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Editorial on the Research Topic

Designing Self-Organization in the Physical Realm

The design and deployment of decentralized systems can benefit from self-organization as it
introduces key features, such as resilience, scalability, and adaptivity to dynamic environments.
However, whenever self-organization was demonstrated on physical platforms (e.g., robot swarms),
this was performed mostly within controlled laboratory conditions. The real world comes with
severe requirements, calling for robust design methodologies, their standardization, and validation
via benchmarking toolsets. With this Research Topic, we collect, benchmark, and survey novel
approaches to push self-organization toward real-world applications, focusing on embodied
artificial systems, such as multi-robot, cyber-physical, and socio-technical systems.

We start with six perspective and survey papers that give a good overview of the state of the art
and challenges of real-world implementations.

Gershenson studies the complexity of cyber-physical systems. After reviewing basic concepts
that are useful to design self-organizing systems, he introduces approaches to implement
self-organization in cyber-physical systems. Gershenson reviews three case studies from different
domains. Crowd control is related to a passive control approach using signs to mediate passenger
boarding and descent in Mexico City Metro. In a traffic light case study, traffic lights and vehicles
interact closely as agents, resulting in a network of streets and crossings with self-organized
coordination of traffic flows. The third case study is related to public transport and addresses the
equal headway instability. Trains use bio-inspired pheromone systems to keep equal distance to
the vehicles in front and behind. The result is a flexible system where trains can quickly adapt
and respond to service delays. Gershenson provides an outlook for cyber-physical and cyber-social
systems controlled by guided self-organization.

Based on the above-mentioned benefits of self-organization the motivation is strong to
apply swarm robotics in industrial applications. However, many industrial applications still
rely on centralized control. In cases where a multi-robot solution is employed, the main
idea of swarm robotics of distributed decision-making is often not implemented. Schranz et al.
provide a collection and categorization of swarm robotic behaviors. The paper gives a
comprehensive overview of research platforms and industrial projects and products, separated
into terrestrial, aerial, aquatic, and outer space. The authors identify several open issues including
dependability, emergent characteristics, security and safety, and communication as hindrances for
the implementation of fully distributed autonomous swarm systems.
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To deploy swarm robots to the physical realm, one
requirement is the ability to cope with environments that lack
human infrastructures. Two key mechanisms, namely cognition
and sensing, have to take place “on-board” on the robot and
should not be offloaded to external devices. Physical mobile
robots that operate on land do have the required hardware
capabilities for onboard computation and sensing, and have
successfully been used to demonstrate basic collective behaviors
and to a more limited extent been used in real applications.
However, Coppola et al. convincingly argue that swarm robotics
approaches so far cannot be applied to Micro Aerial Vehicles
(MAVs). The most impressive MAVs demonstrations have been
executed requiring external computation, sensing, or both. The
main challenge is related to local sensing, which they divide into
the following sub-challenges: MAV hardware design, ego-state
estimation, intra-swarm relative sensing, and swarm behaviors.
This paper presents how advanced we are in terms of autonomy
of swarms of MAVs, and presents a roadmap to overcome the
challenges in the near future.

One of the main challenges for the design of self-organizing
systems is the gap between the rules followed by individual
system components and the desired collective behavior of the
system as a whole. Especially for practical application scenarios,
it is difficult to conceive and optimize the system behavior
by acting at the level of the individual rules. The paper by
Birattari et al. champions a methodology that optimizes the
system behavior offline (e.g., in simulation) and that ensures
sufficient performance when deployed in the real world. The
central aspect is the “class of interest” of the problems to be
addressed. Every new problem instance is sampled from the same
class of interest (e.g., gardening with robot swarms), and the
solution is optimized to maximize performance, according to
relevant metrics defined for the given class. It is within the same
class of interest that the offline automatic design approach gives
its best results, and the manifesto highlights the most important
questions that should drive future research in this area.

The following eight papers study concepts, methods, hardware
designs, and natural systems with high potential to support future
real-world applications of self-organizing systems.

There have been many contributions using either simulation
or relatively simple robots, often in controlled environments
of limited size. Tarapore et al. question the very definition of
swarm robotics by focusing on the question of how sparse is
a robot swarm for a realistic task. Tarapore et al. argue that
real swarm robotics applications will need to be addressed,
and they introduce the idea of “sparse swarm robotics”: robots
are spread over the environment such that the opportunity
for communication must be explicitly addressed, as opposed to
being naturally forced in smaller environment where density is
high. They propose a clean and straight-forward formalization
of this problem in mathematical terms. Also, they illustrate
the concept of sparse swarm robotics by describing several
realistic problems and their implications, including a step-by-
step description of the specific issues that arise for one such
problem. Considering a monitoring task for soil sampling in a
forest, they discuss both low-level hardware issues and high-level
communication/coordination issues.

A particular threat for real-world robot swarms is a possible
attack by malicious agents that could be introduced into
the swarm. The paper by Strobel et al. makes a significant
contribution toward the use of swarm robotics in the real
world by presenting a framework for a secure decentralized
database. The presented framework uses smart contracts, a
way to decentrally execute programs based on an Ethereum
blockchain. Individual malicious robots aim to disrupt the
collective decision-making process of a simulated swarm of e-
puck robots by spreading misinformation. The robot swarm
successfully disregards the wrong information. The authors
indicate that blockchain networks can be used for robot swarms,
and the low processing and memory capacity of swarm robots
does not prohibit the use of blockchains in real-world scenarios.

When developing the swarm robot controller and hardware,
it is difficult to anticipate all future situations that this robot
swarm may experience. Hunt claims that nature provides an
example solution that we can follow: phenotypic plasticity. The
idea is to train robot swarms in (simulated) heterogeneous
environments, for example, using methods of evolutionary
computation. The general swarm robot design should allow
for flexibility such that they can be adapted and shaped
ideally in three dimensions: behavioral, physiological, and
morphological plasticity. Behavioral plasticity of the swarm
members introduces diversity that can be exploited, for example,
to increase fault tolerance and decision accuracy. Physiological
plasticity in robots could be modes of operation that have
different energy consumption. Morphological plasticity could
be known implementations of self-assembling swarm robots. In
summary, Hunt opens a door to more flexible and dynamic
ways of drafting, developing, and optimizing robot swarms for
the real world mainly based on a systematic behavioral and
morphological diversity.

Rausch et al. propose an empirical case study of the impact
of network topology over the spread of information in a robot
swarm. Specifically, they consider the possible benefits of scale-
free communication topology. They experimentally show that
there is actually a trade-off in using scale-free (rather than
random) topology: information spreads faster, enabling quicker
reactions to changes in dynamic environments, but at the cost of
a decreased stability as the emergence of consensus is hindered
by communication pathways of different lengths.

To ensure a smooth transition from lab to market, it
is necessary to recognize user needs and to evaluate the
acceptability of robot swarms. The paper by Carrilo-Zapata et al.
conducts a study against three application domains wherein
robot swarms are considered as game changing tools. The
mutual shaping methodology proposed entails a bi-directional
knowledge exchange between swarm designers and final users,
raising awareness of the possibility offered by the technology but
also allowing to collect important design and interaction features
that can drive the deployment. Overall, the study reveals that
robot swarms can play an important role within the considered
application domains, above all when they work in support of
human operations, rather than as entire replacements.

Another important hurdle to deploying swarms in the physical
realm is robustness. Contrary to the adage “there is safety in
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numbers,” robustness is not an inherent benefit of robot swarms
that results from redundancy. Robustness is a challenging design
goal, made complex by the interplay between the benefits of
redundancy and the need for scalability. Wilson et al. argue that
achieving robustness through redundancy involves a careful co-
design of hardware, fabrication processes, and control software.
To investigate this idea, the authors present an approach to
achieving robustness that involves a novel hardware-software
co-design of a modular robotic platform called “DONUts”
(Deformable Self-Organizing Nomadic Units). The modules are
inexpensive, flexible printed circuit boards, and designed tomove
as a collective through magnetic interaction. Wilson et al. study
several control strategies that explore the design space of inter-
module connectivity to shed light on the interplay between
robustness, scalability, and controllability.

Nave et al. investigate on a biological model related to social
insects—the tower building behavior of red imported fire ants.
Results show that individuals moving under the influence of local
attraction can form large towers. The system shows a sudden
density-dependent phase transition as the attraction parameter
is varied. The resulting towers of simulated agents are constantly
rebuilt and move over time—a feature that has to be considered
for robotic applications. There is for future robotic studies, where
robots build towers out of themselves in a manner similar as
the fire ants. In a real-world application, a tower of robots
could be useful for seeing over obstacles, providing scaffolding
for climbing, or marking a location of interest. Robotic tower-
builders would need capabilities for sensing neighbors, climbing
onto and off one another, and supporting appropriate loads.
Building such robotic tower-builders would be an interesting step
for future robotics research.

While engineers take robots to the real world to automate
tasks currently done by humans or impossible for humans,
biologists take robots to the real world to study animal behavior.
Yang et al. study a robotics-based experimental test paradigm
where a robotic replica is used to influence the behavior of
Zebrafish. Two setups were studied. In the individual training
condition, a single fish learned to open the correct of two doors by
itself. In the social training condition, a fish observes the replica
approaching both doors with the correct one opening after a
certain period of time. Main contributions are the technical
innovation of this robot-supported experiment and the negative

result indicating that there is no improvement by social learning.
Yang et al. claim that their setup can generalize to other species,
such as guppies and mollies but also insects, mammals, and even
invertebrates. It seems promising that with ongoing technological
progress we will see more of these bio-hybrid systems with robots
and animals interacting closely in the real world.

In summary, all the above papers that study an engineering
approach to take self-organizing robots to the field, struggle
with a technological bottleneck: local sensing, coordinated
actuation, and means of communication that work reliably in
field environments. This is a common challenge of robotics and
will require designing smart control algorithms with minimal
requirements for sensing, actuation, and communication.
Common to all papers in this Research Topic are deviations
between model abstractions and the physical realm. We still
do not know well-enough what deviations are caused by which
abstraction in swarm and multi-robot models and simulations.
The intrinsic stochastic nature of self-organizing systems adds
to this challenge. In future work, this will require an effort
toward more robust hardware, as well as verifiable swarm and
robot behaviors to achieve certification. Our Research Topic
covers a wide range of fields, concepts, and methods that will
hopefully help to kick our robots out of the lab, pushing
toward a novel “field swarm robotics,” to establish cyber-
physical systems in the wild and to design distributed systems
for radically novel applications using self-organization in the
physical realm.
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Designing collective behaviors for robot swarms is a difficult endeavor due to

their fully distributed, highly redundant, and ever-changing nature. To overcome the

challenge, a few approaches have been proposed, which can be classified as manual,

semi-automatic, or automatic design. This paper is intended to be the manifesto of the

automatic off-line design for robot swarms. We define the off-line design problem and

illustrate it via a possible practical realization, highlight the core research questions, raise

a number of issues regarding the existing literature that is relevant to the automatic off-line

design, and provide guidelines that we deem necessary for a healthy development of the

domain and for ensuring its relevance to potential real-world applications.

Keywords: swarm robotics, automatic design, collective behaviors, design methodology, evolutionary robotics

Although swarm robotics is widely recognized as a promising approach to coordinating large
groups of robots (Dorigo et al., 2014; Yang et al., 2018) and has already gained a prominent
position in the scientific literature (e.g., see Rubenstein et al., 2014; Werfel et al., 2014; Garattoni
and Birattari, 2018; Slavkov et al., 2018; Yu et al., 2018; Li et al., 2019; Xie et al., 2019), a general
methodology for designing collective behaviors for robot swarms is still missing (Brambilla et al.,
2013). The design problem is particularly challenging because it aims at producing a system that is
autonomous, fully distributed, and highly redundant: robots do not have any predefined role and do
not rely on any external infrastructure (Beni, 2004; Şahin, 2004). A robot swarm is a loosely coupled
system in which the collective behavior of the system results from the local interactions between
individuals, and between them and the environment. These interactions cannot be explicitly
defined at design time due to the high uncertainty that characterizes the operation of a swarm.
As a result, at least in the general case, it is impossible to tell what the individual robots should do
so that a desired collective behavior is achieved. This rules out the application of traditional multi-
robot systems and software engineering techniques, which rely on formally deriving the individual
behaviors of the robots from specifications expressed at the collective level (Brugali, 2007; Di Ruscio
et al., 2014; Bozhinoski et al., 2015; Schlegel et al., 2015).

A few methods/tools have been proposed that, under a number of restrictive hypotheses and
constraints, support the designer for specific classes of missions (Hamann andWörn, 2008; Kazadi,
2009; Berman et al., 2011; Beal et al., 2012; Brambilla et al., 2015; Reina et al., 2015; Lopes et al.,
2016; Pinciroli and Beltrame, 2016). Also, a few automatic (and semi-automatic) design methods
have been proposed that operate under various assumptions (Nolfi and Floreano, 2000; Watson
et al., 2002; Duarte et al., 2014; Francesca et al., 2014). For recent discussions, see Francesca and
Birattari (2016) and Bredeche et al. (2018).

This paper is intended to be the manifesto of the automatic off-line design of robot swarms.
In this approach, the design problem is cast into an optimization problem that is solved
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off-line—that is, before the swarm is deployed in the target
environment. An optimization algorithm searches a space of
possible designs with the goal of maximizing an appropriate
mission-specific performance measure. Within the design
process, the performance of candidate designs explored by
the optimization algorithm is assessed via computer-based
simulations. Once the optimization algorithm terminates, the
selected design is uploaded to the robots and the swarm is
deployed in its target environment. In the following, we focus
mostly on the development of software but the discussion can
be directly extended to the hardware. For example, the automatic
off-line design process might optimize the number of robots in
the swarm; if the swarm is heterogeneous, select the fraction of
robots of type A, B, C,. . . ; fine-tune parameters of hardware or
firmware; activate/deactivate or add/remove hardware modules;
design chassis, shell, or attachments.

Our vision is that, in a relatively close future, automatic off-
line design will be a practically relevant way of realizing robot
swarms. Likely, it will not be the only one: other approaches
will be available, each with its specific advantages and ideal
areas of application, as well as its disadvantages and limitations.
Among them, we foresee that a relevant role will be played
by manual design, semi-automatic design, automatic on-line
design, and hybrid approaches that combine the previous ones.
Nonetheless, we expect that the automatic off-line approach will
play a major role, both on its own and also as a component of
hybrid approaches.

In the automatic off-line approach, robot swarms are
generated to perform missions that are sampled from a given
class of interest and are sufficiently different from one another
to possibly require (or benefit from) a tailored design. An
automatic off-line method must operate on the missions of the
given class without requiring eithermission-specific adjustments,
or per-mission human intervention. The notion of a class of
missions plays here a central role. It refers to a set of missions,
together with a probability measure defined on them, which
determines their relative frequency of appearance. Typically, an
explicit, closed-form definition of the set of missions and of the
probability measure is not available—and is not even needed.
Instead, what we have is a stream of missions sampled from
the class of interest according to the aforementioned probability
measure. The assumption that missions are sampled according
to a probability measure gives a formal meaning to the notion
of expected performance, as well as to any other statistics one
might wish to adopt to describe the aggregate behavior of a
design method across the missions of interest. To illustrate the
automatic off-line design of robot swarms, it is convenient to
sketch one of its possible practical applications.

Fiorella’s swarm gardening

(for an artist’s rendition, see Figure 1)
Fiorella owns a robot-swarm gardening business and offers
her individually-tailored service to her many customers in
the Brussels area. She has a busy schedule: every day,
she visits three or four customers with her gardening

swarm. Customers book Fiorella’s service via a form on
her website. Through the form, they ask for one or more
specific interventions—e.g., cutting grass, watering flowers.
They also provide relevant information on their garden—
e.g., size, shape, orientation. The interventions requested and
the characteristics of the garden specify the mission that
Fiorella’s swarm must perform for a specific customer. As the
list of possible interventions and characteristics of the garden
is huge, the class of possible missions is overwhelmingly
large and rather diverse. To provide her customers with
the best gardening experience—but also to cut costs and
maximize her benefit—Fiorella relies on an automatic off-
line method that designs and fine-tunes the behaviors of
her swarm specifically for each mission. The design process
takes place while Fiorella drives her swarm to the customer’s
garden: her powerful computers run simulations using the
information provided by the customer on the interventions
and on the garden. The design process must be performed
within a limited amount of time—the time of the ride to
the customer’s. As Fiorella arrives on the spot, the selected
design is uploaded to the robots and the swarm is deployed in
the garden. Fiorella cannot intervene in the design process—
she drives the van in the meantime. Moreover, due to her
tight schedule, Fiorella cannot either test the selected design
on the robots before deployment and possibly re-run the
design process: once she reaches the customer, robots must
be operational. Any per-mission human intervention and
any test on the robots in the target environment would
be too time consuming and expensive: they would increase
costs dramatically and Fiorella would be unavoidably out of
business.

Missions in the class of interest can be relatively minor
variations of each other—e.g., cut the grass in a small garden;
in a large one; in one with a central flower bed. In this case,
the behaviors to be produced will be similar, with some minor
differences to increase performance or reduce execution time.
Missions can also be substantially different in the nature of
their goals and require major differences in the behaviors to be
realized—e.g., cut the grass; gather dead leaves in a specific place;
locate and map mole tunnels.

In Fiorella’s example, the central role of the notion of class
of missions emerges clearly. Fiorella faces a stream of missions
sampled from the possible missions for which customers might
demand her intervention—and which her swarm can hopefully
accomplish. It is in the repetitive nature of the design problems
faced by Fiorella that the significance of automatic design lies.
Indeed, if Fiorella had to solve a single design problem (instead
of a stream thereof) she could more profitably solve it either
manually or via a semi-automatic designmethod1. It is only when
one has to solve a stream of design problems that the human
intervention might become uneconomical or even unfeasible.

1 By semi-automatic design, we mean an approach in which a human designer is

assisted by an optimization process similar to the one of automatic design, but can

afford intervening in the process (on a per-mission basis) to guide it according to

their insight.
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FIGURE 1 | Fiorella’s swarm gardening. Fiorella’s robots can perform a large class of gardening missions. Through her website, customers book Fiorella’s services,

specify the interventions to be performed, and provide a description of their garden. On the basis of this information, while Fiorella drives her robots to customers, her

algorithms automatically design and fine-tune the behavior of the robots so as to offer a tailored service. When she arrives at a customer location, the gardening

swarm is operational and immediately deployed.

Conceiving, implementing, and setting up an automatic design
method is in itself an investment of time and resources, which
pays off only if the design process is then repeated a sufficient
number of times on multiple missions—those of the class for
which the automatic design method is conceived. If one had to
address a single mission, it would be more sensible to invest
time and resources on that specific mission—by adopting an ad-
hoc manual or semi-automatic approach—rather than on the
development of an automatic design method that would be then
used only once. For a schematic representation of the automatic
off-line design process, see Figure 2.

Fiorella’s example allows us to highlight a number of issues
and research questions that are relevant to the automatic off-line
design of robot swarms.
Can effective robot swarms be designed automatically via

an off-line process? Can we conceive a method to
automatically design a swarm for anymission within a given
class?What is the class ofmissions for which a givenmethod
can design an appropriate swarm? How can a given method
be generalized to solve a larger class of missions?

Given a class of missions, which is the most appropriate

design method? What elements or characteristics of a
design method influence its ability to handle missions of
a given class? Vice versa, what elements/characteristics of
a class of missions might suggest that a given method is
appropriate to handle them? Which features of a specific
mission make it challenging for a given design method?
Are these challenging features equally challenging for all
possible design methods? Is it possible to match challenging
features of missions with characteristics of design methods?

To what extent a given design method is robust to the

so called reality gap—that is, the difference between

simulation models and reality? Is it possible to predict
the performance drop that a swarm designed off-line will
experience when deployed in the target environment? Are
different design methods equally sensitive to the reality
gap? What elements/characteristics of a design method

make it more or less robust to the reality gap? Can these
characteristics be leveraged to engineer a design method
that is inherently robust to the reality gap? How should
models be devised to be effectively used within an off-line
design process?

How efficient is a design method? In other terms, how many
off-line simulation runs are required to produce an effective
design? What elements/characteristics of a design method
increase/decrease its efficiency? How well does a given
design method behave for a large/small design budget—that
is, when allowed to perform few/many off-line simulation
runs? Does the efficiency of a design method depend
on the specific mission or class of missions considered?
What elements/characteristics of a mission determine the
minimum size of the design budget needed to produce an
effective design? When should a design process be stopped?

This list of questions encompasses many relevant issues
but it is by no means exhaustive. For example, other
relevant issues would concern the off-line definition of
the swarm size (or its spatial density), its impact on
performance, and the robustness/scalability of behaviors
that are automatically designed.

A body of literature exists that is relevant to the automatic
off-line design of robot swarms. The largest share of the design
methods described in the relevant literature belong in the
neuro-evolutionary domain (Nolfi and Floreano, 2000): robots
are controlled by a neural network whose synaptic weights
(and possibly the topology) are optimized by an evolutionary
algorithm (Quinn et al., 2003; Christensen and Dorigo, 2006;
Baldassarre et al., 2007; Trianni, 2008; Hauert et al., 2009; Trianni
and Nolfi, 2009; Waibel et al., 2009; Ferrante et al., 2013, 2015;
Gomes et al., 2013; Trianni and López-Ibáñez, 2015). For a review
of the neuro-evolutionary approach (including also single-robot
studies) see Floreano and Keller (2010), Bongard (2013), Bongard
and Lipson (2014), Trianni (2014), Doncieux et al. (2015), and
Silva et al. (2016). Other approaches depart from neuro-evolution
as (i) robots are controlled by software architectures other than
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FIGURE 2 | Flowchart diagram of the automatic off-line design process. A mission is sampled from a class of interest. Using computer-based simulations, an

automatic design method defines a robot swarm tailored to the mission sampled. Once the automatic design terminates, the swarm is deployed in the target

environment and has to cross the so-called reality gap—the possibly subtle but inevitable difference between simulation and reality (Brooks, 1992; Jakobi et al.,

1995)—which is among the most challenging issues in automatic off-line design. The process is repeated ad libitum. It should be noted that an automatic design

method could generate a robot swarm from scratch for every mission sampled or could refine and adapt a solution previously generated for a similar one. It could

also, for example, produce a robot swarm by combining and modifying solutions (or partial solutions) contained in a catalog of template solutions that were

pre-defined by a human expert. The only condition that needs to be respected for the process to be qualified as automatic off-line design is that such initial (partial)

solutions must be selected without any per-mission human intervention and without recourse to tests performed in the target environment.

neural networks (Hecker et al., 2012; Gauci et al., 2014a; Jones
et al., 2016), or (ii) they adopt optimization algorithms other than
an evolution algorithm (Pugh et al., 2005), or (iii) both (Francesca
et al., 2014, 2015; Gauci et al., 2014b; Kuckling et al., 2018).
Besides, a few studies exist that provide insight into the reality gap
in the automatic design of robot swarms and/or define methods
to handle it (Francesca et al., 2014; Birattari et al., 2016; Ligot and
Birattari, 2018). Additionally, a number of methods have been
proposed that, although described in single-robot applications,
are relevant to the design of robot swarms (Jakobi et al., 1995;
Miglino et al., 1995; Floreano and Mondada, 1996; Jakobi, 1997;
Bongard and Lipson, 2004; Zagal et al., 2004; Boeing and Braunl,
2012; Koos et al., 2013).

It is our contention that, with only few exceptions, the
aforementioned methods have been studied following protocols
that were not conceived to directly address the core research
questions sketched above. Although these protocols allowed
studies which partially addressed those questions, they were
conceived to target other questions that are mostly relevant
to other domains including, for example, evolutionary biology
and the semi-automatic design of robot swarms1. In almost
the totality of the studies, the focus is on a specific mission
that must be performed by a swarm—or, equivalently, on a
specific capability that the swarm should acquire and display.
The design method is proposed only as a way to achieve the
desired collective behavior and is not the protagonist of the
study: the study is not structured to highlight its properties
and assess its performance. The design method has so little
importance that it is not customarily given an identifying name—
contrary to what happens in related fields such as machine
learning or heuristic optimization. Typically, the design method
is tested on a single mission and it is not compared to any
alternative. It is rare that a same design method is tested
across multiple studies on multiple missions without undergoing
any (manually-applied) mission-specific modification. In many
studies, the control software produced by a design method is
tested only in simulation and no assessment is provided on
whether and to what extent it crosses the reality gap satisfactorily.
Moreover, design methods survive only the time span of the

paper in which they are introduced and their implementation is
not routinely made publicly available for further studies, to be
possibly performed by a third party. Often, a design method is
run iteratively on a single mission. It is run once, the behavior
generated is inspected by the designer who then modifies the
method itself or the objective function to be optimized—e.g.,
by adding/removing terms. These activities are then iterated at
will until a satisfactory behavior is obtained. In most cases, this
iterative process is not detailed in research articles: it is often
unclear how many iterations have been performed, what has
been measured at each iteration, what modifications have been
implemented, what ideas have been tried and then abandoned.
In these cases, the research articles present only the final setting
that eventually generated the behavior discussed. The iterative
process is repeated only once, as it would be difficult to produce
independent trials of a process that features a human in the loop.
As a result, the robustness and the repeatability of the process are
not assessed.

An appropriate protocol to address the aforementioned
issues should reflect the following tenets of the research in
automatic off-line design: (i) automatic off-line design methods
should not be mission-specific and should be able to address a
whole class of missions without undergoing any modification;
(ii) once a mission is specified, human intervention is not
provided for in any phase of the design process. Indeed,
research that is intended to be relevant to the automatic
off-line design of robot swarms should exclude the case in
which design methods are conceived for or are manually
adapted to a specific mission—for example, by manually
tuning parameters of the optimization algorithm and/or of
the control architecture, or by pre-filtering sensor readings
on the basis of insight that only a human designer can
provide. It should also exclude the case in which, on a
per-mission basis, human designers are allowed to inspect
(via either simulation or robot experiments) the behavior of
an automatically designed swarm and, on the basis of their
observations, modify elements of the automatic design process
and iterate it at will, until they obtain satisfactory results.
In particular, human designers should not be allowed, on a
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per-mission basis, to use any insight gained through inspection to
modify the design method (optimization algorithm, architecture,
sensor pre-filtering, etc.); to adapt simulation models; and to
amend the objective function by adding/removing terms so
as to steer the design process as wished. On the other hand,
to effectively contribute to the development of the domain,
researchers in the automatic off-line design of robot swarms
should pay particular attention to a number of methodological
issues. In particular, they should: (a) provide a clear and thorough
description of the design methods they propose, including a
list of the value of all parameters; (b) precisely characterize
the platforms for which these methods can generate control
software; (c) clearly identify and name methods for future
reference; (d) publish implementations; (e) test methods on
multiple missions; (f) identify—at least informally—the class
of missions that a method is intended to address; (g) perform
comparative studies in which methods under analysis are tested
under the same conditions; and (h) run robot experiments to
assess robustness to the reality gap. It is our contention that this
minimal set of guidelines will allow the domain to grow healthy
and thriving so as to eventually prove its practical relevance in
real-world applications.
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Social learning is ubiquitous across the animal kingdom, where animals learn from

group members about predators, foraging strategies, and so on. Despite its prevalence

and adaptive benefits, our understanding of social learning is far from complete. Here,

we study observational learning in zebrafish, a popular animal model in neuroscience.

Toward fine control of experimental variables and high consistency across trials, we

developed a novel robotics-based experimental test paradigm, in which a robotic replica

demonstrated to live subjects the correct door to join a group of conspecifics. We

performed two experimental conditions. In the individual training condition, subjects

learned the correct door without the replica. In the social training condition, subjects

observed the replica approaching both the incorrect door, to no effect, and the

correct door, which would open after spending enough time close to it. During these

observations, subjects could not actively follow the replica. Zebrafish increased their

preference for the correct door over the course of 20 training sessions, but we failed to

identify evidence of social learning, whereby we did not register significant differences in

performance between the individual and social training conditions. These results suggest

that zebrafish may not be able to learn a route by observation, although more research

comparing robots to live demonstrators is needed to substantiate this claim.

Keywords: behavior, biomimetics, ethorobotics, observational learning, robotics

1. INTRODUCTION

Social learning is widespread among animals, contributing significantly to behavioral adaptation in
both individuals and groups (Zentall and Galef, 1988; Leadbeater and Chittka, 2007; van Schaik,
2010; Hoppitt and Laland, 2013). In addition to elucidating a crucial adaptive mechanism, studies
of animal social learning can lead to improved understanding of human pathologies to which
social learning contributes, such as anxiety and phobias (Blanchard et al., 2001; Delgado et al.,
2006; Mineka and Zinbarg, 2006), or in which it is affected, such as in autism spectrum disorders
(Schneider and Przewłocki, 2005; Markram et al., 2008).

A long-standing question is whether social learning can be explained by associative
learning mechanisms or whether it requires more sophisticated learning abilities
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(Heyes, 2012b; Lind et al., 2019). Within this debate,
observational learning is of special interest. Observational
learning refers to learning a behavior from simple observation,
without the opportunity for practice. In standard associative
learning theory, learning an action requires performing it
(instrumental conditioning; Pearce, 2008; Bouton, 2016). Hence,
evidence of observational learning of actions would indicate a
learning mechanism that is more sophisticated than associative
learning (Lind et al., 2019), or possibly a modified associative
mechanism (Heyes, 2001, 2012a).

Here, we study observational action learning in zebrafish,
Danio rerio (Engeszer et al., 2007). The use of zebrafish in
developmental biology has produced in-depth knowledge and
powerful tools for genetic experimentation (Vascotto et al.,
1997), which is being leveraged in behavioral genetics and
neuroscience (Norton and Bally-Cuif, 2010). Genetic similarities
with mammals (Crollius and Weissenbach, 2005) have also
established zebrafish as a prime model organism for translational
clinical research (Stewart et al., 2012). However, the potential of
zebrafish in behavioral science is not fully realized because of the
relative paucity of behavioral screening tools (Sison and Gerlai,
2010), and this is especially true in the case of learning (Gerlai,
2011). Our study is simultaneously an investigation of social
learning and a contribution to the wider landscape of behavioral
methods in zebrafish.

Social learning is common in fish (Brown and Laland, 2003),
but existing studies do not conclusively establish learning of
actions by observation. For example, fish can learn a route by
following conspecifics (Laland and Williams, 1997; Laland and
Williams, 1998; Reebs, 2000), but this allows them to practice
the route and could be based on innate following behavior
(Brown and Laland, 2003) in combination with associative
learning (Lind et al., 2019). Anthouard (1987) demonstrated
that naïve Dicentrarchus labrax learned an action more quickly
after observing experienced conspecifics, but the setup enabled
naïve fish to make partial responses, such as approaching and
snapping, which may have facilitated learning. Because these are
likely genetically predisposed responses to the sight of foraging
fish (Brown and Laland, 2003), the study does not unequivocally
support observational learning of an action.

Further evidence of observational learning come from studies
with guppies (Poecilia reticulata) and sailfin mollies (Poecilia
latipinna), showing that females can learn preferences for
males by observing other females (Dugatkin and Godin, 1992,
1993; Schlupp and Ryan, 1997; Witte and Ueding, 2003;
Godin et al., 2005). These results may derive either from
observational action learning (learning to swim toward a specific
male) or from observational learning of a preference for a
stimulus (a specific male) coupled with a pre-existing response
(swimming toward males in general). Because these studies bear
some conceptual similarity to ours, we will consider them in
more detail in the Discussion. Similarly, males Astatotilapia
burtoni have been shown to infer the fighting ability of
conspecifics by observations (Grosenick et al., 2007), but
evidence that fish are capable of observational learning of actions
remains scarce.

Robotics often take inspiration from nature (Brambilla et al.,
2013; Kim et al., 2013; Valentini et al., 2016), but robots are

also increasingly used to study animals. In order to advance our
understanding of observational learning in fish, we established
a novel ethorobotics-based experimental paradigm that could
afford finer control of experimental conditions. Ethorobotics
represent a promising interdisciplinary research area at the
interface of ethology and robotics (Webb, 2000; Partan et al.,
2009; Krause et al., 2011; Halloy et al., 2013; Frohnwieser et al.,
2016; Porfiri, 2018; Romano et al., 2018), in which robots whose
design is inspired by animals help understanding animal behavior
by allowing fine-tuned interactions. Our paradigm uses a robotic
zebrafish replica as a demonstrator in order to control precisely
what information is displayed to the subject. The replica is
built to mimic the morphology, size, coloration, and motion of
live zebrafish. Its motion is controlled in two dimensions (2D)
via a Cartesian plotter, which allows for the implementation
of realistic swimming patterns, in terms of both movement
trajectory and body undulations. In previous work, we showed
that equivalent robotic replicas elicit approach responses in
live fish, similar to social behavior that is generally exhibited
toward conspecifics (Ruberto et al., 2016, 2017; Kim et al.,
2018). For example, zebrafish show a similar preference for
associating with a replica and a conspecific in binary choice tests
(Ruberto et al., 2017).

Here, to ensure that learning could proceed only by
observation, rather than by practicing the correct behavior, we
confined subjects in a small area during demonstrations. The task
consisted of learning to approach one of two doors in order to
gain proximity to a shoal of conspecifics. Subjects in the social
training condition observed the robotic replica approaching both
the incorrect door, to no effect, and the correct door, whose
opening is triggered automatically by a real-time video tracking
system. Subjects in the individual training condition learned
without the demonstrator and provided a control group. In
this task, zebrafish learned a preference for swimming to the
correct door, but we observed no effect of social vs. individual
training: fish that observed the demonstrator did not learn more
quickly, and did not spend more time in proximity of the correct
door compared to fish who learned individually. We consider
the implications of these results and further developments in
the Discussion.

2. MATERIALS AND METHODS

This section is organized as follows. First, we detail the
robotics-based experimental setup, focusing on both the
hardware and software. Then, we present the experimental
procedure, including the animals, the structure of the trials,
and the experimental groups used in the study. Finally, we
articulate our data analysis, consisting of a wide range of
behavioral and learning measures, along with multivariate
statistical models. All data and code for analysis are available
as Supplementary Information.

2.1. Robotics-Based Experimental Setup
2.1.1. Hardware
The experiment was performed in a glass tank (74 × 30 × 30
cm; length, width, and depth) supported by a custom frame built
with T-slot bars (McMaster, Robbinsville, NJ, USA), shown in
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Figure 1A. The bottom of the tank was raised 29 cm above floor
level to fit the Cartesian plotter used to maneuver the replica. To
minimize extraneous visual stimuli, dark curtains were mounted
around the tank. The bottom and side walls of the tank were
covered by white contact paper (McMaster, Robbinsville, NJ,
USA) to ease video tracking.

The tank was divided into three sections with lengths of
30, 34, and 10 cm using two partitions: a transparent partition
with two doors and a one-way glass partition, see Figure 1B.
The one-way glass partition, with thickness of 5.9 mm, was
used to house a shoal of 10 zebrafish, preventing them to see
the subject and interact with it. The lateral section delimited
by the partition with the doors is the focal compartment
where subject behavior was monitored. The middle section
was intended to maintain some distance between the subject
and the stimulus group, such that the subject would need
to explore the partition with the doors to gain proximity to
the group.

The doors were cut from a transparent acrylic sheet
(McMaster, Robbinsville, NJ, USA), and they were held in place
by acrilic guides glued to the main partition, so that they could
only move along the vertical direction. Each door was 1.5 body
lengths (BLs) wide to allow the subject and the replica to
smoothly transit through them. The doors were located at 1/4
and 3/4 of the width of the partition, symmetrically with respect
to the middle horizontal axis.

Each door was connected to a pulley via a transparent
fishing line (Berkley Trilene XT Extra Tough, Pure Fishing, Inc.,
Columbia, SC, USA), shown in Figure 1C. The pulleys (external
diameter of 13 cm and internal diameter of 12 cm) consisted of a
3D printed plastic plate and a servo motor (HS-5086 WP, Hitec
RCD USA, Inc., Poway, CA, USA). The motors were activated by
a microcontroller (Arduino Uno, Arduino Srl, Italy).

The replica was fabricated using a 3D-printed mold
(Ultimaker 2+, Ultimaker B.V., Geldermalsen, The Netherlands),
where we poured a flexible silicone mixture (Smooth-On, Inc.,
Macungie, PA, USA), see Figure 2. The use of silicone instead of
rigid material allows a more naturalistic bending of the replica’s
body during its motion through the experimental tank, which
could increase its biomimicry and acceptance by the live zebrafish
(Romano et al., 2017, 2019a). The replica was then painted with
silicone-based paint (Smooth-On, Inc., Macungie, PA,USA). The
replica was attached to a transparent rod, clamped to a 3D-
printed base, which, in turn, was magnetically connected to a
Cartesian plotter (XY Plotter Robot Kit, Makeblock Co., Ltd,
Shenzhen, China) to control its motion. The plotter was placed
below the tank to minimize acoustic and visual confounds. As
discussed in a separate, focused publication, this platform enables
realistic swimming motion of the robotic replica with accurate
positioning and fast reaction time (DeLellis et al., submitted).

Above the tank, we installed two cameras at a height of
137 cm from the floor, see Figure 1C. A Logitech C920 (Newark,

FIGURE 1 | Schematic of the experimental apparatus. (A) Overview of the experimental apparatus. (B) Detailed view of the experiment tank. (C) Detailed view of the

hardware. a Experimental tank; b 2D Cartesian plotter; c Aluminum frame made by T-slot bars; d Curtain; e Transparent cylinder and live zebrafish; f Zebrafish replica;

g and h Acrylic transparent doors; i One-way glass; j 12-inch light; k 36-inch light; l Pulley system; m Logitech webcam; n Flea3 camera; and o Fishing line.
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FIGURE 2 | Zebrafish replica and tracking system. (A) Zebrafish replica used

to study social learning. (B) A screen shot of the tracking system. The

magenta square represents the monitored region in front of one of the door.

The door would open upon detection of the subject within this region.

CA, USA) webcam was used for tracking the position of the
subject in the focal compartment with a resolution of 640 ×

480 pixels. A Flea3 FL3-U3-13E4C USB camera (FLIR Integrated
Imaging Solutions Inc., Richmond, BC, Canada), with a higher
resolution of 1280 × 1024 pixels was used to capture the entire
experimental tank and monitor the subject’s interaction with
the shoal, for reward timing. This camera was controlled by
software FlyCapture SDK (FLIR Integrated Imaging Solutions
Inc., Richmond, BC, Canada).

Uniform illumination was provided by two 36-inch, 30 W
white fluorescent lights (All-Glass Aquarium Co., Inc., Franklin,
WI, USA) mounted along the sides of the tank at a distance of
110 cm from the floor. A third light, a 12-inch fluorescent strip
light with a power of 8W (All-Glass AquariumCo., Inc, Franklin,
Wisconsin, USA), was used for additional illumination of the
stimulus region so that the group could be seen clearly by the
subject, see Figure 1B.

2.1.2. Software
The apparatus was operated from a PC using a custom software
developed in Matlab 2018a (The MathWorks, Inc., Natick, MA,
USA). Live tracking of the subject fish was based on Matlab
computer vision toolbox, including detection of moving objects
and localization of object centroids. At each tracking step, two
gray-scale frames were acquired by the Logitech C920 Pro camera
and clipped to a fixed region of interest containing the tank.
Frames were captured at 20Hz. The first frame was subtracted
from the second, yielding an image with outlines of the fish and, if
present, of the replica. This image was processed to remove noise,
fill in the outlines of the targets, and estimate the targets’ positions
from the centroids of the filled outlines. The fish and replica were
distinguished from each other by using the input to the Cartesian
plotter. If this procedure failed to locate the fish, a Kalman filter
was used to extrapolate from previous frames; in DeLellis et al.
(submitted), details of the tracking system are presented.

The tracking system also monitored a square region of 2
× 2 BL in front of the correct door to detect the presence
of the subject fish, see Figure 2. The latter could be opened
and closed by sending appropriate commands from the PC
to an Arduino Uno controller. The replica was controlled by
programming sequences of 2D coordinates and sending them
from the PC to another Arduino microcontroller. The sequence

was generated by implementing a stochastic mathematical model
of zebrafish swimming, whichwe have established in our previous
work (Mwaffo et al., 2015, 2017; Zienkiewicz et al., 2018).
The model captures the typical burst-and-coast swimming style
of zebrafish, where sudden tail beats are followed by longer
coasting phases. Details of the implementation are presented in
DeLellis et al. (submitted).

2.2. Experimental Procedure
2.2.1. Animals
Zebrafish were purchased from Carolina Biological Supply Co.
(Burlington, NC, USA). We used a total of 56 fish: 36 fish were
used as focal subjects, with a female/male ratio of 5:4 and an
average BL of around 3 cm. An equal number of focal subjects
(18) were used for each condition. The remaining 20 fish were
used to form the stimulus shoals, with an equal sex ratio and
similar average BL as the experimental subjects.

Animals were housed in 37.5 L (10 gallons) vivarium tanks
(Pentair Aquatic Eco-systems Locations, Cary, NC, USA) with
a density of no more than 10 fish per tank. Water temperature
and acidity were kept at 26◦ and 7.2 pH. Housing lights were
maintained for a period of 12 h light/12 h dark. The fish were fed
commercial flake food (Nutrafin max; Hagen Corp., Mansfield,
MA, USA) once per day around 7 PM.

After the fish habituated to the housing tank for at least 15
days, they were individually tagged with silicone-based visible
implant elastomers (VIEs) (Northwest Marine Technology Inc.,
Shaw Island, WA, USA). Before tagging, the colored part and
the curing agent of the VIE were mixed with a proportion of
10:1, and the fish was anesthetized to avoid unnecessary wounds.
The VIE was injected bilaterally on two locations near the head.
Tag colors were randomly selected and combined among white,
purple, blue, and yellow. After tagging, the fish were given at least
14 days of recovery in their housing tank.

2.2.2. Trial Structure
The experiment investigated whether zebrafish would learn to
open a door in order to join a shoal of 10 conspecifics, visible
behind a one-way glass, see Figure 1. Each subject was trained
for 20 trials either individually, where it would learn alone how to
open the correct door, or socially, where it could observe a robotic
zebrafish replica demonstrate door opening at the beginning of
each trial.

For the first 10 min of each trial, experimental subjects were
confined in the focal region via a transparent plastic cylinder
(diameter 8 cm). During this time, subjects in the social training
condition observed the robotic replica demonstrate door opening
as sketched in Figure 3, while subjects in the individual training
condition simply waited.

The demonstration by the replica entailed the following steps.
At the beginning of each trial, the replica interacted with the
focal subject for 30 s, following a trajectory generated via our
stochastic model of zebrafish locomotion (Mwaffo et al., 2015,
2017; Zienkiewicz et al., 2018) with an attraction point at the
center of the cylinder that housed the experimental subject.
This resulted in the replica swimming in the focal region,
while frequently approaching the subject and “wall kissing” the
cylinder. The replica then swam in a straight line to the correct
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FIGURE 3 | Illustration of the demonstration by the replica in the social training condition.

door (P1) and started tail beating for 3 s. As a result, the door
would open and the replica swam through (P2), before stopping
for 5 s while beating its tail. After these 5 s, the replica would go
back to the focal region (P3 and P4) to resume the interaction
with the subject for another 30 s. Then, it approached the wrong
door and station there, beating its tail for 3 s, but the door would
not open. After this cycle was repeated 6 times over 10 min, the
robotic replica transited through the correct door and move to
the final position (PF), facing the stimulus group until the subject
finished the task.

At the end of the first 10 min of each trial, subjects were
released from the cylinder and allowed to swim freely in the
focal compartment until they opened the door, within a time
limit of 30 min. The open door allowed subjects to access to the
central compartment, bringing focal subjects closer to the shoal of
conspecifics. The door would open if the focal subject stationed
in a 6 × 6 cm, unmarked zone in front of the correct door
(Figure 2) for at least 3 s out of any 5 s. The triggering process was
controlled automatically through the tracking system described
above. Once the door opened, the subject were rewarded by
being allowed to swim for 2 min close to the conspecifics in the
central compartment.

Learning was assessed by measuring changes in proximity
to the two doors across learning trials, as well as during three
30 min tests conducted before the first trial, after trial 10, and
after trial 20. During these three additional tests, both doors
remained closed, and no robotic replica was present. The subject
was confined in region A for 10 min and then released in region
B for an additional 10 min.

Correct functioning of the apparatus was tested prior to the
beginning the experiment, using several pilot fish not included in
the experiment. Sample videos of individual and social training
are provided as Supplementary Information. Some of these
trials along with a preliminary description of the experiment have
been presented in a recent meeting (Yang et al., 2019).

Upon inspecting the data, we discovered that performance
was consistently better when subjects had to swim to one of the
doors, and that this preferred door changed between the first two
batches, that is, depending on the orientation of the apparatus.
This pattern indicates the presence of an uncontrolled factor
external to the apparatus, which biased exploration toward one

of the two sides. We have thus coded all data to indicate whether
the correct door was, for each subject, on the overall preferred or
non-preferred side.

We discovered this bias after completing the individual
training condition, and we kept the same experimental layout
for the social training condition to ensure that the data were
comparable. We speculate that fish might have been attracted to
the familiar sound of the housing tanks, which were ∼2m from
the tank on the preferred side. In the future, we will orient the
apparatus so that the housing tanks will lie behind the shoal of
conspecifics, thus reinforcing their attractive effect rather than
introducing a side bias.

2.2.3. Experimental Groups
The experiment ran from June to September 2018. In each trial,
only one fish was trained. Each fish (a total number of 36) was
tested twice per day, once in a morning session between 9 a.m.
and 1 p.m., and once in an afternoon session between 2 and 6 p.m.
Each condition (individual or social training) was performed on
two batches of nine subjects each. The assignment of the correct
door was fully counterbalanced across conditions, batches, and
subjects. A consistent sex ratio of five females to four males was
used in each batch. In between trials, subjects were housed in
four tanks, keeping together individuals of the same sex that were
assigned the same correct door. Twenty more fish were used as
stimuli, split into two groups of 10 individuals each. In both
conditions, the stimulus group used in the morning sessions of
the first batch was used in the afternoon sessions of the second
batch, and vice-versa.

Before each training session, the tank was filled with new tap
water and a drop of coating (AcquaSafe Plus, Tetra, Blacksburg,
VA, USA) to neutralize pollutants, such as chlorine, chloramines,
and heavy metals, and strengthen bacterial beds. The water
height was always 10 cm and the temperature was maintained at
around 27◦ C.

2.3. Data Analysis
2.3.1. Behavioral and Learning Measures
The raw data collected in the experiments consisted of the
subject’s trajectory and the door triggering time acquired by the
real-time tracking system. From these data, we computed the
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parameters defined in Table 1 to measure behavior and learning.
The two main measures of learning are T, the time between the
release of the subject from the cylinder and the door opening
(right-censored at 30 min on unsuccessful trials) and preference
index (PI), defined as the time spent in proximity of the correct
door over the time spent in proximity of either door (that is,
within the region used to trigger door opening, see Figure 2). If
learning is successful, we expect T to decrease over trials and PI
to increase from a value close to 0.5 (no preference) to a value
above 0.5 (preference for the correct door).

To fully characterize zebrafish behavior, we also computed the
following measures:

• H, the entropy of the trajectory. If the subject learns to
approach and open the door efficiently, its swimming should
become less random and thus the entropy of the trajectory
should decrease.

• θC, correct heading, defined as the absolute value of the
angle between the current heading of the fish and the vector
from the fish to the center of the correct door. A value
of 0◦ indicates swimming directly toward the door, while
nonzero values indicate less precise swimming. This parameter

TABLE 1 | Behavioral and learning measures.

Symbol Description Formula

T Time between subject release and

door opening

—

τC Time spent in a 6× 6 cm region in

front of the correct door

—

τI Time spent in a 6× 6 cm region in

front of the incorrect door

—

Ti Time spent within 3 cm of wall i —

PI Preference index for the correct door τC/(τC + τI)

RI Reward index for associating with

conspecifics (reward value)

T1/
∑4

i=1 Ti

H Entropy of the trajectory −
∑100

i=1 Pi log2 Pi

θC Angle between the fish heading and

the direction to the correct door

vt Speed
‖xt+1−xt‖

1t

at Acceleration
‖vt+1−vt‖

1t

ωt Turn rate 1
1t

cos−1
(

vt+1·vt
‖vt+1‖‖vt‖

)

F Freezing time (time that the fish

moved <4 cm over a rolling window

of 2 s)

—

A Avoidance response for the door after

it opened

—

PIm Modified preference index for the

replica, held in place at the middle of

the tank width

—

In the Formula column, — indicates a primary variable derived directly from video tracking.

The walls are ordered such that wall 1 is the transparent partition separating regions A

and B. In the formula for H, we partitioned the 30 × 30 cm region B into a 10×10 square

grid, so that the length of each square is∼1 body length; therein, Pi is the fraction of video

frames in which the subject was in grid cell i. 1t is the interval between frames, that is,

0.05 s. For calculations, raw trajectory data were smoothed using a moving average with

a span of 4 frames, such that xt is the smoothed 2D position in the tank.

and the following ones were computed based on recorded
swimming trajectories.

• RI, the reward index that quantifies the subject’s preference for
swimming close to conspecifics vs. far from them.We used this
measure to evaluate whether the stimulus shoal was attractive
to the subjects, as assumed in our experimental setup.

• Locomotor activities, in terms of freezing time, average speed,
average angular speed, and average acceleration (Macrì et al.,
2017). We used these indices to evaluate whether exposure to
the replica altered the behavior of the animals.

• A, avoidance response for the door after it opened, scored by
evaluating whether the distance between the focal fish and the
center of the correct doors reached a value larger than two
body lengths within the 15 s following door opening. This
parameter was computed using the first and last training trial
for each fish, for a total of 72 videos overall.

• PIm, the modified preference index was used to measure the
preference of focal fish for the replica, which was stationed
between the two doors. We divided the tank into three
rectangular regions of equal area along its width, and we
computed this index as the fraction of time spent in the middle
region of the tank.

2.3.2. Statistical Model
Using linear mixed effects modeling, with subject as a random
factor, we related door triggering time (T), preference for the
correct door (PI), and the other variables in Table 1 to the
independent variables “condition” (individual or social training),
“correct door location,” and either “trial,” for data collected
during training trials, or “test,” for data collected during test
trials. These independent variables and their possible values are
summarized in Table 2. The independent variable “correct door
location” encapsulates the experimental bias that we observed
in our data. Although the correct door was counterbalanced
across subjects and the apparatus was rotated 180◦ in between the
two batches of each condition, fish consistently displayed better
performance when they had to swim to one of the two doors.

At first, a linear mixed full model with the global ID of
the fish as random effect was built. Non-significant interaction
terms were then discarded from the model. In order to correct
for false positive due to multiple testing, we took into account
that each independent variable entered two statistical tests
relative to test data (preference index and heading), and three
tests relative to training data (preference index, heading, and
door triggering time). Conservatively, we applied an alpha level
of 0.050/3 ≃ 0.017.

TABLE 2 | Independent variables used in data analysis. See the text for details.

Variable Type Values

Condition Unordered factor Individual, Social

Test Ordered factor 0, 10, 20

Training Numeric 1, . . . , 20

Correct door location Unordered factor Preferred side, Non-preferred side
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We also used Levene’s test to investigate differences
in variability of the dependent variables across different
combinations of independent variables.

Data analysis was conducted in Emacs Org-mode (Dominik,
2010; Schulte et al., 2012) and R version 3.5.0 (R Core Team,
2018) with packages car (Fox and Weisberg, 2011), data.table
(Dowle and Srinivasan, 2018), readxl (Wickham and Bryan,
2018), effects (Fox andWeisberg, 2018), and ascii (Hajage, 2009).

3. RESULTS

3.1. Test Data
Test trials provide the best assessment of differences between
social and individual training because they took place on days
in which no training occurred and because, contrary to training
trials, the replica was absent even in the social condition. Thus,
any difference between conditions would be attributable to
learning rather than to short-term influence of the replica, such
as on emotional response.

Table 3 shows type II ANOVA results for the preference
between correct and incorrect door (PI in Table 1). We found a

TABLE 3 | Type II ANOVA table for the preference index (PI) during test trials, as a

function of training condition, correct door location, and test.

χ
2 Df p

Condition 0.82 1 0.364

CorrectDoorLocation 1.44 1 0.230

Test 10.44 2 0.005

Condition:CorrectDoorLocation 0.91 1 0.339

Condition:Test 2.10 2 0.350

CorrectDoorLocation:Test 12.89 2 0.002

Condition:CorrectDoorLocation:Test 1.56 2 0.459

Here and in the remaining tables, we write “CorrectDoorLocation” to identify with a

single word the corresponding independent variable. Bold values indicate statistically

significant results.

main effect of test, showing an improvement from no preference
to about 62% preference for the correct door, and an interaction
between test and location of the correct door, illustrating that the
improvement over tests occurs primarily when the correct door
is on the preferred side of the tank, see Figure 4. There was no
effect of social vs. individual training, see Figure 4. There was also
no significant difference between the variability of the preference
across groups of subjects [Levene’s test: F(11, 96) = 1.13, P = 0.347].

A type II ANOVA of heading direction toward the correct
door (θC) yields similar results, see Table 4 and Figure 5. In
addition, we found a significant interaction between training
condition and correct door location, indicating less accurate
heading for the social training condition when the correct door
was on the preferred side of the tank, but not when the door was
on the non-preferred side.

Approaching conspecifics appeared to be an adequate
motivation for the focal fish, as they spent considerable time close
to the wall with the doors. Of all the time spent within one body
length (3 cm) of the walls, an average of 87% was spent near
this wall.

The modified preference index, assessing the preference of
the fish toward the replica, tended to decrease with the number

TABLE 4 | Type II ANOVA table of heading direction during test trials, as a function

of training condition, correct door location, and test.

χ
2 Df p

Condition 1.55 1 0.213

CorrectDoorLocation 0.39 1 0.535

Test 14.30 2 0.001

Condition:CorrectDoorLocation 8.02 1 0.005

Condition:Test 0.05 2 0.975

CorrectDoorLocation:Test 8.45 2 0.015

Condition:CorrectDoorLocation:Test 0.07 2 0.964

Bold values indicate statistically significant results.

FIGURE 4 | Change in preference index across test trials (PI in Table 1). Bars are 95% confidence intervals. (A) Comparison between preferred and non-preferred

correct door location. (B) Comparison between social and individual training.
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FIGURE 5 | Change in heading precision toward the correct door across test trials (θC in Table 1). Bars are 95% confidence intervals. (A) Comparison between

preferred and non-preferred correct door location. (B) Comparison between social and individual training.

of tests and did not show a significant variation between social
and individual training. Examining the effect of the number of
training sessions, we found that the tendency to explore the doors
increased after 10 training trials (Supplementary Information).

We further investigated whether other behavioral variables
differed across tests and conditions. Type II ANOVAs using the
dependent variables in Table 1 and the independent variables
in Table 2 generally failed to show differences between social
and individual training (Supplementary Information). We did
observe some non-specific changes in swimming behavior over
successive tests, consistent with decreased arousal as the fish
become acquainted with the testing tank, such as a decrease in
wall following and turn rate.

3.2. Training Data
We analyzed data from training trials similarly to data from
test trials, with the difference that the test dependent variable is
replaced by the trial variable in type II ANOVAs. Additionally,
we analyzed the time subjects took to trigger the opening of the
door (T). ANOVAof triggering time shows no significant effect of
social vs. individual condition (Table 5). Thus, zebrafish did not
learn to open the door faster, whether learning alone or with the
replica. Fish, however, did spend more time close to the correct
door as training progressed (Table 6), and showed increased
precision in heading toward the correct door (Table 7). Both
the preference for the correct door and the precision in heading
were stronger when the correct door was on the preferred side of
the tank.

Similarly to test data, we also found an interaction between
training condition and correct door location, in that subjects
trained with the replica did slightly worse than subjects trained
individually when the correct door was on the preferred side,
see Figures 6, 7. Overall, these results are consistent with the
focal fish being attracted to locations where it saw the robotic
replica, regardless of whether the replica successfully swam
through a door.

With respect to potentially aversive effect of the door opening
mechanism, we found that focal fish moved away in 80.6 %

of the trials when the door started opening (58 out of 72
trials, individual and social learning combined). As a result, we
cannot exclude that the door opening might induce a short-term
fear reaction on the subjects. The modified preference index,
assessing the preference of the fish toward the replica, showed
an interaction among the condition, trials, and correct door
location. Similar to the analysis of the test data, we found that the
tendency of the animals to explore the bottom and top third of the
tank where the doors resided increased with the training trials.

The other variables in Table 1 did not differ depending
on the training condition, but sometimes we found an
effect of the location of the correct door or an interaction
between the condition and location of the correct door. For
example, trajectory entropy was higher in the social training
condition, when the correct door was on the preferred side
(Condition×Correct door location interaction: χ2

(1)=43.59, P <

0.001), indicating more erratic swimming, consistently with the
analogous effect noted above for heading direction. Changes in
swimming behavior during training were consistent with those
observed during test trials, see above.

4. DISCUSSION

We established a novel experimental paradigm, which capitalizes
on recent advances in robotics and automated video-tracking to
afford fine control of experimental conditions in observational
learning. The proposed paradigm features a biologically-inspired
zebrafish replica that is controlled by a robotic platform along
trajectories, which demonstrate to experimental subjects a route
that would allow them to gain proximity to a group of
conspecifics. The route consisted of transiting through one of two
transparent doors, which automatically opened when the animal
spent sufficient time in its proximity. The setup can also be used
to investigate individual learning and, as we have done here, to
compare individual and social learning.

In addition to its technical innovations, the proposed
experimental paradigm appears highly motivating to zebrafish.
During the trials, subjects spent considerable time near the
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TABLE 5 | Type II ANOVA table for door triggering time (T ) during training trials, as

a function of training condition, trial, and correct door location.

χ
2 Df p

Condition 1.65 1 0.199

Trial 0.68 1 0.411

CorrectDoorLocation 8.88 1 0.003

Condition:Trial 0.06 1 0.799

Condition:CorrectDoorLocation 0.09 1 0.762

Trial:CorrectDoorLocation 2.82 1 0.093

Condition:Trial:CorrectDoorLocation 0.22 1 0.638

Bold values indicate statistically significant results.

transparent partition with the doors, and once they went
through the door they swam up to the conspecifics and
attempted to interact with them through the one-way glass.
While motivating, the setup did not elicit undesired stress
responses; experimental subjects swam normally and rarely froze
during trials (Supplementary Information). Thus, the proposed
robotics-based paradigm could constitute a promising avenue
for investigating learning in zebrafish, and can be extended to
other organisms.

In our experiment, zebrafish did not open the door faster over
successive trials, but they learned to preferentially approach the
area near the correct door, and they oriented toward this area
more over the course of the experiment. However, fish exposed
to the robotic demonstrator did not learn more quickly than
fish trained individually, despite having 120 experiences in which
the replica approached, opened, and swam through the correct
door, and an equal number of experiences in which the incorrect
door remained closed when the replica approached it. We thus
failed to show observational learning of approach to the correct
door location. The only effect of the replica on the subject we
found was to reduce the experimental bias toward one of the door
locations, which is consistent with the focal fish being attracted
to the replica. This failure should not be attributed to a ceiling
effect as the task proved difficult enough that social training could
have produced a substantial improvement in performance, over
the baseline provided by individual training.

Overall, our results suggest that zebrafish social learning may
depend on following conspecifics, and thus on experiencing
first-hand the relevant stimulus-response contingencies. This
hypothesis is consistent with existing demonstrations of social
learning in zebrafish (Lindeyer and Reader, 2010) and fish in
general (Brown and Laland, 2003), where either following or
approach responses were possible. More generally, the hypothesis
that social learning requires trying out the behavior to be learned,
rather than just observing it in others, is of great relevance
to current theory of social learning (Heyes, 2012b; Lind et al.,
2019). Previous work has shown that robots can be used to
influence the response of animal in longitudinal studies with
sequential exposure to robotic stimuli. For example, Locusts
(Locusta migratoria) learned to escape preferentially on a side,
following exposure to a robotic Gecko coming from the opposite
side (Romano et al., 2019b). In our case, the robot is used to

TABLE 6 | Type II ANOVA table for the for the preference index (PI) during training

trials, as a function of training condition, trial, and correct door location.

Chisq Df p

Condition 3.22 1 0.073

Trial 6.09 1 0.014

CorrectDoorLocation 33.09 1 <0.001

Condition:Trial 0.68 1 0.408

Condition:CorrectDoorLocation 6.45 1 0.011

Trial:CorrectDoorLocation 0.46 1 0.496

Condition:Trial:CorrectDoorLocation 0.02 1 0.885

Bold values indicate statistically significant results.

TABLE 7 | Type II ANOVA table of heading direction toward the correct door (θC)

during training trials, as a function of training condition, trial, and correct door

location.

Chisq Df p

Condition 0.13 1 0.723

Trial 9.52 1 0.002

CorrectDoorLocation 59.87 1 <0.001

Condition:Trial 3.19 1 0.074

Condition:CorrectDoorLocation 14.30 1 <0.001

Trial:CorrectDoorLocation 1.18 1 0.278

Condition:Trial:CorrectDoorLocation 1.16 1 0.281

Bold values indicate statistically significant results.

proxy a trained conspecific that acts as a demonstrator in a social
learning task, while in the study by Romano et al. (2019b) a
robotic predator served as aversive stimulus to condition the
subjects spatially. Our experimental paradigm could serve as
inspiration to design similar studies in other species.

The work that most closely resembles ours is, perhaps, that
of Dugatkin and coworkers on mate choice copying in female
guppies (Dugatkin and Godin, 1992, 1993; Godin et al., 2005). In
these experiments, a female subject could observe another female
approaching one of two males, which resulted in the subject
subsequently preferring to approach the same male. This result
is seemingly at odds with ours, for which several explanations
are possible. First, the capacity for observational learning may
be dependent on which behavior system is engaged. Because
a single mate choice is likely more important for fitness than
a single choice of swimming direction, mate choice decisions
may have evolved to take into account social information to a
larger extent [indeed, Dugatkin and Godin (1993) showed that
it is mainly inexperienced females that copy the preferences of
others]. Second, it is possible that the subjects of Dugatkin and
coworkers learned a preference for a stimulus (a male) rather
than an approach response, which then resulted in approach
because of a hardwired predisposition to approach males. In our
experiment, however, there was no conspicuous visual stimulus
for which a preference could be learned. Lastly, the learning
observed by Dugatkin and coworkers may have been driven
by responses performed during the observation phase. Female
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FIGURE 6 | Change in preference index across training trials (PI in Table 1). Bars are standard errors of the mean. (A) Preferred correct door location. (B)

Non-preferred correct door location.

FIGURE 7 | Change in heading precision toward the correct door across training trials (θC in Table 1). Bars are standard errors of the mean. (A) Preferred correct

door location. (B) Non-preferred correct door location.

subjects, in fact, had to choose between two males at the
opposite ends of a tank. Observing the female demonstrator
would thus have biased the subject to turn toward one end of
the tank, which may have been instrumental in establishing the
preference for swimming in that direction once this became
possible. In our experimental setup, on the other hand, the
two doors were both in front of the subject, and the scope
for orienting differentially toward one or the other was much
more limited.

Related work by Webster and Laland involved food,
which could offer a more motivating stimulus than a shoal
of conspecifics. In these studies, the demonstrator also
displayed feeding behavior, which is likely to convey additional
information, compared to swimming toward a particular
location. Furthermore, with food patches, Webster and Laland
(2017) demonstrated the ability of both social and non-social
species to use social information in the determination of the
better patch. Nine-spined Stickleback (Pungitius pungitius) were
shown to be more likely to travel toward the location where they
had previously observed other individuals feeding (Webster and
Laland, 2015), while social learning was more likely observed
when predation risk was higher inMinnows (Phoxinus phoxinus)
(Webster and Laland, 2008). The difference in results between

our experiment and the above-mentioned studies suggests many
opportunities for further investigation.

Additional caution in drawing conclusions about zebrafish
social learning is advised given that our study is the first attempt
to disentangle observational learning from following, and given
the novelty of our experimental paradigm. For example, we
cannot exclude that a live zebrafish would have been a more
effective demonstrator, although in previous work we established
that zebrafish associate with the replica and with live conspecifics
to similar extents, when given the choice (Ruberto et al., 2016,
2017; Kim et al., 2018). The replica also demonstrated the door-
opening behavior with much more precision and consistency
than a live fish could have done. Our task, however, might have
been more difficult than other tasks in the zebrafish learning
literature, since it required experimental subjects to approach
a small area and station there for 3 s out of any 5 s window.
This behavior is more complex than behaviors investigated in
other studies, in which subjects simply had to swim in one or
another direction without a time requirement (Bilotta et al.,
2005; Xu et al., 2007; Pather and Gerlai, 2009; Sison and Gerlai,
2010; Morin et al., 2013). Our task also lacked salient visual
cues distinguishing the correct door from the incorrect one,
although previous work suggests that zebrafish can improve
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substantially in a spatial discrimination in fewer than 10 trials
(Arthur and Levin, 2001). Finally, our task required the fish to
remember which door the replica had swam through, although
this memory had to be maintained only for a few seconds. To
evaluate whether observational learning could be more effective
in different circumstances, we will perform further experiments
with visually marked doors, a reduced time to trigger door
opening, and a shorter interval between the replica crossing
the door and the subject being released. We will also evaluate
whether allowing zebrafish to follow the robotic replica leads to
better learning.

