable over
the next decade. However, by 2030, carbon is less likely to be
recovered following future fires even with thinning treatments,
suggesting that the resilience of current vegetation communities
will be moderated by the interaction of fire and climate.

By midcentury, the expansive mid-elevation forests,
historically dominated by a multilayered canopy of pine
and understory oak, are projected to convert to shrublands
even in the absence of fire, and upper-elevation pine and mixed
conifer forests are expected to lose more than a third of their
basal area and species diversity. These rapid and lasting changes
to basal area and ecosystem carbon suggest that forests of the
Huachuca Mountains may transition from a carbon-neutral
system to a significant carbon source over the coming decades.

Fuel treatments demonstrate the potential to limit the extent
and severity of fire-induced mortality in a range of vegetation
types. Simulation of a secondary thinning treatment at year
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FIGURE 8 | Effects of thinning treatments on fire-caused mortality under projected climate ensemble conditions. Maps depict median decadal mortality rate within
the study area under scenarios of no thinning (A), single-entry thinning (B), and double-entry thinning (C). Histograms display median and maximum mortality rates
within shrubland, woodland, forest, and riparian vegetation zones.

20 further reduced the level of fire-induced mortality. The
combination of thinning treatments and fire may also have
reduced competition among trees, allowing larger, older trees
to persist on the landscape longer than in forest without fire.
However, changes to fire dynamics, either through fire exclusion
or fuel reduction treatments, did not slow the rate of landscape-
scale biomass loss or changes to species distributions, which were
still driven inexorably by climate.

Considerations for Interpreting
Ecosystem Responses to Projected
Climate and Disturbance
Modeling complex landscape interactions of climate and
disturbance remains a challenging frontier in ecological

research (Keane and Finney, 2003; Keane et al., 2015b).
The model ensemble in this study was calibrated to decade-
scale trends over the three decades prior to the period of
model projections under the specified GCMs and regional
downscaling method. Although general trends are similar
among GCMs, the degree of uncertainty in the projections
increases greatly at annual or shorter time steps (Hawkins
and Sutton, 2009). Model agreement is highest for decade-
scale trends in seasonal temperature. Climate scientists are
less confident in trends in seasonal precipitation due to the
wide array of estimates among multiple GCM projections,
especially in the region of the North American Monsoon
(Easterling et al., 2017). Results from this modeling simulation,
although relying on the best available suite of GCMs for the
Southwest monsoon region, should be interpreted with caution.
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The simulation is not a forecast, but rather a projection based
on particular assumptions about future global greenhouse
gas emissions and is constrained by the limited statistical
robustness associated with using a small suite of GCMs to make
projections. Nevertheless, the changes to vegetation and fire
effects simulated here may be useful for understanding trends in
landscape change.

Assumptions about temperature and precipitation inherent
in the simulation weather stream underlie many of the
physiological stressors and fuel-curing conditions that initiated
shifts in forest species and vegetation structure over the
simulation period. Warmer winter temperatures projected in
the GCM ensemble would reduce the number of days with
snowpack and shorten the critical snow melt season. Although
snowpack is not simulated directly in the FireBGCv2 model,
temperature-driven changes to soil moisture and species-
specific drought stress thresholds within each of the 10
topographically distributed biomes capture some proportion
of the negative effects of drought stress on high-elevation
conifer species, which are dependent upon snow melt for spring
bud break, cambial division, and wood formation and were
responsible for a significant amount of the basal area loss from
the modeled system.

Under the specified climate, fire, and treatment scenarios,
the effects of changing climate overwhelmed any benefits
of fuel-reduction treatments for reducing water stress
although these did reduce the potential for high-severity
fire (Hurteau, 2017; Loehman et al., 2018). Although the
species physiological parameters developed for this landscape
performed well in the calibration weather stream, actual
species responses to future climate conditions are inherently
uncertain because limited information is available regarding
field- or laboratory-quantified drought or heat thresholds of
Madrean forest species.

The FireBGCv2 model was designed for use as a research
tool and for guiding landscape-management strategies but not
individual management decisions, such as treatment locations
or specific interventions. The identification of novel changes to
landscapes, such as the conversion from conifer to evergreen
oak dominance of the mid-elevation forests approximately 20–
30 years into a future climate scenario, is clearly a model result
that warrants further study.

The statistical methods used for regional downscaling of
the GCM model ensemble are considered most appropriate
for short-term climate projections. The series of cascading
changes to forest species and basal area in this series of
simulations occur near the maximum threshold of realistic
use of statistical downscaling. Additional modeling runs
using a suite of different GCMs and different emissions
scenarios as well as different modeling methods, such as
dynamic downscaling (Chang et al., 2015; Shamir et al., 2019)
would be useful for comparing trends in projected climate
effects on species distributions and fire under a range of
treatment options.

Using simulation modeling, Keane et al. (2018) used
comparisons between historical and future variability to
assess ecosystem resilience to climate and different levels

of fire suppression on landscapes of the northern Rocky
Mountains. Application of this type of modeling for
assessing management options under a changing climate is
increasing as managers recognize that the historical range
of variability may no longer apply to current or future
conditions (Crausbay et al., 2017; Falk, 2017; Loehman
et al., 2018). Additional work of this kind will help identify
the environmental threshold responses of individual species
in this landscape and the relative probability of conditions
likely to surpass these thresholds. Such inquiries will be
valuable to both scientists and managers to reduce the
number of ecological surprises associated with future climate
and disturbance.
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FIGURE S1 | Initial stand locations for model initiation under all scenarios. Color
differences represent variability in vegetation type, height, and aspect.

FIGURE S2 | Distribution of dominant vegetation (by biomass) after 50 years of
landscape simulation under historical climate with fire.

FIGURE S3 | Effects of thinning treatments on fire-caused mortality under
historical climate. Maps depict median decadal mortality rate within the study area
under scenarios of no thinning (A), single-entry thinning (B), and double-entry
thinning (C). Histograms display median and maximum mortality rates within
shrubland, woodland, forest, and riparian vegetation zones.

TABLE S1 | Effects of climate, fire, and thinning treatments on median basal area
(m2/ha) within vegetation zones. Scenarios include historical climate with fire and
without thinning (Hist No Thin) for reference against climate ensemble projections
(Ens) with and without fire and without thinning, single-entry thinning (Thin 1x), and
double-entry thinning (Thin 2x).
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Atmospheric Cascades Shape
Wildfire Activity and Fire
Management Decision Spaces
Across Scales − A Conceptual
Framework for Fire Prediction
S. W. Taylor*

Natural Resources Canada, Pacific Forestry Centre, Victoria, BC, Canada

This study uses an interdisciplinary approach to investigate variability in fire weather, fire
activity and fire management decision spaces in western Canada from three separate
perspectives. We used time series analysis to identify periodic and quasi-periodic
components of fire weather measures at second, hourly, daily, yearly, and multi-decadal
resolution in 3 ecozones. Examples of relationships between scales of fire weather and
fire activity were taken from the literature. Through interviews with and observation of
Canadian wildland fire management agencies we identified 20 typical decision problems
which we mapped to 16 spatio-temporally cohesive decision spaces extending from
incident to national levels and immediate to multi-decadal time spans. To connect
these domains, we propose that space time cascades of atmospheric kinetic energy
are reflected in an inverse cascade of wildfire activity, and shape the spatio-temporal
dimensions of decision spaces and the pace of fire management decisions.

Keywords: fire weather, fire management, decision making, spectral analysis, scale

“Big whorls have little whorls, which feed on their velocity
And little whorls have lesser whorls, and so on to viscosity”

Lewis Fry Richardson, 1922

INTRODUCTION

Much early wildland fire research sought to relate changing daily weather to fire potential
in fire danger rating systems to inform prevention and preparedness decisions (Taylor and
Alexander, 2006; Hardy and Hardy, 2007). Growing recognition of the role of wildland
fire in the Earth System and its ecosystems (Bowman et al., 2009), as well as the
increasing socio-economic impacts of fire on many continents has stimulated a burst of
new fire science in the past three decades in areas of climate change and Earth system
processes, fire physics and behavior (Sullivan, 2017), fire management and analytics (Minas
et al., 2012; Taylor et al., 2013; Martell, 2015; Jain et al., 2020), as well as in fire
ecology (McLauchlan et al., 2020), and socio-economics. Abatzoglou and Kolden (2013)
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note that “the host of processes, timescales and sequences
of atmospheric forcing that conspire in wildfire occurrence,
behavior and growth, varies geographically and remains
challenging to integrate in both research studies and
operational fire management alongside the increasingly complex
human environment.”

Spatio-temporal variability in atmospheric quantities and
processes important to fuel moisture, fire ignition and growth
(e.g., lightning, solar radiation, temperature, relative humidity,
potential evaporation, and wind speed) is a result of interactions
between incoming solar radiation, land cover and oceanic
and atmospheric circulation. While the mean atmospheric and
surface temperature is primarily determined by the balance of
incoming and outgoing radiation at the top of the atmosphere,
incident solar radiation varies across the Earth’s surface and over
time due to daily and annual rotation of the Earth, axial tilt
and orbital eccentricity. Spatio temporal differences in radiative
heating are further modified by cloud cover and the albedo
of the surface (e.g., water, vegetation, rock, snow, and ice).
These gradients in surface heating set up horizontal and vertical
pressure gradients, and atmospheric circulation. As was noted
by Richardson (1922) atmospheric structures occur over a huge
range of scales. Atmospheric eddies can have dimensions from a
millimeter to thousands of miles and have lifespans seconds to
months; climate variability extends further over millions of years
(Lovejoy and Schertzer, 2010).

An international conference “Fire Prediction Across Scales”
was held at Columbia University (Field et al., 2018) to synthesize
research across the topics of fire prediction and fire management
and impacts1. The objective of this interdisciplinary paper is
to develop a conceptual framework linking fire weather, fire
activity and management as a basis for integration, for framing
predictive modeling, and to further understanding of whole
system dynamics − it is a contribution to the special issue
“Climate Land Use and Fire – Can Models Inform Management”
arising from the conference.

Our proposition is that atmospheric energy cascades shape
the pattern and tempo of fire weather, fire activity and fire
management decisions across scales. Drawing on examples from
western Canada, we examine fire weather, fire activity and fire
management from three separate perspectives. The structure
of the paper is as follows: In Section “Temporal Components
of Fire Weather Index in Western Canada” we investigate
periodic and quasi-periodic components in fire weather through
analysis of the power spectra of the Fire Weather Index and
the Monthly Drought Code of the Canadian Fire Weather
Index System in western Canada. In Section “Fire Activity
Across Scales” we review influences of fire weather on fire
activity at different scales. We then map the temporal and
spatial structure of fire management decision spaces in Canada
in Section “Fire Management Decision Spaces.” In Section
“Synthesis” we bring these three threads together in new
synthesis of atmospheric, fire activity, and fire management
decision making scales.

1http://extremeweather.columbia.edu/events/past-events/2017-conference-on-
fire-prediction-across-scales/, accessed 01.06.20.

