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Editorial on the Research Topic

Robot-Assisted Learning and Education

Robots are increasingly being introduced in social environments to support the process of learning
(e.g., Atmatzidou and Demetriadis, 2016; El Hamamsy et al., 2019; Kory-Westlund and Breazeal,
2019; Vogt et al., 2019) with different roles, such as smart teaching platforms, assistants, and in
some cases also as companions and co-learners (Brown and Howard, 2014; Gordon et al., 2015;
Pandey and Gelin, 2016; Belpaeme et al., 2018). Empirical research in educational robotics (ER)
focuses on the adaptation of the robot behavior to specific learning needs and assessment of
student learning and understanding. It is common to use robots to foster STEM and STEAM
curricula (Brown and Howard, 2014; Shiomi et al., 2015; Città et al., 2017) with positive outcomes
(Benitti, 2012). Research in ER have documented a greater involvement of students in learning
activities, a support for critical thinking and complex problem solving as well as an increased
comprehension of complex concepts and procedures, especially if the robots are endowed with
a human-like appearance and social abilities (Leyzberg et al., 2012; Li, 2015). Some studies focused
on the perceptions of robots and their social behavior and the consequent effects on learning (e.g.,
Mutlu et al., 2006; Kory and Breazeal, 2014; Michaelis and Mutlu, 2019), to support the process
of understanding and memorization of concepts and the interpretation of emotional contents and
social dynamics (Leite et al., 2017; Park et al., 2019; Bono et al., 2020; Conti et al., 2020).

The contributions in the Research Topic focuses on robotics approaches and architectures
supporting human learning. Scaradozzi et al. apply machine learning techniques for the
identification of different problem-solving pathways. Authors came to the conclusion that a
“steadier incremental steps” strategy of programming correlated to a better performance in the
resolution of the exercise. This supports the idea that a step by step knowledge building process is
more effective than a big changes approach.

D’Amico et al. prove that introducing a robot leads to a better understanding of STEM concepts
and higher participation in the activities. According to the authors, ER combines physical and
mental experiences, which allow students to learn by doing, to manipulate concepts, and to embody
cognition. During ER sessions, students had the opportunity to approach an idea from both an
abstract and a concrete point of view. This leads to the creation of different forms of memory
(semantic and procedural) and accurate episodic learning. The authors also conclude that robotics
may increase motivation for learning in situations that are generally seen by children as passive and
not very stimulating.

The development of cognitive strategies for the transition from exploratory actions toward
intentional problem-solving in children is in the center of the development of human cognition.
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Charisi et al. illustrate an exploratory behavioral study to show
the relationship between child-robot voluntary interaction and
both the problem-solving process and performance of a child. In
their study, the authors pay particular attention to the importance
of exploration. Twenty children took part in the study, including
72 sessions with 113 Tower of Hanoi tasks. The platform used
was a tabletop robot. The findings indicate that the children
who participated in the voluntary interaction setting showed a
better performance in the problem-solving activity. Implications
are considered for the development of intelligent robotic systems
that allow child-initiated interaction as well as targeted and not
constant robot interventions.

De Haas et al. investigate how feedback from a robot can
influence children’s engagement and support second language
learning; 72 children (5 years old) learned animal names from
a humanoid in three different sessions, receiving varying types of
feedback from a robot. The findings indicate that children tended
to be more engaged with the robot and task when the robot
used a preferred type of feedback. Implications suggest the use
of robots and varying feedback in long-term interactions where
engagement of children often drops.

Zhexenova et al. verify the effect of using a robot to help
primary school children learning a newly-adopted script and its
handwriting system. The differences between using the robot
with a tablet, a tablet-only, and a teacher were not significant,
revealing a similar learning effect in the three conditions. An
important outcome is that children’s mood improved when
interacting with the robot compared to other learning aids
considered in the study.

Guneysu Ozgur et al. analyze the possible role of haptic-
enabled tangible robots in training visual-spatial skills. They
designed an educational path to support children in learning
to write cursive letters proposing tasks based on playful and
collaborative activities. Starting from previous experience and
applying an iterative approach, the authors adapted the activities
for children with attention and visuomotor coordination issues.
The experimental results gathered within occupational therapy
sessions provide exciting insights (children having writing
problems can improve in letter writing after the use of the system
for just one session) and open up further research perspectives.

The work of Kostrubiec and Kruck belongs to the growing
field of robotics for therapeutic support of children with autism
syndrome. Compared to the literature, this work is characterized
by the goal of collecting pieces of evidence and suggestions that
can guide the realization of new robotic tools. Experimental
activities have been carried out according to the ABA approach by
using a spherical robotic tool not yet available on the market. The
results, while showing a good acceptance by educators about the
adoption of the robot, confirm some undesirable effects typical
of the use of robots in these contexts, such as the difficulty of
these tools to be efficient social mediators. The work highlights
the need to look beyond the purely technological aspect, and to
analyze in more detail how technologies integrate and interact
with the adopted therapeutic approach and with the physical and
social environment in which the therapies are conducted.

ER convey other important aspects. As an example, instead
of focusing on the personal side of the learning process, several

works investigated the use of robots in collaborative learning
activities (e.g., Jung et al., 2015; Alves-Oliveira et al., 2019;
Oliveira et al., 2019), to foster mutual cooperation between
students strengthening the formation of social links and to
support inclusive education (Catlin and Blamires, 2019; Daniela
and Lytras, 2019).

Rosenberg-Kima et al. compare the effectiveness of a
social-robot and a human instructor in facilitating groups in
the classroom. A tablet application mediated the students’
interactions to overcome the limitation of the robot in
managing verbal communication. The study highlights
that the physical presence of the robot and factors such
as perceived intelligence, anthropomorphism, likeability,
significantly influence the efficacy of the facilitator role
played by the robot. Improving communication skills and
providing the robot with the ability to solve situations typical
of collaborative works could increase the effectiveness of
these interventions.

Ponticorvo et al. show that ER can be more effective
in promoting positive social ties and connections between
students than other tasks when it is proposed as a group
activity. A study on secondary school students (in an area
strongly affected by school dropout) compares the outcomes
obtained by three situations: (1) a laboratory with robots, (2)
a laboratory with Scratch used for coding, and (3) a control
group. The results confirm that the involvement of students in
a robotics lab can effectively encourage the rise of ties among
students. Furthermore, the ER, together with sociometric tools,
can be used to evaluate group dynamics in a synthetic and
manageable manner.

The work presented by Serholt et al. focuses the attention
on troublesome situations that can occur during interaction
with a robot in a classroom setting. Video analysis of children’s
group interactions with a robot tutee within the context of a
mathematics game was conducted by examining the nature of
the troubles and the strategies employed both by individual
children and other involved actors to address with them. The
results show as troubles mainly related to the robot’s social
norm violations that, although it could be traced back to
technical limitations, are considered from a social interaction
perspective (e.g., irrelevant comments and interruptions of
the robots).

Other works shift the attention on the robot’s learning side,
taking inspiration from well-known learning techniques such as
learning by imitation, to design algorithms enabling robots to
learn procedures through observations and interaction with a
human being (Tai et al., 2016; Hussein et al., 2017; Zhu and Hu,
2018).

Focusing on the recognition process of Contact States (CSs)
during an assembly task Al-Yacoub et al. consider an imitation
Learning approach, observing that humans can effectively
manage assembly tasks by using haptic Force/Torque feedback.
Collected F/T data were pre-processed and segmented. A robot
learned the extracted features by temporal knowledge modeling
in the symbolic domain. This makes it possible to catch
complex human behaviors with models that are simpler, more
compact, and with better computational performances with
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regards to non-symbolic models. The features are used to train
a probabilistic model. Experimental trials show the effectiveness
of the approach, whose main advantages are its simplicity and the
minimal a priori knowledge on the geometrical characteristics on
the mating parts.
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Imitation learning is gaining more attention because it enables robots to learn skills

from human demonstrations. One of the major industrial activities that can benefit from

imitation learning is the learning of new assembly processes. An essential characteristic

of an assembly skill is its different contact states (CS). They determine how to adjust

movements in order to perform the assembly task successfully. Humans can recognize

CSs through haptic feedback. They execute complex assembly tasks accordingly.

Hence, CSs are generally recognized using force and torque information. This process

is not straightforward due to the variations in assembly tasks, signal noise and ambiguity

in interpreting force/torque (F/T) information. In this research, an investigation has

been conducted to recognize the CSs during an assembly process with a geometrical

variation on the mating parts. The F/T data collected from several human trials were

pre-processed, segmented and represented as symbols. Those symbols were used to

train a probabilistic model. Then, the trained model was validated using unseen datasets.

The primary goal of the proposed approach aims to improve recognition accuracy and

reduce the computational effort by employing symbolic and probabilistic approaches.

The model successfully recognized CS based only on force information. This shows that

such models can assist in imitation learning.

Keywords: symbolic representation, imitation learning, feature transformation, Piecewise Aggregate

Approximation (PAA), K-means, Hidden Markov Model (HMM)

1. INTRODUCTION

Industrial robots can efficiently manipulate and assemble objects in a controlled environment
with minimum variations. However, they have limitations in assembling parts with geometrical
variations and tighter tolerances. In such applications, force signals play a crucial role especially
when the robots have to interact with the surrounding environment. Nevertheless, the force signals
are noisy and ambiguous to interpret and use (Wen et al., 2014). Humans, on the other hand,
can robustly perform assembly tasks with tight tolerances (Park et al., 2008) because they are very
efficient at using haptic (F/T) information, especially when vision cannot provide the required
information. Consequently, robots can benefit from understanding how humans use such haptic
feedback information during an assembly process. This can empower robots to use force and torque
with human-like capabilities allowing them to learn and adapt according to the variations in the
environment and adjust movement for tight tolerance assembly.
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Most of the research work reported in the area of imitation
learning is based on visual perception. This is mainly because
humans mostly rely on vision to gain adequate information
about objects’ relative positions and their geometrical properties
(Ernst and Banks, 2002; Rozo et al., 2013). In assembly
applications, perception importance can vary with motion,
where gross motion relies on vision while fine motion requires
haptic information, especially in contact situations. The focus
of the work reported in this paper is on the use of haptic
information to learn an assembly task. Capturing human skills
is particularly complicated for assembly processes which often
involve an understanding of hidden process features and tacit
knowledge. For example, for a successful assembly task, an
understanding of various types of contacts between objects
and their corresponding forces is required. Another important
aspect of an assembly process is the sequential relations between
different CSs during the assembly. Henceforth, different skilled
operators can perform the stages of the same task with different
temporal properties (transition between states and durations). In
order to capture, understand and interpret human skills from
a number of trials, those trials must be aligned (in terms of
duration). Also, the underlying pattern of the haptic information
must be extracted to reveal the sequential (temporal) knowledge
(i.e., human skill). Hence, those skills must be modeled so that
they can adapt to task variations for robotic assembly.

A great deal of research has been conducted on the recognition
of the CS. The approaches for CS recognition can be arranged
into two groups, i.e., analytical approaches and learning-based
approaches. Essentially, the analytical model of the mating
system has no single structure. The general model is composed of
a set of analytical equations (sub-models), where each equation
describes a particular contact state based on a physical analysis
of the state. Furthermore, these sub-models usually rely on a set
of approximation and assumptions to simplify the given problem.
Hence, current analytical approaches to recognize CS is limited in
terms of robustness and speed (Jakovljevic et al., 2012). The main
limitation of analytical approaches is latency since it relies on a
very complex computation (Nuttin, 1995). Learning approaches,
on the other hand, appear to be a better alternative when taking
the recognition of the CSs into consideration.

Various learning-based approaches to recognize CSs have
been presented in the literature. For example, the HiddenMarkov
Model (HMM) has been implemented to recognize CS based on
F/T information in tele-manipulation and result were presented
in Hannaford and Lee (1990). However, the proposed models
rely on extensive training and are only applicable to large
clearance between the assembled parts. In Dong and Naghdy
(2007) an HMM was used to recognize the CS of a Peg-in-
Hole (PiH) assembly in a virtual environment, and to recognize
the CS during the on-line PiH process. However, the accuracy
of the trained HMM depended on the accuracy of the virtual
world model which generally has nominal behavior. Lau (2003)
proposed a framework of CS recognition in industrial robot
assembly platform using HMM and F/T information, where it
was experimentally proven that HMM-based with F/T is superior
compared to the conventional CS recognition (CAD-based and
kinematic-based).

Jasim et al. (2017) have developed a method that combines
the Expectation Maximization and Gaussian Mixture Model
(EM-GMM) to recognize the CS of PiH insertion during an
automated process. In Jasim et al. (2017) the number of Gaussian
were determined using Distribution Similarity Measure-based
(DSM). In this research, the trained GMMmodels were evaluated
using a rubber PiH insertions with two different parts elasticity.
Yet, the work reported in Jasim et al. (2017) did not employ
feature selection or transformation algorithms in order to reduce
the computational effort. A Piecewise Affine Autoregressive
Exogenous (PWARX) method has been presented in Okuda et al.
(2008) to recognize the CS during the PiH assembly process. The
core idea of the PWARX was used to control a robot during the
PiH process based on a set of mathematical models (PWARX
sets). In this case, the control was achieved by switching between
the PWARX models using a Support Vector Machine (SVM).
The SVM functionality was to recognize CS and accordingly
switch over controllers to select the suitable models for the
given CS. The computational power required for this method
is quite high (Mikami et al., 2010), and the PWARX model is a
complicated model (Nakabayashi et al., 2013). In Jakovljevic et al.
(2012) a SVM has been employed to classify two successive states
based on pre-designed features sequentially. The selected features
were designed based on the quasi-static insertion force model
(Whitney, 2004). This method relies on pre-defined features
and a complex hierarchical classification algorithm since SVM
is only a binary classification approach. This work also relied
on designed features which were pre-selected by designers thus
making the method less autonomous. Hertkorn et al. (2012)
generated a wrench matrix based on the CAD models of the
assembly parts with a particle filter to recognize the CS based
on the F/T measurements. This method was implemented to
resolve the ambiguity of the force measurements and recognize
the contact formation of a rectangular workpiece on a flat surface.
The drawback of this work was the simplicity of the part’s
geometries used to validate the proposed approach.

Jamali et al. (2014) presented a CS learning algorithm based
on a symbolic representation of temporal behavior during robot
valve opening process where force signals were clustered using
the Minimum Message Length (MML) (Wallace and Dowe,
2000). The labeled symbolic data were used to train an HMM to
recognize the CS. The overall accuracy achieved by this method
was 81% about x-axis and 85% for rotation about the y-axis.
Nevertheless, the convergence time of the GMM/MML might
delay the recognition of the CS. Also, it relies on exploration
movements in order to recognize the CS.

Most of the aforementioned research follow pattern
recognition in the extracted/selected features by temporal
knowledge modeling (capturing). This can be captured in the
symbolic or non-symbolic domain. The main advantages of
the non-symbolic models are their parametric nature and their
capability to capture variations in human skills (Nejati and
Könik, 2009). On the other hand, the symbolic approaches
are well-known for capturing complex human behavior with
simpler and shortened models that have better computational
performance. For instance, symbolic approaches can capture the
assembly sequence at different hierarchical levels (granularity),
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which is difficult using probabilistic approaches. Even though
symbolic models have traditionally been considered unsuitable
for controlling real-world systems (Calinon and Billard, 2008),
researchers are now making effective use of these models
for skills representation, evaluation, generalization and robot
control (Mohammad and Nishida, 2014). These models are
computationally efficient, simple, and capable of capturing
complex human skills. Therefore, the research work reported in
this paper explores the use of symbolic models to capture human
assembly skills.

Despite significant progress in the field, researchers have
been relying on algorithms which have significant latency.
Furthermore, symbolic-based recognition of CS for imitation
learning of PiH problems has not been sufficiently explored
in the presenters of geometrical variation, in analogy to the
material property (elasticity) variation presented in Jasim et al.
(2017). In fact, probabilistic models trained based on symbolic
representation converges faster than probabilistic models trained
based on numeric representation (Kwiatkowska et al., 2004).
Thus, it is believed that combining symbolic representation
based on a simple segmentation approach [i.e., Piecewise
Aggregate Approximation (PAA) or K-means] will result in
more computationally efficient CS recognition with comparable
robustness and accuracy.

This paper investigates a symbolic-based CS recognition
approach which combines feature transformation methods, i.e.,
Principal Component Analysis (PCA), time-series segmentation,
symbolic assignment, data labeling and HMM training, in order
to reduce the computational effort required for CS recognition.
As a validation example, the PiH assembly was adopted to
demonstrate the efficiency of the proposed approach. Despite
the apparent simplicity of the PiH assembly, it belongs to the
group of parts mating problems that are highly non-linear and
difficult process (Chen, 2011; Kronander et al., 2014). The main
contribution of this paper is to develop amethod that can identify
contact states in an actual assembly process, i.e., PiH assembly.
The development of this method involves the identification of
CS during the PiH process based on symbolic representations
of the force/torque signals (non-vision information). In addition
to that, the relation between the probabilistic model and how
robustly it responds to part variations (clearances) has been
explored in this research.

The remainder of this paper is organized as follows; the
problem description is introduced in section 2. Section 3
introduces the research methodology. The experimental setup is
presented in section 4. The results are described in section 5 and
a set of conclusions are drawn in section 6.

2. PROBLEM STATEMENT

The assembly process is generally split into two sub-tasks: gross
motion and fine motion. In general, a gross motion is subject
to no constraints in the environment, while during fine motion,
the parts’ movements are tightly constrained by the assembled
parts’ geometry. In this motion, a small error in a movement
might cause an extensive force interaction leading to a failure of

the assembly process. Hence, a force-based control is required to
identify the CS and control the robot accordingly. In this context,
the problem of CS recognition can be described as a classification
problem, in which the F/T components are the raw data input
F ∈ R

N×6 (three forces and three torques components in x − y
and z directions) (Equation 1), whereN is the number of samples,
and the output is Y ∈ R

N×1, where Y is a pre-defined CS.
Accordingly, the goal of the CS model is to identify the contact
state of a PiH assembly process.

F =
[

f0, . . . , fN
]

fi =
[

Fx, Fy, Fz ,Tx,Ty,Tz

]

i = 0, . . . ,N
(1)

Accordingly, the classification problem can be described as
identifying a mapping function h(F,Y) that maps the given force

measurements into a CS (F
h(F,Y)
→ Y).

3. METHODOLOGY

The methodology adopted in this research relies on
dimensionality reduction and symbolic representation of
multi-dimensional F/T signals, which aims to recognize the CSs
of an assembly process. In order to capture the CSs of a PiH
insertion, the force/torque time-series data is recorded, filtered,
normalized, its dimensionality reduced and the resulting time-
series is represented in a string of symbols. The mapping of these
time-series data can be performed under the assumption that
the normalized time-series is Gaussian (Lin et al., 2003). Each
symbol in the resultant string is labeled to match a member from
a pre-defined CS set. The resultant strings and their associated
labels set are used to train an HMM to capture the assembly
process sequence.

The training approach adopted for this research is shown in
Figure 1. The first step involves filtering and scaling F/T features
using a low-pass filter andmagnitude normalization, respectively.
The data is projected into a new sub-space which maximizes
the data variation and reduces dimensionality and noise using
PCA. After that, the time-series is transformed to their symbolic
representations. The symbolic representation is being assigned in
two steps. Firstly, the time-series is segmented using Piecewise
Aggregate Approximation (PAA) or K-means. Secondly, each
segment from the previous step is being represented by a symbol
based on its location in a normal distribution.

To verify the resulting models, unseen test sets were used.
The accuracy of the trained models was measured based on a
confusion matrix1. The pre-processing, feature transformation
and symbolic representation stages of the research methodology
are explained in more detail in the following sub-sections.

3.1. Pre-processing
The pre-processing consists of two stages, i.e., filtration and
normalization, which are explained as described below.

1 Performance of classification is commonly evaluated using the data in confusion

matrix.
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FIGURE 1 | Overview of the proposed approach (training and testing phases).

• Filtration: The F/T signals are subject to electromagnetic
noise which severely affects the F/T signal. It is noticeable
that the raw data from the F/T sensor contains random
fluctuations, burrs and spikes. Shielding of sensors and their
wiring can partially solve this problem. However, this is not
always practical. In Wu et al. (2014), a comparison amongst
different filters to alleviate the noise effects on F/T signals is
presented. A performance measure, called stability index, was
used to evaluate those different filters. In conclusion, it was
recommended to use an FIR filter together with a Double-
Threshold Filter (DTF). Hence, in this work, a finite impulse
response (FIR) low-pass filter with DTF was adopted for the
data pre-processing step of the F/T signal. The F/T signal was
sampled at 500 Hz and filtered using a low-pass filter with 35
Hz cutoff frequency and DTF.

• Normalization: In order to capture and compare features that
occur at different force levels on different trials, the force
information during different trials needs to be normalized.
Normalization is a powerful feature scaling method especially
when the extreme values (minimum and maximum) of given
features are unknown (Han, 2005; Jamali et al., 2015). On the
other hand, the test data must be normalized based on the
normalization coefficient of the training data.

3.2. Feature Transformation
Transformation can be perceived as a search algorithm that
attempts to find a new set of features to make the machine
learning problem easier (Liu and Motoda, 1998). PCA is one
of the most common feature transformation tools that rely on
allocating the directions that maximize the variation in the
features’ space (Sophian et al., 2003). The PCA is a mathematical
tool used to analyse data sets based on their variations. One

main characteristic of PCA is a reduction in dimensionality
which often results from this tool. This dimensionality reduction
involves the selection of features with maximum variation
based on the accumulative-variance and a user-defined threshold
(Calinon and Billard, 2008). The PCA threshold defined the
amount of data which can be returned from the PCA after
feature extraction.

3.3. Symbolic Representation
For the symbolic representation, the Symbolic Aggregate
Approximation tool (SAX) was modified and employed in
this research due to its simplicity. The SAX tool is a
symbolic representation tool of time-series data that assigns the
representation of numeric values based on Euclidean distance
and discretization process (Lin et al., 2007). It also allows us
to represent different time-series (various lengths) with the
same number of symbols (Keogh et al., 2005). This property
is of great importance in time-series alignments. The symbolic
representation is achieved in two steps: time-series segmentation
and segments mapping into symbols.

3.3.1. Time-Series Segmentations
Time-series segmentation can be achieved using PAA or K-
means segmentation. In this paper, a brief comparison between
the PAA segmentation and the well-known K-means time-series
segmentation is presented.

3.3.2. Piecewise Aggregate Approximation (PAA)
The PAA splits time-series data with length N into M segments.
This is very useful, especially in encoding temporal data
during human demonstrations, where each trial has its different
temporal properties (e.g., duration of each state). The PAA
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approximates a single time-series S(n) into a vector of segments’
averages; (S̄ = (s̄1, . . . , s̄M)) for any random length (M ≤ N),
where each s̄i is calculated as shown in Equation (2).

s̄i =
M

N

N.i
M

∑

t= N
M (i−1)+1

S(n) (2)

Accordingly, the resulting time-series S̄(n) is shown in
Equation (3).

S̄(t) =































s̄1 0 ≤ t < N
M

...
...

s̄i
N
M (i− 1)+ 1 ≤ n < N

M i
...

...

s̄M
N
M (M − 1)+ 1 ≤ n < N

(3)

The PAA represents a single time-series (1D) data into a sequence
of averages S̄. However, applying the PAA on multi-dimensional
time-series will result in a sequence of vectors (S̄) where each
element in the vector is a D dimension (selected features)
corresponding to each time-series from the PCA. In this research,
it is required to represent the multi-variable time-series with
a single sequence of symbols. Hence, the PAA needed to be
modified for the multi-variable time-series to be represented
using a one-dimensional sequence of averages. Accordingly, a
further dimensionality reduction is needed on the PCA result.
This reduction can be performed using the average of the multi-
dimensional data over different sectors of the PAA. Another
alternative is to employ the norm of the multi-dimension data. In
this paper, the norm method was used since it can be physically
interpreted as the magnitude of the feature vector. Equation (4)
represents the modified PAA using norm, where S̄(n) is a vector
of data at time n.

s̄i =
M

N

N.i
M

∑

n= N
M (i−1)+1

||S(n)||22 (4)

The result from the PCA and its corresponding PAA results are
shown in Figure 11. Then, each segment is mapped into a symbol
as illustrated in the next section.

3.3.3. K-means Time-Series Segmentation
One of the simplest and most popular methods to overcome
the clustering problem is the K-means algorithm (De la Torre
and Kanade, 2006). K-means clustering splits a set of N samples
(e.g., time-series) into M groups by maximizing the ratio
amongst different clusters and the variation of each cluster.
A K-segmentation of a time-series S is a sequence of mean
values S̄. Under consideration of the given context, the K-
means problem can be described as the problem of allocating
a segments boundaries (temporal information) (Vlachos et al.,
2003). Equation (5) depicts the interval definition over all
segments. The input for the K-means algorithm is the norm value

of the multi-dimensional data from the PCA and the temporal
information. The output is a time-series S̄(n), where each data
point is represented by the centroid of the ith cluster/segment.
The drawback of using K-means is its dependence on the initial
estimation of the centroid and the number of clusters, which
means that K-means might have different segmentation results
for different initialization.

s̄i ∈ {s(ta), . . . , s(tb)}
(ta)i = min

t
s̄i

(tb)i = max
t

s̄i

(5)

Where s̄i is the ith segment that starts at (ta)i and ends at (tb)i. The
accuracy of the K-means was tested under a different number of
clusters (as explained in section 5), and the number of segments
with the best accuracy was selected. Based on PAA and K-means,
the different time-series (trials) with different length N were
represented using the same number of segments. The resulting
segments have a unity magnitude. After that, each segment is
represented by a single symbol based on its location in the normal
distribution. It is worth mentioning that the number of K-means
centroids and segments in the PAA were determined based on
the elbow method, where classifier accuracy was tested with a
different number of centroids and segments.

3.3.4. Segmentation Mapping
Having transferred the time-series data into segments (PAA or
K-means), a further transformation must be applied to achieve
the symbolic representation. Under the assumption that the
normalized time-series is Gaussian as highlighted in section 3,
the mapping of segments into symbols adopted in this paper
has been introduced in Lin et al. (2007). In which, the outputs
from the PAA and K-means are mapped into a series of symbols
using predetermined “breakpoints” that produce equal-sized
areas under a Gaussian curve with (N (0, 1)). The maximum
number of breakpoints supported by the tool developed in Lin
et al. (2007) is 12, these were adopted in this research to reduce
the effect of the discretization error.

Figure 2 shows how a segmented signal based on subsection
3.3.1 mapped into symbols based on their location with respect
to the predetermined breakpoints. Then, the force-time-series
for the different trials are represented in a single sequence of
symbols; e.g., (Symbols : = {jjjiihcbaafff }), where a sequence
of symbols encodes the CSs (hidden). From Figure 2, any
segment that appears lower than the break line at −0.84 will
have the symbol a throughout the trials, the force/torque time-
series were represented using the same number of segments,
even though the insertion process durations were different
for each trial. Similar stages were represented using similar
symbols using a normal distribution. For example, J and I are
representing no-contact stage and H, and C are representing
Chamfer-Crossing stage. Accordingly, different trials can be
aligned using their corresponding symbols. The goal is to capture
the relation between the recognized pattern (symbols) and
the CSs. One possible solution for such a problem is to use
an HMM.
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FIGURE 2 | Segments mapping into a symbolic representation of time-series data. For example, the time-series is segmented into six segments and each segment

mapped into a symbol based on its location with respect to the Gaussian distribution (breaklines).

3.3.5. Manual Labeling of PiH Insertion
The resulting sequence of symbols introduced in the previous
section is vague, and an expert should manually label it. A
manual labeling process was performed based on analysing the Fz
component of the data sets, because the F/T sensor is stationary
and most of the force variation occurs on z direction. Figure 3
illustrates the Fz component and the corresponding process stage
based upon specific features of the Fz trend. The red circles
indicate the start of a new stage and the end of the previous stage.
The first circle highlights the force trend as the first contact occurs
and the Chamfer-Crossing starts, as shown in stage 1 of Figure 4.
After this, the operator starts correcting the angular error (the
angle between the hole axis and insertion force direction). Once
the angular error approaches zero (approximately), the friction
force reaches its maximum due to further contact, which causes
an overshoot in the force trend. This overshoot is highlighted
in the second circle in Figure 3. Stage 1 of Figure 5 shows the
force analysis when the first contact point occurs and Equation
(6) explores the force analysis at this stage. Stage 2 of Figure 4
outlines the initial alignment, where the friction force Ffr is
doubled whilst the insertion force FIn stays relatively constant
as shown in Equation (7). This alignment explains the spike at
the end of the Chamfer-Crossing (Figure 3, second circle). The
insertion process then commences, and the peg is pushed fully
into the hole. Once the peg is fully inserted in the hole, the
operators release the peg causing a relaxation in the insertion
force. This results in the small spike in the third circle in Figure 3

which indicates the end of the insertion process. It is worth
mentioning that these characterizations were observed in all PiH
insertion trials. Therefore, the CS set (Y) is defined based on the
PiH assembly stages as follow: (Y = {NC,CC, I, FI}); where NC
is No Contact State, CC is Chamfer-Crossing, I is Insertion, and
FI is Full Insertion.

Fz = (Ffr + FNo − FIn) cos(φ) (6)

Fz = 2 Ffr − FIn (7)

The manual labeling of the symbolic representation was applied
to enhance the process of obtaining human skills and to highlight

FIGURE 3 | Manual labeling of the PiH insertion process based on Fz force

component.

FIGURE 4 | Chamfer-Crossing stage.

the physical meaning of the discovered patterns. Also, the labeled
data is only used for training and testing purposes and is not
required for later interpretation of new PiH processes once the
model has been verified.
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FIGURE 5 | Chamfer-Crossing PiH stage: force analysis.

FIGURE 6 | HMM topology of the PiH insertion process based on the given

dataset in Equation (8).

3.3.6. Hidden Markov Model (HMM)
Once the F/T information is transformed into strings of
symbols which represent the temporal information of the PiH
assembly process, an HMM was used to encode the temporal
information and detect the pattern of each CS. Accordingly,
each assembly trial (human demonstration) was represented in
a string of symbols. The resulting strings were manually labeled
by combining each symbol in the strings with one element from
the CS set as explained in subsection 3.3.5. This resulting dataset
can be represented as shown in Equation (8), which is used
to train the HMM models. The same data set were used to
initialize emission and transition matrix of the HMM using the
Baum-Welch (BM) algorithm (Hochberg et al., 1991).

XTraining Data = ...(d,CC)(e,CC)(b, I)(c, I)(a, I)... (8)

Figure 6 depicts the typology of the HMM used for the symbolic
representation of each trial. This HMM encoded the PiH
assembly skills, which was represented in a sequence of symbols.
The HMM was trained using the string of symbols (as the
observation) and CSs (as hidden states) to predict the new cases.

To summarize, the proposed approach is composed of three
main stages. The first stage is segmentation which discovers

the spatial structure within the data. Secondly, the symbolic
representation reduces the high dimensional time-series data into
one-dimensional data. The third stage captures the temporal
knowledge embedded in the symbolic representation. For testing
purposes, the labels for the randomly chosen test data sets were
generated based on the trained model without using manual
labeling. The results were then compared with the manual labels
to evaluate the accuracy of the trained model.

4. EXPERIMENTATION SETUP AND DATA
ACQUISITION

The experimental setup shown in Figure 7 was used to collect
data from different human operators performing a PiH assembly
process. This setup was composed of a six-axis F/T sensor, a hole
with a diameter D of 16.20mm, and two round mating parts
with different diameters (Peg 1 and Peg 2). Where, the diameter
of Peg 1 is 15.98mm and the diameter of Peg 2 is 15.87mm.
Figure 8 depicts one trial of the insertion process. The F/T data
has been recorded while the human operators performed the
assembly task.

A total number of 60 experiments were carried out with three
different operators. Each operator performed 20 trials, to capture
a wide range of human skills and variation in the initial position
of the peg. Each trial contains on average 1,500 data points of
F/T signals. The collected data were randomly split into training
data (80% ≈ 48 trials) and test data (20% ≈ 12 trials). The
six-dimensional time-series data (features) recorded by the F/T
sensor was reduced to two-dimensional data using PCA. Then,
the two-dimensional time-series data were reduced to 1D data
by taking their norm value in the modified form of the PAA or
K-means. After that, the segmented data were represented by a
string of symbols. Those strings were labeled and used to train an
HMM to discover the temporal aspects of the assembly process.

The quality of the classifier based on the HMM was evaluated
using an unseen test set. This process was repeated four
times to get an average performance of the classifier based on
the proposed approach (see section 3). Figure 1 depicts the
evaluation process using the test set. It is worth mentioning here
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FIGURE 7 | Hole and F/T sensor.

FIGURE 8 | The experiment setup during PiH insertion.

that the same mixing matrix ζ and the normalization coefficients
of the training stage were used to pre-process test data; under
the assumption that statistical properties of the test data are
unknown, during the evaluation process. Then, the accuracy of
the HMMmodel calculated with respect to the label data.

5. RESULTS AND DISCUSSION

The proposed approach was designed to recognize CSs during
the assembly task efficiently, and then it was evaluated using
PiH insertion problem as discussed before. Next, fitted models
were evaluated as described in section 4. At the beginning,
the collected during PiH insertion were six-dimensional (X ∈

R
6) as shown in Figure 9, while the transformed data is two-

dimensional (Xred ∈ R
2) as illustrated in Figure 10, which

indicates the PCA selected features from the raw data in
Figure 9. The resulting PCA components were signals that

have an accumulative variance that is higher than 90% of the
total variance. The selected features were segmented using the
modified PAA and K-means. The modified PAA and symbolic
representations of the time-series data are shown in Figure 11.
Figure 12 depicts the symbolic representation results based
on the PAA segmentations. Figure 13 illustrates the K-means
segmentations and the corresponding symbolic representation,
where each color represents a segment.

In order to compare the segmentation approaches (PAA and
K-means) and to determine the suitable number of segments for
each segmentation approach, the symbolic representation was
carried out based on PAA andK-means separately with a different
number of segments. A critical difference between the PAA
and the K-means segmentation is that the temporal and spatial
features are crucial for the K-means segmentation. In contrast,
PAA splits data into segments of equal length (temporal length)
without taking spatial data into account. After that, temporal
knowledge can be captured using HMM.

Figure 14 shows the accuracy of the HMM model based
on PAA segmentation. The highest accuracy is 94% using
30 segments with 0.88 s computational time. In comparison
Figure 15 illustrates the accuracy of the HMM model based
on K-means segmentation. The highest accuracy is 95% using
10 segments with 11.86 s. Those results indicate that models
generated based on K-means segmentation do not require a
large number of segments to achieve high accuracy. The models
created using PAA require a large number of segments to
improve the accuracy of themodel. Themodel based on K-means
segmentation achieved higher accuracy with a lower number of
segments. This requires an extensive search until it converges to
the optimal segmentation with resulting segmentation depending
on the initial estimation of the segments’ centroids. Surprisingly,
the accuracy decreased dramatically with an increased number
of segments. This shows there is no linear relationship between
the number of segments and the accuracy. Therefore, an
optimal number of segments needs to be identified requiring an
additional iterative process. Conversely, the models generated
using the PAA are more robust and do not request an iterative
search. Also, the PAA segmentation returns the same segments
for the same trial repeatedly. The results presented so far
correspond to the data collected during the insertion of Peg 1
without considering the variation in clearance.

Another important aspect in the PiH assembly process is the
clearance, where assembly of tight clearance parts ismore difficult
than loose clearance parts. In order to test themodels for different
clearances, two models; model 1 and model 2, were trained
separately using the sequences captured during the assembly of
Peg 1 (tight) and Peg 2 (loose), respectively (see section 4). Both
the models were tested to explore the relationship between the
accuracy of CS recognition and the clearances.

To evaluate the classification accuracy of the two models both
models were tested with unseen labeled data (for assembling Peg
1 and Peg 2). The resulting accuracy is shown in the confusion
matrices in Tables 1, 2. Table 1 shows the confusion matrix of
the HMM trained using the PAA with 30 segments (model 1). It
can be observed from the table that the CC stage is being the least
accurately classified.
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FIGURE 9 | Six-dimensional F/T signal during PiH assembly (original input data R
6).

FIGURE 10 | The transformed F/T data (R2) after features transformation in the latent space using PCA. The accumulative-variance threshold was 90% of the total

variance of all signals.

Table 2 shows the confusionmatrix of the HMM trained using
the PAA with 30 segments (model 2). An analysis of the result
reveals that the misclassification of the CC stage that happens
due to the static friction that occurs directly after the first contact.
Also, the force level during this stage overlaps with the force level
at the full-insertion stage which means that the mapping process
will assign the same symbols for both stages (CC and FI).

The overall accuracy of model 1 and model 2 are 94
and 64%, respectively. Therefore, the trained models derived
from the insertion of the larger clearance peg have a lower
accuracy than the model based on the tighter clearance peg.
The reason behind this is that the tighter clearance creates a

stronger boundary amongst the CSs. Nevertheless, parts with
larger clearances can partially change their contact state without
causing distinguishable variation in the F/T signal which makes
the recognition of distinct CS more difficult.

Additionally, the model with higher accuracy (model 1) was
used to recognize the assembly CSs of Peg 2 to examine the
robustness against clearance variation. The performance of CS
recognition based on model 1 is illustrated in the confusion
matrix as shown inTable 3. The overall accuracy reduced from 96
to 82.4%. Though, the accuracy of model 1 on Peg 2 is still better
than the accuracy of model 2 on Peg 2, this shows that model 1 is
quite robust against clearance variation.
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FIGURE 11 | PCA and corresponding PAA result.

FIGURE 12 | Symbolic representation with five segments using PAA.

The results generated were compared with the most relevant
work from the literature. In this regard, the method introduced
by Jamali et al. (2014) achieved an overall accuracy of 81%, and
85% for rotation about the x-axis and the y-axis, respectively. The
HMM-PAA models proposed in this paper has an accuracy of
94% and is, therefore, an improvement. However, to ensure that
the accuracy is not due to chance, the datasets from all users for
Peg 1 and Peg 2 have been combined and then randomly split 100
times into train and test data. The confusion matrices of the 100
times split using HMM-PAA and HMM-K-means are shown in
Tables 4, 5, respectively. The average accuracy of the HMM-PAA
model is (90 ± 1.38)%, while it was only (76 ± 1.45)% for the
HMM-K-means model. Table 6 illustrates the overall accuracy,

precision, and F-score of both HMM-PAA and HMM-K-means
models. These numbers show better accuracy and robustness
(precision) of the HMM-PAA in comparison with the HMM-K-
means. The overall accuracy of the HMM-PAA was 90% with
σ equals to 8.4%, while HMM-K-means has an accuracy of
76% with σ equals to 8.2%. This shows that the accuracy of
both approaches has similar standard variation with different
overall accuracy.

The proposed approach greatly reduces the required
computation time, although it relies on multi-stage processes.
Table 7 shows the computational complexity of the proposed
approach in comparison with three similar research approaches,
namely Jamali et al. (2014), Jasim et al. (2017), and Hannaford
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FIGURE 13 | Symbolic representation with five segments using K-means.

FIGURE 14 | Classifier accuracy with PAA segmentation using different

number of segments. The best accuracy was achieved with 30 segments.

and Lee (1991), where Nsymbols is the number of symbols, K
is the number of original dimensions before the PCA, M is
the number of segments, Nsample is the number of samples
within the time-series and D is the number of selected features
(selected dimensions based on the PCA). For the proposed
approach with PAA, the worst case scenario occurs when the
Nsymbols is 12, and M is 30. In this case, the complexity of
the HMM is the bottleneck; hence, the total complexity is
O(2K Nsamples D). On the other hand, the worst case for the

FIGURE 15 | Classifier accuracy with K-means segmentation using different

number of segments. The best accuracy was achieved with 10 segments.

proposed approach with K-means occurs when the Nsymbols

is 12, and M is 10; however, the time complexity of the K-
means is quadratic of the Nsamples, which was on average 1500
samples. Henceforth, the K-means is the bottleneck for this
case, which explains the long execution time to recognize
the CS in comparison with PAA. In comparison with the
method introduced in Jamali et al. (2014), the complexity
of MML-GMM, that was used to cluster the Force/Torque
data), was O(MNsamples D). Nevertheless, the complexity of
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TABLE 1 | Confusion matrix of model 1 for Peg 1 clearance c = 0.11mm, where

NC, no contact; CC, Chamfer-Crossing; I, insertion; FI, full insertion.

NC CC I FI

NC 83 7 0 0

CC 0 14 1 0

I 0 0 50 0

FI 0 0 0 78

TABLE 2 | Confusion matrix of model 2 for Peg 2 with clearance c = 0.17mm.

NC CC I FI

NC 82 5 0 12

CC 0 10 0 36

I 0 21 31 0

FI 0 0 12 31

TABLE 3 | Confusion matrix of model 1 validated using observation of Peg 2.

NC CC I FI

NC 82 12 0 0

CC 0 9 1 0

I 0 21 31 0

FI 0 0 11 71

TABLE 4 | Confusion matrix of HMM trained with PAA 30 segments.

NC CC I FI

NC 1,115 90 0 0

CC 65 180 25 0

I 0 20 500 130

FI 0 0 15 1,160

the proposed approach was O(M), that only depends on M,
while the complexity of MML-GMM depends on M multiplied
by Nsamples and D. The overall performance appears similar
in both methods. However, the method proposed in Jamali
et al. (2014) requires additional exploration stage (set of
random movements on x and y direction) before starting the
recognition stage. Henceforth, it might require a longer time
until it converges. In Jasim et al. (2017) the EM-GMM were
utilized without dimensionality reduction, which means that the
complexity is O(MNsamples D). While in the proposed approach
the dimensionality reduction greatly reduced the number of
features and the samples. Also, as shown in Table 7 the total
complexity of the proposed approach is O(2K Nsamples D) which
is less than the complexity of the EM-GMM utilized in Jasim
et al. (2017) as long as 2K < M. Finally, the computational
complexity of the HMM presented by Hannaford and Lee (1990)
was O(N2

samples
D), which is higher than the total complexity of

the proposed approach.

TABLE 5 | Confusion matrix of HMM trained with K-means 10 segments.

NC CC I FI

NC 290 30 5 0

CC 90 60 10 0

I 0 55 135 65

FI 0 0 10 345

TABLE 6 | Overall accuracy (100 times split) of the HMM models with PAA and

K-means.

Method Accuracy (%) Precision (%) F-score (%)

HMM-PAA µ 90 85 84

σ 8.4 7.5 7.5

HMM-K-means µ 76 73 72

σ 8.2 7.5 7.3

6. CONCLUSIONS

This paper proposed a method to capture human skills during
the PiH assembly process utilizing a learning algorithm to
encode the assembly process. The proposed algorithm was based
on a symbolic representation of F/T signals in the presence of
geometrical variation of the assembled parts. This approach is
capable of recognizing the CSs of PiH assembly process based
on a symbolic representation of force and torque information.
It can accommodate variations in the insertion force levels
and compensate for process noise. The main benefits of
this method are its simplicity and minimal pre-knowledge
requirements about the geometrical information of the
mating parts.

During the symbolic representation, two segmentation
approaches, i.e., the K-means and the PAA, were investigated
for their effectiveness. It was found that a higher accuracy of CS
recognition can be achieved with a small number of segments
when using K-means to segment the F/T time-series whereas the
models trained based on the PAA segmentation require a higher
number of segments. The model which was trained based on
the K-means resulted in an accuracy of 70% with 10 segments
with an 12 s computational time. The model generated based
on the PAA resulted in an accuracy of 90% accuracy with 30
segments with 0.95 s computational time. The K-means requires
more computational effort due to its iterative nature, whereas the
PAA is a simpler and faster segmentation procedure. The use
of the PAA in the symbolic representation reduces the required
computational effort and increases the robustness of the model
against process noise.

In this research, the robustness of the trained models was
examined by varying part mating clearances. The results showed
that the CS recognition is more accurate for tight clearance
mating. This observation implies that there is an inverse
relationship between the clearance and the accuracy of the
CS recognition. This is due to the higher physical constraints
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TABLE 7 | Computational complexity comparison.

Proposed

approach (PAA)

Proposed

approach

(K-means)

MML-GMM

(Jamali et al.,

2014)

EM-GMM (Jasim

et al., 2017)

HMM (Hannaford

and Lee, 1990)

PCA (after training) O(2K Nsamples D) O(2K Nsamples D) O(2K Nsamples D) – –

GMM – – O(MNsamples K) O(MNsamples D) –

PAA O(Nsamples) – – – –

K-means – O(N2
samples) – – –

HMM O(MN2
symbols) O(MN2

symbols) O(MN2
symbols) – O(DN2

samples)

Total O(2K Nsamples D) O(N2
samples) O(2K Nsamples D) O(MNsamples D) O(DN2

samples)

in a tight clearance insertion process, providing a better-
defined boundary that separates the consecutive CSs. The model
trained based on tight clearances peg is more robust against
geometrical variation.

The availability of robust and computational efficient
representations is an essential precursor for imitation learning.
The proposed approach achieves those two goals. However, it
heavily relies on approximation and dimensionality reduction
that might remove essential features from the force trend.
Accordingly, the proposed approach might be not suitable
for applications that require high accuracy, such as textile
recognitions. Future work will consider the transformation of
the trained models to an industrial robot by extending the
proposed approach to a complete imitation learning framework.
It is believed that humans often rely on visual perception to
perform handling task. Hence, the proposed methods can be
extended to include visual features that might improve the
models’ accuracy.
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Acknowledging the benefits of active learning and the importance of collaboration

skills, the higher education system has started to transform toward utilization of group

activities into lecture hall culture. In this study, a novel interaction has been introduced,

wherein a social robot facilitated a small collaborative group activity of students in

higher education. Thirty-six students completed a 3 h activity that covered the main

content of a course in Human Computer Interaction. In this within-subject study, the

students worked in groups of four on three activities, moving between three conditions:

instructor facilitation of several groups using pen and paper for the activity; tablets

facilitation, also used for the activity; and robot facilitation, using tablets for the activity.

The robot facilitated the activity by introducing the different tasks, ensuring proper time

management, and encouraging discussion among the students. This study examined

the effects of facilitation type on attitudes toward the activity facilitation, the group

activity, and the robot, using quantitative, and qualitative measures. Overall students

perceived the robot positively, as friendly and responsive, even though the robot did

not directly respond to the students’ verbal communications. While most survey items

did not convey significant differences between the robot, tablet, or instructor, we found

significant correlations between perceptions of the robot, and attitudes toward the activity

facilitation, and the group activity. Qualitative data revealed the drawbacks and benefits

of the robot, as well as its relative perceived advantages over a human facilitator, such

as better time management, objectivity, and efficiency. These results suggest that the

robot’s complementary characteristics enable a higher quality learning environment, that

corresponds with students’ requirements and that a Robot Supportive Collaborative

Learning (RSCL) is a promising novel paradigm for higher education.

Keywords: social-robots, human-robot interaction, collaborative learning, active learning, educational technology,

higher education
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INTRODUCTION

Classrooms in the twenty-first century are slowly being
transformed from frontal lectures halls filled with passive
students, to collaborative small groups actively participating in
project based learning (Helle et al., 2006; Kokotsaki et al., 2016).
Studies have shown that such active participatory learning is
more effective in content retention (Al-Balushi and Al-Aamri,
2014) and engagement (Fernandes et al., 2014). Thus, emphasis
has been diverted to so-called twenty-first century skills (Crane,
2003; Saavedra and Opfer, 2012; Trilling and Fadel, 2012), with
focus on the 4C super-skills, i.e., communication, collaboration,
creativity, and critical thinking (Shulman, 1986; Kivunja, 2015).
This focus has created several new pedagogies, such as to provide
students with the opportunity, within the classroom, to observe,
imitate, and practice critical agency, and reflect upon it (ten Dam
and Volman, 2004); collaborate by learning to share tasks and
resources and be responsible for their tasks (Lai et al., 2017);
engage in inter-, trans-, and cross-disciplinary approaches to
promote creativity (Harris and de Bruin, 2018); and use project-
based learning as the basis for improving communication skills
(Saenab et al., 2018).

In higher education, the proliferation of massive online open
courses (MOOCs) (Bozkurt et al., 2017) has not lived up to its
initial expectation (Khalil and Ebner, 2014; Thomas and Thorpe,
2019). However, the emergence of the “flipped classroom”
paradigm (Gilboy et al., 2015; Schmidt and Ralph, 2016), in which
students learn thematerial at home via on-line learning platforms
and then discuss and practice it in small groups in the classroom,
has been shown to be highly effective (Chen and Chen, 2015;
Thomas and Thorpe, 2019).

These paradigms have started to reshape the role of the
lecturer in higher education, wherein the role of group facilitator
has become an important aspect of teaching in such scenarios
(Franco and Nielsen, 2018). Group facilitation involves the
mediation of the material via encouragement of communication,
active participation, and discussion of all the group members
(Phillips and Phillips, 1993). Best practices involve promotion of
reflection and action (Franco andNielsen, 2018) andmaintaining
engagement density (Matsuyama et al., 2015).

These changes to classic teaching methods have also
introduced new challenges as large classrooms, restructured
as several small discussion groups, demand the attention
of the lecturer, and her TAs (Moust and Schmidt, 1994).
While on-line discussion forums have prospered in recent
years (Pendry and Salvatore, 2015; Yang et al., 2015; Chiu
and Hew, 2018), with AI assisting in managing such forums
(Goel and Joyner, 2017), studies have shown that personal
face-to-face interactions and discussions in small groups have
their advantages (Chen and Chen, 2015; Thomas and Thorpe,
2019). The question of scaling-up group facilitation is thus of
prominent importance.

Concurrently, social robots have progressed drastically in the
last decade, especially in the field of education (Mubin et al.,
2013; Brown and Howard, 2014; Gordon et al., 2015; Belpaeme
et al., 2018b). Compared to tablets and screens, social robots have

been shown to convey more learning gains (Wainer et al., 2006;
Leyzberg et al., 2012; Li, 2015; Luria et al., 2017) and evoke more
emotional expressions (Spaulding et al., 2016). They have been
used to teach science (Shiomi et al., 2015), math (Brown and
Howard, 2014), languages (Kory and Breazeal, 2014; Belpaeme
et al., 2015; Hein and Nathan-Roberts, 2018), and even nutrition
(Short et al., 2014). Moreover, they have been used to promote
meta-cognitive skills such as curiosity (Gordon et al., 2015; Ceha
et al., 2019) and growth mindset (Park et al., 2017). Social robots
in education have taken different roles. They have been used as
peers or companions in learning with the students (Okita et al.,
2009), or tutors in which the robot teaches students (Belpaeme
et al., 2018b). Moreover, social robots have been used as teachers
using frontal lecture mode (Sisman et al., 2018), one-on-one
interaction (Short et al., 2014; Gordon et al., 2015) and even in
two-person dialogues (Tahir et al., 2014). Several studies have
addressed how a single robot can interact with small groups
of children (Leite et al., 2015; Strohkorb et al., 2015), elderly
(Matsuyama et al., 2008), and adults (Matsuyama et al., 2015).
More specifically, several studies examined possible roles of social
robots in group interaction (Jung et al., 2015; Shen et al., 2018;
Alves-Oliveira et al., 2019; Correia et al., 2019; Oliveira et al.,
2019).

These advances in social robots resulted in their slow
introduction into the educational system (Belpaeme et al.,
2018a; Kory-Westlund and Breazeal, 2019) and into homes
(Scassellati et al., 2018). Many studies have focused on
young children, from preschoolers (Kory and Breazeal, 2014),
through elementary school (Leite et al., 2015), and adolescents
(Björling et al., 2019), with special interest in children with
Autism (Scassellati et al., 2018). In recent years, several
applications of social robots in higher education have started
to emerge (Brown and Howard, 2014; Edwards et al., 2016;
Deublein et al., 2018). Pfeifer and Lugrin (2018) showed
that a female robot can lead to better learning in female
students while breaking stereotypical beliefs. Rosenberg-Kima
et al. (2019) showed that social robots can serve as teaching
assistants by answering simple questions of students working in
small groups.

In this contribution we report on a higher education
application of social robots as small group facilitators. Our
goal was to compare the current state, in which an instructor
attempts to facilitate several groups in the classroom, to a
robot facilitator that is more limited in terms of emotional
and cognitive capabilities yet remains with the group for the
entire activity to facilitate it. An undergraduate course group
activity that summarizes the material taught during a full
semester has been converted into an interaction facilitated
by a social robot, Nao, and mediated by tablets. Groups of
four students performed the group activity, followed the
instructions of the robot facilitator, discussed the material,
and then answered questionnaires about the interaction. The
same groups performed similar activities with tablets alone
and with pen-and-paper, facilitated by the instructor of the
course (within-subject design). Their impressions of the different
activities’ modalities are reported.
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TABLE 1 | Description of the goals of each task in the Human-Computer

Interaction course activities, where the overall goal was to develop a

family-oriented App.

Activity Overall goals of each sub-task

Activity 1: target

audience

1.1. Defining the target audience of the application. The

students were instructed to first work individually for

2min and then combine the group members’ lists into

one list of two target audiences.

1.2. Building a survey: (a) given questions, identify

different type of questions (e.g., questions appropriate

for online survey, questions appropriate for focus groups,

questions that might evoke confirmation bias etc). (b)

Select five questions that fit the target audience of

the application.

Activity 2: metaphors 2.1. Defining metaphors for the application. Again, the

students were instructed to first work individually for

2min and then combine the group members’ lists into

one list of two metaphors.

2.2. Screens: given a screenshot of an application,

identify design features (e.g., centered, direct

instruction, etc.)

Activity 3: interfaces 3.1. Defining interfaces for the application. Again, the

students were instructed to first work individually for

2min and then combine the group members’ lists into

one list of two interfaces.

3.2. Evaluating screens: rate two screens on a 1–5 rating

scale on four given heuristics.

METHOD

Participants
Thirty-six students (ageM = 28 years, SD = 0.3, 58.3% females)
who participated in the course Human Computer Interaction
completed a three-parts activity that covered the main content
of the course and served as preparation for the final exam. The
students consented to include their participation data in the
study. The study was approved by the IRB.

Materials
All the participants completed three group-linked activities, each
covering different content of the course, and serving as training
for the final exam. The students worked collaboratively in groups
of four students (nine groups in total). The overall goal of the
activities was to design a family App that aims to provide all the
needed information and tools to support family communication
and planning (e.g., weekly schedule, messages, budget planning,
etc.), while enabling each member of the family to be an active
participant. Each activity lasted about 30min. The specific goals
of each activity are described in Table 1.

Conditions
The study had a within-subject design, wherein the students
worked in groups of four, each group going through three
conditions (Figure 1):

1. Robot condition: In this condition, each group of students
performed the task using tablets andwere facilitated by a social
robot. Each group was located in a separate room.

2. Tablet condition: In this condition, the groups of students
performed the task and were facilitated by tablets, located in
a large lecture hall.

3. Instructor condition: In this condition, the groups of students
performed the task using pen and paper. All the groups
were located in a large lecture hall and were facilitated by a
single instructor.

The order of the conditions differed between the groups, but the
order of the activities with respect to the task itself was the same,
as each activity was building on the previous one.

Each of the nine groups completed the three activities and
experiences all three conditions. Thus, for example, the first
group completed the first activity with a robot-facilitation (robot
+ tablets), thenmoved to a different roomwhere it completed the
second activity with a tablet-facilitation (tablets only), and lastly
moved to a different room where it completed the third activity
with paper based instruction, and an instructor-facilitation. The
sequence of conditions varied between the groups to control for
activity and order effect (see Table 2 for a complete sequence of
all the groups).

Setup Architecture
The setup architecture of the social-robot facilitator (robotator)
condition included communication between four students, four
android tablets (one per student), and a NAO robot (see
Figure 1A). Unfortunately, state-of-the-art Natural Language
Processing (NLP) could not support verbal communication
facilitation of a group at this level. Hence, the robot spoke
to the students utilizing pre-recorded sentences, but in order
to establish bidirectional communication, the tablets served as
additional sources of input and output between the robot and
students. To implement this architecture, we used Python and
Kivy to develop the tablet application, and ROS (Robot Operating
Systems) and Python to control and manage the communication
between the Robot and the tablets. The robotator facilitated this
interaction by introducing the different tasks, managing the time
(e.g., the robot said in relation to the design App task: “take
2min to list different target audiences for the App, and then
create a combined list with two target audiences,” after which a
timer of 2min started followed by the next set of instructions),
and encouraging discussion between the students (e.g., if two
students answered the same question differently, the robot would
say “I see that your answers are different, would you like to
discuss that?”).

The setup architecture of the tablets-only condition included
communication between four students, each with one tablet (see
Figure 1B). Python and Kivy were used to develop the tablet
application, that included presentation of the tasks, guidelines,
and time management via a presented timer.

The setup for the instructor condition included exchange
of ideas between four students who worked with paper-based
instructions that included the exact same instructions as in
the tablet and robot-tablet conditions, but did not include
support such as a timer. A human instructor was present
in the classroom to answer questions of all the groups in
this condition.
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FIGURE 1 | Setup architecture of the three conditions used in the study. (A) Robot condition. (B) Tablet condition. (C) Instructor condition.

TABLE 2 | Sequence of activity and conditions for each group.

Groups Activity 1 Activity 2 Activity 3

1–3 Robot Tablets Instructor

4–6 Instructor Robot Tablets

7–9 Tablets Instructor Robot

Measures
Attitude Toward the Robot\Tablet\Instructor

Questionnaire

After each activity, students completed a 13-items questionnaire
to evaluate their attitudes toward the robot\tablet\instructor
depending on the condition. Students responded to a series of
statements on a 5-point Likert-type scale (from 1 = Strongly
disagree to 5 = Strongly agree) (e.g., “I trusted the information
given by the robot\tablet\instructor”; see Table 3 for the
complete list). The questionnaire items were combined to form
the attitudes toward the facilitation scale (Cronbach’s alpha
= 0.881).

Attitude Toward the Group Questionnaire

After each activity, students completed a 14-items questionnaire
to evaluate their attitudes toward the group. Students responded
to a series of statements on a 5-point Likert-type scale
(from 1 = Strongly disagree to 5 = Strongly agree). The

questionnaire resulted in two subscales: attitudes toward the
specific group activity scale (e.g., “The group work contributed
to understanding the content”; see Table 3 for the complete list),
which included items 1–10 excluding item 8 (Cronbach’s alpha=
0.816), and attitudes toward group activities scale (e.g., “Group
activities like this, are superior to individual activities”), which
included items 11–14 (Cronbach’s alpha= 0.743).

Godspeed Questionnaires

After the robot-facilitated activity, the students completed
the 24-items Godspeed questionnaire, in which students
responded to pairs of words and rated the robot on a 5-point
semantic differential scale (e.g., Unfriendly-Friendly, Ignorant-
Knowledgeable), resulting in 5 subscales: (I) Anthropomorphism
consisting of 5 items (in this study Cronbach’s alpha = 0.686),
(II) Animacy consisting of six items (in this study Cronbach’s
alpha= 0.728), (III) Likable consisting of five items (in this study
Cronbach’s alpha= 0.867), (IV) Perceived Intelligence consisting
of five items (in this study Cronbach’s alpha = 0.845), and (V)
Perceived Emotional safety (e.g., anxious vs. relaxed) consisting
of three items (in this study Cronbach’s alpha= 0.786) (Bartneck
et al., 2009).

Qualitative Data

A semi open-ended questionnaire was used to collect qualitative
data. The participants were asked to specify, in writing, three
advantages, and three disadvantages the robot had as a facilitator

Frontiers in Robotics and AI | www.frontiersin.org 4 January 2020 | Volume 6 | Article 14824

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Rosenberg-Kima et al. Robot-Supported Collaborative Learning

TABLE 3 | Results for attitudes toward the activity facilitation questionnaire (A), attitudes toward the group activity questionnaire (B), and Godspeed questionnaires (C).