While this is the first robotics-based setup for zebrafish
learning, a few previous efforts have explored other automation
techniques. For example, Pather and Gerlai (2009) utilized
computer-animated images of zebrafish as rewarding stimuli in
a shuttle box task, while (Hicks et al., 2006) used real-time
video tracking to deliver rewarding or punishing stimuli, in the
form of a change in illumination and brief electric shock, Gerlai
et al. (2009) showed that zebrafish react to computerized images
of a predator, and Fangmeier et al. (2018) demonstrated the
possibility to use automated video stimulus to quantify behavioral
traits in zebrafish. Here, we took a significant step forward by
combining engineered stimuli with real-time control, affording
the possibility of maneuvering them in the entire experimental
tank. For example, compared to the experimental modifications
in Hicks et al. (2006), our approach offers an additional
independent variable to explore social learning, by enabling,
for the first time, high-precision demonstration through a
biologically-inspired replica.

The potentially negative effects on learning of the door
opening mechanism and the presence of the robot seem to be
limited. Although focal fish might have initially displayed an
aversive response toward the door as it started opening, they
eventually went through the door to interact with the fish shoal.
The short-term avoidance reaction is likely due to the mechanical
noise from the doormovement and the concurrent water motion,
which did not last long enough to significantly affect their
motivation to join the shoal. The modified preference index
significantly decreased in both training and test trials, indicating
that, over time, the focal fish increasingly preferred to spend time
in the vicinity of the doors rather than close to the replica that
was visible through the partition. Thus, the potential attraction
toward the replica did not significantly reduce fish motivation to
explore the doors.

In conclusion, we have presented a novel robotics-based
experimental paradigm that enables us to study both social and
individual learning in zebrafish, with many possible variations
in experimental parameters. Beyond zebrafish, the setup can be
adapted to investigate social learning in other animal species
for which ethorobotics-based approaches have been previously
explored, including, other fish species, such as guppies (Landgraf
et al., 2016; Bierbach et al., 2018a) and mollies (Bierbach
et al., 2018b), insects, such as bees (Landgraf et al., 2018) and
cockroaches (Halloy et al., 2007), and mammals, such as tree

squirrels (Partan et al., 2009), dogs (Kubinyi et al., 2004), and
rats (Takanishi et al., 1998), and even to invertebrates such as
cephalopods, for example by using prey items as motivating
stimulus rather than a shoal of conspecifics. The data presented
above suggest that our paradigm has the potential to contribute
new knowledge to the experimental analysis of learning in fish
and other aquatic animals.
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This work presents a review and discussion of the challenges that must be solved in order

to successfully develop swarms of Micro Air Vehicles (MAVs) for real world operations.

From the discussion, we extract constraints and links that relate the local level MAV

capabilities to the global operations of the swarm. These should be taken into account

when designing swarm behaviors in order to maximize the utility of the group. At the

lowest level, each MAV should operate safely. Robustness is often hailed as a pillar of

swarm robotics, and a minimum level of local reliability is needed for it to propagate to the

global level. An MAV must be capable of autonomous navigation within an environment

with sufficient trustworthiness before the system can be scaled up. Once the operations

of the single MAV are sufficiently secured for a task, the subsequent challenge is to allow

the MAVs to sense one another within a neighborhood of interest. Relative localization of

neighbors is a fundamental part of self-organizing robotic systems, enabling behaviors

ranging from basic relative collision avoidance to higher level coordination. This ability,

at times taken for granted, also must be sufficiently reliable. Moreover, herein lies a

constraint: the design choice of the relative localization sensor has a direct link to the

behaviors that the swarm can (and should) perform. Vision-based systems, for instance,

force MAVs to fly within the field of view of their camera. Range or communication-based

solutions, alternatively, provide omni-directional relative localization, yet can be victim to

unobservable conditions under certain flight behaviors, such as parallel flight, and require

constant relative excitation. At the swarm level, the final outcome is thus intrinsically

influenced by the on-board abilities and sensors of the individual. The real-world behavior

and operations of an MAV swarm intrinsically follow in a bottom-up fashion as a result

of the local level limitations in cognition, relative knowledge, communication, power,

and safety. Taking these local limitations into account when designing a global swarm

behavior is key in order to take full advantage of the system, enabling local limitations to

become true strengths of the swarm.
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1. INTRODUCTION

Micro Air Vehicles (MAVs), or “small drones,” are becoming
commonplace in the modern world. The term refers to
small, light-weight, flying robots. Several MAV designs exist,
including multirotors (Kumar and Michael, 2012), flapping wing
(Michelson and Reece, 1998; Wood et al., 2013; de Croon et al.,
2016), fixed wing (Green and Oh, 2006), morphing designs
(Falanga et al., 2019b), or “hybrid” vehicles (Itasse et al., 2011).
Of these, quadrotors have enjoyed the spotlight due to their high
maneuverability, their ability to take-off vertically (as opposed to
most fixed wingMAVs, for instance), and their relative simplicity
in design (Gupte et al., 2012; Kumar and Michael, 2012). MAVs
can be used for surveillance and mapping (Mohr and Fitzpatrick,
2008; Scaramuzza et al., 2014; Saska et al., 2016b), infrastructure
inspection (Sa and Corke, 2014), load transport and delivery
(Palunko et al., 2012), or construction (Lindsey et al., 2012;
Augugliaro et al., 2014). Such applications are particularly useful
in areas that are not easily accessible by humans, like forests or
disaster sites (Alexis et al., 2009; Achtelik et al., 2012). Smaller and
lighter designs push the boundaries of their applications further.
Aside from the asset of increased portability, smaller MAVs
can also navigate through tighter spaces, such as narrow indoor
environments with higher agility (Mohr and Fitzpatrick, 2008).
They also cause less damage to their surroundings (including
people) in the event of a collision, making them intrinsically safer
tools (Kushleyev et al., 2013).

Unfortunately, smaller size comes at the expense of more
limited capabilities. The interplay between limited flight time,
limited sensing, and limited power hinder an MAV from
performing grander tasks on its own. This has created a strong
interest in developing MAV swarms (Yang et al., 2018). The
paradigm of swarm robotics aims to transcend the limitations
of a single robot by enabling cooperation in larger teams.
This is inspired by the animal kingdom, where animals and
insects have been observed to unite forces toward a common
goal that is otherwise too complex or challenging for the lone
individual (Garnier et al., 2007). Using several robots at once can
bring several advantages and possibilities, such as: redundancy,
faster task completion due to parallelization, or the execution
of collaborative tasks (Martinoli and Easton, 2003; Trianni and
Campo, 2015; Nedjah and Junior, 2019). The control of robotic
swarms is envisioned to be fully distributed. The individual
robots perceive and process their environment locally and then
act accordingly without global awareness or direct awareness
of the final goal of the swarm. Nevertheless, by means of
collaboration, the robots can achieve an objective that they would
not have been able to achieve by themselves. As they say: there is
strength in numbers.

It is easy to imagine swarms of MAVs jointly carrying a load
that is too heavy for a single one to lift, or persistently exploring
an area without interruption. As is often the case, however,
putting such visions into practice is another story altogether.
Developing self-organizing swarms of MAVs in the real world
is a multi-disciplinary challenge coarsely divided in two main
aspects. One aspect is that of the individual MAV design, where
the local abilities of a single MAV are defined. The second aspect
is the swarm design, whereby we need to develop controllers with

which the global goal can be efficiently achieved, autonomously,
by the swarm. To make matters more complicated, the two are
not decoupled. As we shall explore in this paper, there exist
fundamental links between the local limitations of an MAV and
the behaviors that a swarm of MAVs could, or should, execute as
a result. Vice versa, in order to realize certain swarm behaviors,
there are local requirements that the individualMAVsmust meet.
This bond between the local and the global cannot be ignored if
MAV swarms are to be brought to the real world. In this paper,
we aim to reconcile these two aspects and present a discussion
of the fundamental challenges and constraints linking local MAV
properties and global swarm behaviors.

2. CO-DEPENDENCE OF SWARM DESIGN
AND INDIVIDUAL MAV DESIGN

Let us begin from the primary challenge of swarm robotics: to
design local controllers that successfully lead to global swarm
behaviors (Şahin et al., 2008). Concerning MAVs, these global
behaviors include, but are not limited to: collaborative transport,
collaborative construction, distributed sensing, collaborative
object manipulation, and parallelized exploration and mapping
of environments. Albeit the individual MAV may be limited
in its ability to successfully perform these tasks (for instance,
as areas get larger or loads get heavier), they can be tackled
by collaborating in a swarm. Generally, swarms of robots are
expected to feature the following inherent advantages (Şahin
et al., 2008; Brambilla et al., 2013):

• Robustness: The swarm is robust to the loss or failure of
individual robots.

• Flexibility: The swarm can reconfigure to tackle different
tasks.

• Scalability: The swarm can grow and shrink in size depending
on the needs of the global task.

When designing a swarm of MAVs, we must then ask ourselves:
how can we design a swarm that is robust, flexible, and scalable?
It is true that these properties pertain to the swarm rather than
the individual, but if the swarm is composed of individual units,
then it follows that they must also be present (although perhaps
not always apparent) at the local level. We cannot use individual
robots that are not robust and merely expect the swarm as a
whole to be immune or tolerant to individual failures (Bjerknes
and Winfield, 2013). If there is a high probability of errors at
the local level, such as erroneous observations, poorly executed
commands, or failure of a unit, then this may have a repercussion
on the swarm’s performance; an effect that Bjerknes andWinfield
(2013) have shown can worsen with the number of robots in a
swarm. There is a point after which the individual robots are too
unreliable and the swarm can fail to achieve its goal, or it can be
shown to be outperformed by smaller teams with more reliable
units (Stancliff et al., 2006) or even by a single reliable system
(Engelen et al., 2014). The further complication with MAVs is
that local failures do not remain local, but are likely to cause
collisions and damages to other nearby MAVs and/or objects.
For some tasks, such as collective transport, the impact may be
even more severe as the MAVs are mechanically attached to the
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load (Tagliabue et al., 2019). It thus follows that, to develop a
robust swarm for real world deployment, we must also ensure
robustness at the local level.

Of equal importance is to make sure that the robots have
the satisfactory tools and sensors to carry out their individual
components of a global task. The more capable the sensors
are, the more likely it is that the swarm can be flexible
and adjust to different tasks or unexpected changes. When
performing pure swarm intelligence research, we can afford to
abstract away from lower level issues (Brutschy et al., 2015).
For instance, in a study on making a decision about selecting
a new location for a swarm’s nest, one can abstract away from
actually evaluating the quality of a nest location, and instead
focus the analysis on a particular aspect of the system, such
as the decision making process. However, when dealing with
real-world applications, this is not an option. If we want to
develop nest selection capabilities for a swarm in the real world,
each robot should be capable of: flying and operating safely,
recognizing the existence of a site, evaluating the quality of a
site with a certain reliability, exchanging this information with its
neighbors, and more. All these lower level requirements need to
be appropriately realized for the global level outcome to emerge,
or otherwise need to be accepted as limitations of the system.
The way in which they are implemented shape the final behavior
of the swarm.

Last but not least, unless properly accounted for, there
are scalability problems that may also occur as the swarm
grows in size. Examples of issues are: a congested airspace
whereby the MAVs are unable to adhere to safety distances,
a cluttered visual environment as a result of several MAVs
(thus obstructing the task), or poor connectivity as a result of
low-range communication capabilities. To achieve scalability,
the MAV design must be such that these properties are
appropriately accommodated, from the appropriate hardware
design all the way to the higher level controllers which make up
the swarm behavior.

2.1. The Challenge of Local Sensing and
Control
When flying several MAVs at once, the control architecture can
be of two types: (1) centralized, or (2) decentralized. In the
centralized case, all MAVs in a swarm are controlled by a single
computer. This “omniscient” entity knows the relevant states
of all MAVs and can (pre-)plan their actions accordingly. The
planning can be done a-priori and/or online. In the decentralized
case, the MAVs make their decisions locally.

A second dichotomy can also be defined for how the MAVs
sense their environment: (1) using external position sensing,
or (2) locally. External positioning is typically achieved with a
Global Navigation Satellite System (GNSS) or with a Motion
Capture System (MCS), depending on whether the MAVs are
flying outdoors or indoors, respectively. Alternatively, the latter
only relies on the sensors that are on-board of the MAV.

Currently, the combination of centralized architecture and
external positioning have achieved the highest stage of maturity,
allowing for flights with several MAVs. Kushleyev et al. (2013)

showed a swarm of 20micro quadrotors that could re-organize in
several formations. Lindsey et al. (2012), Augugliaro et al. (2014),
and Mirjan et al. (2016) developed impressive collaborative
construction schemes using a team of MAVs. Preiss et al.
(2017) showcased “Crazyswarm,” an indoor display of 49 small
quadrotors flying together. The strategy of centralized planning
and external positioning has also attracted large industry
investments, leading to shows with record-breaking number of
MAVs flying simultaneously. In 2015, Intel and Ars Electronica
Futurelab first flew 100MAVs, making a Guinness World Record
(Swatman, 2016a). In 2016, Intel beat its own record by flying
500 MAVs simultaneously (Swatman, 2016b). In 2018, EHang
claimed the record with 1,374 MAVs flying above the city
of Xi’an, China (Cadell, 2018). In 2019, Intel reclaimed the
title by flying 2,066 MAVs (Guinness World Records, 2018)
outdoors. Meanwhile, the record for the most MAVs flying
indoors (from a single computer) was recently broken by BT with
160 MAVs (Guinness World Records, 2019).

Without external positioning systems or centralized
planning/control, the problem of flying several MAVs at
once becomes more challenging. This is because: (1) the MAVs
have to rely only on on-board perception, or (2) they have to
make local decisions without the benefit of global planning, or
(3) both. It is then not surprising that, as shown in Figure 1,
the swarms that have been flown without external positioning
and/or centralized control are significantly smaller. When the
control is decentralized, but the MAVs benefit from an external
positioning system, or vice versa, the largest swarms are in the
dozens (Hauert et al., 2011; Vásárhelyi et al., 2018; Weinstein
et al., 2018). For swarms featuring both local perception and
distributed control, the highest numbers are currently in the
single digits (Nägeli et al., 2014; Guo et al., 2017; Saska et al.,
2017; McGuire et al., 2019). Despite the fact that these numbers
have been increasing in the last few years, they are still lower, as
the operations are shifted away from external system and toward
on-board perception and control. If the past is any indication
for the future, we expect that: (1) the numbers of drones will
keep increasing for all cases, and (2) businesses will take over the
records as the technologies for on-board decision making and
perception become more mature.

Although we can fly a high number of MAVs when using
centralized planning and external positioning, swarming is
not just a numbers game. Flying with many MAVs does
not automatically imply that we are achieving the benefits of
swarm robotics (Hamann, 2018). A centralized system relies
on a main computer to take all decisions. This means that
a prompt online re-planning is needed in order to achieve
robustness and flexibility. This re-planning grows in complexity
with the size of the swarm, making the system unscalable.
Moreover, the central computer represents a single point
of failure. Instead, a swarm adopts a distributed strategy
whereby each robot takes a decision independently. The
fact that each MAV needs to take its own decisions, and
additionally, if the MAVs do not rely on external infrastructure,
introduces a new layer of difficulty. However, this is also
what brings new advantages: redundancy, scalability, and
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FIGURE 1 | Scatter plot of the number of MAVs that have been flown in sampled state of the art studies discussed in this paper. The combination of centralized

planning/control with external positioning has allowed to fly significantly larger swarms. The numbers are lower for the works featuring decentralized control with

external positioning, or centralized control with local sensing. The works that use both decentralized control and do not rely on external positioning can be seen to

feature the fewest MAVs due to the increased complexity of the control and perception task.

adaptability to changes (Şahin, 2005; Bonabeau and Théraulaz,
2008)1.

When we analyze swarms of MAVs with local on-board
sensing and control, we can observe two trends: (1) As the size
of the swarm increases, the relative knowledge that each MAV
will have of its global environment, which includes the remainder
of the swarm, decreases (Bouffanais, 2016); (2) as the individual
MAV’s size and/or mass decreases, its capability to sense its own
local environment decreases (Kumar and Michael, 2012). This
creates an interesting challenge. On the one hand, we aim to
design smaller, lighter, cheaper, and more efficient MAVs. On the
other hand, as we make these MAVs smaller, the gap between
the microscopic and macroscopic widens further. Designing the
swarm becomes a more challenging task because each MAV has
less information about its environment and is also less capable
to act on it. This can be generalized to other robotic platforms
as well, but MAVs feature the increased difficulty of having a
tightly bound relationship between their on-board capabilities,
their dynamics, their processing power, and their sensing (Chung
et al., 2018). This is sometimes referred to as the SWaP (Size,
Weight, and Power) trade-off (Mahony et al., 2012; Liu et al.,
2018). The relationship is often non-linear. For instance, if we
add a sensor that results in 5%more power usage, it does not only
spend more energy per second, but it also affects the total energy
that can be extracted from the battery as it will be operating in a
different regime (de Croon et al., 2016). For many MAVs, grams
and milliwatts matter. This makes the design of autonomous
decentralized swarms of MAVs a more unique challenge.

2.2. Overview of Design Challenges
Throughout the Design Chain
Throughout this paper, we shall review the state of the art inMAV
technology from the swarm robotics perspective. To facilitate

1Of course, flying several MAVs with a centralized controller has its own

challenges, which we do not mean to undermine. We only mean that it appears

that these methods are at a more mature stage with respect to self-organized

approaches, which is the focus of this article.

our discussion, we will break down the challenges for the design
and control of an MAV swarm in the following four levels, from
“local” to “global.”

1. MAV design. This defines the processing power, flight
time, dynamics, and capabilities of the single MAV. Most
importantly from a swarm engineering perspective, it defines
the sensory information available on each unit, from which
it can establish its view of the world. This is discussed
in section 3.

2. Local ego-state estimation and control. At the lowest level, an
MAVmust be capable of controlling its motion with sufficient
accuracy. This lower level layer handles basic flight operations
of the MAV. This includes attitude control, height control,
and velocity estimation and control. Moreover, the MAV
should be capable of safely navigating in its environment.
Minimally, it should detect and avoid potential obstacles. The
challenges and state of the art for these methods are discussed
in section 4.

3. Intra-swarm relative sensing and avoidance. There are two
key enabling technologies for swarming. The first is the
knowledge on (the location of) nearby neighbors. This is
particularly important for MAV swarms as it not only enables
several higher level swarming behaviors, but it also ensures
that MAVs do not collide with one another in mid-air.
The second enabling technology is communication between
MAVs, such that they can share information and thus expand
their knowledge of the environment via their neighborhood.
These are is discussed in section 5.

4. Swarm behavior. This is the higher level control policy that the
robots follow to generate the global swarm behavior. Examples
of higher level controllers in swarms range from attraction
and repulsion forces for flocking (Gazi and Passino, 2002;
Vásárhelyi et al., 2018) to neural networks for aggregation,
dispersion, or homing (Duarte et al., 2016). We discuss how
MAV swarm behaviors can be designed in section 6.

Other similar taxonomies have been defined. Floreano and
Wood (2015) describe three levels of robotic cognition:
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sensory-motor autonomy, reactive autonomy, and cognitive
autonomy. Meanwhile, de Croon et al. (2016) divide the control
process for autonomous flight into four levels: attitude control,
height control, collision avoidance, and navigation. Although the
taxonomies above are conceptually similar (generally going from
low level sensing and control to a higher level of cognition), the
re-definition that we provide here is designed to better organize
our discussion within the context of swarm robotics. Moreover,
we also include the design of the MAV within the chain. As we
will explain in this manuscript, this has a fundamental impact on
the higher level layers.

The four stages that have been defined have an increasing level
of abstraction. The lower levels enable the robustness, flexibility,
and scalability properties expected at the higher level, while the
higher levels dictate, accommodate, and make the most out of
the capabilities set at the lower level. From a more systems
perspective, the MAV design poses constraints on what the
higher level controllers can expect to achieve, while the higher
level controllers create requirements that the MAV must be able
to fulfill. A simplified view of the flow of requirements and
constraints is shown in Figure 2.

Throughout the remainder of this paper, as we discuss the
state of the art at each level, we will highlight the major
constraints that flow upwards and the requirements that flow
downwards. Naturally, each sub-topic that we will treat features
a plethora of solutions, challenges, and methods, each deserving
of a review paper of its own. It is beyond the scope (and
probably far beyond any acceptable word limit, too) to present an
exhaustive review about each topic. Instead, we keep our focus to
highlighting themainmethodologies and how they can be used to
design swarms of MAVs. Where possible, we will refer the reader
to more in-depth reviews on a specific topic.

3. MAV DESIGN

The differentiating challenge faced by a flying robot, namely
(and somewhat trivially) the fact that it has to carry its own
mass around, creates a strong design driver toward minimalism.
Despite battery mass consisting of up to 20–30% of the total
system mass, the flight time of quadrotor MAVs still remains
limited to the order of magnitude of minutes (Kumar and
Michael, 2012; Mulgaonkar et al., 2014; Oleynikova et al., 2015).
To increase the carrying capabilities of an MAV, enabling it to
carry more/better sensors, processors, or actuators, while keeping
flight time constant, means that the size of the battery should also
increase. In turn, this leads to a new increase in mass, and so
on. This type of spiral, often referred to as the “snowball effect,”
is a well-known issue for the design of any flying vehicle, from
MAVs to trans-Atlantic airliners (Obert, 2009; Lammering et al.,
2012; Voskuijl et al., 2018). It then becomes paramount for an
MAV design to be as minimalist as possible relative to its task,
such that it may fulfill the mission requirements with a minimum
mass (or, at the very least, there is a trade-off to be considered).
This design driver has been taken to the extreme and has lead to
the development of miniature MAV systems, popular examples
of which include the Ladybird drone and the Crazyflie (Lehnert

and Corke, 2013; Remes et al., 2014; Giernacki et al., 2017). These
MAVs have a mass of <50 g, making them attractive due to their
low cost and the fact that they are safer to operate around people.
This makes them appealing for swarming, especially in indoor
environments (Preiss et al., 2017).

A substantial body of literature already exists on single MAV
design, the specifics of which largely vary depending on the
type of MAV in question. We refer the reader to the works of
Mulgaonkar et al. (2014) and Floreano andWood (2015) and the
sources therein for more details. From the swarming perspective,
it is important to understand that, independently of the type
of MAV in question, the following constraints are intertwined
during the design phase: (1) flight time, (2) on-board sensing,
(3) on-board processing power, and (4) dynamics. This means
that the choice of MAV directly constrains the application as well
as the swarming behavior that can be achieved (or, vice versa, a
desired swarming behavior requires a specific type of MAV). For
example, fixed wing MAVs benefit from longer autonomy. This
makes them ideal candidates for long term operations, and also
give the operators more time to launch an entire fleet and replace
members with low batteries (Chung et al., 2016). However, fixed
wingMAVs also have limited agility in comparison to quadrotors
or flapping wing MAVs. The latter, for instance, can have a very
high agility (Karásek et al., 2018), but also comes with more
limited endurance and payload constraints (Olejnik et al., 2019).
The MAV design impacts the number and type of sensors that
can be taken on-board. It can also impact how these sensors are
positioned and their eventual disturbances and noise. In turn,
this affects the local sensing and control properties of the MAV
and can also impact its ability to sense neighbors and operate in
a team more effectively. We will return to this where relevant in
the next chapters, whereby we discuss how an MAV can estimate
and control its motion, sense its neighbors, and navigate in an
environment together with the rest of the swarm.

A special note is made to designs that are intended for
collaboration. Oung and D’Andrea (2011) introduced the
Distributed Flight Array, a design whereby multiple single rotors
can attach and detach from each other to form larger multi-
rotors. More recently, Saldaña et al. (2018) introduced the
ModQuad: a quadrotor with a magnetic frame designed for self-
assembly with its neighbors. This design provides a solution
for collaborative transport by creating a more powerful rigid
structure with several drones. Gabrich et al. (2018) have shown
how the ModQuad design can be used to form an aerial gripper.
Because of the frame design, one of the difficulties of the
ModQuad was in the disassembly back to individual quadrotors.
This was tackled with a new frame design which enabled the
quadrotors to disassemble by moving away from each other with
a sufficiently high roll/pitch angle (Saldaña et al., 2019).

4. LOCAL EGO-STATE ESTIMATION AND
CONTROL

The primary objective for a single MAV operating in a swarm
is to remain in flight and perform higher level tasks with a
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FIGURE 2 | Generalized depiction of the flow of requirements and constraints for the design of MAV swarms. The lower level design choices create constraints on the

higher level properties of the swarm. Higher level design choices create requirements for the lower levels, down to the physical design of the MAV. Note that, for the

specific case, the flow of requirements and constraints is likely to be more intricate than this picture makes it out to be. However, the general idea remains.

given accuracy. This requires a robust estimation of the on-
board state as well as robust lower level control, preferably while
minimizing the size, power, and processing required. The design
choices made here dictate the accuracy (i.e., noise, bias, and
disturbances) with which each MAV will know its own state, as
well as which variables the state is actually comprised of. In turn,
this affects the type of maneuvers and actions that an MAV can
execute. For instance, aggressive flight maneuvers likely require
relatively accurate real-time state estimation (Bry et al., 2015). Of
equal importance are the considerations for the processing power
that remains for higher level tasks. While it can be attractive to
implement increasingly advanced algorithms to achieve a more
reliable ego-state estimate, these can be too computationally
expensive to run on-board even by modern standards (Ghadiok
et al., 2012; Schauwecker and Zell, 2014). This limits the MAV,
as processing power is diverted from tasks at a higher level of
cognition. If not properly handled, it can lead to sub-optimal final
performances by the MAVs and by the swarm2.

4.1. Low-Level State Estimation and
Control
This section outlines the main sensors and methods that can
be used by MAVs to measure their on-board states, laying
the foundations for our swarm-focused discussion in later
sections.We organize the discussion by focusing on the following
parameters: attitude (section 4.1.1), velocity and odometry
(section 4.1.2), and height and altitude (section 4.1.3). Moreover,
we restrict our overview to on-board sensing, as this is in line with
the swarming philosophy and the relevant applications.

4.1.1. Attitude
It is essential for an MAV to estimate and control its own
attitude in order to control its flight (Beard, 2007; Bouabdallah
and Siegwart, 2007). Accelerations and angular rotation rates are
typically measured through the on-board Inertial Measurement
Unit (IMU) sensor (Bouabdallah et al., 2004; Gupte et al.,
2012). The IMU measurements can be fused together to both

2When we relate this to nature, then low-level control and state-estimation seldom

requires large “computational” efforts by the individual animal. Rather, they

eventually become second nature (Rasmussen, 1983). The real focus is directed

to higher level tasks.

estimate and control the attitude of an MAV (Shen et al., 2011;
Schauwecker et al., 2012; Macdonald et al., 2014; Mulgaonkar
et al., 2015). Additionally to the IMU, MAVs equipped with
cameras can also use it to infer the attitude with respect to
certain reference features or planar surfaces, as in Schauwecker
and Zell (2014). Thurrowgood et al. (2009), Dusha et al. (2011),
de Croon et al. (2012), and Carrio et al. (2018) estimate the
roll and pitch angles of an MAV based on the horizon line
(outdoors). Themeasurements from the IMU and vision can then
be filtered together to improve the estimate as well as filter out the
accumulating bias from the IMU (Martinelli, 2011). Once known,
attitude control can be achieved with a variety of controllers. For
a recent survey that treats the topic of attitude control in more
detail, we refer the reader to the review by Nascimento and Saska
(2019). Of particular interest to swarming are controllers that can
provide robustness to disturbances or mishaps. One interesting
example is the scheme devised by Faessler et al. (2015), which can
automatically re-initialize the leveled flight of anMAV inmid-air.

Measuring and controlling the heading (for instance, with
respect to North) is not strictly needed for basic flight. However,
it can be an enabler for collective motion by providing a
common reference that can be measured locally by all MAVs
(Flocchini et al., 2008). Heading with respect to North can be
measured with a magnetometer, which is a common component
for MAVs (Beard, 2007). A main limitation of this sensor is
that it is highly sensitive to disturbances in the environment
(Afzal et al., 2011). The disturbances can be corrected for with
the use of other attitude sensors. For example, Pascoal et al.
(2000) fused gyroscope measurements with the magnetometer
in order to filter out disturbances from the magnetometer while
also reducing the noise from the gyroscope. Another sensor that
has been explored is the celestial compass, which extracts the
orientation based on the Sun (Jung et al., 2013; Dupeyroux et al.,
2019). Although this sensor is not subject to electro-magnetic
disturbances, it is limited to outdoor scenarios and performs best
under a clear sky, which may also not always be the case.

4.1.2. Velocity and Odometry
A tuned sensor fusion filter with an accurate prediction model
can estimate velocity just based on the IMU readings (Leishman
et al., 2014). However, the use of additional and dedicated velocity
sensors is commonly used to achieve a more robust system
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without bias. Fixed wing MAVs can be equipped with a pitot
tube in order to measure airspeed (Chung et al., 2016). For other
designs, such as quadrotors, a popular solution is to measure
the optic flow, i.e., the motion of features in the environment,
from which an MAV can extract its own velocity (Santamaria-
Navarro et al., 2015). To observe velocity, the flow needs to
be scaled with the help of a distance measurement, such as
height (albeit this assumes that the ground is flat, which may
be untrue in cluttered/outdoor environments). Optic flow can
be measured with a camera or with dedicated sensors, such as
PX4FLOW (Honegger et al., 2013) or the PixArt sensor3. Using
optical mouse sensors, Briod et al. (2013) were able to make
a 46 g quadrotor fly based on only inertial and optical-flow
sensors, even without the need to scale the flow by a distance
measurement. This was achieved by only using the direction of
the optic flow and disregarding its magnitude. In nature, optic
flow has also been shown to be directly correlated with how
insects control their velocity in an environment (Portelli et al.,
2011; Lecoeur et al., 2019). Similar ideas have also been ported
to the drone world, whereby the optic flow detection is directly
correlated to a control input, without even necessarily extracting
states from it (Zufferey et al., 2010). This can be an attractive
property in order to create a natural correlation between a sensor
and its control properties. State estimates improve when optic
flow is fused with other sensors, such as IMU readings or pressure
sensors (Kendoul et al., 2009a,b; Santamaria-Navarro et al., 2015),
or with the control input of the drone (Ho et al., 2017). As
opposed to optic flow sensors, a camera has the advantage that
it can observe both optic flow as well as other features in the
environment, thus enabling an MAV to get more out of a single
sensor. Although this is more computationally expensive, it also
provides versatility.

The use of vision also enables the tracking of features in the
environment, which a robot can use to estimate its odometry.
Using Visual Odometry (VO), a robot integrates vision-based
measurements during flight in order to estimate its motion. The
inertial variant of VO, known as Visual Inertial Odometry (VIO),
further fuses visual tracking together with IMU measurements.
This makes it possible for an MAV to move accurately relative
to an initial position (Scaramuzza and Zhang, 2019). VIO has
been exploited for swarm-like behaviors, such as in the work
by Weinstein et al. (2018), whereby twelve MAVs form patterns
by flying pre-planned trajectories and use VIO to track their
motion. A step beyond VO and its variants is to use Simultaneous
Localization And Mapping (SLAM). The advantage of SLAM is
that it can mitigate the integration drift of VO-based methods.
When solving the full SLAM problem, a robot estimates its
odometry in the environment and then corrects it by recognizing
previously visited places and optimizing the result accordingly, so
as to make a consistent map (Cadena et al., 2016; Cieslewski and
Scaramuzza, 2017). Yousif et al. (2015) and Cadena et al. (2016)
provide more in-depth reviews of VO and SLAM algorithms.
Within the swarming context, a map can also be shared so
as to make use of places and features that have been seen by
other members of the swarm. One common drawback of VO

3 “PMW3901MB Product Datasheet” by PixArt Imaging Inc., June 2017.

and SLAM methods is that they are computationally intensive
and thus reserved for larger MAVs (Ghadiok et al., 2012;
Schauwecker and Zell, 2014). However, recent developments
have also seen the introduction of more light-weight solutions,
such as Navion (Suleiman et al., 2018).

Odometry and SLAM are not limited to the use of vision.
A viable alternative sensor is the LIDAR (Light Detection and
Ranging) scanner, more commonly referred to as “laser scanner.”
LIDAR-based SLAM feature the same philosophy as the vision
counterparts, but instead of a camera it uses LIDAR to measure
depth information and build a map (Bachrach et al., 2011;
Opromolla et al., 2016; Doer et al., 2017; Tripicchio et al., 2018).
A LIDAR is generally less dependent on lighting conditions and
needs less computations, but it is also heavier, more expensive,
and consumes more on-board power (Opromolla et al., 2016).
Vision and LIDAR can also be used together to further enhance
the final estimates (López et al., 2016; Shi et al., 2016).

4.1.3. Height and Altitude
In an abstract sense, the ground represents an obstacle that the
MAVmust avoid, much like walls, objects, or otherMAVs. It does
not need to be explicitly known in order to control an MAV, as
shown in the work of Beyeler et al. (2009). Unlike other obstacles,
however, gravity continuously pulls the MAV toward the ground,
meaning thatmeasuring and controlling height and altitude often
requires special attention.

Note that we differentiate here between height and altitude.
Height is the distance to the ground surface, which can vary
when there is a high building, a canyon, or a table. The height
of an MAV can be measured with an ultrasonic range finder
(or “sonar”). Sonar can provide more accurate data at the cost
of power, mass, size, and a limited range. Its accuracy, however,
made it a part of several designs (Krajník et al., 2011; Ghadiok
et al., 2012; Abeywardena et al., 2013). Infra-red or laser range
finders have also been used as an alternative (Grzonka et al.,
2009; Gupte et al., 2012). The advantage of an infra-red sensor
is that it can be very power efficient, albeit it is only reliable
up to a limited range of a few meters, and on favorable light
conditions (Laković et al., 2019)4. Altitude is the distance to a
fixed reference point, such as sea level or a take-off position. A
pressure sensor is a common sensor to obtain this measurement
(Beard, 2007), but it can be subject to large noise and disturbances
in the short term, which can be reduced via low pass filters
(Sabatini and Genovese, 2013; Shilov, 2014). If flying outdoors,
a Global Navigation Satellite System (GNSS) can also be used to
obtain altitude.

The choice of height/altitude sensor has an impact on the
swarm behaviors that can be programmed. GNSS and pressure
sensors provide a measurement of the altitude of the MAV
with respect to a certain position. This is an attractive property,
although, as previously discussed, GNSS is limited to outdoor
environments, while pressure sensors can be noisy. Moreover,
all pressure sensors of all MAVs in the swarm should be equally
calibrated. Unlike pressure sensors, ultrasonic sensors or laser
range finders do not require this calibration step, since the

4See www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html
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measurement is made from the MAV to the nearest surface.
However, one must then assume that the MAVs all fly on a
flat plane with no objects (or other MAVs below them), which
may turn out to not be a valid assumption. SLAM and VIO
methods, previously discussed in section 4.1.2, can also estimate
altitude/height as part of the odometry/mapping procedure
provided that a downwards facing camera is available.

Just as for the use of a common heading like North, the
measurements of height and/or altitude can provide a common
reference plane for a swarm of MAVs. If the vertical distance
between the MAVs is sufficient, it can provide a relatively
simple solution for intra-swarm collision avoidance (albeit with
constraints—we return to this in section 5.2). It can also enable
self-organized behaviors, such as in the work of Chung et al.
(2016), where the MAVs are made to follow the one with the
highest altitude within their sub-swarm. In this way, the leader
is automatically elected in a self-organized manner by the swarm.
For example, should a current leaderMAVneed to land as a result
of a malfunction, a new leader can be automatically re-elected so
that the rest of the swarm can keep operating.

4.2. Achieving Safe Navigation
It is important that each MAV remains safe and that it does not
collide with its surroundings, or that damages remain limited
in case this happens. This safety requirement can be satisfied
in two ways. The first, which is more “passive” and brings us
back to MAV design, is to develop MAVs that are mechanically
collision resilient. This allows the MAV to hit obstacles without
risking significant damage to itself or its environment. With
this rationale, Briod et al. (2012), Mulgaonkar et al. (2015,
2018), and Kornatowski et al. (2017) placed protective cages
around an MAV. However, the additional mass of a cage can
negatively impact flight time and the cage can also introduce
drag and controllability issues (Floreano et al., 2017). Instead,
Mintchev et al. (2017) developed a flexible design for miniature
quadrotors in order to be more collision resilient upon impact
with walls. The use of airships has also been proposed as a
more collision resilient solution (Melhuish and Welsby, 2002;
Troub et al., 2017). The limitations of airships, however, are in
their lower agility and restricted payload capacity. More recently,
Chen et al. (2019) demonstrated insect scale designs that use
soft artificial muscles for flapping flight. The soft actuators,
combined with the small scale of the MAV, are such that the
MAVs can be physically robust to collisions with obstacles and
with each other. Collision resistant designs can even be exploited
to improve on-board state estimation, such as in the recent work
by Lew et al. (2019), whereby collisions are used as pseudo
velocity measurement under the assumption that the velocity
perpendicular to an obstacle, at the time of impact, is null.
The alternative, or complementary, solution to passive collision
resistance is “active” obstacle sensing and avoidance, whereby an
MAV uses its on-board sensors to identify and avoid obstacles in
the environment.

Collision-free flight can be achieved via two main navigation
philosophies: (1) map-based navigation, and (2) reactive
navigation. With the former, a map of the environment can be
used to create a collision-free trajectory (Shen et al., 2011; Weiss

et al., 2011; Ghadiok et al., 2012). The map can be generated
during flight (using SLAM) and/or, for known environments, it
can be provided a-priori. The advantage of amap-based approach
is that obstacle avoidance can be directly integrated with higher
level swarming behaviors (Saska et al., 2016b). Instead, a reactive
control strategy uses a different philosophy whereby the MAV
only reacts to obstacles in real-time as they are measured,
regardless of its absolute position within the environment. In this
case, if an MAV detects an obstacle, it reacts with an avoidance
maneuver without taking its higher level goal into account.
The trajectories pursued with a reactive controller may be less
optimal, but the advantage of a reactive control strategy is that it
naturally accounts for dynamic obstacles and it is not limited to a
static map. The two can also operate in a hierarchical manner,
such that the reactive controller takes over if there is a need
to avoid an obstacle, and the MAV is otherwise controlled at
a higher level by a path planning behavior. Regardless of the
navigation philosophy in use, if the MAV needs to sense and
avoid obstacles during flight, it will require sensors that can
provide it with the right information in a timely manner.

Of all sensors, vision provides a vast amount of information
from which an MAV can interpret its direct environment. By
using a stereo-camera, the disparity between two images gives
depth information (Heng et al., 2011; Matthies et al., 2014;
Oleynikova et al., 2015; McGuire et al., 2017). Alternatively, a
single camera can also be used. For example, the work of de
Croon et al. (2012) exploited the decrease in the variance of
features when approaching obstacles. Ross et al. (2013) used a
learning routine to map monocular camera images to a pilot
command in order to teach obstacle avoidance by imitating a
human pilot. Kong et al. (2014) proposed edge detection to detect
the boundary of potential obstacles in an image. Saha et al.
(2014) and Aguilar et al. (2017) used feature detection techniques
in order to extract potential obstacles from images. Alvarez
et al. (2016) used consecutive images to extract a depth map
(a technique known as “motion parallax”), albeit the accuracy
of this method is dependent on the ego-motion estimation of
the quadrotor. Learning approaches have also been investigated
in order to overcome the limitations of monocular vision. By
exploiting the collision resistant design of a Parrot AR Drone,
Gandhi et al. (2017) collected data from 11,500 crashes and
used a self-supervised learning approach to teach the drone
how to avoid obstacles from only a monocular camera. Self-
supervised learning of distance from monocular images can also
be accomplished without the need to crash, but with the aid of
an additional sensor. Lamers et al. (2016) did this by exploiting
an infrared range sensor, and van Hecke et al. (2018) applied this
to see distances with one single camera by learning a behavior
that used a stereo-camera. This is useful if the stereo-camera were
to malfunction and suddenly become monocular. Alternative
camera technologies have also been developed, providing new
possibilities. RGB-D sensors are cameras that also provide a
per-pixel depth map, a mainstream example of which is the
Microsoft Kinect camera (Newcombe et al., 2011). This particular
sensor augments one RGB camera with an IR camera and an
IR projector, which together are capable of measuring depth
(Smisek et al., 2013). RGB-D sensors have been used on MAVs
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to navigate in an environment and avoid obstacles (Shen et al.,
2014; Stegagno et al., 2014; Odelga et al., 2016; Huang et al.,
2017). One of the disadvantages of these RGB-D sensors over
a stereo-camera set-up (whereby depth is inferred from the
disparity) is that RGB-D sensors can be more sensitive to natural
light, and may thus perform less well in outdoor environments
(Stegagno et al., 2014). Finally, in recent years, the introduction
of Dynamic Vision Sensor (DVS) cameras has also enabled new
possibilities for reactive obstacle sensing. A DVS camera only
measures changes in the brightness, and can thus provide a
higher data throughput. This enables a robot to quickly react to
sudden changes in the environment, such as the appearance of a
fast moving obstacle (Mueggler et al., 2015; Falanga et al., 2019a).

The capabilities of a vision algorithm will depend on the
resolution of the on-board cameras, the number of the on-board
cameras, as well as the processing power on-board. On very
lightweight MAVs, such as flapping wings, even carrying a small
stereo-camera can be challenging (Olejnik et al., 2019). A further
known disadvantage of vision is the limited Field of View (FOV)
of cameras. Omni-directional sensing can only be achieved with
multiple sets of cameras (Floreano et al., 2013; Moore et al., 2014)
at the cost of additional mass, the impact of which is dependent
on the design of the MAV.

Although vision is a rich sensor, in that it can provide
different types of information, other sensors also can be used
for reactive collision avoidance. LIDAR, for instance, has the
advantage that it is less dependent on lighting conditions and
can provide more accurate data for localization and navigation
(Bachrach et al., 2011; Tripicchio et al., 2018). Alternatively,
time-of-flight laser ranging sensors have also been proposed for
reactive obstacle avoidance algorithms on small drones (Laković
et al., 2019). These uni-directional sensors can sense whether an
object appears along their line of sight (typically up to a few
meters). Due to their small size and low power requirements, they
can be used on tiny MAVs (Bitcraze, 2019)5.

5. INTRA-SWARM RELATIVE SENSING
AND COLLISION AVOIDANCE

Once we have an MAV design that can perform basic safe flight,
we begin to expand its capabilities toward collaboration in a
swarm. Two fundamental challenges need to be considered in
this domain. The first is relative localization. This is not only
required to ensure intra-swarm collision avoidance, which is
a basic safety requirement, but also to enable several swarm
behaviors (Bouffanais, 2016). The design choice used for intra-
swarm relative localization defines and constrains the motion of
the MAVs relative to one another, which affects the swarming
behavior that can be implemented. The second challenge is
intra-swarm communication. Much like knowing the position
of neighbors, the exchange of information between MAVs can
help the swarm to coordinate (Valentini, 2017; Hamann, 2018).
In this section, we explore the state of the art for relative
localization (section 5.1), reactive collision avoidance maneuvers

5See www.bitcraze.io/multi-ranger-deck/

(section 5.2), and we discuss intra-swarm communication
technologies (section 5.3).

5.1. Relative Localization
In outdoor environments, relative position can be obtained
via a combination of GNSS and intra-swarm communication.
Global position information obtained via GNSS is communicated
between MAVs and then used to extract relative position
information. This has enabled connected swarms that can operate
in formations or flocks (Chung et al., 2016; Yuan et al., 2017). An
impressive recent display of this in the real world was put into
practice by Vásárhelyi et al. (2018), who programmed a swarm of
30 MAVs to flock. The same concept can be applied to indoor
environments if pre-fitted with, for example: external markers
(Pestana et al., 2014), motion-tracking cameras (Kushleyev et al.,
2013), antenna beacons (Ledergerber et al., 2015; Guo et al.,
2016), or ultra sound beacons (Vedder et al., 2015). However,
this dependency on external infrastructure limits the swarm to
being operable only in areas that have been properly fitted to the
task. Several tasks, especially the ones that involve exploration,
cannot rely on thesemethods. In order to remove the dependency
on external infrastructure, there is a need for technologies that
allows the MAVs themselves to obtain a direct MAV-to-MAV
relative location estimate. This is still an open challenge, with
several technologies and sensors currently being developed.

One of the earlier solutions for direct relative localization on
flying robots proposed the use of infrared sensors (Roberts et al.,
2012). However, since infrared sensors are uni-directional, this
used an array of sensors (both emitting and receiving) placed
around the MAV in order to approach omni-directionality,
making for a relatively heavy system. Alternatively, vision-
based algorithms have once again been extensively explored.
However, the robust visual detection of neighboring MAVs is
not a simple task. The object needs to be recognized at different
angles, positions, speeds, and sizes. Moreover, the image can
be subject to blur or poor lighting conditions. One way to
address this challenge is with the use of visual aids mounted
on the MAVs, such as visual markers (Faigl et al., 2013; Krajník
et al., 2014; Nägeli et al., 2014), colored balls (Roelofsen et al.,
2015; Epstein and Feldman, 2018), or active markers, such as
infrared markers (Faessler et al., 2014; Teixeira et al., 2018)6 or
Ultra Violet (UV) markers (Walter et al., 2018, 2019). Visual
aids simplify the task and improve the detection accuracy and
reliability. However, they are not as easily feasible on all designs,
such as flapping wing MAVs or smaller quadrotors. Marker-
less detection of other MAVs is very challenging, since other
MAVs have to be detected against cluttered, possibly dynamic
backgrounds while the detecting MAV is moving by itself as
well. A successful current approach is to rely on stereo vision,
where other drones can be detected because they “float” in the air
unlike other objects like trees or buildings. Carrio et al. (2018)
explored a deep learning algorithm for the detection of other
MAVs in stereo-based disparity images. An alternative is to detect
other MAVs in monocular still images. Like the detection in

6The solution by Teixeira et al. (2018) additionally uses communication between

the MAVs.
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stereo disparity images, this removes the difficulty of interpreting
complex motion fields between frames, but it introduces the
difficulty of detecting other, potentially (seemingly) small MAVs
against background clutter. To solve the challenge, Opromolla
et al. (2019) used a machine learning framework that exploited
the knowledge that the MAVs were supposed to fly in formation.
Their scheme used the knowledge of the formation in order
to predict the expected position of a neighboring MAV and
focus the vision-based detection on the expected region, thus
simplifying the task. Employing a more end-to-end learning
technique, Schilling et al. (2019) used imitation learning to
autonomously learn a flocking behavior from camera images.
Following the attribution method by Selvaraju et al. (2017),
Schilling et al. studied the influence that each pixel of an
input image had on the predicted velocity. It was shown that
the parts of the image whereby neighboring MAVs could be
seen were more influential, demonstrating that the network had
implicitly learned to localize its neighbors. Despite the promising
preliminary results, it is yet to be seen how it can handle
other MAVs sizes or more cluttered backgrounds. Finally, it is
possible to use the optic flow field for detecting other MAVs.
This approach could have the benefit of generality, but it would
require the calculation and interpretation of a complex, dense
optic flow field. To our knowledge, this method has not yet
been investigated.

From a swarming perspective, it may also be desirable to know
the ID of a neighbor. However, IDs may be difficult to detect
using vision without the aid of markers. This issue was explored
by Stegagno et al. (2011), Cognetti et al. (2012), and Franchi
et al. (2013) with fusion filters that infer IDs over time with the
aid of communication. Moreover, cameras have a limited FOV.
This limits the behaviors that can be achieved by the swarm.
For instance, it may be limiting for surveillance tasks where
quadrotors may need to look away from each other but can’t or
else they may collide or disperse. It can be addressed by placing
several cameras around the MAVs (Schilling et al., 2019), but at
the cost of additional mass, size, and power, which in turn creates
new repercussions.

The use of vision is not only limited to directly
recognizing other drones in the environment. With the aid
of communication, two or more MAVs can also estimate their
relative location indirectly by matching mutually observed
features in the environment. The MAVs can compare their
respective views and infer their relative location. In the most
complete case, each MAV uses a SLAM algorithm to construct
a map of its environment, which is then compared in full (as
discussed in section 4, this can also be accomplished using other
sensors, such as LIDAR, so this approach is not only reserved
for vision). Although SLAM is a computationally expensive task,
more easily handled centrally (Achtelik et al., 2012; Forster et al.,
2013), it can also be run in a distributed manner, making for an
infrastructure free system (Cunningham et al., 2013; Cieslewski
et al., 2018; Lajoie et al., 2019). For a survey of collaborative
visual SLAM, we refer the reader to the paper by Zou et al. (2019)
and the sources therein. An additional benefit of collective map
generation is that the MAVs benefit from the observations of
their team-mates and can thus achieve a better collective map.

However, if the desired objective is only to achieve relative
localization, the computations can be simplified. Instead of
computing and matching an entire map, the MAVs need only to
concern themselves with the comparison of mutually observed
features in order to extract their relative geometric pose (Achtelik
et al., 2011; Montijano et al., 2016). This requires that the images
compared by the MAVs have sufficient overlap and can be
uniquely identified.

An alternative stream of research leverages only
communication between MAVs to achieve relative localization,
while also using the antennas as relative range sensors. Here,
we will refer to these methods as communication-based ranging.
The advantage of this method is that it offers omni-directional
information at a relatively low mass, power, and processing
penalty, leveraging a technology that is likely available on
even the smallest of MAVs. Szabo (2015) first proposed the
use of signal strength to detect the presence of nearby MAVs
and engage in avoidance maneuvers. Also for the purposes
of collision avoidance, Coppola et al. (2018) implemented a
beacon-less relative localization approach based on the signal
strength between antennas, using the Bluetooth Low Energy
connectivity already available on even the smaller drones. Guo
et al. (2017) proposed a similar solution using UltraWide Band
(UWB) antennas for relative ranging, which offer a higher
resolution even at larger distances. However, this work used
one of the drones as a reference beacon for the others. One
commonality between the solutions by Guo et al. (2017) and
Coppola et al. (2018) was that the MAVs were required to have
a knowledge of North, which enabled them to compare each
other’s velocities along the same global axis. However, in practice
this is a significant limitation due to the difficulties of reliably
measuring North, especially if indoors, as already discussed in
section 4.1.1. To tackle this, van der Helm et al. (2019) showed
that, if using a high accuracy ranging antenna, such as UWB,
then it is not necessary for the MAVs to measure a common
North. However, selecting this option creates fundamental
constraints on the high-level behaviors of the swarm. This issue
is there for the case where North is known and when it is not,
albeit the requirement when North is not known are more
stringent. If North is known, at least one of the MAVs must
be moving relative to the other for the relative localization to
remain theoretically observable. If North is not known, all MAVs
must be moving. The MAVs remain bound to trajectories that
excite the filter (van der Helm et al., 2019). For the case where
North is known, Nguyen et al. (2019) proposed that a portion
of MAVs in the swarm should act as “observers” and perform
trajectories that persistently excite the system.

Another solution is to use sound. Early research in this
domain was performed by Tijs et al. (2010), who used a
microphone to hear nearby MAVs. This was explored in more
depth by Basiri (2015) using full microphone arrays for relative
localization. A primary issue encountered was that the sound
emitted by the listening quadrotor would mask the sound of the
neighboring MAVs, which were also similar. This was addressed
with the use of a “chirp” sound, which can then be easily heard
by neighbors, in order to overcome this issue (Basiri et al., 2014,
2016). In recent work, Cabrera-Ponce et al. (2019) proposed the
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use of a Convolutional Neural Network to detect the presence of
nearby MAVs. This is done using a large scale microphone array
(Ruiz-Espitia et al., 2018) featuring eight microphones based on
theManyEars framework (Grondin et al., 2013). Specific to sound
sensors, the accuracy of the detection depends on how similar the
sounds of other MAVs are. Moreover, the localization accuracy
depends on the microphone setup. Most works use a microphone
array, where the localization accuracy depends on the length of
the baseline between microphones, which is inherently limited
on small MAVs.

As it can be seen, several different techniques exist. Minimally,
these technologies should enable neighboring MAVs to avoid
collisions with one another. However, the particular choice of
relative localization technology creates a fundamental constraint
on the swarm behavior that can be achieved. For example,
communication-based ranging methods have unobservable
conditions depending on the MAVs’ motion, and sound-based
localization with microphone arrays will be less accurate when
used on smaller MAVs. Similarly, certain swarm behaviors (e.g.,
one that requires known IDs, or long range distances) may place
certain requirements on which technology is best to be used.
In Table 1, we outline the major relative localization approaches
with their advantages and disadvantages.

5.2. Intra-Swarm Collision Avoidance
Collision detection and avoidance of objects in the environment
has already been discussed in section 4.2. As MAVs operate
in teams, relative intra-swarm collision avoidance also becomes
a safety-critical behavior that should be implemented. The
complexity of this task is that it requires a collaborative maneuver
between two or more MAVs.

MAVs operate in 3D space, and thus relative collision
avoidance could be tackled by vertical separation. However,
particularly in indoor environments where vertical space is
limited, vertical avoidance maneuvers may cause undesirable
aerodynamic interactions with other MAVs as well as other parts
of the environment. For quadrotors, while aerodynamic influence
is negligible when flying side-by-side, flying above another will
create a disturbance for the lower one (Michael et al., 2010;
Powers et al., 2013). Furthermore, emergency vertical maneuvers
could also cause a quadrotor to fly too close to the ground, which
creates a ground effect and pushes it upwards, or, if indoors, to fly
too close to the ceiling, which creates a pulling effect toward the
ceiling (Powers et al., 2013). Vertical avoidance may also corrupt
the sensor readings of the MAV. For instance, height may be
compromised if another MAV obstructs a sonar sensors. Overall,
horizontal avoidance maneuvers are desired.

A popular algorithm for obstacle avoidance, provided that the
robots know their relative position and velocity, is the Velocity
Obstacle (VO) method (Fiorini and Shiller, 1998). The core
idea is for a robot to determine a set of all velocities that will
lead to collisions with the obstacle (a collision cone), and then
choose a velocity outside of that set, usually the one that requires
minimum change from the current velocity. VO has stemmed
a number of variants specifically designed to deal with multi-
agent avoidance, such as Reciprocal Velocity Obstacle (RVO)
(van den Berg et al., 2008; van den Berg et al., 2011), Hybrid

Reciprocal Velocity Obstacle (HRVO) (Snape et al., 2009), and
Optimal Reciprocal Collision Avoidance (ORCA) (Snape et al.,
2011). These variants alter the set of forbidden velocities in order
to address reciprocity, which may otherwise lead to oscillations
in the behavior. These methods have been successfully applied
on MAVs, both in a decentralized way as well as via centralized
re-planners. They accounted for uncertainties by artificially
increasing the perceived radii of the robots. Alonso-Mora et al.
(2015) showed the successful use of RVO on a team ofMAVs such
that they may adjust their trajectory with respect to a reference.
This was done using an external MCS for (relative) positioning.
Coppola et al. (2018) showed a collision cone scheme with on-
board relative localization, introducing a method to adjust the
cone angle in order to better account for uncertainties in the
relative localization estimates. A disadvantage of VO methods
and its derivatives is scalability. If the flying area is limited and the
airspace becomes too crowded, then it may become difficult for
MAVs to find safe directions to fly toward (Coppola et al., 2018).
Another avoidance algorithm, called Human-Like (HL), presents
the advantage that the heading selection is decoupled from speed
selection (Guzzi et al., 2013a; Guzzi et al., 2014), such that the
MAVs only engage in a change in heading. HL has been found to
be successful even when operating at relatively lower rates (Guzzi
et al., 2013b). Although it has not been tested onMAVs, their tests
also demonstrated generally better scalability properties.

Alternatively, attraction and repulsion forces between
obstacles are also a valid algorithm for collision avoidance. This
is a common technique which has been extensively studied in
swarm research (Reynolds, 1987; Gazi and Passino, 2002; Gazi
and Passino, 2004). If one wishes for the MAVs to flock, these
attraction and repulsion forces can also be directly merged with
the swarm controller (Vásárhelyi et al., 2018). One potential
short-coming of this approach is that it can lead to equilibrium
states whereby the swarm remains in a fixed final formation,
although this can also be seen as a positive property that can be
exploited (Gazi and Passino, 2011).

In summary, multiple methods exist for intra-swarm collision
avoidance. Given sufficiently accurate relative locations, these
methods are very successful. The main challenges here are: (1)
how to deal with uncertainties and unobservable conditions
deriving from the localization mechanism used by the drones,
and (2) how to keep guaranteeing successful collision avoidance
when the swarm scales up to very large numbers.

5.3. Intra-Swarm Communication
Direct sharing of information between neighboring robots is an
enabler for swarm behaviors as well as relative sensing (Valentini,
2017; Hamann, 2018; Pitonakova et al., 2018). To achieve the
desired effect, it needs to be implemented with scalability,
robustness, and flexibility in mind. Common problems that can
otherwise arise are: (1) the messaging rate between robots is too
low (low scalability); (2) high packet loss (low robustness); (3)
communication range is too low (low scalability and flexibility);
(4) inability to adapt to a switching network topology (low
flexibility) (Chamanbaz et al., 2017).

Solutions to the above depend on the application. With
respect to hardware, the three main technologies in the state

Frontiers in Robotics and AI | www.frontiersin.org 11 February 2020 | Volume 7 | Article 1836

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Coppola et al. A Survey on Swarming With Micro Air Vehicles

TABLE 1 | Current technologies in the state of the art for relative localization between MAVs, with their main advantages and disadvantages.

Technology Sample references Advantages Disadvantages

Vision (direct, passive) Faigl et al. (2013)

Krajník et al. (2014)

Nägeli et al. (2014)

Roelofsen et al. (2015)

Carrio et al. (2018)

• Rich information

• Passive sensor

• Possible to extract ID (if using

markers or having otherwise visually

distinct MAVs)

• Lightweight (depending on model)

• Scalable (provided environment is

not cluttered)

• Computationally expensive

• Limited FOV

• Dependent on lighting conditions

• Dependent on visual clutter in

environment

• No IDs (if marker-less)

• Needs visual line of sight

Observation matching Achtelik et al. (2011)

Montijano et al. (2016)

• No direct line of sight is needed

• Thrives in visually cluttered

environments

• Includes IDs (via communication)

• Active sensor, requires

communication

• Requires sufficient visual overlap

• Computationally expensive

• Dependent on lighting conditions

Communication-based ranging Szabo (2015)

Guo et al. (2017)

Coppola et al. (2018)

van der Helm et al. (2019)

Nguyen et al. (2019)

• Low mass

• Omni-directional

• Possible to extract IDs

• Can work in visually cluttered

environments

• Enables communication of

additional data

• Active sensor, requires

communication

• Needs relative excitation

maneuvers

• Noisy (depending on sensor)

• Difficult to scale due to

communication interference

Sound Basiri et al. (2014, 2016)

Cabrera-Ponce et al. (2019)

• Scalable (provided that the sound

environment is, or does not become,

not cluttered)

• Passive sensor

• Omni-directional

• Can work in visually cluttered

environments

• Self-propeller noise

• Limited range

• Noise pollution (if using “chirps”)

• No IDs (if chirp-less)

• Limited angular accuracy due to

limited baseline between

microphones in the array

Infra-red (sensor array) Roberts et al. (2012) • Accurate

• Computationally simple

• Lower dependence on lighting

conditionsa

• Can work in visually cluttered

environments

• Heavy

• Needs visual line of sight

• Many active sensors result in high

energy expense

Vision (direct, with active markers) Faessler et al. (2014)

Teixeira et al. (2018)

Walter et al. (2018, 2019)

• Accurate

• Possible to extract IDs

• Lower dependence on lighting

conditions

• Can work in visually cluttered

environments

• Needs visual line of sight

• Many active sensors result in high

energy expense

aRoberts et al. (2012) tested the sensor for 0, 500, and 10,000 lux and found <1% relative error between these lighting conditions. However, the sensor was not tested outdoors.

of the art are: Bluetooth, WiFi, and ZigBee (Bensky, 2019).
All three operate in the 2.4 GHz band7. Bluetooth is energy
efficient, but features a low maximum communication distances
of ≈10–20 m (indoors, depending on the environment and
version). This makes it more important to establish a network
that can adapt to a switching topology, as it is very likely to
change during operations. The latest version of the Bluetooth
standard, Bluetooth 5, features a higher range and a higher
data-rate despite keeping a low power consumption. It also
has longer advertising messages, such that, without pairing,
asynchronous network nodes can exchange messages of 255
bytes instead of 31 (Collotta et al., 2018). Bluetooth antennas
were used in the previously discussed work of (Coppola et al.,

7 WiFi also operates at other frequency bands. The 5 GHz band, for instance, is

typically known to feature a lower interference (Verma et al., 2013). ZigBee can

also operate at the 868 and 915 MHz frequency bands (Collotta et al., 2018).

2018) on a swarm of 3 MAVs to exchange data indoors and
to measure their relative range. In comparison to Bluetooth,
WiFi is known to be less energy efficient, but works more
reliably at longer ranges and has a higher data throughput.
Chung et al. (2016) used WiFi to enable a swarm of 50 MAVs
to form an ad-hoc network. WiFi was also used by Vásárhelyi
et al. (2018) in combination with an XBee module8 using a
proprietary communication protocol. ZigBee’s primary benefits
are scalability (it can keep up to, theoretically, 64,000 nodes)
and low power, although it has a low data communication
rate (Bensky, 2019)9. Depending on the application, this may
or may not be an issue depending on what the intra-swarm
communication requirements are. Allred et al. (2007) used a

8Not to be confused with ZigBee (Faludi, 2010).
9Note that Bluetooth Low Energy, a sub-version of the Bluetooth standard, also

requires very little power. Tests by Collotta et al. (2018) return that Bluetooth 4.2

and 5.0 have a lower power consumption than ZigBee.
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ZigBee module to enable communication on a flock of fixed wing
MAVs due to its combination of low energy consumption and
long range (offering “a range of over 1 mile at 60 mW”). For
comparisons of technical details of these technologies we refer the
reader to the detailed book by Bensky (2019), the MAV-focused
review by Zufferey et al. (2013), as well as the earlier comparisons
by Lee et al. (2007).

In addition to the technologies discussed above, there is also
the possibility of enabling indirect communication via cellular
networks. In the near future, 5G networks are expected to
make it possible to have a reliable and high data throughput
between several MAVs (Campion et al., 2018). Finally, the use
of UWB can also gain more relevance in the future, especially
because its additional capability to accurately measure the range
between MAVs, as discussed in section 5.1, can be very helpful
for swarms. One technological challenge is that communication
needs power, and while this may be near-negligible for the
bigger MAVs, it is not so for the smaller designs (Petricca et al.,
2011). From this perspective, the communication-based relative
localization discussed in section 5.1, which can also double as
a communication device for MAVs, is an interesting solution if
one desires a system that can achieve both goals simultaneously.
However, using any relative localization approach that relies on
communication means that having a stable connection among
MAVs is an important requirement, and possibly a safety critical
one. Moreover, high messaging rates also become important in
order to have a high update rate.

6. SWARM-LEVEL CONTROL

We finally arrive at the “swarm” part of this paper. Once we have
reliable MAVs that can safely fly in an environment, localize one
another, and perhaps even communicate, we can begin to exploit
them as a swarm. The complexity of this task stems from the
fact that, due to the decentralized nature of the swarm, the local
actions that a robot takes can have any number of repercussions
at the global level. These cannot be known unless the system
is fully observed and optimized for, which the individual robot
cannot do.

This section discusses possible approaches to design MAV
swarm behaviors. Prominent examples of behaviors are: flocking,
formation flight, distributed sensing (e.g., mapping/surveillance),
and collaborative transport and object manipulation10. Of
these, formation flight receives significant attention. It can be
useful for several applications, such as surveillance, mapping,
or cinematography so as to collaboratively observe a scene
(Mademlis et al., 2019). Additionally, it can also be used for
collaborative transport (de Marina and Smeur, 2019), and it has
even been shown that certain formations lead to energy efficient
flight for groups (Weimerskirch et al., 2001). Flocking behaviors
bear similar properties to formation flight, but with more
“fluid” inter-agent behaviors that allow the swarm to re-organize
according to their current neighborhood and the environment.

10Note that this list not exhaustive. Additionally, we will see that there may also be

overlaps between these behaviors. For example, as explored in section 6.1, flocking

behaviors may achieve fixed formations under certain equilibria.

Distributed sensing behaviors may require the swarm to travel
in a formation or flock, but may also include behaviors in which
the swarm distributes over pre-specified areas (Bähnemann et al.,
2017) or disperses (McGuire et al., 2019). Collaborative transport
and object manipulations take two forms. The first is that of
MAVs individually foraging for different objects and bringing
them to base (Bähnemann et al., 2017), the second is that of
jointly carrying a load that is too heavy for the individual MAV to
carry (Tagliabue et al., 2019). In order to achieve the behaviors
above, and others, the MAVs can also engage in a number of
more general swarm behaviors, such as distributed task allocation
or collective decision making. For all cases, the challenge is to
endow the MAVs with a controller that achieves the desired
swarm behavior while also avoiding undesired results (Winfield
et al., 2005, 2006).

Similarly to the review by Brambilla et al. (2013) (which the
reader is referred to for a general overview of swarm robotics
and engineering), we divide the designmethods in two categories.
The first, which we call “manual design methods,” refers to hand-
crafted controllers that instigate a particular behavior in the
swarm. These are discussed in section 6.1, where we provide an
overview of the state of the art for different swarm behaviors.
The second, which we refer to as “automatic design methods,”
uses machine learning techniques in order to design and/or
optimize the controller for an arbitrary goal. This is discussed
in section 6.2. We discuss the advantages and disadvantages
between the two, from the perspective of designing swarms of
MAVs, in section 6.3.

