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A Novel Robust Strategy for
Discontinuous Galerkin Methods in
Computational Fluid Mechanics: Why?
When? What? Where?
Gregor J. Gassner1 and Andrew R. Winters2*

1Division of Mathematics, Department of Mathematics and Computer Science, Center for Data and Simulation Science, University
of Cologne, Cologne, Germany, 2Division of Computational Mathematics, Department of Mathematics, Linköping University,
Linköping, Sweden

In this paper wewill review a recent emerging paradigm shift in the construction and analysis of
high order Discontinuous Galerkin methods applied to approximate solutions of hyperbolic or
mixed hyperbolic-parabolic partial differential equations (PDEs) in computational physics.
There is a long history using DG methods to approximate the solution of partial differential
equations in computational physics with successful applications in linear wave propagation,
like those governed by Maxwell’s equations, incompressible and compressible fluid and
plasma dynamics governed by the Navier-Stokes and theMagnetohydrodynamics equations,
or as a solver for ordinary differential equations (ODEs), e.g., in structural mechanics. The DG
method amalgamates ideas from several existingmethods such as the Finite Element Galerkin
method (FEM) and the Finite Volumemethod (FVM) and is specifically applied to problemswith
advection dominated properties, such as fast moving fluids or wave propagation. In the
numerics community, DGmethods are infamous for being computationally complex and, due
to their high order nature, as having issueswith robustness, i.e., thesemethods are sometimes
prone to crashing easily. In this article we will focus on efficient nodal versions of the DG
scheme and present recent ideas to restore its robustness, its connections to and influence by
other sectors of the numerical community, such as the finite difference community, and further
discuss this young, but rapidly developing research topic by highlighting themain contributions
and a closing discussion about possible next lines of research.

Keywords: discontinuous Galerkin method, robustness, split form, dealiasing, summation-by-parts, second law of
thermodynamics, entropy stability

1 A BRIEF INTRODUCTION TO DG

The first discontinuous Galerkin (DG) type discretisation is either attributed to Reed and Hill in 1973
[1] for an application to steady state scalar hyperbolic linear advection tomodel neutron transport, or
to Nitsche in 1971 [2] who introduced a discontinuous finite element method (FEM) to solve elliptic
problems with non-conforming approximation spaces. It was however a series of papers by
Cockburn and Shu et al. starting 20 years later [3–6] that introduced the modern form of the
so-called Runge-Kutta DG scheme. They applied the method especially to nonlinear hyperbolic
problems such as the compressible Euler equations on unstructured simplex grids with slope limiting
to capture shocks. Bassi and Rebay were the first that extended the DG method to the compressible
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Navier-Stokes equations [7]. They used a fully discontinuous
ansatz based on a mixed variational formulation, where they
rewrote the second order partial differential equation (PDE) into
a first order system. The resulting DG formulation requires
numerical fluxes for the advective as well as for the diffusive
part. Although the methods gave reasonable results for the
compressible Navier-Stokes equations, an analysis of the
method in Arnold and Brezzi et al. [8, 9] applied to pure
elliptic problems revealed how to improve the method in terms
of convergence rate, adjoint consistency, and stability. Since the
introduction of its modern form, the DGmethod has been applied
and advanced by many researchers across different scientific
disciplines around the world. The DG method is used in a wide
range of applications such as compressible flows [10–12],
electromagnetics and optics [13–16], acoustics [17–21],
meteorology [22–25], and geophysics [26, 27]. The first book
available on DG was basically a collection of papers [28]. Since
then, many different text books on DG are available focusing on
theoretical developments as well as specific implementation details,
e.g., [29–31].

One of the main applications of DG methods is the
discretisation of nonlinear advection-diffusion problems of the
form

ut + ∇
→

x · f
←→(u) � ∇

→
x · f

←→

v(u, ∇→ xu) , (1)

where u is the vector of conserved quantities, e.g., the mass,
momentum, or energy. The vector f(u) defines the flux functions
that in general depend nonlinearly on the solution u, and can be
compactly written with the double arrow notation as block
vectors

f
←→ � ⎡⎢⎢⎢⎢⎢⎣ f1f2

f3

⎤⎥⎥⎥⎥⎥⎦ , (2)

with the fluxes fi in each spatial direction xi, i � 1,2,3. The viscous
fluxes are denoted by fv and not only depend on the solution, but
also on its spatial gradient

∇
→

xu � ⎡⎢⎢⎢⎢⎢⎣ ux

uy

uz

⎤⎥⎥⎥⎥⎥⎦ , (3)

thus modeling parabolic effects, e.g., heat conduction. The
problem is typically defined on a given spatial domain
Ω ⊂ R3, with a final time T, and suitable initial and boundary
conditions.

The DG scheme is based on a Galerkin type weak formulation.
For the sake of simplicity, we drop the viscous second order terms
in what follows and refer to, e.g. [32], for a complete description
of the advection-diffusion case. To construct the approximation
space of the DGmethod, the domain is split into non-overlapping
elements E ⊂ Ω. Each component of the solution u is represented
as a polynomial function inside each element

u( x→, t) E ≈ U( x→, t) � ∑P(N)

j�0
Uj(t) ϕj( x→),

∣∣∣∣∣∣∣∣∣∣ (4)

where P(N) is the number of polynomial basis functions depending
on the polynomial degree N. The time dependent polynomial
coefficients are Uj(t), and ϕj( x→) spans the polynomial basis.
The DG approximation space is polynomial inside an element,
but discontinuous across element interfaces. For a given element E,
we define first the inner product for state vectors

〈u, v〉E � ∫
E

uTv d x→. (5)

Similarly, for block vectors,

〈 f
←→

, g
←→〉E � ∫

E

∑3
i�1

fTi gi d x
→ . (6)

We obtain the weak formulation by multiplying each equation by
a polynomial test function ϕ( x→). Next, we integrate over the
element E and use integration-by-parts to move the spatial
derivatives off of the physical fluxes onto the test function

〈Ut , ϕ〉E +∮
zE

ϕT f
←→ · n→dS − 〈 f

←→
, ∇
→

xϕ〉E � 0. (7)

If we choose the test function ϕ to be all the polynomial basis
functions from the solution ansatz space {ϕj}Pj�0 it generates P

equations in each element for each state variable. This matches
exactly the number of unknown polynomial coefficients Uj(t).
Due to the discontinuous ansatz, the flux normal f · n→ at the
surface integral is not uniquely defined. Borrowing ideas from the
Finite Volume (FV) community, this non-unique normal flux
function is replaced and approximated with a so-called numerical
surface flux function

f
←→ · n→ ≈ f *(U+,U), (8)

that depends on the two values at the element interface, i.e. on the
value inside the elementU and outside from the neighbor element
U+. Typically, the numerical surface fluxes are constructed from
(approximate) Riemann solvers, e.g., [33]. With the surface
numerical flux, we arrive at the semi-discrete DG formulation
of the advection problem in weak form

〈Ut , ϕ〉E +∮
zE

ϕT f *(U+,U) dS − 〈 f
←→

, ∇
→

xϕ〉E � 0, (9)

or if we apply integration-by-parts once more to the volume
terms it becomes the so-called strong DG formulation

〈Ut , ϕ〉E +∮
zE

ϕT(f *(U+,U) − f · n→) dS + 〈∇→x · f
←→

, ϕ〉E � 0,

(10)

where the surface contribution is a penalty between the numerical
surface flux and the normal flux evaluated from the interior of an
element. Note, the weak and strong form DG formulations are
equivalent [34].

There are still many critical decisions necessary before the DG
formulation produces an algorithm that can be implemented. The
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type of element shape needs to be decided as well as which
polynomial basis. For example, modal polynomial basis
functions for tetrahedral elements or nodal tensor product
polynomials for hexahedral elements. In addition, the surface
integral and the volume integral needs to be discretized. In most
cases, the integrals are approximated with numerical quadrature
rules, e.g., high order Gauss-Legendre quadrature and cubature.
Many variants and detailed descriptions can be found in text books
on DG methods and their implementation, e.g., [28–31]. It is
important to note that these choices involving the element type,
basis functions, and approximation of inner products all have a
major impact on the performance of the resulting DG scheme in
terms of computational complexity and robustness due, e.g., to the
presence of spurious oscillations near discontinuities that result in
unphysical solution states (like negative density or pressure) or
aliasing instabilities. Manymechanisms exist in the DG community
to combat spurious oscillations (i.e., shock capturing) such as slope
[3, 5, 35] or WENO [36, 37] limiters, filtering [29, 38, 39], finite
volume sub-cells [40–42], MOOD-type limiting [43–47], or
artificial viscosity [48, 49]. The issue of shock capturing will not
be discussed further. However, aliasing errors, how they arise within
the DG method and strategies to remove said errors and increase
robustness will be discussed at length in this article.

With the above decisions, we arrive at the generic semi-
discrete ordinary differential equation (ODE) form of the DG
scheme, which can be integrated in time with an appropriate high
order explicit or implicit ODE solver, e.g., [50–54].

The resulting DG method is high order accurate and has
excellent dispersion and dissipation behavior, e.g., [55, 56].
Furthermore, due to its compact stencil (only interface
neighbor data is needed) the DG scheme is well known for its
excellent parallel scaling, e.g., [57, 58], and its ability to handle
unstructured and non-conforming grids, e.g., [16, 54, 59–63].
These nice properties of the DGmethodology are one reason why
more and more researchers apply and extend the DG
methodology to many different problem setups in
computational physics. However, DG is not the perfect
discretisation and there are unfortunately some issues that
necessitate detailed analysis and discussion.

The remainder of this review article gives the answers to why
we need novel developments, Section 2, when the novel
developments started, Section 3, what the key ideas of these
novel strategies are, Section 4, and where there are still open
questions toward future research directions, Section 5.

2 WHY DO WE NEED A NOVEL ROBUST
STRATEGY?

Throughout the analysis and discussions in this manuscript we
describe different types of stability for a numerical
approximation. Principally, we concentrate on the stability and
boundedness of the spatial DG discretization.

2.1 On the L2-Stability of the DG Method
It is easy to show that the DG scheme is L2-stable for linear
advection problems with constant coefficients due to its Galerkin

nature, e.g., as a special case in Ref. 64. As a brief illustrative
example let’s consider the one-dimensional scalar linear
advection model

ut + f (u)x � 0, (11)

where f(u) � au with constant velocity a. The respective strong
form DG scheme reads

〈Ut , ϕ〉E + [(f *(U+,U) − f )ϕ]zE + 〈fx, ϕ〉E � 0. (12)

We get the discrete evolution of the L2-norm ∫  U2 dx by inserting
ϕ � U for the polynomial test function

〈Ut ,U〉E + [(f *(U+,U) − f )U]zE + 〈fx,U〉E � 0. (13)

Assuming time continuity, the first term reduces to zt ∫ U2/2 dx.
We observe that in the volume integral fx � aUx is a polynomial of
degree N−1 and ϕ a polynomial of degree N. Thus, we need the
quadrature rule to be exact for polynomials with at least degree
2N−1. This is guaranteed by all Gauss-Legendre type quadrature
rules with at least N+1 nodes, such as the Legendre-Gauss-
Lobatto (LGL) quadrature.

The volume term contribution is

〈aUx,U〉E � a 〈(U2

2
)

x

, 1〉
E
� a
2
[U2]zE, (14)

which shows that the volume contribution can be lifted to the
boundary. In total we have

1
2
zt ∫

E

U2 dx + [U f *(U+,U) − a
2
U2]

zE
� 0. (15)

The discrete evolution of the L2-norm only depends on the choice
of the numerical flux function f*. A simple choice would be the
central flux f * � a

2 (U+ + U). Inserting the central flux into Eq. 15
gives

1
2
zt ∫

E

U2 dx + 1
2
[aU U+]zE � 0. (16)

Summing over all elements E in the domain to get the total L2-
norm and assuming periodic boundary conditions, we get

1
2
zt‖U‖2L2 � 0, (17)

as a
2U U+ is a unique discrete energy flux at every interface and

cancels when summing over all elements. Thus, for linear
advection, the DG scheme with at least 2N−1 accurate
quadrature is L2-stable, i.e. the discrete L2-norm is bounded
for all times t. Note, that for quadrature rules with less than
2N integration precision, the estimate is not for the exact L2-
norm, but for a discrete L2-norm corresponding to the quadrature
rule chosen.

For linear problems basically all DG variants are stable, but
what about nonlinear problems? To address nonlinear problems,
there was a crucial contribution by Jiang and Shu in 1994 [65],
who demonstrated that for scalar nonlinear hyperbolic problems,
the DG method is L2-stable provided: 1) Exact evaluation of all
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integrals are used; 2) Entropy stable numerical surfaces fluxes are
used at the element interfaces. The L2-stability result with
conditions 1) and 2) also extends to symmetric variable
coefficient hyperbolic systems [66]. Again, as a brief example
to illustrate the important steps of the analysis, we consider a
scalar one-dimensional problem Eq. 11 with a simple quadratic
flux function f (u) � 1

2 u
2, the so-called Burgers’ equation. The

DG scheme is, again, given by Eq. 13 and we get the evolution of
the discrete L2-norm by replacing the test function with the DG
solution ϕ � U . Note, that for this nonlinear problem, the volume
integral requires a quadrature rule with higher integration
precision to be exact. For the quadratic flux function f ∼ u2,
the quadrature rule needs 3N−1 integration precision. With the
exact evaluation of the volume integral, its contribution is, once
again, lifted onto the boundary of the element to give

〈12 (U2)x,U〉
E

� 〈(U3

3
)

x

, 1〉
E

� 1
3
[U3]zE. (18)

The resulting discrete evolution of the L2-norm is

1
2
zt ∫

E

U2 dx + [U f *(U+,U) − 1
6
U3]

zE
� 0, (19)

which agin only depends on the choice of the numerical surface
flux function f*. Note, that for the central flux choice f *(U+,U) �
1
2 (f (U+) + f (U)) no stability estimate can be derived, as
potentially the L2-norm could grow without bounds. However,
for the particular choice

f *(U+,U) � (U+)2 + U+ U + U2

6
, (20)

we get

1
2
zt ∫

E

U2 dx + 1
2
[U (U+)2 + U2 U+

3
]
zE

� 0. (21)

Following the same arguments as above for the linear advection
problem, we sum over all of the elements in the domain and
obtain L2-stability for the nonlinear scalar hyperbolic problem for
quadrature rules with at least 3N−1 integration precision.

Unfortunately, even ignoring the practical issues with the
assumption of exact integration for a moment, the results of
Jiang and Shu cannot be directly extended to general nonlinear
hyperbolic systems, e.g., the compressible Euler equations. A key
step in the analysis of Jiang and Shu is that the test functions ϕ in
the DG formulation Eq. 10 are replaced with the discrete DG
solution

U( x→, t) � ∑P(N)

j�0
Uj(t) ϕj( x→), (22)

which itself is a linear combination of the test functions {ϕj}P(N)
j�0

and, hence, an element of the test function space. While this gives
an L2-norm estimate for symmetric systems, this approach does
not lead to a proper norm estimate (in the continuous as well as in
the discrete case) for general nonlinear systems. This lack of a
stability estimate, even when using “exact integration,” is the

explanation why the DG method can still crash for complex
PDEs, e.g., [67].

2.2 On the Entropy Stability of the DG
Method
In the previous section it was shown for a scalar nonlinear
conservation law that the DG solution U is bounded in the
L2-norm if a special choice of the numerical surface flux is
chosen, such as the one in Eq. 20. We conjecture that an
analogous statement of nonlinear stability should be true for
systems of nonlinear conservation laws. However, in general,
stability in the L2-norm is insufficient to exclude unphysical
phenomena such as expansion shocks [68]. To remove the
possibility of such phenomena we generalize the notion of a
stability estimate for nonlinear problems.

Before we discuss the mathematics of a general nonlinear
hyperbolic system, a detour is taken to examine an important
underlying physical principle. In particular, we introduce
concepts from thermodynamics, which is a branch of physics
relating the heat, temperature, or entropy of a given physical
system to energy and work. The laws of thermodynamics are
some of the most fundamental laws in all of physics. This is
because they play an important role in describing how, and
predicting why, physical systems behave and evolve the way
that we observe them. Moreover, thermodynamics provides
fundamental rules to decide how a physical system cannot
behave. That is, what type of solution behavior is physically
meaningful and what is not. From a mathematical point of view,
we note that satisfying the second law of thermodynamics is not
enough to guarantee uniqueness of the PDE solution and that
conditions for uniqueness are an active topic of research in the
analysis of said PDEs, see for example [69–72].

The first law of thermodynamics concerns the conservation of
the total energy in a closed system. The second law of
thermodynamics states that the entropy of a closed physical
system tends to increase overtime and, importantly, that it
cannot shrink. The laws of thermodynamics must be satisfied
simultaneously at all times, otherwise a mathematical solution
can exhibit strange and obviously incorrect behavior. For
example, a fluid that only conserves its total energy but does
not take care on the entropy, i.e. satisfying the first law of
thermodynamics but not the second law, could transfer all of
its internal energy into kinetic energy. The result would be a very
fast, but very cold jet of air. Such a flow configuration has never
been observed in nature. This discrepancy is removed when
incorporating the second law of thermodynamics where the
transfer of energies are regulated. For reversible processes the
entropy remains constant over time (isentropic) and the time
derivative of the total system entropy is zero. For irreversible
processes the entropy increases and the time derivative is positive.
Solution dynamics where the total system entropy shrinks in time
are never observed and deemed unphysical.

To discuss these ideas in a mathematical context consider a
system of nonlinear hyperbolic conservations laws

ut + ∇
→

x · f
←→(u) � 0, (23)
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where we take the viscous flux components in Eq. 1 to be zero.
Typically, the diffusion terms are dissipative in nature and are
mostly uncritical. A prototypical example of a purely hyperbolic
system of nonlinear conservation laws is the compressible Euler
equations modeling inviscid gas dynamics. A smooth solution
that satisfies the system of PDEs Eq. 23 corresponds to a
reversible process. One of the difficulties, either analytically or
numerically, of nonlinear hyperbolic PDEs is that the solution
may develop discontinuities (e.g., shocks) regardless of the
continuity of the initial conditions [73]. A discontinuous
solution of Eq. 23 corresponds to an irreversible process and
dissipates entropy.

To mathematically account for possible discontinuous
solutions, system Eq. 23 is considered in its weak form. Just as
in the Galerkin discretisation in Section 1, the weak form of the
PDE is found by multiplying the governing equations by a
smooth test function ϕ(t, x→) with compact support and
integrating over R+ ×R3. Integration-by-parts is again applied
to move the derivatives onto the test function and weaken the
smoothness requirements on possible solutions. Hence, weak
solutions of system Eq. 23 satisfy

∫
R+×R3

uTϕt dt d x
→+ ∫

R+×R3

f
←→

T ∇
→

xϕ dt d x
→ � ∫

R3

uT
0 ( x→)ϕ d x→. (24)

Another form of the conservation law is its integral form that,
under the assumption of differentiable fluxes, arises from Gauss’
theorem

∫
Ω

ut d x
→+∮

zΩ

f
←→(u) · n→dS � 0, (25)

and holds for arbitrary control volumes Ω, e.g., [74].
Unfortunately, weak solutions of a PDE are, in general,
not unique and must be supplemented with extra
admissibility criteria in order to single out the physically
relevant solution [75–77]. This is precisely where the laws of
thermodynamics play a pivotal role because, as already
discussed, due to their intrinsic ability to select physically
relevant solutions. In most applications, e.g., compressible
fluid dynamics or astrophysics, the total entropy is not part of
the state vector of conservative variables u. However, we
know from the discussion above that for reversible
(isentropic) processes the total entropy is a conserved
quantity. Where is this conservation law “hiding”?

It turns out that there are additional conserved quantities, e.g.,
the entropy, which are not explicitly built into the nonlinear
hyperbolic system Eq. 23 but are still a consequence of the PDE.
In order to reveal this auxiliary conservation law we define a
convex (mathematical) entropy function s � s(u) that is a scalar
function and depends nonlinearly on the conserved variables u.
This allows the definition of a new set of entropy variables

w � zs
zu

, (26)

that provides a one-to-one mapping between the conservative
variable space and entropy space [78]. If we contract the

nonlinear hyperbolic system Eq. 23 from the left with the
entropy variables w we have

wT(ut + ∇
→

x · f
←→(u)) � 0. (27)

From the definition of the entropy variables and assuming
continuity in time, we know that

wTut � st . (28)

Further, each of the flux vectors in the coordinate directions xi
must satisfy a compatibility condition

wT(f i)
xi
� (f si )xi, (29)

where fi
s, i � 1,2,3 is a corresponding entropy flux [78]. We point

out that a chain rule is the linchpin of the manipulations Eqs. 28
and 29 to move from the space of conservative state variables into
the space of entropy variables. In the continuous setting this is not
an issue under certain continuity assumptions. However, in a
numerical setting it is extraordinarily difficult (or even
impossible) to recover the chain rule with discrete
differentiation, e.g., [79]. We postpone the discussion on this
issue and what it means for a high order DG numerical
approximation to Section 4.

By definition of a mathematical entropy, contracting the
nonlinear hyperbolic system into entropy space, as in Eq. 27,
and assuming the solution is smooth (i.e. a reversible process)
results in the auxiliary conservation law for the entropy

st + ∇
→

x · f→s � 0. (30)

The corresponding integral form of the entropy conservation is
given by

∫
Ω

st d x
→+∮

zΩ

f
→

s · n→dS � 0, (31)

for an arbitrary volume Ω. For irreversible processes, physical
entropy is increasing. In the mathematical community however,
entropy is defined as a decaying function and hence the entropy
conservation law Eq. 31 becomes the entropy inequality [78]

∫
Ω

st d x
→+∮

zΩ

f
→s · n→dS≤ 0, (32)

for discontinuous solutions.
As an illustrative example for the contraction of a nonlinear

hyperbolic system of PDEs into entropy space, we consider the
compressible Euler equations of gas dynamics in one spatial
dimension

⎡⎢⎢⎢⎢⎢⎣ ρ
ρv
E

⎤⎥⎥⎥⎥⎥⎦
t

+ ⎡⎢⎢⎢⎢⎢⎣ ρv
ρv2 + p(E + p)v

⎤⎥⎥⎥⎥⎥⎦
x

� 0, (33)

with the ideal gas assumption

p � (c − 1)(E − ρv2

2
), (34)
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where γ is the adiabatic constant. The convex entropy function
s(u) for the compressible Euler equations is not unique [80].
However, a common choice for the mathematical entropy
function is the scaled negative thermodynamic entropy [80–84]

s(u) � − ρς

c − 1
, ς � ln(p) − cln(ρ), (35)

with the corresponding entropy flux f s � v s(u). From this
definition of the mathematical entropy function we get the
entropy variables

w � zs
zu

� [c − ς

c − 1
− ρv2

2p
,
ρv
p

, − ρ

p
]T , (36)

and see that each component of the entropy variables is a highly
nonlinear function of the state vector components. Regardless,
the variables Eq. 36 contract the one dimensional compressible
Euler equations into entropy space and, when integrated over the
domain Ω, become the entropy conservation law Eq. 31 for
smooth solutions or the entropy inequality Eq. 32 for
discontinuous solutions. It is worth noting that the entropy
variables w are further useful in the analysis of the system, as
they allow to derive a symmetric form of the PDE [85].

The discrete equivalent of the entropy inequality Eq. 32 is
referred to as entropy stability. It is a generalization of the L2-
stability statement to systems of nonlinear hyperbolic PDEs,
e.g., [79, 86]. An additional requirement built into the entropy
stability condition is that the fluxes f remain bounded [68],
which restricts the flow to physically realisable states, e.g.,
positive density and pressure in gas dynamics. Overall,
entropy stability ensures that a numerical approximation
obeys the fundamental laws of thermodynamics and is
viewed as an important quality to capture [86–88]. But it is
an active area of research to investigate the role of entropy
stability and how it fits into the question of provable nonlinear
stability [82, 89, 90].

At present, we restrict ourselves to one of the key ingredients
in the analysis to derive a nonlinear entropy stability estimate for
general nonlinear hyperbolic systems, see e.g., [78, 86]. It is
natural to develop an entropy stable DG approximation
because the continuous and discrete analysis both rely on a
weak form of the governing equations. However, for entropy
stability the nonlinear system is not multiplied by the solution u
as was the case for the L2-stability analysis. Instead the equation is
multiplied with the entropy variables w Eq. 26, which are
nonlinear functions of the state u, see e.g., the compressible
Euler equations in (36). Thus, a direct combination of this
approach with the analysis of Jiang and Shu from Section 2.1
is not possible. For a polynomial DG ansatz U, the discrete
entropy variables W � W(U) are no longer polynomials of
degree N and do not belong to the space of test functions ϕ.
Hence, it is not allowed to replace the test functions ϕ in the DG
formulation Eq. 10 with W. Technically, only a projection of W
onto the space of polynomials with degree N can be inserted;
however, in this case the analysis does not lead to an entropy
stability estimate as the chain rule holds for the full entropy
variables and not their projections.

To overcome the issue with the test function space and to
enable an entropy stability estimate for the DG method, Hughes
et al. [91] as well as Hildebrand and Mishra et al. [92–94] used a
space-time DG approach with an ansatz directly written in terms
of the entropy variables. The idea is to make the DG ansatz in
entropy space, i.e. to approximate the entropy variables

w(u( x→, t))|
E

≈ W( x→, t) � ∑P(N)

j�0
Wj(t) ϕj( x→), (37)

with a polynomial of degree N. Ignoring the time discretisation
for brevity, the DG formulation changes to

〈u(W)t , ϕ〉E + ∫
zE

ϕT(f *(u(W)+, u(W)) − f(u(W)) · n→) dS
+ 〈∇→x · f

←→(u(W)), ϕ〉E � 0,

(38)

which shows that the scheme is still formulated in conservative
form, however all the conserved variables u now depend
implicitly on the polynomial approximation of the entropy
variables W. As this approach is naturally implicit, a
straightforward and elegant extension of the scheme in time is
to use a temporal DG scheme on top of the spatial DG scheme,
resulting in a fully implicit space-time DG formulation.
Hildebrand and Mishra proved that the resulting discretisation
is entropy stable provided: i) Exact evaluation of all integrals; ii)
Entropy stable numerical fluxes at the spatial surface integrals and
upwind fluxes (due to causality) in the temporal surface integrals
are used. These conditions on the space-time DG approximation
are very similar to those imposed by Jiang and Shu for the scalar
nonlinear hyperbolic case discussed for the nonlinear Burgers’
equation.

Unfortunately, the assumption 1) on exact integration is
extremely difficult to guarantee and implement in practical
simulations, which we describe in more detail in the next
subsection. Without proper exact quadratures of the integral
terms, the chain rule does not hold discretely. Such inexact
approximations of functions are referred to as aliasing errors.
These can occur in realistic simulations and might cause
instabilities. Thus, robustness is still an issue and ad hoc
dealiasing or stabilization mechanisms, e.g., artificial diffusion
[92] are necessary.

2.3 The Unpleasant Role of Numerical
Integration, Nonlinearities, Variational
Crimes, and Aliasing
As described above it is necessary to discretize the variational
formulation and make certain choices in the DG approximation
such as the polynomial basis functions and, especially, the
discrete integration to approximate the surface and volume
integrals. Unfortunately, only in the rarest and simplest cases
is it possible to avoid these discretisation steps and use an exact
evaluation of the integrals. Hence, the notion of “variational
crimes” is introduced to express the steps necessary to turn
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the formulation into an actual algorithm that can be
implemented.

One of the biggest problems when discrediting nonlinear
advection-diffusion problems is that in many interesting cases,
the nonlinearity is non-polynomial. Our exemplary problem, the
compressible Euler equations depend on the mass density u1, the
momentum density in the x direction u2, and energy density u3.
Often, these are also denoted as u1 � ρ and u2 � ρ v, where v is the
velocity. We compute the velocity from the conserved variables as

v � u2
u1
. (39)

This is important in the context of the DG discretisation because if
the variables u1 and u2 are polynomials of degree N, the velocity v is
not a polynomial, but a rational function. This occurs not only for the
velocity but also for other quantities that are needed to evaluate the
advective fluxes f , such as e.g., the pressure p. Hence, the fluxes f are
no longer polynomials of degreeN, and possibly rational functions, as
in case of the compressible Euler equations.When approximating the
integrals with high order quadrature formulae, such as the Legendre-
Gauss rules, it is important to realize that these numerical integration
rules are constructed for polynomial integrands. Hence, in theory,
they cannot integrate non-polynomial functions exactly no matter
how many quadrature nodes are considered.

If we focus for instance on the strong formDG volume integral
from Eq. 38, we see that the core part to evolve the DG solution in
time is an L2 projection of the flux divergence onto the

polynomial basis 〈∇→ x · f
←→

, ϕ〉E. If this projection is not
evaluated exactly, due to either the aforementioned
variational crimes, the nonlinearities of the flux function, or
a combination of the two, the exact L2 projection turns into a
discrete projection, most often taking the form of an
interpolation at the quadrature nodes. This is a subtle but
important observation. In contrast to an exact L2 projection,
which cleanly “cuts out” high order content of the flux
divergence with polynomial degrees larger than N, a discrete
L2 projection interprets (i.e. aliases) some of the high order
content as part of the projection polynomial. This artificially
and unpredictably decreases or increases the polynomial
coefficients of the projection. This “incorrect interpretation”
of high order content is also well known in Fourier analysis and
signal processing. If the sampling rate (in this case the number
of Legendre-Gauss quadrature nodes) is not high enough
according to the Nyquist theorem, high frequency data (high
order content) gets interpreted as low frequency data (onto the
polynomial of degree N) and pollutes the result. This analogy to
Fourier analysis illustrates the possibility that high frequency
information can masquerade as low frequency information
when represented on a discrete and unresolved grid. This is
the fundamental issue often termed aliasing. As the issue of the
discrete projection onto a space of polynomials is similar in
spirit, the term aliasing is also often used in the DG community,
as well as the spectral and finite difference communities, to give
potential consequences of the variational crimes a name. In
summary, basically all of the DG algorithms for nonlinear
advection dominated problems have the issue of inexact

evaluation of the integrals and hence all DG algorithms have
aliasing errors.

Unfortunately, these aliasing issues are not simply an abstract
and “ugly” theoretical oddity without practical consequences. On
the contrary, aliasing plays an important role when using DG
methods for realistic complex applications to model nonlinear
phenomena. It is worth pointing out that one of the advantages of
DG, it’s very low dissipation errors, are in this particular point of
view also it’s biggest problem. Due to the inherent low numerical
dissipation in a high order DG method, there is no in-built self-
defence against the aliasing issues and any instability that they
may create. A repercussion of this fact is that it has become
naturalized in the numerics community that especially the high
order variants of the DGmethod, with very low dissipation errors,
have robustness issues in practical applications. For instance DG
approximations of the compressible Euler and Navier-Stokes
equations are known to sometimes fail due to aliasing
instabilities, e.g., [39]. This instability can manifest itself
through the observation that the kinetic energy artificially
grows in the simulation, while the inner energy decreases.
Note, that the total energy is conserved by construction with
the DG method; however, this exchange of kinetic and internal
energy is unphysical and violates the second law of
thermodynamics and is purely a result of the variational
crimes (inexact integration).

An obvious solution to these problematic variational crimes,
nonlinearities, and aliasing is to decrease their deleterious effects
as much as possible. While technically unavoidable in the strictest
mathematical sense, it is possible to increase the amount of
Legendre-Gauss quadrature nodes to evaluate all integrals
“consistently” such that the inexactness errors are on the order
of machine precision, see e.g., Kirby et al. [95]. This approach is
quite effective and immediately has a positive stabilizing effect on
many applications with nonlinear PDEs, see e.g., [39, 96].
However, it is clear that the computational complexity
drastically increases when arbitrarily increasing the number of
quadrature nodes. Hence, one often tunes the increased number
of Legendre-Gauss quadrature nodes and takes as many as
needed to make a simulation stable—which is, of course,
unsatisfying and ad hoc, as it highly depends on the particular
problem setup. In comparison, another approach is to not directly
fight the variational crimes themselves, but the consequences they
induce. This is achieved by applying well designed filters to the
solution, with the purpose to clip out higher order aliasing
content in an effort to decrease its effect, e.g., [39]. It is
needless to say that this filtering approach is also very ad hoc
and depends on many parameters that need tuning depending on
the particular problem one wishes to solve with the high order
DG scheme.

While these ad hoc stabilization techniques are reinforced by
little to no mathematical analysis or rigor, the prevailing
consensus in the DG community has been that, in practice,
they work reasonably well. In that, consistent integration
(sometimes referred to as over-integration) and filtering
increase the robustness of high order DG methods to a level
such that they could be applied to model challenging physical
problems allowing them to shine with their high order accuracy
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and low dispersion and dissipation errors. Especially in the
turbulence community, many research groups started to apply
high order DG methods with stabilization in the context of
implicit large eddy simulation with excellent results
competitive with others from the broader numerics
community, e.g., [97, 98]. However, in Moura et al. [67] it was
reported that certain configurations of the DG method for the
inviscid Taylor Green vortex problem kept crashing, even when
drastically increasing the number of quadrature nodes in the
surface and volume integrals. In fact, the amount of quadrature
points was increased up to the point where the DG scheme was no
longer computationally feasible, but the simulations still crashed.
The inviscid Taylor Green vortex setup in this case was used to
investigate the case of a very high Reynolds number flow with
severe under resolution common in realistic turbulence setups.
These findings were also verified by the authors of this review
article and have a strong consequence for the DG community.
While the ad hoc stabilization techniques were “good enough” in
the sense that they helped to make the DG scheme run for a broad
range of interesting problems, this approach is apparently not
bullet proof. Further, it is impossible to tell a priori for which
cases the stabilization will work and for which cases it will not.

This one example, where the high order DG scheme was not
stable and could not finish the simulation illustrates,
fundamentally, that the removal of aliasing and variational
crimes cannot be reliably done in an ad hoc fashion. Instead
we need a better understanding of these aliasing errors and how
they can be removed from inexact and/or under resolved
discretisations. Furthermore, we require a mathematically
sound approach to address these aliasing errors in the DG
approximation. That is, we need a novel strategy to design
robust high order DG methods to approximate the solution of
nonlinear advection-diffusion systems.

3 WHEN DID THE NOVEL DEVELOPMENT
START?

In 2013, two landmark results completely reshaped the
development of the DG method moving forward. First, in his
PhD thesis, Fisher extended the work on entropy stable schemes
LeFloch and Rhode [99] as well as the high order entropy stable
schemes of LeFloch et al. [100] to the summation-by-parts (SBP)
finite difference framework with high order boundary closures in
Refs. 88 and 101 respectively. LeFloch et al. and Fisher et al. found
that the entropy stability estimates for low-order FV methods,
developed by Tadmor [78], can be extended to high order
accuracy. Whereas the high order reconstruction of LeFloch
et al. was for periodic domains (i.e. without considering finite
domain boundaries), the SBP finite difference framework
includes special boundary closures and are applicable for finite
domains. Kreiss et al. [102–105] introduced the SBP finite
difference framework to specifically mimic integration-by-
parts. Integration-by-parts is a valuable tool for the
construction of stability estimates. Further discussion on SBP
is given by, e.g., Olsson [106, 107], Strand [108], Nordström [109]
and Svärd and Nordström [110].

To briefly introduce the main ideas of the classic SBP finite
difference framework, we consider a discretisation in one
spatial dimension on a finite interval E � [−1,1]. Within this
interval, we consider a set of N+1 regular grid nodes xj that
include the boundaries x0 � 1 and xN � 1. On this grid, a
continuous function u(x,t) is represented as the grid node
values Uj(t) � u(xj, t). In short notation, we collect the nodal
values into the vector quantity U. For the approximation of the
PDE, we need two discrete operators: One that approximates
integration, M ∈ R(N+1)×(N+1); and one that approximates
differentiation, D ∈ R(N+1)×(N+1). In this article, we only
consider diagonal matrices M, sometimes referred to as
diagonal norm SBP finite difference operators. With these
operators we have

∫
E

u(x) v(x) dx ≈ UT MV and
d
dx

u(x)|xj ≈ (DU)j. (40)

The discrete integration and differentiation need to be compatible
for a SBP operator to satisfy the property

(MD) + (MD)T � B, (41)

where B is the boundary integral evaluation operator with
B � diag(−1, 0, . . . , 0, 1). Multiplying Eq. 41 by grid values UT

of an arbitrary function u(x) from the left and the approximation
V of an arbitrary function v(x) from the right gives

UT(MD)V + UT(MD)T V � UTBV � VN UN − V0 U0. (42)

Grouping terms and using that M is diagonal such that M �
MT we have

UTM (DV) + (DU)TMV � VN UN − V0 U0, (43)

which is a discrete approximation of the integration-by-parts
formula for the corresponding functions u and v

∫
E

u
dv
dx

dx + ∫
E

du
dx

v dx � [u v]1−1, (44)

hence the name summation-by-parts.
With the SBP property, it is directly possible to show L2-

stability of the finite difference scheme for constant coefficient
linear advection problems. Starting again as an example with the
scalar problem Eq. 11 and the linear flux f � au, we get the
following SBP finite difference semi-discretisation

ztU + aDU � 0. (45)

As stated above, one motivation of the SBP framework is to
mimic the energy analysis of finite element discretisations like
that found in the DG analysis presented above for linear
advection. We proceed and first get a corresponding Galerkin
type variational form by multiplying with the discrete integration
matrix M

M ztU + aMDU � 0. (46)

This form is valid for all grid functions VTmultiplied from the left
and hence is a direct approximation of the variational Galerkin
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form, e.g., Eq. 12. We point out that this finite difference
approximation ignores the surface terms that are specific to
the discontinuous Galerkin scheme. Here, the arbitrary grid
function VT takes the role of the test function ϕ. Hence, we
can mimic the next step in the analysis, i.e. replacing the test
function with the DG solution ϕ � U , by multiplying Eq. 46 with
UT from the left

UTM ztU + aUTMDU � 0. (47)

The volume term can be reformulated with the SBP property to
move the discrete derivative onto the test function and generate
boundary data

UTMDU � UT(B − (MD)T)U � UTBU − UT(MD)TU
� UTBU − UT(MD)U .

(48)

From this step we see that the contribution of the volume terms in
the SBP finite difference scheme can be again lifted to the interval
boundaries

aUTMDU � a
2
UT BU , (49)

but this time without any assumption on a necessary quadrature
rule precision. In fact, this is general and holds for all diagonal
norm SBP finite difference operators. Again, with the assumption
of time continuity and periodic boundary conditions (UN�U0), it
follows that the discrete L2-norm of the SBP finite difference
solution ‖U‖2SBP � UT MU is bounded for all t.

We emphasize again that neither the reconstruction
techniques of LeFloch et al., nor the SBP finite difference
framework as a whole, depend on integration or exact
evaluation of integrals. Thus, in contrast to the DG stability
results discussed above, the stability results obtained for SBP
finite differences by Fisher et al. do not assume exact evaluation
of any integrals. Thus, such methods yield efficient algorithms
with feasible implementations that have provable stability
estimates.

The second important result was separately discovered in 2013
by Gassner [111]. He realized that the base operators of the nodal
discontinuous Galerkin spectral element method (DGSEM) have
the diagonal norm SBP property as long as the collocation nodes
{xj}Nj�0 and weights {ωj}Nj�0 were chosen to be those associated with
LGL quadrature. It is interesting to note, that earlier, in 2010,
Kopriva and Gassner [34] already found out that for DGSEM
with LGL quadrature, the weak DG formulation and the strong
DG formulation are discretely equivalent. As shown in Eqs. 9 and
10, the weak form and strong form can be transformed into one
another with integration-by-parts. Thus, when both forms are
discretely equivalent, it basically means that discrete integration-
by-parts, i.e., SBP, holds. We point out that in 1996, in the context
of spectral methods with Chebyshev-Lobatto nodes or LGL
nodes, Carpenter and Gottlieb [112] showed a similar property
as SBP for these spectral operators, however they assumed that
integration-by-parts holds for the proof. The results in Refs. 34
and 111 complete their findings as they remove the assumption of
exact integration.

In the nodal DGSEM-LGL framework, similar to the finite
difference framework, the solution coefficients of the DG
polynomial are nodal values Uj(t) at the location of the LGL
nodes xj. The nodal DG polynomial is represented with Lagrange
basis functions {ℓj(x)}Nj�0 spanned with the LGL nodes

u(x, t)|E ≈ U(x, t) �∑N
j�0

Uj(t) ℓj(x), (50)

which have the Kronecker delta property that ℓj(xi) � δij, i.e., 1 if
i � j and 0 otherwise. With this choice of basis function and
quadrature rule, it is possible to find discrete versions of the
corresponding integral operator and the differentiation operator.
For the integral we consider

∫
E

u(x) v(x) dx ≈ ∑N
j�0

ωju(xj) v(xj) � UT MV , (51)

with M � diag(ω0, . . . ,ωN) and the vector of LGL nodal
values U and V. Furthermore, we have for the discrete
differentiation

d
dx

u(x, t)|xi ≈ U ′(xi, t) �∑N
j�0

Uj(t) ℓ′j(xi), (52)

where we used the short hand notation for the spatial derivative of
the Lagrange basis d

dx ℓ(x) � ℓ′(x). Introducing the differentiation
matrix as

Di j � ℓ′j(xi), i, j � 0, . . . ,N , (53)

we get

d
dx

u(x, t)|xi ≈ (DU)j. (54)

As was shown in Ref. 111, these two discrete operators are again
compatible and provide the SBP property

(MD) + (MD)T � B, (55)

which means that the DGSEM-LGL operators belong to the class
of diagonal norm SBP operators. This simple property of one-
dimensional discrete integration-by-parts is the basis for a whole
polynomial spectral calculus [113] that includes, for instance,
discrete version of Gauss’ law on curvilinear grids in three spatial
dimensions.

Returning to the discussion on stability, the LGL quadrature
rule with N+1 points has an integration precision of 2N−1. Thus,
the DGSEM-LGL is stable for scalar linear advection as shown
above. However, the DGSEM-LGL is not stable for nonlinear
problems, e.g., for the quadratic flux function discussed in
Section 2.1 where an integration precision of 3N−1 is
necessary i.e., exact integration of the volume terms. But using
the SBP property of the DGSEM-LGL operators, it is possible to
apply ideas similar to Fisher et al. and construct a novel DGSEM
with LGL quadrature, that is discretely L2-stable for the nonlinear
Burgers’ equation, without the assumption on exact evaluation
of the integrals [111]. These first results have been extended and
compounded upon for the compressible Euler equations
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[114–118], the shallow water equations [63, 119–121],
the compressible Navier-Stokes equations [32, 122, 124],
non-conservative multi-phase problems [124],
magnetohydrodynamics [125, 126], relativistic Euler [127],
relativistic magnetohydrodynamics [128], the Cahn-Hilliard
equations [129], incompressible Navier-Stokes (INS) [130],
and coupled Cahn-Hilliard and INS [131] among many other
complex PDE models and DG discretization types e.g., [132].

4 WHAT IS THE KEY IDEA?

To recap the discussion, there are several obstacles that make it
difficult to obtain entropy stability estimates for high order DG
methods in the case of a general nonlinear system of hyperbolic
PDEs: 1) The assumption of exact evaluation of integrals is
unfeasible in practice; 2) We need to contract with entropy
variables w that nonlinearly depend on the conservative
quantities u, which means that we need to replace the test
functions by a projection (or interpolation) of w(u) ; 3) We
need to satisfy a discrete version of the chain rule to contract the
flux divergence into entropy space, i.e. a discrete version of
wT(f i)xi � (f si )xi, i � 1,2,3, where now the entropy variables
and the flux functions are discrete projections and the
derivative is replaced with our discrete derivative operator.

In what follows, the key ideas to resolve all three issues are
presented. We focus on issue 1) and consider a scalar nonlinear
problemwith quadratic fluxes discussed above first. Thenwe ramp-up
the complexity in the second subsection and discuss how to extend the
novel approach to general systems and how to resolve all issues (i)-(iii).

4.1 On the Conservative Form, Split Forms
and Skew-Symmetry
To illustrate the general idea of a split form and how to
incorporate it into a high order DG approximation we
examine our simple scalar nonlinear hyperbolic conservation
law, the Burgers’ equation. We start with the conservative form

ut + (u2

2
)

x

� 0, (56)

that can be rewritten into its advective form

ut + u ux � 0, (57)

which is equivalent in the continuous case for smooth solutions.
We can also consider an equivalent combination of the two forms

ut + α(u2

2
)

x

+ (1 − α) u ux � 0, (58)

where α ∈ R is an arbitrary parameter. This form is called the split
form of Burgers’ equation, with α being the split form parameter.

While in the continuous case with smooth solutions all of
these forms are equivalent, it is important to note that in the
discrete case this is not true. Considering the DGSEM operators
with N+1 LGL nodes, the volume terms for the conservative form
are given by

(u2

2
)

x

≈
1
2
DU U , (59)

where U is the vector of values of u at the LGL nodes, D is the
DGSEM-LGL derivative operator and U � diag(U0, . . . ,UN ) is a
matrix that has the nodal values U injected onto its diagonal.
Analogously, the volume terms for the advective form are

u ux ≈ U DU . (60)

Only for polynomial functions u with degree ≤N/2 and their
corresponding nodal values U, do we have

1
2
DU U � U DU . (61)

In all other cases, i.e. in the general case for arbitrary nodal vectors
U, we get

1
2
DU U ≠U DU . (62)

The discrete forms are different because of different aliasing
errors. Whereas the conservative form computes a discrete
derivative of U2, the second form computes a “clean”
derivative of U, but on the other hand needs to compute the
product of two functions U and DU on a grid with only N+1
nodes. An interesting question is, if we can make use of the
different (aliasing) errors in the two forms and find combinations
via the split formulation where these errors cancel.

We note that the idea of split formulations was already introduced
in the spectral community to develop stable numerical methods for
the incompressibleNavier-Stokes equations e.g., [133], but is especially
prominent in the finite difference fluid dynamics community e.g.,
[134–139]. Split formulations are used as a built-in dealiasing
mechanism to stabilize numerical methods e.g., [140].
Combinations of different forms of the advective terms of the
compressible Euler equations yield finite difference approximations
that are more robust than the standard conservative ones. In a perfect
world, it would be desirable if we could choose the split form
parameter α such that the different aliasing errors cancel exactly.
Unfortunately, in general, it is not possible to cancel the aliasing errors
for each grid node; however, what we will show next is that it is
possible to cancel the aliasing errors in a way to get a global L2-stability
estimate similar to the estimates by Jiang and Shu [65], but without the
assumption of exact integration.

First, we derive the strong DG formulation of the split form of
Burgers’ Eq. 58 by multiplying with a test function ϕ, integrating
over a grid cell E, inserting a numerical flux function f* at the grid
cell interface to account for the discontinuous nature of our
ansatz, and use integration-by-parts again to arrive at

∫
E

Ut ϕ dx + ⎡⎢⎢⎢⎢⎢⎣(f *(U+,U) − f (U)) ϕ]zE + ∫
E

⎡⎢⎢⎢⎢⎢⎣α(U2

2
)

x

+ (1 − α)U Ux
⎤⎥⎥⎥⎥⎥⎦ ϕ dx � 0, (63)

where the flux is f(U) � U2/2. We consider specifically the
DGSEM-LGL variant to get discrete operators that satisfy the
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SBP property with diagonal norm (mass matrix)M. We arrive at
the DGSEM-LGL variant when we replace the integrals by
discrete quadrature with N+1 LGL nodes and when using the
same N+1 LGL nodes to span the Lagrange basis functions used
for our polynomial ansatz. This gives the following discrete
DGSEM-LGL split form

ztU +M−1B [F* − F] + α
1
2
DU U + (1 − α)U DU � 0, (64)

where B is the boundary evaluationmatrix from the SBP property
Eq. 41, F � F(U) is the vector of collocated nodal flux values
i.e., Fj � f (Uj)∀j, and F* is a vector that contains the numerical
fluxes at the interfaces “left” and “right” in its first and last entry
and is zero elsewhere. The value U+, again, indicates that the
numerical flux functions depends not only on local element
values U, but also on the values from the neighbor grid cells.
We refer to Gassner [111] for a detailed derivation of this form
and its connection to the SBP framework with simultaneous-
approximation-terms (SAT).

Next, we follow the standard procedure to derive an L2-
stability estimate by multiplying the scheme with the DG
solution and use the quadrature rule to numerically integrate
over the element i.e., we multiply by UTM

UTM ztU + UTB [F* − F] + α
1
2
UTMDU U

+ (1 − α)UT UMDU � 0, (65)

where we used the fact that MU � UM because both matrices
are diagonal. Again, we consider the semi-discrete version and
assume continuity in time to have

UTM ztU � 1
2
ztU

2
M,E, (66)

the evolution of the discrete L2-norm in the grid cell E. Next,
we focus on the volume terms. Note, that in the analysis of
Jiang and Shu exact integration was assumed to contract the
volume contribution to the surface. This is very important, as it
allows direct control over the stability of the scheme with the
choice of the numerical interface flux F*. Without the
assumption of exact integration however, we look at the
influence of the choice of the split form parameter α
instead. We realize that the second term in the volume
integral can be transposed UT UMDU � UT(MD)T U U
and is similar to the first term in the volume integral,
except for (MD)T is now transposed. Using the SBP
property (MD)T � B −MD we get

α
1
2
UTMDU U + (1 − α)UT UMDU

� α
1
2
UTMDU U + (1 − α)UT (MD)T U U ,

� (α 3
2
− 1)UTMDU U + (1 − α)UT BU U .

(67)

The termwith the boundary evaluationmatrixB is a surface term,
however the remainder term is a volume term that can either
increase or decrease the L2-norm. Hence, this term can be

potentially critical in cases where it increases the norm, as this
is an unstable behavior that could lead to break down of the
simulation. We note that this volume term is another expression
of the aliasing issues. To guarantee that this term does not affect
stability, we need to guarantee that it vanishes. We see that there
is a single (unique) choice of the split form parameter α � 2/3 that
cancels the remaining volume term. With this choice, the discrete
change of the L2-norm reads as

1
2
ztU

2
M,E + UTB [F* − F] + 2

3
UT B F

� 1
2
zt ||U ||2M,E + UTB [F* − 1

3
F] � 0. (68)

This estimate is now analogous to the one with exact integration
Eq. 19 and hence, with the same arguments, the choice of the
numerical flux functions as

f *,EC(U+,U) � 1
6
((U+)2 + U+ U + U2), (69)

gives again a discrete stability estimate

zt‖U‖2M � 0, (70)

for the split form DGSEM-LGL with α � 2/3 when summing
over all grid cells with periodic boundary conditions. It is
important to observe that this estimate is discrete in the sense
that it did not assume exact integration and that it can be only
derived with the particular choice α � 2/3 to cancel out the
volume contribution of the aliasing errors. With this, we have a
novel method where we have solved issue i) mentioned in the
beginning of the section.

We note that this particular choice of numerical flux function
exactly preserves the discrete L2-norm. If one considers non-
smooth solutions this choice would be inappropriate as for e.g.,
shocks, because the L2-norm needs to decrease as u2 is a
mathematical entropy for Burgers’ equation. For scalar
equations, s(u) � u2/2 is the square entropy (which leads to an
L2-stability estimate e.g., [99, 141]) that gives the simple entropy
variables w(u) � ds

du � u. Hence, the specific choice of numerical
flux Eq. 72 is often referred to as an entropy conservative (EC)
flux function. For an entropy dissipative flux function, there are
many choices available. It can be shown that the class of E-fluxes,
e.g., [33], are guaranteed dissipative and lead to the estimate

zt‖U‖2M ≤ 0. (71)

As an example, a simple choice of an entropy dissipative
numerical flux function is that of Rusanov

f *(U+,U) � 1
2
(F(U+) + F(U)) − 1

2
λmax(U+ − U),

λmax � max
U+ ,U
(zf
zu
). (72)

An important question is how we can extend this approach to
general nonlinear systems. Following the same ideas, it was
possible to derive split forms for the shallow water equations
[63, 119, 142], a simplified version of the compressible Euler
equations. There are many split forms for compressible Euler
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that, for instance, give kinetic energy preserving properties e.g.,
[143, 144]. However, up to now, no split form for the
compressible Euler equations is known that gives the desired
discrete entropy stability estimate. The problems are issues ii) and
iii) mentioned in the beginning of the section, where we need the
discrete chain rule property to contract the volume terms to the
surface. Concluding this subsection we revisit the derivations of
Burgers’ equation and make two important observations.

First, with the proper choice of α � 2/3, we get the so-called
skew-symmetric form

ut + 1
3
((u2)x + u ux) � 0. (73)

Skew-symmetry is strongly connected to entropy, see e.g.,
Tadmor [85]. Multiplying the spatial derivative term by u as
in the L2-stability analysis gives

u ((u2)x + u ux) � u (u2)x + u2 (u)x � (u3)x, (74)

which shows that the skew-symmetric form gives a product-rule
type form in the stability analysis that can directly be contracted to
the divergence form i.e., contracts to the surface when integrating. In
fact, for this simple problem, the chain rule needed for contraction
reduces to the simpler product rule. Analogously, we get for the
discrete skew-symmetric volume terms of the DGSEM-LGL

UTMDU U + UT UMDU � UTBU U . (75)

Thus, in our derivation, we already used a specific discrete version
of the chain rule (product rule) to get our estimate. The question
is, how to extend this idea to the general case?

The second important observation pioneered for SBP schemes
by Fisher in his PhD thesis [88] (in the spirit of earlier work by
LeFloch et al. [100]) is that the particular skew-symmetric volume
terms 1

3 [DU U + U DU] can be rewritten for any diagonal norm
SBP operator (hence, also for the DGSEM-LGL case) into

1
3
[DU U + U DU]i � 2∑

j�0

N

Dij
1
6
(U2

j + Uj Ui + U2
i )

� 2∑
j�0

N

Dijf
*,EC(Uj,Ui)

� DECf ,

(76)

with f *,EC being the particular numerical flux Eq. 69 that is
symmetric in its arguments and that leads to exact conservation
ofU2. We further introduced the shorthand notationDECf for the
volume term, that indicates that we use a specific derivative
operator built on the EC-flux. As a remark, we note that this
relation is easy to prove, as the discrete derivative of a constant is
zero and then, for instance,

∑N
j�0

DijU
2
i � U2

i ∑N
j�0

Dij � 0. (77)

In combination with the first observation we get the property that
this new discrete derivative operator (or divergence operator in
the multi-dimensional case) satisfies

UT MDECf � B Fs, (78)

where Fs is the collocated nodal vector of the entropy flux f s �
u3/3 for Burgers’ equation with the square entropy s(u) � u2/2.
This relation is the important discrete analogue of the chain-rule
property u fx � f sx , as it follows with integration that (82) is the
discrete analogue of

∫
Q

u fx dx � [f s]zQ. (79)

We will see in the next subsection, how these observations guide
the path to discrete stability estimates for general hyperbolic PDE
systems.

4.2 On the Discrete Entropy Stability of the
DGSEM-LGL
We have demonstrated how to build a high order skew-
symmetric DG approximation of the scalar nonlinear Burgers’
equation. To do so required a very particular discrete derivative
operator Eq. 78 that was the key to restore discrete entropy
stability. We now discuss how to extend the split form approach
to general systems of nonlinear hyperbolic conservation laws. For
general nonlinear systems, it is unclear how to explicitly construct
the split form to obtain a discrete chain rule property. In
particular, the compatibility condition on the physical fluxes
obtained when one contracts into entropy space Eq. 29 that
we reproduce here, assuming one spatial dimension, due to their
pertinence in the present discussion

wT fx � f sx . (80)

As previously indicated, the chain rule is either unfeasible or even
impossible to directly recover with discrete differentiation. With
this in mind we apply the product rule to this compatibility
condition between the physical flux f and the entropy flux f s

to find

wT
x f � (wT f)x − f sx � (wT f − f s)x. (81)

A principle motivation for this manipulation is because it is far
easier to recover the product rule discretely than it is the chain
rule. That is, we already have a particular discrete equivalent for
the product rule if the discrete derivative matrix D is a SBP
operator.

Next, we aim to find a discrete version of the new compatibility
condition Eq. 81 following the ideas of Tadmor [78]. Tadmor
analyzed low order FV schemes and developed conditions on the
numerical surface flux to derive a discretely entropy conserving
scheme. In the context of the low order FV methodology, our
unknowns in the elements are mean values that are naturally
discontinuous across grid cell interfaces. As mentioned above, the
idea to resolve these discontinuities with numerical flux functions
was also used in the construction of the DG approximation.
Consider the contribution to the compatibility condition Eq. 81
at an arbitrary interface. It depends on the discrete values in the
current cell and the direct neighbor of that cell, denoted again
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with a “+”. We approximate all derivatives with first order
differences and define Tadmor’s entropy conservation
condition on the numerical surface flux function

((w(U+)) − w(U)
Δx )T

f *,EC(U+,U)

� (w(U+)T f(U+) − f s(U+)) − (w(U)T f(U) − f s(U))
Δx , (82)

where Δx is the size of each grid cell. Equivalently, we arrive at the
following general condition on the numerical surface flux for
entropy conservation

((w(U+)) − w(U))T f *,EC(U+,U) � (w(U+)T f(U+) − f s(U+))
− (w(U)T f(U) − f s(U)).

(83)

For scalar nonlinear problems this condition can be solved
explicitly [145]. For example, in the case of Burgers’ equation,
we have w(u) � u, f(u) � u2/2, and f s(u) � u3/3 such that solving
Eq. 83

f *,EC(U+,U) � 1
6
(U+)3 − U3

U+ − U
� 1
6
((U+)2 + U+U + U2), (84)

which matches the particular entropy conservative flux derived in
Section 4.1. We note again that the entropy conservative flux is
symmetric in its arguments U+ and U, and is consistent to the
physical flux in the sense that for the same arguments we recover
the PDE flux f *,EC(U ,U) � f (U).

However, for systems of nonlinear hyperbolic conservation
laws Eq. 83 is a single algebraic condition for a system vector of
unknown flux quantities. Therefore, care must be taken to define
an entropy conservative numerical flux function that remains
physically consistent. That being said, the entropy conservation
condition on the numerical surface flux Eq. 83 is an incredibly
powerful statement. Provided we know an explicit form of the
entropy variables, the physical flux, and the entropy flux we can
define an appropriate numerical flux that ensures entropy
consistency for a low order FV numerical approximation. A
general form for such a numerical flux was developed by
Tadmor [77] defined as a phase integral

f *,EC(U+,U) � ∫1
2

−12
f( ~W(U(ξ))) dξ,

~W(U(ξ)) � 1
2
(W(U+) +W(U)) + ξ(W(U+) −W(U)).

(85)

To evaluate the phase integral form of the numerical flux function
requires a certain quadrature rule that defines a path through phase
space. Though theoretically useful, this phase integral form is
computationally prohibitive for practical simulations, even for low
order numerical approximations. However, over the past 20 years
“affordable” versions of the entropy conservative flux function
f *,EC(U+,U) have been developed for a variety of nonlinear
systems like the shallow water equations [119, 146], compressible
Euler [81, 83], and ideal magnetohydrodynamics [147].

The key to these numerically tractable versions of the entropy
conservative numerical flux function is to evaluate the
components of the physical flux at various mean states
between U+ and U. Note that these mean states can take on
incredibly complex forms that depend on the arithmetic mean,
the product of arithmetic means, or more uncommon quantities
like the logarithmic mean. Complete details on the derivation of
such numerical flux functions can be found in e.g., [81, 83,
146, 147].

For illustrative purposes we summarize the specific form of an
entropy conservative numerical flux for the one dimensional
compressible Euler equations with the ideal gas assumption
due to Chandrashekar [81]. First, we introduce notation for
the arithmetic mean and the logarithmic mean for two
quantities a and a+:

{{a}} � 1
2
(a+ + a), aln � a+ − a

ln(a+) − ln(a). (86)

Also, we introduce a variable proportional to the inverse of the
temperature

β � p
2ρ
, (87)

which simplifies the form of the entropy variables Eq. 36 to be

w � [ c − s
c − 1

− βv2 , 2βv , − 2β]T . (88)

Then, applying the entropy conservation condition Eq. 83 and
many algebraic manipulations later, we arrive at an analytical
expression of an entropy conservative numerical flux for the
compressible Euler equations

f *,EC(U+,U) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρln{{v}}

ρln{{v}}2 + {{ρ}}
2{{β}}

{{v}}
2
( ρln

βln(c − 1) +
{{ρ}}{{β}}) + ρln{{v}}

2
(2{{v}}2 − {{v2}})

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(89)

So far, the discussion on entropy conservative numerical
approximations has all been in the context of low order finite
volume methods. It is possible to create a high order entropy
aware scheme with ENO [148] or WENO type reconstructions
[149]. However, as mentioned above, a critical and remarkable
result of Fisher’s work is that a low order finite volume entropy
conservative scheme can be extended to an arbitrarily high order
accurate spatial scheme, when it is based on diagonal norm SBP
operators [101]. As was described for Burgers’ equation in the last
two observations in Section 4.1, the crucial part is to move the
contribution to the entropy production from the volume terms to
the surface via a discrete version of the chain rule. Once stability is
only governed by surface contributions, it is possible to control
the stability with a proper choice of numerical interface flux
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function. In this sense, the analysis of the high order scheme
reduces to a similar problem as for the low order finite volume
method Eq. 83 and the well-established theoretical analysis tools
and results can be reused. It is worth mentioning that f*,EC is not
unique and that a particular choice of the entropy conservative
flux generates a different split form of the governing equations,
e.g., [144, 150, 151].

We return to a strong form DG approximation of a nonlinear
hyperbolic system of conservation laws that takes a form identical
to Eq. 38 but now only considered in one spatial dimension

〈Ut , ϕ〉E + [ϕT(f *(U+,U) − f(U))]1−1 + 〈fx, ϕ〉E � 0. (90)

Here the standard tools of a nodal DG approximation have been
applied:

1. The solution and physical fluxes are approximated with
polynomials.

2. Any integrals in the variational formulation are approximated
with high order LGL quadrature.

3. The interpolation and quadrature nodes are collocated.

Importantly, these steps mean that the discrete DG
differentiation matrix is a SBP operator. Furthermore, we use
the entropy conservative numerical surface flux at the interface
and the particular discrete derivative projection DEC defined in
Eq. 76 in the volume contribution to arrive at the entropy
conservative DG approximation

ϕT(MUt + [f *,EC(U+,U) − f]1−1 +MDECf) � 0, ∀ϕ ∈ RN+1.

(91)

Now, if we take the test function ϕ � W with Wj � w(Uj)
evaluated at each LGL node xj, we obtain

WTMUt �∑N
j�0

ωjW
T
j (Ut)j �∑N

j�0
ωj(St)j � 〈St , 1〉E, (92)

assuming continuity in time. Also, the discrete differentiation
operator DEC moves volume information onto the boundary, see
Refs. 32, 101, and 125 for complete details, such that

WTMDECf � BFs. (93)

We note that this remarkable property holds for general
nonlinear systems with available entropy estimate and a
corresponding low order entropy conserving flux f*,EC.
Combining this with the definition of the entropy conservative
flux Eq. 83, the discrete entropy evolution of the DGSEM-LGL
becomes

〈St , 1〉E + [Fs]1−1 � 0, (94)

which is the discrete analogue of the integral form of the entropy
conservation law discussed in Section 2.2. The resulting DGSEM-
LGL is entropy conservative by construction and it is important
to note we have assumed no exactness on the integration. From
this baseline entropy conservative numerical scheme, that does
not dissipate entropy by construction, we can create a high order

DGSEM-LGL that enforces the entropy inequality Eq. 32. We do
so by introducing dissipation at the element interfaces via the
choice of the numerical surface flux function, e.g., the Rusanov
flux Eq. 72. More complex dissipation techniques are also
available that dissipate solution information according to the
different wave strengths with complete details found in, e.g.,
[152–156]. We finally note that this discussion was restricted to
one spatial dimension for the sake of convenience and simplicity.
Extensions to general three dimensional curvilinear coordinate
systems are available, see e.g., [32, 101, 116, 125, 157, 158] for
details.

4.3 Validation of Robustness and
Application to Space Physics of the Entropy
Stable DGSEM
In this subsection, we demonstrate two exemplary simulation
results of a DG scheme based on the key ideas outlined above. The
general split form DGSEM with LGL nodes on three dimensional
curvilinear hexahedral unstructured meshes is implemented in
the open source software FLUXO (project-fluxo/fluxo at github),
written in modern Fortran with a special emphasis on massively
parallel CPU based hardware. The main focus of the software is
on compressible Navier-Stokes and visco-resistive MHD
equations. Time integration of the semi-discrete form is done
with a fourth order accurate low storage Runge-Kutta method of
Carpenter and Kennedy [159].

For the validation of the robustness we revisit an important
numerical contribution of Moura et al. [67]. They were the first to
report of a test case that the DG scheme with (numerical) exact
integration was not able to run, demonstrating, that further
improvement on the robustness of the DG methodology was
necessary. For this validation test, we consider the compressible
Navier-Stokes equations (viscous case) or the compressible Euler
equations (inviscid case, basically setting the viscosity parameter
to zero). The considered problem is the Taylor-Green vortex in a
fully periodic domain, which serves as a test case for a fully
periodic turbulent box [0,1]3, that starts with a smooth initial
velocity field

v1 � v0 sin(2 π x1)cos(2 π x2)cos(2 π x3),
v2 � −v0 cos(2 π x1)sin(2 π x2)cos(2 π x3),
v3 � 0, (95)

and transitions to turbulence during its temporal evolution until
it reaches a state similar to homogeneous turbulence. The initial
density is uniform ρ � 1 and the initial pressure is give by
p � p0 + 1

16 (cos(4 π x1) + cos(4 π x2))(cos(4 π x3) + 2), where
p0 is a background pressure and v0 the velocity amplitude
used to set the initial Mach number. In our case, we choose
the Mach number to be Ma � 0.1. Unresolved vortical driven
flows are especially prone to the aliasing issues discussed above.
The difficulty of this test case lies in its wide range of scales when
the Reynolds number increases (i.e., for low viscosities), e.g., [39].
For the DGSEM discretisation, we choose the polynomial degree
N and the number of grid cells N3

Q. Thus, the total number of
degrees of freedom (DOF) for one conserved quantity is
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(N + 1)3 N3
Q. For the numerical flux function at the surface, we

use the Rusanov flux.
For the robustness investigation, we consider an inviscid flow

(with the viscosity parameter is zero) and focus on three
particular setups, where N � 1,3,7 with number of elements
NQ � 56,28,14 respectively. This ensures that for all three
computations the overall number of DOF per conserved
quantity is equal, about 1.4 million. There are many more
investigations of different configurations presented in Ref. 160,
but they all demonstrate the same behavior: while the low order
variants N � 1,3 seem to be relatively robust with full integration,
the higher the polynomial degree, the less stable the DG method
becomes. And for the case N � 7 with NQ � 14 the simulation
crashed at about a simulation time of tcrash � 8.4, even when
increasing the quadrature nodes from 83 up to 323 � 32768 per
element. In contrast, the novel entropy stable DGSEM with
standard LGL nodes runs all configurations without crashing.

Furthermore, it is possible to run this challenging test case
even without any artificial dissipation, i.e. with the F*,EC

numerical flux instead of the Rusanov flux function. This is
very interesting, as it allows us to fully observe and control the
artificial numerical dissipation generated by the scheme. To
demonstrate this, we consider again the Taylor-Green vortex
test case, but this time with non-zero viscosity such that the
Reynolds number is Re � 1600. In this Navier-Stokes case, it is
possible to relate the kinetic energy decay over time with the
temporal behavior of the enstrophy to get an estimate for the
Reynolds number. In theory, this should be Re � 1600 for the
simulation. In practice, the finite resolution causes numerical
errors such as dispersion and dissipation, e.g., [55]. We present
two results in Figure 1 for the viscous test case with N � 7 and
NQ � 8.

We note, that this test case would crash for the standard DG
scheme, however for the presented novel DGSEM-LGL with the
proper discrete chain rule, it runs with the dissipative Rusanov
numerical flux F*,Rusanov (entropy stable DGSEM-LGL) and even
with the non-dissipative numerical flux F*,EC (entropy
conservative DGSEM-LGL). After an initial transition zone,
the entropy conservative scheme retains the physical Reynolds
number remarkably well with Renumerical � 1600 and the
simulation is virtually dissipation free throughout the temporal
evolution. The entropy stable variant clearly introduces
stabilizing dissipation as soon as the spatial scales can no
longer be resolved. It is interesting to note, that these results
hint toward the possibility of quantifying and controlling the
artificial dissipation of the DGSEM for under resolved turbulence
and use this to construct high fidelity turbulence models, see e.g.,
for a proof of concept [161].

For an exemplary application we consider a complex test case
from space physics. We focus on the electrodynamic and plasma
interaction of the moon Io with the strong magnetic field of
Jupiter. Io is embedded in a dense plasma torus, induced by the
magnetosphere of Jupiter, and it exhibits interesting plasma flow
characteristics containing steep gradients and discontinuities
[162]. The general problem setup is illustrated in Figure 2.
Neglecting neutral density, relativistic, viscous, resistive, and
Hall effects, this MHD flow within Io’s plasma torus can be

modeled with the ideal MHD equations. For such
magnetohydrodynamic flows, the entropy stable DGSEM
solver in FLUXO uses a hyperbolic divergence cleaning
mechanism to enforce the divergence-free constraint on the
magnetic field variables B

→
[125]. Additionally, the solver must

be augmented with a shock capturing technique in order to
handle strong discontinuities [163].

As Io orbits Jupiter, plasma from the torus streams in and
forms a local ionosphere that induces polarisation charges and
modifies the electric field, thus changing the local Lorentz force
and damping electron and ion flow close to Io. The plasma flow is
strongly reduced inside Io’s (very weak) atmosphere, which can
bemodeled by incorporating a neutral collision source term to the
ideal MHD system, Saur et al. [162, 164],

scollision � [0 , − ϖρ v→ , − 1
2
ϖρ ‖ v→‖2 , 0

→]T , (96)

with the collision frequency

ϖ �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϖin , x→ ∈ U

ϖinexp(rU − r
d
) , x→ ∈ T

0 , x→ ∉ U∪T

, (101)

where ϖin > 0 is constant. The inner atmosphere of Io is
represented as a neutral gas cloud U. In order to model the
ionosphere, we also introduce a smooth transition area T by an
exponential blending dependent on the radii rU, r and the
dilatation factor d. In this region the neutral atmosphere thins

FIGURE 1 | The estimate of the numerical Reynolds number of an under
resolved simulation with polynomial degree N � 7 and eight elements (643

DOF). The physical Reynolds number of the Taylor-Green vortex setup is Re �
1600. The entropy conservative (EC) scheme retains the physical
Reynolds number remarkably well and is virtually dissipation free. The entropy
stable (Rusanov) variant clearly introduces stabilizing dissipation as soon as
the scales can no longer be resolved starting at about t � 3.
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causing ionospheric conductivities to shrink such that they are no
longer able to maintain the ionospheric current perpendicular to
the magnetic field. Eventually, electric current is continued along
the magnetic field lines out of Io’s ionosphere, where it is finally
fed into Io’s Alfvén wings as illustrated in Figure 3.

In the dimensionless computational domain we scale the
radius of the atmosphere to take a spherical shape with radius
one and locate the center of the sphere at the origin

U � { x→ ∈ Ω
∣∣∣∣∣ ‖ x→ ‖ ≤ rU � 1}. (102)

The ionospheric processes uses the exponential blending of the
collision frequency above with a dilatation factor d � 150/1820.
The initial conditions for the flow are taken as

ρ � 1, v→ � (1, 0, 0)T , p � 0.148, B
→ � (0, 0,−3.41)T ,

(103)

that will evolve to a final time T � 5. The gas constant is taken to
be c � 5/3. The boundary states at the left, front and back
boundary faces are constant to this reference state, whereas we
define outflow boundary conditions at the right, top and bottom
of the domain.

In anticipation to capture the relevant physical interactions at
the sphere as well as the development of the Alfvén wings best, we
exploit the geometric flexibility of the entropy stable DGSEM
solver and divide the computational domain into an
unstructured, curvilinear mesh presented in Figure 4. Within
each element we use a polynomial order of N � 3.

In Figure 5we show a 2D-slice of the B1 and v1 components at
y � 0 of the entropy stable approximation at the final time which
presents the numerically generated Alfvén wings from the
entropy stable DGSEM. It also demonstrates the expected
positive correlation of the B1 variable with the velocity variable
v1 in the northern Alfvén wing and the negative correlation in the

southern wing. Moreover, we consider profile slices in these B1
and v1 along the line z � 5 and compare the results to a solution
computed by the open source software ZEUS (www.astro.
princeton.edu/jstone/zeus.html) in Figure 6. ZEUS is a FV
solver written in spherical coordinates that uses explicit time
integration. For the presented comparison, ZEUS used 10 million
grid cells (DOF) in total whereas the entropy stable DGSEM
solver used approximately 14,336 elements with N�3
polynomials and a total of about 1 million DOF. The
reduction of DOFs also translated in a nearly 10 fold
reduction of overall CPU time when both codes were run in
parallel using MPI on 100 cores. This increased efficiency of the
high order DGSEM-LGL, the increased robustness due to discrete
entropy stability, and the geometrical flexibility are several
advantages of this novel DG framework.

5 WHERE TO GO NEXT?

The response of the DG community to the split form DGSEM
with LGL quadrature on tensor-product hexahedra has been
astounding. However, naturally, there are still many
limitations of this method. Some that have been recently
addressed and many others still open. So far, we discussed
semi-discrete DGSEM-LGL variants with tensor product
expansions on possible curvilinear unstructured hexahedral
meshes. Direct extensions of this variant include non-
conforming meshes [166, 167], moving meshes [168–170],
different related versions such as e.g., the line DG method
[171], and a fully discrete space-time approach without the
assumption on time continuity [172–175]. An exciting recent
development are explicit modified Runge-Kutta methods that
retain the semi-discrete entropy stability estimates [176].