Statement Robot Tablet Instructor p* η2

M SD M SD M SD

(A
)
A
tt
itu

d
e
s
to
w
a
rd

th
e
fa
c
ili
ta
tio

n
q
u
e
st
io
n
n
a
ire

1. I understood the robot\app\Instructor 3.62 1.15 4.14 0.91 3.71 1.01 0.010 0.163

2. The facilitation of the r\a\t was of high quality 3.47 1.08 3.59 0.94 3.42 0.85 0.083 0.221

3. I trusted the information given by the robot\app\Instr. 3.71 1.06 4.18 0.87 3.93 0.87 0.023 0.145

4. I felt comfortable with the robot\app\Instr. presence 4.09 0.83 3.97 0.72 3.78 0.81 0.586 0.040

5. I felt comfortable with the behavior of the robot\app\Instr. 3.79 0.98 4.00 0.89 3.93 0.99 0.767 0.013

6. The robot\app\Instr. adjusted to the class 3.62 0.89 3.69 0.96 3.40 1.13 0.204 0.062

7. I would like more activities with the robot\app\Instr. 3.32 1.30 3.42 1.09 3.29 1.19 0.475 0.028

8. The robot\app\Instr. responded to the group 2.94 1.18 3.11 1.32 3.47 1.15 0.168 0.069

9. The robot\app\Instr. was friendly 3.79 1.01 3.69 0.87 3.84 1.04 0.750 0.011

10. The robot\app\Instr. behaved human-like 2.71a 0.87 2.37a 0.81 3.84b 1.18 0.000* 0.544

11. I liked the robot\app\Instr. facilitator 3.26 0.83 2.83 0.92 3.27 1.10 0.08 0.045

12. The activity with the robot\app\Instr. was pleasant 3.91 0.83 3.49 0.85 3.65 0.91 0.177 0.064

13. The activity with the robot\app\Instr. was interesting 3.94a 0.92 3.03b 0.98 3.23b 1.11 0.001* 0.226

Attitudes toward the facilitation scale (items 1–13) 3.55 0.62 3.51 0.65 3.66 0.63 0.685 0.046

(B
)
A
tt
itu

d
e
s
to
w
a
rd

th
e
g
ro
u
p
a
c
tiv
ity

q
u
e
st
io
n
n
a
ire

1. The group work contributed to understanding of the content 3.86 1.06 3.97 0.76 4.15 0.67 0.637 0.30

2. I felt like I expressed myself during the discussions. 3.86 0.73 3.88 0.68 4.20 0.52 0.752 0.013

3. All group members equally contributed to the discussion 3.74 1.01 3.53 0.96 3.90 1.02 0.636 0.030

4. The work instructions were clear 3.00 1.21 3.53 1.08 3.65 0.99 0.519 0.043

5. The contribution of the robot\tablet\Instr. was big 2.94 1.28 3.27 1.28 3.18 0.63 0.362 0.076

6. I felt that the group members considered my opinions 4.17 0.75 4.12 0.48 4.35 0.62 0.597 0.034

7. The sequence of tasks was logic and clear 3.60 1.09 3.91 0.93 3.85 0.93 0.712 0.022

8. One group member managed most of the discussion 2.14 0.77 2.12 0.77 2.10 0.91 0.609 0.032

9. I enjoyed working with my group members 4.29 0.57 4.03 0.83 4.40 0.60 0.554 0.039

10. The group members felt free to express different opinions 4.37 0.73 4.32 0.73 4.50 0.60 0.944 0.004

11. Group activities like this contribute to meaningful learning 3.77 0.94 3.65 0.84 3.89 0.74 0.552 0.042

12. Group activities like this are a waste of time 2.26 0.98 2.50 0.75 2.25 0.85 0.895 0.007

13. Group activities like this are superior to individual activities 3.57 0.95 3.62 0.74 3.70 1.08 0.523 0.042

14. Groups activities contributes more than frontal lectures 3.51 0.82 3.67 0.96 3.70 0.92 0.139 0.123

Attitude toward the group activity scale (items 1–7 and 9,10) 3.76 0.61 3.82 0.52 4.06 0.39 0.638 0.020

General attitudes toward group activities scale (items 11–14) 3.65 0.69 3.62 0.56 3.75 0.64 0.599 0.036

(C
)
G
o
d
sp

e
e
d

q
u
e
st
io
n
n
a
ire

s Godspeed I: anthropomorphism 2.51 0.66 – – – – –

Godspeed II: animacy 2.66 0.65 – – – – –

Godspeed III: likable 3.64 0.73 – – – – –

Godspeed IV: perceived intelligence 3.15 0.72 – – – – –

Godspeed V: perceived safety 4.12 0.78 – – – – –

*Bonferroni adjusted alpha value of 0.002 (0.05/14) was used for the single items.

Bold value of p indicates a significant difference (given the Bonferroni correction) between a and b.

of student groups. The open-ended questionnaire served as a
means to get the perspective of students in their own words
to provide “depth, detail, and meaning at a very personal level
of experience” (Patton, 2014, p. 24). Nevertheless, given the
limitations of an open-ended questionnaire in writing (e.g.,
dependent on writing skills of respondents or the impossibility
of extending responses), observational data, based on video
recording of activity, and a video sample analysis was used as a
supportive tool to capture the context (Bauer and Gaskell, 2000).

Procedure
After signing a consent form, the students were placed in groups
of four students. The groups were then guided to the location

of their first activity settings according to their conditions as

described in Table 2. Thus, groups 1–3 were guided to three

different rooms in which the robots and tablets setting was
located, groups 4–6 were placed in groups in one big room, where

each student received a tablet, and groups 7–9 were placed in

groups in one big room, where each student received paper-
based instructions and a human instructor was present to answer
questions. After completing the first activity, which took about
30min, the students completed the questionnaires for about
15min and were then guided to the location of the second activity
according to the conditions, completed the second activity, filled
again the questionnaires and were guided in the same way to the
third activity. Overall completing the three activities, filling the
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FIGURE 2 | Footage from the study of the robot condition settings.

questionnaires after each activity, and changing locations took 3 h
(see Figure 2 for footage of the robot condition).

RESULTS

This study examined the effects of facilitation type (robot
facilitation, tablet facilitation, and instructor facilitation) on
attitudes toward the activity and attitudes toward the group
activity using one-way within-subject ANCOVA with group
order as a covariant to control for order and activity (in groups
1–3 the robot facilitated the first activity, in groups 4–6 the
robot facilitated the second activity, and in groups 7–9 the robot
facilitated the third activity). Overall, we did not find an effect
for the group order. In addition, attitudes toward the robot
were measured using the Godspeed questionnaires and were
correlated to the attitudes toward the robot facilitation and the
attitudes toward the robot group activity.

Preliminary data analysis included examination of missing
data and outliers, verification of the equivalence of treatment
groups, and tests for assumptions of the parametric statistics.
Some of the students missed some of the items in which case they
were omitted from the analysis in the relevant places. Shapiro–
Wilk normality test was used to detect violation of the normal
distribution assumption. Results indicated that several dependent
measures were not normally distributed. Nevertheless, it was
suggested that ANOVA is robust enough to moderate violations
of this assumption (Blanca et al., 2017). The overall scales were
normally distributed. In addition, Bonferroni correction was
applied to adjust the alpha values: Bonferroni adjusted alpha
value of 0.002 (0.05/14) was used for the single items.

Attitudes Toward the Activity Facilitation
Overall the students reported that the activity with the robot
was pleasant and interesting and the overall mean for the
attitudes toward the robot facilitation scale was 3.55 (±0.62) (see

Table 3A and Figure 3). Results of the within-subject ANCOVA
for item 10 (“the robot\tablet\instructor behaved human-like”)
indicated a significant within-subject effect [F(2,52) = 30.982,
p < 0.001]. Post-hoc Bonferroni tests revealed a significant
difference between the instructor and the robot conditions (p
< 0.001) and between the instructor and the tablet condition
(p < 0.001). As expected, the participants rated the instructor
as significantly more human-like than the robot and the tablet.
There was no significant difference between the robot and the
tablet condition. In addition, results of the ANCOVA for item 13
(“the activity with the robot\tablet\instructor was interesting”)
indicated a significant within-subject effect [F(2,52) = 7.576, p =

0.001]. Post-hoc Bonferroni tests revealed a significant difference
between the robot and the tablet conditions (p = 0.004) and
between the robot and the instructor condition (p = 0.023).
The participants rated the activity with the robot as significantly
more interesting than the tablet and the instructor conditions.
There was no significant difference between the instructor and
the tablet condition. Nevertheless, for the rest of the items there
was no significance difference between the robot, the tablet, and
the human instructor.

Attitudes Toward the Collaborative Group
Activity
Overall students rated the group activity positively (see
Table 3B). Results of the within-subject ANCOVA yielded no
significance effects. Attitudes toward the robot facilitator had an
overall mean of 3.76 (±0.61) for the attitudes toward the current
group activity scale and an overall mean of 3.65 (±0.69) for the
attitudes toward general group activities scale.

Attitudes Toward the Robot
Godspeed questionnaire, consisting of five subscales, was used
to measure the participants’ attitudes toward the robot used
in the study. On a 1–5 scale, overall the participants rated
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FIGURE 3 | Attitudes toward the facilitation (see Table 3 for the complete list of statements). ***p < 0.001.

the robot 2.51 (±0.66) on anthropomorphism, 2.66 (±0.65) on
animacy, 3.64 (±0.73) on likable, 3.15 (±0.72) on perceived
intelligence, and 4.12 (±0.78) on perceived safety (see Table 3C).
We were interested in finding what were the correlations
between the Godspeed subscales and the three attitudes scales
(attitudes toward the facilitation scale, the group activity scale,
and group activities scale). With regard to the attitudes toward
the facilitation scale, Pearson correlation tests indicated strong
correlations between the scale and Anthropomorphism (r =

0.632, p < 0.01), Animacy (r = 0.559, p < 0.01), Likable (r =
0.634, p < 0.01), and Perceived Intelligence (r = 0.595, p <

0.01), but not with Perceived Safety (r = −0.080, p = 0.655).
With regard to the attitudes toward the current group activity
scale, only Perceived Intelligence of the robot was significantly
correlated to the scale (r = 0.429, p < 0.05). With regard to
attitudes toward general groups activities scale, none of Godspeed
subscales was correlated to this scale (See Figure 4).

Qualitative Results
Thematic analysis method (Boyatzis, 1998) was used for
analyzing and reporting themes within the data. The method is

applicable to the research objective to report the ways individuals
make meaning of their experience, on the one hand, and
is not wedded to any pre-existing theoretical framework, on
the other (Braun and Clarke, 2006). Following the template
approach (Crabtree andMiller, 1998), and based on a preliminary
scanning of the data, 157 students’ statements were classified
by two research team members to four principle categories: (1)
Technical Functionality Benefits. (2) Social and Psychological
Benefits. (3) Technical Functionality Drawbacks. (4) Social and
Psychological Drawbacks. Within each category, statements were
re-reviewed, collating statements into relevant themes. The
analysis according to the aforementioned coding resulted in a
total of 48% statements expressing benefits the robot had as
a facilitator of student groups vs. 52% statements expressing
drawbacks. Results analysis to the semi-open question indicated
that students were well-attentive to the interaction with the robot
(supported by video recording analysis), to its benefits as well as
to the drawbacks of using a robot as a group facilitator. Excluding
apparent novelty effect statements revealed that they were more
concerned with technical functionalities issues, but also attentive
to social, and psychological aspects.
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FIGURE 4 | Pearson correlations between Godspeed questionnaires and the attitudes scales. **p < 0.01, *p < 0.05.

Themes that emerged in the category technical functionality
benefits include efficiency (e.g., “saves manpower,” “time
efficient,” “put the activity to order”)1, focus (e.g., “its mind is
not distracted,” “focused on the tasks,” “concentrated only in
issues relevant to the task”), accurate (e.g., “accurate instructions,”
“don’t forget anything”), and responsive (e.g., “responsive to
topics addressed by the students via tablets”). Themes that
emerged in the category technical functionality drawbacks include
limited communication skills (e.g., “its voice was not clear
enough,” “did not respond to oral questions,” “one-shot answer,
cannot repeat it”), limited pedagogical skills (e.g., “you cannot
ask it follow-on questions,” “instructions were not always clear”),
and technical problems (“there were some bugs,” “its voice was
not load enough,” “slow boot”).

Themes that emerged in the category psychological drawbacks
include being inhuman (e.g., “not human,” “mechanic,” “frigid”),
awkward (e.g., “strange eye contact,” “caused strange feelings,”
“strange head movements”), limited communication skills (“did
not interact enough with the group,” “did not adjust itself to
the group,” “behaved in a not socially acceptable manner”),
and impersonal (“no personal relationship”). Interestingly, for
many students the fact that the robot was not human was an
advantage. Thus, themes that emerged in the category social and
psychological benefits include objective, not judgmental (e.g., “the
robot have no personal bias against one of the students,” “the

1Translated from Hebrew by team members.

robot does not have a favorite student”), friendly (e.g., “the robot
was cute and friendly”), pleasant (e.g., “the robot was polite,”
“the robot was nice”). The themes break routine and innovative
also emerged but were removed as they were related to the
novelty effect.

In addition, analysis of the video recordings revealed that
the robot served as a focal point and was very effective in
facilitating the activity in terms of time management and group
interaction. For example, when the robot gave the students 2min
for individual thinking, the students worked individually, and
when it asked to regroup the students immediately regrouped and
started to work together. In the tablet and instructor conditions,
there was less of a clear distinction between individual and
group activity. Thus, for example, when the students read the
instruction to work individually for 2min, in many cases they did
not do that but rather worked in a group or pairs.

DISCUSSION

A novel interaction has been introduced, wherein a robot
facilitated a small group activity of students in higher education.
While we have not explicitly implemented a “flipped-classroom”
paradigm (Gilboy et al., 2015; Thomas and Thorpe, 2019), since
the students learned the material in a frontal lecture mode, we
have applied principles of group facilitation to robot-directed
interaction (Chen and Chen, 2015).
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The post-interaction questionnaire and its quantitative
analysis revealed interesting insights into the interaction. Most
items did not reveal significant differences between instructor
and robot. The only highly significant differences were the
expected questions of perception of the robot/tablet/ instructor
as human-like, and the perception of the activity as interesting. In
the human-like perception question, students rated the instructor
as obviously more human-like, but the difference between tablet
and robot, while not small, was not significant. This may
represent the perception of the students that the robot was “a
machine,” much like a tablet, and not strictly “a social agent,”
like a human (Kahn et al., 2011). The perception of the activity
as “interesting” was rated significantly higher for the robot
condition, but this may be due to the novelty effect: this was the
first interaction of the students with a social robot.

Moreover, even though the robot did not directly respond
to the students’ verbal communications, they still perceived it
as friendly and responsive. However, these results should be
taken in view of the similar ratings the tablet-condition received.
It is unsure how students interpreted “the app was friendly,”
whereas “the robot was friendly” had a much more direct
social interpretation.

The Godspeed questionnaire produced several important
insights. The student’s perception of the robots correlated
with how they perceived the activities. However, the
strongest correlations were between the perceived intelligence,
anthropomorphism, animacy, likeability, and the facilitation
itself. Hence, students who perceived the robot as more animate
and likable, rated the facilitation higher. This conforms to
previous studies with human facilitators that stressed the
importance of the social presence of the facilitator on the
activity (Franco and Nielsen, 2018). The rating of the current
group activity was only correlated to the perceived intelligence
of the robot, emphasizing the difference between activity,
which relates to intelligence, and facilitation of the group,
which relates also to animacy and likeability. In contrast,
the perception of the robot was uncorrelated to the students’
attitudes toward group activities in general. The robot’s safety,
while rated very high, did not correlate to any other scale.
This may be due to the physical distance of the robot from
the students, its more childlike appearance or lack of possibly
threatening actions.

The qualitative analysis of the students’ answers gave insights
into the benefits of the current setup and raised issues that
can be addressed in future applications. First, there were
many benefits to the setup, e.g., time management which is
an important concern in effective group activities (Gresalfi
et al., 2012), accuracy and focus, which can add another layer
of efficiency to repeated activities. Second, the fact that the
robot was non-judgmental, as opposed to a human facilitator,
raises the interesting topic of the benefits of social robots
over humans in roles that involve possible judgments (Kidd
and Breazeal, 2007). These results also support the media-
equation according to which people relate to computers and
other technologies, and in this case to robots, in the same
way they relate to other human beings (Reeves and Nass,
1996).

However, many drawbacks shed light on possible
improvements for future applications. The most obvious
ones are technical, e.g., improved quality assurance tests on
a larger scale setup are required. The biggest drawback that
the students’ commented on was the lack of communication
skills and responsiveness. Due to technological challenges of
natural language processing in a group scenario, especially
in the students’ native language, these lacks in the setup
will not be overcome easily in the near future. However,
improved perceptions, such as speaker recognition and
engagement via facial expressions (Bhattacharya et al.,
2018) can be implemented in such a setup and supply
better social and emotional management for the group
activity (Matsuyama et al., 2015). Overall, the students
commented on the potential of this setup in terms of
saving manpower and scalability, non-judgmental and
objective facilitation, and increased focus and efficiency of
activity management.

Considering the relative acceptance of the students of a robot
facilitator puts the role of the future instructor in a new light
(Franco and Nielsen, 2018). In our envisioned future “robot
facilitated flipped classroom” paradigm, the group facilitation
will be conducted by social robots. However, due to formidable
technological challenges, the robot cannot understand the
discussion’s verbal content, nor deal with delicate emotional and
social scenarios. Hence, the role of the robot could include for
example time management and role assignment whereas the role
of future instructors may focus more on answering complex
questions, managing divergence from proper discussion content
and dealing with emotional and social aspects of the task.

LIMITATIONS

Several limitations in this study should be noted. First, the
interaction with a social robot facilitator was novel for all
the students and a novelty effect was evident especially with
respect to some benefits noted by the students. In order to
get a deeper understanding of the long-lasting potential of a
social robot facilitator longer interventions (e.g., lasting over
a semester) should be examined. In addition, this study was
holistic. We were interested in comparing the current state
of an instructor facilitating several groups in parallel to the
scenario where several robots assist the instructor in facilitating
the groups. Nevertheless, this holistic comparison comes with
a price tag of control. Thus, there were several differences
between the conditions: students in the paper-based condition
sat in a lecture hall with all the other groups, whereas in
the robot condition they were alone with the robot in a
separate room. This makes it more difficult to claim that
the effect was of a robot vs. human, or the fact that it was
a private facilitator (the robot) vs. a shared facilitator (the
instructor). Yet another limitation was the lack of pre-post
exams of the content that was due to the fact the HCI content
involves skills that are hard to measure. Future studies should
conduct a research in a content area that is easier to assess
for learning.
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CONCLUSIONS

We have introduced a novel educational paradigm in which
a social robot facilitated a small group activity in higher
educational settings. We have conducted a first study that
compared the robot-facilitated setup to human facilitation and
activities with tablets only. We have shown that while human
facilitation is still considered better in most aspects, students
could tap into the benefits of a robot facilitator, such as better time
management, objectivity, and efficiency. Nevertheless, in terms
of the quantitative data we did not find significant differences
that cannot be attributed to a novelty effect (e.g., the robot was
significantly more interesting).

Future work will include upgrading the setup to include
augmented perception via a larger sensor suite composed
of directional microphones and cameras. This will enable
real-time speaker recognition and engagement detection to
facilitate also the social and emotional sides of the group
activity. Furthermore, applying the setup in primary and
secondary educational settings raises new challenges, and
new opportunities.

Furthermore, while the current study did not asses the
students’ communication and collaboration skills, future studies
will examine the possible positive influence of repeated robot
facilitation, using state-of-the-art pedagogy, such as time-
management, and maintaining engagement density (Matsuyama
et al., 2015), on students’ 4C’s super skills (Shulman, 1986;
Kivunja, 2015).

To conclude, this contribution offers a new and exciting venue
for using social robots for robot supported collaborative learning

(RSCL) in education, as efficient, objective, and social facilitators
for small group discussions.
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The emergence and development of cognitive strategies for the transition from

exploratory actions towards intentional problem-solving in children is a key question

for the understanding of the development of human cognition. Researchers in

developmental psychology have studied cognitive strategies and have highlighted the

catalytic role of the social environment. However, it is not yet adequately understood how

this capacity emerges and develops in biological systems when they perform a problem-

solving task in collaboration with a robotic social agent. This paper presents an empirical

study in a human-robot interaction (HRI) setting which investigates children’s problem-

solving from a developmental perspective. In order to theoretically conceptualize

children’s developmental process of problem-solving in HRI context, we use principles

based on the intuitive theory and we take into consideration existing research on

executive functions with a focus on inhibitory control. We considered the paradigm

of the Tower of Hanoi and we conducted an HRI behavioral experiment to evaluate

task performance. We designed two types of robot interventions, “voluntary” and “turn-

taking”—manipulating exclusively the timing of the intervention. Our results indicate

that the children who participated in the voluntary interaction setting showed a better

performance in the problem solving activity during the evaluation session despite their

large variability in the frequency of self-initiated interactions with the robot. Additionally,

we present a detailed description of the problem-solving trajectory for a representative

single case-study, which reveals specific developmental patterns in the context of the

specific task. Implications and future work are discussed regarding the development of

intelligent robotic systems that allow child-initiated interaction as well as targeted and not

constant robot interventions.

Keywords: child-robot interaction, problem solving, self-initiated interaction, robotics, education

1. INTRODUCTION

The emergence and development of problem-solving cognitive strategies are fundamental
mechanisms for human evolution. In the case of childhood, these mechanisms allow children
to generate and develop novel mental representations and schemata through playful exploratory
activities which gradually transform into deliberate problem solving strategies. These cognitive
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mechanisms are dominant in a child’s development as a
combination of a series of interrelated, domain general cognitive
skills associated with the prefrontal cortex, such as inhibitory
control, shifting, working memory, and others which appear
under the umbrella term of Executive Functions (EFs). During
the last few decades, EFs have gained increasing attention in
developmental and educational research (Keen, 2011; Warneken
et al., 2014) and often they are associated with playful and
exploratory activities (Best and Miller, 2010).

One of the core elements for the development of exploratory
actions is a child’s curiosity and intrinsic motivation (Oudeyer
and Smith, 2016; Twomey and Westermann, 2018). This allows
for the child to exhibit sustained task attention and to proceed
from exploratory actions to intentional ones developing the
necessary planning skills. Planning, as a prototypical EF, is a
high-level cognitive process, which includes goal-directed action
sequencing and inhibition of competing impulses (Blakey et al.,
2016). Although the growth of EFs follows a common trend, it
has been indicated that their components do not develop as a
unit; rather, each individual EF follows its own trajectory which
might differ among individuals (Diamond, 2006; Best and Miller,
2010; Friedman and Miyake, 2017). Thus, an increasing body of
research on child development and learning focuses not only on
learning outcomes but on the individual differences of learning
process and the transition from one developmental stage to
another (Siegler and Crowley, 1991; Best and Miller, 2010; Brock
and Taber, 2017).

Among the prevalent methods used for the depiction of
child’s developmental process is the microgenetic analysis
(Piaget and Cook, 1952; Siegler and Crowley, 1991; Lavelli
et al., 2005; Montes et al., 2017). Microgenetic analysis focuses
on the collection of micro-behavioral data in a dense way
in order to capture the emergence and the dynamicity of
cognitive development. Individuals are observed over a period
of developmental change and the observations are conducted
before, during, and after an intervention to capture the process
of change. Observed behaviors are intensively analyzed, both
qualitatively and quantitatively with the aim to identify the
processes that give rise to the developmental change. The
microgenetic approach has been used in various contexts such
as inhibitory control (Flynn et al., 2004), memory (Schlagmüller
and Schneider, 2002), mathematics (Van der Ven et al., 2012),
and music-making (Charisi et al., 2018).

While individual trajectories are important for the
understanding of child’s cognitive development, existing
theories highlight the role of social interaction in child’s
learning (Bandura, 1971; Vygotsky, 1978; Tomasello, 1995).
For young children, the development of effective strategies for
problem-solving is often associated to scaffolding from the social
environment (Tomasello, 1995; Cragg and Chevalier, 2012);
collaboration is particularly beneficial for low-ability children
when there is an ability asymmetry (Sills et al., 2016).

Based on the above-mentioned theoretical accounts and
paradigms, the field of child-robot interaction has examined
the ways in which robotic agents might be suitable social
learning companions for children in various age-groups and in
different contexts such as in second language learning (Kennedy

et al., 2016; Kory-Westlund and Breazeal, 2019), in inquiry
learning (Wijnen et al., 2019), handwriting learning (Lemaignan
et al., 2016), story telling (Leite et al., 2017), problem-solving
(Ramachandran et al., 2018), and creativity (Alves-Oliveira et al.,
2017). As a recent review on social robots in education (Belpaeme
et al., 2018) indicates, social robots have consistently been
proved that might be helpful in immediate learning gains in the
specific contexts.

However, there are also some suggestions that robots that
support child learning should limit their social behavior at
targeted times based on the cognitive load and the engagement
of the child (Kennedy et al., 2015; Belpaeme et al., 2018).
However, the majority of the existing research in the field of
child-robot interaction refers to studies with imposed canonical
robot interventions which do not allow children to develop their
exploratory skills and exhibit self-initiated voluntary interaction.
In addition to this, most of the existing work focuses only on the
learning outcomes (Charisi et al., 2016) without examining the
development of learning process as it occurs and the emergence
of possible patterns.

Taken together, the current research in developmental
psychology and educational sciences indicate the importance
of child’s exploratory actions as a core strategy for the
development of problem-solving skills. However, existing studies
that investigate the impact of social robots in child’s learning
have mainly focused on imposed robot interventions. As a
result, one open and important question is whether a voluntary
interaction associates with child’s problem-solving process and
performance and what are the possible emerging patterns and
trajectories of problem-solving process in the case of a canonical,
such as turn-taking, and on-demand robot intervention. To
address this question we conducted a two conditions repeated
sessions study in which children solve a problem together with
a robot. The rest of the paper presents the methodology, the data
analysis and results of the study, which are discussed against the
existing literature.

2. METHODOLOGY

2.1. Research Question
There are many factors that influence children’s problem-solving
process. In the context of voluntary child-robot interaction, this
study explores how the robot’s intervention style of voluntary
(on-demand) interaction affect child’s problem-solving process
and task performance in contrast to a canonincal intervention in
the form of turn-taking setting.

2.2. Hypotheses
To address the above mentioned research question, based on
the existing theoretical and empirical work we develop a set
of hypotheses:

• H1: In a child-robot interaction problem-solving activity,
children that voluntarily interact with a robot are more
likely to show better performance and improvements in their
performance than children who interact in a turn-taking
setting. We expect that because children that voluntarily
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interact with the robot might have more opportunities for
exploration in problem-solving process.

• H2: Children who voluntary interact and who faced more
difficulties in problem-solving (e.g., younger children) would
ask more frequently for help by a present robot. We expect this
because children in challenging situations look to learn from
others (Vygotsky, 1978; Gelman, 2009).

• H3: In developmental problem-solving tasks, it is likely that
patterns of solution strategies emerge over time. We expect
that because of prior work on child’s construct emergence
(Gerstenberg and Tenenbaum, 2017).

2.3. Research Design
A behavioral exploratory study is designed to illustrate the
relationship between child-robot voluntary interaction and
child’s problem-solving process and performance, focusing on
the importance of exploration. In addition to being one of the
first studies that implement child’s voluntary interaction and
exploration while interacting with robots, this study adopts the
developmental design of a microgenetic approach, which allows
for patterns of child’s problem solving process to emerge and
involves the understanding of the “how” of the learning process
rather than only its outputs. This involves studying change while
it is occurring (Siegler and Crowley, 1991).

The micro-genetic approach is characterized by (i)
observations that span a period of rapidly changing competence;
(ii) the density of observation within this period is high, relative
to the rate of change of the knowledge or skills of interest; and
(iii) the observations of changing performance are analyzed
intensively, with the goal of inferring the representations
and processes that gave rise to them. For this reason, the
sample size in microgenetic approaches is typically small and
possible comparisons among conditions are approached mainly
in a descriptive and qualitative manner. The activities that
are designed for microgenetic analysis are characterized by
spontaneous and exploratory actions which gradually transform
into organized and deliberate behavioral manifestations and
contribute to the transition from sensori-motor to symbolic
representations (Siegler and Crowley, 1991).

The current educational literature is in consensus about the
role of exploration as one of the fundamental processes of child’s
problem solving in contrast to guided instruction (Dewey, 1902;
Whitebread et al., 2012). For this reason, the study follows a
two-condition design to contrast guided intervention with child’s
self-initiated interaction with the robot.

Wemanipulate robot’s intervention as follows: (i) in condition
1 (Cond1), the child is instructed to solve the task in collaboration
with the robot in a “turn-taking” scenario, which results in
a canonical cognitive intervention by the robot and (ii) in
Condition 2 (Cond2) the child is instructed to solve the task
independently, having the option to ask the help of the robot
whenever (if) this is needed, which results in an “on demand”
intervention by the robot. Thus, the children have a self-initiative
role and they are free to select if and when the robot would
contribute to the solution of the task.

For the execution of this study, the participants are
administered the Tower of Hanoi (ToH) task (Hinz et al., 2013)
which is characterized by incremental task complexity. They are
individually tested in 4 sessions of approximately 10 minutes
each (Figure 1). First, a Baseline Session (BL) is conducted
without any robot intervention. This session is followed by
two Intervention Sessions during which the robot intervenes by
suggesting the next optimal movement in the ToH after a child’s
movement; finally, a fourth session is conducted as Evaluation
Session (EV) without the presence of the robot. An experimenter
is present during the sessions who follows a predefined protocol
(see complementary material); however, her role is restricted to
provide initial instructions only. In order for us to eliminate
any possible procedural bias during the experimental session,
the experimenter is sitting inside the room avoiding exhibiting
any attention to the child’s interaction with the robot and the
task performance.

2.4. Participants
Participants includes N = 20 (13 boys) typically developing
children with an average age of m = 7.7, SD = 1.4). Of
those children, four are 6 years old (yo), seven 7 yo, three 8 yo,
three 9 yo, two 10yo, and one 11yo. Given the developmental

FIGURE 1 | Behavioral study design with four repeated sessions per condition.
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nature of the current study with N = 4 repeated sessions per
child, the sample size is identified to 20 children. The decision
for the specific sample size is supported by the fact that this
microgenetic exploratory study requires a different approach
than experimental studies with detailed analysis of children’s
behavior development and typically is performed with smaller
sample sizes than the ones in experimental research. Lastly,
the selected sample size is in accordance to similar previous
long-term child-robot interaction studies e.g., N = 19 children
(Leyzberg et al., 2018) and N = 14 children (Kory-Westlund and
Breazeal, 2019). One child from Cond2 (voluntary interaction)
did not complete the evaluation session and six children from
Cond2 did not complete the baseline session; however, we
decided to take into consideration their performances during
the intervention sessions, since this would provide further input
to our observations of the developmental process. The children
in this age differ in the degree of intrinsic motivation for task
engagement and cognitive abilities. This variability in the sample
provides further opportunities for the identification of various
developmental patterns during problem-solving activities, which
is one of the purposes of this study.

Our analysis includes 72 sessions with 113 tasks from 20
children. Of those, 10 children (4 females and 6 males) (M = 7.9,
SD = 1.44) are assigned to Cond1 and 10 (3 females, 7 males)
(M = 7.6, SD = 1.57) to Cond2. None of the children has
any previous experience with the chosen task and any robotic
platform; to eliminate any possible novelty effect, we conduct an
introductory session with all participant children during which
we perform the manipulation check to examine the legibility of
robot behaviors.

This research study was approved by the committee on the
Use of Humans as Experimental Subjects of the Joint Research
Center of the European Commission; parental informed consent
was obtained for all participants and all children assented
to participate.

2.5. Materials
2.5.1. The Robot
The robot platform considered in the study is Haru (Gomez
et al., 2018), a tabletop robot for research on social robotics
(Figure 2). It presents different modalities for actuation. It can
move in 5 degrees of freedom (base, neck, eyes tilt, eyes roll,
eyes stroke). The eyes have LCD screens that can play any video.
LEDs are present in the mouth and eyebrows of the robot,
and it incorporates a set of speakers and microphones. Besides
the microphones, the robot uses an external Kinect camera
for perception.

The different actuators can be controlled in real time. Also,
all these elements can be combined to generate open-loop
robot macro-actions mixing movement, eye motion or sounds
(see Figure 3). These macro-actions are denoted behaviors in
this study.

The robot is tele-operated from a control station making use
of the Wizard of Oz (WoZ) technique. In the field of human-
robot interaction, the WoZ technique is commonly used when
the focus of the research is on the interaction design as a step
before the development of the autonomous system (Steinfeld

FIGURE 2 | The Haru Robot with mouth LEDs in green and normal eyes on

LCDs.

et al., 2009; Hoffman, 2016). The control station receives the
images from the Kinect camera, and can be used to control
directly the different actuators of the robot. Furthermore, the
station allows activating pre-designedmacro-actions (behaviors).
For our study, we designed a set of minimally social behaviors
combining the different actuators, as described below in section
2.7. This station is used in the study by the Wizard of Oz (WoZ)
to control the robot, mainly by activating the corresponding
behaviors adequately.

2.5.2. Apparatus: The Tower of Hanoi
The task considered is the Tower of Hanoi (ToH), which has
a rich history in cognitive science as a problem-solving task
(Simon, 1975). It involves three vertical pegs and a fixed number
of colored disks with graduated sizes that fit on the pegs. At the
outset, all the disks are pyramidally arranged on one of the pegs
with the largest disk on the bottom (Figure 4). It requires the
arrangement of disks from an initial starting point to a specified
end point in the minimum number of moves, allowing the move
of one disk at a time and never stacking a larger disk on a smaller
one. Any number of disks may be used; the minimum number of
moves for a solution is 2d − 1, where d is the number of disks.

The ToH task has been used to measure children’s planning
abilities as well as inhibitory control; for the optimal solution,
it requires the use of goal management, in which participants
involve inhibition of impulsive moves that bring the child
superficially closer to the goal, but are unhelpful for the
longer-term solution. However, Miyake et al. (2000) note
that participants may use simpler perceptual strategies making
successive moves that lead to the display looking more like the
desired end state.

The solution of the ToH requires that the child sets necessary
subgoals which gradually lead to the solution of the task.

2.6. Settings and Procedure
The study has been conducted in a primary school during a
summer campus in Spain. A classroom is especially arranged for
the setting of the study (see Figure 5). In the setting, a table is
placed on which the physical instrument of the ToH (see section
2.5.2) and the Haru robot (see section 2.5.1) are deployed, and
where the children play the game.
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FIGURE 3 | A routine generator application is used to combine the different actuators of the robot (motion of 5 degrees of freedom, eye videos, sound, etc.) to define

the open-loop behaviors.

FIGURE 4 | The Tower of Hanoi task.

The teleoperation station for the Wizard of Oz is placed at a
corner of the classroom, hidden from the children participating
in the study. In order for us to minimize any deception effect
because of the teleoperation of the robot, in the beginning
of the study, we inform the children about the manner the
robot is programmed and teleoperated. However, we have the
teleoperation station hidden from the children in order to avoid
any distraction. A Kinect camera is located on a vantage point.
The video from this camera is fed to the WoZ to facilitate the
teleoperation of the robot and the status of the game. Finally, a
video camera for data collection is also placed in a reasonable
distance from the child to eliminate any possible distraction.

Each individual child participated in four sessions over 1
week. Before the sessions all the children participated to a
familiarization session (see section 2.7.3) and they were given to
complete the manipulation check (see section 2.7.2). Each of the
four sessions of the study was 10–15 min long. In the first session

(baseline), the experimenter welcomed the child and asked for
his/her assent to participate to the study; she then introduced
the Tower of Hanoi rules and let the child solve the game alone.
Each time the child completed a task the experimenter was asking
whether the child would want to repeat the same task or continue
with a more challenging one gradually increasing the number
of the disks. In the end of the session the experimenter asked
the child whether he/she wanted to continue the next day. In
the second session the experimenter introduced the robot and
explained the role of the robot depending on the condition. After
the end of the four sessions, the children were interviewed about
their perceptions of the robot’s social competence. However,
those results are not reported in this study.

Regarding the procedure followed by the robot, the WoZ
is in charge of activating the corresponding robot behaviors
(described in the next section) in a timely manner. Furthermore,
the WoZ estimates the state of the game to indicate the robot
suggestion during its turn in Cond1, or to provide help when
asked in Cond2 (the next movement is provided by the robot
through its LEDs, indicating the color of the disk and the peg
to be moved to). TheWoZ also determines when a child is asking
for help in Cond2 either verbally or through a button.

2.7. Design of Robot Behaviors
2.7.1. Overview of Robot Behaviors
We constructed a simple behavioral repertoire for the robot
that supported the illusion of agency focusing mainly on goal-
directed actions and avoiding expressive actions. The robot
behavior design was considered as a combination of (i) the type
of the behavior and (ii) the timing of the behavior performance.
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FIGURE 5 | The setting of the study. The children play at a table where the robot (A) and the ToH instrument (B) are deployed. The Wizard of Oz sits in a hidden

location with the teleoperation computer, and it is supported by a Kinect camera. An additional video camera is used to record data.

Regarding the type of behaviors, for the purposes of the current
study we designed a set of sonic and gestural non-verbal robot
behaviors. In order for us to minimize any possible effect on the
expectations that verbal interaction might elicit and on children’s
intention for initiation of the interaction with the robot, we
included only non-verbal behaviors.

More specifically, for the design of different types of behaviors,
we used body and eye movements as gestural robot behaviors,
sounds, and LED lights to design eight robot behaviors (see
Table 1). These behaviors were all functional, targeting mainly
child’s cognitive engagement with the task - with the exception of
the starting and ending greetings. The set of behaviors included
two types of greetings, two types of providing feedback, three
types of task-related behaviors, and one type for indicating that
the robot was processing information. In order for us to eliminate
any effect which could be related to the type of behaviors of
the robot, we kept to the minimum variation of the types of
robot behavior. The design of all behaviors was based on previous
literature from the field of HRI, design and psychology and were
based on minimalistic principles (Saulnier et al., 2011; Cha et al.,
2016).

Regarding the timing of intervention, it only related to the
cognitive task-related suggestion of the next optimal movement.
The robot could give suggestions either in a turn-taking setting
(Cond1) or in a setting of voluntary interaction (on-demand,
Cond2). For the turn-taking setting, the robot would intervene
in turns with the child by providing feedback on the previous

movement made by the child, followed by a suggestion for
the next task-related optimal movement. For the voluntary

interaction setting, the robot would intervene only in the case in

which a child would ask for help. The child could ask for help

either verbally or with the use of a help button.

TABLE 1 | Robot behavior repertoire.

Robot intention Robot executed behavior

Greeting hello to the kid The robot rotates the basis (45◦ right, 90◦ left, 90◦

right, 45◦ left) it stands still, it rotates the eyes (45◦

right, 90◦ left, 90◦ right, 45◦ left), it performs sound

Indicating the start of

the game

The robot performs a dancing movement and looks

at the task

Indicating child’s turn Robot looks at the task and looks at the child

Indicating processing

current information

Looks at the task, sequence of different colors LED

around the eyes moving toward outside

Suggesting the next

movement

Instant suggestion of the color of the Disk and the

number of Peg (visual projection on the screen of

the eyes and the body

Informing that the

movement was optimal

Looks at the task—looks at the child and green

happy (once)

Informing that the

movement was

suboptimal

Repeatedly looks at the task looks at the child (x2)-

wiggles NO

Greeting goodbye to

the kid

Repeated rotation of the eyes (45◦ right, 90◦ left,

90◦ right, 45◦ left, LED white softer, fading sound

2.7.2. Manipulation Check
We conducted a manipulation check for the confirmation of
the legibility of the robot’s behavior. It was designed as a single
group-session with all participant children. During the session,
the robot performed the designed behaviors and we asked the
children to indicate their perceived robot intention in the form
of a written task. The experimenter and the research group
facilitated the session by introducing the robot, explaining the
purpose of the session and guiding the performance of the
behaviors and the gathering of children indications. In total
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N = 20 children participated to the manipulation check.
We included four action-directed behaviors (Greeting hello to
the kid, Informing that the movement was optimal, Informing
that the movement was suboptimal, Greeting goodbye to the
kid); finally we examined two additional expressive behaviors
(happy and sad) in order to justify children’s understanding of
the current task. The results of the manipulation check show
that 71, 43% of children’s answers were accurate regarding the
legibility of robot’s behaviors. More specifically the behavior with
the higher percentage of legibility was the Sad behavior with
100% correct answers. These results justified that the children
understood the current task. This was followed by the “Informing
that the movement was optimal” behavior with 91, 67% correct
answers. The least legible behavior was the “Greeting hello to the
kid” behavior with 50%, which was confused with the “happy”
expressive behavior. However, given that the manipulation check
was performed in a de-contextualized manner we expected that
there might be a confusion between the goal-directed and the
expressive actions which are not mutually excluded.

2.7.3. Familiarization Phase
For the elimination of any novelty effect on children’s behavior,
following the manipulation check, we allowed the children
to informally interact with the robot. This informal activity
lasted 10 min and was designed to be unstructured. Each
child was free to interact with the robot at his or her
willingness and the researchers did not impose any kind of
interaction. All the children remained into the classroom for the
informal activity.

3. METRICS AND ANALYSIS

Audio and video recordings of the study sessions were recorded
with two cameras for later transcription and off-line analysis. A
first iteration of the recorded sessions observation as well as the
initial hypotheses of the study lead us to the development of the
annotation scheme. As it was expected, since the robot did not
exhibit any verbal behavior, the child-robot verbal interactionwas
minimum. The only case the children were addressing verbally to
the robot was during the Condition 2 of the voluntary interaction
when they asked for help verbally—in addition to the option of
asking for help with the use of a button. For this reason, the verbal
interaction data reported in this paper only includes child’s verbal
behavior of “asking for help.”

The recorded video was used to transcribe children’s task-
related behavior as well as social interaction with the robot and
verbatim. However, for the purposes of the research question
addressed in this paper, we only report the task-related behavior.
Participants’ behaviors were manually annotated off-line by an
instructed annotator. Because of the objective nature of our
coding scheme (disk movements, asking for help Cohen’s K
and breaking the rules), which did not require any subjective
interpretation of children’s behavior, we run a set of sessions
during which the two coders annotated the same extracts. During
those sessions, any minor disagreement was discussed with the

first author of the paper, which resulted in a consensus of
the coding.

We annotated in total 72 individual sessions. In each one,
more than one task could be included, depending on the duration
of child’s task performance. This resulted in the annotation of 113
tasks from 3 to 7 disks of the Tower of Hanoi. The annotation
scheme included (i) the occurrence of task-related actions (disk
movement); (ii) the use of help button or child’s verbal asking
the robot for help; and (iii) the instances of breaking the rules of
the game. In addition, we chose N = 4 case studies (see section
4.3), which correspond to 16 sessions (BL, Interventions and EV)
to annotate the characterization of the child’s task-related action
(optimal or suboptimal, see below).

We observed that because of the canonical robot intervention
in the sessions of the turn-taking condition, the sessions in
Cond1 lasted longer than the ones in Cond2. For this reason,
we normalized the sessions duration taking into consideration
the optimal number of movements per task. However, we did
not consider the sessions duration in our data analysis because
robot’s canonical interventions in Cond1 (turn-taking) and the
on-demand intervention in Cond2 would create an imbalanced
comparison between the two conditions. For this reason, our data
analysis only focused on children’s task-related actions.

Using the off-line video annotation tool ELAN1, we manually
annotated the data according to the annotation scheme.

3.1. Task Performance
To measure the performance of a given task, we annotate
individual movements and compute the difference between the
number of movements L and the optimal number of movements
Od for the number of disks d of the task. In order to compare
this metric for tasks with different number of disks, we then
normalize this value by the optimal number of moves in task
as follows:

K =
1L

Od
=

L− Od

Od
(1)

where d varies from 3 to 7 disks and Od = 2d − 12. Please
note that, as defined, higher values of the metric K indicate lower
performance.

Since the child was free to choose whether after the completion
of one task she/he would continue to the next task by increasing
the number of disks or not, we considered for our analysis the
total number of tasks per disk, which might exceed the number
of participants.

In the following analyses, we ran a Kolmogorov–Smirnov test
to check the normality of the data. Based on the Komogorov-
Smirnov result, we used non-parametric Wilcoxon test for paired
samples to check the difference in children’s problem-solving
performance (learning) by comparing the results of the baseline
and the evaluation session, and Mann–Whitney’s U-test for non-
paired samples to compare the results of the evaluation session
between the two conditions.

1https://tla.mpi.nl/tools/tla-tools/elan/
2Values in this study are O3 = 7, O4 = 15, O5 = 31, O6 = 63, O7 = 127.
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3.2. Voluntary Interaction
In Cond2, we designed a voluntary HRI setting with an “on
demand” robot intervention as an indicator of child’s intrinsic
motivation for problem-solving. We annotated and counted the
instances in which the child was explicitly asking the robot for
help either verbally or using a help-button. We normalized the
number of instances with respect to the number of optimalmoves
per disk Od to obtain a measure for help H. This normalization
was done to obtain comparable values for different tasks.

3.3. Task Improvement
As being a developmental study, we also analyse the development
of child’s task performance K along the different sessions.
Thus, we analyzed the improvement between (i) the first
and the last task of the baseline; and (ii) the last task of
each session and the first task of the following session, by
computing the difference of normalized extra moves metric K in
both cases.

3.4. Developmental Process
The Tower of Hanoi game can be represented as a graph (the
Hanoi graph) (Knoblock, 1990; Hinz et al., 2013), as illustrated in
Figure 6, in which each node represents a legal disposition of the
disks on the pegs (for instance, for the 3-disk case, the node 112

represents the smallest disk in the 2nd peg, and the other disks in
the 1st peg) and edges represent valid movements between nodes.

For d disks, there are 3d nodes. Under a certain positioning of
the nodes, the graphs resemble the Sierpinski gasket (Hinz et al.,
2013). We used this model to manually annotate each sequence
of movements and relate it to the optimal path, understood
as the solution with the minimum amount of moves Od. Due
to the high cost of manual annotation, we carried out these
annotations for all tasks but only for subgoals with a maximum
of 5-disks, i.e., d ≤ 5.

We annotated the type of movements as follows: (i)
Optimal/sub-optimal: optimal moves refer to the moves which
are on the optimal path toward the solution or function as
recovery actions (sub-optimal) toward the optimal path; and (ii)
Auxiliary: Auxiliary movements refer to those that use a third
peg as a scaffold for the optimal solution of the task. Within a
task of a certain number of disks there are subgoals; these are
instances of milestones of a subpyramid that leads to the task
solution (see Figure 6).

4. RESULTS

We used the above-mentioned metrics to address the research
questions and the corresponding hypotheses as follows.

FIGURE 6 | Graph representation of the ToH game for d = 3 disks. Each node represents one disposition of the disks. Red color represents the optimal path

between the initial disposition and one solution. In blue dashed, auxiliary movements (movements between sub-graphs leading toward the solution).
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4.1. Task Performance in Turn-Taking and
Voluntary Interaction (Hypothesis 1)
We hypothesize that children in Cond2 (voluntary interaction)
would be more likely to show better performance in the
evaluation session than children in Cond1 (turn-taking).
To explore this hypothesis, we consider (i) children’s task
performance and (ii) task improvement over the four sessions,
with a focus on the evaluation session. We note that, during the
intervention sessions, children in Cond2 had the opportunity
to perform more movements than children in Cond1 since in
Cond1 the robot provided canonical intervention in a turn-
taking setting.

4.1.1. Task Performance
For each task, we assess the value of K (normalized extra moves),
as detailed in section 3.1.

Mean performance metrics are summarized in Table 2 (BL
and Cond1) and Table 3 (Cond2). The average is presented in
relation to the incremental task complexity (number of disks d
with d = 3...7). For the baseline, we integrate the performance
of participants in both conditions as there is no difference in
the setting.

As expected, in the baseline, we observe an increase in the
normalized extra moves K for the task with increased difficulty
(more disks), ranging from 0.40 (d = 3) to 1.17 (d = 5). In the
intervention session of Cond1 the normalized number of extra
movements seem to not be associated with the increased difficulty
of the task ranging from 0.12 (d = 6) to 0.43 (d = 3) with
relatively small deviation from the optimal solution path during
the robot’s canonical intervention. However, in the intervention
session of Cond2, the extra movements range was between 0.45
(d = 4) to 1.18 (d = 6) which is a larger deviation from the
optimal path than in Cond1. As expected, the task performance
is linked to the difficulty of the task in terms of number
of disks.

Interestingly, in the evaluation session in Cond1, task
performance K ranges from 1.59 (d = 7) to 3.51 (d = 5),
and the deviation from the optimal solution is higher in the first
task of the session than in later stages with increased difficulty.
However, in the evaluation session of Cond2, K is smaller than
for Cond1, ranging from 0.6 to 2.55 which indicates a smoother
transition from the intervention to the evaluation session in the
voluntary interaction case. It should be noted that in many cases
the Standard Deviation of the selected metrics is relatively large,

which indicates a large distribution, most likely because of the
small sample size.

4.1.2. Task Improvement
Figure 7 shows the distribution of task performance for BL
and EV sessions considering both conditions. We observe that
the median value is higher in evaluation than in baseline,
indicating an overall learning effect. In addition, we computed
individual differences in task performance 1K between EV
and BL session. It should be noted that, since we measure the
difference in normalized extra movements, a negative difference
indicates task improvement. Our descriptive results show an
average 1K = −0.326 (or 35% if instead of difference
we compute the percentage decrease), which also reflects a
better average performance in the EV session. However, the
results from the Wilcoxon test between BL and EV value
distributions showed no statistical significance (p = 0.286,
a = 0.05). As discussed below, due to the increasing difficulty
of the task in the EV session, our findings might indicate a
learning tendency.

In addition, we performed a Mann–Whiteney’s U-test to
check the statistical difference between EV sessions in Cond1
and Cond2. Statistical distributions are illustrated in Figure 8.
Results show significance of p = 0.038 (a = 0.05). The interval
of confidence for the difference between Cond1 and Cond2 is
between 0.020 and 1.237, which means that the performance is
significantly higher in Cond2 than Cond1.

Lastly, we looked at the possible association of those results
with the age of the children (Figure 9). Our results show that in
the evaluation session of Cond1 most of the children of any age
perform larger numbers of movements than in Cond2.

TABLE 3 | Task performance metrics 1L and K in Cond2 (voluntary interaction)

per session and per number of disks.

d Cond2-Intervention Cond2-Evaluation

t 1L K Mean (SD) t 1L K Mean (SD)

4 7 6.86 0.45 (0.17) 1 9 0.6 (0)

5 12 20.5 0.66 (0.10) 2 31 1 (0.15)

6 10 74.5 1.18 (0.11) 2 161 2.55 (1.41)

7 – – – 4 – 1.15 (0.38)

t represents the number of considered tasks.

TABLE 2 | Task performance metrics 1L and K in Baseline (left column) and in Cond1 (turn-taking) per session and per number of disks.

d Baseline Cond1-Intervention Cond1-Evaluation

t 1L K Mean (SD) t 1 L K Mean (SD) t 1L K Mean (SD)

3 18 2.78 0.40 (1.24) 1 3 0.43 (0) – – –

4 16 15.38 1.03 (0.79) 6 4.67 0.31 (0.17) – – –

5 5 36.40 1.17 (0.99) 13 4.69 0.15 (0.10) 2 109 3.52 (2)

6 – – – 14 7.28 0.12 (0.11) 4 112 1.78 (0.33)

7 – – – – – – 5 201.6 1.59 (0.45)

t represents the number of considered tasks.
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FIGURE 7 | Distribution of task performance K for BL and EV sessions in both conditions. Median values are displayed.

FIGURE 8 | Statistical distribution of task performance K in evaluation sessions of both conditions. Median values are displayed.

4.2. Children’s Tendency for Self-Initiated
Robot Interaction (Hypothesis 2)
We hypothesize that in the voluntary interaction the participant
children who faced more difficulties in solving the task (e.g.,
younger children) were more keen to ask the robot for help.
We expected this because child’s learning often occurs in
collaborative settings with the scaffolding by others (Vygotsky,
1978). To explore this hypothesis, we considered (i) the number
of the instances the individual child asked for help (asking for
help) in relation to the task performance (extra movements)
and (ii) the age of the child. Because of the incremental nature
of the task, there were more opportunities for children to ask
for help; for this reason, we normalized the scores in order to
be comparable.

We assess child’s voluntary interaction in relation to the task
performance during Cond2 as well as the task improvement in
the evaluation session.

During the robot intervention in voluntary interaction, we
observed a trend for more instances of asking for help in
less demanding tasks by younger children (Figure 10). More

specifically, for d = 4 tasks, children of average age 6.8 years

exhibit H = 0.26 asking for help behavior. For d = 5

tasks, children of average age 7.5 years exhibit H = 0.16
asking for help behavior. For D6, children of average age 8.3

asked for help H = 0.03 instances and for d = 7 the only
child that managed to perform the task with 7 disks in the
intervention session was a 10 year-old who didn’t ask for help
at all.
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FIGURE 9 | Individual task performance K versus age in the evaluation

session for Cond1 and Cond2.

FIGURE 10 | Average H metric of child’s asking for help in Cond2 vs. child’s

age, presented according to number of disks.

In addition, we considered the score of extra movements for
these children. As shown in Figure 11 in total 9 out of 10 children
asked for help during the robot intervention. Of those, 6 children
showed increased number of extra movements ranging fromK =

1.11 to K = 1.66 with low number of instances of asking for
help (normalized range from H = 0.00 to H = 0.096). On the
contrary, three children exhibit increased number of instances
of asking for help, ranging from H = 0.18 to H = 0.82, with
decreased number of extra movements, ranging from K = 0.25
to 0.097.

4.3. A Single Case-Study, Pattern
Emergence, and Inter-individual
Differences (Hypothesis 3)
To gain a more refined understanding of the problem-solving
process and to identify possible patterns in action sequences,
we map the developmental trajectories of the task solution
for N = 4 selected children. The selection of the specific

FIGURE 11 | Representation of K vs. H to represent normalized number of

movements with respect to help by the robot.

case studies was based on their representiveness in terms
of the solution path that the children followed during the
sessions. In this section we analyse one single case study and
we selectively juxtapose instances from the remaining three
case studies.

For our analysis, we assessed all movements as optimal or
suboptimal and mapped it to the visual representation of the
ToH solution presented above (see Figure 6). We used the
visualization to map the sequence of child’s task-related actions
and to define possible emerging patterns.

4.3.1. Baseline Session

4.3.1.1. Optimal performance
The child “Sophie,” aged 8 years, participated in Cond1 of
the study. During the baseline session, without the presence
of the robot, Sophie understood the rules of the game
and showed a positive stance toward the game and the
activity. She started solving the task with d = 3 disks,
without facing any difficulty. We observed that toward the
end of the solution, Sophie increased the pace of her task-
related actions. This has been registered as a typical behavior
that was observed repeatedly in all participant children and
can be explained by the cognitive theories that describe
child’s perceptual strategies making successive moves that
lead to the display looking more like the desired end state
(Miyake et al., 2000).

4.3.1.2. Deviation
Then, Sophie proceeded to the next task with d = 4 disks. While
in the beginning of the task, we observed an increased pace in her
actions, after the movement 4, the solution pace was diminished
and, as shown in Figure 12, she started deviating from the
optimal solution path. The point she started to deviate was the
instance where she should perform an auxiliary movement and
inhibit inappropriate move selection. This demand appears at
specific points where there is a mismatch between the end goal
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FIGURE 12 | A developmental representation of individual child’s problem-solving path of the baseline. The figure shows a pattern of frequent deviation from the

optimal solution path.

of the problem and a current subgoal. This was a typical behavior
that appeared in the Baseline session in all the four case studies
we evaluated.

4.3.1.3. Recovery
After four movements, Sophie understood that she was not on
the optimal solution path of the task and she started performing
recovering actions. We observed an increased pace of her actions
during the recovery which might be explained by theories that
focus on executive function of planning (e.g., Miyake et al., 2000).

4.3.1.4. Inhibitory control points
The solution of the d = 4 disks ToH task requires from the
child at least three instances of inhibitory control. At those points
the child should perform an auxiliary movement in order not to

deviate from the optimal solution path. However, Sophie did not
make use of the auxiliarymovement which resulted in a canonical
deviation from the optimal solution path as appears in Figure 12.

4.3.1.5. Child-initiated interaction
In condition 2, we annotated the child initiated interaction
indicated by the instances of the child’s asking for help as
described in section 4.2. The microgenetic assessment provides
further insights on the timing of child-initiated interaction. As
expected, we observed that the majority of the instances appear
on the nodes where the child had more than one options to
perform the next movement with higher probability to deviate
from the optimal path. This coincides with the auxiliary actions
that indicate the child’s inhibitory control.
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4.3.1.6. Pattern emergence of developmental sequences
The pattern which appears in Sophie’s baseline for the d = 4 disks
task appeared in all the four case studies we analyzed. In a similar
way, a typical solution path in turn-taking condition consisted of
optimal moves only following the diagonal axis of the triangle.
In the evaluation session, the child exhibits canonical deviation
from the optimal solution path with an improvement from the
baseline, and a more frequent deviation from the optimal path
than the one exhibited in the intervention session.

4.3.1.7. Pattern emergence of temporal aspects
To illustrate how the problem-solving trajectory develops over
time, we examine the speed of the moves throughout the
task. Figure 13 shows a selected set of representative examples
from the analyzed cases with the duration of each move (in
seconds), in addition to a moving average of the last three
movements. We observe an increase in speed (short duration)
in the last movements of a subgoal for all the analyzed
children. Additionally, we observe that the increase in the
speed of movements toward the final solution of the tasks
is associated with optimal movements, while increase in the
speed of movements between subgoals of the same number
of disks is associated with suboptimal movements such as
exploratory actions.

4.3.2. Robot Intervention Session
In the second and the third session Sophie participated to
the robot intervention session in Cond1 in which Sophie was
instructed to solve the ToH task together with the robot in a

turn-taking setting. Sophie looked engaged with the robot and
she clearly perceived all the intended behaviors of the robot. She
selected to repeat the task with d = 4 disks which she solved
in the optimal way in collaboration with the robot. As shown in
Figure 12, her performance was optimal in the task with d = 5
disks as well when solving the task together with the robot.

While an optimal solution was typical for all children in
Cond1, children in Cond2 showed different patterns of task
solution, which differ depending on the frequency child asked
the robot for help. In the examined case studies we observed
solutions with (i) canonical deviation from the optimal solution
at the points which required auxiliary movements (ii) instances
of child breaking the rules of the game and (iii) solutions with
extensive exploratory actions which lead to a final solution with
the use of large number of extra movements.

4.3.3. Evaluation
In the last session, Sophie selected to solve again the d = 5 disks
task, without the help of the robot. While in the intervention
session, Sophie solved the task together with the robot following
the optimal path, in the evaluation session she regularly deviated
by the optimal as shown in Figure 12. The pattern of Sophie’s
deviation from the optimal path in the evaluation resembles the
one in the Baseline with the four disks task, in having the critical
points of the use of auxiliary movements as necessary for the
continuation of the optimal solution. However, Sophie’s pattern
of solution seems improved in the evaluation session since she
achieved to use inhibitory control in four out of eight critical
points. This indicates the dynamic nature of problem-solving

FIGURE 13 | Examples of speed of optimal and suboptimal actions in association with the subgoals of the problem-solving task.
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process in incremental tasks which requires special attention to
the design of robot intervention.

5. DISCUSSION

In the current study, two main topics were addressed: First,
we evaluated children’s problem-solving task performance in
a “voluntary” HRI condition in contrast with a “turn-taking”
condition in a longitudinal setting. Second, we examined the
developmental trajectory of the process of problem-solving
via possible patterns of the sequence of actions over multiple
sessions. To address the first topic we captured children’s
performance of the ToH task in an incremental manner looking
at the role of the robot intervention on the task performance. To
address the second topic, we considered children’s deviation from
the optimal path of the solution which allowed us to highlight
the heterogeneity of children’s problem-solving trajectories. Our
goal was to observe children’s trajectories of problem solving, and
to create an HRI setting that allowed for voluntary childrobot
interaction with child-initiated robot intervention. Below we
discuss the main findings:

5.1. Exploration in Young Children’s
Problem-Solving
Our results indicate that participants in the “turn-taking”
condition exhibit less exploratory movements than in the “on-
demand” robot intervention condition. However, in challenging
tasks, young children that participated in the “on-demand” robot
intervention and had the possibility to performmore exploratory
actions outperformed young children that participated in the
“turn-taking” condition in terms of deviation of the optimal
moves. Thus, our findings provide initial indications regarding
young children’s need for exploratory actions in problem-solving
process in HRI settings and the efficacy of those actions in
challenging task performance.

5.2. Inhibitory Strategy Emergence and
Development
The cognitive strategy of inhibition has been characterized as
one of the main strategies used for the optimal solution of the
ToH task (Goel and Grafman, 1995). This strategy allows the
child to inhibit moves directly to the goal in order to make the
counter-intuitive move that leads to the optimal solution. We
identify the use of inhibitory strategy in all observed optimal
moves excluding the moves leading to a subgoal or the final
solution of the ToH. Our design allowed us to observe that
this strategy is not apparent to all young children, especially
in the more challenging tasks. However, the fact that our
cases increased the speed of their optimal movements only
toward the reach of a subgoal indicates that the analyzed
children used additional strategies for the task solution such as
implicit learning. Typically, this procedural learning is observed
by continuous improvement in performance over repeated
administrations of the same ToH problem, as shown by our
analysis of the learning effect.

5.3. Designing Robot Behaviors to Scaffold
Child’s Exploration
For the current study we used the Haru robot with minimally
designed social behaviors. Since our main focus was on the
type and timing of robot cognitive intervention rather than on
robot’s social behaviors, on purpose, we restricted the robot
behaviors into cognitive interventions providing suggestions in
a neutral non-verbal manner and feedback related to the task
performance only. Maintaining the same behavioral principles,
we designed an “on demand” robot intervention. This is one
of the few studies in HRI that provide children the space to
voluntarily initiate the robot intervention. Our results indicate
that there is a relationship between children’s intrinsic motivation
for exploration and robot intervention, since in many cases
the participant children did not ask for help by the robot and
preferred exploration which lead to increased task performance.
Additionally, the “on demand” intervention allowed for inter-
individual variability to be observed, with some younger children
being inclined for more exploratory actions, which might require
personalized robot interventions.