TEMPORAL COMPONENTS OF FIRE
WEATHER INDEX IN WESTERN CANADA

Spectral, wavelet, and other time series analysis have been used
to characterize periodicity in wind speed, temperature, and
pressure. Van der Hoven (1957) identified spectral peaks in
kinetic energy in a composite series of horizontal wind speed
measurements at 100 m above surface at 4 days, 12 h, and 1 min
which he attributed to the passage of synoptic fronts, diurnal
effects, and turbulence; this has classically been termed the Van
der Hoven spectrum. Spectral analysis has also been used to
identify ultra-long, long, and short waves with periods of ∼ 25,
10 and 4–6 days, respectively, in 500 hPa wind speeds in the
northern Hemisphere (Fraedrich and Böttger, 1978)and in long
and short waves in the southern Hemisphere (Fraedrich and
Kietzig, 1983). Sources of intraseasonal and annual atmospheric
variability include the Madden Julian Oscillation (MJO) and
North Atlantic Oscillation (NAO) that primarily influence
precipitation and the direction of storm tracks in the Pacific and
Atlantic basins, respectively. Modes of low frequency variability
associated with coupled atmospheric-oceanic (AO) circulation
include the El Nino Southern Oscillation (ENSO), PDO (Pacific
Decadal Oscillation), and Atlantic Multi-Decadal Oscillation
(AMO) with quasi periods of approximately 2−3, 20, and
60 years, respectively. See Kaplan (2011) for a summary of these
and other quasi periodic monthly, annular and multi-decadal
anomalies. Very low frequency oscillations in temperature
identified in Greenland and Antarctic ice cores extending to
110 kyr BP during the last ice age are attributed to orbital
frequencies and ice sheet dynamics (Yiou et al., 1997). Spectral
analysis naturally suggested classification of the spatial dimension
and frequency of atmospheric features into a scale-based
hierarchy (Orlanski, 1975; Fujita, 1981; Table 1); many authors
have subsequently adapted or refined Orlanski’s scheme. It is
important to notes that atmospheric processes are continuous
not discrete, and contemporary interpretations of atmospheric
variability (e.g., Lovejoy and Schertzer, 2010) emphasize a
continuous energy cascade over scale-bound phenomenological
classifications. The atmospheric energy cascade is forward
in some parts of the spectrum, and inverse in others and
extends from seconds to millennia and centimeters to planetary
dimensions. For a detailed survey and discussion of atmospheric
space times cascades see Lovejoy and Schertzer (2012).

In this section we use spectral analysis to investigate whether
these sources of atmospheric variability as well as daily and
annual radiative forcing are apparent in the Fire Weather Index
in western Canada. The FWI is an index of fire intensity where
increasing values represent increasing intensity. Van Wagner
(1987) scaled the standard FWI to fire intensity in red pine stands
in ON, Canada:

FWI = e1.013×[ln(0.289×l)]0.647

where I is frontal fire intensity (kWm−1). Fire intensity has been
correlated with FWI in other fire behavior field experiments
in mature and immature jackpine stands, and jackpine slash
in Ontario (Stocks and Walker, 1972; Stocks, 1987, 1989) and

Frontiers in Environmental Science | www.frontiersin.org 2 October 2020 | Volume 8 | Article 52727881

http://extremeweather.columbia.edu/events/past-events/2017-conference-on-fire-prediction-across-scales/
http://extremeweather.columbia.edu/events/past-events/2017-conference-on-fire-prediction-across-scales/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-527278 October 25, 2020 Time: 13:56 # 3

Taylor Weather Shapes Fire Management Decisions

TABLE 1 | Some typical scales in meteorology and climatology (after Orlanski,
1975; Stull, 2017).

Scale Wavelength Period Examples

Microscale <2 km <1 h Gusts

Mesoscale 2−2000 km 1 h−1 month Slope winds, sea
breezes,
thunderstorms, fronts

Synoptic >500 km <1 month Cyclones, anticyclones

Macroscale/
intraseasonal

>2000 1 month Long waves, MJO,
monsoons

Global planetary >1, >10 years ENSO, PDO

FIGURE 1 | Relationship between the FWI of the Canadian Forest Fire
Weather Index System and frontal fire intensity (kWm−1) predicted by the
standard scaling equation (Van Wagner, 1987) and observed in 4 fuel
complexes in Alberta (AB) and Ontario (ON) Canada (Stocks and Walker,
1972; Stocks, 1987; Alexander and De Groot, 1988).

in jackpine stands in Alberta (Alexander and De Groot, 1988)
shown in Figure 1. While the FWI−fire intensity correlation
varies in different fuel complexes, fire intensity varies over 4
orders of magnitude from 10 to >10, 000 kWm−1 in the
range of FWI 1-50 in each case. Examples of potential fire
behavior and fire suppression implications associated with FWI
and corresponding fire intensity values for the standard condition
are shown in Table 2. Fire intensity is correlated with biomass
consumption in fires and is also a key factor in plant mortality
due to lethal heating of cambium and roots or crown scorch
(Ryan and Reinhardt, 1988; Alexander et al., 2019). While more
complex and accurate models are used to predict fire spread and
intensity in particular fuel complexes in operational practice (e.g.,
Forestry Canada Fire Danger Group, 1992; Andrews, 2014), the
FWI is used in many fire climate research studies (e.g., Barbero
et al., 2020 this issue) because it is a simple but robust indicator
of fire activity. FWI is widely used as a danger index globally
(Taylor and Alexander, 2006; Field, 2020) and is correlated with
fire activity in many regions (Abatzoglou et al., 2018).

Study Area and Data Compilation
The study area encompasses the Pacific Maritime, Montane
Cordillera, and Boreal Plain ecozones in western Canada (Wiken,
1986) which have a combined area of 1.38 million km2.
These ecozones have distinct a spring and summer fire season
(approximately May to October) which is separated by winter
periods during or after which the moisture content of the surface
organic layer is very high or fully saturated due to over winter
precipitation as rain or snow, effectively limiting ignitions to
near zero. Summer fire weather in western Canada is strongly
affected by mid-tropospheric ridges and troughs, particularly the
North Pacific High and Aleutian Low (Nadeem et al., 2019) which
punctuate the predominant westerly zonal flow. Longer term
weather, climate and fire activity in the region are influenced
by ENSO and PDO (Meyn et al., 2010). We examined temporal
periodicity in two fire weather quantities in the 3 ecozones from
observations at 1 Hz to monthly resolution over observational
periods from hours to a century.

We obtained fire weather and climate observations at four
different sampling frequencies from stations at 3 sites in each
of three ecozones that were co-located as closely as possible
(Figure 2). The Pacific Maritime sites have Cfb and Csb
Koppen-Geiger climates (temperate oceanic and warm summer
mediterranean), the Montane Cordillera sites have Dfb and
Dfc climates (warm summer humid continental and cool
continental subarctic) and the Boreal Plain sites have a Dfb
climate (Anonymous, 1958). Details on the location, weather
observations and period of record for the 9 sites are in Table 3.

Weather observations were used to calculate the 6 inter-
related codes and indexes of the Canadian Fire Weather Index
System (Figure 3), namely the Fine Fuel Moisture Code, Duff
Moisture Code, DC, Initial Spread Index, Buildup Index, and
Fire Weather Index (Van Wagner, 1975) – the FFMC, DMC, DC,
ISI, BUI, and FWI, respectively. The FFMC, DMC, and DC are
indicators of the moisture content of 3 surface organic layers
(needle litter and fine branch wood, 5−10 cm organic layers,
and deep organic layers, respectively) with nominal time lags
(time to lose 2/3 moisture under standard drying conditions) of
18 h, 15 and 53 days, respectively. With respect to the DC for
example, gravimetric moisture contents sampled at 3 locations
in western Canada were in the range 213−335% at DC 100 and
80−130% at DC 400 (Lawson and Dalrymple, 1996; Figure 4).
The ISI combines fine fuel moisture and wind speed into an
index of fire spread potential, the BUI represents organic layer
fuel availability, and the FWI reflects potential fire intensity. For
additional interpretive information on the FWI System the reader
is referred to Wotton (2009).

Monthly Climate
Monthly observations of the average maximum daily temperature
and total precipitation were obtained from Meteorological
Service of Canada stations with an approximately 100 year
record (Table 3). The Saanichton CDA station has a continuous
100 year record at the same location. However, we had to combine
observations from 2 to 3 nearby stations to make up a 100 year
record for the Prince George and Lost River/Nipawin sites,
respectively. Combining observations from nearby stations in a
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TABLE 2 | Nominal frontal fire intensities, potential fire behavior and suppression implications (after Taylor and Alexander, 2017) for the Van Wagner (1987) FWI – Intensity
scaling function.

FWI Intensity (kW/m) Potential fire behavior Fire suppression implications

<3 <10 Firebrands and fires tend to self-extinguish No control problems

3−9 10−100 Fires continue to smolder On-going mop up

9−17.5 100−500 Surface fire with flame heights < 1.0 m Limit of control with hand tools

17.5−28.5 500−2000 Moderately vigorous surface fires with both high and low
flames. Ladder fuels consumed. Isolated torching

Heavy equipment, helicopters with buckets, skimmers and
retardant aircraft likely to be effective

29−36 2000−4000 Highly vigorous surface fire. Passive crowning in conifer
forests

Control at fires head may fail. Suppression on flanks

36−48.5 4000−10 000 Extremely vigorous surface fire in open fuels. Active crown
fires with continuous spread in conifer forests

Suppression on fires flanks or indirect attack

>48.5 >10 000 Conflagrations. Towering convection columns. Fire whirls.
Medium to long range spotting

Suppression should not be attempted until burning
conditions ameliorate

long term record many be more acceptable where the focus is on
periodicity, rather long term trends (which are removed in the
analysis). These data were used to calculate the Monthly Drought
Code (MDC) for May−October. The MDC is an approximation
of the average monthly Drought Code that can be estimated
from monthly climate data (Girardin and Wotton, 2009). It
was not possible to calculate the other daily FWI System values
over a century because they require measures of daily noon or
maximum/minimum relative humidity and wind speed that are
rarely available for a continuous period at locations in Canada
prior to the mid1900s.

Daily and Hourly Weather
Daily observations of temperature, relative humidity (RH),
average wind speed over 10 min, and total 24 h precipitation
at 12:00 LST and hourly observations of the same quantities
(excepting total precipitation at 1 h intervals) were obtained
from remote automatic fire weather stations operated by the
BC Wildfire Service and Saskatchewan Environment for the 2
locations in BC and 1 location in Saskatchewan, respectively. It
should be noted that remote automatic fire weather stations are
often not operated over the winter months because they are not
equipped with instrumentation to measure precipitation as snow.
The 12:00 daily observations were used to calculate the daily
FFMC, DMC, DC, ISI, BUI, and FWI values. Days outside the
fire season with no observations were filled with zeroes (for FWI).
The hourly temperature, RH, and wind speed observations were
used to calculate FFMCh (hourly FFMC; Van Wagner, 1977a) for
the May−September fire season only. The moisture content of
fine fuels represented by the FFMC is responsive to changes in
temperature, RH, and wind speed at this scale. Hourly wind speed
was used with FFMCh to calculate ISIh and FWIh (hourly ISI and
FWI, respectively).

High Frequency Wind Speed Observations
One month samples of wind speed measured at 20 Hz using
sonic anemometers and averaged to 1 Hz were obtained from two
flux tower sites (DF-49 and OBS) that are part of the FluxNet
Canada network and an associated site (MPB-03; Brown et al.,
2012) in the 3 ecozones. Wind speed is only one of a number of
meteorological quantities sampled at the flux towers in addition

to CO2 flux; sampling methods are described in Fluxnet Canada
Team (2016). The 1 s wind speed measures were combined with
FFMCh and daily BUI values from the hourly fire weather station
at each location to estimate FWIs (1 s FWI) using the following
algorithm:

(1) FFMCs (1 s FFMC) was estimated using a linear
interpolation to 1 s between successive FFMCh values;

(2) FFMCs was used with the observed 1 Hz wind speed to
calculate ISIs (1 s ISI) using the standard ISI equation (Van
Wagner, 1987);

(3) BUIs (1 s BUI) was estimated using a linear interpolation
between the daily (12 pm) BUI values;

(4) BUIs and ISIs were then used to calculate FWIs using the
standard FWI equation (Van Wagner, 1987).

FFMCs and BUIs are likely not physically meaningful
quantities because changes in surface fuel moisture are not
measurable at a 1 s scale but were calculated so that ISIs and
FWIs would have a smoother response from hour to hour within
and between successive days. However, we assume that fire
spread and fire intensity potential, as represented by ISI and
FWI, change with instantaneous changes in wind speed because
in situ fire spread is observed to respond rapidly to changes
in wind speed in field (Taylor et al., 2004) and laboratory fires
(Albini, 1982).