A downside of LGL is that in comparison to the Legendre-
Gauss (LG) points, the accuracy in dispersion and dissipation is

FIGURE 2 | Io’s electrodynamic interaction is unique due to its fast rotation and the influence of the strong magnetic field of Jupiter. Plasma interactions with Io’s
atmosphere lead to mass loss in the form of ions and neutrons. These neutrons then ionize through radiative effects and accumulate around Io forming a plasma torus.
Consequently, this flow of magnetized plasma past the obstacle Io, combined with atmospheric interactions, are the engine behind Io’s plasma interactions with Jupiter’s
magnetosphere.
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lower, see e.g., [56]. Unfortunately, LG points do not include the
boundary nodes, hence they do not directly satisfy the classic SBP
property and the presented developments cannot be directly
applied to this case. However, there are several developments
where the framework was extended to construct entropy stable
variants with LG nodes. One is based on a staggered grid
approach by Parsani et al. [176]. The authors used the
standard LG nodes to span the solution, however to compute
the discrete derivative operator, they interpolate onto a higher
order staggered LGL grid where they can use the SBP property.
Then they ensure that the back-projection is still entropy stable to
retain the stability estimate on top of the accuracy of the LG
nodes. Another approach is presented by e.g., Ortleb [177] where
the author directly constructed a scheme that preserves the
kinetic energy with LG nodes. Although SBP could not
directly be applied, the difference lies only in the boundary
operator B. For classic SBP B is diagonal, whereas in case of
LG nodes B has some columns filled. Ortleb fixed this by
considering special correction terms at the boundary, while
using similar ideas as in the LGL case for the volume terms.
In his PhD thesis, Fernández [178] extended the classic SBP
property to general node sets that do or do not include the
boundary nodes, where all grid nodes lie inside or even outside of
the considered domain.

A generalization onto multi-dimensional domains is given in
e.g., [179], termed multidimensional SBP operators. This is an
interesting development, as it resolves another limitation of the
classic DGSEM-LGL. In some applications, it is favourable to
have more flexibility when generating meshes for geometries with

complex shapes. In this case, meshes with simplex element types
such as triangles and tetrahedra or even hybrid element types
such as prisms and pyramids are desired. We will mention some
recent developments and extensions here, but stress that this list
is not complete and there are many more. Returning to the
multidimensional SBP framework, this approach’s strength is
that it can be used to construct stable methods on simplex meshes
e.g., by Chan [115, 180], Chen and Shu [132], Hicken et al. [181],
and Crean et al. [182]. Another interesting approach to generate
DG scheme on general meshes is presented by Chan [115]. He
shows that a special projection directly with the entropy variables
collocated at the grid nodes can give a SBP type property that can
be used to construct stable discretisations.

As stated the response of the DG community has been
astonishing with an explosion of developments, extensions,
and new insights. However, there are still many unresolved
issues that need to be researched in the future to further
evolve high order DG methods into a viable tool for
computational physics. The most important problem is still
robustness. Although entropy stability significantly improves
the stability of the scheme in many applications, there are still
situations where no significant gain in robustness of the DG
scheme can be observed [183, 184]. A possible reason could be,
for instance, the incorrect choice of mathematical entropy
function. While there is typically only one physical
(thermodynamic) entropy, there are many mathematical ones
that often lead to a stability estimate in corresponding norms of
the solution. So what are the important entropy quantities to
consider? What about e.g., kinetic energy, cross helicity and

FIGURE 3 | Standing Alfvén current tube magneto-spheric disturbances, termed Alfvén wings, that spread and propagate away along field lines in both directions.
The development of the Alfvén wings are observable in the regions with decreasing plasma bulk velocity v1 and perturbed magnetic field B1 north and south of Io in the xz
plane. It is known that the Alfvén current tubes are bent back by a constant angle with respect to the unperturbed background magnetic field. Further, the perturbation of
the magnetic field is positively correlated with the perturbation of the velocity field in the northern Alfvén wing and negatively correlated in the southern wing [133].
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FIGURE 4 | Computational mesh for the Alvénwing test problem built from 14,336 curved elements. At the origin the elements are curved to capture the spherical shape of the
neutral gas cloudU. Due to the geometric flexibility of theDGSEM themesh in the northern and southern regions are titled in order to capture theAlvénwing structuresmore accurately.

FIGURE 5 | Alfvén wings numerically computed with the entropy stable DGSEM for the plasma interaction of a spherical gas cloud. The snapshot is a slice in the xz
plane at y � 0 at the final time T � 5. The polynomial order in each spatial direction was N � 3 in each spatial direction. As expected, the Alfvén wings evolve from the
northern and southern poles of the neutral gas cloud and are bent back by a constant angle with respect to the background magnetic field. This bending was taken into
account in the construction of the curvilinear mesh.
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related quantities? For example, in turbulence, the kinetic energy
and proper prediction of its behavior seems to play an important
role [144, 161, 185, 186]. Besides getting discrete entropy stability
estimates, it is possible to use the split form DGSEM-LGL
approach from Section 4.1 to construct DG schemes that
discretely preserve the kinetic energy and are discretely
compatible for the inner and the total energy, e.g., [116]. It
could be shown in Refs. 160 and 161 that such kinetic energy
preserving DG schemes behave favourably for the simulation of
compressible turbulence in comparison to the standard DG,
especially in combination with subgrid turbulence models.
However, just as in the development of entropy conservative
(and in turn entropy stable) numerical flux functions there is
nonuniqeuness. There exist many possible solutions to create a
numerical flux that is e.g., kinetic energy preserving or entropy
conservative or both e.g., [81, 83, 144, 185, 187]. Moreover, the
discrete behavior of the kinetic energy as it evolves in time for
under-resolved turbulent flows is quite different even between
fluxes that are all provably kinetic energy preserving on paper [116,
187, 188]. So, an important question for the future is thus:What are
the important quantities not only from a mathematical, but also
from a physical point of view?

A fundamental issue in this context are problem setups that
involve physical discontinuities e.g., shock waves in the
compressible Euler or ideal MHD equations. Discontinuities
trigger another instability, inherent in high order methods: the
Gibbs phenomenon i.e., numerical oscillations. These oscillations
can be devastating as under- or overshoots can cause non-physical
state solutions e.g., negative density or pressure. Hence, positivity is
a necessary criterion for all numerical methods when simulating
such problems. However, up to this date there is still not enough
research into the topic of entropy stability and positivity e.g., [40].
It is worth pointing out, that mathematically, the entropy function

is only well-defined for positive solutions and, hence, is strongly
connected to positivity. Generalizing this discussion, it is evident
that entropy stability is “not enough” as a property for the
numerical method. We need more properties, such as e.g.,
positivity. However, this is also where we reach uncharted
research territory as even for many continuous problems e.g.,
the compressible Navier-Stokes equations it is up to this point
unclear to show positivity even for the model itself.

The overview in this work focused on the volume contributions
and the underlying tools (physical and mathematical) which led to
the entropy stable DG method. However, the contributions at the
physical boundaries have been ignored. Properly posing the
boundary conditions to be entropy stable for a given model, like
the compressible Euler or Navier-Stokes equations, has been
considered [189–195], but this is remains an active area of
research particularly because the treatment and behavior of the
solution (whether on the continuous or discrete level) is directly
related to the validity of a mathematical PDEmodel and directly tied
into issues of well-posedness.

Concluding, we are currently at an exciting development stage
with high order DG methods, where we can mimic important
continuous stability estimates by careful construction of discrete
operators. However, practical simulations show that these are not
enough for the most complex problems that we desire to simulate.
Plus, our numerical schemes and their properties are very close to
the current analytical knowledge we have about the physical
models. It is very hard to progress with the numerical
developments further than what is analytically known: Which
properties are important? How do you show positivity? Or a more
general question: How does one prove physicality of the solutions
for a given PDE model? It seems that the answers can only be
given in close collaboration of researchers from physics and
mathematics.

FIGURE 6 | One dimensional visualization of the Alfvén wing solution along the line z � 5 from the xz plane slice at y � 0. A comparison is performed between the
entropy DG solver withN � 3 in each spatial direction and the first order finite volume solver ZEUS. The entropy stable DG approximation uses 90% fewer DOF compared
to the 10 million DOF used for the ZEUS computation. Qualitatively, the solutions are very similar.
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In this paper we first review the development of high order ADER finite volume and ADER

discontinuous Galerkin schemes on fixed and moving meshes, since their introduction

in 1999 by Toro et al. We show the modern variant of ADER based on a space-time

predictor-corrector formulation in the context of ADER discontinuous Galerkin schemes

with a posteriori subcell finite volume limiter on fixed and moving grids, as well as

on space-time adaptive Cartesian AMR meshes. We then present and discuss the

unified symmetric hyperbolic and thermodynamically compatible (SHTC) formulation of

continuum mechanics developed by Godunov, Peshkov, and Romenski (GPR model),

which allows to describe fluid and solid mechanics in one single and unified first order

hyperbolic system. In order to deal with free surface and moving boundary problems,

a simple diffuse interface approach is employed, which is compatible with Eulerian

schemes on fixed grids as well as direct Arbitrary-Lagrangian-Eulerian methods on

moving meshes. We show some examples of moving boundary problems in fluid and

solid mechanics.

Keywords: Godunov-Peshkov-Romenski model, high order, finite volume, discontinuous Galerkin, diffuse

interface

1. INTRODUCTION AND REVIEW OF THE ADER APPROACH

The development of high order numerical schemes for hyperbolic conservation laws has been
one of the major challenges of numerical analysis for the last decades. Godunov [1] proved that
for the linear advection equation no monotone linear schemes of second or higher order of
accuracy can be constructed. Therefore, even if physical viscosity is considered, a linear high order
scheme will present spurious oscillations near discontinuities, as it can be seen, for instance for
the Lax-Wendroff scheme, Lax and Wendroff [2]. A first idea to circumvent this theorem has been
proposed in Kolgan [3], where limited slopes are employed to produce a non-linear scheme of
second order of accuracy in space. Since then, many high order numerical methods have been
developed like the Total Variation Disminishing methods (TVD) and Flux limiter methods (see,
for instance, [4–9]). Despite these methodologies being already well-established at the end of the
last century, their major drawback was that they just provided global second order of accuracy and
reduced locally to first order in the vicinity of smooth extrema.

More advanced non-linear methods for advection dominated problems involve the family of
ENO andWENO schemes, see Harten andOsher [10], Harten et al. [11], and Shu [12]. In particular,
the method of Harten et al. [11] is a fully discrete high order scheme that can be re-interpreted
in terms of the solution of a generalized Riemann problem (GRP), see Castro and Toro [13].
Moreover, it can be seen as a generalization of the MUSCL-Hancock method of van Leer, see van
Leer [8], Toro [9], and Berthon [14].
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Following the idea of solving a generalized Riemann problem
(GRP), see also Ben-Artzi and Falcovitz [15], LeFloch and Tatsien
[16], Ben-Artzi et al. [17], and Han et al. [18], the ADER
approach (Arbitrary high order DErivative Riemann problem)
has been first put forward for the linear advection equation
with constant coefficients by Millington et al. [19] and Toro
et al. [20]. The first step of the methodology involves piece-
wise polynomial data reconstruction, where a non-linear ENO
reconstruction is applied in order to avoid spurious oscillations
of the numerical solution. Then, a GRP is defined at each
cell interface. Classically, the initial condition for the GRP
was given as piece-wise linear polynomials and second order
schemes could be obtained by constructing a space-time integral
of the solution in an appropriate control volume [21, 22], or
following a MUSCL approach, van Leer [23] and Colella [24].
An alternative methodology proposed in Ben-Artzi and Falcovitz
[25] consists in expressing the solution of the GRP as a Taylor
series expansion in time. The ADER approach obtains the high
order time derivatives of the GRP solution at the cell interface
via the Cauchy-Kovalevskaya procedure, which replaces time
derivatives by spatial derivatives using repeated differentiation of
the differential form of the PDE. The spatial derivatives, which
may also jump at the interface, are defined via the solution
of linearized Riemann problems for the derivatives, where
linearization is carried out about the Godunov state obtained
from the classical Riemann problem between the boundary
extrapolated values at the interface. In Figure 1, the classical
piece-wise constant polynomials are plotted against a high order
reconstruction and the similarity solutions for both cases are
sketched. Finally, these similarity solutions are used to construct
the numerical flux. The resulting schemes are arbitrary high order
accurate in both space and time, in the sense that they have no
theoretical accuracy barrier.

Since their introduction in Toro et al. [20] and Millington
et al. [19], many extensions of the ADER methodology have
been proposed. Regarding 2D linear PDEs, one may refer
to Schwartzkopff et al. [26] and their simplification for the
particular case of structured grids in Schwartzkopff et al. [27].
Moreover, non-linear systems have been initially addressed in
Toro and Titarev [28] and Titarev and Toro [29]. Further
applications of ADER on non-Cartesian meshes have been
presented in Käser [30], Käser and Iske [31], Dumbser et al.
[32], and Castro and Toro [13]. One should also mention
the development of ADER schemes in the framework of
discontinuous Galerkin (DG) finite element methods, see Qiu
et al. [33], Dumbser and Munz [34] and Gassner et al. [35]. One
of the main advantages of using DG is that the reconstruction
step of classical ADER finite volume (ADER-FV) schemes can
be skipped, since the discrete solution is already given by high
order piecewise polynomials that can be directly evolved during
each time step. Furthermore, ADER-DG schemes avoid the use
of classical Runge-Kutta time stepping and thus provide efficient
communication-avoiding schemes for parallel computing, see
Fambri et al. [36] and allow for simple and natural time-accurate
local time stepping (LTS), see Dumbser et al. [37].

An important step forward in the development of more
general ADER schemes was achieved in Dumbser et al. [38],

where a new class of ADER-FV methods has been introduced.
The main contribution of this paper consists in the introduction
of a new element-local space-time DG predictor, which allows
at the same time the treatment of stiff source terms, as well
as the replacement of the cumbersome Cauchy-Kovalevskaya
procedure. First, a high order WENO method is employed
to compute a polynomial reconstruction of the data inside
each spatial element; then, an element-local weak formulation
of the conservation law is considered in space-time and the
predictor is applied to construct the time evolution of the
WENO polynomials within each cell. Note that, in this step,
the integration by parts is performed only in time, which differs
from global space-time DG schemes [39, 40], which are globally
implicit. Finally, the cell averages are updated with an explicit
fully discrete one-step scheme, considering the integral form of
the equations. As a result, the proposed methodology maintains
arbitrary high order of accuracy, while avoiding the issues related
to the use of a Taylor series expansion in time. As already
mentioned above, it naturally provides an approach for the
treatment of stiff source terms [for further details on this topic,
see [41] and references therein].

The above methodology can also be applied in the
discontiuous Galerkin framework as presented in Dumbser
et al. [42], where, a unified PNPM framework for arbitrary
high order one-step finite volume and DG schemes has been
introduced. For other reconstruction-based DG schemes, see
e.g., Luo et al. [43, 44]. Afterwards, the methodology has been
extended to solve a wide variety of different PDE systems,
such as the resistive relativistic MHD equations, Dumbser
and Zanotti [45]; non-conservative hyperbolic systems found
in geophysical flows, Dumbser et al. [46] in which a well-
balanced and path-conservative version of the scheme has been
developed; compressible multi-phase flows Dumbser et al. [47],
the compressible Navier-Stokes equations, Dumbser [48]; the
compressible Euler equations and divergence-free schemes for
MHD, Balsara et al. [49], and Balsara and Dumbser [50],
where ADER schemes were used in combination with genuinely
multidimensional Riemann solvers. The last extensions concern
the special and general relativistic MHD equations, see Zanotti
et al. [51], and Fambri et al. [36], as well as the Einstein field
equations of general relativity [52, 53].

Later, ADER schemes have been extended to adaptive mesh
refinement on Cartesian grids (AMR), in combination with time
accurate local time stepping (LTS). This technique has initially
been introduced in Dumbser et al. [54, 55] for conservative and
non-conservative hyperbolic systems, respectively. Moreover, the
schemes of the ADER family were the first high order methods to
be applied for the numerical solution of the unified first order
hyperbolic formulation of continuum mechanics by Godunov,
Peshkov and Romenski [56–58], see Dumbser et al. [59–61]. In
the rest of this paper, we will refer to the Godunov-Peshkov-
Romenski model of continuum mechanics as GPR model.

The ADER approach has also been extended to the direct
Arbitrary-Lagrangian-Eulerian framework (ALE), where the
mesh moves with an arbitrary velocity, taken as close as possible
to the local fluid velocity. Initially developed for one space
dimension, it has been soon extended to the case of the two
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FIGURE 1 | Classical piece-wise reconstruction polynomials used in the ADER approach, pi (x) and pi+1(x), and the structure of the Riemann problem solution at the

intercell boundary xi+ 1
2
. (Left) classical piece-wise constant data. (Right) piece-wise smooth reconstruction.

and three dimensional Euler equations on unstructured meshes,
Boscheri and Dumbser [62, 63], including the discretization of
non-conservative products. Further works in this area involve
the use of local timestepping techniques, [64, 65]; coupling
with multidimensional HLL Riemann solvers, Boscheri et al.
[66]; solution of magnetohydrodynamics problems (MHD), [67,
68]; development of a quadrature-free approach to increase the
computational efficiency of the overall method, Boscheri and
Dumbser [69]; use of curvilinear unstructured meshes, Boscheri
andDumbser [70]; or extension to solve the GPRmodel, Boscheri
et al. [71] and Peshkov et al. [72]. Furthermore, in Gaburro et al.
[73] a novel algorithm to deal with moving non-conforming
polygonal grids has been presented. The methodology reduces
the typical mesh distortion arising in shear flows and provides
high quality elements even for long-time simulations. An exactly
well-balanced path-conservative version of this approach for the
Euler equations with gravity can be found in Gaburro et al.
[74]. Still in the ALE framework, within this article, we will
present new results for the family of ADER-FV and ADER-
DG schemes on moving unstructured Voronoi meshes [75], as
recently introduced in Gaburro [76] and Gaburro et al. [77].

It is well-known that when dealing with high order schemes
special care must be paid to the limiting methodology employed.
In most of the previous referenced papers classical a priori
limiters have been used, such as WENO reconstruction.
Nevertheless, some alternative contributions to this topic can
be found in the series of papers [51, 77–85], where a novel a
posteriori sub-cell FV limiter of high order DG schemes, based on
the MOOD paradigm of Clain et al. [86] and Diot et al. [87, 88],
has been employed.

Besides the references given above, which focus on the
development of the ADER methodology with a local space-time
Galerkin predictor, many recent papers have been devoted to
the development of other families of ADER schemes, like the
classical ADER finite volume methods. Without pretending to
be exhaustive, we may refer to Castro et al. [89], Toro and

Hidalgo [90], Taube et al. [91], Toro [9], Montecinos et al. [92],
Montecinos and Toro [93], Toro and Montecinos [94, 95], Toro
et al. [96], Busto [97], Montecinos et al. [98], Busto et al. [99],
Contarino et al. [100], Busto et al. [101], and Dematté et al. [102]
and references therein.

In this paper, as a promising application of the family of
ADER schemes, we solve a diffuse interface formulation of
the GPR model of continuum mechanics. In comparison with
existing continuum mechanics models, the novel feature of the
GPR model is in that it incorporates the two main branches of
continuum mechanics, fluid and solid mechanics, in one single
unified PDE system. Recall that traditionally fluid and solid
mechanics are described by PDE systems of different types, i.e.,
parabolic (viscous fluids) and hyperbolic (linear elasticity and
hyperelasticity), which imposes many theoretical and technical
difficulties if one wishes tomodel natural and industrial processes
involving co-existence of the fluid and solid states such as
in fluid-structure interaction (FSI) problems, modeling of
general solid-fluid transition such as in melting and solidification
processes, e.g., additive manufacturing, see for example Francois
et al. [103], flows of granular media [104], viscoplastic flows,
e.g., debris flows, avalanches, mantle convection, flows of many
industrial Bingham-type fluids, see Balmforth et al. [105]. Due to
the unified treatment of fluids and solids, the GPR model thus
has a great potential for simplifying the modeling process and
code development for solving the aforementioned problems. Yet,
before to be applied to practical problems, the GPR model may
require a coupling with an interface tracking/capturing technique
for the modeling of moving material boundaries such as in free
surface flows or solid body motion. In particular, in this paper, we
couple the GPR model with a simple diffuse interface approach,
see Tavelli et al. [85], Dumbser [106], Gaburro et al. [107], Kemm
et al. [108]. For example, very interesting computational results
with similar diffuse interface approaches and level set techniques
for compressible multi-material flows have been obtained for
example in Gavrilyuk et al. [109], Favrie et al. [110], Favrie and

Frontiers in Physics | www.frontiersin.org 3 March 2020 | Volume 8 | Article 3233

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Busto et al. ADER Schemes for Continuum Mechanics

Gavrilyuk [111], Ndanou et al. [112], de Brauer et al. [113],
Michael and Nikiforakis [114], Jackson and Nikiforakis [115],
and Barton [116]. Finally, we demonstrate that the ADER family
of schemes is capable to resolve the GPR model in both solid and
fluid regimes.

The paper is organized as follows. In section 2 we present
the family of ADER finite volume and ADER discontinuous
Galerkin finite element schemes on fixed Cartesian and moving
polygonal meshes in two space dimensions. Next, in section 3
we introduce the diffuse interface formulation of the GPRmodel.
In section 4 we show some computational results obtained with
different kinds of ADER schemes (ADER-FV and ADER-DG)
on different mesh topologies, including moving unstructured
Voronoi meshes, as well as fixed and adaptive Cartesian grids.
The paper is rounded off by some concluding remarks and an
outlook to future work in section 5.

2. ADER FINITE VOLUME AND
DISCONTINUOUS GALERKIN SCHEMES

The numerical method adopted in this paper is the variant of
the arbitrary high-order accurate ADER approach based on the
space-time predictor-corrector formalism, which we have briefly
reviewed in the previous section 1. It easily applies to the context
of finite volume (FV) and discontinous Galerkin (DG) methods,
using either space-time adaptive Cartesian grids (AMR), see
Bungartz et al. [117],Weinzierl and Mehl [118], Dumbser et al.
[54], Zanotti et al. [80], Fambri et al. [36, 84] and references
therein, or unstructured meshes, and both on fixed Eulerian
domains or in a moving Arbitrary-Lagrangian-Eulerian (ALE)
framework, see Boscheri et al. [65, 68], Boscheri and Dumbser
[62, 63, 119], Boscheri [82], Gaburro [120], Gaburro et al. [77],
and references therein.

Here, we briefly describe the key features of our numerical
scheme, keeping the notation as general as possible, and
referring to the literature for further details. We start by
introducing the general form of our governing PDE system and a
moving unstructured discretization of two-dimensional domains
(sections 2.1 and 2.2); next, in section 2.3 we describe the data
representation of the discrete solution. Then, we explain how
to obtain high order of accuracy in space: this is available by
construction in the DG case, and obtained via some variants
of the well-known WENO procedure [32, 121–125] for the FV
approach. Finally, we focus on the predictor-corrector version
of the ADER scheme that allows to achieve arbitrary high order
of accuracy in space and time. Since it is out of the scope of
this paper to recall all the details, a general overview is given in
sections 2.5 and 2.7, and an inedited proof of the convergence of
the predictor for a non-linear conservation law is presented in
section 2.6.

We would like to emphasize that, besides this novel
convergence proof, other progress has been introduced within
this work. Indeed, up to our knowledge, it is the first time
that: (i) the ADER approach is used to solve a diffuse interface
formulation of the GPR model that addresses the free surface
problem in both solid and fluid mechanics context (previously, a

similar formulation was used only in the solid dynamics context
[112, 126, 127]); (ii) non-conservative products are taken into
account in the high order direct ALE scheme of Gaburro et al.
[77], where they have to be integrated also on degenerate space–
time control volumes (see section 2.5.2).

2.1. Governing PDE System
In this paper we consider high order fully-discrete schemes for
non-linear systems of hyperbolic PDE with non-conservative
products and algebraic source terms of the form

∂Q

∂t
+∇ · F (Q)+ B(Q) · ∇Q = S(Q), (1)

where Q = Q(x, t) ∈ �Q ⊂ R
m is the state vector, t ∈ R

+
0 is the

time, x ∈ � ⊂ R
d is the spatial coordinate, d is the number of

space dimensions, �Q is the so-called state space or phase space,
F(Q) is the non-linear flux tensor,B(Q)·∇Q is a non-conservative
product and S(Q) is a purely algebraic source term. Introducing
the system matrix A(Q) = ∂F/∂Q + B(Q) the above system can
also be written in quasi-linear form as

∂Q

∂t
+ A(Q) · ∇Q = S(Q). (2)

The system is said to be hyperbolic if for all n 6= 0 and for all
Q ∈ �Q the matrix A(Q) · n has m real eigenvalues and a full
set of m linearly independent right eigenvectors. The system (1)
needs to be provided with an initial condition Q(x, 0) = Q0(x)
and appropriate boundary conditions on ∂ �.

In this paper we focus on a particular, but very general,
example of a first-order system (1) describing elastic and visco-
plastic heat-conducting media; it will be discussed in section 3.

2.2. Domain Discretization
In the general ALE case, we consider a moving two-dimensional
(d = 2) domain �(t) and we cover it using an unstructured
mesh made of NP non-overlapping polygons Pi, i = 1, . . .NP.
The mesh is first built at time t = 0 and then it is rearranged
at each time step tn: elements and nodes are moved following the
local fluid velocity and when necessary, in order to prevent mesh
distortion, also the mesh topology (i.e., the shape of the elements
and their connectivities) is changed.

Given a polygon Pni we denote by V(Pni ) = {vni1 , . . . , v
n
ij
,

. . . , vniNn
Vi

} the set of its Nn
Vi

Voronoi neighbors (the neighbors

that share with Pni at least a vertex), and by E(Pni ) =
{eni1 , . . . , e

n
ij
,. . . ,eniNn

Vi

} the set of its Nn
Vi

edges, and by D(Pni ) =
{dni1 , . . . , d

n
ij
,. . . ,dniNn

Vi

} the set of its Nn
Vi

vertexes, consistently

ordered counterclockwise. Finally, the barycenter of Pni is noted
as xn

bi
= (xn

bi
, yn

bi
). When necessary, by connecting xn

bi
with each

vertex ofD(Pi) we can subdivide a polygon P
n
i inN

n
Vi
subtriangles

denoted as T (Pni ) = {Tn
i1
, . . . ,Tn

ij
, . . . ,Tn

iNn
Vi

}.
The coordinates of each node at time tn are denoted by xn

k
,

and V
n
k represents the velocity at which it is supposed to move,
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so that its new coordinates at time tn+1 are given from the
following relation

xn+1
k

= xnk +1tV
n
k . (3)

More details on how to obtain V can be found in Boscheri
et al. [68], Boscheri and Dumbser [63, 119] for what concerns
classical direct ALE schemes on conforming unstructured grids,
in Gaburro et al. [73, 74] for non-conforming unstructured grids,
in Boscheri and Dumbser [70] for curvilinear meshes, and we
refer in particular to section 2.4 and 2.5 of Gaburro et al. [77]
for what concerns moving unstructured polygonal grids allowing
for topology changes, which indeed is the ALE case considered
in this paper (see case B below). Moreover, working in the ALE
framework, we are allowed to takeV = 0, i.e., we can also work in
a fixed Eulerian system where the initial mesh is never modified.

In particular, in this paper we will consider the following two
situations for our domain discretization:

A. A fixed Cartesian mesh made of NP quadrilaterals elements,
which is not moved during the simulation, but which can
be successively refined, with a general space-tree-type data
structure that allows element-by-element refinement with a
general refinement factor r ≥ 2, in order to increase the
resolution in the areas of interest, as can be seen in Figure 2

(for the details on the refinement procedure we refer to
Dumbser et al. [54] and Fambri et al. [36]). To ease the
description of the numerical method, we will associate to
each quadrilateral element Pni , a set of indices that refer to
its Cartesian coordinates,

{

j, k
}

, such that Pn
jk
: = Pni =

[xj− 1
2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
], 1xj = xj+ 1

2
− xj− 1

2
, 1yk =

yk+ 1
2
− yk− 1

2
.

B. A moving polygonal grid as the one described in Gaburro
et al. [77] that (i) moves with the fluid flow in order to reduce
the numerical dissipation associated with transport terms and
(ii) also allows for topology changes at any time step in order to
maintain always a high quality of the movingmesh; in this case
we remark that our method is also able to deal with degenerate
space time control volumes at arbitrary high order of accuracy.

2.2.1. Space-Time Connectivity
To better understand the context of moving meshes we refer
the reader to Figure 3: note that the tessellation at time tn has
been evolved resulting in a slightly different tessellation at time
tn+1; for each element Pni the new vertex coordinates xn+1

k
,

k = 1, . . . ,Nn
Vi
, are connected to the old coordinates xn+1

k
via

straight line segments, yielding the multidimensional space-time
control volume Cn

i , that involvesN
n,st
Vi

+2 space-time sub-surfaces.
Specifically, the space-time volume Cn

i is bounded on the bottom
and on the top by the element configuration at the current time
level Pni and at the new time level Pn+1

i , respectively, while it is

closed with a total number of Nn,st
Vi

lateral space–time surfaces

∂Cn
ij
, j = 1, . . . ,Nn,st

Vi
that are given by the evolution of each

edge enij of element Pni within the time step 1t = tn+1 − tn. A

priori, ∂Cn
ij
are not parallel to the time direction: thus to be treated

numerically they can be mapped to a reference square by using a

FIGURE 2 | Sketch of the mesh refinement structure of three AMR levels with

refinement factor r = 3. Solid lines indicate active cells, whereas the dashed

ones are the virtual cells allowing interpolation between the coarse and the

refined mesh, needed in the case of high order WENO reconstruction.

set of of bilinear basis functions (see Boscheri andDumbser [62]).
To resume, the space-time volume Cn

i is bounded by its surface
∂Cn

i which is given by

∂Cn
i =





⋃

j

∂Cn
ij



 ∪ Pni ∪ Pn+1
i . (4)

Note that in the fixed Cartesian case, Cn
i reduces to a right

parallelepiped with four lateral space–time surfaces ∂Cn
ij
parallel

to the time-direction, so many simplifications are possible.
We close this part by emphasizing that the family of direct

ALE schemes proposed in this work, based on the ADER
predictor-corrector approach, is based on the integration of
the governing Equation (1) in space and in time directly over
these space–time control volumes, see section 2.7. Note that this
procedure, which is more evident when Cn

i is an oblique prism, is
also hidden when Cn

i is just a right parallelepiped.

2.3. Data Representation
The conserved variables Q in (1) are discretized in each polygon
Pni at the current time tn via piecewise polynomials of arbitrary
high order N, denoted by un

h
(x, tn) and defined as

unh(x, t
n) =

N−1
∑

ℓ=0

ϕℓ(x, t
n) ûnℓ,i=ϕℓ(x, tn) ûnℓ,i, x ∈ Pni , (5)

where in the last equality we have employed the classical tensor
index notation based on the Einstein summation convention,
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FIGURE 3 | Space time connectivity. (Left) The tessellation at time tn and time tn+1. (Middle) Pni is connected with Pn+1
i to construct the space–time control volume

Cn
i . (Right) The sub-triangle Tnij is connected with Tn+1

ij
to construct the sub–space–time control volume sCn

ij
.

which implies summation over two equal indices. The functions
ϕℓ(x, t

n) can be either:

i. Nodal spatial basis functions given by a set of Lagrange
interpolation polynomials of maximum degree N with
the property

ϕℓ(x
m
GL) =

{

1 if ℓ = m;
0 otherwise; ℓ,m = 1, . . . , (N + 1)d, (6)

where {xmGL} are the set of the Gauss-Legendre (GL) quadrature
points on Pni (see Stroud [128] for the multidimensional case).
In particular, when employing these basis functions on a
Cartesian grid, each quadrilateral Pni is easily mapped to a
reference square, we only need the tensor product of the GL
quadrature points in the unit interval [0, 1], and the ϕℓ are
simply generated by multiplying one-dimensional nodal basis
functions, i.e.,

ϕℓ(x, t
n) = ϕℓ1

(

ξ (x)
)

ϕℓ2
(

η(y)
)

(7)

with ϕℓi satisfying (6) with d = 1, and x = xj− 1
2
+ ξ1xj,

y = yk− 1
2
+η1yk being the set of reference coordinates related

to Pni . In this case, the total number of GL quadrature points
per polygon, as well as the total number of basis functions
{ϕℓ} and expansion coefficients ûnℓ,i, the so-called degrees of

freedom (DOF), is N = (N + 1)d. These basis functions are
used on Cartesian grids, i.e., for Case A.

ii. Modal spatial basis functions written through a Taylor series
of degree N in the variables x = (x, y) directly defined on the
physical element Pni , expanded about its current barycenter xn

bi
and normalized by its current characteristic length hi

ϕℓ(x, t
n)|Pni =

(x− xn
bi
)pℓ

pℓ! h
pℓ
i

(y− yn
bi
)qℓ

qℓ! h
qℓ
i

,

ℓ = 0, . . . ,N − 1, 0 ≤ pℓ + qℓ ≤ N, (8)

hi being the radius of the circumcircle of Pni . In this case the

total number N of DOF ûn
l
is N = 1

d!

d
∏

m=1
(N + m). We

employ this kind of basis functions in themoving unstructured
polygonal Case B.

The discontinuous finite element data representation (5) leads
naturally to discontinuous Galerkin (DG) schemes if N > 0,
but also to finite volume (FV) schemes in the case N = 0. This
indeed means that for N = 0 we have ϕℓ(x) = 1, with ℓ = 0
and (5) reduces to the classical piecewise constant data that are
typical of finite volume methods. In the case N > 0 (DG) the
form given by (5) already provides a spatially high order accurate
data representation with accuracy N + 1, where instead for the
case N = 0 (FV), if we are interested in increasing the spatial
order of accuracy, up toM + 1 for examle, we need to perform a
spatial reconstruction. With this notation, our method falls within
the more general class of PNPM schemes introduced in Dumbser
et al. [42] for fixed unstructured meshes.

2.4. Data Reconstruction
In this section we focus on the reconstruction procedure needed
in the finite volume context (N = 0, M > 0) in order to obtain
order of accuracy M + 1 in space starting from the piecewise
constant values of un

h
(x, tn) in Pni and its neighbors, i.e., in order

to obtain a high order polynomial of degree M representing our
solution in each Pni

wn
h(x, t

n) =
M−1
∑

ℓ=0

ψℓ(x, t
n) ŵn

ℓ,i=ψℓ(x, tn) ŵn
ℓ,i, x ∈ Pni , (9)

where the ψℓ functions simply coincide with the ϕℓ basis
functions of (5). Our reconstruction procedures are based on the
WENO algorithm in its polynomial formulation as presented in
Dumbser et al. [38], Dumbser and Käser [32, 123], Titarev et al.
[129], Tsoutsanis et al. [130], Levy et al. [131], Dumbser et al.
[132], and Semplice et al. [133], and not based on the original
version of WENO proposed in Jiang and Shu [121], Balsara and
Shu [122], Hu and Shu [134], and Zhang and Shu [124] which
provides only point values. For each Pni , the basic idea consists in
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(i) selecting a central stencil of elements S0
i with a total number of

ne = f · 1

d!

d
∏

m=1

(M +m) (10)

elements, containing the cell Pni itself, its first layer of Voronoi
neighbors V(Pni ) and filled by recursively adding neighbors of
those elements that have been already included in the stencil,
and in (ii) using the cell-average values of the elements of S0

i to
reconstruct a polynomial of degree M by imposing the integral
conservation criterion, i.e., by requiring that its average on each
cell match the known cell average. If f > 1 (which occurs in
the unstructured case, where we take f = 1.5), this of course
leads to an overdetermined linear system, which is solved using
a constrained least-squares technique (CLSQ) [123], i.e., the
reconstructed polynomial has exactly the cell average ûn0,i on
the polygon Pni and matches all the other cell averages of the
remaining stencil elements in the least-square sense.

However, as well-known thanks to the Godunov theorem
[1], the use of only one central stencil (which is indeed a
linear procedure) would introduce oscillations in the presence of
shock waves or other discontinuities. So, in order to make the
reconstruction procedure non-linear, we will compute the final
reconstruction polynomial as a non-linear combination or more
than only one reconstruction polynomial, each one defined on a
different reconstruction stencil Ss

i .
We refer to the cited literature for further details, and here we

just highlight the main characteristics of the two reconstruction
procedures adopted in this work.

2.4.1. Case A: Cartesian Mesh
In Case A, of a fixed Cartesian mesh, we employ the polynomial
WENO procedure given in Dumbser et al. [54], which is
implemented in a dimension by dimension fashion. For each
cell, we define its related sets of one-dimensional reconstruction
stencils as

S
s,x
i =

j+R
⋃

m=j−L

Pnmk, S
s,y
i =

k+R
⋃

m=k−L

Pnjm, (11)

where L = {M, s} and R = {M, s} denote the order and stencil
dependent spatial extension of the stencil to the left and to the
right. For odd order schemes we consider three stencils, one
central, one fully left–sided, and one fully right–sided stencil in
each space dimension (see Figure 4 for a graphical interpretation
for M = 2), while for even order schemes we have four stencils,
two of which are central, while the remaining two are again
given by the fully left–sided and fully right–sided in each space
dimension. In both cases the total amount of elements in each
stencil is always ne = M + 1, the order of the scheme.

Focusing on the reconstruction procedure on the x direction,
given a element Pni , we start by expressing the first coordinate
of the reconstruction polynomial at each stencil in terms of one
dimensional basis functions,

ws,x
h
(x, tn) =

M
∑

ℓ1=0

ψℓ1 (ξ) ŵ
n,s
jk,ℓ1

=ψℓ1 (ξ) ŵn,s
jk,ℓ1

. (12)

FIGURE 4 | Reconstruction stencils for a fixed Cartesian mesh with M = 2,

where L, C, and R denote the left–sided, central and right–sided stencils,

respectively. (Left) Reconstruction on x direction. (Right) Reconstruction on

y direction.

Then, we integrate on the stencil elements obtaining an algebraic
system on the polynomial coefficients:

1

1xm

∫ x
m+ 1

2

x
m− 1

2

ψℓ1
(

ξ (x)
)

ŵn,s
jk,ℓ1

dx = ūnmk, ∀Pnmk ∈ S
s,x
i (13)

with ūn
mk

the average value obtained by integrating the solution
at the previous time step on the cell Pmk. Once the coefficients,
and thus the polynomials, related to all the stencils are obtained,
we compute a reconstruction polynomial in the x direction as the
data-dependent non-linear combination of these,

wx
h

(

x, tn
)

= ψℓ1 (ξ) ŵ
n
jk,ℓ1

, ŵn
jk,ℓ1

=
ns
∑

s=1

ωsŵ
n,s
jk,ℓ1

, (14)

where ns is the number of stencils, ns = 3 if M = 2̇ and ns = 4
otherwise; and ωs denote the non-linear weights (see Dumbser
et al. [54] for further details).

To complete the reconstruction polynomial, we now repeat
the above procedure in the y direction for each degree of freedom
ŵn
jk,ℓ1

. First, we write the reconstruction polynomial in terms of

the basis functions,

w
s,y

h
(x, y, tn) = ψℓ1 (ξ) ψℓ2 (η) ŵ

n,s
jk,ℓ1ℓ2

. (15)

Then, we solve the algebraic system

1

1ym

∫ y
m+ 1

2

y
m− 1

2

ψℓ2
(

η
(

y
))

ŵn,s
jk,ℓ1ℓ2

dy = ŵn
jm,ℓ1

, ∀Pnjm ∈ S
s,y
i

(16)
and calculate

ŵn
jk,ℓ1ℓ2

=
ns
∑

s=1

ωsŵ
n,s
jk,ℓ1ℓ2

. (17)

Frontiers in Physics | www.frontiersin.org 7 March 2020 | Volume 8 | Article 3237

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Busto et al. ADER Schemes for Continuum Mechanics

Finally, we get the WENO reconstruction polynomial

wn
h

(

x, tn
)

= ψℓ1 (ξ) ψℓ2 (η) ŵ
n
jk,ℓ1ℓ2

. (18)

In order to enforce bounds on the WENO reconstruction
polynomial, such as the condition 0 ≤ α ≤ 1 on the
volume fraction function of for example (56a), we rescale
the reconstruction coefficients ŵn

jk,ℓ1ℓ2
around the cell average

as follows:

ŵ∗
jk,ℓ1ℓ2

= ū∗jk + ϕjk
(

ŵn
jk,ℓ1ℓ2

− ū∗jk

)

, (19)

where the scaling factor ϕjk is computed via the Barth and
Jespersen limiter (see Barth and Jespersen [135]) applied to the
volume fraction function α in all Gauss-Legendre and Gauss-
Lobatto quadrature nodes, i.e., ϕjk = min(ϕjk,p) is the global
minimum in each element, with the nodal limiter values given by

ϕjk,p =















min
(

1, αmax−ᾱ
αp−ᾱ

)

, if αp − ᾱ > 0,

min
(

1, αmin−ᾱ
αp−ᾱ

)

, if αp − ᾱ > 0,

1, if αp − ᾱ = 0.

(20)

Here αmax = 1 − ε ≤ 1 is the upper bound of the volume
fraction function and αmin = ε ≥ 0 is its lower bound; ᾱ
denotes the cell average of α and αp denotes the node value of
α in the quadrature point xp under consideration. As already
mentioned above, this strategy is inspired from the Barth and
Jespersen limiter [135], but also from the new bound-preserving
polynomial approximation introduced in Després [136] and
Campos-Pinto et al. [137]. Since the physical solution of α must
satisfy 0 ≤ α ≤ 1, the above bound preserving limiter does
not reduce the formal order of accuracy of the reconstruction,
as proven in Després [136].

2.4.2. Case B: Moving Polygonal Mesh
In Case B of our moving and topology changing polygonal mesh
we adopt a CWENO reconstruction algorithm, first introduced
in Levy et al. [138–140] and Semplice et al. [133], and which can
be cast in the general framework described in Cravero et al. [141].
We closely follow the work outlined in Dumbser et al. [132] and
Boscheri et al. [142] for unstructured triangular and tetrahedral
meshes, and extended it to moving polygonal grids in Gaburro
et al. [77].

We emphasize that the main advantages of such a procedure
is that only one stencil (the central one) is required to contain
the total amount of elements stated in (10) and only this one
is used to construct a polynomial of degree M; the other ones
are used to compute polynomials of lower degree. In particular,
we consider Nn

Vi
stencils Ssi , each of them containing exactly

n̂e = (d + 1) cells, i.e., the central cell Pni and two consecutive
neighbors belonging to V(Pni ). Refer to Figure 5 for a graphical
description of the stencils. For each stencil Ssi we compute a
linear polynomial by solving a simple reconstruction system
which is not overdetermined. According to the above mentioned
literature, the reconstructed polynomial obtained via a non-
linear combination of the polynomial of degree M, computed

over Ss0, and of the Nn
Vi

linear polynomials, computed over Ssi ,
maintains the order of convergence of the method and avoids
unwanted spurious oscillations. In particular, in the case of
movingmeshes with topology changes, where the set of neighbors
may change at any time step, the use of smaller so-called sectorial
stencils significantly speeds up computations.

For the sake of uniform notation, in the DG case, i.e., when
N > 0 and M = N, we trivially impose that the reconstruction
polynomial is given by the DG polynomial, i.e., wn

h
(x, tn) =

un
h
(x, tn), which automatically implies that in the case N = M

the reconstruction operator is simply the identity.

2.5. Space-Time Predictor Step
In this section we focus on the key feature, the element-local
space-time predictor step, of our ADER FV-DG schemes: this
part of the algorithm (the predictor) produces a high order
approximation in both space and time of Q in all Pni . This allows
to obtain a fully discrete one-step scheme that is uniformly high
order accurate in both space and time.

The predictor step consists in a completely local procedure
which solves the governing PDE (1) in the small, see Harten
et al. [11], inside each space-time element Cn

i , and it only
considers the geometry of volume Cn

i , the initial data w
n
h
on Pni

and the governing Equations (1), without taking into account
any interaction between Cn

i and its neighbors. Because of this
absence of communications, we refer to it as local. The procedure
finally provides, for each Cn

i , a space-time polynomial data
representation qn

h
, which serves as a predictor solution, only valid

inside Cn
i , to be used for evaluating the numerical fluxes, the

non-conservative products and the algebraic source terms when
integrating the PDE in the final corrector step (see section 2.7) of
the ADER scheme.

The predictor qn
h
is a polynomial of degreeM, which takes the

following form

qnh(x, t) =
Q−1
∑

ℓ=0

θℓ(x, t)q̂
n
ℓ , (x, t) ∈ Cn

i , (21)

where θℓ(x, t) can be either

i. For fixed and adaptive Cartesian grids (Case A), nodal
space-time basis functions of degree M given by the
product of one-dimensional nodal basis functions
verifying (6) (with d = 1 ),

θℓ(x, y, t) = ϕℓ1
(

ξ (x)
)

ϕℓ2
(

η(y)
)

ϕℓ3
(

τ (t)
)

, (22)

two of them mapped to the unit interval [0, 1] as in (7) and
with the time coordinate mapped to the reference time τ ∈
[0, 1] via t = tn + τ1t. In this case, the total number of GL
quadrature points per cell, as well as the total number of DOF
isQ = (M + 1)d+1, see also Figure 6.

ii. For our moving polygonal meshes (Case B),modal space time
basis functions of degree M in d + 1 dimensions (d space
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FIGURE 5 | Stencils for the CWENO reconstruction of order three (M = 2) with f = 1.5 for a pentagonal element Pni . Left: central stencil made of the element itself Pni
(in violet) and ne − 1 = 8 of its neighbors (in blue). In the other panels we report two of the Nn

Vi
= 5 sectorial stencils containing the element itself and two consecutive

neighbors belonging to V (Pni ).

FIGURE 6 | Quadrature points on a space-time element, Cn
i , of a fixed

Cartesian mesh with M = 2.

dimensions plus time) are used, which read

θℓ(x, y, t)|Cn
i
=

(x− xn
bi
)pℓ

pℓ! h
pℓ
i

(y− yn
bi
)qℓ

qℓ! h
qℓ
i

(t − tn)qℓ

qℓ! h
qℓ
i

,

ℓ = 0, . . . ,Q, 0 ≤ pℓ + qℓ + rℓ ≤ M,

(23)

with the total number of DOF Q = 1
(d+1)!

d+1
∏

m=1
(M + m), see

also Figure 7.

Now, multiplying our PDE system (1) with a test function
θk and integrating over the space-time control volume Cn

i

(see section 2.2.1), we obtain the following weak form of the
governing PDE, where both the test and the basis functions are
time dependent

∫

Cn
i

θk(x, t)
∂qn

h

∂t
dx dt +

∫

Cn
i

θk(x, t)
(

∇ · F(qnh)

+B(qnh) · ∇qnh
)

dx dt =
∫

Cn
i

θk(x, t)S(q
n
h) dx dt . (24)

Since we are only interested in an element local predictor
solution, i.e., we do not need to consider the interactions with
the neighbors, we do not yet take into account the jumps of qn

h
across the space–time lateral surfaces, because this will be done
in the final corrector step (section 2.7).

Instead, we insert the known discrete solutionwn
h
(x, tn) at time

tn in order to introduce a weak initial condition for solving our
PDE; note that wn

h
(x, tn) uses information coming from the past

only (following an upwinding approach) in such a way that the
causality principle is correctly respected. To this purpose, the first
term is integrated by parts in time. This leads to

∫

Pn+1
i

θk(x, t
n+1)qnh(x, t

n+1) dx−
∫

Pni

θk(x, t
n)wn

h(x, t
n) dx

−
∫

Cn
i

∂

∂t
θk(x, t)q

n
h(x, t) dx dt +

∫

Cn
i\∂Cn

i

θk(x, t)∇ · F(qnh) dx dt

=
∫

Cn
i\∂Cn

i

θk(x, t)
(

S(qnh)− B(qnh) · ∇qnh
)

dx dt. (25)

Equation (25) results in an element-local non-linear system
for the unknown degrees of freedom q̂nℓ of the space-time
polynomials qn

h
. The solution of (25) can be found via a simple

and fast converging fixed point iteration (a discrete Picard
iteration) as detailed e.g., in Dumbser et al. [42] and Hidalgo
and Dumbser [41]. For linear homogeneous systems, the discrete
Picard iteration converges in a finite number of at most N + 1
steps, since the involved iteration matrix is nilpotent, see Jackson
[143]. Moreover a proof of the convergence of this procedure in
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FIGURE 7 | Space–time quadrature points for third order methods, i.e., M = 2, on a moving polygonal mesh with topology changes. (Left) Quadrature points for the

volume integrals and the space–time predictor. (Middle) quadrature points for the surface integrals, i.e., for flux computation. (Right) Quadrature points for the

volume integrals and the space–time predictor of a sliver element.

the case of a non-linear homogeneous conservation law in 1D is
given in next section 2.6.

2.5.1. Simplification in the Case of a Fixed Cartesian

Mesh
The space-time predictor step formerly presented can be
simplified in the case of a Cartesian mesh with nodal basis
functions resulting in a more efficient algorithm. Under these
assumptions the governing PDE (1), can be rewritten as

∂Q

∂τ
+ ∂f⋆

∂ξ
+ ∂g⋆

∂η
+ B⋆1

∂Q

∂ξ
+ B⋆2

∂Q

∂η
= S⋆ (26)

with

f⋆ = 1t

1xj
f, g⋆ = 1t

1yk
g, B⋆1 =

1t

1xj
B1, B⋆2 =

1t

1yk
B2,

B = [B1,B2] , S⋆ = 1tS.
(27)

Next, wemultiply each term by a test function θk and we integrate
over the reference space-time control volume I0 = [0, 1]3

∫ 1

0

∫ 1

0

∫ 1

0
θk

(

∂Q

∂τ
+ ∂f⋆ (Q)

∂ξ
+ ∂g⋆ (Q)

∂η

)

dξdηdτ

=
∫ 1

0

∫ 1

0

∫ 1

0
θk

(

S⋆ (Q)− B⋆1 (Q)
∂Q

∂ξ

−B⋆2 (Q)
∂Q

∂η

)

dξdηdτ .

(28)

Now, by substituting the discrete space-time predictor solution
qn
h
with its expansion on the nodal basis and after integrating by

parts in time, we obtain

∫ 1

0

∫ 1

0

∫ 1

0
θk (ξ , η, 1) θℓ (ξ , η, 1) q̂

n
ℓdξdηdτ

+
∫ 1

0

∫ 1

0

∫ 1

0

∂θk (ξ , η, τ)

∂τ
θℓ (ξ , η, τ) q̂

n
ℓdξdηdτ

=
∫ 1

0

∫ 1

0

∫ 1

0
θk (ξ , η, 0)w

n
h

(

ξ , η, tn
)

dξdηdτ

−
∫ 1

0

∫ 1

0

∫ 1

0
θk

(

∂f⋆
(

qn
h

)

∂ξ
+
∂g⋆

(

qn
h

)

∂η

)

dξdηdτ

+
∫ 1

0

∫ 1

0
×
∫ 1

0
θk

(

S⋆
(

qnh
)

− B⋆1
(

qnh
) ∂qn

h

∂ξ

−B⋆2
(

qnh
) ∂qn

h

∂η

)

dξdηdτ .

(29)

To recover the value of the unknown degrees of freedom q̂nℓ , it
is sufficient to solve the above equation locally for each element.
One important advantage of using the nodal Gauss-Legendre
basis is that the terms in (29) can be evaluated in a dimension-
by-dimension fashion.

2.5.2. Space-Time Predictor for Sliver Space–Time

Elements
When a topology change occurs, some space–time sliver
elements, as those shown on the right side of Figure 8, are
originated (see Gaburro et al. [77]), and the predictor procedure
over them needs particular care. The problem connected with
sliver elements is the fact that their bottom face, which consists
only in a line segment, is degenerate, hence the spatial integral
over Pni vanishes, i.e., there is no possibility to introduce an
initial condition for the local Cauchy problem at time tn into
their predictor. Thus, in order to couple however (24) with
some known data from the past, we will end up with a formula
different from (25). We underline that we first carry out the
space–time predictor for all standard elements using, which can
be computed independently of each other, and only subsequently
we process the remaining space–time sliver elements. Then, when
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FIGURE 8 | Space time connectivity with topology changes and sliver element. Left: at time tn the polygons Pn2 and Pn3 are neighbors and share the highlighted edge,

instead at time tn+1 they do not touch each other; the opposite situation occurs for polygons Pn1 and Pn4. This change of topology causes the appearance of

degenerate elements of different types (refer to Gaburro et al. [77] for all the details). In particular, so-called space–time sliver elements (right) need to be taken into

account when considering the space–time framework, so the predictor and the corrector step have to be a adapted to their special features. Sliver elements (right) are

indeed completely new control volumes which do neither exist at time tn, nor at time tn+1, since they coincide with an edge of the tessellation and, as such, have zero

areas in space. However, they have a non-negligible volume in space–time. The difficulties associated to this kind of element are due to the fact that wh is not clearly

defined for it at time tn (thus the predictor has to be modified) and that contributions across it should not be lost at time tn+1 in order to guarantee conservation (thus

the corrector has to be modified).

considering a sliver, we use the upwinding in time approach on
the entire space–time surface ∂Cn

i that closes a sliver control
volume, and again respecting the causality principle, we take
the information to feed the predictor only from the past, i.e.,
only from those space–time neighborsCn

j whose common surface

∂Cn
ij exhibit a negative time component of the outward pointing

space–time normal vector (ñt < 0). In this way, we can introduce
information from the past into the space–time sliver elements.

As a consequence, the predictor solution qn
h
is again obtained

by means of (24), but by treating the entire ∂Cn
i with the

upwind in time approach, i.e., by considering also the jump
terms between the still unknown predictor of the slivers (call
it qn,−

h
) and the already known predictors of its neighbors (call

them qn,+
h

),

∫

Cn
i

θk(x, t)
∂

∂t
qnh(x, t) dx dt

−
∫

∂C−
i

θk(x, t
n)
(

qn,+
h

− qn,−
h

)

− (B · ñ)(qn,+
h

− qn,−
h

)
)

dS dt

+
∫

Cn
i \∂Cn

i

θk(x, t)∇ · F(qnh) dx dt

=
∫

Cn
i \∂Cn

i

θk(x, t)
(

S(qnh)− B(qnh) · ∇qnh
)

dx dt,

(30)

where ∂C−
i = ∂Cn

i with ñt < 0 is the part of the space-time
boundary that has a negative time component of the space-time
normal vector. Note that here we have taken into account also the
jump of the non-conservative terms, and that these contributions
have been added entirely [i.e., not only half of them, as in (49)].
Indeed, in (49) half of the jump contribution goes to one element,
while the other half goes to the neighboring element; here instead,

since the interaction between neighbors is only computed from
the side of the sliver element, the entire jump contributes to the
predictor in the sliver element.

2.6. Convergence Proof of the Predictor
Step for a Non-linear Conservation Law
In this section, the convergence proof of the predictor for a
non-linear conservation law is given. The proof is provided, for
simplicity, in the case of a fixed mesh in one space dimension,
following the nomenclature already employed in section 2.5.1,
but it still holds in higher dimensions. Let us consider a general
hyperbolic system of conservation laws of the form

∂Q

∂t
+ ∂f

∂x
= 0. (31)

Then, the corresponding space-time DG predictor used in the
ADER-DG framework reads

1
∫

0

1
∫

0

θk
∂qh

∂τ
dξdτ + 1t

1x

1
∫

0

1
∫

0

θk
∂fh

∂ξ
dξdτ = 0. (32)

For convenience, all derivatives and integrals in (32) have
been transformed to the reference space-time element [0, 1]2.
Moreover, the discrete solution is given by qh = θl(ξ , τ )q̂ℓ, and

the flux is expanded in the same basis as fh = θℓ(ξ , τ )f̂ℓ. When
using a nodal basis, we can compute the degrees of freedom for

the flux interpolant fh simply as f̂ℓ = f
(

q̂ℓ
)

. We also recall that
the initial condition given by the DG scheme at time tn reads
wh = ϕℓ(ξ )ŵℓ. Then, integration of the first term in (32) by parts
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in time yields

1
∫

0

θk(ξ , 1)qhdξ −
1
∫

0

1
∫

0

∂θk

∂τ
qhdξdτ

+1t

1x

1
∫

0

1
∫

0

θk
∂fh

∂ξ
dξdτ =

1
∫

0

θk(ξ , 0)whdξ , (33)

and insertion of the definitions of the discrete solution leads to





1
∫

0

θk(ξ , 1)θl(ξ , 1)dξ −
1
∫

0

1
∫

0

∂θk

∂τ
θldξdτ



 q̂l

+1t

1x

1
∫

0

1
∫

0

θk
∂θl

∂ξ
dξdτ f̂l =

1
∫

0

θk(ξ , 0)ϕl(ξ )dξ ŵl. (34)

The iterative scheme employed to find the solution for the space-
time degrees of freedom q̂, at any Picard iteration r, can therefore
be rewritten in compact matrix-vector notation as

K1q̂
r+1 + 1t

1x
Kξ f

(

q̂r+1
)

= F0ŵ
n (35)

with

K1 =
1
∫

0

θk(ξ , 1)θl(ξ , 1)dξ −
1
∫

0

1
∫

0

∂θk

∂τ
θldξdτ , (36)

Kξ =
1
∫

0

1
∫

0

θk
∂θl

∂ξ
dξdτ , F0 =

1
∫

0

θk(ξ , 0)ϕl(ξ )dξ , (37)

where we have dropped the indices to ease the notation. After
inverting K1 (this matrix is built using the linearly independent
basis functions so that it is invertible), we obtain the explicit
iteration formula

q̂r+1 = K−1
1 F0ŵ

n − 1t

1x
K−1
1 Kξ f

(

q̂r
)

. (38)

To prove that the former iterative formula will converge, we
introduce the operator

ϕ
(

q̂
)

= K−1
1 F0û

n − 1t

1x
K−1
1 Kξ f

(

q̂
)

, (39)

and the induced matrix norm

‖A‖ = sup
x6=0

‖Ax‖
‖x‖ . (40)

Furthermore, we assume the flux to be Lipschitz continuous with
Lipschitz constant L > 0 so that

∥

∥f
(

p̂
)

− f
(

q̂
)∥

∥ ≤ L
∥

∥p̂− q̂
∥

∥ . (41)

We now need to show that the operator ϕ is a contraction:

∥

∥ϕ
(

q̂
)

− ϕ
(

p̂
)∥

∥ =
∥

∥

∥

∥

K−1
1 F0û

n − K−1
1 F0û

n − 1t

1x
K−1
1 Kξ f

(

q̂
)

+ 1t

1x
K−1
1 Kξ f

(

p̂
)

∥

∥

∥

∥

= 1t

1x

∥

∥K−1
1 Kξ

(

f
(

p̂
)

− f
(

q̂
))∥

∥

≤ 1t

1x

∥

∥K−1
1 Kξ

∥

∥

∥

∥f
(

p̂
)

− f
(

q̂
)
∥

∥

≤ L
1t

1x

∥

∥K−1
1 Kξ

∥

∥

∥

∥p̂− q̂
∥

∥ . (42)

The operator is therefore a contraction under the CFL-type
condition on the time step1t

0 < L
1t

1x

∥

∥K−1
1 Kξ

∥

∥ < 1, (43)

which connects the Lipschitz constant L with the mesh spacing
1x and the matrix norm of

∥

∥K−1
1 Kξ

∥

∥. Since the operator
is contractive under the above assumptions, the Banach fixed
point theorem, Banach [144], guarantees convergence of the
iterative method.

In the previous reasoning, we have assumed that the inequality
in the right hand side of (43) be strict. Thus, to conclude the
proof, let us assume that the equality holds, this is true if and
only if

∥

∥K−1
1 Kξ

∥

∥ = 0. By taking into account the definition of

the induced matrix norm (40), it implies
∥

∥K−1
1 Kξ x

∥

∥ = 0 for

any x in the metric space. Thus, K−1
1 Kξ = 0. Direct substitution

in (38) gives

K1q̂
r+1 = F0ŵ

n, (44)

so that no iterative procedure is done.
Note: The matrix K−1

1 Kξ has been proven to be nilpotent
and thus all its eigenvalues are zero, see Jackson [143], which
guarantees convergence to the exact solution in a finite number
of steps for linear homogeneous PDE.

2.7. Corrector Step
The corrector step is the last step of our path-conservative ADER
FV-DG scheme, where the update of the solution from time tn up
to time tn+1 can take place in a single step procedure thanks to
the use of the predictor qn

h
.

The update formula is recovered starting from the space–time
divergence form of the PDE

∇̃ · F̃(Q)+ B̃(Q) · ∇̃Q = S(Q), F̃ = (F,Q),

B̃ = (B, 0), and ∇̃ = (∂x, ∂t)
T , (45)

which is multiplied by a set of space–time test functions ϕ̃k and
integrated over each space–time control volume Cn

i

∫

Cn
i

ϕ̃k(x, t)
(

∇ · F̃(Q)+ B̃(Q) · ∇Q
)

dx dt

=
∫

Cn
i

ϕ̃k(x, t)S(Q) dx dt .

(46)
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Note that the employed test functions ϕ̃k coincide with the
θk of (22) for the Cartesian Case A. Instead, for the moving
polygonal Case B, they need to be tied to the motion of the
barycenter xbi (t) and must be moved together with Pi(t) in such
a way that at time t = tn they refer to the current barycenter xn

bi

and at time t = tn+1 they refer to the new barycenter xn+1
bi

, thus

they are defined as follows

ϕ̃ℓ(x, y, t)|Cn
i
= (x− xbi (t))

pℓ

pℓ! h
pℓ
i

(y− ybi (t))
qℓ

qℓ! h
qℓ
i

,

with xbi (t) =
t − tn

1t
xnbi +

(

1− t − tn

1t

)

xn+1
bi

,

ℓ = 0, . . . ,N , 0 ≤ p+ q ≤ N.

(47)

These moving modal basis functions are essential to the moving
approach presented in Gaburro et al. [77] and used in this paper.
They naturally allow for topology changes, without the need
of any remapping steps, which we want to avoid in a direct
ALE formulation.

Now, (46) by applying the Gauss theorem to the flux-
divergence term and by splitting the non-conservative products
into their volume and surface contribution, becomes

∫

Pn+1
i

ϕ̃kuh(x, t
n+1) dx =

∫

Pni

ϕ̃kuh(x, t
n) dx

−
Nn,st
Vi
∑

j=1

∫

∂Cn
ij

ϕ̃kD(qn,−
h

, qn,+
h

) · ñ dS

+
∫

Cn
i \∂Cn

i

∇̃ϕ̃k · F̃(qh) dxdt

+
∫

Cn
i \∂Cn

i

ϕ̃k(x, t)
(

S(qnh)− B(qnh) · ∇qnh
)

dx dt,

(48)

where Q on Pn+1
i is represented by the unknown un+1

h
, on

Pni is taken to be the current representation of the conserved
variables un

h
, in the interior of Cn

i is given by the predictor qn
h

and on the space–time lateral surfaces ∂Cn
ij is given by qn,−

h
and

qn,+
h

which are the so-called boundary-extrapolated data, i.e., the
values assumed respectively by the predictors of the two neighbor
elements Cn

i and C
n
j on the shared space–time lateral surface ∂Cn

ij.

Furthermore, we have employed a two-point path-conservative
numerical flux function of Rusanov-type

D(qn,−
h

, qn,+
h

) · ñ = 1

2

(

F̃(qn,+
h

)+ F̃(qn,−
h

)
)

· ñ

−1

2
smax

(

qn,+
h

− qn,−
h

)

+ 1

2





1
∫

0

B̃
(

9(qn,−
h

, qn,+
h

, s)
)

· n dx



 ·
(

qn,+
h

− qn,−
h

)

,

(49)

where smax is the maximum eigenvalue of the ALE Jacobian
matrices AVn(q

n,+
h

) and AVn(q
n,−
h

) being

AVn(Q) =
(√

ñ2x + ñ2y

)

[

∂F

∂Q
· n− (V · n) I

]

,n =
(ñx, ñy)

T

√

ñ2x + ñ2y

,

(50)
and the path9 = 9(q−

h
, q+

h
, s) is a straight-line segment path

ψ = ψ(q−
h
, q+

h
, s) = q−

h
+ s

(

q+
h
− q−

h

)

, s ∈ [0, 1] , (51)

connecting qn,−
h

and qn,+
h

which allow to treat the jump of the
non-conservative products following the theory introduced in
Dal Maso et al. [145], Parés [146], and Castro et al. [147], and
extended to ADER FV-DG schemes of arbitrary high order in
Dumbser et al. [46] and Dumbser and Toro [148]. Despite in this
paper we only consider the Rusanov flux, the above methodology
can be extended to different flux functions, adapting to the new
flux splitting techniques like the ones presented in Toro and
Vázquez-Cendón [149]. Finally, the time step size1t is given by

1t < CFL
hmin

(2N + 1)

1

|λmax|
, (Case A),

1t < CFL





|Pni |
(2N + 1) |λmax|

∑

∂Pnij
|ℓij |



 (Case B), (52)

where hmin is the minimum characteristic mesh-size, ℓij is the
length of the edge j of Pni and |λmax| is the spectral radius of
the Jacobian of the flux F. Stability on unstructured meshes is
guaranteed by the satisfaction of the inequality CFL < 1

d
, see

Dumbser et al. [42].
We close this section by remarking that the integration of the

governing PDE over closed space-time volumes Cn
i automatically

satisfies the geometric conservation law (GCL) for all test
functions ϕ̃k. This simply follows from the Gauss theorem and
we refer to Boscheri and Dumbser [63] for a complete proof.

2.8. A Posteriori Subcell Finite Volume
Limiter
Up to now, we have presented a family of FV and DG type
schemes which achieves arbitrary high order of accuracy in space
and time; the main difference between the FV and the DG
approach lies in the fact that FV schemes, thanks to the WENO-
type non-linear reconstruction procedure, are robust in the
presence of shocks and discontinuities, while the DG formulation
as presented so far, being linear in the sense of Godunov, is
subject to the appearance of spurious oscillations. Thus, in order
to employ a DG scheme in the context of solving hyperbolic
partial differential equations, where usually discontinuities are
developed, a technique that is able to limit spurious oscillations
(called limiter) should be introduced. Several attempts in that
direction can be found in the literature. For example, we could
recall the artificial viscosity technique used in Hartmann and
Houston [150],Persson and Peraire [151], and Cesenek et al.
[152] which consists in adding a small parabolic term in the
equation in order to smooth out the discontinuities.
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Here, instead, we follow a different approach based on
exploiting the respective strengths of FV and DG schemes, i.e.,
the resolution of DG in smooth regions and the robustness
of FV across discontinuities. Thus, we first evolve the solution
everywhere by using our DG scheme; then, we check a posteriori,
at the end of each time step, if the obtained DG solution in
each cell respects or not some criteria [as density and pressure
positivity, a relaxed discretemaximumprinciple, specific physical
bounds, or more elaborate choices as those of Guermond et al.
[153]], and we mark as troubled those cells where the obtained
DG solution is marked as not acceptable. Only for these troubled
cells we repeat the time step using, instead of the DG scheme,
a second order TVD FV method, which always assures a
robust solution.

This idea is founded on works as those of Cockburn and Shu
[154], Qiu and Shu [155, 156], Balsara et al. [157], Luo et al.
[158], Krivodonova [159], Zhu et al. [160], Zhu and Qiu [161],
Clain et al. [86], Diot et al. [87, 88], Loubére et al. [79], Boscheri
et al. [162],and Boscheri and Loubére [83]; but in particular,
here, we adopt a so-called subcell approach aimed at not losing
the resolution of the DG scheme when switching to the FV
method, as forwarded in Sonntag andMunz [163], Dumbser et al.
[78], Zanotti et al. [80], Dumbser and Loubére [81], Boscheriand
Dumbser [119], Fambri et al. [84], Rannabauer et al. [164], de la
Rosa and Munz [165], and Boscheri et al. [142]. Indeed, at the
beginning of the time step we project the DG solution un

h
of a

troubled cell Pni on a subdivision of it in sub-cells sni,α obtaining a
value for the cell averages on sni,α at time tn

vni,α(x, t
n) = 1

|sni,α|

∫

sni,α

unh(x, t
n) dx

= 1

|sni,α|

∫

sni,α

ϕℓ(x) dx û
n
l =P(unh) ∀α. (53)

We evolve the cell averages up to time tn+1 using a classical TVD
FV scheme, obtaining vn+1

i,α (x, tn+1). Finally, we recover a DG

polynomial representation of the solution at time tn+1 over Pn+1
i

using the values on the sub-grid level vn+1
i,α and by applying a

reconstruction operator as

∫

Sni,α

un+1
h

(x, tn+1) dx =
∫

Sni,α

vn+1
i,α (x, tn) dx=R(vn+1

i,α (x, tn))∀α,

(54)
where the reconstruction is imposed to be conservative on the
main cell Pn+1

i yielding the additional linear constraint

∫

Pn+1
i

uh(x, t
n+1) dx =

∫

Pn+1
i

vh(x, t
n+1) dx. (55)

Thus, the limited solution on a troubled cell is robust thanks
to the use of a TVD scheme and accurate thanks to the
subcell resolution.

For all the details of the a posteriori subcell FV limiter used in
this work, we refer to Dumbser et al. [78] and Fambri et al. [36]
for the fixed Cartesian Case A and to Gaburro et al. [77] for the
moving polygonal Case B.

3. A UNIFIED FIRST ORDER HYPERBOLIC
MODEL OF CONTINUUM MECHANICS

3.1. Governing PDE System
A simplified diffuse interface formulation of the unified
continuum fluid and solid mechanics model [57, 59, 60, 166],
which can be used for modeling moving boundary problems of
fluids and solids of arbitrary geometry, is given by the following
PDE system (throughout this paper we make use of the Einstein
summation convention over repeated indices)

∂α

∂t
+ vk

∂α

∂xk
= 0, (56a)

∂(αρ)

∂t
+ ∂(αρvk)

∂xk
= 0, (56b)

∂(αρvi)

∂t
+
∂
(

αρvivk + αpδik − ασik
)

∂xk
= ρgi, (56c)

∂Aik

∂t
+
∂(Aijvj)

∂xk
+ vj

(

∂Aik

∂xj
−
∂Aij

∂xk

)

= − 1

θ1(τ1)
EAik

, (56d)

∂(αρJi)

∂t
+ ∂ (αρJivk + Tδik)

∂xk
= − 1

θ2(τ2)
EJi , (56e)

∂(αρS)

∂t
+
∂
(

αρSvk + EJk
)

∂xk

= ρ

T

(

1

θ1
EAik

EAik
+ 1

θ2
EJkEJk

)

≥ 0, (56f)

∂(αρE)

∂t
+
∂
(

vkαρE+ αvi(pδik − σik)
)

∂xk
= ρgivi. (56g)

Here, (56a) is the evolution equation for the color function α
that is needed in the diffuse interface approach as introduced
in Tavelli et al. [85] for the description of linear elastic solids
of arbitrary geometry and as used in Dumbser [106] and
Gaburro et al. [107] for a simple diffuse interface method for
the simulation of non-hydrostatic free surface flows. We assume
that the color function α equals to 1 in the regions of the
computational domain occupied by the material and 0 outside
these regions. In the computational code, α = 1 − ε inside
of the material and α = ε outside the material. Here, ε is a
small parameter ε ≪ 1, see section 4. Then, inside of the diffuse
interface, α may take any values between 0 and 1 (between ε
and 1 − ε in the computational code). Equation (56b) is the
mass conservation law and ρ is the material density; (56c) is
the momentum conservation law, where vi is the velocity field
and gi is the gravity vector; (56d) is the evolution equation
for distortion field Aik (non-holonomic basis triad, see Peshkov
et al. [167]); (56e) is the evolution equation for the specific
thermal impulse Jk constituting the heat conduction in thematter
via a hyperbolic (non-Fourier–type) model. Finally, (56f) is the
entropy balance equation and (56g) is the energy conservation
law. Other thermodynamic parameters are defined via the total
energy potential E = E(α, ρ, S, v,A, J): 6ik = pδik − σik is the
total stress tensor (δik is the Kronecker delta); p = ρ2Eρ is the
thermodynamic pressure; σik = −ρAjkEAji is the non-isotropic
part of the stress tensor, T = ES is the temperature, and the

Frontiers in Physics | www.frontiersin.org 14 March 2020 | Volume 8 | Article 3244

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Busto et al. ADER Schemes for Continuum Mechanics

notations such as Eρ , EAik
, etc. stand for the partial derivatives

of the energy potential, e.g., Eρ = ∂E
∂ρ
, EAik

= ∂E
∂Aik

, etc.

The dissipation in the medium includes two relaxation
processes: the shear stress relaxation characterized by the scalar
function θ1(τ1) > 0 depending on the relaxation time τ1
and thermal impulse relaxation characterized by θ2(τ2) > 0
depending on the relaxation time τ2. Both these relaxation
processes then contribute to the entropy production term [the
source on the right hand-side of (56f)] which is positive because
it is quadratic in EAik

and EJk .
From the mathematical standpoint, the unification of the

model (56) consists in the use of only first-order hyperbolic
equations for both dissipative and non-dissipative processes in
contrast to the classical continuum mechanics relying on the
mixed hyperbolic-parabolic formulations such as the famous
Navier-Stokes-Fourier equations, for example. From the physical
standpoint, the unification of Equations (56) consists in treating
solid and fluid states of matter from the solid-dynamics
viewpoint. Indeed, as discussed in Peshkov and Romenski [57]
and Dumbser et al. [59, 166], similarly to standard continuum
solid-dynamics, the distortion field introduces additional degrees
of freedom (in comparison to the classical continuum fluid
mechanics) which characterizes deformation and rotational
degrees of freedom of the continuum particles, represented not
as scaleless mathematical points but characterized by a finite
length scale, or equivalently, time scale τ1, e.g., see Dumbser et al.
[166]. In such a formulation, solid-type behavior corresponds
to relaxation times τ1 such that Tproblem ≪ τ1, while the fluid-
type behavior corresponds to τ1 ≪ Tproblem, where Tproblem is the
characteristic time scale of the problem under consideration.