However, we observed that children’s deviation from the
optimal solution path in the specific task comes with certain
patterns. From a pedagogical perspective, these patterns can
be utilized in order for designers to develop targeted robot
interventions which allow the child to explore and experience
self-initiated interactions. In addition, at targeted instances of
the task, the robot intervenes in order to provide recovery in
child’s actions and scaffold the child’s problem-solving process
which would lead to better learning experience and outcomes for
the child.

This paper contributes to the field of HRI as one of
the few developmental studies which focuses on the process
rather than only on the final outcome of child’s activity and
provides indications about not only the what but the why of
collaborative problem solving in child-robot interaction. Further,
the suggestions of voluntary interaction contributes to the
current dialogue about the ways we need to develop value-
centered intelligent systems. In this way the child has the freedom
to initiate the interaction according to her needs.

6. LIMITATIONS AND FUTURE WORK

Deeper insight into the trajectories of children’s problem-solving
will allow us to construct dedicated theoretic models for the
emergence and development of children’s complex strategies.
In similar fashion to the work by Oudeyer and Smith (2016)
on modeling curiosity development, in future work, we also
intend to computationally model and simulate problem-solving
processes of increasingly complex tasks. Toward this end, we
intend to develop a robotic companion for dynamic assessment
and support of children’s tendency for exploration as one of the
catalytic stages for the emergence and development of relevant
cognitive strategies for problem solving. From a methodological
perspective, whilst most of the current longitudinal studies with
children in HRI include relatively small sample (i.e., Leyzberg
et al., 2018), we aim to investigate child-robot collaboration
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in problem-solving tasks in a longitudinal study with a larger
sample. In this way, we will be able to contribute to the dialogue
regarding child development in HRI settings with generalizable
results. In addition to this, we acknowledge that between the
interaction design of the two conditions lie further possibilities
for child-robot interaction in the context of collaborative
problem-solving activities. Our plans for future work include
additional possibilities for further types of interaction design.

Regarding the robotic system itself, we are currently
developing a fully autonomous system for the dynamic
assessment and autonomous robot intervention for the ToH task
to carry out a larger scale study considering a fully autonomous
interaction. This requires, from the perception part, to estimate
the state of the game, the individual child problem-solving
abilities and other individual characteristics. Tracking the state of
the gamemakes it possible for the robot to automatically evaluate
the task progress and thus take decisions accordingly.

Deeper data-driven analyses may further reveal characteristics
and causes of child development and the transition from
primitive cognitive and social actions toward more complex
behaviors. As discussed before, all children did not have
explicit conceptualized knowledge and strategies for problem-
solving of the ToH task. So interacting with this task could
be considered as a novel activity with many exploratory
opportunities, which is still an open area of research for HRI.
At the same time, it will be interesting to further investigate
what design principles would be applied in developing robots
that scaffold children to effectively transit from exploratory
actions to intentional behaviors. Individual pace differences
of this transition will require for the robot to be adaptively
intelligent by dropping old solutions when something shifts in
the child’s behavior, the task or the context. This demands a
dynamic approach of the conceptualization of problem-solving
cognitive activity in child-robot cognitive collaboration. Taken
together, our results are initial steps toward creating flexible

autonomous agents that self-supervise in realistic physical
environments by supporting human tendency for self-directed
problem-solving activities.
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In this article we investigate the role of interactive haptic-enabled tangible robots in

supporting the learning of cursive letter writing for children with attention and visuomotor

coordination issues. We focus on the two principal aspects of handwriting that are

linked to these issues: Visual perception and visuomotor coordination. These aspects,

respectively, enhance two features of letter representation in the learner’s mind in

particular, namely the shape (grapheme) and the dynamics (ductus) of the letter, which

constitute the central learning goals in our activity. Building upon an initial design tested

with 17 healthy children in a preliminary school, we iteratively ported the activity to an

occupational therapy context in 2 different therapy centers, in the context of 3 different

summer school camps involving a total of 12 children having writing difficulties. The

various iterations allowed us to uncover insights about the design of robot-enhanced

writing activities for special education, specifically highlighting the importance of ease of

modification of the duration of an activity as well as of adaptable frequency, content,

flow and game-play and of providing a range of evaluation test alternatives. Results

show that the use of robot-assisted handwriting activities could have a positive impact

on the learning of the representation of letters in the context of occupational therapy

(V = 1, 449,p < 0.001, r = 0.42). Results also highlight how the design changes made

across the iterations affected the outcomes of the handwriting sessions, such as the

evaluation of the performances, monitoring of the performances, and the connectedness

of the handwriting.

Keywords: handwriting, occupational therapy, tangible robots, iterative design, robots for education, haptic

devices, interactive learning, special education

1. INTRODUCTION

Handwriting is a complex perceptual-motor skill consisting of visuomotor integration, motor
planning, visual-spatial abilities, visual perception, as well as responsiveness to tactile and
kinesthetic stimuli (Maeland, 1992; Amundson and Weil, 1996; Feder and Majnemer, 2007). It
is a fundamental ability which has a great impact on a wide range of tasks such as communicating
and recording our knowledge, emotions, ideas and opinions. Unsurprisingly, it has been shown
that handwriting is a critical skill to be acquired for the academic and behavioral development
of students (Berninger et al., 1997; Feder and Majnemer, 2007; Christensen, 2009). Hence, there
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is an ongoing research effort dedicated to empowering students
with effective writing skills and highlighting the challenges
students face to master handwriting.

In recent years, several studies have been conducted exploring
the processes engaged in handwriting and the learning effects
of different technologies on the handwriting process. Feder
and Majnemer (2007) suggested that handwriting difficulties
do not resolve without intervention. Considering that up to
25% of the school-aged population is affected by handwriting
difficulties (Smits-Engelsman et al., 2001; Charles et al., 2003),
there is a need to develop technologies that support intervention
methods for typically developing and high-risk populations. One
example where technology can be useful in this domain is the
usage of digital tablets to detect handwriting difficulties. They
made possible the evaluation not only of the final product of
handwriting (the static image), but also its dynamics (Asselborn,
T. et al., 2018; Zolna et al., 2019). For example, Pagliarini
et al. (2017) used digital tablets to collect data on handwriting
ability before handwriting is performed automatically. Thanks
to quantitative methods, they could find patterns indicating
potential future writing impairments at a very early age.
Mekyska et al. (2016) used a supervised learning model to
detect dysgraphia. The authors included 54 third-grade Israeli
children in the study and used a 10-itemHandwriting Proficiency
Screening Questionnaire (HPSQ) (Rosenblum, 2008) to identify
poor writing.

Rosenblum et al. (2019) in their study of handwriting
investigated how certain low-level and high-level processes differ
between children with ASD and typically developing children.
Their findings have clinical implications which can inspire the
development of technologies to help children with executive
function deficiencies. These results indicate that the accurate
assessment performed by therapists to identify the deficits and to
determine the appropriate handwriting intervention customized
to the individual have considerable importance.

In a related study, Asselborn, T. et al. (2018) focused on the
detection of severe handwriting difficulties such as dysgraphia,
using a digital approach that identifies and characterizes
handwriting difficulties (Asselborn, T. et al., 2018; Zolna et al.,
2019). Their approach was inspired by the original standardized
test devised by therapists to detect handwriting difficulties. Their
tablet-based test can have direct implications on developing
educational technologies for children, either typically developing
or with handwriting difficulties. Several other tablet-based
applications can be found in the literature that remediate
handwriting difficulties; the main advantages of these tablet-
based applications is that they allow the display of additional
visual information to provide immediate adaptive feedback and
instructions to the learner, while capturing the handwriting data
accurately to be processed in real-time or afterwards (Yamasaki
et al., 1990; Lee and Lim, 2013).

Furthermore, a growing number of studies aim at helping
children with developmental disorders by incorporating robots
to help handwriting (Chandra et al., 2019; Kim et al., 2019).
For instance, the Cowriter project (Hood et al., 2015; Chandra
et al., 2019) exploits the social capabilities of a humanoid
robot to teach handwriting in an original way. Based on the

learning-by-teaching approach, the child becomes the teacher of
a robot “requiring help” to improve its handwriting and this role
reversal results in several powerful effects including motivation
gain and de-dramatization of the child’s problems.

From a learning goals perspective, in order to have a complete
letter representation, a child should acquire the visual perception
of the letter, called the grapheme, but also the visuomotor
coordination associated with it, i.e., the dynamics of the
movement, called ductus (Bara and Gentaz, 2011). To enhance
the visual perception as well as the visuomotor coordination, it is
shown that using more sensory information ranging from audio
and visual to kinesthetic feedback is important (Hayes, 1982;
Bluteau et al., 2008; Bara and Gentaz, 2011; Danna and Velay,
2015). Because of this reason, teachers commonly use techniques
allowing children to experience various sensory information
when learning how to write. These techniques include drawing
letters in sand or semolina, touching and sensing the shape of
letters carved in a piece of wood, verbally describing the letters
or building the letter with play-dough (Berninger et al., 1997;
Arslan, 2012).

Indeed, kinesthetic real-time feedback is shown to be
paramount sensory information needed during the process of
handwriting (Laszlo and Bairstow, 1984; Laszlo and Broderick,
1991). To fill this gap in robot-assisted and digital technologies,
several recent studies are using haptically active training
programs in order to teach handwriting. Bara and Gentaz (2011)
compared a visual-haptic to a visual only program to teach five
different letters to a group of 21 first-grade children. The authors
showed that the combination of visual with haptic information
is more efficient than visual only information since it improves
both perceptual and visuo-motor skills.

Palluel-Germain et al. (2007) showed the use of visual-
haptic feedback to teach handwriting to kindergarten children
where they present a device, “Telemaque,” that incorporates a
programmable force-feedback pen that can be guided along
a letter model (which is “not only static (the shape) but also
dynamics (rules of motor production)”) in order to enhance the
visuomotor perception of the letters targeted. In their study, the
authors focused on six cursive letters (“a,” “b,” “f,” “i,” “l,” “s”) and
showed significant improvement of the handwriting’s legibility
for all trained letters after the visual-haptic training with respect
to the control group.

Garcia-Hernandez and Parra-Vega (2009) proposed a haptic
tele-operated training method aiming to improve motor skill
acquisition. A master helps an apprentice by showing the desired
path (a letter) using a robot end-effector, whose motion is sensed
by the learner via the haptic device. The authors showed better
and faster learning of motor control compared to the condition
using visual information only.

Even though these devices have brought very promising
results, a strong limitation to their widespread use comes from
their very high cost, that makes them unaffordable for most
schools. In addition and to the best of our knowledge, there is
currently no haptic system providing collaborative handwriting
activities in classrooms, which typically requires one set of
equipment per learner. For this reason, one of the goals of this
article is to present a system for teaching handwriting that relies
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on low-cost equipment, while also allowing haptic feedback in
single- and multi-participant collaborative learning activities.

Collaborative learning appears in situations where two or
more people attempt to learn something together (Dillenbourg,
1999). Even if no general assumption can be made concerning
the benefits of collaborative learning (because it is strongly
dependent on the designed activity), Kreijns et al. (2003)
summarize the positive effects that sometimes arise with
collaborative learning as a deeper level of learning, critical
thinking, shared understanding, and long term retention of the
learned material. Moreover, according to the therapists’ feedback
in the occupational therapy centers, children may benefit from
group therapy sessions by modeling their peers, learning how to
cooperate, acknowledging each other’s strengths. Lastly, group
occupational therapy or group physical therapy may provide
beneficial social interaction to children: they can not only
communicate their ideas with each other, but also improve their
self-esteem by achieving skills and tasks in front of their peers.
For these reasons, activities and tasks that are planned for the
group session should be fun, flexible, exciting and novel as well
as in line with the children’s goals, preferences and attitudes to
minimize the number of children who refuse to participate or
exhibit non-compliant behavior1.

Our research effort, described in the current and the previous
studies (Asselborn, T.* et al., 2018), aims to enhance these
sensory information by using the tangible, haptic-enabled, low
cost, small-sized Cellulo robots (Özgür et al., 2017). While
these robots move on a sheet of paper displaying the letter’s
visual representation (see Figure 1A), the learner can observe
the ductus of the letter (the trajectory followed by the robot
between the starting and ending points of the letter), as well
as the grapheme of the letter (printed directly on the sheet of
paper on which the robot moves). Moreover, the haptic and
visual capabilities of the robots allow for increasing the sensory
information provided to the learner during the activity. In this
article, we hypothesize that training with the robot can effectively
convey the procedural knowledge of the grapheme and the ductus
of the letter in our context of interest. At the same time, using
multiple robots and their synchronized behaviors, we aim to
show that it is possible to design collaborative learning activities
in the aforementioned fun, flexible and inclusive manner.

The primary aim of this article is to support handwriting
learning, with a specific focus on special education, by designing
tangible robot-mediated, interactive, collaborative activities. In
previous work, we performed a content analysis to target specific
skills involved in the handwriting processes and based on that
designed an activity flow composed of 4 sub-activities, which
was tested and validated in a public school. In this article,
we refine and adapt the activity to a therapy context over
a number of experiments in different therapy centers, with
the close collaboration of therapists and children in need of
occupational therapy.

During this iterative design process, we identify the key
design aspects to be taken into consideration when addressing

1https://www.yourtherapysource.com/blog1/2019/04/24/tips-for-successful-

pediatric-group-therapy-sessions/ (accessed November, 2019).

occupational therapy scenarios and evaluate the effect of the
tested variants on learning using qualitative and quantitative
methods.We discuss several key take-home lessons and conclude
with shortcomings and future work.

2. MATERIALS AND METHODS

2.1. Cellulo Robotic Platform
Cellulo robots are low-cost, small-sized tangible mobile robots
that can operate on printed sheets of paper covered with a dot
pattern that enables fast (>90 Hz) and accurate localization (sub-
mm) of each robot without any calibration (Hostettler et al.,
2016; Özgür et al., 2017). This design allows for the recording
of rich interaction-related information during the activity, such
as user’s motion trajectory, accuracy of the motion, etc. The
robot’s holonomic motion system provides autonomous motion
capability, as well as robustness against human manipulation
(Özgür et al., 2016). The overall design of the robot allows easy
set-up and use in classroom and therapy environments thanks
to the plug-and-play nature of its ecosystem. The proposed
writing activity is composed of Cellulo robots and several shapes
printed on paper sheets, displaying letters and cues related to
the letter’s ductus (see Figures 1A,B). The haptic, audio, visual
and synchronization capabilities of the Cellulo robots allow us to
provide real-timemulti-sensory feedback during the handwriting
task at the individual learner level as well as at the group level
during collaborative handwriting activities. Lastly, each robot can
be programmed to have a passive, active or semi-active role,
which helps us design a pool of different activities where the role
of the children can switch in between active and passive.

2.2. Iterative Design Methodology
The design of learning activities for children requiring special
education within an occupational therapy session brings about
many challenges and unknowns, such as orchestration, use of
space and choice of grouping of children with vastly different
learning objectives and activities. Furthermore, the design of
activities for special education involves the crucial participation
of a wide spectrum of stakeholders, including teachers, therapists
and the children themselves. Given these factors, it becomes
impractical to imagine a classical study scenario where a working
design can be made and tested successfully to show that it yields
positive learning outcomes: As we show below, there are typically
many failures, lessons that must be learned and interactions that
must be made with the stakeholders in order to improve the
existing design and bring it to an acceptable level of operability
and adaptability.

For these reasons, we opted to follow an iterative design
methodology where we tested and improved the design
repeatedly at different stages of maturity and practicality. At
each iteration, we make/refine the design and attempt to verify
it rigorously with a study in order to reveal flaws and gather
observations that may aid in improving it further. First, we
start our design by aiming to meet the learning objectives
with healthy children in a typical school environment. This is
labeled as Iteration 1, and aims to yield a base-level usable
activity that we can iterate over; this iteration is previously
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FIGURE 1 | Different sub-activities of tangible robot assisted handwriting activity in a therapy session. (A) Feel the robot, (B) drive the robot, (C) guess the letter game

without grapheme.

published in Asselborn, T.* et al. (2018). This also allowed us
to eliminate the usability flaws before launching the activity in
a therapy environment. In section 3, each iterative step of our
iterative design methodology is explained in detail to reflect
the design changes, feedback and observations affecting the
next steps.

2.3. Participants
During the iterative design process, one public school and
two therapy centers were involved in our activity design and
evaluation. Initial design and evaluation were done in the public
school with the contributions of teachers and the participation
of 17 healthy children with a mean age of 5.5. During the
integration of the system into the therapy setting, therapists of
each center gave feedback on the application before the testing
stage. In the first center, we conducted one training session
with 5 boys. In the second therapy center, we first conducted
3 training sessions with 3 girls and then 2 training sessions
with 4 boys. The children attending the sessions had a variety
of problems such as difficulty in concentration, fine motor
dexterity issues, poor attention, etc. The detailed information
about the symptoms and problems of each child indicated by the
corresponding therapists of each group can be seen in Table 1.
The clinical and neuropsychological assessment data belonging
to the participant children are provided directly by the therapists.
These assessments include proper clinical diagnoses (reported
as ASD and ADHD), but also other potential problems related
to handwriting observed by the therapists. These problems may

simply be outside of clinical diagnosis scope (reported as e.g.,
“does not like to write”) or may potentially eventually lead to the
discovery of clearly diagnosable disorders in the child (reported
as e.g., “motor coordination/activity problems”). In the latter
case, the clinical diagnoses were not yet attempted on the children
by their legal guardians. We opted to report all of these cases as
they were highly beneficial in being the primary guiding factor in
both the design phase and the application phase, i.e., when the
actual interaction with the affected child took place.

Testing of our system was part of the three different
summer school camps for fine motor and handwriting skills.
These camps were aimed at helping with different aspects of
handwriting and included varying activities to assist: (1) Core
body strength and shoulder stability, (2) Body posture and hand
positioning, (3) Manual dexterity and pencil grasp, (4) Fluidity
of writing movements, (5) Handwriting legibility, (6) Typing, (7)
Sensory awareness, (8) Graphomotor skills, (9) Concentration
and attention, (10) Social skills. In the second therapy center,
therapists were also providing support for the development of
gross motor skills with outdoor activities.

This study was carried out in accordance with the
recommendations of the Human Research Ethics Committee
(HREC) at EPFL. The protocol was approved by the HREC
(No. HREC 008-2018/16.02.2018). All subjects’ parent or legal
guardian gave written informed consent in accordance with the
Declaration of Helsinki. All child participants gave a recorded
assent and were informed of their right to stop the experiment at
any time.
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TABLE 1 | Child participants to occupational therapy sessions.

Group Child id Age Symptoms or problems indicated by the corresponding therapists

Group 1

F 7
ASD, losing motivation quickly, problems in visual construction,
does not like to write

A 7 ADHD, attention problem, sensitivity to auditive stimulation

X 6 ADHD, attention problem, does not like to write

B 7
Visuomotor coordination problems, poor fine motor dexterity,
problems in line following

V 7
Visuomotor coordination problems, poor fine motor dexterity,
problems in line following

Group 2

J 7
Handwriting problems, poor fine motor skills, poor precision,
functional problems, high intelligence assessment,
moves a lot and is disturbed quickly, poor concentration

C 8
Problems in fine motor skills, poor attention,
not totally concentrated, focused or engaged while handwriting

I 5.5
Poor gross and fine motor skills,
robot activity is first experience with cursive letters

Group 3

O 7
Problems in handwriting skill and fine motor activity,
difficulty in visual perception, line following and drawing

S 7 Handwriting problems

K 8 Hyperactive, sensory problems

M 7
High potential, fine motor skill difficulties, handwriting problems,
hyperactive

2.4. Data Analysis
In order to explore the added value of our robot-assisted writing
activities to the handwriting learning process, we want to assess
the visual perception (representation of the letter’s grapheme)
and the visuomotor coordination (representation of the letter’s
ductus) aspects of the learners in detail. In other words, we want
to assess the quality of the letter representation in the child’s mind
in terms of ductus and grapheme.

Children participated in each activity session in the following
way: First, they did a pre-test with a pressure-sensitive pen
& tablet (Wacom Cintiq Pro in the public school, Lenovo
ThinkPad X1 Yoga in the therapy centers) in order to measure
their handwriting proficiency before the activity. Then, they
participated in the tangible robot-enabled activity, namely the
main writing session with the Cellulo robots. Finally, they did a
post-test in a similar way to the pre-test to measure their progress
after our activity.

Initially, we asked experts to grade each letter from every
child in terms of the ductus quality between 0 (for totally wrong
ductus) and 3 (perfect ductus with proper start and end points
and directions) but the inter-rater agreement of the experts was
found to be too low. One of the contributing factors was the
high variance between the hand writing performance (ductus,
grapheme and cursiveness quality) of children in therapy centers.
Another was that during the initial phases of the experiment, tests
were mis-perceived by some children who started to fill the letter
graphemes as if it was a line following (in the form of painting)
activity rather than a writing activity. Ranking between 0 and 3
was also not reflecting the improvement in writing performance
of children who were previously unable to write at all: There were
instances where the pre-test performance was not gradeable (no

sensible letter was written) and the post-test performance was
very low but comparably closer to actual writing. Some learning
clearly took place, but both performances received 0 rank.

In order to reliably quantify the letter writing performance
by focusing on grapheme and ductus quality, we switched to
the Dynamic Time Warping (DTW) technique from Salvador
and Chan (2004) (available as a python package under the name
of fast-dtw) which allows measuring the distance between two
temporal sequences regardless of the speed. Using this technique,
we measured the distance between the written letters [taken as
an actual time series (x, y, t)] and the ideal letter represented
on the activity sheets [taken as an ideal imaginary time series
(x, y, t)], which is taken as a factor contributing to performance.
This distance is used as an error score for writing performances.
For a given letter, a lower error score indicates a closer ductus
and grapheme to the expected letter. Furthermore, we calculated
the connectedness of the letters (defined as the total number of
strokes per letter) as another factor contributing to performance,
in order to take into account the possible mis-perception effect
mentioned above.

3. ITERATIVE DESIGN OF THE
ROBOT-ASSISTED WRITING ACTIVITY

This section explains in detail each step through the iterative
design process, starting from the pedagogical design, followed
by the various steps of testing in the school and therapy
centers, and the adaptation of the system to the new
learning environment. The overall flow of the iterations and
corresponding group information can be seen in Figure 2.
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FIGURE 2 | The timeline of the iterative design and testing steps. Group 1,

Group 2, and Group 3 are child participants in occupational therapy sessions

in Table 1.

3.1. Initial Design of the Letter Writing
Activity: Iteration 1
3.1.1. Pedagogical Design
In the initial design, previously published in Asselborn, T.*
et al. (2018), our focus was on enhancing the knowledge of
the grapheme and the ductus of the letter which are correlated
with the visual perception and the visuomotor coordination. The
content analysis done to determine the specific skills involved has
led us to define the following sub-goals:

• Remembering the Grapheme: Memorizing the letter’s physical
representation (Free Recall and Recognition).

• Remembering the Ductus: Memorizing the letter’s drawing
pattern (Imitation).

• Remembering the Phoneme to Ductus-Grapheme Link:
Memorizing the link between the letter’s pronunciation
(phoneme) and the corresponding grapheme and ductus.

It is shown that using more sensory information ranging from
audio, visual to kinesthetic feedback enhances visual perception
as well as the visuomotor coordination (Hayes, 1982; Bluteau
et al., 2008; Bara and Gentaz, 2011; Danna and Velay, 2015).
Precisely because of this, teachers use techniques allowing
children to experience various sensory information during letter
learning such as using sand filled boxes for drawing letters in;
touching and sensing the grapheme of letters craved in a piece
of wood or plastic surface2; or building the letter with play-
dough or with similar materials that can be shaped by hands
(Berninger et al., 1997; Arslan, 2012). There also exist sensory
play games used in therapy centers such as draw on your back
game. Each child takes turns with the teacher or therapist in

2Such as the one in https://www.etsy.com/listing/453872176/cursive-alphabet-

wood-tracing-board (accessed September, 2019).

drawing with their finger on the other’s back. The main goal
is to try to guess what the other person is drawing or writing.
The level of difficulty is easily adjusted by modifying what is
drawn - starting with shapes for young children, progressing
through letters of their name, numbers, and so on3. The design
of our robot-mediated activity is inspired from these traditional
methods that are already used in classrooms, as well as from
discussions with school teachers and therapists on how we can
position Cellulo in handwriting activities.

3.1.2. Activity Design
We decided to use three features of the robot, namely haptic
information, autonomous motion and synchronized behavior
of multiple robots, to increase the multi-sensory feedback via
touch, motion and sight. Haptic features allow each child
to receive individual real-time feedback, autonomous motion
makes the robot reproduce the ductus while synchronization
allows collaborative game design. With this in mind, we designed
the following sequence of sub-activities:

• Sub-Activity 1: Link between grapheme and ductus - Watch
the Robot - In this activity, we aim that the child learns the
letter’s ductus by watching the robot moving on a map with
the grapheme of that letter. The robot performs the dynamic
that should be done while writing with its autonomous motion
as the first representation of the letter’s ductus. In addition,
the letter’s phoneme is generated at the beginning and the
end of the writing process, to strengthen the link with the
corresponding grapheme. The robot’s rotary LEDs turn red
and blinking, in order, one by one as a progress indicator while
the path is followed, and turn solid green when the end point
is reached.

• Sub-Activity 2: Link between grapheme and ductus - Feel the
Robot - While the child watches the robot only in the first
activity, we add another representation of the letter’s ductus in
this second activity by asking the child to put their hand on the
robot while it is drawing the letter. The child does not actively
move the robot, but only follows its autonomous motion in a
passive way. Figure 1A shows an example screenshot of Feel
the Robot activity where the child follows her robot with her
index finger, while it is performing the ductus of letter “e.”

• Sub-Activity 3: Memorizing the ductus of the letter - Drive the
Robot - In this activity, the child actively drives the robot in
order to produce the ductus of the letter. The grapheme of the
letter is drawn on a map as seen in Figure 3A, the design of
which includes a car racing themewith the start and end points
that the writing should follow. Each child moves with their
own speed since the robot is in passively drivable mode. The
robot provides assistive haptic feedback by moving the child’s
hand toward the expected path if the child moves away from
it. In order to discriminate the active and passive roles of the
children in sub-activity 2 and 3, we assigned different colors
to the LED’s while robot is on the path. The robot’s LEDs are
blue while the correct path is followed, turn red if it is out of the
letter path and turn green when the end point is reached. These

3Described in https://childhood101.com/sensory-play-ideas-games-to-develop-

the-sense-of-touch (accessed September, 2019).

Frontiers in Robotics and AI | www.frontiersin.org 6 March 2020 | Volume 7 | Article 2954

https://www.etsy.com/listing/453872176/cursive-alphabet-wood-tracing-board
https://www.etsy.com/listing/453872176/cursive-alphabet-wood-tracing-board
https://childhood101.com/sensory-play-ideas-games-to-develop-the-sense-of-touch
https://childhood101.com/sensory-play-ideas-games-to-develop-the-sense-of-touch
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Guneysu Ozgur et al. Robot-Assisted Handwriting for Special Education

FIGURE 3 | (A) Includes round letter maps with the racing theme, letter “a”

used in the public school (Iterations 1 and 2) and all three letters are used in

first therapy center (Iterations 3 and 4). (B,C) Are cursive letters and their initial

strokes for practice used in the second therapy center (Iterations 5, 6, and 7).

(B) Includes examples of wave letters, (C) includes examples of skateboarding

letters. Adapted from the ABC Boum + teaching approach of graphomotricity.

feedback elements condition the child to recognize errors, and
serve as extrinsic motivation for drawing correctly. Figure 1B
shows an example screenshot of Drive the Robot activity where
the child on the left reached the end of the letter “m” (the
robot’s LEDs turn green) and the child on the right drives her
robot on the correct path (the robot’s LEDs are blue).

• TeamActivity: Recalling grapheme by watching ductus -Guess
the Letter - In this team activity, children form groups where
one child takes turns at drawing a letter with a robot. Each
time, the other children have to guess which letter is being

FIGURE 4 | Guess the Letter Game with Grapheme: The children on the left

side of the barrier are the guessers and the child on the right side is the writer

who just finished writing ‘u’ with the map having grapheme of the letter and

waiting for the guessers to guess the written letter.

drawn. In the group, the two guesser children sit together,
with the writer separated from the other two by a physical
barrier in order to ensure that they cannot see each other. The
writer has one robot, and the two guessers have one robot (or
one robot each depending on the size of the workspace) that
reproduces whatever movement the first robot performs. In
the beginning of the activity, the writer is shown (privately) the
map of the letter that indicates only the grapheme, which they
then have to draw with their robot. The other children watch
their robot reproduce the letter drawn on their empty map.
Then, the guessers have to choose the correct letter by recalling
the letters they learned or selecting among given graphemes.
An illustration of this activity can be seen in Figure 4 where
the two children on the left of the barrier are the guessers and
the child on the right side is the writer.

3.1.3. Performance Evaluation Design
In order to explore the added value of our system to handwriting
learning, the visual perception and the visuomotor coordination
aspects should be assessed in detail. Therefore, we focused
on assessing the quality of the letter representation in the
child’s mind in terms of ductus and grapheme. Three sub-
skills mentioned above are evaluated in a software application
developed in Python that runs on a graphic tablet (WacomCintiq
Pro). The use of the graphic tablet allowed us to save various data
concerning the child’s handwriting: The x and y coordinates of
the pen were recorded as well as the pressure and the pen tilt for
every time frame at a sampling rate of 200 Hz.

• From Phoneme to Grapheme & Ductus: In this test, we aimed
to assess if the child remembers both the grapheme and the
ductus of the letters: The child hears the phoneme of a letter
(upon pressing button 1 in Figure 5A) and is asked to draw the
grapheme on the tablet. As the link between the grapheme and
the phoneme of the letter might not yet be fully operational,
we offer the child the possibility to see the grapheme of the
letter (only the grapheme and not the ductus) during 1 s, upon
pressing button 2. As the child might want to have access to
the grapheme even though they have the representation of the
letter in their mind (just tomake sure they are writing correctly
or to ameliorate the letter), we ensured throughout the test
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FIGURE 5 | Pre/post-test software: (A) Test without letter grapheme to assess the link between the phoneme of the letter and its associated grapheme and ductus. By

pressing button #1, the child hears the phoneme of the letter. With button #2, the child has access to the grapheme of the letter during 1 s. #3 is the grapheme drawn

by the child. Once finished, button #4 is used to save the data and move to the next letter. (B) Test with letter grapheme to assess the link between the grapheme of

the letter and its associated ductus. #1 is the letter drawn by the child on the grapheme. Once finished, button #2 is used to save the data and move to the next letter.

that they can press the button only if they have not memorized
the grapheme of the letter at all. Since the model of the letter
grapheme is not given as default in this test, we referred this
pre/post test as test without grapheme in this paper.

• From Grapheme to Ductus: This test is aimed to evaluate the
grapheme-ductus link: The letter’s grapheme is displayed on
the tablet’s screen (see Figure 5B), and the child is expected to
draw the letter directly on top of the grapheme. The specific
path between the start and end points of the letter is assessed
during the test.

• From Phoneme to Grapheme: The goal of this test is to evaluate
the visual perception which helps the child to find the right
grapheme after hearing the phoneme of a letter among other
letters. Concretely, the child has to press a button to hear the
phoneme of a letter and find the associated grapheme among
a choice of given letters.

3.2. Initial Testing in Public School:
Iteration 2
With the activity and evaluation design done in Iteration 1, initial
experiments were conducted with 17 five-year-old children in a
public school. The students were split in two learning groups
in order to explore the potential benefit of teaching sessions
involving the robots compared to teaching session run with more
traditional methods. Furthermore, research was done to inspect
how these two teaching methods (with the robots and with
traditional methods) can be combined together.

Results show a clear potential of our robot-assisted learning
activity, with a visible improvement in certain skills of
handwriting, most notably in creating the ductus of the letters,
discriminating a letter among others and in the average
handwriting speed. Moreover, we show that the benefit of
our learning activities to the handwriting process increases
when it is used after traditional learning sessions. These results
were previously published in Asselborn, T.* et al. (2018)
in detail; in this paper, we only focus on the insights and
observations contributing to future design. Notably, we received
the following feedback:

• Difficulty of Feel the Robot: The children were frequently
having problems in doing this activity due to excessive
downward force they applied to the robot which blocked
its motion. This required the experimenters to intervene
and show the child the proper way to do the activity. Even
though initially we decided to abandon this sub-activity in
the future designs, discussions with the therapists revealed
that the feedback loop provided by the robot not moving
while the child is applying too much pressure could be useful
for conditioning some children in reducing this pressure.
More detail is provided in the corresponding iteration
description below.

• Pre/post-test duration: Even tough inspecting the learning
performance for each learning goal is crucial, collecting data
through several pre/post-tests, which must be done for each
child participating to the sessions, were observed to be very
time consuming. Due to this, we decided to adopt fewer, more
focused learning goals in order to be able to design shorter
evaluations per session in the future.

• Confusing visual feedback color: During the activities, it was
observed that one particular child became mad at her robot
since it was giving red visual feedback during the View the
Robot sub-activity. She said that her robot is misbehaving and
not working properly, rightly on her part, since the Draw
the Robot sub-activity uses red color to create the negative
reinforcement feedback. It was a usability flaw which was fixed
for the subsequent iterations.

3.3. Adapting the Activity to Occupational
Therapy: Iteration 3
3.3.1. Overview
The re-design process comprised of a number of successive
iterations with the participation and feedback of several
therapists from 2 different therapy centers during 3 summer
school activities including multiple groups of children. In this
section, the adaptation of the activity to the first therapy center
is described, which started with preliminary meetings with
therapists in order to do the adaptations specific to the therapy
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center’s teaching methodologies and learning objectives. Taking
into account the specific stage the child participants and the
therapists were at during this time, it was decided to work on
round cursive letters “a,” “d,” and “g.” The previously designed
racing theme was kept, as can be seen Figure 3A.

3.3.2. Change in Context, Frequency and

Pre/Post-tests Due to Time Limitation
The principal change was on the total time of the activity and
limitation of the time spent on pre/post-test evaluation: We
decided on less repetition on Watch the Robot, Feel the Robot
and Drive the Robot sub-activities and on using only one of
the pre/post-tests that focuses on ductus learning evaluation. We
chose the From Grapheme to Ductus test since it showed the
most clear contribution of our system during Iteration 2.

3.3.3. Removing the Grapheme From the Guess the

Letter Activity to Focus on the Goal of Recalling

Grapheme & Ductus
Another crucial change done was with the Guess the Letter game
activity where the grapheme was removed on the writer side
to force the child to remember the letter grapheme, which was
hypothesized to be more effective to learn the letter compared
to providing the grapheme. Variation between two maps can be
compared by checking with grapheme version in Figure 4 and
without grapheme version in Figure 1C. This adaptation does
not change the learning objective for the guessers but changes the
learning objectives for the writer by contributing to the final goal
of our learning objective: To encourage the child to remember
both grapheme and ductus. If the writer cannot write the letter
properly, by definition the guessers cannot guess correctly. This
becomes a feedback mechanism for the writer to rewrite the
letter by paying better attention to the writing process. Since
the grapheme is not there anymore, it further allows us to
track the progress of the child through the writing trajectory
data which does not necessarily follow the correct path. Some
example trajectory results of this feedback mechanism are given
in section 4.2.

3.4. Testing in the First Therapy Center:
Iteration 4
The activity is tested within the first day of the summer school
with 5 boys for 1 h. The information related to this group can
be seen in Table 1 - Group 1. We encountered a number of
problems in the pre/post-test application, gathered observations
that highlight the added value of the activity, and feedback from
the therapists, which are summarized as follows:

• Problem of sequential testing design: The activity is started with
testing with the grapheme. After second child’s tests, the rest
of the group were bored of waiting for 10 min and the pre-test
was not completed. The sequential design (pre-test one child
at a time) did not work due to the limited attention span of the
target child group. For the following summer school sessions
we decided to do the testing while the other children doing
another group activity and not waiting for each other.

• Added value of the Feel the Robot activity for sensing self-
applied force: Child F has the problem of discriminating
the relationship between his touch sensation and visual
perception. Therapists indicated that Feel the Robot activity
is very useful for children having such problems to train
on exerting the right amount of force by improving the
connecting between sight and touch sensations. As it is
observed with Child F, while the robot was blocked by putting
too much force on it, in order to observe the motion of the
robot, the child was encouraged to balance and reduce this
force. In doing so, he was training in controlling it.

• Motivation and engagement: The overall group motivation
was observed to be high and the attentive time spent on our
activity was observed to be longer compared to other writing
activities. In particular, the total time child F was attentive was
considerably high according to therapists, since he does not
like to write and he did not previously focus on a writing task
for such a long period of time. He was observed to be highly
willing to write with Cellulo and he readily completed all of
the tasks.

3.5. Adapting the Activity to the Second
Therapy Center: Iteration 5
3.5.1. Overview
Apart from the necessities of integration to the occupational
therapy environment, it was observed in the previous iteration
that there may be a need for further adaptation to each therapy
center to be compatible with their learningmethodologies. In this
iteration, besides doing this, we also integrated the previously
suggested changes by therapists to our activity design and flow.
These are discussed below.

3.5.2. Re-designing Visual Cues to Be In-line With the

Present Teaching Methodology
The main change in this iteration was to adapt the cursive letter
shapes and visual cues on the map designs as the way of teaching
cursive letters differed from the previous therapy center: The
letters were adapted to also include the connecting strokes from
the previous (imaginary) letter as the initial stroke, which was not
previously present in our design.

Furthermore, the methodology designed by the ABC Boum+

company4 was adopted as it was being used in the therapy
center. This method combines visual, conceptual and sound
cues with the initial strokes of the cursive letters in order to
reinforce the learning, where the letters are divided into different
conceptual groups according to their initial strokes. We designed
new maps with these new cues instead of the car racing theme,
except the trophy icon at the end which was kept. We also
designed new maps consisting of only the cues to teach the
initial stroke of the corresponding letter group. Three example
map designs from “wave letters" and “skateboarding letters"
groups and their corresponding initial cues can be seen in
Figures 3B,C, respectively.

4ABC Boum teaching approach of graphomotricity, https://abcboum.net (accessed

September, 2019).
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3.5.3. Knowledge Transfer From “Large Letters With

the Robot” to “Small Letters With the Pencil”
In order to reinforce the ductus and grapheme representation
learning, therapists suggested to add writing activities with a
pencil and post-it after each letter practiced with the robot.
The second reason for this addition was to switch between a
gross motor activity to a fine motor activity to help mapping
the learned shape to actual handwriting practice. This allowed
us to confirm whether the writing practice with the robot,
with the pencil and with the ThinkPad pen are similar
or not. See section 4.4 for writing performance comparison
and discussion.

3.6. Testing in Second Therapy Center:
Iteration 6
The activity was tested during the each day of the first summer
school (3 days) with 3 girls. The information related to this group
can be seen in Table 1 - Group 2. Our findings are as follows:

• Effect of summer school context on engagement: For the first day
of the activity, 4 letters were selected, which made the activity
length roughly 50 min in total. This duration was quite long in
comparison with the duration of the other activities within the
summer school. Since it was a summer school including both
gross and fine motor skills, there were several active game-
play sessions including games in the playground, jumping,
climbing etc. Within this context, the duration of the activity
with the robots played a crucial role to keep the attention and
engagement of the children stable. For instance, child J did not
want to continue the activity because the other activities were
more fun in her view. For this reason, from the second day on,
we reduced the number of letters to 3 in the activity, which
reduced its length to roughly 40 min.

• Group therapy including children with different abilities: Child
I (age 5.5) was younger than the rest of the group (mean age
7) and she had not received any lesson on cursive writing
before our activity. Even though it was her first time writing
cursive letters, she was observed to perform well albeit with
the help of graphemes provided to her on a post-it, which was
not given to other children. Child C has problems with fine
motor skills, attention, and organization. Therapists indicated
that sometimes while writing she is not totally concentrated or
focused. She engaged a lot during the robot mediated activities
and liked the game. Each day she wanted to continue to do
more exercise with the robots.

• Pre/post-test mis-perception: The most discriminative test
previously used (writing on top of a grapheme, i.e., From
Grapheme to Ductus) that showed best the progress of the
healthy children in the school context did not work with
some children in this therapy center. These children did
not understand the relationship between these letters and
the activity, and proceeded to fill the letters as if it was
a line following task (see Figure 6 for sample data): The
graphemes on the screen were not perceived as a letter writing
grapheme but as a line to be followed and/or an area to
be painted. Therapists suggested that if there is no stable

grapheme in the test, it might be easier for the children to
avoid this confusion. Therefore, from the second day on, we
switched to the pre/post-test without a stable grapheme where
grapheme was made to appear on the screen for only 1 s
after pressing the grapheme cue button (i.e., From Phoneme
to Grapheme & Ductus).

3.7. Second Testing in Second Therapy
Center: Iteration 7
The activity was further tested during the first 2 days of another
summer school approximately 1 week later, with 4 boys. The
information related to this group can be seen in Table 1 - Group
3. We found that:

• Difficulty of changing the letter maps during the session: Even
though the therapists found the activity useful for children, it
was observed that it is difficult for one single teacher/therapist
to control the whole activity flow including several letter maps
in a session with 4 children. For future use in such group
sessions, they proposed using large, thick sheets of paper or
paper sheets attached to thin wooden blocks for further ease of
changing maps.

• Need for practice in recalling the grapheme: Most appreciated
feature of the activity by the therapists was having separate
sub-activity alternatives, with and without grapheme. It was
suggested that a version of the Drive the Robot without the
grapheme (i.e., empty map, similar to how it is done in the
pre/post-test and the Guess the Letter game) should be added
alongside the one with the grapheme, in order to provide an
exercise in recalling the grapheme of letters.

• Loss of motivation due to passive tasks: In the second day,
one child was observed to lose engagement in the Guess the
Letter game while he is in the role of guesser which resulted
in inattentive and random guessing, as he indicated that he
would like to play the writer role instead. This implies that,
to be more robust against such cases, more variants should be
done to ensure that every sub-activity and every role could be
tweaked to include active participation.

• Need for repeated sessions: Since children learn script letters
before the cursive letters at school, the change could be
difficult for them, as expected. Therapists reported that indeed
more repetition of the sessions is needed before the ductus
knowledge could be fully integrated.

After this session, we also had the chance to get the children’s
feedback on which part of the game they like the most and
the least:

• Child K: He enjoyed every part of the activity, particularly the
Guess the Letter game.

• Child O: He enjoyed Guess the Letter game themost and Drive
the Robot the least.

• Child S: He enjoyed drawing the letter during Drive the Robot
themost, while he enjoyed the rest of the activity in general. He
was very attentive during both days and even named his robot.

• Child M: He enjoyed the writer role in the Guess the Letter
game the most, but enjoyed the guesser role the least.
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FIGURE 6 | Mis-perception of the letter models, the time dimension in the data is indicated by the color of the stroke going from light blue to light pink: Some children

filled the grapheme of the letters as if it is a line coloring/painting activity (on the left, note the strokes going back and forth), or a line following activity (on the right, note

the strokes following the grapheme’s lines continuously but not in the correct ductus) in the pre/post-test with the grapheme.

FIGURE 7 | An example activity flow of a robot-assisted writing session with

two letters and corresponding handwriting data collected with a different

medium in each step.

4. RESULTS

Our iterative design approach allowed us to successfully integrate
our robot assisted writing activity into the occupational therapy
center by adapting the activity as well as the evaluation
methods for different therapy centers and groups. During this
process, a number of different letters are practiced with our
robotic platform during several sessions. In this section, we
first investigate the effectiveness of our activity in teaching the
child participants to write letters. Second, we focus on the effect
of changes made during the iterative processes on the writing
performance. An example activity flow of a refined robot-assisted
writing session and corresponding handwriting data collected
with different mediums in each steps can be seen in Figure 7.

4.1. Overall Learning
During each iteration, before and after the learning session, a
pre/post-test is done to measure the progress in letters learnt
during the sessions. To analyze if there was overall learning
in writing letters for all sessions for all children, we did a
Wilcoxon Signed-Ranks Test, which indicated that post-test error
scores were significantly lower than pre-test error scores [V =

1, 449, p < 0.001, r = 0.42 (moderate effect size)], see Figure 8.

FIGURE 8 | Comparison of DTW error scores of all children for pre-test and

post-test. We found that post-test error scores are significantly lower than

pre-test error scores (V = 1449,p < 0.001).

Since two types of pre/post-test evaluation are used tomeasure
overall learning, we also checked for per-test learning by doing
two separate Wilcoxon Signed-Ranks Tests. In the data collected
with the test with grapheme during Iteration 4 and the first day
of Iteration 6, we found a significant decrease in error scores of
post-test compared to error scores of pre-test [V = 160, p < 0.05,
r = 0.45 (moderate effect size)]. Similarly, in the data collected
with the test without grapheme during day 2 of Iteration 6 and
Iteration 7, we found significant decrease in error scores of post-
test compared to the pre-test [V = 681, p < 0.01, r = 0.65 (large
effect size)], see Figure 9.

In order to test if there is any significant difference between
the average performance of the children in the 3 experimental
groups, a Kruskal-Wallis Test was done which revealed no
significant difference between groups (H = 0.17, df =

2, p = 0.92).
Similarly, we checked child-level difference in overall data

including pre/post-test error scores with Kruskal-Wallis Tests
and found significant difference (H = 18.91, df = 8, p < 0.05).
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FIGURE 9 | Comparison of DTW error scores of all children for pre-test and

post-test using the test with grapheme and the test without grapheme. In both

with and without grapheme tests, post-test error scores are significantly lower

than pre-test error scores (V = 160,p < 0.05, r = 0.45 and

V = 681,p < 0.01, r = 0.65).

FIGURE 10 | Total pre/post-test error score of each child (Excluding three the

children in Group 1 who could not attend pre/post tests due to the time

limitation).

In order to identify which pairs of children is different from each
other, we did multiple pairwise comparisons between children
with a Pairwise Wilcoxon Test and found that error scores of
child J is significantly lower than child I (p < 0.05), please see
Figure 10 for the comparison.

In order to test if there is a significant difference between
children in pre/post-test score difference (improvement in
writing), we did a Kruskal-Wallis Test and found no significant
difference between the improvements of children (H =

8.66, df = 8, p = 0.37).

4.2. Effect of Removing the Grapheme
From Guess the Letter Game on Writing
Performance
In the initial version of the Guess the Letter game, the writer
did not have to reflect on the writing performance as he/she
had the grapheme available directly on the activity map. Upon
removing the grapheme, the writer was obliged to listen to the
feedback given by his/her guesser friends in case they did not
understand which letter is drawn due to poor writing. This
forces the writer to pay more attention to the discriminative
features of letters. To this feedback mechanism, the therapist
sometimes contributes additional cues such as, “Write it bigger,"
“You should make the tail longer," etc. Figure 11 displays the
sample letters written during the Guess the Letter game. Letters
indicated as “Trial 1” are the first writing trials of the children
which are not understood or not guessed correctly by their peers.
Letters indicated as “Trial 2” are the second writing trials of the
children just after getting feedback from peers and therapist on
the first trials.

4.3. Effect of Removing the Grapheme in
Pre/Post-tests on Number of Strokes
Pre/post-test type is changed during Iteration 6 due to the mis-
perception of the test with the grapheme. In order to see the effect
of this mis-perception on handwriting quality, connectedness of
each letter is calculated by counting the number of strokes used to
write each letter.We did aMann-WhitneyU-Test to compare the
number of strokes to write a letter in the test with grapheme and
in the test without grapheme.We found that number of strokes is
significantly higher in test with grapheme (U = 828.5, p < 0.01),
meaning more connected letters were drawn when the grapheme
is not provided, see Figure 12.

We also looked for the change in number of strokes before
and after the writing activity. A Mann-Whitney U Test is used
to compare the pre-test and post-test in the number of strokes
(using data from both the test with grapheme and the test without
grapheme). We found that the change is not affected by the test
type (pre-test v.s. post-test), and there is no significant difference
in the change of number of strokes (U = 290.5, p = 0.31).

4.4. Knowledge Transfer
In Iteration 5, in order to switch between gross and fine motor
activities after each letter practice with the robot, the therapists
suggested to let the child write the letter in focus with a pencil
on a post-it. This also allowed us to monitor the differences and
similarities between the writing practice and performance with
our robot on an empty map, and with a pencil on a post-it. In
this comparison, we also included the writing on the tablet screen
with its pen, used in the pre/post-tests, in order to compare and
contrast our evaluation practice against the actual writing task.
Sample letter performances in this comparison can be seen in
Figures 13, 14.

In all three variations of the given samples, there is general
consistency in the grapheme and ductus. Nevertheless, it is
clearly visible that there is increased jerkiness of motion in
most of the letters written with the tablet pen compared to the
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FIGURE 11 | Sample improvements in Guess the Letter game trials. The time dimension in the data is indicated by the color of the stroke going from dark red to

purple. (A) Trials of writing “d.” On the second trial, the child made the upper tail of “d” longer to differentiate it from “a,” which was the previous answer from the

guessers. (B) Trials of writing “g.” On the second trial, the child made the curved tail of “g” rounder to be more clear for the other children who were guessing. (C)

Trials of writing “n.” In the second trial, the child wrote a better version of “n” by paying attention to the cursive start. (D) Trials of writing “c.” On the second trial, the

child made the “c” more curvy. (E) Trials of writing “m.” In the second trial, the child wrote a better version of “m” by paying attention to the proportional size of its

different parts. (F) Trials of writing “n.” The child wrote a better version of “n” in the second trial by paying attention to the direction of the lines and cursiveness.

ones written on paper and written with the robot. There are
further slight differences between themethods, such as alignment
problems with “a” and “g” in the case of the robot. Finally,
the letters written by Child I were observed to be inconsistent
in general, which may be due to several reasons including the
child’s age, her current stage of learning and the nature of the
letters. See the corresponding discussion points below on each
of these observations.

5. DISCUSSION

5.1. Overall Learning
The presented activity is designed to support children in learning
to write cursive letters within occupational therapy sessions.
Reported experimental results suggest that children having
writing problems are able to improve in letter writing after the
use of the system for one session. This was evident by an overall
significant decrease in error scores of post-test compared to the
error scores of pre-test.

Furthermore, while investigating individual performance
differences per child, we found that only the performance of child
J and child I were significantly different than each other. As can be
seen in Table 1, child I was the youngest participant, having her
first experience with cursive letters, while child J has the overall
best performance and high intelligent assessment.

The score data probing the learning gain differences per child
show that even though the levels of the children are different,
the learning gains in handwriting are similar, thus suggesting
that the activity is inherently adaptive to the learner’s abilities
and expertise.

5.2. Effect of Removing the Grapheme
From Guess the Letter Game on Writing
Performance
As results in section 4.2 reflect, providing another version of
the game by removing the letter grapheme from the writer side
allowed children to learn from their errors when their peers
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FIGURE 12 | Total number of strokes to write a letter with the test not including

a grapheme (on the left) and with the test including the letter grapheme (on the

right). We found that the number of strokes is significantly lower in test without

the grapheme than in the test with the grapheme (U = 828.5,p < 0.01).

could not guess the correct letter. Here, adaptive content of the
game allowed us to change the learning goal of the game for
the writer, i.e., remembering the ductus in the version with the
grapheme v.s. remembering both the grapheme and the ductus
in the version without the grapheme. In the version without the
grapheme, we observed that the writer child was encouraged to
focus on the proportionality of the letter’s parts, as well as its
discriminative parts from other letters. For instance, in Figure 11,
the first trial of letter “d” was perceived as an “a” by the guessers
and the writer prolonged the upper tail of the letter “d” to make it
distinguishable from an “a.” The sequence of “n” letters written
in the second trials shows the importance of paying attention
to the starting gesture and direction of the strokes belonging to
the letter.

Even though the learning objective for the writer is changed
for the occupational therapy, if desired, within the session, the
version with the grapheme can be rapidly switched to, in the case
where the learning objective is the ductus only, e.g., in case of a
very preliminary learning stage.

The new Guess the Letter game version can also improve
children’s understanding by their peers in successive trials.
Peer collaborative interactions are crucial for a child’s learning:
Vygotsky (1980) stated that learning awakens in children a
variety of internal developmental processes that can operate
only when they interact with more competent people in their
environment and in cooperation with their peers. The effect of
removing the grapheme placed onus on both participants in the
Guess the Letter game, brought cooperation to the forefront and
was supported by the therapist cues - all highly benefiting the
writer in enhancing their learning.

5.3. Added Value of Adaptive Content
The behavioral observations and feedback of therapists through
the iterations emphasized the importance of using adaptive
interfaces. The unique localization mechanism of the Cellulo
platform allowed us to switch from with grapheme to without

grapheme versions of the sub-activities, easily adapting to
different learning objectives for different letter representations.

The ability to change the number of letters to be learned
during sessions and between sessions enabled adapting the
activity flow and the total time of the therapy session. We were
able to thus tune the duration of Guess the Letter and the
total number of times Watch, Feel and Drive the Robot sub-
activities by taking the motivation level of the children into
consideration. This temporal adaptivity is learned to be crucial
in a therapy setting: We experienced a number of failures due to
the previously fixed natures of the activity in various iterations,
which had been successfully applied previously in a public school
environment with typically developing children. In this case, the
limited attention and concentration spans of some children in
need of such therapy in handwriting absolutely requires this
kind of adaptivity; otherwise the activity risks failing at some
point. From another perspective, different therapy centers vary
in their availability in time and this availability is typically very
limited. These two facts further emphasize the importance of
temporal adaptability in enabling applicability in a large number
of therapy centers, as opposed to being targeted to the scheduling
and practices of a single collaborating center.

Adding traditional paper-based activities between each robot-
assisted letter activity allowed us to encourage mapping between
large and small letters, and between the writing tool used i.e.,
robot and pen, while allowing us to switch between training
gross motor skills and fine motor skills. This change also
allowed us to compare and contrast the performances while
using different writing media. This is another form of adaptivity
of our system design providing another kind of added value,
namely adaptability and especially flexibility for integration with
traditional practices, which we have previously shown to be
potentially useful in improving the gain from the robot-assisted
activity (Asselborn, T.* et al., 2018).

5.4. Added Value of Robotic Platform
Capabilities
The Cellulo platform allows us to implement parallel robot
behaviors where the tasks for different children can be
orchestrated simultaneously within the same activity. By scaling
up/down the number of robots, the activity can serve to groups
of different number of children where one robot can be assigned
to one child and be programmed to do the same task as all
other robots do. This feature allowed us to design three such
sub-activities: Watch, Feel and Drive the Robot.

Tests conducted in therapy environments highlighted an
advantage of another feature where a robot becomes active when
the corresponding child puts his/her robot on his/her paper map,
since the localization is dependent on the paper. This allows
parallel activity flow that is compliant to each child’s attention
and intention to start.

The Cellulo platform also provides synchronized robot
behaviors where the behaviors of each robot can depend on
each of the other robots, i.e., provides swarm behaviors. Using
this attribute, we designed the Guess the Letter game where the
writer robot guides the rest of the robots. In different therapy
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FIGURE 13 | Samples of letters “m,” “r,” “d,” and “g” written with a pencil on a post-it, with ThinkPad pen on a screen and with the Cellulo robot on an empty paper

map. The time dimension in the data coming from ThinkPad pen writing is indicated by the color of the stroke going from light blue to light pink. The time dimension in

the data coming from the robot writing is indicated by the color of the stroke going from dark red to purple.
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FIGURE 14 | Samples of letters “a,” “g,” and “n” written with a pencil on a post-it, with ThinkPad pen on a screen and with the Cellulo robot on an empty paper map.

The time dimension in the data coming from ThinkPad pen writing is indicated by the color of the stroke going from light blue to light pink. The time dimension in the

data coming from the robot writing is indicated by the color of the stroke going from dark red to purple.

centers and sessions, we had varying room settings according
to the availability of dissimilar rooms and tables with varying
number of children attending the session. Synchronous and
parallel capabilities of the robots enable parallel and/or shareable

activity workspaces where we can group or separate children,
distributing them to different tables with different workspaces as
needed. Therefore, the system can be adapted to: (1) The unique
room settings of different therapy centers involving the size of the
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tables, the number of tables and the type of the divider preventing
the guessers from seeing the writer during the Guess the Letter
game; (2) Number of children attending the session.

5.5. Effect of Pre/Post-test
After using a pre/post-test targeting the measuring of three
different learning objectives in Iteration 2, we found that
integrating all of these objectives into the therapy environment
may not be feasible due to time limitations. Therefore, one
test among them that most strongly emphasizes the added
value of our activity was selected for use in therapy sessions.
However, during the sessions of Iteration 6, the test was
mis-perceived as a line following or coloring activity by
some children.

This is evidence that perception of such activities by children
with attention or visuomotor coordination problems might differ
from typically developing children. Even within each group, there
may be differences on perception and mapping capabilities. As
results in section 4.3 indicate, the device or medium used for
pre/post-testing may affect the resulting performance, simply
because of this mis-conception of the provided test design.
Therefore, for each special group, the system should be able
to provide alternative pre/post-test design choices and the
designers should question whether they can use the pre/post-
tests which are typically designed for regular schools in a special
education setting.

5.6. Effect of Writing Tool and Knowledge
Transfer
Accommodation of the hand and the grasping and moving
styles were different in each medium. Typically for the screen,
there were unintended touch events caused by resting one’s
palm or grazing the fingers over the surface. Presumably
because of this phenomenon, some children were observed
to adopt an uncomfortable writing position to avoid the
unintentional touch event. Another reason for this observation
might be the dissimilarity between the friction provided by the
tablet surface and its pen, and the typical friction provided
by pen and paper surface. A previous study (Annett, 2014)
reported that many participants felt that “there was not enough
friction between the pen and screen to feel natural” and
their hand jerked across the screen as they moved it. This
mismatch was also reflected in the number of participants
who floated their palms above the surface of the screen
which might be due to the different feeling of new pen and
screen friction type different than the friction between pencil
and paper.

Even though there is jerkiness of motion with the digital
pen and screen, the letter shapes in our case are observed to
be similar to the ones written on paper, even when we take
into account that children are used to writing with pen on
paper as typical handwriting practice, and that a digital pen
is a new medium for them. Furthermore, the data and the
information that a digital platform provides is very valuable from
the perspective of teachers and therapists: For instance, this data
can be easily made to reflect if the child knows the grapheme
and ductus by providing direction information with color coding.

For this reason, it must be considered by the designers of
handwriting learning activities whether this jerkiness of motion
is an important factor or not, and whether it disallows the use of
tablets, depending on the needs of the specific application.

In the robot medium, children are using the whole hand
to grasp the robot which makes the practice more comparable
to gross motor action supported by arm motions, where it is
typically easier to control the writing action. This may be a
strong reason why we do not observe jerky motion in robot
writing. From another perspective, teachers indicated that it
is very promising how children can reflect the knowledge of
writing onto a robot, which is to a certain extent different
than other typical school activities including writing with
finger, with pen or with pencil: The robot appears to support
the skill transfer from pen and pencil, where all the letters
look like written letters when viewed in the same size. This
indicates the potential of the robots as an interesting alternative
approach providing more feedback than a traditional sandbox or
home remedies.

Even though there is a lack of visual feedback of the
written letter with the robot (the robot does not leave
any “ink" on the paper), the letters written with the robot
were observed to be of similar quality to the ones written
with the pen on paper. However, the alignment of the
strokes which pass over or under previously drawn strokes
were more difficult to adjust on an empty map since the
previously drawn part of the letter cannot be seen visually.
This results in typically more disproportionate parts in letters
involving such strokes, such as “g”: This is exemplified in
Figures 13, 14, which also show a similar problem in the
letter “a” whose initial connecting stroke is typically more
disproportionately positioned compared to pen and paper where
the strokes can be made to pass exactly on top of each other
more easily.

Comparing the writing of the letter with a pencil on a post-
it, then with the robot on an empty map, and finally with
a tablet pen on a screen, gives a useful picture to the child’s
strengths and points where he/she is having difficulties: Fine
motor skills, gross motor skills, child’s preference of the tools
etc. By learning more about where an exact difficulty or strength
may be for given child, a therapist or teacher can add more
tools and options to support him/her with overcoming his/her
writing difficulties. Furthermore, it gives a variety and interest
to the practice that pencil and paper alone cannot provide. It
provides an opportunity for the child to work with their favorite
writing tool and transfer the grapheme and ductus skills to a less
favored tool.

