Despite evidence that supports cannabidiol (CBD) as an anticonvulsant agent, there remains controversy over the antiseizure efficacy, possible adverse effects, and synergistic interactions with classic antiepileptics such as valproate (VPA). The genetic audiogenic seizure hamster from the University of Salamanca (GASH/Sal) is a reliable experimental model of generalized tonic–clonic seizures in response to intense sound stimulation. The present study examines the behavioral and molecular effects of acute and chronic intraperitoneal administrations of VPA (300 mg/kg) and CBD (100 mg/kg) on the GASH/Sal audiogenic seizures, as well as the coadministration of both drugs. The GASH/Sal animals were examined prior to and after the corresponding treatment at 45 min, 7 days, and 14 days for seizure severity and neuroethology, open-field behaviors, body weight variations, and various hematological and biochemical parameters. Furthermore, the brain tissue containing the inferior colliculus (so-called epileptogenic nucleus) was processed for reverse transcription–quantitative polymerase chain reaction analysis to determine the treatment effects on the gene expression of neuronal receptors associated with drug actions and ictogenesis. Our results indicated that single dose of VPA helps prevent the animals from getting convulsions, showing complete elimination of seizures, whereas 7 days of chronic VPA treatment had few effects in seizure behaviors. Acute CBD administration showed subtle attenuation of seizure behaviors, increasing seizure latency and decreasing the duration of the convulsion phase, but without entirely seizure abolition. Chronic CBD treatments had no significant effects on sound-induced seizures, although some animals slightly improved seizure severity. Acute and chronic CBD treatments have no significant adverse effects on body weight, hematological parameters, and liver function, although locomotor activity was reduced. The combination of VPA and CBD did not alter the therapeutic outcome of the VPA monotherapy, showing no apparent synergistic effects. As compared to sham animals, chronic treatments with CBD caused abnormal mRNA expression levels for Trpv1, Adora1, Slc29a1, and Cnr1 genes, whereas no differences in gene expression were found for Htr1a and Sigmar1. Our study shed light on the behavioral and molecular effects of CBD and VPA on the GASH/Sal model and constituted the basis to develop further studies on the pharmacological effects of CBD and its interactions with other anticonvulsants.
Experimental evidence indicates that cannabidiol (CBD) induces anxiolytic and antiepileptic effects through the activation of 5-HT1A receptors. These receptors are coupled to Gi/o proteins and induce inhibitory effects. At present, the interaction of CBD with 5-HT1A receptors in the human brain is unknown. The aim of this study focused on evaluating the interaction between CBD and 5-HT1A receptors in cell membranes obtained from the hippocampus and temporal neocortex of autopsies and patients with drug-resistant mesial temporal lobe epilepsy (DR-MTLE). Cell membranes were isolated from the hippocampus and temporal neocortex of a group of patients with DR-MTLE who were submitted to epilepsy surgery (n = 11) and from a group of autopsies (n = 11). The [3H]-8-OH-DPAT binding assay was used to determine the pharmacological interaction of CBD with 5-HT1A receptors. The [35S]-GTPγS assay was used to investigate the CBD-induced activation of Gi/o proteins through its action on 5-HT1A receptors.The CBD affinity (pKi) for 5-HT1A receptors was similar for autopsies and patients with DR-MTLE (hippocampus: 4.29 and 4.47, respectively; temporal neocortex: 4.67 and 4.74, respectively). Concerning the [35S]-GTPγS assay, no statistically significant changes were observed for both hippocampal and neocortical tissue (p > 0.05) at low CBD concentrations (1 pM to 10 μM). In contrast, at high concentrations (100 μM), CBD reduced the constitutive activity of Gi/o proteins of autopsies and DR-MTLE patients (hippocampus: 39.2% and 39.6%, respectively; temporal neocortex: 35.2% and 24.4%, respectively). These changes were partially reversed in the presence of WAY-100635, an antagonist of 5-HT1A receptors, in the autopsy group (hippocampus, 59.8%, p < 0.0001; temporal neocortex, 71.5%, p < 0.0001) and the group of patients with DR-MTLE (hippocampus, 53.7%, p < 0.0001; temporal neocortex, 68.5%, p < 0.001). Our results show that CBD interacts with human 5-HT1A receptors of the hippocampus and temporal neocortex. At low concentrations, the effect of CBD upon Gi/o protein activation is limited. However, at high concentrations, CBD acts as an inverse agonist of 5-HT1A receptors. This effect could modify neuronal excitation and epileptic seizures in patients with DR-MTLE.
Despite the constant development of new antiepileptic drugs (AEDs), more than 30% of patients develop refractory epilepsy (RE) characterized by a multidrug-resistant (MDR) phenotype. The “transporters hypothesis” indicates that the mechanism of this MDR phenotype is the overexpression of ABC transporters such as P-glycoprotein (P-gp) in the neurovascular unit cells, limiting access of the AEDs to the brain. Recent clinical trials and basic studies have shown encouraging results for the use of cannabinoids in RE, although its mechanisms of action are still not fully understood. Here, we have employed astrocytes and vascular endothelial cell cultures subjected to hypoxia, to test the effect of cannabidiol (CBD) on the P-gp-dependent Rhodamine-123 (Rho-123) efflux. Results show that during hypoxia, intracellular Rho-123 accumulation after CBD treatment is similar to that induced by the P-gp inhibitor Tariquidar (Tq). Noteworthy, this inhibition is like that registered in non-hypoxia conditions. Additionally, docking studies predicted that CBD could behave as a P-gp substrate by the interaction with several residues in the α-helix of the P-gp transmembrane domain. Overall, these findings suggest a direct effect of CBD on the Rho-123 P-gp-dependent efflux activity, which might explain why the CBD add-on treatment regimen in RE patients results in a significant reduction in seizure frequency.