In order to close system (56), that is, in order to define pressure
p = ρ2Eρ , stresses σik = −ρAjkEAji , temperature T = ES, and
the dissipative source terms, one needs to provide the energy
potential E. In this paper, we rely on a rather simple choice of
E, which is, however, enough to deal with Newtonian fluids and
simple hyperelastic solids. Thus, we assume that the specific total
energy can be written as a sum of three contributions as

E(α, ρ, S, vi,Aik, Jk) = E1(ρ, S)+ E2(α,Aik, Jk)+ E3(vi), (57)

with the specific internal energy given by the ideal gas equation
of state

E1(ρ, S) =
c20

γ (γ − 1)
, c20 = γργ−1eS/cv , or

E1(ρ, p) =
p

ρ(γ − 1)
, (58)

in the case of gases, and given by either the so-called stiffened gas
equation of state

E1(ρ, S) =
c20

γ (γ − 1)

(

ρ

ρ0

)γ−1

eS/cv + ρ0c
2
0 − γ p0
γρ

(59)

or the well-known Mie-Grüneisen equation of state

E1(ρ, p) =
p− ρ0c20 f (ν)

ρ0Ŵ0
,

f (ν) =
(ν − 1)(ν − 1

2Ŵ0(ν − 1))

(ν − s(ν − 1))2
, ν = ρ

ρ0
, (60)

in the case of solids and liquids. Here, cv is the specific heat
capacity at constant volume, γ is the ratio of the specific heats,
p0 is the reference (atmospheric) pressure, ρ0 is the reference
material density, and Ŵ0, and s are some material parameters.
The specific energy stored in material deformations and in the
thermal impulse is

E2(α,Aik, Jk) =
1

4
c̄2s

◦
Gij

◦
Gij +

1

2
c̄2hJkJk, (61)

where
◦
Gij= Gij− 1

3Gkk δij is the trace-free part of themetric tensor
Gij = AkiAkj, which is induced by the mapping from Eulerian
coordinates to the current stress-free reference configuration.
The coefficients c̄s(α) and c̄h(α) in (61) are the characteristic
velocities for propagation of shear and thermal perturbations
accordingly. In the present diffuse interface model, we choose the
following simple linear mixture rule for the computation of the
shear sound speed and of the heat wave propagation as a function
of the volume fraction α

c̄s(α) = αcs + (1− α)cgs , c̄h(α) = αch + (1− α)cg
h
, (62)

where cs and ch are the material parameters inside the continuum
and c

g

h
≪ 1 and c

g
s ≪ 1 are free parameters that can be chosen for

the region outside the continuum. The specific kinetic energy is
contained in the third contribution to the total energy and reads
E3(vk) = 1

2vivi.
With the equation of state chosen above, we get the following

expressions for the stress tensor, the heat flux and the dissipative
sources EAik

and EJk present in the relaxation source terms:

σik = ρ c̄2sGij

◦
Gjk, qk = ρTc̄2hJk, (63)

EAik
= c̄2sAij

◦
Gjk, EJk = c̄2hJk. (64)

The functions θ1 and θ2 are chosen in such a way that a
constant viscosity and heat conduction coefficient are obtained
in the stiff relaxation limit, see Dumbser et al. [59] for a formal
asymptotic analysis,

θ1(τ1) =
1

3
τ1c̄

2
s |A|

5
3 , θ2(τ2) = τ2c̄

2
h

ρ T0

ρ0T
. (65)

Thus, following the procedure detailed in Dumbser et al. [59],
one can show via formal asymptotic expansion that in the stiff
relaxation limit τ1 → 0, τ2 → 0, the stress tensor and the heat
flux reduce to

σ = −1

6
ρ0c̄

2
s τ1

(

∇v +∇vT − 2

3
(∇ · v) I

)

(66)
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and

q = −c̄2hτ2
T0

ρ0
∇T, (67)

that is the effective shear viscosity and effective heat conductivity
of model (56) are

µ = 1

6
ρ0τ1c̄

2
h, κ = τ2c̄

2
h

T0

ρ0
(68)

with ρ0 and T0 are reference density and temperature, see
Dumbser et al. [59], where also an explanation has been provided
of how the relaxation times τ could be obtained experimentally
via ultrasound measurements.

3.2. Symmetric Godunov Form of the Model
It is important to note an interesting structural feature of
Equations (56) that may affect future developments of the ADER
schemes in an attempt to respect such structural properties at the
discrete level that may help to improve physical consistency of
the numerical solution. Thus, as many PDE systems studied in
some other of our papers [59, 60, 168, 169], system (56) belongs to
the class of so-called Symmetric Hyperbolic Thermodynamically
Compatible (SHTC) PDE systems originally studied by Godunov
[170, 171] and later by Godunov and Romenski [172], Godunov
et al. [173], Romenski [168] and Romensky [174].

Indeed, by simply rescaling the quantities ρ̄ = αρ, p̄ =
αp = ρ̄2Eρ̄ , and σ̄ik = ασik = −ρ̄AjkEAji and replacing the
non-conservative Equation (56a) by an equivalent (on smooth
solutions) conservative form (69a), system (56) can be written as

∂(αρ̄)

∂t
+ ∂(αρ̄vk)

∂xk
= 0, (69a)

∂ρ̄

∂t
+ ∂(ρ̄vk)

∂xk
= 0, (69b)

∂(ρ̄vi)

∂t
+
∂
(

ρ̄vivk + p̄δik − σ̄ik
)

∂xk
= 0, (69c)

∂Aik

∂t
+
∂(Aijvj)

∂xk
+ vj

(

∂Aik

∂xj
−
∂Aij

∂xk

)

= − 1

θ1
EAik

, (69d)

∂(ρ̄Ji)

∂t
+ ∂ (ρ̄Jivk + ESδik)

∂xk
= − 1

θ2
EJi , (69e)

∂(ρ̄S)

∂t
+
∂
(

ρ̄Svk + EJk
)

∂xk
= ρ̄

αT

(

1

θ1
EAik

EAik
+ 1

θ2
EJkEJk

)

≥ 0,

(69f)

where we have omitted the energy equation. Now, this system
looks exactly as the system studied in Dumbser et al. [59], apart
from the additional Equation (69a) which has the same structure
as (69b) and does not change the essence. Then, after denoting
E = ρ̄E and introducing new variables P = (̺1, ̺2, vi,αik,2i, σ )

̺1 = Eαρ̄ , ̺2 = Eρ̄ , vi = Eρ̄vi , αik = EAik
, 2i = Eρ̄Ji , T = Eρ̄S,

(70)
which are thermodynamically conjugate to the conservative
variables Q = (αρ̄, ρ̄, ρ̄vi,Aik, ρ̄Ji, ρ̄S), and a new

thermodynamic potential L(P) = Q · EQ − E = Q · P − E ,
system (69) can be written in a symmetric form

∂L̺i
∂t

+ ∂(vkL)̺i
∂xk

= 0, i = 1, 2, (71a)

∂Lvi
∂t

+ ∂(vkL)vi
∂xk

+ Lαij
∂αkj

∂xk
− Lαjk

∂αjk

∂xi
= ρgi, (71b)

∂Lαil
∂t

+ ∂(vkL)αil
∂xk

+ Lαjl
∂vj

∂xi
− Lαil

∂vk

∂xk
= − 1

θ1
αil, (71c)

∂L2i

∂t
+ ∂(vkL)2i

∂xk
+ ∂T

∂xi
= − 1

θ2
2i, (71d)

∂LT

∂t
+ ∂(vkL)T

∂xk
+ ∂2k

∂xk
= ̺22

̺1T

(

1

θ1
αikαik +

1

θ2
2k2k

)

≥ 0.

(71e)

In this PDE system, the first two terms in each equation form the
canonical Godunov form introduced in Godunov [170] which
can be immediately written as a quasilinear symmetric form, e.g.,
see Peshkov et al. [169], Romenski [168], and Romensky [174].
The other (non-conservative) terms obviously form a symmetric
matrix. Therefore, the entire system (71) can be written in
a symmetric quasi-linear form and hence, it is a symmetric
hyperbolic system if the thermodynamic potential L is convex.

We note that the understanding of the structural properties
of the continuous equations might be beneficial for developing
of so-called structure-preserving numerical integrators (e.g.,
symplectic integrators). Thus, the energy conservation law (56g)
is in fact a consequence of the other Equations (56) or (71), e.g.,
see Dumbser et al. [59] and Peshkov et al. [169], and can be
viewed as a constraint of the system (71). Its non-violation at
the discrete level cannot be guaranteed by the general purpose
ADER family of schemes studied in this paper and hence, usually,
as well as in our implementation, it is included into the set of
discretized PDEs instead of the entropy equation. In principle, a
structure-preserving scheme which satisfies all SHTC properties
[169] of the continuous equations at the discrete level should
guarantee the automatic satisfaction of the energy conservation
law, without its explicit discretization. We hope to cover this
topic in future work.

4. NUMERICAL RESULTS

In this section, we present some numerical results in order
to illustrate the capabilities and potential applicability of
the proposed numerical approach in non-linear continuum
mechanics. The first three test problems are carried out without
making explicit use of the diffuse interface approach, i.e., setting
α = 1 everywhere in the entire computational domain. The
last three test problems illustrate the full potential of the diffuse
interface extension of the GPR model in the context of moving
free boundary problems. Gravity effects are neglected in all test
cases, apart from the dambreak problem shown in subsection 4.6.
Whenever values for ν = µ/ρ0 and cs are provided, the
corresponding relaxation time τ1 is computed according to (68).
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4.1. Numerical Convergence Studies in the
Stiff Relaxation Limit
In order to verify the high order property of our ADER schemes
in both space and time in the stiff relaxation limit, we first
represent the numerical convergence study that was already
carried out in Dumbser et al. [59] on a smooth unsteady flow, for
which an exact analytical solution is known for the compressible
Euler equations, i.e., in the stiff relaxation limit τ1 → 0 and τ2 →
0 of the GPR model. The problem setup is the one of the classical
isentropic vortex, see Hu and Shu [175]. The initial condition
consists in a stationary isentropic vortex, whose exact solution
can easily be found by solving the compressible Euler equations
in cylindrical coordinates. Due to the Galilean invariance of the
Euler equations and of the GPR model, one can then simply
superimpose a constant velocity field to this stationary vortex
solution in order to get an unsteady version of the test problem.
The vortex strength is chosen as ε = 5 and the perturbation of
entropy S = p

ργ
is assumed to be zero. For details of the setup, see

Hu and Shu [175] and Dumbser et al. [59]. In this test we set the
distortion field initially to A = 3

√
ρ I, while the heat flux vector is

initialized with J = 0. As computational domain we choose � =
[0; 10]×[0; 10] with periodic boundary conditions. The reference
solution for the GPR model in the stiff relaxation limit is given
by the exact solution of the compressible Euler equatons, which
is the time–shifted initial condition Qe(x, t) = Q(x − vct, 0),
where the convective mean velocity is vc = (1, 1). We run this
benchmark on a mesh sequence until the final time t = 1.0. The
physical parameters of the GPR model are chosen as γ = 1.4,
cv = 2.5, ρ0 = 1, cs = 0.5, and ch = 1. The volume fraction
function is set to α = 1 in the entire computational domain.
The resulting numerical convergence rates obtained with ADER-
DG schemes using polynomial approximation degrees from N =
M = 2 to N = M = 5 are listed in Table 1, together with the
chosen values for the effective viscosity µ and the effective heat
conductivity coefficient κ . From Table 1 one can observe that
high order of convergence of the numerical method is achieved
also in the stiff limit of the governing PDE system.

4.2. Circular Explosion Problem in a Solid
In this Section, we simulate a circular explosion problem in
an ideal elastic solid. We compare the results obtained with
a third order ADER-WENO finite volume scheme on moving
unstructured Voronoi meshes with possible topology changes,
Gaburro et al. [77], with those obtained with a fourth order
ADER discontinuous Galerkin finite element scheme on a very
fine uniform Cartesian mesh composed of 512 × 512 elements,
which will be taken as the reference solution for this benchmark.
The computational domain is � = [−1, 1] × [−1, 1] and the
final simulation time is t = 0.25. We set α = 1, v = 0, A = I

and J = 0 in the entire domain. For r =
√

x2 + y2 ≤ 0.5 the
initial density and the initial pressure are set to ρ = 1 and p = 1,
while in the rest of the domain we set ρ = 0.1 and p = 10−3. The
parameters of the GPR model are chosen as follows: cs = 0.2,
ch = 0, τ1 → ∞ (in order to model an elastic solid). We use
the stiffened gas equation of state with γ = 2 and p0 = 0.
For the simulation on the moving Voronoi mesh, we employ a

TABLE 1 | Experimental errors and order of accuracy at time t = 1 for the density

ρ for ADER-DG schemes applied to the GPR model (cs = 0.5, α = 1) in the stiff

relaxation limit (µ≪ 1, κ ≪ 1).

Nx ε(L1) ε(L2) ε(L∞) O(L1) O(L2) O(L∞)

ADER-DG P2P2 (µ = κ = 10−6)

20 9.4367E-03 2.2020E-03 2.1633E-03

40 1.9524E-03 4.4971E-04 4.2688E-04 2.27 2.29 2.34

60 7.5180E-04 1.7366E-04 1.4796E-04 2.35 2.35 2.61

80 3.7171E-04 8.6643E-05 7.3988E-05 2.45 2.42 2.41

ADER-DG P3P3 (µ = κ = 10−6)

10 1.7126E-02 4.0215E-03 3.6125E-03

20 6.0405E-04 1.7468E-04 2.1212E-04 4.83 4.52 4.09

30 8.3413E-05 2.5019E-05 2.7576E-05 4.88 4.79 5.03

40 2.1079E-05 6.0168E-06 7.6291E-06 4.78 4.95 4.47

ADER DG P4P4 (µ = κ = 10−7)

10 1.5539E-03 4.5965E-04 5.1665E-04

20 4.3993E-05 1.0872E-05 1.0222E-05 5.14 5.40 5.66

25 1.8146E-05 4.4276E-06 4.1469E-06 3.97 4.03 4.04

30 8.6060E-06 2.1233E-06 1.9387E-06 4.09 4.03 4.17

ADER DG P5P5 (µ = κ = 10−7)

5 1.1638E-02 1.1638E-02 1.8898E-03

10 3.9653E-04 9.3717E-05 6.5319E-05 4.88 6.96 4.85

15 4.4638E-05 1.2572E-05 1.9056E-05 5.39 4.95 3.04

20 9.6136E-06 3.0120E-06 3.9881E-06 5.34 4.97 5.44

The reported errors are floating point numbers that have been obtained for numerical

simulations carried out in double precision arithmetics.

mesh with 82 919 control volumes. The computational results
obtained with the unstructured ADER-WENO ALE scheme
and those obtained with the high order Eulerian ADER-DG
scheme are presented and compared with each other in Figure 9.
We can note a very good agreement between the two results.
The high quality of the ADER-WENO finite volume scheme
on coarse grids is mainly due to the natural mesh refinement
around the shock, which is typical for Lagrangian schemes.
Furthermore, Lagrangian schemes are well-known to capture
material interfaces and contact discontinuities very well, since the
mesh is moving with the fluid and thus numerical dissipation
at linear degenerate fields moving with the fluid velocity is
significantly lower than with classical Eulerian schemes.

4.3. Rotor Test Problem
A second solid mechanics benchmark consists in the simulation
of a plate on which a rotational impulse is initially impressed,
in a circular region centered with respect to the computational
domain. This rotor will initially move according to the rotational
impulse, while emitting elastic waves which ultimately determine
the formation of a set of concentric rings with alternating
direction of rotation. The test is analogous to the rotor problem
shown in Peshkov et al. [72], but with a weakened material in
order to show stronger motion of the Voronoi grid.

The results of the third order ADER-WENO finite volume
method on a moving Voronoi grid with variable connectivity,
composed of 150 561 cells, are compared against a reference
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FIGURE 9 | Simulation results for the explosion problem obtained with a third order ADER-WENO ALE finite volume scheme on a moving Voronoi grid composed of

82 919 cells and with a fourth order ADER-DG scheme on a Cartesian grid of size 5122 = 262144 (4.2× 106 DOF). In the top row, two cuts of the solution along the

x-axis are shown; in the middle row, from the left, the solution for A11 obtained with the ADER-WENO ALE scheme and with the ADER-DG Eulerian scheme; in the

bottom row, the Voronoi grid at the final simulation time and the results from the ADER-WENO ALE scheme on a coarser grid of 2 727 elements.

Frontiers in Physics | www.frontiersin.org 18 March 2020 | Volume 8 | Article 3248

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Busto et al. ADER Schemes for Continuum Mechanics

FIGURE 10 | Simulation results for the solid rotor problem obtained from a third order ADER-WENO ALE finite volume scheme on a moving Voronoi grid composed of

150 561 cells and with a fourth order ADER-DG scheme on a cartesian grid of size 5122 = 262144 (4.2× 106 DOF). In the top row, the solutions for the u component

of the velocity field are shown, on the left those obtained with the unstructured ADER-WENO ALE scheme on moving Voronoi meshes and on the right those of the

ADER-DG scheme on a fixed Cartesian grid; in the bottom panels the cells are colored according to their mesh numbering to show the mesh motion between the

beginning of the ALE simulation and the final time.

solution obtained with a fourth order ADER discontinuos
Galerkin scheme on a very fine uniform Cartesian mesh counting
512×512 elements, for a total of over four million spatial degrees
of freedom.

The computational domain is the square � = [−1, 1] ×
[−1, 1] and the final simulation time is set to t = 0.5. With
exception made for the velocity field, all variables are initially
constant throughout the domain. Specifically we set α = 1,
ρ = 1, p = 1, A = I, J = 0, while the velocity field is
v = [−y/R, x/R, 0] if r =

√

x2 + y2 ≤ R, and v = 0 otherwise,
that is, outside of the circle of radius R = 0.2; this way, the
initial tangential velocity at r = R is one. The solid is taken
to be elastic (τ1 → ∞), heat wave propagation is neglected
(ch = 0), and the characteristic speed of shear waves is cs = 0.25.
The constitutive law is chosen to be the stiffened-gas EOS with
γ = 1.4 and p0 = 0. We can see in Figure 10 that, although
some of the finer features are lost (specifically the small central

counterclockwise-rotating ring) due to the lower resolution of the
finite volume method on a coarser grid, the shear waves travel
outwards with the correct velocity and the moving Voronoi finite
volume simulation can be said to be in agreement with the high
resolution discontinuous Galerkin results. Also in Figure 10,
it is shown that the central region of the computational grid
has undergone significant motion but thanks to the absence of
constraints on the connectivity between elements, the Voronoi
control volumes have not been stretched excessively as would
instead happen for a similar moving unstructured grid, but with
fixed connectivity.

4.4. Elastic Vibrations of a Beryllium Plate
The first benchmark for our new diffuse interface version of the
GPRmodel consists in the purely elastic vibrations of a beryllium
plate, subject to an initial velocity distribution, see for example
Sambasivan et al. [176], Maire et al. [177], Burton et al. [178],
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FIGURE 11 | Vibration of an elastic beryllium plate. Temporal evolution of the volume fraction function α (left) and of the pressure field (right) at times t = 5, t = 14,

t = 23, and t = 28, from top to bottom.

Boscheri et al. [71], and Peshkov et al. [72] for a setup of the same
test problem in the framework of Lagrangian and ALE schemes.

Unlike in the Lagrangian simulations, the computational
domain considered here is larger and is set to � = [−5; 5] ×
[−2.5; 2.5]. The computational grid consists of 512×256 uniform
Cartesian cells with a characteristic mesh size of about h = 0.02.
We use a third order ADER-WENO finite volume scheme in the
entire domain. The initial geometry of the beryllium bar is now
simply defined by setting α(x, 0) = 1 − ε inside the subdomain

�b = [−3, 3] × [−0.5, 0.5], while the solid volume fraction
function α is set to α(x, 0) = ε elsewhere, with ε = 5 · 10−3.
The initial velocity field inside�b is imposed according to Burton
et al. [178], Boscheri et al. [71], and Peshkov et al. [72] as

v(x) =
(

0,Aω
{

C1

(

sinh(�(x+ 3))+ sin(�(x+ 3))
)

−S1
(

cosh(�(x+ 3))+ cos(�(x+ 3))
)}

, 0
)

, (72)

Frontiers in Physics | www.frontiersin.org 20 March 2020 | Volume 8 | Article 3250

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Busto et al. ADER Schemes for Continuum Mechanics

with � = 0.7883401241, ω = 0.2359739922, A =
0.004336850425, S1 = 57.64552048, and C1 = 56.53585154,
while we simply set v = 0 outside �b. For this test case we set
ε = 5 · 10−3. The distortion field is initially set to A = I. The
material properties of Beryllium in the Mie-Grüneisen equation
of state are taken as follows: ρ0 = 1.845, c0 = 1.287, cs =
0.905, Ŵ = 1.11, and s0 = 1.124. We furthermore neglect heat
conduction and set ch = 0 and J = 0.

Unlike in Lagrangian schemes, no boundary conditions need
to be imposed on the surface of the bar. We simply use
transmissive boundaries on ∂�. The entire computational
domain is initialized with the reference density for beryllium
as ρ(x, 0) = ρ0, while the pressure is set to p(x, 0) = 0. The
distortion field is initialized with A = I. According to Burton
et al. [178], the final time is set to tf = 53.25 so that it corresponds
approximately to two complete flexural periods. The simulations
are carried out with a third order ADER-WENO scheme on two
uniform Cartesian meshes composed of 256× 128 and 512× 256
elements, respectively.

For the fine grid simulation in Figure 11, we present the
temporal evolution of the color contour map of the volume
fraction function α, which represents the moving geometry of
the bar. Here, dark gray color is used to indicate the regions with
α > 0.5 and white color is used for the regions of α < 0.5. In
the same figure, we also depict the pressure field in the region
α > 0.5 at times t = 5, t = 14, t = 23, and t = 28. These
time instants cover approximately one flexural period. The time
evolution of the vertical velocity component v(0, 0, t) in the origin
is depicted in Figure 12. For comparison, in the same figure we
also show the results obtained on the coarse mesh for the same
test problem with a fourth order ADER-DG scheme with second
order TVD subcell finite volume limiter (red line).

Our computational results compare visually well against
available reference solutions in the literature, see Sambasivan
et al. [176], Maire et al. [177], Burton et al. [178], Boscheri et al.
[71], and Peshkov et al. [72], which were all carried out with
pure Lagrangian or Arbitrary-Lagrangian-Eulerian schemes on
moving meshes, while here we use a diffuse interface approach
on a fixed Cartesian grid.

4.5. Taylor Bar Impact Problem
So far, we have only considered ideal elastic material, i.e., the
limit case τ1 → ∞. In this section we consider also non-
linear elasto-plastic material behavior. Following Barton et al.
[179, 180], Boscheri et al. [71], and Peshkov et al. [72] we choose
the relaxation time τ1 as a non-linear function of an invariant of
the stress tensor as follows:

τ1 = τ0

(σ0

σ

)m
, (73)

where τ0 is a constant characteristic relaxation time, σ0 is the
yield stress of the material and the von Mises stress σ is given by

σ =
√

1

2
((σ11 − σ22)2 + (σ33 − σ11)2 + (σ33 − σ22)2 + 6(σ 212 + σ 231 + σ 232)

=
√

3

2

◦
σ ij

◦
σ ij. (74)

FIGURE 12 | Temporal evolution of the vertical velocity component v(0, 0, t)

obtained with a third order ADER-WENO scheme applied to the diffuse

interface GPR model using two different mesh resolutions of 256× 128

elements (coarse mesh) and 512× 256 grid cells (fine mesh). For comparison,

also a fourth order ADER-DG simulation on the coarse mesh is shown

(red line).

In the formula (74) above,
◦
σ ij= σij − 1

3σkkδij is the stress
deviator, i.e., the trace-free part of the stress tensor. The non-
linear relaxation time (73) tends to zero for σ≫σ0, while it tends
to infinity for σ ≪ σ0.

The Taylor bar impact problem is a classical benchmark for an
elasto-plastic aluminium projectile that hits a rigid solid wall, see
Sambasivan et al. [176], Maire et al. [177], Dobrev et al. [181], and
Boscheri et al. [71]. In this work the computational domain under
consideration is � = [0, 600] × [−150,+150]. The aluminium
bar is initially located in the region �b = [0, 500]× [−50,+50],
where we set α = 1 − ε, while in the rest of the computational
domain we set α = ε, with ε = 1 · 10−2.

The aluminium bar is described by the Mie-Grüneisen
equation of state with parameters ρ0 = 2.785, c0 = 0.533,
cs = 0.305, Ŵ = 2, and s = 1.338. The yield stress of aluminium
is set to σ0 = 0.003.

The projectile is initially moving with velocity v = (−0.015, 0)
toward a wall located at x = 0. This velocity field is imposed
within the subregion �b, while in the rest of the domain we set
v = 0. The remaining initial conditions are chosen as ρ = ρ0,
p = p0, A = I, J = 0 and with the parameters τ0 = 1 and
m = 20 for the computation of the relaxation time (73). Unlike
in Lagrangian schemes, we do not need to set any boundary
conditions on the free surface of the moving bar. We only apply
reflective slip wall boundary conditions on the wall in x = 0.
According to Maire et al. [177], Dobrev et al. [181], and Boscheri
et al. [71] the final time of the simulation is t = 5, 000. The
computational domain is discretized on a regular Cartesian grid
composed of 512 × 256 elements using a third order ADER-
WENO finite volume scheme. As in Boscheri et al. [71] we
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FIGURE 13 | Geometry of the Taylor bar at time t = 1, 000 (top) and at the final time t = 5, 000 (bottom) obtained with a third order ADER-WENO finite volume

scheme applied to the diffuse interface GPR model. We plot the contour colors of the volume fraction function α, where black regions denote α > 0.5 and white

regions α < 0.5.

employ a classical source splitting for the treatment of the stiff
sources that arise in the regions of plastic deformations, i.e., when
σ ≫ σ0. In Figure 13, we show the computational results at
t = 1000 and at the final time t = 5, 000. The obtained solution
is in agreement with the results presented in Maire et al. [177],
Boscheri et al. [71], and Peshkov et al. [72]. At time t = 5, 000,
we measure a final length of the projectile of Lf = 456, which fits
the results achieved in Maire et al. [177] and Boscheri et al. [71]
up to 2%.

4.6. Dambreak Problem
In this last section on numerical test problems, we solve a two-
dimensional dambreak problem with different relaxation times
in order to show the entire range of potential applications of the

GPR model. For this purpose, we also activate the gravity source
term, setting the gravity vector to g = (0,−g) with g = 9.81.
The computational domain is chosen as � = [0, 4] × [0, 2] and
is discretized with a fourth order ADER discontinuous Galerkin
finite element scheme with polynomial approximation degree
N = 3 and a posteriori subcell TVD finite volume limiter.
Computations are run on a uniform Cartesian mesh composed
of 128 × 64 elements until the final time t = 0.5. The initial
condition is chosen as follows: we set ρ = ρ0, v = 0, A = I

and J = 0 in the entire computational domain. We impose
the slip boundary condition on the bottom. In the subdomain
�d = [0, 2] × [0, 1], we set α = 1 − ε, and p = ρ0g(y − 1),
while in the rest of the domain we set α = ε and p = 0.
In this test problem we set ε = 10−2 and use a stiffened gas
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FIGURE 14 | Dambreak problem at t = 0.5, simulated with a fourth order ADER-DG scheme using different relaxation times. (Top) Low viscosity fluid (stiff relaxation

limit) with ν = 10−3. (Center) High viscosity fluid with ν = 10−1. (Bottom) Ideal elastic solid (τ1 → ∞) with low shear resistance.
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FIGURE 15 | Dambreak problem at t = 0.4, simulated with a fourth order ADER-DG scheme using a space-time adaptive Cartesian AMR mesh applied to the GPR

model with with ν = 10−3 (Top), and reference solution, computed with a third order ADER-WENO finite volume scheme on a very fine uniform Cartesian grid, solving

the inviscid and barotropic reduced Baer-Nunziato approach presented in [106, 107] (Bottom).

equation of state with parameters ρ0 = 1, 000, p0 = 5 × 104,
γ = 2, ch = 0 and a shear sound speed cs = 6. Simulations are
run in three different regimes, only characterized by a different
choice of the strain relaxation time τ1. In the first simulation,
we set τ1 so that a kinematic viscosity ν = µ/ρ0 = 10−3 is
reached in the stiff relaxation limit, i.e., the GPR model in this
case describes an almost inviscid fluid. In the second simulation
we choose τ1 so that ν = 0.1, i.e., a high viscosity Newtonian fluid
behavior is reached. In the last simulation we set τ1 → ∞, i.e.,
the strain relaxation term is switched off so that an ideal elastic
solid with low shear resistance is described, similar to a jelly-type
medium. In all cases, we apply solid slip wall boundary conditions
on the left and on the right of the computational domain,
while on the right and upper boundary, transmissive boundary
conditions are set. The temporal evolution of the volume fraction
function α, together with the coarse mesh used in this simulation,

are depicted in Figure 14. The results for the almost inviscid
fluid agree qualitatively well with those shown in Ferrari et al.
[182], Dumbser et al. [106], and Gaburro et al. [107] for non-
hydrostatic dambreak problems. In order to corroborate this
statement quantitatively, we now repeat the simulation with ν =
10−3 using a fourth order ADER-DG scheme on a coarse AMR
grid composed of only 32 × 16 elements on the level zero grid.
We then apply two levels of AMR refinement with refinement
factor r = 3, i.e., we employ a general space-tree, rather than a
simple quad-tree. We note that the simulations on the AMR grid
are run in combination with time-accurate local time stepping
(LTS), which is trivial to implement in high order ADER-DG and
ADER-FV schemes, due to their fully-discrete one-step nature.
For details on LTS, see Dumbser et al. [37, 54],Dumbser [64]
and Gaburro et al. [65]. As a reference solution of this almost
inviscid flow problem, we solve the reduced barotropic and
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inviscid Baer-Nunziato model introduced in Dumbser [106] and
Gaburro et al. [107], using a third order ADER-WENO finite
volume scheme on a very fine uniform Cartesian grid composed
of 1024 × 512 elements. The direct comparison of the two
simulations at time t = 0.4 is shown in Figure 15. Overall we can
indeed note an excellent agreement between the behavior of the
diffuse interface GPR model in the stiff relaxation limit and the
weakly compressible inviscid non-hydrostatic free surface flow
model of Dumbser [106] and Gaburro et al. [107].

5. CONCLUSIONS AND OUTLOOK

In the first part of this paper we have provided a review of the
ADER approach, whose development started about 20 years ago
with the seminal works of Toro et al. [20] Millington et al. [19],
Titarev and Toro [29], and Toro and Titarev [28] in the context
of approximate solvers for the generalized Riemann problem
(GPR). The ADER method provides fully discrete explicit one-
step schemes that are in principle arbitrary high order accurate
in both space and time. The most recent developments include
ADER schemes for stiff source terms, as well as ADER finite
volume and discontinuous Galerkin finite element schemes on
fixed and moving meshes, which are all based on a space-
time predictor-corrector approach. The fact that ADER schemes
are fully discrete makes the implementation of time accurate
local time stepping (LTS) particularly simple, both on adaptive
Cartesian AMR meshes [54], as well as in the context of
Lagrangian schemes on moving grids [64, 65]. The fully discrete
space-time formulation also allows the treatment of topology
changes during one time step in a very natural way [77]. In the
second part of the paper we have then shown several applications
of high order ADER finite volume and discontinuous Galerkin
finite element schemes to the novel unified hyperbolic model
of continuum mechanics (GPR model) proposed by Godunov,
Peshkov and Romenski [56, 57, 59]. The presented test problems
cover the entire range of continuummechanics, from ideal elastic
solids over plastic solids to viscous fluids. The use of a diffuse
interface approach allows also to simulate moving boundary
problems on fixed Cartesian meshes. Future developments will
concern the extension of the mathematical model to non-
Newtonian fluids [183] and to free surface flows with surface
tension, see Schmidmayer et al. [184] and Chiocchetti et al. [185],

as well as to the conservative multi-phase model of Romenski
et al. [186, 187]. In future work we will also consider the use
of novel all speed schemes [188] and semi-implicit space-time
discontinuous Galerkin finite element schemes [189–191] for the
diffuse interface version of the GPR model used in this paper.
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Due to the inherently low sensitivity of the technique and the fast development of superconducting 

magnet technology over the past 40 years most clinically used systems now operate between 0.2 Tesla 

(T) and 7 T. Speed and brilliance of images are important features in clinical MRI, which has led to a race 

to ever higher B 0. However, there has been a long standing debate on what would be the optimum B 

0 in terms of (clinical) image contrast. Therefore, a vivid international research community is working to 

improve ultra-low field (ULF) MRI, reviewed elegantly by

Sarracanie & Salameh describe most recent developments at low and ultra-low field, covering a broad 

spectrum from pre-polarized MRI, ultra-sensitive sensors, and their relevance in clinical application. 

This work could result in cost-effective alternatives to high-and ultrahigh-field (UHF) MRI, opening new 

perspectives through novel image contrast to complement established diagnostic tools. 

Hömmen & Mäkinen et al. in this issue even evaluate the performance of zero-field-encoded ULF-MRI for 

in vivo 3D current density imaging and potentially conductivity mapping of the human head. Although their 

research reveals that image artifacts may affect reconstruction quality, their simulations also indicate that 

current-density reconstruction in the scalp requires spatial resolution less than 5 mm and demonstrate 

that the necessary sensitivity coverage could already be accomplished by multi-channel devices today. 

At the most frequently used clinical field strength of 1.5 T, sensitivity and speed can be further improved 

via radio-frequency (RF) coil arrays. Gruber et al. attempt to solve a practical problem in clinical imaging, 

namely the varying size of patients, by proposing a size-adaptive, one-size-fits-all flexible coil array for 

knee MRI. Built of partly-stretchable loops, the novel array coil shows an improved SNR of up to 100 

% in 20 mm depth from the phantom surface, demonstrating the effectiveness of adaptive RF coils by 

reducing noise contributions from empty coil regions. Although the use of array coils has been extremely 

successful, there are technological challenges at higher B 0, in particular regarding the integration of a 

large number of coil elements. Cabling including bulky cable traps renders such large coil arrays rather 

heavy and rigid. Frass-Kriegl et al. present a novel concept for reducing the number of coil elements 

dubbed “multi-loop coils” (MLC), exploiting the high sensitivity of small RF coils while reducing sample 

induced noise together with an extended field of view. Investigations were performed using MLCs, each 

composed of multiple smaller loops, targeting MRI at high (3 T) and at ultra-high field strength (7 T). 

Such MLCs appear advantageous for the development of single RF coils but also individual elements of 

arrays, especially for applications with a larger area and shallow target depth, such as skin imaging or 

high-resolution MRI of brain slices. 

Nohava et al. review the problem of how to get rid of the numerous cables and cable traps completely 

by transmitting the MR signal wirelessly from the coil. Such RF coil arrays have the potential to be much 

lighter and easier in terms of handling in a clinical environment. The paper addresses the scientific and 

technological challenges of wireless RF coils for MRI, including the MR receive signal chain, control 

signaling, and on-coil power supply. They conclude that completely wireless RF coils will ultimately 

become feasible, however, innovations are required specifically regarding wireless communication 

technology, MR compatibility, and wireless power supply.

The studies described so far have been performed at the proton resonance frequency as it provides the 

highest sensitivity for MRI. At UHF, however, multinuclear MRI and MRS becomes feasible. Roat et al. 

compare a wide range of potential array designs to build a flexible array for cardiac 31 P MR spectroscopy 

at 7 T, to be integrated in an existing 12-channel proton array. This is an excellent example of combining 

interdisciplinary skills and one of the most thorough papers on UHF RF hardware development published 

so far.

In summary, the combination of young talent, interdisciplinary and international research collaboration 

provides novel and innovative approaches to tackle a broad range of challenges humankind is facing 

now and in the near future.
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For about 30 years, MRI set cruising speed at 1.5 T of magnetic field, with a gentle

transition toward 3 T systems. In its first 10 years of existence, there was an open

debate on the question of most relevant MRI field strengths considering the gain in T1

contrast, simpler cooling strategies, lower predisposition to generating image artifacts,

and naturally cost reduction of small footprint low field systems. At the time, the inherent

gain in sensitivity of high field, which would translate in more signal per unit time, quickly

ended this debate. The promise of rapid exams or higher image resolution within a

reasonable time won over other considerations and set the standards for MR value. Yet,

many reasons bring low field MRI in a situation quite different from 40 years ago. From

the achieved progress regarding all aspects of MRI technology, an MR scan at 1.5 T in

the mid 1980s has very little in common with the equivalent scan in 2020. That clearly

indicates that field strength alone is not what drives performance. It is also unlikely that

the total number of machines worldwide will grow so to follow the increasing demand

considering their overall cost (∼$1M/T). The natural trend is to better control medical

expenses worldwide, and reconsidering low-field MRI could lead to the democratization

of dedicated, point-of-care devices to decongest high-field clinical scanners. In the

present article, we aim to draw an extensive portrait of most recent MRI developments at

low (1–199 mT) and ultra-low field (micro-Tesla range) outside of the commercial sphere,

and we propose to discuss their potential relevance in future clinical applications. We will

cover a broad spectrum from pre-polarized MRI using ultra-sensitive magnetic sensors

up to permanent and resistive magnets in compact designs.

Keywords: MRI, low magnetic field, ultra-low field MRI, MR value, point-of-care MRI

INTRODUCTION

Low fieldMRI? The rationale behind it has been around for quite some time, traditionally perceived
as a mean to reduce cost or to provide open access to patients suffering from claustrophobia. Over
the past 30 years, scientists have supported low-field MRI on multiple occasions and brought facts
that corroborate clinical relevance [1–4]. Yet, low field MRI has not spread. Reasons that have
been invoked are diverse and have led to numerous debates. From the manufacturer point-of-
view, the current business model in MRI results in higher margins allowing to increase profit [5].
From a clinical and academic point-of-view, the quest for higher and higher spatial resolution
has led radiologists and scientists worldwide to always push toward high- and ultra-high field
MRI research, eventually dominating over all others in peer reviewed journals [6]. One sure
thing is that the statistics of MRI sales over the last two decades have certainly helped closing
that debate. Nowadays high-field MRI sales (B0 ≥ 1.5 T) represent about 85% of the market
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FIGURE 1 | T2-weighted MR brain images acquired at 1.5 T in (A) 1986.

Image reused, with permission, from Zimmerman et al. [8] and (B) 2009

(authors’ database).

size in Europe and North America [7]. One of the main
misconceptions is that low-field MRI translates into poor image
resolution, often associated with poor image quality. It is
important, as scientists, to state that this concept is purely and
simply wrong. Magnetic field strength has by no means ever been
a limit to an achievable image resolution. A brief jump into the
early days of MRI is enough to appreciate the tremendous leap in
image quality that was made for a given field strength (Figure 1).
More recent work from Choquet et al. [9] has reported MRI of
different mouse body parts in vivo at 0.1 T (∼4.3 MHz) with
down to 100× 100× 750µm3 voxel size, more than 10 years ago
(Figure 2). Sensitivity though, and how far the signal lies above
the detection chain’s noise floor will tell about one’s capability
to achieve a given resolution in the minimum amount of time.
Hence time really is the argument at stake when considering
lower field options. Indeed, lower field strengths result in lower
bulk magnetization of nuclear spins leading in turn to a reduced
sensitivity. Assuming a fixed noise floor in the detection chain,
the decreased total magnetic moment brings themaximum signal
detectable closer to the latter and the overall signal-to-noise ratio
(SNR) drops. One main alternative to compensate for this loss
is signal averaging. It is generally accepted that n averages will
produce an SNR gain of

√
n. Hence time is currently the true

limit to a wide spread of low-field MRI, due to lower overall
NMR sensitivity. However, this is also a matter of perspective.
Why time considerations have become key in clinical diagnosis
has to be contextualized in the current landscape of MRI. Most
hospitals currently host one or two MRI scanners, which cost
roughly scales with magnetic field (∼$1M/T). As such MRI units
are expensive and used for the imaging of all body parts, they
are likely to represent a bottleneck in clinical workflows. Hence,
the time needed for one scan has to be short in order to scan as
many patients as possible within a day. Nowadays, no one can
afford a machine that would perform slower than the state-of-the
art because there is such a high demand for non-invasive
radiation-free diagnosis. Yet, other than applications where speed
is truly paramount such as for cardiovascular applications, or
patients with a life-threatening risk, fast imaging is only required

FIGURE 2 | MRI images of the mouse acquired at 0.1 T using a FISP

sequence and dedicated coils for the whole-body and tail. (Top) Whole body:

field-of-view (FoV) of 110mm and in plane resolution of 430 × 430 µm2. The

acquisition time was 30min for 30 slices of ∼1mm thickness. (Bottom) Tail:

field-of-view (FoV) of 6.4mm and in plane resolution of 100 × 100 µm2. The

acquisition time was 1 h 30min for 26 slices of ∼ 750 µm thickness. Images

modified, with permission, from Choquet et al. [9].

due to scanners being a low-volume/high price equipment. One
could argue that this quest for speed is not as relevant if numerous
low-field, low-cost devices were to be used (high-volume, low-
price). After all, if the price of a scanner is divided by two and
the acquisition time multiplied by two, then the cost per unit
time stays the same, and the same number of patients can be
scanned within the same time slot. Only cost for personnel would
increase. The situation in China is a good illustration of this
point: the high population density requires a higher density of
MR units, and mid-field MR units represent about 50% of the
market size [10], vs. 6% in Europe and North America [7]. As a
consequence, depending on the market ability to embrace such
a change in paradigm, that approach would naturally reduce
pressure on acquisition times. Most importantly, rather than
acquisition time or image resolution, one key aspect in the
democratization of low-field MRI resides in its value. Most likely,
if manufacturers and end users would foresee higher value in
low-field MRI solutions, there would be a straightforward path
toward mass adoption. Value though is a complex concept that
finds different resonances across populations and cultures. One
should agree on a simple description of value as being the ratio
of a benefit over a cost [11]. For low-field technology to be truly
visible and adopted, its value in MRI diagnosis would hence
need to be increased. Two approaches then allow to increase
value; 1-reduce cost, 2-increase benefits, or both at the same
time. Considering cost, the last two decades have already shown
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that relevant diagnosis can be achieved in lower-cost lower-
field devices [12–17]. Interest though, is hard to trigger if value
increases only slightly and yet no broad adoption has followed
since. For example, commercially available low-field scanners
rely on permanent magnet technology that can weigh up to
13 tons. Thus, their individual cost (that includes siting) has
never reached a point where value goes through the roof and
triggers such a cultural change. Maybe the economic pressure
on health expenses will change the current landscape with
populations worldwide aging and growing, but this has been
a long-heard argument never followed by action. Eventually,
it appears challenging to spark interest in both radiologists
and academics only by lowering cost as this is often perceived
as leading to less potent technology, except maybe when the
research is directed toward developing countries. The latter
field of research is considered a niche though, and if cost
is one key to selling in these countries, “low-cost” alone will
never replace tailor-made solutions to country-specific needs.
The alternative to increased value is then to increase benefits.
Nowadays, MRI units require specific siting from their heavy
weight and intense magnetic field strength, and shielding from
magnetic and electromagnetic disturbances. MRI systems are
known to be incompatible with most devices unless they are
specifically made MRI-compatible. Increasing accessibility by
means of a (much) lower footprint, little siting requirement,
or enhanced compatibility certainly is a path toward increased
benefits, and hence increased value. Now, what key element is
driving such heavy weights, compatibility aspects, and ultimately
the cost ofMRImachines nowadays?Magnetic field is. As a result,
low magnetic field MRI could very likely bring high value from
both decreased costs and enhanced benefits. But how low can we
go? In this manuscript, we aim to provide a fresh view on this old
debate in MRI.

SNR, THE ELEPHANT IN THE ROOM

SNR indeed, is the elephant in the room when it comes to low-
field MRI. Lower Boltzmann distribution infers lower induced
voltages in inductive detection that translates into lower signal.
A generally accepted assumption is that SNR scales with the

static magnetic field B
7
4
0 for frequencies above 5 MHz, and B

3
2
0

at low frequencies (below ∼5 MHz) [18]. One of the main
challenges for low-field MR experts is thus to compensate for the
loss in SNR per unit time inherited from the reduced magnetic
field. Recent work laid an exhaustive portrait of mid-field MRI
in the range 0.25–1 T [19], pointing out the current gain of
interest for alternative solutions. Increasing SNR via magnets
that are not “too” weak certainly is an approach to preserve
signal. The latter has some merit considering the tremendous
amount of progress magnetic resonance has benefited from over
the last three decades, as illustrated in Figure 1 and in [15]. As
a result, most recent developments will translate easily in mid-
field regimes which detection physics and design considerations
are close to 1H NMR at most widely spread 1.5 T. That said, the
big difference in images obtained between the 80’s and today at
1.5 T also highlights how field strength is not a guarantee for good

image quality, and how much it has to be balanced with high
performance acquisition techniques, high sensitivity detectors,
image processing, and modern electronics all combined together.
Another comment on medium range 0.25–1 T MRI is that it
might not allow to move sufficiently far from typical constraints
found in high-field MRI. Among them, exclusive magnets made
of superconductors for fields higher than 0.5 T [19], magnet
weight, low tolerance to magnetic environments and magnetic
susceptibility effects. One should keep in mind that an interesting
approach to tame SNR is favoring regimes sufficiently different
from inductive detection passed 15 MHz, with a focus on noise
considerations. As an example, noise predominance below 5
MHz for a variety of coil sizes comes from the coil when body
noise predominance is the general rule in mainstream high-
field MRI [20]. Current acceleration methods for clinical MR
imaging such as parallel imaging are even dictated by sample
noise predominance as each coil sees coherent noise from the
sample. In the present manuscript, in order to complement
existing review work and report on the latest and most active
low and ultra-low field MRI research, the authors have narrowed
down the span of low-field MRI research considered to articles
published within the past 5 years at field < 0.2 T (< 8.5 MHz).
More specifically, the authors are reporting on work that already
have produced images (even if not yet clinically relevant or only
in phantoms), yet excluding simulated work.

HARDWARE CONSIDERATIONS

Magnets
TheMRI community shows a growing interest for small footprint
MRI technology leveraging low-magnetic fields. Worldwide, an
effort has started to spread from hardware and engineering
considerations, notably regarding magnet construction.

Permanent Magnets

One of the main clinical application envisioned for small
footprint, point-of-care MRI is neuroimaging. Many academic
sites driving this effort have opted for permanent magnet
architectures, for the most part deriving designs from recent
work making use of Halbach geometries [21]. Permanent
magnets are of particular interest because they do not require
power to produce the spin-polarizing static magnetic field B0.
Zimmerman-Cooley et al. [21] have reported on two generations
of lightweight magnets. The first generation uses the intrinsic
inhomogeneity found in Halbach magnet geometries for spatial
encoding, whereas the second version features a constant 1D
spatial encoding magnetic field gradient (SEM) superimposed
on the static magnetic field B0 [22]. In this second iteration,
2D encoding is obtained either by physically rotating the native
1D SEM around the object of interest, or by using a custom
made gradient insert avoiding physical rotation [22]. Three-
dimensional encoding is obtained from the same gradient insert,
from an additional coil arrangement in the last spatial direction.
Themagnet features a 29-cm diameter bore andweighs 122 kg for
an average B0 of 79.3 mT (3.4 MHz). Field homogeneity is 27,800
ppm (∼95 kHz) over a 20-cm diameter spherical volume (DSV).
Imaging capability is still in its infancy but several promising
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approaches are being assessed. Recent work from O’Reilly et al.
[23] similarly report on a 27-cm diameter bore Halbach array
magnet construction. The latter proposes a classic approach to
magnet design used at high-field, where the static magnetic
field homogeneity is being optimized first, and complemented
by a gradient insert featuring coils for spatial encoding in 3
dimensions. The presentedmagnet weighs∼ 75 kg for an average
magnetic field of 50.4 mT (2.15 MHz). The measured magnetic
field shows ∼2,500 ppm (∼5 kHz) homogeneity across a 20-cm
DSV. Pushing toward more compact designs, McDaniel et al.
[24] have designed and built a head-size, hemispheric magnet
consisting of an assembly of NdFeB blocks inserted into a 3D
printed former. The magnet weighs 6.3 kg with a mean B0 of
63.6 mT (2.67 MHz). Over the targeted ROI of ∼3 × 8 × 8
cm3, B0 covers a 69,200 ppm (∼190 kHz) range. The magnet
was designed with a built-in field gradient of ∼117 mT/m.
For the remaining spatial encoding directions, two single-sided,
hemispherically-shaped gradient coils were wound on the outside
of the magnet former. Further away from applications in vivo,
yet with a major emphasis on portability and democratization
of MR technology, Greer et al. [25] have presented a hand-held
MR system for 2D imaging (projection) in ∼ 9-mm diameter
objects using permanent magnets arranged in a curved single-
sided geometry. This device follows the steps of the previously
released NMR-MOUSE [26, 27]. After numerical optimization,
five NdFeB magnets are arranged so that the sample of interest is
partially enclosed by themagnet, allowing to obtain a higher B0 of
186 mT (8 MHz). The 2D field of view is 9×9 mm2 with∼58,500
ppm homogeneity (∼460 kHz) over a 5-mm depth (G0 = 2, 200
mT/m). The system features two planar gradients coils printed
on PCB. The typical pitfalls for permanent magnet constructions
rely in the magnetic field being constantly turned-on, weight,
important field inhomogeneity, and poor temperature stability.
Weight can be mitigated in purpose-built small size scanner,
yet temperature can yield several kilohertz frequency shifts
per degree caused both by environmental changes and heating
from other components of the scanner, such as gradient coils.
Strategies to regulate magnet temperature or to account for
resulting frequency drifts in imaging or post-processing pipelines
will be crucially needed in order for these technologies to
be democratized.

Electromagnets

Electromagnets are an equally relevant alternative for low-
field MRI, generally providing better field homogeneity than
permanent magnets. In terms of flexibility, they can be turned
on and off at will, and the generated field can be modulated by
varying the input current in the magnet coils. Electromagnets
operating at low field are particularly interesting as requirements
on power and cooling can be drastically reduced when their
physical footprint decreases. In recent work, Lother et al. [28]
report on low field MRI for neonatal applications by means
of a bi-planar electromagnet geometry mounted on a steel
housing. Planar gradient coils are embedded for spatial encoding
in three dimensions over a 140-mm field of view (FoV). The
magnet homogeneity over the desired FoV was measured to
be 1, 200 ppm (1,100Hz) for a static magnetic field of 23 mT

(965 kHz). The total weight of the magnet with accompanying
electronics, acquisition console, and table trolley is below 300 kg.
Sarracanie et al. [29] have reported on ultra-low field MRI at
6.5 mT (276 kHz) in a resistive magnet. Originally designed for
hyperpolarized 3He MRI in order to assess posture dependence
of lung ventilation [30], the geometry was set such that an
adult human being could stand inside the magnet. The magnet
features a bi-planar geometry with two pairs of ring coils facing
each other. The outer ring coils have a diameter of ∼2m,
with 79-cm inter-coil separation. In its original design, each
side including coil and flange weighed ∼340 kg. In its final
version, the magnet is fully open and quite compact compared
to standard clinical scanners. The magnet homogeneity was
measured to be 350 ppm (96Hz) over a 25-cm DSV. In 2015,
Galante et al. [31] demonstrated proof-of-concept of very-low
field MRI with a scaled down electromagnet compatible with
magneto-encephalography (MEG). Their electromagnet is a 23.4-
cm diameter wound-solenoid providing B0 = 8.9 mT (373 kHz)
in its center. The measured B0 homogeneity inside a 6-cm region
of interest was ∼150 ppm (57Hz). The X-Y gradient coils are
located on the inner surface of the solenoid. The Z gradient is a
compensatedMaxwell pair configuration placed outside themain
coil. With enhanced flexibility and field homogeneity that can be
key to imaging performance, electromagnet main weaknesses lie
in their need for power supplies that can quickly reach three-
phase power and the necessity for liquid cooling, of course
depending on the geometry and the field strength envisioned.
Yet, rather simple water-cooling can be used that remains more
advantageous than complex and expensive cryogenics.

Pre-polarizing Magnets

MRI in the µT range and developments for MEG compatible
systems most commonly rely on pre-polarization strategies.
In general, electromagnets are used for pre-polarization but
experimental setups with permanent magnet also exist where the
sample is shuttled from themagnet to the imaging site. Low effort
is required on the intrinsic magnetic field homogeneity of such
magnets as they only serve to boost spin magnetization before
acquisition, thus simplifying their design and production. Pre-
polarizing magnets for ULF MRI can be found to operate in a
variety of field strengths, from 11mT to 2 T [32–41], with cooling
strategies observed from 20 mT and above.

Low-Frequency Detection
With sensitivity going down from lower spin polarization,
detection is one of the key elements to consider that affects
imaging performance, from sensor design to signal amplification
and noise reduction strategies.

MRI <1 mT

One aspect of ULF NMR and MRI in the µT range focuses
on the use of high-sensitivity magnetic sensors to compensate
for the extremely weak nuclear spin polarization. To date,
the most advanced work that produced images in humans in
vivo was using SQUIDs [36, 38, 40, 42–44]. Most recent work
includes imaging from a seven-channel low-Tc SQUID based
system [38] in vivo in the human brain at 200 µT (8 kHz)
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in a magnetically shielded room (MSR). The SQUID sensors
are commercial CE2Blue (Supracon AG, Jena, Germany) with
second-order axial gradiometers including a ∼90-mm pick-up
loop diameter and baseline. In a very recent paper, Hömmen
et al. [45] have used a two-stage low-Tc SQUID sensor at∼39µT
(1,645Hz), consisting of a single front-end SQUID with double-
transformer coupling read out by a 16-SQUID array [46]. As
reported by the authors, the SQUID is housed inside a niobium
capsule to shield it from the high polarizing fields. The integrated
input coil is connected to a 2nd-order axial gradiometer with 45-
mm diameter and 120-mm overall baseline. Oyama et al. [47]
have reported on ULF MRI in rat heads that is compatible with
MEG. The sensor is a low-Tc dc SQUID with a second-order
axial-type gradiometer 15-mm diameter pickup coil installed in
a cryostat. Work from Kawagoe et al. [48] reports on the use
of a high temperature superconductor (HTS) SQUID combined
with an LC resonator to extend their detection area (by∼ ×1.5).
Their resonator is composed of a coil and a capacitor set at
1,890Hz resonance frequency. The signal is detected by the
coil inductively coupled to the HTS SQUID and immersed in
liquid nitrogen. 2D imaging is performed in a 35-mm diameter
water phantom, while the entire setup sits either in an MSR or
a compact magnetically shielded box offering ×1.3 more SNR.
Another very recent study aims at addressing short relaxation
times in oil for food contaminant inspection using an HTS
SQUID system equipped with a non-resonant flux transformer
[49]. In the latter case, the MR signal from a sample is detected
by a pickup coil and transferred to a separately located SQUID
via a superconducting input coil. With an attempt to move away
from cumbersome MSRs, Liu et al. [50] report on the use of
a static magnetic gradient tensor detection and compensation
system to stabilize temporal magnetic field fluctuations. With
this compensation, ULF MRI could be demonstrated in a 38-
mm phantom. Acquisition was performed by a low-Tc hand-
wound second-order axial gradiometer inductively coupled to
a dc SQUID. The gradiometer was located at the bottom of a
fiberglass cryostat, immersed in liquid helium. Parallel efforts
in the µT range have kept pre-polarizing strategies to boost
nuclear spin polarization, however transitioning toward simpler
technology such as atomic magnetometers or even inductive
detection to branch out from costly and impractical requirement
such as cryogenics. When this community was still very active,
images in vivo were produced in the human hand and head
[51–54]. Recent work from 2017 reports on optically pumped
atomic magnetometers (OPAM) combined with liquid cooled
pre-polarization coils [55]. Two MSRs host the OPAM and the
MRI systems separately. The OPAM sensor uses two laser beams,
respectively, the pump and probe lasers. It relies on the magneto-
optical effect which leads to the rotation of the linearly polarized
plane of the probe laser by an angle proportional to the magnetic
field it experiences. The OPAM and the MRI systems are
electrically connected by a flux transformer consisting of a second
order gradiometer as input coil with a baseline of 175mm using
solenoid coils. The OPAM module operates at 117 µT (5 kHz)
by applying a bias field of ∼25 µT (∼1,080Hz). With respect
to inductive detection, pre-polarized µT MR finds application in
the industry where it can be used to monitor water fouling [33].

In 2015, Benli et al. [32] had used the same commercial system
(Terranova,Magritek,Wellington, NewZealand) forMRI at their
local earthmagnetic field (47µT or∼2 kHz) for teaching purpose
[32]. In both work, inductive detection is made from a single
channel 84-mmdiameter solenoid tuned andmatched at∼2 kHz.

MRI From 1 mT to 199 mT

In all of most recent reported work, inductive detection was
chosen with a variety of approaches typical of higher field
MR research: separated transmit and receive, transceiver coils,
surface, or volume geometries. Diverse designs such asmulti-turn
loop coils [25], saddle coils [56], multiple-channel phased-arrays
[21], solenoids [23, 28], or custom spiral volume coils [24, 29]
were employed. In 2015, Zimmerman-Cooley and colleagues
built a 25-turn, 20-cm diameter, and 25-cm long solenoid
coil for transmit, and a 14-cm diameter multi-channel receive
array made of 8 8-cm diameter, overlapping loops [21]. The
coils were tuned and matched at 3.29 MHz. Later, Stockmann
introduced the idea of combining swept WURST RF pulse
echo trains for Transmit Array Spatial Encoding (TRASE) in
very inhomogeneous B0 fields, and was able to demonstrate
the acquisition of spatially encoded 1D profiles [57]. In 2015,
Sarracanie and colleagues designed an innovative single channel,
head-shaped, spiral volume transceiver coil for human head
imaging [29]. The resonator consisted in a 30-turn spiral coil
made of Litz wire which hemispherical shape nicely fits the
human head (height: 225mm, width: 180mm, depth: 100mm).
It was tuned and matched at 276 kHz, with a quality factor Q
= 30 corresponding to a 10-kHz bandwidth. The most recent
version of Boston’s group low-field Halbach scanner reported by
McDaniel and colleagues uses a similar single-channel helmet-
shaped transceiver solenoid with a resistively-broadened 3-dB
bandwidth of 78 kHz [58]. In their most recent compact cap
design MRI system, McDaniel et al. [24] also presented a single-
channel spiral-volume inspired transceiver coil. Wound inside a
3D printed former, a 4-turn coil made of Litz wire was resonated
at 2.67 MHz, with its 3-dB bandwidth resistively broadened to
reach 157 kHz (Q = 17). In their prototype MEG compatible
resistive system, Galante et al. [56] describe the use of two
separates coils geometrically decoupled for transmit and receive
operations at 373 kHz. Their detection coil is a 27-turn saddle coil
made of Litz wire wound on an 8-cm diameter cylinder, with a
Q of 105 and corresponding bandwidth of 3.5 kHz. The receiver
preamplifier located inside the MSR is running on battery to
mitigate potential noise from the supply line. For their neonatal
low-field system, Lother et al. [28] built a 10-cm inner diameter,
965 kHz transceiver solenoid coil. The design consisted of two
parallel Litz wire assemblies made of 45 strands each. A quality
factor Q = 95 with corresponding bandwidth BW = 10 kHz
was measured for the coil placed inside the magnet. For their
head imager, O’Reilly and colleagues used an 18-turn transceiver
solenoid (diameter: 200mm, length: 29mm)made of copper wire
at 2.15 MHz with 154-kHz bandwidth [23]. The authors also
mention the use of an RF shield placed between their RF and
gradient coils for an improved SNR of 9%. In their miniature,
hand-held MRI system, Greer and colleagues have used a planar
spiral design transceiver coil printed on two PCB layers [25]. The
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FIGURE 3 | Summary of the current landscape of low-field MR imaging in phantoms. (A) Shows the major achievements obtained at ultra-low field (micro tesla range)

in combination with SQUID detectors, and (B) the images obtained in the mT range (from 1 to 199 mT). MSR, magnetically shielded room; CMSB, compact

magnetically shielded box; Bp, polarization field; NA, number of signal averaging. Images reused with permission from Cooley et al. [21], O’Reilly et al. [23], McDaniel

et al. [24], Greer et al. [25], Lother et al. [28], Benli et al. [32], Ujihara et al. [33], Kawagoe et al. [48], Demachi et al. [49], Liu et al. [50], Hilschenz et al. [55]. Images

reused from Galante et al. [56], held under Creative Commons License CC-BY 4.0.

coil is made of 3 turns per layer with inner diameter 9mm and
outer diameter 13mm, added with a slotted shield placed over the
top to limit external interferences. The resulting altered quality
factor in presence of the shield is Q = 13.4 with corresponding
bandwidth∼600 kHz at 8 MHz Larmor frequency.

IMAGING PERFORMANCE

Phantom Studies
Imaging results in phantoms illustrate the potential of recent
technological developments, from hardware (magnetics, RF,
amplification) to software (sequence design, signal processing),
even if not mature enough to be envisioned in vivo. Figure 3
compiles all of the reported and most recent low- and ultra-low
field related work.

MRI <1 mT

When considering ULFMRI with ultra-sensitive magnetometers,
we can find more material from SQUID-based imaging as the
latter technology is more mature. The work of Demachi et al.

[49] shows pre-polarized 2D imaging (projection) at 4 kHz in
a phantom composed of water and oil. From the parameters
given it can be estimated that the minimum acquisition time was
>8min for a 2D 32 × 16 matrix interpolated to 64 × 64 in a
phantom presenting four cylindrical columns (8-mm diameter,
19-mm depth), with a minimum polarization time of 0.125 s at
Bp = 210 mT. The images displayed have extremely poor SNR.
With a similar interest in food inspection application, Kawagoe
et al. [48] show 2D imaging (projection) at ∼94 µT (∼4 kHz) in
a 35-mm diameter, 8-mm thick phantom. A non-Cartesian radial
acquisition scheme is used with 24 spokes, 512-ms acquisition
time, and 5-s pre-polarization steps at Bp = 1.1 T (the highest
reported here). The total acquisition time is not reported but
could be estimated to ∼3min for an interpolated, reconstructed
voxel size of 662 × 662 × 8, 000 µm3. Liu et al. [50] show
the feasibility of imaging without an MSR in a 30 × 38 mm2

(projection, no depth given) structured phantom at 129 µT
(5.5 kHz). From the given image parameters, it can be estimated
that the imaging time was ∼17min for their shortest phase
encoding and acquisition times with a 5-s polarization at Bp =
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650mT. Cartesian acquisition was used in a spin-echo sequence
with 31 phase-encode steps and number of average NA = 5 (no
pixel size is given). The work of Hilschenz and colleagues shows
2D imaging (projection) with an OPAM operating at 117 µT
(5 kHz) [55]. From a standard gradient echo approach following
a 3-s pre-polarization step (Bp = 65 mT) and a total of NA =
10 averages, the team imaged the cross-section of a 34 mm-
diameter bottle of di-ionized water. The given in-plane resolution
of the 2D projection is 7.4 × 8.9 mm2. SNR is not given, yet
it looks quite poor. The total imaging time is not provided
but can reasonably be expected to be above 10min for a single
projection from the parameters available. Benli [32] and Ujihara
[33] have used inductive detection at 47 µT (∼2 kHz) and a 2D
spin-echo sequence (projections) in their commercial benchtop
system. Ujihara and colleagues performed imaging in 8min 32 s
with echo times TE ranging from 200 to 800ms, TR = 4000ms,
BW = 32Hz, NA = 4, matrix size 32 × 32, FoV = 100 × 100
mm2, for a reconstructed pixel size of 3.125 × 3.125 mm2. The
pre-polarization time was 2 s at 18.8 mT. Information on SNR is
not being communicated. Benli and colleagues have shown 2D
T2-weighted images with similar matrix size, FoV, and BW, but
with TE ranging from 140 to 400ms, TR = 5 s, and 4.5 s pre-
polarization steps. The number of averages and total acquisition
times are not being communicated. The SNR appears rather poor
but is not being communicated.

MRI From 1mT to 199 mT

Sitting at constant B0 = 8.9mT static field (373 kHz), Galante and
colleagues have shown MRI compatible with MEG settings in an
MSR, but without pre-polarization [56]. Typical 3D Cartesian,
spin-echo based acquisitions were performed with 32 × 32 × 32
matrix size, TE/TR = 19/500ms, and a readout bandwidth in
the kHz range. Scans in a doped water phantom and an ex vivo
rabbit brain were acquired with 3 × 3 × 3 mm3 voxel size, NA
= 1 in 8.5min, and NA = 16 in 2.3 h, respectively. SNR of 70
is reported for NA = 1 in the phantom. SNR of 149 is reported
for NA = 16 ex vivo. A 2D spin-echo based projection was also
acquired with 32 × 32 matrix size and down to 1 × 1 × 1 mm3

voxel size in a ∼3-cm diameter, ∼10-mm high phantom filled
with doped water. The latter shows rather poor SNR but no value
is given. In their first attempt using a Halbach magnet geometry,
Zimmerman-Cooley and colleagues were using the native field
gradient from theirmagnet as amean to perform spatial encoding
[21]. The main advantage of such an approach is the simplicity
of the design that does not require additional gradient or power
electronics, thus facilitating flexibility and portability. The latter
magnetic field gradients however are maximized in the periphery
of the field of view with little or no gradient in the center,
thus providing no spatial encoding (see Figure 3B). For their
second iteration, the Boston team designed their magnet with
an embedded linear gradient across the whole FoV, allowing
spatial encoding from physically rotating the magnet around
the object (multiple projections) [22], or by the addition of a
gradient coil to modulate the latter in plane and sweep across
k-space without rotation [58]. O’Reilly et al. [23] also report on
imaging at 50.4 mT (2.15 MHz) using a custom Halbach magnet
geometry. They acquired 3D images on a phantom composed of

an avocado placed in a watermelon using a spin-echo sequence.
Image parameters consisted in a 64 × 64 × 64 matrix with
220 × 220 × 220 mm3 FoV, resulting in a voxel size of ∼3.5
× 3.5× 3.5 mm3. The acquisition bandwidth was 20 kHz, with a
TE/TR= 30/500ms, and NA= 1. The resulting acquisition time
was TA = ∼34min. Eventually, k−space data was filtered with a
Gaussian filter before Fourier transform. The SNR in the images
was reported to be ∼35. In their compact MR cap geometry,
McDaniel et al. [24] demonstrate 2D multi-slice imaging at 63.6
mT (2.67 MHz) in a 4-cm high, 6.3-cm wide structured phantom
which size matches their targeted ROI. Six slices were acquired
using a slice-interleaved RARE sequence. Acquisition matrix
was 31 × 31 for a ∼2 × 2 mm2, 6-mm deep pixel resolution.
The acquisition bandwidth was ∼54 kHz, TR = 1,000ms, echo
spacing of 3ms, and NA = 24 for a total acquisition time of
12min 40 s. Greer et al. [25] in their portable device made of
5 permanent magnets also ventured into imaging at 186 mT (8
MHz). They could show 2D imaging (1 selected slice) from a
spin-echo based sequence as described elsewhere [59]. Typical
parameters were 41 × 41 2D acquisition matrices with centric
ordering of k−space, interpolated to 256× 256 for a default slice
thickness of∼0.7mm, and a pixel resolution of 0.33× 0.33 mm2.
Reported SNR was ∼ 10 with acquisition time TA = 54min and
NA= 8. Signal intensity changes from the highly inhomogeneous
B0 are corrected by dividing each image with a reference scan.
The overall images do represent well the imaged objects, yet with
severe geometric distortions. Relying on an electromagnet design,
Lother et al. [28] have shown imaging at 23 mT (965 kHz) in
their custom compact MRI system dedicated to neonates. 2D
Spin-echo over a 5-mm thick slice is shown in a baby pineapple.
The imaging parameters of the sequence used were TE/TR =
40/400ms, FoV = 100 × 200 mm2, matrix size 64 × 128, BW
= 100Hz, and averaging NA= 32 for a total acquisition time TA
= 29min. Interpolation from zero-filling in k−space allows to
shrink the displayed pixels from ∼1.6 × 1.6 mm2 down to 0.8 ×
0.8 mm2. An SNR of 23 is reported on the displayed images.

In vivo Studies
Imaging in vivo applies to technology having reached a maturity
level where most potential issues, hardware or software, are
addressed to operate seamlessly in a living organism. The latter
hence provides a better benchmark to assess performance such as
SNR, contrast, and acquisition times in realistic objects and FoVs
for future applications, being it clinical or pre-clinical. Figure 4
compiles all of the reported most recent low- and ultra-low field
work in vivo.

MRI <1 mT

In the range under 1 mT (< 43 kHz), the most advanced
work presenting in vivo imaging in humans was obtained using
SQUIDs inside of an MSR [38]. In the latter, pre-polarized
imaging in the human head was performed at 200 µT (8 kHz),
with voxel size 2× 2.4× 15 mm3 using a 3D spin-echo sequence
that includes 4 s pre-polarization steps at Bp = 100 mT, followed
by a ∼100-ms ramp before spatial encoding starts. The total
imaging time was 67min for the acquisition a 5-slice volume.
The SNR on the 2nd slice is reported to be ∼10, yet it drops
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FIGURE 4 | Summary of the current landscape of low-field MR imaging in vivo. (A) Shows the major achievements obtained at ultra-low field (micro tesla range) in

combination with SQUID detectors, and (B) the images obtained in the mT range (from 1 to 199 mT). MSR, magnetically shielded room; CMSB, compact magnetically

shielded box; Bp, polarization field; NA, number of signal averaging. Images reused, with permission, from Espy et al. [38], Hömmen et al. [45], Oyama et al. [47],

McDaniel et al. [58]. Images reused from Sarracanie et al. [29], held under Creative Common License CC-BY 4.0.
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drastically across the acquired volume. Similar in performance,
Hömmen et al. [45] have performed pre-polarized imaging in
vivo at lower field strength∼39µT (1,645Hz) in the human brain
with 4.1 × 3.9 × 3.9 mm3 voxel size, from 35 k−steps in both
2nd and 3rd phase encoding directions. The sequence used was
a 3D gradient-echo sequence with 500-ms pre-polarization steps
at Bp = 17 mT, for a total acquisition time TA = 40min. Only
single slices are shown in 3 different orientations and SNRs are
not reported. Finally, the work of Oyama shows imaging in a rat’s
head [47] at 33 µT (1.4 kHz) using 1 s pre-polarization steps at
10.6 mT peak field, and a 3D gradient echo acquisition with 32
× 32× 8 matrix size. The total acquisition time was TA= 68min
for an 8-average scan (NA = 8) and voxel size 1.3 × 1.3 × 2.6
mm3. 2D images exhibit rather low SNR although values are not
provided (cf Figure 4A).

MRI From 1 mT to 199 mT

Sitting at the very bottom of the range (6.5 mT or 276 kHz),
Sarracanie and colleagues could show images in the living human
brain [29] by making use of high efficiency balanced steady
state free precession sequences. They report 3D 64 × 75 ×
15 acquisition matrices with voxel resolution down to 2.5 ×
3.5 × 8.5 mm3. Other parameters were TE/TR = 11/22.5ms,
number of averages NA= 30/160 and corresponding acquisition
times TA = 6/32min, using a 50% sampling rate with a variable
density Gaussian pattern. The maximum SNR was reported to
reach 15 (NA = 30) and ∼40 (NA = 160) using the latter
parameters. In the continuity of Zimmerman-Cooley’s work in
phantoms, McDaniel and colleagues reported on imaging in
the living human head at 79 mT (∼3.4 MHz) [58, 60]. Spin-
echo sequences were employed using phase encoding for the 2nd

and 3rd encoding spatial directions, along with frequency swept
RF pulses so to provide coverage of nuclear spin frequencies
over large magnetic field inhomogeneities [57]. They report 254
× 49 × 23 acquisition matrices providing 1.3 × 4.3 × 7.9
mm3 voxel size, with NA = 8, TE/TR = 148/3000ms, and
read-out bandwidth = 100 kHz, for a total acquisition time
TA = 20min. Efforts were made to passively shim the magnet
from specific trays embedded in the original design, and a
generalized reconstruction was performed and confronted to
fast Fourier transform. The generalized reconstruction performs
better than traditional Fourier, and although very encouraging,
the reconstructed images exhibits some heavy distortions, in
particular on the edges of the object where the magnetic field is
most heterogeneous (see Figure 4B).

SIDETRACKS

The authors have tried to keep the extent of the present paper
within a certain category of academic work and a specific
time period, so to depict a refreshed view on the topic while
keeping coherence for further discussion. Nonetheless, it is worth
mentioning potent initiatives on the edge of our scope as some
other contenders propose truly original approaches to MRI that
also leverage low magnetic field strengths. At field strength
≥ 0.2 T, one start to enter the realm of low-field commercial
systems less in line with the scope of the proposed overview.