From an individual child level, only the performance of the
5.5-year-old Child I was observed to be inconsistent across the
writing tools. This may be due to the lack of orthographic coding
of the letter “n” in this child which facilitates forgetting the
grapheme of the letter, which could have occurred at different
points in time within the activity. It could also be letter dependent
since the cursive letter “n” has repetitive bumps making it harder
to consistently reproduce. It may be found by future studies that
the expectation of mastery in the cursive grapheme and ductus at
this age is not be feasible at all.
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5.7. Activity Presentation and the Overall
Theme
A child who does not enjoy writing was totally engaged for 40
min of the session that was presented within a writing theme
(Child F), whereas another child totally lost attention after 30
min of the session that was presented in a more physically active
theme (Child J). Here, we observed that the general theme of
the therapy session may drastically affect the perception of the
proposed activity. For instance, if the robotic writing activity
is part of a general writing session, it may boost the child’s
motivation and engagement. However, presenting it among other
activities involving games with more physical activity where
children can run, jump, climp etc. can make it more difficult
and less motivating for the child to sit down and concentrate for
40 min. Therefore, the general theme within which the writing
activity will be proposed should be considered carefully when
designing the activity flow, and its duration and composition
should be adapted accordingly.

5.8. Novelty Effect
Even though the engagement was observed to be very high for our
studies which took 2–3 days, it is not realistic to expect efficiency
and engagement in the long term because of the well-known
novelty effect typically associated with technologies such as ours.
For overcoming this challenge, we hypothesize that the activity
could be extended with new drawing concepts and free-drawing
sessions. These sessions may include drawing any geometrical
shapes, numbers, animals or objects with their model visible in
the Feel and Drive the Robot sub-activities or the Guess the Letter
game. Guess the Letter can also be modified by various themes,
such as:

• Writing the first letter of a friend’s/object’s/animal’s name and
guessing who/what it is.

• Free-drawing where the writer child can draw anything they
imagine without necessarily using a model: A toy, a house, an
umbrella etc.

• Writing the initial cue of the letter (such as wave) while the
guessers guess the group of possible letters (such as “a,” “c,” “d,”
and “g”) as a more advanced sub-activity.

5.9. Limitations and Future Work
Even though writing on an empty map pushes the child to
remember and practice what they learned before, the robotic
platform lacks visual feedback since it cannot provide the visual
output of what is previously drawn by the child. The only
feedback is the peers’ perception of the writing and the therapist’s
cues such as: “Your friends didn’t understand what you drew,
you should write it bigger” or “Please write it as cursive as we
learned today.”

Another practical limitation of the system is the need to secure
paper sheets to the tables, typically done with non-permanent
adhesive such as masking tape. For a group of children having
attention problems, this alone may create a need for a second
therapist since they lose attention quickly while waiting for a
preparation process even though it lasts only a few minutes. An
alternative is to involve children themselves in this process and

having them aid in the preparation and application of the tape,
which may also be argued to promote fine motor activity.

The results show the overall effect of the system on progress to
handwriting quality of 9 children with visuomotor coordination
and attention problems (excluding 3 children whose test data
were incomplete). Since the main purpose of the study was to
adapt the system to the environment rather than adapting the
therapy to the proposed robotic activity, we had a heterogeneous
group of children which was a natural aspect of a group therapy
session in an occupational therapy center. In order to have more
generalizable outcomes, the activity should be further tested in
different institutions with more children ranging in age and in
difficulties they have. The overall effect of the refined robotic
activity (through iterative design process) should be compared
with a traditional training process in therapy centers within
a study similar to the one conducted in the preschool study.
Further research is also needed to investigate the long term
improvement and retention in ductus and grapheme learning in
such children.

Comparing the results of the children in the therapy center
with those of the children in preschool would give us precious
insights on the value of the activity with the robot. However,
the designs of the activity carried out within school and within
the iterations at the therapy centers differ on a number of
crucial variables including total duration of the writing activity,
mean age of children and device that is used for pre-post
test, which reduces the validity of a comparison between the
data already collected. Therefore this comparison should be
considered for a more controlled follow-up study specifically
targeting this question.

The results comparing different writing media and
investigating knowledge transfer are limited to observational
inputs. In order to explore the knowledge transfer more in depth,
more experiments should be conducted where the focus is on
transfer learning with quantitative methods.

6. CONCLUSION

Robot-assisted activity was integrated to different occupational
therapy sessions and was shown to improve the letter writing
performances of children with visuomotor integration and
attention problems. This emphasizes the Cellulo interface as
a potential tool to conduct handwriting training to teach
ductus and grapheme of the letters in multi-child special
education environments.

The effective integration of the robot-assisted system into
the occupational therapy environment demanded variants of
different content throughout the iterations. These modifications
included the adaptation of the duration of sub-activities,
adaptation of the number of letters and repetitions of each letter
in these sub-activities, adaptation of the map graphemes and
themes, adaptation of map content (with/without grapheme)
within the game, adaptation of game duration and adaptation
of activity flow, selectively integrating with traditional practices.
These adjustments assisted the consistency and overlap of the
learning goals determined by the therapists and the learning
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goals of the activity. They also allowed adequate engagement
of the different groups of children while fitting into the typical
timeframe of an occupational therapy session.
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This article reports on two studies that aimed to evaluate the effective impact of

educational robotics in learning concepts related to Physics and Geography. The

reported studies involved two courses from an upper secondary school and two courses

from a lower secondary school. Upper secondary school classes studied topics of motion

physics, and lower secondary school classes explored issues related to geography.

In each grade, there was an “experimental group” that carried out their study using

robotics and cooperative learning and a “control group” that studied the same concepts

without robots. Students in both classes were subjected to tests before and after the

robotics laboratory, to check their knowledge in the topics covered. Our initial hypothesis

was that classes involving educational robotics and cooperative learning are more

effective in improving learning and stimulating the interest and motivation of students.

As expected, the results showed that students in the experimental groups had a far

better understanding of concepts and higher participation to the activities than students

in the control groups.

Keywords: educational robotics, metacognition, physics, geography, playful-based learning

INTRODUCTION

Technological development in the twenty first century has led to the introduction of new types
of technologies in the educational field. One exciting technological innovation is educational
robotics (ER), i.e., the application of robotics in an educational context. In this approach, students
acquire specific skills (e.g., knowledge of electricity, electronics, robotics) and develop strategic and
dynamic capabilities in a playful context that is supposed to increase a learner’s motivation and
engagement, and facilitate learning. Robotics, indeed, allows the application of the principles of
constructivism (Piaget and Inhelder, 1966), constructionism (Papert, 1980, 1993), and embodied
cognition (Shapiro, 2010) to learning.

The Theoretical Background
According to Piaget’s principles, cognition develops as an active process in the mental construction
of knowledge related to concrete objects in the environment (Piaget and Inhelder, 1966). Papert
(1980), starting from Piaget’s principles, claimed that learning should not simply be considered
the acquisition of behaviors or skills. Instead, it is a subjective process of structuring knowledge,
facilitated and enriched by the environmental production of concrete objects defined by the author
as “objects to think with” (Papert and Harel, 1991). Papert assigned a high value to concrete
thinking, the physical dimension and tangible products of human intelligence (Turkle and Papert,
1992). From his “learning by doing” perspective, ideas are formed and transformed when they are
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expressed through different tools, when they are used in
particular contexts and when individual minds elaborate them.
The author deals with the concept of “construction sets”: every
mental construction (or robot components, in the case of
educational robotics) can be metaphorically associated with parts
assembled and built together (Papert, 1980), allowing people “to
think with” technological artifacts.

Recently, Raskin (2002) claimed that knowledge is not built
through ontogenetically programmed stages of learning, but that
it is developed through continuous actions and doing, and the
adaptation of the child in the environment with which they
interact. In this framework, learning is stimulated by approaches
focused on “doing” and on the production of tools that encourage
the learner to activate this “constructive” way of learning.
Suitable learning contexts should be able to promote: (a) the
use of functional strategies to achieve pre-established goals; (b)
exposure to different points of view; (c) the involvement of
students as an active part of the educational activity; (d) the
role of the teacher as a facilitator of the “source of knowledge”;
(e) cooperation through the social negotiation of meanings
(Vygotsky, 1978); and (f) the use of investigation methodologies
as proceeding by trial and error and the activation of problem-
solving. Herrington and Kervin (2007) suggest an extension to
constructionism by inserting the construct of “authentic activity,”
or “poorly defined” activities, requiring students to define the
necessary tasks and sub-tasks to complete them. The authors also
specify that some kind of “poorly defined” activities may include
complex tasks to be investigated over an extended period, which
offer students the opportunity to examine the task from different
perspectives by using a variety of resources and by providing
an opportunity to collaborate and to reflect. We claim that ER
satisfies all these requirements for such useful learning contexts.

The importance of educational robotics is also supported by
the embodied cognition theoretical approach (Shapiro, 2010),
which emphasizes the value of experiential activities in teaching.
Embodied cognition is a multidimensional and interdisciplinary
construct developed through the contribution of scientific
disciplines such as neuroscience, psychology, philosophy, and
cognitive sciences. The embodied cognition approach overcomes
the debate about the role of the brain/body or the environment
in the development of the human mind (Gibbs, 2005). Simply,
it considers the body and the environment as an “extension” of
the mind. From the perspective of embodied cognition, any kind
of human cognition is embodied. In the study of the mind, the
role of the body and its interaction with the environment is thus
essential. The body ensures coordination between cognition and
action, and it facilitates or hinders cognition. Similarly, in ER,
learners experience a direct connection between body and mind,
and the way the characteristics of the body affect and are affected
by the functioning of the mind.

Two main typologies of robots are traditionally employed
in the ER field. The first type is classified as a humanoid or
zoomorphic robot, as NAO (Shamsuddin et al., 2012) or Pleo
(Kim et al., 2013). Robotics construction kits such as LEGO R©

kits, are a different kind of tool. Humanoid or zoomorphic
robots are employed to study human-robot interaction and to
improve social skills in children, since they reproduce human or

animal-like interactive behavior. Social robots have the advantage
of being able to show “human social” characteristics, such
as emotions and autonomous language simulation; they can
establish/maintain social relationships; they employ natural cues
(gaze, gestures, etc.), and learn/develop social competencies
(Fong et al., 2003). Social robots are employed in the educational
field, for instance, as tutors/teachers or as peers in an educational
context (see Belpaeme et al., 2018, for a review). The user does
not have the ability of modifying the robot bodies, however, and
they are generally expensive, and require advanced expertise in
computer programming.

Robotics construction kits, on the contrary, allow the user
to build small mobile robots using bricks, sensors, and motors.
A simple visual blocks programming language programs the
behavior of the robot. These tools stimulate creativity and
manipulation. They may be used to perform various activities
and to teach various skills in children and adolescents. From our
perspective, the use of robotics construction kits is one of the best
ways to allow children to work with artificially extended minds.

The Empirical Evidences
A number of authors have employed robotics construction
kits over the past 15 years, for improving cognitive abilities
in children with special needs, and for enhancing social and
cooperative dimensions and learning in a school context.

In one of our early studies, we documented significant
improvements in the academic performance and metacognitive
and motivational processes in a student with intellectual
disability (Caci and D’Amico, 2005). Similarly, Fridin and
Yaakobi (2011) show that robotics can help to improve
memory and attention in children with attentional deficit and
hyperactivity disorder. More recently, after a robotics lab, we
observed improvements in the short-term memory and visual-
spatial abilities in a student with visual-spatial difficulties. A child
with an intellectual disability and attentional deficit also showed a
reduction in behavioral problems (D’Amico and Guastella, 2019).
In our 2013 study (Caci et al., 2013a,b), we demonstrated that
robotics labs improve the visual-spatial abilities of groups of
children with typical development. We also described (D’Amico
and Guastella, 2018) how robot construction kits can be adopted
in the field of affective computing to support the social and
emotional learning of children with typical development or with
special needs. In fact, in a study involving a child with autism
spectrum disorder, we observed significant changes in social
reciprocity and emotional expression, as well as improvements in
fine motor skills, verbal and preverbal skills, and a considerable
increase in the child’s interest in the activity and in-play skills
(Guastella et al., 2020).

Many authors have claimed that educational robotics is
positively correlated with collaborative learning behaviors, social
skills, and the perception of individual and collective self-efficacy
(Denis and Hubert, 2001; Kanda et al., 2012). In a school context,
the most frequent application of robot construction kits is as a
tool for supporting learning in the STEM disciplines (science,
technology, engineering, and mathematics). Williams et al.
(2007) showed how cooperative learning activities associated
with technological tools facilitate the learning of physics in
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secondary school students, but not in science. Barak and
Zadok (2009) aimed to improve learning concepts in Science,
Technology, and problem-solving, and showed that the use
of a project-based methodology through the use of robotic
kits in high school had benefits for an individual’s cognitive
flexibility, problem-solving and teamwork. Barker and Ansorge
(2007) found that an educational robotics course focused on
science teaching improved academic performance in a group of
students, aged 9 to 11, compared to a control group. Whittier
and Robinson (2007) showed that non-English students made
significant gains in their conceptual understanding of science
concepts after ER activities. Finally, Wei and Hung (2011)
showed that ER provides learners with more opportunities for
hands-on exercises in mathematics, deepens their perception of
the learning contents and that it improved their motivation in
the study.

As Toh et al. (2016) claimed, many studies using ER
are based on qualitative results, and only one (Whittier and
Robinson, 2007) used a quasi-experimental design and provided
quantitative measures. Other studies providing quantitative
measures are thus needed to confirm the results about learning
in STEM disciplines. At the same time, it is crucial to determine
whether educational robotics can support learning other than in
the STEM disciplines.

Starting from these considerations, we carried out two studies
in schools using a quasi-experimental design and employing
quantitative tools to measure the impact of educational robotics
for fostering the learning of physics and geography. We will first
describe the study that involved students from upper secondary
school and then the study that involved lower secondary school
students, although both studies were carried out independently
and at almost the same time by teachers that were been trained in
Educational Robotics.

STUDY 1

The goal of Study 1 was an evaluation of the application of robot
construction kits as tools for supporting the learning of STEM
disciplines. In particular, we focused on teaching and learning the
concept of physics.

Method
A quasi-experimental design was used: two classes of the same
level were selected. One was assigned to the experimental
condition (ER-Physics Lab, described in section The Empirical
Evidences) and the second was assigned to the control condition.
The class assigned to the control condition attended only one
lesson about robotics (focusing on the use of sensors, actuators
and processors), but then they attended traditional theoretical
lessons about physics, studying the same concepts than students
in experimental condition. Both classes shared the same teacher
of physics. To test the efficacy of the experimental condition,
before and after the whole set of lessons, students in the
experimental and control classes completed two questionnaires
about physics concepts. We also collected their school marks
for physics.

Participants
A total of 49 students (26 males, 23 females) of about 16 years
of age (mean = 16 years, standard deviation = 12 months)
participated in the study. They were divided into an experimental
and control group. They were from two classes attending the
third year of an Italian upper secondary school. One class,
including 23 students (11 males, 12 females), was assigned to
the experimental condition, and the other class, including 26
students (15 males, 11 females), was assigned to the control
condition. There were no students with special educational needs.

Although all the students in experimental condition attended
the laboratory, some were excluded from the final analyses since
they missed more than two lessons during the laboratory or
because they were absent when the pre-test or the post-test
was administered (this kind of dropout, unfortunately, is very
frequent in studies performed at school). We were thus able
to perform the final analyses on a total of 8 students for the
experimental group (6 males, 2 females) and 9 students (5 males,
4 females) for the control group.

The ER-Physics Lab
The class in the experimental condition attended the ER-Physics
Lab, which included activities concerning the use of ER for
teaching and learning concepts of physics, and particularly the
concepts of energy and motion. Lessons were conducted by the
teacher, in collaboration with the experimenter from our team, in
the role of observer.

Five LEGO Mindstorm EV3 robotics construction kits and
five PCs were used in the school’s computer lab. The students
were divided into five groups so that each group had the
opportunity to use one robotic construction kit. The ER activities
were carried out in 6 weekly lessons lasting 2 h each, as
described below.

First Lesson

During the first lesson, the students learned to use the
main programming blocks related to the robot motion
and functionalities of the sensors. After a brief theoretical
introduction, they were free to perform two simple robot
motion programs by employing sensors to avoid obstacles, or
to stop when a specific condition occurred. At the end of the
programming phase, each group showed the program to the
other groups, describing the main problems encountered and
illustrating the solutions found to solve them.

Second Lesson

The second lesson focused on the use of flow programming
blocks (loop, switch and wait) and the data operations (variable
definition, mathematical operations, and arrays) necessary to
code the formulas about motion. The students attended a
tutorial and coded a program using these functions. At the
end of the programming phase, they showed their results to
their classmates.

Third Lesson

During the third lesson, after studying formulas for motion
calculation, and the respective inverse formulas, each group had
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to solve a problem with physics using robots. The first step was
to estimate the robot’s speed. This is a function that is not pre-
programmed in EV3 construction kits. To achieve the goal, they
employed a meter tool to calculate the length of a path and a
stopwatch to measure the time needed by the robot to follow
it. Once the students had captured data about space and time,
they easily derived the robot speed. The information was then
employed to predict the robot’s travel time along a straight path
or to measure the length of different surfaces, by applying the
inverse formulas of the uniform rectilinear motion.

Fourth Lesson

At the fourth lesson, the students were asked to implement a
program to compute the speed and acceleration of the robot
through the radius of wheels and the number of rotations of
an engine. The robot was programmed using specific variables
(in this case, the time and the number of rotations) and by
displaying the results on the computer programming interface or
in the small display embodied in the robot. Every time the engine
power and the distance traveled were modified, then the program
computed and displayed the new speed and acceleration. At the
end of the programming phase, each group showed their results
to their classmates.

Fifth Lesson

During the fifth lesson, the students were asked to calculate
the speed of a rotating rod attached to a robot wheel (whose
radius was known). The students were also asked to calculate the
acceleration of the rod. This request was made in order to activate
the students’ critical reasoning capabilities, as they had to realize
that the required calculation could not be done using the available
data only.

Sixth Lesson

During the final lesson, students created a program of their
choice using the formulas or programming blocks employed
in the previous lessons, according to the concepts of physics
or programming.

They created exciting programs: Group 1 created a robot that
computed its length when dragged on a surface; Group 2 created
a robot able to follow a path without impacting against walls
or obstacles; Group 3 worked on a variant of the robot that
calculates its speed but without using the stopwatch and setting
a timer, so that the robot would stop after a period; Group 4
proposed a variant of the robot that calculates distance, was
able to display the results of the calculations on the embodied
display and to keep the previous measurements in its memory;
and finally, Group 5 created a robot able to recognize the color of
a spherical object and to carry it to a predetermined position.

Measures
Physics School Marks

The average marks gained by each student in physics before and
after the study activity were computed by the teacher. They were
based on the student’s performance in both written assignments
and oral questions and, as usual in Italian schools, ranged from 0
to 10.

Questionnaires About Physics and Robotics

In the test and the re-test phase, we employed two parallel
questionnaires that covered the topics of physics and robotics
and were focused on the periods before and after the lab.
Both questionnaires were prepared by the teacher and presented
slightly different items, but with the same level of difficulty.
They both comprised eight questions: two questions concerned
physics problems where the students had to choose the correct
formula to solve a problem. The remaining six questions covered
topics related to robotics (sensors, actuators, processors, and
data collection).

The questionnaires about physics and robotics are to be
considered objective measures of learning since they were based
on answers given by the students. They were employed to avoid
teachers being influenced by the experimental hypotheses when
evaluating the students.

Both questionnaires were administered in the classroom,
separately for the experimental and control group, in two joint
sessions before and after activities.

Results
A series of 2 × 2 factorial ANOVA using group (experimental,
control) × time (test, retest) were performed on data collected
during test and retest phases. The analyses were performed on:
(a) the average marks in physics; (b) the total score for the
questionnaire (QTot); (c) the score related only to questions
about physics (QPhys); (d) the score related only to questions
about robotics (QRob).

The means and standard deviations of all measures collected
in the experimental and control groups before and after the
activities and results of statistical analyses are shown in Table 1

and Graph 1.
The results of the Group x Time factorial ANOVA performed

on the average marks for physics collected before and after
the activities did not reveal a significant main effect for Group
[F(1, 15) = 1.69, p = 0.202, η2 = 0.102], Time [F(1, 15) = 0.12,
p = 0.736, η2 = 0.008), nor interaction Group × Time [F(1, 15)
= 0.80, p = 0.386, η2 = 0.050]. The average marks of the
students in the Experimental and Control groups for Physics
were thus similar before the start of the activities, and had not
substantially changed from test to retest for either the students in
the experimental group, nor for those in control groups.

The ANOVA computed on the total score of the questionnaire
(Qtot), conversely, showed the significant main effect of Group
[F(1, 15) = 18.87, p = 0.001, η2 = 0.557], indicating that, in
general, the experimental group obtained better results than the
controls in the questionnaire. The significant main effect of Time
[F(1, 15) = 10.62, p = 0.005, η2 = 0.415] indicated that all the
participants improved their performance in Qtot from the test
to the retest. A significant interaction between Group and Time
[F(1, 15) = 8.97, p = 0.009, η2 = 0.374] indicated that students
in the experimental group improved significantly more than
students in the control group.

Significant results were obtained even when only the test
scores relative to physics were taken into account (QPhys). The
results of the ANOVA indeed showed a main effect of Group
very close to statistical significance [F(1, 15) = 4.21, p = 0.058,
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GRAPH 1 | Study 1: Scores of experimental and control group for all variables measured in test and retest phases.

TABLE 1 | Mean and standard deviation of all measures collected in the experimental and control groups and results of statistical analyses.

Experimental group Control group ANOVAs

Before After Before After Group Time Group × Time

M SD M SD M SD M SD F(1, 15) F(1, 15) F(1, 15)

Average Physics school marks 5.75 1.03 6.00 1.19 6.67 1.41 6.56 1.23 1.69 0.12 0.80

Questionnaire: Total score (QTot) 4.63 1.302 7.25 0.886 4.22 1.093 4.33 1.323 18.87** 10.62* 8.97*

Questionnaire: Physics problems (QPhys) 0.38 0.518 1.50 0.535 0.89 0.33 0.33 0.500 4.21 2.90 25.28**

Questionnaire: Robotics questions (QRob) 4.25 1.03 5.75 0.46 3.33 1.00 4.00 1.00 20.53** 10.65* 1.58

*p < 0.05, **p < 0.001.

η2 = 0.219], indicating that, in general, the experimental group
obtained better results than the controls in QPhys. The non-
significant main effect of Time [F(1, 15) = 2.90, p = 0.109, η2

= 0.162] indicated that when the score of all participants was
taken together, there was no improvement from the test to
the retest session. A significant interaction between Group and
Time [F(1, 15) = 25.28, p < 0.001, η2 = 0.628] indicated that
students in the experimental group improved significantly more
than students in the control group in answering the questions
about physics.

The ANOVA performed on the item of the questionnaire
related to questions about robotics only (QRob) demonstrated
that there was a significant main effect of Group [F(1, 15) =

20.53, p < 0.001, η2 = 0.578], indicating that students in

the experimental group answered better than students in the
control group. The main effect of time [F(1, 14) = 10.65, p =

0.005, η2 = 0.415] indicated that both the experimental and
control group improved their performance in QRob from test to
retest, however, and, unexpectedly, that there was no interaction
between Group and Time [F(1, 15) = 1.58, p = 0.229, η2 =

0.095], indicating that there was no significant difference in the
improvement of students belonging to the experimental group
when compared to students in the control group.

Discussion
The results of Study 1 demonstrated that the ER-Physics
Lab failed to exert a significant improvement in the general
knowledge about physics, since we did not find any difference
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between the experimental and the control group in their average
marks for physics, however, it has to be said that none of the
students (in the experimental or the control group) showed an
improvement in the average physics mark from test to retest,
probably because these marks were based on a range of school
activities and they generally remain reasonably stable in a narrow
period such as that considered in the study.

Remarkably, thanks to the ER-Physics Lab, students in
the experimental group obtained a significant improvement
compared to students in the control group when answering the
questionnaire about physics and robotics administered before
and after the activities. An in-depth analysis revealed that the
group differences concerned their abilities when solving the
two problems with physics. At the same time, there were no
significant effects due to the ER-Physics Lab when answering
the questions about robotics. This is because the questions
about robotics concerned general knowledge about the use of
a robot’s components, which students in the control group
may have acquired during the frontal lesson about robotics.
Conversely, solving a problem of physics requires a more in-
depth understanding of the physics concepts, and, in this sense,
the results demonstrated that the ER-Physics lab allowed students
to acquire significant and conceptual learning about the topics in
focus during the lab.

Impressive outcomes were derived from the informal
observations performed during the lab by the teacher and by
the experimenter. They reported active participation by each
student group with an evident stimulation of their ability to
work in groups, intense collaboration, and a constant comparison
among pairs. In particular, during the final lesson, where students
were free to create a program of their choice, both teacher
and observer reported the emergence of various skills and
abilities: some groups focused on solving problems in physics
by the different strategies described in sixth lesson; others
worked on the programming of the robot (i.e., to follow a track
avoiding obstacles or recognizing colors), and others focused
on “hardware aspects,” by adapting the robot body according to
the task to be performed. Moreover, the teacher perceived an
unexpected increase in the performance of the students who were
usually less motivated to learn.

STUDY 2

Study 2 evaluated the efficacy of ER for teaching and learning
concepts of geography about the regions of Italy to students
attending the second class of an Italian lower secondary school.

The study has two novel aspects compared to the previous
one, and also to the literature in the ER field: the first is that
it is focused on geography, a subject that, to our knowledge,
has never been considered in studies about educational robotics.
The second is that it employs BB8, a small robot by Lego, never
previously employed in experimental studies.

Method
Similarly to study 1, also in study 2 we used a quasi-experimental
design: two classes of the same level were selected, and one
was assigned to the experimental condition. The second was

GRAPH 2 | Study 2: Scores of experimental and control group for geography

test in test and retest phases.

assigned to a control situation. The performance of both classes
in geography was tested before and after the labs.

Participants
A total of 25 students (11 males, 14 females) of about 12
years of age (mean = 12 years, standard deviation = 12
months) participated in the study. They belonged to two classes
attending the first year of a secondary lower level school in
Italy. One class, including 12 students (6 males, 6 females),
was assigned to the experimental condition, and the other class,
including 13 students (5 males, 8 females), was assigned to the
control condition. One student with special needs was present
in each class; they took part in the same activities performed
by classmates.

The Geography Labs
Differently from Study 1, in Study 2 both classes undertook a
laboratory in geography using an innovative method of 3 weekly
lessons lasting 2 h each.

In the control condition (GeoLab), the activities described
below were carried out in the students’ classroom without robots.
In the experimental condition (ER-GeoLab) the lessons were
carried out using educational robots in the school’s computer lab,
supervised by an experimenter from our team. The experimenter
didn’t interact with the students but observed how the lessons
developed, intervening only to solve technical problems related
to robot functioning. In the ER-GeoLab, five BB8 Sphero toys and
five Android Tablets were used. BB8 is composed of two spheres
(the head and the body), and it belongs to the Star Wars film
saga. It is simple to use and affordable. It may include different
behaviors, when programmed using the free iOS and Android
compatible apps.

Both laboratories were carried out by two teachers of Italian
language, history, and geography. They worked together to avoid
differences in the teaching and evaluation methods in the two
classes. Before the beginning of the experiment, students in the
experimental and control group had the opportunity to play with
the robot and to attend a demonstrative session about the ways to
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TABLE 2 | Mean and standard deviation of all measures collected in the experimental and control groups and results of statistical analyses.

Experimental group Control group ANOVAs T-tests

Before After Before After Group Time Group × Time

M SD M SD M SD M SD F(1, 23) F(1, 23) F(1, 23) t(1, 23)

Geography test 5.1 1.34 6.33 1.55 6 1.63 5.61 1.39 0.010 10.04* 39.50* –

School achievement 35.00 9.62 – – 39.54 15.61 – – – – – 0.866

Cognitive—motivational questionnaire 32.33 8.99 – – 35.61 13.60 – – – – – 0.701

*p < 0.05.

assign specific movements to the robot by choosing directions,
duration, and speed. The students in both groups were then
divided into five groups of 2–3 children each to perform the
activities described below.

First Lesson

During the first lesson, students in the GeoLab and the ER-
GeoLab studied geography by preparing themselves cards for
each Italian region, including information about the regional
capital and other principal towns, environmental characteristics,
economic aspects, and principal artistic and touristic attractions
of the regional area. At the end of the activity, however, only the
students in the ER-GeoLab had the opportunity to use the robots
and to create a program allowing them to move along a blank
Italian geography map.

Second Lesson

During the second lesson, teachers gave students in the ER-
GeoLab target regions in which the robot had to stop. The
students thus had a role in programming the robots’ movements
in order to reach each region and to describe the information
about the area, using the “region cards” previously compiled.

Students in the GeoLab carried out a similar activity, but
without robots: teachers gave students the target regions, and
they had to reach them using a pawn, and then they had to
describe the information about the area using the “region cards.”

Third Lesson

To consolidate the learning of geography, during the third lesson,
the students in the ER-GeoLab performed the same activity as in
the second lesson, however, in this case, they could not use the
cards, and instead, they had to recollect frommemory and repeat
the information about each region. Their classmates played a
role in verifying the correctness of the given information. Again,
students in the GeoLab carried out the same activity but with
pawns rather than robots.

Measures
Geography Test

A geography test was given to the students in the experimental
and control groups before and after the activities, to determine
whether (1) there were differences between groups in geography
knowledge before the labs; (2) the two groups showed a
different level of geography learning after the ER-GeoLab
and the GeoLab. The test consisted of placing the capitals
of the Italian regions onto a blank Italian geography map.

The students also had to describe the characteristics of the
regions (rivers, mountains, primary, secondary, and tertiary
sectors). Each student obtained a score from 1 to 10, depending
on performance.

As in Study 1, the geography test was used as an objective
measure of learning based on the answers given by students,
and it was employed so that teachers were not affected by the
experimental hypotheses when evaluating the students.

School Achievement and Cognitive-Motivational

Style

Before the activities, teachers were requested to complete a school
achievement grid and cognitive-motivational questionnaire for
each student in both groups (as used in Caci and D’Amico,
2005; D’Amico, 2018). This was in order to measure the eventual
individual differences in school achievement and cognitive-
motivational styles of students in experimental and control
groups, which could affect the results of the experiment.

The teachers from the team were requested to report the
school marks (from 1, insufficient to 5, excellent) of each student
in each of the 13 disciplines taught at school on the school
achievement grid. A total school achievement score, ranging
from 13 to 65, was then computed for each student.

The cognitive-motivational questionnaire was composed of 18
items that explored the cognitive and metacognitive level (e.g.,
recognition of their limits, focused attention while performing
a task) and motivation (e.g., commitment, curiosity) for each
student. For each item, the teachers had to assign a score using
a Likert scale from 0 (not at all) to 3 (very much) based on how
often they observed each behavioral style in their pupils. A total
score, ranging from 0 to 72, was computed for each student.

The Pleasantness of the ER-GeoLab Activities

At the end of the activities, only students in the ER-GeoLab group
compiled a short questionnaire (see Table 3) aimed at measuring
the pleasantness of the activities performed with the BB8 robot.

Results
Themean and standard deviations of all themeasures collected in
the experimental and control groups and the results of statistical
analyses are reported in Table 2 and Graph 2.

To measure differences between the ER-GeoLab and the
GeoLab groups in geography knowledge, a 2 × 2 factorial
ANOVA using Group (ER-GeoLab, GeoLab)× Time (test, retest)
was conducted before and after the labs, on the total geography
test scores collected before and after the labs. The results showed
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that there was no main effect of Group [F(1, 23) = 0.01, p =

0.922, η2 = 0.00], indicating that there was no group difference
in the general mean, including the performance of students
before and after the labs. There was a significant effect of
time [F(1, 23) = 10.04, p = 0.004, η2 = 0.30], indicating that
both groups of students significantly increased their competence
in geography knowledge after the labs. Finally, there was a
significant interaction between Groups and Time [F(1, 23) =

39.50, p < 0.001, η2 = 0.632), indicating that after the lab,
students in the ER-GeoLab group improved their knowledge
about geography. At the same time, students in the GeoLab group
experienced a slight decrease in their performance.

To evaluate whether there were significant differences among
groups in school achievement that could have affected these
results, a t-test was computed on the total scores they had
obtained, however, there were no statistically significant group
differences [T(1, 23) = 0.866, p = 0.396], although students
in the GeoLab group performed slightly better than students
in the ER-GeoLab group (see Table 2). The same result was
obtained for the scores of the questionnaire about cognitive and
motivational styles: students in the GeoLab group achieved a
higher score than students in the ER-GeoLab group (see Table 1),
but again the group difference was not statistically significant
[T(1, 23) = 0.701, p= 0.490].

The results for the questionnaire about the pleasantness of the
activities performed by students of the ER-GeoLab groupwith the
BB8 robot showed that a high percentage of students evaluated
the experience positively (see Table 3).

Discussion
The results of this study demonstrated that the use of ER in
a geography lab has significant effects on learning geography.
although both experimental and control groups performed
similar activities in order to learn information about the Italian
regions, only students in the experimental group obtained
significant improvements in geography knowledge after the lab.
Moreover, it has to be stressed that these results were obtained
even though the experimental group reported slightly lower
scores in general school achievement and in the questionnaire
about cognitive-motivational styles during the school year.

ER stimulated participation and fun in students of the
experimental group. They considered the activity facilitated
learning, as documented by answers to a questionnaire about the
pleasantness of activities.

GENERAL DISCUSSION AND

CONCLUSIONS

In conclusion, the results of the two reported studies showed
that the use of robotics at school improved the learning of
the students involved in the activities. Although Study 1 and
Study 2 are not directly comparable due to their numerous
differences, the students belonging to the experimental group in
both studies achieved better learning results than the students in
the control groups.

TABLE 3 | Rating by students about the level of the pleasantness of the

ER-GeoLab activities.

Questions: Not at

all %

A little

%

Enough

%

Very

much %

Have the activities been fun? 0 16.66 41.66 41.68

In your opinion, has the use of BB-8

facilitated your learning?

0 0 33.33 66.67

How much did you participate in the

activities?

0 0 33.33 66.67

In Study 1, even though there were no differences between
the groups in their physics marks before the activities, students
in the experimental group obtained higher scores than the
controls in the school-type problems of physics included in the
questionnaire. Thus, as already claimed, they generalized the
acquired ability to solve the problem of Physics using robots
(learning by doing) to the solution of other types of paper-pencil
problems in Physics.

Conversely, and quite surprisingly, students in the
experimental group obtained results similar to the controls
in the items of the questionnaire that concerned robotics. All
considered, it seems that it is enough to address the topic
“robots” to improve learning, given its level of interest: indeed,
the score on the questions about robotics was high for both
groups. This also suggests that if, on the one hand, ER helps
students to learn better about traditional subjects such as physics,
on the other hand, robotics is such an innovative and attractive
topic that students learn basic concepts about it even when a
conventional teaching method is used.

In Study 2, we also demonstrated the efficacy of ER for
teaching subjects in the humanities and not only in STEM
subjects. Even when students in the experimental group had
lower scores than the controls in school achievement and
cognitive-motivational styles, they improved their knowledge of
geography. In contrast, the controls showed a slight decrease in
performance from the test to the retest. Moreover, as already
claimed, both experimental and control groups realized a non-
conventional learning lab, through group activities and playful
teaching methodologies, and the only difference between the
experimental and control group was the use of robots. We can
thus confirm that the results obtained do not depend in general
on the use of an innovative educational method, but the use of ER
was also considered fun and useful by the students.

Why is robotics so valuable and attractive? There may be
many reasons, as we have described in the introduction. From
our perspective, the main reason is definitely that educational
robotics combines physical and mental experience: according
to the constructionist and EC theories, learning and cognitive
functioning are affected by the physical and mental experience of
interaction with the environment and with the tools it contains. It
allows students to learn by doing, to manipulate concepts, and to
embody cognition. In ER sessions, students have the opportunity
to approach an idea from both an abstract and a concrete point
of view. This leads to the creation of different forms of memory,
such as semantic memory (i.e., memorizing the role and the
function of each component) or the procedural memory (i.e.,

Frontiers in Robotics and AI | www.frontiersin.org 8 March 2020 | Volume 7 | Article 3376

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


D’Amico et al. Playful Learning With Educational Robotics

learning how each part works and how it has to be managed) to
create accurate and complete episodic learning.

The second reason, as claimed by many authors, is that
robotics may increase motivation for learning in situations
that are generally seen by children as passive and not very
stimulating. In Study 2, all children participating in ER-GeoLab
declared that the activities were fun and useful for learning, and
we already know that the so-called “digital native” generation
(Prensky, 2001) is undoubtedly more interested in digital and
multimedia technologies than previous generations. Children
spend more time playing with technological tools than with
“non-technological” tools. Beran et al. (2011) and Bullen and
Morgan (2011) also demonstrated that this is not only limited
to digital natives but also the so-called digital immigrants, people
who started to use technologies as adults, and who are sometimes
more passionate than children about technologies.

We also stress that the ER is not only a facilitator for
students but also teachers. All teachers expressed great interest
toward the use of robotics in teaching since it has positive
effects on the school climate and may contribute significantly to
creating a stimulating learning environment, both for students
and teachers. The greater involvement of students in the topics
dealt with using the robots makes it easier to keep the class’s
attention in the long-term and makes the teacher’s work more
rewarding. During and after the laboratory, the teachers involved
in Studies 1 and 2 reported that the activities improved their
feeling about the effectiveness of their teaching method, making
not only students but also themselves more motivated. They not
only consider robotics an excellent tool for supporting teaching,
but they also see it as a significant change to the monotony of
traditional education. In conclusion, the perception of their work
status was improved.

LIMITATIONS AND FUTURE DIRECTIONS

Although the results obtained are encouraging and reinforce
the idea that robotics can be considered a valuable teaching
tool, there are many limitations in these studies that have to
be considered and hopefully overcome in future studies. The
first involves the experimental setting chosen for the activities.
The school context presents many constraints: (1) it is not
possible to realize a very innovative design by assigning single
participants randomly to experimental or control conditions.
Each class in a school, may participate or not as a whole, mainly
due to problems involving the organization of school activities
and timetables; (2) activities in groups could be challenging
to organize. For instance, the contrasting leadership of two
members can result in a group that does not collaborate very
well, and the absence of one of the group members may affect
the work of the other members; (3) there could be significant
differences between two classes, due to the students that belong to
them, but also due to the team of teachers, who can have different
levels of competence or use different systems of evaluation or
didactic methods; (4) In our study we chose classes with the
same teachers to reduce these differences in teaching, however,
using the same teacher in both experimental and control class,

doesn’t allow for “blind” testing. The teacher knows which is
the experimental and the control class, and they are involved as
the first person in the experience. Their increased enthusiasm
for the new robot-mediated method may affect the teachers’
behavior; (5) more studies involving longer interventions are
needed. In particular, it will be necessary in the future to design
longer-lasting interventions with different follow-up assessments
to clarify whether, behind the initial motivational boost that
robotics exerts in digital natives and teachers, robotics-based
teaching leaves longer-lasting memory traces in students and
allows amore in-depth andmeta-cognitive comprehension of the
studied topics than traditional methods.

Despite these limitations, it seems to us that educational
robotics can have a significant impact on the school.
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This paper presents the design of an assessment process and its outcomes to investigate

the impact of Educational Robotics activities on students’ learning. Through data

analytics techniques, the authors will explore the activities’ output from a pedagogical

and quantitative point of view. Sensors are utilized in the context of an Educational

Robotics activity to obtain a more effective robot–environment interaction. Pupils work

on specific exercises to make their robot smarter and to carry out more complex and

inspirational projects: the integration of sensors on a robotic prototype is crucial, and

learners have to comprehend how to use them. In the presented study, the potential of

Educational Data Mining is used to investigate how a group of primary and secondary

school students, using visual programming (Lego Mindstorms EV3 Education software),

design programming sequences while they are solving an exercise related to an ultrasonic

sensor mounted on their robotic artifact. For this purpose, a tracking system has been

designed so that every programming attempt performed by students’ teams is registered

on a log file and stored in an SD card installed in the Lego Mindstorms EV3 brick.

These log files are then analyzed using machine learning techniques (k-means clustering)

in order to extract different patterns in the creation of the sequences and extract

various problem-solving pathways performed by students. The difference between

problem-solving pathways with respect to an indicator of early achievement is studied.

Keywords: educational robotics, educational datamining, learning analytics, STEMactivities assessment, learning

process identification

INTRODUCTION

Educational Robotics (ER) has been widely used to support integrative STEM education because
of its power to realize engaging multidisciplinary activities about science, technology, engineering,
and mathematics, but also arts, language, and humanities (Mubin et al., 2013; Scaradozzi et al.,
2019a,b). Furthermore, ER can also support inclusive education (Daniela and Lytras, 2019) and
computer science and robotics literacy at all ages (Burbaite et al., 2013; Štuikys et al., 2013; Berry
et al., 2016; Damaševicius et al., 2017; Vega and Cañas, 2019). Even if many studies explored ER to
motivate students to learn, not all of them reported an evaluation of activities; those who focused on
the evaluation of ER activities adopted qualitative (Denis and Hubert, 2001; Liu, 2010; Elkin et al.,
2014), quantitative (Atmatzidou andDemetriadis, 2016; Kandlhofer and Steinbauer, 2016; Cesaretti
et al., 2017; Scaradozzi et al., 2019c), or mixed methods approaches (Kim et al., 2015; Chalmers,
2018). In fact, in an ER activity (a lesson characterized by one or more ER exercises), students
design, build, program, debug, and share their robotic artifacts; ER is based on the constructionist
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approach proposed by Papert (1980): when pupils create personal
and meaningful products, they “build” knowledge in their
mind. This kind of educational activity is characterized by a
workflow, modeled by Martinez and Stager (2013) with the
“Think Make Improve” (TMI) cycle, where three different phases
are repeated cyclically:

• At the beginning, the educator proposes a problem to solve
so students usually start thinking and designing their solution
(“Think” phase);

• Then learners build their product: in an ER activity, it could
be a hardware (a prototype) or software (a sequence of
instructions) creation (“Make” phase);

• At the end of the construction phase, students start the robot,
observe and analyze its behavior, debugging errors or trying
to optimize the performance of the artifact (Improve phase):
pupils have to examine carefully the feedback of the robot in
order to decide the next designing or programming steps (so
the cycle starts again with the Think phase).

The evaluation of a product created during a constructionist
activity can be a challenging and time-consuming activity
(Berland et al., 2014). Moreover, it is often based on the
final product and not on the process underlying the designed
task (Blikstein, 2011). However, new data mining and machine
learning technologies allow researchers to capture detailed data
related to problem-solving and programming trajectory of a large
number of learners (Blikstein et al., 2014).

Recent studies (Berland et al., 2013; Blikstein et al., 2014;
Chao, 2016; Wang et al., 2017; Bey et al., 2019; Filvà et al.,
2019) have mostly applied machine learning techniques to
data gathered from students during programming activities
without the presence of physical robots, obtaining good results
in the identification of different patterns in specific coding
tasks (Table 1 summarizes machine learning techniques and
features selected in these studies). Berland et al. (2013) and
Chao (2016) used a k-means algorithm to discover patterns
in the programming activity of novice programmers; the first
study identified three general patterns (Tinkering, Exploring, and
Refining) and presented a positive correlation between the quality
of the programming sequences designed by the students and
two of the emerged patterns (Tinkering and Refine). The second
study represented the students’ programming activity using
five indicators and identified four clusters (sequent approach,
selective approach, repetitious approach, and trial approach);
the study showed that the performance was lower for learners
in the trial approach cluster compared to the sequent and
repetitious approach clusters. Blikstein et al. (2014) proposed two
experiments using different machine learning techniques, trying
to discover patterns in data collected from 370 undergraduate
students and to predict their midterm and final exam grades.
They obtained best results modeling students’ programming
trajectories using hidden Markov models and demonstrated
that the group in which a student was clustered into was
predictive of his or her midterm grade. Wang et al. (2017)
used log data from Code.org1 and applied a long short-term

1https://code.org

memory recurrent neural network to predict students’ future
performance, obtaining good results in terms of accuracy and
recall. Bey et al. (2019) identified three clusters in a dataset
created collecting programs from 100 students registered on
a 3-week course on the essential of Shell programming; they
applied unsupervised clustering techniques (Hopkins statistic
methods) for automatically identifying learners’ programming
behavior. Filvà et al. (2019) used the k-means technique on data
generated by students’ clicks in Scratch (and not on handpicked
features), with the objective of categorizing learners’ behavior in
programming activities: they identified three different patterns
and a strong correlation between these behaviors and the
evaluation given by some teachers involved in the research
project, using a rubric for programming assessment.

However, only one research study (to the best of our
knowledge) applied machine learning to data collected during
ER activities (Jormanainen and Sutinen, 2012); they did not
collect data related to the programming sequences designed by
the students but related to the pupils’ interactions with the
essential elements of the visual programming environment. Their
system, using trees algorithm (J48 implementation), classified the
students’ activities into four classes, differentiating the observed
students’ group’s progress with the purpose of identifying
pupils with difficulties during the robot programming task.
Ahmed et al. (2018) presented an interesting system that gives
feedback to pupils in real time while they are programming
the Lego Mindstorms EV3 robot2; they implemented a system
(ROBIN) so that the Lego Mindstorms EV3 robot provided
reflective feedback to pupils, transforming it into a learning
companion: using ROBIN, students obtained advices based on
the sequences created on the programming environments and
based on the exercise proposed by the educator. But in this
research project, the researchers did not train their system using
machine learning techniques but using deterministic rules. The
promising results obtained using machine learning techniques
on data gathered from students during programming activities,
and the lack of this type of study in the field of ER (Scaradozzi
et al., 2019b), have prompted the research described in this
paper. Thanks to an upgrade of the Lego Mindstorms EV3
programming blocks (implemented by the authors), it was
possible to register some log files containing the programming
sequences created by 353 Italian primary and secondary school
students (organized in 85 teams) during the resolution of a
robotics exercise related to the ultrasonic sensor. Integrating
sensors allowed learners to obtain an interaction between the
robot and the environment, but to effectively use these devices,
they had to understand some key concepts about robotics and
computer science, such as how to acquire and store data, how to
cyclically repeat an acquisition (using loops), and how to create
algorithms to obtain different robot’s behaviors depending on the
values detected by sensors (using conditional statements). The
authors inputted the collected log files into k-means algorithms,
with the purpose of verifying if there are different problem-
solving patterns emerging from this dataset and of examining
the interrelationships between the different problem-solving

2https://education.lego.com/en-us/middle-school/intro/mindstorms-ev3
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TABLE 1 | Features and machine learning techniques of recent studies carried out in constructionist environments.

Paper Features selected in the experimentation Machine learning techniques

Blikstein et al. (2014) [1st experiment]

Code update differential, characterized by: number of lines added, lines

deleted, lines modified, characters added, characters removed,

characters modified.

[1st experiment]

Simple regression between exam grades and average size of the code

updates per student.

[2nd experiment]

Code update differential

[2nd experiment]

X-means clustering algorithm.

[3rd experiment]

Code update differential

[3rd experiment]

X-means clustering algorithm.

[4th experiment]

Code update curves (combination of frequency and size in changes

made by students).

[4th experiment]

Dynamic time warping and scaled dynamic time warping distance (to

calculate the difference between two given code update curves).

[5th experiment]

Modeling of a student’s trajectories as a hidden Markov model (HMM).

[5th experiment]

k-medioid and hierarchical agglomerative clustering (to compute the

different states of the HMM). Expectation maximization algorithm to

compute both the transition and emission probabilities in the

state diagram.

Berland et al. (2013) Measures of individual program states (measures calculated for each

program state) considering five features: action, logic, unique

primitives, length, coverage.

X-Means clustering algorithm

Jormanainen and

Sutinen (2012)

Six events: add statement, add command to code, remove line, upload

program to robot, compiling errors, sum of all these events.

Decision trees, decision tables, Bayesian networks, and multilayer

perceptrons to predict the students’ progress. To measure the

accuracy of the tested algorithms, they used the 10-fold

cross-validation method.

Chao (2016) Related to computational practice (five measures): sequence, selection,

simple iteration, nested iteration, testing.

Ward’s minimum variance method (to identify number of clusters),

followed by the k-mean cluster analysis (on the identified

cluster number).

Wang et al. (2017) [1st experiment]

A student’s trajectory consists of all the program submissions, which

are represented as ASTs (that contain all the information about a

program and can be mapped back into a program). These ASTs are

converted into program embeddings using a recursive neural network.

[1st experiment]

Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN).

[2nd experiment]

Same features of their 1st experiment, from ASTs they calculated

program embeddings.

[2nd experiment]

LSTM RNN

Bey et al. (2019) Number of submissions, average time between two submissions,

average number of changes, percentage of syntactical errors, time

standard deviation (the standard deviation of the average time between

two submissions), code standard deviation (the standard deviation of

the average number of changes).

Mixture Gaussian Clustering algorithm

Filvà et al. (2019) Clickstream K-means cluster analysis

patterns and a performance indicator showing the students’ team
capability to reach a working program solution.

METHODS

Procedure
At the first stage of this research project, authors implemented
a software modification to the Lego Mindstorms EV3 Education
Software blocks; thanks to this software development, every time
that students tested their program on the robot LegoMindstorms
EV3, a “track” of the coding sequence was written in a log file
stored in the SD card mounted on the robot. Fourteen schools
participated in the experimentation, and the same protocol was
performed for each of them. Firstly, an educator of TALENT srl
(an Italian innovative startup involved in the research project)
installed on the computers of the school the official Lego

Mindstorms EV3 Education software and the update designed
by the authors. An “Introduction to Robotics” course was then
realized, taught in collaboration with TALENT; Constructionism
(Papert, 1980) and problem-based learning (Savery, 2006) were
the pedagogical approaches underlying the proposed course:
during each lesson, students designed and created programming
solutions to problems related to the robot. After a first part
dedicated to the robot’s actuators, the ultrasonic sensor was
explored. An exercise was proposed by the instructor to the
students: learners had to program the robot so that it stopped
at a given distance from the wall, trying to be as precise as
possible; they also had to consider a constraint: the maximum
available time to design and test their coding solution (20min
for higher secondary school classes; 30min for lower secondary
and primary school classes). There are some elements that make
this exercise quite tricky for novice students in robotics: they
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FIGURE 1 | Three possible solutions for the exercise designed using the Lego Mindstorms EV3 software blocks: “Switch case” (A), “Wait” (B), and “Handmade

condition” (C).

have to think about how to set the condition related to the
ultrasonic sensor, how to use the iteration (loop block), and how
to compensate the braking distance (the robot does not stop
immediately when the EV3 brick sends the command “turn off”
to the motors). Figure 1 shows three possible solutions to this
problem: the simplest sequence (B) in terms of the number of
blocks contains the Wait block; it makes the program wait for a
condition becoming “true” before continuing to the next block in
the sequence. The intermediate solution (A) contains the Switch
block; this block is a container that can comprehend two or
more sequences of programming blocks; a test at the beginning
of the Switch determines which Case will run, and in this case,
the test is designed on the ultrasonic sensor. The most complex
solution (C) contains a “handmade” condition, created using a
Sensor block (the yellow one) and a Compare block (the red
one). Students’ teams involved in the experimentation were free
to design and test their programming solution (usually close to
one of the sequences presented in Figure 1): the educator only
explained the general meaning and the parameters of the useful
blocks, and then the pupils started to work on their program.

At the end of the exercise, all the log files generated by the
tracking system were downloaded from the SD card by the
TALENT’s educator and stored in the cloud storage.

The authors fed the collected log files (transformed into
vectors thanks to a parsing system developed in Python) into a k-
means algorithm, whose results provided clusters that represent
different types of sequences designed by the students to solve
the exercise. Then, for each team of the students involved
in the experimentation, the number of sequences belonging
to each cluster was calculated in order to get new features
that characterized the students’ programming activity (all the
programming actions carried out by the participants with the
intention to obtain the desired robot’s behavior). These new
features were used again as input data for a k-means algorithm,
and different problem-solving behaviors emerged from this last
step. An expert robotics educator defined for each log file the first
working sequence created by the students’ team, which allowed
the educator to observe in which stage of the problem-solving

process learners created their first working sequence. A working
sequence is a program that can solve the exercise previously
presented, and the conditions to be met are: correct conditional
statement on the ultrasonic sensor and motors turned on using
the right modality. Then, applying the formula:

Indicator of early achievement =
n◦ of the first working sequence

total tests number

Finally, a one-way non-parametric ANOVA (Kruskal–Wallis)
test was conducted to examine the differences in the indicator
according to the different problem-solving behaviors, which
emerged from the machine learning technique. Moreover, the
post-hoc Dunn test (Dunn, 1964), appropriate for groups with
unequal numbers of observations (Zar, 2010), was employed to
examine the significance of all possible pairwise comparisons
among clusters.

Participants
FromMarch 2018 to September 2019, a total of 353 students from
14 Italian primary and lower/higher secondary schools (located
in the Emilia Romagna and Marche regions) were involved in
this study. Sixty-two students divided into 19 teams [Average
Age (AA) = 17.29, Standard Deviation (SD) = 0.55] from
school 1 were involved. School 2 had 22 students involved,
divided into six teams (AA = 11.45, SD = 0.50). School 3
had 24 students involved, divided into six teams, but valid
data were collected only from two of them (AA = 10.08, SD
= 0.65). School 4 had 21 students involved, divided into five
teams (AA = 11.70, SD = 0.47). School 5 had 19 students
involved, divided into seven teams (AA = 11.63, SD = 0.83).
School 6 had 25 students involved, divided into five teams
(AA = 15.92, SD =0.28). School 7 had 24 students involved,
divided into six teams, but valid data were collected only from
three of them (AA = 12.00, SD = 0.46). School 8 had 23
students involved, divided into five teams (AA = 12.43, SD =

0.94). School 9 had 30 students, divided into six teams (AA =

9.63, SD = 0.53). School 10 had 26 students involved, divided
into six teams (AA = 12.54, SD =0.51). School 11 had 19
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students involved, divided into five teams (AA = 10.21, SD
= 0.98). School 12 had nine students involved, divided into
three teams (they were from lower secondary school, but no
personal data were available). School 13 had 23 students involved,
divided into six teams (AA = 11.87, SD = 1.29). School 14 had
26 students involved, divided into eight teams (AA = 10.24,
SD= 0.83).

Data Preparation
Students’ teams designed 3,292 programming sequences to solve
the robotics exercise previously described. Some technical steps
are performed to transform these sequences into matrices; after
this transformation, the following 12 indicators are calculated
for each programming sequence. A function designed in Python
realizes the parsing of the log file to calculate these 12 values.

• Motors: how many Motor blocks are contained in
the sequence;

• Loops: how many Loop blocks are contained in the sequence;
• Conditionals: how many Conditional and Sensors blocks are

contained in the sequence;
• Others: how many blocks are contained in the sequence

belonging to different categories than Motors, Loops,
and Conditionals;

• Added: how many blocks have been added, compared to the
previous sequence;

• Deleted: howmany blocks have been deleted, compared to the
previous sequence;

• Changed: how many blocks have been changed, compared to
the previous sequence;

• Equal: howmany blocks have remained unchanged, compared
to the previous sequence;

• Delta Motors: the amount of change in Motor blocks
parameters, compared to the previous sequence (calculated
only for blocks of the “Changed” category);

• Delta Loops: the amount of change in Loop blocks parameters,
compared to the previous sequence;

• Delta Conditionals: the amount of change in Conditional
blocks parameters, compared to the previous sequence;

• Delta Others: the amount of change in Other blocks
parameters, compared to the previous sequence.

The authors decided to calculate the first four indicators (Motors,
Loops, Conditionals, Others) because they represent the features
of a sequence designed using the LegoMindstorms EV3 software;
moreover, they are key concepts in ER and computational
curricula (Grover and Pea, 2013; Scaradozzi et al., 2015, 2019b;
Allsop, 2019). Furthermore, as previously stated, an ER activity
is characterized by a cyclical procedure for improving the
programming sequence: for this reason, it is essential to calculate
the differences between two contiguous sequences, represented
by the last eight parameters (Added, Deleted, Changed, Equal,
Delta Motors, Delta Loops, Delta Conditionals, and Delta
Others). Each programming sequence designed by the learners
is thus represented using these 12 indicators, and it can be
considered as a point in the problem-solving trajectory (Berland
et al., 2013) carried out by the students’ team.

RESULTS

Clusters resulting from the application of k-means algorithm
on programming sequences designed by the students’ teams are
shown in Table 2. Fourteen clusters were identified applying
the Elbow Method (Kodinariya and Makwana, 2013), and their
relation to teams’ behavior is briefly reported.

Cluster 1: the team tested the same programming sequence
several times (characterized by four blocks, similar to solution
B in Figure 1); 32.99% of the sequences are categorized in
this cluster.
Cluster 2: the team changed the condition and the threshold
value for the ultrasonic sensor throughout the programming
attempts (programming sequence similar to solution B
in Figure 1); 3.25% of the sequences are categorized in
this cluster.
Cluster 3: the team heavily changed the condition and the
threshold value for the ultrasonic sensor (i programming
sequence similar to solution B in Figure 1); 2.13% of the
sequences are categorized in this cluster.
Cluster 4: the team refined the threshold value for the
ultrasonic sensor and some parameters in a Motors block at
the same time (in a programming sequence similar to solution
A in Figure 1); 6.71% of the sequences are categorized in
this cluster.
Cluster 5: the team refined both some parameters in a Motors
block and some parameters in Others blocks (programming
sequence similar to solution A in Figure 1); 0.18% of the
sequences are categorized in this cluster.
Cluster 6: the teammodified some parameters in a Loops block
(in a programming sequence similar to solution A in Figure 1);
0.03% of the sequences are categorized in this cluster.
Cluster 7: the team heavily modified some parameters in a
Motors block and refined the threshold value for the ultrasonic
sensor (in a programming sequence similar to solution A or
B in Figure 1); 1.64% of the sequences are categorized in
this cluster.
Cluster 8: the team tested the same programming sequence
(characterized by 11–12 blocks, similar to solution A or C
in Figure 1 with the addition of Others block); 4.19% of the
sequences are categorized in this cluster.
Cluster 9: the team tested the same programming sequence
(characterized by eight to nine blocks, similar to solution A
or B in Figure 1); 24.14% of the sequences are categorized in
this cluster.
Cluster 10: the team refined the threshold designed for the
ultrasonic sensor (programming sequence like solution A in
Figure 1) and added two blocks; 4.04% of the sequences are
categorized in this cluster.
Cluster 11: the team refined both the threshold for the
ultrasonic sensor and some parameters in a Motors block and
deleted two blocks (in a programming sequence similar to
solution A in Figure 1); 4.04% of the sequences are categorized
in this cluster.
Cluster 12: the team refined both the threshold designed for
the ultrasonic sensor and some parameters in a Motors block
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) (programming sequence similar to solution B in Figure 1,

but with only one Motors block); 6.35% of the sequences are
categorized in this cluster.
Cluster 13: the team refined both the threshold for the
ultrasonic sensor and some parameters in a Motors block (in a
programming sequence similar to solution B in Figure 1, with
two Motors blocks); 9.39% of the sequences are categorized in
this cluster.
Cluster 14: the team refined both the threshold designed for
the ultrasonic sensor and some parameters in a Motors block
(in this case, the sequence is extremely complex, characterized
by 11–12 blocks, similar to solution C in Figure 1); 0.91% of
the sequences belong to this cluster.

Figure 2 presents the silhouette scores (Rousseeuw, 1987) for
the 14 clusters identified by the k-means algorithm. Table 3
shows the Pearson correlation between these clusters and the
indicator of early achievement: only cluster 3 shows a statistically
significant positive correlation (Pearson coefficient correlation=

0.411, p < 0.0001); so teams that heavily changed the condition
and the threshold value for the ultrasonic sensor did not obtain a
working sequence in the first part of their work.

As previously stated in the section Procedure, after having
clustered the students’ programming sequences, the percentage
of sequences belonging to each cluster was calculated for each
group. Thus, the problem-solving process for each team was
represented using a vector with 14 elements, the percentage of
coding sequences in cluster 1, the percentage of coding sequences
in cluster 2, etc. A matrix (size: 85 × 14) created considering
these 14 features calculated for the 85 teams was then used
as inputs for a k-means algorithm, with the aim of grouping
teams with similar behavior. Applying again the Elbow Method
(Kodinariya and Makwana, 2013), 10 different problem-solving
pathways emerged (Table 4):

• Pathway 1: Prevalence of sequences belonging to cluster 9 and
cluster 4; these teams designed a complex sequence (type A
or C in Figure 1), generally refining the parameters, with a
very low percentage of large changes in the condition or in the
threshold for the ultrasonic sensor and implementing a quite
high number of trials (18 teams in this cluster, 21.18%).

• Pathway 2: 17% of sequences belonging to clusters 3 and 4;
these teams applied high changes in the condition and in the
threshold designed for the ultrasonic sensor (eight teams in
this cluster, 9.41%).

• Pathway 3: Prevalence of sequences belonging to cluster 13;
these teams designed a compact sequence (type B in Figure 1)
generally refining the threshold designed for the ultrasonic
sensor and some parameters in a Motors block (eight teams
in this cluster, 9.41%).