6.1. Manual Design Methods
This is the “classical” strategy to control, whereby a swarm
designer develops the controllers so as to achieve a desired
global behavior. For swarm robotics, we differentiate between two
approaches. One approach is to design local behaviors, analyze
them, and then manually iterate until the swarm behaves as
desired. Another approach is to make mathematical models of
the robots and their interactions and then design a suitable
controller that comes with a certain proof of convergence.
The latter approach has some obvious advantages if one
succeeds, but it makes the designer face the full complexity
of swarm systems. Hence, such methods typically have limited
applicability. For example, in the work of Izzo and Pettazzi
(2007), the behavior is limited to only symmetrical formations of
limited numbers of agents. The preferred approach is dependent
on the swarm behavior that the designer wishes to achieve, under
the constraints of the local properties of each MAV.

A large portion of methods focuses on formation control
algorithms, whereby the goal is for the MAVs to form and/or
keep a tight formation during flight. To hold a formation, the
MAVs must hold a relative position or distance between given
neighbors, such that they can move as one unit through space.
See, for instance, the works of Quintero et al. (2013), Schiano
et al. (2016), de Marina et al. (2017), Yuan et al. (2017), and de
Marina and Smeur (2019). One advantage of flying in formation
for MAV swarms is their predictability during operations. Several
methods provide robust controllers with mathematical proofs
that the formation can be achieved and maintained during flight.
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A review dedicated to formation control algorithms for MAVs
is provided by Oh et al. (2015). Chung et al. (2018) also discuss
different methods.

There are applications for which a rigid formation is sub-
optimal, undesired, or unnecessary, and it is better for the
MAVs to move through space in a flock. Flocking behaviors
were originally synthesized from the motion of animals in
nature (Aoki, 1982), and were most famously formalized by
Reynolds (1987) with the intent of simulating swarms in
computer animations. The behavior is typically characterized by
a combination of simple local rules: attraction forces, repulsion
forces, heading alignment with neighbors, speed agreement
with neighbors. This behavior naturally incorporates collision
avoidance via the repulsion rule, and it has also been explored as a
means to collectively navigate in an environment with obstacles,
whereby the obstacles provide additional repulsion fores (Saska
et al., 2014; Saska, 2015). Alternatively, the local rules can also
be exploited to achieve formations by making use of equilibrium
points between attraction and repulsion forces (Gazi, 2005).
Depending on the way in which the rules are used, they can be
incorporated into an iterative approach, or they can be made
part of a mathematical regime combined with the model of the
robot. An early real-world demonstration of distributed flocking
was achieved by Hauert et al. (2011) with a swarm of ten fixed
wing MAVs. The more recent work by Vásárhelyi et al. (2018)
demonstrated outdoor flocking for a swarm of 30 quadrotors.

Concerning behaviors, such as distributed sensing,
exploration, or mapping, there are several different types of
solutions that have been developed specifically for MAVs.
Typically, these are found to vary depending on the nature of
the task, requiring the designer to make careful choices on the
best algorithm to be used. Bähnemann et al. (2017) and Spurný
et al. (2019), aided by GNSS for positioning, divided a search
area into multiple regions so that a team of three MAVs could
efficiently explore it with a pre-planned trajectory. The recent
work of McGuire et al. (2019) demonstrated a swarm of six
Crazyflie MAVs performing an autonomous exploration task
in an unknown indoor environment. Each MAV acted entirely
locally based on a manually designed bug algorithm which
enabled exploration as well as homing to a reference beacon.

6.2. Automatic Methods for Behavior
Design and Optimization
In the last few decades, the increasing power of machine learning
methods cannot be denied, with multiple examples in robotics,
autonomous driving, smart-homes, and more. Machine learning
techniques offer a way to automatically extract the local controller
that can fulfill a task, relieving us from the need to design it
ourselves. However, the problem shifts to devising algorithms
that can efficiently and effectively discover the controllers for us.
In this section, we discuss the possibilities based on two primary
machine learning approaches in swarm intelligence research:
Evolutionary Robotics (ER) and Reinforcement Learning (RL).

6.2.1. Evolutionary Robotics
ER uses the concept of survival of the fittest in order to efficiently
search through the design space for an effective controller (Nolfi,

2002)11. It has been widely adopted in swarm robotics literature
in order to evolve local robot controllers that optimize the
performance of the swarm with respect to a global, swarm-level
objective (Trianni, 2008). ER bypasses the analysis of the relation
between the local controllers and the global behavior of the
swarm. Instead, it optimizes the controllers “blindly” by means of
several evaluations in an evolutionary process, which most often
happens in simulation, but can also be performed in the real
world (Eiben, 2014). Evolved solutions often exploit the robots’
bodies and environment, including the behaviors of other swarm
members. Moreover, thanks to the blind optimization, not only
the controller can be evolved, but also other factors, such as the
communication between robots (Ampatzis et al., 2008). Likewise,
ER offers a generic approach to generate swarm controllers of
different types, including, but not limited to: neural networks
(Trianni et al., 2003; Silva et al., 2015), grammar rules (Ferrante
et al., 2013), behavior trees (Scheper et al., 2016; Jones et al.,
2018, 2019), and statemachines (Francesca et al., 2014). Although
neural network architectures can be very powerful, the advantage
of the latter methods is that they can be better understood by a
designer, which makes it easier to cross the “reality gap” between
simulation and the real world when deploying the controllers on
the real robots (Jones et al., 2019). Crossing the reality gap is a
major challenge in the field of ER and many different approaches
have been investigated, also for neural networks. See Scheper
(2019) for a more extensive discussion on these methods.

A major challenge for the effective use of ER, especially for
swarm robotics, is the design of the fitness functions to be
optimized (Francesca and Birattari, 2016). This is usually left
to the designer’s ability to explicitly define the key elements
that indicate the success of a behavior in a measurable and
quantitative manner. It is not uncommon to see empirically
defined parameters that represent certain desired elements, such
as “safety” in the example of Duarte et al. (2016). As task
complexity increases, so does the challenge of designing a fitness
function. In the worst case, it may become uninformative or
even deceptive, leading the algorithm to not finding the desired
behavior (Silva et al., 2016). Different approaches have been
proposed to tackle this issue, such as behavioral decomposition
or incremental learning (Nelson et al., 2009). The risk with these
strategies, however, is that the designer shapes the learning of the
task too much, which may lead to sub-optimal performances. As
an alternative strategy for learning complex tasks, Lehman and
Stanley (2011) proposed novelty search, whereby the fitness is not
defined by how well the task is performed, but by how “novel” a
behavior is. This can lead to finding more unorthodox solutions,
also for swarm robotics (Gomes et al., 2013). Potential drawbacks
of this approach are that the search becomes less directed, and
that the shaping shifts from defining a fitness function to defining
what constitutes a “behavior.”

11 Looking at the complexity achieved by natural swarming systems, it also seems

intuitive that such complexity could be achieved automatically by mimicking an

evolutionary process (Bouffanais, 2016). It is no surprise that a closely related

discipline to ER is that of Artificial Life (AL), dedicated to artificially representing

life-like processes, albeit with generally more open ended exploratory goals (Bedau,

2003; Trianni, 2014).
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To conclude, the ER approach applied to swarming has
the large advantage that it deals with complexity by actually
bypassing it. However, this currently comes at the cost
of needing many evaluations involving the simulation of
not one but multiple robots, which leads to longer lasting
evolutions. An additional problem of simulating a specific
number of robots to evolve a swarm behavior is that the
evolution may overfit the behaviors not only to the (simulation)
environment, but also to the exact number of robots that were
used during the evolution. A naive solution is to simulate
different swarm sizes over the evolution, but this will take
even more simulation time, and in any case, the number
of robots will be limited, meaning that scalability is not
guaranteed. Recent developments in this domain have seen
the introduction of size-agnostic techniques (Coppola et al.,
2019). Finally, although there are studies on online evolutionary
learning for swarm robotics (Bredeche et al., 2018), online
evolutionary strategies have yet to be explored (in practice)
for MAVs.

6.2.2. Reinforcement Learning
With RL, a robot is made to learn by trial-and-error from
interacting with its environment under a certain reward scheme.
This approach teaches the robot an optimal mapping between
a state and the action that it should take so as to maximize
its final reward (Sutton and Barto, 2018). RL has been widely
used in robotics, and it has thus also found its way to swarm
robotics (Brambilla et al., 2013). The advantage of RL is that the
robots can explore the environment and continuously adapt their
behavior. Several techniques have been proposed over the years
for multi-agent RL (Busoniu et al., 2008). However, within swarm
robotics literature, it has generally received less attention than
ER (Brambilla et al., 2013). A main difficulty with this approach
is that, from the perspective of the individual robot, being in
a swarm is a non-Markovian task, and each robot only has a
partial observation of the full global state. A potential issue, for
instance, is “state aliasing,” which refers to when multiple states
appear to be the same from the perspective of the agent, even
though they are not (McCallum, 1997). It has been demonstrated
that ER can achieve better solutions for non-Markovian tasks
(de Croon et al., 2005).

The solution to use RL with non-Markovian task leads to a
Partially Observable Markov Decision Problem (POMDP). In
this case, a robot keeps a history of its observations and thus
extracts the most likely global state from them. RL can be applied
to POMDPs (Ishii et al., 2005), yet features scalability issues
(the so called “state explosion”), especially when ported to the
swarm domain because the global state of the swarm, which it
tries to estimate, can take exponentially many forms (Parsons
andWooldridge, 2002). In recent work, Hüttenrauch et al. (2019)
proposed to use mean feature embeddings which encode a mean
distribution of the agents. This compression is then invariant to
the number of agents in the swarm. Another known difficulty
of RL with respect to ER is the credit assignment problem. This
refers to the challenge of decomposing the global rewards into
local rewards for each robot, as the individual contribution of a
single robot to a global task may not always be clearly determined
(Brambilla et al., 2013). The credit assignment problem is also

manifested over time, as it is difficult to judge which prior action
was most conducive.

In short, until now ER appears to be amore appropriate choice
for learning control in swarms, as it allows robots to exploit
non-Markovian properties of the problem (e.g., the states and
behaviors of other robots). However, because of the reality gap,
online learning methods may turn out very useful in the future,
including RL methods.

6.3. Manual vs. Automatic Methods for
MAV Swarms
A primary advantage of manual design methods for MAV
swarms is that the solutions are generally better understood,
given that they have to be designed and programmed manually.
The algorithms that are developed can be analyzed, and in
certain cases it can even be assessed whether the system will
converge to the desired properties and even be resilient to faults
(Saldaña et al., 2017; Saulnier et al., 2017). This is a particularly
attractive property for MAV applications, where safety and
predictability are a primary concern. A second advantage is that
they carry a clearer breakdown of the requirements. For these
reasons, it is not surprising that, to the best of our knowledge
and as confirmed by Chung et al. (2018), most real-world
implementations ofMAV swarms to date have relied on primarily
manually designed swarming algorithms. These advantages have
also been acknowledged by the automatic design community,
which has brought a general interest in using automatic approach
to develop explicit controllers, such as state machines (Francesca
et al., 2014, 2015) or behavior trees (Kuckling et al., 2018; Jones
et al., 2019). In future work, the use of thesemethods could lead to
a compromise between extracting an understandable controller
and exploiting the power of automatic methods.

A challenge of designing an algorithm manually is in the
need to ensure that it can work within the limitations of the
system. For instance, if using a communication-based ranging
relative localization system, the relative location estimate is only
observable when both MAVs are moving in such a way that the
system is excited (Nguyen et al., 2019). Alternatively, cameras can
be limited by the FOV and be forced to keep a reference neighbor
in the center (Nägeli et al., 2014). This may be undesirable for
the final application of the swarm (e.g., surveillance), since the
camera is kept pointing to other MAVs as opposed to interesting
features in the environment. Examples, such as these serve to
show how amanually designed algorithm can either fail to regard
certain elements, or may not exploit the environment optimally
so as to best deal with the limitations. An automatic method,
on the other hand, could extract a controller that best deals
with the limitations, possibly finding solutions that cannot be
easily designed manually. For instance, ER studies show that
evolved robot controllers can find behaviors that tightly exploit
the sensory and motor capabilities of the given robot (Nolfi,
2002)—this is called sensory-motor coordination.

Despite their power, the application of automatic design
methods to MAV swarms are relatively few. One of the first steps
was done by Hauert et al. (2009) for the purposes of developing
a flying communication network. In this case, the authors
proposed to reverse engineer the behavior of an evolved neural
network and subsequently program a similar behavior manually.
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This approach provided original and “creative” insights that
enabled them to design a viable and flexible behavior. In
later work, Szabo (2015) applied evolutionary behavior trees
to a team of MAVs for the purposes of collision avoidance,
exploiting the increased readability of behavior trees. The MAVs
only knew each other’s relative distance (not position) as
measured by noisy Bluetooth signal strength, yet the evolved
behavior was capable of reducing the number of collisions in
a cluttered space. The automatically evolved behavior tree was
not only simpler (fewer nodes/branches), but also performed
better when compared to a manually designed one. Scheper and
de Croon (2017) trained a neural network to form a triangle
with a team of three MAVs, inspired by a similar task by
Izzo et al. (2014). Although not aimed at MAVs, Izzo et al.
(2014) had previously shown that an automatic method was
able to extract a behavior with which homogeneous agents could
self-organize into asymmetric patterns, whereas the previously
developed manual approaches for the same system were limited
to symmetric patterns (Izzo and Pettazzi, 2007). Scheper and
de Croon (2017) additionally showed that evolving a controller
at a higher level of abstraction does not necessarily compromise
the ability of automatic methods to exploit an environment and
sensory-motor relationships, yet helps to reduce the reality gap.
The more recent work of Schilling et al. (2019) showed that
it’s possible to learn a flocking behavior directly from camera
images using imitation learning. This was demonstrated in a real
world environment with two MAVs. This automatic approach
was able to find a viable, collision-free behavior that could also
localize neighbors.

The limited amount of works show that this field is still young.
The extra challenge comes from the several constraints that flow
from the lower levels as well as the additional cost and difficulty
of real-world experimentation. Nevertheless, there are arguments
to show that automatic methods may eventually provide a way
to make the most out of the swarms (Francesca and Birattari,
2016). We expect that in the future, once both MAVs as well as
automatic swarming design technologies become more mature,
we will begin to see an increase of (experimental) works in
this domain.

7. FURTHER CHALLENGES AND FUTURE
DEVELOPMENTS TO BE MADE

7.1. Battery Recharging and Scheduling
As already discussed, flight time is a fundamental constraint for
MAVs. Swarming can help to expand the flight time of the whole
system, such that a portion of MAVs can recharge while others
are still in operation. This is subject to two main challenges. The
first is the design of the combinedMAV + re-charging ecosystem,
and the second is the distributed scheduling between drones.
Research has already begun on this front, albeit to the best of
our knowledge an automated and distributed recharging method
for a swarm of MAVs has yet to be demonstrated outside of
a controlled environment. Toksoz et al. (2011) and Lee et al.
(2015) designed a battery swapping station to quickly exchange
batteries on a quadrotor. The advantage of such a system is that
the battery can be changed quickly. However, it also requires

an intricate design as well as highly accurate landing to ensure
that the battery is properly replaced. Instead, a contact-based
re-charging station, such as the one proposed by Leonard et al.
(2014) offers a simpler system, albeit at the cost of a slower turn-
over. The authors investigated its use for a multi-UAV system,
whereby the MAVs queued their use of the charging stations
via a prioritization function. Using a similar charging system,
Mulgaonkar and Kumar (2014) demonstrated a system where
three quadrotors take turns to surveil a target region, such that
one operates while the other two recharge. Vasile and Belta
(2014) and Leahy et al. (2016) proposed formal strategies based
on temporal logic constraints to ensure that the MAVs would
correctly queue for recharging. However, the experimental efforts
focused on the case where only one MAV operates at a given
time. Nowadays, commercial charging station are also available
(Brommer et al., 2018). This will likely accelerate the research
progress. Wireless charging, albeit slower, is also an attractive
choice as it softens the requirement on precision landing (Choi
et al., 2016; Junaid et al., 2017).

Flight time can also be increased at the MAV design level by
designing MAVs with on-board recharging or longer endurance.
The capability for long endurance would allow the swarm to
be more flexible and take on a more diverse set of missions.
One possible method to increase the flight time is to use solar
cells. These have mostly been applied to fixed wing designs, such
as the “Skysailor” MAV (Noth and Siegwart, 2010), benefiting
from efficient flight conditions and large wing areas. It can in
fact be shown that the benefit of solar cells begins to have little
effect on smaller platforms, due to the reduced surface area
available (Bronz et al., 2009). This trend is even more prominent
on quadrotors, which have higher energy requirements. As
a solution, D’Sa et al. (2016) proposed an MAV design that
can alternate between fixed wing and quadrotor mode, such
that “surplus energy collected and stored while in a fixed wing
configuration is utilized while in a quadrotor configuration.”
Recently, Goh et al. (2019) demonstrated a fully solar-powered
quadrotor. To meet the energy requirements, an area of 4 m2 was
required together with a reliance on ground-effects, meaning that
theMAVwas bound to low altitudes. A different solution is to use
combustion engines (Zufferey et al., 2013; Nex and Remondino,
2014; Ross, 2014). They benefit from the high-energy density of
fuel and can help to provide long endurance flight, although they
are typically applied to larger drones in outdoor environments
Alternatively, fuel cells have also been explored as a power source
for long endurance flight, with increasingly promising results in
the recent years (Gong and Verstraete, 2017; De Wagter et al.,
2019; Pan et al., 2019).

7.2. Swarm-Level Active Fault Detection
Active and decentralized fault detection should also play a
fundamental role for the realization of MAV swarms12. If not
catered to, then there is a risk that the erroneous actions of one
MAV hinder the entire swarm (Bjerknes and Winfield, 2013).

12 Wedifferentiate between fault detection and fault tolerance. Fault tolerance refers

to the ability of the system to be robust to faults. Fault detection refers to the ability

of the robots in the swarm to detect issues, and thus possibly also cope with them.
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Winfield and Nembrini (2006) applied the Failure Mode and
Effect Analysis (FMEA) methodology to evaluate the reliability
of an entire swarm based on its possible failure points. From such
studies it can be evaluated whether, and to what extent, local
failures can incapacitate the swarm. The question is how such
faults can be detected and dealt with during operations. Doing
so would create a system that is more robust to failures.

Li and Parker (2007) developed the Sensor Analysis based
Fault Detection (SAFDetection). In this approach, a clustering
algorithm is used to learn a model of the robots’ expected
behavior. This model is then used to determine whether the
behavior of a robot in the swarm can be considered “normal”
(i.e., falls within the learned model), or “abnormal,” in which
case a likely fault has been detected. A distributed version of
the algorithm has also been developed (Li and Parker, 2009),
in which case each robot learns its own behavior model locally
and then shares it. This strategy scales better with the size of
the swarm, as it parallelizes the clustering computations. The
works by Tarapore et al. (2013, 2015a,b) also propose a strategy
for normal/abnormal behavior classification by synthesizing the
behavior of neighbors within a binary feature vector. In more
recent work, Tarapore et al. (2017) proposed the use of a
consensus algorithm so that the robots can collectively reach
a decision on whether the behavior of a team-member can be
considered normal or abnormal. This was also tested on a real
robotic system (Tarapore et al., 2019). Qin et al. (2014) provide
a review on this active area of research. Bringing these solutions
to MAV swarms can largely improve the operational safety of the
full system, which is paramount for deployment in the real world.

7.3. Controlling and Supervising Swarms of
MAVs
A control interface should enable an operator to provide
commands to the swarm, such as take-off and landing, the
commencement of mission objectives, or the engagement of
swarm-wide emergency procedures. All should be done in a
direct and intuitive way to minimize the effort by the operator
(Fuchs et al., 2014; Dousse et al., 2016). To this end, Nagi et al.
(2014) explored the use of a gesture vocabulary which allows a
human operator to instruct a team ofMAVs. The human operator
and the gestures are detected directly by the MAVs using their
on-board camera. Thanks to their multiple viewpoints, they are
able to discern the operator’s commands in a distributed fashion.
Tsykunov et al. (2018) explored how to use a haptic glove to
control a team of drones as if they were all connected via a spring-
damper system. Research has also focused on the development of
gesture languages, as in the works of Soto-Gerrero and Ramrez-
Torres (2016) and Couture et al. (2018). Virtual reality is also
becoming an increasingly popular technology, and is beginning
to be applied to the control of MAVs (Tsykunov and Tsetserukou,
2019; Vempati et al., 2019). Besides the above, a less technical,
yet highly significant, challenge to overcome on this front is
the (understandably) stringent legislation surrounding MAV
flight, particularly in outdoor scenarios, often requiring at least
one pilot per drone (the specifics vary based on the location)
(Vincenzi et al., 2015).We refer the interested reader to Hocraffer

and Nam (2017) and the sources therein for a more thorough
overview of the challenges and the current technologies for
human control of aerial swarms.

8. DISCUSSION: HOW FAR ARE WE FROM
MAV SWARMS?

Following the many topics discussed in this paper comes the
inevitable question: how far are we from large scale aerial swarms
that can cooperatively explore areas, carry heavier objects, and
autonomously complete complex tasks without low level human-
in-the-loop control? Despite the large amount of research and
development that has been done to tackle the topics within this
grander scheme, the field of robotics and the field of swarm
intelligence are both still relatively young, and there remain
advances to be made. In this paper, we discussed how the swarm
behavior depends on the constraints set by lower level properties,
and vice versa. This interdependency and iterative nature of
design means that, if we wish to bring full-fledged MAV swarms
to the real world, there must be a mutual understanding between
the design levels as to what is required and what can be achieved
in reality.

One of the main technologies required to make the leap from
flying a single MAV to flying a decentralized swarm is an accurate
and reliable intra-swarm relative localization technology. Even
for those applications where cooperation is limited and each
member in the swarm acts mostly independently, relative
localization is still needed to ensure relative collision avoidance,
which is a safety-critical requirement. As we have shown
throughout this paper, several technologies are currently under
exploration and it is still unclear which will prove most reliable
and advantageous in the long run. As the choice of these systems
very directly shapes the behavior of the swarm, the challenge of
designing the swarm behavior needs to be tightly coupled to it,
additionally to the way it is coupled to the design of the individual
robots. As such, automatic design algorithms of swarm behaviors
can provide a way to make the most out of the individual MAVs
and their limitations, albeit at the potential cost of relying on less
well-understood controllers.

Additionally, the on-going standardization of tools is expected
to help the field to reach a new level of maturity (Nedjah
and Junior, 2019). Systems, such as ROS (Quigley et al., 2009),
Paparazzi (Mueller and Drouin, 2007; Brisset and Hattenberger,
2008), or PX4 (Meier et al., 2015) have now accelerated the
process of prototyping and testing on real-worldMAVs, and have
also made it easier to share hardware/software advancements.
Low cost programmable MAVs, such as the Crazyflie are also
available, making it more feasible to experiment with large
numbers of MAVs. Additionally, dedicated standards, such as
MAVLink, which provides communication between software
modules, are becoming increasingly popular (Dietrich et al.,
2016), and full-stack frameworks have been developed to
handle the entire pipeline (Sanchez-Lopez et al., 2016; Millan-
Romera et al., 2019). The combination of these systems together
with simulators, such as the well-known Gazebo (Koenig and
Howard, 2004), ARGoS (Pinciroli et al., 2012), or AirSim (Shah
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et al., 2018), further help to quickly prototype software in a
realistic simulation environment. Combined with models and
frameworks, such as hector-quadrotor (Meyer et al., 2012)
or RotorS (Furrer et al., 2016), simulation environments can
significantly accelerate the development time (Johnson and
Mishra, 2002). Mairaj et al. (2019) provides an extensive review of
several simulators for this purpose. Dedicated swarm languages,
such as Buzz (Pinciroli and Beltrame, 2016) also provide a simpler
prototyping framework dedicated to swarm robotics, which can
also be applied to MAVs.

Finally, the prominent rise in popularity of MAVs in the last
decade has brought about several technology accelerators. MAV
focused robotics competitions, such as the Mohamed Bin Z̈ayed
International Robotics Challenge (MBZIRC) or the International
Micro Air Vehicle (IMAV) competition have now also begun
to integrate swarming or multi-robot elements (Pestana et al.,
2014; Saska et al., 2016a; Bähnemann et al., 2017; Nieuwenhuisen
et al., 2017; Spurný et al., 2019). This pushes researchers to take
a technology out of the lab and into unknown environments,
thereby increasing their robustness.

9. CONCLUSION

The challenges to solve before we can expect to see swarms of
autonomous MAVs are many. They begin at the lowest level,
forcing us to think of how the MAV design will impact the
swarm behavior, and they end at the highest level, where we
must design collective behaviors that best exploit our lower level
designs, controllers, and sensors. In the last decade, the field of
swarm robotics and MAV design have started to merge more
and more, leading to increasingly impressive achievements. To
go further, the tight and complex relationship between the low
level and the high level needs to be appreciated in order to
break into a new era of truly autonomous and distributed swarms
of MAVs.

AUTHOR CONTRIBUTIONS

This article has been set up based on discussions between all
authors. It has been primarily written by MC with the additional
help and advice of KM, CD, and GC.

REFERENCES

Abeywardena, D., Kodagoda, S., Dissanayake, G., and Munasinghe,

R. (2013). Improved state estimation in quadrotor MAVs: a novel

drift-free velocity estimator. IEEE Robot. Autom. Mag. 20, 32–39.

doi: 10.1109/MRA.2012.2225472

Achtelik, M., Achtelik, M., Brunet, Y., Chli, M., Chatzichristofis, S., Decotignie,

J., et al. (2012). “SFly: swarm of micro flying robots,” in 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (Vilamoura),

2649–2650. doi: 10.1109/IROS.2012.6386281

Achtelik, M. W., Weiss, S., Chli, M., Dellaerty, F., and Siegwart, R.

(2011). “Collaborative stereo,” in 2011 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (San Francisco, CA), 2242–2248.

doi: 10.1109/IROS.2011.6094866

Afzal, M. H., Renaudin, V., and Lachapelle, G. (2011). “Magnetic field

based heading estimation for pedestrian navigation environments,” in 2011

International Conference on Indoor Positioning and Indoor Navigation

(Guimaraes), 1–10. doi: 10.1109/IPIN.2011.6071947

Aguilar,W. G., Casaliglla, V. P., and Pólit, J. L. (2017). “Obstacle avoidance for low-

cost UAVs,” in 2017 IEEE 11th International Conference on Semantic Computing

(ICSC) (San Diego, CA), 503–508. doi: 10.1109/ICSC.2017.96

Alexis, K., Nikolakopoulos, G., Tzes, A., and Dritsas, L. (2009). “Coordination of

helicopter UAVs for aerial forest-fire surveillance,” in Applications of Intelligent

Control to Engineering Systems, ed K. P. Valavanis (Dordrecht: Springer

Netherlands), 169–193.

Allred, J., Hasan, A. B., Panichsakul, S., Pisano,W., Gray, P., Huang, J., et al. (2007).

“Sensorflock: an airborne wireless sensor network of micro-air vehicles,” in

Proceedings of the 5th International Conference on Embedded Networked Sensor

Systems, SenSys ’07 (New York, NY: Association for Computing Machinery),

117–129.

Alonso-Mora, J., Nägeli, T., Siegwart, R., and Beardsley, P. (2015). Collision

avoidance for aerial vehicles in multi-agent scenarios. Auton. Robots 39, 101–

121. doi: 10.1007/s10514-015-9429-0

Alvarez, H., Paz, L. M., Sturm, J., and Cremers, D. (2016). Collision Avoidance

for Quadrotors with a Monocular Camera. Cham: Springer International

Publishing, 195–209.

Ampatzis, C., Tuci, E., Trianni, V., and Dorigo, M. (2008). Evolution of signaling

in a multi-robot system: categorization and communication. Adapt. Behav. 16,

5–26. doi: 10.1177/1059712307087282

Aoki, I. (1982). A simulation study on the schooling mechanism in fish. Nippon

Suisan Gakkaishi 48, 1081–1088.

Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M. W.,

et al. (2014). The flight assembled architecture installation: cooperative

construction with flying machines. IEEE Control Syst. Mag. 34, 46–64.

doi: 10.1109/MCS.2014.2320359

Bachrach, A., Prentice, S., He, R., and Roy, N. (2011). RANGE-robust

autonomous navigation in GPS-denied environments. J. Field Robot. 28, 644–

666. doi: 10.1002/rob.20400

Bähnemann, R., Schindler, D., Kamel, M., Siegwart, R., and Nieto, J. (2017). “A

decentralized multi-agent unmanned aerial system to search, pick up, and

relocate objects,” in 2017 IEEE International Symposium on Safety, Security and

Rescue Robotics (SSRR) (Shanghai), 123–128. doi: 10.1109/SSRR.2017.8088150

Basiri, M. (2015). Audio-based positioning and target localization for swarms of

micro aerial vehicles (Ph.D. thesis), École polytechnique fédérale de Lausanne,

Lausanne. doi: 10.5075/epfl-thesis-6508

Basiri, M., Schill, F., Floreano, D., and Lima, P. U. (2014). “Audio-based

localization for swarms of micro air vehicles,” in 2014 IEEE International

Conference on Robotics and Automation (ICRA) (Hong Kong), 4729–4734.

doi: 10.1109/ICRA.2014.6907551

Basiri, M., Schill, F., Lima, P., and Floreano, D. (2016). On-board relative bearing

estimation for teams of drones using sound. IEEE Robot. Autom. Lett. 1,

820–827. doi: 10.1109/LRA.2016.2527833

Beard, R. W. (2007). “State estimation for micro air vehicles,” in Innovations in

Intelligent Machines–1, eds J. S. Chahl, L. C. Jain, A. Mizutani, and M. Sato-Ilic

(Berlin; Heidelberg: Springer Berlin Heidelberg), 173–199.

Bedau, M. A. (2003). Artificial life: organization, adaptation and complexity from

the bottom up. Trends Cogn. Sci. 7, 505–512. doi: 10.1016/j.tics.2003.09.012

Bensky, A. (2019). Short-Range Wireless Communication. Cambridge, MA:

Elsevier. doi: 10.1016/c2017-0-02356-x

Beyeler, A., Zufferey, J.-C., and Floreano, D. (2009). Vision-based control of

near-obstacle flight. Auton. Robots 27:201. doi: 10.1007/s10514-009-9139-6

Bitcraze, A. B. (2019). Multi-Ranger Deck. Available online at: https://www.

bitcraze.io/multi-ranger-deck/

Bjerknes, J. D., and Winfield, A. F. T. (2013). On Fault Tolerance and Scalability

of Swarm Robotic Systems. Berlin; Heidelberg: Springer Berlin Heidelberg,

431–444.

Bonabeau, E., and Théraulaz, G. (2008). Swarm smarts. Sci. Am. 18, 40–47.

doi: 10.1038/scientificamerican0208-40sp

Frontiers in Robotics and AI | www.frontiersin.org 18 February 2020 | Volume 7 | Article 1843

https://doi.org/10.1109/MRA.2012.2225472
https://doi.org/10.1109/IROS.2012.6386281
https://doi.org/10.1109/IROS.2011.6094866
https://doi.org/10.1109/IPIN.2011.6071947
https://doi.org/10.1109/ICSC.2017.96
https://doi.org/10.1007/s10514-015-9429-0
https://doi.org/10.1177/1059712307087282
https://doi.org/10.1109/MCS.2014.2320359
https://doi.org/10.1002/rob.20400
https://doi.org/10.1109/SSRR.2017.8088150
https://doi.org/10.5075/epfl-thesis-6508
https://doi.org/10.1109/ICRA.2014.6907551
https://doi.org/10.1109/LRA.2016.2527833
https://doi.org/10.1016/j.tics.2003.09.012
https://doi.org/10.1016/c2017-0-02356-x
https://doi.org/10.1007/s10514-009-9139-6
https://www.bitcraze.io/multi-ranger-deck/
https://www.bitcraze.io/multi-ranger-deck/
https://doi.org/10.1038/scientificamerican0208-40sp
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Coppola et al. A Survey on Swarming With Micro Air Vehicles

Bouabdallah, S., Murrieri, P., and Siegwart, R. (2004). “Design and control

of an indoor micro quadrotor,” in IEEE International Conference on

Robotics and Automation(ICRA), Vol. 5 (New Orleans, LA), 4393–4398.

doi: 10.1109/ROBOT.2004.1302409

Bouabdallah, S., and Siegwart, R. (2007). “Full control of a quadrotor,” in 2007

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

(San Diego, CA), 153–158. doi: 10.1109/IROS.2007.4399042

Bouffanais, R. (2016).Design and Control of Swarm Dynamics. Singapore: Springer

Singapore.

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics:

a review from the swarm engineering perspective. Swarm Intell. 7, 1–41.

doi: 10.1007/s11721-012-0075-2

Bredeche, N., Haasdijk, E., and Prieto, A. (2018). Embodied evolution in collective

robotics: a review. Front. Robot. AI 5:12. doi: 10.3389/frobt.2018.00012

Briod, A., Klaptocz, A., Zufferey, J., and Floreano, D. (2012). “The AirBurr:

a flying robot that can exploit collisions,” in 2012 ICME International

Conference on Complex Medical Engineering (CME) (Kobe), 569–574.

doi: 10.1109/ICCME.2012.6275674

Briod, A., Zufferey, J.-C., and Floreano, D. (2013). “Optic-flow based control

of a 46g quadrotor,” in Workshop on Vision-Based Closed-Loop Control and

Navigation of Micro Helicopters in GPS-Denied Environments, IROS 2013

(Tokyo).

Brisset, P., and Hattenberger, G. (2008). “Multi-UAV control with the paparazzi

system,” in Conference on Humans Operating Unmanned Systems (HUMOUS)

(Brest).

Brommer, C., Malyuta, D., Hentzen, D., and Brockers, R. (2018). “Long-duration

autonomy for small rotorcraft uas including recharging,” in 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (Madrid),

7252–7258. doi: 10.1109/IROS.2018.8594111

Bronz, M., Moschetta, J. M., Brisset, P., and Gorraz, M. (2009). Towards

a long endurance MAV. Int. J. Micro Air Vehicles 1, 241–254.

doi: 10.1260/175682909790291483

Brutschy, A., Garattoni, L., Brambilla, M., Francesca, G., Pini, G., Dorigo, M., et al.

(2015). The TAM: abstracting complex tasks in swarm robotics research. Swarm

Intell. 9, 1–22. doi: 10.1007/s11721-014-0102-6

Bry, A., Richter, C., Bachrach, A., and Roy, N. (2015). Aggressive flight of fixed-

wing and quadrotor aircraft in dense indoor environments. Int. J. Robot. Res.

34, 969–1002. doi: 10.1177/0278364914558129

Busoniu, L., Babuska, R., and De Schutter, B. (2008). A comprehensive survey of

multiagent reinforcement learning. IEEE Trans. Syste. Man Cybernet. C Appl.

Rev. 38, 156–172. doi: 10.1109/TSMCC.2007.913919

Cabrera-Ponce, A. A., Martinez-Carranza, J., and Rascon, C. (2019). “Detection of

nearby UAVs using CNN and spectrograms,” in International Micro Air Vehicle

Conference and Competition (IMAV) (Madrid).

Cadell, C. (2018). Flight of Imagination: Chinese Firm Breaks Record With 1,374

Dancing Drones. Reuters. Available online at: www.reuters.com/article/us-

china-drones/flight-of-imagination-chinese-firm-breaks-record-with-1374-

dancing-drones-idUSKBN1I3189

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J.,

et al. (2016). Past, present, and future of simultaneous localization and

mapping: toward the robust-perception age. IEEE Trans. Robot. 32, 1309–1332.

doi: 10.1109/TRO.2016.2624754

Campion, M., Ranganathan, P., and Faruque, S. (2018). “A review and future

directions of UAV swarm communication architectures,” in 2018 IEEE

International Conference on Electro/Information Technology (EIT) (Rochester,

MI), 0903–0908. doi: 10.1109/EIT.2018.8500274

Carrio, A., Bavle, H., and Campoy, P. (2018). Attitude estimation using

horizon detection in thermal images. Int. J. Micro Air Vehicles 10, 352–361.

doi: 10.1177/1756829318804761

Carrio, A., Vemprala, S., Ripoll, A., Saripalli, S., and Campoy, P. (2018).

“Drone detection using depth maps,” in 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (Madrid), 1034–1037.

doi: 10.1109/IROS.2018.8593405

Chamanbaz, M., Mateo, D., Zoss, B. M., Tokić, G.,Wilhelm, E., Bouffanais, R., et al.
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Heidelberg: Springer), 10–20.
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Many insect species, and even some vertebrates, assemble their bodies to form

multi-functional materials that combine sensing, computation, and actuation. The

tower-building behavior of red imported fire ants, Solenopsis invicta, presents a key

example of this phenomenon of collective construction. While biological studies of

collective construction focus on behavioral assays to measure the dynamics of formation

and studies of swarm robotics focus on developing hardware that can assemble

and interact, algorithms for designing such collective aggregations have been mostly

overlooked. We address this gap by formulating an agent-based model for collective

tower-building with a set of behavioral rules that incorporate local sensing of neighboring

agents. We find that an attractive force makes tower building possible. Next, we explore

the trade-offs between attraction and random motion to characterize the dynamics and

phase transition of the tower building process. Lastly, we provide an optimization tool

that may be used to design towers of specific shapes, mechanical loads, and dynamical

properties, such as mechanical stability and mobility of the center of mass.

Keywords: social insects, agent based modeling (ABM), self-assembly, phase transition, collective construction,

swarms and collective behavior

1. INTRODUCTION

Collective aggregation is a prevalent behavior among social animals, where many individuals
cluster together while feeding, defending against predators, or as a thermoregulation strategy,
effectively reducing the exposed surface area per individual. Examples of species that aggregate
include vertebrates, such as penguins (Waters et al., 2012) and bats (Roverud and Chappell, 1991;
Kerth, 2008) as well as insects, such as beetles (Deneubourg et al., 1990), ants (Theraulaz et al.,
2002; Reynaert et al., 2006), and cockroaches (Ame et al., 2004; Jeanson et al., 2005). While these
aggregations are often planar, eusocial insects, such as honey bees (Seeley, 2010; Kastberger et al.,
2011), army ants (Franks, 1989), and fire ants (Mlot et al., 2011) extend this strategy and create
three-dimensional assemblages. These self-assemblages are composed of a multitude of individuals
who link their bodies, doing so without a global overseer and with limited cognitive abilities
(Anderson et al., 2002).

Ants in particular are capable of a wide variety of self-assemblages and collective behavior. For
example, ants of the genus Oecophylla build chains for gap crossing and during nest construction
(Lioni et al., 2001). In addition, army ants are known for their construction of bivouacs (Franks,
1989), and are also capable of building bridges out of their bodies to cross gaps along a foraging
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trail (Reid et al., 2015). Finally, as we will discuss further, fire ants
gather together to form rafts and towers when their habitat floods
(Mlot et al., 2011, 2012; Phonekeo et al., 2017).

The structures that these insects create are, in essence,
autonomous materials that embed sensing, computation, and
actuation. These properties are some of the long-standing
aspirations in the fields of multi-functional materials and robotic
materials (Şahin, 2004; Hughes et al., 2019). Self-assembling
agents have already begun to inspire robotic applications
(Bonabeau et al., 1999; Brambilla et al., 2013; Hamann, 2018).
For example, Del Dottore et al. (2018) have described the concept
of “growing robots,” which are systems of a large number of
individual robots working together to mimic biological growth
in plants or groups of molecules or cells. Other collective robots
are directly inspired by eusocial insects, such as the S-bots (Şahin
et al., 2002; Groß et al., 2006), which form chains to collectively
move larger payloads, just like ants working together to move
larger food (Buffin and Pratt, 2016). Also inspired by ants,
Swissler and Rubenstein (2018) have developed robots with a new
docking mechanism to form self-assembling structures. Another
class of robots, inspired by termites (Werfel et al., 2014), build
three-dimensional structures out of external building materials.
Finally, the cube-shaped M-Blocks (Romanishin et al., 2015)
construct aggregations out of their own bodies, using magnetism
and angular momentum to climb on top of neighbors. These
works represent examples from the emerging field of multi-agent
robotic systems built out of many inexpensive individual robots
and utilizing control strategies that may include redundancies to
overcome individual malfunctions. While much of the focus in
robotics has been on developing the hardware, the algorithmic
development of assembling processes has often been overlooked.
We address this gap by borrowing tools from computational
material science and characterize the dynamics of 3-dimensional
aggregation formation inspired by fire ant towers.

In nature, red imported fire ant (Solenopsis invicta) towers
tend to occur in the event of flooding. Initially, fire ants gather
together to form hydrophobic rafts (Mlot et al., 2011, 2012) to
float above the water surface. When the rafts approach vegetation
emerging from the surface, they may attach to the vegetation
and form towers on top of their floating rafts, as pictured in
Figure 1A. In a recent, Phonekeo et al. (2017) described an
experimental assay of the tower-building process in fire ants.
The experimental setup involved fire ants constructing towers
around a vertical rod to represent the emergent vegetation. In
their analysis, the authors propose four rules which allow ants
to build towers:

1. Do not move if ants are on top of you.
2. If atop other ants, repeatedly move a short distance in a

random direction.
3. Upon reaching available space adjacent to non-moving ants,

stop and link with them.
4. The top layer of the tower is not stable unless there is a

complete innermost ring of ants gripping each other around
the rod.

Note that the “available space adjacent to non-moving ants” is
primarily discussed by Phonekeo et al. (2017) in the context

of a ring around the vertical rod or vegetation. We will take a
more general definition of an available space in the present study,
discussed below in section 2.1.

The work of Phonekeo et al. (2017) shows an agreement
between the resulting tower shapes in the long-timescale limit;
however, it does not explore the time dynamics and parameter
space systematically. This is what the present work aims to do,
since local rules, such as these provide a systematic way of
analyzing collective behavior through agent-based modeling, and
importantly, they are directly implementable in swarm robotic
systems. By simulating the behavior of individuals following
a set of local rules, it is possible to investigate how local
interactions between agents lead to global emergent behavior and
explore the space of possible behavior beyond what is possible
with experiments.

Modeling efforts of collective behavior using local behavioral
rules include the boids model (or Vicsek model) (Reynolds,
1987; Vicsek et al., 1995), which simulates agents moving under
attraction, repulsion, and alignment as well as more complicated
models (Couzin and Krause, 2003; Mishra et al., 2012; Wilensky
and Rand, 2015). However, boids-type models best describe the
behavior of more sparse collectives, such as flocks of birds or
schools of fish. To model ants building a tower, we must account
for dense aggregations where the interaction range is limited
to a short length scale, preferably defined by the size of an
individual agent. Models of more dense collective assemblies
include aggregation in slime mold based on chemical signal
amplification (Levine et al., 1997; Umeda and Inouye, 1999),
and nest building in wasps using an agent-based model in
which swarms of builders deposit bricks and build up a nest
(Theraulaz and Bonabeau, 1995; Bonabeau et al., 2000). Agent-
based modeling has been successfully applied to studies of ant
collective behavior as well (Dorigo et al., 2000) to modeling
traffic organization in ant foraging (Goss et al., 1989; Couzin
and Franks, 2003; Strömbom and Dussutour, 2018), bridge and
chain formation (Lioni et al., 2001; Garnier et al., 2013), and trail
clearing (Bochynek et al., 2017). However, for the present study
we must consider both moving ants as in traffic organization
and trail clearing, which climb the tower and form the shape,
as well as stationary ants that support the structure as in bridge
and chain formation. Based on the similarity to the aggregation
of inanimate systems, such as colloids (Deneubourg et al.,
2002; Vernerey et al., 2018), we reason that ant tower building
would experience dynamic phase separation processes including
nucleation (Vlasov, 2019), jamming (Bak, 1996), and ripening
(Voorhees, 1985). These phase transitions are also observed at
the thermodynamic transition between phases of matter, which
have been studied experimentally (Panagiotou et al., 1984) as well
as computationally (Rovere et al., 1990; Navarro and Fielding,
2015). Hence, we formulate an agent-based model with a set
of behavioral rules that lead to aggregation and experience
dynamical phase transitions.

Section 2 describes the details of the model we study in the
present work and lays out the modifications to the local rules
(presented above) that we introduce to achieve tower-building.
In section 3, we explore the parameter space of the local rules to
identify the impacts of each component: locking, unlocking, and
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FIGURE 1 | (A) Formation of towers by fire ants around vegetation, reproduced with permission from Phonekeo et al. (2017). (B) Schematic of computational model

considered in this study, as described in section 2.2. Individual free agents (black) move to an adjacent square at every time step, while locked agents (red) remain

stationary. The side view below the grid shows the 3-dimensionality of the model arena. The blue region represents the neighborhood of adjacent locations which an

agent considers when searching for locked neighbors and for determining its attractive force. (C) Schematic representation of the three states an agent can assume in

the model. Free agents move with constant velocity, locked agents stop to build towers, while covered agents cannot unlock.

attraction. We find that towers undergo a phase transition when
varying the attraction parameter, and explore how this phase
transition changes across various densities. Finally, we introduce
an optimization algorithm to generate the largest possible tower
for a given density of agents in the system. In section 4, we discuss
the significance of the results and talk about implications for both
the understanding of collective biological systems and the design
of multi-agent robotic control strategies.

2. AGENT-BASED MODEL

We consider a system of N individual agents simulated to move
in a L × L × ∞ arena, discretized into a cubic lattice made of
voxels of volume ℓ × ℓ × ℓ. The volume of an individual agent is
set to the be volume of a voxel, where ℓ ≡ 1. At each time step, an
individual agent can move into one of its 26 neighboring voxels:
9 above, 9 below, and 8 on the same level. A schematic of agents
moving within the arena is shown in Figure 1B. In the present
work, we will not consider the effects of solid wall boundaries and
will instead implement periodic boundaries. The horizontal plane
of the arena, therefore, contains periodic boundary conditions—
when an agent leaves the right side of the arena, for example,
it re-enters the left side. Periodic boundaries are also taken
into account when distances between agents are calculated. The
equations that define the periodic boundary conditions are given
in (S1) and (S2) inAppendix 2. The vertical direction of the arena
is semi-infinite, extending upward from a solid floor.

Agents move horizontally and climb up if the voxel they
intended to move into is occupied by a locked agent. Note that
the local rules described above, from Phonekeo et al. (2017), refer
to agents “linking” with one another, while in the present work

we will refer to an agent that stops to support tower building as
“locked.” Each pixel along the horizontal plane has an associated
height equal to the number of locked agents on top of each other
in that location. The free agents, therefore, are moving under
2-dimensional rules along the surface defined by locked agents,
which is embedded in 3-dimensions. If an agent attempts to climb
on top of neighbors to a voxel that is more than ℓ higher, it does
not move at this time step. Agents may move down any distance
but never move below the floor.

Agents in the model may take on three different states,
depicted in Figure 1C: free, locked, or covered. A free agent may
move around the arena according to a specific set of behavioral
rules with a constant velocity of one voxel per time step. All
agents determine their intended movement before moving, and
movement order is chosen randomly at each time step. To
prevent two individuals from occupying the same position, if two
free agents attempt to move to the same voxel, the second agent
to arrive randomly chooses an unoccupied voxel horizontally
adjacent to the target voxel. Locked agents are those which have
decided to become a part of a tower and allow their neighbors
to climb on top of them. We explore different schemes for the
decision to “lock” as defined in sections 2.1 and 2.2. Covered
agents are locked agents with at least one other agent on top
of them. Each time step consists of first evaluating movement
for all individuals and then evaluating locking decisions for
all individuals based on their new configuration. We will not
consider the effect of stability and assume that each agent has
infinite strength to support neighbors.

It is likely that pheromones play a role in fire ant tower
building, but for the present study, we consider whether this
behavior can arise from solely physical proximity to neighbors.
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Hence, an agent can sense which of its surroundings 26 voxels
are occupied by another agent. This local model will allow for
easier implementation by collective robotic systems, as it merely
requires local sensing.

Unless specified otherwise, all simulations contain N = 1, 000
agents moving in a 100 × 100 × ∞ arena, corresponding to a
density of ρ = N

L2
= 0.1. Based on preliminary simulations,

we have chosen to evaluate each trial for 500,000 time steps, for
which 97.8% of all simulations considered reached a steady state,
where the largest tower size remained approximately constant
(±5% of N) for at least the last 100,000 time steps of the
simulation. Exceptions will be discussed below in section 3.2.

2.1. Diffusion-Limited Aggregation
We start by investigating whether a dynamic simulation of the
proposed local rules above can lead to tower-building. As we
are not considering effects of stability, we will ignore rule (iv)
in the present study. We simulate the rules (i)–(iii) from Mlot
et al. (2012) and Phonekeo et al. (2017) with a naive approach
to what constitutes an available space adjacent to non-moving
agents, assuming no direct knowledge of the agents about where
they are relative to the rest of the tower. At each time step, each
individual agent randomly chooses an adjacent square to move
into, performing a random walk and fulfilling rule (ii). When
an agent arrives in a voxel with at least one locked neighbor
sharing a corner, edge, or side, it decides to lock, fulfilling rule
(iii). Locked agents remain in place, and allow others to move on
top of them. Finally, when agents climb on top of locked agents,
the locked agent’s status changes to covered, fulfilling rule (i).
For the sake of simple implementation, we also allow agents to
start tower building with a constant probability of spontaneous
locking, Psl =

1
20,000 .

This model leads to aggregations which grow horizontally
rather than upward. An example of a final configurations from
one such simulation is shown in Appendix 1 and correspond
to the boxed-in panel of Figure S1. This is illustrated in
Supplementary Video S1, where each tower growing outward in
fractal shapes from a center point. This behavior arises due the
higher likelihood of an agent performing a random walk to find
other agents near the outer edge of the aggregation.

These results closely resemble a phenomenon known as
diffusion-limited aggregation (DLA) (Witten and Sander, 1981).
DLA was developed to model the aggregation of metal particles
which gather in wispy, fractal shapes, similar to the simulated
agent aggregation in Figure S1 for Pu = 0, knl = 1. DLA has also
been observed in experimental colloidal aggregation systems, as
in Reynaert et al. (2006). Without any rule modifications, DLA
is unable to form dense aggregations of agents, because agents
on the edge of the aggregation shadow those closer to the center.
Hence, we propose several modifications to the behavioral rules
which are necessary to mimic the time dynamics of tower shapes
experimentally observed by Phonekeo et al. (2017).

2.2. Rule Modifications to Achieve
Tower-Building
2.2.1. Probability of Unlocking

First, we allow locked agents to unlock with a constant
probability, as long as they are not covered by other

agents. This allows individuals past the first locked neighbor
they encounter and move further in toward the center of
an aggregation. To model this, we introduce a constant
probability of unlocking Pu which applies equally to all
uncovered locked agents. This rule introduces a distinction
between locked agents and covered agents—covered agents
cannot unlock.

2.2.2. Neighbor-Influenced Locking Probability

Second, we loosen the requirement that agents must lock upon
encountering another locked agent, and instead allow for their
probability of locking to increase with an increasing number
of locked neighbors. This new rule (ii) replaces the previously
discussed rule that individuals lock immediately upon finding
a locked neighbor. Instead, an individual has a probability to
lock based on the number of locked agents in its neighborhood.
We define this probability of neighbor-influenced locking as
Pnl = knlNn, with Nn representing the number of locked agents
in an individual’s neighborhood and knl specifying the increase
in probability for each additional neighbor. The neighborhood
is defined as a distance of one above below, or horizontally
adjacent to the agent’s location, highlighted by the blue region
in Figure 1B.

The overall probability that a free agent chooses to lock is
given by,

Pl = min {Psl + Pnl, 1} ,

= min
{

Psl + knlNn, 1
}

,
(1)

where Psl is the probability of spontaneously locking. Note that
the model allows for up to 26 neighbors, so the value of Psl +

knlNn may be >1. In this case, locking is guaranteed. Therefore, a
min function is used to state that when Psl + knlNn > 1, the
locking probability is Pl = 1. Additionally, the inverse of the
neighbor locking factor, 1

knl
, may be thought of as the number

of neighbors required to guarantee locking.
The probability of spontaneous locking provides a baseline

probability of locking, to allow for individuals to randomly seed
towers. In our simulations, we keep this probability small and
set it to Psl = 1

20,000 . The neighbor-influenced locking factor
provides the urgency with which an agent locks next to locked
neighbors.

2.2.3. Attraction Forces

As we show below in section 3.1 and Appendix 1, the two
rule modifications above are unable to reproduce large tower-
like structures. Therefore, we extend the random walk model
discussed above, and add an attractive “force” representing
a behavioral tendency to cluster together. Under this effect,
individual agents search their immediate local neighborhood for
other agents, and move toward the center of all neighbors. This
motion is then perturbed by the randomness associated with a
simple random walk model. The resulting velocity is given by,

vi = vrandom +
c

ni

ni
∑

j=1

(

xj − xi
)

, (2)

where ni is the number of neighbors in the agent’s immediate
neighborhood sharing at least one corner, edge, or side with
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the agent’s current position, and c is ratio of the magnitude of
attraction relative to the magnitude of randomness. Each agent
moves toward the available voxel most closely aligned with the
direction of vi. The resulting normalized velocity, v̂i is defined in
(S3) in Appendix 2. Each agent moves into the voxel defined by
the surface height at the resulting pixel.

Software that simulates agents following these modified rules
in MATLAB is provided in Supplementary Code S8.

2.3. Set of Modified Behavioral Rules
With the three modifications mentioned above, we modify the
first three rules of Phonekeo et al. (2017) and Mlot et al. (2011)
into four new local rules:

1. Do not move if agents are on top of you.
2. Upon reaching available space adjacent to non-moving agents,

stop and lock with them with probability Pl = knlNn.
3. If stopped and locked, but uncovered by other agents,

spontaneously unlock with probability Pu.
4. If free to move, move generally toward your neighbors with

some random noise as defined by equation (2).

2.4. Measurements of Tower Geometry
Each simulation is post-processed to measure the geometry of
each tower in order to determine how tower-like the aggregation
is. For the final configuration of each simulation, a 2-dimensional
height map is constructed by assigning each pixel in the 2D
projection of the arena a value equal to its maximum height
(Figure 2A). We treat the resulting L × L array of pixel values
as an image and apply connected-component analysis (Shapiro,
1996) to identify different towers—a labeled image is generated
where any two non-zero pixels that share a corner or edge have
the same label. Each agent in the simulation is then given the label
corresponding to its horizontal position within the labeled image.
As we are interested in building a single large tower, properties
for the tower containing the largest number of agents from each
simulation are reported. Three tower properties are considered:
number of individuals per tower, maximum tower height, and
the ratio of the tower height to its equivalent diameter. Equivalent
diameter is defined as the diameter of a circle with area equivalent
to the tower’s base (Figure 2A).

3. RESULTS

To gain an intuition for the effects of the modifications to the
tower-building rules discussed in section 2.2, simulations were
run over a range of locking and unlocking parameters, knl and
Pu, across multiple attraction parameters, c, and in section 3.3,
across varying densities of agents in the system, ρ. We begin with
a parameter sweep across the locking and unlocking parameters
and attraction parameter in section 3.1. Then, selecting a pair
of locking and unlocking parameters, we systematically vary
attraction c to show a rapid phase transition, and investigate the
time dynamics of tower properties, both near and far from the
phase transition in section 3.2. In section 3.3, we vary the density
of agents along with attraction, and observe, in section 3.4, that
the center of mass of the towers may continue to move. Finally,

we optimize for tower size and height in section 3.5 and identified
a set of parameters where a tower formed of nearly all individuals
in the simulation.

3.1. Tower Geometry
To explore the range of possible tower shapes in the model,
we sweep the parameter space of the three rule modifications,
including probability of unlocking Pu, neighbor-locking factor
knl, and attraction factor c. Resulting tower properties and
example final configurations from these simulations are shown
in Figure 2. Every data point represents the mean of the largest
tower’s properties for each of 10 simulations. The left column
of the array of tower properties, representing simulations with
c = 0, shows that without attraction, towers tend to contain a
small number of agents, a small height, and an especially low
height-diameter ratio. These simulations with c = 0 represent the
first two rule modifications—individual unlocking and neighbor-
influenced locking—alone. From the measured tower properties
in Figure 2B, we see the effects of the first two rule modifications
without attraction. The aggregations with the largest number of
agents are found in the simulations with parameters knl = 1
and Pu = 0, representing the case of no rule modifications
at all. These aggregations lead to diffusion-limited aggregation
as discussed above and shown in Supplementary Video S1. The
locking and unlocking rule modifications, therefore, decrease the
number of agents in the largest aggregation. They do provide
an increase in tower height and the height-diameter ratio. This
increase is modest, however, with the tallest average tower
height reaching 3.4 agents tall for Pu = 0.002, knl = 1

12 ,
corresponding to a height-diameter ratio of 0.314. The largest
height-diameter ratio occurs for the parameters Pu = 0.02, knl =
1, reaching a value of 0.49, with a corresponding average height
of 2.2 and 19.9 agents in the largest tower for each simulation.
Finally, the simulations with c = 0 and Pu = 0.2 with
a small lock factor knl ≤ 1

8 finish the simulations without
forming aggregations. Supplementary Video S2 and the c = 0
configuration snapshot in Figure 2C show the dynamics and
final configuration, respectively, of one such simulation which is
unable to form aggregations, with parameters Pu = 0.2, knl =
1
26 , c = 0. These tower measurements show that without
attraction, all of the tested parameter sets produce aggregations
that remain small in number of individuals, do not reach average
heights more than 3.4 layers, and remain wide and shallow.

When an attractive force is added, larger aggregations form,
as shown by the center column of Figure 2B for an attraction
ratio of c = 1. As unlock probability Pu increases and lock factor
knl decreases, larger aggregations form, with the largest reaching
over 500 individuals. However, these largest aggregations have
the smallest height-diameter ratios of this set, showing that these
large aggregations are particularly wide, as is visible in the c = 1
example in Figure 2C and Supplementary Video S3. Increasing
the attraction ratio to c = 2 finally reveals a more typical tower-
like shape, with taller aggregations, even reaching a height of 11
agents. Interestingly, these taller towers contain fewer agents than
the c = 1 case. The reason for this is clear in the snapshots shown
in Figure 2C and Supplementary Video S4—stronger attraction
yields more densely-packed towers with larger height-diameter

Frontiers in Robotics and AI | www.frontiersin.org 5 March 2020 | Volume 7 | Article 2556

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Nave et al. Attraction in Ant Tower-Building

FIGURE 2 | (A) Schematics of tower height and diameter, defined in section 2.4. (B) Average number of agents (orange), tower height (green), and aspect ratio (blue)

of the largest tower across a variety of parameters. Every data point represents the mean of the properties of the largest tower from each of 10 simulations after

500,000 time steps. Aspect ratio (blue) is defined as the ratio of tower height to the diameter of a circle with area equal to the tower base. The bordered square

represents the case of no rule modifications, with parameters Pu = 0, knl = 1, c = 0. Note that the axes of the property comparisons are not linear. (C) Examples of

the final configuration of agents after 500,000 time steps for c = {0, 1, 2} with Pu = 0.2, knl =
1
26 . Each panel shows the entire 100× 100 arena. The videos of the

simulations that result in these final configurations are shared as Supplementary Videos S2–S4.

ratios—the towers are so dense that multiple, smaller towers form
instead of most individuals aggregating into a single tower.

3.2. Phase Transition and Time Dynamics
of Tower-Building
The example configurations shown in Figure 2C represent the
same set of locking and unlocking parameters, Pu = 0.2, knl =

1
26

across c = {0, 1, 2}. These locking and unlocking parameters give
the largest towers for both c = 1 and c = 2, but no aggregations
at all for c = 0. To investigate the effects of the attraction
ratio c further, we selected a fixed pair of locking and unlocking
parameters and explored both the height and number of agents
in the largest tower in the system for a densely sampled range
of the attraction parameter c. The results of these simulations are
shown in Figures 3A,C. The presence of a phase transition occurs
between c = 0.92 to c = 1.06, where the number of agents in the
largest tower climbs from close to 0 to over 700 agents. The results
show that as c increases beyond that critical value, the number of

individuals in the largest tower decreases (Figure 3A) while the
height of the largest tower increases (Figure 3C).

In Figure 3B, we show the time dynamics of the number
of agents for tower for two cases, close to the phase transition
and further from it. To illustrate tower growth further from the
phase transition, Figure 3B shows the time histories of all 10
simulations for Pu = 0.2, knl =

1
26 , c = 2.0 in green and themean

of all simulations in black. One of these simulations is shown in
Supplementary Video S4. The tower formation process in this
model demonstrates two time scales: the time scale of initial
nucleation, and the time scale of growth. Nucleation generally
occurs within the first 5,000 time steps, the first 1% of each
simulation. After nucleation, towers often continue to grow
slowly through the rest of the simulation. Occasionally, two
towers will merge into one, which manifests as a sharp jump in
the time histories of Figure 3B. Some of these tower collisions
last through the rest of the simulation, while others briefly merge
and then separate again, which shows up as a sharp peak in the
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FIGURE 3 | (A) The number of agents and (C) tower height of the largest tower across a range of attraction parameters, c for a given pair of locking and unlocking

values, Pu = 0.2, knl =
1
26 . Each data point shows the mean value over 10 simulations of 500,000 time steps each. Error bars indicate the maximum and minimum

values observed. (B) Example time histories from 10 simulations of Pu = 0.2, knl =
1
26 , c = 2.0 in green with the mean at each time step shown in black. (D) Time

histories from two examples for several c values near the phase transition, c = {0.96, 1.0, 1.3}.

time history of tower size. The fast nucleation followed by slow
growth seen for c = 2.0 is typical for most simulations in the
present work.

However, there are some examples, particularly within the
phase transition regime, for which a critical slowing down occurs.
Trajectories close to the phase transition are shown in Figure 3D.
Two trajectories are shown for each of c = {0.96, 1.0, 1.3} with
Pu = 0.2, knl = 1

26 . The critical slowing down is particularly
evident for the c = 0.96 trajectories, where agents aggregate into
a tower after 250,000 time steps while the other never transitions
out of the disordered state. The c = 1.0 trajectories also show
variation in nucleation time, although in this case, all simulations
have transitioned to their aggregated state, in which the largest
tower contains at least 100 agents. The variation in tower size
is highest for these examples, varying in size by 200 or more
individuals. There are also cases where the towers continue to
grow in size, even after 500,000 time steps, which can also be seen
in the case of c = 1.3.

As discussed in section 2, the simulation time of 500,000 was
chosen because nearly all simulations have reached a steady state.
The cases highlighted in Figure 3D represent the exceptions, and
there is no guarantee that these simulations will ever converge.
The figure shows that c = {0.96, 0.98} are the only cases that give
a mixture of aggregated and non-aggregated results.

3.3. The Effect of Density
The parameters varied up to this point in the model represent
entirely behavioral parameters, that is, those associated with

the decision-making of individuals. While these parameters
are testable within multi-agent robotic examples, they do not
represent a variable that can be systematically changed in
experiments with live fire ants, or robots, in order to test
the predictions of the model. To develop a set of testable
predictions, we turn to explore the parameter of density
of agents, ρ.

In our model, density is varied by changing the number
of individuals in a fixed arena size. The computational
complexity of the model is O(N2), so practical limits of
computational time place an upper bound on density we
explore here. In a 100 × 100 × ∞ arena, our test set is
N = {200, 500, 750, 1000, 1500, 2000} which corresponds to
the densities ρ = {0.02, 0.05, 0.75, 0.1, 0.15, 0.2}. We will use
unlocking and locking parameters of Pu = 0.2, knl = 1

26 for
consistency with section 3.2.

The results of these simulations are presented in Figure 4,

showing several key differences and similarities across densities.

As density increases, less attraction is required for tower

formation. The data points highlighted by circles in Figure 4B

show the critical attraction ratio c∗, which represents the
minimum value of c for which the largest aggregation is
at least 100 individuals, representing the onset of the phase
transition. This result also implies that there exists a critical
density across a range of attraction factors, below which
no tower formation occurs. Another key result is that the
largest towers, in terms of number of agents per tower,
occur shortly after the transition from no towers at all.
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FIGURE 4 | (A) Final configurations of various simulations after 500,000 time steps, comprising densities of ρ = {0.02, 0.075, 0.15, 0.2} and attraction factors of

c = {0.5, 1.0, 1.5, 2.0}. Each panel shows the entire 100× 100 arena. (B) Number of agents, height, and height-diameter ratio over a range of density ρ and attraction

factor c. Note that the vertical axis is not linear. Each data point represents the average properties of the largest tower from 10 simulations after 500,000 time steps.

The circles on the density plot represent the onset of phase transition. The circles indicate the minimum attraction coefficient c for each density at which the largest

tower contains at least 100 agents.

Beyond this point, tower height and ratio increase while
number of agents decreases. Finally, tower shape remains
close to constant across densities, particularly in height-
diameter ratio.