Spectral Analysis
Because the focus of our paper was to develop illustrative
examples rather than rigorous analysis of spectral properties
we used relatively simple and well-known time series methods.
Spectral analysis was used to test for the presence of signals of
different frequency in the MDC and FWI time series data using
the fast Fourier transformation incorporated in the SAS Spectra
Procedure (Brocklebank et al., 2018). The data are centred around
the mean (anomalies) before analysis. Fisher’s Kappa statistic
was used to test the hypothesis that variation in the time series
is white noise. We used spectral analysis to test for energetic
peaks in the MDC and FWI time series at 5 time scales and
observational periods:
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FIGURE 2 | Location of the 9 weather stations used in the spectral analysis of fire weather in the Pacific Maritime, Montane Cordillera, and Boreal Plain ecozones.
Station names and details are in Table 2.

(T1) Annual values of the July MDC over approximately
100 years to test for ultra-low frequency
peaks.

(T2) Daily FWI values for 25−40 year periods (including zeroes
in the winter months) to test for low frequency, annual
or seasonal peaks.

(T3) Daily FWI values for May-September in each of 10 years
(2000−2009) to test for medium frequency peaks within
the fire season.

(T4) Hourly FWI values (June-August) in each of 10 years
(2000−2009) to test for daily and other cycles in the
summer portion of the fire season.

(T5) Instantaneous (1 s) FWI for 1 h during the peak
burning time (18:00) on 10 days to test for micro-scale
energetic peaks.

Spectral peaks were identified visually in plots of the Power
Spectral Density (PSD) against the period for tests where the
hypothesis of white noise was rejected. The PSD is the Fourier
transform of the autocorrelation function; PSD assigns units of
spectral power per unit frequency, indicating how much of the
signal is at a particular frequency ω (plotted as a period, the
inverse of ω for convenience).
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TABLE 3 | Station locations and sample periods for monthly, daily, hourly, and 1 s weather/climate observations in three ecozones in western Canada.

Ecozone

Pacific Maritime Montane Cordillera Boreal Plain

Monthly maximum temperature and total precipitation

Station no./name 1−Saanichton CDA 4−Prince George / Prince George A 7−Lost River/Nipawin A /Nipawin

Climate Csb Dfb Dfb

Latitude ◦N 48.6217 53.8333/53.8889 53.2833/53.3333

Longitude◦W −123.4189 −122.8000/−122.6789 −104.3333/−104.0000

Elevation (m) 61 570/670 375/372

Sample period (by station) 1914−2019 1912−1945/1946−2019 1918−1994/1995−2019

Daily 12:00 temperature, relative humidity, 10 min average wind speed, 24 h precipitation – Hourly temperature, relative humidity, wind speed, precipitation

Station no./name 2−Menzies Camp 5−Bear Lake 8−Fort La Corne

Climate Cfb Dfc Dfb

Latitude ◦N 50.04863 54.50922 53.2483

Longitude ◦W −125.789 −122.691 −104.842

Elevation (m) 438 739 474

Sample period (daily/hourly) April-October 1970−2014/1992−2014 April-October 1980−2014/1989−2014 April-October 1989−2015/1989−2015

Horizontal wind speed at 20Hz averaged to 1 s

Station no./name 3−DF-49 6−MPB-03 9−OBS

Climate Cfb Dfc Dfb

Latitude ◦N 49.8673 54.47333 53.9872

Longitude ◦W −125.3336 −122.7133 −105.1178

Elevation (m) 300 710 629

Sample period July 15–Aug 15, 2009 July 15–Aug 15, 2009 May 1–30, 2011

Stations numbers correspond to Figure 2.

FIGURE 3 | Structure diagram of the Canadian Fire Weather Index (FWI) System. Reprinted from Taylor and Alexander (2006).
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FIGURE 4 | Relationship between the Drought Code (DC) of the FWI System
and the moisture content predicted in the standard function, and the moisture
content of forest floor organic matter at 10 cm depth observed in 3 fuel
complexes in western Canada (Lawson and Dalrymple, 1996).

In total we examined the spectral characteristics of
approximately 100 fire weather time series from 5 periods
at 4 temporal resolutions in 3 ecozones in western Canada
(T1−T5 in Section “Temporal Components of Fire Weather
Index in Western Canada”). Examples of the fire weather time
series and corresponding spectral densities from the Montane
Cordillera (Prince George, Bear Lake and MPB sites) are shown
in Figure 5. The estimated spectral peaks are summarized
Table 4, and are described briefly as follows:

(T1) In the analysis of 3 July MDC time series extending over
approximately 100 years, the white noise hypothesis was
rejected (p > 0.01) for the Saanichton and Prince George
stations. Spectral peaks of 3.5 and 9 years were observed
at both locations, as well as a 26 year peak at Prince
George (Montane Cordillera ecozone). The white noise
hypothesis was not rejected for the Lost River/Nipawin
(Boreal Plains ecozone) dataset, which was a composite of
3 nearby stations.

(T2) The hypothesis of white noise in 3 multi-decadal series of
daily FWI was rejected at all locations (p > 0.001). Not
surprisingly, we observed very strong spectral peaks at 365
and 180 days corresponding to the annual cycle and the
approximate fire season length in western Canada.

(T3) In our analysis of 30 series of daily FWI data for May
September for 10 individual years, the white noise is
rejected at all locations in all years (p > 0.001). Spectral
peaks were observed in the order of 4 to 23 days, with
the highest frequencies at 6 and 9, 12, and 12 days in the
Pacific Maritime, Montane Cordillera, and Boreal Plains
ecozones, respectively.

(T4) The hypothesis of white noise in the 39 time series of
hourly FWI from June to August for 10 individual years
was rejected at all locations in all years (p > 0.001). There
were very strong 24 h (diurnal or daily) peaks in the FWI
values. Peaks were also observed in the 48−390 h range

(2−16 days). Excluding the 24 h peaks, the median of the
observed peaks was 140, 130, and 120 h, in the Pacific
Maritime, Montane Cordillera, and Boreal Plains ecozones,
respectively (5.8, 5.4, and 5 days).

(T5) Our analysis of 1 s FWI data was restricted to 1 h
periods around the peak burning period (18:00−19:00)
on each of 10 rain free days. The hypothesis of white
noise is rejected in all of these time series at each location
(p > 0.001). Spectral peaks were observed from 60 to 600 s,
with median values of 155, 180, and 160 s in the Pacific
Maritime, Montane Cordillera, and Boreal Plains ecozones,
respectively (2.6, 3, and 2.7 min).

Summary
The fire weather time series we examined exhibit, not
surprisingly, very strong spectral peaks in Fire Weather Index
values at annual and daily scales at all locations in the Pacific
Maritime, Montane Cordillera, and Boreal Plains ecozones.
We also observed quasi-periodic spectral peaks in fire weather
measures at other scales, varying in strength and period length
with location, time of year or time of day, and length of
sampling period. The median spectral peaks in each ecozone
were approximately 3 min consistent with turbulence in the
late afternoon; spectral peaks were much stronger during the
peak afternoon burning period that overnight. Spectral peaks
in the order of 4−14 days were observed in June−August
daily FWI values, consistent with the influence of blocking high
pressure ridges and troughs that are characteristic of western
Canadian fire seasons. The period lengths varied by year, possibly
due to the frequency and persistence of blocking ridges, but
this requires further investigation. Longer > 20 day periods
are in the same order as the MJO. There has been very little
investigation of this mode of variability in the context of fire
weather and so this connection is speculative, although Li et al.
(2018) suggest that the MJO has a strong role in summer
precipitation anomalies in western Canada. Spectral peaks were
also observed in the Monthly Drought Code in the Montane
Cordillera (Prince George) and Pacific Maritime (Saanichton)
ecozones at 3.5 and 9-years, and at 26 years in the Montane
Cordillera. From this limited information we do not speculate on
casual connections with climate oscillations – analysis of other
fire weather measures, stations and cross-spectral analysis with
ENSO and PDO indices would be interesting. We did not observe
mesoscale influences of slope winds or sea breezes for the study
locations in this broad scale analysis; it is possible that sea breezes
might be observed in the DF-49 data with more detailed analysis
of wind direction.

The significance of the spectral peaks is that they are
connected to the predictability of the fire weather measures
at these scales (Palmer and Hagedorn, 2006; Krishnamurthy,
2019) and the utility of forecasts to fire management. For
example, Corringham et al. (2008) examined opportunities to
use monthly climate information in an annual fire management
decision calendar.

It is clear that variation in annual, seasonal, and daily fire
weather measures due to astronomical influences on radiation
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FIGURE 5 | Left panel: FWI System values (FWId, FWIh, FWIs are the Fire Weather Index estimated at daily, hourly, and 1 s time scales, respectively.) observed at
different time scales in the Montane Cordillera ecozone. (A) Monthly Drought Code during July, 1912–2018, Prince George, BC; (B) FWId during 2000–2010, Bear
Lake, BC; (C) FWIh on June 1- August 31, 2009, Bear Lake, BC; (D) FWIs for July 15–16, 2009, MPB-03 site (see Figure 1; Table 2). Right panel: (E–H) Power
spectral density (PSD) corresponding to the time series in the right panel, excepting H is the power spectra for a 1 h sample 18:00–19:00 on July 15, 2009.
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TABLE 4 | Estimated spectral peaks (periods) in the Fire Weather Index (FWI) and the Monthly Drought Code (MDC) in 96 time series at annual, daily, and hourly
resolution in 3 ecozones in western Canada.

Pacific Maritime Montane Cordillera Boreal Plain

Sample Period yy:mm:dd (n) Spectral Peaks Sample Period yy:mm:dd (n) Spectral Peaks Sample Period yy:mm:dd (n) Spectral Peaks

T1 MDC (July by year)

1918−2018 (100) 3.4, 9 1917−2019 3.5, 9, 26 1911−2019 NS

T2 Daily FWI

1980−2009 (9000) 365 1980−2009 (9000) 180, 360 1980−2009 (9000) 360

T3 Daily FWI (May−September, n = 160)

2000 10, 23 2000 10,23 2000 6, 15

2001 5 2001 6,22 2001 6, 12

2002 10 2002 12 2002 5

2003 9 2003 4, 11 2003 12

2004 9 2004 8, 30 2004 9, 14

2005 9, 17 2005 4, 12 2005 7, 12

2006 11 2006 6 2006 7, 23

2007 8, 23 2007 8, 22 2007 5, 10

2008 13 2008 12 2008 13

2009 13 2009 6, 12 2009 11, 18

T4 Hourly FWI (June−August, n = 2200)

2000 24,120,320 2000 24,50,70,150,230 1990 24,48,90,140

2001 24 2001 24,70,130 1991 24,90,300

2002 24 2002 24,130,360 1992 24,80,160

2003 24,90,140 2003 24,100 1993 24,120,260

2004 24,120,220 2004 24,90 1994 24,70,170,390

2005 24,240 2005 24,70,90,280 1995 24,160

2006 24,80,120 2006 24 1996 24,80, 120

2007 24, 120 2007 24,170 1997 24,80,200

2008 24,320 2008 24,300 1998 24,70,100,130

2009 24, 250 2009 24,130 1999 24,70,90,130

T5 Instant FWI (18:00−19:00 at 1 Hz, n = 3600)

2009:07:15 100, 130, 170,400 2009:07:15 170, 270 2011:5:15 160,270

2009:07:16 60,140,300 2009:07:16 100 2011:5:16 100

2009:07:17 80,160,240,500 2009:07:20 120, 180 2011:5:17 120,180

2009:07:18 70,140,400 2009:07:21 140, 270 2011:5:18 70,140,270

2009:07:19 70, 240,550 2009:07:23 90, 180, 240 2011:5:19 90,160,220

2009:07:20 80,120 180,300 2009:07:24 80, 140, 260,540 2011:5:20 70,140,260

2009:07:21 120, 150 2009:07:25 80, 120, 340 2011:5:21 70,140,340

2009:07:22 140,300 2009:07:26 100, 280 2011:5:22 100,170

2009:07:23 70, 180,250 2009:07:27 100, 180,240,600 2011:5:23 160,250

2009:07:24 60,110,170230 2011:5:24: 100,160,230

forcing is highly predictable. Although synoptic scale spectral
peaks in fire weather measures are weaker, predictions at
that scale have useful skill (e.g., Jones et al., 2010). Indeed,
it is the extremes that are important to fire activity. While
variability at turbulent scales may be important to firefighter
safety at critical fire behavior thresholds (where there is a
non-linear response between wind speed and fire spread) it
is unlikely to be predictable by numerical methods but could
perhaps be represented statistically. The predictive skill of low
frequency variability is likely insufficient to inform seasonal fire
management decision making (where the cost of being wrong is
high) but it is important to understand the effect of low frequency
variability on long term fire activity and resource requirements.