With a particular focus on mobility and accessibility, Nakagomi
and colleagues have proposed a prototype, car-mounted MRI
system operating at 0.2 T (8.5 MHz) [61]. Relying on a bi-planar
permanent magnet architecture with a set of bi-planar gradient
coils for spatial encoding, the team demonstrates 2D multi-slice
imaging in the elbow within ∼1min 30 s. To the best of our
knowledge, this is the first time that a full MRI system for human
imaging is being sited in a standard, commercial vehicle. This
initiative, even at the stage of prototyping, advocates strongly
for the use of lower field technology to promote flexibility
in future mobile systems. Similarly, low static magnetic field
(0.35 T or 14.9 MHz) was successfully employed in the first CE
marked (and FDA cleared) MRI-guided radiation therapy cancer
treatment system by ViewRay (MRIdian Linac, ViewRay Inc.,
Oakwood, USA) [62]. It further demonstrates that bringing down
magnetic field is a relevant option to combine complex and
rather incompatible modalities within the same device. Balanced
steady state (b-SSFP) based MRI sequences are used that are
particularly well-suited to low-field. From an increased T2

T1
ratio,

the transverse magnetization at steady-state is increased that
promotes SNR [63], and from lower sensitivity to magnetic
field inhomogeneity, the images acquired are less prone to
typical banding artifact encountered at higher field [29]. Another
growing interest in MRI lies in the acquisition of quantified
metrics to replace the long-lasting legacy of reading shades of
gray. Field cycling relaxometry is a technique that started to
be used in NMR spectroscopy, which consists in measuring
the longitudinal relaxation rate T1 in samples at multiple field
strengths [64–67]. T2 relaxation would probably need some
deeper investigation in the low-field range, but is currently less
of interest due to little dependence with field strength [68]. T1

on the contrary is known to exhibit clear changes. Its evolution
as a function of field is not linear and hence can be used as
an extra degree of freedom to characterize tissue types, and
potentially help in the identification of new biomarkers for a
given pathology. At low field in particular, the dispersion in T1

relaxation rates is much bigger than at clinical field strength
(or higher) and moves away from that of pure water as more
and more molecular motion contribute to relaxation processes
[69]. Since it is commonly accepted that the water content of
tissue is neither tissue nor disease dependent, theMR community
probably should embrace the exploration of new paths for
diagnosis purpose. Regarding its application in MRI however,
relaxometry is not used in clinical routine due to the additional
time needed to probe the NMR signal at multiple time points.
Accounting for the multiple time points necessary, the multiple
static magnetic field strength to be investigated, and the loss of
SNR intrinsic to lower proton magnetization, it might be hard
to imagine field cycling approaches being implemented with
future clinical low field MRI systems. Despite these challenges,
a group of researchers from the University of Aberdeen has
however managed to build the first whole body Fast Field-
Cycling MRI scanner and used it for clinical molecular imaging
studies [70]. With all legal authorizations to conduct studies in
human volunteers and patients, the team has managed to provide
T1 dispersion maps in vivo in the living human breast, brain
and knee that already points toward contrasts and diagnostic
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capability unique to low field. The total duration of FFC-MRI
scans varied between 35 and 50min from positioning of the
patient to withdrawal.With a constant detection field of 0.2 T (8.5
MHz) higher than reported in this paper, the range of investigated
T1s spans nonetheless from 50 µT to 0.2 T, hence very low
field strengths.

COMMERCIAL PERSPECTIVES

If the research at very low-field strength seems to be quite
dynamic again, it is still hard to predict what will eventually
result in commercial solutions for clinical practice in the
long term. In order to add value and potentially find new
markets, it is reasonable to assume that such devices will not
be designed to compete with high-field settings, but instead
address current needs where they can be complementary and
accessible. Amongst the main avenues considered, systems to
be sited in emergency units, in the operating room or even in
the field will likely be developed for applications in neurology
or musculoskeletal disorders, where some well-defined needs
already exist (e.g. stroke diagnosis). With a permanent, bi-planar
magnet architecture operating at 64 mT (∼2.7 MHz), the first
and only contender to a commercial, accessible and mobile MRI
comes from Hyperfine (Guilford, CT, USA), an American start-
up company that just unveiled their MRI system in late 2019.
The whole MRI system and embedded electronics is mounted
on a cart with motorized wheels and can be plugged into a
standard wall outlet. It has not yet been cleared with CE approval,
but was recently granted 510(k) FDA clearance and is currently
being tested in several clinical settings on the east-coast of
the United States. With no specific need for siting and low
power requirement, it can easily be placed in the emergency
department, the neuro-intensive care or pediatric units. It
was first intended for neuro-imaging and muskulo-skeletal
applications. At a different scale, it is worth mentioning that the
main manufacturers also seem to be reconsidering their position
toward low-field MRI. In their first attempt, low-field was only
considered for open access permanent magnet based devices,
which reduced cost did not allow to increase the overall value,
mainly due to important siting requirements and disadvantaged
by overall inferior performance. To the best of our knowledge, no
commercial device is foreseen yet, but a recent publication has
communicated about one of the main manufacturers (Siemens
Healthineers, Erlangen, Germany) ramping a clinical 1.5 T (∼64
MHz) scanner down to 0.55 T (23.4 MHz) for a variety of
applications [15]. Benefiting from lower sensitivity to magnetic
susceptibility effects and enhanced contrast in the mid-field
regime, it has resulted in a series of preliminary results recently
communicated by the same group [71–74].

DISCUSSION

In this paper, a rather extensive review of the current landscape
of low to ultra-low field MRI has been listed and described.
We decided to focus on the last 5 years of development to
give a fresh view on the topic, though we encourage the reader
to learn more about older inspiring pioneer work in the field.

Indeed, very interesting research has been published especially
in the late 80s—early 90s [1, 4, 75–77], with a brief recurring
interest in the early 2000s, in particular for interventional
applications [13, 14]. The MR community is clearly entering
one of those cycles where the interest in low- and ultra-low
field MRI is raising again, and the past few years have shown a
remarkable increase of communications regarding new hardware
and imaging techniques. In this context, we try to present an
exhaustive list of approaches reflecting the current research effort,
all of which is capable of generating images at field strengths as
low as a few µT. From this “snapshot” of the current state of the
art, it is possible to take some perspective and discuss what seems
to be most relevant, at least in the short and medium term, or
what kind of technological locks would need to be addressed in
order for some approaches to work. Indeed, not all of the work
presented has a potential to translate into in vivo and further
into clinical applications, themain reason being that such settings
require simple-to-use, rugged and rather fast technologies. The
authors anticipate that pre-polarizing approaches that are quite
well-represented in low field research might have difficulties to
meet clinical needs both on the infrastructure and performance
levels. It is indeed quite striking to observe that when using pre-
polarization, often more than 95% of the examination time is
being used field cycling and not acquiring data. We can notice
that while sensitivity is already quite reduced from working
at weaker field strength, the low duty cycle on the acquisition
side is never quite compensated by a higher (even very high
[48]) pre-polarizing field or higher sensitivity sensors. One might
consider using that time to acquire and average data as a more
efficient way to increase SNR, with the added benefit of simpler
setups if field cycling is not required. In addition, the longer
readout and encoding times generally encountered added with
incompressible delays to cycle down the pre-polarization fields
also penalize signals with short lifetimes, and one may end up
only being able to probe species with long relaxation time such as
free water compartments as seen with Espy and colleagues [38]
(Figure 4A). Pre-polarization techniques are often employed for
magneto-encephalography in conjunction with high sensitivity
magnetometers but new insights for alternatives are proposed,
such as in the work from Galante [31, 56]. Imaging at thermal
equilibrium without pre-polarization seems to be the most
promising approach considering the image quality achievable
today. Permanent and resistive magnets are two good candidates
that have both pros and cons. Permanent magnet architectures
have the big advantage of requiring no power, key to the
prospect of future small footprint, accessible technology. The
achievable field homogeneity however is easily one to two orders
of magnitude worse than what can be found in resistive magnets.
As a result, strong artifacts that impede image quality can be
seen in all of the studies presented (Figures 3, 4), that are
very hard to correct. Innovative reconstruction methods will
be required to overcome this difficulty, probably moving away
from typical Fourier frameworks, and leveraging for example
deep learning approaches. If this technical challenge has not
yet been unlocked, addressing this reconstruction issue has the
potential to truly disrupt the field. Permanent magnets also
suffer from poor field stability with respect to temperature,
which certainly interrogates on their deployment in extreme
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environments without controlled temperature and humidity. On
the other hand, resistive magnet architectures provide better
field homogeneity and the ability to change the desired field
of operation or even switch it off, but at the cost of higher
power needs as well as cooling. Then, depending on the targeted
magnet size and field strength, simple cooling solutions are
foreseeable (forced air vs. water) before requiring any complex
or demanding cooling resources. Eventually, both permanent
and resistive magnet technologies are worth exploring when it
comes to low and ultra-low field imaging, keeping in mind the
requirements and constraints for the targeted applications and
corresponding working environments. A general comment in
view of the multiple attempts to build smaller magnets could be
to assess imaging capability first in a controlled setting before
construction is envisioned. That could be an efficient way to save
time on such developments, rather than empirically iterating on
complex magnet construction and later realize whether or not
imaging is feasible. Regarding field strength, it is quite interesting
to note that all the attempts to low-field imaging reported here
cover quite a broad range, and that a higher field strength does
not bring superior image quality (Figures 3, 4). Overall, the range
5–100 mT appears to be the most promising in delivering fast
imaging in vivo, at both extremities of the spectrum [24, 29].
From the latter results, we believe that the democratization
of low field MRI will not come from reaching higher fields,
but instead being able to stay low. The key is to embrace the
advantages offered by this unique regime while gathering a set of
technological solutions that maximize SNR/unit time (i.e., from
sensors, acquisition schemes) and navigate through magnetic
field inhomogeneity. Further, we believe that approaches such
as model-based MRI and deep learning will appear of upmost
relevance to navigate through poor SNR, while promoting access
to simpler hardware and hence lower cost and reduced physical
footprint. Another major and often overlooked feature of low-
field MRI deserves further discussion: contrast. It is known from
the early days of MRI that low-field strengths provide a higher
dispersion in T1 relaxation times [78] (see Figure 5) but the
latter never really was extensively explored. Many scientists may
be working with “standard” high-field commercial equipment
and completely be missing which field strength provides the
best contrast (i.e., T1, T2 dispersion) with respect to their
individual interests. An interesting change of paradigm could
be envisioned where exploratory studies would be performed in
dedicated MR systems, ramping the field in order to assess the
dispersion in relaxation rates and potentially finding the sweet
spot for maximum contrast. Eventually, future generations of
low-field MRI systems with field cycling possibilities could be
anticipated where contrast can be tuned to a specific application.
The latter is not too far away from current fast-field cycling
MRI initiatives described above in this manuscript, aimed at
uncovering T1 dispersion as an intrinsic metric of interest inMRI
diagnosis [70]. Naturally, such considerations on contrast open
new perspectives regarding diagnosis capability, yet it will also
challenge radiologists to adapt their skills in the interpretation
of images according to the field strength of operation. It may
also be in the hands of other practitioners to complement
radiologists and develop basic skills at reading images (as many

FIGURE 5 | Relative T1 contrast in human brain samples as a function of

Larmor frequency. The green dotted line shows that the relative contrast

between gray and white matter is higher when operating between 10 mT and

1.5 T (shaded blue box) and decreases dramatically at very high to ultra-high

field strengths (shaded red box). Modified, with permission, from Fischer

et al. [78].

already do), such that new class of point-of-care units truly
succeed to decongest radiology departments. Alternatively, one
may see these devices more as tools to answer simple clinical
questions, rather than a complex imaging device that belong
to the radiology department. Coming back to the title of this
paper and its question how low can we go? our experience
suggests that it is likely to be an ill-posed problem. The question
should be application-driven and address specific goals as well as
technical constraints. Let us go back in time andmake an analogy
with aerospace research. The question in the 1960s was: “what
technological leap is needed to go on the moon?” and not “what
technology should we build in order to explore the entire galaxy?”
In medical imaging, scientists and clinicians have adapted
ultrasound or X-ray-based modalities to address challenges in
different disciplines of medicine. MRI on the other hand has
been almost untouched for the last three decades and one-fits-
all scanners continue to be the main stream. As a consequence,
MRI has become a bottleneck in the hospital care chain for 50%
of the total world population, and the pecuniary burden linked to
scanner purchase, siting and maintenance makes it inaccessible
for the remaining 50% (see Figure 6). Indeed, cost is undeniably
an issue in the accessibility of MRI technology. If financial
support can always be found for a one-time purchase, it is difficult
to find resources for costly maintenance contracts or simply to
maintain infrastructure over long time periods, as infrastructure
can also be of critical importance. Examples include recurring
power outages, either because of lack of financial means in
developing countries, or in war zones. Electricity blackouts can
severely damage medical devices that will never be repaired and
pile-up in endless medical device graveyards. Leveraging low
magnetic field in scanners addressing these difficulties would
certainly open a market in such regions, very similar to what
the start-up company Pristem SA did with their robust and
low-cost X-ray system GlobalDiagnostiX (Pristem SA, Lausanne,
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FIGURE 6 | Number of MRI units per million population. Only a sample of countries are presented here in order to simply illustrate the current MRI market worldwide.

Data extracted mainly from Statistica.com, 2017 reports.

Switzerland). Accessibility is also bound to siting resources.
Standard MRI units require three separate rooms: one for
the operator, the RF and magnetically shielded examination
room, and the technical room with all the associated power
electronics. Highly populated regions, like most major cities
in Asia, often have the means to buy MRI machines, but not
to site them. Low field alternatives that do not need specific
shielding or heavy power requirements certainly would address
this challenge and again open an untouched market. For the
wealthiest half of the world population, low-field MRI dedicated
to a range or a specific application (neurology, MSK, etc.),
has the potential to decongest radiology departments and also
facilitate magnetic resonance in multi-modal settings from an
intrinsic enhanced compatibility. Sited outside of the radiology
department, such MRI units would become handy tools to
the practitioner, accessible to all disciplines and population,
and hence start to change paradigm from the historical one-
fits-all. The same approach might ultimately follow at high
and ultra-high field where the application envisioned will lead
manufacturers to offer purpose-built systems that fit the needs of
research and medical professionals. Unless one wants to address
the underlying question: how high shall we go for high-fieldMRI?

CONCLUSION

Low field MRI has regained popularity over the past few years,
reopening the debate on its relevance in the clinical setting.

With half of the world population underserved regarding MR
diagnosis, the medical community indeed strives for more
ubiquitous and accessible systems. Lowering magnetic field
strength opens new perspectives to increase MR value not only
from reduced costs, but also from enhanced outcomes, shifting
paradigm toward specific use cases and more adaptability. It
promotes new magnet geometries that have already performed

imaging in vivo in humans, and which low-footprint core
technology is no longer associated with superconductive
materials. Lower field MRI as such could diversify the current
offer to a broader range of medical applications and geographical
locations, with a wider range of contrasts to complement current
diagnostic tools. As a conclusion, we believe that it is time to go
as low as diagnostically relevant. It is the scientific and medical
communities’ responsibility to choose how low/high one should
go depending on specific applications, and to work side-by-side
with the industry to build the future of MRI diagnosis.
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Magnetic fields associated with currents flowing in tissue can bemeasured non-invasively

by means of zero-field-encoded ultra-low-field magnetic resonance imaging (ULF MRI)

enabling current-density imaging (CDI) and possibly conductivity mapping of human

head tissues. Since currents applied to a human are limited by safety regulations

and only a small fraction of the current passes through the relatively highly-resistive

skull, a sufficient signal-to-noise ratio (SNR) may be difficult to obtain when using

this method. In this work, we study the relationship between the image SNR and

the SNR of the field reconstructions from zero-field-encoded data. We evaluate these

results for two existing ULF-MRI scanners—one ultra-sensitive single-channel system

and one whole-head multi-channel system—by simulating sequences necessary for

current-density reconstruction.We also derive realistic current-density andmagnetic-field

estimates from finite-element-method simulations based on a three-compartment head

model. We found that existing ULF-MRI systems reach sufficient SNR to detect

intra-cranial current distributions with statistical uncertainty below 10%. However, the

results also reveal that image artifacts influence the reconstruction quality. Further, our

simulations indicate that current-density reconstruction in the scalp requires a resolution

<5 mm and demonstrate that the necessary sensitivity coverage can be accomplished

by multi-channel devices.

Keywords: ultra-low-field MRI, current-density imaging, zero-field encoding, signal-to-noise ratio, finite-element

method, Monte-Carlo simulation, MRI simulation

1. INTRODUCTION

Imaging of current-density distributions, produced by injecting current in vivo into the human
head, has a variety of possible applications. Three-dimensional conductivity distributions or
simplified conductivity models may be extracted from such images. These are required for
accurate source estimation in electromagnetic neuroimaging [1, 2]. Further, individual conductivity
information is necessary for models used to optimize and plan therapeutic treatments, e.g., in
transcranial magnetic stimulation (TMS) [3, 4] and transcranial direct-current stimulation (tDCS)
[5]. In addition, the current flow during tDCSmay be monitored online, providing direct feedback.

Magnetic resonance imaging (MRI) is affected by local magnetic fields, such as the magnetic
field BJ(r) associated with a current density J(r) at points r in the imaging volume. In particular, if

78

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00105
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00105&domain=pdf&date_stamp=2020-04-30
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:peter.hoemmen@ptb.de
mailto:antti.makinen@aalto.fi
https://doi.org/10.3389/fphy.2020.00105
https://www.frontiersin.org/articles/10.3389/fphy.2020.00105/full
http://loop.frontiersin.org/people/889130/overview
http://loop.frontiersin.org/people/889081/overview
http://loop.frontiersin.org/people/95457/overview
http://loop.frontiersin.org/people/65942/overview
http://loop.frontiersin.org/people/59211/overview
http://loop.frontiersin.org/people/929910/overview


Hömmen et al. Performance of ULF MRI for CDI

also the main magnetic field B0 can be switched on and off
during the pulse sequence, it is possible to measure full-tensor
information of the effects of BJ(r), providing a way to directly
estimate J(r) [6, 7]. The field switching can be achieved [8, 9] in
ultra-low-field (ULF) MRI, where the main field is not produced
by a persistent superconducting magnet as in conventional high-
field MRI. Zero-field-encoded current density imaging (CDI)
using superconducting quantum interference device (SQUID)-
based ULF MRI was first proposed by Vesanen et al. [6]. It
has recently been demonstrated in phantom measurements and
is most promising regarding in-vivo implementation [9]. Since
current impressed in vivo in the human head is limited by safety
regulations to the low-mA range [10, 11] and only a small fraction
of the current passes the relatively highly-resistive skull [12, 13],
a sufficient signal-to-noise ratio (SNR) may be difficult to reach.

The two main factors influencing the SNR in ULF MRI are
system noise and the strength of the polarizing field that creates
the necessary sample magnetization. Both issues have been
addressed in previous setups. However, the ultimate sensitivity
combining the lowest noise and the highest polarizing field in a
single setup has not been demonstrated. Hömmen et al. used an
ultra-sensitive single-channel SQUID system with a noise level
of 380 aT/

√
Hz for the demonstration of CDI [9]. This noise

performance was about 10–20 times better than in commercially
available SQUID systems, but the polarizing field of 17 mT was
comparatively low. Other groups reported ULF-MRI systems
with polarizing fields over 100 mT, using cooled copper-coil
setups [14, 15]. Even higher polarizing fields could be reached
by means of superconducting polarizing coils as presented by
Vesanen et al. [16] and Lehto [17].

A quantitative survey of the necessary SNR for zero-field-
encoded CDI with a defined uncertainty is still pending. In this
work, we investigate the influence of noise on the quality of the BJ

and J reconstructions by analytic approximations and by means
of Monte-Carlo simulations. Our results enable the estimation of
the required image SNR for a given statistical uncertainty in the
field reconstructions. They further provide an intuitive method
to assess the performance of a specific system for current-density
imaging.

In addition, two existing ULF-MRI setups are examined more
closely regarding their performance in a CDI application. The
first is the single-channel setup of PTB, Berlin, described by
Hömmen et al. [9], which is now equipped with an updated
polarization setup specially designed for the shape of the human
head. The second setup is a whole-head multi-channel system,
a successor of the one described by Vesanen et al. [16], located
at Aalto University, Helsinki. The latest version comprises an
optimized superconductive polarizing coil [17], an ultra-low-
noise amplifier for flexible switching of all MRI fields [8], and
newly developed SQUID-sensors specially designed for pulsed-
field applications [18].

Realistic BJ and J distributions were derived from finite-
element-method (FEM) simulations using a three-compartment
head model. Combined with nominal gradient fields and
sensitivity parameters of the described setups, the BJ

distributions were put into a Bloch equation solver that
emulates complete gradient-echo sequences in the time domain.

FIGURE 1 | (A) Rotation of three orthogonal starting magnetizations

m0,x = |m0|ex , m0,y = |m0|ey , and m0,z = |m0|ez about the direction of

B = BB + BJ during the zero-field time. (B) After the zero-field time, the main

field B0 = |B0|ex (|B0| ≫ |B|) is turned on and the vectors start rotating about

ex .

Our simulation results not only provide a good estimate of
the statistical uncertainty in zero-field-encoded CDI with
currently available technologies but also reveal other important
requirements in terms of sample coverage and image resolution.

2. ZERO-FIELD-ENCODED CDI

To understand the effects of noise, we recap the sequence
and reconstruction method designed by Vesanen et al. [6].
More detailed information on the experimental implementation,
including the sequence diagram, can be gleaned from Hömmen
et al. [9].

At first, magnetization is built up by a polarization period.
Subsequently, all MRI fields are turned off and the current density
J is applied during a defined zero-field time τ . After the zero-field
time, the magnetization has been rotated to m1 by the magnetic
field during τ as

m1(r) = eγ τA(r)m0(r) = 8(r)m0(r) , (1)

wherem0 is the starting magnetization and γ is the gyromagnetic
ratio of the proton. A is the generator of the rotation matrix 8,
which describes the magnetization dynamics due to the quasi-
static magnetic field during τ [19, p. 86–89] [6]. Ideally, this field
is solely determined by the magnetic field BJ associated with J. In
reality, a superposition of a static background field and transient
fields due to pulsing (in the following combined in the term
BB) are present. Hence, the time evolution of m is affected by
AJ +AB, whereAJ andAB are associated with BJ and the average
BB, respectively.

Following τ , the main field B0, here in the x-direction, is
turned on and the magnetization is manipulated by gradient
fields to encode spatial information in the phase and frequency
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of the resulting signal. Ignoring relaxation, the magnetic signal
recorded at a sensor during the echo can be written as

S(t) =
∫

C(r)⊤m(r, t)dV

=
∫

C(r)⊤Rf(r, t)Rp(r)m1(r)dV ,

(2)

where t is the time, C the coupling field of the sensor, and
matricesRf andRp correspond to rotations in the yz plane during
the frequency- and phase-encoding periods. For the following
operations, it is convenient to convert the signal equation
to a complex representation. Considering only the frequency
components close to the Larmor angular frequency γ |B0|, the
signal can be written as [20, 21]

S(t) ≈ Re

∫

β(r)∗ei[ω(r)t+θp(r)]m̃1(r)dV , (3)

where β = Cz + iCy, m̃1 = m1,z + im1,y, ωt is the phase angle
due to precession during frequency encoding, and θp the angle
due to phase encoding. In a realistic setting, β could also include
additional effects from an inhomogeneous polarizing field and
non-idealities in field pulsing.

After applying the discrete Fourier transform to the
frequency- and phase-encoded data and taking the relevant
frequency bins, the magnitude and phase of the rotation of m
can be estimated at the location of the corresponding voxel. The
voxel value corresponding to the MR signal generated close to rn
is given by

vn =
∫

SRF(r − rn)β(r)
∗m̃1(r)dV

≈ β∗(rn)m̃1(rn) ,

(4)

where SRF(r − rn) is the spatial response function of the nth

voxel [22]. When the SRF is close to a delta function δ(r − rn),
the integral can be approximated with the function value at
rn, otherwise the SRF will result in leakage artifacts from the
neighboring areas.

The voxel values vn contain information about the zero-
field-encoded magnetic field in both their magnitude and
phase. In reality, there are other factors, such as non-idealities
in the gradient ramps and unknown relaxation profiles, that
affect the voxel values as well. Therefore, the relative changes
in vn associated with the current density are recovered by
normalization with a reference un [6, 9]. Repeating the sequence
for three orthogonal starting magnetizations m0,x = |m0|ex,
m0,y = |m0|ey and m0,z = |m0|ez (shown in Figure 1), the
last two rows of 8n can be measured. For example, the y and z
elements of the first column are given by:

8n(31) = Re[νn,x/un]

8n(21) = Im[νn,x/un] ,
(5)

where νn,x denotes the voxel value of a zero-field-encoded image
with starting magnetization in the x direction. Rotation matrices

are orthogonal by definition. Therefore, the first row of 8n

can be derived by the cross product of the second with the
third row. Naturally, the elements in 8n are contaminated
by noise. A practical approach to increase the accuracy is
to apply an orthogonalization. For this purpose Vesanen
et al. [6] suggest Löwdin’s transformation, which yields the closest
orthogonalization in the least-squares sense [23, 24]. It is clear
that a unique rotation matrix 8n is created for each voxel n. The
following analysis in this section and in section 3 concentrates on
a voxel-wise reconstruction of BJ and J, where the index n is left
out for simplicity.

Using8, all components of themagnetic fieldB = BB+BJ can
be derived from a non-linear inversion of the matrix exponential:

γ τA = γ τ





0 B̂z −B̂y
−B̂z 0 B̂x
B̂y −B̂x 0





= φ

2 sinφ
(8 − 8

⊤) ,

(6)

where φ = arccos[(tr(8) − 1)/2] represents the rotation
angle of 8 [6], and B̂ is the reconstruction of B. From
here on, reconstructed quantities are denoted using the
hat symbol.

Finally, BJ can be estimated by subtracting another

reconstruction from B̂. This could be a full 3D image of BB

only, or of BB + BJ with the impressed current having the
opposite polarity. The latter reduces the statistical uncertainty by
1/
√
2 and is from here on called bipolar reconstruction:

B̂J =
B̂1 − B̂2

2
,

B̂1 = B̂B + B̂J(+) ,

B̂2 = B̂B + B̂J(−) .

(7)

From Equation (7), the full tensor of the local field B̂J is derived,

enabling the estimation of Ĵ by Ampère’s Law:

Ĵ = 1

µ0
∇ × B̂J , (8)

where µ0 is the permeability of free space.

3. NOISE IN ZERO-FIELD CDI

3.1. The Connection Between Noise in 8

and Image SNR
In this section, we analyze how the uncertainty in the
reconstruction of zero-field-encoded data relates to the image
SNR. From Equation (5), we know that the values in 8 are
normalized by a complex reference u = |u|eiδ , where |u|
is related to the magnitude of the magnetization after τ and
δ to the phase accumulation due to effects that do not arise
from BJ + BB.
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Hömmen et al. [9] describe that |u| cannot be measured
directly due to the always present background field. However, the
reference can be constructed from the real or imaginary parts of
the three measurements of v by

|u| =
√

Re[vx]2 + Re[vy]2 + Re[vz]2 , (9)

which effectively normalizes the rows of 8 to exactly unit norm.
The reference phase δ, on the other hand, has to be acquired in a
separate measurement. See Hömmen et al. [9] for more detail.

The complex reference value can be modeled as u = E[u] +
ǫ, where E denotes the expected value and ǫ ∼ N (0, σ 2) is
symmetric complex Gaussian noise that can be extracted from
a noise-only image e, or from a noise-only region in any of the
images v. Using this reference, we define the image SNR as

SNR
def= |E[u]|

SD[e]
= |E[u]|

√

E[Re(ǫ)2]+ E[Im(ǫ)2]

= |E[u]|
σ

,

(10)

where SD is the standard deviation.
The phase correction with the noisy reference phase δ causes

the real part to leak to the imaginary part and vice versa,
increasing the noise in the matrix elements. Dividing by the
magnitude of the complex reference u = |u|eiδ yields unit norm
in the rows of 8 decreasing the noise. This is derived in the
Appendix, which also shows that the noise SD in the elements
of 8 can be approximated as

σ8ij =
1√

2 SNR
gij(8) , (11)

where the scaling 1 ≤ gij(8) ≤
√
2 depends on the associated

measurement. This approximation is valid when u ≈ E[u], i.e.,
SNR≫1. Equation (11) already gives an impression of the noise
SD in 8 as a function of the image SNR. The rotation-dependent
scaling gij(8) and correlations between the elements are given in
the Appendix.

The most important factors determining the SNR are the
polarizing field, the coupling to the sensors, and the relaxation
of the magnetization, all of which affect the voxel magnitude.
The noise in the voxel values is governed by the system
noise determined by the magnetic sensor as well as other
instrumentational and environmental noise sources.

3.2. Noise Analysis of B-Field
Reconstruction: Linear Approximation
To estimate the noise in the reconstruction of B, we first discuss
an idealized case, where all three rows of 8 can be measured
and no reference image u is needed. In this case, the noise in the
elements of 8 becomes independent and identically distributed
with standard deviation of 1/(

√
2 SNR).

We start by using a first-order small-angle approximation of
the rotation matrix

8 ≈ I+ γ τA =





1 γ τBz −γ τBy
−γ τBz 1 γ τBx
γ τBy −γ τBx 1



 , (12)

where I is the identity matrix. The magnetic field components
can be solved directly and, as each component is measured twice,
they can be averaged so that the noise SD in the angular quantity
becomes σ

γ τ B̂d
= 1/(2 SNR). Here, d is any of the components

x, y or z, and the noise SD of a magnetic field component can be
derived to σB̂d

= 1/(2γ τ SNR).

In reality, the elements of 8 are estimated with the help of
a reference image, which modifies the noise in the elements as
derived in the Appendix. Additionally, only two rows of the
rotation matrix 8 can be obtained from the measurements as
explained in section 2. Therefore, one row (in our case the first
row) has to be derived from the cross product of the adjacent
rows, where the cross product contains information about the
components of B orthogonal to the direction of B0. These
components are no longer subject to independent random noise;
consequently, the noise is not reduced by the averaging effect in
the linear reconstruction.

So far, the noise analysis was discussed for the reconstruction
of the effective B-field. As mentioned before, in practice,
the measurement of BJ is contaminated by a background
field BB, which must be eliminated by subtracting a second
reconstruction. The noise in the two reconstructions is
independent, which is why in the case of bipolar reconstruction
the noise in the field estimate is reduced by a factor of

√
2 (see

Equation 7). Additionally, as the reference phase δ is the same
for the two data sets, the additional noise due to referencing will
cancel in the field subtraction.

In the first-order approximation, we finally obtain for
bipolar reconstruction

σB̂y
= σB̂z

≈ 1

2γ τ SNR
(13)

and

σB̂x
≈ 1

2
√
2γ τ SNR

, (14)

because Bx is measured twice.

3.3. Noise Analysis of B-Field
Reconstruction: Monte-Carlo Simulations
From the first-order small-angle approximation we can gain
intuitive understanding of the statistical uncertainty in the
reconstruction of BJ . However, in reality, the rotation angle φ can
obtain values up to π and the linear approximation breaks down.

In order to estimate the influence of noise on the non-
linear reconstruction, we carried out a series of Monte-Carlo
simulations. Therefore, we generated the last two rows of rotation
matrices 8 for 100 different rotation angles φ = ±γ τ |B| taken
uniformly between −π < φ < π , where the negative angles
correspond to −B. As before, B = BB + BJ , where BJ was set
to zero and φ was varied by adjusting BB. The matrices 8 were
generated using the general formula of Rodriguez, as explained
in [19, p. 86–89]:

8 = eφK = I+ sin(φ)K+ (1− cos(φ))K2 . (15)
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Here, K = γ τA/φ is a unitary cross-product matrix associated
with the rotation axis. Independent and Gaussian-distributed
random noise was generated and superimposed with each
element of 8, according to Equation (11). Subsequently, the first
row was derived by the cross product of the other two. The
procedure was repeated 100,000 times to obtain statistics for the
reconstruction quality.

Figure 2 illustrates the standard deviation after three
intermediate steps of the reconstruction, showcasing their
influences on the result. The data are normalized to the
input noise 1/(

√
2 SNR) corresponding to Equation (11)

without gij(8).
Figure 2A illustrates a case where no referencing with u was

applied. Each element of 8 thus contained the same amount of
Gaussian distributed noise. Although this may not be the case
in an experimental implementation, one sees that B̂x contains
1/
√
2 the noise of the other components for small angles of φ,

as predicted by the first-order approximation. However, with a
rising field strength, i.e., larger rotation angle φ, the noise in this
component increases non-linearly and more strongly compared
to the components orthogonal to B0.

The simulations underlying Figure 2B include the necessary
pre-referencing. For very small angles, the extra phase noise due
to the noisy reference phase δ affects the noise SD only in B̂x.
Toward larger angles, this effect is visible in B̂z . The y-component
of B̂ is not affected, which is in accordance with the analysis
presented in the Appendix.

Figure 2C shows the results after subsequent
orthogonalization using the Löwdin transformation. We
observe a strong effect toward large angles φ, especially in the
x-component, which is parallel to B0.

Figure 3 illustrates the standard deviations of the results
of a simulated bipolar reconstruction. In comparison to
Figure 2, these data sets are arithmetic means of two similar
fields (independent noise, identical reference), respectively
Equation (7) with BJ = 0. Overall, the noise levels decrease
by a factor of

√
2, in comparison to the reconstructions of the

effective field B in Figure 2. Further, the additional noise due
to the reference phase δ, visible in Figures 2B,C, was subtracted
entirely. Except for very large angles (φ > 7π/8), the noise SD in
each component is lower than 1/(SNR

√
2). Figure 3 also shows

a measure to assess the expected deviation from the mean of B̂J

(purple line), which can be derived to be the square root of the
trace of the covariance matrix:

SD[B̂J] =
√

E
[

|B̂J − E(B̂J)|2
]

=
√

tr
[

cov(B̂J)
]

=
√

σ 2
BJ,x

+ σ 2
BJ,y

+ σ 2
BJ,z

.

(16)

3.4. Noise Analysis of Current-Density
Reconstruction
From the noise in the reconstruction of BJ , we can also
calculate the noise in the current density reconstruction using
Equation (8). For that, we make some simplifications.We assume

a constant current density in a homogeneous and isotropic
medium. Further, we assume a homogeneous background field
that is much larger than BJ . A simple method for the spatial
derivation is to take into account only the two nearest neighbors
at z − l and z + l

dB̂J

dz
(z) = B̂J(z + l)− B̂J(z − l)

2l
, (17)

where z is the coordinate of the voxel in the z-direction and l is
the voxel sidelength. Assuming equal SNR at z + l and z − l, the
noise SD of the gradient is approximately σG(z) = σ

B̂J (z)
/(l

√
2).

Applying the curl

Ĵx =
1

µ0

(

dB̂J,z/dy− dB̂J,y/dz
)

(18)

and neglecting the small possible differences in σB̂J,z
and σB̂J,y

, the

noise SD of Ĵx can be approximated as σĴx
= σB̂J,z

/(lµ0).

3.5. Field Reconstruction Quality in Terms
of Image SNR
Using the definition of image SNR in Equation (10) and the
results of the Monte-Carlo simulations, the signal-to-noise ratio
of the BJ reconstruction (SNR[B̂J]) can be estimated by

SNR[B̂J]
def= |B̂J |

SD[B̂J]

= γ τ |B̂J |
√
2

c
SNR ,

(19)

where SD[B̂J] is the measure for noise in the vector B̂J defined
in Equation (16). Further, the scaling factor c depends on the
strength and the orientation of BB and can be read directly from
the purple, dash/dotted lines in Figure 3. As c is highest for x-
directional background fields, a polynomial, normalized to 1/π ,
was fitted to the data presented in Figure 3B, to approximate c as
a function of φ:

c(φ) ≈ 0.17

(

φ

π

)4

+ 0.35

(

φ

π

)2

+ 1.118 . (20)

Note that the results presented in Figures 3A,C only deviate
slightly from Equation (20).

According to the figure, without any information on the
background field, a representative value for the scaling factor
would be c = 1.3. This is close to the worst-case scenario as
higher rotation angles may cause phase wrapping.

To provide a numerical example, let us assume that |BJ | =
10 nT, a homogeneous x-directional background field of 60 nT,
and a zero-field time of τ = 100 ms, taking into account
the T2-relaxation time of gray matter in the µT regime of
approximately 100ms. Substituting the rotation angle φ = γ τ |B|
in Equation (20), c is approximated to be 1.2. According to
Equation (19), for a required SNR[B̂J] > 10, the voxel SNR needs
to be over 32.
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FIGURE 2 | Single-voxel Monte-Carlo simulations to estimate the influence of noise on three different steps of the non-linear reconstruction as a function of the

rotation angle φ. The shown data are based on simulated noisy rotation matrices, where the first row was derived by the cross product of the other two. Displayed are

normalized standard deviations of each component of B̂, which is the reconstruction of y-directional field B = |BB|ey . |BB| was adjusted to generate the rotation angles

φ with the negative angles corresponding to the field direction −ey . The main field B0 was x-directional. The figures show the standard deviations of reconstructions

without pre-referencing (A), with pre-referencing (B), and with subsequent orthogonalization using Löwdin’s transformation (C).

FIGURE 3 | Single-voxel Monte-Carlo simulations to estimate the standard deviation of each component of B̂J after bipolar reconstruction (Equation 7), in

dependence of the rotation angle φ. In addition,

√

tr[cov(B̂J )] (Equation 16) is presented in purple, dash/dotted lines. B is the effective field BB + BJ, where BJ was set

to zero and BB was adjusted to generate defined rotation angles φ with negative angles corresponding to −B. The figures represent reconstructions, where BB was

y-directional (A), x-directional (B), and diagonally oriented in ed = [1, 1, 1]/
√
3 (C). The main field B0 was x-directional in all cases.

The estimation of J using Ampère’s law requires the
determination of local field gradients, where the noise in the
reconstruction is inversely proportional to the voxel side length l.
This effect should not be underestimated; as the signal strength
already scales to the voxel volume l3, the SNR of Ĵ scales to
the fourth power of the voxel sidelength. The quality of the
J-reconstruction can be determined from the SNR of B̂J , by
including the scaling factor lµ0 in Equation (19):

SNR[Ĵ]
def= |Ĵ|

SD [Ĵ]

≈ γ τ lµ0|Ĵ|
√
2

c
SNR .

(21)

The approximation in Equation (21) is valid when the voxels
involved in the gradient estimation are subject to equal
SNR. Especially at tissue boundaries, this can cause erroneous
assessments due to different relaxation times.

Again, to provide an example, we assume a current density
distribution of 0.4 A/m2, a value in accordance with the literature
for a stimulation of approximately 4 mA [13]. Similar to the
example above, c ≈ 1.2 is assumed. If we want to derive Ĵ with
SNR[Ĵ] > 10 and a voxel-sidelength of 5 mm, a required image
SNR of 130 is estimated.

4. SIMULATED PERFORMANCE OF
ULF-MRI SYSTEMS

4.1. MRI Simulation Setup
The main factors that determine the SNR profiles of ULF-
MR images are the sensor arrangement, system noise, and the
polarizing field profile. To evaluate the sensitivity of the B̂J

and Ĵ field reconstruction in a realistic situation, we set up
a simulation toolbox incorporating realistic polarizing fields
and sensor geometries, as well as time-domain magnetization
evolution based on analytical solutions of Bloch’s equation.
Assuming ideal gradient fields and instantaneous field switching,
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FIGURE 4 | Geometries of the single-channel MRI setup at PTB (A) and the

multi-channel MRI setup at Aalto (B). The illustrations include the polarizing

coil (red), the receiver coils of the sensors (blue), the head model (gray), and

the stimulation electrodes (black).

gradient-echo sequences can be simulated for arbitrary imaging
objects. Both the polarizing field profile and the coupling of
the magnetization to the sensor (Equation 2) were calculated
by analytically integrating the Biot–Savart formula over line
segments [20, 25].

Two sets of simulations were set up to correspond to
the single-channel system with a wire-wound 2nd-order axial
gradiometer and a resistive polarizing coil as present at PTB,
Berlin, and the multi-channel whole-head system with 102
planar thin-film magnetometers and a compact superconducting
polarizing coil built at Aalto University (see Figure 4). Based on
measured values, the sensor noise in the single-channel system
was set to 350 aT/

√
Hz and in the multi-channel system to

2 fT/
√
Hz. A polarizing current of 50 A was chosen for both

setups corresponding to field maximum of 90 mT and mean of
65 mT in the brain compartment for the single-channel system.
For the multi-channel system, the field maximum was 115 mT
and the mean 70 mT in the brain compartment.

For the evaluation of the simulations, a comparison with
actual measurements using the PTB setup was executed.
Therefore, a spherical single-compartment phantom (80 mm
diameter), filled with an aqueous solution of CuSO4+H2O to tune
the T2-relaxation time to approximately 100 ms, was placed with
a gap of 10 mm below the dewar (nominal warm-cold distance
13 mm). The current in the polarizing coil was set to 20 A,

A

B C

FIGURE 5 | Comparison of measured and simulated MRI images. (A) shows

the utilized setup, including the polarizing coil (red), the spherical phantom

(gray), and the receiver coil of the sensor (blue). Central slices of reconstructed

images, not corrected for the sensitivity profile, are presented for measurement

(B) and simulation (C). Please note that the actual phantom contains a mount

for dipolar current electrodes, which is recognizable in the central lower half of

the reconstructed measurement, but was not accounted for in the simulations.

resulting in an inhomogeneous polarizing field of approximately
25 mT. Gradients were set to give a voxel size of (4.8 × 4.8 ×
4.8) mm3 and a field of view (FOV) of 115 mm in the phase-
encoded directions y and z. The resulting time signals of the
gradient echos were processed to form an array of k-space data.
To reduce Gibbs ringing, both the frequency- and the phase-
encoding dimensions were tapered with a Tukey window (shape
parameter = 0.5) and the three-dimensional FFT was applied
to reconstruct the images. For the simulations, the sphere was
approximated by a regular 1-mm spaced grid.

Figure 5 illustrates the setup, accompanied by magnitude
images of measurement and simulation. The results reveal a
difference in the amplitude of measured and simulated MRI
of approximately 25%, probably subject to multiple origins. A
shielding coil reduces the polarizing field of the actual setup,
which was not accounted for in the simulations. Also, winding
errors due to the relatively complex geometry of the polarizing
coil reduce the current–field ratio. In addition, the true warm–
cold distance of the dewar could vary depending on the helium
level and the phantom mount also might have inaccuracy in
the mm range. Taking all these uncertainties into account, the
simulated MRI sequence resembles the realistic conditions found
in actual measurements.
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A B

FIGURE 6 | (A) Tetrahedral FEM mesh consisting of intra-cranial volume (red),

skull (green), and scalp (blue) compartments. The electrodes are illustrated in

transparent gray. (B) Model positioning in the MRI coordinate system. The

plane between the electrodes corresponds to the slice in Figures 8, 9.

4.2. MRI Simulations With Head Model
In the next step, the simulation setup was used to generate
full CDI sequences with the single-channel system, as well as
with the multi-channel system, using the BJ distribution derived
from finite-element-method (FEM) simulations of a realistic
head model. This model is based on CT scans of a human head
[26] and contains three compartments as shown in Figure 6A.
The conductivity in the outermost scalp compartment was set
to 0.22 S/m, in the skull compartment to 0.01 S/m, and in the
innermost brain compartment to 0.33 S/m. The two stimulation
electrodes were positioned roughly 10 cm apart, one on the
forehead and the other one on the side of the head. The electrode
dimensions were (50 × 70) mm2 and their conductivity was set
to 1.4 S/m.

The FEM simulations to obtain the current density J and
the resulting magnetic field BJ were conducted in the Comsol
Multiphysics software based on the generalized minimal residual
method (GMRES). Current flow was realized by setting zero
potential on the outer surface of the cathode and applying a total
current of 4.5 mA to the outer surface of the anode. For the
calculation of BJ , a spherical air compartment (2 m in diameter)
was added to the model, ensuring a negligible effect of the
magnetic isolation boundary condition.

For the MRI simulations, the head model was positioned
in the FOV of the two described scanner arrangements,
similar to how the positioning of a head would be in an
actual measurement setup (compare with Figure 4). The scalp–
sensor distance was 16 mm for the single-channel setup and
20–35 mm for the multi-channel setup, taking into account
the individual warm–cold distances of the two systems plus
3 mm to compensate for the amplitude differences found in
the comparison with actual measurements, as described in
section 4.1. The magnetization was discretized to tetrahedral
elements derived from the geometry of the Comsol model. The
time evolution of the magnetic moment was simulated for the
center of each element. The T2-relaxation time for the brain
compartment was set to 106 ms and for the scalp compartment
to 120 ms [27]. For simplicity, as the spin density in the skull

FIGURE 7 | The FEM simulation results for current density J are visualized in

the scalp (A) and in the brain compartment (C). The simulated magnetic field

BJ, due to all current flowing in the head, is plotted in the scalp (B) and in the

brain (D). The arrow lengths are scaled logarithmically because of the vast

magnitude differences especially in the current density. Each subfigure shows

only the top 30 (magnitude) percentile of the field in the respective

compartment.

is insignificant compared to soft tissue, this compartment was
assumed to have nomagnetization at all. The average tetrahedron
sidelengths were approximately 3.5 mm in the brain and 2.5 mm
in the scalp. Gradients were set to give a voxel size of (5 ×
5 × 5) mm3 and a field of view (FOV) of 220 mm in the
phase-encoded directions. Figure 6B presents the head model
in the coordinate system defined by the MRI gradients. As
performed for the spherical phantom, both the frequency- and
phase-encoding dimensions were tapered with a Tukey window
(shape parameter = 0.5) before computing the three-dimensional
FFT. For the multi-channel system, images of each sensor were
combined voxel-wise using the coupling field information as
described in Zevenhoven et al. [20].

4.3. Simulation Results
Patterns of the simulated current density and the associated
magnetic field, as derived from the FEM simulations, are shown
in Figure 7. Due to the low conductivity of the skull, the highest
current density can be found in the scalp compartment. In the
vicinity of the electrode boundary, |J| was up to 15 A/m2. The
maximal current density in the brain compartment below the
electrodes was about 0.5 A/m2. In relation to that, the magnetic
field appeared smoother, yielding maximal field strengths of
20 nT in the scalp and 12 nT in the brain compartment. The
maximum of the field magnitude in the brain compartment is
located in between the electrodes, just beneath skull layer. In
contrast, the maximal current density in the brain is located
beneath the electrodes.
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Figure 8 shows a comparison between the field
reconstructions |B̂J | and |Ĵ| of the simulated zero-field sequence
and ground-truth FEM solutions of |BJ | and |J|. Both data
sets are presented without noise. The plane corresponding to
the slice is defined in Figure 6B. The reconstructed magnetic
field |B̂J | resembles closely the corresponding FEM solution,
which was used as an input to the MR simulations. Notable
differences are found inside the skull, which is expected due
to the lack of magnetization, as well as on the top parts of the
scalp at the field maximum. The difference image reveals ringing
artifacts in the intra-cranial volume, leading to error fields up to
approximately 1 nT.

The difference between the reconstructed current density |Ĵ|
and the corresponding FEM solution of |J| is more prominent.
Although no noise was added to the simulated data, errors in
the finite-difference approximations and artifacts in B̂ add up,
so that the field estimate near the skull is highly distorted. The
intra-cranial fields show greater resemblance, although a notable
ringing-artifact from the skull can be seen in |Ĵ|.

Figure 9 displays the performance of the two ULF-MRI setups
with the simulated imaging sequence described in section 4.1.
Figures 9A,B show field reconstruction magnitude |B̂J | for
a CDI sequence with 50 A polarizing current. The time-
domain echo signals were superimposed with Gaussian noise
of 2 fT/

√
Hz and 0.35 fT/

√
Hz for the multi-channel system

and the single-channel system, respectively. The reconstruction
quality is highly dependent on the SNR of the underlying ULF-
MR images, which is shown in Figures 9C,D. With the ultra-
sensitive single-channel setup, one achieves sensitivity in depth
to the intra-cranial volume whereas themulti-channel setup gives
a broader sensitivity pattern on the scalp and directly under
the skull. Figures 9E,F illustrate estimates of the SNR maps of
B̂J , corresponding to the images in Figures 9A,B. The maps

are derived from the noiseless B̂J and the SNR maps using
Equation (19) with c = 1.3.

5. DISCUSSION

Hömmen et al. [9] concluded that an increase in image SNR of
their setup is necessary for a successful in-vivo implementation
of current-density imaging. However, based on measurements
using simple phantoms, no exact numbers for the requirements
in terms of SNR could be presented.

This work provides a profound understanding of the influence
of noise on the reconstruction of the magnetic field BJ and the
current density J. The linearization of the field reconstruction
gives an approximate relationship between the image SNR and
the statistical uncertainty in the field estimates. Further, Monte-
Carlo simulations were used to derive the statistical uncertainty
in the presence of large background fields where the non-
linearities take effect. The presented link between image SNR
and noise in the reconstruction allows the determination of
the necessary SNR for the reconstructions B̂J and Ĵ within a
predefined uncertainty. It also enables the assessment of the
performance of specific ULF-MRI systems for zero-field-encoded
CDI directly from acquired or simulated image data.

In order to retain constant image SNR in the Monte-Carlo
simulations, we adjusted |BB| to vary φ = γ τ |BB|. We set the
zero-field-encoding time to τ = T2, which yields maximum
SNR[BJ] according to Vesanen et al. [6]. However, the non-linear
dependence of SNR[BJ] on φ suggests that there is an optimum
set of parameters for each specific case. In reality, the effective
background field will be roughly constant over the measurement
periods and τ should be adjusted to obtain maximum SNR[BJ].
If the relaxation times are known, Equations (19) and (20) can
be utilized to create a cost function that provides parameters for
maximum reconstruction quality. It should be mentioned that
the optima for τ are flat and close to T2 for small background
fields. An adjustment of τ seems worthwhile in the case of
very large background fields, where up to 12% can be gained in
SNR[B̂J] compared to τ = T2. Furthermore, it should be kept in
mind that φ < π should be fulfilled to prevent ambiguity in the
field reconstruction.

To analyze their performance and suitability for in-vivo CDI,
our two ULF-MRI systems were examined in realistic image
simulations. One was the system of Hömmen et al., including
an optimized polarizing setup, and the second was a whole-
head multi-channel system built at Aalto University. Key features
that determine the SNR, such as the polarizing-field pattern,
the coupling profile to the sensor, and noise, were accurately
modeled. The estimates of BJ and J were derived from FEM
simulations using a three-compartment head model. The peak
current densities in intra-cranial tissue are similar to literature
values, when scaled to the applied current of 4.5 mA [12, 13].
However, the three-compartment model neglects the fact that
current is partly shunted by cerebrospinal fluid (CSF), which
has a higher conductivity compared to gray- and white-matter
tissue [13, 28].

The BJ-field distribution served as an input for MRI
simulations, emulating the entire sequence. Taking into account
the insights from the Monte-Carlo simulations and the
calculated SNR of the single-channel setup, the required
improvement in SNR compared to Hömmen et al. [9] can
now be specified. The simulations verify that the optimized
polarization profile is sufficient. The peak SNR of the multi-
channel setup is lower compared to the single-channel setup
due to a higher sensor noise and different field coupling. A
broader sample coverage, on the other hand, is provided by
the multi-channel setup. The comparison between the two
systems revealed that both high sensitivity and large sample
coverage are required for current-density imaging usable for
conductivity estimation.

It should be mentioned that both systems were evaluated with
50 A of polarizing current, which represents a close to maximum
level for the room-temperature coil used with the single-channel
device, whereas the superconducting polarizing coil used with
the multi-channel device might be able to carry 2–4 times more
current. Such an increase in the polarizing current benefits the
image SNR and the SNR of the field estimates by the same factor.
However, approaching such high fields will cause flux trapping
in the sensor [18, 29, 30] and the superconducting filaments of
the coil [17, 31], which has to be dealt with. Also larger currents
required for the compensation of the field transient [32] can
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A C E

B D F

FIGURE 8 | Comparison of the simulated noiseless CDI reconstructions and the FEM solutions. The corresponding coordinates are given in Figure 6B. (A) shows the

reconstructed magnetic field and (B) the reconstructed current density. (C,D) show the respective FEM solutions, and (E,F) display the absolute differences between

reconstructions and the FEM solutions. The FEM fields are linearly interpolated from the FEM nodal values to the (5× 5× 5) mm3 voxel grid. The reconstructions are

masked to zero outside the head model. Note that the color axes of the right-most figures differ from the others by a factor of 5.

cause excessive heating in the compensation coils, requiringmore
sophisticated techniques [33].

In addition, it should be mentioned that most tDCS
devices do not support the application of 4.5-mA current.
Nevertheless, some stimulators, such as DC-STIMULATOR
PLUS (neuroConn, Germany), support 4.5-mA currents,
provided that the electrode–skin resistance is low. The presented
estimates for J and BJ , as well as SNR[BJ], scale linearly with
the current strength. If the current was reduced to, e.g., 2 mA,
the SNR of the single-channel system would still be sufficient
to reconstruct BJ in the intra-cranial compartment. However,
the reconstruction volume would be reduced. In case of the
multi-channel system, the volume of reliable reconstruction
would be limited mostly to the scalp compartment. With higher
polarizing field, the reconstruction volume would, of course, be
recovered again.

Besides noise, spatial leakage from the FFT has a significant
influence on the quality of the reconstruction. Appropriate
windowing of the k-space data manipulates the spatial response
function of the voxels, effectively reducing the far-reaching
leakage at the cost of a smoothed resolution. However,

with the applied imaging and reconstruction procedures,
leakage artifacts could not be entirely eliminated, yielding
noticeable reconstruction errors, especially visible in the Ĵ-
distribution. Besides spatial filtering, an effective method to
reduce ringing artifacts in MRI is to apply more k-steps.
However, this might not be applicable to in-vivo CDI as it would
increase the measurement time significantly. Additionally, post-
processing methods, for example “total variation constrained
data extrapolation” [34], might reduce the artifacts without
decreasing the image resolution.

The J reconstructions of both systems show limitations in
thin tissue structures like the scalp. This is most probably due
to the chosen resolution of (5 × 5 × 5) mm3, which does not
allow sufficient gradient calculations in these areas. Reducing
the voxel size to 1–2-mm would increase the quality of the Ĵ-
distribution, but again at the cost of longer overall measurement
time and lower SNR. Generally, the simulations show that the
BJ reconstruction is more reliable than the J reconstruction, as
artifacts strongly affect the gradient estimation.

Shall the reconstructions be used to fit individual conductivity
values, superior results are expected when the B̂J-field is used
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A C E

B D F

FIGURE 9 | Comparison of system performances of the Aalto multi-channel (A,C,E) and the PTB single-channel (B,D,F) ULF-MRI setups. (A,B) show |B̂J|
reconstructions of CDI simulations thresholded above SNR = 20 and inside the head model. (C,D) show the SNR maps of the simulated magnitude images and (E,F)

contain estimates of SNRs of |B̂J| in both systems.

as the measurement data. However, magnetic fields arising from
the current leads should be either modeled or eliminated from
the data. One way to exclude these fields would be to consider
only closed path integrals of B̂J and to apply the integral form
of Ampère’s law. It remains to be answered whether this enables
to derive bulk conductivity values only, rather than spatially
resolved conductivity mapping. Methods for this have not been
presented so far and should be subject to further research.

6. CONCLUSION

We introduced methods to gain quantitative information
about the effect of stochastic uncertainty on the non-linear
reconstruction in zero-field-encoded current-density imaging
(CDI). The work provides means to determine the ability of
specific ultra-low-field MRI setups to reach acceptable signal-to-
noise ratios in field reconstructions based on image SNR and
to assess necessary improvements in, e.g., noise performance
or polarizing field strength. By simulations, we evaluated the
reconstruction quality of two existing setups under realistic

conditions. We showed that current technology in ULF MRI
is suitable for in-vivo CDI in terms of SNR. In addition, we
encountered reconstruction errors due to a limited resolution
and image artifacts requiring further research and development
of more accurate reconstruction techniques.
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Purpose:Many of today’s MR coils are still somehow rigid and inflexible in their size and

shape as they are intentionally designed to image a specific anatomical region and to

fit a wide range of patients. Adaptive coils on the other hand, are intended to follow a

one-size-fits-all approach, by fitting different shapes, and sizes. Such coils improve the

SNR for a wide range of subjects by an optimal fit to the anatomical region of interest,

and in addition allow an increased handling and patient comfort as one MRI receive-coil

is maintained instead of multiple.

Material and Methods: To overcome the SNR losses by non-fitting and thus poorly

loaded RF coils, we propose a stretchable antenna design. Each loop has the ability to

reversibly stretch up to 100% of its original size, to be anatomically adaptive to different

shapes and sizes, and therefore make the coil usable for a wide patient population.

Besides the mechanical challenge to find a robust but flexible conductive material,

various other problems like frequency andmatching shifts affect the SNR. Through bench

measurements and MR Imaging at 1.5 T, we investigated different stretchable conductor

materials, that fit the defined requirements. Finally, a rigid reference coil and an adaptive

6-channel array for knee imaging at 1.5 Tesla were developed to investigate the potential

improvement in SNR.

Results: The material tests identified two potentially useful materials: Highly ductile

copper and a silver-plated stranded copper wire. Although, the adaptivity causes a

frequency shift of the resonance frequency, which entails in variations of the impedance

that each coil presents to its connected pre-amplifier, there are strategies to mitigate

these effects. The adaptive array prototype made of partly-stretchable loops, showed an

improved SNR of up to 100% in 20mm depth from the phantom surface, and therefore

demonstrates the effectiveness of adaptive coils.

Keywords: adaptive coils, stretchable loop, meandered conductor, SNR, one-size-fits all

INTRODUCTION

The past two decades of Magnetic Resonance Imaging (MRI) have seen immense advances in
various fields, with a focus toward improved sensitivity, multi-modal imaging and of course
reduced scan-time in clinical and research examinations. Acquiring MRI data is still time
consuming due to long acquisition times, and therefore prone to motion artifacts. Furthermore,
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MRI data acquisition is limited in spatial and temporal resolution
due to the lack of signal-to-noise ratio (SNR). A simple
solution is to apply higher static magnetic field strength
(B0) [1] to increase the detectable nuclear magnetization, and
thus to achieve higher spatial resolution with sufficient high
SNR [2].

While the advancement of gradient coils in strength and
slew-rate [1] ensured a speed up in image acquisition, the
improvement of sensitivity with higher field strengths or well-
crafted detector geometries of MRI probes, have always been
critical [3].

Back in 1980, Ackerman et al. demonstrated that an improved
SNR could be obtained by placing a small coil on the surface of
the sample, close to the region of interest [4]. The use of small
surface coils in the regime of sample dominated noise enables
large sensitivity improvements, because it provides both, stronger

FIGURE 1 | (A) Schematic of the used test-setup for material measurements. The setup allows reproducible testing of different conductive materials used for an

adaptive double-loop configuration that can be enlarged/stretched and immediately compared to a rigid reference double-loop. (B) Two rectangular loops with a

maximum length (z-direction) of 100mm can be attached to the frame (brown) and enlarged in x-direction by shifting the sleds (yellow) in 5mm steps. (C) Simplified

RF circuit. (D) Experimental setup with a rigid reference double-loop and a stretchable double-loop mounted on the test-frame, placed on the torso-shaped phantom

(see Figure 6) with a main body (blue) filled with per 1,000mL Bayol-oil and 0.011 g MACROLEX blue and an outer compartment (clear) filled with per 1,000 g H2O

dist.: 1.25 g N iSO4x6H2O, 5 g NaCl. The coil plug connector in between the two double-loops serves as connector between the test setup and the MRI scanner and

houses the coil code. The test-frame is 3D laser-sintered (StratasysObjetEden500V) using MR-invisible material.

magnetic coupling with the sample and noise reduction due to
the smaller volume of tissue being visible for the coil [5].

Many theoretical and experimental works suggested to put a
large number of small surface coils as close as possible to the
imaging volume to achieve a set of advantageous features like
a high filling factor [6–9]. Because of the importance of coil
detectors, and the fact that MRI (today) relies on signal detection
with receive arrays, the development of such RF antennas is
a critical step in gaining SNR, speeding up the acquisition
and therefore improving the patient comfort during every MR
examination [10–13]. To achieve a high SNR, it is important
that at high Qloaded values, the filling factor is very close to η =
1, to gain the maximum SNR. The magnetic field filling factor
η is a ratio, for the magnetic energy stored inside a load (e.g.,
sample, phantom, patient) to the total magnetic energy stored in
the coil.

Frontiers in Physics | www.frontiersin.org 2 April 2020 | Volume 8 | Article 8092

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Gruber et al. Anatomically Adaptive Coils for MRI

ηf =
∫

Sample Volume B
2
1dV

∫

Total Volume B
2
1dV

(1)

B1 is the value of the RF magnetic field once integrated over the
sample and the second time integrated over the total coil volume.
As an approximation ηf can also be seen as:

ηf ≈
B21
QRP

(2)

where

QR = Qunloaded

Qloaded
(3)

is the unloaded Q-value divided by the loaded Q-value of the
coil element and P is the input RF power. The introduction of a

load decreases the quality factor of the coil and the magnetic field
[14]. By bringing the coil closer to the sample, the filling factor
is increased and the term

√
2Bt in the numerator of the equation

for the SNR,

SNR =
USignal

UNoise
=

√
2ω1VMxy |Bt|

√

4kTeff 1fReff

(4)

is maximized, which results in an optimized SNR. Many factors
determine the SNR available in an MR experiment. In Equation
4 the USignal considers the SNR for a single voxel volume 1V,
with the assumption that the fields of the magnet and the coils are
constant over the voxel. The properties of the sample and the coil,
contribute to the SNR through the resistance at the coil terminals
(Reff ) and the sensitivity pattern of the coil. The noise signal
UNoise in anyMRI experiment is basically thermal noise generated

FIGURE 2 | (A) The four investigated stretchable material candidates. A highly reversible flexible special foam padding was used, to support the stretchable materials.

The pre-amplifier on the feed boards are already attached. (B) Four differently sized rigid double-loops used as a reference. (C) Stretchable double-loop made of

CuBe-Strain springs. (D) Highly ductile copper AP9121R DuPontTMPyralux® flexible laminate. The material is a double-sided, 35µm copper-clad flexible laminate. (E)

Amotape® Conduct Elast. #45756. A 6mm wide stranded copper wire made of 7 single strands with an area of 0.078 mm2 each. PTFE insulated and connected with

3 elastic threads made of Elastane gimped with PA66 (620dtex + 78/2dtex). (F) Amotape® Conduct Elast. #45792 with same specifications as Amotape® #45756

but with 19 single strands.
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by the receiver coil and the sample scaled to the bandwidth used
in detecting the signal [15].

So, by improving the filling factor, the coil resistance RCoil, also
called equivalent-series-resistance (ESR), is minimized by making
the unloaded Q high, and the sample resistance Rs (through the
induced eddy current losses in the conductive sample) can be
minimized by choosing the coil size to match the target Field of
View (FoV).

Designing a coil array to fit close to the region of interest
is quite easily achieved, but to use the same coil with multiple
patients that vary in size and shape, is challenging. It requires
the coil array to be shape/form adaptive. Mechanical flexibility
of the RF array is advantageous as in most cases the shape and
size of different body anatomies varies significantly, but most
RF coils are rigid and only fit a specific anatomical region and
only certain patient sizes. Form-adaptive RF coil arrays improve
the electromagnetic coupling between sample and coil, provide
a higher filling factor, and therefore, potentially improve the RF
receive efficiency, if the mismatch and expected frequency shift is
not exceeding the benefits.

Allowing adjustable coil geometries requires equally flexible
solutions for mitigating upcoming parasitic effect like increased
mutual coupling between elements and frequency shifts. As a
result of these shifts in center frequency and the variation in
coupling, the source impedance presented to the pre-amplifier
changes, which leads to SNR loss. Several approaches to mitigate
the effects of coil coupling and frequency shifts, like broad-/wide
-bandmatching [16] have already beenmore or less implemented
in the field. Another approach is to automatically tune andmatch
the coil array [17–20]. Previous work have already shown the
feasibility of mechanical adaptation of the receive coil to the
body part of interest. A first approach of flexible coils, where a
mercury filled tube by Malko et al. [21] was used to form a loop.
Other works on adaptive coils include a transmit-receive head
array that permits bending to adjust its diameter [22], a sliding
mechanism varying the diameter of a conical coil arrangement
for wrist imaging [23]. A stretchable coil array for knee imaging
at 3T, which utilized braided copper wire mounted on an elastic
textile substrate was introduced cite Nordmeyer-Massner et al.
[23]. Compared to a standard rigid knee array, the stretchable
8 channel array introduced an overall SNR loss of 20%. Later
on on-coil digitization avoiding cabling and increase patient
comfort [24] was used with the stretchable copper braid. Further
approaches focused on mechanical flexibility, which is offered by
several coil designs like screen-printed flexible MRI receive coils
[25], or the flexible/rigid PCBs [26, 27]. Ongoing research on
coil elements made of coaxial cable looks promising, especially
due to the low inter-element coupling [28–30]. Such elements
offer a large range in flexibility, potentially enabling wearable
coil arrays, but limitations like the dependency of the resonance
frequency to the permittivity of the dielectric, and therefore to
the diameter of coaxial cable introduce limitations that need to
be further investigated.

The present work addresses mechanical and electrical issues
of anatomically adaptive coil arrays. In the first part, the concept
of partly-stretchable coil arrays is investigated alongside with
material tests of conductive materials used as coil elements. In

the second part, the performance of a 6-channel adaptive array
for 1.5 T is compared with a rigid reference array (Similar to the
15-channel Tx/Rx knee coil array from QED). Both arrays were
tested using three different sized knee phantoms, representing
various realistic knee sizes. Parts of this work have already been
presented at conferences [31, 32].

MATERIALS AND METHODS

Material Tests
The key challenge in designing anatomically adaptive loops is to
find reversibly stretchable coil conductors, which have equal or
only slightly worse properties than the used standard (flat) wire
with respect to electrical conductivity.

For typical metallic wire, stretching results in irreversible
plastic deformation beyond a few percent of elongation. A
certain reversibility of a change in length can be achieved by
mounting a wire with a certain length reserve (e.g., meandered
style) on an elastic material. In addition, this material should

TABLE 1 | Measurement points and fixed/calculated geometrical values for the

experimental setup.

Stretching

[%]

x

[mm]

y

[mm]

d

[mm]

a

[mm]

Length

z-direction [mm]

0 60 190 100 14.0 100

10 70 209 110 15.4 100

20 80 228 120 16.8 100

30 90 247 130 18.2 100

x is the length of the stretchable segment. y is the distance between the ends of the two

stretchable segments of the double loop. d is the total width of one element. a is the

overlap distance between the two coils (see also Figure 1A).

TABLE 2 | Materials used for stretchable areas. Amotape® #45756 and

Amotape® #45792 provide the stretchability of the stranded wire by three elastic

Elastane threads.

Designation Properties

Amotape®Conduct

Elast. #45756

6mm wide stranded copper wire consisting of 7 single

strands with an area of 0.078 mm2 each; PTFE

insulation around wire 3 elastic threads made of Elastane

gimped with PA66

Amotape®Conduct

Elast. #45792

as above, but 19 single strands

Highly Ductile

Copper—AP9121R

DuPontTM Pyralux© AP

flexible laminate

Doubled-sided, copper-clad laminate;

polyamide composite copper foil with 0.0508mm

dielectric thickness and 35µm copper thickness

CuBe2 strain-spring Wire thickness d = 0.5 mm; Outer diameter De = 5.9

mm; Inner diameter Di = 4.9 mm; Length L0 = 62 mm;

Windings n = 50, overall wire length La = 882.16 mm;

tensile strength 950 N/mm2

The wire is woven into the threads in a meandered way (see Figures 2E,F) and allows a

50% reversible elongation. The highly ductile copper (see Figure 2D) is not stretchable

per se, but provides high flexibility without any drawbacks in conductivity through its

wave-like arrangement within a foam sheet of 5mm thickness. The last material tested

are CuBe2 strain-springs (see Figure 2C).
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be “MR silent,” which means that there is no contribution to
the MR signal from this material. To restore the original state
after stretching, the wire has to allow enough elasticity and
ideally should mechanically behave like a spring. Standard highly
conductive materials like copper, silver, gold, aluminum were
too pliable for this task. Materials like iron or steel would
fulfill the strength requirement, but they are ferromagnetic,
and therefore not suitable for MRI. An option in between
would be austenitic steel, which is not ferromagnetic and
would provide enough strength, but has low conductivity. We
developed several mechanical concepts, published in a filed
patent [33]. One of the most promising approaches thereof is
the partly-stretchable-loop—concept (see Figures 2A,C–F) used
in this work.

Four different reversibly stretchable materials were
investigated (see Table 2) and used for the construction of
stretchable double-loops (see Figure 2A). The loops were
realized with a stretchable area of length x and a width of 100mm
(z-direction) (see Figure 1A). The stretchable double-loops with
loop sizes according to Table 1 were compared to four standard
double-loops (see Figure 2B) as reference.

The double-loop arrays with rectangular loops were
manufactured on FR-4 (fiberglass cloth with a flame-resistant
epoxy resin) using the simplified circuitry illustrated in
Figure 1C.

The reference loops and the fixed parts of the partly-
stretchable loops were made of 6mm wide adhesive copper
tape with a copper thickness of 70µm. Thin or very narrow
copper traces increase the loops resistance thus lowering the Q
value, while a wider or thicker copper trace may cause eddy
current heating, B1-distortions and/or self-shielding [14]. 16-
awg thick tin-plated copper wire bridges were used to overlap
at the cross sections of each loop, minimizing capacitance
between the two loop traces. Segmenting capacitors were used
to provide a homogeneous current distribution over the loop,
reduce the E-fields induced into the sample load through voltage
splitting between the capacitors, reduce the stray fields caused
by the split voltages which influence the load dependence of
the resonance frequency and finally reduce capacitive coupling
as well as parasitic capacitance between loop and sample. Each
loop was tuned to the resonance frequency of 63.6 MHz (1.5T)
using a torso-shaped phantom with a main body (blue: per

FIGURE 3 | (A) 3D rendering of the reference array mounted on the lower shell with the largest knee Phantom L (4.1 l). (B) The lower shell houses two channels that

can be electrically connected to the upper four channels using spring-loaded pins melted into the laser-sintered lower shell. Such pogo-pins (preci-dip SA, Delemont,

Switzerland) offer a low resistance military standard connection with high mating cycles and excellent performance at higher frequencies like MRI. The lower shell

contains cable traps (blue and yellow) to reduce common mode currents on the shield. (C) 4-channel adaptive array with 4 stretchable elements, were each loop is

made of Amotape® #45792, with a stretchable area between the feed-boards of x = 60.1mm. The 4-channel adaptive array is connected to the 2-channel lower shell

for measurements. Together they make the 6-channel adaptive array. The lower shell can be used along with the 4-channel adaptive array or the 4-channel rigid array.
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1,000mL Bayol-oil and 0.011 g MACROLEX blue) and an outer
compartment (clear: per 1,000 gH2Odist.: 1.25 gNiSO4 × 6H2O,
5g NaCl) (see Figure 1D).

The stretchable double-loops were mounted on a 3D laser-
sintered (ObjetEden500V, Stratasys, Rechovot, Israel) frame (see
Figures 1B,D), which allows the stretching of the loop material
in discrete steps of 5mm in x-direction (the stretching in y-
direction is also performed, as the frame is attached to the
phantom’s surface). The overlap between two loops is constant
and provides optimal overlap decoupling for a stretching of 15%
(x= 75 mm).

Bench and MRI measurements were performed with 0, 10, 20,
and 30% stretching (see Table 1). The stretch area x is fixed to
start at 60mm. The geometrical properties are calculated with
Equation 5 and 6, which result from an array design of a 18-
channel adaptive knee array with 3 rows of 6 rectangular loop
elements (see Table 1 line 1).

%− Stretching = yn − y0
y0
100

(5)

x = y

1.9
− 40mm (6)

Stretching of the adaptive loops changes the loop’s inductance
and resistance and is therefore expected to cause a shift in the
resonance frequency. Therefore, the partly-stretchable loops were
tuned and matched to the Larmor frequency at 1.5 Tesla (63.6
MHz) at the center between the maximum and minimum length
of the stretchable areas corresponding to a stretching of 15% with
x = 75mm). The four reference double-loops were individually
tuned to and matched. Capacitor values for all built double-loops
can be seen in Figure 12.

The inductance of each loop is estimated from the total
capacitance and the resonance frequency. The coil resistance is
estimated from the measured Q-factor. Q-values for each loop
were measured at a distance of 20mm with an S21 measurement
on the network analyzer (E5071C, Keysight Technologies, Santa
Rosa, CA, USA) using a double-loop probe with −75 dB
decoupling. To estimate the effect of stretching on inter-element
coupling, the coupling coefficient k was measured using the
two-mode-frequencies method:

k =
f 2
in−phase

+ f 2
anti−phase

f 2
in−phase

− f 2
anti−phase

(7)

with fin−phase = 1
2π

√
C∗(L−M)

and fanti−phase = 1
2π

√
C∗(L+M)

[34, 35]. The upper frequency and the lower frequency mode are
measured on the network analyzer, with an S21 measurement,
assuming that the resonant frequencies f 0 are identical for both
loops, as well as the capacitance and the inductance values
for both loops are the same. The center-to-center distance for
rectangular loops to achieve optimal inductive decoupling is 0.9
d [6], but due to the stretching of elements, the decoupling
between elements changes. Residual coupling was suppressed by
pre-amplifier decoupling. Active detuning using an LC parallel
circuit was implemented to detune the loop during transmit, and

baluns, reducing common mode currents on the shield of the
coaxial cables, were added and tuned to the Larmor frequency.

The experimental setup (see Figure 1D) was placed in the
MRI and with every stretchable double-loop configuration and
the corresponding reference double-loop noise and signal data
was acquired one after another. For every configuration, 2
measurements were performed: per stretched position (4 stretch-
points, see Table 1, column 1) signal and noise data was acquired
with the reference and the stretchable double loops.

SNR images were generated from signal- and noise datasets,
acquired on a Siemens MAGNETOM Aera 1.5 Tesla MRI
scanner with software platform Syngo MR E11 (Siemens
Healthcare GmbH, Erlangen, Germany). To obtain the SNR
images, a standard spin-echo sequence (TE = 15ms, TR =
300ms, FoV = 300mm, TA = 1:20min, slice thickness = 5mm,
acq. matrix = 256 × 256, voxel = 1.2 × 1.2mm, bandwidth
= 130 Hz/pixel) with a 90◦ and a 180◦ RF pulse was applied.
For the noise measurement, the RF excitation pulse was set
to zero, whereas for the signal measurement the RF excitation
was set automatically. The acquired data were exported and
then reconstructed offlineMATLAB (MATLAB, TheMathworks,
Natick, MA, USA).

SNR was calculated using the Sum-of-Squares (SoS) method
ideal for high input SNR [36] and theMaximum Available (MA)

method [15].

SNRSoS = 2∗ρ2

σ 2
∗

∑N

k=1
|ck|2 (8)

SNRSoS values as calculated in Equation 8, are equal to the SNR
for optimal combining with unknown coil sensitivities. The MA
method describes optimal coil combination, were sensitivities
are known. By multiplying the pixel value in each coil with
the complex conjugate of the coil sensitivity for that channel,
summing over all channels, and dividing this sum with the sum
of the squared coil sensitivity in all channels, an optimal noise
decorrelated (noise pre-whitened) combination method is used.
Any phase added by the coil itself is removed and the signal
is summed up. This method is also known as B1-weighted coil
combination [6].