3.4. Moving Towers
The introduction of unlocking probability effectively adds
noise to the system (equivalent to higher temperatures in
thermodynamic systems), which allows towers to move. Agents
locking on one side of the tower while others unlock on the
other side can lead to tower motion. Traces of the center of
area for each tower from two example simulations may be seen
in Figure 5B. To quantify this phenomenon, we consider the
motion of towers as a Brownian random walk and investigate the

diffusion coefficient of each tower. The diffusion coefficient (D)
for a Brownian random walk follows the relationship,

MSD = 2Dt,

MSD =
1

T − t

T−t
∑

t0=0

∣

∣x(t + t0)− x(t0)
∣

∣

2
,

(3)

for each trajectory of length T. Therefore, we measure the mean
square displacement (MSD) of each tower in each simulation
over a variety of times, t = {0, 250, 500, ..., 12, 500}, and perform
a linear fit for each tower trajectory. The average slope of these
lines is then twice the diffusion coefficient (Figure 5A).
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FIGURE 5 | (A) Heat map of diffusion coefficients across the density-attraction space of Figure 4. Each point represents the mean diffusion coefficient calculated by

(3) of all tower trajectories over 10 simulations of 500,000 time steps. The diffusion coefficient is calculated over the first 37,500 time steps of each trajectory. (B)

Example trajectories from two simulations at the density ρ = 0.2 with attraction factors c = {1.0, 2.0}, with points every 250 time steps for 500,000 time steps. (C)

Snapshots in time of the same simulations as in the top-right, showing the motion, shape change, and appearance and disappearance of towers over time. Each

panel shows the entire 100× 100 arena.

These results show that the maximum diffusion occurs in the
highest density regime, and for the lowest attraction parameters
that generate aggregations, particularly for ρ = 0.2 at c = 0.75
and c = 1.0. These towers have lower height-diameter ratios, as
seen in Figure 4B, which leads to a larger proportion of agents
on the surface of the tower, and therefore a higher probability
that individuals on the surface will be unlocking. The towers
at c = 0.75 have a smaller number of agents than those of
c = 1.0, which leads to an even higher proportion of individuals
on the surface. This is illustrated in Figure 5C, showing the time-
evolution of tower configurations for two example simulations
(see also Supplementary Videos S5, S6).

3.5. Tower Optimization
One question that still remains is, what parameter values are
optimal for tower building? To answer this, we need to think
about what may constitute optimal. It may be that the optimal
tower reaches as high as possible, which would, in practice, allow
as many agents as possible to attach to a support structure. Or,
for robotics applications, this would allow the tower to reach

higher heights. On the other hand, it may be best to include
as many individuals as possible in the tower, and the optimal
tower would be the one that includes every single agent in the
tower. As observed in Phonekeo et al. (2017), fire ants built towers
that equally distribute load among the individuals. Therefore, an
optimal tower from their perspective may be one that optimizes
for load distribution. In this section, we use a genetic algorithm
to explore optimal tower building considering each of these
optimization targets.

To search for an optimal tower, we employ the Covariance

Matrix Adaptation-Evolutionary Strategy (CMA-ES) algorithm
developed by Hansen et al. (2003). This algorithm randomly
generates parameter sets within the search space and evaluates
a cost function for each parameter set. From the results of
this function evaluation, it updates the covariance matrix to
expand in the direction of the most optimal value. Using
the updated covariance matrix, the algorithm generates new
parameter sets and repeats the process until convergence,
generally defined as finding a parameter set with a cost function
below some threshold.
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FIGURE 6 | Optimization of the cost function given by (4) using the CMA-ES algorithm (Hansen et al., 2003). Panels show the final configuration of the best simulation

at iterations 2, 12, and 20 after 50,000 time steps. Each panel shows the entire 100× 100 arena. The algorithm converges in 20 iterations, to the parameter set

Pu = 0.938, knl = 0.029, and c = 2.56, with the optimal configuration shown in the bottom-right.

We applied the CMA-ES algorithm to the tower-building
model introduced above, using the average final properties of
three trials for each parameter set across 10 parameter sets
per iteration. For the optimization, we choose a cost function
defining the optimal tower as the largest tower, both in terms
of tower height and number of individuals within the tower.
Therefore, the cost function is given by,

f =

(

1−
Ntower

Nmax

)

+max

{

0,

(

1−
htower

hmax

)}

, (4)

where Ntower and htower represent the number of individuals and
height of the largest tower, Nmax is the number of individuals in
the simulation, and hmax is a prescribed maximum height. The
height term is included to ensure that the results are effectively
tower-like, preventing the optimal tower from simply achieving a
large, wide aggregation. From the results of the attraction sweep
in Figure 3A, we observe that hmax = 14 is an approximate upper
bound on tower height, so it is therefore chosen as hmax for the
purpose of this optimization. Note that a tower height of htower ≥
hmax results in a zero second term, and the simulation therefore
allows for a taller tower. For the purposes of optimization, we
reduce the simulation time to 50,000 time steps. This serves the
practical role of making iterated simulation possible, but also
places an effective minimization of convergence time. Therefore,
we are optimizing for a tower that maximizes both height and
number of agents quickly (within 50,000 time steps).

Figure 6 shows the progression of the minimum cost at
each iteration of the CMA-ES algorithm along with snapshots
of intermediate results to show the algorithm’s progress. The
optimal tower occurs for the parameters, Pu = 0.938, knl =

0.029, and c = 2.56, which led to a tower of 993 agents
reaching 16 agents tall after 50,000 time steps. The final
cost function, averaged over three trials, was f = 0.01.

A video of one simulation with these parameters is shown in
Supplementary Video S7.

The CMA-ES optimization code of Hansen et al. (2003)
applied to the present model may allow future research and
consideration of other conditions of optimal tower-building. For
example, when designing a robotic system where each individual
robot has a maximum load capability, it may be necessary to
calculate the maximum load experienced by an individual in the
tower and add that term to cost function.

4. DISCUSSION

In this work, we have extended a previously proposed set of local
rules to replicate the tower-building behavior of red imported
fire ants, Solenopsis invicta. This model and its insights will
allow for the design of control strategies for tower-building
swarm robotics and greater insight into the collective behavior of
social insects. The results presented above show that individuals
moving under the influence of local attraction are able to form
large towers. We find that an attractive force is necessary for
significant tower-building and show the impacts of this attractive
force over a range of locking and unlocking parameters as well
as a range of densities. We find that the system contains a
sudden phase transition as the attraction parameter is varied,
and that this phase transition is density-dependent. Finally,
the largest towers, in both height and number of individuals,
occur with a combination of very strong attraction and highly
probable unlocking.

On the other hand, without attraction, no towers
form, as shown in the c = 0 case of Figure 2 and
Supplementary Video S2 and discussed further in the
Appendix 1 and Figure S1. The effective force of attraction
may also be thought of as a desire of the ants to climb, because
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the tallest available square to move toward will also have the
most neighbors.

Near the phase transition, a critical slowing down occurs, and
there are parameter sets that do not result in tower formation
within a simulation time of 500,000 time steps. This critical
slowing down is reminiscent of other examples of systems with
phase transitions, such as the spin-glass model, the Ising model,
and molecular dynamics models (Dasgupta et al., 1979; Hu,
2013). Further from the phase transition (c ≫ c∗), towers form
rapidly, but the possibility exists for these towers to encounter
one another and merge into larger towers. The number of
individuals in the tower and tower motion are largest just after
the phase transition, but the largest height occurs with stronger
attraction. Phase transitions have previously been observed
experimentally and computationally in other ant and insect
systems, such as in Pharaoh’s ant foraging (Beekman et al., 2001)
and in marching desert locusts (Buhl et al., 2006).

Our results also illustrate the exploration-exploitation trade-
off, which balances attraction forces with randommovement and
unlocking events. Following this trade-off, stronger attraction
may lead to higher towers with fewer individuals, as the attraction
rapidly draws individuals from the edge of the aggregation
toward the center of the tower, and therefore upward. This
balance of unlock probability and attraction is found through
the combined optimization of number of individuals and tower
height, which discovered that with an unlock probability of Pu =

0.938 and an attraction of c = 2.56, it is possible to include nearly
all of the individuals in a simulation, with a tower reaching a
height of 16 layers. This large unlock probability of the largest
towers in our simulations connects with the observation from
Phonekeo et al. (2017) that, in the experimental system, the
fire ants are constantly rebuilding their tower and circulating
ants throughout the tower. The work of Phonekeo et al. (2017)
showed that fire ants build towers of constant load, and future
optimization work could incorporate the load experienced by
each individual to achieve towers that prioritize stability. More
refined ant models may also incorporate the mechanics and
viscoelastic properties of fire ant aggregations (Tennenbaum
et al., 2016), which are observed to change depending on the
number of active ants, such as the free ants included in the
present model (Tennenbaum and Fernandez-Nieves, 2017).

The results of the parameter sweep in density values showed
both similarities and differences across densities. In general, for a
fixed attraction ratio c, the tower height-diameter ratio remains
fairly constant, even as the numbers of agents per tower and
tower height vary. The biggest difference across densities is the
change in critical attraction parameter, c∗. These observations
lead to testable hypotheses for animal experiments. Below a
certain density threshold, tower formation should cease, due to
the move past the critical attraction. Additionally, the height-
diameter ratio should remain constant across a large range of
densities. Finally, we have shown that the towers built in our
simulations move over time, with a diffusion coefficient that is
dependent on both attraction and density, and should be taken
into account when considering practical application to robotics.

This work also lays the groundwork for future robotic studies,
where robots are able to built towers out of themselves in a

manner similar to, for example, theM-blocks of Romanishin et al.
(2015) or the Roombots of Spröwitz et al. (2014), which have
also been proposed for bridge-building applications (Nguyen-
Duc et al., 2019). The tower is a ubiquitous structure in
building, and designing rigorous control strategies for tower-
building represents a fundamental starting point toward fully
autonomous, locally-sensed swarm building applications. In
practice, a tower of robots could be useful in the case of,
for example, seeing over obstacles, providing scaffolding for
climbing, or clearly marking a location of interest. Robotic tower-
builders would need to be have the following capabilities: sense
neighbors, climb onto and off of one another, and support
appropriate loads. At the moment, there is no robot with
all of these capabilities, and we believe that this would be
a promising avenue for future robotics research. The control
strategies introduced in the present study could also be further
modified to more closely replicate experimentally-observed fire
ant behavior, developing a control strategy for interacting with a
support structure.
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Supplementary Video S1 | The diffusion-limited aggregation case of the model,

with Pu = 0, knl = 1, c = 0. The video is shown at a speed of 120 time steps

per second.

Supplementary Video S2 | Simulation in which no aggregations form, with

Pu = 0.2, knl =
1
26 , c = 0. The video is shown at a speed of 10,000 time steps

per second.

Supplementary Video S3 | Simulation in which large, wide aggregations form,

with Pu = 0.2, knl =
1
26 , c = 1. The video is shown at a speed of 10,000 time

steps per second.
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Supplementary Video S4 | Simulation in which many steep towers form, with

Pu = 0.2, knl =
1
26 , c = 2. The video is shown at a speed of 10,000 time steps

per second.

Supplementary Video S5 | Simulation with large, wide moving aggregations in a

dense environment, with Pu = 0.2, knl =
1
26 , c = 1, and N = 2, 000 individuals.

The video is shown at a speed of 10,000 time steps per second.

Supplementary Video S6 | Simulation with many steep moving aggregations in a

dense environment, with Pu = 0.2, knl =
1
26 , c = 2, and N = 2, 000 individuals.

The video is shown at a speed of 10,000 time steps per second.

Supplementary Video S7 | Simulation of the results of tower optimization, with

Pu = 0.938, knl = 0.029, c = 2.56. The video is shown at a speed of 2,500 time

steps per second.

Supplementary Code S8 | Three MATLAB code files, included in a .zip file.

TowerSimulation.m provides a function to run a single simulation,

TowerAnalysis.m provides the analysis of the resulting

towers, and TowerVideo.m provides the code used to visualize the

results of each simulation. A maintained repository of these codes is available at:

https://github.com/peleg-lab/TowerBuilding.
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The real world is highly variable and unpredictable, and so fine-tuned robot controllers

that successfully result in group-level “emergence” of swarm capabilities indoors may

quickly become inadequate outside. One response to unpredictability could be greater

robot complexity and cost, but this seems counter to the “swarm philosophy” of

deploying (very) large numbers of simple agents. Instead, here I argue that bioinspiration

in swarm robotics has considerable untapped potential in relation to the phenomenon

of phenotypic plasticity: when a genotype can produce a range of distinctive changes in

organismal behavior, physiology and morphology in response to different environments.

This commonly arises following a natural history of variable conditions; implying the

need for more diverse and hazardous simulated environments in offline, pre-deployment

optimization of swarms. This will generate—indicate the need for—plasticity. Biological

plasticity is sometimes irreversible; yet this characteristic remains relevant in the context

of minimal swarms, where robots may become mass-producible. Plasticity can be

introduced through the greater use of adaptive threshold-based behaviors; more

fundamentally, it can link to emerging technologies such as smart materials, which

can adapt form and function to environmental conditions. Moreover, in social animals,

individual heterogeneity is increasingly recognized as functional for the group. Phenotypic

plasticity can provide meaningful diversity “for free” based on early, local sensory

experience, contributing toward better collective decision-making and resistance against

adversarial agents, for example. Nature has already solved the challenge of resilient

self-organisation in the physical realm through phenotypic plasticity: swarm engineers

can follow this lead.

Keywords: phenotypic plasticity, reaction norms, swarm diversity, resilience, minimal robotics, swarm robotics

INTRODUCTION

The self-organized societies of social insects such as ants are well-known in swarm robotics (Şahin,
2005); yet they could be the “tip of the iceberg” of available bioinspiration. Here, I focus specifically
on the general concept of phenotypic plasticity as a powerful, complementary framework for
thinking about real-world deployment of minimal robot swarms. In fact, social insects are prime
exhibitors of phenotypic plasticity (Kennedy et al., 2017), but it is widespread and of fundamental
importance in the rest of the natural world. In brief, I argue the following main points:
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Hunt Phenotypic Plasticity for Minimal Swarms

1. Plasticity is typically selected for by evolution following
a natural history of unstable environmental conditions.
In offline evolutionary swarm optimization, simulated
environments need to be more heterogeneous and hazardous
to generate and understand the value of plasticity.

2. In the context of large numbers of agents, elements of this
plasticity could be (partially) irreversible, as in nature. This
could be further enabled by cost-effective expendability, up to
and including recyclable or biodegradable robots.

3. In addition to the value of individual plasticity for responding
to environmental variation, otherwise unremarkable variation
in response thresholds (for example) can contribute
to adaptive group-level diversity; swarm engineers can
exploit this.

I first provide some background perspective on swarm
robotics before introducing the biological phenomenon of
phenotypic plasticity.

Background: The “Swarm Principle” of

Individual-Level Simplicity
Swarm robotics is predicated on the idea that large numbers
of agents working collectively can solve tasks that would
be impossible for a single individual (Hamann, 2018). It
is specifically inspired by biology in that it relies on self-
organization (Camazine et al., 2001) as the mechanism of
coordination, particularly as seen in social insects (Şahin, 2005).
This includes concepts such as stigmergy (e.g., Hunt et al.,
2019a). Closely allied to this is the reliance on emergence of
swarm problem-solving capabilities that cannot be reduced to,
or predicted from, individual-level components (Şahin, 2005;
Bjerknes et al., 2007; Brambilla et al., 2013).

As technology continues to develop, with ever-advancing
computer processing power andmethods in artificial intelligence,
the temptation may be to build swarms of agents that
are individually highly complex both in their hardware and
controllers. However, this would not align with the “swarm
principle” of relying on emergence to do the “heavy lifting” of
solving the task. It would also defeat the object in “complexity
engineering” of maintaining low-level understandability (Frei
and Giovanna, 2012). Finally, it may be prohibitive in terms
of cost, when real-world environments have hazards resulting
in a risk—or even an expectation—of robots being lost or
destroyed. Instead, swarm controllers are classically based on
reactive control (Hamann, 2018), based on simple reflexes to
a stimulus (e.g., Walter, 1950; Mitrano et al., 2019), or taking
into account an internal state (the model-based reflex agent of
Russell and Norvig, 1995, for example Nouyan et al., 2009). This
“behavior-based robotics” (Arkin, 1998) is in keeping with studies
of reaction thresholds in biology (Bonabeau et al., 1999). It is also
compatible with relatively simple and affordable hardware that
can be easily understood: for example the “e-puck” (Mondada
et al., 2009), “Kilobot” (Rubenstein et al., 2012), and “Crazyflie”
(McGuire et al., 2019). There is still relatively limited real-world
swarm deployment (e.g., Schmickl et al., 2011; Duarte et al.,
2016): there is a clear opportunity to shape the design principles
for minimal swarms.

Previous Examples of Adaptation in

Homogeneous Robot Swarms
There are several examples in the swarm robotics literature
in which individual robots, though identically programmed
with the same controller, end up behaving differently
according to their experience of the environment. I briefly
group these according to three prominent approaches,
before going on to explain the complementarity of the
proposed approach.

Off-Line (Pre-deployment) Evolutionary Optimization
Designing emergent (Matarić, 1993) and adaptive (Matarić,
1995) group behaviors is challenging, and so one can use
evolutionary optimization in simulation before deployment
(Dorigo et al., 2004; Trianni, 2008; Hecker and Moses,
2015; Birattari et al., 2019). In this way, adaptation of
behavior can be seen in task specialization, for example,
as an effective group-level strategy (Ferrante et al., 2015),
though its effectiveness is tuned to the particular simulated
environment. Furthermore, the simulated environments
employed in evolutionary robotics can be rather simple and
homogeneous. As a result, there can be little in the way of a
mechanism to generate plasticity, as it is not rewarded by the
artificial evolutionary process. Including sufficient heterogeneity
in the class of simulated environments is indispensable to
identifying a suitable variety and extent of plasticity for swarm
robots (Figure 1).

On-Line (On-Deployment) Evolutionary Optimization
Embodied evolutionary robotics is a promising avenue for real-
world deployment (Trueba et al., 2011; Haasdijk et al., 2014; Jones
et al., 2019) but in practice the requisite computing power may
be a step away from the minimal robotics needed for swarm
ubiquity. Evolutionary approaches (off- or on-line) could struggle
in the field, owing to unanticipated circumstances or merely
because of the so-called “reality gap” between the world and
(inner) simulation (Brooks, 1992; Jakobi et al., 1995).

Learning (On-Deployment)
Learning is an example of behavioral plasticity. For example,
if one simulates improved task performance through repetition
there can be emergent task specialization (Brutschy et al., 2012).
Task sequencing has been demonstrated at run-time without
prior knowledge of the correct ordering, demonstrating a form
of reinforcement learning, albeit with abstractions of the tasks
themselves (Garattoni and Birattari, 2018). In practice, robot
learning tends to employ (evolved) neural networks (Nolfi et al.,
1994; Floreano and Mondada, 1996; Nolfi and Floreano, 2000;
Nitschke et al., 2012; Hüttenrauch et al., 2018), so-called neuro-
evolution methods. Neural network-based approaches can have
difficulty in scaling to more complex problems (Brambilla et al.,
2013); and again, for truly minimal swarms, this may be a step
toward undue computational complexity. I suggest “personality”
adaptation as an example minimal bioinspired approach to
learning (section Behavioral Plasticity).
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FIGURE 1 | A conceptual overview of how phenotypic plasticity could be employed in a minimal robot swarm. Beginning with existing minimal robot hardware,

consider the current and potential extent of plasticity. Undertake artificial evolution of swarms in a series of heterogeneous environments, to obtain suitable

developmental reaction norms (mappings of sensory input to ranges/variations of phenotype, including one or more variable traits such as reaction thresholds, power

consumption, or “smart” body parts). Hardware may be iterated to extend or reduce/remove plasticity. Deploy into the field, and individual robot experience will

contribute to a distribution of individual phenotypes in the swarm. This should then form an adaptive swarm-level phenotype. Robots can then be collected and reset

before redeployment elsewhere, recycled/disposed of sustainably, or even biodegrade in certain contexts (“Crazyflie” drone photo CC-BY 4.0, Bitcraze AB).

Phenotypic Plasticity: Evolving Adaptive

Reaction Norms
Broadly defined, phenotypic plasticity is the ability of an
organism’s genotype to produce different phenotypes in response
to different environmental conditions (Kelly et al., 2012). This
includes behavioral, physiological, and morphological plasticity
as I later describe in their respective sections (see also Figure 2).
These are ordered by how rapidly an adjustment is typically
made through that plasticity mode. Plasticity varies, as we see
in social insects: some are resilient to environmental change
(e.g., invasive ants; Holway et al., 2002), while others such as
bees struggle to cope with e.g., habitat loss, novel toxins, or
pathogens (Goulson et al., 2015). Its importance may in part
depend on mobility: for instance, it is particularly important
in plants, which are unable to change their environment
(Schlichting, 1986). Early experience is often key to phenotypic
development (e.g., Weaver et al., 2004), which can be seen
as a form of “memory” of the environment to which the
organism (or agent) is exposed in the initial phase of its
life (deployment).

The term developmental reaction norm (DRN) describes
the range of phenotypes generated by a given genotype
(“controller,” smart materials, etc.) in response to experienced
environmental cues (Schlichting and Pigliucci, 1998). DRNs can
themselves be plastic or non-plastic, i.e., the phenotype can
remain fixed or change in response to changing environmental
conditions. Therefore, there are at least five attributes to DRNs:

amount of plasticity (large/small); pattern of response (e.g.,
monotonic increase/decrease or more complex reaction curves);
rapidity of response; reversibility of response; and competence
(possibility) of the developmental system to respond at a
certain stage in an organism’s (robot’s) lifetime (Schlichting
and Pigliucci, 1998). Moreover, in the “swarm” context, it is
worth noting that individuals’ experiences can affect the extent
of their plasticity at a given age (Stamps, 2016). This can also
contribute to group-level diversity in phenotypic expression.
Behavioral plasticity at the level of the whole group can be
seen in, for example, the reaction thresholds of harvester ant
colonies (Gordon et al., 2011). In social groups individual
phenotypes interact, contributing to the complexity of the
genotype and phenotype fitness landscapes (Moore et al., 1997;
Wolf et al., 1999). The various attributes of developmental
reaction norms are, in principle, subject to natural selection
(Schlichting and Pigliucci, 1998; Dingemanse et al., 2010), and
I propose that for swarm engineers, pre-deployment artificial
evolution of DRNs can establish their extent (Figure 1). Plasticity
occurs in response to environmental cues, so one must also
consider the relevant environmental features (physical and
social) that will elicit change—and how they will be sensed.

For example, local cues about resource distributions can be

used to adjust individuals’ foraging parameters (Just and Moses,

2018), and environmental heterogeneity generates variable
foraging rates through behavioral plasticity in harvester ants
(Beverly et al., 2009).
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FIGURE 2 | Top row: Examples of phenotypic plasticity, which could be enacted with simple, environmentally-reactive control rules. They are ordered left to right in the

typical speed of response. (A) Behavioral plasticity in the social spider Stegodyphus dumicola allows the colony to maintain a suitable distribution of “bold” and “shy”

individuals (photo: Bernard Dupont, CC-BY-SA 2.0). (B) Physiological plasticity is observed in the invasive cane toad Rhinella marina, as it can adjust its core

temperature to live in cool regions (photo: Sam Fraser-Smith, CC-BY-2.0). (C) Morphological plasticity in the bacterium Bacillus cereus. In the top pane it has

undergone filamentation following antibacterial treatment; bottom pane is untreated (photo: Achara Dholvitayakhun, CC BY-SA 4.0). Bottom row: Biologists study

clonal organisms to understand how phenotypic plasticity produces individual differences within social groups (“swarms”). The distribution of differences may be

adaptive for their local ecology. The individual-level “interaction rules” and resultant plasticity used in their self-organization may be instructive for swarm robot

controllers. (D) The clonal raider ant Ooceraea biroi (photo: courtesy of Daniel Kronauer). (E) the Amazon molly Poecilia Formosa (photo: courtesy of David Bierbach).

Emerging Technologies Favoring (Partially)

Irreversible Plasticity
In the context of model-based reflex behaviors, if internal
reaction thresholds are computer variables there is no design
requirement to make their setting irreversible; though this may
be suitable for time and geography-limited missions, where
robots can be retrieved and reset for redeployment. Several
emerging technologies favor irreversible plasticity, however. For
example, the field of “soft” robotics employs soft structures
to flexibly interact with unpredictable environments (Kim
et al., 2013). Robot intelligence can be “outsourced” from
the computer “brain” to the robot “body” (morphology) and
its nonlinear responses, exploiting “embodied intelligence”
(Bongard, 2011). This outsourcing can go a step further in
collectives, as phenotypic diversity in soft swarms could result
merely from past sensitivity (hysteresis) to exposure temperature,
strain and other conditions. Moreover, soft robots raise the
possibility of biodegradability (Rossiter et al., 2016), further

relaxing constraints on ubiquitous deployment. Another exciting

development is the possibility of “autonomous” or “robotic”

materials (McEvoy and Correll, 2015), smart composites that

can autonomously change shape, stiffness, appearance and

other properties. In electronics, the idea of a “memristor”—

a resistor with “memory” of the charge flowing through

it—raises the possibility of “neuromorphic computing” that
parallels in some way the synaptic plasticity of a brain

(Zidan et al., 2018; Wang et al., 2019). At smaller length scales,
exciting possibilities exist for micro-scale swarms (e.g., Martel
et al., 2009; Yigit et al., 2019). As robot swarms aim toward
large numbers, and possibly smaller scales, the heterogeneity
and stochasticity associated with minimal robots may become
inevitable. Rather than seeing this as an engineering nuisance,
swarm designers can embrace its possibilities (White et al., 2004;
Ramachandran et al., 2018; Scholz et al., 2018; Li et al., 2019),
and (partially) irreversible plasticity could contribute toward
adaptation to field conditions.

SWARM-LEVEL STRENGTH IN

INDIVIDUAL-LEVEL DIVERSITY

Phenotypic plasticity can produce helpful individual-level
adaptations: for example, a suitable threshold to switch behaviors.
Even more significantly in a swarm context, though, is the
possibility of producing emergent functionality for the group.
Even in what appear to be superficially similar units in
cooperative biological groups there can be a surprising level of
diversity (Blodgett et al., 2016); this heterogeneity is increasingly
recognized as an adaptive group trait (Clobert et al., 2009;
Kennedy et al., 2017). Thus, while plasticity in a certain trait
may actually make a small or negligible contribution to the direct
fitness of the individual, it may be nevertheless an important
indirect contribution to the fitness of the swarm.
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Diversity as a Shield Against Adversity
Robustness is frequently claimed for swarm robot systems, but
if a homogeneous controller results in homogeneous behavior
the swarm may be liable to systematic failure if it encounters
unexpected environmental conditions or faulty or malicious
agents (Higgins et al., 2009). This might be compared to
inbreeding in biology, which is a cause of disease vulnerability.
Conversely, diversity can help resistance (Ugelvig et al., 2010).

Fault tolerance in swarms is an important precondition for
scalability (Winfield and Nembrini, 2006; Bjerknes and Winfield,
2013) and phenotypic plasticity may paradoxically help the
swarm to cope with the unexpected. This is because it can
result in a range of subtle—or substantial—individual differences,
which will need to be made compatible with agent—agent
interaction as a matter of course.

Diversity for Homeostasis
In biological systems phenotypic diversity can also promote
positive collective success: for example in honeybees diversity
in reaction thresholds for their cooling behavior promotes
stability in nest thermoregulation (Jones et al., 2004). Although
this example is driven by genetic heterogeneity, it could
equally be designed in a robot context as a result of
phenotypic plasticity.

Diversity for Decision-Making
If a swarm is to be autonomous it also needs to be capable
of making collective decisions. Again, diversity of reaction
thresholds or option assessment behavior, as seen in ants, may
help this process (Masuda et al., 2015; O’Shea-Wheller et al.,
2017). Such studies highlight the importance of heterogeneity
among individuals, rather than precise calibration, for effective
collective decision-making.

Diversity for Foraging and Search
Finally, variation in individual behavior can be important for
foraging and search in systems as diverse as ants and immune
systems (Beverly et al., 2009; Fricke et al., 2016).

BEHAVIORAL PLASTICITY

Behavioral plasticity allows organisms to make relatively
rapid adjustments in their function to adapt to changing
environmental conditions. Learning, which shapes behavior,
can be seen as a form of plasticity (Agrawal, 2001) and
allows “culture”—inter-generational transmission of behaviors
through social learning (Whiten et al., 2017). In robot
swarms this has been demonstrated in robot societies through
imitation learning (Winfield and Erbas, 2011), and can
arise simply from robot and sensor noise (Erbas et al.,
2013). Perhaps the most obvious opportunity for ready
transposition into robot swarms, though, is seen in animal
“personality” differences.

Animal and Robot “Personalities”
Modeling work in biological collective behavior often assumes
agents are homogeneous in their characteristics, but there is

increasing recognition that consistent individual differences
in behavior (“personality”) among group members can be
important for group function in local ecologies (Dall et al.,
2012). Examples of significant personality axes include: risk-
taking behavior (boldness—shyness), exploratory behavior
(neophilic—neophobic), activity levels (active—inactive),
sociability (social—asocial), and aggression (aggressive—
non-aggressive) (Réale et al., 2007). This can be observed at
the level of the individual or the whole group, giving rise
to the notion of collective personalities (Jandt et al., 2014).
While early development is important to the formation of
personality, it can be somewhat plastic over an individual’s
lifetime (Groothuis and Trillmich, 2011). As a result, group-
level plasticity in personality is also observed (Norman
et al., 2017). In Stegodyphus social spiders (Figure 2A),
there is a link between social interactions and boldness
change (Hunt et al., 2018); the group-level distribution
of boldness is important for their collective performance
(Hunt et al., 2019b).

In relation to swarm robotics, the notion of personality
maps readily to adaptive threshold-based behaviors, for example
the likelihood of switching behaviors in probabilistic finite
state machines (Liu and Winfield, 2010; Castello et al., 2016).
It can also map to very simple adaptations such as variable
waiting times in response to changing swarm density (Wahby
et al., 2019), which one might term “sociability,” for example.
Simpler still, the decision to be active or inactive, which may
make little sense at the level of the individual robot with a
mission to complete, can be adaptive to a swarm that might
need to keep some units in reserve; the identification of “lazy
ants” (Charbonneau and Dornhaus, 2015) suggests plasticity
in activity may be valuable. Thus, the growing literature on
animal personality research—particularly on its ontogeny in
social groups—may indicate simple behavioral mechanisms
(“interaction rules”) that can be adapted in the context of self-
organizing robots.

The Relevance of Highly Related and

Clonal Animals
In social insects, caste determination (e.g., worker or queen)
is driven by a varying combination of “nature” (genotype)
and “nurture” (environment) (Schwander et al., 2010). To
try and understand how the environment (particularly
the social environment) shapes such phenotypic plasticity,
biologists study highly related or even clonal organisms,
which controls for the effect of genetics. Social spiders
(Figure 2A) are highly inbred; and two emerging model
organisms are the clonal raider ant Ooceraea biroi (e.g., Ulrich
et al., 2018) and the Amazon molly Poecilia Formosa, a small
freshwater fish (e.g., Bierbach et al., 2017) (Figures 2D,E).
As well as being prime candidates to answer fundamental
questions in ecology and evolution (Laskowski et al.,
2019), such organisms could provide important bio-
inspiration to the development of homogeneous swarm
controllers that can result in heterogeneity that is adaptive at
the swarm-level.
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PHYSIOLOGICAL AND MORPHOLOGICAL

PLASTICITY

An example of physiological plasticity in nature is the invasive
cane toad Rhinella marina (Figure 2B). It succeeds as an invader
into unfamiliar environments, at least in part, because it can
adjust its core body temperature to new climates (McCann et al.,
2018). It is also somewhat plastic in its social behavior (Gruber
et al., 2017): an example of successfully combining multiple
modes of plasticity. Physiological plasticity in a robotics context
could mean something as simple as the availability of different
power consumption modes: for example, a high energy mode
for exploration and data transmission, and a standby mode for
in situ monitoring of an environment. This could be critical to
long-term swarm resilience.

Examples of morphological plasticity in nature include the
water flea Dapnia lumholtzi (Green, 1967), which can respond
drastically to the presence of predators by developing a sharp
helmet and extended tail spine (Agrawal, 2001); or in bacteria
that undergo filamentation (elongation) in response to stress
(Figure 2C; Justice et al., 2008). At the group level, a form of
collective mechanical adaptation is observed in honeybee swarms
(Peleg et al., 2018). In swarm robotics research so far, a form
of morphological plasticity is possible through self-assembly
into connected groups of various forms (Brambilla et al., 2013).
Examples of this include the “s-bot” which can physically attach
to each other (Mondada et al., 2004), conceptual demonstrations
in “Kilobots” (Rubenstein et al., 2014; Slavkov et al., 2018;
Carrillo-Zapata et al., 2019), or the idea of a “mergeable nervous
system” (Mathews et al., 2017). More broadly, one can design
robots to adapt their own morphology (Divband Soorati et al.,
2019; Hauser, 2019; Kriegman et al., 2019); in combination such
“multi-robot organisms” (Levi and Kernbach, 2010) may self-
organize a wide range of adaptations.

DISCUSSION

Swarm robotics relies on the power of emergence to produce
engineered systems that are capable of “more than the sum of
their parts”. This is possible even with very simple agents. As
we take robot swarms into the field, the temptation may be to
move away from the principle of individual-level simplicity in
hardware and controllers. Instead, a different way forward may
be to re-focus on the ingenuity of nature in building resilient
social systems. Increasingly, phenotypic plasticity is recognized

as center-stage in producing adaptive biological variation, and
would seem to be similarly indispensable in embodied collective
artificial intelligences. We can, and should, attempt intensive off-
line optimization of swarm controllers (Birattari et al., 2019), but
this could be combined with possibilities to manifest plasticity
in behavior, “physiology” and morphology in heterogeneous
simulated environments. Their respective impact on swarm-level
functions might be analyzed with respect to information flow
(Pitonakova et al., 2016). In a “bottom-up” approach to swarm
design (Crespi et al., 2008) a moderate amount of plasticity
across these modes could be added with very limited cost,
but potentially far-reaching implications for swarm resilience,
contributing toward the practical realization of “dependable
swarms” (Winfield et al., 2004).

For biologists, robots can be used as tools for understanding
biological evolution (Doncieux et al., 2015). The systematic
addition of various forms of “phenotypic plasticity” to robots
could also contribute toward this aim. Meanwhile, for engineers,
with plasticity and mass-producible minimal robots, the
approach of sending large numbers of cheap and expendable
units on missions (“fast, cheap and out of control”; Brooks and
Flynn, 1989) might have a better chance of success. A review
across plasticity modes and relevant organisms (e.g., for air, water
or land) could become a routine part of a swarm design process.
The symbiosis between biology and engineering seen in the field
of swarm robotics can go from strength to strength.
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In swarm robotics multiple robots collectively solve problems by forming advantageous

structures and behaviors similar to the ones observed in natural systems, such as swarms

of bees, birds, or fish. However, the step to industrial applications has not yet been made

successfully. Literature is light on real-world swarm applications that apply actual swarm

algorithms. Typically, only parts of swarm algorithms are used which we refer to as basic

swarm behaviors. In this paper we collect and categorize these behaviors into spatial

organization, navigation, decision making, and miscellaneous. This taxonomy is then

applied to categorize a number of existing swarm robotic applications from research and

industrial domains. Along with the classification, we give a comprehensive overview of

research platforms that can be used for testing and evaluating swarm behavior, systems

that are already on the market, and projects that target a specific market. Results from

this survey show that swarm robotic applications are still rare today. Many industrial

projects still rely on centralized control, and even though a solution with multiple robots

is employed, the principal idea of swarm robotics of distributed decision making is

neglected. We identified mainly following reasons: First of all, swarm behavior emerging

from local interactions is hard to predict and a proof of its eligibility for applications in an

industrial context is difficult to provide. Second, current communication architectures

often do not match requirements for swarm communication, which often leads to a

system with a centralized communication infrastructure. Finally, testing swarms for real

industrial applications is an issue, since deployment in a productive environment is

typically too risky and simulations of a target system may not be sufficiently accurate.

In contrast, the research platforms present a means for transforming swarm robotics

solutions from theory to prototype industrial systems.

Keywords: swarm intelligence, swarm robotics, swarm behavior, swarm robotic applications, cyber-physical

systems

1. INTRODUCTION

Swarms typically consist of many individual, simple, and homogeneous or heterogeneous
agents (Dorigo and Birattari, 2007). They traditionally cooperate without any central control,
and act according to simple and local behavior. Only through their interactions a collective
behavior emerges that is able to solve complex tasks. These characteristics lead to the main
advantages of swarms: adaptability, robustness, and scalability. Swarms can be considered as a
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kind of quasi-organism that can adapt to changes in the
environment by following specific behaviors (Hamann and
Schmickl, 2012), e.g.:

• Pursuing a specific goal.
• Aggregating or dispersing in the environment.
• Communicating (direct, indirect).
• Memorizing (local states, morphologies).

In swarm robotics, multiple robots—homogeneous or
heterogeneous—are interconnected, forming a swarm of
robots. Since individual robots have processing, communication
and sensing capabilities locally on-board they are able to interact
with each other, and react to the environment autonomously.

In this paper, we focus on swarm intelligence applied in
the swarm robotics domain. The theoretical and mathematical
foundations of traditional swarm algorithms are out of the
scope of this paper, as this was already done by multiple other
authors at a greater level of detail. For example, Bonabeau
et al. (1999) depict phenomena in social insects that had
been transferred successfully to algorithms. Biological swarm
behaviors from which a number of computational algorithms
were developed are also discussed by Parpinelli and Lopes
(2011). Camazine et al. (2001) discuss general self-organization
aspects in biological systems. Moreover, Garnier et al. (2007)
provide a good overview of the biological principles of
swarm intelligence. Floreano and Mattiussi (2008) discuss
swarm intelligence alongside evolutionary computation,
artificial neural networks, and bio robotics. Blum and Li
(2008), Binitha and Sathya (2012), and Krause et al. (2013)
address swarm intelligence algorithms for optimization.
Hassanien and Alamry (2015) depict the natural inspirations
of swarm intelligence–based optimization algorithms. Swarm
intelligence–based optimization algorithms are analyzed by
Yang et al. (2013), the link between swarm intelligence–
based optimization algorithms and self-organization is
examined by Yang et al. (2017). Rossi et al. (2018) classify
existing multi-agent algorithms according to their underlying
mathematical structure.

Despite the large number of swarm algorithms, the step
to industrial applications has not been mastered successfully,
yet. In our research work on real-world applications, we
noticed that oftentimes industry applications use the term
“swarm,” but typically do not implement particular swarm
algorithms. They rather use parts of swarm algorithms and
implement them using centralized control. We refer to such
parts of swarm algorithms as basic swarm behaviors in
the following.

The rest of the paper is organized as follows: In section 2
we propose a taxonomy of basic swarm behaviors. In
section 3 we show where these behaviors are applied
by giving a comprehensive overview on current swarm
robotics research platforms, projects, and products. This
overview is complemented by a discussion that analyses the
current situation, and explores open challenges in swarm
robotics applications. Finally, in section 4 we conclude
the paper.

2. BASIC SWARM BEHAVIORS FOR
SWARM ROBOTICS

In most swarm algorithms, individuals perform according to
local rules and the overall behavior emerges organically from
the interplay of the individuals of the swarm. Translated to the
swarm robotics domain, individual robots exhibit a behavior
that is based on a local rule set which can range from a simple
reactive mapping between sensor inputs and actuator outputs
to elaborate local algorithms. Typically, these local behaviors
incorporate interactions with the physical world, including the
environment and other robots (Floreano and Mattiussi, 2008).
Each interaction consists of reading and interpreting the sensory
data, processing this data, and driving the actuators accordingly.
Such a sequence of interactions is defined as basic behavior that
is repeatedly executed, either indefinitely or until a desired state
is reached.

In the following subsections, we classify and list the
basic swarm behaviors which are adapted and expanded
from Brambilla et al. (2013) with additional swarm robotic
behaviors including collective localization, collective perception,
synchronization, self-healing, and self-reproduction. The
behaviors are explained from a high level view describing
the task of individual robots and the resulting global
objective achieved by the swarm. We do not detail on
the sensing and actuation part which is specific to each
robotic platform.

2.1. Taxonomy
The taxonomy of swarm behaviors is given in Figure 1. It is
based on the classification by Brambilla et al. (2013) which we
extended by several categories. In the following, we first give an
overview of the taxonomy and then an in-detail description of
the additional behavior categories in subsection 2.2. For these
behaviors we also give the original inspiration. For a detailed
description of the existing categories we kindly refer the reader
to Brambilla et al. (2013).

2.1.1. Spatial Organization
These behaviors allow the movement of the robots in a swarm
in the environment in order to spatially organize themselves
or objects.

• Aggregation moves the individual robots to congregate
spatially in a specific region of the environment. This allows
individuals of the swarm to get spatially close to each other for
further interaction.

• Pattern formation arranges the swarm of robots in a specific
shape. A special case is chain formation where robots form a
line, typically to establish multi-hop communication between
two points.

• Self-assembly connects the robots in order to establish
structures. They can either be connected physically
or virtually through communication links. A special
case is morphogenesis where the swarm evolves into a
predefined shape.
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FIGURE 1 | Taxonomy of swarm behaviors adapted from Brambilla et al. (2013). The highlighted behaviors are newly added.

• Object clustering and assembly lets the swarm of robots
manipulate spatially distributed objects. Clustering and
assembling of objects is essential for construction processes.

2.1.2. Navigation
These behaviors allow the coordinated movement of a swarm of
robots in the environment.

• Collective exploration navigates the swarm of robots
cooperatively through the environment in order to
explore it. It can be used to get a situational overview,
search for objects, monitor the environment, or establish a
communication network.

• Coordinated motion moves the swarm of robots in a
formation. The formation can have a well-defined shape, e.g.,
a line, or be arbitrary as in flocking.

• Collective transport by the swarm of robots enables to
collectively move objects which are too heavy or too large for
individual robots.

• Collective localization allows the robots in the swarm to
find their position and orientation relative to each other via
establishment of a local coordinate system throughout the
swarm. See section 2.2 for more details.

2.1.3. Decision Making
These behaviors allow the robots in a swarm to take a common
choice on a given issue.

• Consensus allows the individual robots in the swarm to
agree on or converge toward a single common choice from
several alternatives.

• Task allocation assigns arising tasks dynamically to the
individual robots of the swarm. Its goal is to maximize
performance of the entire swarm system. If the robots
have heterogeneous capabilities, the tasks can be distributed
accordingly to further increase the system’s performance.

• Collective fault detection within the swarm of robots
determines deficiencies of individual robots. It allows to
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determine robots that deviate from the desired behavior of the
swarm, e.g., due to hardware failures.

• Collective perception combines the data locally sensed by the
robots in the swarm into a big picture. It allows the swarm to
make collective decisions in an informed way, e.g., to classify
objects reliably, allocate an appropriate fraction of robots to a
specific task, or to determine the optimal solution to a global
problem. See section 2.2 for more details.

• Synchronization aligns frequency and phase of oscillators of
the robots in the swarm. Thereby, the robots have a common
understanding of time which allows them to perform actions
synchronously. See section 2.2 for more details.

• Group size regulation allows the robots in the swarm to form
groups of desired size. If the size of the swarm exceeds the
desired group size, it splits into multiple groups.

2.1.4. Miscellaneous
There are further behaviors of swarm robots that fit neither of the
categories above.

• Self-healing allows the swarm to recover from faults caused by
deficiencies of individual robots. The goal is thus to minimize
the impact of robot failure on the rest of the swarm to increase
its reliability, robustness, and performance (see also collective
fault detection above). See section 2.2 for more details.

• Self-reproduction allows a swarm of robots either to create
new robots or replicate the pattern created from many
individuals. The goal is to increase the autonomy of the swarm
by eliminating the need of a human engineer to create new
robots. See section 2.2 for more details.

• Human-swarm interaction allows humans to control the
robots in the swarm or receive information from them. The
interaction can happen remotely, e.g., through a computer
terminal or proximal in a shared environment, e.g., through
visual or acoustic clues.

2.2. Detailed Description of Additional
Swarm Behavior Categories
In the following, we describe the additional categories of basic
swarm behaviors with which we extended the taxonomy by
Brambilla et al. (2013), namely: Collective localization, collective
perception, synchronization, self-healing, and self-reproduction.

2.2.1. Collective Localization
Collective localization allows the robots in the swarm to find their
position and orientation relative to each other via establishment
of a local coordinate system throughout the swarm.

2.2.1.1. Sources of inspiration
The approaches given below are engineered without any
mentioned inspiration.

2.2.1.2. Approaches
There are two approaches which originate from the multi-robot
research domain. First, creating a map of the environment and
localizing relative to it. This approach is called simultaneous
localization and mapping (SLAM). It can use and merge different
sources of information, such as range sensors or visual sensors.

Second, using stationary landmarks with known positions
and localizing relative to them. To avoid relying on external
information, other robots can be used as landmarks. The robots
can move alternatingly through the environment while keeping
precise localization information. If the initial positions of the
robots are known, then also absolute localization is possible.
The dead-reckoning approach where robots use odometry for
localization is another possibility but introduces an accumulating
error which renders it useless for most scenarios.

2.2.1.3. Results
Thrun et al. (2000) present a mapping algorithm where multiple
robots can localize in a globally fused map. It requires that the
approximate initial positions of the robots are known by all
other robots. It uses an incremental expectation maximization
approach which allows robots to localize themselves in
maps created by other robots. Experiments demonstrate that
the robots can localize robustly in real time in large-scale
environments using low-end computers. In the follow-up work,
the requirement of known initial positions is relaxed, assuming
that robots share an overlapping part of their explored maps
(Thrun and Liu, 2005). It employs the concept of information
filters that represents the robot positions by Gaussian Markov
random fields. The robots are able to identify the correct
alignments between different local maps by maximizing the
correspondence of similar-looking landmark configurations. Fox
et al. (2000) present a belief-based approach for collaborative
multi-robot localization. It fuses localization information from
different sources, such as odometry, environment measurements,
and mutual robot detections by combining visual and range
sensors. This allows to improve the robots’ belief of the world
by learning the detection model from data using a maximum
likelihood estimator. Experiments demonstrate that a team of
robots is superior in localization compared to single robots
with a relatively small communication overhead. Kurazume and
Hirose (2000) propose the method of cooperative positioning
using robots as landmarks. There are two groups of robots
that move alternatingly while using the other, stationary group
as localization reference. An increased number of robots also
increases the redundancy of position information. With the
weighted least square method this redundancy decreases the
localization error. The authors perform experiments where the
robots use range sensors to measure their respective positions.
Results show that this localization method performs better than
the dead reckoning method including environments with uneven
terrain. Rekleitis et al. (2001) propose a method where robots
visually observe each other to improve the dead reckoning
localization. They propose two algorithms based on triangulation
and trapezoidation for small and large-scale environments,
respectively. They perform experiments with two robots where
one robot carries markers and the other a camera. The results
demonstrate that joint localization leads to much more robust
localization than odometry alone.Whenmore robots are used the
localization precision is increased. Howard et al. (2003) propose
a maximum likelihood method combined with a distributed
numerical optimization to eliminate the need for landmark
robots to be stationary. It combines range measurements with

Frontiers in Robotics and AI | www.frontiersin.org 4 April 2020 | Volume 7 | Article 3677

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Schranz et al. Swarm Robotic Behaviors and Applications

odometry. Robots observe each others motion and exchange
this information to create a graph consisting of their positions
and respective observations. Experiments with four robots
demonstrate that this method is able to localize with adequate
precision, and is robust to changes in the environment and
to flawed odometry. Furthermore, robots are able to infer the
position of other robots they have never seen before. Rubenstein
et al. (2014b) apply the robot-landmark approach to a large
swarm of 1,024 Kilobots. There are four pre-localized seed robots
which define the coordinate system. The other robots localize
relative to these seed robots using trilateration of infrared signals.
The robots were able to self-assemble and let the swarm morph
to a given shape.

2.2.2. Collective Perception
Collective perception combines the data locally sensed by the
robots in the swarm into a big picture. It allows the swarm to
make collective decisions in an informed way, e.g., to classify
objects reliably, allocate an appropriate fraction of robots to
a specific task, or to determine the optimal solution to a
global problem.

2.2.2.1. Sources of inspiration
Many social insects are able to get a global view using only
local information. Examples are honeybees that assess the
current global workload balancing by evaluating simple cues like
queuing delays (Ratnieks and Anderson, 1999) and ants that use
pheromone trails to find shortest paths in large environments
(Goss et al., 1989; Hölldobler and Wilson, 1994).

2.2.2.2. Approaches
For collectively determining the type of object observed, the
predominant approach is classification of the object among a
set of predefined models. Sometimes, the mobility of the robots
is used to improve the perception of individual robots. The
robots use explicit communication in order to propagate their
findings and achieve consensus. The way the robots exchange the
information is an important aspect. They have to add contextual
information that allows the other robots to correctly interpret the
data. Furthermore, the information can be simply forwarded and
thus spread in the swarm or modified in order, e.g., to measure
the distance to a specific location. There are also approaches from
other research domains, such as camera networks (Schranz and
Rinner, 2015), but the agents are typically stationary and often
centrally controlled.

2.2.2.3. Results
Ye et al. (2002) propose a strategy where sensing agents
collect, analyze, and categorize data, enrich it with contextual
information, and forward it to synthesizing agents. The latter
are then able to use the different aspects observed by the
sensing agents to perceive events using an eigen-space method.
Using simulation experiments, the authors demonstrate that
events can be detected reliably using only the first few eigen
values. Kornienko et al. (2005) develop a swarm of micro-robots
for a collective classification task. Based on evidence theory,
the swarm has to identify the geometries of objects in space
by exchanging data from infrared depth sensing while having
limited communication capabilities. Experiments show that a

wrong belief of an individual quickly converges to the correct
belief after exchanging only few messages. King and Breedon
(2010) present a simple model of a hexagonal grid world in
which a swarm has to differentiate between differently shaped
objects. They show that an increased number of agents leads to an
overproportional decrease of object detection time. Giusti et al.
(2012) present an approach for cooperative gesture recognition
with a robot swarm. Each robot processes and classifies camera
images locally. Using a distributed consensus protocol, the robots
exchange their opinions over a low-bandwidth wireless channel
to find a common decision by exploiting the different view points
and mobility of the agents. The approach is evaluated through
simulation and physical experiments on 13 robots. The results
show that the recognition accuracy of the system scales effectively
with the number of agents and is robust to communication
failures. Stegagno et al. (2014) develop a method that allows a
swarm of robots with different types of low resolution sensors
to collectively classify objects. Each robot processes the sensor
data locally and exchanges its estimation. Using the naive Bayes
classifier together with the information received from other
robots, the swarm is able to robustly classify objects. The more
diverse the sensors are, the better the results. Olfati-Saber and
Jalalkamali (2012) present a theoretic framework that employs
mobility to improve the information sensed by the swarm using
the Kalman-consensus filter. It is employed to track a target
with a swarm of agents. Each agent tries to improve its sensing
while avoiding collisions with the others. Simulations show
that this solution can effectively track linear and non-linear
maneuverable targets.

Mazdin and Rinner (2019) present a method for simultaneous
coverage of surfaces with a swarm of robots. This method
assigns robots to different view points in order to allow effective
3D reconstruction of objects. Simulation results show that this
method is able to coordinate the robots while minimizing the
mission duration and maximizing the coverage quality. Schmickl
et al. (2007) compare different communication strategies for
collective perception of a swarm, namely the hop-count strategy
and the trophallaxis-inspired strategy. The presented solutions
allow a swarm to collectively compare sizes of target areas which
are too large for individual robots to perceive. Simulations show
that the robots are able to aggregate in the target areas while their
numbers are proportional to the size of the target area. Mermoud
and Evans (2010) tackle a similar problem in which robots
should distinguish good and bad spots using models of chemical
reaction networks. They perform experiments with five robots
and demonstrate that robots with limited sensing capabilities can
collectively achieve good performance.

2.2.3. Synchronization
Synchronization aligns frequency and phase of oscillators
of the robots in the swarm. Thereby, the robots have a
common understanding of time which allows them to perform
actions synchronously.

2.2.3.1. Sources of inspiration
During courtship, males of certain animal species synchronize
their behavior. In some firefly species, the phase difference
between the blinking of male and female flashing period
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is important for mating (Buck, 1988). Hence the fireflies
synchronize by influencing their flashing phase. Likewise,
bushcrickets synchronize or alternate using chirps by altering
their chirp periods in response to other chirps (Hartbauer et al.,
2005). Igoshin et al. (2001) develop a model that describes the
spatio-temporal wave patterns observed frommyxobacteria cells.
There are many more examples of coupled oscillating systems,
e.g., pacemaker cells in the heart (Peskin, 1975) or clapping of
spectators in a theater (Néda et al., 2000).

2.2.3.2. Approaches
The oscillators are synchronized to the same frequency with
the phases being aligned among the robots in the swarm. Two
approaches exist, either the oscillators continuously influence
each other to adjust phase and frequency, or they are pulse-
coupled meaning that they regularly fire a signal corresponding
to their current phase. The latter one is mostly used as it requires
fewer interactions between the robots. Robots interact either
through acoustic, visual signals or radio communication.

2.2.3.3. Results
Hartbauer and Römer (2006) employ synchronized oscillators
as a communication and navigation system. In a synchronized
system, robots at a target area increase their frequency and
thereby produce phase waves in the swarm that can be used
by the robots to perform wave-front navigation, i.e., travel
toward higher frequencies. The authors analyze the robustness
of the system by simulating up to 300 robots. The results
show that this communication system is robust to changes in
signal strength, signaling period length, and communication
obstacles. Nevertheless, the signaling period is an important
parameter to be fit to the scenario. They conclude that pulse-
coupled oscillator synchronization is especially suited for swarms
of robots as it has low hardware requirements in terms of
communication range and processing power. Christensen et al.
(2009) apply synchronization to detect faulty robots in the
swarm. Using pulse-coupled oscillators and visual signaling, the
swarm can determine malfunctioning robots when their phases
are not aligned to the rest of the swarm. The authors develop
a discrete model that can be applied to robots. Simulations
with 100 robots show that robots synchronize faster when
they are mobile, synchronization time is linearly proportional
to the swarm size where denser networks synchronize faster,
and synchronization is robust to communication obstacles
but decreases in performance. Experiments with ten physical
robots confirm the simulation results, despite the inherent
latencies associated with the sensor and actuator systems. In
contrast to the bio-inspired approaches, Trianni and Nolfi (2009)
synthesize synchronization strategies using artificial evolution.
These strategies perform phase coupling between robots in order
to allow synchronous movement. Simulations with up to 96
robots show that the strategies scale well and are mainly limited
by collision avoidance behaviors. This is confirmed through
experiments with up to three robots where sensor and actuator
noise is introduced.

Bezzo et al. (2014) synchronize robots in a swarm to determine
the network topology and detect changes. They develop a strategy

for estimating the degree of oscillator coupling in the swarm
and synchronizing them continuously. Applying this strategy to
formation control allows three simulated robots to move in a
formation. Simulations with five robots show that the network
topology can be detected reliably. Barciś et al. (2019) apply
the novel concept of swarmalators (O’Keeffe et al., 2017) to
robots. This concept couples the oscillator phase with spatial
location in such a way that they mutually influence each other.
They modify the original model taking into account the discrete
nature of robots. Simulations of 100 robots and experiments
with 10 robots show that the spatio-temporal patterns can be
performed in stationary and dynamic scenarios. Perez-Diaz et al.
(2015) perform a case study to analyze how motion and sensing
capabilities influence the synchronization capabilities of a robot
swarm. By altering the field of interaction (e.g., camera field of
view) and the speed at which the robots travel, the emergence of
synchrony can be influenced. The robot speed influences the time
until synchrony is reached whereas a narrow field of interaction
results in a low degree of synchronization. Furthermore, high
robot densities limit the synchronization possibility due to signal
occlusion and robot collisions.

2.2.4. Self-Healing
Self-healing allows the swarm to recover from faults caused by
deficiencies of individual robots. The goal is to minimize the
impact of robot failure on the rest of the swarm to increase its
reliability, robustness, and performance. After detecting the fault,
appropriate countermeasures must be taken.

2.2.4.1. Sources of inspiration
The immune system of vertebrates shows how biological systems
protect complex organisms against diseases. This serves as
inspiration for the artificial immune system (AIS). Timmis et al.
(2010) give an overview of how AISs and swarm intelligence
relate. They point out many similarities and conclude that
both systems are complementary tools for solving complex
engineering problems. Regeneration in biological systems allows
animals to self-heal their body, e.g., salamanders, starfish, and
lizards are able to regenerate lost limbs (Wallace, 1981). Another
prominent example is the morphallaxis, i.e., tissue regeneration
of Cnidarian hydra Shimizu et al. (1993). It exhibits what is
sometimes referred to as scalable self-healing: When the hydra
is dissected, each part can self-heal into a fully functional and
independent hydra where its size is proportional to the number
of cells.

2.2.4.2. Approaches
There are two ways to tackle the problem of self-healing.
First, healthy robots can aid the faulty robots in recovering. It
requires an explicit failure management routine which is typically
inspired by the immune system. Second, the swarm can adjust
its behavior while ignoring failing robots. This does not require
any special handling of the failure case. It is typically inspired by
biological regeneration.

2.2.4.3. Results
As self-healing is a relatively challenging topic for swarm
robotics, only few embodied studies exists and most work is
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done through simulation experiments. Dai et al. (2006) present a
model for detecting and healing software components of swarm
robots. It is part of the NASA autonomous nano technology
swarm (ANTS) concept mission (Vassev et al., 2012). This
model is only partly distributed as it relies on a central cyber
disease library. Each robot runs one or more virtual neurons as
background processes. They monitor certain system variables,
such as CPU, memory, or network usage. In case of anomalies,
it freezes the process in question and reports its behavior to
a higher-level controller. It can perform further diagnosis, e.g.,
by assigning more neurons, and generate a prescription based
on the cyber disease library. The prescription is applied by the
executor process which reports back results. This allows the
cyber disease library to learn and improve prescriptions. In
case the prescription does not work, further escalation steps are
possible, such as killing the faulty process or even rebooting the
whole machine. A simulation case study shows that a memory
leaking process is successfully detected and eventually killed.
The results show that the system becomes more reliable and
robust against failures and failure propagation. Even though
faulty processes degrade the overall system performance, the
performance improves compared to systems without the self-
healing properties. Timmis et al. (2016) apply self-healing to
overcome hardware failures. They present a solution that is
inspired by granuloma formation, a process of containment and
repair found in the immune system. They apply it to a swarm
of robots performing flocking and taxis toward a beacon. When
a robot has a discharged battery and loss of mobility, it would
anchor the whole swarm which would then fail to reach the
beacon. The proposed solution allows energy sharing between
healthy and faulty robots. The faulty robots signal their need
of help to the other robots within range. Depending on the
required energy and the energy available at the healthy robots,
a varying number of robots surround the discharged robots to
share energy. Other robots ignore this robot cluster and regard
it simply as an obstacle, continuing their mission. Simulation
experiments with 10 robots show that the granuloma formation
algorithm works well even when half of the robots in the
swarm are experiencing low energy levels. Other algorithms are
compared where only the nearest healthy robots perform the
healing. They fail to heal the swarm when three or more robots
have a discharged battery.

A broad body of research is directed toward pattern formation
and morphogenesis in self-healing. Cheng et al. (2005) propose
the SHAPEBUGS approach where agents evenly disperse within
a predefined shape. First, the agents perform trilateration to
establish a common coordinate system. This is aided by allowing
a few agents to know their initial position. Then the agents use
the contained gas model to move in a way that they are equally
spaced within the desired shape. In case of agent failure, the other
agents simply adapt their positions to again reach an equilibrium
density. The agent model contains a proximity sensor and
wireless communication to exchange positions. It furthermore
requires a compass to determine the global orientation of the
agents. Simulations show that the swarm can self-repair and
restabilize in cases of agent death or displacement. Furthermore,
it can overcome large degrees of sensor and movement errors

of the agents. Rubenstein and Shen (2008) relax some of these
assumptions and still achieve similar results. The model differs
in that the robots build compact shapes. Thereby, the size of
the shape varies rather than its density. The model requires only
a single sensor for local information and communication. The
shape is given to the robots as a potential field where the robots
aim to move to its center while avoiding collisions. The scale of
the shape is calculated as function of the estimated swarm size.
Additionally, each robot changes its color to a color that is pre-
defined depending on the position. Thereby, the robots can form
colored patters or displays. When properly synchronized, they
can even show time varying patterns. Simulation results show
that the robots can perform scalable self-healing by recreating
the desired shape for varying swarm sizes. In later work,
Rubenstein et al. (2014b) demonstrate this on a large swarm
of physical robots as described above. Arbuckle and Requicha
(2010) propose a model where the robot swarm builds shapes
by arranging on the boundaries of a polygon. They propose an
external compilation process that uses the polygon to derive a
set of parameterized local rules to be executed by a swarm of
homogeneous, stateless robots. By attaching physically to each
other, the robots can communicate directionally. The agents stay
connected as long as they are communicating. By replying with
predefined messages, the state of the system is “externalized” in
the circulating messages. By attaching to each other, the agents
grow the edges of the polygon while randomly wandering robots
“diffuse” into the interior of the polygon by replacing boundary
robots that in turn move into the polygon interior. Simulation
experiments show that the swarm can build simple polygons.
It can heal from failures due to communication faults, such as
dropping messages. Robots that do not communicate anymore,
drop out of the shape and are replaced by new ones. If the
shape is broken into two, the swarm creates two shapes with the
original size.

2.2.5. Self-Reproduction
Self-reproduction allows a swarm of robots either to create new
robots or replicate the pattern created from many individuals. In
the first case, the robots produce identical copies of themselves.
The goal is to increase the autonomy of the swarm by eliminating
the need of a human engineer to create new robots. In the second
case, the robots copy a structure consisting of many individual
robots. Existing approaches are not fully autonomous yet and
typically require at least the building blocks to be provided to
the swarm. In contrast to self-reconfiguration of formed patterns,
the goal of self-replication is to assemble a functional robot from
passive components.

2.2.5.1. Sources of inspiration
All biological organisms possess the ability to reproduce, either
sexually or asexually.

2.2.5.2. Approaches
The theory of self reproducing machines already exists for
several decades, e.g., von Neumann (1966) introduced the idea
of an automaton model for self-reproduction. The research in
this direction followed the general idea of template-replicating
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systems, i.e., to create a new robot according to an existing
model. Gross and Dorigo (2008) give an historic overview of
the development in this direction. Other approaches follow the
evolutionary design strategy. The existing approaches assume the
robot hardware to be modular in order to have base building
blocks (Yim et al., 2002). The finer the modules, the more difficult
the process, but the more flexibly a new robot can be created.

2.2.5.3. Results
Lipson and Pollack (2000) evolve the design for simple
electromechanical systems through simulation experiments. The
building blocks are bars and actuators that are connected through
joints and controlled by artificial neurons. The performance of
the evolved systems is measured in terms of the distance it is able
to locomote. The best performing designs are fabricated using
rapid, additive manufacturing technology. This process allows
robots to design new robots withminimized human intervention.
The manufactured robots are able to locomote similarly to
the simulation models. Suthakorn et al. (2003) present a fully
autonomous, self-replicating robot built from Lego parts. It
assembles a new robot from four pre-assembled subsystems that
hold together using magnets and shape-constraining blocks. The
controller of the replica is already pre-programmed with the
same program as the original. Experiments show that the original
robot, which is guided by lines on the ground, is able to detect
the subsystems and assemble them into a fully functional replica.
Zykov et al. (2007) present the design of a modular robot cube,
called Molecube. These cubes can attach to each other using
electromagnets and hence form complex patterns. These cubes
have one actuated degree of freedom to control the shape of the
assembled pattern. The authors present experiments where the
spatial patterns and corresponding controllers are both manually
created and automatically designed with artificial evolution. The
results show that the swarm of Molecubes reproduces identical
copies of its pattern, both in simulation and physical experiments.
The only human interaction is by providing enough Molecubes
as building material. The authors conclude that the more units
are involved and the simpler and more homogeneous they
are, the more information is being reproduced by the system
itself, as compared with information pre-existing in the parts
and environment.

3. SWARM APPLICATIONS

Even though swarm robotics is a relatively young field of research
and has not been widely accepted in industry, this section is a
first collection of existing applications and attempts at swarm
robotic products. Swarm robotic researchers have designed and
developed a number of platforms to test and analyze swarm
algorithms. In their publications the authors always stated their
attempt to envision future industry applications (Sharkey, 2007)
out of the simplicity of swarm robotic research platforms. Thus,
we split our survey into swarm robotics research platforms
(Table 1) and industrial projects and products (Table 2). The
industrial projects and products are mainly listed to serve
as application examples in real-world environments above a
technology readiness level (TRL) of four (Héder, 2017) where

the validation of the platform is already in the relevant
environment. The research platforms enable researchers to
verify, demonstrate, and experiment with swarm algorithms in
laboratory environments, thus on a TRL of maximum four.

Both, research platforms and industrial projects and products
are categorized according to the environment they are used
in: terrestrial, aerial, aquatic, and/or space. All tables list the
type of the application, the project or product name, the
type of robot, the number of robots in the swarm, and the
basic swarm behaviors corresponding to the definitions of
section 2. The type of robot corresponds to one of the following
categories: unmanned ground vehicle (UGV), unmanned aerial
vehicle (UAV), unmanned surface vehicle (USV), unmanned
underwater vehicle (UUV), or in general as UxV. The number
of research platforms used in a swarm is proven with specific
research publication. For the industrial swarm applications we
refer the reader to the project’s or product’s website for this
information. For each research platform, industrial project and
product we list one or more basic swarm behaviors because no
project or product uses integral swarm algorithms. They rather
use parts of the algorithms, and adapt them to the underlying
application. Additionally, the table for the research platforms
differentiates between open-source (in hardware and software)
and/or commercially available. We do not classify the swarm
robotic platforms and products related to their price, dimension,
and number of usage in different research/engineering projects.