Our purpose in using spectral analysis in this study was to
develop an illustrative example; more rigorous spatio-temporal
analyses are needed to characterize spatial-temporal patterns in
the FWI as well as other meteorological measures, their spectral
power, connections with fire activity and possible teleconnections
between low frequency MDC and climate oscillations. For
example, Magnussen and Taylor (2012b) examined correlation
in peaks in weekly fire occurrences and area burned in each
response center and province across Canada to estimate the
likelihood of simultaneous peaks in fire activity in different
regions. Applying clustering analysis to >20 year time series of
daily FWI observations from 169 weather stations station across
BC, Hrdlickova et al. (2008) found 7 spatio-temporal clusters of
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stations; these clusters represent regions of similar fire weather
that can inform forecasting and preparedness planning.

FIRE ACTIVITY ACROSS SCALES

Wildland fires can be ignited in a few organic fuel particles by
a lighting strike or from a variety of human causes (e.g., spark,
glowing cigarette, friction, and electric arc) and will continue to
spread between fuel particles as long as sufficient heat continues
to be produced from their combustion to heat adjacent particles
to ignition temperature (Sullivan, 2017). As a fire continues
to spread and grow from a point source, it encounters and
is influenced by variation in fuels, topography, and weather.
Among these factors, weather is the most temporally variable
“top down” driver of wildfire activity across scales, influencing
the number of ignitions, fire spread and intensity, fire size and,
area burned, and fire frequency from minutes to centuries. It is
important to note that of the fire processes and the fire regime
characteristics shown in Figure 6, only ignition is independent
- fire spread and intensity, fire size and duration, area burned,
and fire frequency measures are conditional on or a compound of
lower level processes (Taylor et al., 2013). In the following section
we briefly examine weather and climate influences on fire activity
at some of these scales.

Weather and Climate Influences
Turbulence
Albini (1982) observed rapid response of fire spread to non-
steady wind in laboratory fires. There are few quantitative studies
of fire behavior at fine scales in nature. In a series of nine
intensively studied crown fires in the International Crown Fire
Experiment, Taylor et al. (2004) observed substantial variation in

fire spread in situ in the order of minutes that was also expressed
in changes from passive to active crown fire behavior that they
attributed to variation in wind speed around the threshold for
crown fire initiation (Van Wagner, 1977b). They suggested that
the phenomena of intermediate crown fire is due in part to
turbulent gusts at the scale of 10 s meters and minutes. Fine
scale variability in crown scorch and bark char height observed
following surface fires that is due to varying fire intensity may be
partly attributed to turbulence.

Diurnal Variability
The moisture content of live and dead shrub and tree foliage
(Pook and Gill, 1993; Page et al., 2013) and forest floor litter (Beck
and Armitage, 2001) typically decreases from a pre-dawn maxima
to a late-afternoon minima. This follows from a similar diurnal
trend in decreasing relative humidity during the day (Feidas et al.,
2002) and an inverse diurnal trend in temperature, wind speed,
and vapor pressure deficit (Beck and Trevitt, 1989; Barthelmie
et al., 1996). Diurnal variation in fine fuel moisture is reflected in
the probability of fire ignition over the day in field experiments
(Beall, 1934) and in the number of fires reported over a 24 h
period (Magnussen and Taylor, 2012a) which typically peak in
late afternoon. Fire spread and intensity can vary greatly over the
diurnal cycle (Beck et al., 2002) although direct measures of fire
behavior and growth over a full daily cycle are scarce. However,
diurnal variation in smoke emissions and fire radiative power is
well documented through remote sensing methods (e.g., Prins
et al., 1998; Giglio, 2007; Roberts et al., 2009; Andela et al., 2015).

Meso-scale turbulence resulting from convective heating
producing thunderstorms or upslope or onshore winds in the
day and down slope and offshore winds in the evening can
result in strong increases in wind speed with shifting direction.

FIGURE 6 | Fire processes are compounded over temporal and spatial scales in an inverse cascade. Redrawn from Taylor et al. (2013).
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Downbursts from a thunderstorm (in part produced by the
heat of the fire) channeled by topography contributed to rapid
downslope spread of the Dude Fire and the entrapment and loss
of 6 firefighters (Goens and Andrews, 1998).

Synoptic scale variability in the number of fire occurrences2

per day across British Columbia (Magnussen and Taylor, 2012a;
Nadeem et al., 2019) and the daily number of active fires in the
western United States (Freeborn et al., 2015) are strongly related
to day to day variation in fuel moisture and fire danger measures.
Synoptic level influences on daily burned area are evident in
data on daily FWI and daily MODIS hotspot detects in (Field,
2020) data characterizing a fire complex of over 1000 km2 which
burned over a period of 2 months in the record breaking 2017 fire
season in British Columbia. Blocking ridges resulting in extended
rain-free drying periods have been connected to increases in area
burned (Skinner et al., 2000, 2002; Macias Fauria and Johnson,
2007) while upper ridge breakdowns are associated with increases
in lightning fires (Macias Fauria and Johnson, 2006) and extreme
fire behavior (Nimchuk, 1983) in western North America.

Intraseasonal Variability
Lightning intensity in the western United States has been linked
to the intra-annual Madden Julian cycle (Abatzoglou and Brown,
2009). The moisture content of live and dead foliage varies
seasonally (Blackmarr and Flanner, 1968; Gary, 1971); fuel
ignitability (Beall, 1934) and increased fire spread rates are
associated with plant senescence and decreasing fuel moisture
(Cruz et al., 2015).

Annual Variability
Abatzoglou and Kolden (2013) found that annual area burned
was significantly correlated with monthly values of several
indicators of drought including the Energy Release Component
and Buildup Index of the United States National Fire Danger
Rating System, and the DMC and DC of the FWI System in
predominantly temperate forests in the western United States. At
a global scale, annual area burned was correlated with FWI and
Cumulative Water Deficit during the fire season, particularly in
mesic forested regions; burned area was more strongly correlated
with precipitation in the previous 14−25 months in non-
forested regions (Abatzoglou et al., 2018). Yang et al. (2014)
note that monthly area burned peaks in January and February
in equatorial latitudes moving toward May-August at mid-high
northern latitudes and to December-January at southern mid-
high latitudes.

Inter-annual and decadal scale variation in fire occurrence has
been associated with the PDO (Hessl et al., 2004) and annual area
burned with ENSO − PDO interrelationships in northwestern
North America Meyn et al. (2010); Mason et al. (2017) have also
connected ENSO to fire potential in the continental United States.
Lagged effects on ENSO on fire in the southern hemisphere
are attributed in part to the effects of variable precipitation on
grass fuel production (Harris et al., 2008). Chen et al. (2017)
provide a comprehensive review of teleconnections between

2We distinguish the process of ignition of a small number of fuel particles resulting
in an individual fire, from the occurrence of a number or population of fires in a
broader geographic area.

ENSO and fire activity in different tropical regions. Regional
anomalies in fire activity in response to ENSO vary from month
to month, beginning in January/February in equatorial latitudes
and migrating poleward through the year, and are mediated
by differences in vegetation. In Canada, the AMO was also
positively correlated with national annual time series of very large
(≥10 000 ha), wildfire-related evacuations, and fire suppression
expenditures (Beverly et al., 2011).

Centennial to millennial scale variation in fire activity has
been attributed to various factors, including effects of climate
on vegetation and fuel availability. For example, millenial scale
variation in fire during the last glacial interval is attributed
to Dansgaard–Oeschger events (Daniau et al., 2007) and other
climatic events like the Younger Dryas (Marlon et al., 2009).
Daniau et al. (2013) also observed orbital scale variation in
fire in southern Africa associated with Milankovitch cycles and
grassland dynamics. In the present interglacial period, variations
in seasonal and latitudinal insolation, extent of the northern
hemisphere ice sheet and southern hemisphere ice caps, sea
surface temperatures, atmospheric concentrations of CO2 and
dust, clouds, and human actions have variously influenced
global-regional atmospheric circulation, vegetation and wildfire
occurrence (Power et al., 2008). For example, in Europe, North
Atlantic ice rafting events or Bond cold cycles may have had a
climatic pacing influence on fire activity with a periodicity of
∼1500 years in the last glacial-interglacial transition and during
the Holocene (Turner et al., 2008; Florescu et al., 2019).

Geographical Variation
The scales of atmospheric influence on fire activity outlined
above are likely most applicable to mid to high latitudes that
are characterized by complex low and high pressure systems that
migrate under the influence of generally westerly winds in the
troposphere (Barry and Chorley, 2009), leading to substantial
synoptic scale variation in temperature, precipitation, humidity
and wind speed in the fire season. In the southern hemisphere,
Reeder et al. (2015) show seasonal patterns in mean Rossby
wave breaking frequency at mid to high latitudes associated with
anticyclones. The pattern proceeds easterly affecting different
continental land masses differently in the austral spring, summer
and fall. In southern Australia, anticyclones in austral summer
result in a very dry northerly or northwesterly flow of air from
the interior of the continent that are followed by cold fronts
with strong southerlies or southwesterly winds; most severe fires
in southern Australia have be affected by cold fronts (Reeder
et al., 2015). Fire activity in Southern South America is related
to the latitudinal position and intensity of the South Pacific
High (SPH) that blocks southern south westerly winds and zonal
flow of precipitation; the SPH shifts poleward in summer and
is influenced at the interannual scale primarily by the pattern
of the Antarctic Oscillation and secondarily by ENSO variability
(Holz et al., 2012).

There is much less intra annual variation in temperature
in the tropics at the surface and between air masses. Tropical
weather is dominated by convective features of different scales
such as cyclones and the InterTropical convergence zone of
easterly flow; variation in precipitation and wind speed are likely
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more significant to fire activity. Although synoptic scale weather
occurs in the tropics (Laing and Evans, 2015) many authors have
highlighted the effect of ENSO on annual fire activity. Chen
et al. (2017) provide a comprehensive review of teleconnections
between ENSO and fire activity in different tropical regions.
Regional anomalies in fire activity in response to ENSO vary from
month to month, beginning in January/February in equatorial
latitudes and migrating poleward through the year, and are
mediated by differences in vegetation.

The relative contribution of subhourly to interannual scales
of atmospheric variability to variation in fire weather and fire
activity in different regions of the world would be an interesting
area for further investigation. For example, in the United States,
Mason et al. (2017) found that anomalies in the Buildup Index
(BI) attributable to a modulated annual cycle (MAC) were
largest in the western United States and in Florida, while BI
anomalies attributable to ENSO were largest in the northwest and
southeast United States Anomalies attributed to the MAC were
approximately double those attributable to El Nino.

At a global scale, the asynchrony in monthly area burned
peaks in northern mid and high latitudes and southern high
latitudes (Yang et al., 2014) has allowed for increased sharing
of fire management resources north-south and south-north in
extreme fire years.