Adaptive Knee Array
Based on the results of the material test, the best performing

material was used for further investigation. A preliminary study

of the knee geometry (100mm up/down the knee center) on
25 patients from Europe and U.S.A. showed a diameter range

of 102–169mm for European knees and 110–211mm for U.S.
knees. Standard coils like the 15-channel Tx/Rx knee coil by QED

(Quality Electrodynamics, Mayfield village, Ohio, USA) have a
limited inner diameter of 173mm and field of View (FoV) in
z-direction of around 200mm. This diameter limitation makes

the knee a good object to demonstrate the performance of a
one-size-fits-all adaptive coil array approach.

To investigate the potential SNR improvement, a 6-channel
receive-only array for 1.5 Tesla was developed. It consists of 4
adaptive channels (see Figure 3C) and a rigid 2-channel bottom
part (see Figure 3B). As reference, a rigid 4-channel reference
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FIGURE 4 | (A) 3D CAD rendering of the adaptive array test setup with 4 stretchable (upper shell) loops and 2 rigid loops in the bottom shell. The adaptive array is

evaluated using three differently sized knee phantoms of size L (180mm diameter, 4.1 l), M (160mm diameter, 3.2 l), and S (140mm diameter, 2.4 l). (B) To directly

compare the 4-channel adaptive array with the four stretchable loops to the 4-channel reference array (each one connect to the 2-channel lower shell upon each

measurement), a shell of size 180mm is 3D laser sintered and the adaptive loops are mounted on it, while the three differently sized knee phantoms (L, M, S) were

imaged.

array (see Figure 3A) with an inner diameter of 180mm, the
size comparable to a single-row of a commercial 15ch knee coil
(Quality Electrodynamics, Mayfield, OH, USA) was constructed,
which could also be attached to the rigid 2-channel bottom part.
The setup is mounted on a baseplate of the 15-channel knee
coil, which is attachable to the patient table (see Figure 3A).
The four adaptive channels can be attached to three different
sized shells with grooves to fit the feed boards, similar to the
phantoms (see Figure 4A). Geometrical decoupling was pre-
adjusted during construction and is maintained with the bottom
part for both arrays.

Three differently sized phantoms with 140mm (size S, 2.4 l),
160mm (size M, 3.2 l), and 180mm (size L, 4.1 l) diameter each
filled with per 1,000 g H2O dist.: 1.25 g N iSO4 × 6H2O, 5 g NaCl
were used for MR imaging. All housing parts including the three
phantoms, were 3D laser sintered using the (ObjetEden500V,
Stratasys 500V, Rechovot, Israel). The experimental setup can be
seen in Figure 4B.

All loops were tuned and matched to 63.6MHz and 50�.
The adaptive loops were adjusted at a stretching of 13.34%,
which equals the diameter of the phantom size M. Decoupling

was <18 dB, pre-amplifier decoupling >20 dB, and matching
<20 dB. The stretchable areas of the adaptive array were made
of 6mm wide Amotape R© Conduct Elast. #45792. The same
properties as evaluated during the material test, were measured
again for the knee array in the presence of the other loops, while
inductively decoupled.

Finally, SNR was measured for the three phantom sizes using
the adaptive and the reference array using the same spin-echo
sequence as for the material tests. The smallest configuration of
the adaptive array was used to acquire signal and noise images of
the phantom size S (140mm). The 2nd configuration was used to
image phantoms S and M and the largest configuration was used
to image all three knee phantoms (see Figure 4B). The acquired
data were exported and reconstructed offline (MATLAB, The
Mathworks, Natick, MA, USA).

RESULTS

Material Tests
The goal of the material tests was to identify a suitable material
fulfilling the needs of an adaptive coil array. The CuBe2 Strain
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FIGURE 5 | Properties of all tested materials while mounted on the test frame, measured in the laboratory.
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FIGURE 6 | The Signal-to-Noise ratio (SNR) of the three different stretchable materials, compared to each other. The SNR was measured in a region of interest (ROI of

5 × 5 pixel) at 20 and 60mm depth from the coil. The SNR losses were acquired from the SNR maps, calculated with the maximum available method, the stretchable

double loop in the different stretching states compared with the SNR maps of the corresponding reference double loop. The torso-shaped phantom consists of a

main body (blue) filled with per 1,000mL Bayol-oil and 0.011 g MACROLEX blue and an outer compartment (clear) with per 1,000 g H2O dist.: 1.25 g NiSO4 × 6H2O,

5 g NaCl).

Springs were found to introduce a too high inductance and were,
therefore, not further evaluated.

All tested materials were sufficiently stretchable to cover the
envisioned element size. Bench measurement results for the
rigid double-loop array and the three stretchable double-loop
arrays are summarized in Figure 5 and show the dependence
of the following parameters on the amount of stretching:
Qloaded (Figure 5A), Qunloaded (Figure 5B), Qratio (Figure 5C),
coupling coefficient k (Figure 5D), shift in resonance frequency
(Figure 5E), inductive decoupling (Figure 5F), pre-amplifier
decoupling (Figure 5G), matching (Figure 5H), coil+sample
resistance (loaded) (Figure 5I), and unloaded coil resistance
(Figure 5J). All coils showed a shift in resonance frequency
of about−125 kHz per mm elongation by stretching (see
Figure 5E). Amotape R© #45792 showed consistently highest Q-
ratio, best inductive and preamplifier decoupling. The loops
with Amotape R© #45792 showed coupling coefficients and coil
resistance values in the unloaded and loaded cases which
lie between the values of the other materials. All measured
parameters of the stretchable loops were compared to rigid loops

with equivalent sizes. Complete measurement data is listed in
the Figure 11.

The results of SNR measurements in the MR scanner are
shown in Figure 6. In most cases and on average, the stretchable
loops with Amotape R© #45792 showed the least loss in SNR (8/9%
in 20/60mm depth, respectively) as compared to the rigid double
coil array.

Adaptive Knee Array
For the adaptive knee array also Amotape R© #45792 was used.
The measured shift in resonance frequencies for the 4 stretchable
loops within the adaptive array when stretched from a knee
diameter of 140 to 180mm, ranged from 66.39 to 61.23 MHz.
This corresponds to a stretching of up to 26.68% from the original
array size, the stretchable lengths× change from 60.1 to 91.5mm.
The overall size of an adaptive loop varies between 90.6× 60mm
(un-stretched) and 122 × 60mm (fully stretched). This resulted
in a frequency shift of 164 kHz per mm elongation, which is
comparable to the 128 kHz per mm as measured during the
material tests for Amotape R© #45792.
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FIGURE 7 | SNR comparison for the adaptive and rigid knee arrays for different phantom sizes. The SNR was measured at three representative points: at the center

of each phantom, 25mm away from the lower shell and 25mm away from the top of each phantom. The experimental setup is illustrated in Figure 4B.

Q-ratios for all loops of both the rigid reference and the
adaptive knee array were larger than 2, and therefore in sample
noise dominance. The unloaded coil resistances RCoil,unloaded of
the individual antenna elements for the 180mm knee phantom
ranged from 0.84 to 1.39� (reference array) and from 0.99 to
2.13� (adaptive array). RCoil,loaded for the same phantom size
ranged from 2.38 to 3.67� (reference array) and 2.51 to 4.79�

(adaptive array).
The coupling factor k∗Qloaded between the loops of the

reference array ranged from 0.048 to 0.125 and from 0.14 to
1.27 for the adaptive array. For the adaptive array this is higher
than expected, which can be explained by the higher number
of channels and their closer positioning as compared to the
setting with 2 loops during the material tests, i.e., each loop
was not only influenced by the direct neighbor, but also by
all others.

Inductive decoupling ranged between 16.7 and 26.9 dB for the
reference array and between 36.8 and 13.9 dB for the adaptive
array. The best decoupling in the adaptive array was achieved

at maximum stretching, as expected from the results of the
material tests.

(Matching) ranged from −43.0 to −18.1 dB for the reference
array. The adaptive array adjusted for the size M phantom
was matched between −23.4 and −16.7 dB. At minimum and
maximum stretching of the adaptive array loops, matching was
completely off between −1.6 to −2.4 dB. Same results were
achieved with the pre-amplifier decoupling. The reference array
showed reasonable pre-amplifier decoupling values of 22.0 to
29.8 dB, whereas the loops of the adaptive array, from minimal
to maximal stretching of the individual elements, ranged from
12.6 to 26.69 dB. Adjusted to the size M phantom, pre-amplifier
decoupling for the adaptive array ranged from 19.6 to 26.5 dB,
and is comparable to the values of the reference array.

Figure 7 illustrates the SNR images acquired with the
reference and the adaptive array using the three different
phantom sizes. SNR values were measured in single voxels in the
middle transverse slice at three different depths from the surface,
relative to the knee phantom size used. In a direct comparison
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between the adaptive and the reference array using phantom size
L, the SNR of the adaptive array was worse at 20mm below the
knee phantoms surface (from the top), compared to the reference
array. The SNR values in the center are just slightly worse for the
adaptive array. When using smaller phantom sizes, the adaptive
array, tuned and matched to phantom size M, achieves equal
SNR values at the phantom center and much higher SNR values
especially below the surfaces of the phantoms. Noise correlation

is not exceeding 0.4 in any configuration of the reference or the
adaptive array (see Figure 10).

In Figure 8 one can see the SNR comparison between the
arrays using the three different knee phantoms. Comparing at
phantom size L, it is evident that the adaptive array stretched to
sizes S, M and L (but always tuned and matched for array size M
and phantom size M) performs worse (−10 to −40%) than the
reference array (tuned and matched for array size L and phantom

FIGURE 8 | SNR images of the adaptive and the rigid knee array compared to each other using different phantom (knee) sizes. A SNR gain or loss at the ROI is

indicated with “+” and “−” symbol and the corresponding percentage value.
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FIGURE 9 | MRI images of the individual channels from the 6ch adaptive array, imaging the right knee of a volunteer. Image 3 (1st row, 3rd column) and 4 (2nd row,

1st column) are from the 2 channels in the lower shell. The image was acquired using a spin-echo sequence in sagittal orientation (TE = 15ms, TR = 300ms, FoV =
180mm, TA = 1:16min, slice thickness = 2mm, acq. matrix = 256 × 256, voxel = 1.2 × 1.2mm, bandwidth = 130 Hz/pixel).

size L). However, as expected due to the closer fit to the sample,
an SNR gain of 29% (array size M, phantom size S), 40% (array
size M, phantom size M), or 100% (array size S, phantom size S)
was observed in the voxel near the adaptive part of the arrays.
SNR in the center of the phantoms was approximately equal to
the rigid array, and a consistent 5–10% SNR gain was found for
the voxels near the rigid bottom part.

Figure 9 shows sagittal in vivo MR images of the knee
center using the adaptive array, displayed as uncombined single
channel images, and the combined image. The imaged knee
had a very small diameter of 100mm at the center, even
smaller than the smallest size configuration of the adaptive array
(130mm), therefore, the optimal fit of the adaptive array was
not reached.
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FIGURE 10 | Noise Correlation Images of the adaptive and the rigid knee array on the three different phantoms.

DISCUSSION

An approach for size- and shape-adaptable receive elements
using partly-stretchable conductors is presented and its feasibility
for in vivo MR imaging is demonstrated. Four different

stretchable materials were investigated and a material with 19
strands of meandered conductors on an elastic substrate was
identified as the best-performing solution in terms of decoupling
and achievable SNR. A similar material with only seven strands
showed slightly worse performance due to its higher equivalent

Frontiers in Physics | www.frontiersin.org 13 April 2020 | Volume 8 | Article 80103

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Gruber et al. Anatomically Adaptive Coils for MRI

FIGURE 11 | All measured values in the laboratory of each double-loop using the materials described in Table 2 (except CuBe2 strain springs) with the experimental

setup described in Figure 1D.

series resistance. A solenoidal spring from CuBe2 was excluded
from performance tests since it exhibited a too high inductance
which would have required impractically low capacitance values
to achieve resonance at the Larmor frequency. In direct
comparison of the best stretchable double-loops to rigid reference
double-loops, the SNR loss is below 10% on average. A 6-channel
knee array prototype with two rigid and four stretchable elements
was developed and a thorough comparison to geometrically
identical rigid standard loop coil arrays was performed. A
considerable SNR gain of up to 100% was demonstrated, which
shows that the effect of better conformity to the sample outweighs
the SNR penalty for stretchable coils. This penalty arises from the
facts that the stretchable coils exhibit inherently higher coil losses
and can only be optimized in a single state of stretching in terms
of resonance frequency, matching, and decoupling. The resulting
variation in impedance by stretching affects the optimum noise
matching to the preamplifier, thus degrading SNR.

To minimize these effects, the stretchable loops were tuned
and matched, and their geometrical overlap optimized in an

average stretching configuration. Evidently, a reduction of the
stretchable area would lead to lower frequency shift, but
would on the other hand limit the range of patient sizes
that could be imaged. Additional techniques to compensate
for the change of coil characteristics upon stretching would
be beneficial, especially at extreme positions of elongation
away from the optimized size. Tuning and matching could be
restored by automatic tuning and matching techniques. The
approach of using varactor-diodes as voltage-controlled tuning
elements to match the impedance of the coil elements has been
introduced very early [7, 37]. They were also used to design
a closed-loop with automatic tuning and matching circuit for
a flexible EPR surface resonator [38], or a microcontroller-
based automatic tuning technique for MRI [20]. The drawbacks
are that the procedure took about 1min to complete, and
involved a physical disconnection of the local coil from
the scanner. A later approach [17] for microcontroller-based
automatic tuning of electronics, allowed tuning in the scanner
in under 1 s, but can only handle frequency shifts up to 10%,
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FIGURE 12 | Component values for all built rigid and stretchable loops.

yet still, this technique could be a promising candidate for
further investigation.

A possible solution to handle the increased inductive
coupling introduced due to the frequency shift when stretching
the coil, would be achieved by departing from single coil
resonances and rather operate in response plateaus between
multiple resonance peaks [16]. The advantage of inductive
decoupling is its broadband decoupling effect. A mechanical
system introducing the required variation of the overlap
area between adjacent elements upon the stretching would
possibly maintain good decoupling and improve SNR. However,
measurements of the coupling coefficient in this work showed
that non-ideal decoupling was not a major concern in
this case.

Although sample losses were dominant for the investigated
stretchable coils (all Qratio > 2), other stretchable materials
that might have better conductivity, like carbon nanotubes
in rubber-like stretchable support material or silver/gold
antenna structures integrated into Polydimethylsiloxane
(PDMS), may also be of interest in the development of
stretchable coils.

CONCLUSION

Using array elements with stretchable parts, a viable solution
to size- and shape-adaptive coils was demonstrated. Despite a
slight SNR loss of 10% in direct comparison to rigid standard
loop coils in identical geometrical setup, a considerable SNR
gain of up to 100% with an adaptive 6-channel prototype
array over a geometrically identical rigid array could be
shown in knee phantoms of different sizes. This increase
is due to the better form-fitting of the adaptive array to
the samples.

This work aims at investigating a novel technology for
stretchable and flexible RF coils. To enable the presented
methodology for practical application or clinical use, undesirable
effects of coil stretching, such as frequency shift, mismatch and
imperfect decoupling are yet to be handled.
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Magnetic resonance imaging (MRI) is a major imaging modality, giving access to

anatomical and functional information with high diagnostic value. To achieve high-quality

images, optimization of the radio-frequency coil that detects the MR signal is of utmost

importance. A widely applied strategy is to use arrays of small coils in parallel on MR

scanners equipped with multiple receive channels that achieve high local detection

sensitivity over an extended lateral coverage while allowing for accelerated acquisition

and SNR optimization by proper signal weighting of the channels. However, the

development of high-density coil arrays gives rise to several challenges due to the

increased complexity with respect to mutual decoupling as well as electronic circuitry

required for coil interfacing. In this work, we investigate a novel single-element coil

design composed of small loops in series, referred to as “multi-loop coil (MLC).” The

MLC concept exploits the high sensitivity of small coils while reducing sample induced

noise together with an extended field of view, similar to arrays. The expected sensitivity

improvement using the MLC principle is first roughly estimated using analytical formulae.

The proof of concept is then established through fullwave 3D electromagnetic simulations

and validated by B1 mapping in MR experiments on phantom. Investigations were

performed using two MLCs, each composed of 19 loops, targeting MRI at high (3 T) and

at ultra-high field strength (7 T). The 3 T and 7 T MLCs have an overall diameter of 12 and

6 cm, respectively. For all investigated MLCs, we demonstrate a sensitivity improvement

as compared to single loop coils. For small distances inside the sample, i.e., close to the

coil, a sensitivity gain by a factor between 2 and 4was obtained experimentally depending

on the set-up. Further away inside the sample, the performance of MLCs is comparable

to single loop coils. TheMLC principle brings additional degrees of freedom for coil design

and sensitivity optimization and appears advantageous for the development of single

coils but also individual elements of arrays, especially for applications with a larger area

and shallow target depth, such as skin imaging or high-resolution MRI of brain slices.

Keywords: magnetic resonance imaging, radio frequency coil, surface coil, electromagnetic simulation,

B1 mapping
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INTRODUCTION

Radio frequency (RF) coils are the front end of the instrumental
chain of a magnetic resonance imaging (MRI) system. They
are used to generate the RF magnetic field that excites the
nuclear spins, and to detect the MR signal, i.e., the RF signal
induced by the rotating nuclear magnetization during relaxation.
Consequently, RF coils play amajor role inMRI since they are the
link between the scanner and the sample to be imaged. In order
to perform MRI with high diagnostic value, i.e., with high spatial
resolution and high signal to noise ratio (SNR), it is of utmost
importance to optimize the sensitivity of the RF coil with respect
to both, the targeted clinical application and the MRI set-up.

The sensitivity factor of the RF coil quantifies the contribution

of the coil to the overall SNR and represents its efficiency to detect
the MR signal while minimizing the noise involved in the MR

experiment [1]. The two main noise sources are the noise of the

coil itself and the noise induced in the coil by the sample [2].
In most clinical MRI applications (typical field strength ≥ 1.5 T),
targeting large anatomical sites (e.g., brain, knee) and employing
large RF coils (i.e., diameters of several cm), the sample noise
largely dominates over the internal coil noise, and is therefore the
limiting factor for achieving high detection sensitivity.

The earliest and most often pursued solution to improve the
RF coil detection sensitivity is to reduce the coil size, i.e., to use
small surface coils [3–5]. This increases the magnetic coupling
between the coil and the sample, thus increasing the amplitude
of the detected MR signal. In addition, the equivalent volume of
sample seen by the coil is reduced and, therefore also the sample
induced noise. However, the limited field of view (FoV) of small
coils reduces the accessible region of interest (ROI) and may be
problematic for applications targeting anatomical regions that
extend over an area that is large compared to the target depth.

To overcome this, a widely applied strategy is to use arrays of
small coils together with MR scanners featuring multiple receive
channels [6–8]. Arrays benefit from the high local detection
sensitivity of small surface coils while achieving a lateral coverage
comparable to large coils, and are now used in numerous clinical
applications of MRI [9]. However, the development of high-
density coil arrays evokes additional technological challenges
[9, 10] due to the increased complexity with respect to mutual
coupling between coils and electronic circuitry required for coil
interfacing. Especially the realization of arrays with very small
elements becomes impractical either due to fabrication issues
with the coil elements themselves, or due to space requirements
for the interface components and preamplifiers. On top of that,
high-density arrays entail a significant increase of cost due to the
high amount of required electronic components and the need for
a high number of acquisition channels at the MR scanner.

In this work, we investigate a novel coil design that aims
at achieving some benefits of coil arrays as compared to large
single loop coils (SLCs), i.e., reduce the sample induced noise
by using small coils and achieve a large FoV. Although this
novel design doesn’t represent an actual alternative to coil arrays,
since it neither allows for parallel imaging nor SNR optimization
by combining the signals of individual channels with optimal
weights, it aims at a comparable sensitivity gain in comparison

to large SLCs while relaxing constraints in terms of complexity
and cost.

The general concept of this work is to investigate single
coil elements composed of small loops in series, in contrast to
the coil array principle where the coils are independent and
operated in parallel. The association of small loops in series
results in a single coil element composed of multiple loops,
subsequently referred to as “multi-loop coil (MLC).” MLCs
appear particularly advantageous for reducing sample-induced
noise that varies with the loop radius to the power of three, while
the equivalent noise voltages induced in each of the loops are
summed linearly since they are in series. The use of small loops
in series may also improve the magnetic coupling between the
coil and the sample because the magnitude of the detected MR
signal is inversely proportional to the loop radius. Consequently,
a significant improvement in detection sensitivity is expected by
using MLCs.

Few works reported the use of small loops associated to larger
coils, either employing various sized small loops in series to
reinforce and homogenize the magnetic coupling of the coil
to the sample [11] or employing small loops of the same size
equally distributed around a large loop [12, 13], with connections
between small loops being alternately reversed so that the
magnetic field is in phase. While these two investigations are
supported by the same conceptual consideration as the present
work, their targets are different, and they face several limitations
regarding the freedom for loops positioning and number. Also,
in both cases, a large loop is used, which counterbalances the
benefit of using small loops and sets a limit to the achievable
sensitivity improvement. In addition, an investigation on the
effective improvement of the overall detection sensitivity has
not been performed so far, neither by simulation nor by
MRI experiments.

In this paper, we introduce the theoretical background
supporting the MLC principle involving equations for sample
and coil losses as well as for the magnetic field produced per unit
of current. We present an electromagnetic simulation study to
evaluate the MR performance of MLCs and, in particular, the
improvement in terms of transmit efficiency, i.e., the magnetic
field produced per square root of input power. We show
experimental results obtained by MRI, i.e., maps of the transmit
efficiency that aim at validating the simulation results and
at experimentally demonstrating the sensitivity improvement
achieved by MLCs as compared to SLCs.

THEORY

RF Coil Sensitivity
An RF coil can be modeled as a resonant RLC circuit (resistance
R, inductance L, capacitance C) tuned to the Larmor frequency
of interest and matched to the input impedance of the MR
scanner, i.e., typically 50 Ohm. The sensitivity factor of the RF
coil SRF, which represents the contribution of the coil to the
overall SNR, is the ratio of the induction coefficient, defined as
the magnetic field, B1, per unit current, I, produced by the coil
and the equivalent noise voltage associated to the losses involved
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in an MRI experiment.

SRF =
B1
I

√

ReqTeq

(1)

where ReqTeq is the sum of the temperature-weighted resistances
associated to different dissipative media and loss mechanisms.

The complete electromagnetic approach to derive expressions
for B1 and losses is given in the literature (see for example
[14] p. 127 for losses and p. 206 for B1/I). Starting from
the AC source-current in the coil, one can derive a vector
potential. From this the currents induced in the media can be
determined, which in general have two components, the eddy
current depending on conductivity, and the displacement current
depending on permittivity. Using Maxwell-Ampère’s equation,
one can calculate the magnetic field inside the media originating
foremost from the source-current but also from the currents
induced in the media. The integral over the real part of the
induced currents divided by the conductivity of the media
provides the corresponding power loss density. Finally, using
Ohm’s law, the equivalent resistance is obtained from the power
loss density and the current in the coil.

This approach leads to complex integral equations that
cannot be solved analytically and require the use of advanced
electromagnetic solvers. However, simplified formulae for B1
and losses neglecting propagation effects have been proposed
(see below). Thus, B1 can be calculated using Biot-Savart’s
law, neglecting losses due to displacement currents. This
approximation is valid if the dimensions of the ROI are small
compared to the operating wavelength. For surface coils, when
the depth of the targeted ROI does not exceed 10 cm, this
assumption is typically fulfilled for field strengths up to 3 T.

Induction Coefficient
The induction coefficient of the coil, B1I , is the magnetic coupling
efficiency of the coil to the sample and is representative of the
detected amount of MR signal. B1

I , depends on the area through
which the nuclear magnetic flux passes and is set by the winding
shape of the coil only.

For a single-turn circular coil of radius a, the theoretical
expression for B1

I in Cartesian coordinates is given in [15]:

B1x

I
= µ0xz

2πα2βX2

[(

a2 + Y2
)

E
(

k2
)

− α2K
(

k2
)]

(2)

B1y

I
= µ0yz

2πα2βX2

[(

a2 + Y2
)

E
(

k2
)

− α2K
(

k2
)]

(3)

B1z

I
= µ0

2πα2β

[(

a2 − Y2
)

E
(

k2
)

+ α2K
(

k2
)]

(4)

with the vacuum permeability µ0, standard elliptical integrals
E(k2) and K(k2), and the following correspondences:

X2 = x2 + y2 (5)

Y2 = x2 + y2 + z2 (6)

α2 = a2 + Y2 − 2aX (7)

β2 = a2 + Y2 + 2aX (8)

k2 = 1− α2

β2
(9)

γ = x2 − y2 (10)

Along the coil axis, z, the above equations simplify, and the
induction coefficient of the coil is expressed as:

B1z

I
= µ0a

2

2π
(

a2 + z2
)
3
2

(11)

For distances that are small compared to the coil radius, it
varies roughly as a−1, explaining why small surface coils perform
better than large ones when investigating ROIs located at the
surface of the body. Further away from the coil, i.e., for distances
large compared to the coil radius, the induction coefficient
varies as a2 which disfavors smaller coils. However, this can
be counterbalanced by combining several small coils operating
constructively, since the total induction coefficient is the vector
sum of the individual induction coefficients and can tend to
equalize that of a large coil at long distance.

Dominant and Non-dominant Noise
Sources in MRI
The equivalent noise voltage illustrates the total energy dissipated
during the MR experiment. It is proportional to the square-
root of the sum of equivalent temperature-weighted resistances
according to respective dissipation rates and local temperatures
in the different media, ReqTeq. Several noise mechanisms may be
involved in MR experiments and a quantitative comparison of
their respective contribution to the overall noise has to be done
to identify suitable strategies to improve the RF sensitivity of the
coil. The two main noise mechanisms to be considered in current
biomedical applications of MRI are the noise of the coil itself
and the noise induced in the coil by the sample, i.e., magnetically
coupled sample noise [2].

In addition, several, usually non-dominant, noise mechanisms
can potentially be involved in MR experiments. For instance,
capacitively-coupled sample noise, which tends to be more
significant at high field strength [16], can be reduced to a
negligible level by using distributed tuning capacitors and
inductive coupling transformers [17]. Other noise mechanisms,
such as the spin noise [18] and the radiation noise [19], are
of marginal relevance for current clinical MRI applications, i.e.,
below 300 MHz (i.e., 1H Larmor frequency at 7 T). Lastly, the
use of electronic components and active devices may introduce
additional losses, but they are usually minimized by optimizing
the circuit design, e.g., placing high-gain low-noise preamplifiers
as close as possible to the coil port.

Magnetically Coupled Sample Noise
Magnetically coupled sample noise is strongly related to the
coupling efficiency of the coil, as the corresponding noise voltage
is induced in the coil via the same physical pathway as the
MR signal. Neglecting displacement currents as explained above,
and considering again a circular loop of radius a placed at a
distance s to a semi-infinite conducting sample with conductivity
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σ , the following approximate formula [20] of the sample induced
resistance RS can be used in many practical situations:

RS =
2

3π
σµ0

2ω2a3 arctan
(

πa

8s

)

(12)

Besides the quadratic dependence of RS on the operating
frequency, indicating that these losses may be predominant over
other losses at high field strength, it can be observed that RS varies
as the power of 3 with the coil radius. This explains the large
advantage of using small coils when sample noise dominates. It
can be noticed that for coils with a radius that is small compared
to the distance between the coil and the sample, the arctan-
function varies as a, and the sample induced resistance then
depends on the coil radius as the power 4. This consideration is
the basis for the pinpoint coil concept that showed the potential
improvement in sensitivity by using very small coil when the
sample noise dominates, even for imaging regions located deep
inside the sample [21].

When using several coils, in parallel as in arrays, or in series
as in MLCs, the overall sample induced noise is larger than the
sum of the sample induced noise in all individual loops. This
noise increase is due to electrical coupling between the coils via
the sample, referred to as noise correlation [6]. The analytical
formulae to calculate themutual resistance of several coils implies
the determination of spatial distribution of the electric fields
produced by all coils, and requires advanced computations [22]
that are beyond the scope of the presented analytical evaluation
of MLCs. Alternatively, one can consider a relative increase of the
sample induced noise based on the electrical coupling coefficient
as a function of the distance between loops [6]. The electric
coupling coefficient between two coils can be defined in analogy
to magnetic coupling:

ke(ik) =
RSik√
RSiRSk

(13)

Where RSik is the mutual resistance between the coil i and coil
k and RSi, RSk are the sample induced resistance in the coils
when isolated, i.e., without noise correlation, given by Equation
(12). In the MLC design, all loops have the same sample induced
resistance when large enough phantoms are employed, i.e., RSi =
RSk. The value of the total sample resistance is then the sample
induced resistance of each loop isolated plus twice the mutual
resistance between loops:

RS TOT =
N

∑

i=1

RS + 2

N
∑

i=1

N
∑

k 6= i
k = 1

RSik (14)

Coil Noise
The standard technology to fabricate RF coils employs wound
conducting wires intersected by lumped element capacitors. In
this case, the total coil losses account for the ohmic losses of the
winding as well as the real losses of the capacitors used to tune
the coil.

The general formula for the ohmic resistance of a conducting
loop of radius a made of a wire of radius r, with electrical
resistivity ρ, and skin-depth δ =

√

2ρ/(µ0ω), can be
approximated by the following expression [23] when operating
at frequencies high enough so that δ << r:

RCwire =
ρa

rδ
= a

r

√

ρµ0ω

2
(15)

In the case of a conducting loop of outer radius a made of a flat
conducting strip of width w the above expression becomes [23]:

RCstrip = ρπa

2wδ
= πa

2w

√

ρµ0ω

2
(16)

This estimation only considers the “classical” skin effect and
neglects the lateral skin effect contributions for flat strip
conductors, which tend to dominate especially at higher
frequencies [24–26]. In addition, the conductor losses of multi-
turn and multi-loop coils can be increased due to the proximity
effect [27], which constrains the current distribution to an
even smaller region than the skin effect. This loss contribution
depends on the exact coil design and is neglected for the following
rough loss estimation.

Capacitor losses originate from two different phenomena with
relative contributions depending on the operating frequency. The
first component are dielectric losses inside the capacitor material
itself characterized by the loss tangent, tanδ ([14] p. 127). Second,
the metallic parts of the capacitors, such as contacts for soldering,
generate metallic losses, similarly to conductors. The total losses
of capacitors, referred to as the equivalent series resistance
(ESR) are the sum of the dielectric and metallic resistances,
and are usually available from data sheets. Regarding the typical
operating frequency range of RF coils in MRI, and accounting for
the conductivity and permittivity of typical capacitor materials,
metallic losses dominate over dielectric losses. In addition to the
capacitor losses, losses associated to solder joints used to mount
the capacitors onto the coil winding should be considered as it
may have a significant contribution to the overall noise [23].

One can notice that when employing other technologies than
that of lumped components to fabricate the coil, the two above
mentioned noise sources are still of concern. Considering the case
of self-resonant coils based on the transmission line principle
(e.g., [28]), losses within the substrate, similarly to capacitors
losses, may contribute to the overall coil noise and should be
considered. This is particularly of concern when using low quality
substrates, such as FR4 or Polyimide (e.g., Kapton R©) whose loss
tangent limits the achievable overall quality factor of the coil.
However, by choosing materials with a low loss tangent, such
as Polytetrafluoroethylene (PTFE), dielectric losses within the
substrate can be kept at a negligible level compared to the ohmic
losses of the coil conductor.

Rough Estimate of the Sensitivity
Improvement Expected With MLCs
As discussed above, reducing the coil size can provide a
significant reduction of the sample induced losses together with
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an increase of the induction coefficient. In this section, we
roughly evaluate the theoretical gain in sensitivity expected by
using an MLC as compared to an SLC achieving an equivalent
FoV. In this regard, we will consider an SLC of radius A and
compare its losses and induction coefficient to those of an MLC
composed ofN small loops of radius a= A√

N
connected in series.

Estimation of the Induction Coefficient
Considering sample-to-coil distances small compared to the coil
radius, which corresponds to the usual case when using surface
coils, the induction coefficient is inversely proportional to the coil
radius (see Equation 11). Consequently, a small loop of radius
a = A√

N
, will produce a B1/I at close distance along its axis that

is
√
N-times higher than that of a larger loop of radius A. It can

be assumed that in the case of N small loops in series, close to
one small loop the other loops will not produce a significant B1
along its axis. So, at close distance from the loops, only a benefit
from the size reduction can be expected using the MLC principle.
Further away from the loop, B1/I on its axis varies as the square of
the radius. In this case, N small loops of radius a, are expected to
produce a B1/I that is comparable to that of a larger loop of radius
A. It finally appears from this rough estimate that MLCs achieve
an induction coefficient higher or equal to that of a large coil.

Estimation of Sample Losses
When considering the sample resistance dependency on the
coil radius, as shown in Equation (12), and for sample to coil
distances small as compared to the coil radius, it appears that a
large loop of radius A will result in a sample-induced resistance
proportional to A3, whereas N small loops of radius a = A√

N
,

will result at a first glance in a total sample-induced resistance

proportional to A3
√
N
. Consequently, a significant decrease of

the sample losses is expected by using MLCs as compared to
SLCs covering a comparable surface area. However, this estimate
does not account for the increase of the total sample losses
due to mutual resistances between the loops. Indeed, the use
of N loops in series will add N × (N − 1) mutual resistances,
having different amplitude depending on the distance between
the considered coupled loops. As the amplitudes of the mutual
resistances cannot be estimated for arbitrary MLC geometries,
the noise correlation effect was not accounted for in the rough
estimation of the gain in sensitivity expected by using MLCs as
compared to SLCs since it aims only at illustrating the concept
supporting the present investigation.

Estimation of Coil Losses
According to Equations (15) and (16), the ohmic resistance
associated to the coil winding of N loops of radius a = A√

N

in series is
√
N-times higher than that of an SLC of radius A

assuming identical wire radius.
The equivalent series resistance of the capacitors depends

on the number of capacitors which is proportional to the total
conductor length so as to maintain the same ratio between
operating wavelength and uninterrupted conductor length. Since
the total length of N small loops of radius a = A√

N
in series

is
√
N-times longer than that of a loop of radius A, the number

of required capacitors for the N small loops is
√
N-times higher

than for the single large loop. So, at a first glance, it could be
concluded that the resistance of the capacitors for the N small
loops will be

√
N-times higher than for the large loop. When

using more distributed capacitors the capacitance value has to
be increased so as to reach the same resonance frequency. As a
general tendency, the higher the capacitance value is, the lower
the equivalent series resistance of the capacitors is; therefore,
in practice the total resistance of the capacitors in case of
N small loops may be increased by a factor lower than

√
N.

However, in some cases (depending on the type of capacitors
and the operating frequency), the above mentioned tendency
does not hold true, i.e., capacitors with lower capacitance value
exhibit a lower, or comparable equivalent series resistance to
capacitors with higher capacitance value. In conclusion, the total
coil resistance, including ohmic and capacitors losses, of N loops
of radius a = A√

N
in series is increased by a factor of

√
N as

compared to that of a loop with radius A.

Estimation of the Sensitivity Factor
Taking into account the above considerations on the influence
of the number of loops on the resistances and the induction
coefficient of the coils, one can estimate the global impact
of using MLCs on the sensitivity factor. To do so, two cases
are distinguished.

At short distances inside the sample, the induction coefficient
of the MLC is

√
N-times higher than the one of an SLC of

radius A.
In this case, the sensitivity factor achieved by MLCs,

expressed as a function of the single loop parameters
((

B1
I

)

A
,RSA,RCA

)

, is:

SRF(MLC) =
(

B1

I

)

A

√

N
√
N

RSA + RCAN
(17)

At long distances inside the sample, the induction coefficient of
the MLC is comparable to the one of the SLC of radius A, and the
sensitivity factor achieved by the MLC is:

SRF(MLC) =
(

B1

I

)

A

√ √
N

RSA + RCAN
(18)

As expected, the benefit of using an MLC as compared to
a large SLC depends on the respective contribution of coil
losses and sample induced losses and will be more pronounced
when the sample losses are dominant. A rough analysis of
the loss dependency on coil radius and operating frequency
indicates that sample noise is dominant for large coils or at high
frequency. In this case, MLCs can achieve a significant sensitivity
improvement. In the other case, when coil losses contribute
significantly to the total losses, the benefit of using MLCs is less
but a non-negligible improvement may be still expected.

If the sample losses largely dominate over coil losses, the
sensitivity factor of the MLC is increased in comparison to the
SLC by a factor of N3/4 and a factor of N1/4 at short and long
distances inside the sample, respectively.
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As an intermediate case, considering that the coil losses are
equal to the sample induced losses for a loop of radius A, i.e.,
RSA = RCA then at short distances:

SRF(MLC) = SRF(A)

√

N

N + 1

√
2 (19)

And at long distances:

SRF(MLC) = SRF(A)

√
2√

N + 1
(20)

In the extreme case, when coil losses dominate over sample losses,
corresponding to the less favorable case for using MLCs, the
sensitivity factor achieved by the MLC as compared to the SLC
is increased by a factor of N1/4 and decreased by a factor of N1/4

at short and long distances inside the sample, respectively.
As a general conclusion of the rough estimate of the expected

improvement in sensitivity achieved by the use of MLCs, it
appears that anMLC performs better than a large SLC in any case
except when the coil noise of the large loop dominates over the
sample induced noise for ROIs deep inside the sample.

MATERIALS AND METHODS

Investigated Coils
We illustrate the sensitivity improvement achieved by the MLC
principle by investigating two MLCs made of N = 19 loops
in series. The general scheme and dimensions of the two
investigated MLCs are shown in Figure 1A. The performance
of each MLC is compared to that of an SLC shaving the same
outer diameter. The scheme of the SLCs used for comparison
is depicted in Figure 1B. So as to reduce capacitively coupled
sample noise, the winding of the MLCs and the SLCs were
segmented by 12 and 8 or 4 (for 3 T or 7 T SLCs) distributed
tuning capacitors, respectively. In all cases, it is ensured that
the segment length between two capacitors is small as compared
to the operating wavelength. Within these constraints, the exact
number of capacitors was chosen also according to practical
reasons, e.g., reusing existing coil layouts. The two straight lines
connected at the bottom of the coils’ winding are for connecting
the coaxial cable that relates the coil to the scanner interface,
where each has a gap for placing balanced matching capacitors.
The coil diameters were chosen so that the sample induced
losses in the SLC can be assumed large as compared to the
internal losses of the coil itself at the operating frequency [1], thus
allowing to better evidence the sensitivity improvement achieved
by the use of MLCs.

All coils were fabricated using single layer copper of 35µm
thickness deposited on a 0.8mm thick FR4 substrate. The
conductor width was 2mm for all coils. The coil patterns were
produced using standard photolithographic processing.

Evaluation by Simulation
Analytical Estimation of the RF Sensitivity Factor

Using the Quasi-Static Approximation
In order to evaluate more precisely the expected RF sensitivity
factor of MLCs and validate the initial rough estimate of

the sensitivity improvement on which the MLC concept is
based, SRF maps were computed for the investigated MLCs and
SLCs according to Equation (1) using Python. The induction
coefficient was calculated using Equations (2)–(4). For the coil
noise, conductor losses including the skin effect were estimated
according to Equation (16); it is assumed that a more advanced
model for conductor losses including lateral skin effect and
proximity effect would only marginally influence the results
as the total coil noise is dominated by capacitor and solder
joint losses, and the overall noise is clearly sample dominated.
Capacitor losses were modeled using the equivalent series
resistances extracted from data sheets (CHB series, Exxelia, Paris,
France), and solder joint resistances were estimated according
to literature data [23], which were extrapolated with a

√

f -
dependence for 297.2 MHz. The sample noise of the individual
loops was calculated using Equation (12). In order to account
for noise correlation between loops in MLCs, RSik values were
estimated using approximated electrical coupling coefficients
based on values determined by Roemer for square-shaped loops
[6]. Interactions between all coils were accounted for, resulting
in a total sample induced resistance being 60 times the sample
induced resistance of one isolated small loop. When neglecting
the noise correlation effect, as for the rough estimate of the
RF sensitivity improvement discussed above, the total sample
induced resistance is 19 times the one of an isolated small loop;
i.e., noise correlation increases sample losses approximately by a
factor of 3 for the investigated MLC design.

Fullwave 3D Electromagnetic Simulation
Due to the complex interactions between electromagnetic fields
and the human body, especially at ultra-high frequency i.e., at
ultra-high field strength, the quasi-static approximation is no
longer valid and Biot-Savart law fails to accurately evaluate the
B1 field of the coil. For this reason, fullwave 3D electromagnetic
simulation (EMS) of RF coils has become mandatory to
characterize their performances before fabrication. 3D EMS solve
Maxwell’s equations to obtain the electric and magnetic field
distributions inside the sample that can further be used to
calculate B+1 (transmit) and B−1 (receive) fields and the specific
absorption rate (SAR).

In this study, we performed fullwave 3D EMS based on
the finite difference time domain (FDTD) method [29] using a
commercial software package (XFdtd 7.8 Remcom, State College,
PA, USA). All investigated coils were modeled as perfectly
conducting sheet bodies in 3D EMS. A box-shaped phantom
positioned 1mm below the coil was used as load (3 T: 170
× 170 × 150mm; 7 T: 90 × 90 × 70mm), with dielectric
properties comparable to the phantom liquid used for the
experimental evaluation described below (electrical conductivity
σ = 0.71 S/m, relative permittivity ε = 63.86). Grid resolution
varied from 0.5mm for the coil conductors to 9mm for regions
outside the sample. All coil capacitors as well as the matching
networks were replaced by 50� voltage sources to enable circuit
co-simulation [30, 31] (ADS, Keysight Technologies, USA),
which shortens the total simulation time. In co-simulation,
50� ports were replaced by respective lumped elements for
tuning and impedance matching. Realistic loss estimations for
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FIGURE 1 | (A) General scheme of the investigated MLCs. Each MLC is composed of 19 loops of diameter d connected in series covering an equivalent circular

surface of diameter D. (B) Scheme of the SLCs having a diameter D used for comparison. For all coils, the gaps in the coil winding are made for placing the

distributed tuning capacitor, and the gaps on the two straight lines at the bottom of the coils’ winding are made for placing the balanced matching capacitors.

the coil conductors, inductances, capacitances, and solder joints
were modeled as resistances in series with the coil winding,
in accordance with coil noise calculation for the analytical
estimation. The air core inductor required for matching the
3 T SLC (see below) was assigned a Q of 200. Post-processing
of the simulation data was performed in Matlab (Mathworks,
Natick,MA,USA) using a dedicated in-house toolbox (SimOpTx,
Center for Medical Physics and Biomedical Engineering, Medical
University of Vienna, Austria) employing the quadratic form
power correlation matrix formalism [32, 33]. MLCs and SLCs
were compared in terms of transmit efficiency, i.e., B+1 per input
power, as well as 10 g-averaged SAR.

Experimental Evaluation
Phantom
A canister (∼18 × 13 × 28 cm) filled with saline solution
(deionized H2O doped with 0.8 mL/L Gadolinium solution with
a concentration of 279.32 mg/mL of Gadoteric acid, and 4 g/L
NaCl resulting in a DC conductivity of σ = 0.65 S/m) was used
as phantom load for bench measurements as well as for MR
experiments at 3 T and 7T. A photograph of the phantom with
the 7 T MLC attached to it is shown in Figure 2.

Bench Measurements
Tuning and matching of the coils were performed using small
multi-layer non-magnetic high-Q ceramic capacitors (CHB
series, Exxelia, Paris, France). Besides their MR compatibility,
these capacitors were chosen to minimize the total associated
ESR. For each coil, series tuning capacitors CS, a parallel
tuning and matching capacitor CTM and two identical series
matching capacitors CM with the values listed in Table 1 were
used. In order to match the 3 T SLC to 50�, an additional
parallel inductor LM had to be incorporated in the matching
network of this coil. As the coils were designed to operate
in the sample noise dominated regime, this low-Q (∼200)
inductor is assumed to have negligible influence on the coil’s
MR performance.

All coils were connected to RG316 SPC coaxial cables (AXON’
CABLE S.A.S. Montmirail, France), which served as connection
to the two-port vector network analyzer (E5071C, Agilent, Santa

FIGURE 2 | Photograph of the phantom with the 7 T MLC attached to it.

Clara, USA) in bench measurements and as connection to the
scanner interface in MR experiments.

Besides tuning and matching, also Q-factors of all investigated
coils were measured in loaded and unloaded condition. This
enabled us to ensure that sample noise is the dominant noise
source as aimed for in this study, and to evaluate the sample
noise reduction achieved by MLCs. Q-factors were measured
using the single-loop probe method [34], while the coils were not
connected to their respective matching networks. The influence
of the single-loop probe was considered negligible when the
reflection coefficient at its terminal was below−40 dB.
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TABLE 1 | Tuning and matching components.

CS [pF] CTM [pF] CM [pF] LM [nH]

MLC−3 T 33 (10x)

33 + 1.8 (1x)

27 56 –

SLC−3 T 18 + 18 22 + 12 56 + 68 70

MLC−7 T 12 (8x)

15 (3x)

8.2 18 –

SLC−7 T 2.7 + 2.7 (1x)

5.6 (2x)

5.6 39 –

MRI Experiments
Both, 3 T and 7T MR experiments were carried out on whole-
body MRI systems (3T Prisma Fit and Magnetom 7T MRI,
Siemens Healthcare, Erlangen, Germany), with the MLCs and
SLCs operated in transmit-receive mode. For this purpose,
a home built (for 3 T) and a third party (for 7 T; Stark
Contrast, Erlangen, Germany) transmit-receive (T/R) switch
with integrated low-noise preamplifiers (3 T: 0.5 dB noise
figure, 27.0 ± 0.1 dB gain, Hi-Q.A. Inc., Carleton Place,
Ontario, Canada; 7 T: 0.5 dB noise figure, 27.2 ± 0.2 dB gain,
SiemensHealthcare, Erlangen, Germany) were used. At both field
strengths, the same T/R switch and preamplifier were used for
MLC and SLC, respectively, to avoid an influence of the interface
components on the comparison.

With all investigated coils, flip angle maps were acquired in 13
coronal slices parallel to the coil plane using the saturated Turbo
FLASH (satTFL) method [35]. The first slice was positioned
directly at the phantom surface as close as possible to the
coils; slice thickness was 3mm and a spacing of 2mm between
consecutive slices was chosen. As the B+1 field of surface coils
decreases rapidly along the coil axis, different amplitudes of
the saturation pulse were chosen for the different slices in
order to generate flip angles in the usable range [36]. The
following sequence parameters were used at 3 T: repetition time
TR = 12.64 s, echo time TE = 2.64ms, 192 × 192 acquisition
matrix, 1.5mm × 1.5mm in-plane pixel size, 1 average. At 7 T,
the following parameters were applied: TR = 6.93 s, TE = 2.66ms,
128 × 128 acquisition matrix, 1.5 × 1.5mm in-plane pixel size,
4 averages. From measured flip angle distributions, B+1 maps
normalized to the input power were calculated using an in-house
written Matlab script (Mathworks, Natick, MA, USA) taking into
account an insertion loss of −2 dB of the coil cables and the
T/R-switches, determined on the bench.

High-resolution 3D gradient echo (GRE) sequences
were employed to evaluate the imaging performance of the
investigated coils. Data from these scans were used to calculate
SNRmaps in the central sagittal slice (i.e., in the yz-plane with B0
along the z-direction and the coil parallel to the xy-plane) with
the basic ROI method for comparison of MLCs and SLCs. For
3 Tmeasurements, the following sequence parameters were used:
TR = 6.8ms, TE = 2.88ms, 288 × 234 × 224 acquisition matrix,
1mm isotropic pixel size, flip angle α = 5◦, pixel bandwidth
BW = 545 Hz/Px, Tacq = 5:56min. The sequence used in
7 T experiments had the following parameters: TR = 15ms,

TABLE 2 | Q-factors.

MLC−3 T SLC−3 T MLC−7 T SLC−7 T

Bench Qunloaded 163 203 176 268

Qloaded 33 9 30 7.2

Qunloaded/Qloaded 4.9 22.6 5.9 37.2

Analytical Qunloaded 226.1 236.8 199.5 424.4

Qloaded 40.3 5.9 68.4 11

Qunloaded/Qloaded 5.6 40.1 2.9 38.6

3D sim. Qunloaded 200.3 231.3 193.6 297.2

Qloaded 33.8 8 25.4 6.3

Qunloaded/Qloaded 5.9 28.9 7.6 46.9

TE = 6.86ms, 256 × 256 × 128 acquisition matrix, 1mm
isotropic pixel size, α = 8◦, BW= 100 Hz/Px, Tacq = 4:36 min.

RESULTS

Q-Factors
Q-factors of the investigated MLCs and SLCs in unloaded
and loaded condition are summarized in Table 2 for 3 T and
7T, respectively. For comparison, also the Q-factors obtained
from analytical calculations and fullwave simulations are listed.
Further, the ratio of unloaded to loaded Q-values is calculated.

The measured Q-factors reflect well the behavior expected
from theoretical considerations described in sections Estimation
of sample losses and Estimation of coil losses. The unloaded Q-
factor, inversely proportional to the coil noise, is lower for MLC
than for SLCs. However, the Q-ratios show that the overall noise
of the experiment, i.e., coil noise plus sample noise, is clearly
dominated by the sample noise for all investigated configurations,
as aimed for in the coil design process. The loaded Q-factors
are higher for MLCs than for SLCs by factors of 3.67 and
4.17 at 3 T and at 7 T, respectively, demonstrating the sample
noise reduction by employing the MLC principle. These ratios
approach the theoretically expected reduction factor for the
sample noise, i.e.,

√
19 = 4.36, which was estimated under

the approximations described above, and which could only be
measured for pure sample noise dominance.

Sensitivity Factor and Transmit Efficiency
Maps of the calculated sensitivity factor, as well as the simulated
and measured transmit efficiency, i.e., B+1 normalized to the

input power (B+1 /
√
P), at different depths inside the sample, are

summarized in Figures 3, 4 for 3 T and 7T coils, respectively.
The slice locations shown for calculations and simulations were
chosen to correspond to the experimental data; for slices located
further away from the coil, experimental B+1 maps appear too
noisy for a visual comparison due to insufficient SNR of the
flip angle mapping sequence. The analytical calculation does
not aim at providing absolute SRF values but at estimating the
expected sensitivity improvement. Therefore, all the sensitivity
factors calculated analytically were normalized to the maximum
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FIGURE 3 | Maps of the calculated sensitivity factor, as well as the simulated and measured transmit efficiency at different depths inside the sample for 3 T coils.

Calculated sensitivity factor values are normalized by the maximum sensitivity value obtained with the MLC at 1.5mm distance inside the sample.

value obtained with the MLCs at the shortest distance inside
the sample.

To enable a direct, quantitative comparison of MLCs
and SLCs, ratios of MLCs’ and SLCs’ sensitivity factors
and transmit efficiencies were calculated along the central
axis of the investigated coils. These results are shown in
Figure 5 for analytical calculations, fullwave 3D simulation
and experimental data, for 3 T and 7T coils, respectively.
For experimental data, B+1 values in each slice were averaged
over 10 × 10 and 5 × 5 pixel ROIs centered on the coil

axis, for 3 T and 7T, respectively, to limit the influence of
measurement noise.

An excellent qualitative agreement between fullwave
simulations and measurements can be observed for maps as well
as central axis profiles, at both, 3 T and 7T. A maximum increase
in transmit efficiency by a factor between 2 and 4 depending on
field strength and coil size is obtained with MLCs in comparison
to SLCs. A significant gain can be observed for distances up to
the radius d/2 of the individual loops of the MLCs, i.e., 1 cm for
3 T and 0.5 cm for 7 T. For large distances (> d), the performance
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FIGURE 4 | Maps of the calculated sensitivity factor, as well as the simulated and measured transmit efficiency at different depths inside the sample for 7 T coils.

Calculated sensitivity factor values are normalized by the maximum sensitivity value obtained with the MLC at 1.5mm distance inside the sample. Note that the

dimensions of the maps are different from 3T images due to the smaller coil size.

of MLCs and SLCs is comparable. For fullwave simulated data,
the SLC marginally outperforms the MLC for distances larger
than 3.4 cm at 3 T, and 1.2 cm at 7 T, respectively.

For MLCs, regions of high transmit efficiency directly below

the small loops and low transmit efficiency in between loops can

be observed in B+1 /
√
P maps. The impact of this behavior on the

coils’ performance in comparison to SLCs was analyzed more
closely for 3D fullwave simulation data. The transmit efficiency
ratio of MLC and SLC was computed for the whole phantom

volume. The central sagittal and transversal slices as well as a
coronal slice close to the coil plane are shown in Figures 6A,
7A for 3 T and 7T, respectively. For the ROI shown by the black
dashed line, the fraction of voxels in the ROI with B+1 /

√
PMLC ≥

B+1 /
√
PSLC and the fraction with B+1 /

√
PMLC < B+1 /

√
PSLC were

calculated for each slice up to the distance of break-even along
the central coil axis. Also, the mean ratio was calculated for each
fraction. Thus, the bar charts in Figures 6B, 7B show which coil
(MLC or SLC) performs better in which fraction of voxels in
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FIGURE 5 | Ratios of RF sensitivity and transmit efficiency between MLCs and SLCs along the central coil axis—(A) for 3 T coils and (B) for 7 T coils.

each slice. In addition, the color of the bars shows how big the
difference in transmit efficiency is; dark colors indicate that the
calculated mean ratio in the respective fraction is clearly bigger
or smaller than 1; in contrast, light colors indicate a ratio close
to 1 (with white corresponding to 1 ± 5%). Further, axis profiles
of the ratio through regions of high (“case-high”) and low (“case-
low”) transmit efficiency of MLCs are shown in Figures 6C, 7C
for 3 T and 7T, respectively. It can be observed that the “case-
low” profile approaches the value of 1 for smaller distances than
the “case-high” profile, which indicates a potential net sensitivity
gain with MLCs.

A quantitative comparison of fullwave simulation and
measurement results reveals that the values extracted from
experimental data are ∼15 and 25% lower than the simulated
values for 3 T and 7T, respectively. There are several potential
reasons for this. The most plausible explanation, in our opinion,
is a mismatch in sample conductivity between experiment
and simulation. In simulation, the sample conductivity was
fixed to the value given in the methods section, while the
conductivity of the phantom solution was determined with
a simple DC probe. However, the conductivity of saline
solution generally increases with frequency [37]. Thus, it
can be assumed that the conductivity of the phantom is
higher in experiments than in simulations, which would
result in a stronger dampening of the B+1 inside the sample.
Another reason for the discrepancy between simulation
and measurement could be an underestimation of losses,
either in the coil (as it can be seen from the measured
and simulated Q-values summarized in Table 2) or in the
interface components.

For 3 T experiments, the B+1 patterns shown in the first slice of
Figure 3 appear smeared; further, a strong edge between regions

inside and outside the phantom can be observed in this slice.
The reason for this is, that the walls of the phantom canister
are very thin, and that, therefore, the shape of the phantom is
not perfectly rectangular, but slightly curved. When the large
3 T coils with an outer diameter of 12 cm were attached to

the phantom with adhesive tape, the coil PCBs were slightly
bent so as to perfectly match the phantom surface. This effect
is not observed on the images acquired at 7 T because the
overall dimension of the 7 T coils (6 cm) is small enough to
produce negligible bending when the coils were attached to
the canister.

For analytical calculations, results deviate more from those
obtained by the other methods. A stronger decrease of SRF with
increasing distance from the coil occurs, the performance of
the SLCs is clearly underestimated in comparison to the MLCs,
and the left-right asymmetry depicted in fullwave simulation
and measurements is not observable. This can be explained
by the limitations that apply for the analytical approach.
Firstly, the used equations are valid in the quasi-static domain
only and, therefore, do not account for propagation effects
of the RF EM field that can occur at high frequency, e.g.,
the proton Larmor frequency at 7 T. This explains the larger
deviation observed at 7 T, especially the left-right asymmetry
[38]. Secondly, for MLCs, the analytical computation was
done considering small loops carrying equal current without
accounting for the small conducting lines that connect the
individual loops, without exactly calculating mutual resistances,
and without accounting for mutual inductances between the
loops that tend to reduce the magnetic efficiency; thus,
the performance of the MLCs is likely overestimated in
analytical calculations.

Nonetheless, the behavior, that MLCs produce a higher B+1
field than SLCs in regions close to the coil (especially directly
below the small loops) expected from the rough estimation based
on theoretical considerations, is well confirmed by analytical
calculations, fullwave 3D simulation as well as experimental data.
In regions located further away from the coil, B+1 strengths of
MLCs and SLCs become comparable.

SAR
MLCs and SLCs were also compared in terms of SAR values
obtained from fullwave simulation data, in order to assess the
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FIGURE 6 | Detailed analysis of the transmit efficiency ratio between MLC and SLC at 3 T. (A) Ratio maps in the central sagittal and transversal slice as well as a

coronal slice in a depth of 7mm. (B) Analysis of the ratio in the ROI shown by the dashed black line in (A). The position of the bars along the y-axis shows the

fractions of the ROI for which either the MLC or the SLC have higher transmit efficiency. The color of the bars indicates how much the ratio in the respective fractions

deviates from 1; i.e., white indicates comparable performance (1 ± 5%). (C) Line profiles parallel to the coil axis for locations of high (red dashed line and white cross,

“case-high”) and low (blue dashed line and cross, “case-low”) B1 intensity of the MLC.

usability of MLCs in future in vivo studies regarding safety
in terms of RF heating. Maximum 10 g-averaged SAR was
found to be slightly lower for MLCs than for SLCs, as shown
in Table 3. This is an interesting finding, especially in the
regard, that lower pulse voltages are required with MLCs to
generate the same flip angles as SLCs in regions close to
the coil, as can be concluded from simulated and measured
B+1 maps.

SNR in MR Imaging
Figures 8, 9 show SNR maps and corresponding ratio maps
obtained from 3D GRE acquisitions for MLCs and SLCs at 3 T
and 7T, respectively. A clear SNR increase can be observed for
the MLCs in regions close to the coil, especially directly below
the small loops. Further, it can be seen, that the lateral coverage
as well as the SNR in deeper lying regions of the phantom (i.e.,
further away from the coil) are comparable for MLCs and SLCs.

DISCUSSION AND CONCLUSION

Discussion
In this study, we have introduced the MLC principle, and
we have investigated the sensitivity improvement that can
be achieved in comparison to SLCs with the same overall
dimensions. This comparison was done using different methods.

Starting from a rough estimation, the expected gain was
evaluated more precisely using analytical formulae and, finally,
determined using fullwave EM simulations andMR experiments.
Results from all employed methods consistently show a strong
sensitivity gain with MLCs over SLCs in regions close to the
coil (approximately up to the radius of the individual loops
in the MLC), especially directly below the small loops, and
comparable performance for regions located further away from
the coil.

While in this work we have investigated MLCs composed
of 19 loops with two different sizes operating at 123.2 MHz
and 297.2 MHz, the obtained results are representative for the
general sensitivity improvement that can be achieved by using
the MLC design. Depending on the operating frequency and
the desired FoV, MLCs with different number of loops or with
different loop diameter or shape can also be advantageous. The
highest benefit of MLCs is observed when sample induced noise
dominates. As a general trend, this is the case when using surface
coils larger than 3 cm in diameter and operating at static field
strengths of 1.5 T and above, i.e., for most of the common settings
encountered in clinical MRI applications. It should be noted
that the sensitivity improvement achievable with increasing the
number of small loops is limited by noise correlation. This limit
will be reached when the total sample related resistance will be
more increased due to noise correlation than the sample noise
reduction achieved by using smaller loops in series (

√
N). As
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FIGURE 7 | Detailed analysis of the transmit efficiency ratio between MLC and SLC at 7 T. (A) Ratio maps in the central sagittal and transversal slice as well as a

coronal slice in a depth of 2mm. (B) Analysis of the ratio in the ROI shown by the dashed black line in (A). The position of the bars along the y-axis shows the

fractions of the ROI for which either the MLC or the SLC have higher transmit efficiency. The color of the bars indicates how much the ratio in the respective fractions

deviates from 1; i.e., white indicates comparable performance (1 ± 5%). (C) Line profiles parallel to the coil axis for locations of high (red dashed line and white cross,

“case-high”) and low (blue dashed line and cross, “case-low”) B1 intensity of the MLC.

a perspective, for configurations where the use of small loops
in series is advantageous in the presence of noise correlation,
even higher SNR improvement could be obtained by minimizing
noise correlation; for instance, Algarin et al. [39] have recently
demonstrated a significant reduction of the electrical coupling
coefficient using a metamaterial surface.

Results presented here were obtained using MLCs fabricated
from copper clad laminated FR4 substrate, but theMLC principle
shows no particular restriction regarding the technology used for
coil fabrication and can therefore be applied as well to produce
MLCs made of flexible substrates or, more standardly, from
wound copper wire.

As compared to the rough estimate of the sensitivity
improvement presented in section Rough estimate of the
sensitivity improvement expected with MLCs, the RF sensitivity
factor computation based on analytical formulae provides a
more accurate evaluation and allows for a rapid computation
of 3D sensitivity maps that are informative and useful for the
MLC design optimization step. However, some limitations apply
for this approach as described above; therefore, the use of
more advanced simulation methods and the final experimental
evaluation are indispensable for RF coil development and
evaluation at high and ultra-high field strength.

As it can be observed in sensitivity maps, at very short
distances inside the sample, i.e., comparable to the diameters
of the individual loops of the MLC, signal loss occurs

TABLE 3 | Maximum 10 g-averaged SAR values.

3 T 7 T

MLC 2.0461 5.4518

SLC 2.2654 6.5142

rel. difference −9.7 % −16.3 %

between adjacent loops of the MLC because of the reverse
direction of the B+1 field created in this region and because
of MR-inefficient B1 components parallel to B0. While this
phenomenon vanishes further away inside the sample, it might
be problematic for MR applications targeting surface ROIs
such as skin imaging. The simplest solution in this case would
be to offset the coil slightly from the sample in a way to
still benefit from the (smaller) SNR gain, but strongly reduce
the inhomogeneity. To remedy this issue without offsetting
the coil, more complex MLC designs will be investigated in
future work so as to achieve current patterns that generate a
more uniform B1 distribution close to the coil. For instance,
this could be done by adding smaller loops in series to the
initial ones in the regions where signal loss occurs. This
approach is possible as the MLC principle brings additional
degrees of freedom for coil design as compared to SLCs, which
potentially enables the realization of specific coil patterns with
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FIGURE 8 | SNR and ratio maps obtained for the central sagittal slice of 3D GRE acquisitions at 3 T for MLC and SLC, respectively. Maps were cropped, so as to

remove noise-only regions.

FIGURE 9 | SNR and ratio maps obtained for the central sagittal slice of 3D GRE acquisitions at 7 T for MLC and SLC, respectively. Maps were cropped, so as to

remove noise-only regions.

respect to the sample shape, but also the optimization of the
homogeneity of the detection sensitivity in a target region inside
the sample.

Several MRI applications may well benefit from MLCs, which
will be primarily used as single coils for applications requiring
high sensitivity over a FoV that is large compared to the
target depth, e.g., skin imaging [40], or ex vivo imaging of
brain slices [41]. In addition, MLCs can also be employed as
building block of an array when an even larger FoV has to be
covered. The detailed investigation of MLC arrays is subject to
future studies.

As compared to arrays of SLCs, the MLC principle brings
simplicity for both, the design and the fabrication, while
aiming at achieving a comparable performance in terms of
sensitivity. This renders possible a significant cost reduction
that may strongly inure to the benefit of developing countries
where very high-priced parallel acquisition MRI systems
appear unaffordable. On the other hand, using a single
MLC instead of an array of SLCs is not compatible with
parallel imaging approaches for accelerated image acquisition
and does not allow for SNR optimization using a weighted
signal combination of the individual channels. However, for
those applications expected to benefit most from the MLC

principle, targeting very high resolution in shallow depth
over a large FoV, sensitivity is typically more important than
acquisition speed.

Conclusion
In this paper, the proof of concept of a novel RF coil design,
the multi-loop coil design, has been established. The MLC
concept exploits the intrinsically high sensitivity of small surface
coils that achieve strong magnetic coupling to the sample while
reducing the sample induced noise, together with achieving
a large FoV by associating multiple small loops in series.
It allows for significant sensitivity improvement when the
sample induced noise dominates over the internal coil noise,
relevant for most clinically applied surface coils (>3 cm diameter,
≥ 1.5 T).

As a general tendency, close to the coil plane, the MLC
design potentially achieves higher RF sensitivity as compared
to a single loop coil having the same lateral size. Maximum
gains in transmit efficiency by a factor between 2 and 4 were
obtained experimentally depending on the field strength and
coil size. At long distance from the coil, as the induction
coefficients of the individual loops of the MLC are summed
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up, the achieved sensitivity is comparable to that of the
equivalent SLC.
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This paper addresses the scientific and technological challenges related to the

development of wireless radio frequency (RF) coils for magnetic resonance imaging

(MRI) based on published literature together with the authors’ interpretation and further

considerations. Key requirements and possible strategies for the wireless implementation

of three important subsystems, namely theMR receive signal chain, control signaling, and

on-coil power supply, are presented and discussed. For RF signals of modernMRI setups

(e.g., 3 T, 64 RF receive channels), with on-coil digitization and advanced methods for

dynamic range (DR ≥ 16-bit) and data rate compression, still data rates > 500 Mbps will

be required. For wireless high-speed MR data transmission, 60 GHz WiGig and optical

wireless communication appear to be suitable strategies; however, on-coil functionality

during MRI scans remains to be verified. Besides RF signals, control signals for on-coil

components, e.g., active detuning, synchronization to the MR system, and B0 shimming,

have to be managed. Wireless power supply becomes an important issue, especially

with a large amount of additional on-coil components. Wireless power transfer systems

(>10W) seem to be an attractive solution compared to bulky MR-compatible batteries

and energy harvesting with low power output. In our opinion, completely wireless RF coils

will ultimately become feasible in the future by combining efficient available strategies

from recent scientific advances and novel research. Besides ongoing improvement of all

three subsystems, innovations are specifically required regarding wireless technologies,

MR compatibility, and wireless power supply.

Keywords: magnetic resonance imaging, radio frequency coil, signal transmission, wireless technologies, wireless

power

INTRODUCTION

Magnetic resonance imaging (MRI) has become one of the major tools in non-invasive medical
diagnostics, providing a multitude of quantitative and functional information with ever-increasing
performance. The constant search for improved sensitivity and specificity in MR examinations has
coined the trend toward MR scanners with higher static magnetic field strength (B0) [1, 2] and
radio frequency (RF) coil arrays with larger numbers of individual receive elements [3]. Today’s
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high-end clinical MR scanners have a static magnetic field
strength of 3 T (together with first clinical 7 T systems being
installed currently) and feature up to 64 receive channels (128 or
more in some research units), allowing for shorter examination
times using parallel imaging [4, 5]. Typically, the excitation of
the nuclear spins is done with a large high-power RF transmit
coil—the system body coil—included in the scanner bore, while
signal detection is performed with a local receive-only coil array,
followed by on-coil preamplification and digitization in either
the MR room or the technical cabinet, or rarely, on-coil. Coaxial
cables are commonly used to transfer the received RF signal
to the image reconstruction unit outside the MR scanner room
and to power active electronic devices, such as preamplifiers,
typically using DC current running on the coaxial cable’s shield,
which requires a bias-tee arrangement usually already integrated
in commercial scanner hardware and thus avoids supplementary
power cables. In addition, single wires carrying DC control
signals are routed together with the coaxial cables, e.g., to bias
PIN diodes as part of an on-coil switching circuitry. With
increasing cabling complexity of modern high field scanners
equipped with high-density and/or mechanically flexible receive
arrays, the use of a large number of coaxial and wire cables gives
rise to several challenges.

One main concern with cabling is the increased patient
risk due to local heating phenomena associated to currents
induced on the cable shields during RF transmission and
fast switching of magnetic field gradients [6–8]. Secondly, as
each receive element requires its own set of coaxial cable and
wires, adjacent routing of cables may lead to cross talk and
increase coupling between receive elements, causing a significant
reduction of RF detection sensitivity. Since the coaxial cables are
routed within the system body coil, a partial loss of transmit
power may also occur, as some of the RF power is dissipated
in the coil’s cabling rather than in the target patient tissue.
Baluns and RF traps [9, 10], conventionally used to reduce
the abovementioned electromagnetic issues, make the receive
coil heavy, bulky, and potentially intimidating and ill-fitting for
patients. Moreover, handling of the coil becomes cumbersome
and delicate in a way that the coil installation can occupy a
significant fraction of the total exam time. This is of particular
concern for applications requiring very long coaxial cables, such
as abdominal MRI.

Consequently, the use of coaxial cables is one of the
bottlenecks that have to be overcome to develop the next
generation of coil arrays with improved sensitivity and less
patient risk in high field MRI. Several approaches were proposed
for the replacement of coaxial receive cables in MR experiments
by optical fibers for analog [11–17] or digital [18–24] MR signal
transmission. While the use of optical fibers avoids safety issues
and reduces signal interferences, the positioning and handling of
the receive coils are still limited by the length, placement, and
maximum curvature of the optical fibers.

Fully wireless RF coils could lead to a safer, more cost-
and time-efficient receive system for MRI and ultimately enable
lightweight, flexible, or even “wearable” coil arrays (e.g., [23–
26]), improving patient comfort and supporting the evolution of
on-coil sensor integration.

Challenges in the development of wireless RF coils can
especially be related to the harsh MR environment as all
envisioned devices must be designed to be MR compatible,
i.e., not ferro- or strongly para-magnetic. Additionally, all parts
must function robustly in the strong static B0 field and handle
coil vibrations, patient movement, bore reflections, and most
importantly, gradient and RF fields present during MRI. To
this end, some sensitive parts can be covered by Faraday
cages. Possible current induction on the devices should be
avoided with regard to patient safety, and added on-coil devices,
e.g., digitization units or wireless transceivers, must appear
transparent during imaging. Also, it is desirable to preserve high
linearity and a low system noise figure (<1 dB [27]) even with the
inclusion of wireless technologies. Especially for flexible arrays,
a reduction of the total amount, size, and weight of on-coil
components is crucial.

In this work, we focus on the realizability of completely
wireless MR receive arrays by addressing and interrelating
different aspects of the MR receive system. The aim is to outline
feasible and efficient approaches toward wireless communication
in MRI and prospect digital wireless RF devices, highlighting
the most promising strategies as well as associated benefits
and challenges.

WIRELESS APPROACHES FOR
DIFFERENT PARTS OF THE MR RECEIVE
SYSTEM

Three subsystems that have to undergo significant changes for
wirelessMRI were identified: theMR receive signal chain, control
signaling, and on-coil power supply. Their functional blocks and
respective possible physical location are depicted in Figure 1A.
Different wireless transceiver positioning variants, estimated
transmission distances, and angles are sketched in Figure 1B.

In Figure 2, the state of the art in wireless RF coil
development, listing existing technologies or strategies for each
respective subsystem, corresponding to sections “MR Receive
Signal Chain”, “Control Signaling”, and “On-Coil Power Supply”
in the manuscript, is summarized. Specific requirements that
need to be met for each of the functional blocks are included,
and benefits of current technology as well as current limitations
or challenges encountered in their development are listed. The
following general requirements apply to all of the mentioned
subsystems and corresponding components: MR compatibility
(no impact on MRI or component functioning), patient safety
(no heating), linearity, low noise figure, low power consumption,
low number of additional components, miniature component
size, and minimum weight. For all wireless paths, a reliable,
ideally lossless, spatial data transmission (≈10–100 cm, see
Figure 1B) is required.

MR Receive Signal Chain
The features of theMR signal directly impact signal conditioning,
which comprises (pre)amplification, digitization, analog and/or
digital data compression, and filtering. The MR signal is
characterized by high signal frequency (the Larmor frequency),
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FIGURE 1 | (A) Functional block diagram of a wireless MR receive chain consisting of three main subsystems: wireless MR signals (blue), control signals (green), and

power supply (orange). (B) Side view of wireless transceiver positioning variants including transmission distance and angle estimations.

depending on the investigated nucleus and B0 field strength,
typically in the order of 50–300 MHz. Further, the DR easily
reaches ∼90 dB [28]. In extreme cases, especially for high-
resolution 3D acquisitions at high B0 fields, the DR can attain
up to∼120 dB [29, 30]. To enable proper signal conditioning for
various imaging scenarios (frequency, DR, number of receive coil
elements, etc.), necessary adaptations for a wireless receive chain
imply the relocation of many components inside the MR bore or
directly on-coil, e.g., adjustable gain amplifiers, analog-to-digital
converters (ADCs), or mixers.