The focus of this collection is on basic swarm behaviors
embodied on robots. Therefore, we only list projects or products
that are based on a robotic platform. We neglect research
projects that focus solely on swarms with a purely theoretical or
virtual nature.

3.1. Research Platforms
This section presents research platforms that are developed for
educational and scientific purposes, summarized inTable 1. They
allow to investigate the application of swarm algorithms to
robots. Note, that other sophisticated robotic research platforms
exist which are not included, as they are not developed with the
intention of using them in swarm applications, e.g., the Balboa
robot kit1.

3.1.1. Terrestrial
The Kilobots swarm (Rubenstein et al., 2014a) is probably
the best known swarm of robots developed for research and
education. Kilobots are very small with a diameter of 33mm, the
locomotion is based on vibrationmotors and the communication
is implemented using infrared light reflecting off the ground.
They became very famous for their self-assembling capability
forming different shapes with a swarm of 1,024 Kilobots (Wyss
Institute, 2017). The Kilobot is available open-source2 or
commercially at K-Team3.

Jasmine is another widely used swarm robotic platform.
The open-source4 platform was mainly built for large-scale

1Balboa robot website: https://www.pololu.com/product/3575
2Kilobot website: http://www.kilobotics.com/
3K-Team website: https://www.k-team.com/
4Jasmine website: http://www.swarmrobot.org/
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TABLE 1 | Classification of research platforms for swarm robotics.

Environment Application Project/Product

name

Robot

type

No. of robots Basic swarm behaviors Availability

Terrestrial

Research and

Education

Kilobots

UGV

1,024 (Rubenstein et al.,

2014a)

Pattern formation, coordinated motion Open-source,

commercial

Jasmine 60 (Kernbach et al., 2013)

Aggregation, collective exploration, coordinated motion,

task allocation, collective perception, self-healing

(partially), human-swarm interaction (Zooids, APIS)

Open-source

Alice 20 (Garnier et al., 2008)
n.a.

AMiR 6 (Arvin et al., 2011)

Colias 14 (Arvin et al., 2014) Open-source,

commercialMona 30 (Arvin et al., 2019)

R-One n.a. n.a.

Elisa-3 38 (eli, 2014) Open-source,

commercial

Khepera IV 10 (Pinciroli and Beltrame,

2016)

Commercial

GRITSbot 100 (Pickem et al., 2017) Open-source

E-Puck 16 (Alkilabi et al., 2017) Open-source,

commercial

Xpuck 16 (Jones et al., 2018) n.a.

Thymio II 8 (Vitanza et al., 2019) Open-source,

commercial

Pheeno 4 (Wilson et al., 2018)
Open-source

Spiderino n.a.

I-Swarm n.a. n.a.

Zooids 32 (Le Goc et al., 2016) Open-source

APIS 6 (Dhanaraj et al., 2019)
n.a.

Wanda 11 (Kettler, 2012)

Droplet n.a.

Aggregation, self-assembly, object clustering and

assembly, collective exploration, coordinated motion,

collective transport (partially), collective perception

Open-source
Swarm-bot 35 (Groß et al., 2006)

Swarmanoid n.a.

Termes 5 (Petersen et al., 2011)

n.a.Symbrion and

Replicator

n.a.

PolyBot 32 (Duff et al., 2001)

M-Tran III 24 (Kurokawa et al., 2008)
Open-source

ATRON 7 (Brandt et al., 2007)

CONRO 8 (Castano et al., 2002)

n.a.Sambot 15 (Wei et al., 2010)

Molecube 8 (Zykov et al., 2007) Pattern formation, self-assembly, self-reproduction

Aerial

MAV

UAV

n.a. n.a.
n.a.

Distributed Flight

Array

9 (Oung, 2013) Self-assembly, coordinated motion

Crazyflie 2.1 49 (Preiss et al., 2017) Aggregation, collective exploration, coordinated motion,

collective localization, collective perception

Open-source,

commercial

FINken-III n.a. n.a.

Aquatic
Environmental

Monitoring

CoCoRo
UUV

41 (Schmickl, 2015)
Aggregation, collective exploration, collective

localization, task allocation

n.a.
Monsun n.a.

CORATAM USV 12 (Duarte et al., 2016) Open-source

Outer

Space

Space

Exploration

Swarmies UGV 20a Collective exploration, collective localization
n.a.

Marsbee UAV 3 (Kang, 2018) Collective exploration, coordinated motion, task

allocation

aProject’s official website: http://nasaswarmathon.com/.

swarm robotic experiments equipped with a series of sensors,
including touch, proximity, distance, and color sensors. The
intention for large-scale swarms was also pursued with the

swarm robotic platform Alice (Caprari et al., 1998). Many
additional sensors including a linear camera can extend the basic
capabilities. A series of research platforms building upon each

Frontiers in Robotics and AI | www.frontiersin.org 9 April 2020 | Volume 7 | Article 3682

http://nasaswarmathon.com/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Schranz et al. Swarm Robotic Behaviors and Applications

TABLE 2 | Classification of industrial projects and products.

Environment Application Project/Product

name

Robot

type(s)

No. of robots Basic swarm behaviors

Terrestrial

Agriculture
SwarmBot 3.0

UGV

5
Coordinated motion, task allocation

Xaver 10

Emergency

and Rescue

GUARDIANS 4 Pattern formation, collective exploration, coordinated motion

Warehouse Ocado, Amazon

(Kiva), Alibaba

Max. 1,100 per

warehouse

Coordinated motion, task allocation, self-healing

Industrial

Plant

SWILT UxV 1,500 machines Object clustering, collective exploration, group size regulation

Aerial

Military
OFFSET UGV, UAV 250 Collective exploration, coordinated motion, task allocation,

human-swarm interaction

Perdix

UAV

103 Aggregation, pattern formation, coordinated motion, consensus,

self-healing

Emergency and

Rescue

SMAVNET 19 Pattern formation, collective exploration, task allocation, collective

perception

SWARMIX n.a.

CPSwarm n.a.

Agriculture SAGA n.a. Collective exploration, coordinated motion, collective localization,

task allocation

Entertainment

Spaxels 100

Pattern formation

Flyfire n.a.

Ehang

GhostDrone 2.0

1,000

Intel Shooting Star 500

Lucie micro drone n.a.

Aquatic

Environmental

Monitoring

Platypus USV 25 Collective exploration, human-swarm interaction

Apium Data Diver USV, UUV 50 Pattern formation, collective exploration, coordinated motion,

human-swarm interaction

subCULTron
UUV

n.a. Aggregation, collective exploration, collective localization

Vertex Swarm 10
Pattern formation, collective exploration, coordinated

motion, collective localization
SWARMs UUV, USV 8

Military CARACaS USV 5

Terrestrial/

Aerial/

Aquatic

Surveillance ROBORDER
UxV

n.a.

n.a.

Maintenance BugWright2 Aggregation, collecitve exploration, coordinated motion, task

allocation

Multiple Sentien Robotics UGV, UAV Coordinated motion, task allocation, self-healing

Outer Space
Space

Exploration

Swarm

UAV

3 Aggregation, coordinated motion

Cluster II 4

other is given with AMiR (Arvin et al., 2009), Colias (Arvin
et al., 2014) (open-source5 and commercially6 available), and
Mona (Arvin et al., 2017) (open-source7 and commercially8

available). The platform R-One (McLurkin et al., 2013) is also
designed for the usage as swarm robotic platform. Although
it uses a camera tracking system for ground-truth localization,
and server software to connect all the pieces together, several
experiments “close” to swarm intelligence can be performed. The
Elisa-3 swarm robotic platform, open-source and commercially9

available, also uses an Arduino microcontroller with a high

5Colias open source website: https://github.com/MonaRobot/Colias
6Colias commercial website: http://www.visomorphic.com/
7Mona open source website: https://github.com/MonaRobot
8Mona commercial website: https://ice9robotics.co.uk/
9Elisa-3 website: https://www.gctronic.com/doc/index.php/Elisa-3

number of sensors including eight IR proximity sensors, three-
axis accelerometer, and four ground sensors. The robot is able to
recharge autonomously using a charging station. The robots in
the swarm communicate using either IR or radio. The Khepera
IV (Soares et al., 2016) is designed for any indoor lab application.
A Linux core, color camera, WLAN, Bluetooth, USB Host,
accelerometer, gyroscope, microphone, loudspeaker, three top
RGB LEDs, and improved odometry makes it a compact and
complete research platform for swarms in different scenarios.
The Khepera IV is commercially available at K-Team10. The
GRITSbot (Pickem et al., 2015) is the open-source11 swarm

10K-Team website: https://www.k-team.com/
11GRITSbot website: https://www.wevolver.com/wevolver.staff/gritsbot/master/

blob/Overview.md
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robotic platform used in the Robotarium12 at Georgia Tech,
Atlanta. The Robotarium provides remote access to a large team
of robots. Scholars can upload code to run experiments remotely
to collect data. Features like automatic registration of robots
with a server, autonomous charging, wireless code upload to the
robots, and automatic sensor calibration makes the Robotarium
attractive for remote research experiments. All these platforms
use wheels for their locomotion and a set of different sensors,
including distance and light sensors.

The e-puck robot (Mondada et al., 2009), and its successor
e-puck2, are designed as educational and research robots to
make it easy to program and control the robots’ behaviors. It
uses diverse sensors, e.g., infrared proximity sensors, a CMOS
camera, and amicrophone. The e-puck is available open-source13

or commercially at GCtronic14. The Xpuck is an extension of
the e-puck in terms of aggregate raw processing power (as used
in modern mobile system-on-chip devices) of two teraflops.
Thus, higher-individual robot computation can be achieved, e.g.,
image processing using the ArUco Marker tracking (Jones et al.,
2018). The Thymio II robot (Riedo et al., 2013) targets the
understanding of programming and robotic concepts using a
wide range of sensors, including temperature, infrared distance,
accelerometer, and microphone. Programming can be done in
Blocky using visual or text-based programming. The Thymio
II is available both open-source and commercially at Thymio15.
A recent platform for open-source16 swarm robotics education
and research purposes is called Pheeno (Wilson et al., 2016).
The user can adapt the platform with custom modules in three
degrees of freedom. To interact with the environment it uses
IR sensors. The Spiderino platform (Jdeed et al., 2017) is a six-
legged open-source17 robot with spider-like locomotion. It is
based on a hexpod toy that is enhanced by a PCB including an
Arduinomicrocontroller, aWLANmodule, and several reflective
infrared sensors.

The goal of the I-Swarm (Intelligent Small-World
Autonomous Robots for Micro-manipulation) project is
the development of micro robots to form a swarm. The robot
has a small size of only 3 × 3 × 3mm3, is solar powered
without battery, performs locomotion via vibration, and
communication via infrared transceivers (Seyfried et al., 2004).
It has been developed with the goal to build a swarm of 1,000
robots (Seyfried et al., 2004). Prototypes of this robot can be seen
in the technical museum in Munich, Germany.

The idea behind the open-source swarm robotics platform
Zooids18 is different: It handles both the interaction and
the display, and thus offers a new class of human-computer
interfaces. The swarm is controlled via light patterns projected
using an overhead projector (Le Goc et al., 2016). The APIS19

12Robotarium website: https://www.robotarium.gatech.edu/
13e-puck open source website: http://www.e-puck.org/
14e-puck commercial website: https://www.gctronic.com/e-puck.php
15Thymio website: https://www.thymio.org
16Pheeno website: https://discourse.ros.org/t/pheeno-a-low-cost-ros-compatible-

swarm-robotic-platform/2698
17Spiderino website: https://spiderino.nes.aau.at
18Zooids website: https://github.com/ShapeLab/SwarmUI
19APIS website: https://github.com/wvu-irl/reu-swarm-ros (software only).

(Adaptable Platform for Interactive Swarm) comprises several
components: the swarm robotic platforms, the infrastructure and
test environment for the swarm, and the software infrastructure
and simulation (Dhanaraj et al., 2019). The focus are experiments
related to human-swarm interaction. For these interactions,
additionally to sensors, the platform is equipped with an OLED
display and a buzzer. The Wanda (Kettler et al., 2012) swarm
robotic platform has a special assembly that could be used, e.g., to
clean up the environment with a swarm. In addition, the authors
implemented a whole tool chain especially for these robots from
design and simulation to deployment.

The Droplet (Klingner et al., 2014) is another swarm robotic
platform for teaching and research. It is a spherical robot which
is able to organize into complex shapes with its neighbors by
using vibration locomotion. It charges and communicates via
a powered floor that is equipped with alternating stripes of
positive charge and ground. It is available as an open-source
project20. The Swarm-bots (Mondada et al., 2002; Groß et al.,
2006) can configure themselves to different geometric 3D shapes.
The robots are constructed by a number of simpler, insect-
like robots, which are built of relatively cheap components (the
design is open-source21). A swarm of these robots is capable of
self-assembling and self-organizing to adapt to its environment.
With this assembling capability the swarm is able to transport
objects that would be too heavy for the individual robots. The
successor of the Swarm-bots project is the Swarmanoid project,
which represented the very first attempt to study the integrated
design, development, and control of a heterogeneous open-
source22 swarm robotics system. The swarm in the Swarmanoid
project covers autonomous robots of three types (each with an
additional set of sensors): eye-bots (UAVs that can attach to an
indoor ceiling), hand-bots (UGVs capable of climbing), and foot-
bots (UGVs capable of self-assembling) (Dorigo et al., 2013).
The Termes robots (Petersen et al., 2011) collaborate without
communication or GPS localization to create large structures
using modular blocks. The underlying concept is stigmergy and
is inspired by the way termites build their nests in nature. The
Termes robots are block-carrying climbing robots that can create
these structures in unstructured environments. Symbrion and
Replicator (Kernbach et al., 2008) are two sister projects, that
develop autonomous platforms for usage in swarms. They can be
operated either individually or form special patterns by physically
connecting to each other. The main goal of these projects is to
create a road-map of how to achieve the evolvability of robot
organisms. PolyBots (Duff et al., 2001) are self-reconfigurable
robots. Various types of locomotion capabilities and object
manipulation modules are interchangeable that allow to form a
number of shapes, e.g., an earthworm type to slither through
obstacles, or a spider to stride over hilly terrain. These robots
find their application if the environment is unknown or if robots
need to perform multiple tasks. Further modular robots that
allow self-configuration with similar robotic technologies include

20Droplet website: https://code.google.com/archive/p/cu-droplet/
21Swarm-bots website: https://www.ercim.eu/publication/Ercim_News/enw53/

nolfi.html
22Swarmanoid website: https://cordis.europa.eu/project/id/022888
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M-TRAN (Murata et al., 2002), M-TRAN II (Kurokawa et al.,
2003) and M-TRAN III (Kurokawa et al., 2008) (available as
open-source23 project), ATRON (Brandt et al., 2007) (available
as open-source24), CONRO (Castano et al., 2002), Sambot (Wei
et al., 2010), Molecube (Zykov et al., 2007), but to name a few25.

3.1.2. Aerial
There are several miniature and micro UAVs which form a good
basis for a swarm system of inexpensive robots for research
and education. An overview of such small-scale UAVs can be
found in the publications by Cai et al. (2014) and Swetha
et al. (2018). Although multiple off-the-shelf Micro Air Vehicles
(MAVs) exist and are quite popular in the games industry, and
in businesses for video- and photography, they typically have
closed flight controllers that do not allow to develop custom
algorithms (e.g., Qualcomm Flight Pro26, DJI M10027). One UAV
designed specifically for usage in swarms is the MAV presented
by Roberts et al. (2007). The MAVs are equipped with three
rate gyroscopes, three accelerometers, one ultrasonic sensor,
and four infrared sensors. It has been developed within the
Swarmanoid project (Dorigo et al., 2013). A very distinct research
platform is the Distributed Flight Array (Oung and D’Andrea,
2011). Each UAV makes up a module of a larger array and has
a single rotor only. The modules self-assemble into a multi-
rotor system where all vehicles must cooperate for coordinated
flight. To facilitate this, they exchange information among
each other and adjust local parameters. With the Crazyflies,
available both open-source and commercially at bitcraze28, a
swarm of UAVs can be realized indoors. They use multiple
sensors, e.g., accelerometer, gyroscope, magnetometer, and a high
precision pressure sensor (Preiss et al., 2017). Their low weight
of 27 g allows experiments with reduced danger for humans.
The Crazyflie’s localization relies on external tracking systems,
such as OptiTrack29. Another indoor swarm can be build with
the FINken-III (Heckert, 2016)30 and its predecessors. They
use optical flow, infrared distance, and a tower of four sonar
ranging sensors.

3.1.3. Aquatic
In the CoCoRo (Collective Cognitive Robotics) project (Schmickl
et al., 2011) a swarm of 41 heterogeneous UUVs has been
developed. There are three types of vehicles: A base station USV,
an exploration UUV, and UUV for relaying information between
the explorers and the base station. Communication is performed
with sonar and electric fields. The main applications envisioned
are environmental monitoring, measuring water pollution and
effects of global warming. The UUV Monsun (Osterloh et al.,

23M-TRAN website: https://www.wevolver.com/wevolver.staff/m-tran
24ATRON website: https://www.wevolver.com/wevolver.staff/modular.atron/

master/blob/Overview.md
25For a full list, the reader is referred to https://en.wikipedia.org/wiki/Self-

reconfiguring_modular_robot
26Qualcomm Flight Pro website: https://www.intrinsyc.com/qualcomm-flight-

pro-development-kit/
27DJI M100 website: https://www.dji.com/at/matrice100/info#specs
28bitcraze Crazyflies website: https://www.bitcraze.io/crazyflie-2-1/
29Optitrack website: https://optitrack.com/
30FINken website: https://www.ci.ovgu.de/SwarmLab/Robots/FINkens.html

2012) uses two types of communication: an acoustic underwater
modem for information exchange and a camera to recognize and
follow other swarm members. CORATAM (Control of Aquatic
Drones for Maritime Tasks) (Christensen et al., 2015) is a
project that develops swarms of USVs. Envisioned applications
are environmental monitoring, sea life localization, and sea
border patrolling. The platforms are available open-source31

and can execute swarm algorithms generated using evolutionary
computation (Duarte et al., 2016).

3.1.4. Outer Space
For space exploration, NASA has developed Swarmies32 to collect
material samples, such as water, ice, or useful minerals on Mars.
This application is referred to as in-situ resource utilization
(ISRU). Simultaneously, NASA launched a swarmathon33 to
entice students to develop swarm algorithms based on ant
foraging. In an experiment 20 Swarmies could travel 42 km of
linear distance in 8 h. The same distance was covered by Mars
rover Opportunity in 11 years. Another innovative project was
accepted by the NASA Innovative Advanced Concepts (NIAC)
program. The objective is to increase Mars exploration using
a swarm of Marsbees (Kang, 2018). These are robotic flapping
wing flyer the size of a bumblebee. They are to self-explore the
environment and use the Mars rover Opportunity as base and
charging station. During the NIAC funding, a concept for the
technical implementation of the flapping flyer using insect-like
wings will be proposed.

3.2. Industrial Projects and Products
3.2.1. Terrestrial
One of the biggest challenges in agriculture is the increasing
demand for food production (Tilman et al., 2011). SwarmFarm
Robotics34 is a company that provides farmers with swarms of
agricultural UGVs—the SwarmBot3.0. They work cooperatively,
but follow a centrally planned schedule. Before starting the
mission, a given field is decomposed into smaller cells which are
then allocated to the vehicles (Ball et al., 2015). The swarm’s tasks
are diverse, but involve planting, applying fertilizer, eliminating
weeds and insects, irrigation, and harvesting. A similar project
is addressed by the Fendt company with the UGV Xaver35. Each
Xaver is a battery-operated planting UGV that operates cloud-
controlled and collaborates with the other UGVs in the swarm in
terms of a centrally planned seeding plan (Blender et al., 2016).
The series production of the robots started with the EU-project
MARS (Mobile Agricultural Robot Swarms).

Within the GUARDIANS (Group of Unmanned Assistant
Robots Deployed in Aggregative Navigation by Scent)
project (Saez-Pons et al., 2010), a swarm of autonomous UGVs
has been developed for emergency and rescue applications. This
swarm can be used in dangerous situations where toxins are

31CORATAM website: http://biomachineslab.com/projects/control-of-aquatic-

drones-for-maritime-tasks-coratam/
32Swarmies website: https://www.nasa.gov/content/meet-the-swarmies-robotics-

answer-to-bugs
33Swarathon website: http://nasaswarmathon.com/
34SwarmFarm Robotics website: http://www.swarmfarm.com/
35Xaver website: https://www.fendt.com/int/xaver
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released that severely impair human senses. The robots warn of
toxic chemicals, provide and maintain mobile communication
links, infer localization information, and assist in searching.
They can generate a formation and navigate while keeping this
formation using so-called social potential fields. All tasks can
be achieved without central control, and some of the behaviors
can be performed without explicit communication between
the robots.

Ocado (Telegraph, 2018) is an automated warehouse that uses
a swarm of homogeneous cuboid UGVs. Grocery orders are
assembled and dispatched using 1,100 collaborative robots. The
robots collect ordered crates of food from stacks beneath a huge
metal grid organized like a chess grid and deliver them to chutes,
where human workers put the customer orders together. As the
crates are organized in piles, the robots assist each other to lift
out the ones standing in the way. They are operated in bursts to
ensure breaks for charging. The robots are controlled centrally
by a cloud server. Data is transmitted between the robots and the
cloud using cellular technology. The cloud server handles the vast
amount of data to coordinate the robots using machine learning
approaches. The biggest player for robot swarms in warehouses is
Amazon using the Kiva robot system (Brown, 2018). It uses up to
100,000 robots worldwide to move shelf towers in its warehouses.
The robots use motion sensors to recognize other robots or
shelves in their way. To find their way to the human workers who
assemble the customer orders, they use visual tags on the ground
of the warehouse to localize and navigate using the A* algorithm.
The dispatching is organized centrally and communicated to
the robots using WLAN. Robots drive to a charging station
automatically in case of low power. A very similar system is used,
among others, by the retailer Alibaba (Pickering, 2017).

The SWILT (Swarm Intelligence Layer to Control
Autonomous Agents) project (Khatmi et al., 2019)36 takes
another approach to modeling UxV. The project focuses on
industrial plants in the semi-conductor industry with a high-
product mix (about 1,500 different products), where the swarm is
made up of lots, machines, and other equipment. The innovation
in SWILT is to apply nature-inspired behaviors extracted from
swarm intelligence algorithms to the individuals of the swarm
instead of pre-calculating global schedules or routing tables.
The main difference to traditional methods, such as linear
optimization is that feasible, global solutions emerge from
local behavior.

3.2.2. Aerial
Swarm missions in the air are typically covered by UAVs, and
can be used for different applications. For example, military
applications are represented by the OFFSET (OFFensive Swarm-
Enabled Tactics) project (Chung, 2017). The main idea of this
project is to enhance reconnaissance with UAVs andUGVs inside
cities. The applied robots should identify threats using more than
100 different swarm tactics in a game-based environment. The
United States Air Force (USAF) works on a swarm of 250 UAVs
that is able to perform a 6-h mission for the reconnaissance of
eight city blocks. Another swarm of UAVs inmilitary applications

36SWILT website: https://swilt.aau.at/

is funded by the Pentagon: the Perdix drone (Mizokami, 2017). A
swarm of 103 Perdix UAVs is released from three F/A-18 Super
Hornets. The swarm of Perdix drones is able to perform four
different missions, including hovering over a target, or forming
a 100-m-wide circle in the sky. Their swarms have no central
control, no leader, adapt to UAVs entering or exiting the team,
are not pre-programmed, make collective-decisions, and can fly
in formation. Typical military applications include surveillance
missions and targeted assassinations.

The SMAVNET (Swarming Micro Air Vehicle Network)
project (Hauert et al., 2009) belongs to the application
domain of emergency and rescue. A swarm of autonomous
MAVs is developed to deploy and manage an ad-hoc WLAN
network (Varga et al., 2015). The application is to connect and
coordinate rescue teams. Another aim is the exploration of
disaster sites, with the goal of localizing victims and directing
rescuers toward them. In the project SWARMIX37 they form
a swarm of heterogeneous agents (humans, dogs, UAVs) that
work cooperatively in a search and rescue mission (Flushing
et al., 2014). Similar goals related to search and rescue were
achieved in the CPSwarm project38, although the focus was
on developing a toolchain for CPS swarm design, modeling,
simulation, and deployment.

For agriculture, the SAGA (Swarm Robotics for Agricultural
Applications) project39 targets a distributed monitoring and
mapping scenario using a swarm of UAVs, which is a novelty
in smart farming (Albani et al., 2019). The fitness of the
swarm is measured as a trade-off between exploration and
weed recognition time. An on-board vision system is used to
detect weeds.

Nowadays, entertainment in terms of light shows is a
very attractive application for swarms of UAVs. The UAVs
are equipped with LED lights and perform different pattern
formations creating a free-form display light show, typically
accompanied by music. Most providers, like Spaxels40, Flyfire41,
Ehang42, Intel (Barrett, 2018), and Lucie micro drone43 have
central solutions: the “swarm” of up to around 1,000 UAVs is
controlled centrally and follows pre-planned patterns.

3.2.3. Aquatic
Environmental monitoring is a common application for
swarms in aquatic missions. Platypus (Jeradi et al., 2015) sells
autonomous swarm robotic boats, so-called USVs, to measure
and monitor water quality. They provide dense maps of defined
bodies of water to give a comprehensive picture of the water
quality including salinity and oxygen stratification. Different
platforms are used depending on the scale and type of the
body of water. The boats perform centrally planned collective
exploration and interact with the human operator using team
oriented planning (Farinelli et al., 2017). Another example is the

37SWARMIX website: http://www.swarmix.org
38CPSwarm website: https://www.cpswarm.eu
39SAGA website: http://laral.istc.cnr.it/saga/
40Spaxels website: http://www.spaxels.at
41Flyfire website: http://senseable.mit.edu/flyfire
42Ehang website: http://www.ehang.com
43Lucie micro drone website: https://veritystudios.com
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Apium Data Diver44. It is a prototype vehicle built for operations
in swarms on surface and under water. It is able to dive to a
maximum depth of 100 m and has multiple sensors on board
including temperature, pressure, and GPS. Possible applications
include oceanography, aquaculture, hydrographic survey, and
defense. The Data Diver swarm can receive high level commands
from a human operator for navigating to a target and forming
specific patterns (MacCready, 2015). Further autonomous UUVs
were developed by Hydromea45. Their swarm of UUVs, the so-
called Vertex swarm, is able to take water quality measurements
at many locations simultaneously down to a depth of 300 m and
create 3D data sets with high spatial and temporal resolution
much faster than traditional methods. The small size of the
UUVs allows for their application, e.g., under ice, in protected
areas, underground water caverns, and storage tanks. The UUVs
are able to localize in the swarm using acoustic triangulation.
Using this positioning information, they form an underwater
ad-hoc communication network (Schill et al., 2016). The main
goal of the SWARMs (Smart Networking Underwater Robots
in Cooperation Meshes) project (Real-Arce et al., 2016)46 is to
make underwater and surface vehicles more accessible and useful
for maritime and offshore operations. The aim is to extensively
use maritime vehicles instead of professional divers for the
typically dangerous offshore operations. SWARMs mainly works
on the design and development of a set of software and hardware
components to incorporate them into the current generation of
maritime vehicles. This helps to improve autonomy, cooperation,
robustness, cost-effectiveness, and reliability. Exemplary
applications of SWARMs comprise among others: corrosion
prevention in offshore installations, monitoring of chemical
pollution, and tracking of plumes. A major research focus lies on
reliable underwater communication (Rodríguez-Molina et al.,
2017) leveraging topology control (Li et al., 2017).

Another application in aquatic environments is military. The
software kit CARACaS (Control Architecture for Robotic Agent
Command and Sensing), initially developed by NASA for the
Mars rover, has been adapted by the Office of Naval Research
(ONR). This technology allows autonomous operation of US
Navy boats where these USVs interact with each other (Smalley,
2016). These characteristics allow the swarm of USVs to choose
their own routes, to intercept enemy vessels as a swarm, and
to escort and protect naval assets. To support changes in the
swarm, CARACaS allows to re-plan and distribute new task
lists. The first successful demo in 2014 has been held on the
James River in Virginia, where CARACaS was installed on
multiple rigid-hulled inflatable boats. The main application has
been demonstrated during the Safe Harbor mission (Hsu, 2016).
The project subCULTron (Submarine Cultures Perform Long-
Term Robotic Exploration of Unconventional Environmental
Niches)47 uses the results of the CoCoRo project (described in the
previous section Research Platforms) to deploy and test a swarm

44Apium Data Diver website: http://apium.com/data-diver/
45Hydromea website: http://hydromea.com/
46SWARMs website: http://www.swarms.eu/
47subCULTron website: http://www.subcultron.eu/

of UUVs in the Venetian Lagoon in Italy to evaluate the learning,
self-regulation, and self-sustainability of the swarm.

3.2.4. Terrestrial/Aerial/Aquatic
The project ROBORDER (Autonomous Swarm of
Heterogeneous Robots for Border Surveillance)48 employs
an autonomous swarm of heterogeneous robots (UGV, UAV,
USV) equipped with multimodal sensors for sea and land
border surveillance. Their aim is to detect and identify criminal
activities in a vast heterogeneity of threats. The main objective
of this project is to incorporate multimodal, statically networked
sensors in a swarm of robots.

The project BugWright249 focuses on service and
maintenance of large ships. This includes hull cleaning and
inspection. Typically, this induces high costs. Therefore, the
project’s objective lies in the deployment of different cooperating
UxV swarms (UGV, UAV, UUV) for a detailed multi-robot visual
and acoustic inspection of the hull structure, detecting corrosion
patches, and cleaning the surface where necessary.

Sentien Robotics50 develops UGVs and UAVs to serve the
needs of surveillance, environmental monitoring, infrastructure
inspection, and national security. The company develops
scalable swarm intelligence software, sensor data processing
algorithms, and robot hardware. It furthermore develops a
system for automatic launching and recovering of multiple
UAVs (Borko, 2016).

3.2.5. Outer Space
Two swarms of satellites are currently in Earth orbit for space
exploration: Swarm (Agency, 2004) and Cluster II (Escoubet
et al., 2001). Swarm has been launched in 2013 and consists
of three identical satellites, each 9m long, and placed into two
different polar orbits: two side by side at an altitude of 450 km
and a third at an altitude of 530 km. Their primary task is to study
the Earth’s magnetic field. Cluster II has been launched in 2000
and consists of four identical, cylindrical (2.9× 1.3m) spacecraft
flying in a tetrahedral formation. Their task is to study the impact
of the Sun’s activity on the Earth’s space environment. This is the
first time a mission is able to provide three-dimensional data on
the influence of the solar wind on the Earth’s magnetosphere.

3.3. Discussion
In the above sections we provided an overview of currently
available industrial projects and products in the area of swarm
robotics as well as research platforms for swarm robotics. This
provides researchers and engineers in the domain of swarm
robotics a comprehensive overview of current work, existing
products, ongoing projects, and available research platforms.
From this overview it can be seen that swarm robotic applications
are still rare nowadays. Often, the swarm size depends on the
number of robots that companies or research agencies have
in stock, and are not always selected according to the desired
swarm behavior. Although research has been going on for

48ROBORDER website: https://roborder.eu/
49BugWright2 website: http://dream.georgiatech-metz.fr/?q=node/108, project

start: January 2020.
50Sentien Robotics website: http://sentienrobotics.com/
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several decades, a breakthrough of swarm robotics, especially for
industrial applications, has not yet occurred.

This is because there are still several open issues. First
of all, the dependability of the robot swarm is a concern.
Natural swarms work with the assumption that individual swarm
members might fail. In engineered swarms, high reliability
and availability is desired in order to provide a working
system. Failure of individual swarm members can increase the
operational cost and can lead to safety issues, especially for UAVs.
Swarm behaviors with their emergent characteristics executed by
autonomous robots relying on distributed information cannot
give the required guarantees on safety, security, and availability.
Therefore, many industrial projects still rely on centralized
control, e.g., in the agriculture and warehouse applications of
section 3.2.1, or the entertainment applications in section 3.2.2.
In these projects, the term swarm is solely used to imply
the high number of agents. The implementations neglect the
principal idea of swarm robotics which is distributed decision
making that leads to self-organized behavior. Even though the
robots have the ability to identify their environment, gather
data locally, and communicate this data with the rest of the
swarm, they rely on a central unit. This central unit either pre-
defines the behavior of each individual robot or, in more dynamic
scenarios, processes the information received from the robots
to control their behavior. The issue of safety and security is
addressed in research projects like SAGA (Albani et al., 2019),
SWILT (Khatmi et al., 2019), andCPSwarm (Bagnato et al., 2017).
In these projects additional routines are defined that allow to stop
individual swarm members or the entire self-organized swarm to
prevent harm to humans or other machines. This is achieved by
running multiple processes in parallel to react to certain events.
For example, sensor data or emergency stop signals by a human
operator can be processed in parallel to the behavior algorithm in
order to immediately stop anymovement of the swarmmembers.
These emergency processes provide a deterministic behavior as
opposed to the normal run time behavior. The safety issues
are less critical in aquatic environments. The USVs and UUVs
described in section 3.2.3 are able to perform fully autonomous
exploration and localization. Compared to terrestrial or aerial
environments, the possibility of harming humans is relatively
low. Though, harm to the environment or animals is not taken
into account.

Another issue is the communication within the swarm
and between the swarm and a central unit commanding and
controlling station. For a swarm to work fully autonomously,
it should provide its own means of communication. This
is achieved by ad-hoc WLAN networks typically employed
in emergency and rescue scenarios (see section 3.2.2). Such
communication networks have a limited range and are less
stable since they can break down when individual robots fail
or move out of range. An infrastructure-based network, such
as a cellular network, can provide more stable communication
but it requires the installation of base stations. While this is
typically available for terrestrial or areal environments, this
does not work for space or aquatic missions. Especially in
aquatic missions, commonly used radio communication does not
work due to the high attenuation of water (Rodríguez-Molina

et al., 2017). Therefore, robot swarms in such environments
must use less researched technologies, such as sound or
electric field communication that have lower throughput (see
section 3.1.3). Besides the technological limitations, an important
issue when communicating is security. This is of special
interest in military applications (section 3.2.2). First, information
exchanged between robots could be sensitive and should not be
disclosed to hostile parties. Second, the behavior of a swarm could
be influenced based on the information the swarm members
receive. This means that the behavior of a swarm could be
influenced by altering the messages exchanged between robots
or injecting false information in the swarm. Therefore, the
communication in the swarm needs to be encrypted and swarm
members must authenticate against each other in order to
provide reliable behavior. This is especially important when a
central station sends commands to control the swarm.

Compared to the industrial projects and products, the swarm
robotic research shows swarm behaviors close to the natural
swarm inspiration that relies on distributed control. Generally,
the research platforms’ hardware design technologically follows
the inspiration from nature as it is small and cheap. They
typically use simple and reduced microcontrollers, such as the
Arduino. In terms of other hardware characteristics, they are
quite diverse. Especially the UGVs show different types of
locomotion, e.g., the Kilobots (Rubenstein et al., 2014a) use
vibration, the Spiderino (Jdeed et al., 2017) is a six-legged robot,
and the AMiR (Arvin et al., 2009) and its successors use wheels.
Furthermore, they show different types of communication, e.g.,
the Kilobots (Rubenstein et al., 2014a) use reflecting light, the
I-Swarm (Seyfried et al., 2004) uses infrared, and the Khepera
IV (Soares et al., 2016) uses WLAN. Additionally, different
types of power sources are used, e.g., batteries (which are most
common) and solar cells for the I-Swarm (Seyfried et al., 2004).
Besides the diverse actuators, they offer a number of different
sensors that can be used for different swarm behaviors to
interact with the environment. As outlined by the authors, these
platforms are mainly used for research. So, most circuit designs
are published open-source online. Partially, these platforms
are specifically dedicated for educational use. For example,
the Thymio (Riedo et al., 2013) is offered online with a lot
of diverse educational material51 and the Spiderino (Jdeed
et al., 2017) is offered as part of workshops to pupils in the
eduLab (Pitschmann, 2019).

With all these available components on the swarm robotic
research platforms, it is possible to test and evaluate swarm
intelligence algorithms. This is not restricted to the software
side but includes also the hardware needed to interact with
the environment. This allows to draw first conclusions on
the emergence of swarm behaviors and required hardware
in laboratory environments. Nevertheless, the step from these
research platforms to a significant number of applications or
industrial products has not been achieved yet.

Nevertheless, there is already a paradigm shift in the industry.
Several companies in different domains envision self-organizing
solutions to the increasingly high complexity of their production

51Thymio’s Official Website: https://www.thymio.org/de/

Frontiers in Robotics and AI | www.frontiersin.org 15 April 2020 | Volume 7 | Article 3688

https://www.thymio.org/de/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Schranz et al. Swarm Robotic Behaviors and Applications

plants and activities in dynamic environments. Such industry
projects are, e.g., SWILT, ROBORDER, and BugWright2. This
establishes an opportunity for researchers in swarm robotics
and swarm intelligence to get their ideas out of the lab and
into a specific application. The main issue here is to map the
swarm members onto the components of an existing system
and to engineer their behavior with respect to the target
application. In the SWILT project, swarmmembers aremachines,
products, or lots. They must fulfill certain conditions, e.g.,
having computational resources to exhibit local intelligence.
Nevertheless, real-world scenarios typically go beyond swarm
robotics and fall into the area of swarms of cyber-physical
systems. The most promising applications are in domains
where it is impossible or too dangerous for humans to enter,
the environment is unknown, or the real-time requirements
are too restrictive to pre-compute globally optimal solutions.
Specific examples could be the exploration of the deep sea,
space, or celestial bodies, environmental monitoring, smart traffic
concepts, or nano medicine. These visionary applications are
further detailed by Schranz et al. (2020). To implement solutions
in such environments, new methods, technologies, and visions
are required in order to shift swarm intelligence from swarm
robotic research platforms to swarm robotic products.

4. CONCLUSION

Research on swarm algorithms is a relatively young topic.
Despite the large number of swarm algorithms, the transition to
industry and industrial production, not to mention daily use, has
not been made successfully. Nevertheless, several steps toward
swarm applications have already been taken. The main objective
of this paper is to motivate future research and engineering
activities by providing a comprehensive list of existing platforms,
projects and products as a starting point for applied research in
swarm robotics.

This paper classifies basic swarm behaviors and presents
a comprehensive overview of current research platforms and
industrial applications. While this demonstrates the possibility
of integrating basic swarm behaviors in current applications, it
also shows that many applications of swarm robotics cannot fully
exploit the advantages offered by distributed swarm architectures
due to systems with only few agents or central control. Swarm
algorithms build upon self-organized swarm behaviors, e.g.,
observed in natural swarm systems, such as insect colonies or

flocks of birds that are able to handle extremely diverse and
dynamic environments. The same holds for robot swarms. They
are meant to operate in the physical world, which typically
faces continual dynamic changes and must cope with events
and external conditions that are hard to predict or model.
Besides huge potential for applications in areas like logistics,
agriculture, and inspection, one suitable working environment
for swarms are places that are unsuitable for humans, including
places that are hard to reach, dangerous, or dirty. Applications
in these environments could help to better observe, understand
and exploit the advantages of swarm behaviors: adaptability,
robustness, and scalability.

In addition to industrial applications, we have also surveyed
different research hardware platforms dedicated to swarm
robotic experiments. On the one hand, this overview allows
to choose an appropriate research platform for implementing
and testing swarm algorithms in laboratory environments. On
the other hand, it shows that there is a huge potential in
research to transform these platforms from pure prototyping
platforms to productive, industrial robotic systems that are
able to perform in the real world. This might require to shift
from the current simplified robot models and controls to a
trade-off between simplicity of design and capability of solving
complex tasks in a reliable way, e.g., from reduced resource
consumption to a more intensive usage of sensor data and
information sharing.
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Self-organization offers a promising approach for designing adaptive systems. Given

the inherent complexity of most cyber-physical systems, adaptivity is desired, as

predictability is limited. Here I summarize different concepts and approaches that can

facilitate self-organization in cyber-physical systems, and thus be exploited for design.

Then I mention real-world examples of systems where self-organization has managed to

provide solutions that outperform classical approaches, in particular related to urban

mobility. Finally, I identify when a centralized, distributed, or self-organizing control is

more appropriate.

Keywords: complexity, self-organization, information, adaptation, robustness, antifragility

1. INTRODUCTION

We are submerged in complexity. And this complexity is increasing. But what is complexity? There
are dozens of definitions and measures in the literature (Lloyd, 2001; Gershenson and Heylighen,
2005), but not a definite one. Well, life is not properly defined either, and it is not a hindrance for
biology. Still, to have an idea of what we refer to, let us go to its etymological root. Complexity comes
from the Latin plexus, which means entwined. In other words, something complex is difficult to
separate. This is because the interactions among its components are relevant (Gershenson, 2013b).
Relevant because they co-determine the future of the system. Thus, if we do not consider such
interactions, but study components in isolation, we will not be able to understand the system
properly. Also, interactions can generate novel information, not present in initial nor boundary
conditions. This novel information limits predictability (Gershenson, 2013a) and is the source of
computational irreducibility (Wolfram, 2002), i.e., there is no shortcut to know the future: onemust
go through all intermediate steps, because the information produced in the process is required to
reach/compute the future.

A recent collaborative effort produced this definition: “Complexity science, also called complex
systems science, studies how a large collection of components—locally interacting with each
other at small scales—can spontaneously self-organize to exhibit non-trivial global structures and
behaviors at larger scales, often without external intervention, central authorities or leaders. The
properties of the collection may not be understood or predicted from the full knowledge of its
constituents alone. Such a collection is called a complex system and it requires new mathematical
frameworks and scientific methodologies for its investigation.” (De Domenico et al., 2019).

One of the core concepts explained in De Domenico et al. (2019) is self-organization:
“Interactions between components of a complex system may produce a global pattern or behavior.
This is often described as self-organization, as there is no central or external controller. Rather,
the “control” of a self-organizing system is distributed across components and integrated through
their interactions. Self-organization may produce physical/functional structures like crystalline
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patterns of materials and morphologies of living organisms,
or dynamic/informational behaviors like shoaling behaviors of
fish and electrical pulses propagating in animal muscles. As the
system becomes more organized by this process, new interaction
patterns may emerge over time, potentially leading to the
production of greater complexity.” Common examples of self-
organizing systems include flocks of birds, schools of fishes,
insect swarms, herds, crowds, and other collective phenomena
(Camazine et al., 2003; Vicsek and Zafeiris, 2012), although
self-organization is not restricted to living systems (Nicolis and
Prigogine, 1977; Haken, 1988; Gershenson and Heylighen, 2003;
Prokopenko et al., 2009).

There are many cases where self-organization has been used as
an approach in engineering (Di Marzo Serugendo et al., 2004; De
Wolf et al., 2005; Zambonelli and Rana, 2005; Mamei et al., 2006;
Helbing et al., 2007; Dressler, 2008; Müller-Schloer et al., 2011;
Rohden et al., 2012; Brambilla et al., 2013; Rubenstein et al., 2014;
Vásárhelyi et al., 2018). In these cases, we can describe a system
as self-organizing when elements interact to achieve dynamically
a global function or behavior (Gershenson, 2007). In other
words, instead of designing directly a solution, one regulates
the potential interactions among elements. This is useful in
non-stationary problems: when the situation changes, then the
system adapts by itself. Since interactions in complex systems
produce novel information, it is common that this information
will change a complex problem. Not only its state, but also
its state space. Thus, self-organization can be useful to face
complexity by providing general adaptation mechanisms. Several
methodologies using self-organization have been proposed (see
Frei and Di Marzo Serugendo, 2011 for an overview), although
the approach has not been widely applied.

In a parallel effort, guided self-organization attempts to
combine seemingly opposed processes: design to define and
regulate the properties and behavior of a system (one tells the
system what to do), and self-organization that implies certain
autonomy and adaptability (the system follows its own dynamics)
(Prokopenko, 2009, 2014; Ay et al., 2012; Polani et al., 2013).
Guided self-organization can be understood as “the steering
of the self-organizing dynamics of a system toward a desired
configuration” (Gershenson, 2012).

In this paper, I compile concepts and approaches useful
for designing self-organizing systems in the physical realm. I
illustrate these with case studies from urban mobility before
discussing implications. A diagram of the paper structure is
shown in Figure 1.

2. CONCEPTS

Several concepts are useful to design and guide self-organizing
systems. In this section, a non-exhaustive list is presented.

2.1. Adaptation
Adaptation can be defined as a change in an agent or system as
a response to a state of its environment that will help the agent
or system to fulfill its goals (Gershenson, 2007). Living systems
naturally adapt to changes in their environment, and artificial

systems can benefit from exhibiting adaptation (Holland, 1975;
Steels and Brooks, 1995; Bedau et al., 2013).

If problems are stationary, i.e., do not change, then it is
worthwhile attempting to predict the future of a system to control
it. However, for non-stationary problems, predictability by
definition is limited. Novel information generated by interactions
in complex systems can lead to non-stationarity. In this case,
adaptation is desirable to complement the unpredictable aspects
of a problem (Gershenson, 2013a). And self-organization offers a
method for building adaptive systems.

For example, city traffic is changing constantly: every time
a red light switches to green, the number of waiting vehicles
is different. Thus, the timing of the traffic lights should also
change to prevent idling. Traditional adaptive traffic light control
methods (e.g., Sydney, Dublin, Singapore) use sensors to shift
phases depending on recent average demands. This is usually
better than not having adaptation, where the best possible option
would be to take average measurements, set fixed phases, and
perhaps change the programs a few times per day. However, if
traffic lights can adapt at the same timescale as the traffic demand
does, i.e., every cycle, then the performance would be much
improved (Goel et al., 2017).

Adaptation implies flexibility and can take place at different
timescales: learning is relatively fast, development occurs
during the lifetime of an individual, and evolution acts
across generations.

2.2. Robustness
A system is robust if it continues to function in the face of
perturbations (Wagner, 2005), and in general any type of change.
As with adaptation, robustness is prevalent in living systems and
desirable in artificial ones (Jen, 2005).

Robustness and adaptability are complementary: a system has
to be robust enough to survive while it adapts, and adaptation can
favor robustness.

For example, the Internet is quite robust. The TCP/IP protocol
was designed to resist nuclear warfare. If any server goes down,
other servers will manage to transmit packages, unless the
network becomes disconnected. At the structural level (which
servers are linked, which pages are linked), self-organization
has led to a scale-free topology (Barabási et al., 2000), which
is also robust to random failures (although fragile to directed
attacks Caldarelli, 2007). This is because only few nodes have
several connections, so most probably a random failure will affect
a non-important node. However, directed attacks can aim for
the hubs.

Robust systems aremore prone to be scalable than fragile ones.
Adding new components or functionality to a system can be seen
as a type of perturbation, so in this sense robustness becomes a
requirement for scalability.

2.3. Antifragility
A fragile system is damaged by perturbations. A robust system is
unaffected by perturbations. An antifragile system benefits from
perturbations (Taleb, 2012). Particular examples of systems that
benefit from noise had been already identified (Atlan, 1974), and
the concept of antifragility can be seen as a generalization.
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FIGURE 1 | Diagram of the paper structure depicting sections and subsections.

For example, the immune system is antifragile. Children who
grow up in extremely sanitized conditions are not exposed to
pathogens (perturbations), so their immune systems do not
develop, leading to stronger infections and allergies in adulthood.
Certainly, children should not be infected intentionally, but being
exposed to a “normal” amount of pathogens and falling ill now
and then is helpful for training the immune system.

We have recently proposed a measure of antifragility (Pineda
et al., 2019), which is positive when perturbations improve the
performance of a system, negative when perturbations decrease
the performance (fragility), and zero when perturbations do
not affect the performance (robustness). An important aspect
is that there is no “optimal” antifragility independent of
an environment. A system should be as antifragile as its
environment varies (this is related with requisite variety,
discussed in section 3.1).

2.4. Mediators
Interactions can be classified as positive, neutral, or negative,
depending on the effect they have on the goals of a system
(Gershenson, 2007, 2011b).

A mediator arbitrates among the elements of a system,
to minimize conflict, interferences and frictions (negative
interactions); and to maximize cooperation and synergy (positive
interactions) (Michod, 2003; Heylighen, 2006; Gershenson,
2007).

Negative interactions, by definition, are those that prevent or
damage the functionality, performance, goals, or behavior of a
system. Positive interactions would benefit, facilitate, or promote
them. Neutral interactions do not affect them. For example,
actions that generate a cost but fail to provide a benefit for a
society can be said to generate friction, e.g., aggression. If the
benefit provided by actions is greater than the cost, one can say
that they are synergistic, e.g., politeness. If the cost and benefit
balance out, the interactions would be neutral, e.g., tolerance.

Traffic rules can be seen as examples of mediators. They aim
at reducing conflict in urban mobility. Without these rules, we

would need to decide constantly on which side of the streets to
drive, how to give way, make turns, etc. Even when rules and
norms vary from country to country, and in some cases from city
to city, when everybody follows the same set of rules (mediators),
conflicts tend to be reduced.

Money is another example. It mediates transactions that are
much facilitated compared to bartering.

Designing mediators can be useful for regulating systems
where the elements cannot be modified. Still, mediators can
change the interactions between elements, leading to different
systemic behavior and properties (see case study in section 4.1).

2.5. Slower-Is-Faster Effect
Probably this effect was first described about 20 years ago while
modeling crowd dynamics (Helbing et al., 2000a,b). If people
trying to evacuate a room are panicked (trying to exit faster),
then they create friction (negative interactions) that leads to
a “turbulent” flow that is slower than if people exit calmly
(neutral interactions), thus with a “laminar” flow. The same effect
has been studied in vehicular traffic, logistics, public transport,
social dynamics, ecological systems, and adaptive processes
(Gershenson and Helbing, 2015).

In general, the slower-is-faster effect occurs when a system
performs worse as its components try to do better. This
implies that a balance between doing “too few” and doing
“too much” is necessary. However, in many cases this balance
is dynamic, as with antifragility. For example, the optimal
speed for highway traffic (that maximizes flow) depends on the
vehicular density. For this reason, systems that present a slower-
is-faster effect, require constant adaptation, that can be achieved
through self-organization.

The slower-is-faster effect may refer to any variable, not
only speed. For example, growth or profits are not necessarily
maximized in the long term with a short-term maximization
strategy. Managing natural resources, such as fisheries, requires
this understanding: if all resources are depleted, then in the
near future there will be no profits. Maximizing profits requires
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a careful balance between short-term action and long-term
planning. As with the case of highway traffic, usually this balance
is non-stationary.

2.6. Heterogeneity
Most of our models of complex systems are homogeneous:
all components have the same properties. This simplification
is useful when we face computational limitations. However,
increasing processing power and data availability have allowed
us to make more realistic models, where different elements of a
system have varying properties.

Perhaps the most studied heterogeneity in complex systems
is the one of network topologies (Albert and Barabási,
2002; Newman et al., 2006; Gershenson and Prokopenko,
2011; Barabási, 2016) (see section 3.5). Many networks are
heterogeneous, with few elements having lots of connections and
many elements having few connections. This leads to important
differences with homogeneous, regular networks, where all
elements have the same number of connections. Apart from
the robustness already mentioned, heterogeneous networks can
also transmit information faster (they have shorter average path
lengths) (Aldana, 2003).

More recently, temporal heterogeneity has been also studied
(Cocho et al., 2015; Morales et al., 2018), i.e., systems where
different components change at different rates. In a similar
way to structural heterogeneity, few elements change slower
than most elements. This heterogeneity seems to lead to a
balance where slow elements are robust and fast elements are
adaptable. In homogeneous systems, this balance is achieved
only in phase transitions, which can be characterized as “critical”
(Balleza et al., 2008). However, heterogeneity seems to expand the
balance beyond criticality, making it easier to search an unknown
parameter space, simply because different components diversify
any search procedure (Martínez-Arévalo et al., in preparation).

3. APPROACHES

How to implement the properties related to self-organization in
cyber-physical systems? The concept of self-organizing systems
originated within cybernetics (Ashby, 1947, 1962; von Foerster,
1960; Heylighen et al., 1993), where useful approaches were
already developed.

3.1. Cybernetics
Ashby not only coined the term “self-organizing system,” but
he also proposed the law of requisite variety (Ashby, 1956;
Heylighen and Joslyn, 2001; Bar-Yam, 2004; Gershenson, 2015).
Variety can be understood as the possible number of states that
a system can have. This law states that an active controller
must have at least as much variety as the system it is trying to
control. For example, if we want a robot at a manufacturing
plant to deal with seven different types of boxes, then it should
be able to distinguish and make the appropriate decisions to
handle each type of box. A common problem is that complexity
explodes variety and vice versa. Therefore, traditional (non-
adaptive) approaches become limited. To handle the variety of
a system, we can either reduce its variety (using mediators), or

increase the variety of the controller, but then the latter will imply
an increase in the complexity of the controller as well.

Everything else being equal, the variety of non-stationary
domains will be greater or equal than those of stationary ones, as
their change usually implies a greater number of potential states.
Therefore, adaptive controllers and antifragilemechanisms have
to consider this increased variety.

Active controllers are related with feedforward and feedback
(positive or negative) control. Feedback occurs in response to a
signal or perturbation, so it can be seen as a type of adaptation
(Gershenson, 2007). Negative feedback reduces the effect of the
perturbation, trying to reach stability, while positive feedback
amplifies perturbations, leading to greater change. Feedforward
control might be preferred, as it acts on a perturbation or
signal before it can affect the controlled. However, this requires
anticipation, and since complexity implies a limited predictability
due to novel information being generated by relevant interactions
(non-stationarity), this type of control will also be limited.

Complementary to active controllers, passive controllers were
also studied in cybernetics, related to buffering. Passive control
can increase the robustness of systems, since it prevents
perturbations from affecting the controlled. Figure 2 illustrates
active and passive controllers.

There is an interesting relationship between variety and
heterogeneity. Heterogenous systems by definition have more
variety, so in principle they should be able to control more
situations than similar homogeneous systems. However, they
might be less robust and more complicated to design and
understand. For example, “if there is a system of ten agents each
able to solve ten tasks, a homogeneous system will be able to
solve ten tasks robustly (if we do not consider combinations as
new tasks). A fully heterogeneous system would be able to solve
a hundred tasks, but it would be fragile if one agent failed.”
(Gershenson, 2007, p. 53). In this case, the homogeneous system
would be robust, because if one agent fails, others can perform
the same function. Still, the variety of the system would be
restricted to ten tasks. The heterogeneous system would have
a tenfold variety, but if a single agent fails, then no other
agent would be able to take over the task, and the system
would fail as well. Thus, a balance between homogeneity and
heterogeneity should also give us a balance between robustness

and adaptability (Langton, 1990; Kauffman, 1993).

3.2. Systems
Contemporary and overlapped with cybernetics, systems theory
has also permeated into all disciplines (von Bertalanffy, 1968).
The word “system” comes from the ancient Greek σ ύστǫµα

(sýstema), which means a whole made of several parts. It is
a useful abstraction that can be applied to describe several
phenomena at different scales. Moreover, it can be the basis for
understanding how elements interact to generate behavior or
properties at the system level, and how these properties regulate
or constrain the behavior or properties of the elements.

Cybernetics and systems theory naturally merge in cyber-
physical systems, where control and communication are required
in the understanding and engineering of systems composed
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FIGURE 2 | Diagrams of feedback control, feedforward control, and buffering. In different ways, they try to reduce or eliminate the effect of perturbations on the

controlled, either actively or passively. Arrows indicate the effects of perturbations: wider lines indicate greater effects. Ideally, the control mechanisms should be able

to eliminate completely the effect of perturbations.

of “bits and atoms,” i.e., digital information is entwined with
physical mechanisms.

In a similar way, cyber-social systems are those that merge
digital technology and social interactions. The “human factor”
increases the variety of such systems, and our “creativity” limits
even more their predictability.

3.3. Simulations
We can consider computers as telescopes of complexity (Pagels,
1989). In other words, without computers, our cognitive abilities
are limited to studying models considering not many more
than two or three variables. To explore models with thousands
or millions of variables, computer simulations are necessary
(Gershenson, 2007) because of computational irreducibility
(Wolfram, 2002). Complexity implies that new information is
generated by interactions, so there is no “shortcut” to the
future and all intermediate steps are necessary (Wuensche and
Lesser, 1992). This limits inherently the predictability of systems
(Gershenson, 2013a).

Simulations do not replace other approaches, but their
usefulness can be seen in the spreading of computational
methods to all disciplines.

Also, simulations allow us to contrast theories in a synthetic
way (Steels, 1993). The inductive method validates theories
through observation of phenomena.The synthetic method builds
artificial systems based on a theory, and then this is validated
observing the performance of the artificial system (Simon, 1996).

Since one can contrast different theories using computer
simulations, it can be said that computational social sciences are
“hardening” the social sciences (Axelrod, 1997; Lazer et al., 2009).

3.4. Agents
Agent-based modeling (Bonabeau, 2002; Schweitzer, 2003;
Epstein, 2006; Wilensky and Rand, 2015) has been a useful
approach to describe complex systems. An agent can be defined
as an entity that acts on its environment (Gershenson, 2007). As
such, they can be used to model active controllers.

Agents have been used to model cognitive systems of
different flavors, including rational (Wooldridge and Jennings,
1995), adaptive (Maes, 1994), social (Epstein and Axtell, 1996;
Gershenson, 2001), and economic (Arthur, 1999; Challet et al.,
2013).

Considering elements of a complex systems as agents, with
states, goals, and rules allows us to study how changes at one
scale lead to effects at another scale. The effects can go in both
directions: changes in agents leading to changes in the system
and vice versa.Moreover, systems can also be described as (higher
scale) agents.

Another advantage of agent-based modeling is that such
models are closer to common language than previous modeling
approaches based in e.g., differential equations. Therefore, people
do not require a strong mathematical background to develop
models using a multi-agent approach.
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3.5. Networks
Another approach that is becoming more and more popular
as data availability and computing power increase is network

science (Newman, 2003; Newman et al., 2006; Barabási, 2016).
Networks have the benefit of being able to represent naturally
elements (nodes) and interactions (links). The relationship
between the structure and function of networks has been an
intense area of study, where self-organization can play a relevant
role (Gershenson, 2012).

Different organizations of the same elements can lead
to radically different functionalities. A classical example is
different arrangements (allotropes) of carbon atoms, which
can lead to charcoal, diamond, graphite, graphene, nanotubes,
buckyballs, etc. The components are the same, but changing their
organization (structure) leads to radically different properties
(function) of these materials.

The robustness of systems can be promoted through different
mechanisms (Gershenson, 2012), such as redundancy (having
several copies of the same element), degeneracy (having different
elements perform the same function), modularity (short-
range links stronger than long-range ones), and scale-free-like
(heterogeneous) topologies (few elements with several links,
several elements with few links).

3.6. Living Technology
Ethology—the study of animal behavior—has been taken as
an inspiration to build adaptive systems (Beer, 1990; Maes,
1994; Steels and Brooks, 1995) and to study complex artificial
systems (Rahwan et al., 2019). Animals have evolved to survive in
complex environments, so adaptive strategies and self-organizing

mechanisms found in nature have been used in cyber-physical
systems. In this sense, living technology (Bedau et al., 2009;
Gershenson et al., 2018) takes the advantageous properties of
living systems and applies them in socio-technical systems, from
protocells (Rasmussen et al., 2008) to cities (Gershenson, 2013c).

Living technology has been defined as technology that
exhibits the properties of living systems, such as adaptation,
learning, evolvability, robustness, and self-organization. First-
order living technology is actually alive, either manipulating
existing living systems (Gibson et al., 2010; Kriegman et al., 2020)
or (eventually) building them from scratch (Rasmussen et al.,
2008; Čejková et al., 2017). Second-order living technology uses
living systems as components to achieve the desired properties
found in living systems (Benyus, 1997; Liu and Tsui, 2006).

4. CASE STUDIES

In this section, I illustrate the previous concepts and approaches
with case studies we have worked with in recent years, related
to urban mobility. Particular concepts are highlighted, although
approaches are implicitly used.

4.1. Crowd Control
More than a hundred million people use the hundred busiest
metro systems in the world every day, a number that is growing
fast as the urban population is increasing and cities develop.
In the Mexico City Metro and other cyber-social systems,
people would normally push each other, not letting passengers
exit trains, collapsing the systems. How to regulate passenger
behavior, when a selfish approach might seem to bring individual

FIGURE 3 | Signs installed to mediate passenger boarding and descent in Mexico City Metro. Reproduced from Carreón et al. (2017) under the Creative Commons

CCBY license https://doi.org/10.1371/journal.pone.0190100.g015.
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benefit but lead to collective inefficiency? One can think of
differentmediators, but they can be costly to try in real systems.
To explore alternatives, we first used simulations of a model of
crowd dynamics (Helbing et al., 2000a) and then implemented a
pilot study in the Balderas station of the Mexico City Metro on
December, 2016 (Carreón et al., 2017). The pilot was a success
and it has since been extended to several other busy stations.

The intervention consisted of “simple” signs that indicate
passengers roughly where the train doors will be, asking them
to leave free space for exiting passengers, as shown in Figure 3.
What we did not expect nor suggest was that people would queue
(Figure 4), and that these queues could even go upstairs as people
respected them.

This intervention managed to change the behavior of the
passengers and thus the crowd, without changing the elements of
the system (where could we get different “educated” passengers
from?). The signs mediated interactions between people. This
is an example of a passive control, where interactions are
regulated “simply” providing useful information. The mediators
managed to change the structure of the crowd, leading to a more
efficient function.

4.2. Traffic Light Coordination
The coordination of traffic lights is an EXP-complete problem,
meaning that in theory it takes exponentially more time to find
a solution as more intersections are added to a street network.
Also, the precise number of vehicles changes every cycle, so in
practice the problem changes faster than it can be optimized. An
active controller should adapt as fast as the controlled changes

(requisite temporal variety), and for that sensors are required to
provide relevant information to the controller.

With this in mind, we have proposed self-organizing
algorithms that can coordinate traffic flows and adapt to constant
changes in the demand as fast as it changes (Gershenson, 2005;
Zapotecatl et al., 2017), achieving close-to-optimal performance
(Gershenson and Rosenblueth, 2012). The main idea behind the
algorithms is that streets with a higher demand get a preference.

This is implemented by counting how many vehicles are
approaching or waiting behind red lights, and when the integral

over time of this counter reaches a threshold, then the green light
is requested. Thus, busier directions will wait less for a green light.
This increases the probability that vehicles will aggregate behind
red lights with few cars, leading to the formation of platoons. As
platoons reach a certain size, they can request a green light before
they even reach an intersection (because they quickly reach the
threshold), so vehicles do not need to stop, unless there are other
vehicles or pedestrians crossing. Platoons are easier to coordinate
than individual vehicles, as they leave spaces between them that
other platoons can use without interference. When densities are
high, the preference is given to the street that has more space after
the intersection, preventing gridlocks.

It is difficult to compare the performance of self-organizing
traffic lights, as there are no benchmarks in traffic light
coordination. However, they are close to optimal. We can define
optimality by calculating the maximum performance (measured
in terms of velocity or flow) of isolated intersections for different
densities. If a system with several intersections performs as
efficient at every intersection, we can say that the coordination

FIGURE 4 | Passengers queuing waiting for a train in Mexico City Metro during rush hour, San Lázaro metro station. Reproduced from Carreón et al. (2017) under the

Creative Commons CCBY license https://doi.org/10.1371/journal.pone.0190100.g016.
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FIGURE 5 | Results of self-organizing traffic lights: average velocity v and average flux J for different densities ρ. Optimality curves shown with dashed black lines.

Reproduced from Zubillaga et al. (2014) under the Creative Commons Attribution License.

is optimal. Figure 5 shows a comparison of the self-organizing
approach and a traditional top-down control method known
as the “green wave” that attempts to offset phases according
to the expected speed of vehicles. However, demands change
constantly and this method cannot adapt, leading to gridlocks
even at medium densities. The self-organizing method achieves
optimality for low densities (no vehicle stops) and medium
densities (all intersections are used at maximum capacity: there
are always vehicles crossing all intersections. Topologically
it is not possible to improve this). For other densities, the
performance is close to the optimality curves (for details, see
Gershenson and Rosenblueth, 2012).

More recently, we have found that self-organizing traffic
lights would improve traffic more than if all vehicles were
autonomous but with traditional traffic lights. Nevertheless,
autonomous vehicles and self-organizing traffic lights are even
better (Zapotecatl, 2019).

By distributing control locally, the requisite variety of the
traffic light coordination can be tackled robustly as conditions
change, while the formation of platoons self-organizes the traffic
flows and assists the coordination of intersection controllers at
the city scale. In this way, the traffic lights are mediators of
vehicles, but the vehicles are also mediators of traffic lights. We
have made simulations with up to ten thousand intersections
achieving efficient or optimal coordination, so this solution is
certainly scalable.

As there are so many variables involved in this system,
simulations are necessary to explore and test potential solutions.
It is natural to represent the topology of a city as a network,
where nodes are intersections and links are streets connecting
them. Vehicles and traffic lights can be usefully described
as agents, since they act on their environment. It is worth
noting that then traffic lights become part of the environment
of vehicles, while vehicles are part of the environment of
traffic lights.