• Pathway 4: Prevalence of sequences belonging to cluster 1;
these teams designed a compact sequence (type B in Figure 1)
sometimes (14%) refining the threshold designed for the
ultrasonic sensor and some parameters in a Motors block,
sometimes (8%) applying high changes to the condition or to
the threshold related to the ultrasonic sensor or to the Motors’
parameters; a very high number of trials characterized this
cluster (22 teams in this cluster, 25.88%).
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FIGURE 2 | Silhouette scores for the 14 clusters (presented in the section Results) identified by the k-means algorithm.

• Pathway 5: Prevalence of sequences belonging to clusters 8 and
4; these teams designed a very complex sequence (type A or
C in Figure 1), using also Others blocks and generally refining
the parameters of the programming blocks (three teams in this
cluster, 3.53%).

• Pathway 6: Relevant percentage (32%) of sequences belonging
to clusters 10 and 11; these teams repeatedly deleted and added
blocks to their sequence (similar to type A or B in Figure 1); a
low number of trials characterized this cluster (13 teams in this
cluster, 15.29%).

• Pathway 7: Prevalence of sequences belonging to clusters 8
and 4; the team designed a complex sequence using also four
Others blocks (type A in Figure 1), generally refining the
parameters, without any sequence with large changes in the
condition or in the threshold for the ultrasonic sensor; this
team also experimented some simple sequences (cluster 1, type
B in Figure 1) (one team in this cluster, 1.18%).

• Pathway 8: Prevalence of sequences belonging to cluster
14; these teams designed the most complex sequences (type
C in Figure 1), generally refining the parameters, without
any sequence with large changes in the condition or in
the threshold for the ultrasonic sensor (two teams in this
cluster, 2.35%).

• Pathway 9: Relevant percentage (32%) of sequences belonging
to clusters 10 and 11; the team repeatedly deleted and added
blocks to their sequence (similar to type A in Figure 1)
and repeatedly changed parameters in the programming
blocks (36% of sequences in cluster 4); a low number
of trials characterized this cluster (one team in this
cluster, 1.18%).

• Pathway 10: the lowest number of trials (18) and a relevant
percentage (11%) of sequences in cluster 7 (high changes in
Motors parameters) characterized these teams (nine teams in
this cluster, 10.59%).
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TABLE 3 | Pearson correlation coefficient between clusters (see Table 2) and the

indicator of early achievement.

Cluster Correlation P-value

Cluster 3 0.411 < 0.0001

Cluster 13 0.124 0.259

Cluster 2 0.122 0.266

Cluster 11 0.014 0.897

Cluster 1 −0.006 0.956

Cluster 12 −0.009 0.936

Cluster 6 −0.024 0.826

Cluster 5 −0.024 0.826

Cluster 14 −0.037 0.735

Cluster 8 −0.049 0.654

Cluster 9 −0.057 0.602

Cluster 10 −0.082 0.453

Cluster 4 −0.088 0.421

Cluster 7 −0.122 0.267

Trials −0.128 0.243

Figure 3 shows the silhouette scores for the 10 pathways
presented above; Figure 4 is obtained after applying a two-
dimensional principal component analysis (PCA): it presents
the distribution of the identified pathways implemented by
the students’ teams along two principal components, calculated
according to the PCA approach.

Figure 5 presents the age-related differences between the
students’ teams involved in the experimentation, within these
10 pathways: the majority of the higher school students adopted
pathways 1 (a complex sequence with some refinements of
the programming parameters) and 6 (a complex sequence with
considerable variation to the condition set for the ultrasonic
sensor); the majority of the lower school students adopted
pathways 3 (a compact sequence with a refinement of the
programming parameters) and 4 (a compact sequence with
considerable variation to the condition set for the ultrasonic
sensor); the majority of the primary school students adopted
pathway 4 (a compact sequence with considerable variation to
the condition set for the ultrasonic sensor).

Figure 6 shows the distributions of the indicator of early
achievement in the 10 selected cluster. Excluding those problem-
solving behaviors that were shown by less than three groups
(styles 7, 8, 9) from the analysis, significant differences (chi-
square = 25.54, p = 0.0002711, df = 6) were found among the
seven different clusters of group behavior. Pairwise comparisons
using Dunn’s test for multiple comparisons of independent
samples with Bonferroni’s P-value adjustment method showed
that significant differences could be found between clusters 1 and
4 (p= 0.014), 2 and 5 (p= 0.035), and 4 and 5 (p= 0.016).

DISCUSSION

This brief research report presents an innovative application
of machine learning techniques in the field of ER, for the T
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FIGURE 3 | Silhouette scores for the 10 pathways (presented in the section Results) identified by the k-means algorithm.

FIGURE 4 | Representation of the identified pathways implemented by the

students’ teams along two principal components, calculated according to the

PCA approach.

identification of different problem-solving pathways and the
analysis of how students learn to utilize sensors during an ER
activity. The k-means algorithm identified 10 “pathways” that
marked the students’ teams’ programming activity, during the
resolution of specific exercise related to the ultrasonic sensor.
Analyzing the pathways presented in the previous section, two
main approaches to programming emerged: some teams modify
the blocks’ parameters implementing small changes, moving
toward their objective by “small steps” (pathways 1, 3, 5); other
teams design high changes (frequently modifying the symbol in
the condition for the ultrasonic sensor, applying considerable
variation to the threshold set for the ultrasonic sensor, repeatedly
deleting/adding blocks, etc.) to their programming blocks from
one test to another (pathways 2, 4, 6). The majority of the
groups showing the first incremental approach (pathways 1, 3,
5) reached a working sequence during their first testing stage
(an indicator of early achievement <0.4), unlike the teams with
the “high changes approach” (pathways 2, 4, 6). This is a similar
result compared to Blikstein et al. (2014), who identified that a
“steadier incremental steps” strategy of programming correlated
to a better performance in the resolution of the exercise.
Pathway 4, with the highest number of trials (57) (Table 2),
contains teams that did not obtain a working sequence in their
first part of their work, and this result is similar to Chao (2016)
but opposed to Filvà et al. (2019).
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FIGURE 5 | The age-related differences between the students’ teams involved in the experimentation, within the 10 problem-solving pathways.

FIGURE 6 | Distributions of the indicator of early achievement in the 10

selected pathways.

Future work of this study includes the analysis of more
extensive set of challenges in order to obtainmore general results.
The dataset considered in this paper is quite small (in particular,
for pathways 7, 8, and 9): ER is an approach characterized
by teamwork, so despite having involved 353 primary and
secondary school students in the experimentation, we obtained
valid data from 85 teams (participants were divided into teams
of three to four members who worked together to design
software solutions). The promising results of this preliminary
study have encouraged the authors to involve new classes in
the experimentation in order to continue the validation of the
approach. The authors intend also to utilize a recurrent neural
network, in particular, the long short-termmemory autoencoders
(a structure specifically designed to support sequences of input
data Hochreiter and Schmidhuber, 1997), in order to translate the
programming sequences created by the students into fixed-length
vectors (compress representation of the input data), maintaining
a high level of information content. As a result, these vectors

obtained from the autoencoders compression will be used as
input features for supervised and/or unsupervised algorithms.
Another possible approach that the authors intend to use for the
same task (dimensionality reduction) is the PCA.
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The present work is a collaborative research aimed at testing the effectiveness of the

robot-assisted intervention administered in real clinical settings by real educators. Social

robots dedicated to assisting persons with autism spectrum disorder (ASD) are rarely

used in clinics. In a collaborative effort to bridge the gap between innovation in research

and clinical practice, a team of engineers, clinicians and researchers working in the

field of psychology developed and tested a robot-assisted educational intervention for

children with low-functioning ASD (N = 20) A total of 14 lessons targeting requesting

and turn-taking were elaborated, based on the Pivotal Training Method and principles

of Applied Analysis of Behavior. Results showed that sensory rewards provided by

the robot elicited more positive reactions than verbal praises from humans. The robot

was of greatest benefit to children with a low level of disability. The educators were

quite enthusiastic about children’s progress in learning basic psychosocial skills from

interactions with the robot. The robot nonetheless failed to act as a social mediator,

as more prosocial behaviors were observed in the control condition, where instead of

interacting with the robot children played with a ball. We discuss how to program robots

to the distinct needs of individuals with ASD, how to harness robots’ likability in order to

enhance social skill learning, and how to arrive at a consensus about the standards of

excellence that need to be met in interdisciplinary co-creation research. Our intuition is

that robotic assistance, obviously judged as to be positive by educators, may contribute

to the dissemination of innovative evidence-based practice for individuals with ASD.

Keywords: social robotics, social skills, evidence-based practices, robot acceptance, applied analysis of behavior

1. INTRODUCTION

There is a growing recognition of the innovation-to-practice gap arisen in social robotics (Fernaeus
et al., 2010; Pennisi et al., 2016; Walters, 2018; Ismail et al., 2019), a field dedicated to developing
robots to assist persons with special needs. To date, few social robots have gone beyond the
prototype stage, or else are only deployed for research purposes (Wagenmakers, 2016). Their sale
volume is still low (6,423 units in 2017), compared with that of domestic help robots (6.1 million
units in 2017) (IFR, 2018). Kim et al. (2012) (see also Cabibihan et al., 2013; Pennisi et al., 2016)
ascribed these difficulties to the lack of collaboration between researchers and end-users. Too long,
research effort focused on the technological features of newly engineered robots (e.g., Kozima et al.,
2007; Robins et al., 2009), not taking into account the specific needs of end-users. End-users do not
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evaluate a technical innovation, however outstanding it may
be (Payne, 2015). Rather, they evaluate its added value relative
to existing alternatives and its accordance to work routines
(Joachim et al., 2018).

The hard earned lesson now is that to overcome the
innovation-to-practice gap, close collaboration between
engineers, researchers, caregivers and management team is
needed. The collaboration may take the form of a participatory,
pragmatic, or collaborative approach, where all the stakeholders
work hand in hand to co-create tools best fitting the needs of
end-users (Schwartz and Lellouch, 1967; March et al., 2005;
Zwarenstein et al., 2008; Marchand et al., 2011; Forman et al.,
2013; Bauer et al., 2015). In this emerging framework, having
recently gained impetus from the paper by Balas and Boren
(2000), researcher does not solely ask whether a new tool
works when used in optimal laboratory conditions. Rather, he
evaluates whether the tool works when used in real-life clinical
settings, without highly-qualified staff, a homogenous group
of patients, or tight experimental control (Cargo and Mercer,
2008; Zwarenstein et al., 2008; Brownson et al., 2012). The tool’s
acceptance is assessed by a questionnaire and implementation
failures and context reported as a result on its own (Stahmer
et al., 2015). We exploit here the collaborative approach to
co-create and test socially assistive robot during an educational
intervention dedicated to children with autism spectrum
disorder (ASD).

1.1. Robots and ASD
ASD is an early-onset, pervasive developmental disorder that
manifests itself in anomalies in social communication and
interaction, together with abnormal restricted and/or repetitive
patterns of behavior and interests (Lord et al., 1994; DSM 5,
2013). For instance, children with ASD avoid physical contact,
do not orient toward humans, do not point to communicate,
do not express enjoyment or interest, and may spend hours at
lining up toys or flipping objects (Rutter et al., 2003). As ASD
is incurable, some persons with this disorder require costly and
intensive lifetime care, support and treatment, motivating the
development of social robots to assist them and their caregivers.

The arising of social robots dedicated to ASD can be traced
back to the seminal study by Emanuel and Weir (1976) (see
also Howe, 1983), where a computer-controlled electrotechnical
device, a turtle-like robot (LOGO) moving on wheels around the
floor, was used as a remedial tool for an ASD boy. It was not until
the late 1990s that multiple laboratories adopted this topic for
research (see Werry and Dautenhahn, 1999; Diehl et al., 2012;
Begum et al., 2016; Ismail et al., 2019; for reviews).

To date, nearly 30 robots were tested as remedial tools for ASD
[e.g., : Labo-1 (Werry et al., 2001); Muu (Miyamoto et al., 2005),
Robota (Billard et al., 2007), FACE (Pioggia et al., 2007), Keepon
(Kozima et al., 2007), Aibo (Francois et al., 2009), IROMEC
(Iacono et al., 2011), Charlie (Boccanfuso and O’Kane, 2011),
NAO (Shamsuddin et al., 2012), Flobi (Damm et al., 2013); GIPY-
1 (Giannopulu, 2013), Pleo (Kim et al., 2013), KASPAR (Wainer
et al., 2014), Darwin-OP (Peng et al., 2014), Pabi (Dickstein-
Fischer and Fischer, 2014), Zeno (Salvador et al., 2015), Jibo
(Guizzo, 2015), Probo (Simut et al., 2016), Maria (Valadao et al.,

2016), Sphero (Golestan et al., 2017), CARO (Yun et al., 2017),
KiliRo (Bharatharaj et al., 2018), MINA (Ghorbandaei Pour et al.,
2018), QTrobot (Costa et al., 2018), Milo (Chalmers, 2018), Leo
(She et al., 2018), Daisy (Pliasa and Fachantidis, 2019), SAM
(Lebersfeld et al., 2019), SPRITE (Clabaugh et al., 2019), Actroid-
F (Yoshikawa et al., 2019) etc.].

The key hypothesis behind this endeavor states that social
robots can maybe overcome some of the motivational and
sensory barriers encountered by individuals with ASD when they
interact with humans partners (Dautenhahn, 1999). In contrast
to their typically developing peers, for whom social interactions
are inherently rewarding, children with ASD exhibit only weak
activation of the brain’s reward system in response to social
reinforcement (Chevallier et al., 2012; Delmonte et al., 2012;
Watson et al., 2015). Social Motivation Theory of ASD, Chevallier
et al. (2012) argued that ASD children neither seek out nor seek
to maintain relations with human partners, showing instead a
preference for nonhuman and often mechanic stimuli (Watson
et al., 2015).

In addition to these motivational issues, sensory processing
of persons with ASD is abnormal: they are often intolerant of
complex multimodal stimuli (Bogdashina, 2010, 2012), display
detail-focused perception (Happé and Frith, 2006), and sensory
sensitivities or aversions (Bogdashina, 2010), with intense social
anxiety (Spain et al., 2018). According to the Weak Central
Coherence theory (Happé et al., 2001) and Enhanced Perceptual
Functioning model (Mottron et al., 2006), the perceptual
processing of ASD persons is biased toward local features: these
children are incapable of integrating the variety of individual
pieces of information into global patterns. Intense World
Theory of Autism (Markram, 2007) sugested that these persons
suffer from excessive neuronal information processing causing
informational overload and abnormal levels of anxiety, which
they seek to reduce with stereotypical and repetitive behaviors
(Rodgers et al., 2012).

Given these characteristics of ASD, it seems useful to examine
whether a social robot, with its motivational appeal, behavioral
repetitiveness, simplified appearance and lack of social judgment,
may be more appealing to individuals with ASD than real
humans. Therefore, in line with Social Motivation Theory of ASD
(Chevallier et al., 2012) our first working hypothesis (Hypothesis
1) is that children with ASD should positively react to sensory
rewards delivered by a robot, by manifesting their interest
and satisfaction when these stimuli are provided. In line with
Intense World Theory of Autism (Markram, 2007), we also
expect a reduction of anxiety-related undesirable behaviors (e.g.,
stereotypes, screams, auto-aggressions, etc.) in the presence of the
robot (Hypothesis 2).

Yet, the key hope behind social robotics for ASD is that
robots act as social mediators: they mediate, that is, promote
or “catalyze” a cascade of so-called prosocial behaviors directed
toward humans: eye or head orienting, physical contact, pointing
to shared interest etc. (Dautenhahn, 2003; Feil Seifer and
Mataric, 2009; Diehl et al., 2012). Our third working hypothesis
(Hypothesis 3) is that in robot-assisted experimental conditions
the child produces prosocial behaviors not only toward the robot
but also toward humans. For the sake of clarity, a behavior is
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coined below as “prosocial” only in case it is dedicated to human,
not to robot.

1.2. Building Up Robot Acceptance
In order to fulfill acceptance criteria of end-users, robot-assisted
interventions should meet the efficiency standards of health
services, tasked with assessing the level of experimental evidence
supporting the added value of newly created tools (Burns et al.,
2011), and providing recommendations to practitioners (GRADE
Working Group, 2004). To accumulate such supportive evidence,
multiple experiences should show that interventions for ASD
work better when assisted by robots than in control condition,
without the help of electromechanical devices.

To date, such evidence is scarce (Miguel Cruz et al., 2017). Of
the 758 studies on robot-assisted interventions for ASD listed by
Pennisi et al. (2016), only 29 (0.04%!) were selected as meeting
clinical concerns. Publications still too often take the form of pilot
studies (e.g., Werry et al., 2001; Miyamoto et al., 2005; Duquette
et al., 2008; Robins et al., 2009; Costa et al., 2011; Dickstein-
Fischer and Fischer, 2014) without control conditions, inferential
statistics, diagnosis methods and inclusion/exclusion criteria (see
Pennisi et al., 2016; Ismail et al., 2019 for critical reviews).
Although necessary as a starting point, these preliminary studies
are unable to establish the effectiveness of robotic tools in clinical
samples, according to the rules of clinical methodology (Kazdin,
1998). The best-established effect is the “likability” of robots
(Begum et al., 2016): children with ASD show enthusiasm for
robotic devices and willingly participate in games assisted by
these devices (Pliasa and Fachantidis, 2019)

To fit the needs of special needs educators, a collaborative
approach was adopted. The idea of the robot in this project
was born in 2011 in France when a father asked a team of
young engineers from School of Industrial Biology at Cergy
Pontoise to create games for his child with ASD. In 2014, a newly
created French start-up created a low-cost, remotely controlled
robot ball, that moves by rolling, vibrates and illuminates its
transparent cover with different colors. Similar to spherical
GIPY-1 (Giannopulu, 2013), Roball (Michaud et al., 2005), or
SPRK+ Sphero (Golestan et al., 2017) the robot belongs thus to
nonhumanoid devices.

The management team controlling the workflow enrolled the
special educators and the children with ASD, and only then
tasked researchers who could identify the educational goals
and develop the procedure for the robot-assisted psychosocial
skills training intervention. Children enrolled displayed low-
functioning ASD, that is, intellectual quotient lower than 70 (i.e.,
intellectual dysfunction). Note however that the focus lies here
on the effectiveness of the robot-assisted intervention, not on the
specific functioning of these low-functioning children. At the end
of our mission, we administered an acceptance questionnaire to
analyze whether and how special educators accepted the robot-
assisted intervention. We hoped that the intervention is judged
as useful and fitting work routines (Hypothesis 4).

1.3. Intervention
We proposed an educational intervention targeting social skills
and evaluated how efficient the robot is, as compared to the

intervention without robotic help. In order to teach the social
skills, we designed two sets of lessons to be taught using
the Applied Analysis of Behavior (ABA) (Cooper et al., 2019)
educational method recommended by health services. The key
idea of ABA is to increase the probability of desirable behaviors by
providing reinforcers in the form of rewards (Skinner, 1981). For
the purpose of the present study, we chose the two general social
skills that are most often targeted by educational interventions
in ASD: requesting and turn-taking (Still et al., 2014; Huijnen
et al., 2017). Requesting allows children to initiate a social
interaction, express their needs and seek help, and leads to greater
independence. Turn-taking is involved in the regulation of any
social interaction. In order to exploit the added value of robots,
compared with computer-mediated therapy, we administered
tasks requiring body displacement in space, in particular during
turn-taking lessons.

In line with ABA, the principles of the Pivotal Training
Method (PTM) (Koegel et al., 1999, 2001) proposes that the
learning of general skills (here: turn-taking and requesting)
should bring about collateral improvements in a variety of
nontrained prosocial behaviors in interpersonal interaction. In
the present study, we thus focused on these expected collateral
improvements, hoping that nontrained prosocial behaviors
(here: orienting toward human, physical contact with human,
pointing to communicate enjoyment and interest etc.) are more
frequent in the robot-assisted than in control condition (viz.
Hypothesis 3).

To sum up, the goal of these analyses was twofold. (1)
First, we assessed the efficiency of the robot as a reward
deliverer (viz. Hypothesis. 1), as an undesirable behavior reducer
(viz. Hypothesis 2) and as social mediator (viz. Hypothesis 3).
We expected that positive reactions to reward and nontrained
prosocial behaviors are more frequent and that undesirable
behaviors are less frequent in the robot, as compared to the
control condition. (2) Second, we evaluated the acceptance of
robot-assisted intervention by special educators (viz. Hypothesis
4). As in collaborative research interventions are administered
by real caregivers, we anticipated that they could derail from
the experimental procedure dictated by experimenters (viz.
Hypothesis 5).

According to the suggestions of collaborative approach
(Dingfelder and Mandell, 2011; Marchand et al., 2011), we
conducted our study in two steps. After designing the first set of
lessons devoted to requesting, we made successive modifications
to the experimental protocol as problems emerged. Only thenwas
the second turn-taking set of lessons administered and used for
further analyses.

2. METHODS

2.1. Participants
The teamwork coordinator enrolled 20 children with ASD and
15 special educators in the study. They came from five special-
needs schools and centers in France (APEAI Ouest Herault in
Béziers, ADAPEI Papillons Blancs inDunkirk, ADAPEI Papillons
Blancs d’Alsace in Mulhouse, Ar’Roch in Rennes, DASCA Adéle
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de Glaubitz in Strasbourg, ADAPEI 44 in Nantes, APPARTE)
where children receive care for their behavioral disorders.

As these centers correspond to small structures taking care
of children with various mental disorders, only 1–2 individuals
in each center fitted our inclusion/exclusion criteria: (1) 60–122
months of age at enrollment; (2) developmental age of 18–30
months assessed by verbal and preverbal cognition subtest from
Psychoeducational Profile (PEP-3) (Schopler et al., 2004) (see
below); (2) a diagnostic of ASD made by expert psychologists
from Regional Autism Resources Center, and reconfirmed here
by Social communication Questionnaire (SCQ, Rutter et al.,
2003, see below); (3) no identifiable neurological disease or
major neurological treatment. The ratio between developmental
and maturational age was 0.28 (SD = 0.09), qualifying the
children as low-functioning (i.e., severe intellectual deficit).
Further psychological characteristics of our sample are provided
in Table 1. The female-male ratio was 3/17.

As the robot had a low level of autonomy (Level 2; see
Parasuraman et al., 2000), in each experimental session, in
addition to the special educator interacting with the child,
another person controlled the robot. Fifteen educators who cared
for the children applied the experimental protocol: 56% were
special needs monitors and 31% were special needs professionals,
67% hadmore than 10 years of experience, and 93%were women.
At least one special educator in each center reported having
already undergone a short ABA familiarization course. Just under
half (47%) stated that they had never used new technologies,
and just over half (53%) that they used them occasionally. The
interventionist and the families of all the children received a
letter explaining the goals, experimental procedure and rights
of parents and children, and provided their written informed
consent, in accordance with the Declaration of Helsinki. Each
parent completed a form provided by the University of Toulouse
informing them about their rights and predictable risks in
comparison with foreseeable benefits. An ethics and scientific
committee of the consulting company in the role of intermediary
between the start-up, researchers and investors approved the
experimental protocol; the committeemembers were also present
during the first meeting. A declaration of ethical collection and
storage of data was also made to the French Data Protection
Authority (CNIL; ref.: 7e42415863j).

2.2. Material
2.2.1. Robot
We used a white, spherical prototype, measuring 18 cm in
diameter and weighing 900 grams that was enclosed in a
transparent plexiglass sphere resistant to shocks and pressure.
Designed with a smiling face, equipped with actuators (LEDs,
motors) and sensors (IMU 6-Axis, RFID), the prototype could
light up or blink in different colors, and moved on two wheels
in contact with the sphere. The robot was powered by AAA
batteries and had autonomy of 3 to 4 h. Its behavior was remotely
controlled by a touch pad (iPad iOS 10 or 11) with which it
communicated through Bluetooth Low Energy over a distance of
about 20 m.

In view of the intervention, three key functions were
programmed in the robot. It acted as reward deliver, displaying

colored lights and spinning movements, and also as cue provider:
it offered specific lights and displacements prescribing required
behavior of the child (e.g., “Touch the robot if it is your turn and if
the robot is lit up in blue,” see Table 5). Finally, it acted as lessons
organizer, as explained below.

Two sets of seven lessons were developed. The application
on the graphic tablet allowed the interventionist to consult
the child’s profile, which contained his/her experimental history
and preferred sensory rewards, select a lesson, and display the
lesson description and lesson control panel. The control panel
featured various icons to launch the robot’s cue, record the child’s
response, and provide rewards. Four types of responses from
the child could be recorded: failure, success with total prompt,
success with partial prompt, and success without prompt.

The control programs were developed on C++ for the robot
and on Swift for the tablet. We were not allowed by investors
to provide more technological details or the name of the device,
never described in the literature and not commercialized to date.

In addition to the robot, a shoulder strap was provided to
hold the graphic tablet. For the purpose of the experiment, a
GoPro camera (Hero), a tripod (Fotopro), and a memory card
(microSDHC SanDisk Extreme 32) were given to each center. A
child’s chair, and hoops were also required for the intervention.
Because of the spherical design of the robot, balls were used in
control condition.

2.2.2. Tutorials
Three tutorials were offered to the educators: (1) a brief
introduction to ABA; (2) a technical description of the robot
(see section 2.2.1), together with a detailed presentation of
each set of lessons (see section 2.2.3); and (3) a description
of the experimental design underlying the intervention (see
section 2.3.2).

In the description of ABA, we recalled that in line with the
principle of selection by consequences (Skinner, 1981), the
educators would have to manage the sequence of events
controlling each child’s behavior (antecedent, behavior,
consequence). According to the Discrete Trial Training
method (Smith, 2001) learning should take the form of trials,
each sequence involving an antecedent cue anticipating the
appropriate behavior (e.g., “Touch the robot in turn”), a prompt
wherein the educator assists the child (e.g., demonstration of
required gesture, hand-over-hand assistance, pointing, nodding
etc.), the child behavior (e.g., touching the robot in turn),
the environmental consequence (e.g., verbal praise), and the
intertrial interval (see Figure 1). We explained that providing
a reward immediately after the to-be-learned target response
reinforces the latter, increasing the probability of the target
response being produced in the future.

Before each session, given their knowledge of the child’s
abilities and needs, the educators were asked to anticipate
the required level of prompting, to avoid delays between the
instruction and the prompt. They were told they should not
hesitate to start with all prompts to facilitate learning. Prompts
should be gradually faded out as learning proceeded, or increased
in the case of a child failing (Leaf et al., 2016). We explained how
instructions and rewards should be efficiently applied (e.g., brief,
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TABLE 1 | Psychological tests used in the present experiment.

Test No. items Item scoring Score interpretations Child score

SCQ 40 0–1 score>15: possible ASD 21.43 (3.06)

V-listening 20 0–2 score <70: delay in receptive communication 16.81 (9.62)

V-speaking 32 0–2 Score <70: delay in expressive communication 22.15 (7.95)

V-autonomy 27 0–2 score <70: delay in personal autonomy 39.96 (15.46)

V-socialization 26 0–2 score <70: delay in socialization 22.08 (7.09)

V-adaptation 30 0–2 score <70: delay in social adaptation 9.56 (6.85)

PEP-3: AEs 11 0–2 Higher score: better affective expression 9.93 (4.43)

PEP3: SR 11 0–2 Higher score: better social reciprocity 11.14 (4.02)

PEP3: CVPV 34 0–2 Provides developmental age 26.44 (7.37)

SPCR 85 0–1 Higher score: more sensory abnormalities 26.86 (5.64)

ESES 13 1–9 Higher score: higher self-efficacy belief 85.86 (10.31)

For each test, the number of items, score range, score interpretation, mean score and standard deviation (SD) are provided for the children with ASD. SCQ, Social Communication

Questionnaire; PEP, Psychoeducational Profile; SPCR, Sensory Profile Checklist Revised; AE, affective expressions; SR, social reciprocity; V, Vineland.
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FIGURE 1 | ABA-based procedure of learning.

clear, short and consistent instructions, provided when the target
response was not being produced; reward applied immediately
after the target response). Undesirable behaviors had to be gently
and briefly interrupted, and the child immediately prompted to
provide the target response (Cividini-Motta et al., 2019).

The descriptions of each lesson given to educators interacting
with the child contained the learning goal (e.g., “Touch the robot
in turn”), corresponding verbal instruction (e.g., “It’s your turn”),
required material (e.g., child’s chair), preparation procedure
(e.g., place the robot in the center of the room), a step-by-step
procedure for learning, and a validation criterion (see below).

2.2.3. Sets of Lessons
Given that the volume of the tutorial depicting the lessons was
30 pages long, we provide below an abbreviate illustration of
its content. Each set comprised a learning procedure that was
ultimately aimed at enabling children to produce spontaneously
and appropriately the general social skill targeted by the
intervention: requesting (Set 1) and turn-taking (Set 2). Each
set was composed of seven lessons, each with a learning goal,
corresponding to a required response to be acquired by the
child (e.g., “Look ate the robot,” see Table 2, or “Touch the
robot in turn”, see Table 3). Required responses progressed from

TABLE 2 | Required responses (R) for requesting set of lessons.

Set 1 Requesting

R1. Look at the robot

R2. Get closer to the robot

R3. Touch the robot

R4. Get closer to and touch the robot

R5. Hold inactive robot to the adult

R6. Hold inactive robot to the adult, who then activates it

R7. Spontaneously hold inactive robot to the adult, who activates it

TABLE 3 | Required responses (R) for turn-taking set of lessons.

Set 2 Turn-taking

R1. Touch the robot in turn

R2. Touch the robot if it is your turn and if the robot is lit up in blue

R3. Get closer to and touch the robot, in turn

R4. If it is your turn and if the robot is lit up in blue, get closer and touch the

robot

R5. If it is your turn and if the robot is lit up in blue, imitate the adult who

followed the robot along a short distance

R6. Wait until the robot has reached the end of a short pathway and, if it is your

turn and if the robot is lit up in blue, follow the path and touch the robot

R7. Touch the robot to select the color controlling the turn-taking; wait until

the robot has reached the end of a short pathway and, if the robot is lit up

in blue, follow the path and touch the robot

simple to complex, from prompted by the educator to initiated
spontaneously by the child, from centered on the toy (robot
or ball) to centered on the interaction with the educator (see
Tables 2, 3 for the sequence of lessons in each set).

In each lesson, a step-by-step procedure described the
elementary actions required from the robot (e.g., light up in blue),
the interventionist (e.g., say “It’s my turn”), and the child (e.g.,
“Touch the robot in turn”). Each lesson entailed five discrete
learning trials (e.g., five turn-takings) where the interventionist
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TABLE 4 | Step by step procedure for the first lesson in the turn-taking set.

Required response Touch the robot in turn

Antecedent 1. Sit facing the child, and place the robot between you.

The robot is inactive.

2. Touch the robot on the top: it will light up in blue for a

moment.

3. Then encourage the child to do the same. Each time, say

“It’s my turn / It’s your turn.”

Behavior 4. If the child respects his/her turn, the robot will light up in

blue.

5. If not, the interventionist will blocks him/her, saying “No,

it’s my turn”.

6. If the child does not attempt to touch the robot, the

educator selects a guidance specific to the child.

Consequence 7. After an errorless sequence of six turn-takings, the robot

provides a sensory reward (specific to each child) and the

interventionist gives verbal praise.

Validation Criterion 8. Repeat the sequence of turn-takings 5 times in a row (30

trials in all).

9. Go to the next lesson if the child has produced a correct

turn-taking sequence four times out of five.

attempted to elicit the required response. In accordance with
ABA criteria, a required response was deemed to be acquired if
it was produced in 80% of these trials, without or with partial
prompting (see Figure 1). If, after the five repetitions of the same
trial, the child failed to meet this criterion, the educator stopped
the whole experimental protocol. The step-by-step procedure for
the first lesson in the turn-taking set appears in Table 4, for the
second lesson in Table 5.

2.2.4. Workbooks
Information about the children and their caregivers was
collected in two workbooks. The first workbook collected general
information about the child (i.e., age, diagnostic tools used,
developmental age) and provided five psychological tests for
psychometric assessment: Social Communication Questionnaire
(SCQ) (Rutter et al., 2003), Vineland II (Sparrow et al.,
2012), Psychoeducational Profile (PEP-3) (Schopler et al.,
2004), Sensory Profile Checklist Revised (SPCR) (Bogdashina,
2012), and Educators’ Sense of Efficacity Scale (ESES), adapted
from Teachers’ Sense of Efficacity Scale (Tschannen-Moran
and Hoy, 2001). These tools are described in Appendix 1;
their key features and interpretation in Table 1. The second
workbook included Educators’ Sense of Efficacity Scale and the
acceptance questionnaire.

2.2.5. Post-intervention Acceptance Questionnaire
To assess acceptance of the intervention, we developed a
questionnaire for the educators targeting several issues: (1) for
what kind of children is a robot-assisted intervention best suited?
(2) what is its added value, advantages and disadvantages? (3)
what is its effect on workload, educational intervention, and
children’s learning? and (4) what training is required to use the
robot in educative intervention?

TABLE 5 | Step by step procedure for the second lesson in the turn-taking set.

Required response Touch the robot if it is your turn and if the robot is

lit up in blue

Antecedent 1. Sit facing the child, and place the robot between you.

The robot is active and lit up either in blue or red.

2. If the robot’s light is blue say “The robot is blue! Touch

it!.

3. If the robot’s light is red say “The robot is red! Don’t

touch it!”.

Behavior 4. If the robot’s light is red and the child reaches to touch

it, the educator will block the gesture, saying “The robot

is red! Don’t touch it!”

5. If the robot’s light is blue and the child does not

attempt to touch it, the educator selects a guidance

specific to the child (ex. The light is blue, you can touch

it).

6. If the robot lights up in blue and the child touches it,

the robot light up in white for a moment.

Consequence 6. After an errorless sequence of six turn-takings, the

robot provides a sensory reward (specific to each child)

and the educator gives verbal praise.

Validation Criterion 7. Repeat the sequence of turn-takings 5 times in a row

(30 trials in all)

Go to the next lesson if the child has produced a correct

turn-taking sequence four times out of five.

2.3. Procedure
2.3.1. Collaboration Procedure
In the present work, the stakeholders first met in order to discuss
ethical issues, methodological requirements, and acceptance
of the intervention by the children and educators. Two
training meetings were organized for them. In the first training
meeting, held before the start of experimentation, researchers
described the experimental goals and procedure, simulated
learning sessions, and described how to manage challenging
behaviors. The second training meeting took place during the
administration of the first set of lessons: the experimenters
provided feedback to the educators, using videos of previous
learning sessions. Half a day each week, a hotline was manned
by JK to answer the educators’ questions. The final meeting
took place after the experimentation, in order to present the
results and discuss the strengths and weaknesses of the robot-
assisted intervention. Each family received a brief summary of
their child’s progress.

2.3.2. Intervention Procedure
After the educators had taken notice of ABA principles, of lessons
content, and of the experimental design, described in the tutorials
(see section 2.2.2), they completed the psychological tests from
the first workbook (see Table 1). Then, the children underwent
a familiarization session, where they were merely put in the
presence of an inactive robot. The following week, the lessons
started: requesting (see Table 2) followed by turn-taking (see
Table 3), according to the step-by-step procedure as described in
the tutorials (see Tables 4, 5). Each child was administered each
lesson in two conditions, in random order: with the robot and
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FIGURE 2 | Intervention conditions: with robot (left) and with ball (right).

with the ball (see Figure 2). At least one session with the robot
and one with the ball was administered for each lesson. Each set
of lessons was taught over 12 weeks. The entire intervention took
place over 24 weeks. After the intervention, a second workbook
was provided, including the ESES and acceptance questionnaire.

2.4. Data Reduction and Analysis
2.4.1. Observation Grid
After the end of interventions, the method of direct observation
from videos was used (Hops et al., 1995). Video recordings
of all the experimental sessions were analyzed by two trained
coders (psychology undergraduates), who were familiar with
ABA and blind to the purpose of the experiment. They used an
observation grid listing 16 categories of responses (e.g., proximal
pointing, head/gaze oriented toward human, stereotypies, see
Table 6, right column), organized in four global classes: positive
reactions to reward, prosocial behaviors, undesirable behaviors,
and orientations (see Table 6, left column). To assess child
autonomy, coders were required to record the prompts initiated
by educators. To assess implementation quality, they were also
asked to record the educators’ implementation errors. Cohen’s
kappa was calculated to measure interrater agreement (k= 0.92).

2.4.2. Dependent Variables
All dependent variables were measured after the end of
interventions. For each child and each experimental condition
(robot, ball), we recorded the number of times each response
category (e.g., proximal pointing) occurred, resulting in 16
summed scores (see Table 6, right column). These scores were
then combined to four dependent variables corresponding to
above-mentioned global classes (i.e., positive reactions to reward,
prosocial behaviors, undesirable behaviors, and orientations, see
Table 6, left column).

To take a deeper look into the effect of robot-assisted
intervention, we computed the proportion of prosocial and
undesirable behaviors produced in robot condition. The
proportion was then normalized (from 1 to−1):

Normalized.Proportion = 2× (
xrobot

xrobot + xball
)− 1 (1)

TABLE 6 | Dependent variables and to-be-observed response catégories.

Dependent variables Response categories Label

Positive reactions to reward To reward delivered by human (PRH)

To reward delivered by robot (PRR)

Prosocial behaviors Proximal pointing (PP)

Distal pointing (DP)

Joint gazing (JG)

Physical contact with human (CH)

Head/gaze oriented toward human (OH)

Social smiles (SS)

Desirable vocalizations (DV)

Orientations Head/gaze targeting human (OTH)

Head/gaze targeting toy: ball or robot (OTT)

Undesirable behaviors Inappropriate behaviors (IA)

Stereotypies (S)

Undesirable vocalizations (UV)

Lack of interest (LI)

Attentional dropout (AD)

Each dependent variable in the left hand column is a combination of responses categories

shown in the middle column. Left hand colums displays response category labels.

The normalized proportion takes a positive value when
most of these behaviors were produced in robot condition,
and inversely:







1 if xrobot > xball
0 if xrobot = xball
−1 if xrobot < xball

(2)

In the formula, xrobot and xball refer to the number of behaviors
produced in robot and ball condition, respectively.

2.4.3. Statistical Analyses
To capture the characteristics of the children for whom the
intervention was stopped and those who passed from lesson to
lesson, one-tailed t-tests were carried out on all psychological test
scores. Three groups were compared: the group who stopped the
first set of lessons (i.e., Requesting), the group who started the
second set (i.e., Turn-taking), and the group who completed the
second lesson of the second set.

For further analysis, four experimental factors were
envisioned: Condition (robot, ball), Reaction target (human,
toy), Orientation Target (human, toy), and Prompt (with,
without). Note, for Reaction target and Orientation target,
the toy refers to robot in robot condition and to ball in
ball condition.

To assess the efficacy of the robot-assisted intervention, we ran
three statistical analyses. A 2 (Reaction Target = human in robot
condition, human in ball condition, robot in robot condition)
ANOVA was performed on positive reaction to reward and a 2
(Orientation Target= human, toy)× 2 (Condition= robot, ball)
ANOVA was on orientations. A 2 (Condition = robot, ball) ×
2 (Prompt = with, without) ANOVA was also run on prosocial
behaviors and on undesirable behaviors to check whether the
robot improved the children’s social skills.
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In all the ANOVAs, repeated measures were used on
all dependent variables. Because each experimental factor
(Condition, Reaction Target, Orientation Target and Prompt)
had two levels, the assumptions of sphericity and of homogeneity
of variances were always met. The distributions of dependent
variables did not diverge from normal, as indicated by Lilliefors
test for normality (D = 0.1052, p = 0.5939; D = 0.0636, p
= 0.99; D = 0.1145, p = 0.2722; D = 0.0443, p = 0.9901,
for reactions to reward, prosocial behaviors, orientations and
undesirable behaviors, respectively).

If required, the ANOVAs were followed by appropriate two-
tailed t-tests. The sign of normalized proportion was tested using
one-sample t-test with 0 as comparison value. Finally, a matrix
of correlation indices (r) was computed using all scores from the
psychological tests and categories of responses. For all the above-
mentioned analyses, the significance level was set at p <0.05, with
the corresponding estimates of the effect size (η2).

2.4.4. Statistical Analyses for Single Participant
Single-participant analyses were then performed on one of
the children with ASD who successfully completed the whole
intervention protocol. For this dataset, Bayesian statistics for
single cases (de Vries and Morey, 2013; de Vries et al., 2015)
were used. The posterior distribution for the standardized mean
differences and Bayes factors were computed using the JZS+AR
model with 10,000 Gibbs sampler iterations (de Vries et al., 2015).
The Bayes factor quantifies evidence in the data for the null
hypothesis against the alternative one: an inverse Bayes factor
(1/BF) greater than 1 supports the alternative hypothesis. All 16
categories of responses, together with prosocial behaviors and
undesirable behaviors, were submitted to this analysis.

2.4.5. Descriptive Statistics
To provide a glimpse into implementation fidelity, that is, the
degree to which the educators strayed from the procedure
specified by the experimenters, the coders were required to
record any implementation error. The frequency of the failures
was computed as a ratio of the number of failures to the number
of videos. Finally, responses to the acceptance questionnaire were
scored as percentages.

3. RESULTS

3.1. Child Sample Results
Children’s Vineland-II and PEP-3 scores in our sample were
low (see Table 1), indicating severe delays in social adaptive
behavior, as well as in AE and SR skills. On average, sensory
abnormalities were moderate. Of the 20 children with ASD who
were initially enrolled, 15 reached the second set of lessons. The
five participants who had to stop the first set had lower Vineland
scores on listening, speaking and autonomy than the remaining
participants, t(18) = 3.20, p <0.007; t(18) = 3.04, p <0.007; and t(18)
= 2.29, p <0.032. Of the 15 children who started the second set of
lessons, only eight completed it. These eight children had higher
Vineland listening scores than those who failed to complete the
first and second sets of lessons, t(13) = 2.23, p <0.044.

3.2. Robot-Assisted Intervention Results
3.2.1. Reward Deliver
A 2 (Reaction Target = human in robot condition, human in
ball condition, robot in robot condition) ANOVA on positive
reactions showed a main effect of Reaction Target, F(2,14) =

4.06, p = 0.04, η2 = 0.546. Corrected pairwise comparisons (see
Figure 3A) showed that there was more positive reactions to the
reward when it was delivered by the robot rather than by the
human in robot and in ball conditions [t(7) = 2.37, p = 0.049;
t(7) = 2.50 p= 0.04].

3.2.2. Undesirable Behavior Reducer
A 2 (Condition)×2 (Prompt) ANOVA on undesirable behaviors
revealed no statistically reliable effects.

3.2.3. Social Mediator
A 2 (Orientation Target)× 2 (Condition) ANOVA on orientation
indicated an important main effect of Orientation Target, F(1, 7)
= 23.538, p <0.002, η2 = 0.771. Children oriented more
frequently toward the toy (i.e., ball or robot) than toward the
educator. As illustrated in Figure 3B, there was also an Target
Orientation × Condition interaction, F(1, 7) = 12.850, p <0.009,
η2 = 0.647. When the children played with the robot, they
oriented more often toward the robot than toward the educator,
t(7) = 7.78 p <0.0001. When they played with the ball, there was
no effect of Orientation target, t(7) = 1.80, p= 0.1142.

A 2 (Condition)× 2 (Prompt) on prosocial behaviors revealed
a main effect for Prompt on prosocial behaviors only, F(1, 7) =
9.688, p <0.017, η2 = 0.581: Prosocial behaviors occurred more
frequently with the prompt (20.06, SD = 10.75) than without it
(9.50, SD= 8.45).

The value of the normalized proportion of prosocial behaviors
was significantly negative, t(6) = 2.948, p = 0.026: There were
more prosocial behaviors in the ball rather than in the robot
condition.

3.2.4. ASD Children Characteristics
There was a positive correlation between SCQ scores and
orientations toward the ball condition (r= 0.794, p= 0.033), and
a negative correlation between orientations toward the robot and
auditory sensory abnormalities (r =−0.907, p= 0.005).

Further conclusions were drawn from the correlation between
the normalized proportion of prosocial behaviors and SCQ
score: the more severe the symptoms (i.e., the higher the
SCQ value), the lower the proportion of prosocial behaviors
produced in the robot as compared to the ball condition
(r =−0.813, p= 0.026).

3.2.5. 6 Longitudinal Single-Participant Analysis
The child with ASD who completed all the sessions directed his
gaze more often toward the robot than toward the ball (1/BF
= 1.32 >1) (Figure 4A). He also produced more stereotypic
behaviors in the robot than in the ball condition (1/BF = 2.82
>1) (Figure 4B).

3.3. Implementation Issues
Given that in collaborative/applied research, experimenters
do not have total control of the implementation process
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FIGURE 3 | Positive reactions (A) and orientations (B) as a function of Condition (ball, robot). *p < 0.05, **p < 0.01and ***p < 0.001.

FIGURE 4 | Gaze direction (A) and stereotyped behaviors (B) as a function of Lessons and Condition (robot, ball).

and context of the experimental procedure, it is essential to
describe the context delivery and the real-world difficulties
encountered. This may prove to be particularly valuable in
future efforts predicting, avoiding or better adapting to these
socio-ecological constraints.

During the first set of lessons, the experimenters and coders
identified five implementation failures where educators strayed
from experimental requirements: instruction repeated too often
or delivered at an inappropriate time; errors in action sequencing
(i.e., instruction + prompt + interval, behavior + reward);
reward omitted or delivered at an inappropriate time (e.g.,

before the child’s behavior or after a failure); trial omission;
and distractors not removed. In the set of 32 videos that
were examined, 48 implementation failures were recorded, thus
resulting in 1.5 failures per session. As indicated in Table 7,
the most frequent failures were associated with reward or trial
omission. However, the most severe procedural error was the
omission of baseline conditions: before the intervention, the
researchers had asked the educators to perform two baseline
sessions: one with the robot and one with the ball, but
some educators only carried out the baseline condition with
the robot.
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TABLE 7 | Implementation failures.

Nature of implementation failure Failure

frequency

Instruction 0.16

Action sequencing 0.13

Reward 0.69

Trial 0.47

Distractor 0.06

3.4. Robot Acceptance
3.4.1. Acceptance Questionnaire
The distributions of responses to the acceptance questionnaire
showed that 87% of educators were satisfied or quite satisfied
with their experience with the robot, 73% agreed that the
robot brought substantial added value and transformed their
practice, and 87% wanted to keep on using the robot in the
future. Nevertheless, 67% of respondents confessed that they
had been tempted to stop the intervention procedure. The
reasons they gave included technical (80%) and organizational
(33%) difficulties. The list of robot disadvantages also included
substantial personal investment (60%) and increased workload
(43%). In response to the questions assessing their training
requirements, 40% of interventionists deemed that they need
training in applying a structured educational approach.

3.4.2. Interventionists’ Self-Efficacy Assessment
The interventionists’ feeling of self-efficacy was initially high, and
rose from 78.43 (SD= 11.97) before the intervention to 93.26 (SD
= 10.29) after the intervention on a scale of 0–100, representing
a significant increase, t(6) =−4.5962, p <0.004.

4. DISCUSSION

To better understand how to construct robotic tools for
individuals with ASD, we conducted a collaborative study
assessing the effects of a robot-assisted intervention on children
with low-functioning ASD. Our intervention provided mixed
results. As expected, children reacted more positive affect
to rewards in robot as compared to control condition (viz.
Hypothesis 1), and educators were quite enthusiastic about the
robotic help in the learning task (viz. Hypothesis 4). However,
contrary to our expectations, our robot was not able to act
as a social mediator (viz. Hypothesis 3): when children played
with the robot, they payed more attention to the toy than to
the educator and the proportion of prosocial behaviors was
higher in the control condition. Undesirable behaviors did not
decrease (viz. Hypothesis 2). Of interest, the progression in the
curriculum was IQ-specific: among the children we enrolled,
those who displayed higher listening skills moved easily from
lesson to lesson.

4.1. Reward Deliver
Children with ASD had more positive reactions to reward
delivered by robot rather than to praises delivered by the eductor.

This observation is analogous to enthusiastic reactions to robot
reported in previous case studies (Dautenhahn, 1999, 2000;
Kozima et al., 2007).

This enhanced reaction did not generalize to rewards
delivered by the educator in robot condition though. The robot
did not act as a general motivator (i.e., “motivating operation,”
Laraway et al., 2003; Edwards et al., 2019) enhancing the
reinforcing effectiveness of any reward delivered in its presence.
Rather, it acted as a preferred object: a strongly attractive object
for children with ASD (DeLeon et al., 2001). In further studies,
robots might be thus used to reinforce behaviors targeted by
interventions, and compared to already exiting preferred toys.

4.2. Undesirable Behavior Reducer
Our robot had no consistant effect on undesirable behaviors:
stereotypic behaviors even increased in one child. Ismail et al.
(2012) suggested that robots may contribute to reduce the
frequency of stereotypic behavior only for children with mild
or no intellectual deficit. This demonstrates the need for
psychometric descriptions of children in studies on robot-
assisted interventions.

4.3. Social Mediator
The proportion of prosocial behaviors was higher in the control
condition, rather than the robot-assisted intervention. We failed
to offer support to social mediator hypothesis. Robins et al. (2005)
warned that instead of social mediator, robots may sometimes
take the role of social isolator. Meucci et al. (2019) suggested
that the advantage of the interaction with a robot depends on
the level of intellectual functioning of the children with ASD.
In our data, we indeed noted that the more severe the ASD
the lower the proportion of prosocial behaviors produced in the
robot condition.

Note, extant information on social mediator hypothesis
mostly comes from pilot studies or technical reports, without
control condition, descriptive and inferential statistics (Werry
et al., 2001; Robins et al., 2009; Iacono et al., 2011; Shamsuddin
et al., 2012) and/or without diagnostic method, exclusion and
inclusion criteria, developmental age etc. (Feil Seifer andMataric,
2009; Valadao et al., 2016). Further studies could better comply
with the requirements of clinical methodology.

Our intuition here is that using a highly attractive tool
comes with the risk of turning the child with ASD away from
the interpersonal social interaction skill, target of the training
program. Our data indeed showed that children with ASD
primarily gazed at the toy, seeing it as more attractive than
the educator, in line with Social Motivation Theory of Autism
(Chevallier et al., 2012; Delmonte et al., 2012). We suppose that
robots would be more likely to “catalyze” prosocial behaviors
if they interacted directly with the child, without any remote
control, and if they endorsed a social role: that of prompter,
teacher, helper in critical situations, etc. (Zubrycki and Granosik,
2016; Huijnen et al., 2017). Children with ASD would be
therefore efficiently trained to produce and interpret social cues
exchanged with the robot, and perhaps could generalize this
learning to interpersonal interaction. In future research, robots
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of higher autonomy, similar to Jibo (Guizzo, 2015) or MINA
(Ghorbandaei Pour et al., 2018) deserve particular attention.

4.4. Sensory Aversions and Inter-individual
Heterogeneity Issue
Before the intervention, we feared that our robot, with its lighting
signals and noisy functioning, might trigger anxiety among
the children with ASD. The Intense World Theory of Autism
(Markram, 2007) warned us indeed that children with ASD
may be hypersensitive to these stimuli. This turned out to be
a legitimate concern, as most of the auditory-sensitive children
turned away from the robot.

This finding underscores the overlooked challenge faced by
robots in the context of ASD: the inter-individual heterogeneity
of children with ASD is shaping their reactions. This inter-
individual heterogeneity makes it unlikely that a given robot or a
given intervention will work for all children with ASD. In clinical
settings, interventionists are used to adjust to each individual
(Stahmer et al., 2011). They identify the sensory and cognitive
particularities of each individual in order to decide which toy
and which educational goal may be selected. They determine
in real time how to attract the child’s attention and modulate
child anxiety, and which instructions, prompts, rewards and
pauses should be administered. In further studies, robots should
be endowed with an extensive set of educational goals and
sensory options so that the administration of the educational
procedure can be personalized. A first step toward this goal was
recently made by Clabaugh et al. (2019) who developed a fully
autonomous robot, SPRITE, able to personalize its instruction
and feedback to each child’s proficiency.

4.5. Collaboration Issues
One of the most often debated issues in the field of robotic
assistance for children with ASD is infringement of the
methodological rules of clinical research (Kim et al., 2012; Pennisi
et al., 2016). This was an acute problem in our participatory study
too. In the face of the understandable enthusiasm of the other
stakeholders, it was difficult for the researchers to make their
warnings heard. Nonexperimentalists have difficulty accepting
that the violation of methodological rules inexorably means that
some of the data that are collected are unusable.

Despite the obvious advantages of participatory research, it
is important to acknowledge that this strategy creates huge
problems in terms of coping with the priorities and constraints
of different stakeholders, often working at cross purposes (Kim
et al., 2012). Evidently, investors need to deliver a compelling
marketable innovation capable of a sustainable commercial
growth. Engineers want to promote innovative technological
platforms that make existing ones obsolescent (Kim et al., 2012).
Researchers are concerned with the originality and efficacy
of the educational intervention, and thus need to respect to
rigorous methodological criteria (Pennisi et al., 2016). The
special need educators are interested in creating a user-friendly,
personalizable tool that meets the specific needs of individual
patients and fits in with current learning routines (Boardman
et al., 2005). The company organizing the project has to factor
in the time-limited and evanescent nature of the funding. There

may be insufficient time and financial resources to organize
meetings in order to build communication and trust between
partners and work out a consensus on the standards of excellence
to be met.

4.6. Implementation Fidelity Issue
As feared, the educators derailed from procedure dictated
by research design (viz. Hypothesis 5). Despite workbooks,
demonstrations and a hotline, educators made 1.5
implementation failures per session. In this respect, our
intervention attempt was no different from others: Stahmer
et al. (2015). showed that even after 28 h of intensive workshops,
followed by 2 years of observation and coaching, the percentage
of sessions meeting 80% implementation fidelity was just
60% for discrete trial teaching and as low as 20% for pivotal
response training. Contrary to academic staff, special needs
educators do not undergo years of training in administering
trial-based, experiment-like procedures. Their skills imply
intimate understanding of the child’s difficulties and needs. Our
intuition is that robots may play a non-negligible role here. If
they can be designed to free educators from structuring the
intervention according to the guidelines of educational protocol,
they may contribute to the dissemination and application of
structured educational approaches (e.g., ABA) recommended by
health services.

4.7. Acceptance of the Robot-Assisted
Intervention
The educators who took part in the present study were highly
satisfied with their interaction with the robot. Coders noted
that they seemed to take greater pleasure in interacting with
the children. They had a greater feeling of self-efficiency after
the experiment. Although we suspect that responses to the self-
efficiency questionnaire were affected by a social desirability bias
(Troye and Supphellen, 2012), leading the care staff to ignore
undesirable traits such as self-doubt, it is quite possible that being
supported by a robotic tool, instead of facing the child alone,
engendered feelings of relief and satisfaction.

5. CONCLUSION

To better understand how to construct convincing tools for
individuals with ASD, we conducted a collaborative study that
assessed the effects of a robot-assisted intervention on both
the prosocial and undesirable behaviors of children with low-
functioning ASD. The robot attracted orienting responses from
the children and the rewards it offered elicited more positive
responses, but it failed to act as a social mediator: it did
not motivate desired social behaviors toward humans. Robotic
assistance was obviously judged to be positive by educators, thus
contributing to the dissemination of evidence-based practices for
individuals with ASD. In further studies, robots with higher levels
of autonomy and differentiation, of richer set of educational goals
and sensory response options might be tested as reinforcers of
social behaviors targeted by educative intervention.
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APPENDIX 1

List of Psychological Tests Used
The SCQ is a screening tool based on the DSM-IV criteria for
autism and the ADI-R algorithm (Rutter et al., 2003). It takes the
form of a standardized parent questionnaire to assist in autism
diagnosis by capturing key autistic symptoms (e.g., “did he/she
ever show you things that interested him/her to engage your
attention?”).

The Vineland-II is a structured interview administered to
primary caregiver(s) to assess a child’s daily living skills (e.g.,
“looks at the caregiver when s/he hears his voice”). Using
this tool, we evaluated three domains (communication, daily
living skills, socialization), thus obtaining an overall adaptive
behavior evaluation.

The PEP-3 identifies learning strengths and facilitates the
selection of educational programs for children with ASD. In
the present study, we scrutinized affective expressions (AE; e.g.,
“manifests an appropriate level of fear”) and social reciprocity
(SR; e.g., “initiates social interactions”).

The SPCR assesses unusual sensory experiences of individuals
with ASD (e.g., “covers ears when hears certain sounds”).

The ESES comprises 13 items evaluating interventionists’
beliefs about their efficiency in controlling children (e.g., “I am
able to copy with disruptive behavior in a teaching session”).

The SCQ and Vineland-II yield standardized scores, while
the others yield raw scores. A high SCQ score indicates
a severe form of ASD-like symptoms. For the remaining
tests, low scores indicate a severe functional impairment
(see Table 1).
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Today, robots are studied and expected to be used in a range of social roles within

classrooms. Yet, due to a number of limitations in social robots, robot interactions should

be expected to occasionally suffer from troublesome situations and breakdowns. In this

paper, we explore this issue by studying how children handle interaction trouble with

a robot tutee in a classroom setting. The findings have implications not only for the

design of robots, but also for evaluating their benefit in, and for, educational contexts.

In this study, we conducted video analysis of children’s group interactions with a robot

tutee in a classroom setting, in order to explore the nature of these troubles in the

wild. Within each group, children took turns acting as the primary interaction partner

for the robot within the context of a mathematics game. Specifically, we examined what

types of situations constitute trouble in these child–robot interactions, the strategies that

individual children employ to cope with this trouble, as well as the strategies employed

by other actors witnessing the trouble. By means of Interaction Analysis, we studied the

video recordings of nine group interaction sessions (n = 33 children) in primary school

grades 2 and 4. We found that sources of trouble related to the robot’s social norm

violations, which could be either active or passive. In terms of strategies, the children

either persisted in their attempts at interacting with the robot by adapting their behavior

in different ways, distanced themselves from the robot, or sought the help of present

adults (i.e., a researcher in a teacher role, or an experimenter) or their peers (i.e., the child’s

classmates in each group). In terms of the witnessing actors, they addressed the trouble

by providing guidance directed at the child interacting with the robot, or by intervening in

the interaction. These findings reveal the unspoken rules by which children orient toward

social robots, the complexities of child–robot interaction in the wild, and provide insights

on children’s perspectives and expectations of social robots in classroom contexts.

Keywords: child–robot interaction, education, social robotics, interaction trouble and repair, group interaction,

robot tutee, in the wild, classroom study
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INTRODUCTION

Over the past decades, research has explored the possibility of
using social robots in a range of educational roles, including

as teachers and tutors, peers, and novices (Belpaeme et al.,
2018). For instance, the EMOTE project developed a robot with

empathic qualities, which could tutor primary school students on

tasks related to geography and sustainable development (Serholt
and Barendregt, 2016; Obaid et al., 2018; Alves-Oliveira et al.,
2019), the L2TOR project developed a robot that could tutor
preschool children on second language learning (Vogt et al.,
2019), whereas the CoWriter project developed a robot in the
role of a novice, which children could teach handwriting skills
to (El-Hamamsy et al., 2019). The motivations behind these
efforts range from explorations of robots as technologies for
supporting children’s learning [e.g., language learning (Kory-
Westlund and Breazeal, 2019)] and the development of targeted
skills [e.g., self-regulated learning (Jones and Castellano, 2018)],
to a conception of robots as solutions to various educational
challenges, such as teachers’ workload (Movellan et al., 2005)
and a global teacher shortage (Edwards and Cheok, 2018). While
social robots may not be used on a regular basis in education
at present (Selwyn, 2019), researchers and developers continue
to design novel applications for robots that aim to support
education in various ways.

One caveat to this kind of research, and by extension
to the benefit and usefulness of implementing social robots
in education, lies in the fact that current robot solutions
are expensive, have limited functionality, and are prone to
breakdowns of both a social and technical nature. Ros et al.
(2011) noted these difficulties during their extensive studies of
Child–Robot Interaction (CRI) in a hospital setting; accordingly,
they argued for the need to plan such studies appropriately by
asserting that the robot used is mechanically robust, and by
accounting for unpredictability in children’s behavior. However,
recent research suggests that these challenges are still prevalent
(Belpaeme et al., 2018; Serholt, 2018), and this is partly related to
the difficulty in predicting social behavior. As Honig and Oron-
Gilad (2018) put it: “While substantial effort has been invested
in making robots more reliable, experience demonstrates
that robots operating in unstructured environments are often
challenged by frequent failures” (p. 2). In CRI scenarios, social
or technical breakdowns can lead to children’s disappointment,
loss of engagement (Ros et al., 2011), or even emotional distress
(Serholt, 2018). An extended follow-up study showed that
children also tend to remember such breakdown situations, even
after 3 years (Serholt, 2019). However, little is known about the
nature of these issues in CRI, and how children work to address
or mitigate them in interaction. The lack of research on this topic
provides a false presupposition that CRI is more frictionless than
it actually is. By identifying and understanding the situations
where robots fail in social interaction, it is possible to critically
reflect on how to handle such situations from an educational and
design perspective, while also furthering our understanding of
how children interact with robots.