Ecological Impacts of Fire
Variation in fire activity may have second order ecological
impacts across scales through “bottom up” interactions between
fire, ecological features and processes and feedbacks (Heyerdahl
et al., 2001; Holling, 2001). Varying weather, terrain, and
vegetation results in varying fire behavior and severity within
individual fire events (Catchpole, 2002; Hammill and Bradstock,
2009; Povak et al., 2020). Subhourly, diurnal, and synoptic scale
variation in fire weather (including shifting wind direction)
within the duration of an individual fire contributes to variation
in fire intensity and spread direction within fires at spatial
scales from meters to kilometers. Variation in fire intensity
influences variability in fire-induced plant mortality (Etchells
et al., 2020), post-fire residual stand structure, residual woody
debris and surface organic matter (Miyanishi and Johnson, 2002),
while variation in spread direction and intensity influence the
prevalence of unburned patches within large fires (Andison
and McCleary, 2014), and the fractal and fuzzy nature of fire
perimeters (McAlpine and Wotton, 1993). The number of fire
spread events and the time to extinguishment that influence fire
size (Wang et al., 2020) are likely influenced by the occurrence
of strong winds and fire ending precipitation events (Wiitala
and Carlton, 1994) at meso to synoptic scales. Variation in
the pattern of fire severity and fire size further influences the
recruitment of plants (Etchells et al., 2020) and the diversity
of post-fire insect, bird (Sitters et al., 2015) and other small
animal communities (Banks et al., 2011). Seasonal variation
in fire weather influences the size and severity of fires in a
landscape (Perrakis and Agee, 2006; Russell-Smith and Edwards,
2006); interannual variation in burned area, primarily due to
weather (Abatzoglou and Kolden, 2013) influences the species
composition and age structure of vegetation in the landscape

(Andison, 1998), which in turn influences populations of many
species, including large browsing animals such as elk (White et al.,
1998). Millenial scale variation in climate and fire activity may
also have affected the prevalence of grasses or woody trees in
savanna biomes (Bond et al., 2003).

FIRE MANAGEMENT DECISION SPACES

Wildfire managers have the challenging job of preventing,
preparing for, detecting, prioritizing and responding to fires
threatening values in a dynamic environment where fire
occurrence and/or fire behavior are stochastic processes, varying
from minute-to-minute, hour-to-hour, day-to-day, week-to-
week, and year- to-year with considerable uncertainty. Decisions
taken range from individual incident to national level actions,
where options are often constrained by limited access to
fire locations, information, and resources, and where there
may be multiple and conflicting demands and objectives.
Systematic fire suppression began in North America in the
late 1800s; wildfire management agencies in North America
(and elsewhere) have subsequently developed organizational
structures to acquire, position, allocate, and deploy resources
to manage fires in this highly dynamic environment. Fire
management decision making thus encompasses strategic,
operational and tactical components (Taylor et al., 2013; Martell,
2015) including:

(1) Setting strategic objectives and policies, and determining
the long-term requirements for resources (personnel and
equipment) and where they should be based.

(2) Operational decisions through the fire season regarding the
state of preparedness or organizational readiness, and the
allocation of resources to particular geographic regions or
fire incidents depending on the current and expected fire
load and priorities.

(3) Tactical decisions regarding the deployment of resources
to, and utilization of resources on managing active fires.

In this section we investigate, present, and discuss an
analysis of fire management decision spaces in Canada and
their relationship to temporal and spatial scales of fire
weather and activity.

Survey Methods
During 2010 we carried out a set of structured interviews
with approximately 20 staff of the 12 Canadian provincial
and territorial wildfire management agencies, Parks Canada,
and the Canadian Interagency Forest Fire Centre regarding
fire management planning and decision making processes that
were used in each agency. This was done to inform the
development of a national resource forecasting system (Taylor
et al., 2011). Our objective was to describe the decision spaces
comprising preparedness and response functions, in order to
define a structure for the forecasting model. A decision space is
circumscribed by the range of options or choices and the range
authority or responsibility that an agent has to make decisions
about, or influence a range of functions and resources (Bossert,
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1998; Klein et al., 2009). These interviews and a subsequent
literature review3 led to describing a number of types of decisions
and mapping the fire management decision spaces in a spatio-
temporal framework. The conceptual model was further refined
through a number of presentations to the fire management
agencies regarding the resource forecasting model, discussions
with senior fire managers and researchers about decision making
processes4 and our experience with providing fire forecasting and
planning support to the BC Wildfire Service in several wildfire
seasons over the past decade.

Results
In Canada, fire management is decentralized among 13
autonomous provincial and territorial agencies that have the
primary responsibility for natural resource management in
the Canadian federation, with only one federal agency, Parks
Canada, managing fire in national parks. Decision making
authority flows from legislation; in the province of British
Columbia for example, the Wildfire Act provides direction.
Supply chains are organized in order that appropriate resources
(fire crews, aircraft and other equipment) based at hundreds
of locations, can be dispatched from about 50 response centers
to approximately 7500 fires annually across an area of about
10,000,000 km2 of managed forest as required to meet objectives.
Our survey identified about 20 broad types of plans and decisions
(Table A1) which were mapped to 16 decision spaces within
4−5 administrative levels from the national to incident level
with a geographic span of 10,000,000−0.01 km2 and 6 time
spans from decades to minutes that comprise the decision
hierarchy. The influential variables and range of options or
range of functions in a decision space have a similar spatio-
temporal resolution, and the decisions associated with any
particular space are compatible with the decisions taken in
adjacent levels (Martell, 2001). The decision types listed in
Appendix A1, and the spaces mapped as an N2 chart in
Figure 7 are typical of the fire agencies in the Canadian
provinces of British Columbia, Ontario and Quebec. These
are briefly summarize in the following paragraphs, where
the number and letters correspond to the grid location in
Figure 7.

(1) National. In Canada, the Canadian Interagency Forest
Fire Centre (CIFFC) and Parks Canada are the only
fire agencies with a national geographic scope, (where
CIFFC has a similar function to NIFC in the United
States). An inter-agency Mutual Aid and Resource Sharing
Agreement guides CIFFC activities; these include: (A)
establishing exchange standards and other protocols; (B)
coordinating national training courses on an annual basis,
and most importantly, (C) coordinating the voluntary
exchange of resources between Canadian agencies (and
exchanges between Canada and other countries) when one
or more of the 13 are experiencing a high fire load and

3Taylor et al. (2011). Review and discussion of fire management resource demand
and capacity planning models. Unpublished file report.
4R. McAlpine and C. McFayden, Ontario Ministry of Natural Resources, Personal
communications.

requirement for resources, and one or more agencies have
low fire activity and excess resource capacity. High fire
load may include large and prolonged incidents which
de facto require national level resources. The duration
of resource exchanges varies for aircraft, personnel, and
equipment; personnel exchanges typically extend over
18 days. Resource exchanges depend on the expected
fire load (number of new and active fires of varying
complexity) and a relatively low likelihood of the co-
occurrence of peaks in fire activity between two or more
agencies (Magnussen and Taylor, 2012b) in a planning
period, stemming from spatio-temporal separation in peak
fire weather at a national scale.

(2) Provincial. As noted earlier, the primary authority for
wildfire management in Canada stems from provincial
legislation. Provincial/territorial decision making typically
includes (A) setting strategic direction, permanent staffing,
multi-year contracting for services such as airtankers,
purchasing equipment and/or aircraft, and base location
to meet level of protection objectives, which may include
a target annual area burned limit (B) annual budgeting,
seasonal staffing and training, seasonal contracting for
services, and resource basing depending on the annual
expectation of the number of fires of different complexity
(C) importing or exporting of resources from/to other
jurisdictions during the fire season, depending on the
expected fire load (number of new and active fires of
varying complexity) in a (typically 14 day) planning
period. (D) in large provinces, reallocation of resources
between regional response centers depending on the
current and expected fire load in a planning period,
including to high priority fires (E) daily prepositioning of
provincially managed resources such as aircraft, depending
on the expected number of new fire starts exceeding
ground resources that day (F) dispatching provincially
managed resources such as aircraft to new fires in real-
time, depending on their expected near term fire growth
and values at risk.

(3) Response center. In larger provinces in Canada (Ontario,
British Columbia, Quebec) resources are allocated at a
regional scale from facilities which we refer to here as
response centers. Decisions at this level typically include
(C) medium and short term contracting for resources
depending on the expected load of fires of different
complexity over approximately 3−30 planning periods
(D) 1−3 day preparedness levels, and prepositioning of
resources depending in part on the expected number,
intensity and location of new fire starts (E) daily routing
of detection aircraft, depending on the expected number,
severity and location of new fire starts, and allocating
resources to active fires depending on their complexity,
expected growth and priority, (F) dispatching initial attack
resources, depending on the expected near term growth of
new fire starts and values at risk.

(4) Operating Base. Initial attack and sustained action crews
are typically based at a number of locations within a
response center. Decisions at this level include (D/E)
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FIGURE 7 | An N-2 chart of typical situation spaces in fire management decision making in the province of British Columbia, Canada, and influences of atmospheric
variability.

establishing preparedness levels, opening temporary sub-
bases, and scheduling crew availability, depending in
part on the expected number, intensity and location of
new fire starts.

(5) Incident (Fire). As in many other nations, Canada
uses the Incident Command System, where (E) daily
tactical objectives and resource deployment decisions are
communicated in an Incident Action Plan, with reference
to expected fire behavior and growth in the present and
immediately following operational periods (typically a
day). Decisions regarding (F) deployment and utilization
of resources and plans for entrapment avoidance that are
made throughout the day or operational period at the
Division, Sector, Task Force, or Crew levels (depending on
the complexity of the fire) are responsive to the immediate
and expected weather and fire behavior conditions during
the day. Actions such as a tactical withdrawl depend on
changes in the immediate and expected fire intensity and
spread over a period of minutes to hour.

Summary
Our analysis of decision making in the fire management supply
chain (Martell, 2015) led to the mapping of sixteen decision
or situation spaces, where the decisions in each space have
quite clear temporal and spatial scope. We recognize that this
hierarchical model is a simplification - while the flow of resources
in the fire management supply chain is a forward cascade,
information flow between organizational levels is more dynamic.
However, the fire management hierarchical framework is nearly

decomposable (Simon, 1974) into tractable spaces to address with
particular decision problems. Rothermel (1980); Andrews (2006)
also provided spatio-temporal frameworks for the development
of fire management decision support systems; our model has a
similar structure but is more granular and emphasizes decision
making within the fire season.

Fire management agencies are fast-response organizations
(Faraj and Xiao, 2006) that operate in conditions requiring
rapid decision making, where the annual and daily fire load,
and individual fire activity is highly dependent on forcing
by climate and weather. Minas et al. (2012) observed that
wildfire management is a kind of “hyper project” (Simpson,
2006), a special class of operations where a set of tasks and
resource requirements interact with a dynamic, external pacing
function – fire weather and fire activity. Decision or situation
spaces are strongly connected to three elements of situational
awareness (Endsley, 1988) − “the perception of the elements
in the environment within a volume of time and space, the
comprehension of their meaning and the projection of their status
in the near future.” The depth and scope of SA is an important
factor in decision-making in a dynamic environment. SA is at the
nexus of fire management decision spaces and fire weather scales.
Similar to the treatment of climate and weather as “top down”
controls on fire regimes (Gill and Taylor, 2009), weather and
climate are top down controls on fire management, representing
a pacing function that influences the tempo of fire activity and
decision making. Fire management decision spaces are shaped
in part, by the predictability of temporal and spatial fire weather
patterns, and the uncertainty of associated fire activity at these
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scales. It is noteworthy that as the time scale decreases on critical
days, fire activity can increase sharply in a hours or minutes
in response to rapid changes in weather, the time for decision
making is compressed and weather and predictive models have
limited utility; quick intuitive judgements may supersede slower
rational thought processes (Alexander et al., 2015). In this study
we did not examine the factors influencing the geographic span
of decision spaces which, in addition to patterns of weather and
fire occurrence, many include historical factors (e.g., national,
provincial boundaries) travel time and coverage concerns for
operating bases, settlement patterns and values.

SYNTHESIS

This special issue of Frontiers In Environmental Science
addressed the question “Climate, Land Use and Fire – Can
Models Inform Management?” Our study emphasizes the
importance of scale in fire science and modeling. To paraphrase
Levin (1992), scale unifies fire physics and fire ecology, and
connects basic and applied research.

“Applied challenges . . . require the interfacing of phenomena
that occur on very different scales of space, time, and . . .

organization. Furthermore, there is no single natural scale at
which . . . phenomena should be studied; systems generally show
characteristic variability on a range of spatial, temporal, and
organizational scales” (Levin, 1992).