4.3. Public Transport Regulation
In theory, passengers in public transport are served optimally
when vehicle headway—the time between arrivals at a station—
is equal. However, as we have shown, an equal headway
configuration is unstable by nature (Gershenson and Pineda,
2009), since delays become amplified by positive feedbacks. Thus,
many efforts have been made by transportation engineers to
prevent the “equal headway instability,” also known as the “bus
bunching problem.”

To keep equal headways, all vehicles—trains, trams, buses—
must wait the same time at each station. This time can vary from
station to station, but it must be fixed or some vehicles will go
faster than others, leading to unequal headways and potentially to
the collapse of the system. Since the precise number of passengers
varies each time a vehicle reaches a station, and thus the required
waiting time, then either vehicles will require a margin and be
idle, or they will depart before servicing all passengers when these
are more than expected.

We proposed a self-organizing algorithm inspired by ant
colony communication (Gershenson, 2011a; Carreón et al.,
2017), so this can be seen as an example of living technology.
Some ant species communicate via their environment, a
phenomenon known as stigmergy (Theraulaz and Bonabeau,
1999). When they find a food source, they return to their nest
leaving a pheromone trail. This indicates the food location to
other ants. When they find the food, they can reinforce the trail
while returning to their nest. Since pheromones evaporate, once
the food is finished, ants stop reinforcing the trail, and they start
exploring again. In the case of our algorithm, vehicles can be
seen as ants, and we wanted a pheromone-like environmental
signal to be used to indicate when the last vehicle had passed.
However, pheromones reduce their concentration, while we
needed an increasing signal, so we defined “antipheromones” that
are secreted by the environment, increase their concentration in
time, and are erased by vehicles as they pass.
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FIGURE 6 | Diagram showing positions of trains at different times. Trains move upwards in distance and rightwards in time. There is an interruption of service at ti ,

and it is reestablished 15 min later at tr . (A) Current control method. (B) Self-organizing method. Reproduced from Carreón et al. (2017) under the Creative Commons

CCBY license https://doi.org/10.1371/journal.pone.0190100.g014.

In our algorithm, each vehicle “simply” tries to keep
equal distance to the vehicles in front and behind (using
antipheromones as mediators), but is flexible enough to serve
passengers at stations and at the same time prevent idling.
Equal headways are not maintained, but the system does not
collapse. Rather, its performance is even better than the case
with equal headways, i.e., it is supraoptimal. This is because of
the slower-is-faster effect: It is true that passengers minimize
their waiting time at stations with equal headways (as expected
by theory). But their total travel time is not independent of
the equal headways, so idling will increase their total travel
time. With the self-organizing algorithm, passengers wait more
at stations, but once they board a vehicle, they will reach
their destination faster, as there is no idling. Again, adaptation
takes place at the scales at which the system changes. We
can say that this approach is antifragile, as supraoptimality
is achieved precisely because of the “noise.” (heterogeneity)

of arriving passengers. If all stations had always the same
demand (homogeneous), then the self-organizing algorithm
would perform as good as the theoretical optimum, i.e., less
than supraoptimal.

Figure 6 shows results from a simulation of Line 1 of the
Mexico City Metro. On the top panel, the trajectories of trains
using the current regulation method is depicted. There is a 15
min interruption of the service, and it can be seen that the
system does not recover. In reality, the system does recover,
but it requires human intervention and can take one, two, or
more hours, depending on the passenger demand. On the bottom
panel of Figure 6, the trajectories of a similar scenario are shown,
but using our self-organizing method. It can be seen that even
before the service is reestablished, the vehicles try to maintain
equal headways with their neighbors, delaying vehicles ahead
of the station where service was interrupted. Once service is
reestablished, since the intervals between trains did not collapse,
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trains can quickly adapt and respond to the delayed service,
recovering a desired configuration in less than half an hour.

5. DISCUSSION

We cannot reduce the complexity of several systems we have to
deal with. Novel information produced by interactions leads to
changes, making problems non-stationary. For example, in the
case of traffic lights, one cannot try to optimize intersections
in isolation and expect the system to be coordinated. Since the
“output” of one intersection becomes the “input” of the next one
downstream, this information should be constantly updated by
sensors and taken into consideration by controllers.

Self-organization has been used in a broad variety of cyber-
physical systems. It allows systems to adapt at the scales at
which the problem they are solving changes in a robust fashion.
In addition to the case studies mentioned in the previous
section, dynamic road pricing in Singapore and variable parking
cost in San Francisco are examples of self-organization being
used to regulate urban mobility. We can see that the same
principles apply in other cyber-physical and cyber-social systems,
from telecommunications (Amoretti and Gershenson, 2016) to
organizations (Gershenson, 2008).

As in the case of crowd control, there are many systems
where we cannot change the components. Still, we can try to
mediate interactions to control the function of the system. We
will not change politicians. But perhaps we can regulate their
interactions to improve politics. We cannot change teachers. But
maybe novel mediators can improve education. Businesspeople
will not change. But probably promoting certain interactions
and restricting others can improve economies. It can take lots
of energy to turn charcoal into diamond, but it can be done.
They are made of the same atoms. “Only” their organization
is different.

A relevant step toward adopting self-organizing controllers
is to give up the desire to control completely our systems. This
implies accepting that predictability is limited by complexity, and
that adaptation should complement this inherent uncertainty,
even if we do not know how systems will adapt. As
complexity limits our predictability, systems require certain
autonomy to make the “right decisions.” Even if we use
traditional approaches, we do not have full control of
our systems, as they are constantly entering unexpected
situations. We would like to be able to be sure that
our systems will never fail, but they will. We can have
formal proofs but these are also limited, since they assume
idealized/closed/predefined situations. Self-organizing systems
can do the same as traditional engineered systems and more,
as they can deal with more realistic/open/variable situations.
We just have to (systematically and cautiously) try and see,
constantly adapting (Gershenson, 2007). Even if a solution
already worked, it does not assure that it will continue working
(as conditions change) or that it can be applied in the same way
in a different context.

The best solution depends on the context/environment
/problem. In some cases, centralized control will be good,

TABLE 1 | Different control approaches are more appropriate for different

causalities, complexities, and diversities.

Control Causality Complexity Diversity

Centralized Top-down Low Homogeneous or heterogeneous

Distributed Bottom-up Medium Homogeneous

Self-organizing Multiscale High Homogeneous or heterogeneous

TABLE 2 | Different control types are more related to certain concepts,

approaches, and aspects.

Control Concepts Approaches Aspects

Active Adaptation/antifragility Agents Functional

Passive Robustness/heterogeneity Networks Structural

in others distributed is more appropriate, in yet others
self-organizing. As shown in Table 1, centralized control is
appropriate when causality should be top-down. Because of the
law of requisite variety, systems with a high variety/complexity
will require a controller with a high variety/complexity, so the
centralized approach becomes less viable. Distributed control
can deal with a greater complexity, but it is still limited, because
the integration of the distributed solutions is not necessarily
trivial. This limits distributed control to homogeneous systems:
since information flow across the system is restricted, the
local solutions assume that each local problem is similar. As
illustrated in the traffic lights example, self-organizing control
can deal with top-down and bottom-up causality (multiscale),
as components can interact in a distributed fashion to change
system properties (bottom-up), but then the system properties
can mediate (top-down) to regulate the behavior of components.
Self-organization can be scalable, adaptive, robust, and can deal
with a high complexity and homogenous or heterogeneous
problems. It is not that one approach is better than others, but
they are more appropriate for different problems. Centralized
control is easier to implement and understand, but is useful
for low complexity/variety problems. Distributed control can
deal with a greater complexity, but only for homogeneous,
separable systems. Self-organizing systems might be more
difficult to design and test, but they can handle greater
complexity/variety/diversity.

How the control is organized is certainly relevant, but also
whether the control is active or passive. As shown in Table 2,
active control is more related with adaptation and antifragility,
as these concepts imply constant change in the function of the
controller. An agent-based approach is natural here, as it is
straightforward to describe actions with agents, since these are
entities that act on their environment. On the other hand, passive
control is more related with robustness and heterogeneity, as
these are intrinsic properties of systems and their structure

(independently on whether there is change or not in the
environment). A network description is useful in this case, as
the relationships between elements can describe the organization
of a system. Note that these are not exclusive, e.g., one can
certainly use both active and passive controllers, or combine
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agents represented as networks, or study how structure and
function affect each other. Also, the concepts and approaches
not mentioned here apply to both control cases. Moreover, the
relationship between structure and function is far from trivial
and has been an open area of research (Heylighen, 1999), since
structure defines function but also function can change structure.
In many cases, we design structure for a desired function, but also
we can design function for a desired structure (Dorigo et al., 2004;
Werfel et al., 2014).

As the complexity of our cyber-physical systems increases, and
also our understanding of it, we will see more self-organizing
approaches. Perhaps names will differ, but the concepts presented
here are required to control cyber-physical and cyber-social
systems by guiding their self-organization.
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A major goal of autonomous robot collectives is to robustly perform complex tasks in

unstructured environments by leveraging hardware redundancy and the emergent ability

to adapt to perturbations. In such collectives, large numbers is a major contributor

to system-level robustness. Designing robot collectives, however, requires more than

isolated development of hardware and software that supports large scales. Rather, to

support scalability, we must also incorporate robust constituents and weigh interrelated

design choices that span fabrication, operation, and control with an explicit focus

on achieving system-level robustness. Following this philosophy, we present the

first iteration of a new framework toward a scalable and robust, planar, modular

robot collective capable of gradient tracking in cluttered environments. To support

co-design, our framework consists of hardware, low-level motion primitives, and control

algorithms validated through a kinematic simulation environment. We discuss how

modules made primarily of flexible printed circuit boards enable inexpensive, rapid,

low-precision manufacturing; safe interactions between modules and their environment;

and large-scale lattice structures beyond what manufacturing tolerances allow using

rigid parts. To support redundancy, our proposed modules have on-board processing,

sensing, and communication. To lower wear and consequently maintenance, modules

have no internally moving parts, and instead move collaboratively via switchable magnets

on their perimeter. These magnets can be in any of three states enabling a large

range of module configurations and motion primitives, in turn supporting higher system

adaptability. We introduce and compare several controllers that can plan in the collective’s

configuration space without restricting motion to a discrete occupancy grid as has been

done in many past planners. We show how we can incentively redundant connections

to prevent single-module failures from causing collective-wide failure, explore bad

configurations which impede progress as a result of the motion constraints, and

discuss an alternative “naive” planner with improved performance in both clutter-free

and cluttered environments. This dedicated focus on system-level robustness over all

parts of a complete design cycle, advances the state-of-the-art robots capable of

long-term exploration.

Keywords: self-reconfigurable, modular robots, soft robots, robot kinematics, simulation environment, path

planning
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1. INTRODUCTION

Modular self-reconfigurable robots are composed of active
modules capable of rearranging their connection topology to
adapt to dynamic environments, changing task settings, and
partial failures (Yim et al., 2007). It is desirable to increase the
number of modules to increase the potential for adaptability and
redundancy, however, scaling up the collective size poses several
challenges (Brunete et al., 2017). Controllers must be capable
of efficiently exploring the configuration space and providing
introspection to cope with internal and external changes. The
module hardware must be inexpensive and fast to produce,
work reliably, and require little maintenance. Consequently,
isolated efforts to develop scalable control and hardware do not
necessarily result in system-level robustness. Rather, to facilitate
large numbers of robots in the first place, we argue for the
importance of incorporating robustness into all levels of design,
and demonstrate how this approach leads to tightly co-dependent
parameters across hardware and software. In this paper, we
discuss our design approach, an early hardware prototype, and
custom controllers. Our focus is explicitly on enabling long-term
robustness of an autonomous, self-reconfigurable, modular robot
through a hardware-software design cycle, with the idea that we
can build on such a robust platform in the future to achieve more
advanced behaviors.

Figure 1A provides an overview of the measures we have

taken to ensure system-level robustness, and how many of
these design decisions carry over between fabrication, operation,

and control. Related to the design itself, system robustness is

mediated by (1) the simultaneous development of hardware and
software; (2) ease of iterations, e.g., through realistic simulation
environments that let the designer focus on high level behaviors,
as well as simple hardware that supports easy extensions; and
(3) open access to permit a wide range of users and inputs.
To support inexpensive, fast, and therefore scalable fabrication
we focus on (1) simple designs with minimal components;
(2) mechanical compliance to permit higher manufacturing
tolerances; and (3) manufacturing rigs to support non-expert
labor. These design parameters correlate with those of scalable
operation, e.g., because (1) compliance lets modules interact
safely with each other and with external objects; (2) compliance
permits large scale connectivity despite poor manufacturing
tolerances; and (3) hardware simplicity limits the risk of failure.
Other operation-specific considerations include the ability of
modules to operate, sense, and perceive independently from
others; the ability to stay connected without continuous use
of power; the ability of modules to move in a multitude of
ways to overcome partial failures; and the potential to lower
mechanical wear by omitting internally moving parts. All of
these design choices warrant custom controllers and to support
system robustness, we focus on (1) reactive (over deterministic)
behaviors that could adapt to dynamic perturbations; (2) naive
and simple control schemes that scale well with the number of
robots; (3) minimum energy expenditure through efficient path
planners; (4) connection redundancy to avoid single module
failures from causing complete collective failure; and (5) enabling

a large configuration space that facilitates system adaptability to
unforeseen perturbations.

More specifically, we introduce a novel planar, modular robot
composed of compliant modules moving in unison. We refer to
the robotic modules as “DONUts” (Deformable Self-Organizing
Nomadic Units) for their visual kinship (Figures 1B–D). To
support simple and fast manufacturing, DONUt modules are
composed of a single flexible printed circuit board (PCB)
wrapped in a loop and populated with sensors, actuators,
processors, and room for batteries. To mitigate wear, the
DONUts have no moving parts; rather, they move as a collective
by activating and deactivating Simplified Electro-Permanent
Magnets (SEPs) on their perimeter. These magnets can be
polarized in either direction or turned off to enable a very
large configuration space and consequently collective adaptability
(Figure 1C). Furthermore, they do not require continued
application of power tomaintain polarizationwhich saves energy.
To lower fabrication cost and risk of errors, we minimize the
number of components, e.g., by making double use of the PCB
as a chassis and the SEPs for communication. The passive
compliance introduced with the flexible PCB permits large
lattice configurations despite rapid, imprecise manufacturing.
The compliance and low driving voltages also enable the modules
to interact safely with each other and with surrounding objects.

We further develop DONUt-specific coordination schemes,
low-level primitives for module operation, as well as an
open source simulation environment to support controller
development. We refrain from imposing artificial constraints
on module motion beyond what the hardware is capable of.
This means that the modules operate in a grid-free environment
and can achieve a much larger set of connection topologies
to adapt to the task at hand. Toward real-world operation,
we furthermore focus on reactive configurations, rather than
predetermined shape transitions as is common for modular
robots. Specifically, in a simulated energy harvesting scenario,
we investigate how such modules may perform gradient tracking
toward a light source in clutter-free and cluttered environments
(Figure 1D). We choose this specific task, because it supports
reactive and scalable behavior and because it highlights the
benefits of grid-free operation. To evaluate the performance,
in terms of path efficiency, of our controllers, we compare
them against paths generated by an all-knowing Oracle planner
in clutter-free environments. We explore a locally optimal A*
search-based controller and how we may incentively redundant
connection topologies for more error tolerant operation. We
compare this to a “naive” iterative control scheme that scales
better with the number of modules in both computation and
memory, finding comparable performance. We further discuss
particular connection topologies which may impede progress
due to the hardware-specific motion constraints, and show how
these may be circumvented using the naive controller. We also
allude to how energy expenditure is used across modules in the
collective, which is an interesting area for future work. In this
paper, we focus only on centralized coordination, however, all of
the methods may be adapted for decentralized coordination at
the expense of communication.
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FIGURE 1 | (A) Interdependent design guidelines centrally motivated by system level robustness. (B) Simulated DONUts moving along an environmental gradient,

where the yellow square denotes the origin of the gradient, and the red polygons obstacles. (C) DONUt modules with onboard computation, sensing, and switchable

magnets to facilitate collective communication and motion. (D) Magnets which can be switched to either polarity and off to permit a large range of configurations.

Although more work is needed to demonstrate full-scale
practical collective operation, the work in this paper illustrates
the highly interdependent design choices that lay the foundation
for a scalable and robust modular robot. The following sections
detail (1) related work of both controllers and hardware; (2)
a hardware prototype composed of compliant modules with
individual computation, communication, sensing, and collective
motion; (3) an inexpensive, quick manufacturing process for
both modules and components, based on pre-populated, flexible
PCB and a rapid SEP winding mechanism; (4) a characterization
of module deformation, mobility, sensing, and communication;
(5) an open source kinematic simulation framework for
the DONUts informed by low-level motion primitives and
experimentally obtained sensor performance characteristics; and

(6) a comparative study of two controllers for efficient and error
tolerant gradient tracking with the DONUts in environments
without an occupancy grid.

2. RELATED WORK

The framework described in this paper combines and builds
on findings from many sources spanning both hardware and
coordination. In the following sections, we describe these in turn.

2.1. Modular Robot Platforms
Past research on hardware for modular self-reconfigurable robots
includes design of inexpensive and durable mechanisms for
actuation, docking, communication, and power distribution
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(Brunete et al., 2017). Low maintenance requirements are
especially important for this class of robots, as they scale
linearly with the number of modules required. Module cost and
fabrication time are equally important factors, but are somewhat
mitigated by the fact that unit price decreases significantly with
mass fabrication. Additionally, the module weight and stiffness
determines both structural stability and how many modules can
be moved at once.

The majority of modular robots consist of rigid components
assembled into either a fixed form factor (Jorgensen et al., 2004;
Goldstein et al., 2005; Daudelin et al., 2018; Zhu and El Baz,
2019), or into modules which can actively deform to produce
motion (Rus and Vona, 2001; Ishiguro et al., 2006; Karagozler
et al., 2007; Li et al., 2019). Recently, merging with soft robotics,
pneumatically-driven modules with infinite degrees of (passive)
freedom have also been shown (Lee et al., 2016; Vergara et al.,
2017). These have the benefit of overcoming small manufacturing
defects that otherwise scale poorly in large lattice-structures. The
most successful demonstrations of these robots currently rely
on traditional electro-mechanical actuators for reconfiguration,
such as DC motors (Daudelin et al., 2018). However, researchers
are also exploring designs that require fewer components and (1)
have no internalmoving parts which are prone to wear (Goldstein
et al., 2005; Vergara et al., 2017; Zhu and El Baz, 2019), (2)
rely solely on collective motion over individual module mobility
(Goldstein et al., 2005; Li et al., 2019), and (3) exploit non-
mechanical latches, such as switchable magnets (Goldstein et al.,
2005; Gilpin and Rus, 2010; Zhu and El Baz, 2019), electrostatics
(Karagozler et al., 2007), and meltable plastic and alloys (Neubert
et al., 2014; Swissler and Rubenstein, 2018). Note that the last two
options are superior for connection strength, but require high
voltage generation or power usage, respectively. The DONUts
are intended for rapid reconfiguration, standardize operation,
and will not experience high tensile force, therefore we base our
design on switchable magnets.

Currently, the closest “relatives” of the DONUts are the
Caroms (Goldstein et al., 2005) and the Nonoperable (Gilpin
and Rus, 2010), both planar modular robots. In the former,
round, rigid modules can move in six discrete steps around each
other using switchable magnets. This is still an active research
platform, especially in terms of controllers, power, connectors,
and communication (Campbell et al., 2005; Kirby et al., 2007;
Naz et al., 2018; Piranda and Bourgeois, 2018). The DONUts
rely on a similar means of locomotion, but are compliant,
simpler to manufacture, and have the potential to be teacherless.
The Nonoperable are small form-factor cubes with switchable
magnets used both for inter-module docking, power transfer, and
communication; module movement comes from external forces.
They involve a quick manufacturing procedure by wrapping
a flexible PCB around a rigid frame, enabling deflections to
overcome manufacturing defects.

It is worth noting our specific choice of an SEP docking
mechanism. In the Caroms and Nonoperable, the switchable
magnets were electromagnets and electro-permanent magnets,
respectively. The former has high power consumption when on,
and the latter can only be switched off or on in one polarity.
To limit power consumption and to permit a wider range of

configurations (Figure 1C), we instead leverage SEPs (Zhu and
El Baz, 2019) which can switch polarities and be turned off. We
further explore different SEP designs to lower module weight and
enable stand-alone operation.

In summary, the design of the DONUts combines many of
these past findings, including: (1) passive module compliance
to overcome manufacturing defects, (2) collective motion via
switchable magnets to decrease mechanical wear, and (3) a very
simple fabrication process to improve system scalability.

2.2. Coordination of Modular Robots
Path planners for modular, lattice-based robots typically focus
on shape transition, i.e., how to plan admissible and energy
efficient paths for all modules from one configuration to another
(Pamecha et al., 1997; Walter et al., 2005). Past literature
on reactive reconfiguration to reach a goal in a cluttered
environment is much more sparse, but has been shown with
slime mold-inspired, crystalline, and prismatic modules (Kubica
et al., 2001; Rus and Vona, 2001; Butler et al., 2004; Ishiguro
et al., 2006; Li et al., 2019), through coupled oscillators, traditional
path planners, and cellular automata, respectively. All of these
were based on distributed controllers and hardware with active
degrees of deformation to help the modules move. In contrast,
the DONUt modules briefly presented in Ceron et al. (2019a),
have only passive compliance. Although this passive compliance
is not currently part of our simulation framework, the presented
control algorithms are only dependent on the connection
topology and sensed objects, not the actual robot morphology,
and could therefore work on the real hardware. We reason
further about the benefits of module deformability and strain
sensing in Ceron et al. (2019b).

The majority of research has focused on distributed
controllers, e.g., through agent automata and globally imposed,
or module-generated, gradients (Butler et al., 2004; Stoy and
Nagpal, 2004). Centralized path planners for optimal shape
transition become computationally intractable as the number
of modules grow. This is typically overcome through careful
preplanning (Walter et al., 2002; Daudelin et al., 2018)
or sub-optimal planners dealing with hierarchical layers of
modules (Bhat et al., 2006). The planning is further simplified
through discrete occupancy grids (triangles, squares/cubes, and
hexagons/rhombic dodecahedrons). Controllers for the Caroms,
for example, typically discretion the world into hexagonal cells
(Walter et al., 2005; Bhat et al., 2006). Although this approach
is convenient mathematically, it also artificially limits the set of
achievable configurations, which becomes especially critical in
modules that are dependent on others to move.

Here, we explore centralized control schemes which adds
no constraints on the module configuration beyond what the
hardware is capable of. Similar to Ishiguro et al. (2006) and
Li et al. (2019) we do not divide the world into a fixed
occupancy grid, however, each module does have a finite set of
connection points. Also, similar to many past controllers, path
admissibility is ensured through a globally connected topology
and consecutive movement of modules. Centralized controllers
can suffer from a single point of failure and requires the need
of a global sensor (or global communication), however, the
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algorithms we present rely on knowledge and plans which could
be computed locally to overcome such weaknesses, at the expense
of added synchronized communication.

3. MODULE DESIGN AND
CHARACTERIZATION

We start by describing the SEPs, as they dominate the module
infrastructure, power consumption, weight, and assembly time.
We then detail the remainder of the hardware (Figure 2A),
characterize the module ability to move, deform, communicate,
and sense, and end with a discussion on scalability. As previously
mentioned, our design considerations are based on enabling long
term, stand-alone operation.

3.1. Docking Mechanism
SEPs consist of a low coercivity magnet wound with a copper
coil and finished with ferrous end caps to induce and guide
the magnetic field, respectively. By sending a high current pulse
through the coil we can orient all the dipoles in the core to
change its overall polarity; by applying a pulse of lower current
magnitude, we can effectively turn off the magnet (Figure 3A
inset). SEPs are advantageous for modular robots because (1)
they have no internally moving parts which limit wear, (2) they
remain polarized without continued supply of power which
lowers maintenance, (3) they can be used for both movement and
communication which minimizes the number of components,
and (4) they can switch between opposite polarizations and off
which supports a large range of module configurations. This
section details our first SEP design and how it relates to the rest
of the module design.

The SEP design considerations include part accessibility, the
magnet geometry and coercivity, the geometry of the end cap,
the number of turns in the coil, the wire gauge, and the amount
of energy that can be transferred to the coil, which in turn is
dependent on the supply voltage, series resistance, and pulse
duration. These considerations come with trade-offs: a stronger
SEP will facilitate better bonding strength and require fewer on-
board SEPs needed for actuation, whereas a weaker SEP weighs
less and can therefore work on a lower weight module that is
easier to move. Our SEP design is based on a careful balance
of these parameters. Small-scale, off-the-shelf, low coercivity
magnets are rare and therefore the availability of these dominated
our design.We decided on amagnet made of Alnico grade 5, with
a length of 3/8” and a diameter of 1/8”, available from Magnet
Kingdom. The end caps are made of steel and manually cut to the
dimensions 4× 4× 1.5 mom.

A high energy pulse, and therefore a high supply voltage,
is needed to flip the dipoles in the Alnico magnet. To keep
the modules light weight, small, and mobile, we target a single
cell Lithium Polymer on-board battery with a 3.7 V output. To
activate the SEPs, we boost the battery voltage from 3.7 to 26
V, using an AP3012KTR boost converter with ∼80% efficiency.
To avoid damaging the battery, we first charge a capacitor bank
C = 1mF slowly (over 75 ms), and then discharge rapidly
from this bank into the coil. We choose ceramic capacitors to

provide a low RESR. There are four 22uF capacitors in parallel
placed next to each SEP. Our circuit design is modular, such
that the capacitor bank can be discharged into any combination
of SEPs simultaneously depending on the actuation sequence
desired (Figure 2B). The maximum charge,Q, that can be soured
from the bank is given by: Q = CV = 27.5mC. We used
this circuit to help us find the remaining parameters of the
SEPs experimentally.

Knowing the magnet material and dimensions as well as
the available power, we next focus on the coil. Specifically, the
achievable SEP pull force is directly dependent on the amount of
current we can push through the coil, which in turn is dependent
on the number of coil turns (or inductance) and the resistance in
the coil:

I = V/RESR(1− e−tRESR/L) (1)

where V is the SEP supply voltage, RESR is the series resistance
in the supply RC, plus that in the coil RL, L is the inductance
of the coil, and t is the time since the charge started. Thicker,
longer wires however produce diminishing returns due to (1) the
maximum steady state magnetization strength of the Alnico rod,
(2) the limited power available, and (3) the fact that the copper
adds to the weight of the module which in turn increases the
necessary pull force to produce motion.

Through a number of experiments to evaluate weight vs.
magnet strength, we decided to settle for 40 AWE (American
Wire Gauge) copper wire. Figure 3A shows how the number of
turns with this wire affects the SEP pull force. Fmax was measured
between an SEP charged with the circuit described above and
a steel bar, using a micro load cell rated 0–780 g from Fidgets
Inc. As expected, Fmax increases with an increasing number of
turns, until RL starts to limit I. With 100 turns, we found Fmax =

1.11± 0.15N. We then measured how the pull force was affected
by the number of times an SEP (40 AWE, 100 turns) was charged
after being fully polarized in the opposite direction, shown in
Figure 3B. We found that the SEP reaches maximum pull force
after being charged approximately 5 times. These SEPs weigh
0.95 g, with the coil and end caps contributing 0.15 and 0.30 g,
respectively. With 12 SEPs located around the perimeter of a 46
mom diameter module, the weight of a full module is around
20.9 g without a battery and 25.4 g with one; i.e., the 12 SEPs
make up approximately 45% of the full module weight. Based on
the experiments above, we use five consecutive capacitor bank
charges to flip the polarity of a SEP and 1 to simply turn it off. As
part of future work, we hope to perform a model-based analysis
to find more optimal parameters, with the aim of increasing the
SEP strength, while decreasing the total module weight.

3.2. Actuation
To move the modules, we make two assumptions: First, the
moving module moves only itself. Second, the module it is
moving around is connected to many other modules keeping
it relatively stationary. To move on a neighboring module, the
moving module has to first inform the other about its desired
move and polarity. If the module is transitionary between two
modules it needs to ask its neighbor to pass the message along
to the following module. We target several types of motion
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FIGURE 2 | (A) A module PCB (unwrapped) and three modules (wrapped). The white dashed lines indicate (i) flexible and (ii) rigid regions due to the placement of

components; IR sensors and amplifiers are not mounted in this photo, similarly, a few external wires appear only for initial debugging and powering purposes. (B) SEP

driver and communication circuit.

FIGURE 3 | (A) SEP pull force when placed against a steel bar vs. the number of coil turns (five trials each). All measurements were taken by polarizing the SEP in one

orientation with a strong magnet, then depositing a constant charge to flip the polarization. The insets show how the SEPs work conceptually, by changing the

orientation of dipoles in the Alnico-material. (B) Pull force for an SEP with 100 turns, 40 AWG wire, and 4 min end caps. Each measurement was done by first

orienting all dipoles in one direction (using 11 charges), and then depositing a number of charges in the opposite direction. (C–E) Conceptual movement by module i

(red illustrates the position of the SEPs, blue those related to the move). (C) Rotating-motion, i.e., counterclockwise rotation of i. (D) Rotating-translating motion, i.e.,

counterclockwise rotation and translation by i to the adjacent SEP on j. (E) Gear-like motion, i.e., clockwise rotation by i along the perimeter of j.

including on-axis rotation, rotation-translation, and gear-like
rotation, as shown in Figures 3C–E, respectively. We imagine
that the latter two modes are useful for general motion, and that
the former is of use if a particular module sensor is broken,
or if the collective wants to take more measurements from
slightly different angles. We anticipate that a combination of
these motion abilities will support system-level robustness.

We found that rotation around the module axis is possible
through the following sequence: (1) [S-O-N-N; N-S-S-N], (2)
[S-O-O-N; N-S-S-N], (3) [S-N-O-N; N-S-S-N]; and (4) [S-N-S-
N; N-S-S-N], where N, S, and O corresponds to north, south,
and off, respectively. When enabling these types of motions we
used a total of 11 capacitor bank charges to make sure that
an SEP was polarized to the desired state. We further found
that rotation-translation is feasible by conducting the following
sequence of polarity switches: (1) [X-N-S-X; X-S-S-X], (2) [X-
N-N-X; X-S-S-X], (3) [X-S-N-X; X-S-S-X], where X corresponds

to any state. In step 1, the modules are connected between
locations 2 in the array, and in step 3 between locations three
in the array. This type of motion requires a total of 10 capacitor
bank charges. We conducted a reliability test of the translation
motion, and found that the module was able to successfully
move 48 out of 50 times when no external forces were applied
(Figure 4A). It should be noted that in these two experiments we
used external power for experimental ease, but both tests were
performed with the weight of a Li-Po battery on-board. It is also
important to note that these moves require only one module to
activate its SEPs. Therefore, although modules must first agree
on the upcoming move with their neighbor, a movement does
not require synchronous behavior.

Finally, we found that the current hardware only facilitates
gear-like rotation in two scenarios: either when external
compressive loads are applied as shown in Figure 4B, or when
approximately half the weight is removed from the modules.
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More generally, we found that friction is an important factor
in determining the motion that a module is capable of and that
it is dominated by acceleration due to fast SEP switching. The
acceleration, in turn, is determined by module inertia. According
to Seiner’s theorem, the inertia required for the module to move
about a point on its perimeter is: I = Io + mr2, where Io is the
inertia for the module to rotate about its own axis, and m and r
are the module mass and radius, respectively. Therefore, if given
the chance, the module will spin around its own axis, rather than
travel along the perimeter of another. In future work, we hope
to enable gear-like motion via the following approaches: (1) an
in-depth study and optimization of SEP and module parameters,
(2) synchronized SEP switching in neighboring modules, and (3)
addition of friction tape along themodule perimeters tomake on-
axis rotation more energy consuming than translational motion.

3.3. Passive Deformation
The passive module deformation is useful both to enable
large-scale configurations beyondwhatmanufacturing tolerances
would allow with rigid modules, and to permit modules to
interact safely with each other modules and their environment.
For completeness, we here characterize the deformation modules
are capable of.

The components on the flexible PCB are spaced to produce
rigid zones, and flexible zones in between the SEPs (Figure 2A).
This means that when a static external load is applied to a
DONUt module, it deforms by an amount proportional to the
load. Beyond guiding the magnetic field, the SEP end caps
also function as a mechanical stop which prevents pinching
that could permanently deform the PCB. Therefore, when the
load is released, the module reverts back to its original shape,
exhibiting spring-like behavior. The effective spring constant
of a DONUt module was experimentally obtained by applying
increment amounts of weight on a flat surface lying on top of a
sideways module. The constant is calculated from Hooke’s law:
F = −ks1x. The term ks refers to the effective spring constant
and 1x is the change in length when a force, F, is applied. We
found ks = 28.01± 2.85N/m (Figure 4C).

The looped PCB, of course, does not behave like a perfect
spring, and the change in deformation between increment
weights decreases slightly with increasing load. This is due to
an increasing effect of the rigid zones on the deformation of
the module as they are pressed closer to each other at the right-
and left-most edges of the module, corresponding to the areas of
highest curvature. It should be noted that if the load was dynamic
with non-negligible momentum, impact, or vibrations, then the
geometric response of the module would be quite different, and
it is possible that this effect may be exploited in future work.

3.4. Computation
Our choice of controller, ATmega328, coincides with those of the
Arduous platforms which are very popular in the do-it-yourself
community, again aligning with our philosophy of lowering
the barriers to entry for diverse researchers and developers to
help increase system robustness. To provide a sufficient number
of control pins, each DONUt module has two ATmega328
microprocessors running on their internal 8 MHz RC oscillator,

with 2 KB SRAM and 32 KB EEPROM. The first processor
controls SEPs 1–7 and three IR transceivers; the second, SEPs 8–
12, one IR transceiver, and all SEP communication channels. The
two processors communicate via UART. The software for low-
level control of all peripheries take up just 2.3% of the SRAM and
6.5% of the EEPROM, leaving the majority of static and dynamic
memory for the controllers described in section 5.

3.5. Communication
As previously mentioned, we simplify the design by making
double use of the SEPs for actuation and module-to-module
communication. Restricting the communication range is a
commonly used method to avoid bandwidth problems as many
asynchronous modules try to communicate (Rubenstein et al.,
2014). When two SEPs located on separate modules are in
contact, they can communicate locally as follows. The capacitor
bank is first charged to maximum capacity. Bits are then
transmitted using electromagnetic induction; i.e., the transmitter
encodes bits in pulses of current, which are received by the
neighboring SEP via induced current in the coil. The receiver
then decodes these (weaker) pulses into bits. The current
communication protocol is able to send a packet of 4B at a rate of
5 kbps on a single capacitor bank charge.

We developed our own protocol to facilitate communication
with bits encoded in pulse length: A “1” is approximately twice
the length of a “0” (Figure 5A top). This encoding simplifies
synchronization because we can treat any bit like a clock
signal, and use a simple schmitt-trigger coupled to a timer
input comparator on the processor to decode the package. A
transmission is started with a “1,” and bits are sent from least to
most significant. The main limitation in baud rate is the time it
takes to charge the capacitor bank. Figure 5A bottom shows the
decrease in transmission voltage as a (worst case) package of all
“1”s is sent, and the capacitor bank discharges.

To test communication reliability, we cycled through a
transmission of all possible characters between two SEPs. We
found the error rate to be 1 flipped bit per 1,000 bits. This issue
may be addressed by adding in one or more parity bits for a slight
decrease in throughput.

3.6. Sensing
Sensors allow the modules to interact intelligently with their
environment. Although we focus on simple IR sensors for
gradient tracking and obstacle detection, it is relatively easy to
modify the module design to fit different sensors because it only
involves a slight re-routing of the PCB.

Currently, each module is equipped with four infrared
emitters (OP140A) and four receivers (LTR-301) operating at
935–940 nm (Figure 5B). For full spatial coverage while keeping
the number of components small, these eight components are
spaced equally around the perimeter of the module, and have
a radial emission angle of 40◦ and a relative sensitivity around
20◦, respectively. The outputs from the receivers are multiplexed
into the analog to digital converters (ADC) on the processors. To
measure the distance to an object for instance, we turn on the
relevant emitter and multiplexed channel, and subsequently read
the ADC value. We experimentally tested the distance sensors
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FIGURE 4 | (A) Module moving about another module, with motions as described in Figure 3C. (B) Motion of compressed modules, with rotation similar to that

described in Figure 3D. (C) Characterization of module deformation, conducted by placing weights on a module.

FIGURE 5 | (A) Top: Communication packet between SEPs. Received (orange) and transmitted (blue) message of a start bit, “1,” followed by two “0” s. Bottom:

Decrease in voltage over the capacitor bank as a package of all “1”s is sent. (B) IR transceiver circuit. (C) Experimental setup to measure module field of view. (D) Top

view of the experimentally measured sensor coverage in a module. (E) IR intensity map (bright values correspond to close objects and reach a maximum of 498 bits;

dark values correspond to 0 and no measured signal).

using the setup in Figure 5C. Figure 5D shows a top view of
the module coverage pattern and Figure 5E bottom shows the
raw values from the sensor. Although every module will have a
slightly different coverage dependent on the manual mounting of
the sensors, even small objects should be visible before contact.
In Ceron et al. (2019b), we discuss how to use this ability for
object shape estimation.

3.7. Power
A DONUt module can fit up to three single cell 0.15 Ah Li-Po
batteries from E-flite, weighing 4.5 g and measuring 45× 12× 8
mom each. The module has the ability to measure its own battery
level to support more intelligent collective behaviors as further
discussed in section 5. The vast majority of energy spent in a
module is on actuation and communication. As a rough estimate,
a single battery should be able to support Ebatt/(0.5CV

2) =

6, 000 capacitor bank charges. Given that a single gear-like move

requires 11 capacitor bank charges, this corresponds to a full
travel length of 12.9 m or 280 module diameters (with no
communication). Beyond improved movement, future work will
target integration of solar cells to support longer term operation.

3.8. Scalability
As argued in the introduction, a focus on individual module
robustness supports large scale robot collectives, which in turn
enables system-level robustness. Here, we discuss the current
state of the modules in terms of cost, fabrication time, and
maintenance, and how thesemay be improved tomake large scale
DONUt collectives feasible.

3.8.1. Cost

As we have yet to optimize for cost, a single module is priced
around 587 USD. The biggest cost stems from the two-layer
flexible PCB (468 USD quote from Advanced PCB), the 48
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ceramic capacitors (46 USD), the 12 MOSFET drivers (17 USD),
and the 12 SEPs (12 USD). The remaining 44 USD stems from
components, such as processors, LEDs, resistors, etc.

There are several ways to lower the price of low-volume
module fabrication. The cost can be reduced drastically by
picking a cheaper PCB manufacturer (the lowest quote was just
90 USD, but had a longer lead time), or by taking advantage of the
recent progress in Inkjet printable flexible PCB (Kawahara et al.,
2013). The latter reports a drop in price to 10 USD per meter
of film, which would leave the cost of the PCB to be negligible
compared to the other parts in themodule. There are also cheaper
alternatives to the current capacitor banks; we could, e.g., use
fewer, but larger OSCON capacitors similar to those used for flash
in cameras. To give an idea of how the price scales with mass
fabrication, the price of the current (non-optimized) component
list drops from 119 to 52 USD/module when ordering for 1,000
modules. We aim to produce a second version of these modules
with a price point around 50USD, placing them in a similar range
to the cheaper modular robots in literature (Brunete et al., 2017).

3.8.2. Fabrication

One of the key benefits of the DONUt module design, is the
reliance on a single PCB which supports imprecise, rapid, and
inexpensive manual assembly of both SEPs and wrapped PCB.
The largest time sink for the fabrication is component soldering;
currently, one PCB takes around 5 h to solder by hand. In the
future, we hope to have the majority of the PCB pre-populated
at a manufacturing house. To get a rough estimate of how this
would trade off cost for lowered assembly time, we requested a
quote fromAdvanced PCB which came to 30 USD/module for an
order of 1,000 modules. We expect that this cost can be lowered
with a more thorough search of vendors, a longer requested lead
time, and the right choice of components. The current capacitor
bank, for example, consists of many components in parallel; it
would be beneficial to replace these with a few, larger capacitors.

If the PCB assembly is outsourced, that leaves the following
steps for in-house assembly: (1) SEP manufacturing, (2)
attachment of SEPs and batteries, and (3) flexing the PCB into
a loop. Of these three, only the first two take any considerable
amount of time. The process is as follows. First, the magnet is
glued to the steel end caps with super glue; then the assembly
is inserted into our winding rig shown in Figure 6. The gears
in the rig are dimensioned such that a single turn of the red
wheel by hand adds 100 turns to the coil. This entire process,
including PCB mounting, takes at most 4 min per SEP, i.e., 48
min per module.

3.8.3. Maintenance

The maintenance requirements of modular robots stem from
mechanical wear, the ability of a user to operate (start, stop,
and program) all modules with a global command, the module
battery life time, and the reliability of individual components.
We address each factor in sequence. (1) DONUt modules have
no internally moving mechanical parts that can wear with use,
and have no loose wires or connectors that may break over time
which tend to be one of the bigger problems in small electro-
mechanical devices. (2) In future versions, we may explore better

parallel operation, enabling user control through a single IR
source similar to past platforms (Rubenstein et al., 2014). (3) In
the future wemay optimize themaximumpossible travel distance
per module through integration of solar panels on the PCB.
Although this type of power harvesting will be slow, it fits this
particular style of robots well: only perimeter modules in large
collectives are able to move which causes a spiraling migration
pattern where the majority of modules at any one point in time
remain stationary (further discussed in section 5). (4) Although
more thorough tests are needed, we tested 50 moves in a row
without any component faults.

4. SIMULATION ENVIRONMENT

We have developed an open-source simulation platform in
Matlab R© to support general access to development and testing
of control schemes for the DONUts modular self-reconfigurable
robot (https://github.com/njw68/DONUts_Simulation). The
framework permits programmers to easily test large numbers
of modules operating in varying degrees of clutter, and perform
structured analysis of system resilience to signal noise and
component failures. The simulation incorporates gear-like
motion (Figure 3D), connections, sensing range, and message
passing. Module compliance, friction, and inter-module forces
are not integrated at present. The software is written such that the
user can focus on implementation of high-level control schemes,
while lower-level primitives like those needed to identify
obstacles, connections, and viable motions are abstracted away.
An architecture overview is shown in Figure 7.

A programmer can experiment with path planning in
cluttered environments with their choice of the number of
modules and the amount and complexity of the clutter. The
simulation framework may be easily modified to support other
task settings and distributed algorithms as well, similar to how
we used it in Ceron et al. (2019b). Upon initialization, the
programmer may specify the number of modules, the target
location, and either pre-determined or randomly generated
obstacles with a user-specified size. The software can generate
either a rectangular or a random configuration of interconnected
modules; it can also run a random initial configuration, where
each of the aforementioned variables is randomly generated.

4.1. Module Primitives
Next, we introduce several low-level behaviors to support
operation of the DONUts.

4.1.1. Motion Restrictions

To determine whether module i can physically move, we make
three successive checks related to the following properties:

1. i is connected to at least one other module, such that at least
one cij exists, where cij is the set of connection positions on i
between i and j. j refers to the set ofmodules that are connected
to module i and cij ∈ [1, ..., 12].

2. Connections to other modules are contained within 180◦, i.e.,
the module has five consecutive free connections.

3. Movement will not disrupt global connectivity of the modules.
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FIGURE 6 | 3D printed, manual winding device for rapid production of SEPs. The SEP is mounted into the black piece with a screw; the spring keeps the wire from a

spool taught during winding, similar to the mechanism on a sowing machine. A full turn of the red wheel adds roughly 100 turns to the SEP.

FIGURE 7 | (A) DONUt simulation framework. The user specifies the high-level planner, which makes use of low-level primitives. When actions and messages are

computed, the framework automatically reevaluates relevant variables, feeds these back to the controller, and logs the state of the world for later debugging. (B)

Checking if a module (in gray) can move. Left: i satisfies props. 1 and 2, but violates 3. Right: i satisfies props. 1 and 3, but violates 2, as described in section 4.1.1.

The first property relates to the fact that modules cannot
move on their own; the second to the fact that they need
physical clearance to move; the third check ensures a cohesive
collective (Figure 7B). The latter is done by checking for
loops in the connectivity graph; i.e., we pass a message to
all neighboring modules to see if it can loop back to the
origin without passing the same edge twice. After verifying
these properties, we compute the possible movements [clockwise
(CW)/counterclockwise (CCW)/both] taking into account the
presence of other modules and obstacles in the environment.

4.1.2. Motion

To physically move a module, it must pass a message to
the neighbor which it is rotating about to prepare the next
connection (i.e., switch on the correct magnet with the correct
polarity). The attraction of the two successive magnets, alongside
the repulsion from the previous connection point will propel
the module forward. The geometric movement of each module
is a function of the center of the module about which they are
moving (Figure 3B). We can compute the center position (x, y)
of a moving module by Equation (2):

[

xi
yi

]

=

[

xj
yj

]

+ 2R









cos(θj +
2π

12
(cji + u))

sin(θj +
2π

12
(cji + u))









(2)

The terms i and j refer to two adjacent modules; module imoves
about the perimeter of stationary module j. R is the module
radius, θj is the orientation of jwith respect to the world reference
frame, and cji is the magnet position of the connection between j
and i on j, where cji ∈ [1, ..., 12]. The term u is the control input
for i which determines whether i will move CW or CCW about
j’s reference frame, u ∈ [−1, 0, 1]. When u = −1, i moves CCW
about j; when u = 1, i moves CW about j; and when u = 0, i
remains static at its current location.

To keep track of modules and their orientations, we allocate
specific IDs to every magnet on the perimeter, and map these
to relative IDs as they rotate. An array stores the position of the
magnet IDwith respect to the inertial frame of reference. Initially,
all modules have magnets mapped one to one, such that magnet
1 is at position 1 (c1 = 1), magnet 2 is at position 2 (c2 = 2), etc.
When amodulemovesCCW about another, themovingmodule’s
magnet positions are updated by −1, such that ck = ck − 1,
k ∈ {1, ..., 12}. Similarly, CW movement results in updates by+1.
A check ensures proper rollover when surpassing 1 and 12. The
software updates all magnet positions, ck, through the module’s
control input, u:

ck(t + 1) = (ck(t)+ u) (3)

After the movement has occurred, the module may find
itself near new neighbors. To determine the presence of
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such neighboring modules, a module will briefly activate all
connection points, transmit its ID, and await an acknowledge
message. In general this sequence needs to be performed only by
a module after movement. However, it is possible that occasional
checks by all modules to verify their connectivity will improve
system robustness.

5. MODULE COORDINATION

Translating algorithms developed in simulation to real hardware
often requires considerable effort. However, such simplified
simulations may still be used to quickly iterate the overall
coordination methodology as well as to illuminate non-intuitive
pitfalls related to the hardware design. In this section, we
discuss important findings related to robust coordination of
many DONUt modules for gradient tracking, introduced by
the hardware-specific constraints. Gradient tracking is a robust
and potentially scalable basic behavior necessary for navigation
in coordinate-free environments. This behavior may support
applications such as identifying the source of chemical spills or
simply navigating toward a source of light to harvest power. We
introduce controllers for gradient tracking in clutter-free and
cluttered environments, using the available sensors described in
section 3 and building on the simulation framework and the low
level primitives introduced in section 4.

Specifically, we introduce two types of controllers toward
robust collective behavior: an A∗ search-based controller and
a more naive, iterative controller. We discuss implementation
details, and compare these in terms of complexity and optimality
with respect to the number of module moves which directly
impacts energy efficiency and maintenance. To produce a
benchmark for “optimal behavior,” we also introduce an Oracle
planner with complete knowledge of the world. Beyond control
methodologies, we discover and discuss a type of connection

topology that generally impedes progress along the gradient, and
discuss how to avoid this with the naive controller.

Intuitively, sophisticated controllers should not be necessary
for gradient tracking as every agent in the collective can simply
navigate according to the local gradient. Here, however, we target
controllers that advance the entire collective efficiently toward
the gradient source. Note that, because (1) we enforce a globally
connected collective, (2) modules cannot move on their own,
and (3) only perimeter modules are capable of moving, this is
not a simple problem. Were we, for example, to perform a naive
graph-search across all possible moves of a state in which ten
modules are configured in two adjoining rows, this state would
have twenty children for a single module move. In other words,
the search space quickly becomes intractably large.

To evaluate our controllers, we use different subsets of the
following three scenarios:

• Test Scenario 1 (TS1): 10 modules starting in a
cluster 10 module diameters (20R) from the goal in a
clutter-free environment.

• Test Scenario 2 (TS2): 10 modules starting from 10 random
configurations 20R from the goal in a clutter-free environment
(Figure 8A).

• Test Scenario 3 (TS3): 10modules starting in a cluster 20R from
the goal in an environment with five randomly generated and
randomly placed obstacles (Figure 8B).

Note that, unless otherwise noted, we abort runs which exceed
∼7,000 states; furthermore, we limit the scope to sequential
module movement.

5.1. Oracle Path Planning
To provide a baseline against which our centralized controllers
can be compared, we implement anOracle planner that computes
an optimal path in terms ofmodulemoves to a global light source,

FIGURE 8 | Five examples of the test scenarios for controller evaluation. (A) Randomly generated initial configurations (TS2). (B) Five randomly generated obstacles

with randomly generated positions in the path to the goal (TS3).
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FIGURE 9 | (A) Performance of Oracle planner in TS1 with heuristics h0 = NDMIN and h1 = NDCOM. (B) Histogram showing the number of states in the graph-search

frontier at convergence using h1, with 55 random initial conditions. (C) Examples of the runs shown in (B). (D) Example condition that leads to slow search behavior.

given complete knowledge of its environment. This planner
is based on A∗ graph-search, where the nodes in the graph
correspond to the state of the robot (i.e., the location of all
DONUt modules) and the edges correspond to module moves.
The cost of a node, coststate, is calculated as the number of moves
it takes to get to that state. To search the state space efficiently, we
compute an admissible search heuristic, h, expressed in module
moves, and prioritize nodes with lower total cost: costtotal =

coststate + h. The combination of graph-search and an admissible
heuristic allows us to prune the large search space and return
globally optimal results (Russell and Norvig, 2016). To ensure
that the modules cluster around the light source, we complete
the search when the distance from the collective center of mass
(COM) to the goal is within two module radii, 2R.

We examined two heuristics in terms of search space
efficiency. The first heuristic, h0, is based on the intuition that it
is beneficial for the collective to quickly align their orientation
with the highest gradient. To do this we make h0 a function
of the euclidean distance between the module with the highest
measured light intensity (corresponding to the lowest distance
to the goal, Dmin). We compute the number of moves it would
take one module to travel this distance and multiply by the total
number of modules in the collective, N, i.e., h0 = NDmin. The
second heuristic, h1, is more generally based on the intuition
that all modules need to move toward the goal. We make h1
dependent on the euclidean distance between the collective’s
COM and the goal (h1 = NDCOM). Because modules actually
have to travel around the perimeter of other modules to reach
the goal, the straight line distance is an underestimate of the true
distance and results in an admissible heuristic.

We found that h1 far out-competes h0 in terms of search space
efficiency. An example of what happens is shown in Figure 9A;
the number of expanded states in the tree grows exponentially
with h0, and closer to linear with h1. The intuition behind h0’s
performance is that once a module has been moved as close as
possible to the goal within a configuration, all other moves have
an equal cost. That is, when a new module moves closer to the
goal, but not enough to surpass the current closest module, Dmin

is the same as the scenario when that module moves away from
the goal. In contrast, h1 ensures that until the collective reaches
the goal, we favor states that directly impact the progress of the
entire collective. Once the COM gets within 2R of the goal, the

frontier grows rapidly simply because the heuristic no longer
supports closer clustering.

To reason about how well the h1-heuristic worked, we
calculated the effective branching factor, b∗ in TS1. Briefly
explained the effective branching factor denotes how many
branches every node would have on average if the solution was
recast as a breadth first search (n = b0 + b1 + b2 + ....ba, where n
is the number of states, b is the number of branches, and a is the
depth of the search tree). A b∗ close to 1 indicates that we almost
always guess the optimal move and therefore keep the search tree
from branching excessively. We found that h1 is a very efficient
guess, with an average b∗ = 1.034 ± 0.0054, confirming that
moving the module that advances the collective COM as much as
possible toward the goal is preferred. Note, that this result does
not necessarily translate to cluttered environments or take into
account the fact that extra connections between modules may
improve their redundancy in case of failures.

Interestingly, we found that the search efficiency was heavily
dependent on the initial configuration of the collective. To
examine this phenomenon more, we ran 55 iterations of TS2 and
plotted the maximum number of states reached in the frontier
before convergence. The results are shown in Figure 9B. Forty-
seven out of 55 trials converged within the allotted number of
expanded states. The fastest searches converged after evaluating
about 500 states, but the majority required 2–4 times as many
evaluated states. Figures 9C,D illustrates why this occurred. We
see that the number of states in the search frontier grows linearly
over most of the path, but exhibits periods of exponential growth.
These periods occur when the search reaches a state where the
collective forms a single chain with the center point of the chain
is closest to the goal. In this state, moving either of the two end-
modules forward is the fastest predicted way to reach the goal,
eventually leading the search to a state in which the collective
forms a U-shaped chain. Once this state is found, the search must
explore all other higher cost states before it again finds a move
that will bring the COM closer than when it was in the U-shape.
We designed the following on-board controllers with this risk in
mind, to support faster convergence.

5.2. A∗ Search-Based Controller
In a realistic scenario, the modules will not have access to the
state of the world and must plan according to what they know;
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i.e., their connection topology, the measured light intensity,
and nearby obstacles. We first implement an A* search-based
controller for the modules similar to the Oracle planner with
two exceptions. First, instead of planning toward the actual goal,
we choose an intermediate goal location which corresponds to
the module with the highest measured light intensity, i.e., the
module closest to the goal. The modules plan their path to the
temporary goal, execute this path, recalculate the new temporary
goal, and re-plan. Second, based on the discussion of the effective
branching factor, we calculate a new admissible heuristic based on
the distance to the intermediate goal from the collective’s COM,
h2 = CNDCOM , where C is a constant scaling factor. Effectively,
this means that the collective moves in stages (each locally
optimal): first communicating and identifying which module is
closest to the goal, then planning how to bring their COM to that
location before reevaluating which module is now closer. They
repeat this process until the collective COM is within 2R from
the light source.

To find the optimal value of C, we did a parametric sweep
from C = 0.1 − 1.0. We did this sweep with a square initial
configuration (TS1), and found that C ≤ 0.5 performed very
poorly, rarely making progress beyond 2R toward the goal in
the allotted number of states. Conversely, C > 0.5 yielded
results that were too similar to draw a conclusion. We therefore
ran an additional sweep from 0.6 to 1, using 10 configurations
in TS2. The results are shown in Figure 10A. We found that
coefficients at the extremes (0.6 and 1) rarely converged in the
allotted number of expanded states. The best results were with
C = 0.7, which converged in all cases and reached a collective
COM within 4R and 2R from the goal more quickly than when
using other values for C. Note that with C = 0.7, the heuristic is
still admissible.

Based on these simulations, we further make the observation
that the collective may enter live lock, i.e., an infinitely repeated
movement pattern, before reaching the goal depending on the
collective’s angle to the gradient. An example of what causes this
is shown in Figure 10C; modules 10 and 5 oscillate back and
forth leaving the collective within the temporary goal, but not the
global goal. Because the collective has no memory from previous
planning iterations these movement patterns will execute forever.
To overcome this, we added a check to assess howmuch progress
the collective has made within one planning iteration. If the
collective converge on the temporary goal after moving just one
module, no multi-iteration progress occurs. In this case, we move
a random module (excluding the last moved module) 1 step. By
adding a degree of randomness, we avoid local minima like these,
and ensure that the collective will eventually converge at the goal.

In Figure 10B, we next compare the performance of the
A∗ search-based controller to the Oracle in TS2. As would be
expected, the A∗ search-based controller is less than optimal.
The performance especially degrades as the collective approaches
the goal, because at this point the number of moves it takes
to reconfigure the collective’s COM to the temporary goal
dominates the difference of which module is closer to the goal.

We further make the observation that the controller often
generates chain-like configurations, where every module on
average has only two neighbors. These are problematic because a

single module failure can split the chain in two disrupting global
performance. The heuristic-based control approach permits a
simple way to deal with this issue: we simply add a penalty for
a loosely connected graph. Note that this effectively makes the
heuristic inadmissible and results in (locally) sub-optimal, but
(globally) more robust plans. We used a coefficient α to change
the severity of the calculated penalty, P, where x is the number of
connections a module possesses:

p =

{

xi > 2, 0
xi = 2, 1
xi = 1, 2

(4)

P =

N
∑

i=1

p(xi)α (5)

In other words, we add a penalty of 2α for modules that are
configured in a chain and only have two neighbors, and a penalty
of α for modules that are at the end of a chain. The new cost
per node comes to: costtotal = coststate + h2 + P. We ran this
simulation in TS2 using α = [0 2 4 6], and compared both
the total number of moves needed for the collective’s COM to
reach the goal within 4R and the average number of connections
in each step along the way (Figures 11A,B). Again, we see that
the initial configuration has a big impact on performance, and
that, as expected, with increasing penalty, the modules stay more
clustered. The choice of α relates both to the desired redundancy
and the number of modules in the collective. For example, with
ten modules configured in a double-row the average number
of connections per module corresponds to 3.4. We see that the
graph levels out at α = 2, i.e., at 2.8 connections per module
which is reasonable given that somemodules have to deviate from
the double row for the collective to move. This experiment is a
repeated measures, correlated samples test, thus we perform a
one-way ANOVA for correlated samples and find that α has a
statistically significant effect on the average number of module
connections [F(3,57) = 663, p < 0.0001]. Conversely, α does not
have a statistically significant effect on the number of module
moves [F(3,57) = 1.32, p = 0.28]. The average number of moves
between the αs vary by ∼30. To explain this, we examine the
simulations at α = 0 and α = [2 4 6]. We find that while
with a value of C = 0.7 and α = 0 is an admissible heuristic for
local optimization, it results in chain-like configurations, which
are more susceptible to temporary live lock. These instances of
temporary live lock require modules to move sub-optimally to
break out of temporary live lock and resume regular planning.
This causes an increase in the number of modules moves to
reach the goal. In the cases of α = [2 4], we observe that
clustered configurations lead to sub-optimal local planning, but
more robust global planning, thus fewer temporary live lock
instances occur, and the average number of module moves is less
than with α = 0. An example of the path taken given α = 6
is shown in Figure 11C. This brief study indicates that adding
a clustering penalty is a viable and simple way to ensure higher
collective redundancy.

Finally, we tested the A* search-based controller in cluttered
environments (TS3). The results shown in Figure 10D indicate
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FIGURE 10 | (A) Parametric sweep of C in TS2. (B) Comparison of 10 paths generated by the Oracle (black) and 50 paths generated by the A* search-based

controller (green) in TS2. The solid lines denote mean, shaded regions the standard deviation, and dotted lines are five actual runs chosen at random. (C) Example of

live lock near the goal in the A* search-based controller. (D) Paths generated by the A* search-based controller in TS3.

FIGURE 11 | Enforcing a penalty for sparsely connected modules improves the redundancy of the system and is independent of the time to reach the goal. (A,B)

Number of module moves and connections as a function of clustering penalty α. Each box plot shows the median, standard deviation, outliers, and the 25th and 75th

percentiles based on 20 runs in TS2. (C) Example path generated with an α = 6.

live lock near obstacles. By studying the actual runs closely,
we find that this happens because the number of modules
which can move randomly is severely limited by either
their connection topology (chain-like configuration) or their
proximity to obstacles. We may deal with this by adding either
a higher degree of randomness or memory between planner
iterations. The former comes at the cost of planner efficiency
and without guarantees that live lock can be avoided in all
situations. The latter is complicated because the collective may
enter configurations that appear similar to previous ones, but at
geographically different locations. Modules may compute their
trajectory to overcome this problem, however, this would require
perfect dead reckoning skills which is not practically feasible with
the hardware.

We can further discuss the ability of this planner to operate
on the actual hardware processor, i.e., the 2 KB of RAM in
the ATmega328P (Ceron et al., 2019a). The state space of the
planner grows somewhere between linear and exponential with
the number of modules, depending on (1) the optimality of
the heuristic and (2) the configuration of the collective, i.e., the
number of modules that are capable of movement. Every node
in the search tree contains the collective’s connection topology
and a reference to the parent and child nodes. For 10 modules

in a perfect cluster this would correspond to 19 connections
and 1 parent node, i.e., a memory footprint of 20B. In this
state, 8 modules are capable of moving CW, CCW, or staying,
therefore the node has 24 children; i.e., just two levels in, the
search would take up 500 B of memory. Alternatively, we could
trade off memory for computation by storing only the move
and recomputing the configuration for every explored node. In
this case we spend 20 B on the first node, and 1 B per node
moving forward. With a good heuristic, the memory would
then grow close to linear as in a depth-first search. To improve
memory, we could further explore how this search could be
distributed to over the two on-board processors (Colbrook and
Smythe, 1990). Given the current hardware constraints, however,
we are unlikely to be able to support planning for more than
a few tens of modules. In the next section, we instead focus
on more naive, iterative planners that require less memory and
computation altogether and are inspired by what we learned from
the graph-based controllers.

5.3. Naive, Iterative Controllers
To produce an algorithm that scales well in memory and
computation with near-optimal control, we next examine a naive,
iterative controller for gradient tracking. In this controller, we
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simply prioritize moves of modules that are farthest from the
light source, hence we name this type farthest-first or “faf-
controllers.” As before, we identify the module with the highest
light intensity, i.e., the one closest to the light source, and
treat it as an intermediate goal. We then identify a movable
module with the lowest brightness, and move it toward the
intermediate goal along the shortest path around the collective
perimeter. This process repeats until all modules are clustered
around the goal location. We explore two versions of this
controller. In the first, we move the darkest module one step
before searching for a new darker module (“faf0”). Intuitively,
this approach works well for highly dynamic environments where
information quickly becomes stale. In more static environments,
or when communication between modules or between modules
and the centralized controller is costly, the update rate can be
lowered by only re-planning when the moving module reaches
its intermediate goal (“faf1”).

The following list details how this controller works, using the
example shown in Figure 12.

1. Initialize: We first identify the intermediate goal, i.e., the
brightest module,m7; and the darkest module which is capable
of moving, m0. We also identify which connection on m7 is
closest to the light source, cG.

2. Generate viable paths and identify external obstacles: We next
decide which direction (CW or CCW) around the collective
will yield the most efficient path. We construct two candidate
sequences, SCW and SCCW , along the perimeter modules
from cG to the closest connection on m0, c0. To construct
SCCW , we first append cG (SCCW = [m7(cG)]) and then
continue appending connections on m7 in a CCW direction
until the neighboring module, m6, is reached (SCCW =

[m7(c1 : cG)]). We continue this process until we reach the m0

(SCCW = [m1(c1 : c7)]...m6(c1 : c4)m7(c1 : cG)]). These steps
unambiguously define the sequence of connection points that
m0 must go through to reach the goal. In other words, by using
connection points rather than module center points, we avoid
confusing any connection on the closest module (e.g., mA in
Figure 12A) with the goal location. Every time we encounter
a new module, we check for obstacles seen by that module to
indicate whether or not the sequence is tenable.

3. Optimize viable paths and identify geometrically incompatible
modules: The second step overestimates the number of moves
needed to reach the goal, because it does not take into
account locations likemB illustrated in Figure 12B, where the
module can connect directly between two non-neighboring
modules, m4 and m5. To prevent this overestimate, we loop
through each tenable sequence, projecting m0 along the
sequence generated above, checking for physical proximity
of connectors that would reveal new potential neighbors.
By iterating forward through the sequence and for each
projection checking backwards from the goal we ensure that
m0 always identifies the connection that is closest to the goal.
If one exists, we delete all of the intermediate entries and
produce new sequences, CW′ and CCW′. If at any point
the m0 projection overlaps with another module we label
the sequence untenable. Note again, that overlap is possible

because we are not operating in a discrete occupancy grid.
On the real hardware, overlap could also occur because of
module deformation.

4. Move module along shorter path: Finally, we simply compare
the length of the sequences and move the module in the
direction of the shortest path.

Figure 13A shows the performance of faf0 and faf1 in TS2.
Because the test is performed in a static, clutter-free environment
faf1 outperforms faf0, here by a factor of ∼4. The oscillations
in faf0 occur when the collective, similar to what we saw with
the Oracle planner, finds itself in a U-shaped chain where it
greedily moves the darkest module up the gradient at each cycle,
effectively making the collective gather at one extreme of the
connection topology, then the other, until it finally reaches the
global goal. We see that faf1 performs almost as well as the
Oracle planner, but that the performance is still dependent on the
initial configuration.

For operation in cluttered environments, we explored three
variations of faf1, also illustrated in Figure 12C. In faf1i, if
the shortest path which the darkest module must take to the
intermediate goal is intercepted by an obstacle, we instead move
the module in the opposite direction; if obstacles are detected
in both directions, we move another module. In faf1ii, when an
obstacle is encountered we simply move the darkest module as
close to the obstacle as possible. In faf1, when an obstacle is
encountered, we choose according to faf1i and faf1ii with 50%
likelihood, and, with 20% likelihood move a random movable
module one step in a CW direction. Figure 13B compares the
performance of these three variations in TS3. Generally, faf1ii
outperforms the others, however, it may enter livelock. Similar
to our previous observations, we find that this happens in U-
shaped chain configurations where the two ends point toward the
goal and are near obstacles that hinder further movement. At this
point each end module simply moves back and forth along the
collective, without making actual progress. faf1i does not show
issues with live lock, but take nearly twice as long to reach the
goal. faf1 overcomes issues with live lock due to stochasticity, at
the cost of ∼1.5 times more module moves. An example path
generated by faf1 is shown in Figure 13C.