Signal Digitization
The choice of suitable digitization components is a critical task,
as there is always a trade-off between achievable conversion rates,
bit resolution, power dissipation, cost, and scalability to multi-
channel systems. In general, on-coil digitization is advantageous,
as it improves signal and phase stability, yielding better image
quality, and offers easier scalability to multi-channel systems
[18, 19, 31]. For component selection, the main challenges are
related to the MR signal properties. Concerning the DR, ADCs
should provide high bit resolutions (≥DR in decibels divided by
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FIGURE 2 | Summary of the state of the art in wireless radio frequency (RF) coil development. Existing technologies/strategies for each subsystem (i.e., MR receive

signal chain, control signaling, and on-coil power supply) are analyzed listing specific requirements, benefits, as well as limitations or challenges encountered in their

current development.
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6.02 [28]) to correctly quantize analog MR signal amplitudes.
To date, commercially available high-speed ADCs dedicated
to MRI are limited to 16-bit [32, 33], insufficient for some
imaging scenarios with very high DR. Concerning the sampling
rate, one possibility is direct sampling at the Nyquist rate,
employing ADCs capable of sampling at high rates greater than
twice the Larmor frequency [34]. However, the essential imaging
information of the MR signal lies only within a small signal
bandwidth (maximum 1–2 MHz), determined by the maximum
gradient strength and the field of view (FOV), modulated
onto the carrier wave at the Larmor frequency. Therefore,
demodulation of the amplified analog RF signal to baseband
(around zero frequency) or to an intermediate frequency (IF)
by mixing with a local oscillator (LO) signal on-coil before
conversion to digital data is possible. This significantly lowers
the ADC sampling rate requirement. Analog down-conversion
is often used in traditional systems [31, 35] but can also be
advantageous for easier system reconfiguration to other B0 fields
and higher power efficiency (<240 mW/channel [21]). This
was shown with broadband on-coil receivers for optical fiber
transmission of digital signals from two [21] or four [24] wrist
coil channels at 1.5–10.5 T. Direct undersampling corresponds to
sampling at lower than twice the maximum frequency and digital
demodulation at the same time. This technique was applied
for single receive elements at 0.18 and 4.7 T [36, 37]. Multi-
channel scalable solutions in combination with optical fibers were
proposed for in-field receivers with one ADC per coil element
at 1.5 and 3 T [18, 19], and four-channel ADCs for MRI up to
2.4 T with an eight-channel coil [38, 39]. Recent research also
demonstrated a digital RF front end adaptable for 16 channels
and useable from 1.5 to 11.7 T [20, 22]. Direct (under)sampling
approaches are useful, as no analog conversion step is needed
prior to digitization, and the amount of on-coil components
is usually low. However, this technique can be demanding in
terms of power consumption (>1 W/channel [20, 22]). Care has
to be taken to remove signal ambiguities, e.g., by quadrature
(I/Q) demodulation and digitization method-dependent signal
filtering. Using I/Q demodulation, the number of components
(e.g., amplifiers, ADCs, filters) after the quadrature mixer will be
doubled, as there are two separate (I/Q) signal paths. Therefore,
especially with discrete components, the form factor and power
consumption of the receiver increase. Nevertheless, it can be
advantageous to use baseband (I/Q) demodulation, e.g., in an
integrated-circuit (IC) design [21, 23], to keep the resulting data
rate at a minimum, which can be lower than with IF conversion
or direct (under)sampling approaches.

Data Rate
Taken together, the required data rate for wireless transmission
depends on the digitization approach and ADC bit resolution for
any MR receive system with a specific B0 field strength, imaging
bandwidth, and number of coil elements. Sequence parameters,
such as the receive duty cycle (the ratio between acquisition and
repetition time), also influence the effective data rate. Estimations
of up to 2.6 Gbps, assuming two coil elements at 1.5 T with direct
sampling (130 Msps, 20-bit, 50% receive duty cycle) or 64 coil
elements at 7 T with baseband sampling of a high bandwidth

signal (2 Msps, 20-bit I/Q, 50% receive duty cycle), reveal that
these high resulting data rates are difficult to handle with current
wireless technologies, as will be detailed in section “Wireless
Transmission Technologies and Protocols”.

An evident remedy against high data rate and storage
requirements is data compression, which can be realized in
the analog domain by means of down-conversion before
digitization as described above and/or in the digital domain,
which requires dedicated signal processing units on-coil (e.g.,
a field-programmable gate array (FPGA) and digital frequency
synthesizer [40]). Digital strategies for DR compression and coil-
wise demodulation can be combined to efficiently reduce the
data size to one-third of the original amount [41]. Nonetheless,
with digital compression directly after digitization, the number
of components and, therefore, also the power needed on-coil will
increase [22, 42].

To give an estimate for the minimum data rate requirement,
we take a modern clinical MRI setup at 3 T with 64 RF receive
elements as a reference. In this case, a data rate of at least 512
Mbps would be desirable, assuming moderate signal bandwidth
(500 ksps minimum sampling rate), average DR of around 90
dB (covered by 16-bit I/Q ADCs), 50% receive duty cycle, and
baseband demodulation to keep the resulting data rate and
component power consumption low. Our estimation is in line
with other published values [43, 44], only differing in terms of
assumed ADC bit resolution, receive duty cycle, or number of
receive elements.

Wireless Transmission Technologies and Protocols
Wireless transmission setups have been investigated for their
usability in MRI, testing only the wireless link with “synthetic”
MR image data without RF coil or signal conditioning
components. Except early work on analog wireless MR signal
transmission with carriers in the low gigahertz range (<3 GHz
[45–47]), research was mostly oriented toward digital wireless
MR signal transceivers following IEEE Wi-Fi standards. For
digital wireless communication in MRI, apart from achievable
data rate and power consumption, lossless spatial transmission
is an important criterion. First MR data transfer tests based
on the 802.11b [48] or 802.11n [49] standards revealed that
long range (>10m) comes at the cost of low achievable data
rates as well as large and power-consuming antennas. These
approaches are clearly impractical for wireless MRI. More
recent attempts were conducted with higher carriers in the
5 GHz band (802.11ac Wi-Fi protocol), showing reliable in-
bore operation of client and router antennae during an MRI
scan at data rates around 90 Mbps [44]. This Wi-Fi approach
is interesting as small client routers, used in most portable
devices nowadays, are available, providing sufficient spatial range
for MRI. Efficient data throughput could be improved up to
350 Mbps, suitable for low-channel and low-bandwidth MRI.
However, power consumption for only one transmitter antenna
can exceed 1W [50], which can be problematic with limited
wireless on-coil power supply, as explained in section “On-
Coil Power Supply”. Aiming for enhanced data rate capability
and reduced power consumption, subsequent work focused on
even higher carriers−60 GHz “WiGig” links—included in the
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802.11ad Wi-Fi protocol. At 1.5 T, without the presence of RF
pulses or gradients, data rates up to 500 Mbps over 10–65 cm
were achieved using a miniature transceiver that can achieve up
to 2.5 Gbps with only 14 mW DC power per wireless transmitter
[43]. Recently, out-of-bore experiments with shielded WiGig
dongles [51] have shown transmission rates of 187–665 Mbps
over 3–5.5m distance. This Wi-Fi standard meets our estimated
minimum data rate requirement for a modern clinical MRI
setup and is therefore viable for wireless coil arrays. Also, the
shorter spatial transmission range of one of the presented 60 GHz
links [43] is sufficient for some transceiver positioning variants
(see Figure 1B).

Optical wireless communication (OWC) [52, 53] with visible,
infrared, or ultraviolet light carriers (i.e., several 100 THz) could
be an attractive alternative to Wi-Fi with distinct benefits [54]:
large license-free bandwidth, small and low-power components,
immunity to electromagnetic interference, and the possibility for
integration into available illumination infrastructure; moreover,
OWC can operate well below light intensities considered
dangerous for the human eye. Data rates over 3 Gb/s in
visible light communication have been shown using a single
LED [55]. An MR-compatible OWC front end has been tested
for 2m analog positron emission tomography detector signal
transmission [56], but the technology has not yet been exploited
for MR signals. Unlike Wi-Fi, high-speed OWC mostly requires
a direct line of sight between transceivers, although some systems
can even communicate via diffuse light reflections [57]. Suitable
components for Li-Fi (Light-Fidelity, i.e., high-speed optical
wireless networking [58]) in MRI still remain to be identified and
tested on-coil in future studies.

Authors’ Opinion on a Wireless MR Receive Signal

Chain
Wireless digital MR signal transmission appears feasible with
current Wi-Fi strategies under the condition that appropriate
measures for data rate reduction prior to wireless transmission
are implemented on-coil, e.g., analog baseband demodulation, if
possible even combined with further digital data compression
methods. Wi-Fi protocol-dependent or component-related
drawbacks, e.g., the trade-off between achievable data rate, spatial
transmission range, and required power as well as questionable
full MR compatibility, restrict the usability of today’s Wi-Fi
technologies. WiGig (60 GHz) seems to be a promising strategy
because of high data rate capability, sufficient transmission range,
and low power consumption, although full functioning of WiGig
hardware on-coil during an MR scan and the effect on image
quality still have to be examined. Also, the final interfacing of
the chosen wireless (WiGig) transceiver to a digital RF coil still
has to be demonstrated and can be challenging, as it requires
the smooth interaction of various on-coil components. So far,
Wi-Fi technology benefited from rapid development pushed
by the portable device industry; therefore, we think that the
implementation of future high-performance Wi-Fi transceivers
in RF coils is an aspect to be followed up by the research
community. Alternatively, OWC strategies could be investigated
for wireless MR signal transmission. With OWC, the wireless
transmission of uncompressed, directly digitized MR signals

could be envisioned, which is advantageous with respect to
miniaturized device size and low system complexity but is
questionable concerning a limited on-coil power budget.

Control Signaling
Striving for full removal of coil cabling, a bidirectional wireless
link is indispensable as signals must be sent not only from the
coil to the MR scanner but also from the scanner control unit
to the coil, mainly for triggering, synchronization, and in some
cases, control of B0 shimming.

Active Detuning
Trigger signals need to be distributed to the coil electronics,
e.g., to bias PIN diodes for detuning receive coils during
RF transmission. Wireless detuning triggers transmitted via a
418 MHz antenna during an MRI scan at 1.5 T have been
investigated [59], involving power-efficient replacement of PIN
diodes by field-effect transistors (FETs) [60]. Presumably, these
trigger signals could also be applied to activate power-consuming
components (preamplifiers, ADCs) only during signal reception.

Synchronization
A stable clock, phase-synchronous with the MRI, controlling on-
coil electronics (such as ADC or down-conversion), is critical.
Clock jitter, which decreases the effective number of ADC bits
and creates image artifacts, must be limited. For synchronization
of MR unit and in-bore receivers, one method is to physically
transmit the MRI master clock to the receiver, which has been
demonstrated with 1.6, 2.4, and 3.5 GHz carriers [34, 61].
This requires additional on-coil clocking electronics (e.g., a
phase-locked loop, PLL) and a wireless back channel from the
MR unit to the coil. In contrast, on-coil clock generators can
be used but are particularly impaired by gradient induction;
therefore, free-running oscillator information has to be sent to
the MR system alongside sampled data to detect and correct
for frequency and phase errors as well as time offsets, i.e., to
synchronize the two clocks by software. This often requires
both additional hardware and software in the wireless receive
system [62–65].

On-Coil B0 Shimming
Several MRI applications benefit from localized on-coil
B0 shimming with DC currents on the RF coil elements
compensating for B0 inhomogeneities [66]. High shim currents
themselves cannot be wirelessly transmitted but can be wirelessly
controlled, which has been successfully demonstrated by 2.4
GHz Wi-Fi communication [67], using the RF coil itself as a
wireless transponder.

Authors’ Opinion on Wireless Control Signaling
Overall, less stringent requirements concerning data rate and DR
apply to wireless control signals, but correct timing and reliable,
simultaneous operation to other wireless paths, especially the
MR signal transmission, play a crucial role. Wireless control
of active detuning and on-coil B0 shimming circuits is feasible
with existing technologies and has been implemented during
an MRI scan in combination with a wired or battery power
supply and MR signal transmission via coaxial cables. Solutions

Frontiers in Physics | www.frontiersin.org 6 February 2020 | Volume 8 | Article 11129

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Nohava et al. Wireless RF Coils for MRI

for the synchronization of LO signals or ADC sampling clocks
to the MR system clock, crucial to avoid image artifacts and
signal degradation, were presented but not demonstrated with a
realistic wireless MR receive chain yet because implementation in
practice seems challenging. Patient movement and coil vibrations
can become an issue for synchronization, but to date, physical
system clock transmission via a wireless back-channel appears
to be a quite robust solution for wireless MRI. The long-term
stability of the external reference clock might be combined with
further clock correction in post-processing. Also, a possibility for
software synchronization with a free-running oscillator might be
included in any case as a fallback strategy if the physical clock
transmission fails.

On-Coil Power Supply
The electric power required on-coil is of major concern
for wireless RF coil development. In wired coils, generally
only components for preamplification and detuning (plus B0
shimming in some applications) have to be supplied with DC
power. In contrast, wireless digital MR signal transmission will
add on-coil power requirements for ADCs, potential down-
conversion, and wireless transceivers. In this case, the power
budget can easily exceed 1–2W per channel, especially with
high-speed ADCs. Power requirements scale with the number
of receive channels and depend on multiplexing strategies,
i.e., if one ADC and/or wireless transceiver is used for one
or multiple coil element(s). For a 64-channel coil and one
direct sampling ADC per channel, the power requirement
could thus exceed 100W, which is not feasible with current
wireless power supply strategies in MRI as detailed below.
Therefore, the first step to implement power supply for
wireless coils is to reduce power consumption. Realizable
low-power solutions for digitization, detuning, and wireless
transceivers have been investigated in studies cited above [21,
43, 60] and could be further improved employing passive
components whenever possible, e.g., passive mixers for down-
conversion. Assuming a low power consumption in the range
of hundreds of milliwatts per receive channel, for arrays up
to 64 channels, this still results in on-coil power requirements
of tens of watts.

Batteries
The use of non-magnetic rechargeable batteries could be
envisioned, although available battery power capacities are
limited, and as a consequence, the need for recharging limits
scan time. Li-ion batteries (e.g., 5,000 mAh, 7.2 V [21]) or,
more specifically, Lithium-ion polymer batteries, e.g., used for
motion sensors (250 mAh, 3.7V, 6.5 × 18 × 25 mm3 [68, 69]),
themselves are generally non-magnetic. However, care must be
taken because voltage conversion circuits often include ferrite
core transformers not suitable for use in MRI. Typically, an
increase in power capacity means bigger battery pack size (e.g.,
6,000 mAh, 3.7 V, 5.8 × 58 × 138 mm3 [69]), and it is therefore
obvious that with higher channel count, battery power supply
becomes cumbersome and suboptimal for use in-bore or on-coil
with limited space.

Wireless Power Transfer
Optical wireless power transfer (WPT) has been suggested
for recharging medical implants (<10 mW [70]) or portable
devices [71] and could be used in analogy to power-over-
fiber approaches previously employed in MRI [12, 72]. To
satisfy the power budget for an MR receiver array, it is likely
that multiple free-space lasers with high optical powers in
combination with efficient photodetectors would be required,
possibly resulting in solutions that—depending on optical powers
and wavelengths—are not eye-safe [73] and would require
sophisticated alignment mechanisms.

For MRI, WPT in the RF range and energy harvesting
have been investigated as attractive alternatives. The latter
converts energy from electromagnetic fields present during an
MR examination, namely the transmit RF field (tens of kilowatts)
and gradient fields, into DC power, using inductive coupling in
resonant “harvesting” loops [74–77]. Harvesting loops rely on
induction at the Larmor frequency, and thus, to avoid system
interferences, the size and placement of the loops cannot be
chosen freely; further, variations in harvested power depending
on the imaging sequence have to be taken into account, which
limits the achievable power supply (tens of milliwatts). RF WPT
implies the construction of a dedicated system consisting of
primary (e.g., in the patient table) and secondary (close to
the receive coil) loops for the sole purpose of power delivery
by inductive coupling. Byron et al. [78, 79] propose an MR-
compatible WPT system operating at 10 MHz transferring up to
13W over a few centimeters’ distance in a 1.5 T system.

Authors’ Opinion on Wireless On-Coil Power Supply
The analysis of existing approaches for wireless on-coil
power supply leads us to the conclusion that this aspect
is still a bottleneck, currently preventing completely wireless
MRI. Limitations due to available on-coil power reappear in
every subsystem, e.g., concerning the choice of digitization
components, analog/digital compression steps, and wireless
transceivers. To overcome this bottleneck, ideally, solutions
should be found to reduce the total power consumption per
wireless MR channel to around 200 mW, so that a 13W
RF WPT system would be sufficient to supply DC power for
a 64-channel coil array. Further advances in wireless power
development are also desirable to increase available on-coil power
budget and therefore alleviate related restrictions. Batteries are
currently the only solution for a simple implementation of on-
coil power supply, but considering weight, size, and uncertain
MR compatibility in some cases, this approach should not remain
the only accessible strategy in the future. Out of the other
existing strategies, we believe that RF WPT is currently the most
sophisticated and promising wireless power supply solution for
receive arrays including electronics, as it is capable of supplying
a high amount of DC power with negligible impact on MRI
performance. A drawback of RF WPT is that the developed
system is not yet optimized for on-coil (secondary loop) or
in-bore (primary loop) integration. Power transfer distance
should ideally be increased and system size and complexity
reduced to yield an easily reproducible and efficient WPT
solution. Perhaps, another alternative DC power source in MRI
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might be a technology based on the magnetoelectric effect,
using a piezoelectric material between magnetostrictive layers
[80]. However, this technology has not been adapted for MRI
conditions yet and will, as we believe, rather be suitable for power
delivery in the milliwatt range, similar to existing harvesting
techniques, as it is now employed for medical implant charging.

DISCUSSION AND CONCLUSION

In this paper, we summarized the status quo of wireless RF coil
development and analyzed existing strategies for the adaptation
of the three subsystems of wireless RF coils: the MR receive signal
chain, control signaling, and on-coil power supply. We reviewed
the benefits of current technology as well as technological
challenges or limitations encountered in their development and
suggest some future directives.

Over the last years, considerable progress has been made
investigating wireless MR and control signal transmission.
Feasible strategies exist for on-coil digitization, wireless in-bore
signal transmission, cordless active detuning, synchronization to
the MR system, and B0 shim control. However, regarding the
numerous requirements for a complete removal of coil cabling
in high-density coil arrays, there is still a need for improvement.
Solutions described in this work have limitations concerning
data rate capabilities and spatial transmission distance as well
as power consumption and device size. In addition, full MR
compatibility is often questionable. Despite required innovations,
we think that future work should focus on the first demonstration
of a complete bidirectional wireless MR and control signal
chain. This implies the connection of an RF coil with on-coil
digitization to a suitable wireless transceiver and the inclusion
of wireless active detuning and synchronization circuitry on-
coil (leaving out B0 shimming in a first step, reserved for some
specific applications). An important aspect is to thoroughly test
this assembly under realistic MRI scan conditions, i.e., with B0,
RF, and gradient fields present and patient movement or coil
vibrations possibly impairing component functioning, especially
wireless links, and MRI performance. For a proof of concept,
only a low number of RF receive elements could be targeted to

circumvent high system complexity and high demands in terms
of system miniaturization, required data rate, and on-coil power.

Already with low channel counts, wireless on-coil power
supply seems to be the main bottleneck, currently preventing
fully wireless MRI. Other than bulky rechargeable batteries,
no easily accessible WPT technology exists. We believe that
reduction of on-coil component power consumption will be
achieved and more efficient technologies for WPT will be
developed that can be more easily integrated in existing
MR systems.

In conclusion, based on our investigations of the state of
the art, we predict that completely wireless RF coils will be
feasible in the future. Their final implementation will require
the combination of already-available technologies and the
investigation of alternative promising strategies. Ultimately, with
innovations especially required for wireless technologies (e.g.,
OWC for MRI), MR-compatible components, as well as wireless

power supply, efficient solutions for each of the subsystems could
be assembled. The realization of wireless RF coils would lead to
a significant improvement in coil usability, image quality, patient
safety, and comfort.

In the future, wireless RF coils could also follow the trend
of additional sensor integration, providing a multitude of
complementary information during MRI, e.g., patient motion
[81, 82], to further improve image quality and physiological
monitoring. While wireless sensor data transmission often
relaxes data rate constraints, efficient power supply and reliable
data transmission still have to be ensured.
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Purpose: The simulation optimization and implementation of a flexible 31P

transmit/receive coil array, under the geometrical constraint of fitting into the housing of

an already existing 12-channel proton array, to enable localized cardiac 31P MRS at 7 T

is presented.

Methods: The performance in terms of homogeneity, power and SAR efficiency,

and receive benchmark of 32 potential array designs was compared by full wave 3D

electromagnetic simulation considering the respective optimal static B+
1 shims. The

design with the best performance was built and compared to a commercially available

single loop in simulation and measurement.

Results: Simulation revealed an optimal array design comprising three overlapping

elements, each sized 94 × 141 mm2. Simulation comparison with a single loop coil

predicted a performance increase due to increased power efficiency and lower SAR

values. This was verified by phantom measurements, where an SNR increase of 46%

could be observed for localized 31P spectroscopy in a voxel positioned comparable to

an in vivo cardiac measurement scenario.

Conclusion: A flexible 31P/1H RF coil array with improved SNR is presented, enabling

localized in vivo cardiac 31P spectroscopy at 7 T.

Keywords: 31P cardiac MRS, 3D EM simulation, RF coil design, X-nucleus, ultra-high field

INTRODUCTION

Phosphorus (31P) magnetic resonance spectroscopy (MRS) is known to be a powerful tool in the
assessment of cell energy metabolism [1–3]. Coronary heart disease is one of the most common
causes of death in the western hemisphere. A common reason for cardiac dysfunction is a deficit
of the myocardial metabolism [4–6] for which cardiac 31P MRS is a direct and non-invasive
assessment method [7–9]. The relative and absolute concentrations of ATP and PCr, and especially
their ratio are strong indicators of cardiac dysfunction [10, 11]. The technique is very specific but
suffers from inherently low sensitivity.

The low gyromagnetic ratio and in vivo concentration of 31P results in a low intrinsic signal
to noise ratio (SNR) (31P-MRS has 100,000 × lower SNR than 1H MRI [12]), which leads to
low spatial and temporal resolution. The nuclear magnetization increases proportionally with the
main magnetic field strength (B-0) results in significant SNR increase for all nuclei detectable by
MR. At ultra-high field (≥ 7 T) the proton (1H) B-+1 homogeneity becomes more challenging in
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larger anatomic regions due to the short wavelength, however,
this applies less strongly to 31P MRS because of the lower
Larmor frequency. 31P cardiac MRS additionally benefits from
increased B0 since the chemical-shift anisotropy helps to shorten
the cardiac T1 relaxation times for at least PCr andATP, therefore,
increasing SNR [12]. Comparison of spectral quality between 3 T
and 7T cardiac 31P MRS, showed the significant benefit that
comes with increasing B0, i.e., a 2.8 fold increase in PCr SNR [13].

To acquire as much of the theoretically available signal
available, optimized RF coils need to be employed. The use
of multiple receiving and/or transmitting elements in coil
arrays offers SNR [1, 14] and/or acquisition speed advantages
on the receive side [15, 16] and—if combined with adequate
simulation and pulse design—greatly improved data quality and
lower specific absorption rate on the transmit side [17, 18].
Electromagnetic coupling of the RF coil to the tissue and,
therefore, SNR, increases when the coil is conformed to the
anatomy [19]. Hence, most coils are assembled on anatomically
form-fitted rigid housings. However, for applications where large
anatomical inter-subject variability is expected, flexible RF coils
are favorable to account for this heterogeneity in anatomy. Due to
the longer wavelength for 31P it is still possible to use single loop
coils for 7 T 31P MRS on the torso, which is the RF coil of choice
in most published studies [13, 20, 21]. More elaborate designs
include a 2-element Tx/Rx overlap array [9] and combinations
of a Tx volume coil with Rx arrays [22–24].

The goal of this study was to design, build and evaluate
a dedicated flexible 31P RF coil for phosphorus cardiac
MR spectroscopy at 7 T to be integrated into a 12-channel
transmission line resonator (TLR) array for torso MRI [25].
Due to the already existing coil housing, possible design
dimensions for the 31P array were limited. Suitable designs with
various element sizes and arrangements were investigated via
3D electromagnetic simulation in a comprehensive study. By
definition of a performance measure that takes into account
power efficiency, SAR efficiency, and homogeneity of the
resulting transmit field B+1 , and the receive performance based on
the resulting B−1 field, the best performing design was identified
and eventually realized. A novel concept for floating dual-tuned
cable traps working at both frequencies of operation (297.2 MHz
for 1H and 120.3MHz for 31P) was developed and integrated into
the coil housings. The performance of the proposed array was
compared with a commercially available standard single loop 31P
RF coil for cardiac applications in simulation and measurement.
Finally, the feasibility of acquiring localized 31P spectra in vitro
was demonstrated.

MATERIALS AND METHODS

RF Array Design
Potential RF coil designs were intended to cover the average
human heart size of 12× 8× 6 cm3 and its location∼2 cm below
the sternum [26]. The developed 31P array acts as an extension to
an existing 1H RF coil [25], to enable acquisition of additional
metabolic information of the heart muscle. The proton coil array
consists of 12 TLR elements that were fabricated on a flexible
substrate with a rigid PCB part in the center of each TLR element

connected to their tuning and matching components. The PCB
is connected to a rigid housing box incorporating each elements
interface board, including T/R switches, 1:3 splitters and cable
traps. The considered designs are to fit into the rigid housing
boxes of the TLR elements, which poses a hard constraint on the
maximum number of elements, coil sizes, and shapes. Figure 1
shows all considered RF coil array configurations, ranging from
1- to 4-channel arrays differing in size, arrangement and position,
yielding a total number of 32 simulated array designs. The 12
TLR elements and their respective shields are depicted in gray.
To discretely sample the possible configurations, the element size
was varied in multiples of the 1H TLR element dimensions of 94
× 94 mm2. Regarding the position, the respective array center
matches either the 1H array’s center (corresponding to the center
of the body) or is shifted by one half 1H element width to the
patient’s left. The flexibility of the 1H coil leads to a bending of
the leftmost and rightmost elements. By shifting the center of
the 31P coil the array experiences a different degree of bending
which has an influence on the overall produced field. Those
positions are denoted body-centered (bc) and heart-centered
(hc), respectively.

Electromagnetic Simulation
All coil designs were modeled in XFdtd 7.5 (Remcom,
State College, PA, USA) using 1mm thick wire as perfect
conductors. The 3D EM simulations and their post-processing
were computed on a workstation equipped with 4 GPUs
(Tesla C2070, Nvidia, Santa Clara, CA, USA) enabling GPU
acceleration, 12 CPUs (Intel R© Xeon R© X5690, 12M Cache,
3.46 GHz, 6.40 GT/s Intel R© QPI, Santa Clara, CA, USA), and
190 GB RAM. Each coil element was cut into equally long
copper stubs connected by a capacitor to limit the electrical
length of the coil. Depending on the configuration it was
used in, the number of gaps was 8, 6, and 4 for the 1, 3,
and 4 element arrays, respectively. This corresponds to stub-
lengths between ≈ λ/15 and λ/42 for the 2 × 1.5 elements
(4 channel array) and 1.5 × 1 element (1 element array),
respectively, preventing any wavelength effects for all presented
designs. All capacitors were eventually replaced by 50� voltage
sources to enable a fast RF co-simulation approach [27] in
ADS (Keysight Technologies, Santa Rosa, CA, USA). All designs
were simulated as overlap-decoupled arrays. An overlap factor
of 0.86 was used [28]; as this factor only applies to quadratic
elements, for non-quadratic elements decoupling was corrected
by additional counter-wound inductances (CWI) [29] during RF
co-simulation. Realistic loss incorporation was implemented by
assigning capacitors their realistic equivalent series resistances by
extrapolating an ESR model for the ATC 100 E capacitor series
(http://www.atceramics.com/multilayer_capacitors.html). Solder
joint losses were modeled as series resistances extrapolated to
120.3 MHz from literature [30]. Counter-wound inductances
were modeled lossless since they were solely used to mimic
sufficient overlap decoupling. Losses of the power splitter
(−0.36 dB/channel) and the transmit/receive switches (−0.8
dB/channel) were measured on the bench and incorporated into
the simulation.
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FIGURE 1 | Simulated array designs. The designs are grouped by the number of channels, i.e., 1–4 elements. Each group is divided in body-centered (bc) and

heart-centered (hc) arrays. bc-arrays are centered above the sternum, hc-arrays are shifted by half a housing box to the left, to be centered above the heart, as

indicated on the torso on the bottom right. Colors represent the size of the individual elements, as stated in the legend on the bottom, the numbers are the element

sizes in multiples of the underlying 12-ch 1H array housing boxes (grid on torso, bottom right); one unit cell has a length of 94mm.

TABLE 1 | The total number of phase sets for each of the four coil groups (1-, 2-,

3-, and 4-element arrays) as well as the total number of simulation setups

are stated.

Total number of phase optimization simulations

Array

design

1 element 2 elements 3 elements 4 elements Total #

phase

optimization

simulations

1ϕ 5◦ 5◦ 10◦

|8i | 1 72 5184 46656 955016

# of distinct

designs

4 8 11 9

Each phase set results in a certain value for PE, RH, SE, and fϕ . The phase set that

maximizes fϕ is the designated optimal phase set of the corresponding RF coil. The total

number of phase optimization simulations for each voxel model equals 477508.

The proposed array designs were loaded with realistic
human body models (“Duke” and “Ella,” Virtual Family, IT’IS
Foundation, Zurich, Switzerland), yielding a total of 64 3D
simulation setups to be compared. Combination of 3D EM field
data and co-simulation results and further post-processing was
performed in Matlab 2017b (Mathworks, Natick, MA, USA).
In order to compare the performance of the designs, optimal
static B1

+ shimming was obtained by varying the relative
phase shift (1ϕ) between the elements in 5◦ steps for the
2- and 3- element arrays and in 10◦ steps for the 4 element
arrays, respectively (see Table 1 for the total number of phase
sets |8i|).

The optimal phases were determined for each design by
maximizing a merit function fϕ that is an equally weighted
combination of power efficiency (PE), SAR efficiency (SE), and

relative homogeneity (RH):

PE (8i) = B+1 (8i)√
Pin

SE (8i) = B+1 (8i)√
max(SAR10g(8i))

RH (8i) = 1− std
(

B+1 (8i)
)

B+1 (8i)























fϕ(8i) =
1

3
·





PE (8i)

max
8i

(PE)
+ SE (8i)

max
8i

(SE)
+ RH (8i)

max
8i

(RH)



 (1)

In Equation (1) the maximum value is evaluated over all
simulated phase combinations for one specific design. The mean
values were averaged over an ROI comprising the heart lumen
and muscle and normalized with respect to the maximum value
for the respective array. To identify the best design (di, i= 1,..., 32,
i.e., all considered coil designs), an extended merit function ftot ,
additionally taking into account the receive efficiency in terms of
SNR [31] was evaluated for all phase-optimized designs, but now
normalized with respect to the maximum values for SE, PE, RH,
and SNR over all investigated designs, respectively:

SNR =
∣

∣B−1
∣

∣

√
Pabs

ftot(di) = 1
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·
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(

di
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max
di
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+
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(2)
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The values for PE, SE, RH, and SNR were averaged over “Duke”
and “Ella,” both equipped with the same design.

To evaluate the influence of the CWI decoupling, another

set of simulations with 2 elements of dimensions 1 × 1 (
∧=

94 × 94 mm2) and 1 × 3 (
∧= 94 × 282 mm2) and overlap

factors between 0.76 to 0.92 in steps of 0.02 was performed.
The arrays were loaded with a rectangular phantom filled with
a material mimicking tissue (σ = 0.55 S/m, ε = 51) and
were tuned, matched and decoupled in co-simulation using
CWI where necessary. Static B+1 shimming for a spherical
ROI with a diameter of 125mm, located 35mm below the
RF coils was derived in the same manner as described in
the previous paragraph using Equation (1). The arrays with
the overlap factor resulting in best decoupling were compared
to the corresponding arrays with overlap factor 0.86 with
additional CWI in terms of S12, RH, PE, SE, SNR, and
maximum 10 g-SAR. For a theoretical comparison of a
commercially available single loop 31P coil (RAPID Biomedical
GmbH, Rimpar, Germany) with the best design identified
above, the performance of both RF coils was investigated
using the aforementioned simulation workflow. The single loop
has a diameter of 140mm and an assumed wire thickness
of 1.5mm. The loss of the transmit/receive switch was set
to the same as for the array (−0.8 dB) and incorporated
in the evaluation. Both setups were positioned on the voxel
models as closely to reality as possible in terms of distance
and curvature in order to obtain results comparable to the
measured data.

RF Coil Implementation
The design determined by simulation, i.e., the 3 channel 1 ×
1.5 heart-centered array, was implemented. For flexibility, the
31P array was constructed out of flexible stranded wire (Ø =
2mm). Crosstalk between the 1H and 31P arrays was minimized
by replacing every second segmenting capacitor of the 31P loops
by an LCC trap [32], resulting in three traps per element. To
ease the handling of the whole coil and to keep it as flexible
as possible, a separate interface box for the coil was avoided
by placing transmit-receive switches, preamplifiers and power
splitters inside the 12 separated 3D-printed housing boxes of the
1H array. Performance of the 31P array was tested on the bench,
measuring S-parameters for five human volunteers (3 male, 2
female) using a vector network analyzer (E5071C, Agilent, Santa
Clara, CA, USA).

In order to prevent common mode currents on the cables at
both Larmor frequencies, double tuned floating cable traps were
implemented [33]. By nesting two floating traps [34] into one
another, blocking at two different frequencies can be achieved.
Two hollow dielectric cylinders are split in half along their
axes and are covered by conductive copper layers on the inside
and outside walls. The inner trap shares its outer copper layer
with the inner copper layer of the outer trap. At one end, all
three concentric copper layers are short-circuited, while tuning
capacitors are connecting the outer to the middle and the middle
to the inner layer on the other side. The capacitors (CHB series,
Exxelia Ceramics, Pessac, France) across the outer (inner) shell
coarsely control the first (second) resonance frequency of the

FIGURE 2 | Static B+
1 shimming result. Static B+

1 shimming result for the best-performing design (3-element heart centered with 94 × 141 mm² elements) simulated

on Duke is shown. (A) depicts the resulting point cloud (5,184 points), where each point represents the array’s performance in terms of relative homogeneity (RH),

power efficiency (PE), and SAR efficiency (SE), for a certain phase set. The optimal phase set is chosen where the merit function fϕ is maximized (depicted as a red

circle). In (B) the resulting B+
1 /
√
Pin maps are shown for the phase shifts that maximize RH, PE, SE and f, respectively.
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trap, respectively. By varying the distance between the two halves
of the cylinders, the frequencies can be finely adjusted, however
not independently. The trap body was 3D-printed (Rebel 2,
Petr Zahradník Computer Laboratory, Ústí nad Labem, Czech
Republic) from ABS plastic material (ε ≈ 2). The dimensions
of the hollow cylinders were Ø = 8mm, 13mm, and 20mm,
respectively, all with a length of 55mm.

MR Measurements
All MR measurements were conducted on a 7 T whole body MR
scanner (Siemens Magnetom, Erlangen, Germany), using a tissue
mimicking torso phantom with dimensions of 230 × 280 × 380
mm3 containing saline solution (σ ≈ 0.5 S/m, ε ≈ 80) with 1.57
g/L K2HPO4 and 0.14 g/L KH2PO4 (0.01 M/l PO4, pH= 8). The
coil was positioned centrically with respect to the phantomwhich
was located in the isocenter of the scanner.

31P CSI data was acquired using an ultrashort TE chemical
shift imaging (ute-CSI) sequence [35] (TR/TE = 1770/2.3ms,
FOV 400 × 400 × 350 mm3, matrix size 8 × 16 × 8, vector
size 512, scan time 7:46min). For localized 31P spectroscopy a
stimulated echo acquisition mode (STEAM) sequence [36] was
applied (TR/TE = 3,000/13.4ms, TM = 6.9ms, voxel size 50
× 20 × 50 mm3, vector size 1024, 32 averages, voxel location
7 cm from phantom wall, scan time 1:36min). All spectra were
post-processed using the MATLAB-based OXford Spectroscopy
Analysis (OXSA) toolbox [37] and its implementation of the
AMARES fitting method [38]. For combination of the three
individual channels of the array a whitened singular value
decomposition (WSVD) approach was used [39].

LCC trap performance was validated inside the scanner, by
acquiring flip angle maps in an equally sized phantom containing
only saline solution (σ ≈ 0.5 S/m, ε ≈ 80) with and without the
31P array integrated into the 1H coil housings using a saturated
Turbo FLASH (satTFL) sequence [40] (TR/TE= 10,000/2.02ms,
FOV = 450 × 450 mm2, matrix size 128 × 128, rectangular
slice-selective saturation pulse, pulse duration 700ms, reference
voltage 300V, slice thickness 10 mm).

RESULTS

RF Array Design
The computational cost of each individual full wave simulation
depends on the size of the array, the number of gaps, and the
voxel model used as load. CPU/GPU RAM requirements and the
total computation time for a single EMS were between 0.38/0.25
GB and 1.47 h (design: Ella 1 element 1.5 × 1 hc) and 2.49/1.52
GB and 49.9 h (design: Duke four element 2 × 1.5 bc). Post-
processing of the individual designs is highly dependent on the
number of channels, ergo the number of different phase sets
that need to be calculated in order to evaluate the static B-+1
shimming, and was between 0.46 and 13.6min for the Ella 1
element 1.5× 1 hc and Duke 4 element 2× 1.5 bc, respectively.

Static B+1 shimming was optimized for each of the 64
simulated designs (32 for “Duke,” and 32 for “Ella”). Figure 2A
shows the resulting point cloud for the B+1 shimming procedure
for an exemplary dataset. Each point represents the result in
terms of RH, PE, and SE for a certain phase set. The phase sets

that result in maximum RH, PE, SE, and fϕ , are marked by blue,
black, green, and red circles, respectively. Figure 2B shows the
resulting B+1 /

√
Pin maps achieved with the optimal phase set for

best RH, best PE, and best SE (which is equal to best fϕ in the
shown case). Evaluating the extended merit function ftot over all
designs resulted in the final design choice of a 3 element array
with element sizes of 94 × 141 mm2, centered above the heart.
Figure 3 depicts the mean values over the heart ROI for ftot , RH,
SE, PE, and SNR for all simulated designs for Ella, Duke, and the
average over both (black).

In the 2-channel array simulation for determining the
influence of the CWI decoupling, the optimal overlap factor was
determined to be 0.88 for the 1 × 1 and 0.78 for the 1 × 3
sized arrays. S21 for optimized overlap decoupling (OL) only and
fixed overlap plus additional CWI decoupling (OL+ CWI) were
always below −17.1 db. For both array types, i.e., 1 × 1 and 1 ×
3, the highest deviation between OL + CW and OL designs was
found in the maximum 10 g SAR value, with an increase of 1.29%

(
∧= 0.02 1/kg) and 4.13 % (

∧= 0.03 1/kg) for the 1 × 1 and 1 × 3
arrays, respectively. All results are summarized in Table 2. These
findings support the hypothesis that simplifying the simulations
of all array designs with a fixed overlap+ CWI to mimic optimal
overlap decoupling is reasonable.

Bench measurements of the implemented array in loaded
condition before and after incorporation into the 1H housing
were conducted on 5 human volunteers (3 male, 2 female,
30 ± 3.6 years) and show sufficient matching and isolation
between array elements, i.e., the reflection coefficients (S11, S22,
S33) were always below −17.5 dB and −17.2 dB, respectively,
while transmission coefficients (S12, S23, S31) were below −13.1
and −13.6 dB. The array needed to be slightly retuned and
rematched after integration due to slight position changes and
distance to the sample. The measured Q ratio (Qu/Ql) for
all three elements prior and after incorporation was above
5.5 and 5.7, indicating sample loss dominance and negligible
additional losses due to the 1H coil and housing. The floating
double tuned traps were correctly tuned, with a blocking of
−10.5 dB/−34 dB and a bandwidth of 3 MHz/6 MHz at
120 MHz/297.2 MHz respectively. The tuning range for both
blocking frequencies by changing the gap size between the half-
cylinders was±10%, which was sufficient to tune the traps to the
desired frequencies.

Performance Comparison With Single Loop
In simulation the proposed three element array yields a mean
power efficiency in the heart ROI that is 58% higher than the
respective values for the single loop reference coil. In terms of
SAR efficiency, the array performs 124% better than the loop; the
10 g averaged SAR values decrease by 51%. Relative homogeneity
is 30% better. The results are presented in detail in Table 3

and Figure 4.

MR Measurements
A maximum deviation in B+1 acquired with and without the 31P
array present of<20%was found (see Figure 5). Before acquiring
CSI data, a series of localized spectra were obtained in order
to find the reference voltage for a voxel in a location similar
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FIGURE 3 | Comparison of the 32 simulated RF coil designs. The performance parameters relative homogeneity (RH, diamonds), power efficiency (PE, squares), SAR

efficiency (SE, circles), and receive efficiency (SNR, triangles) are plotted for each design. Results for Ella, Duke, and their average are depicted in purple, blue, and

transparent with black rim, respectively. The figure of merit f tot is displayed as bars. The highlighted bar indicates the performance parameters of the reference single

loop coil. Below the chart, the table summarizes the geometric properties of each array, x- and y-size are given in multiples of 94mm, the unit size of the housing

boxes of the underlying 1H array. The best design for both Duke and Ella is the 3-element heart-centered array with 94 × 141 mm².

TABLE 2 | Investigation of CWI decoupling elements via simulation of 2 element arrays.

1 × 1 1 × 3

Overlap factor S12 RH PE SE SNR 10g SAR overlap factor S12 RH PE SE SNR 10g SAR

dB % µT/√
kW

µT/√
(W/kg)

a.u. 1/kg dB % µT/√
kW

µT/√
(W/kg)

a.u. 1/kg

OL + CWI 0.86 −17.11 27.02 10.24 8.12 3.73 1.59 0.86 −20.06 39.13 7.00 8.17 2.63 0.74

OL 0.88 −17.55 27.28 10.19 8.13 3.73 1.57 0.78 −18.69 37.88 6.88 8.19 2.63 0.71

abs. Difference 0.02 0.44 0.26 0.05 0.01 0.00 0.02 0.08 1.37 1.26 0.12 0.02 0.01 0.03

Arrays with two elements of dimensions 1 × 1 and 1 × 3 were simulated once with an optimized overlap factor (OL) and with a fixed overlap factor of 0.86 and additional counter-wound

inductances (OL + CWI). RH, PE, SE, and SNR values are averaged over a spherical ROI volume. Performance difference of the OL + CWI vs. OL arrays can be seen in the bottom

row and is negligible for both dimensions, supporting the CWI’s use to mimic optimal overlap decoupling.

to the human heart, i.e., 7 cm from phantom surface wall in y-
direction. Figure 6A shows all spectra plotted as signal amplitude
vs. reference voltage. The reference voltage is the voltage that
would be required to achieve a 90◦ flip angle using a 1ms block
pulse. The signal amplitudes were fitted with a sin3 function,
corresponding to the signal equation for STEAM sequences. The
reference voltage for the single loop is 400V, whereas the array
needs 880V in the same voxel. The localized spectra of the
acquisitions where 90◦ were reached are shown in Figure 6B for
the array and the single loop. From these spectra SNR values of

52 for the array, and 35 for the single loop were calculated. In
Figures 6C,D transversal and sagittal metabolic maps acquired
with the array (top) and the single loop (bottom) are displayed.

DISCUSSION

In this work we show the successful integration of an optimized
3-channel 31P array for cardiac MRS at 7 T into a flexible 12
channel 1H coil.
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TABLE 3 | Simulation comparison of 3-element array vs. single loop coil.

Three-element array Single loop % change

RH PE 10g SAR SE SNR RH PE 10g SAR SE SNR RH PE 10g SAR SE SNR

% µT/
√
kW 1/kg µT/

√
(W/kg) au % µT/

√
kW 1/kg µT/

√
(W/kg) au

Heart Duke 60.6 20.7 0.37 34.3 10.6 46.4 13.8 0.68 16.8 9.1 30.5 49.7 −46.5 104.8 16.1

Ella 68.0 24.6 0.38 39.7 12.8 52.7 14.9 0.84 16.3 10.5 29.2 65.2 −54.3 144.2 21.8

avg. 64.3 22.7 0.37 37.0 11.7 49.5 14.4 0.76 16.5 9.8 29.8 57.7 −50.8 124.2 19.2

VOI Duke 83.2 13.9 0.37 23.0 8.9 71.9 10.9 0.68 13.2 7.8 15.8 27.1 −46.5 73.9 14.0

Ella 82.0 16.9 0.38 27.4 9.9 73.9 13.4 0.84 14.7 8.2 10.8 26.4 −54.3 86.8 20.9

avg. 82.6 15.4 0.37 25.2 9.4 72.9 12.2 0.76 13.9 8.0 13.3 26.7 −50.8 80.7 17.5

The bold values state the averaged values over Duke and Ella for the heart and VOI respectively. RH, PE, SE, and SNR values are averaged over the whole heart volume and over the

VOI used in measurement.

FIGURE 4 | Simulation comparison of the proposed 3-element array with a standard 14 cm single loop coil. (A) depicts the RF coil setups, the proposed array is

depicted in the top row, whereas the single loop is depicted in the bottom part. Both coils are positioned centered over the heart. (B) shows the resulting B+
1 /
√
Pin

maps in a transversal slice through the center of the heart ROI. Higher B+
1 values are seen for the 3-element arrays. (C) depicts coronal maximum intensity projections

of the 10 g averaged specific absorption rate (SAR).

A set of 32 31P array layouts, each evaluated using
two different voxel models (one male, one female) to
incorporate inter-subject variability was compared via

full wave 3D electromagnetic simulation with realistic
loss estimations to find the best performing array design.
Static B+1 shim phase sets optimized for a combination of
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FIGURE 5 | Coronal 1H B+
1 maps with and without 31P array present. Top row shows coronal B+

1 slices (10mm slice thickness, distance from surface/RF coil 1–5 cm)

with the 31P array positioned below the proton array, whereas in the middle row the same slices are shown without the 31P array present. Bottom row shows the

resulting difference of the B+
1 maps above. Highest deviations are encountered where the B+

1 mapping sequence produced artifacts due to the high B+
1 of surface coils.

FIGURE 6 | Localized Spectroscopy and CSI data. (A) shows all data points acquired with a STEAM sequence from a voxel of size 50 × 20 × 50 mm3 7 cm within a

torso phantom containing 31P. The blue and red data points represent the spectra acquired with the array and the loop, respectively. The course of the signal

amplitude is fitted with a sin3 function corresponding to the signal equation for STEAM sequences. The reference voltages are 400V (single loop) and 880V (array). (B)

SNR comparison of localized spectra for array (SNR = 51.8, top) and the loop (SNR = 35.4, bottom). (C,D) Metabolic maps, interpolated from CSI data, scaled to

their individual maximum, in a (C) transversal and (D) sagittal slice for the array (top) and the single loop (bottom). The phantom is depicted as a white rectangle.
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homogeneity, power and SAR efficiency were calculated for all
investigated arrays.

All array layouts used a fixed overlap and additional counter-
wound inductances to decouple the array elements in order
to save simulation time, since finding the optimal overlap for
differently sized array elements is very time consuming due
to the necessity to rerun the 3D simulation for each setup
multiple times while changing the overlap factor slightly, until
optimal decoupling is achieved. It was exemplarily shown for
two elements that the differences between optimal overlap only
as compared to a fixed overlap factor and the additional CWIs
are negligible.

A new way of visualizing B+1 shimming results in the entire
phase shift parameter space was introduced, allowing for quick
and easy visual inspection of the variation of performance
parameters on the chosen phase set. A figure of merit taking
into account an equally weighted combination of homogeneity,
power and SAR efficiency was employed. This approach can
be universally employed for any transmit array. Depending on
the requirements of the application, the weights for the figure
of merit could be changed to favor a specific performance
parameter. This could be useful e.g., to optimize the B+1 shim
more strongly for SAR efficiency in applications that are SAR
demanding, or for homogeneity where a uniform flip angle
distribution is essential, or for power efficiency where the
available transmit power is limiting.

The best performing design was a 3-element array centered
above the heart with individual elements of 94 × 141 mm2. It
was integrated into the housings of the proton coil, including
performance tests on the bench and in the MR scanner.

Maximum B+1 deviations for the 1H array alone vs. the
combination with the 31P array were found in superficial areas
and were below 20%, indicating sufficient decoupling between
the two frequencies.

Simulation predicted that the proposed 3-element RF array
would outperform a 14 cm single loop coil for cardiac MRS at
7 T in terms of power efficiency (+ 58% over the whole heart, +
27% in the measured VOI), SAR efficiency (+124% heart,+ 81%
VOI), and relative homogeneity (+30% heart,+13% VOI).

Despite the higher calculated power efficiency, in the
experiment higher pulse amplitudes were necessary in the VOI
for the array when compared to the single loop (Figure 6A).

The main cause for this behavior is that the array was simulated

and constructed to be optimal for human subjects, but the
measurement was performed on a homogeneous phantom.
Firstly, this led to a mismatch of the RF coil to the phantom load,
resulting in a significant decrease of the effective input voltage at
the coil ports. Secondly, the power efficiency was simulated for
the array bent on a human load, but since the phantom did not
allow for bending, the coil was used in flat configuration, leading
to lower efficiency in depth. In addition, shielding effects from
the conductive structures of the 1H coil elements and interfaces
were not considered in simulation and could possibly also reduce
transmit efficiency. Losses associated to imperfect decoupling
from the 1H array, and induced common mode currents on the
cable shields further contribute to the difference, although to a
lesser extent, since an effort was made to keep them as small
as possible.

Nevertheless, an SNR increase of + 46% in the VOI was
demonstrated with identical flip angle as in the reference coil,
which shows the advantages of the array in terms of receive
sensitivity and supports the above reasoning for suboptimal
transmit performance on the phantom.

Because of the mentioned limitations of the phantom
measurement, an even stronger increase for in vivo
measurements can be expected. In a next step, the required
tests and documentation of the coil for approval of the ethics
board will be established to enable the usage of the coil in an in
vivo study.
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contribution usually of the order of 3%. The only exception is represented by the A = 8 systems, for which 

the reduced matrix elements are severely underpredicted by the theory, even after the inclusion of the 

(large, about 30 %) contribution from two-body axial currents. This severe underprediction indicates 

the need of further improvements in the A = 8 nuclear wave functions. In conclusion, with this work, 

the authors have set the foundations for the development of an accurate and unified understanding of 

weak processes. In a near future the neutrino-nucleus interactions will be at reach, providing crucial 

inputs for long-base neutrino oscillation experiments like, for instance, MiniBooNE, T2K, Minerνa and 

the upcoming DUNE.
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The “proton radius puzzle” is one of the most intriguing problems in physics since a decade or so. 

The proton (charge) radius has been measured within different techniques, i.e. hydrogen spectroscopy, 

elastic lepton (electron) scattering, and muonic hydrogen spectroscopy. The results from these different 

techniques were found back in 2010 significantly different, with the muonic hydrogen spectroscopy result 

about 4 % smaller than the results obtained with the other techniques. This puzzle clearly has motivated 

several new experiments and different reanalyses of the existing data, and several steps have been done 

to find the solution. In this paper, the authors revisit the first electron scattering data published back in 

1963 and used in the standard dipole parametrization of the proton form factor. In the reanalysis, they 

have discovered a sign error in the original work which would have led to a value for the radius in good 
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agreement with the latest muonic hydrogen spectroscopy result. The authors additionally performed a 

new analysis of the data, based on a Monte Carlo study of different form factor models, a tool not available 

in the 1960s. Within this reanalysis, the authors give a more reliable determination of the radius, which is 

found in very good agreement with recent extractions of the radius from other techniques and with the new 

recommended value. In conclusion, the “proton radius puzzle” seems to be nowadays essentially solved.
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Nuclei are used for high-precision tests of the Standard Model and for studies of physics

beyond the Standard Model. Without a thorough understanding of nuclei, we will not

be able to meaningfully interpret the growing body of experimental data nor will we

be able to disentangle new physics signals from underlying nuclear effects. This calls

for accurate calculations of nuclear structure and reactions. In this work, we focus

on electroweak decays in nuclei with mass number A ≤ 10 and report on ab initio

Quantum Monte Carlo calculations of reduced matrix elements entering beta decays

and electron captures in nuclei with mass number A ≤ 10. The many-body wave

functions are calculated using selected Norfolk two- and three-nucleon potential models

and associated one- and two-body axial currents at tree-level obtained from a chiral

effective field theory with pions, nucleons, and 1. The agreement with the experimental

data is satisfactory except for transitions in A = 8 nuclei. In this specific case, the theory

significantly underpredicts the experimental data, which indicates the need of further

improvements in the corresponding nuclear wave functions. In this study, emphasis

is placed on the contributions of two-body axial currents that are carefully analyzed

using two-body transition densities. This allow us to study the spatial distribution and

short-range behavior of two-body dynamics. In particular, the transition densities when

scaled to peak at 1.0 exhibit universal short-range behavior across the considered nuclei,

while they differ in the long-range tails.

Keywords: nuclear interactions, nuclear currents, chiral effective field theory, ab-initio calculations, weak

transitions

1. INTRODUCTION

Nuclei are used for high-precision tests of the StandardModel and for studies of physics beyond the
Standard Model. Without a thorough understanding of nuclei, we will not be able to meaningfully
interpret the growing body of experimental data nor will be able to disentangle new physics signals
from underlying nuclear effects. Current and next generation experimental programs are poised
to address open questions within fundamental symmetries and neutrino physics to understand the
origin of nonzero neutrino masses, the observed matter, and anti-matter unbalance, and the nature
of dark matter. These experimental endeavors often rely on accurate calculations of electroweak
structure and reactions in nuclei.

For example, nuclear physics plays a pivotal role in searches for neutrinoless double beta (0νββ)
decays, which are the subject of an intense experimental research program [1–14]. In these decays,
two neutrons inside the nucleus decay into two protons via the exchange of a neutrino, emitting
two electrons. The rates of these decays depend not only on unknown fundamental neutrino
parameters but also on nuclear properties. Extracting the neutrino parameters from experiments
requires theoretical evaluation of nuclear matrix elements for neutrinoless double beta decay. This
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decay, if observed, would have tremendous theoretical
implications and could give insight into our understanding
of the observed matter-antimatter asymmetry in the universe.
Calculations for nuclei of experimental interest (A ≥ 48)
are based on computational methods that inevitably adopt
approximations to solve the nuclear many-body problem—e.g.,
model space truncations and/or omission of many-body effects.
As a consequence, estimates of 0νββ matrix elements may vary
by a factor of two when computed using different computational
models (see [15] and references therein). It is then crucial to
understand neutrino–nucleus interactions with great accuracy as
well as the role and relevance of many-body dynamics, such as
many-nucleon correlations and currents.

Furthermore, intense experimental research activity is
currently focused on long-base neutrino oscillation experiments
(such as MiniBooNE, T2K, MicroBooNE, Minerνa, and the
upcoming DUNE; [16–20]) aimed at profiling neutrinos, whose
masses, among other properties, are still not known. Neutrinos
signal their presence by interacting with nuclei which are the
active material in the detectors. Additionally, in this case,
meaningful interpretations of the data require an accurate
understanding of the way neutrinos interact with nuclei.

The study of light nuclei, for which the nuclear many-
body problem can be solved exactly or within controlled
approximations by fully retaining many-nucleon correlations
and electroweak currents, offers the possibility of quantifying
the contribution from many-body effects and consequently of
assessing the robustness of a given approximation. In this work,
we report on a recent study of electroweak matrix elements in
A ≤ 10 nuclei entering single beta decays and electron captures
(or inverse beta decays). Rates of single beta decay—a process
in which a proton (neutron) inside the nucleus decays into a
neutron (proton) with the emission of a positron (electron) and
an electron (anti)neutrino—are, in most cases, experimentally
well-known. This provides us with stringent means to validate
our theoretical description of nuclear systems and to assess the
role of many-body dynamics. In particular, we work within the
nuclear microscopic approach in which nuclei are described in
terms of non-relativistic nucleons interacting with each other
via two- and three-body nuclear potentials and with external
probes, such as neutrinos, electrons, and photons, via one- and
two-body current operators. We use Quantum Monte Carlo
(QMC) computational methods [21–23] to solve the many-body
nuclear problem with a nuclear Hamiltonian consisting of high-
quality two- and three-body potentials obtained from a chiral
effective field theory (χEFT) that retains nucleons, pions, and
1-isobars as explicit degrees of freedom [24–28]. We base the
calculation of the transition matrix elements on one- and two-
body axial currents [29] and provide results for one- and two-
body weak transition densities. The latter will turn out to be
particularly important to understand the role of short-range
many-body dynamics.

Ab initio studies in light nuclei allow us to carefully test
many-body correlations and electroweak currents and serve
as benchmark to approximated many-body methods currently
employed to access heavier nuclear systems [30, 31]. A study
along these lines has been carried out recently in [32].

This study represents a first step into the validation of
our theoretical model. In fact, beta decay processes occur at
zero momentum transfer while the energy transfer involved is
of the order of a few MeVs. Neutrinos exchanged in 0νββ

processes carry a value of momentum transfer of the order
of few hundreds of MeV/c [15], while the energy transfer in
neutrino oscillation experiments covers a large phase space
reaching the GeV scale. It is then essential to validate the
theoretical model in a wide range of energy and momentum
transfer to have a complete and unified description of neutrino–
nucleus interactions. For example, calculations of total and
partial muon-capture rates and comparisons with the known
experimental data will probe our model at intermediate values of
momentum transfer and will be the subject of our future work. At
higher energies, neutrino–nucleus cross sections calculations [33,
34] are the main input to interpret the data from long
and short baseline neutrino-oscillation experiments, which use
nuclei as active material in the detectors. Specifically, current
challenges concern the implementation of microscopic models
of nuclear dynamics—that fully capture correlation effects—in
neutrino event generators [35] used to simulate the neutrino
interaction physics.

The paper is structured as follows: In section 2, we briefly
summarize the theoretical and computational methods adopted
in the present work and refer the interested reader to [36]
for further details. In sections 3 and 4, we present our results
and conclusions.

2. THEORY

2.1. Quantum Monte Carlo Methods
Quantum Monte Carlo methods have been most recently
described in several review articles [21–23]. Here, we briefly
sketch the employed calculational scheme and refer the reader
to [36] for details. We use both Variational Monte Carlo (VMC)
and Green’s FunctionMonte Carlo (GFMC)methods to calculate
transitions matrix elements. We base our study on the following
many-body Hamiltonian:

H =
∑

i

Ki +
∑

i<j

vij +
∑

i<j<k

Vijk (1)

where Ki is the non-relativistic kinetic energy operator and vij
and Vijk are the NV2 and NV3 Norfolk local chiral interactions
developed in [24–28]. Together, we denote these interactions
as NV2+3.

For a nuclear state with given angular momentum and parity
Jπ , isospin T, and isospin projection TZ , the VMC method
takes as a starting point a trial wave function 9V (J

π ,T,Tz),
constructed as follows

|9V〉 = S

A
∏

i<j



1+ Uij +
A

∑

k6=i,j

ŨTNI
ijk



 |9J〉. (2)

The Jastrow wave function 9J is fully antisymmetric and has the
(Jπ ;T,Tz) quantum numbers of the state of interest, and Uij and
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ŨTNI
ijk

are two- and three-body correlation operators that reflect

the influence of the two- and three-body forces, respectively [37–
40]. The state |9V〉 has embedded variational parameters that one
adjusts to minimize the expectation value

EV = 〈9V |H|9V〉
〈9V |9V〉

≥ E0 (3)

evaluated with Metropolis Monte Carlo integration [41].
The VMC wave function |9V〉 is further improved using the

GFMC method. The variational state is propagated in imaginary
time with the operator exp

[

−(H − E0)τ
]

. This is done in small
steps in imaginary time, 1τ , and produces the following:

9(τ ) = e−(H−E0)τ9V =
[

e−(H−E0)1τ
]n

9V (4)

One can see that, for τ → ∞, the variational state
becomes the desired state 90. The evaluation of the off-diagonal
expectation value of a given operator O is calculated using the
following approximation

〈9 f (τ )|O|9 i(τ )〉
√

〈9 f (τ )|9 f (τ )〉
√

〈9 i(τ )|9 i(τ )〉
≈ 〈O(τ )〉Mi + 〈O(τ )〉Mf

− 〈O〉V , (5)

where 〈O〉V is the variational expectation value and 〈O(τ )〉M is
the mixed estimate defined as the following:

〈O(τ )〉Mf
= 〈9 f (τ )|O|9 i

V〉
〈9 f (τ )|9 f

V〉

√

√

√

√

〈9 f
V |9

f
V〉

〈9 i
V |9 i

V〉
, (6)

and 〈O(τ )〉Mi is defined similarly (see [42] for more details).

2.2. Norfolk Interaction Models
The calculations of weak transitions presented in this work
employ the high-quality local NV2+3 interactions developed in
[24–27]. The two-nucleon potentials, NV2s, include a strong
interaction component derived from a χEFT that involves
nucleons, pions, and 1-isobars as explicit degrees of freedom
and an electromagnetic interaction component, including up to
terms quadratic in the fine structure constant α. The component
induced by the strong interaction is separated into long- and
short-range parts, labeled vLij and vSij, respectively. The v

L
ij part is

mediated via one-pion-exchange (OPE) and two-pion-exchange
(TPE) terms up to next-to-next-to-leading order (N2LO) in the
chiral expansion. Its strength is determined by the nucleon axial
coupling gA and the nucleon-to-1 axial coupling hA, the pion
decay amplitude Fπ , and LECs c1, c2, c3, c4, and b3 + b8
constrained by fits to πN scattering-data [43]. Values of these
LECs are provided in Table 1 of [36].

The pion-range operators are strongly singular at short-range
in configuration space and are regularized by a radial function
that is characterized by a cutoff RL as reported in [24–27]. The vSij
part, however, is described by contact terms up to next-to-next-
to-next-to-leading order (N3LO), characterized by 26 unknown

LECs. These interactions have been recently constrained to a
large set of NN-scattering data, as assembled by the Granada
group [44–46], including the deuteron ground-state energy and
two-neutron scattering length. For the contact terms, we use a
Gaussian representation of the three-dimensional delta function,
with RS being the short-range regulator.

In this work, we focus on one class of NV2 interaction, namely
the NV2-Ia. This class fits about 2,700 NN scattering data in the
range of 0–125 MeV of laboratory energies with a χ2/datum
. 1.1 [24, 25]. The NV2-Ia uses the combination of short- and
long-range regulators (RS, RL) = (0.8, 1.2) fm.

The NV2 models alone are not enough to provide sufficient
attraction in GFMC calculations of the binding energies of light
nuclei [25]. For this reason, a consistent three-body interaction
up to N2LO in the chiral expansion has been developed [47] to go
with the two-body potential. This interaction consists of a long-
range part mediated by two-pion exchange and a short-range
part parameterized in terms of two contact interactions [48, 49].
The two 3N LECs, namely cD and cE, have been obtained either
by fitting exclusively strong-interaction observables [47, 50–52]
or by relying on a combination of strong- and weak-interaction
ones [27, 53, 54]. This last approach is made possible by a
relation established in χEFT [55] between cD and the LECs
entering the contact axial current at N3LO [53, 54], [Schiavilla,
private communication].

In [47], the values for cD and cE were obtained by reproducing
both the experimental trinucleon ground-state energies and nd
doublet scattering length for each of the NV2 models considered.
On the other hand, in [27], these LECs were constrained by
fitting, in addition to the trinucleon energies, the empirical value
of the Gamow-Teller matrix element in tritium β-decay. The
resulting Hamiltonian is denoted as NV2+3-Ia (or Ia for short) in
the first case, and as NV2+3-Ia* (or Ia* for short) in the second.

As shown in Table 1, these two different procedures for
fixing cD and cE produced rather different values for these
LECs, particularly for cE which was found to be relatively large
and negative in the unstarred models but quite small, and not
consistently negative, in the starred models. This in turn impacts
predictions for the spectra of light nuclei [36] and the equation of
state of neutron matter, since a negative cE leads to repulsion in
light nuclei but attraction in neutron matter [56].

The starred and unstarred NV2+3 Norfolk interactions have
been implemented in both the VMC and GFMC codes and used
to perform calculations of the energy levels [28, 47], charge
radii, and longitudinal elastic form factors [23] of A = 4 − 12
nuclei that are found to be in very satisfactory agreement with
the experimental data. Furthermore, two of the NV2+3∗ models
have been also used to perform VMC calculations of the Fermi,
Gamow-Teller, and tensor densities for 6He→ 6Be and 12Be−→
12C transitions [57], relevant for studies of 0νββ .

The NV2 models have recently been used in benchmark
calculations of the energy per particle of pure neutron matter
as a function of the baryon density using three independent
many-body methods: Brueckner-Bethe-Goldstone (BBG), Fermi
hypernetted chain/single-operator chain (FHNC/SOC), and
AFDMC [58]. The inclusion of three-body forces is essential for a
realistic description of neutron matter. These types of calculation
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TABLE 1 | cD and cE values of the contact terms in the three-nucleon interactions

obtained from fits to (i) the nd scattering length and the trinucleon binding

energies [27, 47]; and (ii) the central value of the 3H GT matrix element and the

trinucleon binding energies (starred values).

Ia Ia*

cD 3.666 −0.635

cE −1.638 −0.090

See text and [36] for details.

FIGURE 1 | Diagrams illustrating the contributions to the axial current up to

N3LO (Q0) used in this work. Nucleons, 1-isobars, pions, and external fields

are denoted by solid, thick-solid, dashed, and wavy lines, respectively. The

diagrams in (A,B) represent the leading order one-body term and its relativistic

correction (denoted by the square vertex), respectively. The remaining

diagrams, (C–E) provide two-body corrections to the one-body terms. The dot

in (D) denotes a vertex induced by subleading terms in the π-nucleon chiral

Lagrangian [26]. Only a single time ordering is shown.

are particularly relevant for the quantitative assessment of the
systematic error of the different many-body approaches and how
they depend upon the nuclear interaction of choice.

Preliminary AFDMC calculations of the equation of state
of pure neutron matter carried out with the unstarred NV2+3
Norfolk interactions [Piarulli et al., private communication] are
not compatible with the existence of two solar masses neutron
stars, in conflict with recent observations [59, 60]. However,
the smaller values of cE in the 3N force of the starred NV2+3
potentials might mitigate, if not resolve this problem, while
predicting light-nuclei spectra <4% away from the experimental
data [36]. Studies along these lines are under way.

2.3. Axial Currents in χEFT
Many-body currents are crucial for providing a quantitatively
successful description of many nuclear electroweak
observables [61], such as nuclear electromagnetic form

factors [62–65], low-energy electroweak transitions [66–
73], and electroweak scattering [33]. They have also been used
in studies of double beta decay matrix elements [32, 57, 74, 75].
The study of the electroweak matrix elements carried out in this
work employs one- and two-body axial currents derived within
the same χEFT used for the NV2+3 interactions [27]. We use
two-body axial currents at tree-level constructed in [26, 27, 29].
Here, we briefly describe the contributions shown in Figure 1

and refer the reader to [27, 36] for the explicit expressions of the
current operators and for the tables reporting the values of the
parameters adopted in the present work. We note that χEFT
electroweak operators have been also derived in [76–79].

In Figure 1A, the LO term, which scales as Q−3 in the power
counting (Q denotes generically a low-momentum scale), is given
by the standard Gamow-Teller one-body operator

jLO5,a (q) = − gA

2
τi,aσ ie

iq·ri , (7)

where gA is the nucleon axial coupling constant (gA = 1.2723 [80])
σ i and τ i are the spin and isospin Pauli matrices of nucleon i, q
is the external field momentum, ri is the spacial coordinate of
nucleon i, and a = x, y, z.

We account for an additional one body-operator shown in
Figure 1B. This contribution enters at N2LO (or Q−1) in the
chiral expansion and represents a relativistic correction to the
single-nucleon operator at LO. At N2LO there is the appearance
of the leading two-body contribution illustrated in Figure 1C by
the tree-level diagram involving the excitation of a 1-isobar. In
the tables and figures below, we label these two contributions
as N2LO-RC and N2LO-1, respectively. Following the same
notation introduced in [27], we write the cumulative N2LO
contribution as

jN2LO5,a (q) = jN2LO5,a (q;RC)+ jN2LO5,a (q;1). (8)

Finally, the N3LO contributions (scaling as Q0) involve a
term of one-pion range illustrated in Figure 1D and a contact
term shown in Figure 1E, which together give the following
N3LO correction

jN3LO5,a (q) = jN3LO5,a (q;OPE)+ jN3LO5,a (q;CT). (9)

These terms are denoted with N3LO-OPE and N3LO-
CT, respectively, and their expression are reported in
Equations (2.7)–(2.10) of [27]. As discussed at length in
[36], the N3LO-CT contact current involves the LEC cD, which
also enters the three-nucleon force. The values for the LEC
cD used in this work are reported in Table 1 and are changed
consistently in the axial current depending on the nuclear
interaction used to construct the wave functions. In this work,
we especially focus on the nuclear interactions NV2+3-Ia
and NV2+3-Ia*.
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TABLE 2 | Gamow-Teller RMEs in A = 6, 7, 8, and 10 nuclei obtained with chiral axial currents [27] and VMC wave functions corresponding to the NV2+3-Ia/Ia*

Hamiltonian models [24, 25, 27, 47].

Transition Model LO N2LO-RC N2LO-1 N3LO-OPE N3LO-CT (Total-LO) Total Expt.

6He(0+;1)→ 6Li(1+;0) Ia 2.200 −0.016 0.037 0.039 −0.005 0.056 2.256 2.1609 (40)

[42]→[42] Ia* 2.192 −0.015 0.036 0.038 −0.054 0.005 2.197

7Be( 32
−
; 12 )→7Li( 32

−
; 12 ) Ia 2.317 −0.024 0.099 0.083 −0.010 0.148 2.465 2.3556 (47)

[43]→[43] Ia* 2.327 −0.024 0.098 0.082 −0.121 0.036 2.362

7Be( 32
−
; 32 ) →7Li( 12

−
; 12 ) Ia 2.157 0.000 0.066 0.063 −0.009 0.121 2.278 2.1116 (57)

[43]→[43] Ia* 2.158 0.000 0.065 0.063 −0.103 0.026 2.184

8Li(2+;1)→8Be(2+;0) Ia 0.147 0.000 0.032 0.011 −0.001 0.041 0.188 0.284 [84]

[431]→[44] Ia* 0.141 0.000 0.031 0.010 −0.017 0.025 0.166 0.190 [85]

8B(2+;1)→8Be(2+;0) Ia 0.146 0.000 0.032 0.011 −0.001 0.042 0.188 0.269 (20)

[431]→[44] Ia* 0.148 0.000 0.032 0.010 −0.016 0.026 0.174

8He(0+;2)→8Li(1+;1) Ia 0.386 −0.004 0.034 0.009 −0.001 0.038 0.424 0.512 (6)

[422]→[431] Ia* 0.362 −0.004 0.035 0.009 −0.010 0.029 0.391

10C(0+;1)→10B(1+;0) Ia 1.940 −0.024 0.026 0.042 −0.006 0.039 1.9879 1.8331 (34)

[442]→[442] Ia* 2.051 −0.012 0.020 0.039 −0.065 −0.017 2.033

Columns labeled with “LO,” “N2LO-RC,” “N2LO-1,” “N3LO-OPE,” and “N3LO-CT” refer to the contributions given by the diagrams illustrated in Figures 1A–E, respectively. The

cumulative results are reported in the column labeled “Total.” Experimental values from [81–85] are given in the last column. The dominant spatial symmetry of the VMC wave function

are reported in the first column. Statistical errors associated with the Monte Carlo integrations are not shown but are below 1%. Values for the N2LO-RC for transitions to states in 8Be

and to the state 7Li( 3
2

−
; 1
2
) are 0.000 within the statistical uncertainty of the integration.

3. RESULTS

3.1. VMC Reduced Matrix Elements
In this section, we present the results of calculations of GT
reduced matrix elements (RMEs), defined as the following:

RME =
√

2Jf + 1

gA

〈JfM|jz5,±|JiM〉
〈JiM, 10|JfM〉 (10)

where jz5,± is the z-component in the limit q → 0 of the charge-
raising/lowering current j5,±= j5,x ± ij5,y, and 〈JiM, 10|JfM〉 is
a Clebsch-Gordan coefficient. Table 2 summarizes the results
of the VMC calculation of GT RMEs. These calculations
were evaluated with variational wave functions generated using
the NV2+3-Ia and NV2+3-Ia* nuclear Hamiltonians. The
table breaks the calculations down order-by-order: the LO
contribution from the one-body axial current in Figure 1A,
the N2LO contributions coming from a one-body relativistic
correction to the LO term (Figure 1B) and a two-body
contribution involving the excitation of a nucleon into a 1

by pion exchange (Figure 1C), and the contributions at N3LO
from the one pion exchange (Figure 1D) and the contact term
(Figure 1E). The sum of the two body contributions (Total-LO)
and the total RME are given in addition to the breakdown of each
contribution. The dominant spatial symmetries [86] of the wave
functions in each calculation are listed below the transition in
Table 2. Experimental values from [81–85] are listed in the last
column of Table 2.

From these results, we see that in the A = 3, 6, 7, and 10
cases, the LO contribution is ≈ 97% of the total RME in VMC
calculations. The other ≃ 3% are made up of beyond leading
order contributions. While beyond leading order contributions
only make up a small percentage of the total RME for the A =

3, 6, 7, and 10 cases, they are a much larger contribution for A =
8, making up ∼ 20–30% of the total RME. This is attributed to a
difference in the dominant spatial symmetries between the initial
and final states of the A = 8 VMC wave functions, resulting in
a smaller overlap between the initial and final wave functions
and a consequent suppression of the GT RME at leading order.
This indicates that the wave functions are lacking correlations
and that an improvement of the theoretical prediction will
require further developments of the wave functions, such as
the inclusion of more correlations and development of better
constrained small components. As similar behavior is also found
in the calculations of [87]. The total two-body contribution
is typically an enhancement of the total RME, except in the
A = 10 case for model NV2+3-Ia*, where the matrix element
is reduced. The short-range behavior of the two-body corrections
is studied in detail in section 3.2 where we analyze the two-body
transition densities.

For 8Li→8 Be beta decay, there are two different log(ft) values
in the literature that provide very different values for the GT
matrix element. In Table 2, we present the RMEs for this decay
using the ft values from [84, 85], obtained with the following
formula [83]:

RME(EXPT) = 1

gA

√

2Ji + 1

√

6139± 7

ft
, (11)

where Ji is the angular momentum of the initial state. Note
that the Fermi transition strength is negligible in deriving
Equation (11). This formula uses the value gA = 1.2723.
Additionally, we note that in [82, 88], a value of 6,147 is used
in place of 6,139. Even with this uncertainty in the experimental
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value of the RME, our predictions for the A = 8 systems
significantly underestimate the data.