The purpose of this paper was to develop a conceptual
framework demonstrating that atmospheric, wildfire, and fire
management process are complex interacting physical, ecological
and socio-economic systems connected by scale. We propose
that the cascade of kinetic energy through atmospheric scales
that is expressed in part in fire weather conditions, is reflected
in an inverse cascade of chemical energy released through
fire processes, and further shapes a forward cascade of fire
management activities and resources (Figure 8). Climate and
weather are a pacing function on fire activity and management
across all scales.

Turner et al. (1989) outlined a four step procedure to make
predictions across scales (1) identify the spatial and temporal
scales of the process (2) understand how the factors controlling

FIGURE 8 | The atmospheric energy cascade (blue ovals) shapes an inverse cascade of fire processes (red ovals) and the fire management supply chain (gray
rectangles). Adapted from Simard (1991); Holling (2001), Taylor et al. (2013). *AO = Atmospheric Oceanic, T-storm = thunderstorm.
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the process vary with scale (3) develop methods to translate
predictions from one scale to the other, and (4) test predictions
across multiple scales. This paper is an early exploration of
the first two steps in this sequence that may help frame
models that inform fire management. Further work is needed
to bridge scales for particular management questions. For
example, the impact of climate change on fire activity is the
most important challenge for fire managers in this century.
The net gain in energy represented by climate forcing will
influence atmospheric processes and fire activity at a number
of scales. Macias Fauria et al. (2011) suggest that predicting
climate change effects on wildfires requires understanding
and unification of climate and the underlying fire behavior
processes across scales. While there has been a significant
effort to understand the effects of climate change on fire
weather (Fargeon et al., 2020) and broad scale measures of fire
activity such as annual area burned (Flannigan et al., 2005),
relatively few fire-climate change studies are linked to fire
management decision making (Wotton et al., 2017). Methods
are needed to translate climate projections to fire management
decision scales.
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APPENDIX

TABLE A1 | Examples of some types of fire management decisions in Canada and links to fire activity.

Decision type Description and fire behavior dependency Typical spatial
level

Typical time
span

Level of protection Determining activities and resource requirements and activities required to meet strategic
objectives, including area burned objectives.

Provincial Multi-year

Capital acquisition Procurement of fixed assets: aircraft, base facilities, equipment, depending on the long term
expectation of number and location of fires of different complexity.

Provincial Multi-year

Staffing Recruiting the appropriate number of permanent and seasonal staff with the appropriate
knowledge, skills and abilities carry out the job functions required to achieve the strategic and
operational objectives, depending on the long term expectation of the number of fires of
different complexity.

Provincial Multi-
year/Annual

Base location Permanent facility at which aircraft and fire crews are stationed during the fire season for
deployment to operations, depending on the long term expectation of the number and location
of fires of different complexity.

Provincial Multi-year

Program budgeting Budgetary authority to fund capital, fixed preparedness and (variable) response resources to
achieve strategic objectives depending on the annual expectation of the number of incidents of
different complexity.

Provincial Annual

Training Imparting the knowledge, skills, and competencies needed to carryout various wildfire job
functions (after CIFFC Glossary Task Team and Training Working Group, 2017), including
training in potential fire behavior in a region.

National
Provincial

Annual

Home basing Allocation of airtankers and fire crews among potential home-bases such that their average
annual ferrying cost/time to meet daily deployment requirements is minimized (after MacLellan
and Martell, 1996) depending on the expected number and location of daily fire starts
exceeding ground resources.

Provincial Annual

Contracting Multi-year contracting for services such as aircraft; seasonal contracting for resources such as
helicopters, mobile aviation fuel services; short term contracting for helicopters, Type 3
firefighters, heavy equipment, logistical support (e.g., Donovan, 2006) depending on the
expected fire load.

Provincial
Response
Center

Multi-year,
annual
<30 days

Resource sharing Exchanging (importing and exporting) resources to other provincial or national jurisdictions
through mutual aid agreements, depending on the expected fire load (number of new and
active fires of varying complexity) Resources are described by kind and type and may be used
in operational support or supervisory capacities at an incident (adapted from National Wildfire
Coordinating Group [NWCG], 2019).

National
Provincial

+14 days
14 days

Preparedness level Increments of planning and organizational readiness dictated by the expected number, intensity
and location of new fire starts, and resource availability (National Wildfire Coordinating Group
[NWCG], 2019).

Response
Center
Operating Base

1−3 days

Resource
repositioning

Repositioning resources available for assignment to incidents (e.g., helicopters and initial attack
crews, or sustained action crews) between operating bases or subbases depending on the
expected number and severity of new fire ignitions in the planning period in order to minimize
response time.

Provincial/
Response
Center

1−14 days

Day basing aircraft Deployment of airtankers to tanker bases overnight or early in the morning to satisfy anticipated
number of new fire starts exceeding ground resources based on the weather, ignitions, and fire
behavior forecast for the following day, and values at risk (after Islam, 1998).

Provincial Daily

Resource allocation Allocation of resources of different types (e.g., sustained action fire crews, helicopters) required
to contain fires depending on the expected number, size, complexity of new and active fires in
the planning period, and their stage of control, and priority.

Provincial
Response
Center

1−14 days

Detection routing Determining flight plans for discovering and locating wildfires from aircraft depending on
anticipated number and location of new ignitions, fire behavior and values at risk.

Response
Center

Daily

Dispatch The implementation of a command decision to move a resource or resources to an assigned
operational mission (National Wildfire Coordinating Group [NWCG], 2019) depending on the
expected near term fire growth and values at risk.

Response
Center

Hourly

Incident Action Plan An oral or written plan containing general objectives reflecting the overall strategy for managing
an incident. It may include the identification of operational resources and assignment and
provide direction for management of the incident during one or more operational periods
(National Wildfire Coordinating Group [NWCG], 2019). Includes an assessment of expected fire
behavior (spread, intensity) in the present and near term burning periods (1−3 days).

Incident Daily

Resource
deployment and
utilization

Decisions regarding the transport, placement, organization and tasking of different types of
resources (including tactics) to protect life and property or to contain fire perimeter growth using
direct or indirect attack methods depending on the stage of control, complexity of the fire, and
the expected fire behavior in the burning period.

Incident Daily to Hourly

(Continued)
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TABLE A1 | Continued

Decision type Description and fire behavior dependency Typical level Typical time
span

Scouting/
Reconnaissance

Observing and assessing immediate and expected fire behavior in the burning period,
values-at-risk, suppression activity, and other critical factors to facilitate decisions on
strategy and tactics needed for fire suppression as per Table 2.

Incident Daily

Entrapment
avoidance

A process used to improve the safety of personnel on the fireline, which emphasizes
tools and tactics available to prevent being trapped in a burn over situation. This
process includes appropriate decision making through risk management, application of
LCES, use of pre-established trigger points, and recognition of suitable escape routes
and safety zones (National Wildfire Coordinating Group [NWCG], 2019). The safety plan
is informed by the expected fire behavior in burning period.

Incident Immediate

Tactical withdrawal Withdrawal of personnel threatened by an active fire front to a safety zone depending
on the immediate fire intensity and spread.

Incident Immediate
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Fire has been a natural feature of the ecosystem for million years. Still, currently fire
regimes have been increasingly altered by human activities and climate change, causing
economic losses, air pollution, and environmental damage. In Brazil, savannas (locally
known as the Cerrado) occupy almost 25% of the area of the country and contain
70% of the concentrated burned area. Fire frequency is related to the use of biannual
fire in agricultural practices, aiming at cleaning cattle pastures, which act as ignition
sources for the surrounding natural vegetation. Here, we present an ecological model
to demonstrate how biennial fire affects plant biomass and carbon release from fine fuel
in the Cerrado. The BEFIRE model (Behavior and Effect of Fire) is the first quantitative
model to simulate the relationships between fire frequency, plant biomass, and fire-
associated emissions based on the synthesis of knowledge about fire behavior and the
effects on ecosystems compiled from experimental burnings in the Cerrado. Our model
uses microclimate variables and vegetation structure (the amount of the aboveground
biomass of trees, shrubs, herbs, and grasses) as inputs, and generates outputs related
to the fire behavior (fire spread rate, fire intensity, and heat released) and the fire effects
on the dynamic of plant biomass and post-fire carbon emissions. The BEFIRE model
predicts that biennial fires allow for the recovery of the biomass of herbs and grasses,
due to its fast growth. However, this fire interval does not allow for the recovery of
the biomass of shrubs and trees. These growth limitations alter the co-existence of
trees/shrubs and herbs/grasses and prevent the uptake of the total amount of emitted
carbon from the combustion of fine fuel. Based on the model results, we proposed
some recommendations for fire management in this threatened biome.

Keywords: aboveground biomass, climate change, carbon emissions, Cerrado, co-existence, fire behavior, fire
frequency, management

INTRODUCTION

Fire is a historical and frequent event that plays a key role in the processes and functions of global
ecosystems, influencing the dynamics of vegetation, biogeochemical cycles, and climate (Beerling
and Osborne, 2006; Pausas and Bond, 2020). In recent history, fire has increased in its frequency
mainly due to climate change, such as rising temperatures and intensified droughts, and due to
human activities (Enright et al., 2015; Bowman et al., 2020). Notably, the Brazilian savanna (locally
known as the Cerrado and occupying almost 25% of the area of the country) contains 70% of the
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concentrated burned area (Araújo et al., 2012; Araújo and
Ferreira, 2015). A high frequency of fire events occurred in the
northern portion of the biome (Santana et al., 2020), where the
remaining native vegetation grows (Sano et al., 2010). This high
frequency is mainly related to the use of fire as a management
tool in agricultural practices like cleaning converted areas and
stimulating the resprout of pastures (Mistry, 1998; Miranda et al.,
2002). These practices use fire biennially and are important
sources of ignition for the spread of fire in the surrounding native
vegetation (Medeiros and Fiedler, 2003; França et al., 2007; Dias
and Miranda, 2010), especially during the dry season (August–
September) when the vegetation is more flammable (Miranda
et al., 2010). The biennial fire regime is associated with ecological
impacts, such as the reduction of tree biomass (Garda, 2018;
da Silva Rios et al., 2018; Montenegro, 2019), species diversity
(Silva, 1999; Ribeiro et al., 2012; da Silva Rios and Sousa-Silva,
2017), and the uptake of carbon emitted by fire (Sato, 2003;
Sato et al., 2010).

Additionally, prescribed burning—the intentional ignition
of controlled fire in the landscape—has been conducted in
ecosystems worldwide for environmental management purposes
(Knapp et al., 2009; Penman et al., 2011; Collins et al., 2019).
These burns are mainly carried out to reduce the risk of fire by
reducing the biomass available for burning and to conserve the
species of fire-prone ecosystems (Fernandes and Botelho, 2003;
Kolden, 2019). However, studies have shown that the application
of prescribed fires can shorten the fire interval and potentially
reduce carbon stocks (Peterson and Reich, 2001; Collins et al.,
2019). The main Brazilian environmental regulation, the Forest
Code, allows fire management in protected areas aiming at the
conservationist management of native savannas. Accordingly,
integrated fire management programs have been implemented
in some protected areas of the Cerrado since 2014 (Schmidt
et al., 2018). These programs consider ecological, economic,
and cultural aspects of fire use, to propose prescribed burns,
firefighting, and prevention (Schmidt et al., 2018; Moura et al.,
2019). However, these programs are recent and there is still
a lot of uncertainty associated with management decisions
(Schmidt et al., 2018; Moura et al., 2019), because of fragmented
knowledge on the relationships between fire behavior, effects on
multiple ecological processes, and different fire regimes (Gomes
et al., 2018). Fire ecology involves various aspects that are not
usually quantified together, such as fire behavior (fire spread,
fire intensity, and heat released), impacts on different vegetation
components (herbs and woody layers), and trace gas emissions
(Gomes et al., 2018, 2020). The lack of connection between these
studies hinders the understanding of the Cerrado‘s ecological
processes associated with the different fire regimes.