Deriving the exact scaling behavior for this planner is
complicated due to the motion restrictions discussed in
section 4.1.1. In the algorithm, most operations scale constant
or linear with the number of modules; however, optimizing the
path along the collective, i.e., step number 3 in the description
above, approximates polynomial time. Intuitively explained, in
the worst-case scenario where the collective is spaced out in
a single file line and not in the presence of obstacles, the
darkest module has to be projected along every other module to
check for short-cuts. This step is an interesting point for future
work. Another obvious direction for improving the scalability
of this algorithm is to outsource computations. In Ceron et al.
(2019b) we, for example, detail how the connection topology can
be computed in a distributed manner. To extend the current
planners to a completely distributed system, one can imagine
combining these algorithms with a consensus-based scheme to
identify the modules with highest and lowest brightness.
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FIGURE 12 | (A,B) Example configuration in which module m0 plans a path, either CW (blue) or CCW (green), to the location with the highest brightness, cG. (C)

Illustration of the two versions of the faf1 controller. In faf1i m3 chooses the only viable path toward the goal; in faf1ii it follows the shortest path to the goal and stops

when it sees an obstacle.

FIGURE 13 | (A) Ten paths generated by the Oracle planner, and 50 paths generated each by the faf0 (blue) and faf1 (yellow) controllers in TS2. (B) Fifty paths

generated by the faf1i (red), faf1ii (magenta), and faf1 (yellow) controllers in TS3. The solid lines denote mean, shaded regions the standard deviation, and dotted lines

are five actual runs. (C) Snapshots of a path generated by the faf1 planner. (D) Histogram showing the number of moves per module. To compute this plot, we

counted all moves per module from 50 runs in TS2 with the A* search-based and the faf1 controller. Note that we discounted runs that reached live lock near the goal.

5.4. Discussion
In summary, in the context of gradient tracking in clutter-
free environments, our 10-module simulations indicate that
both controllers may perform nearly optimal despite the lack
of global knowledge. The locally-optimal A* search-based
controller performed well in terms of the number of modules
moves for clutter-free environments, but additional measures
must be taken to overcome potential live lock near obstacles.
We also find that even with a good search heuristic, the
algorithm scales poorly in terms of memory and will not
support more than a few tens of modules if implemented on
the two on-board ATmega328 processors. The naive, farthest-
first controller performed equally well and had the ability
to deal with live lock near obstacles via a small degree of

randomness. This controller is simple and may support more
scalable behavior.

Through simulations, we further found that both types of
controllers generally create chain-like, rather than clustered,
configurations. Chain-like configurations are bad for the
DONUts, because (1) they severely limit the amount of modules
that are capable of moving, (2) simulations show that chains often
end up creating U-shaped configurations that impede general
progress toward the goal, and (3) they leave the collective at risk
of complete failure if just a single module breaks. We showed
that encouraging redundant connection topologies in the A*
search-based controller was fairly simple; encouraging these in
the farthest-first controllers will be an important area of study in
future work.
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Finally, system energy consumption warrants explicit
discussion because it is a major contributor to system autonomy
and robustness, affecting the strategy of exploration vs.
exploitation as the modules traverse an environment. The
DONUt hardware, for example, was designed around SEPs
which keep their polarization without continued supply of
power, the number of power consuming components was
minimized, and the modules were designed as light weight as
possible (25.4 g). In Figure 13D, we compare the A* search-
based and the faf1 controller in terms of how well they distribute
energy consumption among the modules. As we have yet to
consider energy spent on communication in our centralized
controller, the energy we can estimate is directly correlated with
the number of moves a module has to make. The plot shows
that the faf1 controller inherently distributes power usage more
evenly, whereas a few modules in the A* search-based controller
moves many times further than the others. Evening out power
consumption will also be an interesting future extension to
our work.

6. CONCLUSION

In summary, we have introduced a new planar, modular, self-
reconfigurable robot. Although more work is needed before
practical large-scale demonstrations are feasible, this initial
hardware-software design cycle has contributed several concepts
that may translate to other platforms. Most importantly, by
basing our design on a single flexible PCB without mechanically
moving parts, we were able to achieve simple, fast manufacturing,
and support low maintenance in terms of breakage and wear.
By creating an open source simulation platform with realistic
movement and sensing, we explored two control schemes and
non-intuitive challenges that arose because of the module-
specific motion constraints. We explicitly focused on enabling
a large configuration space to enable operation in dynamic
environments, and explored a range of challenges related to
collective efficiency, scalability, redundancy, and adaptability.
More generally, we showed that enabling scalability and system-
level robustness, rely on tightly integrated design decisions that
span fabrication, operation, and control with an explicit focus on
constituent robustness.

We have several agendas moving ahead. On the hardware
side, we will focus on decreasing cost, increasing battery life,
and improving motion reliability before pursuing a large-

scale collective. So far, we have depended only on the passive
compliance for added robustness, however, long term, we hope to
investigate novel collective behaviors enabled by the compliance,
including their ability to generate macroscopic materials with
different density and tensile strength. Similarly, their spring-like
properties promises interesting dynamic behaviors which may
be leveraged for both communication and motion. Finally, the
fact that every single module weighs only 25.4 g also indicates a
new set of potential applications beyond those seen with previous
platforms. On the control side, we are exploring several avenues.
The most near-term is to combine centralized and decentralized
algorithms for better scaling properties. Longer term, we hope
to better investigate the trade-off between control redundancy
and efficiency. A video description of this project can be found
in Supplementary Material.
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Many real-world applications have been suggested in the swarm robotics literature.

However, there is a general lack of understanding of what needs to be done for robot

swarms to be useful and trusted by users in reality. This paper aims to investigate

user perception of robot swarms in the workplace, and inform design principles for

the deployment of future swarms in real-world applications. Three qualitative studies

with a total of 37 participants were done across three sectors: fire and rescue, storage

organization, and bridge inspection. Each study examined the users’ perceptions using

focus groups and interviews. In this paper, we describe our findings regarding: the current

processes and tools used in these professions and their main challenges; attitudes

toward robot swarms assisting them; and the requirements that would encourage them

to use robot swarms. We found that there was a generally positive reaction to robot

swarms for information gathering and automation of simple processes. Furthermore, a

human in the loop is preferred when it comes to decision making. Recommendations

to increase trust and acceptance are related to transparency, accountability, safety,

reliability, ease of maintenance, and ease of use. Finally, we found that mutual shaping,

a methodology to create a bidirectional relationship between users and technology

developers to incorporate societal choices in all stages of research and development, is

a valid approach to increase knowledge and acceptance of swarm robotics. This paper

contributes to the creation of such a culture of mutual shaping between researchers and

users, toward increasing the chances of a successful deployment of robot swarms in the

physical realm.

Keywords: users, mutual shaping, swarm robotics, firefighting, rescuing, storage organization, bridge inspection,

responsible research and innovation

1. INTRODUCTION

Swarm robotics uses a large number of robots that follow simple rules and use only local
interactions to achieve seemingly complex group behaviors (Şahin, 2004; Brambilla et al., 2013).
It has been demonstrated as a useful technology under laboratory conditions (Bayindir, 2016).
Swarms have a wide array of application areas such as search and rescue (Penders et al., 2011),
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construction (Werfel et al., 2014), and space exploration (Vassev
et al., 2012). Despite a lengthy list of real-world applications,
there is a lack of research into the practicalities of swarm robot
deployment (Bayindir, 2016). One important factor that has not
yet been properly investigated is public perception and likelihood
of acceptance of robotic swarm products by users. The media
and entertainment industry have depicted swarm robotics as
something to be feared, according to Hamann (2018). This is
troubling for the field since 21% of the respondents to a report
by Ipsos MORI and the Royal Society (2017) said that their
perception of AI was heavily influenced by mainstream media
and entertainment (including science fiction). Additionally, a
survey by the European Commission in 2017 (Eurobarometer,
2017) found 37% of respondents felt uncomfortable with robots
assisting them at work. In relation to swarm robotics, it is not
known what workers expect from robot swarms, and whether
they would be comfortable working alongside them.

This work aims to address this gap by engaging with potential
users of future swarm robotics systems. We create a two-way
relationship between researchers and users which will encourage
and informmutual shaping of the technology. In particular, users
acquire knowledge about the technology from researchers, and
researchers learn about potential exploitation of the technology
from users, hence critically revising the technology. In this paper,
we present qualitative results from user participatory design
style discussions with a total of 37 participants across three
different sectors: fire and rescue, storage organization, and bridge
inspection. Our goal during the three studies was to identify
the challenges users face in their profession, learn from their
reactions to possible assistive swarm systems, and discover any
barriers to the system’s acceptance, as well as to introduce them
to the field of swarm robotics. By incorporating users in the early
stages of research and development of swarm robotics systems,
we aim to increase their adoption of the technology. This is
essential to successfully implement such systems in real-world
applications that have economic and societal benefits (Winfield
and Jirotka, 2018).

2. RELATED WORK

There has been an abundance of research in human-robot
interaction research in industrial settings (Berg et al., 2019)
and in search and rescue (Murphy, 2004). There has also been
important work into understanding what users need from search
and rescue technologies such as Adams (2005), Driewer et al.
(2005), Yanco et al. (2006), or Harbers et al. (2017). User studies
help shape the technology itself and inform the requirements
that the design processes should follow to produce a successful
robotic product for an application. Successful here would mean
working well alongside the human workers. For this, roboticists
should investigate the attitudes of these workers toward robotics.
Authors of studies such as Katz and Halpern (2014) have
conducted interviews with people (in this case, students) about
their opinions on the suitability of robots for various occupations.
For example, it was found that the appearance of the robot
played a part in the human worker’s attitudes toward it and their

perceptions of its likely performance. Similarly, investigations
have been conducted into the perceptions of robot capability and
how desirable they are to workers (Takayama et al., 2008).

There is a lack of similar research into swarm robotics. There
has been some research into human-swarm interaction (Couture-
Beil et al., 2010; Nagi et al., 2012, 2014; Pourmehr et al.,
2013; Kolling et al., 2016; Nam et al., 2019; St-Onge et al.,
2019). However, the attitudes, perceptions and desires of workers
for swarms has not yet been researched (to our knowledge).
Existing research into how humans feel about swarms has focused
on the psychophysiological response rather than opinions or
expectations. For example, Podevijn et al. (2016) studied the
effect increasing the size of robot groups had on the stress and
anxiety of participants and found that a higher number of robots
provoked a heightened response.

While a wealth of literature exists mentioning the sectors in
this project, few describe a swarm system that operates in reality.
For example, a range of robots have been developed for fire
and rescue (see Murphy, 2014; Delmerico et al., 2019). Of these,
the most complete swarm system is the GUARDIANS project
(Penders et al., 2011). The GUARDIANS project developed
a swarm of autonomous robots to assist firefighters with
navigational support in low vision scenarios. In the context of
the second study, storage organization, robots have been used
in warehouses successfully for a number of years (Bahrin et al.,
2016). Swarm algorithms for typical tasks in a storage facilities
have also been developed such as cooperation when lifting
objects (Wilson et al., 2014). The final study, bridge inspection,
robotic solutions have generally used single UAVs (Murphy
et al., 2011; Khaloo et al., 2018) and computer vision to process
captured images (Yeum and Dyke, 2015). Swarm based mapping
algorithms such as Kegeleirs et al. (2019) have been proposed
which could be used for this application.

This work extends the current state of the art by examining
the attitudes of users to real-world deployments of robot swarms.
Based on this, we propose design principles that can facilitate the
development of swarms for real-world applications, by increasing
user acceptance of swarm robotics technology.

3. METHODOLOGY

User studies were designed following the principles of mutual
shaping, a framework which aims to create a bidirectional
relationship between users and technology developers to
incorporate societal choices in all stages of research and
development. This approach facilitates the creation of “more
socially robust, responsive, and responsible robots” (Šabanović,
2010). In particular, the mutual shaping structure successfully
applied by Winkle et al. (2019) was used to structure our three
studies. Winkle et al. propose to split up mutual shaping sessions
in three main parts:

1. Pre-demonstration Discussion to understand participants’
initial ideas on the topic before being given information,

2. Project Presentation and Robot Demonstrations to
introduce participants to the topic of the session by
giving an overview of the state of the art, aims of the
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project, an explanation of the topic, and (perhaps) a robot
demonstration, and

3. Post-demonstration Discussion for participants to give their
opinions to researchers about the topic as well as their
requirements to advance in the development of the particular
technology in discussion.

We adapted this methodology to the topic of swarm
robotics. A summary of the resulting common structure
that we followed across the three studies is given below.
For a complete description for each structure, please see
the Supplementary Materials.

1. Art of their profession: Participants are asked about
their area of work, typical tasks/procedures in their jobs,
tools/equipment they normally use, challenges they face, and
their attitudes toward robots in their workplace. This first part
allowed researchers to understand the art of the participants’
profession, as well as their initial attitudes toward the use of
robots at work.

2. Introduction to swarm robotics and possible scenarios of

application: An explanation of swarm robotics is given for
participants to learn about this technology and the current
state of the art of robot swarms in their fields. Then, a
series of imaginary-but-possible scenarios related to their
fields, where robot swarms could be applied, are described by
the researchers.

• Fire and rescue study: In this study, four different scenarios
are presented to participants (see Figure 1). These scenarios
show swarms collecting information in a building on fire,
creating communication links or finding exit routes in
the building, extinguishing the fire in the building, and
extinguishing a wild fire in a forest.

• Storage organization study: An out-of-the-box swarming
system is described to participants (see Figure 2). This
system can sort stock efficiently, provide information about
the stock to the user, and retrieve items.

• Bridge inspection study: In this study, two scenarios
are given to participants (see Figure 3). These scenarios
describe swarms being released in a bridge and creating a
3D model of it by taking individual pictures, and swarms
exploring the bridge to detect damage.

3. Discussion of scenarios: Finally, a group discussion of the
previous scenarios, and others suggested by participants, is
held between participants and researchers. In the discussions,
the topics of acceptance, levels of autonomy, trust, swarm
robotics vs. single robot approach, opportunities for swarm
robotics in their fields and their concerns are brought up by
the researchers. This part was used to identify the way forward
to successfully apply robot swarms to their fields in the future.

For the study with fire and rescue services, focus-group-style
sessions were chosen to have teams with different roles discussing

FIGURE 1 | Possible application scenarios shown in the study with fire and rescue services. (A) The swarm collects information in a building on fire. (B) The swarm

shows exit routes to persons in the building or creates communication links inside a building on fire. (C) The swarm extinguishes a fire in a building. (D) The swarm

extinguishes a wildfire in a forest. Indoor map image modified from Valzania and WRLD3D (2019). Forest image belongs to public domain (CC0).
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FIGURE 2 | The swarm system described to the interviewee. The storage organization system is described as automatically sorting stock input, and producing items

upon user request. How the swarm operates within the box is not described.

FIGURE 3 | The two scenarios discussed in the bridge inspection sessions, robots are shown in orange while the bridge structure is shown in gray (A)—A swarm of

robots which captures many images of enclosed spaces to produce 3D models (B)—A swarm which traverses the exterior of the structure performing damage

detection. In this illustration individual robots indicate detected damage by changing visual indicators from green to red.

the topics and contrasting opinions during the same session,
as opposed to interviewing firefighters individually. A total of
23 participants from three different fire and rescue services
were recruited, with experience ranging from 1 to 20 years of
service, as they verbally stated. Participant recruitment was done
via email, word of mouth and on-site visits to fire and rescue
services in the UK and Spain by the researcher in charge of this
study. Participants were given an information sheet with a full
description of the study and the focus group. They were also
asked to sign a consent form to participate in the study and accept
audio recording of the session, complying with university ethics
regulations for experiments with human participants. Ethical
approval was given by the University of the West of England.
Three focus groups were held, one per service. The first focus
group consisted of six participants from a UK fire and rescue
service. There were participants working in the risk intelligence
unit, IT, group management, media communication, operational
effectiveness in instant ground, technology management, and
drone piloting. This focus group was held at the Bristol Robotics
Laboratory. In the second focus group, four firefighters from
a fire station belonging to another UK fire and rescue service
came to participate. This focus group was also held at the
Bristol Robotics Laboratory. Finally, a third focus group was
organized at a Spanish fire station with the participation of 13
firefighters. The diversity in participants allowed for the opinion
of firefighters with real firefighting and rescuing experience

as well as people working in more technical fields related
to development of processes. A pre-questionnaire and post-
questionnaire was handed out at the beginning of the session
(before any discussion could occur), and at the end of the session,
respectively. Both questionnaires had the same questions, which
are listed in Supplementary Materials. These questionnaires
were used tomeasure the impact that themutual shaping sessions
had on participants.

In the storage organization study, an interview-style session
was used rather than focus groups. This method was chosen
because the interviews took place in the workplace to make

arrangements easier for the subjects and to include an inspection

of the storage space. The variation in locations andworking hours

meant that collecting participants together in a focus group was

not possible. Interviewees were foundmostly via email but also by
word of mouth. A total of 25 introduction emails were sent out to
25 possible interviewees who fit the use case briefs. The following
use case categories and sub-categories were contacted:

1. Retail:Charity shops; Shoe shops; Book shops; Jewelery shops.
2. Food: Supermarket; Food banks; Cafés.
3. Industrial warehouses: Supermarket depot; Retail

e-businesses; Aerospace factories.
4. Supplies in remote locations: Space missions; Scientific (e.g.,

Antarctic) treks and laboratories.
5. Other:Museums; Independent shops; Stationary shops.
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A total of eight interviews were conducted from six distinct use
cases: a supermarket; a charity shop; a charitable food bank;
a museum with a café and a gift shop; a large-scale industrial
warehouse; and the space industry (specifically manned missions
to other planets or space stations). Ethical approval was received
from the University of Bristol on the condition of consent from
interviewees, no audio recordings, and anonymous information
gathering. For this reason, it was emphasized in the email
that no recordings would be taken during the interviews, only
handwritten notes, for which the interviewees gave permission
for their answers to be used on consent forms. Attached to the
introduction email was an information sheet that was written
just for this purpose, explaining what swarm robotics is and
what the benefits are of swarming systems. The interviews were
performed on a semi-structured basis with a framework of
key questions but the flexibility to move around topics that
the interviewees wanted to discuss. All of the questions were
asked without visual aids and spoken either in person or over
the phone.

The bridge inspection study was conducted using focus
groups because all participants were in the same industry, and
it allowed the data to be collected more efficiently than with
individual interviews. Ethical approval was given by University
of Bristol. This required that only hand written notes were
used to record participants’ responses and that all participants
remained anonymous. Four companies within the UK bridge
inspection industry were contacted via email directly. Two
different companies responded to the request leading to two
sessions with six participants in total. All participants were
engineers and inspectors involved in the management of bridge
structures or the inspection process itself. The focus groups
were executed in a semi-structured fashion. One researcher lead
the discussion while another made handwritten notes. Once
participants had read an information sheet, and were happy
to participate, a consent form was signed and the session
could begin.

This paper aims to be a first step toward understanding
requirements of robot swarms through a mutual shaping
methodology, built on in-depth, qualitative analysis of interviews
with users to identify common themes across the three studies.
It does not intend to be a quantitative analysis of user
needs, which would require a different methodology based on
broader sampling and recorded demographic data. In this sense,
questionnaires were not used in the storage organization and
bridge inspection studies because they had fewer numbers of
participants, and were shorter in duration, due to the nature of
the professions targeted.

4. RESULTS

4.1. Fire and Rescue Study
Below we combine the results from the three focus groups
held with fire and rescue services to summarize their current
processes, challenges, and attitudes toward using robots in fire
and rescue.

4.1.1. The Art of the Profession
Nowadays, firefighters are in charge of many different tasks, not
only firefighting. Apart from fires, they go to vehicle collisions,
major transport incidents, and hazmat incidents. They also do
urban search and rescue (when a building collapses), mine
rescue, water rescue, animal rescue, and community-based roles
to educate the public. When facing incidents, the first things they
do are related to gathering as much information as possible for
their risk assessment decision-making processes. Before handling
the incident, firefighters perform quick checks to guarantee their
safety first, e.g., they assess that the structure is safe to operate,
or locate access/exit points. After enough information has been
collected, firefighters start actions, i.e., firefighting or rescuing,
until the incident is completely handled. Then, a fire investigation
to discover the cause of the incident might take place. When
participants were asked during the focus groups about the current
tools they use for firefighting and rescuing, they stated that all
tools they use are not automated, but require human operation.
A summary of the tools that they currently use is given below:

• Sensors and actuators fitted to buildings. They said that
smoke detectors, heat detectors, and water sprinklers assist
them before/during firefighting.

• Thermal imaging cameras. They are used to create a map of
temperatures to look for the source of the fire and casualties.
They are particularly useful to predict what is behind areas
with difficult access in buildings. Firefighters highlighted how
this type of camera improves their performance:

“Thermal image cameras are one of the great tools we’ve got.

So we can actually see in darkness and make our way around.”

• Hydraulics. They use hydraulic tools to cut through things.
• Maps in the fire truck. These maps are used to locate possible

risks, water supplies, or weather conditions before arriving to
the incident.

• Radio-frequency identification (RFID). Used for tracking
of firefighters.

• ColcutTM cobra. A system that uses high-pressure water to
pierce throughwalls and fog when they cannot access the room
next door.

• Teleoperated ground robots (QinetiQTM). Sometimes they
use them to gather information in hazmat incidents:

“It’s got several cameras and a small water jet for testing

temperatures rather than actually extinguishing anything. We

used to use them with some level of success. ”

• Drones. Pilots mostly use them to gather information
about incidents to make an assessment of scenarios.
They have also used them to track people who have
gone missing.

• Air fans. Used for tactical ventilation, which means creating
positive pressure in a building to push smoke out.

4.1.2. Their Challenges
Participants highlighted their main challenges are related to
obtaining enough, accurate, and quick information about the
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incident so that they can feed it into their decision-making
processes. In fact, they mentioned they are quite quick in
dealing with fires. The challenge for them is to find the location
of those fires, and casualties to rescue. They said this is a
challenge because many times the information they get is
not accurate:

“In a lot of cases even the information you get [...] is not always

100% accurate. The address could be wrong or the actual type of

fire could be wrong. It will come in as a hedge on fire and you get

there to find a fire in a building. Your site has no persons trapped,

there’s no persons involved in anything at that point, and you get

there and you find that there are. There’s always a variable. You

have minimal information.”

4.1.3. Opinions on Usefulness of Robots for Fire and

Rescue
Participants could see value in using robots for fire and rescue,
as shown in the results of question 1 (“In your opinion, how
useful could robots as a firefighting/rescuing tool be in the
future?”) in Figure 4. In fact, 20 out of 23 participants ticked
very useful or extremely useful in the post-questionnaire. There
was a slight shift from very useful to extremely useful from
the pre-questionnaire to the post-questionnaire, meaning that
participants’ attitudes were already positive before the sessions.
However, they did not think robots should be used for all
tasks. Results from question 2 (“In which firefighting/rescuing
tasks would robots be most useful?”) in Figure 4 show
that information-gathering tasks (locating victims, risk/incident

FIGURE 4 | Bar charts of answers to the pre-questionnaire (orange, top bar) and post-questionnaire (green, bottom bar) from firefighters.
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assessment, mapping the environment, communication links)
were the ones that participants preferred—they were ticked
by over half of the participants. Action-based tasks (clearing
the way, extinguishing fire, rescuing victims) were ticked less
often, by much less than half of the participants. It is worth
highlighting that all tasks but extinguishing firewere ticked by the
same or more participants in the post-questionnaire, compared
to the pre-questionnaire. Hence, participants could see more
value in using robot swarms after the session, but thought that
extinguishing a fire was too complex to be done by robots. Their
preference for information-gathering tasks was also highlighted
during the focus groups. Participants said that they would prefer
robots doing simple tasks, such as going inside a house, mapping
it and coming back to them with information; locating casualties;
or sending them to gather information before they get to the
incident or searching large areas (e.g., ships).

Participants also highlighted the benefit of using robots to
create communication links among firefighters (to coordinate
their operations) and between firefighters and casualties (to
send them reassuring messages). Indeed, one participant
mentioned that their research team was looking specifically at
what technology they could deploy into a building to have
communication across the whole building. Also, they said
that there is poor radio communication in many areas where
they go, and they would benefit from deploying relays to
establish communications in those areas. Apart from the tasks
listed in question 2 of the questionnaire, participants had the
choice to specify other tasks that they thought robots could
do. In the questionnaires, some participants wrote down the
following tasks: Hazardous environment identification, post fire
investigation (imagery), bring emergency kit (water, oxygen,
food, etc.), protection of victims, rescuer, and habitable zones.
During the discussion, even more examples of tasks were raised,
such as:

• Real-time information. They said it would be useful to have
a swarm of robots deployed across the area of the incident to
send constant updates.

• Dangerous or repetitive tasks. They mentioned they would
rather have robots where a human being would be in danger,
e.g., hazmat environments. Also, some firefighters mentioned
they would like to have robots for repetitive tasks, especially to
prevent injuries in firefighters.

• Finding exit routes. Participants highlighted their difficulties
when dealing with heat stress, because they sometimes get
confused/lost inside fires. For that, they thought that having
robots finding/lighting up the exit route for them would be
particularly beneficial:

“A building could be like a maze that we’re not familiar with

[...] You want something that could light up [...] the floor glow

[...] something that could glow in the dark. ”

• Tactical ventilation. Participants gave the example of a swarm
of drones using their propellers to perform tactical ventilation
to push smoke out of the building.

• Accessing inaccessible places for firefighters. Participants
said that robots attacking fire in high buildings, where their
ladders cannot reach, could be a positive application. They
also pictured robots rescuing people from cliffs or water, which
sometimes are inaccessible to them.

4.1.4. Opinions on Acceptance of Robots for Fire and

Rescue
Participants answered positively to question 3 of the
questionnaire (“How likely would you be to accept help
from robots in your job?”). All participants but one ticked
very likely or extremely likely in the post-questionnaire, and
there was no answer below moderately likely, as can be seen in
Figure 4. As in question 1, there was also a slight shift toward
more positive answers with respect to the pre-questionnaire, but
participants were very positive before the session. In fact, during
the focus group, participants pointed out that they do not fear
robots becoming a replacement for firefighters. Instead, they see
them as a tool that could assist them and enhance/complement
their operations:

“None of us are negative. We all would like it to happen. Yeah

it’s just better to have an extra pair of eyes and another person.

You just add it to what you’re doing visually anyway. Bring it

all together, I can certainly see it being really useful for giving us

more information.”

When thinking about acceptance from citizens being rescued by
robots (or with the help of robots), participants felt that citizens
should be educated. They should know what to expect if robots
are used for firefighting and rescuing in the future.

4.1.5. Opinions on Robots Swarms for Fire and

Rescue
After the session, participants could see how using a large swarm
of robots may be the most advantageous option. In question
4 (“In your opinion, how many robots would be most useful
for firefighting/rescuing?”), using many robots came out as the
preferred choice by 10 participants, over a few (ticked by nine
participants) and only one (ticked by only one participant) in the
post-questionnaire. It is worth mentioning that two participants
did not answer this question, and another one ticked both a few
and many, which was not allowed. Thus, it was not included in
the graph of Figure 4. Remarkably, usingmany robots was ticked
by only three participants in the pre-questionnaire. Therefore,
participants did see the advantages of using a swarm of robots
after the sessions.

During the group discussions, participants understood the
base principles of swarm robotics, and highlighted their benefits
for fire and rescue. In particular, they said that redundancy is one
of the key benefits. Most participants preferred to use a robot
swarm even if robots could become obstacles (but left this as a
requirement for the future). Also, most participants commented
that having a large number of robots would be very useful to
quickly search an area and gather as much information in the
least amount of time as possible:
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“The whole idea around swarm is you got some redundancy built

in. [...] And some of the things we talked about is about location of

casualties when it’s dark. So deploying small agile devices that can

search the rooms at the same time so that firefighters go in and

then at least it’s a beeping sound, ‘yes, okay, let’s prioritize that

room.’ [...] I think those sorts of things would be our friends.”

4.1.6. Opinions on Autonomy
Their preferred mode of operation for robots is semi-autonomy
(15 responses in the post-questionnaire), as seen in results for
question 5 (“Helper robots for firefighting/rescuing would be
most useful in what mode of operation?”) in Figure 4. In fact,
this was the participants preferred mode of operation before
they participated in the session, as seen from the results of the
pre-questionnaire. The session made them mostly abandon the
idea of having fully controlled robots. It is worth mentioning
that answers from two participants who ticked fully autonomous
and semi-autonomous, and semi-autonomous and fully controlled
were not taken into account. The directive stated multiple
answers were not allowed, hence these answers were discarded.

From the group discussion, we understood that participants
did not like the idea of robots taking autonomous decisions. They
would trust robots carrying out information-gathering tasks or
simple actions rather than stepping in the firefighters’ decision-
making process. Basically, participants feared that the robot
system could cause more harm than benefits (e.g., knock-on
effects) because there are many variables during fire and rescue,
and lives at risk. They gave the example of robots opening up a
window and changing the dynamics of the fire due to a change in
air flow and the addition of oxygen to it.

In their opinion, robots could support their decision-making
processes, but should not be in charge of them. From their
comments, they would rather have a human in the loop being
responsible for the actions taken when handling the incident:

“If it is autonomous just for firefighting, then I don’t think that

this is a corporate risk we would accept in this site. You can just

imagine the headlines, it can help you and save you a thousand

times. But one time it doesn’t work properly and we lost a building

through fire. Or loss of life even worse. Imagine the headlines:

‘Firefighters sit outside and do nothing while robots sacrifice and

get it wrong’. That’s a risk that, until the idea is developed and

understood more widely, probably we would not accept.”

4.1.7. Opinions on Involvement in the Research and

Development Process
The final question was related to when fire and rescue services
should be included in the research and development process
(“When do you think fire brigades should be included in
the research and development process of helper robots for
firefighting/rescuing?”). A total of 16 participants answered from
the very beginning, whereas only six participants ticked from
the testing stage in the post-questionnaire. One participant did
not answer this question, so it does not appear in question 6
in Figure 4. This aspect was not discussed during the focus
groups. As seen in the answers to this question in the pre-
questionnaire, mostly the same number of participants already

thought that fire brigades should be included from the beginning.
Their participation in the sessions did not change this opinion.

4.1.8. Requirements for Trust in Robots That Assist in

Fire and Rescue
This final section summarizes all the key requirements that
participants felt robots used in firefighting and rescuing should
have for them to trust these systems:

• Robots should be easy and quick to learn, deploy, and

maintain. Participants said that setup time should be kept
to a minimum to proceed as soon as possible, as well as the
number of checks needed to maintain the robots because they
do not have enough time. Cost of training should also be low,
according to them.

• Swarms should not become a physical obstacle for

firefighters/casualties. Firefighters described that fires are
usually chaotic, with unpredictable conditions.

• Info given from robots should be relevant and not complex.

Due to the amount of information they manage when dealing
with an incident, firefighters said that robots should not give
all, raw information, but instead should provide information
that is as clear, relevant, and digested as possible.

• Robot swarms should be reliable. They stressed the
importance of guaranteeing that robots work when deployed,
and that the information they provide is accurate. This is
because they would make decisions based on what robots
tell them:

“The reliability needs to be on there because again, the first

time it fails that’s it, you’ve lost the cause in there. [...]

Get through those cultural barriers and then you’ll find that

the actual application implementation of that would be a

lot easier.”

• Robot swarms should be accountable. Participants
said that the data gathered from robots must be
stored and timestamped. This is important for their
internal investigations.

• Robot swarms should be safe. Finally, participants said that
robots should guarantee firefighters’ safety.

4.2. Storage Organization Study
Results for storage organization study were also gathered, using
similar quasi-structured questions. One-to-one interviews were
used here, rather than focus groups. The answers to the questions
and discussions in interviews are given in this section:

4.2.1. Summary of Use Cases
The following are descriptions of the use case stock rooms, based
on the answers given by the interviewees when asked how they
characterize their day-to-day work:

• Supermarket Stock is transported from the depot to the shop
where it is moved from the van to the stockroom by employees.
The stock is transferred within a large cage on wheels and
is kept in this container while in the shop stockroom or
stacked on the shelves by employees. There is no stockroom
organization system.
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• Charity shop Donations come in at sporadic, unpredictable
times and range across a wide variety of items and quality. Staff
initially sort items into two categories: bric-a-brac and clothing
and then into further subcategories. The donations are stored
in large piles in one corner of the sorting room before they
are sorted. The sorting process includes putting clothing on
hangers and individually pricing each piece.

• Food bank Food donations come in a random order and
amount. Volunteers sort the items into categories and write
the best-before date on the packaging so it is easily visible. The
food is sorted and stored into crates of the same food type
and best-before date.When people come in for food donations
they make a request for a list of products and the volunteers
create a bespoke food package for each customer from the
stock in the warehouse.

• Industrial warehouse When new stock arrives at the
warehouse, before it enters the automated part of the system
(which uses a combination of humans and robots to pick
and pack items) it is moved using automated guided vehicles
(AGVs) into the warehouse storage.

• Museum There are multiple parts of the museum building:
café; gift shop; event locations; main collection; and archives.
All of these areas have their own stock to organize and
store. They coordinate their timetables for stock incoming and
outgoing using a shared calendar system but do not discuss
details beyond this. Extra storage (such as fridges) is hired in
for large café events. Volunteers sort through the collection
archives, which have over 1 million pieces, and record details
about each piece on pen and paper to categorize what is in each
storage box.

• Space missions On the International Space Station (ISS),
astronauts keep track of the food and supplies stock and search
the store when they want something. It is predicted that when
humans go for extended, residential trips to the Moon or Mars
they will need to do this as well. Orders for new supplies need
to be made many months in advance because it is difficult to
send to them. This means that keeping a careful log of what
stock they use and when is important to avoid running out of
supplies too early.

• Large-scale Retailer The stock is stored in large warehouses
from which online orders are packed and shipped. A
centralized, robotic system is used to move stock to a conveyor
belt where it is transported to human pickers who pack
the products.

4.2.2. Current Processes
The following are descriptions of the current, storage
organization tasks used by the different use cases, as discussed in
interviews. Common processes are grouped together:

4.2.2.1. Inventory
The robots in the system used by the Large-scale Retailer

automatically scan all stock items and all items are kept in
cardboard boxes. This means that there is a constantly updated
inventory and corresponding location list. In the Supermarket,
when a delivery comes in from the depot, a list of what is included
in the stock is added to a central database on a computer. The

individual items are not checked by the shop employees against
the list for errors. This can lead to “negative stock” which is
stock that is counted as being in the inventory but never actually
arrived. Any items that were on the list of items that arrived
but have not been sold or wasted are assumed to have been
stolen. In the Museum, technology is not used (i.e., no digital
record) because there is no network infrastructure in the archives
and the volunteers tend to not want to work or train to work
with computers. Additionally, it was noted that management was
afraid of a risk of losing data due to a computer problem and
stated that pen and paper were therefore more reliable. Supplies
on Space missions such as the International Space Station (ISS)
are counted and recorded by crew members. The Food Bank and
theCharity Shop do not keep any inventory or map of their stock
and instead they both do stock rotation by eye.

4.2.2.2. Sorting
When donations come into the Food Bank or the Charity Shop,
items are sorted into different categories and stored with other
like items. In the case of the charity shop, prices are decided based
upon the sorter’s personal opinion but reasoning is according to:
current trends; brands; quality; judgement. It was stated by one
staff member that the reasoning for a price is often just a feeling
about how much it’s worth.
In the Supermarket, similar items arrive together and no re-
sorting is done, they are just stored in the stockroom as they
are when they arrive. Similarly, in the Museum, items are kept
in the archive in boxes of mixed types, but no sorting is done.
The Industrial Warehouse has workers who drive the pallets
of new stock from the deliveries into the storage unit of the
warehouse where it is collected and sorted by robots into the
high-level system. Items in the Large-scale Retailer warehouse
are sorted into locations depending on speed of movement. Here,
fast movement means items are likely to be needed soon such
as returned items. Beyond this, items are sorted at random with
stock being constantly rearranged by the robots, even overnight,
to be more efficiently stored. This is because the items are stored
three rows deep so constant rearranging makes it less likely that
something will be blocked behind other items for too long to
be inefficient.

4.2.3. Challenges With Current Processes
The parts of the current stock organization processes that were
highlighted by the interviewees as being negative or difficult are
summarized in Figure 5 and given in the following:

4.2.3.1. Sorting issues
All interviewees said that they thought the sorting system that
was currently used could be significantly improved and that they
wanted to do less sorting themselves. In this way they were
all enthusiastic about a technological solution that would mean
that they had to do less sorting of stock and/or the process
would be quicker and easier. For example, the Space Industry

experts stated that an astronaut’s time was expensive and limited,
meaning that sorting stock was considered a waste of resources
that should be automated. Similarly, the Industrial Warehouse

interviewee said that loading speed could be vastly increased to
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FIGURE 5 | Difficulties encountered in the existing storage organization process, as highlighted by interviewees.

save time and money. This opinion was shared by all of the use
cases for similar reasons.

4.2.3.2. Limited space
All of the interviewees said that a disadvantage of their current
processes for stock handling was limited space in which to do it.
For example, the Food Bank storage space was limited, meaning
that piles of crates were three rows deep in some places which
made it difficult to reach items at the middle or back of the pile.
Similarly, in the Charity Shop, it was noted by the interviewee
that this makes it especially difficult to search the donations
for specific items to replenish supplies that are out of stock.
The Space Industry representatives said that the storage space
available is limited because it has to be habitable for humans
to manipulate stock. The alternative, which would save money
and therefore allow more available storage space, would be to not
pressurize or supply oxygen to it, meaning the astronauts would
walk around it in their spacesuits. The disadvantage of this is that
it takes a long time to get spacesuits on which would also be a
waste of time, especially as going and retrieving stored food is
likely to be necessary multiple times a day.

The Industrial Warehouse employee also stated that there
were economic reasons (i.e., cost of land) for keeping the space
used for sorting goods to a minimum. The resulting problem is
that it is difficult for the AGVs to move around and to prevent
traffic jams as goods are being transported from delivery to
storage. The Large-scale Retailer said that they wanted their
system to be more dynamic. This is because the limited space for
the robots to move means that when a robot breaks down it can
block the way and make some stock areas inaccessible.

4.2.3.3. Demand variation
All interviews except the representatives from the space industry
said that demand variation and unpredictable incoming and
outgoing stock made it more difficult to do their stock-handling
jobs. For example, in the Supermarket the stock is more

predictable but orders often vary, which can cause the stockroom
to become busy and therefore difficult to keep organized.
Similarly, in the Industrial Warehouse demand can go up and
down in the same day, which puts a strain on the current
processes due to the need for quickly adapting behaviors.

4.2.3.4. Inventory
The Museum stated that mistakes are often made by their
volunteers when recording archived items. Similarly, the
Supermarket said that they do not check stock against the
stock list as it comes in so they are not aware of inventory
errors but they do occur without their knowledge. No inventory
is taken for the Charity Shop or the Food Bank, which can
make the stockrooms hard to search for specific items when
they are needed. This is a particular problem for the food
bank when a customer requests a specific brand or has an
allergy requirement because they do not keep any record of
this information. The volunteers have to go to the area of the
warehouse with the correct type of food and look at individual
items for a matching one. This is laborious and slows down the
whole process.

4.2.3.5. Cleaning
The Food Bank expressed that they spent a lot of their
volunteered time cleaning the products. They resented having
to do this and blamed the layout of the warehouse which was
difficult to rearrange because of lack of space and heavy crates.
The Charity Shop also said that cleaning incoming donations
was part of their job but that they only did it when an item was
likely to get a good enough price to be worth the cleaning time,
otherwise they would put it in recycling or scrap materials. They
consider cleaning an annoying part of their job, which is why
they do not cleanmost items. The Space Industry representatives
stated that general cleaning is a necessary part of an astronaut’s
duties but is considered to be a waste of their valuable time.
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4.2.3.6. Waste
The Supermarket employee said that due to the way items are
stacked together, the items at the bottom of the piles are often
damaged. This is particularly common for products where the
packaging is irregular in shape which also causes a waste of space
due to inefficient packing. The Food Bank said that food can go
out of date without the staff knowing because they do not have an
inventory and cannot see the crates of food that are buried within
the pile.

4.2.4. Attitudes Toward the Swarm System
At this point in the interview, the swarm system is described
by the interviewer. It is described as a swarm system that
automatically sorts stock that is input, and produces items upon
user request. The following are the answers given to questions
about this swarm system:

4.2.4.1. Features of the storage organization system
Many answers were common to more than one user and they
are summarized in Figure 6 about the desirable features to
be included in a swarm system for storage organization. The
most common desirable features were efficient storage (7/7 of
use cases), automatic inventory check (5/7 of use cases), and
automatic sorting abilities (5/7 of use cases). For example, the
Food Bank said of the automatic inventory that this would allow
them to cater to preferences and allergies more easily. They said
that they would like a system that could allow them to do this and
cater to other dietary requirements.

The next most useful features of the swarm system stated
by 5/7 of use cases was automatically ordering items (e.g., the
system would be able to recognize when there was favorable
weather conditions or low stock of an item and make orders

for new items as a result) and heavy lifting of stock. Finally,
the other desirable features of the system stated were: cleaning
abilities (3/7), increase loading speed or speed of processes
such as inventory or transfer of goods (3/7), reduce wasted
products (2/7).

4.2.4.2. Positive comments
The interviewees were given the swarm system and asked for
their thoughts about it. The main positive points are given in
Figure 7. When specifically asked about how they felt about
working alongside swarms of robots in general or compared
to working alongside single robot systems the reactions were
very positive with 6/7 stating that they would like to have this
system in their place of work. Almost all (5/7) of the interviewees
expressed positive opinions toward the suggested system for the
given reason that it would free up time for some other task. 4/7
interviewees stated that they preferred the swarm system to a
similar single robot system because there is no single point of
failure in a swarm system.

4.2.4.3. Negative comments
Concerns expressed during interviews about the swarm system
are given in Figure 8. The Large-scale Retailer was the only
use case to state outright that it would not want this system.
They said that their priority was stock control and they did not
like that the individual agents would not be centrally controlled
at all times. They also said that they thought that the swarm
would require initial learning stages and they could not afford
to have a system that was not good enough to work right away.
This was not something that was given in the swarm system,
but it is an opinion of swarm robotics that was felt before the
interview. They also said that they did not like not knowing

FIGURE 6 | Summary of the stated desired features of the swarm storage organization system in the interviewed use cases.
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FIGURE 7 | Summary of positive responses to the storage organization system.

FIGURE 8 | Summary of negative responses to the storage organization system.

where the information and behavior was coming from at all times
within the swarm. They stated that they felt a swarm would risk
losing information that could create a disastrous fault within the
warehouse management.

The most common concerning topic was safety with 4/7
interviewees citing it as a risk factor when working with robots.
For example, theMuseum said that battery fires and trip hazards
were both safety risks in the proposed system. The Space

Industry and Industrial Warehouse representatives were both
concerned about the unpredictability of a swarming system as
opposed to a directly controlled system. The Museum and the
Charity Shop both said that they did not think that a robotic
system of any kind would be able to give rich enough descriptions
of stock to improve upon human workers. The charity shop did
not think that the system would be able to price items because of
this gap, but they were happy with the idea of a technology that
worked alongside humans, where swarms would sort items and
humans would check and price them. There were also worries
expressed for the risk of loss of information due to technology
failure (expressed by the Museum) and that volunteers or staff

would not be able to work with the technology (expressed by
the Museum and the Food Bank). The Supermarket employee
said that they would like the system but were concerned that it
would get in their way if it used drone technology. It should be
noted that drone technology was in no way mentioned to the
interviewee prior to this comment.

4.2.4.4. Trust
The Large-scale Retailer said that they would not trust a
swarming system because they would not be able to know the
information about where everything was in the warehouse and
why it was there at any time. This is compared to their current,
centralized systemwhich is heavily controlled. 6/7 of the use cases
said that they would trust the system butmost 4/6 had a condition
to add to this statement. The Food Bank had no caveats and
the Supermarket said that damage was already caused to their
products so they thought that the systemwould only improve this
rate of damage even if it made some mistakes and therefore they
would trust it. The Charity Shop said that they would trust the
system with sorting and handling items but they did not think it
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would be good enough to trust with pricing items without human
supervision. The Museum was concerned about practical safety
risks including the possibility of a collection piece being damaged
if a robot collided with it. They said that if the system was proven
to be safe then they would trust it.

The Space Industry said that it would trust the system
if risk could be eliminated but the interviewees were split
on how possible this would be. One representative said they
considered swarms too unpredictable to ever be accepted in space
applications where any mistakes can be mission critical. However
the other representative said that they thought that swarms could
be trustworthy if they were sufficiently developed and tested.

The Industrial Warehouse expressed that they were very
interested in the system and would like to make it work but
they would find it difficult to trust until it passed sufficient safety
regulations. They expressed concern that this would be difficult,
as no regulations currently exist.

4.3. Bridge Inspection Study
The focus groups conducted for the bridge inspection use case
produced distinct themes as shown in Table 1. The details of
these results are presented below.

4.3.1. The Art of the Profession
The participants described the task of bridge inspection as finding
and assessing defects in the structural components of a bridge.
This assessment was said to be crucial to ensure the bridge
was safe and could be maintained properly. This task is not
trivial with expertise required for identifying, quantifying and
determining the consequences of any defect. One participant
mentioned a difficulty in finding people with such skills. Both
groups operated in fairly distinct sectors with one primarily
inspecting railway bridges while the other inspected a variety of
short to medium sized road bridges. Multiple levels of inspection
were mentioned. The first level was a general inspection in which
the bridge areas which were easy to access were surveyed (mostly
visually) every 2 years. The second level was a detailed physical
inspection, known as a principle inspection, that was carried
out every 6 years. The principal inspection required all bridge
elements to be inspected at close range. These procedures are
inline with industry standards outlined in Highways England
(2017). The first group were primarily concerned with these types
of inspections as their expertise were in special access measures.
The second group administered both types of inspections on
behalf of a local authority.

4.3.2. Their Challenges
The challenge mentioned most by inspectors was accessing
structural components of the bridge in difficult to reach areas.
Participants described current measures such as rope-access and
scaffolding as costly in terms of money and time. Participants
of both groups also highlighted the diversity of the structures
they have to inspect as another challenge. Each group described
having to deal with bridges made from different materials and
with different designs, many of which were built without any
consideration of how they would be inspected.

TABLE 1 | Distinct themes were identified in notes taken in the bridge monitoring

focus groups.

Task mentioned for robots Positives Concerns

Collecting data to help plan human

inspections

More data

collected

Speed

Constructing 3D models of bridge Possible time

savings

Cost

Providing information on hard to

reach areas

Cost of individual

units

Safety of inspection

Value of collected data

Locomotion ability

Retrieval of units

These were tasks participants thought robots could help with alongside positives and

concerns participants had with the scenarios mentioned.

Another challenge frequently mentioned by both groups was
that inspections had to be carried out in a way which minimized
the disruption to the traffic on the bridge. For the first group this
was a consequence of the dangers involved in inspecting railway
bridges such as passing trains and high voltage cables. This lead to
small timeframes where inspections could take place. The second
group highlighted that many of their bridges are essential links
for rural communities and so closing the bridge would adversely
effect these people.

4.3.3. Positives About Bridge Swarm Systems
In the discussion of the scenarios, most participants were
receptive to working with robots and using data gathered from
robots to help inform inspections. One group in particular
saw the value in using a swarm, similar to that in scenario
2, to do a thorough sweep across large structures that could
help target the deployment of roped access teams by logging
the positions of detected defects on an existing 3D model.
Participants also viewed enclosed small spaces such as culverts
as useful environments to deploy a swarm in. Participants
mentioned how current robot inspection of these areas uses a
CCTV camera attached to a caterpillar track chassis, but these are
very expensive. Hence they liked the idea that a swarm system
was more modular and so losing single robots would represent
a small financial risk. However, they did not imagine the swarm
would be able to inspect the culvert itself but could provide useful
information before human teams enter. For example the swarm
could provide a rough dimensional survey to detect collapsed
sections, or sense if hazardous gases had accumulated.

4.3.4. Concerns About Bridge Swarm Systems
The following are concerns expressed by the bridge inspection
participants following a description of the scenarios. In this study,
requirements for trust were not explicitly asked to participants,
but the concerns expressed by participants indicate a lack of trust
in some elements of the scenarios presented.

4.3.4.1. Data value
The type of data gathered by any system was one concern raised
frequently. Both groups viewed touching as an essential part of
an inspection but not something they thought a robot would
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be able to emulate. They stated the importance of being able to
sound parts of the structure with a hammer and examining the
depth of any defect. Examples given included listening for hollow
sounding areas which can indicate delamination in concrete
or establishing the extent of paint flaking on steel elements.
One participant also made the point that being able to identify
issues in images of the structure came from doing this hands
on work and this skill could be lost or diminished if the entire
bridge inspection process was automated. While 3D models were
viewed as a useful deliverable of a robotic system by participants,
they also thought there were limitations with using them. They
said that while potential defects could be identified using them,
establishing their severity would often require visiting the defect
in person as the model could not provide the same interactions as
being on the structure in person. The groups also mentioned that
changes in the condition of the structure were more important
rather than one-off detections, such as in the second scenario.
They thought robots would not be able to evaluate the severity
of defects without knowing the previous state of the defect they
had detected.

4.3.4.2. Time and cost constraints
Both groups referred to time and cost constraints as a major
factor in determining if a particular technology was valuable and
whether they would use it. For example, a textured 3Dmodel was
viewed as useful, and if there was no cost it probably would be
widely used. However, participants in the second group viewed
the time and cost in obtaining such a model as too high for the
number and size of the bridges they dealt with. In their opinion
many areas on these types of structures can be documented in
sufficient detail from the ground with a few photos, so deploying
a robotic system to get a very detailed model is overkill. Hence
technology was only viewed as valuable when the environment
was more constricted or complex, since this cannot be obtained
easily with current practices.

4.3.4.3. Data processing
The amount of data that was collected and how it was processed
was also highlighted. Both groups mentioned that a large
amount of unprocessed data would not be helpful. For example,
participants said that trawling through footage captured from
robotic systems, or large collections of images had been tedious in
the past. They also mentioned that structural health monitoring
systems have this problem if not used precisely. This issue came
up a lot in response to the second scenario, in which many
robots covered the sides of the bridge detecting damage. Many
participants stated that they imagined a system that captured
data indiscriminately would flag up a large number of possible
defects. Participants were then worried they would not have
the resources to check each one during the inspection period.
Some participants suggested the second scenario would be more
useful if the system’s output could be tied to a 3D model, as this
would mean the data would not have to be checked in real time.
In this case the system would simply collect more data about
the structure than they do now. Both groups also highlighted
that the top priority was identifying safety critical issues on the
structure. Some participants felt a system that gathered more

data, if processed properly, would help in this task. However,
others felt that the robots performing damage detection would
be challenging, a view supported by the general observations on
structural health monitoring by Webb et al. (2015).

4.3.4.4. Robot capabilities
Participants also had concerns about the abilities of the robots
themselves, asking how they would move in such difficult
environments. Many assumed the robots would need to fly
and mentioned issues with using current inspection drones
such as risks of collisions and flight restrictions. Another issue
brought up was the retrieval of a large number of robotic units.
Participants stressed that everything would need to be retrieved
so that it would not contaminate natural habitats.

5. DISCUSSION

Although the three studies featured different fields of application
(fire and rescue, storage organization, bridge inspection), there
were similar results and opinions across the participants. In
this section, we highlight those similarities to help shape future
responsible and successful deployments of robot swarms in the
physical realm.

5.1. There Is Opportunity for Swarm
Robotics in the Workplace
Participants across the three studies welcomed robots for
certain tasks, especially robot swarms. For them, the main
advantages are the ones related to robustness via redundancy
(no single point of failure) and high performance due to the
use of a large number of robots. In the case of the fire
and rescue focus group, these properties would be helpful in
scenarios that participants felt were most useful, as identified
in the focus groups (real-time information gathering, dangerous
tasks, communication channels, finding exit routes, testing
for hazards/traps, victim location/tracking, tactical ventilation),
and from the questionnaire (locating victims, risk/incident
assessment, mapping the environment, communication links),
as Driewer et al. (2005) also found in their study. In these
applications, high speed and large area coverage are common
aspects, hence benefiting from a robot swarm collectively
performing them in parallel.

Similarly in the storage organization study, almost all of those
interviewed said that their current sorting systems would benefit
from additional autonomy and they welcomed robot swarms
(with caveats and assurances). Many of the use cases said that
having an automated sorting system using a swarm of robots
would be desirable because it would allow them to perform other
less tedious and more useful jobs at the shop front. Tasks that
they projected the robot swarm could do, that were not part of
their current capabilities, included taking automatic inventory
which many interviewees stated would improve the efficiency of
their warehouses. This extended in almost all cases (automated
warehouse, food bank, supermarket, charity shop, museum, and
space) to predictive ordering based on projected demand changes
informed by customer patterns, weather forecasts etc.
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The bridge inspection participants were receptive to any
technology which could gain valuable information about the
structure. However, the value of the information was crucial to
the participants views of a swarm system. This value depended on
the measurements being made, pictures could be used to identify
defects but were less useful for characterizing their extent. The
value also increased with the difficulty in accessing a given area
by humans, such as confined spaces, or with increasing size of
the structure, at which point human inspection becomes very
slow and costly. The aspects the participants value also fit well
with the swarm’s abilities. For large structures, the area needing
to be covered would be sizeable and suitable for a swarm’s parallel
operation. Enclosed spaces represent an unknown environment
that would require the swarm’s robust operation.

5.2. Identifying the “Art of Their Profession”
Will Inform Tasks to Be Automated
There is a common theme across most participants in the three
studies. They welcome technology that can assist them with
certain tasks, but not all of them. In the fire and rescue study,
participants’ priority would be on robots that could assist them
with information-gathering (e.g., locating casualties, mapping,
communication links) or simple actions (clearing the way, lifting
heavy things, tactical ventilation) with no autonomous decision-
making process in place. This preference can be explained from
two different points of view. On the one hand, participants
pointed out that finding the fire/casualties and gathering
information for their decision-making processes are the main
challenges they face. On the other hand, they highlighted their
fear that robots making autonomous decisions could cause more
harm than good because of unforeseen consequences (many
factors are in place during firefighting and rescuing), or lack of
understanding of such decisions. Particularly interesting is their
preference for not having fire extinguishing robots. Participants
felt that there were many aspects involved in firefighting, and that
only them, humans, would be capable enough to extinguish fires.
This suggests there are certain aspects of their profession that
they would not like automated, but done by humans—the art of
their profession.

In the storage organization use case interviews, a concern
from the workers was that swarm robots were not capable enough
to sort the warehouse with full autonomy. For example, the
Charity Shop workers said that they did not think that a robotic
swarm system would be able to price the items correctly. They
said that this is because when the human workers price items, it
is a judgement that can be based on current trends, how the item
feels, brands etc. In the same way, the Museum workers doubted
that a robotic swarming system could replace human workers in
being able to provide a detailed enough description of collection
items to sort them. In this way, the art of the profession (i.e., the
charity shop worker knowing from experience and instinct how
much an item is worth) is something that workers consider to be
an important part of the sorting process and not something they
consider robots capable of doing without a human.

The bridge inspection study found that participants also
doubted the robots’ abilities to evaluate things, in this case

the condition of structural members. They stated that touching
and sounding the structure are essential for finding the extent
of any defects identified. Additionally many defects needed to
be evaluated over time to determine their severity, hence a
robot which is only measuring some quantity at one time point
would not be able to quantify its seriousness. Participants agreed
they would rather have robots supporting their decision-making
processes as much as possible, but not acting autonomously
when it comes to making decisions. Takayama et al. (2008)
also found that robots were not preferred for occupations that
require evaluation and judgement. Semi-autonomy, meaning
that robots can perform some tasks by themselves but always
subject to human input (human in the loop), is the preferred
mode of operation. Semi-autonomy was also the preferred mode
of operation in the study done by Driewer et al. (2005).
Robots are often negatively portrayed as machines taking over
jobs. The fact that there are some aspects of their profession that
participants would like to protect could seem to be related to
this, although a direct question about fear of losing their jobs
was not asked to participants. Participants broadly welcomed the
use of robots in their jobs, and agreed they would be a tool to
enhance/assist in their operations rather than a replacement. This
is similar to the findings of the survey by Takayama et al. (2008) in
which non-expert participants were more likely to prefer robots
in a given occupation with people, rather than instead of people.
Taking into account that there are barely any robot swarms
currently in place in the professions explored in this paper, the
fact that participants welcomed their use for certain tasks shows
a high degree of preliminary acceptance. Therefore, when looking
at how to best deploy robots in the physical realm, it is important
to identify with end users which aspects are/are not desired to be
automated to increase user acceptance.

5.3. Tackle Concerns to Increase
Acceptance and Trust
Participants were mainly positive about robot swarms and the
applications in their fields. However, there were caveats in each
case, meaning that participants would trust swarm robotics
systems under certain conditions. It is then crucial to address
these concerns, if a successful implementation in society is
sought. In fact, user acceptance and trust have been identified
as the major bottleneck when taking robots to real-world
applications (Kruijff et al., 2014).

5.3.1. Transparency and Accountability
In the study with fire and rescue services, participants pointed
out that robot swarms should always store all the data they
generate/process—timestamped. It is very important for them
to understand what the swarm is doing, especially in case
an investigation is required. In this sense, the swarm must
be accountable, i.e. able to be queried and return a human-
understandable answer. This is the concept of an ethical black
box, described by Winfield and Jirotka (2017) as a mechanism to
improve public trust by designing robots with accountability at
the core.

Storage organization use cases were also concerned about the
risk of loss of information and unpredictable behaviors. This
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was particularly concerning for the Large-scale Retailer and the
Museum who both store millions of products in one place and
can therefore not afford to lose control of their stock. Other
use cases with fewer active stock pieces were more willing to
experiment with new technologies because the risk of loss of
information if the system were to go down is not as great.

In the bridge inspection study, transparency and
accountability were not mentioned directly by the participants
when talking about the swarm scenarios. This may have been
due to the described data collection task not involving the swarm
taking substantial decisions that would need explaining to bridge
inspectors. Participants also expressed doubts over the individual
robots’ ability to make substantial decisions such as evaluating
detected defects. Whether participants maintained this view
in the case of the system being made fully accountable was
not investigated.

5.3.2. Reliability and Safety
For firefighters, another aspect to help build trust in robot swarms
is reliability, i.e., the guarantee that if the robot swarm is deployed
in a fire and rescue operation, it will work properly. In the
scenarios they face, faults cost lives. Hence, all the information
that the robot swarm might gather or the actions they perform
must be completely accurate. This requires thorough verification
and validation of the swarm robotics system before deployment.
However, predicting the emergent collective behavior of robot
swarms given the individual rules of each robot, and making
sure that it is the only behavior that the swarm shows is a major
challenge (Dixon et al., 2012). Further research on designing
reliable swarms should be prioritized to increase trust, as well
as reduce the number of risks arising from the use of swarms
(Harbers et al., 2017).
Safety also came out as another requirement for acceptance and
trust in the focus group with fire brigades. The robot swarm not
becoming a physical obstacle (either for firefighters or casualties)
was especially regarded as a crucial feature of the swarm robotics
system. As argued above, this has to do with the requirement
for robots not being detrimental to their operations. All in all,
“technology is, in general, trusted if it brings benefits and is safe
and well regulated” (Winfield and Jirotka, 2018).

The storage organization use case interviews found that
safety was an important concern but of varying degrees. For
example, the Museum cited worries about battery fires and
trip hazards but it was not overly concerned about them
since they are easily avoidable. On the other hand, the Space
Industry representatives stated that missions are safety critical
and therefore any technology that is included would have to
have all risk removed before deployment could be achieved. They
said that although they are interested in future developments
of swarm robotics and its usefulness in space applications, they
perceive its unreliability at this stage of development to be too
high a safety risk to be viable for space missions. Both the
Space Industry representatives and Industrial Warehouse stated
they could not accept swarm technology until it passes safety
regulations that are specific to swarm technologies.

Safety and reliability were also a primary concern of the bridge
study’s participants. For reliability, participants were concerned

about how the swarm individuals would move over the structure
or inside an enclosed space without getting stuck. They were also
concerned about how the individuals could be retrieved given
the lack of a tether. There were other concerns related to robots
falling or hitting things such as people, high voltage cables or
traffic. Although, it should be mentioned other bridge inspection
technologies such as drones, scaffolding, and roped access are
not without their own risks (Dorafshan and Maguire, 2018).
These safety concerns indicate that for swarm technologies to
be accepted in the future, relevant safety standards will need to
be developed (Winfield et al., 2004; Bjerknes and Winfield, 2013;
Beltrame et al., 2018).

5.3.3. Ease of Training, Use, and Maintenance
Finally, most participants across the three studies agreed that they
would trust the robot swarm assisting them at work as long as
it was easy to learn about, use and maintain. In the study with
firefighters, time is a crucial aspect for them. Hence, they require
a system that can be deployed fairly quickly (ready by the time
they arrive to the incident location), not too complex to use (their
cognition abilities are harmed when firefighting, for example)
and that does not require complex maintenance (always ready to
be used). This places the focus on the scalability and adaptability
of the robot swarm operations. Essentially, this means that if an
action has to be done on the swarm, it should be independent of
the number of robots in the swarm or the location of deployment.

Many of the storage organization workers interviewed said
that their staff are volunteers and/or do not have a lot of spare
time to train in how to use technologies. For this reason, out-
of-the-box swarming systems would be needed to reduce set-up
andmaintenance during use. Any human-swarm interface would
need to be very intuitive with little need for technology skills
(for example, the museum said that their volunteers struggle with
basic computer skills so they avoid technological solutions). In
the bridge inspection study, participants were concerned with
operating in tight cost and time constraints and so would also
benefit from easy to use systems.

These results are in line with the findings from Yanco et al.
(2006), where participants expressed their desire for the system
to be easy to use—in fact, the system being difficult to use was the
main cause for their test missions failing. Moreover, participants
from the study led by Driewer et al. (2005) preferred an easy-to-
use system. Authors then suggested having the ability to select
different layers of information depending on what the specific
user might require. This could indeed improve adaptability of the
systems to users.

5.4. Mutual Shaping Can Facilitate the
Deployment of Robot Swarms in the
Physical Realm
The analysis of the responses to the pre-questionnaire and
post-questionnaire in the study with fire brigades was used to
understand the role of mutual shaping through focus group
discussions in changing their opinions. The following changes in
attitudes were noticed:
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• More tasks for robots: In terms of tasks where robots could
be useful, there was an overall increase in all tasks after the
session (except extinguishing). This tells us that the session
made them see how robots could be used for more tasks than
they previously had thought.

• Acceptance of robots increased: There was over 20% increase
to the very likely or extremely likely responses to the question
related to acceptance of assistance from a robot. A total of
18 participants ticked either of these options in the pre-
questionnaire, whereas 22 participants ticked participants
ticked in the post-questionnaire.

• A large swarm of robots is preferred: When firefighters
were asked about the number of robots they would rather
have assisting them, a few was the most selected answer (13
participants), whereasmanywas chosen by only 3 participants.
After the session, nine participants ticked a few and 10
participants tickedmany.

Mutual shaping has been shown to be a successful way to engage
in a two-way conversation with potential users and incorporate
societal choices into the research and development process. If
robot swarms are to be used in real-world applications, it is
important to listen to all the parties who will be affected by it
in the future. Almost three quarters of the firefighters said that
they would like to be involved in the research and development
process from the very beginning, in both questionnaires.

6. CONCLUSION

Robot swarms have been demonstrated performing a variety
of tasks under laboratory conditions. However, potential users’
exposure to the technology is limited. This has led to a number
of unanswered questions around what people’s perception of
swarm robotics is, how comfortable people would be using the
technology and what tasks they would like the technology to
perform. In this work, three studies with a total of 37 potential
swarm users were performed across three different sectors:
fire and rescue, storage organization, and bridge inspection.
Each study used participatory design style discussions that
were structured to develop an understanding of each user’s
profession before introducing them to swarm robotics and
discussing potential assistive swarm systems. It was found
there was a generally positive reaction to robot swarms, but
also some caveats. In both the fire and rescue and bridge
inspection studies, participant’s desired systems which would
gather information to help inform human decisions. For the
storage organization sector, a system which would sort stock
and manage inventory in a space efficient manner was desired.
Moreover, a common theme across the three studies was that
there are some aspects of their jobs (especially when it comes
to decision-making) that participants would not like to be done
by autonomous robots. We call this the art of the profession.
Therefore, it is important to identify with end users which
aspects should be automated, and which should not, to increase
users’ acceptance. The caveats found were either due to doubts
about the system’s capabilities compared to a human or trust
in its operation. To improve trust and acceptance in swarm
systems in the future participants highlighted a number of areas

including: transparency, accountability, safety, reliability, ease of
maintenance and ease of use. Finally, it was shown that designing
the study with personnel from fire and rescue services following a
mutual shaping approach positively changed their opinions about
robot swarms assisting them.