3.2. One- and Two-Body Transition
Densities
To investigate the behavior of individual contributions to the
RMEs, one- and two-body transition densities are calculated. One
can define the one-body transition density as a function of the
distance of nucleon i from the center of mass:

RME(1b) =
∫

dri4πr
2
i ρ

1b(ri) . (12)

In Figures 2, 3, the one-body transition density is found to be
consistent between the two cases. Indeed, this is what we expect
based on Table 2. The LO contribution is consistent between the
two interactions and is not sensitive to how the LECs of the
three-body interaction are fit. Looking at the sub-leading order
contributions, we find that, with the exception of the N2LO-RC
term in the A = 10 transitions, the only term that is model
dependent is the N3LO contact term. To better understand this
difference, in a fashion similar to what is done in Equation (12)
for the one-body case, a two-body transition density as a function
of inter-particle spacing rij can be defined:

RME(2b) =
∫

drij4πr
2
ijρ

2b(rij) (13)

Two-body transition densities are plotted in Figure 4. For the
same transition, the N2LO-1 and the N3LO-OPE contributions
in models NV2+3-Ia and NV2+3-Ia* are nearly identical. This
is to be expected, as the two models use the same cutoffs to
regularize the interactions and have the two-body interaction fit
to the same data. Where the models differ is in the N3LO-CT
contribution. Model NV2+3 Ia* has a larger contribution from
this term compared to its counterpart. This model-dependence
of the contact contribution to the RME makes sense in light
of the difference between models NV2+3-Ia and NV2+3-Ia*.
The LECs cD and cE entering the three-body contact current
were fit with two different procedures. In model NV2+3 Ia, the
contribution was constrained using only strong interaction data
while in model NV2+3 Ia*, both strong and electroweak data
were used to constrain it. This results in the two models having
different values for these LECs and thus different strengths in the
contact term. While there is evidently a model-dependence, it is
worth noting that this is a small contribution to the overall RME
for the transitions.

Although there is a model dependence in the N3LO-CT term,
it is interesting to ask if the behavior of the current is still
similar between the two models. For this purpose, in Figure 5,
transition densities for the N3LO-CT current selected nuclei are
scaled to peak at 1.0 to see if there is a universal behavior in the
interactions. The scaling factors to generate Figure 5 are given
in Table 3. While there was a difference seen in the size of the
contribution of the N3LO-CT term when comparing the un-
scaled transition densities, it is seen here that the scaled curve
overlaps for not only both models within the same transition but

FIGURE 2 | One-body density as defined in Equation (12) for the 6He → 6Li

GT RME obtained using the NV2+3-Ia/Ia* models.

FIGURE 3 | One-body density as defined in Equation (12) for the 8B → 8Be

GT RME obtained using the NV2+3-Ia/Ia* models.

also for all transitions under study. The change in the LECs cD
and cE results in a re-scaling of the N3LO-CT term. For theA ≤ 7
transitions, the enhancement of the N3LO-CT term relative in
NV2+3-Ia* relative to the value given by its counterpart NV2+3-
Ia is a factor of≈ 6.4 for the same transition. For the A ≥ 8 cases,
this enhancement is on average a factor of≈ 2.2.

Another important feature of the two-body transition
densities is the difference in the long-range behavior of the
N2LO-1 and N3LO-OPE terms. In [27], Equations (2.9) and
(2.10) give the operator structure of these two currents. In the
limit of vanishing momentum transfer, these currents have the
same operator structure up to a momentum dependent term
that has been verified numerically to provide small contributions.
The structures of these operators result in cancelations that
are sensitive to the LECs entering into each of these currents,
impacting the behavior of the two-body transition density for
rij & 2 fm. In particular, the N2LO-1 density is sensitive
to the transition under study. In the case of the A = 10
transition, the N2LO-1 density becomes negative near ≈ 2
fm. When integrating over the whole two-body contribution for
the NV2+3-Ia* model, this results in a non-trivial cancelation
leading to the quenching of the RME from the inclusion of
sub-leading contributions.
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FIGURE 4 | Two-body density as defined in Equation (13) for GT RMEs obtained using the NV2+3-Ia/Ia* models for select nuclei.

FIGURE 5 | Scaled two-body density as defined in Equation (13) for GT RMEs obtained using the NV2+3-Ia/Ia* models for select nuclei. The distributions are scaled

to have a peak value of 1.0 using the factors in Table 3.
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3.3. GFMC Extrapolation
In addition to VMC calculations of the RME, we also perform
a GFMC extrapolation of the RME. The GFMC wave functions
generated with the NV2+3-Ia model in this work produce
energies that are in statistical agreement with the results of
[47]. For all cases presented below, with the exception of
two transitions, GFMC propagation are performed between
imaginary time steps τ = 0.2 and 0.82 MeV−1. Typically, an
imaginary time evolution of the VMC estimate produces an RME
that is reduced by a few percent and stabilizes at τ ≈ 0.2 MeV−1.

TABLE 3 | The scaling factors (r2ij ρ
2b)max used to normalize the N2LO-1,

N3LO-OPE, N3LO-CT, and total two-body transition densities in Figure 5.

Transition Model N2LO-1 N3LO-OPE N3LO-CT Total 2b

3H → 3He Ia 0.111 0.082 −0.010 0.189

Ia* 0.107 0.081 −0.120 0.147

6He → 6Li Ia 0.058 0.045 −0.005 0.101

Ia* 0.054 0.043 −0.061 0.075

7Be → 7Li Ia 0.124 0.093 −0.012 0.212

Ia* 0.121 0.091 −0.137 0.161

8B → 8Be Ia 0.023 0.011 −0.002 0.034

Ia* 0.022 0.010 −0.019 0.028

8Li → 8Be Ia 0.023 0.011 −0.002 0.033

Ia* 0.022 0.011 −0.020 0.028

8He → 8Li Ia 0.023 0.009 −0.001 0.032

Ia* 0.037 0.008 −0.012 0.029

10C → 10B Ia 0.070 0.057 −0.006 0.122

Ia* 0.061 0.050 −0.073 0.085

See text for details.

In the calculations of transitions involving the (Jπ ;T) = (2+; 0)
state of 8Be and the ground state of 8B, the extrapolation must be
treated differently. In this two states, as τ increases, the binding
energy, magnitude of the quadrupole moment, and point-proton
radius all increase monotonically. This is interpreted as the
dissolution of 8Be into two alpha particles and 8B into p+7Be.
Datar et al. [71], Pastore et al. [72], and Wiringa et al. [89]
have previously addressed this issue for 8Be. Similar to those
references, we perform the extrapolation by noting that the
energy drops rapidly in τ , stabilizing at τ ≈ 0.1 MeV−1. We
assume that, at this point, spurious contamination in the wave
function has been removed by the GFMC procedure and average
in a small interval around τ = 0.1 MeV−1, taken to be τ

from 0.06 to 0.14 MeV−1. This introduces and additional ≈ 5%
systematic uncertainty to these calculations in addition to the
statistical uncertainties of QMC.

In all transitions, except for the NV2+3-Ia* model for A = 10,
the GFMC extrapolation reduces the VMC RME by a . 4%.
Table 4 summarizes results of the LO, total sub-leading order
(Total-LO), and total RMEs for the transitions under study. In the
A < 10 transitions, the LO contribution is consistent between the
two different models under study. In the A = 10 case, this model
dependence can be understood by the existence of nearby Jπ = 1+

excited states in 10B. The lower state is predominantly 3S1[442]
state and the upper one a 3D1[442] state. These two states are split
by only 1 MeV. The transition from the predominantly 1S0[442]
10C(0+) state is large in the S → S components but about five
times smaller in the S → D components. This causes the GT
matrix element to be particularly sensitive to the exact mixing of
the 3S1 and

3D1 components in the two 10B(1+) states produced
by a given Hamiltonian, as was observed for the calculation of GT
matrix elements using the AV18+IL7 interaction [73]. In either
case, the NV2+3 interactions overpredict the data.

TABLE 4 | Gamow-Teller RMEs in A= 6, 7, 8, and 10 nuclei obtained with chiral axial currents [27] and GFMC (VMC) wave functions corresponding to the NV2+3-Ia/Ia*

Hamiltonian models [24, 25, 27, 47].

Transition Model LO (Total-LO) Total Expt.

6He(0+;1)→ 6Li(1+;0) IaI* 2.125 (2.200) 0.071 (0.056) 2.195 (2.256) 2.1609 (40)

[42] → [42] Ia*I 2.107 (2.192) 0.011 (0.005) 2.118 (2.197)

7Be( 3
2
−
; 1
2
)→7Li( 3

2
−
; 1
2
) IaI* 2.273 (2.317) 0.164 (0.165) 2.440 (2.482) 2.3556 (47)

[43] → [43] Ia*I 2.286 (2.327) 0.052 (0.053) 2.338 (2.380)

7Be( 3
2
−
; 1
2
)→7Li( 1

2
−
; 1
2
) IaI* 2.065 (2.157) 1.03 (0.121) 2.168 (2.278) 2.1116 (57)

[43] → [43] Ia*I 2.061 (2.158) 0.009 (0.025) 2.070 (2.183)

8Li(2+;1)→8Be(2+;0) IaI* 0.074 (0.147) 0.029 (0.041) 0.103 (0.188) 0.284 [84]

[431] → [44] Ia*I 0.096 (0.148) 0.025 (0.026) 0.120 (0.174) 0.190 [85]

8B(2+ ;1)→8Be(2+ ;0) IaI* 0.091 (0.146) 0.035 (0.042) 0.125 (0.188) 0.269 (20)

[431] → [44] Ia*I 0.102 (0.148) 0.024 (0.026) 0.126 (0.174)

8He(0+;2)→8Li(1+;1) IaI* 0.262 (0.386) 0.040 (0.038) 0.302 (0.424) 0.512 (6)

[422] → [431] Ia*I 0.297 (0.362) 0.025 (0.029) 0.322 (0.391)

10C(0+ ;1)→10B(1+ ;0) IaI* 1.928 (1.940) 0.050 (0.041) 1.978 (1.981) 1.8331 (34)

[442] → [442] Ia*I 2.086 (2.015) −0.031 (−0.037) 2.055 (1.978)

Results corresponding to the one-body current at LO (column labeled “LO”), and to the sum of all the corrections beyond LO (column labeled “Total-LO”) are given, along with the

cumulative contributions (column labeled “Total”) to be compared with the experimental data [81–85] reported in the last row. Statistical errors associated with theMonte Carlo integrations

are not shown, but are below 1%. Transitions for the A = 8 systems are affected by an additional systematic error of ∼ %, see text for explanation.
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4. CONCLUSIONS

With this work we set the foundations for the development
of an accurate and unified understanding of neutrino–nucleus
interactions. We are in the process of exploring and validating
the QMC approach’s description of electroweak processes in a
wide range of energy and momentum transfer; in this work, we
therefore focused on calculating matrix elements entering beta
decay and inverse beta decay in light nuclei. These processes
occur at zero momentum transfer and involve energy transferred
of the order of a few MeVs.

In our approach, we fully retained two- and three-nucleon
correlations induced by the Norfolk potentials, and we described
the interaction with the external electroweak probes by means
of the associated one- and two-body axial currents at tree-level.
This study was focused on the NV2+3-Ia and NV2+3-Ia* models,
and was aimed at carefully studying the contributions from
two-body axial currents in the two different implementations
of the three-nucleon forces. In the unstarred model the LECs
cD and cE entering the three-nucleon force were fitted to the
trinucleon binding energies and the nd scattering length, while
the starred model is constrained by the experimental GT value
of the triton decay and the trinucleon binding energies. The axial
two-body contact current at N3LO, which involves cD, was taken
consistently with the three-nucleon force adopted to generate the
nuclear wave functions.

In analogy with previous QMC studies of beta decay in light
nuclei [36, 73], we find that corrections from two-body axial
currents are at the ∼ 3% level in A = 6, 7 and 10. The A = 8
systems are instead severely underpredicted by the theory, even
after the inclusion of large (∼ 30−40%) contributions from two-
body axial currents. Studies on the electromagnetic transitions
in A = 8 nuclei were also found to be problematic [70, 72],
which indicates the need of further developments of the A = 8
wave functions.

In this work, we especially focused on the contributions
from two-body currents, which, despite the fact that they are in
these cases small, can provide us with valuable insights on the
composition of these corrections. To this end, we reported studies
on two-body transition densities which allow us to understand

the relevance of the two-body currents as a function of the
interparticle distance. As expected, we find that, for a given
interaction model, the transition densities exhibit a universal
short-range behavior across the considered nuclei, while they
differ in the long-range tails. The starred and unstarred results
differ in the contact contribution at N3LO. This is rather visible
in the panels of Figure 4 where the starred model leads to a total
transition density (black symbols) which presents one or more
nodes. The presence of nodes implies non-trivial cancelations
when using the starred models.
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In 1963, a proton radius of 0.805(11) fm was extracted from electron scattering data

and this classic value has been used in the standard dipole parameterization of the form

factor. In trying to reproduce this classic result, we discovered that there was a sign error

in the original analysis and that the authors should have found a value of 0.851(19) fm. We

additionally made use of modern computing power to find a robust function for extracting

the radius using this 1963 data’s spacing and uncertainty. This optimal function, the

Padé (0, 1) approximant, also gives a result which is consistent with the modern high

precision proton radius extractions.

Keywords: proton, charge radius, form factors, statistical methods, electron scattering

1. INTRODUCTION

The proton charge radius, rE, is the conventional measure for the size of the proton, a fundamental
constituent of matter. This constant is defined as the derivative of the proton charge form factor,
G
p
E, at zero four-momentum transfer, Q2 = 0:

r2E ≡ −6h̄2
dG

p
E

dQ2

∣

∣

∣

∣

∣

Q2=0

, (1)

and can be determined by both hydrogen spectroscopy and elastic lepton scattering [1]. The first
determination of the radius was done with elastic electron scattering data by Hand et al. [2], who
determined the radius of 0.805(11) fm, the value used in the standard dipole parameterization of the
form factor [3, 4]. The original study was followed by several decades of dedicated nuclear scattering
and spectroscopic experiments, which led to a recommended value for the proton charge radius of
0.8791(79) fm (CODATA 2010, [5]). This result was called into question when the extremely precise
spectroscopic measurements on muonic hydrogen [6, 7] reported a significantly smaller value of
0.84087(39) fm. The observed discrepancy, colloquially known as “the proton radius puzzle” [8]
motivated several new experiments [9–12]. These experiments have been accompanied by different
reanalyses of the existing data [13–20], focusing on data of Bernauer et al. [21, 22]. In this paper
we follow a different path and revisit the first data of Hand et al., and evaluate their result by using
modern analysis techniques.

2. THE CLASSICAL APPROACH

In the first determination of the radius, existing data on proton charge form factor from five
different measurements were considered [23–27], as noted in Table 1.
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TABLE 1 | Summary of the experimental data considered in the analysis.

References Number of Q2
min

Q2
max

Average

data points [fm−2] [fm−2] uncertainty

Litauer et al. [23] 4 2. 8. 0.251

Bumiller et al. [24] 10 0.36 10. 0.051

Drickey et al. [25] 4 0.3 2.2 0.006

Yount et al. [26] 3 0.28 1.3 0.016

Lehmann et al. [27] 6 0.3 2.98 0.012

For each data set, the columns represent the number of measured points, the minimal

and maximal value of four-momentum transfer at which G
p
E (Q

2 ) was measured, and the

average experimental uncertainty.

In an attempt to reconstruct the radius of 0.81 fm we followed
the original analysis approach and compared the data to the
quadratic function in Q2:

Gquadratic(Q
2) = 1− r2E

6
Q2 + aQ4 . (2)

This model depends on two free parameters: the radius, rE, in
front of the linear term, and the parameter a that determines
the curvature of the function. Since the data are normalized,
the constant term of the model is simply 1. In the first step the
two parameters were determined by fitting Equation (2) to the
data with Q2 ≤ 3 fm−2, considering the entire region with the
high density of experimental points. The obtained results were
rE = 0.819(21) fm and a = 0.00787(309) fm4. However, the
radius obtained in this manner should not be trusted since the
true shape of the G

p
E(Q

2) may be more complex than a second
order polynomial. At Q2 ≈ 3 fm−2 the contributions of the Q6

and Q8 terms are not negligible and their omission from the fit
causes a systematic shift in the determined radius.

To avoid model dependent bias in the radius extraction, the
contributions of higher order terms should be kept minimal. The
way Hand achieved this with a model, such as Equation (2), is by
keeping the parameter a at a value determined in their first step
and then only fitting the radius, using data with Q2 ≤ 1.05 fm−2.
Assuming that the determined value for a is a good estimate
for the size of the Q4 term, this preserves the curvature of the
model. Additionally, we were able to determine that at 1 fm−2

the Q4 term contributes less than a percent to the value of G
p
E.

Hence, even a 10% error in the value of a would result in a
modification of the form-factor much smaller than the statistical
uncertainty of each measurement. Hence, the described two step
fitting technique should result in a more reliable estimate of the
proton charge radius. We determined it to be rE = 0.851(19) fm,
which is inconsistent with the original result (see Figure 1). The
obtained value is 5% larger than the original radius while its
uncertainty is almost twice as large as the uncertainty of the
first result.

To find the source of the discrepancy the last step of the
analysis was repeated with different values of a. Since rE and a
are strongly correlated, it is important to evaluate the effect of a
on rE. Additionally, the original paper does not report the value
of a. The analysis demonstrated in Figure 2 shows that the radius

FIGURE 1 | The experimental data [23–27] considered in the analysis. The

solid green line shows model (2) when both rE and a are fitted to the data with

Q2 ≤ 3 fm−2. The dashed red line shows the results when rE is fitted to the

data with Q2 ≤ 1.05 fm−2, while the parameter a = 0.00787 fm4 is kept

constant. The blue dotted line corresponds to the original result of

Hand et al. [2] assuming a = −0.00787 fm4.

FIGURE 2 | The relation between parameters rE and a that determine the

model (2). The green band denotes the original result of Hand et al. [2]. The

blue point represents the result of the analysis when both parameters are free

and the model is fitted to the data with Q2 < 3.00 fm−2. The vertical blue band

indicates the value of the parameter a. The black point shows the final radius

obtained by using the original two step approach of Hand et al. The gray line

with the corresponding uncertainty shows how the extracted radius changes

when a is modified from −0.02 to 0.02. The orange vertical band represents

the result of the fit when only a is being fitted, while the radius is kept fixed at

0.805(11) fm. The cross-section of green, orange, and gray bands defines the

area of possible values of a considered in the original analysis of Hand et al. [2].

The obtained result supports the hypothesis that a mistake has been made in

the original analysis and that a was considered with the wrong sign.

depends almost linearly on a and reveals that the original value
of rE can be reproduced if a, determined in the first step of our
analysis, is used, but with the opposite (wrong) sign.

To confirm this hypothesis, we again fitted model (2) to
the data with Q2 < 1.05 fm−2, but this time kept the
radius fixed at 0.805(11) fm and adjusted only a. We obtained

Frontiers in Physics | www.frontiersin.org 2 February 2020 | Volume 8 | Article 36158

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
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FIGURE 3 | The extracted values of the proton charge radius. (A) The difference between the value obtained with the fixed and floating normalization parameters.

Addition of five free parameters significantly increases the uncertainty of the radius. (B) Calculated radii when performing the analysis with only four out of five data

sets, demonstrating a tension between the data sets of Drickey et al. [25] and Lehmann et al. [27].

a = −0.00749(63) fm4, which strongly supports our assumption
that a mistake was made in the original analysis. Additionally,
our analysis has also revealed that the original study failed to
acknowledge the uncertainty of a in the determination of rE.
Their analysis considered only statistical uncertainty and thus
underestimated the final uncertainty of the radius.

To test the stability of the extracted radius, we have repeated
the analysis by using all combinations of four of the five data
sets. The results presented in Figure 3 demonstrate the tension
between the two most precise data sets, Drickey et al. [25] and
Lehmann et al. [27]. The data of Lehmann et al. prefer a larger
value of the proton charge radius and dominate the result when
considering the data with small Q2. The data of Drickey et al., on
the other hand, favor a smaller proton charge radius and control
the result at Q2 > 1.4 fm−2. While the discrepancy is too small
to exclude a statistical fluctuation in the data, the most probable
source of the tension are unaccounted for systematic effects, e.g.,
offsets in the absolute normalization of the reported data. The
tension between the data is reduced if the normalizations of the
data sets are kept as free parameters, as is being done in modern
analyses of form factor measurements [15, 22, 28], but does not
disappear completely. Furthermore, introduction of additional
five free parameters to the fits (normalizations) increases the
variance of the extracted result and dilutes the significance of the
extracted radius, which in the given case equals to 0.865(48) fm
(see Figure 3).

3. ROBUST ANALYSIS

The key problem of radius calculation is our ignorance of the true
functional form of the proton charge form factor. Consequently,
the form factor is approximated by various parameterizations. So
far we considered function (2). Although the model was applied
carefully to the data, it is not clear whether the quadratic function
is an acceptable model for its description. The choice of a model
can impact the result and can lead to a biased radius, i.e., a value
that is systematically different from the true value. The bias is

associated with the nature of the function and is typically smaller
for functions with more free parameters. However, models with
many parameters are justifiable only when data sets with large
kinematic range and sufficient precision are available. Otherwise
the variance of the radius increases to the level that the obtained
result has no practical value. Hence, a model needs to be selected
that exhibits a minimal bias of the extracted radius while keeping
the variance of the result reasonably small. To achieve this,
we have complemented the original analysis with a different
technique based on a Monte-Carlo study of different form factor
models, and are able to offer a more reliable determination of
the radius.

Since the majority of the available data were measured only at
small Q2 and with limited precision, we investigated only models
that depend on up to three parameters in order to keep the
uncertainty of the extracted radius below the difference between
the two competing values of the proton radius problem. Beside
model (2), we considered:

Gcubic = 1+ n1Q
2 + n2Q

4 + n3Q
6 , (3)

GPadé (0,1) = 1

1+m1Q2
, (4)

GPadé (0,2) = 1

1+m1Q2 +m2Q4
, (5)

Ghybrid = 1+ n1Q
2 + n2Q

4

1+m4Q8
, (6)

Gdipole = 1

(1+m1Q2)2
, (7)

where n1, n2, n3, m1, m2, and m4 represent adjustable
parameters of the models. Using these parameters the rE
for each model can be calculated using Equation (1). The
quadratic (Equation 2) and cubic functions (Equation 3) were
considered as well as four rational functions. They are interesting
because, like the dipole model, they introduce higher order
terms and define the curvature of the form factor at higher
Q2, although they depend on relatively few parameters. For
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completeness, we considered also the dipole model, which is
known to report biased results [29], but can serve as a test of
our approach.

The evaluation of the chosenmodels and tests of their capacity
to reliably extract the radius can not be performed on the
real data. Therefore, we developed a Monte-Carlo simulation

TABLE 2 | Summary of the Monte-Carlo study of the form-factor models (2) – (7).

Form factor Simulation Data

model Q2
best

Simulated Simulated RMSE Acceptable Extracted Standard

bias uncertainty radius error

[fm−2] [fm] [fm] [fm] [fm]

Quadratic 2.9 −0.023 0.037 2.93 No 0.827 0.023

Cubic 5.4 −0.016 0.038 2.52 No 0.848 0.032

Padé (0, 1) 2.2 0.011 0.022 1.54 Yes 0.841 0.009

Padé (0, 2) 4.6 −0.015 0.028 2.09 No 0.826 0.026

Hybrid 5.1 −0.016 0.037 2.49 No 0.843 0.032

Dipole 1.5 −0.022 0.029 2.63 No 0.854 0.019

For every model listed in column one, the table shows the results for the most pessimistic case, as can be seen in Figure 4. Column two shows the “best” value of Q2
max at which RMSE

reaches its minimum and defines the range of the data [0,Q2
best ] to be used in the fit and in the extraction of the radius. Columns three and four contain the expected bias (extracted

minus input radius) and uncertainty of the radius obtained with a chosen model. The best RMSE values for a specific model are presented in column five. A threshold for a good model

is arbitrarily set at
√
2, see column six. The last two columns show the values of the proton charge radius extracted from the data, together with their standard errors.

FIGURE 4 | Results of the Monte-Carlo study of the form-factor models (2)–(7). RMSE as a function of Q2
max, obtained with realistic form factor parameterizations is

used to evaluate the behavior of each model. According to our selection criterion a model is appropriate for the analysis if the minima of all the curves on a given plot

lie below the threshold of ≈
√
2. The selection threshold is marked on the plots with gray bands. The black arrows on each plot denote the positions of the highest

minimum which determines the interval [0,Q2
best] of the data that should be considered in the fit.
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which generated many sets of pseudo data on a desirable
kinematic interval using specific form factor models with known
corresponding radii. These pseudo data were used to establish
statistically relevant estimates on the size of the bias and variance

TABLE 3 | The parameters for the form-factor models (2), (4), (6), and (7), which

have more than one free parameter.

Parameter Extracted Relative

value significance

Quadratic

r 0.827(23) fm −1.30

a 6.0(24) fm4 0.30

Padé (0, 2)

m1 2.92(18) fm2 −0.94

m2 1.7(25) fm4 −0.14

Cubic

n1 −3.08(24) fm2 −1.24

n2 11.3(57) fm4 0.95

n3 −40.2(322) fm6 −0.71

Hybrid

n1 −3.04(22) fm2 −1.27

n2 8.9(40) fm4 0.74

m4 275(236) fm8 −0.63

Table shows the values for a given model extracted from the data. The relative

contributions of the terms equipped with the given parameters to the total value of

the form-factor at Q2
best are also presented. The alternating signs of the parameters of

the quadratic model (r, a) and cubic function (n1, n2, n3) indicate that the true nature

of the form-factor is more complex than a low order polynomial, thus requiring higher-

order terms to match its slope and the curvature in a chosen Q2-range. The positive

values of m1,m2, and m4 show that the Padé (0, 2) and the hybrid model do not have

poles, while automatically ensure a correct asymptotic behavior of the form-factor. The

large uncertainties of the higher-order terms (n2, n3,m2,m4 ) are governed by the large

uncertainties of the available measurements.

of the extracted radius. The goal was to find a model that would
(for a chosen kinematic range) return a radius with uncertainty
smaller than σrE ≤ σ0 = 0.02 fm and with the bias below
1rE ≤ 1/(2σ0). Therefore, we have defined the estimator

RMSE =

√

(

21rE

σ0

)2

+
(

σrE

σ0

)2

(8)

which combines both conditions and could be used to quantify
the quality of the selected model and search for the model
with RMSE ≤

√
2. The six models were tested by using the

parameterization of Bernauer et al. [22] determined from real
data, the fifth-order continued-fraction model of Arrington and
Sick [30], and the theoretical prediction of Alarcon et al. [20].
For each parameterization the pseudo data were generated and
studied on the interval [0,Q2

max]. The results of the analysis are
gathered in Table 2 and presented in Figure 4.

At small momentum transfers, the value of RMSE(Q2
max) is

governed by the variance, which decreases with the increasing
number of data points considered in the fit. For large Q2

max,
the model is no longer capable of satisfactorily describing the
data. Consequently, the extracted radius becomes biased and
the RMSE(Q2

max) again starts to increase. The position of the
minimum determines the ideal momentum transfer range over
which a given model gives the most reliable radius for a
chosen form factor parameterization. Unfortunately, since we do
not know the true functional form of the charge form factor,
one cannot simply select a minimum from a single specific
parameterization. Thus, we try to be conservative and choose the
minimum with the highest RMSE value, Q2

best
, assuming that the

form-factor parameterizations considered in the analysis form a

FIGURE 5 | The comparison of the extracted proton charge radii. The square points show the value calculated with the classical approach described in section 2 and

the original result of Hand et al. [2]. The circles represent the model-dependent extractions of the radius obtained with the new analysis technique presented in

section 3. The error bars show corresponding standard errors. According to the Monte-Carlo simulation the most robust estimate for the radius can be obtained using

model (4), shown with the red circle. The gray band represents the new recommended value (CODATA 2018, [31]).
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FIGURE 6 | The result of this work compared to other extractions of the proton charge radius. Full circles show findings of modern nuclear scattering experiments

[11, 32–34] together with the original result of Hand et al. [2]. Full squares represent values obtained from the recent atomic hydrogen spectroscopy measurements

[9, 10, 12]. The triangles denote values determined from the muonic hydrogen (deuterium) measurements [6, 7, 35]. The uncertainties of data from Pohl et al. and

Antognini et al. are multiplied by factor 5 for clarity. The diamonds show recent reanalyses of the electron scattering experiments [14, 15, 17–20, 36–40]. The gray line

with the corresponding band is the recommended value (CODATA 2018, [31]).

representative set of functions and that the true form factor may
be somewhere in-between.

Once the Q2
best

for each of the models was estimated, the data

could be fitted on the interval [0,Q2
best

] and the proton charge
radius could be determined. The results of the fits to the real
data are shown in Tables 2, 3 and in Figure 5. However, the
Monte-Carlo analysis demonstrates that only model (4) satisfies
the condition for the RMSE = 1.54 ≈

√
2. All other models

have RMSE values >2, which means that the radius results will
not meet our criterion regarding the bias and variance. While
quadratic and dipole functions are expected to have a large bias
and should therefore be excluded, the remaining functions could
still be considered, because their RMSE values are dominated by
the large variance, but the calculated radii are expected to have
large uncertainties. Hence, our best estimate for the radius is
obtained with the Padé (0, 1) approximant, yielding the radius of
0.841(9) fm.

4. CONCLUSIONS

In this paper we reanalyzed the proton charge form factor data
from classical experiments performed in the 1960s by utilizing
modern analysis tools that were not available at the time of
the original analysis. Repeating the steps of Hand et al., we
determined the radius to be 0.851(19) fm, a value which is
5% larger than the result of the original paper. Using Monte-
Carlo simulation we determined that the observed discrepancy

is most probably related to a mistake in the interpretation of
the Q4-term when fitting the radius. To evaluate and minimize
the dependence of the radius on the model applied in the
analysis, the classical approach was superseded by aMonte Carlo-
based analysis using pseudo-data generated with realistic form-
factor parameterizations. In this approach the most appropriate
fitting interval and the model function was selected by using
a predefined selection criterion RMSE ≤

√
2. Among the

considered functions only Padé (0, 1) fulfilled the set condition.
Using this function the best estimate for the proton charge radius
was determined to be 0.841(9) fm. The obtained result is in good
agreement with recent extractions of the radius and with the
new recommended value (CODATA2018, [31]) (see Figure 6).
Minimization of the model dependence of the extracted radius
is key for reaching consistent interpretation of the modern
electron scattering data. Here we offer an approach, which,
relying on predefined selection criterion and using Monte-
Carlo simulations, simultaneously examines both the model bias
and variance. The method successfully applied to the data of
Hand et al. can be directly extended to more complex models and
used for a robust interpretation of the recent data.
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The control of electromagnetic wave characteristics (intensity, phase, polarization) is becoming the 

cornerstone of light-based technologies, which find broad and diverse applications in areas ranging 

from telecommunications to high-precision measurements and quantum/classical computation. 

Successful approaches to light control originate from the field of artificial materials, where the first 

results in reproducing the optical properties of natural materials through nano-structuration quickly led 

to their recognition as powerful elements for photonic applications. When integrated with mechanical 

elements, metamaterials gain an extra dynamical dimension, which allows quickly changing the state of 

light, arbitrarily controlling intensity, phase or polarization. In this paper, it is demonstrated a wide range 

control of the polarization state of light in non-trivial path on the Poincaré sphere through mechanical 

actuation of a chiral dielectric metasurface. Exploiting the overdamped fundamental mechanical drum 

mode, a broad polarization modulation from 0.1 up to 1.4 MHz is achieved. With the potential of a further 

frequency increase through the use of high-order mechanical modes, this device represents a novel 

element for chip-scale light control and modulation.
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Artificial photonic materials, nanofabricated through wavelength-scale engineering, have

shown astounding and promising results in harnessing, tuning, and shaping photonic

beams. Metamaterials have proven to be often outperforming the natural materials

they take inspiration from. In particular, metallic chiral metasurfaces have demonstrated

large circular and linear dichroism of light which can be used, for example, for

probing different enantiomers of biological molecules. Moreover, the precise control,

through designs on demand, of the output polarization state of light impinging on a

metasurface, makes this kind of structures particularly relevant for polarization-based

telecommunication protocols. The reduced scale of the metasurfaces makes them

also appealing for integration with nanomechanical elements, adding new dynamical

features to their otherwise static or quasi-static polarization properties. To this end we

designed, fabricated and characterized an all-dielectric metasurface on a suspended

nanomembrane. Actuating the membrane mechanical motion, we show how the

metasurface reflectance response can be modified, according to the spectral region

of operation, with a corresponding intensity modulation or polarization conversion. The

broad mechanical resonance at atmospheric pressure, centered at about 400 kHz,

makes the metasurfaces structure suitable for high-frequency operation, mainly limited

by the piezo-actuator controlling the mechanical displacement, which in our experiment

reached modulation frequencies exceeding 1.3 MHz.

Keywords: metasurface, optomechanics, polarization, chirality, nanomechanics

INTRODUCTION

Light control through nanoengineered materials has recently risen as one of the core business
of photonics [1–3]. The great degree of flexibility with which an artificial dielectric function
can be designed, paired with powerful optimization tools [4, 5] made the use of artificial
photonic materials widely available, with many technological applications currently reaching
the market [6, 7]. A common implementation of such structures takes the form of engineered
surfaces (metasurfaces), where the device planar size is larger than its thickness, making them
compatible with standard nanofabrication techniques as well as easy to integrate on chip. Most
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of the metasurfaces operate in a static configuration: given an
input in terms of an impinging monochromatic light beam, they
are able to output another beam, in transmission or reflection,
with controllable wavevector, amplitude, phase, and polarization.
A highly desirable feature would be the possibility to tune
and control the output beam by acting on the metasurface, in
such a way to obtain modulation, switching or more complex
functionalities. Few implementations have tried to achieve
this goal, showing the possibility to statically reconfigure the
metasurface geometry in such a way to obtain multi-state, static
response from a single device: the tuning mechanism includes
the use of electrostatic forces [8, 9], stretchable substrates [10],
static optical forces [11], or phase-changing materials [12].
More recently, several groups have used temperature change as
the main tuning mechanism [13, 14] reaching large frequency
tunability. This approach has been used to create tunable notch-
filters [15], and image [16], and polarization manipulation [17],
albeit at quasi-static operation frequency. The venues opened by
the recent field of cavity optomechanics have shown how micro-
and nano-mechanical object can be successfully coupled with
nanophotonics devices [18]. A particularly successful strategy
sees the inclusions of electrical elements in optomechanical
systems [19], either for a proper action-back action coupling
or for a coherent mechanical excitation through shaking,
electrostatic actuation, etc.

In this article, we employ an electro-optomechanical approach
to modulate the metasurface response in time. By embedding
a periodic pattern on a suspended dielectric membrane we
show how the photonic response function can be modulated
by mechanically actuating the membrane fundamental drum
motional mode. In particular, by using a chiral pattern for
the metasurface definition, we show a dynamical manipulation
of the output light polarization, which can be dynamically
controlled along non-trivial paths on the Poincarè sphere. A
detailed discussion of quantitave, single frequency polarization
modulation at ∼400 kHz and, conversely, light polarimetry has
been reported elsewhere [20]; in this article we show how the
operation bandwidth of the device can be extended to about
1.4 MHz, exploiting the overdamping regime of the mechanical
resonator at atmospheric pressure.

DEVICE DESIGN AND FABRICATION

The metasurface has been devised considering a minimal design
approach, by using patterned holes on a single dielectric slab.
This positively compares to the metallic-pattern metasurfaces,
which usually show a larger amount of ohmic losses, especially
when operated in the near infrared range. Numerical simulations
have been performed using the Periodic Patterned Multi-
Layer (PPML) Matlab script, based on Rigorous Coupled
Wave Analysis method (RCWA) code1 For the basic hole
shape, two orthogonal, joined rectangles have been considered,
arranged as a “L”; this is one of the easiest shape to
produce a chiral response and can be easily parametrized by

1Available online at: https://it.mathworks.com/matlabcentral/fileexchange/55401-

ppml-periodically-patterned-multi-layer

considering the two arms lengths and widths, respectively,
l1/l2 and w1/w2 as reported in the black and white sketch
of Figure 1A, where black color indicates GaAs and white
color air trenches. Starting with a 220 nm GaAs substrate,
we performed a 4-parameter optimization in such a way
to maximize the metasurface circular dichroism at 1,550 nm.
Details on the optimization and a typical device photonic
characterization has been reported elsewhere [21]. The final
geometric parameters resulting from the optimization are
reported in the table in Figure 1. The metasurface has been
designed considering a periodic lattice a resulting in photonic
modes which are delocalized across the whole structure: the
single cell electrical energy density, ε|E|2, with dielectric constant
e and electric field E, obtained from FEM simulations for an
infinite square lattice in the Ŵ point can be seen in Figure 1B.
The simulated photonic modes can be reasonably compared
with what we expect in the central region of the metasurface,
given the large number of periods we fabricated (50 × 50
lattice constants).

The simulation of the low-frequency mechanical modes
requires the geometry of the full suspended structure.
Continuous mechanics FEM simulations have been used in
order to find the resonant frequency of the first eigenmodes.
GaAs has been parametrized using the elasticity matrix and
material density [22], the former being properly rotated for our
crystal orientation. An illustration of the fundamental drum
mode is reported in Figure 1C; here the colormap indicates the
modulus of the mechanical displacement, d =

√
u2 + v2 + w2,

with u, v, and w displacement components along x, y, and z
directions, respectively, while the artificial displacement has
been artificially exaggerated for visualization purposes. The
mode resonant frequency has been found to be 372 kHz, in
good agreement with independent characterization with a Laser
Doppler Vibrometer [20].

The metasurface was fabricated starting with a GaAs wafer
on which a 1.5µm Al0.5GaAs0.5 sacrificial layer has been grown
by Molecular Beam Epitaxy (MBE). On top of that, a further
220 nm GaAs (device) layer was further grown. An electron
beam resist mask (AllResist AR-P6200) was spun on the sample
and subsequently exposed using a 30 keV electronic beam. In
particular, the single metasurface pattern has been replicated
in such a way to cover roughly 50 × 50µm areas (50 × 50
lattice constants) which also define the membrane size. Each area
has been exposed using a different geometrical scaling factor
(up to 10% modification) in order to slightly tune the photonic
resonances. Among all the different fabricated metasurfaces
we focused on six devices, L1–L6, which have been exposed
considering the scaling factor reported in Table 1.

The exposed pattern has been transferred to GaAs using
a Chlorine-based Inductively Coupled Plasma—Reactive Ion
Etching (ICP-RIE, Sentech SI 500) machine; plasma has been
ignited from a gas mixture of BCl3/Cl2/Ar, with 6/1/10 sccm,
respectively. As a last step, the membranes were released in a
pure HF solution. The fabricated devices have been preliminarily
inspected with Scanning Electron Microscopy: a full schematic
of the fabrication flow and a micrograph of a typical device are
reported in Figure 2.
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FIGURE 1 | (A) Standard geometrical parameters for the L-shaped unit cell. (B) FEM simulated electrical energy density for a typical metasurface mode. For improved

visibility cut planes xz and yz are shown. (C) Modulus of the total displacement of the FEM simulated fundamental mechanical mode.

TABLE 1 | Scaling of the geometrical parameters reported in Figure 1.

Device number Geometrical scaling factor

L1 1.02

L2 1

L3 0.99

L4 0.98

L5 0.96

L6 0.94

Only parameters l1, w1, l2, and w2 are scaled; the lattice constant a is always equal to

1.146 µm.

STATIC CHARACTERIZATION

The metasurface was characterized by reflectance spectra. Light
coming from a tunable near-infrared laser (Newport TLD600)
was shined on the device using a lens with 7 cm focal length.
This produced a roughly 50µm wide beam spot on the device
layer. All experiments were performed at normal incidence; after
interacting with the metasurface, the reflected laser light was
sent into a detection stage through a beam splitter. The output
signal was then detected either using a commercial polarimeter
(Thorlabs PAX-1000, maximum sampling rate 600Hz) or using
a fast InGaAs detector (Newport, 1623). In the latter case, it
is possible to add a linear polarizer filter to partially inspect

the polarization state of the reflected light. A sketch of the
experimental setup is shown in Figure 3A. The piezoelectric
actuator and the lock-in amplifier (LIA) are used for the dynamic
characterization and are initially disconnected.

At first, we have characterized a full set of metasurfaces which
have been fabricated in the same run with different geometrical
scaling factors (L1–L6). Impinging laser light polarization was
linear horizontal (x-direction), in a wavelength range from
1,520 to 1,570 nm; no analyzer was present in front of the fast
detector. The reflectivity spectra of different membranes are
reported in Figure 4A and mostly show fast signal oscillations
which originate from multiple reflections from the substrate,
both considering the first air-GaAs interface as well as the
bottom GaAs-air interface. These oscillations are modulated by
slowly-varying envelopes coming from the proper metasurface
resonances. This can be better seen by inserting the linear
polarizer in front of the detector and rotate it in such a way to
project the polarization state along the vertical linear polarization
state (y-direction). This makes the detection system sensitive to
polarization rotation. In particular, the metasurface resonances
emerge, being the only physical system in the experimental line
capable of modifying the polarization state of light. The cross-
polarization reflectivity results are reported in Figure 4B, where
the signal envelopes now take the shape of Fano-shaped [23]
broad peaks, directly coming from the metasurface resonance.
As can be seen, the small change of the geometrical parameters
gives a shift in the metasurface resonances. In particular, device
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FIGURE 2 | (A) Fabrication steps. Starting from a GaAs/Al0.5GaAs0.5 heterostructure (i), we spin-coat a layer of AR-P 6200 resist (ii). E-beam lithography is used to

define the patterns, (iii) which are transferred on the device layer through a dry etching step (iv). Finally, the full structure gets released through HF wet etching. The

SEM micrograph (B) shows a typical fabricated device with a magnification of the pattern (C).

FIGURE 3 | Experimental set configurations. (A) Sketch of the experimental setup. The laser light is focused on the metasurface; the reflected signal is then sent to an

IR detector through a beam splitter. A linear polarizer filter can be inserted before detection. The signal is then analyzed with a lock-in amplifier (LIA) whose reference

signal is used to control the piezoelectric driving stack. (B) Same as (A) with a microscope objective instead of the focusing lens and the metasurface additionally

sitting on a motorized stage for spatial maps. Note that in the sketches the laser beam size is not in scale.

L1 showed a localized, strong peak around 1,545 nm, making
it the perfect candidate for a deeper photonic and mechanical
characterization. To this end, we mounted the device in a slightly

different setup, where the sample sits on a motorized stage
and the laser light is focused through a 50×, long working
distance objective (see Figure 3B). The stronger focusing effect
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results in an estimated beam size of about 5µm on the sample
surface enabling local probing of the membrane. Figure 5A

reports a map of the cross-polarized reflectivity at 1,532.5 nm
around L1 central position. A distinct region representing the
metasurface is clearly visible, owing to the device polarization
rotation characteristic, whereas the contribution coming from
the substrate is negligible thanks to the polarization filter effect.
The full cross-polarized spectra of few selected points on the
map have also been reported in Figure 5: as can be seen, the
spectra recorded in the central region of the membrane all share
a qualitatively similar shape, with small differences due to some
inhomogeneity present on the membrane; note that the spectrum
is quite different from the one shown in Figure 4B, due to the
different excitation condition in terms of accessible wavevectors.
The spectra recorded in the outer region show a residual, small
polarization rotation effect, likely given by a small overlap of the
laser beam with the outermost metasurface pattern.

To gain a better insight on the polarization conversion effect,
we focused the laser light on point six of the membrane, at
the same time changing the fast detector with the polarimeter.
In this way, it is possible to follow the spectral evolution of
the polarization state on the Poincaré sphere [see for example
[24]], which is the standard tool used to illustrate the Stokes
parameters S1, S2, and S3 directly measured by the polarimeter
[25]. The experimental results are shown in Figure 5B, where
the colormap allows to associate points on the Poincaré sphere
with the cross-polarized spectrum in panel number six. Far from
the resonance, the polarization is almost equal to the input
one (linear horizontal). By getting closer to the resonance, the
polarization state is rotated becoming elliptical. Interestingly,
it can be clearly seen that the state evolves in spiral loops,
corresponding to the multiple Fabry-Perot resonances originated
by the substrate. This is a clear indication that the overall phase
shift given by the multiple reflection of light in the substrate
strongly influences the metasurface operation and polarization
conversion power. Within a single Fabry-Perot fringe, the phase
of light undergoes a 2π shift. If the metasurface is influenced

by the phase, one should expect a closed path on the Poincaré
sphere when one single fringe is probed with the laser. The
fact that the loops are not closed is due to the dispersion
characteristic: in fact, a full phase round trip is concluded at a
different wavelength than the one in the initial point of the sweep.
Therefore, even if the same Fabry-Perot induced phase shift
occurs, the different metasurface response at different wavelength
results in a different conversion effect, clearly visible on the
Poincaré sphere. This important observation points toward the
strong possibility of changing the polarization conversion effect
by simply acting on the phase of light reflected from the substrate;
this can be easily done by changing the metasurface—substrate
separation distance.

COHERENT DYNAMIC
CHARACTERIZATION

The effect of mechanical modes on the metasurface polarization
conversion effect can be evaluated by placing the sample on a
piezoelectric multilayer stack, driven by a high-frequency local
oscillator. This can be taken as a reference for demodulating
the fast detector signal with a lock-in amplifier (LIA) (Zurich
Instruments, UHF-LI). The signal read by the LIA is a direct
measurement of the effect of the mechanical force on the state
of light: by inserting/removing the analyzer, we can infer the
case of general intensity modulation with the more relevant
polarization conversion. In fact, if the polarization is not
modified, the reflectivity spectra with and without the analyzer
will be linearly proportional, with a scaling factor coming from
the projection of the output (constant) polarization state on the
linear vertical state.

Initially, we used the objective setup (Figure 3B) to focus
the laser in the center of the membrane. Setting a laser
wavelength of 1,532.5 nm, corresponding to a local maximum
in one of the fringes of Figure 4B, we swept the piezo
drive frequency while at the same time recording the LIA

FIGURE 4 | Direct (A) and Cross-polarized (B) reflectivity spectra for different metasurfaces.
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FIGURE 5 | (A) Map of the cross-polarized signal at 1,532.5 nm across the membrane, whose contour is indicated as a guide for the eyes. The spectra in selected

points (1–8) are individually reported. (B) Spectral evolution on the Poincaré sphere probing the point 6 of the membrane. The cross-polarized spectrum and the

Poincaré plot are correlated through the plot color.

FIGURE 6 | (A) Piezo-driven mechanical spectrum at atmospheric pressure with the laser focused in the membrane center. The peaks identify the out-of-plane

mechanical eigenmodes of the piezo stack. (B) Map of the LIA amplitude at 430 kHz [red arrow in (A)] around the membrane position. The full metasurface position is

overlaid with a red-dashed line as a guide for the eyes.
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amplitude signal, RLIA. The result reported in Figure 6A shows
a rich spectrum, which originates from the convolution of
the piezoelectric stack out-of-plane modes and the membrane
fundamental drum mode. This mode is strongly overdamped
at atmospheric pressure and can be excited over a wide
frequency range around its central resonance at about 413 kHz.

Setting this frequency as a monochromatic drive of the piezo
actuator, we probed the spatial dependence of the mechanical-
induced polarization conversion around the membrane central
position. The resulting map, reported in Figure 6B, is in good
agreement with the expected mechanical simulations shown
in Figure 1C.

FIGURE 7 | (A) Broadband mechanical spectrum. LIA-demodulated spectra for several driving frequencies are reported for sample L3 (B) and L1 (C).
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Switching from the objective to the focusing lens, in order
to avoid any effect due to possible local inhomogeneity of the
sample, we scan a laser while keeping the piezo drive at 413 kHz
with a constant amplitude of 100mV. At first, we analyzed
the direct mechanical-induced light intensity modulation; the
measured RLIA is reported as a blue trace in one of the inset
of Figure 7 (second column, third row, bold box), showing a
non-negligible modulation effect even at wavelength far from
the metasurface resonance, probably due to small changes
in reflectivity of the whole chip with respect to its static
configuration. On the other hand, upon the insertion of the
analyzer, the spectral shape of the signal is strongly modified,
suggesting that an intensity modulation can be accompanied by
a pure polarization conversion effect (see Figure 7, same panel,
red trace). Note that the slight mismatch of the signal fringes can
be imputed by the different polarization components detected in
the experiment. The largest conversion effect is found around
the maximum of the cross-polarized signal reported in Figure 4.
A quantitative calibration of the conversion effect, which is
dynamically following non-trivial paths on the Poincaré sphere,
can be obtained after a careful calibration of the system, which is
out of the scope of this paper and can be found elsewhere [20].

The overdamped drummode we are considering allows one to
work at several different mechanical frequencies, mainly limited
by the range of operation of the driving stack. To show that,
we recorded a broad band mechanical spectrum, reported in
Figure 7A, where narrow and strong peaks can be seen up
almost 1.5 MHz. We selected several driving peaks for testing
the metasurface polarization conversion effect, in a range from
100 kHz to ∼1.4 MHz (colored arrows in Figure 7). The results
for devices L1 and L3 are reported in Figures 7B,C, respectively.
First observation is that the spectral shapes of the signals RLIA

with (red curve) and without (blue curve) the polarization
analyzer are significantly different at all the measured mechanical
frequencies. Furthermore, for each spectrum, we can take the
maximum of cross polarized RLIA, which is the LIA amplitude
signal when the analyzer is present. The results are superimposed
in the broad mechanical spectrum of Figure 7A, showing a
good correlation between mechanical mode amplitude and
polarization conversion effect. This results shows that the main
operation limitation in terms of bandwidth arises from the
engineering of a proper excitation spectrum of the piezoelectric
stack. Changing the drive would allow for operating at any

desired conversion frequency at least in the range we tested
from 100 kHz to ∼1.4 MHz, giving the advantage of a non-
resonant excitation bandwidth with the extremely low power
consumption, which in similar devices has produced polarization
rotations of roughly 0.07 rad/mV [19].

CONCLUSIONS

In conclusion we have shown a broad band (0–1.4 MHz)
polarization conversion effect of near-infrared light using the
coherent mechanical motion of an optomechanical metasurface.
The all- dielectric, low-loss metasurfaces, potentially integrable
at chip level, operates in free-space, and represents a key
technology for full control of light parameters (amplitude, phase,
and polarization) with the potential for ultra-high frequency
operation when high order mechanical modes are excited.
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Most bonds between molecules become weaker when tension is applied to them. Yet, nature is able to 

produce bonds that do the opposite: they become stronger under tension. While many examples of such 
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All primary chemical bonds inherently weaken under increasing tension. Interestingly,

nature is able to combine such bonds into protein complexes that accomplish the

opposite behavior: they strengthen with increasing tensional force. These complexes

known as catch bonds are increasingly considered a general feature in biological systems

subjected to mechanical stress. Despite their prevalence in nature however, no truly

synthetic realizations of catch bonds have been accomplished so far, as it is a profound

challenge to synthetically mimic the allosteric mechanisms employed by protein catch

bonds. In this work we propose a computational model that shows how a synthetic

catch bond could be accomplished with the help of existing supramolecular motifs and

mechanophores, each of which individually act as slip bonds. This model allows us to

identify the limits of catch bonding in terms of a number of experimentally measurable

parameters. This knowledge could be used to suggest potential molecular candidates,

thereby providing a foothold in the ongoing pursuit to realize synthetic catch bonds.

Keywords: catch bond, mechanochemistry, supramolecular chemistry, kinetic Monte Carlo (KMC), chemical

kinetics

1. INTRODUCTION

All primary bonds, covalent or supramolecular, weaken under the action of mechanical load. Such
primary chemical bonds, whose dissociation rate grows with increasing force, are known as slip
bonds. Interestingly, many protein bonds found in Nature defy this fundamental rule and show the
opposite behavior: up to a certain peak force these bonds only strengthen as the applied tensile force
grows. Bonds that display this property are known as catch bonds [1]. This behavior is intriguing, as
the primary molecular interactions these catch bonding complexes employ each individually act as
slip bonds. Catch bonding thus appears to be an emergent phenomenon that occurs when multiple
slip bonds work together collectively.

Catch bonds were first discovered experimentally in the cell adhesion protein P-selectin in
2003 [2], and since then a wide range of proteins with mechanical functions have been found
to act as catch bonds. Besides the best known examples in biological adhesion proteins such as
P-selectin and FimH [3], these include proteins involved in blood clot formation in injured blood
vessels, such as the binding between glycoproteins and human von Willebrand Factor [4]. Other
examples are membrane proteins involved in mechanotransduction between the extracellular
matrix and the intracellular actin skeleton, such as vinculin and integrin [5]. Catch bonding occurs
in intracellular applications, such as in myosin-dynein bond formation [6] and in the kinetochore
protein machinery that connects microtubules to chromosomes during cell division [7]. More
recently, also the membrane bound stator component of flagella was found to display catch bond
behavior [8].
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Ever since their first discovery, studies have attempted
to answer how catch bond proteins manage to achieve this
counterintuitive force-induced bond strengthening behavior.
Many catch bonds can allosterically switch conformations as
a tensile force is applied to them. A prominent example is
the mechanism of the FimH catch bond [9, 10]. In this catch
bond, the FimH binding domain is closely associated with an
autoinhibiting pilin domain that keeps the binding domain in a
low-affinity state.When tensile forces pull the two domains apart,
the binding domain tightens, which results in a stronger bond [9].
Force-induced conformational switching has also been observed
in selectin catch bonds. Selectins contain a ligand-binding lectin
domain positioned at an angle relative to an epidermal growth
factor domain. Depending on this angle, the selectin catch bond
can be in either a weakly bound bent conformation or a more
strongly bound extended conformation. Tensile forces applied to
selectin catch bonds induce a conformational change from the
bent to the extended form, increasing the number of lectin-ligand
interactions in the binding pocket [11, 12].

Despite these successes in elucidating the mechanisms of
the FimH and selectin catch bonds, directly observing the
structural changes in catch bonding proteins remains a challenge
in most cases. For this reason, most efforts to characterize
catch bond mechanisms have instead focussed on capturing
the force response in conceptual physical models [1]. Over the
past few years, several models have been applied successfully
to a variety of known catch bonds. From a conceptual point
of view, the simplest of these energy landscape models is the
one state two-pathway model [13]. This model assumes the
bond to be in only one state, from which two competing
paths of dissociation exist. One of the energy barriers associated
with these dissociation paths increases with increasing force,
while the other decreases. At low forces, the increasing barrier
is rate-limiting, resulting in an increasing bond lifetime as a
function of force: catch bond behavior. As the force exceeds
a critical value however, the decreasing barrier becomes rate-
limiting and the bond reverts back to a slip bond. This catch-
to-slip transition is a general feature in biological catch bonds
identified so far.

Although the one-state two-pathway model successfully
describes catch bond behavior in protein bonds such as those
of P-selectin, the fact that it contains an energy barrier that
increases with force is a simplification: After all, each of the
primary supramolecular interactions employed by the protein
individually behave as slip bonds and hence have an energy
barrier that decreases with force. This means that the energy
barrier in the one-state two-pathway model that increases with
force cannot describe a single bond dissociation or reorganization
within the protein. Rather, it has to describe a more complex
transition, such as the dissociation of a weak supramolecular
bond and subsequent formation of a stronger bond. A slightly
more complex model that takes into account the fact that
the individual bonds weaken with force is the two-state two-
pathway model [14, 15]. This model treats the catch bond as
a balance between a weakly bound state with a short lifetime
and a strongly bound state with a long lifetime (Figure 1A).
In contrast to the one-state two-pathway model, application of

force only lowers each of the energy barriers in the system,
but the force affects the height of these barriers to a varying
extent. This asymmetry in the force-response “tilts” the energy
landscape, which makes occupation of the long lifetime state
more likely with respect to the short lifetime state. The net result
is an increasing bond lifetime at intermediate forces. As the
force increases further, the weakening of both states eventually
reduces the bond lifetime again. This model has successfully
described catch bonding behavior in biological systems that show
transitions between strong and weak states, such as selectin catch
bonds [15]. Critically, the two-state two-pathway model provides
a physical explanation for the paradox of how a protein complex
that can only employ slip bonds as its primary bonds can still
behave as a catch bond as a whole.

These insights into the mechanisms of catch bonds beg the
question whether it is possible to design synthetic catch bonds
that, like FimH and selectin, can switch reversibly between
weakly bound and strongly bound states. Such synthetic catch
bonds could prove valuable model systems to study the collective
effects catch bonds can provide to biological networks and
interfaces. An example of such collective effects are the selectin
catch bonds found on the surfaces of leukocytes. The catch
bond nature of selectin allows these leukocytes to roll on the
endothelium surfaces specifically in areas where a fast blood flow
exerts shear stresses on the leukocytes, while staying detached
when the blood flow is slow [16]. More recent computational
studies on nanoparticle networks cross-linked with catch bonds
also found enhanced network toughness compared to networks
that only utilized slip bonds [17, 18]. The lack of synthetic
catch bonds leaves the vast possibility these unique bonds
have in shaping material mechanics unexplored for bio-mimetic
synthetic materials.

Designing a synthetic realization of a catch bond is no
trivial task. The mechanically-induced conformational changes
that give rise to catch bonding in proteins are so complex
that they cannot be directly mimicked synthetically. However,
this does not imply that the concept of a catch bond, a bond
that strengthens under tension, is out-of-reach for the synthetic
chemist. This paper addresses the question whether a catch
bond, separate from its biological reality, can be constructed in
a minimal chemical design.

We aim to provide a generic chemical design, as a guide
for synthetic chemists, that creates a minimal realization of the
conceptual two-state two-pathwaymodel described above. Out of
the existing phenomenological catch bond models, this provides
the most convenient starting point: it is the only model that
explains how a system that consists exclusively of slip bonds can
still behave as a catch bond on a collective level, and each of the
synthetic building blocks we can employ individually behave as
slip bonds.

Here, we propose a minimal design model for a synthetic two-
state catch bond, which demonstrates how catch bonding can
be achieved by combining mechanophores and supramolecular
motifs. Using the conceptual two-state two-pathway model as
a foundation, we derive a number of design criteria such a
supramolecular construct should fulfill in order to display catch
bond activity, and we test these criteria with kinetic monte carlo
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simulations. Our results allow us to identify a phase diagram
showing a transition between a slip bonding and a catch bonding
regime as a function of three control parameters which can
be determined experimentally. These findings could be used to
suggest potential molecular candidates to make the first true
synthetic catch bond a reality, and bring us one step closer to
utilizing synthetic catch bonds as model systems to investigate
collective effects of catch bonding in biology. Furthermore, such
a synthetic catch bond would serve as a novel building block in
material science, opening up new avenues to design bio-inspired
materials with enhanced properties.

2. CONCEPTUAL DESIGN OF A
SYNTHETIC CATCH BOND

To design a synthetic catch bond based on the two-state two-
pathway model, we first need to get a conceptual picture of the
criteria that must be fulfilled to make such a catch bond work. In
the two-state, two-pathways model, a catch bond can transition
between two states. The first is a weak, inactivated state I with a
short lifetime and the second is a stronger, activated state II with a
much longer lifetime. The catch bond relies on the principle that
the relative occupancy of these two states changes as a function
of force: As the force exerted on the catch bond is increased,
the likelihood increases that the bond becomes trapped in the
activated state II before it dissociates. As a result, the average
bond lifetime of an ensemble of such catch bonds will increase
as a function of force.

To obtain a deeper insight in howwe can tune the probabilities
between states I and II, we can visualize the two-state two-
pathway model as an energy landscape (Figure 1A) [15]. Two
energy minima in this landscape represent the weak, inactivated
state I and the strong, activated state II. Bond dissociation is
possible from both of these states, and the rates of these processes
are governed by energy barriers E1A and E2A, respectively. A third
energy barrier EICA governs the rate of interconversion between
states I and II. In the absence of tension, dissociation from the
weakly bound state I is more likely than interconversion toward
the strong state II, which results in a short bond lifetime. Tension
applied to the bond tilts the energy landscape, which lowers the
energy barrier for interconversion toward the strong state EICA
relative to E1A. This increases the probability that the system ends
up in the strong state II before dissociation, which results in a
longer bond lifetime.

This increase in bond lifetime under tension, signaling catch
behavior, continues until EICA is so low compared to E1A that
any further increase in force will not substantially affect the
probability to reach state II. If the force is increased beyond
this point, the progressive lowering of barriers E1A and E2A only
weakens the bond, which makes the system transition from a
catch bond to a slip bond at high forces. We note that this
catch behavior at low and intermediate forces, and its transition
to slip bonding at high forces, is also a feature of all known
biological catch bonds, which therefore should be referred to as
catch-slip bonds.

Based on this conceptual picture we can reason that
the following three criteria must be met to make the
catch bond work:

1. E2A should be higher than the energy barrier E1A. This criterion
ensures that it is more difficult to dissociate from state II than
from state I. As a result, the bond lifetime increases as the
probability of visiting state II relative to state I increases at
greater forces.

2. At low forces, we require that dissociation from the weak state
I occurs more quickly than interconversion to the stronger
state II. This criterion ensures a short bond lifetime, dictated
by the dissociation time of the weak state I. Thismeans that the
energy barrier E1A must be substantially lower than the energy
barrier EICA at low forces.

3. At greater forces however, we require the opposite behavior.
Here, dissociation from the weak state I should occur more
slowly than interconversion to the stronger state II. This
ensures a long lifetime, because the chance of visiting state II
before bond dissociation becomes greater. Therefore, energy
barrier E1A must be higher than the energy barrier EICA
at high forces.

The apparent contradiction between the latter two criteria can
only be resolved if the height of the barriers E1A and EICA scale
differently as a function of force. This asymmetry in the response
of the kinetic barriers to force is pivotal in the function of the
two-state, two-pathway catch bond.

3. MOLECULAR DESIGN MODEL

Now that we have a conceptual picture of the theoretical
requirements of a two-state two-pathway catch bond, we set out
to develop a molecular design model that fulfills these criteria
in order to realize a chemical design for a synthetic catch bond.
Our design consists of an oligomeric construct composed of two
types of supramolecular interactions (Figures 1B,C). The first of
these monomers is a “simple” supramolecular slip bond A that
dissociates into its unbound state B (Figure 1B). The reaction
equilibrium of this reaction is governed by the forward rate kAB
and reverse rate kBA. In the inactive, weakly bound state I of the
catch bond, only these simple slip bonds A are engaged.

Our two-state, two-pathway catch bond also requires the
ability to switch to a more strongly bound state II under force
in order to fulfill criteria 1, 2, and 3 we have identified above. To
this end, we include a second type of force-responsive monomer
in our supramolecular oligomer. This monomer is a so-called
mechanophore: a molecule that consists in an inactive state C at
rest and undergoes a force-induced conformational change kCD
that allows it to form a supramolecular slip bond D (Figure 1C).
The formation of this supramolecular slip bond D corresponds
to the activated state II of the catch bond. In turn, this slip
bond D reversibly dissociates into the unbound state E with
forward and backwards rates kDE and kED respectively. As the
formation of the supramolecular bond stabilizes the active state
of the mechanophore, deactivation to state C occurs exclusively
via the debonded state E at reaction rate kEC.
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FIGURE 1 | (A) Energy landscape of a two-state, two-pathway catch bond at rest (black) and under tension (red). The activation energies of dissociation from state I,

dissociation from state II, and interconversion between these states are shown as E1
A, E

2
A, and E ICA , respectively. (B,C) Design model of a synthetic catch bond that

consists of (B) a supramolecular cross-link and (C) a mechanophore capable of forming a supramolecular cross-link under force-activation. (D) Schematic

representation of a catch bond consisting of one supramolecular cross-link and one mechanophore in weak state I (AC) and strong state II (AD), along with the two

unbound states BC and BE that could be reached from these states.

The catch-bonding oligomer is constructed of N = NA + NC

monomers. Let the symbols ni with i = A,B..E denote the
number of monomers in their respective conformational state,
with the condition 6ini = N. Since the states A and D form
supramolecular bonds, only these contribute to the mechanical
stability of the construct, so that the total number of bonds
equals nbonds = nA + nD. The overall picture of this catch
bond design is as follows (Figure 1D): in the absence of applied
force, the oligomer exists in the inactivated state I with all NA

monomers in the bound (A) state and all mechanophores NC

in the inactivated state C. In this inactivated state of the catch
bond, the bond lifetime is thus governed by the weak slip bonds
A. Application of small stretching forces increases the probability
of activating the C → D bonds relative to the probability of
rupturing some A → B bonds. This pushes the system into

the activated state II where the bond lifetime is governed by the
D supramolecular interactions. Provided that the bond strength

of the D bonds is greater than that of the A bonds, we can

expect state II to be a stronger overall bond than state I. In
short, this means that we can fulfill the criterion 1 of a two-state

two-pathway catch bond (E2A > E1A) by ensuring that the bond

strength of the D bonds is greater than the bond strength of the
A bonds.

We note that the activated state II is a multivalent state, as

it is comprised of both A − A and D − D interactions. As a

result, dissociation from state II is possible via multiple pathways,
in which these interactions break either simultaneously or
sequentially. This makes the overall energy landscape of the
proposed catch bond slightly more complex as compared to
a monovalent two-state catch bond. In spite of this more
complicated picture, the system can achieve catch bonding as
long as the lifetime of the multivalent state II is longer than the
life time of state I.

To ensure that this design model also fulfills the second and
third criteria of a two-state two-pathway catch bond, we have to
consider the kinetics of the system. In our catch bond design, we
can write out the following set of kinetic equations that govern
the occupation of the states over time:

dnA

dt
= −kAB · nA + kBA (NA − nA) (1)

dnC

dt
= −kCD · nC + kEC (NC − nC − nD) (2)

dnD

dt
= kCD · nC − kDE · nD + kED (NC − nC − nD) (3)

As discussed above, criteria 2 and 3 of a two-state, two-pathway
model dictate that the height of the energy barrier of dissociation
from the inactive state I should be lower than the height of the
barrier of interconversion between the inactive state I and the
active state II at small forces, but higher at large forces. Given
that in our case the inactive state I is a state with predominantly
A bonds (high nA) and the active state II is the state with
predominantlyD bonds (high nD), this can be achieved if the rate
constants kAB and kCD are force-dependent and scale differently
as a function of force. We incorporate the effect of applied
force in our system by presuming that the rate constants of
supramolecular bond rupture (A → B and D → E) and
mechanophore-activation (C → D) display Kramers-Bell type
thermally-activated and mechanically-enhanced kinetics [19].
For these reaction steps, the rate constants can then be written as:

kij = kij,0 · exp[βf δxi] (4)

Here, (ij) = (AB), (CD), and (DE), β = 1/kBT, kij,0 is the
reaction rate at zero force and δxi is the activation length. This
activation length δxi denotes the length change of the bond in
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the activated state relative to the bond at rest, and determines
the susceptibility of the bond to mechanical activation. The rate
constants of all other transitions are assumed to be independent
of the applied force. According to the Kramers-Bell model, energy
barriers are exponentially lowered as a function of force, and the
degree to which they do so depends on the activation length δxi.
If supramolecular bond A and mechanophore C are chosen such
that kAB,0 > kCD,0 and δxA < δxC, we ensure that kAB > kCD
at small forces, while kAB < kCD at large forces. Hence, design
criteria 2 and 3 are both met. Within this argument based on
rate constants, design criterion 1 (E2A > E1A) can be expressed
as kAB > kDE. This can be realized if kAB,0 > kDE,0, assuming
that δxA is similar to δ xD.

In essence, the synthetic catch bond we propose exists as a
balance between two subpopulations: a weakly bound state I
from which dissociation is slow and a more strongly bound state
II from which dissociation is faster. Meeting criteria 2 and 3
ensures that increasing the force shifts the balance between these
two subpopulations toward the more strongly bound state II.
This force-induced shifting between subpopulations is the key
mechanism by which many relevant biological two-state catch
bonds have been identified to work, such as the interaction
between von Willebrand factor and platelet glycoprotein Ibα
[20], and P-selectin [15].

We note in passing that the Kramers-Bell description of force-
enhanced thermal barrier transitions does not take into account
the directionality of the applied force. Rather, in the catch bond
we propose (Figure 1D) it is assumed that a fixed magnitude
of force is applied to cross-links (A − A and D − D) and
the mechanophore (C). In practice however, the dissociation of
the A − A and D − D bonds might require a different force
directionality than the activation of the mechanophore C → D.
For example, activation of mechanophore C could require the
rupture of intramolecular bonds within C oriented in a different
direction than the intermolecular cross-link A − A. Depending
on the direction in which the force is applied to the catch bond
as a whole, the magnitude of the applied tensional load might be
distributed differently in each of the relevant directions, which
could cause cross-link C to experience a different magnitude
of force than supramolecular bonds A − A and D − D. We
do not account for this effect in our simplified design model.
Moreover, the Kramers-Bell description (Equation 4) assumes
that the applied force only affects the height of the energy barrier
for bond dissociation, but does not affect its curvature [21]. This
assumption is only valid if the barrier is sufficiently steep, that
is, if the activation length is comparatively short with respect to
the barrier height, which is the case for most mechanically stable
supramolecular motifs.

4. RESULTS

To test whether our molecular design model displays catch
bonding, we solve the system of kinetic equations (1–3) with
a Gillespie Kinetic Monte Carlo (KMC) algorithm, which takes
into account the effect of thermal fluctuations, as discussed in
[22]. We run a simulation until nbonds = nA + nD = 0, which

signifies rupture of the oligomer. For each of the designs and
loading condition we test, we run 1,000 independent simulations
to ensure sufficient statistics. We simulate these rupture events
in the limit of constant strain. Since the supramolecular bonds
(A-A and D-D) that connect two unimers act as springs, the
condition of constant strain implies a constant force f on each
of the supramolecular bonds in parallel. As a result, the force per
bond f is time-invariant in the limit of constant strain, while the
cumulative load on the dimer F(t) = fnbonds varies over time.

We first consider the simplest case of our supramolecular
oligomer, which is a dimer composed of only a supramolecular
slip bond A-A without mechanophores: N = NA and NC =
0. For a single supramolecular bond (NA = 1), we observe
Poisson statistics, where the dimensionless bond lifetime τ̃ =
τkBA,0 decays exponentially as a function of the dimensionless

force f̃ = f δxA/kBT (Figure 2A). Each data point in Figure 2A

is averaged over 10,000 simulations per force. For multivalent
dimers (NA > 1), we observe two exponential decay regimes in
the bond lifetime. This effect was previously explained for failure
of multivalent colloidal aggregates [23]. For small forces, rupture
of the multivalent dimer is cooperative. Here, dissociation occurs
relatively slowly compared to reassociation (kAB << kBA). As
a result, dissociated bonds within the dimer have ample time to
reform as long as other bonds within the dimer are still present,
preventing dissociation of the dimer as a whole. Due to this
multivalency effect, one expects an exponential slope that scales
with NA. Indeed, we find that increasing NA strongly increases
the slope of the bond lifetime at small forces. By contrast, at
large forces we observe a slope that is independent of NA. Here,
dissociation occurs substantially faster than association (kAB >>

kBA), so that bond rupture is simply a sequence of rupturing
all bonds in succession. In this regime, adding more bonds NA

would have little effect on the bond lifetime, so that one would
indeed expect the slope to be insensitive to NA. Due to this
force-dependent transition from cooperative to non-cooperative
behavior, the degree to which the rupture rate is affected by the
force decreases as a function of force. This multivalency effect is
a useful tool in designing a synthetic catch bond, because it could
help the rate of mechanophore activation (kCD) overtake the
dissociation of the A-A bonds (kAB) more easily at large forces.

We now introduce a mechanophore into our dimer to explore
the possibility to create a catch bond. The simplest catch bond we
can consider consists of one A-A dimer and one mechanophore
(NA = NC = 1). We choose our kinetic parameters such that
they fulfill the three criteria of a two-state two-pathway catch
bond: kDE,0 < kAB,0 (criterion 1), kAB,0 > kCD,0 (criterion 2), and
dxA < dxC (criterion 3). The bond reformation rates kBA and
kED are controlled by diffusion and thus considered of similar
magnitude,so that kBA = kED = 1. As a simplification we
assume that the spontaneous conversion of the activated to the
inactivated chromophore is slow compared to the other rates in
the system, so that it can be ignored (kEC = 0).

Interestingly, we find that adding a single mechanophore to
one A-A dimer bond already yields convincing catch bonding
behavior (Figure 2B, averaged over 1,000 simulations per force).
We can understand how this occurs by studying the average
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FIGURE 2 | (A) Force-lifetime curve of an oligomer consisting of a varying number of subunits (NA), without a mechanophore (NC = 0). (B) Force lifetime curves of a

single NA = 1 oligomer displays slip bond behavior in the absence of a mechanophore (red curve, NC = 0) and catch bond behavior in the presence of a

mechanophore (blue curve, NC = 1). (C,D) Kinetic diagrams of the blue curve in figure b showing the average number of bonds in the A and D states (n̄A and n̄D) over

simulation time steps t̃ at f̃ = 0 (C) and around maximum lifetime, at ˜f = 1.5 (D). (E,F) Logarithmically binned histograms of the bond dissociation times τ̃ at different

forces for (E) f̃ < 1.5 and (F) f̃ > 1.5. Simulations were run with zero-force rate constants kAB,0 = 0.1, kCD,0 = 0.001, kDE,0 = 0.01 and activation lengths δxc = 4.6,

and δxD = δxA = 1.

number of bonds in the A-A and D-D states over time
(Figures 2C,D). At f̃ = 0, we find that almost exclusively the
weak A-A bonds are present, while only a small number of the
mechanophores activate due to thermal activation (Figure 2C).
By contrast, under tension at the maximum of the force-

lifetime curve f̃ = 1.5, the strong mechanical scaling of the
mechanophore activation rate increases kCD relative to the A-
A dimer rupture rate kAB. This causes an increasing amount of
oligomers to become trapped in the stronger, activated D-D state
before rupture (Figure 2D). In the latter case we also find that the
A-A dissociation (n̄A) occurs in two stages: After a quick initial
decay, the dissociation rate slows down dramatically as soon as

n̄D increases. We can attribute this to a multivalency effect: as

soon as both the A-A and D-D dimers are formed, the A-A bond
can dissociate without breaking the dimer. This allows the bond

to reform via rate constant kBA. Due to this reassociation, we can

expect n̄A to drop more slowly.
All data we have discussed so far are averaged over at least

1,000 simulations per datapoint. While such averaged properties
can inform us whether a population of bonds display catch

bonding as a whole, they provide no information on the lifetime
distribution at the level of the individual bonds. To obtain such
insight, we constructed logarithmically binned histograms of
the bond dissociation time τ̃ for varying forces in the regime

of increasing bond lifetime, f̃ < 1.5 (Figure 2E) and in the

regime of decreasing bond lifetime f̃ > 1.5 (Figure 2F). At

force f̃ = 0, bond dissociation occurs from a single population.