System Dynamics (SD) is a modeling tool that integrates
multiple mathematical equations to describe the general behavior
of a system and is used with a view to unifying empirical
knowledge (Angerhofer and Angelides, 2000; Duggan, 2016).
SD can be used as a quantitative modeling tool for analyzing
the impact of recurrent disturbances such as fire, in complex
dynamic systems over time (Collins et al., 2013; Yan et al., 2016;
Godde et al., 2019; Thompson et al., 2019). It also considers
essential fire-related processes, such as interdependence between

system components, temporal feedback, and the non-immediate
responses of each component (Angerhofer and Angelides, 2000;
Duggan, 2016). The use of this modeling tool has contributed
to our synthesis of knowledge, decision-making capacity in
relation to fire management strategies, and provides a useful
basis for improving dynamic global vegetation models (DGVMs)
(Harris et al., 2016; Drüke et al., 2019). However, conceptual and
quantitative regional fire models in the Cerrado are still incipient
in systemic terms, relying only on simplified models that do not
consider the relationships between fire behavior and effects on
ecosystem processes (Gomes et al., 2018).

Despite the lack of connection between studies about fire
behavior and its effects in the Cerrado (Gomes et al., 2018), the
information generated by studies using experimental burning
allow us to construct SD models. Thus, after an extensive
literature review about experimental fires in the Brazilian
savanna, we developed BEFIRE (Behavior and Effect of Fire)—the
first quantitative model based on SD for the Cerrado. The model
simulates the relationships between fire frequency, plant biomass,
and fire-associated emissions to improve the understanding of
fire effects on ecosystems and support decision making related
to fire management. In this study we simulated two scenarios of
fire frequency: I) one with a single fire (1F) in the dry season
(September), to represent a fire regime with a longer time interval
(4 years) favoring the recovery of plant biomass, and II) a scenario
with two biennial fires (2BF) in the dry season, to represent
the most common fire regime. The dynamics of plant biomass
and fire-associated emissions by the fire were simulated over
a period of 4 years post-fire to allow for the validation of the
model by field data.

MATERIALS AND METHODS

Study Area
The Cerrado biome is classified as an Aw tropical savanna
climate (Alvares et al., 2013). There is a high seasonality in the
precipitation distribution, with a rainy season (October–March)
and a dry season (April–September) (Silva et al., 2008). The
Cerrado biome is characterized by a mosaic of heterogeneously
distributed vegetation formations (grassland, savanna, and forest)
(Figure 1), mainly defined by a tree cover gradient (Ribeiro
and Walter, 2008). Fire occurrence in the Cerrado is also highly
seasonal, as during the rainy season there is a substantial increase
in the amount of plant biomass, while in the dry season this
biomass becomes highly inflammable (Miranda et al., 2010;
Hoffmann et al., 2012).

We used the savanna formation to parameterize the
developing SD model, as this type of vegetation is the most
representative of the biome (in millions of hectares, savanna
∼ 76, forest ∼ 40, and grassland ∼ 8) (Sano et al., 2010).
Savanna formation is characterized by the coexistence of different
vegetation strata, such as trees, shrubs, herbs, and grasses
(Ribeiro and Walter, 2008), which are differently affected by
fire (Sato, 2003; Sato et al., 2010). Thus, we considered these
vegetation strata and their respective biomass dynamic (before
and after fire).
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FIGURE 1 | Location of experimental fires carried out in the Brazilian Cerrado
and distribution of the main types of vegetation in the Cerrado from
MapBiomas (http://mapbiomas.org/), classification of vegetation strata in the
savanna, and their contributions to the fine fuel composition (online version in
color). (1) Ecological Reserve, Distrito Federal; (2) Serra do Tombador Nature
Reserve, Goiás; (3) Água Limpa Ranch, Tocantins; (4) Jalapão State Park,
Tocantins; (5) Chapada das Mesas National Park, Maranhão; (6) Tanguro
Ranch, Mato Grosso; (7) Serra do Sincorá, Bahia, and (8) Ecological Station of
Santa Bárbara, São Paulo. Descriptions of the study areas are shown in
Supplementary Table S1.

Database Construction
Information regarding ecological processes related to the
structure and function of this vegetation type was obtained
from an extensive literature review from 1994 to 2020 (see
Gomes et al., 2018, 2020), using the following platforms: Web of
Science, Science Direct, Google Scholar, and the Brazilian Digital

Library of Theses, and Dissertations. We used the following key
words: (prescribed burns∗ OR fire) AND (behavior∗ OR effect∗
OR management∗ OR regime∗ OR emissions ∗ OR frequency).
We included research papers, theses, and dissertations that
used prescribed burns to characterize the fire behavior and
effect in the Cerrado. We identified eight experimental burn
studies distributed throughout the Cerrado biome (Figure 1
and Supplementary Table S1): (1) IBGE Ecological Reserve,
Distrito Federal (Kauffman et al., 1994; Miranda et al., 1996;
Castro and Kauffman, 1998; Silva, 1999; Castro-Neves, 2000;
Medeiros, 2002; Sato et al., 2010), (2) Serra do Tombador Nature
Reserve, Goiás (Fidelis et al., 2013; Gorgone-Barbosa et al.,
2015; Rissi et al., 2017), (3) Água limpa Ranch, Totacantins
(Cachoeira et al., 2020), (4) Jalapão State Park, Tocantins
(Schmidt et al., 2016), (5) Chapada das Mesas National Park,
Maranhão (Schmidt et al., 2016; Montenegro, 2019; Santos,
2019), (6) Tanguro Ranch, Mato Grosso (Balch et al., 2008;
Brando et al., 2014), (7) Serra do Sincorá, Bahia (Conceição and
Pivello, 2011), and (8) Ecological Station of Santa Bárbara, São
Paulo (Brooklynn et al., 2020).

Heading Principles of the BEFIRE Model
We developed the BEFIRE model to support the decision-
making process in protected areas determining the frequency of
prescribed burns in the Cerrado. We use the method of System
Dynamics to combine qualitative analysis with quantitative
analysis (Angerhofer and Angelides, 2000; Duggan, 2016). This
method is widely used to describe the mechanism of a disturbance
using a dynamic view, thus analyzing the relationships and links
between various factors caused by the disturbance, as well as the
consequences of these factors on the event over time (Godde
et al., 2019; Thompson et al., 2019). We used the system dynamics
simulation software Vensim (2017) to simulate these processes.
Detailed descriptions on the relationships and equations used are
described below and in the supporting information.

The BEFIRE model simulates the effect of fire on vegetation
and emissions (Figure 2). Each of these compartments is
represented in the model as stocks. The stocks represent the
balance of resource (biomass and carbon, respectively) based
on losses and gains over time. This value depends on what
has happened in the past (Angerhofer and Angelides, 2000;
Duggan, 2016). In this model the plants biomass varies monthly,
depending on the monthly rates of the defined increases or
decreases. The loss and gain rates were based on literature from
long-term experiments and were specific to the Brazilian savanna
(Figure 1 and Supplementary Tables S1, S2), where it was
possible to obtain the monthly rates of plant biomass variations
(with and without fire) (Supplementary Tables S2, S3).
Since reductions in biomass represent plant mortality and
increases in biomass represent plant recruitment, we calculated
the plant biomass using an allometric equation specific for
Brazilian savannas (Roitman et al., 2018; Supplementary
Figures S1, S2).

The first step of the model (Figure 2—Step 1) was given
by the initial biomass values (inputs) for each plant strata
(Supplementary Table S3), which can vary according to the
characteristics of each site. We calculated the contribution of
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FIGURE 2 | (A) Structure and (B) flowchart of the BEFIRE model. The numbers represent the steps of the model (online version in color).

each of these plant strata to the fine fuel load (Figure 2—Step 2),
because the composition of fine fuel available is an important
predictor of the fire behavior and its effect in the Cerrado

(Hoffmann et al., 2012; Brooklynn et al., 2020; Gomes et al.,
2020). The fine fuel load corresponds to biomass (living or dead)
on the soil surface, made up of grasses, leaves, and fine branches
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with diameters up to 6 mm (Luke and McArthur, 1978) and,
estimated up to a height of 2 m (MCT, 2002). Approximately
95% of the biomass of the herbs-grasses stratum is available
for burning (Batmanian and Haridasan, 1985; Miranda et al.,
2010; Hoffmann et al., 2012), while only 0.01% of the trees-
shrub biomass is available (Nardoto et al., 2006; Hoffmann
et al., 2012; Figure 1). Next, we quantified the fuel material
consumption rates (Figure 2—Step 3), which can vary from 80 to
90% according to microclimatic variables (MCT, 2002; Miranda
et al., 2010; Gomes et al., 2020).

The fire spread rate, fire intensity, and heat released equations
defined the fire behavior subsystem (Table 1). These parameters
have been widely used in the Cerrado biome, and have been
considered satisfactory in representing the fire behavior (Miranda
et al., 2010; Hoffmann et al., 2012; Gomes et al., 2018, 2020;
Brooklynn et al., 2020; Cachoeira et al., 2020). The fire spread
rate equation (Figure 2—Step 4) was obtained from a selection
of models, specific for the Brazilian savanna (Table 1; Eq. 1),
where the vapor pressure deficit (VPD) and wind speed were
the most important variables in determining the fire spread rate
(Gomes et al., 2020), then the microclimate characteristics in the
model were represented by two input variables: VPD and wind.
Actually, the VPD (Table 1; Eq. 2) has also been used in global
models of fire behavior (Drüke et al., 2019) as an important
metric by considering both the relative averages of temperature
and humidity in its equation (Allen et al., 1998). It represents a
measure of the evaporative demand that drives water loss from
fine fuels (Brooklynn et al., 2020).

We used the equation of Byram (1959) to calculate
fire intensity from the fire spread rate and fuel consumed
(Figure 2—Step 5), which corresponds to the rate of energy
release per unit of length (Table 1; Eq. 3). The heat release
(Figure 2—Step 6) was also used according to Rothermel and
Deeming (1980), which corresponds to the released heat per
unit area and is a product of the intensity over the fire spread
rate (Table 1; Eq. 4). These two parameters have been used in
most fire behavior studies (Gomes et al., 2020) and have been
considered strong predictors of the severity of fires in the biome
(Miranda et al., 2010; Hoffmann et al., 2012; Brooklynn et al.,
2020; Gomes et al., 2020).

The carbon emissions (Figure 2—Step 7) were calculated
according to the Brazilian inventory of anthropic emissions of
greenhouse gas (MCT, 2002), based on the Intergovernmental
Panel on Climate Change (IPCC) guidelines (Table 1; Eq. 5).
This methodology consists of estimating carbon emissions (with
and without fire) from the amount of biomass (living and
dead) of vegetation (Table 1 and Supplementary Table S1). The
last step corresponds to the carbon stock in the atmosphere
(Figure 2—Step 8) where the carbon dynamic is given by the
carbon emitted by the fire (input) and the carbon that is being
absorbed (output) by the vegetation over time, thus closing the
systemic relationship between vegetation, climate, and fire.

We also created two fire frequency scenarios. The first involves
a single fire (1F) to simulate the recuperation of the plants
biomass and the carbon dynamic 4 years after the fire. In the
second, we used two biennial fires (2BF) to simulate the effect
of consecutive burning, similar to the burning regime of the

biome (Dias and Miranda, 2010; Santana et al., 2020). All these
simulations refer to the fire period at the end of the dry season
(specifically, in September), when climatic conditions increase
susceptibility of wildfires (Miranda et al., 2002).

We also tested different scenarios (moderate, medium, and
extreme) for VPD, wind, and fine fuel in order to simulate
their effects on fire behavior and carbon emissions defined
according to their range of variations in the studies compiled
(Supplementary Table S4). All input variables of the BEFIRE
model, both vegetation (as fuel load and recovery rate) and
microclimate (VPD and wind), allow the BEFIRE model’s
parametrization for other regions of the Cerrado.