From the perspective of Interaction Analysis, breakdowns are
usually preceded by what is known as “trouble” in interaction

(Jordan andHenderson, 1995). Specifically, trouble in interaction
becomes evident when it breaks the rhythmicity of an otherwise
stable routine or interaction script, which is the given design
in most CRI scenarios. When trouble occurs, people resort
to repair strategies in order to handle the problem and avoid
the occurrence of breakdowns (Jordan and Henderson, 1995).
This process of trouble and repair probably becomes especially
complicated when children deal with robots, since there is likely
a mismatch between the children’s and the robot’s rules of
interpretation—rules that are typically assumed to be somewhat
aligned in everyday social interaction among people (Jordan and
Henderson, 1995). In their systematic analysis of video data from
five different Human–Robot Interaction (HRI) studies, Giuliani
et al. (2015) found a number of differences in people’s social
responses to error situations in their interactions with robots.
For instance, people displayed significantly more non-verbal
social signals and spoke more when in a group or when an
experimenter was present, vs. when they were alone. They also
behaved differently depending on the type of failure, whether it
was a social norm violation, i.e., “a deviation from the social script
or the usage of the wrong social signals” (p. 3), or a technical
failure. Giuliani et al. (2015) argue that evaluators of HRI systems
should not discard data containing error situations, since it may
contain valuable results.

As argued by Jordan and Henderson (1995), careful analysis
of trouble in interaction “can often reveal the unspoken rules
by which people organize their lives” and it is “one of the best
methods for coming to an understanding of what the world
looks like from somebody else’s point of view” (p. 69). Hence,
Interaction Analysis lends itself to exploring particular challenges
related to designing robots for children, the expectations that
children may have of interactions with robots, along with an
understanding of the repair strategies children employ when
their social expectations do not align with the social script
of the robot. However, little is known about the detailed,
sequential mechanisms by which interactions between children
and robots play out in naturalistic settings such as classrooms,
and the strategies that children employ in the face of trouble.
In their recent literature review study, Honig and Oron-Gilad
(2018) explored robot failures in HRI, including how people
perceive and resolve these failures. However, the authors found
that most such studies have been conducted in controlled,
single-person environments, and that they therefore lack in
ecological validity. Moreover, very few studies have considered
children as the explicit target group. One exception is a previous
experimental study where pairs of children aged 4–5 played
a game with a robot that feigned getting lost, disobeyed
the children’s instructions, or made a mistake and recovered
(Lemaignan et al., 2015). The authors were unable to affirm
whether the children could perceive the difference between what
they intended to be understood as a technical malfunction (i.e.,
the robot getting lost), and intentional social behavior (i.e.,
the robot disobeying the children, or making a mistake and
recovering). The authors recommended that similar studies be
replicated with older children. Another exception is an earlier
study of interaction breakdowns between children and a robot
tutor conducted by one of the authors of the current paper,
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where breakdowns were caused by both technical malfunctions,
as well as social and pedagogical norm violations (Serholt,
2018).

Against this background, we present a qualitative analysis
of video data obtained from a CRI field trial in a primary
school classroom. As suggested by, e.g., Honig and Oron-
Gilad (2018), the trial was designed to have high ecological
validity, i.e., it took place in a familiar environment (the
children’s ordinary classrooms), and it included a variety of actors
and artifacts. These actors and artifacts consisted of a social
robot tutee seeking to learn arithmetic from the children, an
interactive whiteboard displaying a mathematics game, groups
of children in which one individual could interact directly
with the robot at a time, a researcher in a teacher role, and
an experimenter.

The initial aim of this field trial was to observe children’s
interactions with robots in naturalistic settings, in order to derive
design recommendations for robot tutees. Yet, as we familiarized
ourselves with our data (Braun and Clarke, 2006) through our
qualitative, inductive approach, it became evident that the videos
contained rich data regarding interaction trouble and repair
strategies. Thus, the aim of the current paper is to explore trouble
and repair in CRI. These findings do not only hold implications
for the design of social robots for classrooms, but they also reveal
the unspoken rules and/or silent expectations that children may
have of robots in educational settings. The following research
questions guide this study:

RQ1:What situations and/or behaviors constitute trouble in the
child–robot interaction situation?
RQ2: What strategies do children employ when trouble occurs
in the child–robot interaction situation?
RQ3: What strategies do the other actors (e.g., peer
group members, researcher as teacher, and experimenter)
employ when witnessing trouble in the child–robot
interaction situation?

MATERIALS AND METHODS

We conducted field trials with a robot tutee under development
in our research project Student Tutor and Robot Tutee (START),
and an accompanying mathematics game at two primary schools
in Sweden. The field trial constituted a first test of the children’s
interactions with the setup in a complex classroom setting with
multiple actors. The trial took two full days at each school. The
students participated in the trial in groups of four, scheduled by
their teachers, and as part of their regular school activities.

Apparatus
The technical setup consisted of the humanoid robot Pepper
from Softbank Robotics1 and a digital mathematics game
displayed on a wall-mounted screen. The mathematics game
was adopted from a previously developed game called the
Graphical Arithmetic Game, stemming from research on game-
based learning and teachable virtual agents (Pareto, 2014). In our

1https://www.softbankrobotics.com/emea/en/pepper

research project, the game has been updated and augmented to
include a physical robot acting as a tutee and a co-player in the
game (Pareto, 2017; Pareto et al., 2019). The use of teachable
agents or robot tutees draws on learning-by-teaching and peer-
assisted learning approaches, where children are engaged in the
activity of teaching a novice or peer in order to further their
own learning of a specific topic (see e.g., the CoWriter project:
El-Hamamsy et al., 2019).

The mathematics game selected for this study constitutes
a collaborative mini-game in the Graphical Arithmetic Game
called 10-buddies. The game is a simple 2 player addition game,
with the goal to add to ten by taking turns and choosing cards
from the two players’ respective card hands. Card values are
graphically represented through colored blocks, ranging from
values 1–9. In this case, a child and a fully autonomous robot
tutee constitute the active players. However, as long as the
robot tutee is at a novice stage, it does not actively play its
own cards. Instead, the robot observes the child’s choices and
utilizes the existing question-and-answer repertoire of the earlier
entirely text-based virtual agent, while it also exhibits socially
interactive behaviors. This includes the display of some pre-
programmed movement, gestures, and gazing behaviors, along
with the implementation of a text-to-speech module in Swedish,
in order to support verbal communication. The robot connects
to the game through a local wireless network, and the game
steers its behavior based on the child’s actions in the game. In
terms of the robot’s verbal repertoire, there is a progression in
what kind of questions the robot asks, depending on how well
the children play and how well they manage to answer these
questions. Typical questions in the beginning concern the overall
game idea: how to score points and what the objects on the
display mean. Then, the robot progresses to inquire about which
cards will yield points, and finally, which cards are strategically
smart to play considering future turns and possibilities. Hence,
the robot consistently features as the children’s inquisitive tutee
whose goal is to learn how to play the game, and to improve
its skills pertaining to mathematics. In the current study, each
student group began with a novice robot tutee to teach, so all
groups played both player turns, and answered the same type
of inquisitive questions; the robot was programmed to ask such
questions whenever the child selected a card from its hand. In
order to facilitate progression in the interaction, the robot was
designed to move on to the next step in the interaction if it did
not receive, or was unable to perceive, any input from the game-
playing child (such as a verbal response to its question). This
occurred after a waiting period of 45 s, and was indicated by a
verbal utterance, such as “Let’s move on.” The robot could also
return to an earlier question by asking, “Have you come up with
the answer to this question: [question]?”

The game and robot were placed in school spaces designated
by the staff, meaning that the game had to be displayed on
the schools’ available equipment. In one school (School A), the
trial was conducted in an empty classroom with a projector and
wall-mounted canvas; in the other school (School B), a room
for after-school activities with an interactive whiteboard was
used. The game was displayed on the screen or the whiteboard
with the robot standing in front of the display together with
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FIGURE 1 | (A) Still image of the field trial setup at School A. (B) Still image of the field trial setup at School B. (C) Top-view illustration of the field trial setups.

the game-playing child. The children in each group took turns
playing the game with the robot; the children currently not
playing were seated next to the scene, accompanied by one of the
authors (researcher in teacher role), who is also a licensed teacher
with 15 years of teaching experience. Her role was to facilitate
and organize the children’s collaboration during the sessions,
observe the interaction, and manage a video recorder. Another
author (the experimenter) was tasked with handling the technical
aspects of the game, i.e., starting the game and making sure
that everything was working, while also executing the children’s
choices of cards during their turns in School A where the display
was not interactive. Finally, a video camera placed in the middle
of each room captured the game display, the robot, and the child
from behind. For illustrations of the interaction sessions and field
trial setups, see Figure 1.

Participants
Two classes from each school participated in the study: two
2nd grade classes from School A and two 4th grade classes
from School B, i.e., children of ages 8 and 10 years old. The
classes were selected based on active interest from the children’s
respective teachers to enroll in our research project. Thus,
the same children participated in a workshop on a previous
occasion, which consisted of a robot-programming task and a
post-workshop questionnaire (Pareto et al., 2019). The children
had never played the Graphical Arithmetic Game before. In total
69 children across 19 groups participated in the trial: 28 children
from the 2nd grade, and 41 children from the 4th grade. In the
current study, we randomly sampled the sessions of nine groups
for analysis (nchildren = 33; 15 female, 18 male; 17 second-graders,
and 16 fourth-graders).
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Procedure
Prior to the study, the class teachers divided the children into
groups of three or four. During the study, the teachers excused
each group from their classroom to take part in the trial in the
allocated room for 30min each. The trial sessions then proceeded
as follows: First, the researchers welcomed the children, described
the aim of the study, and asked for confirmation of the
children’s previous assent to participate in the study. Second,
the researchers briefly explained the game’s aim and rules. They
also explained that the children would take turns playing with
the robot, but that the group members were encouraged to
help the child playing the game, and to suggest answers to the
robot’s questions. Then, a video recorder was activated, and
the game session was initiated. During the session, the children
took turns on a voluntary basis to play the game together with
the robot, where each child was allowed to play for about 6–
7min before being asked to take a seat, whereupon another child
could volunteer. In the analyzed sessions, the children played on
average 10 cards each, including the choices they made for the
robot. After 30min, the researchers thanked the groups for their
participation, held a debriefing session about their experience,
and followed them back to class.

Data Collection and Analysis
During the field trial, we collected video recordings of the
interaction sessions. As mentioned previously, nine of the
interaction videos were randomly selected for analysis, which
amounted to a total of 3 h and 15min of video data. For this
study, we adopted a qualitative inductive approach, drawing
on thematic analysis (Braun and Clarke, 2006) and Interaction
Analysis (Jordan and Henderson, 1995).

Thematic and Interaction Analysis
The first phase in our analysis involved what Braun and
Clarke (2006) refer to as familiarizing yourself with your data,
i.e., the search for interesting areas of study in the material
without explicit protocol. Specifically, the videos were viewed
independently by two of the authors (henceforth referred to as
coders), who made notes regarding their observations. These
observations were discussed with the remaining authors through
a joint data session where all authors viewed and discussed the
content of selected videos. At this stage, consensus was reached
that the data contained rich material regarding interaction
trouble and repair strategies.

The next phase involved conducting interaction analyses
of the sessions (Jordan and Henderson, 1995). First, the
videos were divided between the two coders who each created
interaction transcripts for half of the videos. The interaction
transcripts contained high-level documentation of the sequential
interaction processes, i.e., what each actor in the material was
doing at specific times, descriptions of the interaction between
the different actors, along with the coders’ analyses of the
interactions. One such transcript was produced for each game-
playing child in their respective group (Mduration = 5min 55
sec; min = 1min 38 s; max = 10min 45 s), meaning that
between three and four transcripts were produced for each
interaction session (33 transcripts in total). Segments containing

trouble in interaction were documented in detail, whereas
segments containing fluent turn-taking and gameplay were just
commented as such. To identify trouble, any situation, which
seemingly disrupted the interaction flow, was considered.

The third phase in the analysis consisted of coding the data,
in which the two coders independently coded half of the videos
each. We followed the three-stage process for coding qualitative
data suggested by Campbell et al. (2013): (1) developing a
coding scheme with as high intercoder reliability as possible
based on a sample of transcripts (typically 10%), (2) negotiating
coding disagreements among coders until reaching acceptable
levels of intercoder agreement (as the recommended approach
in exploratory research), and (3) deploying the coding scheme
to the full set of transcripts. During the first stage, a preliminary
coding scheme was developed by the more experienced coder
on a sample of two sessions, which was tested by the other
coder under supervision. This procedure generated a list of
codes, which each contained a qualitative description of an
observed action along with a label. The codes were organized
into inductively formulated code families, each denoting a
common topic (Campbell et al., 2013). Four transcripts out
of 33 (12%) were coded by both coders independently and
checked for intercoder reliability. Following Campbell et al.
(2013), intercoder reliability was calculated as the number
of common instances of codes (i.e., agreement in coding)
divided by the total instances of codes (i.e., agreement +

disagreement). The average level of intercoder reliability was
73%. For the second stage, the coding disagreements (33 out
of 125 codes) were analyzed and discussed by the coders.
The most frequent differences were whether subtle non-verbal
actions occurred or not (18 disagreements), and whether the
child or the adult initiated a help action (7 disagreements). The
coding scheme was refined to address these differences. For
the third stage, the remaining sessions were divided between
the two coders and coded independently. Given our inductive
approach, the list of codes evolved and was continuously
discussed, compared, and unified during the process, producing
a joint coding scheme. The final coding scheme consists of
seven (primary) code families and 36 (secondary) codes (see
Supplementary Materials Table A).

The final phase in our analysis involved developing
themes to describe the nature of trouble in CRI, and the
following repair strategies. This phase was carried out by
one of the authors who developed themes based on the
coding scheme and interaction transcripts. The themes were
discussed and reformulated through several iterations with the
remaining authors.

RESULTS

In this study, we set out to explore trouble and repair in
CRI. This analytical interest stemmed from our observations of
children’s group interactions with a robot tutee in a classroom
setting, wherein trouble (and repair) seemed prevalent. By
means of Interaction Analysis and thematic analysis, we explored
situations of trouble and repair, which constituted 26.4% of the
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TABLE 1 | Overview of themes and subthemes derived from the thematic analysis.

Research

question

Main themes Subthemes

RQ1: Sources of

trouble

Active social norm

violations
Makes irrelevant comments

Interrupts

Signals dismissal through non-verbal

behavior

Passive social norm

violations

Fails to act at its designated turn in

the game

Fails to respond verbally

RQ2: Children’s

repair strategies

Adapt to the robot Exaggerate articulateness

Modifying tutoring approach

Seeking to understand interaction

form

Establish distance to

the robot

Making the robot invisible

Give up

Shift focus to human

actors

Seek affirmation

Request help

RQ3: Strategies

of other actors

Offer help Provide guidance to the child

Intervene (or interfere) in the

interaction

sampled video corpus (the remaining segments of the video
corpus depicted what we considered to be fluent interactions).

In this section, we present our findings in individual
subsections for each research question. Within each subsection,
main themes are represented through italicized, bold, font
(i.e., main theme), subthemes are indicated as such through
bold font (i.e., subtheme), and translated excerpts derived
from the Interaction Analysis are shown for illustration and
discussion purposes. Individual children are denoted through
their participant IDs (C for game-playing child accompanied
by a number). Table 1 provides an overview of all themes
and subthemes.

The Sources of Trouble
We found that situations and/or behaviors that constituted
trouble in this particular CRI situation (i.e., the sources of
trouble) were related to the robot’s social norm violations, which
were either active social norm violations (41%) or passive

social norm violations (59%). Although these violations could
be traced back to technical issues or limitations with the
robot, this analysis is concerned with exploring these situations
from an interaction perspective. Hence, sources of trouble are
considered from the perspective of how it might be interpreted
in social interaction.

Trouble stemming from the robot’s active social norm

violations manifested in different ways. Yet, the commonality
was that these behaviors were unexpected and undesirable.
First, the robot sometimes made irrelevant comments, which
constituted 44% of all active social norm violations. For example,
when C3 was in the process of explaining to the robot that they
needed to try again, the robot responded with the following
contextually irrelevant comment:“Yes I know that 7 + 3 =

10.” Second, the robot sometimes interrupted (33%) the child

TABLE 2 | Number of occurrences and children who encountered each source of

trouble.

Main themes and subthemes No. of

occurrences

Percentage of

children who

experienced each

theme

Active social norm violation 64 88%

Makes irrelevant comments 28 55%

Interrupts 21 42%

Signals dismissal through

non-verbal behavior

15 18%

Passive social norm violations 92 73%

Fails to respond verbally 83 70%

Fails to act at its designated turn

in the game

9 18%

For main themes, child percentages are based on the whole sample (n = 33); for

subthemes, child percentages are instead based on the number of children within each

main theme.

speaking. For instance, as C1 was in the process of providing a
response to one of the robot’s questions, the robot unexpectedly
announced, “Now we continue to play!” which could be perceived
as general disinterest or disregard for what the child had to say.
Third, trouble also surfaced when the robot signaled dismissal

through non-verbal behavior (23%), e.g., when it turned its back
to the child in the middle of an interaction. In one situation,
the child called out to the robot in order to encourage it to
turn around and face him/her; instead of doing so, the robot
merely responded: “Yes, I hear you” which, in interactions
between humans, would likely be interpreted as disengaged and
dismissive behavior.

Regarding the robot’s passive social norm violations, there
were several situations when the robot simply failed to act as
expected. For instance, the robot could lose its connection to the
game and consequently fail to act at its designated turn in the

game, yet this only accounted for 10% of its passive behavior.
More common was the robot’s failure to respond verbally (90%)
to the child when such behavior seemed mandated. This could
occur during the child’s attempts to greet the robot, but also
during dialogues connected to the gameplay. For instance, for
C4, the robot inquired as to how they would receive points in
the game, for which he provided a verbal explanation; the robot,
however, only acknowledged his explanation non-verbally (by
nodding), which caused trouble since he became uncertain as to
whether the robot had actually understood.

In Table 2, data regarding the number of times each source of
trouble was observed, along with the number of children across
the whole dataset who encountered it, is presented. In total 32 of
the 33 children in this study encountered some form of trouble
during their sessions.

Children’s Repair Strategies
Our analysis shows that children use different repair strategies
in different situations. Specifically, the children either persisted
in their attempts at interacting with the robot by modifying
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TABLE 3 | Excerpt for C2.

C2 Male, 2nd grade, school A, second player of his group

Time Actor Verbal Non-verbal Note

18.22 Robot Why are there

10 squares in

the enclosed

area?

18.25 Child I don’t know.

Robot Nods Trouble: fails to

respond

verbally

18.34 Child Listen. I don’t

know

Moves closer to

the robot and

speaks close to

its face

Repair:

exaggerate

articulateness

their behavior and adapting to the robot in different ways,
distancing themselves from the robot, or shifting focus to the

human actors present (i.e., the researcher in a teacher role, the
experimenter, or the child’s peer group members). These main
themes will be presented in turn below. Notwithstanding, the
same child typically employed a variety of strategies within the
same session, such that these categories are not by any means
mutually exclusive on a child-by-child basis.

Regarding children’s methods for adapting to the robot, the
children could exaggerate articulateness. In such cases, children
could change the ways in which they communicated verbally
with the robot by either shortening their responses to simple
keywords, or strengthening the volume and clarity of their verbal
communication. In the excerpt shown in Table 3, C2 is playing
the game, whereby the robot poses a question.

As can be observed in this example, the robot poses an
inquisitive question regarding the game board to gauge the
significance of the value ten. C2 responds verbally that he does
not know why there are ten empty boxes in the enclosed area
on the game board. That the robot nods but fails to respond
verbally indicates to C2 that the robot has not properly heard or
understood his answer, causing temporary trouble. In response,
C2 attempts to repair this trouble by trying to get the robot’s
attention (when hemoves closer and says: “Listen”), and by trying
to make his response audible.

In contrast to these exaggeration strategies, we also found that
the children tried to adapt to the robot in more social ways, e.g.,
by modifying their tutoring approach. Specifically, this could
entail the children elaborating upon a mathematical concept, or
explaining in a different way than they had done initially. In some
cases, these modified explanations were complemented by visual
demonstration on the game display through a variety of gestures,
such as pointing to elements in the game. The children could
also ask the robot to repeat or explain itself (e.g., “I didn’t hear
what you said in the beginning” [C26]), or simply instruct the
robot on which cards to play. Taken together, such adaptations
could indicate that the children perceived the robot as a social
other capable of perceiving and interpreting complex human

TABLE 4 | Excerpt for C4.

C4 Male, 2nd grade, school A, first player of his group

Time Actor Verbal Non-verbal Note

10.22 Robot Have you come up

with the answer to

this question: how

do we get points?

The first part of the

question denotes that

the robot has asked

this question before,

but not perceived a

response

10.28 Child We will fill these

boxes.

Points to the

enclosed area of

the game board

Repair: modifying

tutoring approach

Robot Nods Trouble: fails to

respond verbally

10.33 Child Then we get stars.

There are points.

Points to the score

meter

Repair: modifying

tutoring approach

reasoning. In the excerpt shown in Table 4, the robot asks C4 a
question while he is playing the game.

Earlier in the interaction, the robot had already asked how
they receive points, but had not perceived or understood the
response. Against this experience, C4 thus tries to modify his
response by complementing his verbal explanation with gestures
directed at the game board. In response, the robot simply nods
and fails to respond verbally, which is interpreted by C4 as a
signal that the robot does not quite understand. Hence, C4 once
again tries to modify his tutoring approach by explaining the
game mechanics in a different way (with reference to the scoring
of points by acquiring stars).

Another way in which children tried to adapt to the robot
concerned their seeking to understand the interaction form,
where they also seemed open toward interacting on the robot’s
terms.While this was also the case when the children exaggerated
their articulateness, this subtheme differed in relation to the
children’s seeming curiosity. For instance, they could increase
their proximity to the robot and perform exaggerated gestures
in an attempt to make the robot perceive and recognize
their interaction endeavor. Yet, unlike the situations where the
children would only utter keywords, presumably for the sake of
the robot’s speech recognition difficulties, these communication
attempts seemed more related to the children’s desire to establish
communication with the robot (e.g., C33 who asked the robot,
“What are you doing?” when it failed to respond). In some cases,
the children would wait patiently for the robot to act while they
stood in front of it. In other cases, the children would mirror the
robot’s non-verbal behavior (e.g., C25, who switched from verbal
communication to mirroring the robot’s frequent head nodding).

In contrast to adaptive behaviors, the children also responded
to trouble in interaction by establishing distance to the robot.
This strategy mainly occurred after a long sequence of trouble;
hence, it was usually preceded by some form of overt expression
of emotional distress such as discomfort or irritation. Some of
the children established distance by making the robot invisible,
i.e., a form of domination technique. Specifically, this could
manifest itself through the children talking over the robot, i.e.,
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TABLE 5 | Excerpt for C7.

C7 Female, 2nd grade, school A, fourth player of her group

Time Actor Verbal Non-verbal Note

25.44 Robot Okay, 5.

25.50 Child Yes Leaning forward Repair: exaggerate

articulateness

Child Standing still Repair: seeking to

understand interaction

form

25.55 Robot Now we have 4

points.

26,01 Child I don’t want to

play anymore.

Give up

speaking simultaneously as the robot, but not directed at the
robot as such. Some children simply ignored the robot’s questions
completely, whereas some children took a less overt approach and
acknowledged the robot’s questions, but provided an indifferent
response (e.g., “Mm”). They could also interrupt the robot by
quickly answering “Yes” or “No” at the start of the robot’s
utterance. Some children also chose to give up on the interaction,
either by walking away and taking a seat, or by stating that they
did not want to continue the interaction, as demonstrated in the
following excerpt (see Table 5).

Finally, children’s strategies consisted of shifting focus to the

human actors who were present (either the researchers or their
peer group members). This typically occurred when the children
had exhausted other repair strategies more directed toward
the robot. From these other actors, the children often sought

affirmation regarding their responses to the robot’s dialogue
(e.g., checking with researchers or peers that their particular
response would be appropriate), but also related to gameplay
choices (e.g., asking peers or researchers to confirm that their
card selection would afford points). In more difficult situations,
however, the children would request help in open-ended and
explicit ways, indicating both verbally and non-verbally that they
did not understand how to proceed in the dialogue with the robot
or the game.

Strategies of Other Actors
In terms of the other actors present in the interaction sessions
(i.e., the child’s group members, the researcher as experimenter,
and the researcher in a teacher role), their repair strategies
consisted of offering help in various ways. In most cases, they
tried to provide guidance to the child, which meant that they
addressed the game-playing child directly, and conveyed various
forms of scaffolding for interacting with the robot successfully,
but also regarding strategic moves in the game. They also
intervened (or interfered) in the interaction by responding to
the robot directly. For instance, the peers could call out the
correct answer, or try to get the robot’s attention, but this was
quite rare. On a few occasions when the robot signaled dismissal

through non-verbal behavior by turning its back to the children,
the experimenter intervened as shown in Figure 2.

In terms of providing guidance to the child, the experimenter,
who possessed technical knowledge about the robot and the
game, could suggest specific verbal formulations that the robot
would understand. The peer group members could also become
involved in this process of trouble and repair, leading to a
complex interaction situation. Often times, the peers drew on
their previous experiences having heard similar questions from
the robot during their turns. The excerpt in Table 6 provides
an illustration of when the experimenter and the peer group
members provided guidance to C15. Right before the excerpt,
C15 indicates that he does not know how to answer the
robot’s question and consequently stays silent while grabbing the
robot’s hand.

As can be observed in this excerpt, the experimenter tries to
guide the child when she notes that the child does not know
how to answer the question. She does so by involving C15’s
peer group members so that they can provide input on what to
say to the robot based on their experience from the first player
round. What follows is a series of trouble and repair strategies
consisting of the robot failing to respond verbally, and C15 trying
to make himself understood through exaggerated articulateness.
These attempts go unsuccessful, and the interaction ends with the
robot proclaiming that they should give up on that question and
proceed instead.

DISCUSSION

This qualitative study has explored interaction trouble and repair
in the field of CRI. Our analytical interest came about through
our initial observations of children’s classroom interactions
with a robot tutee in the context of a collaborative game in
mathematics, which took place in groups of children who took
turns actively playing the game and teaching the robot.

Our research questions concerned what situations and/or
behaviors constitute trouble in such a CRI setting, what repair
strategies children employ to address interaction trouble, and
how onlookers (researchers and peer group members) respond
when witnessing the trouble. The results indicated that the
primary source of interaction trouble related to the robot’s social
norm violations. Notwithstanding, there were a few additional
situations, not due to the robot, which caused trouble as well.
For instance, in one group in particular, the peer group members
not actively playing the game with the robot disrupted the
interaction by shouting out various directives at the game-playing
child. Whereas, one of the children was able to ignore this
behavior during her turn, another child became very distracted
and began jumping around the room and throwing himself on
the floor in an attempt to entertain his peers. However, for the
sake of limiting our scope, we omitted such (rare) cases from
further analysis.

Regarding the robot’s social norm violations (RQ1), one
could argue that these were, in a way, always a result of
technical issues rather than an intentional design choice. Yet,
the (social) interactional setting did not provide any actual
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FIGURE 2 | Still images from an interaction session illustrating the experimenter intervening when the robot has turned its back to the child.

TABLE 6 | Excerpt for C15.

C15 Male, 2nd grade, school A, second player of his group

Time Actor Verbal Non-verbal Note

14.48 Experimenter It is your job to answer Pepper [the

robot].

Repair: provides guidance to the child

14.51 Child Releases the robot’s hand

and continues to play

14.55 Experimenter Ask your peers what they said.

14.59 Peers That you should get 10. Repair: provide guidance to the child

15.00 Child To get 10. Talks close to the robot Repair: exaggerate articulateness

Robot Nods Trouble: fails to respond verbally

15.03 Experimenter One more time. Repair: provides guidance to the child

15.08 Child To get 10. Talks even closer to the

robot

Repair: exaggerate articulateness

Robot Gazes at the game Trouble: fails to respond verbally

15.11 Experimenter Stand in front of it so Pepper [the

robot] sees you.

Repair: provides guidance to the child

15.16 Child (laughingly) To get 10. Standing on his toes right in

front of the robot

Repair: exaggerate articulateness

15.23 Robot Let’s leave this [question] now. Gazes at the game Trouble: makes irrelevant comment

15.25 Peers Laughing

opportunities for children to differentiate between social vs.
technical issues, making it futile to discuss these differences from
an interaction perspective. Our findings resonate with an earlier
literature review on failure in HRI (Honig and Oron-Gilad,
2018). Indeed, all sources of trouble identified in the current
study have been observed in HRI before, albeit with the obvious
contextual variations. Compare, e.g., the similarities between
our subthemes and the descriptions of errors and symptoms
identified by Honig and Oron-Gilad (2018): Interrupts vs.
“timing speech improperly,” makes irrelevant comments vs.
“producing inappropriate speech or erroneous instruction,” fails
to act at its designated turn in the game and fails to respond

verbally vs. “producing no action or speech (irresponsiveness),”
and finally, signals dismissal through non-verbal behavior vs.
“producing unexpected or erratic behavior.” It thus seems that
these issues are not limited to a specific set of robot products, but

actually a common challenge faced by several research projects in
HRI; examples of this are, however, much rarer in CRI.

Turning to children’s repair strategies (RQ2), these were
many and varied in this study, including adapting to the robot’s
shortcomings in perception by exaggerating articulateness,
adapting to its lack of knowledge in mathematics by modifying
their tutoring approach, or by adapting to what they believed
to be the robot’s interaction modalities. We found that children
used these strategies not only in response to the trouble
currently taking place, but also as proactive measures throughout
the interaction sessions. This suggests that children reiterated
their understanding of the robot’s capability as the interaction
progressed. Children also shifted their focus to the human actors
in the room, and sought their guidance with the interaction
and task. They could also establish distance to the robot in
various ways. Moreover, children used different strategies in close

Frontiers in Robotics and AI | www.frontiersin.org 9 April 2020 | Volume 7 | Article 46115

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Serholt et al. Trouble and Repair in Child–Robot Interaction

succession in a trial-and-error fashion. For instance, they could
begin by modifying their tutoring approach, and then decide to
request help from peers or researchers, and finally end up giving
up on the interaction altogether.

As our analysis of the strategies of the peer group members
and the researchers reveal (RQ3), the children did not necessarily
need to request help as this was in many cases offered voluntarily.
Typically, such guidance consisted of scaffolding the child
currently interacting with the robot on what to say, and how to
say it, in order for it to be perceptible to the robot. In other cases,
peers and researchers intervened and spoke directly to the robot
(or when the experimenter needed to physically turn the robot
around to face the child); this type of intervention was, however,
quite rare in our video data.

Taken together, the presence of additional actors in the room
made various forms of support possible during the interaction.
In contrast to one of the author’s earlier studies of breakdowns
in CRI (Serholt, 2018), children in the current study were
perhaps able to avoid breakdowns largely due to the presence
of other actors (researchers in particular), which enabled a form
of collaborative repair work to take place. Indeed, children often
turned to their peers and the researchers to repair troublesome
situations. According to Serholt (2018), collaborations among
peers during CRI can allow for a higher level of social support.
However, it can also have certain drawbacks for the learning
situation, such as children ignoring or mocking the robot that is
supposed to facilitate their learning processes. Similar tendencies
were found in the current study, specifically in relation to our
subthememaking the robot invisible. While we did not observe
mocking behaviors toward the robot per se, it is likely that
the presence of adults (the researchers) actually discouraged
children from such overt expressions of discontent. This should
be considered from the wider perspective of implementing social
robots in classrooms, where allowing children to interact with
a robot on their own or in groups, vs. only in the presence of
their teachers, requires understanding of the tradeoffs in order
to reach a conscious and sensible solution. At present, research
implies that children should not be left alone with educational
social robots at all (Serholt et al., 2017; Newton and Newton,
2019).

Social robots are typically autonomous, embodied robots that
may vary in form and behavior, but that are developed to follow
certain social behaviors that is expected in its role. A previous
study showed that people cooperated more with a robot whose
social behavior was matched appropriately with a task (Goetz
et al., 2003). This suggests that the willingness of children to
collaborate with social robots in the classroom may depend on
the extent to which its behavior fits the task and the overall
situation. Another aspect concerns what kind of mental processes
a robot in the classroom may facilitate when collaborating with
children. An important related field to understand aspects of
human cognition in HRI are social and cognitive neuroscience
studies of human–robot and human–human interaction (Cross
et al., 2019). For example, Rauchbauer et al. (2019) used
functional magnetic resonance imaging (fMRI) to investigate
neurological differences when people carried out a conversation
with a robot compared to a person as an interaction partner in a
task. The brain imaging findings revealed that human interaction

led to engagement of brain regions associated with higher-
order social cognitive processes, including the temporo-parietal
junction. Performing the same task with a robotic interaction
partner instead activated dorsal frontal and parietal brain regions.
This indicates that human interactions engage more social
motivation and mentalizing processes, while interactions with
robots recruit additional executive and perceptual resources. This
reveals some of the limitations of interactions with robots, and
points toward the importance of peers and teachers to stimulate
higher-order social cognitive processes among children.

From a design perspective, there are many ways in which these
results can be considered and used. As suggested in previous
work, robot interaction design may benefit from including
socially based recovery strategies following a breakdown or
trouble in interaction in order to promote long-term acceptance.
Although we have studied a robot tutee only, we believe that
our findings can be valuable for the development of social
robots for children in general. Indeed, the social aspects of
interaction with robots is not specific to the tutee role, even if,
say, children’s perceptions of the robot as a novicemay havemade
them more forgiving toward its misunderstandings. According
to Uchida et al. (2019), HRI researchers should not only focus
on improving a robot’s dialogue capability, but also consider
ways to encourage cooperative intentions from users so that the
user and robot will adopt an equal share of responsibility for
breakdowns in dialogue. This is, indeed, interesting, and perhaps
quite relevant for robot tutees, since much responsibility for joint
understanding should probably fall on the tutor (child) rather
than the tutee. We can already see this taking place in some of
the children’s adaptive strategies, specifically when theymodified

their tutoring approach in different ways. Of course, for this
to be potentially beneficial, it would require the robot to be
perceptive to these strategies.

Currently, off-the-shelf social robots are rather expensive, and
extremely limited in functionality. Using a social robot in a
classroom also requires technical expertise; not to mention the
maintenance and updates required. For instance, when Davison
et al. (2020) recently deployed a social robot in a classroom for
4 months in an unsupervised study, the researchers conducted
all maintenance at particular times after school hours, meaning
that there were times during the school day(s) when the robot
could not be used as planned. It is paramount to apply and
evaluate novel CRI systems, but considering the current technical
limitations, these are far from ready to be implemented in
schools to support teaching on a large scale. Conversational
systems lack understanding of meaning and context and typically
act on scripts in a pre-designed type of conversation (Serholt,
2018). Although there are noteworthy examples of somewhat
long-term studies of autonomous social robots being conducted
in classrooms (Serholt and Barendregt, 2016; Alves-Oliveira et al.,
2019; Davison et al., 2020), many studies still require some
degree of teleoperation for the interaction to work smoothly,
particularly when it comes to verbal communication (Kory-
Westlund and Breazeal, 2019; Vogt et al., 2019). This suggests
that interaction trouble will likely continue to be a prominent
feature of conversational interactions with autonomous social
robots. It is our conviction that children cannot be expected to
possess the skills necessary to repair all troublesome situations
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that follow, especially since educational robots can only be
used in such delimited contexts (educational robots are seldom
designed to function within more than a few specific educational
activities), and duration during an ordinary school day. From this
perspective, it is the responsibility of the designers of robots to
make sure that the interaction works somewhat fluently. From a
wider perspective of social robots in education, it is also necessary
to consider the ethical aspects of implementing them in schools
(Sharkey, 2016; Serholt et al., 2017).

Limitations and Future Directions
There are several limitations to this study that should be
considered. First, the study was limited to two schools in Sweden,
the sample size was rather small, while we only considered
a particular CRI setup. This makes our findings difficult to
generalize to other contexts. Nevertheless, social interaction
with robots, and children’s expectations of such interactions
discernible through their repair strategies, constitutes a first step
in understanding these issues more generally. This study did
not focus on the children’s experiences of the interaction, their
views of social norms, or their preferences in teaching methods
and learning experiences. We welcome future research that can
demonstrate additional themes to explain trouble and repair, as
well as other entryways to this topic relevant for CRI.

Second, the children in our study had some previous
experience of programming the robot to execute simple
dialogues. This could have influenced their perceptions of the
robot as a machine with a limited social repertoire. Future
research could potentially do a comparative study of how
children handle trouble and repair depending on their levels of
previous experience with robots.

Third, the interaction sessions analyzed in this study were
quite brief and short-term. This means that the interactions were
likely affected by a certain novelty effect, and that children’s
repair strategies could be developed even further after some
time. The next step would be to investigate if the robot is
perceived to add stress to the learning situation and how it
is perceived during long-term use. Generally speaking, future
research should continue working toward making HRI and CRI
studies more long-term.

Fourth, another influential factor not yet touched upon in this
paper relates to the mathematics game. Although our study was
mainly concerned with exploring the social interaction between
children and robots, the interactive display held a mediating role
throughout the interactions. It constituted a boundary object
for the children and robot to interact around, which conveyed
awareness of the social situation they shared (e.g., the robot knew
what cards the children played and commented on their actions).
Hence, the task was not purely verbal; it was also graphically
represented on the game board, around which the children
and robot had a joint task. Future research should explore the
influence of such boundary objects in CRI.

Fifth, a methodological limitation to this study is its lack
of validation of the intercoder reliability level after the coding
scheme was developed; instead, we relied on continuous
intercoder discussions and agreements to address reliability.
Although the aim of this study has been to provide a theoretical

account of trouble and repair in CRI, some quantitative results
are also presented in relation to the theme sources of trouble; thus,
these findings should be interpreted with care.

Finally, although we strived toward making this study
naturalistic and ecologically valid, it was not feasible to include
the children’s actual teachers in the study due to the need
for technical expertise in operating the system. It is possible
that regular teachers without any experience in robotics would
employ other strategies for supporting the children than the
researchers did, which should be considered in relation to our
results. The study of teacher repair in CRI could be an interesting
avenue for future research, which we intend to explore once
our robot design has reached a more developed stage, also
incorporating and evaluating a set of repair strategies in the
face of trouble. Furthermore, it would be interesting to explore
the connections between certain forms of trouble and certain
forms of repair strategies. Due to the explorative nature and
relative small-scale of this study, however, this was not possible
to do here.

CONCLUSION

In this paper, we have explored trouble and repair strategies
in children’s interactions with a robot tutee in an educational
setting. The aim of this study has been to shed light on the
interaction issues in CRI under the premise that such issues
can never be completely avoided or designed away. Trouble
and repair in social interaction, while highly contextual, is
also universal. Children make use of the strategies that they
already know from human communication, but our study further
demonstrates that having robots as social interaction partners
introduces additional layers to the interaction. This makes this
research, and similar future studies in this area, an important
contribution not only to the design and evaluation of educational
robots, but also for furthering our understanding of what it
means for children to interact with and develop relationships
with social robots.
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Robotics has gained, in recent years, a significant role in educational processes that take

place in formal, non-formal, and informal contexts, mainly in the subjects related to STEM

(science, technology, engineering, and mathematics). Indeed, educational robotics (ER)

can be fruitfully applied also to soft skills, as it allows promoting social links between

students, if it is proposed as a group activity. Working in a group to solve a problem or

to accomplish a task in the robotics field allows fostering new relations and overcoming

the constraints of the established links associated to the school context. Together with

this aspect, ER offers an environment where it is possible to assess group dynamics by

means of sociometric tools. In this paper, we will describe an example of how ER can be

used to foster and assess social relations in students’ group. In particular, we report a

study that compares: (1) a laboratory with robots, (2) a laboratory with Scratch for coding,

and (3) a control group. This study involved Italian students attending middle school.

As the focus of this experiment was to study relations in students’ group, we used the

sociometric tools proposed byMoreno. Results show that involving students in a robotics

lab can effectively foster relations between students and, jointly with sociometric tools,

can be employed to portrait group dynamics in a synthetic and manageable way.

Keywords: educational robotics, sociometric tools, social networks, assessment, students’ groups, coding

INTRODUCTION

During the last decades, different activities have found their own space along with curricular ones
in schools. Between these, educational robotics (ER) can be an effective teaching and learning tool
(Miglino et al., 1999) as it allows for transferring knowledge such asmathematics, computer science,
and physics (Lindh and Holgersson, 2007; Williams et al., 2007; Nugent et al., 2009) and allows
one to train skills, including thinking skills and problem solving approaches (Hussain et al., 2006;
Sullivan, 2008; Mikropoulos and Bellou, 2013; Atmatzidou and Demetriadis, 2016; Gabriele et al.,
2017).

An interesting review dating back to 2012 by Benitti (Benitti, 2012) reports that the use of
robots in school has positive outcomes for teaching concepts that are connected to STEAM areas
(STEM plus arts), as it can have an impact on education in the fields of science, technology,
and mathematics along the educational process starting with preschool up to higher education
including university (Javidi and Sheybani, 2010; Alimisis, 2013; Chung et al., 2014; Eguchi, 2014a).

Along the years, ER has been widely introduced in school activities and has consolidated its
presence, especially in classrooms of high schools.
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ER implies an integrated approach to complement different
areas and fields, enhancing interest, and curiosity in scientific
issues (Arís and Orcos, 2019).

For today’s society, mastering technology is fundamental
and ER can be used to introduce technology and promote
other skills. In fact, in parallel with STEAM-related issues, ER
allows to promote skills like initiative, autonomy, teamwork,
and creativity (Sica et al., 2019a), the so-called 21st century
skills (Eguchi, 2014b), complex, and evolutionary systems
management (Miglino et al., 2004; Whittier and Robinson,
2007; Rubinacci et al., 2017a), together with social skills and
communication (Owens et al., 2008).

A relevant study by Kandlhofer and Steinbauer (2016) shows
that ER leads to a better achievement in social skills and self-
esteem in students that results in increased motivation (Bazylev
et al., 2014), which is a pivotal element in enhancing learning.

On the educational science side, ER is based on the
constructionist approach, where the students are at the center
of the learning challenge because they are active agents who can
determine their learning processes (Piaget, 1974; Papert, 1980;
Papert and Harel, 1991).

This means that, during ER activities, learners build their own
pathways to understand the world around them; they discover,
they use information to creatively get more knowledge, and
they participate actively in the educational challenges, guided by
teachers (Sica et al., 2019b).

Moving from the individual to the group level, it is interesting
to underline that most of ER activities must be run in groups,
thus promoting collaborative work and collaborative learning
(Denis and Hubert, 2001). Collaborative learning in ER has
been examined by a certain number of studies, showing how
it can contribute to foster social ties in groups of students at
different ages. The very recent study by Gonnot et al. (2019)
analyzes the use of social robots in a context of collaborative
learning, investigating how adding a social dimension to robot
can improve learning. Some other studies were devoted to
understand if social robots could affect the collaboration between
children at play (Strohkorb et al., 2016) and to propose a
framework for robots as mediator tools (Mitnik et al., 2008).

Robots can be the core element of an educational framework
for collaborative learning, if they are conceived as components
of Internet-of-Things (Plauska and Damaševičius, 2014), and,
thanks to their features that promote collaborative learning, they
can be used adopting a constructivist approach, as said before,
which is highly motivating for children and adolescents.

The study by Atmatzidou and Demetriadis (2012) deepens the
reflection on the pedagogical approaches for ER in the school
context, which is a high-impacting issue. They explore different
collaboration scripts used as a guide in students’ group work
during the ER activity.

ROBOTICS AND GROUP DYNAMICS

Summarizing what literature taught, ER can be useful to promote
the following: knowledge related to STEAM and skills such
as computational thinking, problem solving, complex systems

management, and collaborative learning, “inside the students,”
which means that the focus is on the personal side.

In the present study, we propose to change the focus to what
happens “between the students” who are involved in ER activities,
which means that we concentrate on the social side.

We believe that ER can be used to foster positive and
collaborative relations between students and, at the same time,
provide a context to assess the changing networks in the
classroom (Rubinacci et al., 2017b; Truglio et al., 2018a). In
particular, these recent studies proposed by the authors of the
present paper indicate how ER can be exploited to favor positive
ties and connections between students.

Now we make a step forward to verify this claim and to
show that the use of sociometric tools in the context of ER can
picture the classroom environment in critical moments that affect
students’ career and classroom climate (Truglio et al., 2018b).
A low social inclusion at school can have a dramatic effect on
relevant phenomena including school dropout (Frostad et al.,
2015; Ricard and Pelletier, 2016), and the sociometric framework
offers sensitive tools to observe micro and macro dynamics
elicited by ER activities.

This happens because ER allows one to establish a bridge
between students, who become interdependent as they are
required to reach a shared goal (Burbaite et al., 2013; Kamga
et al., 2016), to coordinate themselves, to learn to divide tasks in
subtasks, and to complete them, taking into account other group
members (in terms of opinions, ideas, skills, and abilities). As a
consequence, also those students who are not well-included in
the class have the opportunity to be involved in group activity
and to improve relationships with other students.

In this paper, we would like to show how ER is indeed an
adequate and useful framework to assess social relations and
support positive connections among students in the peer group.
In particular, our research hypothesis is that ER can be more
effective in promoting positive ties and connections between
students if compared with other activities. At the same time,
our goal is to verify if the use of sociometric tools offers a valid
framework to evaluate these ties. To address these issues, we have
worked on a 2-month project (from September to November
2017). The trial took place in Naples and its surroundings, an
area in Southern Italy, which is highly affected by school dropout
resulting in threats at the social level (O’Higgins et al., 2007).
In the section Robotics to Foster and Assess Social Relations
in Students’ Groups, we will describe this project in more
detail including the results we obtained, and in the section
Discussion and Conclusions, we will discuss these results and
their implications.

ROBOTICS TO FOSTER AND ASSESS
SOCIAL RELATIONS IN STUDENTS’
GROUPS

In this section, we describe the study we have run in a secondary
school in Italy. The proposed research project aims to assess
whether the ER laboratory, through group activities, is an
effective method to assess, and promote social relationships
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within a peer group in the class. To test our research hypothesis,
we considered three groups and two activities: the ER laboratory
and the coding laboratory with Scratch. The third group
performed individual activities that were not intended to
stimulate interactions between students. It was thus possible to
picture the group dynamics at the beginning of the school year
and the effect of the different activities on them.

Materials and Methods
Participants
The study involved 70 participants attending the first-year of
middle school (“Scuole medie” in the Italian school system), aged
between 10 and 11 years. Thirty-eight participants were females
and 32 males; their mean age was 10.48 years.

We decided to focus on first-year students as there are weak
ties between them, especially at the beginning of the school year.

For school needs, each group was randomly assigned to a
condition of the experimental design. From discussion with
school referents, we were assured that classes were composed so
as to be homogenous in terms of grades from primary school,
gender balance, and social skills.

In more details:

1. Group 1, formed by 23 students, carried out the ER laboratory.
2. Group 2, formed by 24 students, performed the coding

laboratory with Scratch.
3. Group 3, composed of 23 pupils, was not involved in any

group activity.

Group 3 was the control group and allowed to obtain the
baseline to compare group activities about the effects on social
relations, as the time lapse between the start and the end of group
activities may anyway have an effect on links and relationships
between peers.

The Tools for Group Activities: Lego Mindstorms NXT

and Scratch
The robotics technology we used in the present project was Lego
Mindstorms NXT (Klassner and Anderson, 2003). This robotics
kit includes both a hardware side and a software side (NXT-G).

In the coding lab, we used Scratch (Maloney et al., 2010): it is
a programming language that is freely available and is commonly
used to approach children, kids, and teen students to coding as
it offers the opportunity to create multimedia and interactive
games simply and intuitively with images, music, and sounds.
Together with coding, related to computational thinking, this
software helps students to develop their skills related to creativity,
systematic reasoning, and problem solving.

Sociometric Test
To assess social relations, the sociometric test of Moreno was
administered to the students of the three groups, before and
after the laboratory activities. The sociometric test allows one to
effectively investigate interpersonal relationships inside the peer
group and to highlight the status of the group components in
terms of inclusion. Indeed, sociometry is a methodology that was
proposed by Jacob L. Moreno in order to study the structure and
interactions of people within a group (Moreno, 1941, 1951), and

it has been employed in many different contexts including family
therapy and educational contexts. If we consider educational
contexts, the sociometric methodology can be useful to examine
situations where there are conflicts among students, isolated
subjects, lack of cooperation in working groups, etc. In the
present project, it was the selected tool to picture and study the
links between peers in the three groups involved in the activities.

The sociometric test proposed to the students concerned
the criterion that is called affective-relational perspective. This
perspective is related to the emotional aspect of a relationship and
reflects students’ affinities.

The criterion is operationalized in two sentences, which
allow to highlight preferences and, conversely, rejections toward
members of the group. These sentences ask to indicate the
classmates who the responding participants would (or would not)
want as roommates during a school trip.

Then the first step is to report data in a double-entry table
named sociomatrix. In this table, on the axes of abscissas
and ordinates, there are the names of the group members:
horizontally we report the expressed choices (or rejections) and
vertically the received choices (or rejections). The choices are
indicated with “1” and the rejections with “−1.”

Let us consider an example of a very small group of children,
composed by A, B, C, and D.

We will then have a square matrix with four elements on the
axes of abscissas and ordinates. If A chooses B, we will put a +1
at the intersection between A (horizontally) and B (vertically).
If C rejects D, we will put a −1 at the intersection between C
(horizontally), and D (vertically).

These sociometric data can be represented in the graphical
form called sociogram too. It is a network graph with nodes and
lines. Nodes represent the students, the components of a group,
whereas lines are the links, the relations (different kinds of lines
distinguish choices and rejections). Furthermore, each line has
one or two arrows showing the direction of the relationship and if
it is unidirectional or bidirectional. In the sociogram, A, B, C, and
Dwill be the nodes, pictured as circles, and they will be connected
by lines with different graphical features, corresponding to a
different kind of relation (see the Figures 1–12 in the section
Discussion and Conclusions).

From the sociogram and the sociomatrix, it is possible to
delineate the following: the total choices and rejections that each
member of the group has received; the degree of reciprocity
of choices and rejections; and the difference between ignored,
rejected, isolated, and popular subjects.

The popular subjects are those who have received a large
number of choices, so they are those who have greater influence
and greater power within the group. The rejected subjects,
on the other hand, are those who have received a large
number of rejections. Finally, the isolated subjects are those
who have received very low number of choices. This last
category includes:

1. subjects who are ignored by the group, but who prove to be
open and available to others by expressing their choices and

2. subjects who are ignored and tend to self-isolate by expressing
neither choices nor rejections.
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FIGURE 1 | Sociomatrix built on the Educational Robotics group for the affective criterion at the beginning of the scholastic year.

Along with the sociogram and the sociomatrix, it is possible to
use statistical techniques on the indexes that are derived from the
sociometric tools. The sociometric tool provides a rich amount of
data on group interaction and dynamics.

Procedure
As hinted at previously, the three conditions to verify the effects
of different activities on interpersonal relations in the peer group
are the lab with robotics activities and the lab with Scratch about
coding, together with the control group. The groups have been
randomly assigned to one of the three experimental conditions
(ER lab, coding lab with Scratch, and no group activities).

The sociometric test was proposed to the participants (the
students belonging to the three experimental groups) in two
moments, on September 25 (i.e., before the beginning of lab

activities: pretest) and on November 29 (i.e., at the end of lab
activities: post-test).

The activities covered 6 weeks, with a meeting for a week
and each lasting 1 or 2 h (for a total of 10 h). To carry out
the activities, students were divided in subgroups that were
composed by different students at each meeting. In the next
subsection, laboratory activities are described in more detail.

The Laboratory Activities
During the laboratory activities, which were scheduled as
6 weekly meetings lasting 1 or 2 h, participants followed
different pathways.

In summary, in the robotics lab, the following activities were
carried out: realization of posters dealing with technology, robot
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FIGURE 2 | Sociomatrix built on the Educational Robotics group for the affective criterion at the end of the robotics laboratory.

building and programming, and building of road itineraries
representing the environment where the robot moved.

For the coding lab with Scratch, the students were involved
in the following: realization of posters regarding the topic
of technology, creation of a sprite (an element of Scratch
programming environment, which can be conceived as an agent;
see Ponticorvo et al., 2017), creation of the stage (the place where
sprites interact), coding of sprite behavior in a spatial labyrinth,
and building of multimedia road itineraries representing the
environment where the sprite moved. These activities were
conceived in order to make comparable the tasks with the
students attending the robotics lab and the coding lab.

What is different is that in the robotics lab, participants used
tangible materials, so as to build the robot and to realize road

itineraries, whereas those in the coding lab have carried out their
activities exclusively with software, then in a digital environment.

Previous work conducted by our research group indicates that
this element can be relevant in promoting different cognitive and
social processes (Di Fuccio et al., 2015; Ferrara et al., 2016).

In more detail, the ER lab’s schedule was the following:
during the first meeting, by a frontal and interactive lesson,
the researcher talked about technology and introduced the
definition of a robot as an artifact with a sensory-motor system.
At the end of this first meeting, participants are divided in
five subgroups to build autonomously and collaboratively a
poster about technology and robots. During the second meeting,
students were divided again in five subgroups, different from
the previous ones. Every subgroup built a robot using the tools
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FIGURE 3 | Sociomatrix built on the coding with Scratch group for the affective criterion at the beginning of the scholastic year.

described above. Students had to collaborate and work in groups
to reach a common goal.

In the third meeting, the software to program the robot was
introduced and students used it to implement the robot control
system. Participants were again divided in subgroups and worked
together to build their strategy for the robots. In the fourth and
fifth meetings, they built the street pathways for the robot taking
inspiration from their own city and elaborating them in a creative
way. The sixth meeting was devoted to writing the code and
transferring it in the robot to follow the street pathway, always
working in subgroups.

The coding laboratory with Scratch was structured in a very
similar way: in the first meeting by a frontal and interactive
lesson, the researcher talked about technology, and introduced
the software Scratch for programming. At the end of the meeting,

students were divided into five subgroups to build autonomously
and collaboratively a poster about technology and Scratch. In
the second meeting, run in the computer classroom, Scratch was
introduced in its basic functionalities. Later participants were
divided in subgroups and had realized together some elements
in Scratch.

In the third meeting, how to program the elements in Scratch
had been shown and then they were divided in subgroups to
decide their strategy to program to follow a spatial labyrinth.

During the fourth and fifth meetings, students, divided
in subgroups, implemented multimedia, taking inspiration
from their city. In the last meeting, a street pathway had
been implemented and new subgroups had been formed to
write the code and the sequences to follow the multimedia
street pathway.
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FIGURE 4 | Sociomatrix built on the coding with Scratch group for the affective criterion at the end of laboratory activities.

Results
In this section, we report sociograms and sociomatrices for each
condition at the beginning and at the end of the intervention,
we compare the indexes for the three conditions, and then we
confront the number of selections and rejections at the beginning
and at the end of the project using t-test.

Sociogram and Sociomatrix Analysis
Sociograms and sociomatrices were built on the three groups
both for pretest and post-test. Group 1 carried out the ER
laboratory, Group 2 performed the coding laboratory with
Scratch, and Group 3 was the control group. Here we report
sociograms and sociomatrices about the affective criterion.

In the sociomatrices, to delineate the choices of the members
of the group, the number 1 was used inside a green box,
and to indicate the rejection, the −1 was used in a red box.

Furthermore, the total choices and the total rejections (both
expressed and received) were recorded for every student in the
peer group.

At the beginning of the school year (Figure 1), it is possible to
observe that there are six students who are able to attract a good
number of choices (8 and 9, the highest values) and two students
who receive more than 10 rejections.

After the laboratory activities (Figure 2), it is evident that
peers make much more selections and more students receive a
high number of choices (16 students receive 10 or more choices).
Also the rejections increase and four students receive more than
10 rejections.

In the group that was involved in the coding activities,
at the beginning of the school year, there are three students
who attract 8–9 choices and one student who receives 10
rejections (Figure 3).
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FIGURE 5 | Sociomatrix built on the control group for the affective criterion at the beginning of the scholastic year.

Also in this case, the number of choices increases (Figure 4):
seven students receive 10 ormore selections and only one student
receives more than 10 rejections.

In the control group, at the first assessment (Figure 5),
there are two participants who receive 8–9 selections and one
participant who collects more than 10 rejections.

At the end of the project (Figure 6), the number of choices
increases and three participants receive more than 10 rejections.

The sociomatrix represents the basis for other analysis and
allows one to have a relevant number of information in a
synthetic way.

Starting from the sociomatrices, we built the sociograms and
calculated various indexes, as described by Garcia-Magarino
et al. (2019), with the software Gephi, an open-source software
package for analysis and visualization of social networks (Bastian
et al., 2009).

Here we report the sociograms for the three experimental
groups at the pretest and post-test, considering the total one, i.e.,
the one that considers both selections and rejections and then,
separately, the selections and the rejections.

The qualitative comparison of the sociograms at these two
moments shows some interesting dynamics. In the robotics
group (Figures 7, 8), the network becomes more connected: in
particular, the selection one showsmuchmore links. Considering
the node in the rejections groups, at post-test, there is only one
node that receives a high number of rejections.

For the coding group (Figures 9, 10), we observe that
there are much more choices, especially selections as rejections
link decreases.

If we consider rejects, in the control condition, rejects increase
significantly, whereas in the robotics condition, the number of
rejects remains essentially the same.
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FIGURE 6 | Sociomatrix built on the control group for the affective criterion at the end of laboratory activities.

FIGURE 7 | Sociograms representation of Educational Robotics group at the pretest. In green the total one, in blue the selection one, and in red the rejection one.
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FIGURE 8 | Sociograms representation of Educational Robotics group at the post-test. In green the total one, in blue the selection one, and in red the rejection one.

FIGURE 9 | Sociograms representation of the coding group at the pretest. In green the total one, in blue the selection one, and in red the rejection one.

FIGURE 10 | Sociograms representation of the coding group at the post-test. In green the total one, in blue the selection one, and in red the rejection one.

For the control group (Figures 11, 12), the comparison
between the pretest and the post-test indicates that the group has
more links, as we expected for the time lapse, but it is interesting
to notice that the rejection links increase.

In Table 1, the analysis run with the Gephi software is
reported at the pretest and the post-test. The average corresponds
to the ratio between connections (edges) and the number
of participants (nodes). Here, the Social Intensity, Cohesion,
Dissociation, and Coherence indexes are also reported (Garcia-
Magarino et al., 2019).

Social Intensity Index measures the percentage of relations
(reciprocal or not) on the number of theoretically possible
combinations. It indicates how the students are connected, either
positively, or negatively. Usually, a high value of the index means
that students know each other well.

Cohesion Index is the ratio between reciprocal relations
and possible relations. Cohesion is useful to understand if
students rely on the others in the group. It is the level
of reciprocal acceptation between students and can highlight
popular students.
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FIGURE 11 | Sociograms representation of the control group at the pretest. In green the total one, in blue the selection one, and in red the rejection one.

FIGURE 12 | Sociograms representation of the control group at the post-test. In green the total one, in blue the selection one, and in red the rejection one.

Dissociation Index represents the opposite of previous
metrics because it is centered on the ratio between reciprocal
rejects and the number of possible combinations. This index
shows the average ratio of reciprocal rejects and if there are
unpopular students.

Coherence refers to the ratio between reciprocal selections
and selections received by other students. In other words, it
represents the reciprocity in students’ selection. It is useful to
highlight if students tend to have reciprocal relations.

These indexes vary between 0 and 1.
Table 1 summarizes the indexes for the experimental group at

the pretest and the post-test.
Coherently with what we have observed by the sociograms, the

indexes get better between the pretest and the post-test. There is
a notable increase in Social Intensity and Selection indexes and a
low increase in Rejection for the robotics lab.

These analyses indicate that the robotics lab can be effective
in promoting dynamics that can lead to a modification of the
status of each participant at a personal level and of the group as a
dynamic entity.

In the coding laboratory, there is a little increase in Social
Intensity and Selection indexes and a little decrease in Rejection:
this indicates that the network has changed slightly. In the control
group, all indexes increase a little, as expected because of the
interaction related to school.

In the three experimental conditions, the indexes show an
increase between pretest and post-test selections.

To better understand the effects produced by the robotics lab
in comparison with the coding activity, we run the statistical
analyses whose results are reported in the next section.

Statistical Analysis on Choices and Rejections
In this section, we report the analysis on the number of choices
and rejections in the robotics lab, the coding lab, and the
control group: in particular, we analyzed the difference between
selections and rejections at the beginning and at the end of
the project. Is there a difference considering the beginning of
activities and the end? Results on this research question are
reported in Table 2.

Is robotics more effective than the other conditions to
foster relations in the peer group? To answer this question,
we have compared the three conditions in two moments: the
pretest and the post-test running a one-way ANOVA with the
software SPSS R©.

At the pretest, the ANOVA revealed no significant differences
between the three conditions: F(2, 67) = 1.803; p = 0.173 for
selections and F(2, 67) = 0.574; p= 0.566 for rejections.