As we increase the force toward f̃ = 1.5, we observe that an
increasing fraction of bonds dissociates from a second population
with a higher lifetime. Simultaneously, the lifetimes of both these
populations decrease with increasing force. This trend continues

as we increase the force beyond f̃ > 1.5 as shown in Figure 2F,

until only the long-lifetime population is left at f̃ = 2.3. In short,
the lifetime enhancement as seen in the catch bond force-lifetime
curve in Figure 2B is only visible as a collective effect. On the
level of the individual bonds however, dissociation proceeds from
two populations, and the lifetimes of each of these populations
are in fact lowered by the applied force. The increasing average
bond lifetime is thus caused by a shift in probability between
two states, rather than by a increase in the lifetimes of the states
themselves. These observations are in line with the two-state, two
pathway model.

We have now established that catch bonding can be achieved
in our model system by combining a simple oligomer and a
mechanophore. However, the phase space for synthetic design
is vast, and the tunability of the kinetic parameters depends on
the availability of supramolecular motifs and mechanophores.
For a more complete picture, we thus set out on a systematic
exploration of the parameter space. Although we have previously
reasoned that a certain range in the parameters kAB,0/kCD,0,
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δxC/δxA, and kAB,0/kDE,0 is required to achieve catch bonding,
the question remains where the boundaries of this catch bonding
regime lie exactly. Furthermore, we can wonder how different
aspects of our catch bond can be tuned by these parameters,
such as the relative increase in bond lifetime under force or the
location of the optimum of our force-bond lifetime curve. Such
knowledge would be especially useful in the rational design of
artificial catch bonds.

To answer these questions, we systematically vary each of
the parameters kAB,0/kCD,0, δxC/δxA, and kAB,0/kDE,0 while
recording their force-lifetime curves (Figure 3). First, we vary the
ratio of activation lengths between the process of mechanophore
activation and A-A bond rupture δxC/δxA, by varying δxC at
constant δxA = 1 (Figure 3A). When the activation lengths
are similar (δxC/δxA = 1), we find clear slip-bond behavior.
As we increase δxC/δxA, we find a transition from slip bonding
to catch bonding behavior, paired with an increasing lifetime at
intermediate forces. At greater values of δxC/δxA, kCD becomes
greater than kAB at intermediate forces, which increases the
chance the mechanophore activates and forms the D-D bond
before rupture of the A-A slip bond occurs. At the boundary
between the slip and catch regimes, we observe a case of ideal
bonding at (δxC/δxA = 3.1) where the lifetime τ̃ remains

constant for a sizeable range of forces 0 < f̃ < 1. In short, we
can increase δxC/δxA to increase the fraction of bonds that reach
the activated state II before dissociation from state I. This allows
us to tune the average force-lifetime curve between slip bonding,
ideal bonding and catch bonding.

When we vary kAB,0/kCD,0 by changing kCD,0, we observe an
altogether different effect on the catch bond curve (Figure 3B).
In the limit kAB,0/kCD,0 → 0 the kinetic equations dictate that

the catch bond will be universally activated even at f̃ = 0,
which results in slip bond behavior governed by the bond lifetime
of the strong D-D bond (kDE). We indeed observe a force-
lifetime curve that tends toward a slip bond at low values of
kAB,0/kCD,0. As kAB,0/kCD,0 increases, the bond lifetimes at low
forces and at the force maximum drop consistently, while the
force maximum itself shifts toward greater forces. This tunability
of the force maximum is an interesting feature which could
be exploited in the design of artificial catch bonds. It can be
explained as follows: At high values of kAB,0/kCD,0, the initial
offset in rate constants kCD and kAB is greater, which means
that greater forces are required before the rate of mechanophore
activation overtakes the rate of A-A bond rupture, activating the
catch bond. Finally, the bond lifetime at large forces appears
unaffected by kAB,0/kCD,0. At such large forces the catch bond
will be universally activated, which means that further changes in
kAB,0/kCD,0 will have little effect. In short, kAB,0/kCD,0 can be used
to strongly tune the lifetime at small forces and the force at which
the maximum lifetime is reached, without affecting the lifetime
at large forces. The effect of kAB,0/kCD,0 can also be understood
in terms of our conceptual model: Increasing kAB,0/kCD,0 lowers
the energy barrier E1A relative to barrier EICA at low forces. This
lowers the bond lifetime, because an increasing fraction of bonds
dissociate from state I without reaching activated state II. At
large forces beyond the lifetime maximum however, the chance

of reaching state II is high regardless of kAB,0/kCD,0, since δxC >

δxA. When most catch bonds reach state II, the bond lifetime is
governed by barrier E2A. This barrier is unaffected by kAB,0/kCD,0
and hence the lifetime at large forces is unaffected by kAB,0/kCD,0.

However, varying the ratio of the initial bond A-A and D-

D bond strengths kAB,0/kDE,0 (Figure 3C) has a large effect
on the bond lifetime at large forces. The lifetime at the force
maximum is also strongly affected, while the lifetime at low

forces is unaffected. As we increase the value of kAB,0/kDE,0, we
find a clear transition from slip bond behavior to catch bond

behavior with increasing bond lifetimes. At low kAB,0/kDE,0, the
mechanophore might be activated, but this activation does not
lead to the formation of a stronger bond. As such, the lifetime
of the construct as a whole remains governed by the weak A-

A cross-link, and we observe slip bond behavior. For larger
kAB,0/kDE,0 on the other hand, activation of the mechanophore
leads to an increasingly strong D-D bond and hence a longer
bond lifetime at the force maximum and larger forces. An
interesting observation is that some catch bonding can already

be observed before the D-D bond is stronger than the A-A bond,
at kAB,0/kDE,0 = 1. If the A-A and D-D bond are of comparable

strength, we can expect the lifetime of the activated catch bond
as a whole to increase due to multivalency. This has interesting
implications for the effort to create an artificial catch bond, as it

means that it is not necessary for the mechanophore to form a
very strong D-D cross-link. Rather, it is sufficient if the activated
state contains multiple bonds of a similar strength as the bonds

in the inactivated state. In terms of the conceptual two-state,
two-pathway picture, increasing kAB,0/kDE,0 increases the energy
barrier E2A relative to barrier E1A. This increases the bond lifetime
in the activated state II relative to state I but has little effect on
the chance of reaching state II. As a result, we find an increasing
bond lifetime at high forces, where the chance of reaching state
II is high, but little increase in lifetime at low forces, where the
chance of reaching state II is low.

Combined, these results show how different aspects of our
catch bond can be tuned by varying three parameters. Specifically,
we can tune the location of the force maximum and the bond
lifetime at low force by varying kAB,0/kCD,0; we can tune the
bond lifetime at large forces by varying kAB,0/kDE,0, and we can
tune the lifetime of our catch bond at the force maximum by
varying all three parameters. To also obtain quantitative insight
in the minimal conditions required to achieve catch bonding,
we can define a parameter that quantifies the degree of catch
bonding and study how this parameter varies as a function of
our three control parameters. We define the parameter 1τ̃/τ̃ ,
which denotes the mechanical enhancement: the increase of
the bond lifetime at the force maximum relative to the bond
lifetime in the absence of force (Figure 4A, inset). 1τ̃/τ̃ is equal
to 0 for slip bonds and ideal bonds, and increases with more
pronounced catch-bonding.

We calculated 1τ̃/τ̃ for each of the three simulation series
we discussed above, as shown in Figures 4A–C. We observe that
increasing δxC/δxA leads to a linear increase in the mechanical
enhancement above a critical value δxC/δxA ≈ 2. Catch bonding
increases logarithmically as kAB,0/kCD,0 and kAB,0/kDE,0 both
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FIGURE 3 | Force-lifetime curves simulated at varying δxC/δxA (A), kAB,0/kCD,0 (B), and kAB,0/kDE,0 (C). Data was recorded at δxC/δxA = 6.4 (B,C), kAB,0/kCD,0 = 20

(A,C), and kAB,0/kDE,0 = 10 (A,B). All data are averages of 1,000 simulations per force, at NA = NC = 1, dxDE = dxAB = 1, kED,0 = kBA,0 = 1, and kAB,0 = 0.1.

FIGURE 4 | Plots of the mechanical enhancement 1τ̃/τ [(A), inset] as a function of the three control parameters δxC/δxA (A), kAB,0/kCD,0 (B), and kAB,0/kDE,0 (C)

calculated for the series of force-lifetime curves shown in Figure 3. (D) Contour plot of 1τ̃/τ 0 as a function of both δxC/δxA and kAB,0/kCD,0.

increase beyond a critical value of ≈ 1, although some catch
bonding can already be observed for kAB,0/kDE,0 < 1, due
to the multivalency effect we discussed above. The parameters
kAB,0/kCD,0 and δxC/δxA together determine whether criteria
2 and 3 of a two-state, two-pathways model are met. This

means that we can expect the greatest effect on the mechanical
enhancement if both parameters are increased together. To study
the combined effect of these two parameters, we carried out
a range of simulations where we varied both kAB,0/kCD,0 and
kAB,0/kCD,0. As a result, we obtained a gaussian-binned phase
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FIGURE 5 | (A) Potential quadruple hydrogen bonding candidates for the supramolecular interaction A− A. Two examples based on 2-ureido-4[1H]-pyrimidone are

shown [24, 25]. (B) Potential mechanophore candidates should be capable of converting an intramolecular bond (C) into an intermolecular bond (D− D). Hypothetical

examples are: 1. a bridged tetraphenyl succinonitrile molecule containing a reversibly cleavable C-C bond [26, 27], 2. spiropyran, which converts into zwitterionic

merocyanine after rupture of an intramolecular C-C bond, allowing it to dimerize through electrostatic interactions and π − π stacking [28–31], and 3. Diels-Alder

adducts, which can dissociate through a mechanically induced retro-Diels-Alder reaction, and subsequently reassociate to form intermolecular Diels-Alder bonds [32].

diagram (Figure 4D) showing a gradual transition from a clear
slip-regime at low kAB,0/kCD,0 and low δxC/δxA to a regime
which shows distinct catch bond behavior at high kAB,0/kCD,0
and δxC/δxA.

5. DISCUSSION

In this work, we have presented a minimal chemical design
model for a synthetic catch bond. This model provides a
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theoretical picture of how synthetic catch bonding could be
achieved in an oligomer consisting of supramolecular moieties
(A) and mechanophores (C), each of which individually
act as slip bonds. We can tune the characteristic force-
lifetime curve of these catch bonds with three kinetic
control parameters derived from the energy landscape of
the two-state two-pathway model. Specifically, we can tune
the lifetime at zero force with kAB,0/kCD,0, the lifetime
in the activated state with kAB,0/kDE,0, and the lifetime
at the force maximum with the ratio of the activation
lengths δxC/δxA as well as the previous two parameters.
These parameters might therefore offer a foothold to
not only build a synthetic catch bond, but also tune
its characteristics.

We have determined the limits of the range these parameters
should take in order to achieve catch bond behavior by
quantifying the bond lifetime enhancement at the force
maximum relative to the bond lifetime at zero force. These
findings have allowed us to identify a phase diagram of catch
bond behavior that could form a theoretical framework.
With this framework in hand, the next step is to predict
potential molecular candidates to fulfill the role of our
supramolecular cross-link (A) and mechanophore (C).
Theoretically, many primary supramolecular bonding types
can be considered for the supramolecular bond A, such as
those based on hydrogen bonds, hydrophobic interactions
or electrostatic interactions, for which a wide variety of
molecular realizations are available to the supramolecular
chemist (Figure 5A).

The choice for the mechanophore C requires more attention,
as the suitable molecule should be capable of a force-
induced transition from an intramolecular to an intermolecular
bond, for which several candidates are available (Figure 5B).
One potential realization of molecule C is spiropyran, which
can undergo a reversible covalent bond dissociation [29]
converting it into the zwitterionic merocyanin molecule capable
of dimerization through π − π stacking and electrostatic
interactions [30, 31]. Other candidates include Diels-Alder
adducts of aromatic molecules, which can be activated by a
mechanically-triggered retro Diels-Alder reaction [32]. In a
Diels-Alder mechanophore, force-induced dissociation of an
intramolecular Diels-Alder adduct can trigger the formation
of an intermolecular Diels-Alder adduct or the exposure
of an aromatic group capable of undergoing pi-bonding.
Finally, succinonitrile compounds may be considered. These
contain labile covalent bonds that can dissociate reversibly
into radicals, whose recombination with adjacent moieties can
trigger intermolecular bonding from a labile intramolecular bond
[26, 27].

In selecting a suitable supramolecular unit/mechanophore
pair, care should be taken that these satisfy the criteria we
have identified. The criterion that kAB,0/kCD,0 >> 1 should
be viable as many mechanophore activations rely on the
dissociation of covalent bonds, whereas the supramolecular
cross links rely on weaker interactions. Similarly, the criterion
that kAB,0/kDE,0 >> 1 should be viable as the bonds formed

upon mechanophore activation are generally stronger than
the supramolecular interactions, especially in the case of
diels alder adducts and succinonitrile compounds. However,
one of the greatest bottlenecks in selecting a suitable A
and C pair is likely to ensure a sufficiently large activation
length ratio δxC/δxA. Our simulations reveal that δxC/δxA
must be greater than 3 to obtain a catch bond. However,
experimental evidence reveals that activation lengths of
many mechanophores are in fact similar to those of many
supramolecular interactions. For example, the activation length
of the spiropyran ring opening is around 1.93 Å [28], which
does not exceed the activation length of the commonly
used supramolecular unit 2-ureido-4[1H]-pyrimidone
(2.3 Å) [24].

A potential solution to this challenge is to make use
of the force geometry. While our model does not take
into account the effect of molecular groups surrounding
the mechanophore, experimental results show the effective
activation length of mechanophores can depend strongly on
the surrounding chemical environment. For example, single
molecule force spectroscopy studies on a mechanophore
embedded in a polymer show that the activation length
of a mechanophore can be enhanced by the surrounding
polymer backbone [33]. In this case, the activation length is
interpreted as the effective contour length difference between
the mechanophore at rest and in its activated state in the
direction of the applied force. This suggests that by making
clever use of the way in which force is distributed over the
bond, it is perhaps possible to achieve an effective activation
length difference without employing exotic molecules with
intrinsically large activation lengths. This might also offer
an explanation on how natural proteins can act as catch
bonds in spite of the fact that they mostly employ common
supramolecular interactions.

Another avenue that could be explored in the future is
the effect of multivalency in achieving catch bond behavior.
In this work, we have only looked at multivalency in the
number of supramolecular (A) units, but multivalency in the
number of mechanophores (C) might also have important
implications: In the limit of constant strain, we could predict
that incorporating multiple mechanophore units increases the
collective work applied to the bond as nCf δx. Under constant
tension force, this means that the effect of the activation length
of the interconversion between the inactive and active states is
multiplied by nC. We can imagine this as follows: as soon as
one of the mechanophores activates, the lifetime of the bond
is increased, which in turn increases the likelihood that other
mechanophores are activated before the catch bond dissociates
as a whole. This effect might allow catch bonds to be made out of
mechanophores that otherwise would not have a sufficiently large
activation length. It could also have implications for biological
catch bonds. Despite having only a limited pool of amino acids
and thus interactions to choose from, catch bonding protein
complexes could employ multivalency to obtain large effective
activation lengths for the transitions between their inactive and
active states.
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Raphael Marschall is a young space scientist working on small bodies in the solar system, comets and 

asteroids. He started his career at the University of Bern with a Bachelor and a Master thesis, both from 

the Institute of Theoretical Physics. Then he moved to the group of Nicolas Thomas to work on the 

observations of comet 67P/Churyumov-Gerasimenko from the Rosetta mission, on which he completed 

his PhD in 2017. The Faculty of Science at the University of Bern selected this as the best PhD thesis in 

physics that year. After a first 1.5-year postdoc at the International Space Science Institute in Bern he 

moved to the Southwest Research Institute in Boulder with a grant from the Swiss National Science 

Foundation. Recently he became a Postdoctoral Researcher at SwRI, where he works primarily on Trojan 

asteroids. He has some 15 publications with more than 700 citations.

The paper by Marschall et al. addresses the problem of dust emission from comets. The Rosetta mission 

to comet 67P/Churyumov–Gerasimenko has revealed that potentially a significant fraction of dust emitted 

from the comet will fall back to its surface. Knowing the total mass loss (volatile + dust) from the comet as 

well as the volatile mass loss (using gas dynamics models) can therefore fundamentally not determine the 

dust mass emitted from the surface. This is because only a part of the emitted dust escapes the nucleus’ 

gravity contributing to the total mass loss while the remaining fraction falls back onto the surface. To 

solve this problem the authors have developed and applied state of the art 3D gas and dust dynamics 

models to simultaneously constrain the gas and dust emission. The models have been constrained using 

the ROSINA mass-spectrometer data for the gas and the OSIRIS imaging data for the dust. This modelling 

approach allows to not only constrain the gas and dust production rates but also simultaneously the dust 

size distribution, the dust-to-gas ratio, and the fraction of dust falling back to the comet surface. The 

authors found that the dust-to-gas ratio of comet 67P is of the order of unity and that the comet emitted 

about 5 megatons of dust during its 2015 apparition. The most likely dust size distribution was found to 

have a differential power law slope of -3.7, and the fraction of dust falling back to the surface is of the 

order of 10%. This corresponds to roughly 10 cm in deposition on the smooth northern planes. Finally, it 

was found that the smallest dust grain size must be strictly smaller than 30 microns.
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Fraction of Comet 67P/Churyumov-
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Linking the Optical and Dynamical
Properties of the Inner Comae
Raphael Marschall 1*, Johannes Markkanen 2, Selina-Barbara Gerig 3,4,

Olga Pinzón-Rodríguez 3, Nicolas Thomas 3,4 and Jong-Shinn Wu 5

1Department of Space Studies, Southwest Research Institute, Boulder, CO, United States, 2Department Planets and

Comets, Max Planck Institute for Solar System Research, Göttingen, Germany, 3 Space Research and Planetary Sciences,

Physikalisches Institut, Universität Bern, Bern, Switzerland, 4NCCR PlanetS, Bern, Switzerland, 5Department of Mechanical

Engineering, National Chiao Tung University, Hsinchu, Taiwan

In this work, we present results that simultaneously constrain the dust size distribution,

dust-to-gas ratio, fraction of dust re-deposition, and total mass production rates for

comet 67P/Churyumov-Gerasimenko. We use a 3D Direct Simulation Monte Carlo

(DSMC) gas dynamics code to simulate the inner gas coma of the comet for the duration

of the Rosetta mission. The gas model is constrained by ROSINA/COPS data. Further,

we simulate for different epochs the inner dust coma using a 3D dust dynamics code

including gas drag and the nucleus’ gravity. Using advanced dust scattering properties

these results are used to produce synthetic images that can be compared to the OSIRIS

data set. These simulations allow us to constrain the properties of the dust coma and

the total gas and dust production rates. We determined a total volatile mass loss of

(6.1 ± 1.5) · 109 kg during the 2015 apparition. Further, we found that power-laws with

q = 3.7+0.57
−0.078 are consistent with the data. This results in a total of 5.1+6.0

−4.9 ·109 kg of dust

being ejected from the nucleus surface, of which 4.4+4.9
−4.2 · 109 kg escape to space and

6.8+11
−6.8 · 108 kg (or an equivalent of 14+22

−14 cm over the smooth regions) is re-deposited

on the surface. This leads to a dust-to-gas ratio of 0.73+1.3
−0.70 for the escaping material

and 0.84+1.6
−0.81 for the ejected material. We have further found that the smallest dust size

must be strictly smaller than ∼ 30µm and nominally even smaller than ∼ 12µm.

Keywords: comets, coma, 67P/Churyumov-Gerasimenko, dust-to-gas ratio, size distribution, modeling, dust

dynamics

1. INTRODUCTION

The European Space Agency’s (ESA) Rosetta mission escorted comet
67P/Churyumov-Gerasimenko (hereafter 67P) from August 2014 to September 2016 along
its orbit through the inner Solar System. It watched as the comet’s activity started to develop
at large heliocentric distances, come to its culmination at perihelion, and decline as the comet
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traveled out toward Jupiter’s orbit. This long-term continuous
monitoring of the comet’s activity has provided an unprecedented
wealth of data on this comet and its activity.

The observations revealed a complex bi-lobate shape [1, 2]
and diverse morphology [3]. As a comet approaches the Sun it is
heated and the ices start sublimating and ripping with them dust
particles. Thus one of the important questions to be answered
was what the bulk of the comet was made of i.e., what the bulk
refractory-to-volatile ratio is. In the simplified view where any
ejected material is lost to space two measurements are sufficient
to determine this ratio. First, the total mass loss during one
apparition measured by the Radio Science Investigation (RSI)
[4]. Second, the total volatile mass loss which can be indirectly
determined by the in-situ measurements of the gas density (e.g.,
[5–7]) or remote sensing data (e.g., [8–11]). In this simple case,
the refractory-to-volatile ratio can be immediately inferred from
those two measurements. But the complex surface morphology
has revealed large dust deposits [12] that indicate that possibly
a large fraction of the ejected dust is re-deposited [13]. If that is
indeed the case, then the two above mentioned quantities cannot
constrain the total dust mass ejected but rather only the dust mass
escaping the nucleus gravity. Further, the process of dust fall-back
obscures the emitted dust-to-gas ratio.

One way of constraining the amount of fall-back material
would be to attempt to measure the actual change in elevation
of the surface as a function of time from local or global digital
terrain models (DTM). We cannot assess at this point if that
is indeed feasible with the Optical, Spectroscopic and Infrared
Remote Imaging System (OSIRIS, [14]) data set. Another way is
to couple the scattering properties of the dust with a dynamical
model of the dust coma constrained by the brightness of the
dust coma. In this work, we have adopted the latter approach
and modeled the inner gas and dust comae for the entire
Rosetta mission. We use Rosetta Orbiter Spectrometer for Ion
and Neutral Analysis (ROSINA, [15]) data to constrain the
gas production rate and OSIRIS data for our dust models.
To constrain the dust models we compare the dust coma
brightness as measured by OSIRIS to synthetic model images.
This process links several dust parameters that are otherwise not
easily combined. In particular, we will show how the dust size
distribution, the dust-to-gas ratio, the fraction of fall-back and
the optical properties are inter-dependant and thus cannot be
determined independently.

In section 2, we will describe the method used and lay out the
assumptions we have made. Furthermore, we will point out the
free parameters of the models, that need constraining through
Rosetta data. Some theoretical considerations are presented in
section 3. We will discuss the results of our work in section 4 and
summarize and conclude our work in section 5.

2. METHOD

In this work, we have used the modeling approach (and in
particular our DRAG3D model for the dust coma) described
in detail in Marschall et al. [16]. This approach has been
successfully applied for the analysis and interpretation of

multiple Rosetta instruments, in particular ROSINA, MIRO
(Microwave Instrument for the Rosetta Orbiter), VIRTIS (Visible
and Infrared Thermal Imaging Spectrometer), and OSIRIS [16–
19]. While in previous work we have applied this approach to
specific epochs of the Rosetta mission, we have employed it here
to cover the entire mission period to study longer-term processes.

In the following, we will briefly repeat some of the most
important parts of the modeling elements and refer to Marschall
et al. [16] for a detailed description.

2.1. General Assumptions
The calculation of the 3D gas flow field using the
Direct Simulation Monte Carlo (DSMC) method is very
computationally expensive and it is therefore currently not
feasible to cover the entire escort phase of Rosetta (from August
2014 to September 2016) with a high temporal resolution. It is
thus necessary to split the comet’s orbit into a number of epochs
that are computationally feasible and then interpolate between
the results using a linear scaling between epochs. To ensure that
the calculated results are representative of the respective epoch
we make sure that during each of the epochs neither the total
solar energy reaching the surface nor where the energy strikes the
surface changes substantially. The amount of energy deposited
is driven primarily by the heliocentric distance, Rh, while the
location of deposition apart from the rotation of the comet is
controlled by the sub-solar latitude, LAT. We thus chose that the
inverse square of the heliocentric distance of the comet’s location
at the start and end time of each epoch shall be within 15% of the
location at the center date of each epoch. Furthermore that the
difference in sub-solar latitude be less than 5◦ from the center
time of epoch to the start and end of the epoch, respectively.
This leads to the 20 epochs listed in Table 1 and illustrated in
Figure 1. Simulations were run for the center time of each epoch.
This choice also ensures that we cover the exact dates of the in-
and outbound equinox (epochs 6 and 18) as well as perihelion
(epoch 11) and summer solstice (epoch 12).

The basis of all simulations is the 3D shape model by Preusker
et al. [2]. We use a decimated model with∼ 440′000 facets due to
our computational constraints. To fully define the illumination
condition we need to select the sub-solar longitude in addition to
the heliocentric distance and sub-solar latitude which are set by
the choice of epoch. For each epoch we have run simulations for
sub-solar longitudes of 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦, 210◦,
240◦, 270◦, 300◦, and 330◦. This results in a total of 240 different
illumination conditions for the entire mission period.

For each illumination condition, we calculate the incidence
angle (angle between the surface normal and the direction of
the Sun) of each facet taking into account self-shadowing. This
allows calculating the solar energy entering the surface neglecting
re-radiation from other facets. By means of a simple energy
balance of the incoming solar energy, thermal re-radiation and
sublimation we can calculate the sublimation temperature and
the sublimation rate of each facet assuming pure water ice.

We do not take into account any emission from shadowed
facets, be it due to local night or mutual shadowing by other parts
of the nucleus. The calculated pure ice sublimation rate of each
facet needs to be scaled to match observed sublimation rates at
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TABLE 1 | Start, center, and end time for each of the epochs as well as the heliocentric distance and sub-solar latitude of the center time of each epoch.

Epoch Start time Center time End time Rh [AU] LAT [◦] Qualifier

1 2014-07-05 18H 2014-08-26 12H 2014-10-03 18H 3.4703 43.3

2 2014-10-03 18H 2014-11-11 12H 2014-12-10 18H 2.9844 37.1

3 2014-12-10 18H 2015-01-10 00H 2015-02-02 06H 2.5667 29.8

4 2015-02-02 06H 2015-02-26 18H 2015-03-18 00H 2.2083 21.1

5 2015-03-18 00H 2015-04-05 00H 2015-04-20 12H 1.9213 11.6

6 2015-04-20 12H 2015-05-04 06H 2015-05-16 12H 1.7006 1.6 Inbound equinox

7 2015-05-16 12H 2015-05-27 12H 2015-06-06 18H 1.5372 -8.3

8 2015-06-06 18H 2015-06-16 06H 2015-06-25 06H 1.4156 -18.2

9 2015-06-25 06H 2015-07-04 00H 2015-07-12 12H 1.3278 -28.1

10 2015-07-12 12H 2015-07-21 06H 2015-07-30 18H 1.2695 -38.0

11 2015-07-30 18H 2015-08-11 00H 2015-08-21 12H 1.2432 -47.9 Perihelion

12 2015-08-21 12H 2015-09-02 18H 2015-09-16 12H 1.2742 -52.3 Summer solstice

13 2015-09-16 12H 2015-09-27 12H 2015-10-12 00H 1.3709 -48.0

14 2015-10-12 00H 2015-10-25 06H 2015-11-07 18H 1.5344 -38.0

15 2015-11-07 18H 2015-11-22 00H 2015-12-07 12H 1.7307 -28.1

16 2015-12-07 12H 2015-12-24 12H 2016-01-12 18H 1.9778 -18.2

17 2016-01-12 18H 2016-02-01 18H 2016-02-27 06H 2.2796 -8.6

18 2016-02-27 06H 2016-03-22 12H 2016-04-23 06H 2.6491 0.4 Outbound equinox

19 2016-04-23 06H 2016-05-24 00H 2016-07-04 00H 3.0797 8.9

20 2016-07-04 00H 2016-08-13 18H 2016-09-28 00H 3.5819 17.0

All times are given in the format YYYY-MM-DD hhH UTC.

FIGURE 1 | Heliocentric distance vs. sub-solar latitude of comet 67P during the escort phase of Rosetta as well as epochs used in this work.

67P. Here we assume a pure H2O ice surface that is areally mixed
with inert refractory surface akin to a checkerboard pattern. This
surface fraction of the facet covered by ice, which is a priori not
known, is a free parameter of the model. We refer to this scaling
factor as the effective active fraction (EAF). This factor only has
a physical interpretation for a pure ice surface where it would
represents the fraction of pure ice of an areally mixed surface

needed for a specific sublimation flux. In general though it is not
a physical parameter and should not be interpreted as such.

In the next steps, we calculate the gas and dust flow fields in
three dimensions. We then perform a column integration along
the line-of-sight through the dust coma for a specific viewing
geometry of the OSIRIS NAC (narrow-angle) and WAC (wide-
angle) cameras [14] and convolve the dust column densities with
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the optical properties of the dust to arrive at absolute radiance
values that can be compared with the OSIRIS images. One major
assumption that goes into this approach is that there is no
significant back-coupling from the dust to the gas allowing a
sequential treatment of the two flows. For low dust-to-gas mass
ratios, this is certainly justified [16] but will break down when
a lot of dust is released. We will further discuss this limitation
later on.

2.2. Gas Kinetic Simulations
The gas flow-field is calculated using the DSMC technique. The
code used is called UltraSPARTS1 and is a commercialized
derivative of the PDSC++ code [20] used in previous papers
(e.g., [16, 17]). PDSC++ is a C++ based, parallel DSMC code
which is capable of simulating 2D, 2D-axisymmetric, and 3D
flow fields. The code has been developed over the past 15
years [21–23] and contains several important features including
the implementation of 2D and 3D hybrid unstructured grids,
a transient adaptive sub-cell method (TAS) for denser flows,
and a variable time-step scheme (VTS). In the parallel version,
computational tasks are distributed using the Message Passing
Interface (MPI) protocol. The improved UltraSPARTS (Ultra-
fast Statistical PARTicle Simulation Package) has been applied
to 67P [18, 19]. Here we simulate the full 3D gas flow up to a
distance of 10 km from the nucleus center.

The sublimation temperature and flux—calculated as
described above—for each facet are set as initial conditions of
the simulation. This includes implicitly the assumption of the
appropriate EAF. We assume here that the EAF of all facets
are the same (i.e., homogeneous surface properties) but can
change from epoch to epoch. This results in one value for the
global EAF per epoch. Though we know from previous works
(e.g., [5, 16, 24, 25]) that there are regional inhomogeneities
that can be encoded in EAF it is not the focus of this work
to constrain these inhomogeneities. Rather we seek a global
estimate of the fluxes and dynamical behaviors. Because the
EAF is a free parameter it needs to be constrained by data.
In our case, we determine the EAF by comparing modeled
densities extrapolated to the Rosetta position and actual COmet
Pressure Sensor (COPS; [15]) measurements during each epoch.
Within each epoch where we match the sub-solar longitude of a
measurement, we extract from the respective simulation the gas
number density at the position of the spacecraft. If the spacecraft
distance is larger than 10 km we extrapolate the value from the
10 km surface to the spacecraft distance assuming free radial
outflow. This assumption is well-justified as shown in Marschall
et al. [16]. Though this does not capture the detailed structure
of the ROSINA/COPS data it does account accurately for the
average activity level at each epoch. Table 2 shows the EAF used
and the resulting average global H2O production rate for one
comet day.

The global gas production rate as a function of time is shown
in Figure 11 (purple band in top panel). Because we have used
the total ROSINA/COPS data—which also contains the other gas
species other than water—to constrain our emission, these values

1http://www.plasmati.tw

TABLE 2 | The effective active fraction (EAF) assumed and the resulting average

H2O production rate for each epoch.

Epoch EAF QH2O [kg s−1]

1 0.87 1.047

2 1.40 3.120

3 1.60 6.178

4 2.10 12.42

5 2.80 24.74

6 3.24 38.54

7 6.00 92.38

8 8.80 168.2

9 10.9 249.9

10 12.5 328.9

11 16.5 473.2

12 30.1 827.0

13 17.3 393.3

14 11.4 192.7

15 9.14 110.1

16 6.84 55.98

17 2.61 13.92

18 1.33 4.321

19 0.32 0.592

20 0.41 0.393

TABLE 3 | The mean gas production rate, q̄g [kg s−1] as a function of ephemeris

time (ET): q̄g(ET ) = a · ET2 + b · ET + c.

Epoch a b c

2 2.400340e-14 -2.204283e-05 5.061404e+03

3 9.908836e-14 -9.285540e-05 2.175673e+04

4 3.151072e-13 -2.985843e-04 7.073810e+04

5 2.843195e-13 -2.690371e-04 6.364899e+04

6 4.705372e-12 -4.537366e-03 1.093862e+06

7 4.739402e-12 -4.570374e-03 1.101867e+06

8 2.736443e-12 -2.620080e-03 6.271145e+05

9 -8.310099e-14 1.344634e-04 -4.564429e+04

10 8.356934e-12 -8.136523e-03 1.980682e+06

11 2.648205e-11 -2.595811e-02 6.361453e+06

12 -9.326697e-11 9.223562e-02 -2.280309e+07

13 2.625803e-11 -2.622753e-02 6.549455e+06

14 1.025950e-11 -1.029856e-02 2.584549e+06

15 2.918884e-12 -2.954660e-03 7.477641e+05

16 1.108671e-12 -1.134214e-03 2.900836e+05

17 1.322669e-12 -1.350748e-03 3.448580e+05

18 1.589655e-13 -1.643041e-04 4.245606e+04

19 5.313567e-14 -5.537983e-05 1.442952e+04

should be understood as a proxy for the entire emission. We
have interpolated between the epochs using a local second-order
polynomial. The fit for each epoch, i, includes three epochs i−1, i,
i+1. The fitting parameters to calculate the mean gas production
rate as a function of ephemeris time (ET) is shown inTable 3. The
resulting integrated mass loss over the shown period adds up to
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(6.1 ± 1.5) · 109 kg. This is well in line with values published in
other works as e.g., (6.3± 2.0) · 109 kg [7] or (5.8± 1.8) · 109 kg
[6]. The error arises from the uncertainty of the data (up to 15%;
[26]) although the relative errors are probably smaller (M. Rubin,
pers. comm.) and our model (5–10%; [27]) as well as from the
scatter from the comparison of the data and our model. As it was
not the goal of this work to constrain as precisely as possible the
surface-emission distribution it is nevertheless noteworthy that
our estimates come so close to the other published values. This
illustrates that it is not necessary to know the surface-emission
distribution well to estimate the total global volatile loss. Rather
simple assumptions of the surface response is sufficient for such
an estimate. Though it is not that surprising, because as pointed
out in Marschall et al. [28] the global gas production rate can
be fairly well-estimated by even simplified models. Our peak
production rate is reached at the summer solstice (epoch 12)
and not perihelion (epoch 11) and therefore roughly 22 days
post-perihelion. This is in line with dust coma measurements by
OSIRIS. Gerig et al. [18] reported peak dust coma brightness 20
days post-perihelion. This also hints at the fact that the obliquity
plays an important role in the activity of comets. Though the
heliocentric distance still is the main driver of the gas and dust
activity (O(1)) it is the obliquity/season that controls the second
order. The coincidence of the peak gas activity with the peak
dust activity also indicates that the dust activity is mainly driven
by H2O or at least near-surface volatiles without a significant
thermal lag.

2.3. Dust Dynamic Simulations
After the gas flow field has been evaluated, we calculate the dust
flow field by injecting dust test particles into the flow. We use
a typical approach for computing the dust motion in a gas flow-
field taking into account gas drag and the comet gravity using our
DRAG3D dust coma model detailed in Marschall et al. [16] and
the references therein. We assume that the dust mass production
rate is proportional to the gas mass production rate and that the
dust size distribution does not vary across the surface except in
cases where certain dust sizes are no longer lifted because the
gas pressure is too low to surpass the local gravity. The dust size
distribution is thus only naturally modified by the dynamics and
lifting process. It is assumed that the dust particles are at rest
on the surface (i.e., the ejection velocity is 0). The dust-to-gas
mass ratio as well as the dust size distribution at the surface are
free parameters of the model and will be constrained by the data
as described below. Due to the presence of gravity, large dust
particles may not reach escape speed and eventually return to the
surface. The flux of back-fall particles is thus a further output
of the model. It is important to note that we assume that the
dust particles are desiccated, i.e., contain no significant amounts
of volatiles that evaporate while airborne. They may still be wet
but do not outgas significantly. This is a consequence of our
assumption that there is no significant back-coupling of the dust
flow onto the gas flow.

For each epoch (except for two) we have selected one OSIRIS
image where the illumination conditions of the image match one
of the gas simulations (seeTable 1). The images used in this work,
as well as some camera and geometric properties, are shown in

Table 4. Two main criteria were used to select these images. First,
the images needed a large enough field of view such that projected
distance (impact parameter, b) in the image plane from the center
of the comet to the edge of the image at each side was at least
9 km.Why this is an important constraint will be described in the
next paragraph. Second, images need a sufficient signal to noise
such that the dust coma brightness could bemeasured well. These
two constraints unfortunately, eliminated all images for epoch 2
and 20. Epoch 2 included the 10 km orbit phase and thus did
not provide large enough fields-of-view while the signal-to-noise
was bad in epoch 20 due to the very low activity of the comet.
Most images we have used were taken by the wide-angle camera
(WAC) and filter 18 (central wavelength, λc = 612 nm) and at
cometocentric distances between 87 and 635 km and phase angles
between 37◦ and 108◦.

The dust field is calculated for each image using 41 different
dust sizes from 10 nm to 1 m. The dust sizes are logarithmically
spaced with five dust sizes per decade. The particles are assumed
to be spherical and have a density of 533 kg m−3 matching
roughly the bulk density of the nucleus [2]. Even though all
dust sizes are simulated, not all of them contribute to the dust
brightness in the coma. This is because the particles larger than a
certain size might not all be lifted because the gas pressure cannot
overcome gravity. Thus the number of dust sizes present in the
coma depends on the heliocentric distance (epoch). The upper
size limit (largest liftable size) is thus naturally determined and
thus an outcome of the simulation. What the smallest dust size
should be is unless. The smallest diameter of particle sub-units
measured by MIDAS [29] is 100 nm.Whether these could also be
the smallest dust particles in the coma or if these measurements
have an in-situ collection bias at the spacecraft is not clear. One
could imagine that very small particles might not have been
collected because of spacecraft and dust charging. Della Corte et
al. [30] showed that particles, for which the ratio of the particle
charge to its kinetic energy entering the electrostatic field of the
space craft q/Ek > 0.24CJ−1, will not reach the spacecraft. We
will therefore leave this issue open for the moment and examine
the impact of the smallest size on the results in section 4.

Once the 3D dust field is simulated we calculate the dust
column densities of each size for the specific viewing geometry
of the respective OSIRIS image. The final image is composed
by weighting the different dust sizes according to a specific dust
size distribution and convolving the column densities with the
scattering properties described in section 2.4.

For each of the images we compare the integrated radiance
of the dust coma along an aperture with impact parameter b =
11 km and compare it to that of the synthetic images. Again it
is not our goal in this work to match the structure of the inner
dust coma but rather the overall global behavior. Gerig et al. [18]
showed from OSIRIS data that the dust flow goes over to free
radial outflow at an average impact parameter of b ∼ 11 km.
This is in line with theoretical considerations of dusty flows
[31]. Beyond that point, the dust brightness falls off with 1/b
as expected for a freely expanding radial flow. For that reason,
we have chosen b = 11 km to be within the free-flow regime.
If the field-of-view was not large enough we used the maximum
available impact parameter.
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TABLE 4 | List of OSIRIS images used in each of the epochs as well as their filter, central wavelength (λc), phase angle (α), and cometo-centric distance (Dcc).

Epoch OSIRIS image name Filter λc [nm] α [◦] Dcc [km]

1 WAC_2014-08-16T13.01.44.647 F18 612.6 37.85 100.03

2 - - - - -

3 WAC_2015-02-09T19.10.19.184 F18 612.6 87.43 105.61

4 WAC_2015-02-19T23.11.20.158 F18 612.6 73.64 136.20

5 WAC_2015-04-11T08.14.54.119 F18 612.6 88.32 140.96

6 WAC_2015-05-05T11.27.54.523 F18 612.6 64.68 165.48

7 WAC_2015-05-22T06.36.34.903 F18 612.6 59.82 134.89

8 WAC_2015-06-16T03.22.37.523 F18 612.6 89.06 220.19

9 WAC_2015-07-04T11.11.58.808 F18 612.6 89.83 176.63

10 WAC_2015-07-19T00.20.07.696 F18 612.6 89.25 181.28

11 WAC_2015-08-09T09.13.16.574 F18 612.6 89.09 306.41

12 WAC_2015-09-02T07.58.47.075 F18 612.6 72.76 414.13

13 WAC_2015-09-25T11.39.29.053 F18 612.6 56.35 635.77

14 NAC_2015-10-14T07.03.45.244 F22 649.2 64.45 497.73

15 WAC_2015-11-22T21.43.06.876 F18 612.6 89.23 127.75

16 WAC_2015-12-30T08.12.53.526 F18 612.6 89.58 87.682

17 WAC_2016-01-13T07.03.19.181 F18 612.6 88.05 87.974

18 WAC_2016-03-25T02.15.44.556 F18 612.6 108.2 270.11

19 WAC_2016-04-13T18.47.58.431 F18 612.6 76.41 106.43

20 - - - -

The name of the OSIRIS image contains the camera used (WAC, wide angle camera; NAC, narrow angle camera) and the time stamp in the format {YYYY-MM-DD}T{hh.mm.ss.ms}.

FIGURE 2 | Shows the phase functions, S11, as a function of phase angle for

different particle sizes (solid lines). The green stars represent the

measurements of the coma phase function by Bertini et al. [38] while the blue

stars show the nucleus phase function as measured by Fornasier et al. [39],

Feller et al. [40], and Masoumzadeh et al. [41].

2.4. Scattering Model
Previously, we have used a spherical particle model and a Mie
scattering code in our modeling pipeline. Here we use a much
more sophisticated approach based on the recently introduced
radiative transfer with reciprocal transactions framework [32,
33]. The approach allows for scattering analysis of large
irregularly shaped particles with wavelength-sized details.

Here, the dust particles are considered to be irregular
aggregates composed of sub-micrometer-sized organic grains
and micrometer-sized silicate grains. Such a particle model has
been found to be in good agreement with OSIRIS [34] and
VIRTIS [35] phase function measurements. The refractive index
for silicate grains is assumed to be m = 1.6048692 + i0.0015341
corresponding to magnesium iron pyroxine [36] and for organic
grains m = 1.55950 + i0.42964 corresponding to amorphous
carbon [37]. At 612 nm (WAC filter 18) the resulting scattering
phase functions for different particle sizes normalized to the
geometric albedo are shown in Figure 2. The figure shows good
agreement of the phase function of large particles (> 1 cm)
with the nucleus phase function as measured by OSIRIS [39–41].
This should indeed be the case because larger particles should
behave more and more like “small comets” themselves and thus
be representative of the nucleus scattering properties. For small
particles, the best agreement of a single dust size with the coma
phases function [38] is between 10 and 100 µm. The numerical
method of Markkanen et al. [34] is not applicable to particles
smaller than 1µm. Thus for the particles smaller than 1µm we
use a Mie scattering code to determine the scattering properties
[see 16] matching the single scattering albedo of the Mie result
with the approach of Markkanen et al. [34] for 1µm particles.
This gives us a smooth transition from the large particle region
to the Rayleigh scattering region where particle’s shape has a
negligible effect on its scattering properties. This is a state of
the art model and we have thus used its results throughout this
work. But because the scattering model does have an effect on the
results a re-evaluation of the results can be done if and when a
better model arises.
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3. THEORETICAL CONSIDERATION

To put some of our results in the next section (section 4) into
context, we present first some general theoretical considerations
of what we can expect, in particular with regards to the
relationship between the dust-to-gas ratio and the dust size
distribution. We thus consider first a simple model where the
comet is represented as a sonic (i.e., the gas velocity near the
surface is equal to the local sound velocity and defined by the
thermodynamic properties of the gas and the surface temperature
i.e., Rh) spherical source of ideal perfect gas (with specific heat
ratio γ=1.33) accelerating spherical solid grains. The source shall
have radius RN , nucleus mass MN , total gas production rate Qg

(kg/s). The motion of a spherical grain in a flow from such a
source was studied in Zakharov et al. [31] for a wide range of
conditions. They defined

Iv =
3Qg

32RNrρdπvg0
, (1)

and

Fu = GMN

RN

1

(vmax
g )2

(2)

which are dimensionless parameters, where ρd is the specific
density of the dust particles, vg0 the gas velocity near the
surface, vmax

g the theoretical maximal velocity of gas expansion
(defined by the thermodynamic properties of the gas and the
surface temperature i.e., Rh), and G the gravitational constant.
Iv characterizes the ability of a dust particle to adjust to the gas
velocity while Fu quantifies the importance of gravity. Zakharov
et al. [31] found that for Iv < 0.1 (which is the case of 67P, and
dust sizes > 1 nm) the dust particles reach 90% of their terminal
velocity at about 6 · RN . The terminal velocity of particles with
radius, r, varies as vd(r) ∝ r−0.5 for small Fu (i.e., if gravity plays
a minor role). The asymptotic dust velocities are given by:

vd(r) =
(

Iv(r)

Iv(r∗)

)1/2

, vd(r∗) =
(

r

r∗

)−1/2

, vd(r∗) = r−1/2CIv

(3)
where r∗ and vd(r∗) are some referential size and corresponding
terminal velocity, and CIv is a constant.

For a dust size distribution given by a power-law, r−q, the
normalized mass distribution, fmd, of particles ejected from the
surface is

fmd(r) =







4−q

r
4−q
max−r

4−q
min

r3−q, q 6= 4

ln
(

− rmax
rmin

)

r3−q, q = 4
(4)

where rmin and rmax are the smallest and largest dust sizes
ejected from the surface. In the following, we will not considered
specially the case of q = 4. The dust production rate, Qd, of each
dust size is

Qd(r) = χ fmd(r)Qgdr, (5)

where χ = Qd/Qg is the total dust-to-gas mass loss rate.
Therefore, the number density of dust particles with radius, r, at
the radial distance, R, from the center of the nucleus is:

n(r,R) =
χ fmd(r)Qgdr

vd(r)md(r)4πR2
. (6)

The column density at the distance ̺ from the center of the
nucleus in the image plane is:

ncol(r, ̺) =
∫ +∞

−∞
n(r,R)dz =

χ fmd(r)Qgdr

vd(r)md(r)4

1

̺
. (7)

The total number of dust particles in a column within a circular
observing aperture of radius ℜ is:

N(r,ℜ) =
∫ ℜ

0
ncol(r, ̺)2π̺d̺ =

χ fmd(r)Qgdr

vd(r)md(r)2
πℜ. (8)

The brightness is proportional to the flux F (W/m2) gathered by
an instrument which for an optically thin coma is:

F(r,ℜ) = FN(r,ℜ)πr2qsca(r)
ϕav(r)

4π

1

12
(9)

where F is the incident flux, 1 is observational distance, qsca is
scattering efficiency and ϕav is the phase function averaged over
phase angle. Substituting Equations (3), (4) and (8) in (9) we get:

F(r,ℜ) = 3

32

FQgℜ
CIvρd1

2

4− q

r
4−q
max − r

4−q
min

r
5
2−qχqsca(r)ϕav(r)dr. (10)

For fixed F , Qg , RN , ρd, vg0, r∗, vd(r∗), 1, and ℜ

F(r,ℜ) = C
4− q

r
4−q
max − r

4−q
min

χr
5
2−qqsca(r)ϕav(r)dr (11)

where C = 3
32

FQgℜ
CIvρd1

2 is a constant (for the given

observational conditions).
For the optical properties, we make some simplifying

assumption. First, we approximate the scattering efficiency qsca(r)
to be:

qsca(r) =







0.233 · 1024 · r7/2, 10−8 ≤ r < 2 · 10−7

4.993 · 10−5 · r−2/3, 2 · 10−7 ≤ r < 2 · 10−4

0.02, 2 · 10−4 ≤ r ≤ 1.0

(12)

Figure 3 shows the computed qsca from section 2.4, the fitted qfit
scattering efficiency and the relative difference. In this fit, we used
“round numbers” (i.e., this is a very rough fit). This simplification
results in differences of < 50%. For the phase function ϕav we
assume it to be constant for all sizes. We estimate an error of the
order of a factor of 2 from this simplification.

Under the assumption we made the integration of
Equation (11) becomes trivial.

For a given gas production rate Qg the maximum dust size
amax is also constant. Figure 4 shows how the dust-to-gas mass
loss rateQd/Qg varies as a function or the power-law exponent of
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FIGURE 3 | Scattering efficiency as a function of dust radius: computed

(comp, red) according to section 2.4, and fitted (fit, green). The relative

difference between the computed and fitted is shown in blue.

FIGURE 4 | Dust-to-gas mass production rate ratio vs. power-law exponent

for constant dust brightness.

the dust size distribution for the same brightness.With increasing
power-law exponent q from minimal value to ≈ 3 the Qd/Qg

is slowly decreasing (since in this case practically all dust mass
is concentrating in a narrow range of largest sizes), but with
increasing q from 3 to 4 the ratio Qd/Qg is strongly decreasing.
For 4.5 < q < 6 Qd/Qg is increasing (within one order
of magnitude). This inflection point of Qd/Qg occurs at the
transition from dust grains distribution with most mass being in
the large dust sizes to where most mass is in the small dust sizes.

The growth of Qd/Qg for q > 4.5 is a consequence of the
strong decrease of qsca for small sizes, therefore, in order to
maintain the same brightness, it is necessary to eject more dust.

We should remember that this analytical result (Figure 4)
assumed several important simplifications:

1. We assumed that the dust expansion is strictly radial;
2. For evaluation of the dust brightness we used simplified

optical properties (e.g., isotropic phase function);
3. We assumed that gravity plays only a minor role;
4. We assumed that the dust does not affect the gas flow.

We will discuss in the next section how these assumptions [in
particular (1) and (3)] change the result.

4. RESULTS AND DISCUSSION

To convolve the results of the dust dynamics model with the
scattering properties to arrive at synthetic OSIRIS images we
need to assume a dust size distribution. As is commonly done
we presume that the number of particles, n, of a certain radius, r,
follows a power-law:

n(r) ∝ r−q , (13)

where q is the differential power-law exponent. Figure 5

illustrates an example of anOSIRIS and synthetic image for epoch
12 (solstice). As described in section 2.3, we extract the integrated
brightness along a circle with a constant impact parameter of
b = 11 km where possible (illustrated in the figure with the red
circles). We should stress here again that it was not the aim of this
work to match the emission distribution on the surface and thus
all the structures in the coma.

For a given gas production rate, the three major factors
controlling the brightness (see Equation (11) for more detail) of
the dust coma are:

1. The dust-to-gas mass production rate ratio, Qd/Qg , at the
surface;

2. The dust size distribution (i.e., the power-law exponent, q) at
the surface;

3. The scattering properties of the dust particles.

We should note that although we assume a uniform surface (i.e.,
globally constantQd/Qg and q) the actual values at each facet vary
depending on the local gas flux. If a particular facets’ local flux is
too low to lift a certain particle size the resulting dust flux and
size distribution from that surface facet will differ locally from
the nominal values. The three input parameters above are not
known a priori and are thus initially free parameters and in need
of constraints. We have fixed the scattering properties by using
published results that fit OSIRIS data [see sections 2.4 and 34].
This reduces the above parameters from three to two.

There are three further quantities that influence the coma
brightness, but as we will show below their influence is small
compared to the ones mentioned above. These are:

1. The smallest dust size, rmin;
2. The largest dust size, rmax;
3. The bulk density of the dust, ρd.

Of these three we will explore the influence of rmin and ρd on
our results. We will not be artificially truncate the size range at
large sizes by varying rmax. On the contrary, rmax will be naturally
regulated due to the balance of forces at the surface. If a given
local gas flux is not sufficient for lifting a certain size, that will
determine the largest dust size from that surface element.

Apart from the parameters that directly influence the
brightness, several indirect factors further constrain the curves
Qd/Qg and q. We will discuss these constraints at the end of
this section.
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FIGURE 5 | Panel (A) shows the OSIRIS image WAC_2015-08-09T09.13.16.574Z of epoch 12 (solstice) with an enhanced contrast to show the dust coma. Panel

(B) shows the synthetic image with power-law exponent of q = 4 of our dust model. The crosses in each panel indicate the center of the nucleus and the red circles

indicate an impact parameter distance of b = 11 km.

FIGURE 6 | The dust-to-gas mass production rate ratio, Qd/Qg as a function

of the power-law exponent, q, is shown for each of the 18 OSIRIS images of

this study. Each line represents an equal brightness curve where the respective

q and Qd/Qg result in a synthetic image that matches the OSIRIS brightness.

The colors of the curves indicate the global gas production rate of the

respective epoch.

As has already been shown in Figure 12 of Marschall et al. [16]
Qd/Qg and q are not independent. Knowing the brightness of the
coma these two parameters constrain each other to a limiting set
of parameter pairs. Figure 6 shows Qd/Qg as a function of q for
each of the 18 OSIRIS images of this study. Each line represents
an equal brightness curve where the respective q and Qd/Qg

result in a synthetic image that matches the OSIRIS brightness.
Several things are noteworthy. First, all curves show minima
between q = 4 and q = 4.5 and thus illustrate the inherent
degeneracy between Qd/Qg and q. Second, all cases with shallow
power-laws (q < 3) require very large Qd/Qg of at least 10 but in
most cases around 100. Third, steep power-laws (4 < q < 6) in
all but one case require much less dust mass, i.e., Qd/Qg ≤ 1 to

match the brightness of OSIRIS. Fourth, there is a clear trend in
the gas production rate. As the gas production rate increases the
slope in Qd/Qg for shallow power-laws (q < 3) becomes shallow,
too. Or conversely for low gas production rates very high Qd/Qg

are needed to match the OSIRIS brightness when the power-law
is shallow. This has to do with the amount of dust that can be
lifted and escape the nucleus’ gravity.

Comparing Figure 6 to the analytical solution presented in
Figure 4 of section 3 we see that for high gas production rates
the model follows the analytical solution rather well. The places

where we deviate from the analytical solution illustrate the effect

of different physical processes. For the analytical solution we have

assumed a minor (but not negligible) role of gravity. The effect

of gravity can be seen in the low gas production rate cases with
shallow power-laws. There, in contrast to the analytical model

which levels off at smaller power-law exponents, the dust coma
model results in ever higherQd/Qg . This is caused by the inability
to lift large particles from the entire surface and therefore a
higher Qd/Qg is required to maintain the brightness. Thus, the
deviations at low gas production rates and shallow power-laws
exhibit the non-minor role of the nucleus’ gravity. As in the
analytical model for steeper size distributions most mass is in the
smallest particles, which are weakly scattering and thus hardly
contribute to the brightness. This is compensated by an increase
of Qd/Qg at these steep power-laws.

Compared to previous work presented in Figure 12 of
Marschall et al. [16] the Qd/Qg values we find here (in particular
for q < 3.5) are much higher while the behavior of the curves for
steeper power-laws is within the expected range. The two main
reasons we find larger values at shallow slopes are: (1) Marschall
et al. [16] assumed the scattering properties of astronomical
silicate [42] which is much brighter than we now know; (2) we
consider here considerably larger dust sizes as our upper limit.
This extension of the size domain increases the Qd/Qg by orders
of magnitude because of high fall back fractions of dust that is
gravitationally bound and weakly scattering.
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FIGURE 7 | The four panels show the dust-to-gas ration as a function of power-law index. The left two panels show the results for different bulk dust densities

(250 kg m−3 [purple], 533 kg m−3 [green], 800 kg m−3 [blue], 1, 000 kg m−3 [orange]) assuming a minimum dust size of 0.01µm and a gas production rate of

800 kg s−1 (top panel, epoch 12) and 35 kg s−1 (bottom panel, epoch 6). The two right panels show the results for varying minimum dust size of the power-law from

0.01µm (red) to 1µm (blue) assuming a bulk dust densities of 533 kg m−3 and a gas production rate of 800 kg s−1 (top panel, epoch 12) and 35 kg s−1 (bottom

panel, epoch 6).

Two assumptions going into Figure 6 are worth discussing.
First, we have assumed that all dust particles have a bulk
density equal to the nucleus density (533 kg m−3). It is likely
that the density of small particles is significantly larger than
that and that the density then decreases with size. Because
the exact relationship of the density as a function of dust
size is currently unknown we have not tested a varying
density as a function of size. But, we have varied the bulk
density for the entire range of dust sizes between 250 kg m−3

and 1, 000 kg m−3. The two left panels of Figure 7 show
the results for a moderate activity environment (epoch 6—
inbound equinox, Qg = 35 kg s−1) and a high activity
environment (epoch 12—solstice, Qg = 800 kg s−1). For
3 < q < 3.75 the differences between the different dust
densities is minimal. For q > 3.75 the differences are larger,
in particular in the high activity case. How the bulk dust

density impacts the total dust mass loss will be explored later in
this section.

Second, we have currently assumed that the smallest dust size
is 0.01µm. This might not be the preferred choice and a much
larger smallest size should be considered. TheMIDAS instrument
detected 1µm particles (e.g., [29]) and there is indirect evidence
of sub-micron particles observed by VIRTIS during outbursts
[43]. We have thus explored the range of the smallest sizes
between 0.01 and 1µm. The two right panels of Figure 7 explore
the effect of the smallest size on the dust-to-gas ratio by varying
the smallest size. Compared to the differences seen for different
bulk dust density the effect of the smallest size is quite substantial.
As we would expect the smallest size does not affect the result
for q < 3 as in these cases most of the mass is in the large
particles. As q increases from 3 the curves for different smallest
sizes start diverging. Two trends can be observed. As the smallest
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FIGURE 8 | The ratio of dust mass falling back, QDfb to total dust mass, QD is

shown as a function of global gas production rate for different

power-law exponents.

size increases from 0.01µm to ∼ 0.1µm the dust-to-gas ratio
starts to flatten out beyond q = 4. This is caused by the fact that
the size distribution is no longer dominated by very inefficiently
scattering particles. As the smallest size continues to increase to
1µm the overall dust-to-gas ratio increases. This is because the
most efficient scatterers (see Figure 3) are being removed from
the size distribution and must be compensated by more mass of
all other sizes. For very steep power-laws the difference in the
dust-to-gas ratio can be up to 1.5 orders of magnitudes. How the
smallest size impacts the total dust mass loss will be explored later
in this section.

How the fraction of gravitationally bound dust mass, which
falls back to the nucleus, varies as a function of global gas
production rate is shown in Figure 8 for different power-law
exponents. This illustrates that for very low gas production
rates and very shallow power-laws (q < 2.5) almost the entire
dust mass emitted from the surface will be redeposited. This
explains the large increase seen inQd/Qg of Figure 6. Conversely,
in the case of steep power-laws (q ≥ 4.5) almost all of the
dust escapes the nucleus’ gravity field irrespective of the gas
production rate. In all cases, the fraction of fall back decreases
as the gas production rate increases. Therefore, the fraction of
fall back material decreases as the comet approaches the Sun. At
large heliocentric distances, large fractions of dust emitted will
return to the surface (i.e., > 50% for q < 3.5). But the gas and
dust production rates are highest at perihelion/solstice, thus the
total amount of fall back during one apparition is dominated by
the fraction of fall back during that period.

The fraction of fall back is also tightly bound to the maximum
liftable dust size. Figure 9 shows as a function of global gas
production rate the largest dust size that can still be lifted from
the surface of the nucleus. The figure also shows the largest dust
size that can escape the gravity field of the comet. As the gas
production rate increases so do the largest liftable and escaping
dust sizes. For Qg > 300 kg s−1 the largest liftable dust size is
larger or equal to 1 m, which is the largest size in our model.
Though these sizes, or larger, can be lifted they will not be able

FIGURE 9 | The largest liftable dust size (red curve) and the largest escaping

dust size (blue curve) are shown as a function of the gas production rate.

to escape the gravity field of the comet and will be redeposited on
the surface. The largest size that can escape the comet at peak gas
production is roughly 0.6 m. We should note though that this
calculation neglects surface cohesion, solar radiation pressure,
and heat transport to the subsurface that is needed to eject such
large particles. Here we only consider the balance of gas drag and
gravity to determine these largest sizes.

The discussion of the previous paragraphs illustrates that
multiple properties of the dynamical simulation of the dust coma
(size distribution, dust-to-gas ratio, and the fraction of fallback)
as well as the optical properties of the dust are not independent
but mutually constraining. Example, a given fraction of fallback
implies a certain size distribution which in turn constrains
the possible dust-to-gas ratios for a particular set of scattering
properties. Though for a particular single OSIRIS image these
parameters can be constrained there still remains a rather large
set of parameters that are consistent with the data as presented to
this point (including dust coma brightness in the OSIRIS images
and local gas densities of ROSINA/COPS).

While we have only considered constraints within each epoch
there is one strong constraint covering the entire mission. That
is the measurement of the total mass loss during the Rosetta
apparition. During the 2 year mission comet 67P had lost (10.5±
3.4)·109 kg [4]. The total mass loss,Mtot = (10.5±3.4)·109 kg, is:

Mtot = Mg +Mesc
d , (14)

where Mg is the total volatile mass loss, and Mesc
d

is the
total escaping dust mass. For the dust masses, we can further
specify that

Md = Mesc
d +M

fb

d
, (15)

where Md is the total dust mass ejected from the nucleus, and

M
fb

d
is the dust mass that falls back to the surface. We have

determined the total volatile mass loss to be (6.1 ± 1.5) · 109 kg.
Combined with the total mass loss of the nucleus it follows that
Mesc

d
= (4.4+4.9

−4.4) · 109 kg. Note that within this interval exists the
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possibility that Mesc
d

= 0 kg. Though we know that dust escaped
from the nucleus the simple mass balance would not exclude this
possibility. We can now integrate the total dust mass loss over
the orbit of the comet for different power-law exponents. For
the integration, we assume a linear interpolation of the results
between epochs. Figure 10 shows the Mesc

d
as a function of the

power-law exponent, q. Cases, where Mesc
d

exceeds the nominal

dust mass loss of 4.4 · 109 kg (horizontal dashed green line) or
the maximum dust mass loss of 9.3 · 109 kg (horizontal dashed
red line), can be discarded. Furthermore, where the mass loss
curve intersects the mass loss indicates the corresponding power-
law that fits the data. Figure 10 also illustrates the effect of the
smallest size—discussed earlier in more detail for an individual
OSIRIS image—on the total mass loss. The effect of the smallest
size is rather limited for 0.01µm < rmin < 1µm because the
dust mass curves cross between 3.5 < q < 4. This also implies
that the effect of the bulk dust density is even smaller than the
effect from the choice of the smallest size (see discussion about
Figure 7 above). We can also see that for rmin >∼ 12µm there
will no longer be a nominal solution to the constraints. Further,
for rmin >∼ 30µm there is no solution at all because the curve
will stay above the maximum escaping mass for all power-law
exponents studied here. This means that the minimum dust size
must be strictly small than ∼ 30µm and nominally even smaller
than ∼ 12µm. Figure 10 illustrates how we can determine
the power-law exponent for the nominal and maximum dust
mass loss, which in turn determines the dust-to-gas ratio, dust
production rates, fraction of dust fallback. As the minimum
size grows larger than 1µm the required power-law exponent
increases and becomes rather large. There remains the issue of
the minimum escaping mass. As discussed above the lower limit
according to the total and volatile mass loss is zero. But for our
models, the minimum escaping dust mass is never zero. We
have thus chosen the smallest possible mass loss of each model
as the minimum mass loss. The resulting power-law exponents,
dust mass losses, dust-to-gas ratios, and fall back fraction are
summarized in Table 5. We have also determined the deposition
height, H, that results if the fallback material is spread equally on
the smooth deposits (9.43 km2) identified by Thomas et al. [12].

The results in Table 5 show that the integrated quantities
are rather insensitive to the choice of the smallest dust size if
rmin ≤ 1µm. For minimum sizes larger than 1µm the power-
law becomes steeper and thus the amount of dust fall-back goes
down. The dust-to-gas ratio is rather stable for all cases and is of
the order of 0.8 with an error of the order of 100%. This means
that while the nominal case reflects a comet that contains more
volatiles than dust the case of a dusty comet lies within the error.

The fallback in all cases is of the order of 10% and results in a
deposition height of the order of 10 cm. Because the deposition is
likely non-uniform it is therefore easily thinkable that in certain
areas dust of the order of meters is deposited while in others only
a few centimeters.

This analysis assumes that the dust size distribution does
not change along the orbit. There is an indication (e.g., [44])
that this is not the case and that the slope is varying with
heliocentric distance. Our model cannot resolve/constrain this.

FIGURE 10 | The total escaping dust mass, Mesc
d , is shown as a function of

the power-law index for five different minimum dust radii, rmin. The horizontal

dashed lines show the nominal ejected dust mass (green) and the maximum

ejected dust mass (red).

TABLE 5 | Power-law exponents, dust mass loss, dust-to-gas ratio, and fall back

as a function of the smallest dust size (see Figure 10).

rmin q Md [kg] Mesc
d

[kg] Mfb
d

[kg]

0.01µm 3.7+0.57
−0.078 5.1+6.0

−4.9 · 109 4.4+4.9
−4.2 · 109 6.8+11

−6.8 · 108

0.1µm 3.7+2.3
−0.079 5.1+6.0

−5.0 · 109 4.4+4.9
−4.4 · 109 6.7+11

−6.7 · 108

1µm 3.9+2.1
−0.13 4.7+5.6

−4.3 · 109 4.4+4.9
−4.0 · 109 3.1+7.3

−3.1 · 108

10µm 5.2+0.80
−0.93 4.5+5.1

−0.69 · 109 4.4+4.9
−0.66 · 109 0.35+1.6

−0.35 · 108

100µm - - - -

rmin Md/Mg Mesc
d

/Mg Mfb
d
/Md [%] H [cm]

0.01µm 0.84+1.6
−0.81 0.73+1.3

−0.70 13+2.6
−12 14+22

−14

0.1µm 0.84+1.6
−0.83 0.73+1.3

−0.72 13+2.6
−12 13+21

−13

1µm 0.78+1.5
−0.73 0.73+1.3

−0.67 6.6+3.4
−5.9 6.3+14

−6.2

10µm 0.74+1.4
−0.24 0.73+1.3

−0.23 0.78+1.3
−0.78 0.69+3.2

−0.69

100µm - - - -

Dashed entries mean that no solution is possible for this size.

All the quantities here are heavily dominated by the period
around perihelion and summer solstice when the emission was
the highest. Therefore, the power indexes found here reflect the
values for this period.

The power-law we find to be compatible with the data is an
independent result based only on the brightness of the dust coma
and the total mass loss balance. Because most mass is ejected
around perihelion, this power-law mainly reflects this period
and deviations of it at larger heliocentric distances [45] would
not influence the result. The value we find is in line with other
measurements around perihelion e.g., the in-situ measurement
of q = 3.7 by GIADA [45], q = 3.8 by COSIMA [44], as well as
ground-based estimates for the dust tail of 3.6 < q < 4.3 for sizes
smaller than 1 mm and q = 3.6 for sizes larger than 1 mm [46].

A check of our dust dynamics model is the comparison of our
model dust speeds with the ones measured by GIADA. For the
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FIGURE 11 | The top panel shows the global production rate for the gas (purple) and dust (green) as a function of days to perihelion. The bands indicate the range

due to the diurnal variation. The gas production rates have been constrained by ROSINA/COPS measurements while the dust production rates are from combined

constraints of OSIRIS and gas fluxes. For the dust a minimum size of rmin = 0.1 µm and power-law exponent of q = 3.75 are assumed. The bottom panel shows the

fraction of dust fall-back (purple) and dust-to-gas ratio (green).

period between 2.2 AU inbound to 2.0 AU outbound [47] have
reported 141 dust particle detection for which a dust speed and
mass could be determined. Of these, the smallest particle had a
mass of 2.8 · 10−9 kg, which corresponds to a radius of 108 µm
assuming a spherical particle with our nominal dust density. The
measured dust speeds varied between 0.3 and 34.8 m s−1 [47].
A further constraint is the fact that Rosetta spent ∼ 65% of the
time at phase angles of ∼ 90◦ and an additional ∼ 25% of the
time at phase angles of ∼ 60◦ which implies that the particles
were mainly collected in those locations (see also Figure 5 in
[47]). At a phase angle of 90◦ our model dust particles with radius
100 µm have speeds of (3.5± 1.0) m s−1 at the inbound equinox
(epoch 6) and (18±5.6) m s−1 at the summer solstice (epoch 12).
For phase angles of 60◦ the model dust particles have speeds of
(7.0± 1.2) m s−1 at the inbound equinox and (32± 5.2) m s−1 at
the summer solstice. Our dust speeds are thus well in line with the
measured speeds by GIADA given that larger particles will have
lower speeds than the ones listed above.

We should highlight that our peak dust production rate (∼
530 kg s−1) is roughly an order of magnitude lower than those
reported by e.g., [46] (∼ 3, 000 kg s−1) or [48] (∼ 8, 300 kg s−1).
Furthermore, [46] report a total dust mass loss of 1.4 · 010 kg.
As neither [46] nor [48] report any error bars on their results, we
cannot asses if they are plausible. If taken at face value both results
are inconsistent with the RSI measurement of the total mass loss
of the comet [4] taking into account the estimates of the volatile
mass loss in this work and others [6, 7].

Finally, the determination of the power-law exponent allows
us to determine the dust production rate (Figure 11, top panel,
green band), dust-to-gas ratio (Figure 11, bottom panel, green
line), and fraction of fallback (Figure 11, bottom panel, purple
line) as a function of time. The dust production rates are linearly
interpolated between the epochs. Unfortunately, our model is
rather noisy but the overall trends are robust enough that we
feel comfortable making further conclusions. The fraction of
dust fallback is highest at large heliocentric distances and then
decreases toward perihelion and reaches its minimum at summer
solstice where the activity peaked. Though the faction of fallback
is smallest at the peak of the activity (solstice), most mass that
is falling back will still be from the period of summer solstice
because of the high activity. The behavior of the fraction of
dust fallback is symmetric for the inbound and outbound part
of the comets’ orbit. Contrary to that the dust-to-gas ratio is
highest (∼ 1.5) at large heliocentric distances inbound and
keeps decreasing along the entire orbit and does not significantly
increase on the outbound leg but rather flattens out at ∼ 0.1.
This might be indicative of the comet shedding its dust mantle, in
particular in the northern hemisphere. This trend of decreasing
dust-to-gas ratio along the orbit manifests itself also in the
asymmetry of the global dust production. To first order, the
dust production rate follows the gas production rate during the
inbound leg but the dust production rate drops faster than the
gas production rate post solstice. This is also observed in ground-
based measurements [46]. There is also an intriguing spike in the
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dust-to-gas ratio after the inbound equinox coinciding with an
increase in the total dust production rate. Future in-depth work
will be needed to confirm the nature of this feature which does
not seem to be present in the observations of the outer coma
from ground-based measurements. But if it is truly there it can
be understood as the comet shedding its southern dust mantle
because the feature coincides with the period when the southern
hemisphere receives increasing insolation.

5. SUMMARY AND CONCLUSIONS

In this work, we have simulated the inner gas and dust coma
of comet 67P covering the entire Rosetta mission by splitting
it into 20 epochs. The gas production rates of each epoch
were constrained by in-situ measurements of the gas density by
ROSINA/COPS. From that, the total gas mass loss is estimated at
(6.1± 1.5) · 109 kg. This is in line with values published in other
works as e.g., (6.3±2.0)·109 kg [7] or (5.8±1.8)·109 kg [6]. It also
illustrates that it is not necessary to know the surface-emission
distribution well to estimate the total global volatile loss.

By simulating synthetic OSIRIS images of the dust coma we
showed how the dynamical and optical properties of the dust
can be constrained. In particular, we showed how the dust-to-gas
mass production rate ratio, Qd/Qg , the power-law exponent, q,

the fraction of dust fall back,Q
fb

d
, and the scattering properties are

inter-related and constrain each other. Because these parameters
are not independent they need to be fit simultaneously. Example,
the lowest mass needed to match the brightness of the dust coma
as observed by OSIRIS is achieved with power-law distributions
with exponents between 4 and 4.5. Using the constraint of the
total mass loss of the comet during the 2015 apparition we were
able to show that only a narrow parameter set fits all observations.
We determined that power-laws with q = 3.7+0.57

−0.078 are consistent

with the data. This results in a total of 5.1+6.0
−4.9 · 109 kg of dust

being ejected from the nucleus surface, of which 4.4+4.9
−4.2 · 109 kg

escape to space and 6.8+11
−6.8 · 108 kg (or an equivalent of 14+22

−14 cm
over the smooth regions) is re-deposited on the surface. This
leads to a dust-to-gas ratio of 0.73+1.3

−0.70 for the escaping material

and 0.84+1.6
−0.81 for the ejected material. Further, the minimum

dust size must be strictly smaller than ∼ 30µm and nominally
even smaller than ∼ 12µm. We have found that these results
are robust with respect to varying the smallest dust size between
0.01 and 1µm and variations in the bulk density of the dust
between 250−−1, 000 kg m −3.

It remains an open question as to how dust particles are
lifted/ejected from cometary surfaces [see e.g., 50]. Furthermore,
a more detailed study of the change in the dust size distribution
with heliocentric distance would be of great interest and could
refine the work presented here. Finally, comprehensive work

on estimating the amount of dust deposition through e.g., local
digital terrain modeling [e.g., method by 49] would provide
valuable additional constraints.
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