The BEFIRE model contains the following assumptions: (a)
vegetation is a native Cerrado savanna; (b) the prescribed burning
is carried out in September; (c) the terrain is flat; (d) fine fuel
follows a continuous spatial distribution; (e) fires are at the
surface; (f) fire mainly consumes fine fuel up to 2 m in height,
and (g) fire follows the direction of the wind. The BEFIRE
model does not consider: (a) ignition risk and patterns of fire
spreading; (b) influence of species composition on fire behavior
and effects, and (c) influence of topography on fire behavior.
All these parameters have been highlighted as important drivers
of fire behavior, but operating at larger spatial scales (Jin,
2010). The current version of the BEFIRE model does not
yet present a spatial component (i.e., its simulations represent
only one pixel of an image). Moreover, these limitations can
be justified by the lack of sufficient empirical knowledge for
the calibration and validation of the BEFIRE model. However,
the BEFIRE model can become an important basis for future
models and studies that consider these relationships between fire
behavior and landscape.

RESULTS

Our simulations demonstrate different patterns of biomass
variation over time between plant strata (trees, shrubs, herbs, and
grasses) and between burning scenarios (1F and 2BF) (Figure 3).
In the simulation 1F, the biomass of trees, herbs, and grasses
recovered more rapidly than the biomass of shrubs. After the
fire occurrence the biomass of trees declined (initial = 0.90;
post-fire = 0.54 kg m−2) and recovered its initial biomass in
approximately 12 months. Shrubs also lost much of their biomass
after the fire (initial = 0.13; post-fire = 0.07 kg m−2). However,
their biomass recovery rate was slower than trees, and they did
not regain their initial values before fire (end = 0.09 kg m−2).
Although herbs (initial = 0.08; post-fire = 0.01 kg m−2) and
grasses (initial = 0.20; post-fire = 0.03 kg m−2) lost much of
their biomass after the fire, they regained their initial biomass
quickly 15 months after the fire, maintaining its seasonal cycles of
biomass variation. At 48 months post-fire, the amount of carbon
released from fine fuel consumption (0.23 kg m−2) was gradually
absorbed by the vegetation in recovery.

In scenario 2BF, the pattern of simulated biomass recovery also
varied among plant strata. However, it showed a greater decline
in biomass recovery rates compared to scenario 1F (Figure 3).
These simulations showed that over a 2 year interval, the biomass
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TABLE 1 | Equations used in the BEFIRE model.

Parameters Equation Abbreviation (reference)

1. Fire spread rate
(m s−1)

r = 0.08× VPD+ 0.044× W VPD = water vapor pressure deficit (kPa)
W = wind (m s−1)

Gomes et al., 2020

2. Vapor pressure deficit
(kPa)

VPD = {[1− (UR/100)] × VPS
SVP = 610.7 × 107.5T /(237.3+T)

UR = relative air humidity (%)
SVP = saturated pressure vapor
T = average air temperature (◦C)

Allen et al., 1998

3. Fire intensity
(kJ.m−1 s−1)

I = h×w× r H = effective heat of combustion (kJ kg−1)
w = fine fuel consumption (kg m−2)
r = fire spread rate (m s−1)

Byram, 1959

4. Heat released
(kJ m−2)

H = I/r I = intensity of the fire front (kJ.m−1 s−1)
r = fire spread rate (m s−1)

Rothermel and
Deeming, 1980

5. Carbon emissions from fine fuel
consumption (kg m−2)

Ce = [(FLBC× FOLB)× FCLB]+
[(FDBC × FDBO)× FCDB]

FLBC = fraction of live biomass consumption
FOLB = fraction of oxidized live biomass
FCLB = fraction of carbon in live biomass
FDBC = fraction of dead biomass consumption
FDBO = fraction of dead biomass oxidized
FCDB = fraction of carbon in dead biomass

MCT, 2002

of herbs and grasses also recovered and maintained their seasonal
cycles of biomass variation. However, the proportion of tree
biomass lost by fire increased (1st fire = 40%; 2nd fire = 60%)
after the second fire, while the proportion of biomass recovered
over time decreased relative to the first fire, recovering only 60%
of their initial biomass (initial = 0.90; end = 0.54 kg m−2)
after 24 months. The decline in bush shrubs was even more
pronounced after the second burning, recovering only 23% of
their initial biomass before the fire (initial = 0.13; end = 0.03 kg
m−2) after 24 months. These trees and shrubs biomass reductions
were reflected in the atmospheric carbon dynamic, resulting in
less carbon being absorbed by the vegetation regrowth during
this time interval.

During the experimental fires studied, the environmental
variables of microclimate (VPD [mim = 1; max = 5 kPa];
wind [mim = 0; max = 2 m s−1); and fine fuel (mim = 0.2;
max = 1.1 kg m2) were shown to vary widely (Supplementary
Table S2). Our simulations also showed that variations in VPD
values, wind speed, and fine fuel influenced the fire spread rate,
fire intensity, heat, and carbon released (Table 2). Extremes
values of fine fuel (0.8 kg m2), VPD (5 kPa), and wind speed
(4 m s−1) resulted in increased fire spread rate (0.94 m s−1), fire
intensity (11,124 (kJ m), heat released (11,780 (kJ m−2), fine fuel
consumed (0.76 kg m2), and carbon released (0.26 kg m2).

DISCUSSION

Tree biomass recovers more rapidly after one fire event (1F)
than other vegetation strata, as tree individuals are generally
more protected from fire damage, because of higher height, trunk
diameter, and bark thickness (Hoffmann et al., 2003; Souchie
et al., 2017). Therefore, damage caused by fires is generally
associated with partial damage to individual trees, such as topkill
(Hoffmann and Solbrig, 2003; Hoffmann et al., 2009; Souchie
et al., 2017) and this permits more rapid regeneration through
sprouts produced from the trunk or tree crown (Moreira et al.,
2008; Souchie et al., 2017). However, for smaller individuals

(< 2 m), such as shrubs, fire can cause complete death of the
trunk due to greater exposure to higher temperatures, making
regeneration more difficult (Moreira et al., 2008; Hoffmann et al.,
2009; Gomes et al., 2014).

On the other hand, the recovery of tree biomass declines with
increased fire frequency, as the 2 year fire intervals (2 BF) may
not be sufficient for the thickening of bark or for trunk growth
above the height of greatest exposure to flames (Souchie et al.,
2017; Keeley and Pausas, 2019). Other studies also demonstrate
the decline in tree biomass in Brazilian savanna after three (Rios,
2016; da Silva Rios et al., 2018) and five biennial fires (Sato,
2003; Sato et al., 2010). This decline in the biomass of trees
and shrubs due to successive fires impedes the absorption, over
time, of carbon emitted during burns (Sato, 2003; Sato et al.,
2010). Furthermore, recurrent fires impact carbon emission not
only as a consequence of the combustion of plant biomass,
but also in relation to emissions from the soil after burning
(Santos, 1999; Pinto et al., 2002). Burnt areas of the Brazilian
savanna show greater soil respiration compared with non-burnt
areas, especially during the rainy season (Pinto et al., 2002). It
is also important to consider that in the case of tree and shrub
death, other biomass compartments such as woody material
and roots become carbon sources to the atmosphere through
decomposition (committed emissions) (Davidson et al., 2002).
Additionally, fire intervals shorter than 3 years may impede the
vegetation from reabsorbing the nutrients that were lost during
burns (Pivello and Coutinho, 1992). The predicted changes in the
BEFIRE model demand new approaches to fire management that
will maximize the adaptive capacity of these strata to recover the
initial biomass.

The biomass of herbs and grasses recover rapidly, even after
biennial fires. Fire reduces tree cover, promoting a microclimate
with greater temperatures and sun exposure, which favors the
germination of these strata (Musso et al., 2015). The non-
occurrence of fire makes the soil temperature more stable,
which hinders the germination of Cerrado species that require
temperature fluctuations to interrupt the dormancy of their
seeds (Kolb et al., 2016). Studies have also demonstrated that
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FIGURE 3 | Post-fire recovery simulations for biomass of trees, shrubs, herbs, grasses, and atmospheric carbon dynamic (uncommitted emissions) for the Brazilian
savanna, using the BEFIRE model. X = Yes; x = No (online version in color).

the biomass of herbs and grasses in the Brazilian savanna is
maintained even after five biennial fires (Andrade, 1998; Sato,
2003; Neto, 2005; Miranda et al., 2010; Sato et al., 2010).

Furthermore, the proportions of living and dead biomass in fine
fuel are the same after 1 year (Andrade, 1998). In this case,
fire management, aiming to reduce fine fuel in order to reduce
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TABLE 2 | Fire behavior and carbon emission simulations for the Brazilian savanna
using the BEFIRE model with three scenarios (inputs: 1 moderate, 2 medium, 3
extreme) for fine fuel and microclimate.

Scenarios

Input 1 2 3

Fine fuel load (kg m−2) 0.6 0.7 0.8

Vapor pressure deficit (kPa) 3 4 5

Wind speed (m s−1) 2 3 4

Output

Fire spread rate (m s−1) 0.58 0.79 0.94

Fine fuel consumption (kg m−2) 0.57 0.67 0.76

Fire intensity (kJ.m s) 5,158 8,148 11,124

Heat released (kJ m−2) 8,835 10,308 11,780

Carbon emission (kg m−2) Total (100%) 0.19 0.23 0.26

Herbs–grasses (80%) 0.15 0.18 0.21

Trees–shrubs (20%) 0.04 0.05 0.05

the occurrence of wildland fire (uncontrolled fire) may not be
effective due to the rapid recuperation of biomass in these strata
while damaging trees and shrubs.

Grasses correspond to approximately 70% of the biomass of
fine fuel (Andrade, 1998; Hoffmann et al., 2012). As such, this
stratum is responsible for the greater part of the carbon emissions
during fire. Also, the proportion of oxidized biomass after fire
corresponds to 100% of the dead biomass and 62% of the living
biomass of the fine fuel in the Brazilian savanna (MCT, 2002).
In this case, we can presume that fires in the late dry season
would cause greater carbon emissions, since the amount of dead
grasses biomass is greater in this period than in the rainy season
(Silva and Haridasan, 2007).

The use of mathematical models to predict the behavior
and effects of fire is an important step for fire management
in the Cerrado (Gomes et al., 2020). The BEFIRE model can
be used to help in the decision making process associated
with recent fire management policies for the region. In this
case, we suggest monitoring VPD and wind in order to carry
out prescribed burns with higher fire spread so as to cause
a lower impact on woody savanna vegetation. A lower fire
spread rate may cause the ignition of branches and cause severe
damage to the vascular tissues of the plant, resulting in death
(Kayll, 1968; Silva and Miranda, 1996). We also recommend
monitoring the amount of fine fuel to avoid wildland fire in the
managed areas reaching high intensity, or the release of great
quantities of heat.

On the one hand, biennial fires negatively affect tree and shrub
biomass, on the other hand herbs and grasses need to be managed
with fire in order to maintain the biodiversity and functioning of
the ecosystem (Pinheiro and Durigan, 2009; Abreu et al., 2017;
Durigan et al., 2020). As such, we suggest the use of prescribed
burns in mosaic configurations with different fire frequencies (no
fire and quadrennial fires). In this way, at some locations there
would be quadrennial fires to maintain the functioning of the
ecosystem, while at other locations there would be the prevention
of fire and fighting of non-planned fires at intervals lower than 4

years, aiming to preserve the structure of the woody vegetation,
allowing the persistence of species exclusive to each fire regime.
As well as this, areas with variation in structure and floristic
composition can serve as a refuge for fauna in the case of wildland
fire. These factors suggest that a careful evaluation of the multiple
aspects and consequences of fire management for the different
vegetation strata are essential to guarantee the conservation and
functioning of the Cerrado ecosystems.

Concerning the impacts of the fire in the Cerrado, previous
studies have shown that when considering isolated fire events, the
timing of the fire has little effect on the woody vegetation (Sato,
1996, 2003; Rissi et al., 2017). However, in the case of frequent
fires these effects may be intensified, resulting in reductions in
the carbon stocks in woody vegetation, with these reductions
reaching 9% for early dry season burns, 39% for mid-dry season
burns, and 55% for late-dry season burns (Sato, 2003). As
such, we suggest that future models and management strategies
should consider the interactions between frequency and period
of fire.
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