On the contrary, at the post-test, the difference is significant
if we consider the selections: F(2, 67) = 7.569; p = 0.001
(for selections). The post-hoc comparisons (Bonferroni method)

Frontiers in Robotics and AI | www.frontiersin.org 11 June 2020 | Volume 7 | Article 78130

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Ponticorvo et al. ER for Social Relations

TABLE 1 | Indexes for the experimental groups at pretest and at post-test obtained with the Gephi software.

Nodes Edges Average Index Coherence

Pre Post Pre Post Pre Post Pre Post Pre Post

Robotics Group

Total (Social Intensity index) 23 23 196 323 8.52 14 0.387 0.638 0.56 0.62

Selection (Cohesion index) 23 23 126 239 5.48 10.39 0.25 0.472 0.67 0.65

Rejection (Dissociation index) 23 22 70 84 3 3.8 0.138 0.182 0.2 0.33

Coding Group

Total (Social Intensity index) 24 24 206 255 8.59 10.6 0.373 0.462 0.53 0.42

Selection (Cohesion index) 24 24 107 193 4.46 8 0.194 0.35 0.64 0.48

Rejection (Dissociation index) 24 24 99 162 4.125 2.7 0.179 0.123 0.30 0.16

Control Group

Total (Social Intensity index) 23 23 184 5 262 8 11.4 0.364 0.518 0.55 0.53

Selection (Cohesion index) 23 23 98 146 4.3 6.3 0.194 0.289 0.65 0.41

Rejection (Dissociation index) 23 23 86 116 3.7 5 0.17 0.229 0.33 0.34

Average is the ratio between connections (edges) and the participants (nodes). The column Index reports the Social Intensity, Cohesion, Dissociation indexes; the column Coherence

indicates the coherence of the social network.

TABLE 2 | Comparison between pretest and post-test about received selections

and rejects in the three experimental conditions (p < 0.05 are marked with an

asterisk).

Selections Rejects

t-test p-value t-test p-value

Robotics 7.71507274 ≃0* 1.834425 0.079561

Coding 6.87784727 ≃0* 3.279852 0.003286*

Control 3.73671073 0.001079202 2.998793 0.006408*

indicate that a statistically detectable difference emerges between
the robotics condition and the control group: average difference
= 4.043; p= 0.001.

DISCUSSION AND CONCLUSIONS

ER is nowadays a frequent appointment in curricular pathways;
the experiment we have described and the related data indicate
a notable change in the interpersonal relations within the
group that attended the robotics lab in the direction of their
improvement. This change emerges in the comparison with the
control group and the coding lab. This result can be motivated
by the shift of the learning perspectives, which becomes more
active, and consequently by the different way students interact
with each other. Indeed, according to the constructivist approach,
this kind of activities offers the students the possibility to establish
relations with their peers in a different way in order to understand
their psychological affinities. To solve the robotics tasks, the
participants must act in an interdependent way, whereas the
majority of curricular activities are individual. Allowing to
move from individual to group activity forces to build an
interdependent relation: the students who are not well-included
in the peer group have a new chance to be an active part

in solving the tasks thus improving relationships with other
students. The present study has indeed some limitations; for
example, it was run on already established groups (classes), so
it was not possible to vary the group composition. Moreover, the
groups were followed along a relatively short period of time, and
it would be interesting to verify if the positive changes were stable
over time.

From these results, it is possible to deduce that labs and
related activity can be an effective methodology to promote
and support new and satisfying relations between students. The
data reported in the Results section indicate that there is an
increase in selections in the ER condition, which is higher than
the other conditions, thus showing that the ER activities can
have some specific features that are functional to improve the
relations between peers, which is, in turn, a protective factor to
prevent dropout.

Some issues remain still open: in the group that was involved
in the robotics lab, a small number of participants remain
rejected. Does it depend on the individual participant or from the
group organization? And if it depends on the individual, which
are the psychological variables that are relevant?

Future research will be devoted to address this question,
along with the comparison with the educational robotic lab with
different activities that foresee interactions with tangibles (such
as laboratories of craft, art, workshop on music, etc.). These new
experiments will investigate if social relations can be enhanced
specifically by running a lab or if this improvement is comparable
to the effects of other group activity involving manipulation.

This first project was followed by a wider experience under the
Codinc project (Coding for inclusion) in the period January–May
2019. In this European-funded project, ER, together with
sociometric tools, has been the context to assess peer relations
and has become the core of Codinc methodology, as it offers the
opportunity to portray interpersonal relationship in a situation
that is different from the common interactions of the peers
at school.
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To investigate how a robot’s use of feedback can influence children’s engagement and

support second language learning, we conducted an experiment in which 72 children

of 5 years old learned 18 English animal names from a humanoid robot tutor in three

different sessions. During each session, children played 24 rounds in an “I spy with

my little eye” game with the robot, and in each session the robot provided them with

a different type of feedback. These feedback types were based on a questionnaire

study that we conducted with student teachers and the outcome of this questionnaire

was translated to three within-design conditions: (teacher) preferred feedback, (teacher)

dispreferred feedback and no feedback. During the preferred feedback session, among

others, the robot varied his feedback and gave children the opportunity to try again (e.g.,

“Well done! You clicked on the horse.”, “Too bad, you pressed the bird. Try again. Please

click on the horse.”); during the dispreferred feedback the robot did not vary the feedback

(“Well done!”, “Too bad.”) and children did not receive an extra attempt to try again; and

during no feedback the robot did not comment on the children’s performances at all.

We measured the children’s engagement with the task and with the robot as well as

their learning gain, as a function of condition. Results show that children tended to be

more engaged with the robot and task when the robot used preferred feedback than in

the two other conditions. However, preferred or dispreferred feedback did not have an

influence on learning gain. Children learned on average the same number of words in

all conditions. These findings are especially interesting for long-term interactions where

engagement of children often drops. Moreover, feedback can become more important

for learning when children need to rely more on feedback, for example, when words

or language constructions are more complex than in our experiment. The experiment’s

method, measurements and main hypotheses were preregistered.

Keywords: child-robot interaction, second-language learning, robot tutor, feedback, engagement, preschool

children

134

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00101
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00101&domain=pdf&date_stamp=2020-08-04
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mirjam.dehaas@tilburguniversity.edu
https://doi.org/10.3389/frobt.2020.00101
https://www.frontiersin.org/articles/10.3389/frobt.2020.00101/full
http://loop.frontiersin.org/people/404540/overview
http://loop.frontiersin.org/people/134335/overview
http://loop.frontiersin.org/people/82107/overview


de Haas et al. Feedback in Robot-Assisted Second-Language Learning

1. INTRODUCTION

A recent trend in education is to have social robots take on
the role of educational tutors to support, for example, second
language learning (Westlund and Breazeal, 2015; Belpaeme et al.,
2018; Vogt et al., 2019). In educational settings, learning a
(second) language typically involves social interactions between
the child and the teacher. During these interactions, children
constantly receive feedback about their performance. It has
been shown that human feedback can have a clear impact on
children’s learning process and outcomes (Wojitas, 1998; Hattie
and Timperley, 2007). Feedback is therefore an important part
of the social interactions that facilitate language learning, which
begs the question what the impact of various feedback types is
when feedback is provided by a robot rather than a human.

Throughout many years researchers have investigated
how (human) feedback can have an influence on second
language learning. Focusing on children learning a second
language, research has shown that receiving feedback benefits
children’s language development more than receiving no
feedback (Mackey and Silver, 2005). Moreover, different types
of feedback can help children in several ways. You can, for
example, use positive feedback to reward and motivate children
when they are correct, or use negative feedback to correct
children’s language and thereby improve children’s learning gain
(Hattie and Timperley, 2007).

While there have been many studies about robots for

educating children, only few of these have investigated the

effects that different types of feedback can have on children’s
engagement and learning performance (Gordon et al., 2016;

De Haas et al., 2017; Ahmad et al., 2019). Usually, studies
design feedback strategies for robot tutors based on results
from educational studies involving only humans without
investigating the effect that these strategies have on children’s
engagement and/or performance (e.g., Mazzoni and Benvenuti,
2015;Westlund and Breazeal, 2015; Gordon et al., 2016; Kennedy
et al., 2016). However, it is not evident that the effect of
human strategies will be the same when a robot uses them,
because a robot has substantial cognitive and physical limitations
compared to a human. For example, robots cannot produce the
same facial expressions as humans or humans’ subtle cues, thus
are limited in providing facial cues that humans use to provide
non-verbal feedback.

One recent studymanipulated non-verbal and verbal feedback
based on the child’s emotional state (Ahmad et al., 2019). Results
showed that children’s engagement over time remained relatively
high and children’s word knowledge increased over time with
positive or neutral feedback.While their results suggest that robot
feedback can have a positive effect on children’s engagement
and learning gain, they did not compare different variations
of positive and negative feedback or compared it against no
feedback.

The results of Ahmad et al. (2019) are consistent with findings
from human studies and demonstrate that feedback does not
only enhance children’s language performance, but also engages
children. Positive feedback engages because it validates children’s
answers and thus boosts their confidence (Henderlong and

Lepper, 2002; Zentall and Morris, 2010). Similarly, negative
(corrective) feedback corrects and teaches the child the correct
word which could result in a motivated child. However, both
positive and negative feedback can also decrease engagement.
On the one hand, too many repetitions of positive feedback can
become meaningless for a child and can result in less intrinsic
motivation (Henderlong and Lepper, 2002; Boyer et al., 2008).
On the other hand, negative feedback can decrease the child’s
confidence and thereby decrease the engagement between the
teacher and child (Wojitas, 1998).

Consequently, if used correctly, feedback can result in
increased learning gains. Children become more intrinsically
motivated by positive feedback, which increases the children’s
interest and their task engagement and therefore their skills.
These increased skills will motivate the children further and
engage the children to a greater extent (Blumenfeld et al., 2006).

This paper describes a study that investigated how preschool
children respond to different types of feedback provided by
a robot tutor. In the experiment, children interacted with
a humanoid robot tutor in three different second-language
sessions, and in each session the children received a different type
of feedback. These types of feedback were designed based on a
survey among student teachers, resulting in a strategy preferred
by these student teachers, a strategy dispreferred by them and a
strategy using no feedback at all. We analyzed the effect of these
different types of feedback on the children’s task engagement and
learning gain over time.

2. BACKGROUND

2.1. Feedback
Numerous studies have shown that feedback facilitates second
language learning (Lyster and Ranta, 1997; Henderlong and
Lepper, 2002; Long, 2006; Hattie and Timperley, 2007). It can
help to improve pronunciation, word-choice and grammar, and
makes it easier for children to understand what is correct
or incorrect in the foreign language. Feedback is not only
used to correct children, but for example also by teachers to
contribute positively to children’s own feeling of competence
and success and therefore encourage children to continue with
a task (Blumenfeld et al., 2006; Hattie and Timperley, 2007).
The type of feedback provided, however, matters (Shute, 2008).
You can, for example, provide explicit negative feedback by
indicating that something is wrong with children’s answers, but
without specifying what was wrong (e.g., “That’s wrong.”). It
is also possible to provide corrective feedback by correcting
children’s answers or hinting toward it (e.g., “You said runned,
but it should have been ran” or “it should not have been runned,
but...?”). Prompting children with an extra attempt (“Try again.”)
is an implicit way of saying something was wrong. Hattie and
Timperley (2007) propose a combination of these three types
as good way of providing feedback. The combination provides
children with explicit notions where the mistake was made,
what went wrong and makes them to try again. Nevertheless,
sometimes separate feedback is also sufficient. For example, using
explicit negative feedback (i.e., stating explicitly that something
is wrong) seems to be most beneficial for children who are
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struggling with a task, such as novel learners (Kluger and DeNisi,
1996; Shute, 2008).

Teachers, however, mostly provide negative feedback
implicitly by using recasts (i.e., a type of feedback in which the
teacher repeats the incorrect phrases in a correct form), but
they still try to make sure that children reach their goal (Lyster
and Ranta, 1997; Long, 2006). Although these recasts have been
found to be used more often than the other feedback types, they
seem to be less effective in helping the learner to reach their
learning goal. Lyster and Ranta (1997) investigated the role
of negative feedback and found that when teachers explicitly
mentioned the fact that an error was made in their negative
feedback, it led to a higher learning gain than when they did not,
which suggests that explicit negative (or corrective) feedback can
be more effective than implicit feedback by using recasts.

Feedback is not always negative or corrective, it can also
be positive. In general, teachers mostly use positive feedback
explicitly (praise) and not implicitly (Hattie and Timperley,
2007). The advantage of praise is that it approves children’s
answers and makes the task encouraging and motivating
(Henderlong and Lepper, 2002). When children receive positive
feedback, they become happy, and are therefore more committed
and intrinsically motivated to complete a task. However, there
are also downsides to providing positive feedback.When children
receive too much positive feedback, they rely on the feedback and
will not learn when they do not receive the feedback anymore
(Henderlong and Lepper, 2002). In addition, when the use of
praise is non-specific or ambiguous, such as saying “good job”
or “beautiful” makes children not understand what part of their
answer elicited the feedback and they will not know how to
respond (Hamilton and Gordon, 1978). Thus, positive feedback
should refer to the learning task and at the same time remain
motivating enough in order to be effective.

2.1.1. Feedback, Engagement, and Learning
Engagement seems to have a positive effect on language
learning (Christenson et al., 2012). A considerable amount of
studies have shown that robots are engaging interaction partners
for both adults and children (see for an overview Kanero et al.,
2018). Engagement normally starts high due to the novelty
effect but then seems to decrease over time (Kanda et al.,
2007; Westlund and Breazeal, 2015; Rintjema et al., 2018).
When talking about engagement, it can be helpful to distinguish
between two kinds of engagement: robot-engagement, referring
to how engaged a child is with the robot, and task-engagement,
which focuses on how engaged a child is with the learning task.
Clearly, these are not necessarily the same: a child can be very
engaged with their social partner, the robot, but not with the task,
or visa versa. Moreover, the effect of these different engagement
types on learning gain can differ. For example, one study by
Kennedy et al. (2015) used a highly engaging robot partner and,
as a result, children were so distracted by the robot that they
focused less on the task and therefore learned less. In their study,
children who were highly engaged with the robot, learned less
instead of more while it is possible that children who are highly
engaged with the task, will still learn more. Consequently, it is

useful to measure both types of engagement: task-engagement
and robot-engagement.

Research in HRI has looked at many ways of keeping general
engagement high, but did not investigate the role that different
types of feedback could play here. For example, Ahmad et al.
(2019) looked at the role of adaptive feedback on the children’s
emotion on engagement, but they did not investigate the effect of
different types of feedback.

Feedback, however, can have an influence on children’s
motivation and their self-evaluation (Zentall and Morris, 2010),
which—in turn—can influence engagement. Blumenfeld et al.
(2006) suggested a feedback loop: in order to increase children’s
engagement, children first have to be motivated, which will then
increase their interest in the task, which in turn will engage
children followed by the children’s learning gain. When children
improve their language skills, this can lead to even higher
motivation and further result in a higher engagement.

The influence of feedback on motivation depends on the type
of feedback. For instance, praise that is specifically linked with
the children’s effort (e.g., “You are a good drawer” after drawing
a picture) motivates children more than other types of praise,
even when only 75% of the praise is linked with effort (Zentall
and Morris, 2010). Moreover, Corpus and Lepper (2007) showed
that for preschool children all praise enhanced motivation
when they compared it with neutral feedback (“OK”). They
compared motivation of preschool children with older children,
and found that only for older children (fourth and fifth graders)
the type of praise had an influence on their motivation, while
preschool children benefited from all feedback equally. Another
study found similar results: Morris and Zentall (2014) measured
ambiguous praise (“Well done!”, “Yeah,” “Awesome”) and found
higher persistence, higher self-evaluations and fewer fixations on
later mistakes. Apparently, children interpret ambiguous praise
in the most beneficial manner for themselves. However, they also
found that the use of gestures (“Thumbs up” and “High five”)
resulted in the highest self-evaluations.

The reason why feedback has an influence on motivation
and therefore engagement can be explained by the Self-
Determination Theory (Deci and Ryan, 1985). This theory poses
that learners continue a task longer when their motivation is
based on intrinsic aspects, such as pleasure and satisfaction,
compared to when motivation is based on external rewards (Deci
and Ryan, 1985). This intrinsic motivation arises particularly
when a task contains autonomy and competence and is
strengthened by a sense of relatedness between learner and
teacher (Ryan and Deci, 2000). For example, autonomy increases
when a learner can choose themselves what kind of activity to
do, or when he or she receives informative rewards and non-
controlling instructions. A higher degree of autonomy leads
to increased intrinsic motivation and, in turn, higher levels
of engagement. Moreover, competence increases with praise
(Blanck et al., 1984), because it enhances the children’s feeling
of being capable to successfully complete a challenging task.
Competence, especially in combination with autonomy, plays a
considerable role in retaining intrinsic motivation. There are also
disadvantages of praise, for example, when children first receive
praise but are not able to successfully complete the task, their
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motivation can decrease (Zentall and Morris, 2012). Moreover,
too much positive feedback can decrease the children’s own
curiosity (Henderlong and Lepper, 2002).

Negative feedback has been found to decrease intrinsic
motivation, specifically the feeling of competence (Deci et al.,
1991). It can potentially decrease children’s self-efficacy or their
active participation and engagement in the learning task, because
children become unmotivated when receiving negative feedback
(Wojitas, 1998). On the other hand, negative feedback can also
have a positive influence on motivation, as it can help children
to understand what they are trying to learn and to correct their
mistakes (Hattie and Timperley, 2007). Kluger and DeNisi (1996)
suggest that, similar as with praise, the effect of feedback is not
only dependent on a link between behavior and feedback, but also
on how the feedback was provided and how the learner interprets
the feedback.

The combination of praise and negative feedback can be
challenging enough for children, but at the same time motivates
children enough to want to continue with the task. For example,
if children additionally receive negative feedback to correct
their mistakes and hear praise when they correctly answer a
question, this can enhance the effect of both feedback types.
Summarizing, feedback has the potential to both engage and
disengage children (Dempsey and Sales, 1993), depending on
the type of feedback given. Feedback (especially praise) can
increase the intrinsic motivation of children, which increases
their engagement. Engaged children are more motivated, learn
faster, will be more likely to complete the task and to repeat the
task, which leads to a better result (Dörnyei, 1998). However, it is
not clear yet whether the rules that apply to human teacher-child
interactions also apply to robot-child interactions.

2.1.2. Feedback in Child-Robot Interaction
Studies with educational robots for children that have explicitly
looked at the role of feedback are sparse.While many studies have
incorporated the use of feedback, specifically praise (Mazzoni and
Benvenuti, 2015; Westlund and Breazeal, 2015; Gordon et al.,
2016; Kennedy et al., 2016), they did not test the effect of feedback
on the children’s engagement or learning gain nor the effects that
different forms of feedback may have. These studies investigated
the role of praise either by incorporating it as part of a robot’s
strategy (Westlund and Breazeal, 2015; Kennedy et al., 2016), by
looking at specific responses of children on occurrences of praise
(Serholt and Barendregt, 2016) or on the effect of timing of the
praise (Park et al., 2017). It seems that children notice the praise
and react to it, however, these studies did not investigate its direct
effect on engagement and learning gain. For example, Kennedy
et al. (2016) compared a high verbal availability robot and a low
verbal availability robot. The high verbal availability robot used—
among other social behaviors—more expressive praise than the
low verbal availability robot. Children of approximately 8 years
old practiced different French grammar rules with one of the
robots. The authors found no significant difference in learning
gain for the robot that used more expressive positive feedback,
but the children reported to have noticed the praise and payed
attention to it.

In another study, Serholt and Barendregt (2016) investigated
children’s responses to the robot’s praise. In their long-term
study, the robot gave praise on the children’s performance of
the previous session. Positive feedback did not go unnoticed,
70% of the children acknowledged the robot during feedback
through verbal or gestural responses such as smiling. Similarly,
Park et al. (2017) explored whether the timing of a robot’s praises
would influence the engagement of children. Children had to
tell a robot a story and the robot reacted on their emotional
level as a form of feedback. For example, when children had
a high energy level, the robot played a large excited motion.
Park and colleagues compared two conditions, one with a robot
that reacted every 5 s on the child without changing its energy
level, and one with a robot that reacted during breaks between
child speech and changed the energy level of its responses
appropriately. The children seemed to be more engaged with
latter robot that changed its feedback to their energy level.
Likewise, Westlund and Breazeal (2015) used a non-humanoid
robot to teach children a second language and found that children
learned with a social robot more than with a non-social robot.
Both robots used positive phrases when children were correct,
e.g., “Good job!” or “You’re working hard!” and only provided
hints with an incorrect answer, e.g., “I think it was that one.”
However, the social robot added expressive phrases based on the
child’s emotional state (e.g when children were excited, the robot
first reacted with “woo hoo” before the feedback).

While many robots use praise, which is an explicit form of
positive feedback, explicit negative feedback is not often used
in child-robot studies. Typically, studies incorporated implicit
feedback by using hints (e.g., “I think it was the other one,”
Gordon et al., 2016) or by introducing doubts (“Are you sure?”
Mazzoni and Benvenuti, 2015).

Three studies that specifically investigated the effect that
feedback has on learning and/or engagement are those by De
Haas et al. (2017), Resing et al. (2019), and Ahmad et al.
(2019). De Haas et al. (2017) conducted a between-subject
study with 4-year-old pre-school children that compared the
effect that three different feedback strategies (peer-like, adult-
like, and no feedback) had on learning gain and engagement.
The feedback strategies did not affect the learning gain or the
engagement measured through eye-contact. Instead, children
showed a substantial amount of individual differences in how
they engaged with the robot across the three feedback conditions.
Some children focused completely on the robot, while other
children focused more on the researcher by asking for more
guidance. Even though children did not seem to benefit from
the different types of feedback, this study consisted of only one
session which—due to the novelty effect—may have disturbed the
effect that different forms of feedback may have.

Resing et al. (2019) reported a study where 6 till 9-year-
old children had to solve a puzzle together with an owl-like
robot that either helped them by giving feedback or did not
provide any help. The help-providing robot used both verbal and
non-verbal feedback. It shook its head and had blinking eyes
when their answer was incorrect as a way of providing non-
verbal (explicit) negative feedback, or nodded and said “Well
done!”, with (different) blinking eyes as a form of explicit positive
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feedback. Children trained by the robot with feedback became
better in solving new puzzles than children trained with the
other robot. However, again, children showed large individual
differences in the number of corrections they needed.

Ahmad et al. (2019) addressed individual differences between
children and compared in a between-subjects design a robot that
adapted its feedback with one that did not. They studied how
children between 10 and 12 years old responded to the robot’s
feedback during 2 weeks. The robot adapted its feedback behavior
to the children’s emotional state. For example, when children
were rated as happy the robot used that in its feedback (“You are
looking happy, and I’m happy that you are in front of me. Let’s
learn another word”). During the game, the robot kept referring
to the game outcome, only in the post-test the robot provided
feedback on learning performance (“I am happy that you got
it wrong in session one, but this time your answer is correct’
or ‘It’s sad that you didn’t remember this word, the correct
answer is...”). Ahmad and colleagues found that the children’s
engagement remained relatively high (or stable) when interacting
with the adaptive robot, while their engagement lowered over
time with the non-adaptive one. Moreover, children’s learning
gain was higher with the adaptive robot, compared to the non-
adaptive one. While these results are promising, this study did
not investigate the effect of different feedback strategies.

Generally, developers of robot tutors base the educational
strategies of the robot on the already existing human studies
and use those strategies in their child-robot interactions without
studying whether these strategies are similarly effective. Most
child-robot studies use praise as a motivator in their experiments
and are hesitant to use explicit negative feedback. It is not clear
what type of negative feedback works best for robots, although
in educational studies it seems that mentioning the children’s
mistake seems to be more effective for language learning. In this
paper, we address this gap in knowledge by investigating the effect
of different forms of feedback on both task-, robot-engagement
and learning gain.

2.2. Teachers’ Feedback
In preparation of the present study, we carried out a survey
among student teachers concerning their views on how a robot
should provide feedback. The aim of this survey was two-fold:
(1) To gain insights how student teachers’ would think the
robot should provide feedback to children giving correct and
incorrect answers in a tutoring setting, and with varying levels
of the children’s engagement at the time feedback is given. (2)
To create a data set with different feedback phrases that student
teachers would use. We interviewed student teachers instead of
practicing teachers, because students are more likely to work
with technologies in the future, such as social robots, than
teachers who already worked formany years. Moreover, receiving
many responses was more feasible with student teachers than
with teachers.

In our survey, we showed 27 student teachers 40 video
fragments of both engaged and disengaged children interacting
with a robot in a second language tutoring experiment reported
in De Wit et al. (2018). All fragments showed a robot teaching 5-
to 6-year-old Dutch children animal words in English as a second

language. In each fragment, the robot expressed an English word
and asked the child to select—on a tablet—the animal he or
she thought that the word referred to. The fragment ended
right after the child answered to this request. After watching
each fragment, the student teachers were asked to provide a
feedback suggestion. The survey was carried out in a between-
subject design with two conditions: in one condition (closed
questions), student teachers could choose between six feedback
strategies (three positive and three negative), and in the other
condition (open-ended questions) they could freely write the
feedback themselves. This closed questions survey would provide
insights of what strategy student teachers would choose, and
the open questionnaire would create a data set of different
feedback phrases.

We did not find a difference between student teachers’
suggestions for engaged or disengaged children. However, we
found that the suggested forms of feedback differed substantially
between the closed and open-ended questionnaires: In the closed
questions survey, the majority of the student teachers chose to
use an explicit positive phrasing together with an explanation in
the form of a translation [“Goed zo! Een ‘hippo’ is een nijlpaard”
(Dutch)—“Well done! A ‘hippo’ is a hippo” (English)], and they
chose a correction of the child’s answer through repetition and
translation of the target words [“Een hippo is een nijlpaard, je
moet de nijlpaard aanraken” (Dutch)—“A ‘hippo’ is a hippo, you
have to touch the hippo” (English)] as a means of providing
implicit negative feedback.

In the case of the open-ended survey, the student teachers
chose for both positive and negative feedback to only provide
an explicit phrasing without repeating the target words for both
positive feedback [“Goedzo” (Dutch)—“Well done” (English)]
and negative feedback [“Helaas dat was niet goed” (Dutch)—
“Unfortunately, that was not correct” (English)]. Moreover, we
found that in the open-ended questionnaire student teachers
varied their phrasing of the feedback considerably. These results
indicate that student teachers do not have a straightforward
strategy for choosing how to provide feedback.

After the surveys were analyzed, we discussed the findings
with a subset of the student teachers. They suggested two
main reasons why these results differed. Firstly, correction and
explanation (e.g., through repetition of target words) is essential
for negative feedback. This was the main reason why they chose
to repeat the target words in the closed-ended questionnaire.
Secondly, they indicated that variation in the form by which
feedback is provided is also crucial. The robot should not repeat
the same phrase throughout the whole lesson. Student teachers
participating in the open-ended questionnaire focused more on
creating varying feedback phrases and less on the repetition of
the target word.

Based on these findings, we concluded that the “preferred”
feedback strategy would combine the results from the closed
questions survey with the open-ended survey: take an explicit
feedback phrase (e.g., “Well done” or “That’s wrong”), add a
repetition of the target word, and provide children an extra
attempt when their answers are incorrect. Since variation is key,
the feedback phrases should vary, based on the data set created
by the open-ended survey.
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2.3. This Study
The present study investigates whether 5- and 6-year-old children
are more engaged with the task and with the robot, and learn
more words when participating in a second language (L2)
training with a robot that provides feedback as recommended
by the student teachers (preferred feedback), compared to a
robot that provides feedback contrary to what was recommended
by the student teachers (dispreferred feedback), and compared
to a robot that provides no feedback at all (no feedback). As
our survey with student teachers revealed, providing adequate
feedback is a complex matter that consists of multiple strategies,
which are hard to separate, thus making it difficult to investigate
such individual factors experimentally. We therefore decided
to combine multiple factors in our preferred and dispreferred
feedback strategies, and explore to what extent these strategies,
as performed by a robot, influence children’s engagement and
learning gain in an L2 tutoring scenario.

Every child receives three sessions with different robots, each
providing a different form of feedback, thus allowing us to
investigate how children react to the different forms of feedback
using a within-subjects design. We based the training sessions on
previous studies in which children played an “I spy with my little
eye” game with a NAO robot to learn different L2 words (De Wit
et al., 2018; Schodde et al., 2019).

Based on previous findings in literature regarding the role
of feedback in second language learning, and previous studies
that address feedback in child-robot interactions (Ahmad et al.,
2019), we hypothesize that children will be more task- and
robot-engaged when receiving (either preferred or dispreferred)
feedback than when they do not receive feedback (H1a).
Especially positive feedback is expected to increase the children’s
intrinsic motivation for the task and thus their engagement.
We also hypothesize that children will remember more words
when receiving feedback than when receiving no feedback (H1b).
Feedback can help to understand whether an answer is correct
or not and may indicate what the correct form should be, thus
providing insight into the learning process and helps to improve
the learning performance.

Moreover, we hypothesize that children will be more task- and
robot-engaged with (H2a) and will remember more words from
(H2b) a robot that provides feedback as preferred by a student
teacher compared to a robot that provides dispreferred feedback.
When feedback is varied (as in the preferred feedback strategy),
children are expected to pay more attention to it, boosting their
confidence and with that their task-engagement. The varied
feedback of the robot can additionally increase the children’s
interest in the robot and with that their robot-engagement.
In contrast, when a robot repeatedly uses the same phrase as
feedback (dispreferred feedback), children might get tired of this
repetition and as a result will pay less attention to the robot.
Additionally, children can practice with the preferred feedback
once more in the case of a mistake and thus improve their
knowledge, which they cannot with the dispreferred feedback
strategy and which might lead to an increase in their task-
engagement. Moreover, the preferred feedback also provides
children with an explicit notion where the mistake has been
made, what went wrong and how they can fix it by trying

again (the three rules of good feedback according to Hattie and
Timperley, 2007).

3. METHODS

The research questions, hypotheses and analyses in this study
have been preregistered at AsPredicted1 and the source code has
been made publicly available2.

3.1. Design
The study was a within-subjects design, where all participants
were assigned to all feedback strategies/conditions (each session
a different strategy). The strategies for providing feedback were
based on the survey asking student teachers how they would
make the robot provide feedback in situations comparable to the
ones in this experiment, translating to a preferred strategy and
dispreferred strategy. The order of the feedback strategies and
word sets were counterbalanced using a 3 × 3 latin-square to
reduce an order effect. The three strategies/conditions were

1. Preferred feedback
2. Dispreferred feedback
3. No feedback

Each child received three sessions with the robot, and could learn
18 words in total and 6 in each session. In all conditions, all
sessions were the same, except for the words learned, the feedback
strategy that the robot used and the shirt the robot was wearing
(to give the impression that children were playing with three
different robots, see Figure 1).

3.2. Participants
In total, 72 native Dutch-speaking children aged 5 and 6 years
participated in the current study. The participants were recruited
from three elementary schools located in the Netherlands.
Bilingual children were excluded from the study. A pre-test
showed that 12 children were familiar with more than half of the
target words and these children were excluded from the study
in accordance with the exclusion criteria of our preregistration.
Furthermore, four children dropped out of the study for various
reasons like unwillingness to continue (3) or sickness (1). This
resulted in 56 children (28 boys, Mage = 5 years and 6 months,
SDage = 5 months) participating in the final experiment. All
parents gave informed consent for the participation of their child.

3.3. Materials
The Softbank Robotics NAO robot and a Microsoft Surface
tablet computer were used. The lessons involved one-on-one
interactions between robot and child. We did not rely on
automatic speech recognition because speech recognition has
been shown to not work well with this age group (Kennedy et al.,
2017). Instead the experimenter used a Wizard of Oz technique
when the child had to say something to the robot in the beginning
of the experiment. The robot was placed in a crouching position
in an angle of 90 degrees next to the sitting child to give the robot

1https://aspredicted.org/qg6dx.pdf
2https://github.com/l2tor/feedback-study/
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FIGURE 1 | (A–C) show the different shirts for each sessions. All children saw the robot wearing the red shirt during the first session and all children saw the robot

wearing the yellow shirt during the last session.

the same perspective of the child, while still being able to face
the child. The tablet was placed on top of a small box in front
of the robot and child. A video camera placed on a tripod facing
the child to record the child’s responses and facial expressions. A
second camera was placed from the side to get a more complete
overview of the interactions. Each session was distinguished by
a different color shirt and robot name (see Figure 1). We used
the different shirts and names to make it known to children
that they would play with three different robots, with different
robot behaviors (namely the robot feedback strategies). The shirts
were not linked to feedback conditions or different word sets,
but rather to the lesson number. In other words, all children
started with the robot wearing the red shirt called Luka during
the first session and ended with the robot wearing the yellow shirt
called Charlie.

3.3.1. Target Words
In total 18 target words were selected and during each lesson,
children learned six target words. Target words were selected such
that children can be expected to have acquired those in their first
language but arguably not in their second language. Moreover,
we selected words that would not be too similar in their L1 and in
their L2 [e.g., not “Olifant” (Dutch) and “Elephant” (English)].
All 18 words were divided in three word sets based on their
frequency in the children’s first language. We used the dataset
of Schrooten and Vermeer (1994) and placed each word in a
frequency bin. Words in the same bin were randomly assigned to
the different word sets. For example, the word “dog” was from the
same frequency bin as the words “bird” and “horse” and were thus
added to different word sets. See Table 1 to see all target words
with their frequency. We used cartoon-like images of the target
animals during the experiment (see Figure 2 for examples).

3.3.2. Pre-test
Before the children started the three sessions, we tested their
L2 knowledge of the 18 target words with a comprehension test
which was a picture-selection task. In this test, children were
presented with a pre-recorded target word spoken by a bilingual

speaker of Dutch and English and asked to choose which one
out of four pictures matched this word [“Waar zie je een dog?”
(Dutch) “Where do you see a: dog?” (English)]. The presentation
of the target words in the pre-test was randomized for each child.
We presented each target word one time during the pre-test.

3.3.3. Post-test
The children’s long-term knowledge was tested between 2 and
3 weeks after the last session with the comprehension test. The
test was the same as the pre-test only this time, each target word
was presented three times in a random order to reduce chance
level performance due to guessing. The reason for not doing so
in the pretest was to reduce the chance of children learning from
this task (Smith and Yu, 2008). A word was registered as correct
if it was selected correctly at least twice out of the three trials.
Additionally, we tested three different pictures of the animals in
order to generalize the children’s knowledge. To be more specific,
we used a cartoon-like picture, a drawn picture (the same as in
the experiment) and a photograph of the target animal.

In addition to the measurements described in this paper we
also carried out a perception questionnaire of the robot at the
end of all sessions. We will not discuss those results because this
questionnaire is beyond the scope of this paper.

3.4. Tutoring Sessions
The lessons were based on the children’s game “I spy with my
little eye” and on the interaction described in Schodde et al.
(2019). The whole interaction was in the children’s L1, except for
the target words. Before the three tutoring sessions, children had
a group introduction to the robot and took a pre-test.

The tutoring session had four parts which were all repeated
during all three tutoring sessions:

1. Start phase. The robot explained that he was a friend of the
group introductory robot, he asked for the child’s name, age
and some questions about their favorite animals and games.
The robot finished with saying that “I spy with my little eye”
is his favorite game and that he wants to play that with the
children. He then explained the rules of the game.
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TABLE 1 | Target words with their frequency scores in Dutch taken from Schrooten and Vermeer (1994).

Word set 1 Word set 2 Word set 3

Dutch English Freq Dutch English Freq Dutch English Freq

Hond Dog 98 Vogel Bird 72 Paard Horse 64

Kikker Frog 27 Kip Chicken 30 Konijn Rabbit 48

Vlinder Butterfly 22 Nijlpaard Hippo 16 Varken Pig 36

Papagaai Parrot 9 Slang Snake 14 Eekhoorn Squirrel 13

Haai Shark 9 Slak Snail 14 Zeehond Seal 10

Neushoorn Rhino 9 Walvis Whale 9 Hert Deer 9

Words that have a higher score are more familiar to children in Dutch.

FIGURE 2 | (A) Training rounds. Each round the robot named one animal that children had to find (B) In-game test. Children had to drag a grape to the animal that

the robot named (C) second attempt after wrong answer. Children were allowed to correct themselves in the preferred feedback condition. In this example, the child

wrongly chose a butterfly instead of a parrot and could correct his/her mistake by selecting the correct one.

2. Concept binding of the target words. To teach children the
target words, the tablet showed an animal on the screen, the
robot said the L2 word with the L1 translation and asked the
child to repeat the word [e.g., “Een vogel is een bird in het
engels, zeg mij maar na bird” (Dutch). “A bird is a bird in
English, repeat after me bird” (English)]. Only after the child
had repeated the animal, they continued to the next animal.
When a child did not repeat the robot, the experimenter asked
the child to listen to the robot and repeat after the robot. If a
child was very hesitant to repeat the word, the experimenter
would say it together with the child.

3. Training rounds. After the concept binding the robot
explained to the child that he would ask for an animal and
that the child had to search for it on the tablet screen. They
first practiced with an L1 word that was no target (“Ik zie, ik
zie wat jij niet ziet en het is een eenhoorn, zoek maar naar de
eenhoorn,” “I spy with my little eye a unicorn, please search
for the unicorn”). For each target word the tablet showed the
target animal with three distractors (see Figure 2A). After the
L1 practice round, the robot and child also practiced once in
L2. After these two practice rounds they started the training
of the target words. The robot constantly asked the child to
search for a target word (“Ik zie, ik zie wat jij niet ziet en
het is een <target word> zoek maar naar de <target word>,
‘I spy with my little eye a <target word>, please search for
the <target word >”). Depending on the condition the robot
provided feedback or not and the child continued to the next
animal. There were 24 rounds in total, each animal was trained

four times, which made the L2 exposure to all animals ten
times in total for all conditions (twice in the concept binding,
eight times during the practice rounds).

4. In-game test. After each session there was an in-game test
that tested the short-term memory of the target words. The
tablet screen showed all animals of that tutoring sessions and
a bucket of grapes (see Figure 2B). Each round, the robot
named an animal and the child had to feed this animal with
one of the grapes. The robot asked the animals in random
order and after each round the order of presenting the animals
on the screen was shuffled.

All conditions had the exact same design, meaning that the lesson
structure was the same, the tablet output was the same and the
behavior of the robot was the same, except for the feedback. In
all conditions, the robot used the standard following-gaze feature
of NAO.

3.5. Feedback Conditions
All feedback was provided in the children’s L1 to keep the L2
exposure consistent between conditions. A comparison of the
different types of feedback can be found in Table 2. The feedback
conditions were based on the student teachers’ preferred response
for the robot (preferred feedback), the opposite (dispreferred
feedback) and a control condition was added where the robot
did not use any feedback. Preferred and dispreferred feedback
different on multiple aspects:
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TABLE 2 | An example of the robot’s feedback in the different feedback conditions.

Correct answer Incorrect answer

Condition Dutch English Dutch English

Preferred Goed gedaan, het was

een vogel.

Well done, it was a bird. Helaas, je hebt een vogel

aangeraakt. Laten we het nog

eens proberen!

Unfortunately, you selected a bird.

Let’s try again!

Dispreferred Goed gedaan. Well done. Helaas, dat is niet goed. Unfortunately, that was not correct.

No feedback - - - -

TABLE 3 | The preferred feedback utterances.

Positive Negative

Dutch English Dutch English

Goed gedaan! Well done! Helaas dat was niet goed. Unfortunately, that was not correct.

Knap hoor. Impressive. Sorry deze is niet goed. Sorry but this is not correct.

Ja goed gedaan! Yes, well done! Helaas, probeer het nog een keer. Unfortunately, try again.

Ga zo door! Keep going! Jammer, we proberen het nog eens. What a pity, let’s try again.

Super! Great! Ah jammer, denk nog even goed na. Ah pity, think again.

Heel knap gedaan. Really impressive. Super goed geluisterd, maar dat was

niet goed, probeer het nog eens.

You listened very well, but this was

not correct, try again.

The robot’s feedback varied between six different options.

1. Variation. The robot used a variety of positive and negative
feedback in the preferred feedback condition and no variation
in the dispreferred feedback condition. We based the phrases
on the student teachers’ open-ended survey and can be found
in Table 3. The robot randomly chose between six verbal
phrases for positive feedback and negative feedback and the
same phrase was never used twice in a row. We only added
variation to the preferred strategy because the student teachers
considered this crucial.

2. Extra attempt. The robot let children to try again after
an incorrect answer in the preferred feedback condition
and not in the other conditions. This was based on the
student teachers’ closed-ended answers where they relied
heavily on the answer with the extra attempt. During the
extra attempt, the tablet would only display the correct
target word and the children’s incorrect answer to help
the children distinguish the two answers (see Figure 2C).
After children correctly answered their second attempt, they
received positive feedback.

3. Repetition. In the preferred condition, the robot would repeat
the target word, either in addition to positive feedback
or in addition to noting the mistake including the child’s
wrong answer. However, this was only done in 50% of all
feedback to reduce the amount of repetition and because
the student teachers did not always use a repetition (only in
the closed-ended questionnaire and not in the open-ended
questionnaire). The robot would only repeat the target word
in the children’s L1 (i.e., Dutch) to keep the amount of L2
exposure consistent over all children and to only focus on the
effect of feedback.

4. Non-verbal feedback behavior. The robot used some non-
verbal behavior when the child was correct in the preferred
feedback condition, but not in the dispreferred feedback

condition. This non-verbal behavior consisted of the robot
nodding and displaying a rainbow colored pattern in the
LED-eyes to indicate happiness.

After the feedback was provided (or after the child’s answer in
the no feedback condition), the game continued to the next
target word.

3.6. Procedure
3.6.1. Robot Introduction and Pre-test
One week before the experiment, the children participated in
a group introduction to familiarize themselves with the robot.
During this introduction, based on Vogt et al. (2017), children
learned how the robot moves and how to talk to it, and they
played a game where they had to imitate the robot and they
danced together. Unlike the robots during the experiment, this
robot was not wearing a shirt. After this group introduction the
children carried out a pre-test on their prior English knowledge
in one-on-one sessions, as explained in section 3.3.2.

3.6.2. Experiment
At least 1 week after this group introduction and the pre-test,
we started the first tutoring sessions with the children. Children
participated in a quiet room away from their classrooms. After
the child was collected from her or his classroom for the first
session, he or she was told that he or she would play a game on a
tablet with a friend of the introduction robot. This was repeated
every new session so each child saw four “different” robots in
total (one introduction robot and three robots in the tutoring
sessions). When the child entered the room with the robot, the
experimenter told the child to sit in front of the tablet next to
the robot and started the experiment. After the child finished the
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24 rounds of “I spy with my little eye” and the subsequent in-
game post-test, the experimenter filled in a questionnaire with the
child about the robot. When this questionnaire was completed
the experimenter brought the child back to the classroom. This
was repeated for three times with at least 1 day in between the
different sessions.

The complete interaction was autonomous, except for the
detection of children’s speech when they repeated the target
words as instructed. For detecting the child’s speech, the
experimenter would press a button on a control panel once the
child had repeated the robot’s utterance. The interaction was a
one-on-one interaction, but the experimenter stayed in the same
room to intervene when necessary. For example, when a child
did not repeat after the robot, the experimenter would try to
encourage the child to repeat after the robot. Moreover, when the
child had a question, the experimenter would say that she did not
know the answer and directed the child’s attention back to the
robot. In other cases, when a child had to go to the bathroom, the
experimenter paused the experiment and walked with the child to
the bathroom and back. The duration of each session was around
11 min (Preferred: M = 14 min, SD = 2 min, Dispreferred: M =
11 min, SD = 1.5 min, No feedback:M = 10 min, SD = 1 min).

3.6.3. Post-test
Two weeks after the last lesson, the children were collected from
the classroom once more for the post-test.

3.7. Engagement Coding and Analyses
3.7.1. Engagement Coding
Engagement was determined by manual coding of half of the
data. Before coding, the two raters followed a coding training
and practiced with different videos. Each video was rated on a
Likert scale from 1 to 9, with 1 being a low level of engagement
and 9 being highly engaged. We measured task-engagement
that includes the attention that the child payed to the robot
as instructor, but also to the task displayed on the tablet
screen. Children were fully engaged, when they were completely
“absorbed” in the activity, were open for new information, were
very motivated, enjoyed the task and wanted to play with the
robot (Laevers, 2005). Additionally, we rated robot-engagement
that measures the children’s attention and interest at the robot
as a social interaction partner. Children were fully engaged with
the robot, when they were interacting with the robot as a social
conversation partner.

The coding scheme was based on the ZIKO coding
scheme (Laevers, 2005). The ZIKO scheme describes a
measurement for, among others, children’s engagement. It
is designed for child-task engagement in open classroom
settings. We adapted the scheme to include specific cues for
this experiment by including cues such as, attention toward the
experiment leader instead of the robot or tablet and child is
randomly clicking on the tablet in order to continue.

Each engagement level had specific cues for the rater to look
for. For example, children scored high on task-engagement when
they were not only looking at the task and robot, but also actively
searching for the different animals on the tablet and were fully
committed to the task. In contrast, when children turned away

from the robot and task, did not perform anything related to
the task and were fiddling, this resulted in a low engagement.
Children who played the game but did not pay all their attention
to it received an average task-engagement rating. In the case
of robot-engagement we added social engagement cues, such as
looking at the robot, having spontaneous conversations with the
robot, but it also included the children’s posture toward the robot
(a closed posture indicating a low robot engagement and an open
posture indicating a high robot engagement).

For all specific cues and information, see the coding scheme in
the Supplementary Material and on GitHub3.

For the engagement coding, we pseudo-randomly selected
half of the children, excluding children who took a break
during the interaction (for example when they had to go to
the bathroom), which happened in 11 cases. Twenty percent
of the selected data was coded by two raters and their inter
rater agreement was considered moderate to good using the
intraclass correlation coefficient (ICCtask = 0.70, 95% CI[0.37,
0.76], ICCrobot = 0.80, 95%CI[0.62, 0.90]) (Koo and Li, 2016). For
analyses, we only used the data of the first rater. We extracted two
2-min video fragments of the interaction: one at the beginning of
the training rounds during the interaction and one at the end of
the interaction.

The engagement rating of both fragments were combined to
get a more reliable measure of the child’s overall engagement
during the lesson. This resulted in 210 engagement ratings
in total.

3.7.2. Analyses
To investigate the effect of the different feedback strategies
on children’s engagement, we conducted a repeated measures
ANOVA with the feedback strategy as the independent variable
(three levels) and engagement as a dependent variable.

In addition, to investigate the effect of the feedback strategies
on learning gain, we carried out a two-way repeated measures
ANOVA with the children’s scores as a dependent variable and
two strategies: (1) feedback strategy (three levels) and (2) test
moment (the pre-test and the delayed post-test).

Using planned contrasts, we compared the effect of preferred
and dispreferred feedback with no feedback on engagement and
learning gain for H1 and preferred feedback and dispreferred
feedback for H2. Moreover, to investigate the effect of the
feedback strategies on short-term learning gain, a one-way
repeated measures ANOVA with feedback strategy as the
independent variable and the results of the in-game test as the
dependent variable was performed.

4. RESULTS

Wehavemade the data set for this experiment publicly available4.
In this section we report the children’s engagement and their
learning gain during the sessions. In addition, we report on

3https://github.nl/l2tor/codingscheme. Please note that the coding scheme rates

children on a scale of 1–5 including half points, which we have converted to a scale

of 1–9 for convenience.
4https://doi.org/10.34894/ZEIKLY
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TABLE 4 | Average task- and robot-engagement rating over time (SD).

Feedback strategy All lessons Lesson 1 Lesson 2 Lesson 3

Task Robot Task Robot Task Robot Task Robot

Preferred 6.17 (1.43) 6.14 (1.74) 6.77 (1.25) 6.85 (1.70) 6.15 (1.72) 6.30 (1.60) 5.54 (1.16) 5.25 (1.62)

Dispreferred 5.26 (1.48) 4.47 (1.80) 5.06 (0.98) 4.00 (1.25) 5.18 (1.59) 5.18 (2.05) 5.46 (1.69) 4.00 (1.66)

No feedback 5.27 (1.82) 4.74 (1.58) 6.00 (1.83) 5.21 (1.76) 5.41 (1.38) 4.41 (1.20) 4.10 (1.79) 4.45 (1.67)

Overall 5.57 (1.63) 5.12 (1.85) 6.07 (1.57) 5.45 (1.95) 5.53 (1.57) 5.26 (1.81) 5.10 (1.64) 4.56 (1.69)

FIGURE 3 | Average engagement ratings per condition. Error bars show 95% confidence interval. *p < 0.05, **p < 0.01. (A) Task-engagement. (B)

Robot-engagement.

the possible relation between learning gain and the children’s
engagement. Children received positive feedback during all 24
rounds in the preferred feedback condition and on average 14.30
times during the dispreferred feedback condition.

4.1. Engagement
Table 4 shows the overall results of both engagement types
for the different lessons and different conditions. Overall, task-
engagement (M = 5.57, SD = 1.63) was slightly higher
than robot-engagement (M = 5.12, SD = 1.85). The two
engagement types were moderately correlated [r(105) = 0.50, p <

0.01], indicating that they both measure a different type
of engagement.

4.1.1. Task-Engagement
Contrary to our expectations, planned contrast analyses for
comparing both preferred feedback and dispreferred feedback
combined (M = 5.71, SD = 1.52) with no feedback
(M = 5.27, SD = 1.82) showed no significant difference in

task-engagement [F(1, 34) = 3.96, p = 0.06, η2p = 0.10]. However,
as Figure 3 shows, children are more engaged with preferred
feedback (M = 6.17, SD = 1.43) than with dispreferred feedback
[M = 5.26, SD = 1.48; F(1, 34) = 13.49, p = 0.001, η2p = 0.28].
Further analysis using post-hoc comparisons with Bonferroni
correction revealed that children were significantly more engaged
in the preferred feedback condition than the no feedback
condition [t(34) = 3.26, p = 0.003, Mdiff = 0.9]. There was
no significant difference between dispreferred and no feedback
[t(34) = −0.06, p = 0.96,Mdiff = −0.01].

Task-engagement dropped significantly over time (see
Figure 4). A repeated measures ANOVA with a Huynh-
Feldt correction was performed, because our data violated
the assumption of sphericity. The analyses showed that
task-engagement differed significantly between the lessons
[F(1.64, 55.90) = 7.16, p = 0.003, η2p = 0.17]. Post-hoc tests
using the Bonferroni correction revealed that task-engagement
dropped significantly between lesson 1 (M = 6.07, SD = 1.56)
and 2 [M = 5.53, SD = 1.57; t(34) = 2.82, p =
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FIGURE 4 | Average task- and robot-engagement ratings over time and per condition. Error bars show 95% confidence interval. Note that a child who, for example,

received preferred feedback in lesson 1 received different feedback in lesson 2 and in lesson 3. (A) Task-engagement. (B) Robot-engagement.

TABLE 5 | The task-engagement order effects visualized, a decreasing arrow shows decreasing task-engagement and visa versa.

Lesson 1 Lesson 2 Lesson 3

P ցցց D ցցց N**

P ցցց N ցցց D*

D −→ P ց N

D −→ N −→ P

N −→ P −→ D

N −→ D ր P

P stands for preferred feedback, D for dispreferred feedback and N for no feedback. Task-engagement differed significantly for the first two orders with *indicating a p < 0.05 and

**p < 0.01.

0.008,Mdiff = 0.54], and lesson 3 [M = 5.10, SD = 1.64;
t(34) = 3.13, p = 0.004,Mdiff = 0.97] but not between lesson 2
and 3 [t(34) = 1.68, p = 0.102,Mdiff = 0.43].

We further tested whether there was an interaction effect
between the feedback strategy and the session in which it was
used. To this end, we used a mixed ANOVA with order as
between factor and feedback strategy as within factor, because
this accounts for the order in which participants received the
different feedback strategies (for example, it might have had
an influence on their task-engagement when they received no
feedback first and the preferred feedback during the third
session). There was a significant interaction effect between order
and feedback strategy [F(10, 58) = 4.43, p < 0.001, η2p =

0.433] indicating that the effect of feedback on task-engagement
varied as a function of when this feedback in the experiment
it was administered taking into account that overall task-
engagement decreased over time. AsTable 5 illustrates, children’s
task-engagement dropped over time, but not for all orders
of the feedback strategies. The task-engagement dropped in
most situations after children received preferred feedback, task-
engagement never increased after dispreferred feedback and

it either dropped or remained the same for no feedback. An
exploratory repeated measures ANOVA on each order indicated
that task-engagement differed significantly when preferred
feedback (M = 7, SD = 1.36) was provided first, then
dispreferred feedback (M = 5.56, SD = 1.61) and lastly no
feedback [M = 4.38, SD = 1.85; F(2, 14) = 18.11, p < .001, η2p =
0.72] and furthermore, when preferred feedback (M = 6.4, SD =

1.08) was provided first, then no feedback (M = 5.7, SD = 1.82)
and lastly dispreferred feedback [M = 3.9, SD = 1.82; F(2, 8) =
8.11, p = 0.012, η2p = 0.67]. All other orders did not differ
significantly (all p > 0.1).

4.1.2. Robot-Engagement
Similarly as for task-engagement, we compared the average
children’s robot-engagement score during both the feedback
conditions (M = 5.31, SD = 1.95) with the no feedback
condition (M = 4.74, SD = 1.58) using planned contrast
analyses. Unlike for task-engagement, we found a significant
difference in robot-engagement between feedback and no
feedback [F(1, 34) = 4.39, p = 0.044, η2p = 0.11], albeit with
a relatively small effect size. Moreover, children scored higher
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TABLE 6 | Average score per condition (SD).

Feedback strategy Pre-test Post-test In-game

Preferred 1.88 (1.38) 2.71 (1.77) 2.80 (1.42)

Dispreferred 1.77 (1.28) 2.59 (1.65) 2.82 (1.62)

No feedback 2.00 (1.31) 2.55 (1.76) 2.75 (1.43)

Total 5.64 (2.00) 7.86 (4.10) 8.38 (3.20)

FIGURE 5 | Learning gain per condition. Error bars show 95% confidence interval.

for robot-engagement in the preferred feedback condition (M =

6.14, SD = 1.74) than in the dispreferred feedback condition
[M = 4.47, SD = 1.80; F(1, 34) = 43.19, p < 0.01, η2p = 0.56].
Furthermore, post-hoc comparisons with Bonferroni correction
revealed that children were significantly more engagement in
the preferred feedback condition than in the no feedback
condition [t(34) = 6.57, p < 0.01,Mdiff = 1.40]. There
was no significant difference between robot-engagement in the
dispreferred feedback condition and the no feedback condition
[t(34) = 4.61, p = 1.0,Mdiff = −0.27].

As Figure 4B showed, robot-engagement also dropped over
time. A repeated measures ANOVA showed a significant
difference between the lessons [F(2, 68) = 4.56, p = 0.014, η2p =

0.12]. Again, note that the effect size is relatively small.
Pairwise comparisons with a Bonferroni correction showed that
robot-engagement dropped significantly between lesson 1 and 3
[t(34) = 2.67, p = 0.04,Mdiff = 0.99]. There was no significant
difference between lesson 1 and lesson 2 [t(34) = 0.87, p =

1,Mdiff = 0.29] and lesson 2 and 3 [t(34) = 2.27, p = 0.09,
Mdiff = 0.7].

Similarly as with task-engagement, we investigated whether
there was an interaction effect between the feedback strategy and
the lesson in which the feedback strategy was used. To test this, we
used a mixed ANOVA with order as between factor and feedback
strategy as within factor. For robot-engagement, there was no
order effect [F(10, 58) = 1.58, p = 0.14] which indicates that
the children’s robot-engagement was not influenced by different
orders of feedback.

4.2. Learning Gain
Children made on average 9.75 mistakes during the 24 rounds
(Preferred:M = 9.95, SD = 5.56; Dispreferred:M = 9.30, SD =

5.22; No feedback: M = 9.75, SD = 5.41). Table 6 and Figure 5

show the descriptive statistics for the target word knowledge
scores for all conditions. Children performed above chance level
in the pre-test [chance level = 4.5, t(55) = 4.27, p < 0.001,Mdiff =

1.14] and post-test [chance level = 2.61, t(55) = 9.58, p <

0.001,Mdiff = 5.25]. As expected, children performed better on
the post-test than on the pre-test [t(55) = −3.88, p < 0.001, d =

0.52], so children clearly learned some vocabulary.
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The two-way repeated measures ANOVA with planned
contrasts for both preferred feedback and dispreferred feedback
(Pre-test: M = 1.82, SD = 1.33, Post-test: M = 2.65, SD =

1.70) showed no difference in learning gain compared to no
feedback [Pre-test: M = 2.00, SD = 1.31, Post-test: M =

2.55, SD = 1.76); F(1, 55) = 0.47, p = 0.83]. Furthermore,
while children score numerically higher on word knowledge in
the preferred feedback condition (Pre-test: M = 1.88, SD =

1.38, Post-test: M = 2.71, SD = 1.77) than in the dispreferred
(Pre-test: M = 1.77, SD = 1.28, Post-test: M = 2.59, SD =

1.65), this difference was not significant [F(1, 55) = 0.45,
p = 0.51].

Table 6 also shows the results of the children’s in-game tests.
Children scored higher than chance in all conditions [chance
level = 3, t(55) = 12.57, p < 0.001,Mdiff = 5.38]. Again,
feedback strategy did not influence their learning gain, there were
no significant differences [F(2, 110) = 0.122, p = 0.89].

4.3. Relation Between Learning Gain and
Engagement
To investigate whether there was a relation between both
engagement types and learning gain, we performed a Pearson
correlation analysis and in contrast with what we expected, we
found no significant correlation between task-engagement and
learning gain [Preferred: r(35) = 0.05, p = 0.78, Dispreferred:
r(35) = 0.09, p = 0.62, No feedback: r(35) = 0.12, p = 0.50].
Likewise, we did not find a significant correlation between robot-
engagement and learning gain [Preferred: r(35) = 0.15, p = 0.40,
Dispreferred: r(35) = 0.09, p = 0.62, No feedback: r(35) =

0.02, p = 0.90].

5. DISCUSSION

The aim of this study was to understand the effects that
different types of robot feedback have on children’s engagement
both with the task, the robot and their learning gain. We
derived different types of feedback from a survey with
student teachers and implemented them in three different
robots, each robot teaching children words from a second
language in a single session. One robot provided (teacher)
preferred feedback, one provided (teacher) dispreferred
feedback, and one provided no feedback at all. All children
attended three sessions, each with a different feedback
strategy. We studied how this choice of feedback influenced
children’s task- and robot-engagement and their learning
gains.

5.1. Engagement
The analyses of both engagement types suggest that children
seem to be generally engaged with the task and the robot
during the three sessions. This accords with human studies
indicating that feedback can make tasks encouraging and
engaging (Henderlong and Lepper, 2002).

Contrary to our expectations, when the robot provided
feedback (either preferred or dispreferred), this did not lead
to increased task-engagement compared to when the robot
provided no feedback (H1a). Children who received no feedback

were, on average, rated as equally engaged as children who did
receive feedback. However, the type of feedback did seem to
have an influence on task-engagement of the children: children
became more engaged with a robot that provided preferred
feedback than with one that used dispreferred feedback or
indeed no feedback (H2a). Moreover, the robot’s feedback did
result into a higher robot-engagement compared to no feedback
(H1a). Children who received feedback (either preferred or
dispreferred), were rated more engaged with the robot than
children who did not receive any feedback. However, it is
worth pointing out that the numeric effects for robot- and task-
engagement were rather comparable, even though the former but
not the latter was found to be statistically significant. Similar to
task-engagement, children were most engaged with a robot that
provided preferred feedback (H2a) in comparison to dispreferred
and no feedback. Interestingly, the difference between robot-
engagement for preferred feedback and dispreferred feedback
was larger than the difference for task-engagement.

Preferred and dispreferred feedback differed on multiple
aspects (variation, extra attempt, repetition of answer, non-verbal
behavior) and when combined, these factors seem to have an
influence on engagement. While it is hard to identify exactly to
what extent each of these factors contribute to children’s task- and
robot-engagement, we believe that some aspects might have had
a larger effect on both engagement types than others.

For example, variation in feedback, as is realized in the
preferred feedback condition, could have had relatively strong
effect on children’s task- and robot-engagement. A robot that
provides more variation in the way feedback is offered could
spark children’s interest and keep them interested and motivated
in continuing the task over a longer period of time and at the
same time also make them more interested in the robot. In
contrast, a robot who continually uses the same feedback phrase
or no feedback at all might have a negative impact on children’s
interest in the robot and their robot-engagement and moreover
reduce their motivation to continue with a task and, thus, be less
successful in keeping them task-engaged.

It is furthermore possible that the extra attempt after an
incorrect answer in the children’s L1 may have task-engaged the
children more in the preferred feedback condition than in the
other two conditions. The fact that children heard the correct L1
word, could try again and received praise afterwards, may have
had a positive effect on their task-engagement. This is in line with
how teachers tend to provide feedback, praising demotivated
children to try to engage them again (Hattie and Timperley,
2007). Some children also mentioned the extra attempt as the
robot helping them getting the correct answer, thismight increase
their sense of relatedness to the robot which could have increased
their robot-engagement.

Lastly, the non-verbal communication of the robot in
the preferred condition may have increased children’s robot-
engagement as well. The robot displayed rotating colored eyes
and nodded each time when children were correct. This is in
agreement with the results of Morris and Zentall (2014), who
found that children showed more intrinsic motivation when
the robot used non-verbal behaviors such as thumbs up, and
the findings of Serholt and Barendregt (2016), who found that
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children paid most attention to the robot when it provided
feedback accompanied by an arm gesture. Future studies that
take variation of feedback in combination with different types of
non-verbal behavior into account will be needed to develop a full
picture of this finding (DeWit et al., 2020). Besides gesturing, also
gaze is a known non-verbal factor that can influence engagement
(Mwangi et al., 2018). However, in the current experiment gaze
was not factor of interest, since the robot’s gaze behavior was
identical in all three conditions.

As mentioned, it is not possible with the current experiment
to determine which factor had the largest effect on task-
engagement or robot-engagement. For this more research is
needed. In the current experiment, we explored to what extent
by student teachers preferred feedback strategy would differ
from a dispreferred feedback strategy or no feedback strategy.
We found that preferred feedback has a beneficial effect on
both engagement types. However, to identify the effect of
different factors that define the preferred feedback strategy has
on engagement andwhich factor contribute to which engagement
type, future experiments could be set up in which each factor is
varied between conditions.

Also consistent with other studies is that both task- and robot-
engagement seemed to drop over time (Kanda et al., 2007; Coninx
et al., 2015; De Wit et al., 2018), and this drop appeared to be
similar for all three conditions, although the differences between
the conditions stayed over time. Adding more variation to the
robot’s feedback, as well as varying other parts of its behavior,
might help reduce a drop in engagement. Ahmad et al. (2019)
suggested that children seemed to stay engaged with a robot
that is adaptive, which lends some support to the importance of
individualized variation.

Interestingly, we found an interaction effect between task-
engagement and the order of feedback strategies but not between
robot-engagement and order. In particular, we observed that
children’s task-engagement dropped after receiving preferred
feedback and that their task-engagement was similar or lower
before receiving preferred feedback. Receiving no feedback or
dispreferred feedback might have demotivated children, and,
conversely, receiving various feedback information on their
performance, might have increased their motivation again
and therefore their task-engagement. Visa versa, after children
received preferred feedback and continued in the dispreferred or
no feedback condition, their task-engagement decreased again.
However, some caution to this explanation must be applied, as
the findings might have been influenced by individual differences
as well.

5.2. Learning Gain
As expected, children learned from all three sessions with the
robot. They did not learn many words per session though, which
is in line with previous research with this young age group
(Westlund and Breazeal, 2015; Vogt et al., 2019). Our results also
show that these learning effects were retained in the longer run,
because we conducted a post-test 2 weeks after the last session,
suggesting that the target words remained in children’s memory
(Axelsson et al., 2016).

Contrary to our expectations, children did not learn more in
the feedback conditions than when receiving no feedback (H1b),
nor did it matter for the learning gain whether feedback was of
the preferred or dispreferred variety (H2b). This was not only the
case for the post-test, but also applied to the in-game test that was
taken immediately after each training round.

What these results suggest is that children could learn from
the teaching sessions without the need for feedback, and that the
contribution of feedback to learning might have been smaller
than we anticipated. This can be explained by the fact that
children could rely on cross-situational learning (Smith and Yu,
2008), because children saw four depictions of possible meanings
each time they heard a target word, with the distractors changing
while the target stayed the same across situations. Hence, children
could infer the meaning of a target based on the co-variation
in meanings offered with the different occurrences of the target
word, which seems to largely drive the learning, and feedback
does not appear to contribute to this learning process.

It is conceivable that the learning task itself might have been
too easy for the children to really benefit from the feedback.
Moreover, since the children could press any animal they wanted
to go forward in the game, they did not have to pay attention
to the feedback of the robot. For future research, it would be
interesting to conduct a study in such a way that feedback
becomes more central to the interaction or more content-related,
and where the learning task is more complex (e.g., learning about
difficult sentence structures or unfamiliar grammar). This might
shed further light on the influence of feedback on learning in
child-robot interaction.

It is interesting to note that we did not observe learning
differences between preferred and dispreferred feedback, which
might be due to the feedback being completely offered in the
children’s L1. As a result, children did not receive a explicit
translation between L1 and L2 as part of their (corrective)
negative feedback. This might explain why children did not learn
the L2 translation of a concept better during negative preferred
feedback. It seems plausible that the addition of L2 to the negative
(corrective) feedback would have resulted in higher learning
gains (Hall, 2002; Scott and de la Fuente, 2008). However, we
did not add this L2-L1 translation to our negative feedback
for methodological reasons to keep the different conditions
comparable. In particular, we made sure that there was an
identical number of L2 exposures in every condition, since the
number of L2 exposures could also affect learning (Ellis, 2002).

5.3. Relation Between Engagement and
Learning
Various studies have found that increased engagement leads to
better learning performance (Christenson et al., 2012). However,
in our data we did not observe a relation between task- or robot-
engagement and learning. Children who were more engaged with
the task or with the robot did not learn more words than children
who were less engaged. This might be due to the relatively small
learning gain of children in the different conditions. They learned
on average close to two out of six words during each session
and this might not have been enough to observe a correlation
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with both engagement types. Moreover, it is conceivable that
individual differences between children might have played a
role as well. Effects of engagement on learning seemed to differ
substantially from one child to the next, which is consistent with
earlier research with this age group interacting with a robot (De
Haas et al., 2017). Finally, we conjecture that in future research
with more varied and more prominent feedback (along the lines
sketched above), we might indeed observe that more engagement
leads to better learning results.

5.4. Strengths and Limitations
This study has at least four strengths: First, we systematically
compared different feedback strategies, derived from actual
strategies suggested by young student teachers. Second, we tested
a large group of young children tomeasure the effects of feedback.
Third, the study was a carefully constructed experiment, of which
all hypotheses and analyses have been preregistered (Simmons
et al., 2011). Fourth, we measured two types of engagement to
account for the children’s engagement with the task and with
their engagement with the robot as social partner.

Our study has also at least four limitations. First, we only
measured comprehension and not active production of words.
However, as speech recognition of the robot is not reliable yet, a
more interactive task would have to rely fully on the experimenter
in a Wizard of Oz setting (Kennedy et al., 2016). Since we aimed
for an autonomously operating system, our task was designed to
teach only passive understanding of L2 by using a tablet to record
children’s responses.

Second, our task was very repetitive. The only variation we
introduced was the feedback that the robot would provide in the
preferred feedback condition. Children did not have control over
when to play with the robot and they were not able to change
the task. It is a challenge to design a task that is adaptive to
children’s preferences, while still being educationally responsible
and technical feasible. Providing such autonomy to children
could increase their intrinsic motivation, which would increase
their engagement and their learning performance (Ryan and
Deci, 2000; van Minkelen et al., 2020).

Third, the robot could not react to the children’s perceived
engagement level during the experiment. While a human teacher
would constantly monitor children’s engagement and adapt the
task accordingly to make it more personalized, the robot in our
experiment simply continued to the next word and kept the
interaction the same throughout all sessions, disregarding the
child’s engagement. Being able to automatically recognize a child’s
engagement would allow the robot to personalize feedback and
other behaviors based on this engagement (Gordon et al., 2016;
Ahmad et al., 2019).

Finally, we investigated the main effect of feedback on
engagement and learning gain and showed that the preferred
feedback had an influence on engagement with the task and with
the robot. However, preferred and dispreferred feedback varied
onmultiple factors (variation, extra attempt, repetition of answer,
non-verbal behavior), and consequently we cannot attribute the
effect on engagement to only one of these factors, only the
combination. Future research should look at individual aspects

of feedback if technically feasible to measure the effectiveness
for engagement.

6. CONCLUSION

The study presented in this paper explored whether robot
feedback affects children’s task- and robot-engagement and
learning gain in second language learning. We compared three
robot behaviors: one based its feedback on student teachers’
preferred feedback strategies, one that did the opposite and one
that did not use any feedback. The preferred strategy varied
its feedback, gave children an additional attempt when they
answered incorrectly, repeated the target word and gave non-
verbal feedback. In contrast, the dispreferred feedback strategy
did not vary its feedback, did not provide children with an
additional attempt, did not repeat the target word and did
not give non-verbal feedback. We found that children in the
preferred feedback condition were more engaged than children
in the dispreferred feedback and no feedback conditions, both
with the task as with the robot. However, the feedback strategy
did not influence children’s learning gain; they did not retain
more word knowledge with one of the different conditions.
Moreover, we did not observe a relation between learning
and engagement.

Our results are especially interesting for long-term
interactions where engagement of children often drops.
Providing feedback in an even more varied and motivating
manner might help children to remain engaged in long-term
scenarios. We expect that in the long-term such varied and
motivating feedback can also improve children’s learning gains,
especially when the learning tasks become more difficult and
children cannot just learn from inferring associations through
cross-situational learning.
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This research occurred in a special context where Kazakhstan’s recent decision to switch

fromCyrillic to the Latin-based alphabet has resulted in challenges connected to teaching

literacy, addressing a rare combination of research hypotheses and technical objectives

about language learning. Teachers are not necessarily trained to teach the new alphabet,

and this could result in a challenge for children with learning difficulties. Prior research

studies in Human-Robot Interaction (HRI) have proposed the use of a robot to teach

handwriting to children (Hood et al., 2015; Lemaignan et al., 2016). Drawing on the

Kazakhstani case, our study takes an interdisciplinary approach by bringing together

smart solutions from robotics, computer vision areas, and educational frameworks,

language, and cognitive studies that will benefit diverse groups of stakeholders. In this

study, a human-robot interaction application is designed to help primary school children

learn both a newly-adopted script and also its handwriting system. The setup involved an

experiment with 62 children between the ages of 7–9 years old, across three conditions:

a robot and a tablet, a tablet only, and a teacher. Based on the paradigm—learning by

teaching—the study showed that children improved their knowledge of the Latin script

by interacting with a robot. Findings reported that children gained similar knowledge of

a new script in all three conditions without gender effect. In addition, children’s likeability

ratings and positive mood change scores demonstrate significant benefits favoring the

robot over a traditional teacher and tablet only approaches.

Keywords: human-robot interaction, child learning, language learning, social robot, cognitive learning theory,

learning by teaching, interdisciplinary

1. INTRODUCTION

The gradual transition of the Kazakh alphabet from Cyrillic to the Latin script was first introduced
by the Kazakhstani government in late October 2017 (Altynsarina, 2018). This stage-by-stage
transfer to Latin is expected to be fully implemented by 2025 (Presidential decree, 2017).
Considering the explicitly formulated rationales and objectives for this reform, it is essential to pay
attention to teaching all populations literacy skills in the Latin script. Even though it is thought that
learning a new script will be effortless owing to the knowledge of English or other linguae mundi,
there are various threats when facing the transition, such as decreased motivation to develop basic
literacy skills in the Latin-based Kazakh among youth and elderly populations (Kadirova, 2018).
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Since most language reforms are grounded with a certain
purpose in mind, their resultant impact on literacy (Crisp,
1990), identity (Hatcher, 2008), and education in general, need
to be taken into account to ease the change. Following the
transfer to the Latin-based Kazakh alphabet and subsequent
necessity for acquiring knowledge of the script, innovative
approaches and instruments can facilitate a smooth Latin switch-
over for teaching and learning. Many innovative solutions are
being implemented for the purposes of educational applicability
(Mubin et al., 2013) for early language and literacy learning
(Neumann, 2020), handwriting learning (Hood et al., 2015),
or foreign language acquisition (Balkibekov et al., 2016).
For instance, Sysoev et al. (2017) presented SpeechBlocks,
which is an application assisting young learners in their
pursuit of mastering spelling strategies through listening to
the differently positioned letters in a word. The use of this
application accelerates children’s engagement, self-confidence,
and autonomy in learning. Furthermore, Dewi et al. (2018)
developed a Javanese script learning application for Indonesian
elementary age children, which made script learning easy to
understand and engage with. Similarly, Yanikoglu et al. (2017)
revealed that tablet-based learning supplemented by handwriting
recognition and automatic evaluation was more preferred among
first-graders compared to paper-based learning.

Furthermore, in recent years, research has provided a huge
space for the area of language acquisition deploying social robots
(Tazhigaliyeva et al., 2016; Belpaeme et al., 2018b) and this, in
turn, was an impetus to the rise of human-robot interaction
(HRI) as a promising research field (Mubin et al., 2013). It
has created new opportunities for the integration of social
robots into educational settings. To date, one of the original
approaches to language acquisition and new language scripts
is the Swiss-based CoWriter project. It has a clear target to
assist children to learn handwriting with a social robot on
the basis of learning by using a teaching approach (LbT)
(Hood et al., 2015; Jacq et al., 2016; Lemaignan et al., 2016).
Since the development of these studies, others have effectively
employed the robot-assisted LbT approach to other fields of
inquiry (Jamet et al., 2018; Yadollahi et al., 2018).

Central to our study is the CoWriting Kazakh system, which
integrates a humanoid NAO robot and a tablet with a digital
pen. In this scenario, the robot interacts with learners as a social
partner. It is programmed to show enthusiasm to learn Kazakh
language. Moreover, since the robot is programmed to speak
English, the child needs to translate basic phrases from English
into Kazakh (e.g., “hello—sálem”). In this way, the child takes
on the role of the robot’s teacher of the Kazakh language. As
the children engage with the robot, they show, or “teach” the
robot how to write the words in Latin-based Kazakh script. In
other words, the child is recognized as a “more knowledgeable
other” who leads the learning process as a teacher and peer
(Vygotsky, 1980; Huong, 2007). Thus, their interaction includes
a child-robot cooperation in writing words in turns where the
robot’s spelling of the Latin-based Kazakh words is programmed
to always be correct. While not an expert, the child’s expertise
in comparison to the programmed robot provides an avenue for
learning through teaching.

In order to investigate whether a social robot is important
in the CoWriting Kazakh system, this paper aims to contribute
to the literature on human-computer/robot interaction by
comparing different learning aids, such as robot and tablet, tablet
only, and a traditional teacher to see which teaching method
is the most effective in terms of new script learning gains. We
believe that by purposefully integrating an interdisciplinary lens
involved in the system, inspired by pedagogy, cognitive science,
and linguistics, will enhance an understanding of the research
and the associated learning gains. In this sense, we have to
seek out and discuss other perspectives and theories in order to
offer effective learning scenarios that might increase children’s
learning outcomes. Thus, this paper also deals with current
theories from different research fields to embed them into the
CoWriter Kazakh system, evaluated by their effectiveness on
children’s learning experiences. This interdisciplinary nature of
the study allows us to expand our understanding of a complex
issue from different angles (Klein, 1990; CohenMiller and
Pate, 2019). Using the human-robot interaction framework, the
CoWriting Kazakh learning scenario will reduce the boundaries
between various disciplinary fields and contribute to the area of
new literacy studies.

2. RELATED WORK

2.1. Transliteration and Script Learning
In an increasingly globalized world, an English-related writing
system is gaining popularity for use across languages. One
language may use more than one writing system, such as the
Kazakh language written both in Cyrillic and in Latin-based
alphabets (see Figure 1 for a comparison between the scripts).
This phenomenon is known as “digraphia,” which comprises
English-related Latin (or Roman) script to constitute another
language (e.g., Kazakh) (Rivlina, 2016). Roman-Cyrillic script-
alternation is an example of “biscriptal” practices that are used
to associate transliterated written language. For instance, the
Kazakh word for naming “door” can be written either “ecik” in
Cyrillic or “esik” in Latin. Rivlina (2016) broadly discussed the
sociolinguistic phenomenon of employing Latin script alongside
Cyrillic script to represent Russian written discourse. Building
on the results of a web scraping analysis, the authors reached
a conclusion that digraphic practices are used to visually
draw people’s attention to the written texts and to strengthen
recognition and memorability by playing with words. It is also
emphasized that digraphia produces translingual effects that can
eliminate boundaries in terms of linguistic, national, cultural, and
domain aspects.

Another study performed by Al-Azami et al. (2010) examines
the effectiveness of the script conversion (i.e., transliteration) as
a learning tool for writing in Bengali. In schools in London,
this method is adopted to teach British-Bangladeshi students
between the ages of 7–11. This Bengali-Roman biscriptal switch
converts speech into text, helping children to communicate with
parents and teachers, and importantly to practice a new method
of increasing bilingual skills. To illustrate, if students do not
recognize the correct spelling of a certain word, transliteration
allows them to visualize the word, and students could grasp
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FIGURE 1 | Comparison of a new Latin-based Kazakh alphabet to English and Cyrillic-based Kazakh.

the meaning of the spoken word and develop their cognitive
abilities. The study also showed that the use of English phonemes
and converting them into a Bengali (Sylheti) script caused rapid
learning. A key point in this research is that transliteration serves
as a practical tool for teachers to increase students’ attention span
by expanding their linguistic capacities and to stimulate them to
develop bilingual skills in more than one script.

Previous studies touch upon digraphia and biscriptal practices
that generate social influences, however, they generally do
not take into consideration an educational approach toward
addressing the issues of the new script’s introduction into the
educational domain. So far, some methods were proposed to
introduce the new alphabet to students. For instance, Gonzalez
et al. (2011) experimented with two methods of tracing or
copying to learn handwritten character patterns using a tablet
with a stylus. It was found that two methods had differing
advantages relying on short or long-term learning measures:
short-term retention was better when tracing, while long-term
performances had no significant difference when both methods
were used. Consistent with these two methods, our study also
attempts to investigate the impact of these on learning the newly-
introduced Latin-based Kazakh alphabet.

2.2. Robot-Assisted Learning
Recent research efforts within the HRI field have shown
that social robots are increasingly deployed in robot-assisted
learning and education (Neumann, 2020). Robots are generally
welcomed by students who view them as learning partners
or companions in an optimistic way (Kennedy et al., 2016;
Charisi et al., 2020). Rosenberg-Kima et al. (2019) found that
the physical presence of robots brought positive changes for
university students because of the technical functionality, social,
and psychological activity. Namely, students pointed out the
benefits as follows: “accessible to multiple people,” “immediate
feedback,” “he is not judgmental like human beings,” “pleasant
and motivating.” Some research has targeted specific skills
required for language learning: reading (Gordon and Breazeal,
2015;Michaelis andMutlu, 2018; Yadollahi et al., 2018), grammar
(Belpaeme et al., 2018b), or vocabulary learning (Balkibekov
et al., 2016). Other research demonstrated that learners cultivate
favorable impressions toward robots as learning companions and
the child-robot interaction may lead to increased self-confidence
and better task performance requiring creativity (Dennis et al.,
2016; Alves-Oliveira et al., 2017) and problem-solving (Liu and
Chang, 2008). Other studies (Kanda et al., 2007; Sharkey, 2016)

explored long-term learning between robots and children to
better understand this type of HRI in a real-world environment.

Since 2014, the CoWriter project has investigated how robots
can provide a learning environment for children in order to
improve handwriting skills based on the LbT paradigm (Hood
et al., 2015; Jacq et al., 2016; Lemaignan et al., 2016). This
autonomous approach allows children to act as a teacher, or a
tutor, who is responsible for the robot’s learning. Therefore, the
children, committed to the learning success of a robot, become a
central actor in handwriting practices along with a social robot.
In the field of pedagogy, researchers dubbed this type of process
as the Protége effect in reference to Seneca’s famous saying
“while we teach, we learn.” In this regard, previous studies have
addressed the potential benefits of LbT for learner’s motivation
(Jacq et al., 2016), task commitment, increased self-esteem, and
mental activity (Jamet et al., 2018). In addition, Lubold et al.
(2018) suggested a set of design propositions to adjust dialog
strategies, revealing that individual characteristics affect the LbT
outcome. Motivated by this paradigm, the CoWriting Kazakh
project aims to increase children’s self-confidence andmotivation
to learn the Latin-based Kazakh alphabet and its orthography.
In view of the recent language reform in Kazakhstan, this paper
investigates whether the CoWriting Kazakh project addresses
challenges of teaching and motivating young learners to learn a
new Latin-based Kazakh alphabet. Such findings are particularly
timely as they can inform future research and practice to promote
remote learning, such as required as a result of the recent
COVID-19 pandemic.

2.3. Prior Work on CoWriting Kazakh
The CoWriting Kazakh system was previously deployed in two
separate HRI studies within the novel context of learning the
new Latin-based Kazakh script: an exploratory study with 48
children (Kim et al., 2019) and a follow-up study with 67
children (Sandygulova et al., 2020). Participants were asked to
teach a humanoid NAO robot how to write Kazakh words using
one of the scripts, Latin or Cyrillic. We hypothesized that a
scenario in which the child is asked to mentally convert the
word to Latin would be more effective than having the robot
perform conversion itself. Two conditions were implemented
that differed in who performed the conversion: Latin-to-Latin
(L2L) and Cyrillic-to-Latin (C2L) conditions. In L2L, the child
heard the word to be written and had to write it directly in a
new Latin script. Then the robot wrote the word in Latin as
corrective feedback. From this demonstration, the child is given
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an opportunity to see the error-free spelling in the Latin script,
and importantly to learn from the robot’s correct spelling via
the error analysis (Jobeen et al., 2015). In C2L, the child heard
the word and wrote it in a familiar Cyrillic script. Then the
robot performed the script conversion by writing the same word
using the Latin-based Kazakh alphabet. Results demonstrated a
gender bias with the L2L strategy being more effective for girls.
In contrast, boys learned significantly more when they spelled
the words using Cyrillic and only observed the robot’s correct
spelling of the Latin-based Kazakh words. The study presented
in this paper employs the L2L version of the system in order to
compare what learning aid would result in greater learning gains
of a new script.

2.4. Human Teacher vs. Robot Interaction
The shortage of teachers has become a topic for discussion across
many contexts (Edwards and Cheok, 2018; Garcia and Weiss,
2019) and continues in a time where innovative technology
becomes more of an imperative. Therefore, the demand for
school teachers has increased exponentially and it has resulted
in a necessity to recruit almost 69 million teachers to provide
quality education (SDG 4) by 2030 (United Nations, 2015). This
problem has led to the development of AI in education (AIEd)
tools and Intelligent Tutoring Systems (ITS), which are likely to
scaffold teachers in flexible and personalized ways (Luckin et al.,
2016). These transformations include social robots that may be
embedded into a classroom to serve the role of teacher’s assistants
(e.g., PaPeRo Tung, 2016, iROBI Han and Kim, 2009) by helping
students to stay engaged and motivated. With ever-increasing
technological advancements in education, future human teachers
should focus on developing students’ critical and productive
thinking skills and robot assistants can minimize a teacher’s
workload by scaffolding the learning environment in a digitized
way (Newton and Newton, 2019). This characteristic of robots is
considered an asset for human teachers who may focus more on
content delivery and creative instruction.

To date, robots and teachers are rarely investigated to compare
their effectiveness in the classroom. Sharkey (2016) stressed that
robots can act in tandem with and supplement a human teacher,
but it seemed unimaginable that fully-fledged robots can be in
charge of the whole learning process by themselves. Evaluating a
teacher condition with and without a robot presence, Alemi et al.
(2014) found children in the teacher-robot condition learned
significantly more than only with a human teacher. What is
worth noting here is that children can learn similarly well when
the instruction is delivered either by a robot or by a teacher
(van den Berghe et al., 2019). Central to the LbT approach
(Lemaignan et al., 2016) employed in the present study, children
tend to take on the responsibility to commit themselves for robot
learning. Therefore, children’s task commitment may increase
in a robot condition similar to how teachers invest their time
and knowledge in children’s learning (Chase et al., 2009). Thus,
this phenomenon is clearly important to consider as an effective
approach to increase children’s learning curve which needs to
be supported by convincing studies in the HRI field. As of
today, it seems obvious that robots can not replace teachers in
classroom settings but rather act as a helpful assistant to human

teachers to effectively deliver instruction. We suggest that the
complementary nature of robot-assisted teaching can change
ensuing dynamic technological solutions in educational settings.

2.5. Robots vs. Other Learning Aids
In comparison to current traditional technologies, using robots in
language classrooms is stimulating, relying on their (non)verbal
and social characteristics (Meghdari et al., 2013; Neumann,
2020). Unlike other computing technologies, such as tablets and
laptops, the use of social robots may yield significant benefits
for learning in three ways (Belpaeme et al., 2018a). First, as
most learning and teaching processes happen in the classroom,
robots seem a feasible option to fit the physical world and
thus facilitate classroom engagement. It is highlighted that the
physical embodiment of robots has a huge impact on people
seeing them as more human-like, sociable, and more creative
than a tablet (Li, 2015; van den Berghe et al., 2019). To illustrate,
students exposed to the robot condition perceived it to be
more comfortable for learning compared to the tablet condition
(Rosenberg-Kima et al., 2019). Second, the presence of robots
enables more social behaviors from people whose learning is not
a mere task-based type of learning. For instance, Westlund et al.
(2015) compared the effectiveness of three learning scenarios
(human, robot, and tablet) with regard to children’s rapid word
learning. It was revealed that young learners strongly preferred
robots despite similar word learning outcomes in three learning
scenarios. No significant differences in vocabulary learning were
found when robots were put on par with computers (Hyun et al.,
2008). Finally, learners are more motivated and interested to
learn due to the interactive communication with robots, leading
to further result in an increased task commitment. Li (2015) came
to the conclusion that the physical presence of a robot improves
a learner’s task performance compared to other learning aids.

3. HRI SYSTEM

This section details the CoWriting Kazakh system and
its scenario.

3.1. Software and Hardware Components
The hardware components of the system include the Wacom
Cintiq Pro tablet and a humanoid robot NAO. The tablet is
used as the second monitor when connected to a laptop. It is
coupled with a stylus with an 8.192◦ of pressure sensitivity and
tilting recognition. This allows us to acquire the trajectory of
handwriting and the pressure and tilt at each point (Sandygulova
et al., 2020). The humanoid robot NAO is an autonomous and
programmable robot manufactured by SoftBank Robotics. It is
the mostly used humanoid robot in HRI research for robot-
assisted educational and healthcare applications. The height of
the robot is 58 cm which makes it easy to transport, and its
human-like appearance also attracts children. It also has 25
degrees of freedom and seven tactile sensors. In fact, CoWriting
Kazakh is an extended version of the CoWriter system1. In
comparison with the original CoWriter’s LbT paradigm in which

1https://github.com/chili-epfl/cowriter
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the robot’s handwriting gradually improves throughout several
demonstrations by the child, the CoWriting Kazakh does not
include a handwriting improvement component. In the proposed
system, the child-robot cooperative learning is 2-fold: (1) the
robot learns new Kazakh words from the child; (2) the child
learns the Latin-based Kazakh script from the robot. Their
interaction takes the form of turn-taking in writing words in
Kazakh (see Figure 2; Sandygulova et al., 2020).

Regarding the software aspect of the CoWriting Kazakh
system, it is designed to recognize learner’s handwriting in
Cyrillic and transliterate it into Latin script. We developed
the handwriting recognition based upon our collection of the
Cyrillic-MNIST dataset (Sandygulova et al., 2020).

The interaction was implemented using NAO’s English
text-to-speech and face recognition engines. Across the
communicative interaction, the robot demonstrated a set of
animations along with hand gestures and head movements.
Moreover, the robot was able to generate non-verbal social
behaviors, such as recognizing the child’s physical presence
with eye contact. When the robot “writes,” it looks down
at the tablet and moves its right hand mirroring the letters’
trajectory in the air as they appear on the tablet next to
child’s writing. Children usually watch this “writing” motion
closely, being attracted and interested by the fact that the
robot can write without holding a pen or touching the
surface of the tablet. The demonstration is available at the
link: tiny.cc/iektpz.

3.2. Scenario
The scenario involves a robot taking the role of a peer. As it
is introduced to a child, the peer robot is put into the position
of a native English speaker who wants to learn Kazakh. Since
the only alphabet known to the robot is Latin, the child is
asked to show it how to write Kazakh words in the Latin-based
Kazakh alphabet. The child is motivated to try their best to
listen to the robot carefully in order to understand the robot’s
speech. It was crucial to create basic robot spoken utterances for
the children’s English-level appropriateness that was verified by
children’s English teachers.

On average, the child-robot interaction lasted 20-30 min
according to how much time children take to write. The robot’s
list of speech utterances are as follows:

NAO: -Hello. I am a robot. My name is Mimi. [Waves his hand]

Child: -...

NAO: -I study Kazakh language. Can you help me?

Child: -...

NAO: -How do you say “Hello” in Kazakh?

Child: -Sálem

NAO: -How do you write it? Please write it using Latin letters so

that I can read it.

Child: -[Writes on a tablet using Latin-based Kazakh]

NAO: -Let me try to write it too [gesticulates]. This is a correct

writing using Latin letters.

... repeated for another 12 words

NAO: -You are a great teacher. Thank you very much!

Goodbye! [waves].

FIGURE 2 | Experimental setup.

4. EXPERIMENT

The methodology of the present study was developed and then
aligned with the previous work (Kim et al., 2019; Sandygulova
et al., 2020).

4.1. Method
The experiment was carried out at a primary school in
Kazakhstan’s capital city. It included a one-to-one interaction
for each child participant. The participants were introduced to
a condition in a between-subject design, with a learning aid type
as the between-subject variable.

Each child interacted with a randomly selected learning aid
condition for ∼20–30 min. A third of the children interacted
with the robot + tablet in a Robot condition, another third
of the children interacted with a version of the CoWriting
Kazakh using only a tablet in a Tablet condition, while the
other third of the children interacted with a teacher in a
Teacher condition using pen and paper for demonstrations.
Counterbalancing was also applied in terms of gender and
year group so that each condition had a balanced number
of boys and girls. Assignment to each of the conditions was
otherwise random for any particular child. It should be noted
that when the whole experimental procedure was over (i.e., after
the post-test), children from the two non-robot conditions were
offered the opportunity to interact with a robot. The majority
of children expressed their desire to interact with a robot. Thus,
their post-test score and interview results were not affected by
this interaction.

4.2. Recruitment
The present research project was granted approval by the
Nazarbayev University Institutional Research Ethics Committee.
To conduct the experiment, informed consent forms were
obtained from all participants and their parents. It is
supplemented by including an assent form for children and
an informed consent form for their parents or legal guardians.
Children were provided with an overview of the study’s purpose
and the data collection process. With the presence of their
teachers, assent and informed consent forms were distributed to

Frontiers in Robotics and AI | www.frontiersin.org 5 October 2020 | Volume 7 | Article 99156

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Zhexenova et al. Robot, Tablet and Teacher in Script Learning

FIGURE 3 | Schematic overview of the setup by conditions: (A) robot + tablet, (B) tablet only, (C) teacher + pen and paper.

children in a classroom. Afterwards, they were asked to show the
documents to their parents, and with their permission to submit
them to their teachers who collected all the documents for us.

4.3. Participants
In total, the study recruited an equal number of 62 male and
female children aged 7–9 years old. Children were assigned
randomly to either a robot condition (N = 21), tablet condition
(N = 21), or teacher condition (N = 20). The children
represented different socio-economic backgrounds and all of
them were native or fluent Kazakh language speakers. According
to their writing experiences, second-graders had spent about
16 months writing in Cyrillic, and third-graders had spent
about 28 months writing in Cyrillic before the experiment.
The children learned handwriting for 6 h on a weekly basis,
ranging from simple shapes to the Cyrillic alphabet after nearly
6 weeks in the first grade. In addition, they had 2 h of weekly
English lessons in which they also practiced the English alphabet
starting from grade one. In other words, they had spent 16
months of handwriting in English. However, the children had not
been taught to write in a Latin-based Kazakh alphabet (revised
version of the English alphabet with 6 distinctive letters) and its
associated writing system. Therefore, compared to the Cyrillic
script, all children had no learning experience in the Latin-based
Kazakh alphabet.

4.4. Hypotheses and Conditions
Based on the CoWriting Kazakh system explained above, we
examined whether it is more effective for a child to perform the
mental conversion and see correctly written Latin words given
by the robot. To that end, the main hypotheses are formulated
as follows:

• H1: The CoWriting Kazakh will provide an effective learning
scenario that will significantly improve the amount of learned
letters, which, in turn, suggests that the proposed intervention
contributes to learning a new script.

• H2: Girls will outperform boys in letter learning, as in our
previous work we observed such gender effect in a Latin-
to-Latin condition when children performed mental script
conversion (Sandygulova et al., 2020).

• H3: Children will learn more letters when learning from a
robot and a tablet than from a teacher and tablet only.

• H4: Children will enjoy the robot condition more in
comparison to the tablet and teacher conditions, as it was
reported in Li (2015), Westlund et al. (2015), and Rosenberg-
Kima et al. (2019) that robots are of great advantage due to
their physical presence and human-like appearance.

To test these hypotheses, three conditions are distinguished with
respect to the type of learning aid:

• Robot condition: the child hears the word to be written
pronounced by the robot in English and has to translate it
to Kazakh and write it directly in Latin on the Wacom tablet
using its stylus. Then, the robot simulates the writing while
the letters are written on the tablet in Latin as corrective
feedback. The video demonstration is available at the link:
tiny.cc/iektpz. Figure 3A presents a schematic overview of the
Robot condition where a researcher controls the system launch
on their computer.

• Tablet condition: the child is presented with a pop-up window
on the tablet with instructions to first translate and then write
the words in Latin-based Kazakh. The vocabulary is the same
and 13 words are in the same order as in the Robot condition.
When its time for corrective feedback, the correct spelling
of the words appear in the same way on the tablet as in the
Robot condition. Figure 3B presents a schematic overview of
the Tablet condition where a researcher controls the launch of
the system on their computer.

• Teacher condition: the teacher speaks Kazakh language and
asks children to write the words in Latin-based Kazakh. The
vocabulary is the same and 13 words are in the same order as in
the other conditions. When it is time for corrective feedback,
the teacher then shows a correctly written spelling in Latin-
based Kazakh. They use a pen and paper. Figure 3C presents a
schematic overview of the Teacher condition.

In all three conditions, children had to mentally perform the
script conversion without help. We did not assist them in their
writing process unless they did not comprehend or recognize the
robot’s speech. Figure 3 shows the setup of each condition.
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4.5. Procedure
The procedure of the experiment included a survey, a pre-test, a
learning activity, an interview, and a post-test. The whole process
for each child took about 30–40 min.

Each child was invited from a class and accompanied by the
first researcher to a place where the experiment was conducted.
Before reaching the place, the first researcher began with an
icebreaker to put the child at ease: “My name is Zhanel. And
what is your name?” “When I was your age, I was fond of
Mathematics, and what about your most liked subject?” When
they entered the room, children were given a seat at the table with
surveys and responded to a couple of demographic questions
(i.e., age, gender) and what their mood was. Afterwards, children
were sat alongside the second researcher to take a pre-test
that evaluated children’s existing knowledge of the Latin-based
Kazakh alphabet. As the surveys and pre-tests were completed,
children changed their seats and sat at the table with their
learning condition (robot, tablet only, or teacher). Following
the interaction, children participated in a structured interview
with the first researcher who asked how they perceived their
corresponding learning aid. At the end of the experiment,
children were distributed a post-test analogous to the pre-test
to obtain the measure of their knowledge of Latin-based Kazakh
script. Similarly, the stage-by-stage procedure was followed when
the first researcher accompanied the child back to the class and
invited the next child.

4.5.1. Survey
A mini-questionnaire was conducted by the first researcher who
documented the child’s demographic profile and before-the-
experiment mood using a 5-point Likert scale.

4.5.2. Pre-test
The pre-test was the next stage, where each child was introduced
to a table of 23 Cyrillic-based Kazakh alphabet letters to complete
the task by converting each letter in Cyrillic to an equivalent in
the Latin-based Kazakh alphabet. This allowed us to identify the
child’s knowledge of Latin script before the experiment.

4.5.3. Learning Activity
When the child completed the pre-test, the researcher asked
the child to sit in front of the robot, tablet, or teacher. The
activity would come to an end either by the child or after all
13 words were trained. As mentioned before, the words were
selected in accordance with the children’s level of English, which
were previously approved by their English instructor. It should
be noted that all 33 Latin-based letters were present in the chosen
13 words with a minimum of one letter occurrence.

4.5.4. Interview
As the interaction with a robot was completed, the
child took a seat along with the first researcher who
then carried out a structured interview which involved
the following questions from our previous studies
(Kim et al., 2019; Sandygulova et al., 2020):

1. How is your mood? (5-point Likert scale)

2. Funometer scale (Markopoulos et al., 2008) was described to a
child by providing an example of how it operated: the winter
has the coldest weather (at the lowest level of the meter) while
the summer is the sunniest season (at the highest level of
the meter). How would you rate today’s weather? Afterwards,
the following example showed an enjoyable measurement:
“imagine that you are having a birthday party and you receive
many gifts, you enjoy your time very much (rate your mood at
the top of the meter), or in reverse when you feel bored with
waiting for a bus (rate your mood at the bottom of the meter).
Similarly, how would you rate your learning activity?” (The
rating was scaled from 0 to 100).

3. Sorting task: The researcher illustrated this task to a child
by demonstrating five items they considered the most and
least interesting. In an activity, five small paper items were
presented: a book, a tablet, a NAO robot, a computer, and a
teacher. (The sorted position of the child’s learning aid was
recorded using a 5-point Likert scale).

4. Likewise, the researcher asked the children to sort the five
items with regard to what/who is the least/most effective for
learning? (The sorted position of the child’s learning aid was
recorded using a 5-point Likert scale).

5. Children also performed a sorting task with the five items (a
book, a tablet, a robot, a computer, and a teacher) responding
to the question what/whom they preferred the least/most?

6. In closing, children sorted the five items based on what/who is
the easiest way to learn with/from?

These questions helped to reveal how children feel about the
interactions. We applied different techniques to explain the
procedures explicitly and ask easy to follow questions. For
instance, the Funometer scale and a paper version of the learning
aids were printed for children to manually move the paper and
situate it on a scale. This was an appropriate option compared
to pictorial five-level Likert items by providing more detailed
responses. Most children placed their ratings on a Funometer
scale near 70–90 out of 100. In addition, the children were asked
to rate their mood after the interaction, to compare whether
their mood changed or not. Finally, we performed a group of
sorting tasks in which children were asked to sort first their
corresponding learning aid (e.g., teacher) and then to sort a robot
as well.

4.5.5. Post-test
The post-test was the final stage in the experiment. At this stage,
children were introduced to the same table of 23 Cyrillic letters
as distributed in the pre-test. Similarly, children were asked to
write Latin-based Kazakh letters. This stage was important to
evaluate the children’s learning gains by comparing the number
of learned letters in pre- and post-tests. Children were given
a book for participation after the completion of the post-test.
Children that did not get to interact with the robot were offered
the opportunity to repeat the learning activity but with the
robot this time. Their performance in the tests and responses
to interview questions were not affected by this activity with
the robot.

Frontiers in Robotics and AI | www.frontiersin.org 7 October 2020 | Volume 7 | Article 99158

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Zhexenova et al. Robot, Tablet and Teacher in Script Learning

TABLE 1 | Pre- and post-test descriptives.

Gender Condition Age N Pre-test Post-test Learned letters

Boys

Robot 8.30 8 M = 11.63, SD = 4.75 M = 15.50, SD = 5.24 M = 3.88, SD = 2.48

Tablet 8.40 10 M = 12.00, SD = 5.06 M = 15.20, SD = 4.16 M = 3.20, SD = 3.12

Teacher 8.36 11 M = 10.55, SD = 4.41 M = 14.82, SD = 5.17 M = 5.18, SD = 2.27

Overall 8.36 29 M = 11.34, SD = 4.61 M = 15.14, SD = 4.69 M = 4.14, SD = 2.69

Girls

Robot 8.64 11 M = 11.64, SD = 5.59 M = 15.00, SD = 4.92 M = 3.36, SD = 1.43

Tablet 8.36 10 M = 12.10, SD = 4.46 M = 14.70, SD = 3.59 M = 2.60, SD = 2.37

Teacher 8.67 8 M = 10.63, SD = 4.93 M = 14.38, SD = 5.55 M = 3.75, SD = 1.91

Overall 8.55 29 M = 11.51, SD = 4.90 M = 14.72, SD = 4.53 M = 3.21, SD = 1.92

5. RESULTS

A series of Kolmogorov-Smirnov and Shapiro-Wilk tests were
conducted on all dependent variables overall and within
groups (i.e., gender and condition) to check the assumption
of normality. Since some scores were significantly non-normal,
non-parametric tests were used for the statistical data analysis
presented in some of the following sections.

5.1. Learned Letters
Four children did not complete their post-tests, thus this analysis
was conducted on data from 58 children (see Table 1 for
demographics of participants for every condition). The number
of learned letters was calculated to identify the difference between
letters known in the post-test and the pre-test (e.g., if 18 correct
letters were marked in the post-test and 10 correct letters were
marked in the pre-test, the number of learned letters is 8). As a
result of the learning activity, children improved their knowledge
of the Latin-based Kazakh alphabet. The average number of
learned letters was 3.67 (SD= 2.37, Max= 9, Min= 0).

To test H1, we conducted a paired samples t-test on pre-
and post-tests which revealed that children had a statistically
significant improvement in their Latin alphabet knowledge from
11.48 ± 4.64 to 14.68 ± 4.62: t(57) = −10.5, p < 0.0005. Table 1
presents pre- and post-test descriptives.

A two-way ANOVA was conducted examining the effect of
gender and condition on a number of learned letters. We did
not find a statistically significant interaction between the effects
of gender and condition, F(2, 52) = 0.225, p = 0.799. Boys
and girls learned the most letters in the Teacher condition: boys
learned 5.18 ± 2.27 while girls learned 3.75 ± 1.91. The robot
condition was the second most effective learning aid where boys
learned 3.88 ± 2.48 and girls learned 3.36 ± 1.43 letters. The
tablet condition was the least effective for both gender groups (3.2
± 3.11 vs. 2.6 ± 2.36), though not significant. These results are
presented in Figure 4.

To test H2, a Welch’s ANOVA was conducted to examine
whether there is a significant gender difference in the number
of learned letters: F(1, 50.54) = 2.299, p = 0.136. Boys learned
4.14 ± 2.69 while girls learned 3.21 ± 1.92 letters. Girls scored
slightly better in a pre-test (11.51 ± 4.90 vs. 11.34 ± 4.61), but
in a post-test boys outperformed girls (15.14 ± 4.7 vs. 14.72 ±

FIGURE 4 | Average number of learned letters for boys and girls by the

conditions. Error bars show 95% Confidence Interval.

4.53), though not significantly. Then, a series of separate one-
way ANOVAs was conducted to find gender differences for each
condition: Teacher, Robot, and Tablet. However, the differences
in learning gains were not significant between boys and girls
when analyzed separately either. This finding rejects our H2,
suggesting that boys and girls learnedmore-or-less equally, which
contradicts our previous finding that the Latin-to-Latin approach
wasmore effective for girls who learnedmore, as it was previously
found in Sandygulova et al. (2020).

Finally, to test H3, we examined whether there is a significant
difference in the number of learned letters between the three
conditions. The assumption of normality was met by all three
groups. Levene’s test revealed that population variances of
learned letters for the three types of conditions are equal,
F(2, 55) = 1.3, p = 0.28. As all the assumptions were met, we
proceeded with a one-way ANOVA which revealed that there
is no statistically significant difference in the number of learned
letters between conditions: F(2, 55) = 2.618, p = 0.082. Children
learned slightly more letters in the Teacher condition (4.58 ±

2.19), followed by the Robot (3.58± 1.89), and Tablet conditions
(2.9± 2.71), though without significance. This finding rejects our
H3, suggesting that Robot, Tablet, and Teacher conditions did not
lead to significantly different learning gains.
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In addition, in order to find out if the three conditions were
equally as effective as a learning aid, we performed an equivalence
analysis TOST (two one-sided tests) test (Rusticus and Lovato,
2011; Lakens et al., 2018) setting equivalence bounds 1L and 1U

to SESOI which is equal to ± dcrital. The critical effect size was

calculated using the following formula, dcrital = tcritical

√

1
n1

+ 1
n2
,

that was proposed by Lakens et al. (2018). As a result, it did not
show a significant equivalence: Robot vs. Tablet: d = 0.30, 95%
CI for Cohen’s d: [−0.34, 0.94], 1L = −0.33,1U = 0.33, t(37) =
0.35, p = 0.636, 90% CI for mean difference [−0.26, 1.62]; Tablet
vs. Teacher: d = 0.713, 95% CI for Cohen’s d: [−0.71, 2.35],
1L = −0.418,1U = 0.418, t(37) = −1.599, p = 0.94, 90% CI for
mean difference [−1.36,−0.06]; Robot vs. Teacher: d = −0.535,
95% CI for Cohen’s d: [−1.18, 0.11], 1L = −0.423,1U =

0.423, t(36) = −0.867, p = 0.804, 90% CI for mean difference
[−1.79,−0.21]. These findings suggest that the three conditions
were neither significantly different nor significantly equivalent in
their facilitation of learning gains. This result is due to our sample
size being quite small, leading to not having sufficient power to
reject either null hypothesis.

5.2. Mood Change
The mood change variable was calculated as the difference
between reported pre- and post-interaction ratings of children’s
mood on a 5-point Likert scale.

A series ofMann-WhitneyU tests was conducted that revealed
that there is a statistically significant difference in Mood Change
score between the Robot (0.45±0.68) and Teacher (−0.05±0.52)
and Tablet (−0.05 ± 0.83) conditions: U = 122,W = 312,Z =

−2.35, p = 0.019. This finding supports our H4, in that the
Robot condition was more enjoyed in comparison to the other
two conditions.

A Mann-Whitney U test was conducted to check gender
differences in children’s Mood Change values, however it was not
significant: U = 370.5,W = 805.5,Z = −1.184, p = 0.236.

Apart from the numerical value of the Mood Change
variable, we also categorized it as either Increased, Decreased,
or Unchanged. A series of chi-square tests of independence was
conducted to examine the effect of categorical variables (gender
or condition) on children’s Mood Change. We did not find
any statistically significant results between boys and girls for
these measurements.

There were no significant differences between conditions in
how children responded to Mood Change: χ2 (4, N = 59) =
5.932, p= 0.204. Figure 5 presents that although there is a similar
number of children who did not have their mood changed in
all conditions, children in the Robot condition were more likely
(7) to have their mood increased in comparison to Tablet (4)
and Teacher (2) conditions. And none of the children in Robot
condition had their mood decreased in contrast to three children
in Tablet and Teacher conditions each.

5.3. Funometer
Children were asked to rate how much they enjoyed their
corresponding learning activity ranging from 0 to 100 on a
Funometer scale (Markopoulos et al., 2008). An average rating

FIGURE 5 | Number of children from three conditions grouped by their

mood change.

for all children was 78.22 ± 17.61 (Mdn = 75,Max = 100,
Min = 40).

A Kruskal-Wallis test revealed that there is no significant
difference in children’s ratings between three conditions: χ2

(2)
=

0.849, p = 0.654. Children in the Robot condition rated their
experience as slightly higher (M = 80.75, SD = 17.71,Mdn =

77.5,Max = 100,Min = 50) than those children in the Tablet
(M = 77.5, SD = 18.17,Mdn = 75,Max = 100,Min = 40) and
Teacher conditions (M = 76.32, SD = 17.55,Mdn = 75,Max =

100,Min = 45), though not significantly.
We conducted a Mann-Whitney U Test to compare children’s

ratings between gender groups showing that boys rated their
interaction as slightly better than girls did, even though not
significantly: U = 319.5,W = 754.5,Z = −1.784, p = 0.074.
Boys’ rating was 82.17 ± 15.69 (Mdn = 80,Max = 100,Min =

50) while girls rated their experience as 74.14 ± 18.81 (Mdn =

75,Max = 100,Min = 40).

5.4. Sorting of Learning Aids
When asked to position children’s corresponding learning aid
according to its effectiveness to teach, easiness to learn from,
being interesting and enjoyable in comparisonwith a robot, book,
tablet, computer, and a teacher, children’s ratings were recorded
and analyzed against each other.

5.4.1. Effectiveness Rate
A Kruskal-Wallis test revealed that there was a significant
difference in this rating between conditions: χ2

(2)
= 7.36, p =

0.025. A series of Mann-Whitney U tests was conducted to check
between Teacher and Robot ratings: U = 88,W = 298,Z =

−2.761, p = 0.006. The Teacher was rated as 3.9± 1.4 which was
significantly higher than the Robot’s rating (2.9± 1.1). Tablet was
rated as 3.05±1.47 which did not have significant difference with
the Robot rating, but was significantly different with the Teacher
rating: U = 88,W = 298,Z = −2.761, p = 0.006. No gender
differences were found for this rating.

We also noted the sorting position of the robot for all children.
We found that children who interacted with the tablet rated the
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effectiveness of the robot as 2.76± 1.00, while children who were
taught by the teacher rated the robot as 2.79 ± 0.86. Participants
in a robot condition rated it slightly higher at 2.9 ± 1.1. A series
of Mann-Whitney U tests did not find a statistically significant
difference in this rating, neither between conditions nor between
gender groups.

5.4.2. Easiness Rate
No statistically significant differences were found for this rating
between different learning aids. Girls rated the learning activity
significantly easier (3.82 ± 1.28) than boys did (3 ± 1.39)
according to a Mann-Whitney U test: U = 285.5,W =

781.5,Z = −2.313, p = 0.021.
Participants from the tablet condition rated the robot as

slightly more difficult (2.81 ± 1.07) than those participants that
interacted with a teacher (2.79 ± 1.36) and robot conditions
(3.3± 1.42), though not significantly. Gender groups did not rate
the robot as significantly different for this rating.

5.4.3. Likeability Rate
A Kruskal-Wallis test was conducted to see which learning
aid was rated the most likable and showed that there was a
statistically significant difference in this rating: χ2

(2)
= 12, p =

0.002. A series of Mann-Whitney tests showed that the robot
was rated as statistically significantly higher (4.35 ± 1.04) than
both the tablet (3.57 ± 1.29): U = 127.5,W = 358.5,Z =

−2.284, p = 0.022, and the teacher (3.06± 1.21): U = 70.5,W =

241.5,Z = −3.329, p = 0.001. No gender differences were found
for this rating.

A series of Mann-Whitney U tests showed that those who
interacted with the robot liked it significantly more and rated the
robot as 4.35 ± 1.04 than those who interacted with the tablet
only (3.57 ± 1.36): U = 137.5,W = 368.5,Z = −2.013, p =

0.044. Children from the teacher condition rated the robot as
4.11± 1.29, though it was not significant.

5.4.4. Interest Rate
A series of Mann-Whitney U tests revealed that children rated
the Robot as significantly more interesting than the Teacher:
U = 114.5,W = 285.5,Z = −2, p = 0.045. The robot was
rated as 3.9 ± 1.12, while the teacher was rated as 3.17 ± 0.99.
No statistically significant differences were found between other
learning aids as well as between gender groups.

A series of Mann-Whitney U tests revealed that children in
the robot condition rated it as significantly more interesting
(3.9 ± 1.12) than those in the tablet condition (3.09 ± 1.22):
U = 135.5,W = 366.5,Z = −2.042, p = 0.041. No statistically
significant differences were found between participants’ ratings in
Teacher and Robot conditions, as well as between gender groups.

6. DISCUSSION AND LIMITATIONS

Since all participants attended the same school, we cannot
generalize our results or confidently state that the findings will
be workable for other Kazakhstani schools.

However, as found in the analysis of the results, we can claim
that H1 is valid, supporting that the intervention with the system

was effective on the children’s performance in both pre- and post-
tests at a high statistically significant level (p < 0.001). We found
similar findings in our previous studies which allow us to declare
the effectiveness of the proposed learning approach of teaching
in a single session. The children were able to learn from the
approach when they first attempt to convert the words to Latin
themselves and then observe the corrective feedback.

6.1. Gender Differences
Given the non-significant differences between gender groups
in the presented study, we can interpret that boys and girls
learned more-or-less similarly in all conditions. It contradicts
our H2 and previous study’s results (Sandygulova et al., 2020)
in which we found a gender imbalance in the performance of
boys and girls with respect to the learning gain results. Girls
performed better in the Latin-to-Latin condition and learned
significantly more letters. As distinct from it, boys learned more
letters when following the Cyrillic-to-Latin condition. Since this
study only offered the Latin-to-Latin condition, this mismatch is
an unexpected turn but might be due to the different set of words
that was selected for this study. This time, most of the words
that the child had to show to the robot had a maximum of four
letters in contrast to Sandygulova et al. (2020)’s selected words.
This should be carefully accounted for in our future studies.

6.2. Robot vs. Human Teacher
The study revealed neither a statistically significant difference
nor statistically significant equivalence in the number of learned
letters when taught by a robot or by a teacher. This result is due
to our sample size being quite small leading to an insufficient
power to reject either null hypothesis. This resonates with the
previous works that found no significant differences in the
number of learned words (Westlund et al., 2015), and test-
scores in mathematics with either a robot or human teacher
(Mubin et al., 2019). In the meantime, significant benefits of
peer robots over traditional teacher-to-student interactions and
advantages of robot-assisted classes in contrast to only a teacher-
led classes have been discussed so far (Alemi et al., 2014;
Belpaeme et al., 2018a). In a similar vein, Rosenberg-Kima
et al. (2019) also indicated that robots successfully assisted the
learning experience of students, and in some cases even more
effective interactions were reported in comparison with human
teachers. Importantly, they also stressed the idea of Human-
Robot-Collaboration (HRC) that provides a space for a human
teacher and a social robot to work in tandem. Robots do have
essential skills to act in the capacities of tutors and teacher’s
assistants, bearing in mind that human teachers cannot be fully
replaced in a classroom. Considering that the comparison of
the effectiveness of a human and a robot intervention is rarely
explored, this study needs further refinement in a larger sample
size and with longer interactions.

6.3. Robot + Tablet vs. Tablet Only
Similarly, the results from these two conditions fail to reject the
standard null hypothesis, while failing to reject the equivalence
null hypothesis, which leads us to conclude both “not different”
and “not equivalent.” The non-significant difference between the
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two conditions can be explained by the fact that letter learning
is a simple task and any exposure to this task leads to learning
gains. In addition, since our learning scenario does not rely on
the main advantage of social robots over the tablet, i.e., their
ability to provide verbal and non-verbal cues, this might have
caused the tablet only version to provide more-or-less similar
alphabet learning gains. Thus, it can be noted that touch-screen
tablets are a relevant option for learning a new script in line
with robots. These results are reminiscent of the large-scale study
(Vogt et al., 2019) which indicates that the success of learning L2
words cannot be accomplished merely with the robot condition.
As a result of these findings, we can deduce that robots combined
with and assisted by tablets are considered preferable rather than
just the robot or tablet. For instance, instead of using them
separately, Park and Howard (2013) proposed the HRI toolkit
that enables the use of tablets as mediators between humans and
robots. By comparing them, however, an increasing number of
studies (Li, 2015; Westlund et al., 2015; Rosenberg-Kima et al.,
2019) have reported that robots are of a great advantage due to
their physical presence and human-like appearance compared to
portable tablets. These socially-situated features of robots seem
essential to the learning process compared to the passive and
virtual interaction with tablets. Future work should examine
the effectiveness of a robot only, a tablet, and tablet and robot
conditions on the children’s learning outcomes.

6.4. Children’s Perception
Interestingly, children’s self-reported ratings of their mood were
different for Robot and Teacher conditions, where children’s
mood was increased on average by 0.45 on a 5-point Likert scale
after the Robot condition, while it was decreased on average
by 0.05 points after the Teacher condition. On the other hand,
children rated the teacher as more effective for learning in
comparison to both the robot and the tablet aids.

Aligned with the Mood Change findings, children in the
Robot condition rated their Likeability sorting of their learning
aid type much higher than those who interacted in the Tablet
and Teacher conditions. In addition, the robot’s rating for being
interesting was higher than this rating for the teacher. These
results favoring the robot are important, since one of our main
goals is to motivate and encourage children to learn the new
script. Research has shown that affective responses, such as
emotion and mood, are interwoven with learning and cognition,
and it is hypothesized that positive mood leads to pleasant
and open-minded cognitive experiences framed within “mood-
dependent cognitive styles” (Hascher, 2010). Prior work (Bryan
and Bryan, 1991; Bryan et al., 1996) has shown that children in
a positive mood condition performed significantly better than
children in a control group. Thus, we can assume that positive
mood as an affective reaction might create a favorable learning
environment, resulting in the enhancement of divergent thinking
and task engagement (Pekrun, 1992; Efklides and Chryssoula,
2005). In HRI, researchers have started to investigate how
social robot could benefit in making learning more efficient and
more enjoyable (Movellan et al., 2009; Tozadore et al., 2017;
Sandygulova and O’Hare, 2018; van den Berghe et al., 2019;
Chen et al., 2020). (Johal, 2020) found that more than half of the

recent studies in social robots for education evaluate the affective
outcomes of the robot-learner interaction; and about 30% report
both cognitive and affective outcomes.More generally, humanoid
robots are suggested to provide positive peer-like interaction with
children, broadly promoting enjoyment through the interaction.
Our study shows that children’s likeability and positive mood
change bring significant benefits compared to other teaching
approaches. However, the relationship between enjoyment and
learning outcomes is still not clear (i.e. a causality, a correlation
or a more complex relationship) (Girard et al., 2013). As such,
investigations are needed to assess the added value provided
by robot-assisted learning (which other teaching approaches
otherwise lack) as well as a follow-up longitudinal study allowing
to evaluate retention outcomes. In such future research, the
effect of mood should also be integrated as related to students’
learning outcomes.

6.5. Task Difficulty
Indeed, this experiment has brought up some questions of
identifying effective learning scenarios and tools for learning a
new script. Future studies can focus on vocabulary choice as it
might benefit children to use their foreign language vocabulary
resources to improve foreign script learning (e.g., Latin). Apart
from this strategy, the use of unfamiliar linguistic items in the
experiment might bring more promising results in order to
not misinterpret children’s existing knowledge. Consistent with
what was investigated in this study, we are encouraged to make
use of other strategies that might build a cognitive learning
scenario with the presence of a social robot. We believe that
interactions with the robot can involve several modes (verbal,
visual, tactile) and be integrated in relation to all perceptual
modalities, together with events on the tablet, its stylus data, and
children’s feedback.

6.6. Handwriting Recognition
To measure the children’s handwriting performances, we
developed handwriting recognition for the Cyrillic alphabet. The
accuracy rate on a validation set using state-of-the-art algorithms,
i.e., 784-500-500-2000 reported in Hinton and Salakhutdinov
(2006) and CNN similar to Le-Net-5 (LeCun et al., 1998) with
custom parameters is 98% on the Cyrillic-MNIST data set.
However, the recognition of children’s handwriting data was only
38%. This is reflected in other works that use adult datasets
with child data: state-of-the-art speech recognition technologies
(Kennedy et al., 2017) did not perform well with child speech,
while age and gender determination did not perform well on
children’s faces (Sandygulova et al., 2014). As noted by Asselborn
et al. (2018), the quality of handwriting performance can only
be evaluated when considering the age and gender of children.
The collection of a dataset on children’s Cyrillic handwriting
will, subsequently, allow us to adequately evaluate the quality of
Cyrillic handwriting in real-time.

7. CONCLUSION

In this paper, the CoWriting Kazakh system and its proposed
learning scenario were discussed in relation to the script
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conversion task in Kazakh, from Cyrillic to Latin in three
conditions (a robot, tablet, and a teacher). Contributing to
the HRI field, the main findings that can be drawn from this
interdisciplinary study are: (1) tablets only and tablets along with
robots have the potential to provide more-or-less similar learning
gains as a teacher in the script learning scenario with children,
since the three conditions did not show significant differences,
however (2) robots are advantageous based on the significant
positive mood change and children’s responses that they liked
the robot significantly more and considered it as significantly
more interesting than other learning aids in the present study and
in conclusions reached by previous studies (Park and Howard,
2013; Westlund et al., 2015; Vogt et al., 2019), (3) an open
question remains as to whether gender difference is significant in
regard to learning outcomes. Our study could not reach definitive
conclusions since there were several limitations such as single-
session intervention, relatively small sample size and the lack
of only robot condition. However, there is an overall lack of
such studies in the field of HRI that compare effectiveness of
robotic systems as opposed to other learning aids. In essence,
social robots can significantly impact children’s learning as they
tend to cultivate a responsive and friendly interaction (Belpaeme
et al., 2018a; Kanero et al., 2018). Considering all the above,
our future studies should aim for longitudinal interaction and
further investigate gender difference, differentiated learning, the
refinement of learning scenarios related to word choice, and
adaptations for remote and online learning. We hope this study
will increase scholarly attention towards the use of robots for
script learning and handwriting practice. In order to effectively
teach the Latin-based Kazakh alphabet, our essential purpose
is to develop an adaptive system relying on differentiated
learning strategies relevant to various learning scenarios
and individuals.
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