Because swarm robotics technology is still being developed,
now is the perfect time for swarm robotics researchers to create
a link with users to identify what needs to be done to build trust
and to ensure the technology is fulfilling a desired role. This will
facilitate the deployment of robot swarms in the physical realm.
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Consensus achievement is a crucial capability for robot swarms, for example, for

path selection, spatial aggregation, or collective sensing. However, the presence

of malfunctioning and malicious robots (Byzantine robots) can make it impossible

to achieve consensus using classical consensus protocols. In this work, we show

how a swarm of robots can achieve consensus even in the presence of Byzantine

robots by exploiting blockchain technology. Bitcoin and later blockchain frameworks,

such as Ethereum, have revolutionized financial transactions. These frameworks are

based on decentralized databases (blockchains) that can achieve secure consensus in

peer-to-peer networks. We illustrate our approach in a collective sensing scenario where

robots in a swarm are controlled via blockchain-based smart contracts (decentralized

protocols executed via blockchain technology) that serve as “meta-controllers” and

we compare it to state-of-the-art consensus protocols using a robot swarm simulator.

Additionally, we show that our blockchain-based approach can prevent attacks

where robots forge a large number of identities (Sybil attacks). The developed

robot-blockchain interface is released as open-source software in order to facilitate

future research in blockchain-controlled robot swarms. Besides increasing security, we

expect the presented approach to be important for data analysis, digital forensics, and

robot-to-robot financial transactions in robot swarms.

Keywords: swarm robotics, blockchain technology, Byzantine fault-tolerance, resilient robotics, verifiable robotics

1. INTRODUCTION

Disasters, such as the collapse of a nuclear plant (e.g., Fukushima) or the release of petroleum
into the environment (e.g., the Deepwater Horizon oil spill), present huge challenges and require
quick and efficient responses. For example, it might be crucial to determine the average presence
of radiation in a contaminated area (Brown et al., 2016). For security and efficiency reasons, on-
site intervention might be better delegated to autonomous robots; and, to make the response
more effective and mitigate potential adverse effects, the robots might have to perceive and act
in different places at the same time. The coordination of such distributed activities by a central unit
of control is not ideal as it makes the system less reliable (single point of failure) and possibly
less efficient (communication overheads, delay in the collection of data, and in the release of
control commands). Robot swarms, that communicate and collaborate in a peer-to-peer manner,
are excellent candidates for these situations.
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One important capability that robot swarms need to have to
cooperate effectively is to be able to make collective decisions.
Accordingly, collective decision-making is a well-studied subject
in the field of swarm robotics (Schmickl et al., 2009; Montes
de Oca et al., 2011; Reina et al., 2015; Valentini et al., 2016b,
2017). In general, to make a collective decision, robots in a swarm
need to share their information and to aggregate this information
using a distributed consensus protocol. The prevailing consensus
protocol for averaging the values held by the individual entities
in the swarm is the linear consensus protocol (LCP) (Olfati-
Saber and Murray, 2004). However, this consensus protocol and
most other protocols used in swarm robotics make the unrealistic
assumption that all the robots in the swarm work as expected.

Unfortunately, real-world operation will almost certainly
result in robots in the swarm that either fail (e.g., due to dust
blocking their sensors) or that are malicious (e.g., due to a
hacker who gains control). These failures can damage people,
nature, animals, and other robots, making the reliable detection
of failures a crucial task (Tarapore et al., 2019). We use the
term Byzantine robot—based on Byzantine fault-tolerance and
the Byzantine Generals Problem (Lamport et al., 1982)—as an
umbrella term to describe robots that show unintended or
inconsistent behavior, independent of the underlying cause. A
Byzantine robot can appear well-functioning to some part of
the swarm but faulty to others and might arbitrarily change its
behavior. An extension of the LCP capable of managing these
Byzantine robots is the weighted-mean-subsequence-reduced
(W-MSR) algorithm (LeBlanc et al., 2013). While W-MSR’s outlier
detection limits the influence of Byzantine robots as long as their
number is low, it breaks down as soon as their number is high or
an attacking robot forges pseudo-identities (Sybil attack).

To pave the way for real-world deployments, secure robot
swarms must continue to operate effectively in the presence of
Byzantine robots, potentially performing Sybil attacks. Peer-to-
peer networks are particularly prone to Sybil attacks: without
a trusted system, it is easy for a malicious agent to create an
unlimited number of new identities and gain a disproportionate
amount of power in the swarm (Douceur, 2002). We contend
that blockchain technology can be used to create such secure
robot swarms due to its decentralized nature, resilience, and
versatility. Blockchain technology was originally developed for
Bitcoin (Nakamoto, 2008), the first widely successful digital
peer-to-peer currency. In the context of Bitcoin, the blockchain
presents a tamper-proof financial ledger in a network of mutually
untrusting agents without relying on a central authority. The
Ethereum framework (Buterin, 2014) further demonstrated that
the blockchain cannot only be used for financial transactions
but can store snippets of programming code and come to
an agreement regarding their outcome. These snippets of
programming code are called blockchain-based smart contracts
(or smart contracts for short). Every node (robot in this article) in
the network runs a virtual machine and executes these snippets.
We show how smart contracts can provide the infrastructure for
implementing secure “meta-controllers” in robot swarms.

Blockchain-based meta-controller: We define a blockchain-
based meta-controller to be a controller that coordinates the
swarm at a higher level than the local controllers of the

individual robots. To this end, crucial information from the
individual robots is securely stored, aggregated, and processed
via a smart contract residing on the blockchain. This ensures that
information or control commands are based on a consensus in
the swarm.

We release our developed framework as open-source
software. It facilitates blockchain research in swarm
robotics by providing an interface between the robot swarm
simulator ARGoS (Pinciroli et al., 2012) and the blockchain
framework Ethereum.

In this article, we study whether robot swarms need
blockchain technology. To this end, we formulate the following
research questions:

• RQ 1: Can smart contracts be used to replace existing consensus
protocols in robot swarms?

• RQ 2: Can smart contracts be used to mitigate the effect of
Byzantine robots in robot swarms?

• RQ 3: Can smart contracts introduce scarce resources into robot
swarms and prevent Sybil attacks?

To address these research questions, we compare the two existing
protocols LCP and W-MSR to our blockchain-based approach in
a collective decision-making scenario (Figure 1) where the robot
swarm moves on a floor covered with black and white tiles and
has to determine the relative frequency of the white tiles in an
ARGoS environment. The scope of this study is strictly limited to
swarm robotics, where global communication is not available.

The remainder of this paper is structured as follows. Section 2
summarizes the fundamentals of blockchain technology.
Section 3 reviews related work in consensus achievement,
security issues, and blockchain-controlled robot swarms.
Section 4 lays the foundation for practical implementations by
describing the ARGoS-blockchain interface. Section 5 describes
the general framework for conducting the simulations in ARGoS
and the technical aspects of the used consensus protocols.
Section 6 presents and discusses the results of five sets of
simulations—in the presence and absence of Byzantine robots.
Section 7 extends the discussion to robustness, feasibility, and
scalability and draws directions for future work. Section 8
presents the conclusions.

2. FUNDAMENTALS OF BLOCKCHAIN
TECHNOLOGY FOR SWARM ROBOTICS

This section summarizes the main characteristics of blockchain
technology (section 2.1) and explains blockchain-based smart
contracts (section 2.2).

2.1. General Foundation
Blockchains are databases and computing platforms that are
replicated and shared among the participants (robots in this
work) of a peer-to-peer network (Figure 2). The pseudonymous
Satoshi Nakamoto originally devised the blockchain to record
digital coin transactions (transactions of cryptotokens) of the
cryptocurrency Bitcoin (Nakamoto, 2008). Shortly after, there
have been proposals to use the decentralized ledger for other
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FIGURE 1 | The robots’ task is to determine the relative frequency of white tiles in an environment in which the floor is covered with black and white tiles. For each

robot, an instance of the Ethereum blockchain software is executed in a separate Docker container and the robots maintain a custom Ethereum blockchain network.

Via a blockchain-based smart contract, the sensor readings of the robots are stored and aggregated. When robots are within communication range, they exchange

their blockchain information. In contrast to classical approaches, the blockchain is able to mitigate the negative impact of malfunctioning or malicious robots and

allows the creation of a tamper-proof system, in which the messages of the robots are securely stored.

FIGURE 2 | A blockchain is composed of linked blocks containing data

consisting of transactions. Each block is divided into two parts: a body and a

header. In the body, the transactions of the participants are stored. The header

contains metadata and links each block to the hash of a previous block to

create a chain of blocks. A copy of the blockchain is stored by each

participant in the peer-to-peer network; the peers exchange and update their

blockchain information based on a consensus protocol.

specific, non-financial applications, such as voting, identity
management, and supply chain management (Crosby et al.,
2016). In 2014, Ethereum further generalized these use cases and
released a framework for storing and executing programming
code via blockchain technology (blockchain-based smart
contracts) based on a Turing-complete programming language.

To interact with a blockchain and store new data, participants
create transactions and distribute them among their peers.
Examples of transactions are: “Send 5 ether (Ethereum’s
cryptocurrency) from digital address A to B” or “Execute
function X using Y as input.” A transaction is digitally signed
by the sender using a private key. Hence, all transactions
can be unambiguously assigned to a digital address (public
key) and attackers cannot create transactions under a false
digital identity. In most blockchain frameworks, all data is
public and can be read by every participant of the network.

Still, in blockchains without an access control layer (public
blockchains or permissionless blockchains), the real identities
of entities (persons, organizations, robots) involved in a
transaction can remain unknown since only the public keys
are visible.

For a transaction to become part of the blockchain, it has
to be bundled into a block and added to the end of the chain
of blocks. Before being part of a block, transactions are called
unconfirmed transactions and are disseminated across nodes of
the blockchain network. Bitcoin introduced a consensus protocol
which allows the participants in the network to agree on which
blocks to add and in what order to add them. The consensus
protocol used by Bitcoin is called Proof-of-Work (PoW) and
was the first protocol to effectively reach decentralized consensus
preventing at the same time double-spending (i.e., a situation
where the same cryptotoken is spent twice). PoW requires the
participants to solve a computational puzzle in order to add a
block to the blockchain; the puzzle consists of finding a hash
value below a target value using the bundled transactions and an
adjustable nonce value as input to the hash function. The nonce
is a number that can be arbitrarily varied in order to change
the input to the hash function and, therefore, the result of the
hash function. The process of solving this puzzle (i.e., modifying
the nonce value given a list of transactions and calculating the
resulting hash values) is called mining. The number of hashes
a device can compute per second is stated by its hash power.
Miners are motivated to perform the PoW since the first one
that finds a solution to the puzzle can append the corresponding
block to the blockchain and as a consequence is rewarded by
immutable cryptotokens stored on the blockchain. Due to delays
in the communications between the network participants, the
participants can have conflicting blockchain versions (forks). For
example, during the experiments conducted in the scope of this
research, the information written in the blockchain differs among
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the robots that are not in communication range. However, via the
PoW-based consensus protocol, conflicting blockchain versions
can be resolved: whenever a robot has to choose between possible
blockchains, the blockchain that required the highest PoW (i.e.,
the longest blockchain) gets accepted as the true blockchain,
while shorter blockchains are discarded. Transactions that were
in the discarded blockchains but not in the longest blockchain
become unconfirmed transactions again and can be included in
later blocks (Figure 3).

2.2. Blockchain-Based Smart Contracts
A blockchain-based smart contract (or a smart contract for short)
is programming code that encapsulates variables and functions
and is stored on the blockchain. To create a smart contract or
call its functions, one needs to create a transaction and distribute
it in the blockchain network. The nodes in the blockchain
network keep track of the internal state (e.g., value of variables)
and execute the computations of smart contracts, e.g., via the
Ethereum Virtual Machine (EVM). While there are nowmultiple
blockchain-based smart contract platforms, Ethereum remains
the platform with the largest user base and the most mature
technical setup.

Smart contracts were originally devised by Szabo (1997) to
enforce contractual agreements between parties via computer
protocols. Szabo’s theoretical notion was made practically
possible for the first time by the Ethereum framework: via a
blockchain-based smart contract, a certain event can trigger
an unstoppable financial transaction (programmable payment).
However, blockchain-based smart contracts are not limited to
programmable payments and the term smart contract is now
used to describe any computer program that is executed on
a blockchain.

For example, an Ethereum smart contract could provide the
functions for selecting the winner of a talent show on TV. The
audience has the possibility to vote for their favorite candidate
(Alice or Bob) by sending a transaction (e.g., including 0.01 ether)
to the TV’s station smart contract. The smart contract on
the public Ethereum blockchain keeps track of the number of
votes for both candidates. Moreover, it specifies the following
programmable payment: if the number of votes for one candidate
reaches 100,000, the prize money of 1,000 ether is transferred
to that candidate’s Ethereum address. This example highlights
some advantages of smart contracts in contrast to classical voting
scenarios: (i) contract conditions and vote counts are transparent,
(ii) existing votes cannot be manipulated or discarded, and (iii)
the prize money will definitely be paid as soon as the condition
is reached.

In order to use Ethereum smart contracts in swarm robotics,
the target robotic platforms need to meet certain requirements
in terms of communication, processing, and storage. The size
of one Ethereum transaction is around 150 Bytes. In order to
communicate with each other, robots should be able to send
and receive some Kilobytes per seconds, otherwise, they may
not be able to synchronize their blockchains in an adequate
amount of time. During the simulations conducted in our
research, the blockchain grew on average to 6.8 MB, a size

which could be stored on many state-of-the-art robots in
swarm robotics1.

3. RELATED WORK

This section first discusses consensus achievement in robot
swarms (section 3.1), followed by work related to security issues
(section 3.2), and concludes by reviewing existing work on
blockchain technology used in swarm robotics (section 3.3).

3.1. Consensus Achievement
Consensus achievement problems in robot swarms can be
divided into discrete and continuous problems (Valentini et al.,
2017). Discrete problems can be formalized as best-of-n
problems, where the swarm has to agree upon a choice among
a finite set of n choices. Examples of discrete problems are
path selection (Montes de Oca et al., 2011), site selection (Reina
et al., 2014), and collective perception (Valentini et al., 2016a).
In continuous problems, in contrast, the swarm’s goal is to agree
upon a choice among an infinite set of continuous choices.
Examples of continuous problems are collectivemotion (Ferrante
et al., 2012), spatial aggregation (Soysal and Sahin, 2005), and
collective estimation (as studied in this work).

In this work, we study the influence of Byzantine robots on
efficiently reaching swarm consensus in a continuous collective
estimation problem. However, exact consensus in continuous
problems is typically unattainable on spatially distributed robot
systems (Elhage and Beal, 2010), since it would require each
robot to agree upon exactly the same value. Connectivity
limitations, large distances, local information, or different sensor
readings, can hinder that progress. Although the blockchain
can overcome this limitation, for the purpose of comparing
our blockchain approach to existing approaches, we here only
consider approximate consensus. This entails that each robot
calculates a weighted local average based on its own estimates
and those received from neighbors. A consensus has then been
reached as soon as the difference between the maximum and the
minimum value in the network is smaller than a given threshold.
For the comparison, we selected the commonly used consensus
algorithms LCP and W-MSR.

3.1.1. Linear Consensus Protocol
The linear consensus protocol (LCP) is the prevailing approach
for achieving approximate distributed consensus (Beal, 2016) and
has been used in a wide variety of use cases, such as formation
control, flocking, and sensor fusion (Olfati-Saber and Murray,
2004; Xiao et al., 2005). The main idea is to reach approximate
consensus on a set of beliefs held by the agents.

While this linear consensus protocol achieves high accuracies,
it does not account for the presence of Byzantine agents. As a
result, a single Byzantine robot keeping a constant value will
make all non-Byzantine robots converge to that value (Gupta
et al., 2006), potentially fully disrupting the functioning of the
robot swarm. This confirms the insights and intuitions presented

1Note that in this article, as said before, all experiments are run in simulation.

Porting our system on real robots will be the subject of future work.
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FIGURE 3 | In the illustration, Robot 1 (Fork A) and Robot 2 (Fork B) have conflicting blockchain versions (forks). This situation can occur if there is a delay in

communication, for example, because the two robots were in different “clusters” that could not communicate with each other and now they can communicate with

each other again. Fork B is the longer blockchain (the one that contains more PoW) and is accepted as the true blockchain, while the shorter blockchain is discarded.

That is, after exchanging their blockchain information, the two robots agree on Fork B. Transactions in the shorter blockchain become unconfirmed transactions again

(stored in a separate memory pool) and can be included in a later block (e.g., Block 3). The memory pool contains transactions that can be included into blocks.

by Winfield and Nembrini (2006) and Higgins et al. (2009) that
fault tolerance in robot swarms cannot be taken for granted and
that Byzantine robots can compromise the correct functioning of
robot swarms.

3.1.2. W-MSR: Byzantine Approximate Consensus
To overcome the susceptibility to Byzantine interference, LeBlanc
et al. (2013) introduced the weighted-mean-subsequence-
reduced (W-MSR) algorithm as a Byzantine fault-tolerant
extension of LCP. W-MSR is a state-of-the art method for
achieving resilient consensus in distributed sensor networks and
robot swarms (Guerrero-Bonilla et al., 2017; Saldaña et al., 2017)

The functioning of W-MSR is based on outlier detection: given
a design parameter F, the algorithm discards the smallest and the
largest F values received from neighbors, including the agent’s
own belief. A limitation of the algorithm is that in order to select
a proper value for the parameter F it assumes that the agents
have knowledge of the network topology or that they are able to
sustain a desired connectivity through control algorithms, such
as flocking (Saulnier et al., 2017). However, this is not always
possible in robot swarms since robots might become sparsely
connected due to changes in the topology of the network (e.g.,
due to movements, failing units, or communication problems).
As we will show later, W-MSR fails if the number of Byzantine
robots is greater than F or when confronted with Sybil attacks.

3.2. Security Issues in Swarm Robotics
At the outset of swarm robotics research, robot swarms were
assumed to be fault-tolerant by design, due to the large number
and redundancy of the robot units (Dorigo et al., 2004; Millard
et al., 2014). While this assumption holds true in some cases,
it has been increasingly called into question when researchers
began to study explicit fault detection (Winfield and Nembrini,
2006).

A distinction has been made between endogenous and
exogenous fault detection. In endogenous fault detection, robots
detect faults in themselves; in exogenous fault detection robots
detect faults in other robots (Christensen et al., 2009). In early
robotics research, most work was devoted to endogeneous fault
detection (see for example, Roumeliotis et al., 1998; Christensen
et al., 2008). However, it can be difficult to detect certain
endogeneous faults, e.g., a robot might have a broken sensor but
only realize it if its sensor readings are compared to its neighbor
robots. Therefore, more recently swarm robotics research shifted
its focus to exogeneous fault detection. Christensen et al.
(2009) present a robot swarm whose robots are programmed
to flash their LEDs in synchrony. LED flashing indicates correct
functioning of a robot. Therefore, broken robots are easily
identified by their non-flashing LEDs and this identification
is made easy by the fact that flashing is synchronized across
the robot swarm. A disadvantage of this system is that it can
only detect robots that are either completely broken or that
report an endogeneous error by not flashing their LED anymore:
malicious robots cannot be detected nor is exogeneous partial
fault detection possible. Yet, Winfield and Nembrini (2006) argue
that complete failures (e.g., power failure) are significantly less
severe than partial failures (e.g., motor failure, communication
failure, and sensor failure). One reason for this is that partially
failed robots can still unfavorably interact with the remaining
robots. For example, because of a broken sensor, they could send
wrong sensor readings to other robots, misleading the rest of
the swarm. The authors point out that future research should
focus on the detection of partial failures; this is what we do in
this article.

In the first survey on security issues in robot swarms, Higgins
et al. (2009) identify tampered swarm members or failing
sensors, attacked or noisy communication channels, and loss of
availability as the main threats to robot swarms. Tarapore et al.

Frontiers in Robotics and AI | www.frontiersin.org 5 May 2020 | Volume 7 | Article 54148

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Strobel et al. Blockchain Technology Secures Robot Swarms

(2015, 2017, 2019) address the detection of faulty robots in both
simulated and physical robot swarms. Their method is based on
outlier detection using the bioinspired crossregulation model. To
this end, robots exchange their behavior vectors. Outliers (faulty
robots) are detected by comparing the behavior vectors to other
behavior vectors in the swarm: if the majority of the swarm has
the same behavior vector, this behavior is classified as an inlier,
otherwise as an outlier. While this approach does not require a
priori knowledge about abnormal behavior, it assumes that every
robot shares its behavior vector truthfully.

Security issues related to external factors, such as attacks on
the swarm, only started to be studied recently. For example,
Zikratov et al. (2016) propose a reputation-based management
system where robots keep trust levels about each other based
on the correct execution of a predefined protocol. Sargeant and
Tomlinson (2016) study a wider range of attacker strategies, such
as eavesdropping, data manipulation, and denial of service in
robot swarms. Primiero et al. (2018) show that the propagation
of deceitful information through the swarm can be prevented if
robots probabilistically change their belief.

In contrast to the systems presented above, the blockchain
is capable of logging events in a tamper-proof way and of
implementing generic meta-controllers. Moreover, all of the
above-mentioned systems are susceptible to attacks: e.g., using
the LED flashing method of Christensen et al. (2009), an attacker
can flash its LEDs in synchrony but send wrong sensor values
to the remaining swarm members. The other systems that rely
on wireless messages are susceptible to Sybil attacks: without a
trusted third-party, it is always possible for a malicious agent
to create an unlimited number of new identities in peer-to-
peer networks (Douceur, 2002). Through this large number of
identities, an attacker can gain a disproportionate amount of
power (Gil et al., 2017), potentially causing much damage, e.g.,
in voting scenarios. The blockchain can prevent Sybil attacks
from disrupting swarm behavior by introducing scarcity to
decentralized systems: a robot wanting to exert influence must
pay for this by spending a scarce resource (cryptotokens). It is
thus, not the number of entities forged but rather an attacker’s
wealth that determines the success of the attack.

3.3. Related Work on Blockchain
Technology in Robot Swarms
In swarm robotics research, it is often assumed that robots do
not have access to shared knowledge. This is mainly due to three
reasons: (i) it could be unfeasible to set up the infrastructure
for such a shared knowledge system; e.g., if the robots are in a
remote area and scattered throughout a large physical space; (ii)
the shared knowledge system could represent an unacceptable
single point of failure; and (iii) it might be computationally
too complex to process all incoming and outgoing data in
a single system. However, robot swarms could greatly benefit
from shared knowledge, for example, for determining whether
a consensus has been reached within the swarm, for calculating
the mean value of the sensor readings of the single robots, or
for determining malfunctioning units. Hence, decisions could be
based on a shared view of the world. This would not only possibly

simplify several swarm robotics tasks but also enlarge their field
of applications facilitating decision processes.

Castelló Ferrer (2016) was the first to describe a variety
of use cases for using a blockchain in robot swarms, such as
secure communication, data logging, and consensus agreement.
Strobel et al. (2018) delivered the first proof-of-concept, using the
blockchain framework Ethereum and the robot swarm simulator
ARGoS in a binary collective decision scenario. The authors show
how a blockchain-based meta-controller improves the quality
of the collected sensor data by providing a blockchain security
layer on top of existing algorithms developed by Valentini et al.
(2016a). The meta-controller detects inconsistencies in a robot’s
behavior when it deviates from the agreed-upon behavior and
excludes it from the swarm. In contrast, prior collective decision-
making algorithms could not reach a consensus whenever one or
more robots in the swarm are Byzantine.

Fernandes and Alexandre (2019) and Lopes and Alexandre
(2019) study the use of blockchain technology for the registration
of robotic events (e.g., robot x finished job y) in industrial
scenarios, where the different robots might come from different
manufacturers. The authors additionally demonstrate the use
of blockchain-based smart contracts for anomaly detection.
However they do not assume local time-delayed communication
and maintenance of the blockchain among the robots but
rather use the blockchain as an external computing platform.
Other work addressed obstacles that might hinder the use of
blockchain-based controllers in real-world applications. McAbee
et al. (2019) discuss how blockchain technology can help to
solve problems in military intelligence applications. Nishida et al.
(2018) outline an approach to reduce the blockchain size for
information sharing in swarm robotics systems by storing the
hash of data—in their case image data—in the blockchain instead
of the information itself.

The work presented in this article is based on two previous
works (Strobel and Dorigo, 2018; Strobel et al., 2018). However,
it is significantly extended: (i) instead of solely determining if
there are more black or white tiles (i.e., a binary decision task),
in the present work, the swarm’s goal is to determine the relative
frequency of white tiles expressed as a value between 0.0 and 1.0—
a collective estimation scenario which yields more information
and might be more interesting for real-world deployments;
(ii) as soon as a consensus on a specific value is reached,
the experiment can be stopped in a fully decentralized way
via the consensus mechanism of the blockchain; (iii) in the
present article, we study different distributions of the features
of the scenarios; (iv) we show how the blockchain limits the
number of messages a robot can send, thus preventing Sybil
attacks; (v) we present the ARGoS-blockchain interface which
enables researchers to test and extend the presented scenarios on
different platforms.

4. ARGOS-BLOCKCHAIN INTERFACE

The ARGoS robot simulator (Pinciroli et al., 2012) is the state-
of-the-art research platform to conduct simulations in swarm
robotics. In our research, each robot acts as an Ethereum
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blockchain node, maintaining a custom Ethereum network.
In order to connect ARGoS and Ethereum, we developed
the ARGoS-Blockchain interface that provides access to the
Ethereum nodes for the robots (Figure 4). The interface is
intended to facilitate research in blockchain-based robot swarms
by allowing to call Ethereum functions in ARGoS. Additionally,
Docker makes it easy to install and run the interface on different
platforms. The interface is available on GitHub2.

The implementation of the custom Ethereum network is
based on Capgemini AIE’s Ethereum Docker3. Docker containers
(Merkel, 2014) contain all the necessary dependencies to
run specific applications and are more lightweight than a
virtual machine. In our setup, for each robot, the Ethereum
implementation geth is executed in a separate Docker container.
The simulated robots maintain a custom Ethereum network,
i.e., a network that is shared among the simulated robots and
independent of Ethereum’s main network. Different containers
can communicate with each other via channels.

In order to execute an Ethereum function (e.g., create a new
smart contract) from ARGoS, a robot uses its C++ controller to
attach to the Docker container. The Docker containers provide
shell scripts4 with customizable templates (e.g., one of the
templates compiles the smart contract, uses the binary code
to send a blockchain transactions, and waits until the contract
is mined). Via Ethereum’s IPC (interprocess communications)
interface, the shell scripts execute the Ethereum functions.

We use an auxiliary “bootstrap” node for publishing the
smart contract to the blockchain at the beginning of each run
of the simulations (Figure 5). The bootstrap node then mines
the smart contract and sends the contract address and the ABI

(application binary interface; the ABI specifies which functions a
smart contract provides and how to call them) to the controllers
of the robots. As soon as this is done, the bootstrap node is
removed from the network. The bootstrap node is not necessarily
required and the smart contract could also be created by a robot.
However, we used an auxiliary node to make sure (i) that the
smart contract is available at the start of the actual experimental
run and (ii) that robots have the same initial conditions in
all experiments.

The experiments were conducted on a computer cluster. To
simulate the limited hardware of real robots, one core with
2.0 GHz and 1.8 GB of memory was assigned to each Docker
container5. The communication channels between the Docker
containers were only established when robots were within a
50 cm communication range in order to simulate the local
communication capabilities of real robots.

2https://github.com/Pold87/ARGoS-Blockchain-interface
3https://github.com/Capgemini-AIE/ethereum-docker, accessed on November 6,

2019
4The interface uses shell scripts, since, during development, it became evident that

they are executed much faster than other Ethereum APIs.
5This is a reasonable choice as a robot’s computer could easily have such

characteristics. It is also a convenient choice because on a computer with

2.0 GHz and 1.8 GB of RAM, Ethereum works “out-of-the-box,” without any

modifications; therefore, any interested user can obtain the most recent release

of Ethereum from the official depository and use it with our publicly available

ARGoS-Blockchain interface.

5. MATERIALS AND METHODS

5.1. Setup of the Simulations
We compare three consensus algorithms (LCP, W-MSR, and
blockchain) in terms of their general performance and resilience
to an increasing number of Byzantine robots. To this end,
N = 20 robots are used in the robot swarm simulator
ARGoS (Pinciroli et al., 2012). The swarm’s goal is to estimate
the relative frequency of white tiles in a 2× 2 m2 “checkerboard”
environment where the floor is covered with B black and W
white tiles of size 10 × 10 cm2, B + W = 400 (Figure 1).
The checkerboard environment, obstacle avoidance, and random
walk movement routines were developed in earlier work by
Valentini et al. (2016a). We replicate their parameters for the
random walk and obstacle avoidance routines. Depending on
the scenario, the positions of the black and white tiles are either
fixed by the experimenter or selected randomly at the beginning
of a simulation run. The starting positions of the robots are
randomly chosen from a uniform distribution at the beginning
of each simulation run. To enable the swarm to aggregate
information about the environment, each robot samples its local
ground sensor and exchanges information with other robots
in their communication range. The experiment is conducted
in discrete time steps with one time step corresponding to 1
s. At each time step, a robot i determines if it is above a
black or a white tile via its ground sensor. Each robot works
in exploration phases. We use the subscript notation i,m for
variables referring to a robot i in its mth exploration phase.
The duration of each exploration phase is d = 45 s. To
obtain a sensor reading, a robot i in its mth exploration phase
calculates the ratio ρ̂′

i,m between the number of white tiles Ŵi,m

and the total amount of tiles Ŵi,m + B̂i,m it sensed in this

exploration phase: ρ̂′
i,m =

Ŵi,m

Ŵi,m+B̂i,m
∈ [0, 1] . If the distance

between two robots is <50 cm, they are in communication
range and can exchange information, in accordance with real
swarm robotics systems that have only local communication
capabilities. This communication range leads to an average
degree of connectivity of 2.4 (i.e., one robot is, on average,
connected to 2.4 other robots) and yields multiple non-
connected clusters that exist almost all the time. For the
different approaches, 40 simulation runs (i.e., repetitions) were
performed for each value of the independent variable. These are
the common characteristics for all three consensus protocols.
The peculiarities of the different consensus protocols are given
in section 5.2.

5.2. Implementation of the Different
Consensus Models
5.2.1. Linear Consensus Protocol
Using the linear consensus protocol (LCP), each robot
keeps track of a frequency estimate ρ̂i,m that represents
its belief about the relative frequency of white tiles. At
the end of the first exploration phase (m = 0), the
frequency estimate is set to the sensor reading of the
first phase: ρ̂i,0 = ρ̂′

i,0. The frequency estimate is then
updated at the end of each 45 s exploration phase m by
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FIGURE 4 | For each robot, the ARGoS-Blockchain interface establishes a connection to the Ethereum blockchain via a Docker container and shell scripts that

provide templates for executing Ethereum (geth) functions.

FIGURE 5 | This scheme shows the initialization phase that is executed at the start of each experimental run.

incorporating the frequency estimates ρ̂j,m−1 of the neighborsNi

(Figure 6):

ρ̂i,m = wiiρ̂
′
i,m +

∑

j∈Ni

wijρ̂j,m−1 , (1)

where wii = wij = 1
|Ni|+1 is a weight factor, assigning

each message an equal weight, as done in related work (e.g.,
Saulnier et al., 2017). In the phase m + 1, a robot i distributes
its frequency estimate ρ̂i,m to other robots in communication
range, i.e., robots communicate their frequency estimates and not
their current sensor readings (the sensor readings fluctuate from
phase to phase and consensus achievement would be difficult
if these values were used). As in the work by Valentini et al.
(2016a), each robot has an identifier and only one message
can be received from any specific robot in each phase. In
order to store received messages, robots have a buffer size
of M = N − 1 = 19. If more messages are received,
only the last M messages are stored. The buffer size M =

19 makes sure that every robot is able to receive a message
from every other robot in each exploration phase but small
enough so that it represents a mechanism to prevent flooding of
the network.

5.2.2. W-MSR
The W-MSR algorithm is a variant of LCP and introduces a means
for detecting and discarding outliers. It also uses Equation (1) to
obtain a consensus but first performs outlier detection. To do so,
the outliers are removed from the set of neighbors. The algorithm
requires a design parameter F that should be selected based on
the assumed number of Byzantine robots and connectivity of the

network. We set F = 2. Then, all received values ρ̂j,m−1 larger
than ρ̂′

i,m are sorted in ascending order. If there are fewer than
F values larger than ρ̂i,m, all of them are added to the set of
outliersO. Otherwise, the F largest values are considered outliers.
The same procedure is applied to all values smaller than ρ̂′

i,m. To
update the frequency estimate, the W-MSR algorithm then uses
N

′ = N \O instead ofN in Equation (1).

5.2.3. Blockchain Approach
The blockchain approach is based on a smart contract that
aggregates the sensor readings of the robots into the frequency
estimate ρ̂t , while discarding outliers and rewarding robots for
contributing to the scenario (Figure 7). To be consistent with the
classical approaches, we will use the notation ρ̂i,m to indicate the
estimated frequency of white tiles as written in the blockchain of
robot i in itsmth exploration phase, but will otherwise write ρ̂t to
indicate the frequency estimate in escrow round t (see below for
a description of the escrow).

Using the blockchain approach, the robots’ sensor information
is stored and aggregated using a smart contract at given time
intervals (Figure 6). Each robot keeps a local copy of the
blockchain; if robots are physically close to each other, they
exchange their blockchain information. The setup uses the
ARGoS-Blockchain interface described in section 4. In order
to simulate the local communication capabilities of real robots,
the simulated robots have the ability to connect to each other’s
Ethereum processes via the Docker container if their distance
is smaller than 50 cm; they can then exchange blocks and
unconfirmed transactions of the blockchain. To synchronize
ARGoS and Ethereum, the experiments were conducted in
real time.
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FIGURE 6 | The robots explore the environment using a random walk routine and sample their ground sensors. Using the classical approaches LCP and W-MSR (top),

they update their frequency estimate every 45 s (i.e., every 45 time-steps) via Equation (1). Using the blockchain approach (bottom), every 45 s, the robots create a

blockchain transaction that includes their sensor reading. In contrast to the classical approaches, with the blockchain approach, the robots can check whether a

consensus has been reached by querying the state (true or false) of the smart contract event consensusReached. If true, they enter the exit state and stop

creating blockchain transactions. Then, they still perform the random walk and connect to other robots in their proximity to exchange blockchain information.

FIGURE 7 | The smart contract keeps track of the frequency estimate ρ̂t and

provides the function escrow to send a sensor reading ρ̂ ′
i,m. The event

consensusReached is set to true when the frequency estimate does not

change more than τ from one escrow round to the next one.

Each robot mines, i.e., it performs the Proof-of-Work, from
the start to the end of a simulation run. Every time a robot
successfully solves a block, it is rewarded by 5 ether (Ethereum’s
cryptocurrency6). In the beginning of each experimental run,
all robots have a balance of 0 ether. Since creating blockchain

6Since we do not use the main Ethereum network but a custom network

maintained by the robots, these ethers have value only within the robot swarm.

transactions requires ether, robots have to mine blocks to gain
ether and be able to send transactions to the smart contract.
The robots start with 0 ether so that we do not need to identify
beforehand which robots will be part of the experiment. This
builds a basis for “open robot swarms” (e.g., for citizen science
projects) where robots are free to join and leave at any time
during an experiment.

We specified an initial difficulty of the mining puzzle in
the genesis block, so that the swarm mines approximately one
block per second, resulting in 2.25 blocks per robot after 45 s.
Therefore, the average balance after 45 s is 2.25 × 5 ether =

11.25 ether. This means that after 45 s most of the time none
of the robots have enough ether to submit a transaction. Note
that it is possible for the robots to mine empty blocks, i.e., blocks
without any transactions, and still get the reward of 5 ether for
solving the block.

At the end of each exploration phase m (i.e., after 45 s),
each robot sends its sensor reading ρ̂′

i,m to the smart contract
via the function escrow(int sensorReading) (Figure 7)
and the value gets stored in the list openEscrows. That
is, to store a sensor reading in the blockchain (Figure 8), a
robot (i) creates a blockchain transaction which includes its
sensor reading in the data part of the transaction, (ii) adds a
deposit amount of q ether, (iii) signs this transaction, and (iv)
disseminates this transaction among its neighboring robots. The
function escrow accepts a value between 0.0 and 1.0, which
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FIGURE 8 | In this example, robot 3 creates the transaction tx 0x1 in order to send its sensor reading to the smart contract. The transaction is then disseminated to

its neighboring robots 1, 5, and 9. Since the transaction is not included in a block yet, it is an unconfirmed transaction. Robot 1 is able to mine a new block that

includes this transaction and two other transactions tx 0x2 and tx 0x3. Robot 1 then disseminates this mined block among its neighboring robots 3 and 8.

stands for the sensor reading ρ̂′
i,m of the robot i. Since smart

contracts in Ethereum accept integer values only, in the actual
implementation, all sensor readings are multiplied by 107 to
simulate rational numbers between 0.0 and 1.0 (e.g., instead of
sending 0.30, a robot would send 0.30×107). The deposit amount
q is intended to limit the number of sensor readings a robot can
send. That is, a robot “vouches” for its sensor reading. When
the robots send transactions, they do not check whether they
possess enough ether or not: in case they do not have enough
ether, the transaction is simply discarded by the smart contract.
We set q = 40 ether, a suitable value as determined in a
pilot experiment.7

The goal of the escrow is to collect sensor readings and
to reward robots that sent meaningful sensor data. As soon
as the length of openEscrows is equal to V = 20, a new
disbursement round t is performed, i.e., outliers are identified
and inliers are rewarded. To this end, the difference between
ρ̂t (frequency estimate in the smart contract in disbursement
round t) and ρ̂′

i,m (sensor readings from the individual escrow
transactions) is determined. If the absolute difference |ρ̂′

i,m − ρ̂t|

is smaller than a threshold ǫ, the sensor reading is accepted,
otherwise it is discarded. Accepted values of ρ̂′

i,m are called
inliers, discarded ones are called outliers. The value of the mean
ρ̂t is obtained by calculating the mean of all inliers over all
escrow rounds t. In every new escrow round, it is updated via
a one-pass algorithm to reduce the computational requirements.
The execution of the smart contract includes activities such as
verifying the validity of the transaction and, when it has received
V = 20 valid transactions, to compute the mean. The smart
contract is executed every time a block is mined (as long as it
includes transactions) but the computation of ρ̂t usually happens
with a lower frequency.

In the first round (t = 0)—i.e., in the time interval from the
beginning of the experiment to the moment in which the smart

7In a real-world scenario, determining a suitable price might be difficult. However,

there is a simple but effective remedy: instead of sending a transaction every 45 s,

robots could send a transaction as soon as they have enough ether to create a

transaction. We did not implement this “remedy” because we wanted the three

compared approaches to differ in as few aspects as possible.

contract has received 20 valid transactions—when no frequency
estimate ρ̂t is available yet, all values of ρ̂′

i,m are accepted. The
value of ǫ is a tuning parameter that influences how much the
current mean in the blockchain can change from one round to
the other. Decreasing ǫ will increase the sensitivity (the number
of Byzantine votes that are correctly identified as outliers), while
increasing ǫ will increase the specificity (the number of non-
Byzantine votes that are correctly included in the calculation of
the current mean). We set ǫ = 0.2, a suitable value as determined
in a pilot experiment. The value V is another tuning parameter:
lower values lead to earlier results for ρ̂t (since the value is only
updated at the end of an escrow round) but also to an increased
risk that the ratio between the number of Byzantine robots and
normal robots is high in an escrow round. If the value of V is set
too high, the detection of Byzantine robots may start too late and
they might have already caused a significant damage and non-
Byzantine robots may have to wait long until they get back their
deposit amount. We set the list length to V = 20 = N since
then, on average, every robot will be represented by one vote in
each round.

In order to incentivize robots to take part in the escrow,
inliers get a reward rt in ether. The reward rt is greater or equal
to the escrow value and calculated by distributing the collected
ether of the escrow round among the inliers: rt = Vq/int =

20 × 40 ether/int , where int is the number of inliers at round
t. Hence, robots can gain ether by mining, thereby improving the
network’s security, or by sending sensible sensor values, helping
to determine the correct frequency of white tiles. This creates an
implicit reward mechanism within the swarm that discourages
Byzantine robots to operate as such, since sending wrong sensor
measures costs cryptotokens.

5.3. Software Availability
The implementation of the presented classical approaches8 and
blockchain approach9 are hosted on GitHub.

8https://github.com/Pold87/robot-swarms-need-blockchain-classical
9https://github.com/Pold87/robot-swarms-need-blockchain
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5.4. Statistics
Let R = 1, 2, . . . ,N be the set of all robots, G be the
subset of non-Byzantine robots (mnemonic: G for “good”)
and B be the subset of Byzantine robots (mnemonic: B for
Byzantine or “bad”), with G ∪ B = R and |B| = k.
An asterisk ∗ indicates a randomly selected robot from the
set R and the infinity symbol ∞ indicates that the value
is determined at the end of an experimental run. Therefore,
ρ̂∗,∞ is the estimated frequency of white tiles of one randomly
selected robot at the end of an experimental run and ρ̂G,∞ =
∑

i∈G ρ̂i,m/|G| is the arithmetic mean of the frequency estimate
of all non-Byzantine robots at the end of an experiment. The
frequency estimate ρ̂B0 ,∞ indicates the mean of the frequency
estimate of a run where the number of Byzantine robots
was zero (B0). We use the median ˜ρ̂B0 ,∞ as a baseline
value to compare the performance of the approaches, when
the number of Byzantine robots is increased. The baseline
values are determined separately for the LCP, W-MSR, and
blockchain approaches.

The following statistics are used to compare the performances
of the three approaches:

• Absolute error AE∗. This statistic is the absolute value of the
difference between the actual relative frequency of white tiles ρ

and the frequency estimate ρ̂∗,∞ of a randomly selected robot
at the end of an experimental run: AE∗ = |ρ − ρ̂∗,∞|. AE∗

measures the predictive capacity of the different approaches.
For the calculation of AE∗, we randomly select one robot since
we assume that a consensus has been reached. Compared to
averaging the values of all or several robots, this approach is
closer to real-world scenarios where only a single functioning
robot might be retrieved after the end of an experiment;
additionally, it might be too time-consuming or costly to
sample all the robots.

• Harm. This statistic measures the amount of harm that
Byzantine robots cause to non-Byzantine robots. The idea is
that we compute the difference between (i) AEG , that is, the
average absolute error of the non-Byzantine robots in presence
of Byzantine robots, and (ii) ˜AEB0 , that is, the median of the
average absolute error over all runs with zero Byzantine robots:
harm = AEG − ˜AEB0 . Note that to calculate the harm we take
on an “omniscient perspective” and assume that we are able
to distinguish between Byzantine and non-Byzantine robots.
That is, for analysis purposes, here we consider the case when
it is possible to retrieve all the robots and identify those that
are non-Byzantine after the experiment.

• Consensus time TN . This statistic is the time in seconds until
all robots have reached a consensus on a certain estimated
frequency of white tiles (see section 6.2.2).

For the blockchain approach, additionally, the following statistic
is measured:

• Blockchain size BCMB. This statistic indicates the blockchain
size in MB of one randomly chosen robot, determined at the
end of each experimental run.

For all plots showing the absolute error AE∗ and the Harm
in the presence of Byzantine robots, we additionally perform

locally estimated scatterplot smoothing (LOESS10) indicated by
blue curves in the graphs. The gray bands around the blue LOESS

curve indicate the 95% confidence interval for predictions from
the regression. The LOESS curve is intended to make it easier
to spot the general trend when the number of Byzantine robots
is increased.

6. SIMULATIONS

In this section, we compare the three approaches (LCP, W-
MSR, blockchain) in five experiments under different conditions
(Table 1). The experiments are structured along the three
research questions introduced in section 1 and correspond to the
complexity and intelligence of Byzantine robots.

• Baseline: Experiment 1 is intended to establish a baseline
and does not contain any Byzantine robots. It tests the
three different approaches in an environment with randomly
distributed tiles. The goal of the experiment is to provide
a proof-of-concept and show that the approaches work as
intended in standard conditions.

• Byzantine Robots: Experiments 2–4 introduce Byzantine
robots. While there are many possible Byzantine failures,
in this work we study a case where each Byzantine robot
disseminates a frequency estimate of ρ̂i,m = 0.0 for the
classical approaches and accordingly ρ̂′

i,m = 0.0 for the
blockchain approach in all exploration phasesm, independent
of its actual sensor readings. This choice is motivated by two
reasons: (1) a value of 0.0 is the worst-case scenario and
maximizes the difference between ρ and ρ̂i,m and (2) it is a
failure mode studied in other research (e.g., Gupta et al., 2006).
We vary the number of Byzantine robots between 0 and 7.11

• Sybil attack: Experiment 5 then introduces clearly malicious
Byzantine robots that perform Sybil attacks. The malicious
robots still disseminate frequency estimates of ρ̂i,m = 0.0 and
ρ̂′
i,m = 0.0. However, they try to send as many messages as

possible by creating new identities at every time step. The goal
of this experiment is to show that just one malicious robot
suffices to let existing approaches fail.

6.1. Comparison in Absence of Byzantine
Robots
In the first experiment, we compare the values of AE∗ for the
different approaches without the presence of Byzantine robots.
To this end, the percentage of white tiles is increased from 0
to 100% in steps of 10%. A simulation run is stopped after
1,000 seconds. The goal of this experiment is to (1) determine if

10LOESS smoothing (Jacoby, 2000) is a non-parametric regression method to fit

non-linear data. To do so, the LOESS algorithm performs local linear regressions via

a weighted sliding-window approach. In other words, for each point in the dataset

(the current focal point), it takes a subset of the whole dataset (in our case the

75% nearest neighbors) to calculate the least-squares fit. The higher the distance to

the focal point, the lower the weight in the least-squares fit. We used the default

settings as provided by the R programming language, described at https://www.

rdocumentation.org/packages/stats/versions/3.6.2/topics/loess (accessed February

6, 2020).
11We set the maximum number of Byzantine robots to 7 since related literature

usually considers a maximum of 33% Byzantine agents.
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TABLE 1 | Overview of the experiments.

No. Experiment % White tiles # Byzantines Tile mixing Sybil attack Exit criterion

1 Random distribution (no Byzantines) 0, 10, . . . , 100 0 Yes No 1, 000 s

2 Random distribution 75 0, 1, . . . , 7 Yes No 1, 000 s

3 Consensus 75 0, 1, . . . , 7 Yes No Threshold below τ

4 Binary distribution 75 0, 1, . . . , 7 No No 1, 000 s

5 Sybil attack 75 0, 1, . . . , 7 Yes Yes 1, 000 s

FIGURE 9 | Experiment 1: Random distribution (no Byzantines). LCP (top), W-MSR (middle), and the blockchain approach (bottom) perform well if the tiles are

randomly distributed and if there are no Byzantine robots. This result serves as a baseline for the following simulations. No correlation between the actual frequency of

white tiles and the absolute error (AE∗) is visible. The graphs on the left-hand side show the mean with the error bars indicating the standard deviation. The dashed line

in the plots on the right-hand side show the ideal outcome, i.e., when the true % of white tiles equals the estimated % of white tiles.

the blockchain-based approach can replace existing approaches,
(2) establish a baseline for successive experiments, and (3) see
if all approaches are able to deal with a straightforward
experimental setup.

Results, Discussion, and Interpretation
The three approaches perform well with a mean absolute error
lower than 0.08 (Figure 9) and are, therefore, able to successfully
perform the desired task. However, the blockchain approach
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presents a slightly higher variability and mean absolute error
for some values of the actual % of white tiles. This is because
the blockchain approach has more random factors—due to the
Proof-of-Work and the specific security measure implemented
in the smart contract—than the classical approaches. The overall
good performance serves as a baseline for the following scenarios.

6.2. Comparison in Presence of Byzantine
Robots
In the next three simulations, we study the influence of Byzantine
robots (robots that disseminate ρ̂i,m = 0.0 for the classical
approaches and ρ̂′

i,m = 0.0 for the blockchain approach) on
the performance of the different approaches. The number of
Byzantine robots is increased from 0 to 7. The frequency of white
tiles in the environment is fixed to 75%. We chose 75% because
it is in the middle between 50% and 100%, i.e., it contains a bias
for one color to rule out that a random approach might work.

6.2.1. Byzantine Robots in a Random Environment
In this experiment, the influence of Byzantine robots on the value
of AE∗ is studied in an environment with randomly distributed
tiles. A simulation run is stopped after 1,000 s. The goal of this
experiment is to investigate how the Byzantine robots affect the
different approaches. With an increasing number of Byzantine
robots, we expect LCP to break down fairly quickly due to its
lack of security measures. In contrast W-MSR and the blockchain
approach should be more resilient as long as the number of
Byzantine robots remains low.

Results, discussion, and interpretation
The LCP approach is not designed to be resilient to the presence
of Byzantine robots; accordingly, a strong increase in its AE∗

can be observed when the number of Byzantine robots increases
(Figure 10). In contrast, by design, W-MSR is resilient to the
presence of Byzantine robots, as long as their number is low.
However, both approaches have a high standard deviation,
partially due to the high number of extreme outliers where the
AE∗ is 75%. This is due to the fact that AE∗ is computed by
randomly selecting a robot from the swarm. When the number
of Byzantine robots increases the probability of selecting a
Byzantine robot increases. While different choices of W-MSR’s
design parameter F would lead to different values for AE∗, the
percentage of extreme outliers would stay the same (since the
Byzantine robots do not follow the protocol); additionally, in a
real-world scenario one would not be able to know whether the
selected robot is Byzantine or not.

The blockchain approach is resilient also to a higher number
of Byzantine robots. In contrast to the classical approaches, even
if a Byzantine robot is selected, the AE∗ stays low. This is due to
the consensus protocol of the blockchain, i.e., all robots agree on
the longest chain and even the Byzantine robots share the same
estimate written in the blockchain.

Particularly interesting is the harm value of the LCP. It starts
with a median of more than 10% for one Byzantine robot. In
other words, the estimated frequency of all non-Byzantine robots
is already 10% worse compared to the baseline, if just 5% of the
robots (1 out of 20) are Byzantine. The harm can also be negative,
in cases when the Byzantine robots help to get closer to the

actual ρ. This is the case for the blockchain approach. Without
Byzantine robots, the blockchain approach overestimates the
frequency of white tiles due to the implemented securitymeasure:
since the smart contract only accepts values within ρ̂t − ǫ <

ρ̂′
i,m < ρ̂t + ǫ, several ρ̂′

i,m values from non-Byzantine robots
will be discarded. Therefore, the addition of a small number of
Byzantine robots reduces the absolute error and the harm. This
is a characteristic of the specific smart contract and different
values of ǫ or a different outlier detection method (e.g., taking the
standard deviation into account) would lead to different results.

6.2.2. Consensus Agreement in the Presence of

Byzantine Robots
In this experiment, the influence of Byzantine robots on the
swarm’s ability to reach a consensus is studied. The goal of this
experiment is to investigate if a swarm can reach a consensus in a
fully decentralized way.

For the classical approaches (LCP and W-MSR), we say that
a consensus in the swarm has been reached once the absolute
difference between the highest ρ̂i,m and the lowest ρ̂j,m in the
swarm is smaller than a threshold value τ . However, as soon as
there is one “stubborn” Byzantine robot that keeps a constant
frequency estimate, consensus of all robots can only be on that
value when using the classical approaches. In our case, if the
robots would come to a consensus, the only possible value would
be 0.0, therefore, the expected absolute error would be 75% for
the classical approaches, resulting in a useless frequency estimate
of the swarm. For this reason, we show the consensus time for the
classical approaches only in the absence of Byzantine robots.

For the blockchain approach, consensus is reached, if the
frequency estimate between two escrow rounds does not change
more than τ , i.e., |ρ̂t − ρ̂t−1| < τ . The blockchain event
consensusReached is then set to true. At the end of each
exploration phase, each robot queries the status of this event.
If the status of the event is true for all robots, the simulation
run is stopped. For this experiment, we use the consensus
threshold τ = 0.02.

Results, discussion, and interpretation
The top row in Figure 11 shows the comparison of the three
approaches in the absence of Byzantine robots. All approaches
perform well and are able to reach a consensus in a reasonably
short amount of time. The consensus time of the W-MSR

and blockchain approaches is higher than the baseline LCP

approach. Hence, there is a trade-off between consensus time
in the absence of Byzantine robots and the level of security an
approach provides.

The bottom row in Figure 11 shows the absolute error and
consensus time of the blockchain approach. The consensus time
rises slightly when the number of Byzantine robots increases.
Similarly, the absolute error also increases, but the mean of the
AE∗ remains at about 20% even with seven Byzantine robots.

The blockchain-controlled swarm could reach a decentralized
consensus, even in the presence of Byzantine robots. Therefore,
it is autonomous and resilient, while the classical approaches
are not. In addition—even without Byzantine robots—it is
difficult for the classical approaches to determine whether each
robot actually agrees on a certain value. Note that the classical
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FIGURE 10 | Experiment 2: Random distribution. When the number of Byzantine robots increases, LCP’s performance (top) quickly deteriorates and the frequency of

extreme outliers becomes high (the percentages at the top of each graph correspond to the frequency with which Byzantine robots were selected when calculating

AE∗). Therefore, with the classical approaches, one is always exposed to the risk of getting a completely wrong result, even if there is just one Byzantine robot in the

swarm. W-MSR (middle) is able to manage a few Byzantine robots but its AE∗ quickly increases when there are more than three of them. The blockchain approach

(bottom) is largely unaffected by the increasing number of Byzantine robots, and does not contain extreme outliers. The graphs on the left-hand side show the mean

with the error bars indicating the standard deviation. The blue line is obtained by locally estimated scatterplot smoothing (LOESS), the gray band around the blue line

shows the 95% confidence interval for predictions from the LOESS regression.

approaches could be extended, so that robots in the swarm
send a consensus signal to their neighbors when they have
reached convergence; however, this signal would be prone to
Byzantine robots sending a negative consensus signal. In practice,
an external observer might be needed but this observer would
represent a single point of failure and in some cases it might
even be impossible to set it up. In contrast, in the case of the
blockchain approach, the consensus determination is done on-
chain (i.e., via a blockchain-based smart contract) without any
external observer.

6.2.3. Byzantine Robots in a Binary Environment
In this experiment, the influence of Byzantine robots on the
value of AE∗ is studied in an environment with a fixed

distribution of tiles (Figure 12). Using the fixed distribution,
the tiles in the left part of the environment are black (25%),
while those in the right part are white (75%). A simulation
run is stopped after 1,000 s. The goal of this experiment
is to investigate whether the modified distribution of tiles
makes the detection of outliers more difficult since also
non-Byzantine robots will get extreme sensor readings of
ρ̂′
i,m = 0.0 and ρ̂′

i,m = 1.0.

Results, Discussion, and Interpretation
While LCP’s AE∗ quickly increases with an increasing number
of Byzantine robots, the W-MSR approach is able to manage a
few Byzantine robots, starting with a relatively high AE∗ of 10%
(Figure 13).
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FIGURE 11 | Experiment 3: Consensus. (Top) In the absence of Byzantine robots all approaches are able to reach a consensus in a reasonably short amount of time.

However, there is a trade-off between consensus time in the absence of Byzantine robots and the level of security an approach provides. (Bottom) When testing the

swarm’s ability to reach a consensus, the classical approaches can only reach a consensus on the values of the Byzantine robots. In contrast, the blockchain

approach continues to work. It shows a slight increase in the consensus time when the number of Byzantine robots is increased; this happens due to the increased

variance that is introduced by the increasing number of Byzantine robots. The graphs on the left-hand side show the mean with the error bars indicating the standard

deviation. The blue line is obtained by locally estimated scatterplot smoothing (LOESS), the gray band around the blue line shows the 95% confidence interval for

predictions from the LOESS regression.

When no Byzantine robots are part of the swarm, LCP

performs better than W-MSR and the blockchain approach.
This is because of the security measures implemented in W-
MSR and in the blockchain approach, which have difficulties in
distinguishing between the values generated by the Byzantine and
by the non-Byzantine robots. However, in contrast to W-MSR,
the blockchain’s performance remains approximately constant,
even for a rather high number of Byzantine robots. The harm
distribution is similar to Experiment 2.

These results show that there is no “one size fits all” of
consensus protocols; instead, there is a trade-off between adding
security measures to approaches and their ability to perform

well under all circumstances. However, in real-world scenarios,
we will almost certainly have to deal with Byzantine robots,
therefore, using the blockchain approach is still warranted.

6.3. Comparison in Presence of Sybil
Attacks
In the last experiment, we study the case in which Byzantine
robots perform a Sybil attack. The goal of this experiment is to
investigate how decentralized swarms can deal with robots that
forge multiple identities. The tiles are randomly distributed and a
simulation run is stopped after 1,000 s.
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FIGURE 12 | When using the fixed distribution of the tiles, the left part of the

environment is covered with black tiles while the rest is covered with white

tiles. This fixed distribution is expected to make it more difficult for the smart

contract to detect Byzantine robots since normal robots might send the same

sensor values as Byzantine robots.

To perform a Sybil attack, the Byzantine robots are
programmed as follows. In the classical approaches, every
Byzantine robot creates a new identity at every time step and uses
it to disseminate its sensor readings. In the blockchain approach,
robots do not create new identities since these identities would
not have any ether; therefore, the Sybil attack would be prevented
automatically. We could have programmed Byzantine robots to
first create new public addresses (i.e., identities) and distribute
their ether among these addresses but since the public addresses
are not used in the identification of outliers, this was not deemed
necessary. Additionally, this would most likely weaken the Sybil
attack, since first distributing the tokens would slow down the
process. Instead, in the blockchain approach, a Byzantine robot
sends as many transactions as possible. However, the limiting
factor is that sending transactions costs cryptotokens, that is,
robots have to send 40 ether every time they send an escrow
transaction that contains their sensor reading (section 5.2.3).

Results, Discussion, and Interpretation
As expected, the classical approaches have high values for AE∗

and harm as soon as one robot in the swarm is able to perform
a Sybil attack (Figure 14). In stark contrast, in the blockchain
approach, the Sybil attack is not successful since the 40 ether
robots have to deposit to send a transaction prevents the robots
from creating a high number of transactions. In other words, the
robots cannot “spam” or “flood” the network with transactions
since they would quickly run out of ether. The robots also
cannot steal the identity of other robots (spoofing attack) due
to digital signatures. Therefore, the blockchain approach stays
resilient, even in the presence of a relatively high number
of Byzantine robots. Based on these results, one of the main
advantages of this approach is visible: the blockchain is able to
introduce scarcity into a decentralized swarm, making the system
more secure.

7. GENERAL DISCUSSION

In this work, we set out to study whether robot swarms need
blockchain technology. To this end, we considered the open
research problem of consensus reaching in robot swarms for the

general case of Byzantine robots and the more specific case of
Sybil attacks. To answer the three research questions listed in the
introduction of this article, we used a collective estimation task
and compared the blockchain approach to existing consensus
protocols. Our simulation results support a positive answer to
our research questions: in the absence of Byzantine robots,
consensus could be reached as effectively with blockchain-based
smart contracts as with existing consensus protocols in robot
swarms (RQ 1); the use of smart contracts indeed mitigates
the influence of Byzantine robots in robot swarms (RQ 2); and
Sybil attacks were prevented when using the blockchain approach
(RQ 3). Below, we discuss the implications and limitations of
our research.

7.1. Implications
The results of our experiments can be generalized in two
ways: across use cases and across platforms. We showed that
it is possible to implement meta-controllers with blockchain-
based smart contracts. In our experiments, a meta-controller
(i) aggregated the sensor readings from the individual robots,
(ii) performed simple, yet effective outlier detection to manage
Byzantine robots, and (iii) determined if a consensus was reached
in the swarm, even in the presence of Byzantine robots.

The provided use case was intended to be a simple and
easy to understand example of how a smart contract can be
used in swarm robotics. Therefore, we used one of the simplest
outlier detection methods. As our goal is to provide a proof-
of-concept for blockchain-coordinated robot swarms, we did
not strive for the best performance by fine-tuning algorithm
parameters. For example, the approach could be extended and
improved with more sophisticated outlier detection methods.
Since smart contracts are Turing-complete, any outlier detection
method is in principle implementable; in practice, however, one
should choose a lightweight algorithm with a low run-time.
Another aspect to consider is the operability of the approach
in a dynamic environment. In the current implementation, the
smart contract obtains a rough estimate in the first escrow round
and then narrows down the collective estimate; a sudden change
in the environment (e.g., the color of all the tiles is suddenly
inverted) could lead to a dead-end situation, where all sensor
readings in future escrow rounds are discarded by the outlier
detection mechanism. However, in an improved version of the
smart contract, one could, for example, always accept a minimum
number of sensor readings per escrow round—even if they are
outliers—to prepare the algorithm for dynamic environments. It
is important to note that there is no need for adapting the robots’
controllers when changing the outlier detection method in the
smart contract.

Although we selected a specific scenario and task (consensus
reaching in collective estimation), this result is promising for
the field of swarm robotics in general: using smart contracts as
meta-controllers might facilitate the implementation of various
other existing and novel swarm robotics applications. To list
concrete examples, besides the presented collective decision-
making scenario, we believe a blockchain-based approach might
be useful in:
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FIGURE 13 | Experiment 4: Binary distribution. Similar to the random distribution, LCP (top) shows a steep increase in AE∗, W-MSR (middle) can handle a few

Byzantine robots, and the blockchain approach (bottom) is also resilient to a higher number of Byzantine robots. The graphs on the left-hand side show the mean

with the error bars indicating the standard deviation. The blue line is obtained by locally estimated scatterplot smoothing (LOESS), the gray band around the blue line

shows the 95% confidence interval for predictions from the LOESS regression.

• task-allocation scenarios: e.g., in an area exploration scenario,
a smart contract could identify unexplored areas and
send control commands to different robots to explore
these areas;

• reputation management: the tamper-proof nature of the
blockchain allows for maintaining reputation values for the
different robots;

• lightweight machine learning algorithms: e.g., a smart contract
could serve as a database for sensor data and train a
classification algorithm;

• collective mapping: parts of a map could be stored and
aggregated in a smart contract;

• robot-to-robot economies: e.g., auction-based approaches,
where the auction is executed via a smart contract;

• robot-to-human economies: e.g, people could pay robots for
executing a task (monetization of jobs, leading to robot as
a service) or, vice versa, people could offer rewards for the
completion of a task.

In addition to considering other use cases, it is also possible to
consider swarms composed of entities that are not robots. In
this sense, this work can be seen as a stepping-stone for swarms
composed of people, Internet-of-Things devices, and/or vehicles.

A blockchain is tamper-proof due to its decentralized
consensus protocol that is able to maintain scarce resources in
decentralized systems. In our research, we showed that these
scarce “cryptotokens,” i.e., immutable units of exchange stored
in the blockchain, can be used to prevent Sybil attacks in open
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FIGURE 14 | Experiment 5: Sybil attack. In the comparison of the approaches, it is clearly visible that LCP (top) and W-MSR (middle) fail in the presence of even one

Byzantine robot performing a Sybil attack. In contrast, the blockchain approach (bottom) is able to prevent these attacks by limiting the number of transactions that

can be included in the blockchain. The graphs on the left-hand side show the mean with the error bars indicating the standard deviation. The blue line is obtained by

locally estimated scatterplot smoothing (LOESS), the gray band around the blue line shows the 95% confidence interval for predictions from the LOESS regression.

robot swarms. A swarm is open when entities are free to join
(e.g., because it turns out that the mission is too complex to be
solved by a smaller swarm) and leave the swarm at any moment
in time (e.g., because of a hardware failure). Sending a message
via a blockchain is only possible when the sender spends some
amount of cryptotokens. Hence, the number of messages a robot
can send is limited and Sybil attacks can be prevented. This is
of the utmost importance for many swarm robotics applications
where a Sybil attack would undermine the swarm performance.
For example, in voting scenarios without Sybil attack protection,
an attacker would be able to achieve the majority; and in sensor
fusion scenarios, an attacker would be able to gravely bias
the swarm estimate. These attacks do not require sophisticated
programming skills and are hard to prevent in decentralized

systems (Borisov, 2006). Themost usedmeans of preventing such
attacks are centralized cryptographic authentication or password
authentication. In our case, this would have meant that at the
beginning of a simulation run, each robot would have received
a list of public keys that are seen as trusted entities and would
only have accepted a message from another robot if the message
was signed by one of the trusted robots. However, this would
entail the common disadvantages of centralized systems, such
as the presence of a single point of failure at the moment when
the list of public keys is created and distributed and reduced
flexibility, since every robotmust be identified before deployment
and adding robots at run time would not be possible. Therefore,
basing the approach on centralized cryptographic authentication
would restrict the applicability to closed robot swarms.
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Finally, a blockchain serves as a tamper-proof audit log and
keeps track of all relevant information from all robots over
time. In real-world applications it may happen that only a single
robot can be retrieved (e.g., only one robot might be physically
reachable, or retrieving robots might be very expensive)12.
However, the information written in its blockchain may be
sufficient to reconstruct the complete course of the experiment.
This information can be post-processed, e.g., outliers could
even be detected after the end of the experiment. In addition,
any other irregularities can be spotted and analyzed, e.g., for
digital forensics.

7.2. Limitations
Our results clearly showed that the blockchain-based consensus
protocol outperforms existing consensus protocols when
Byzantine robots are present and that it is even needed when
wishing to reach consensus in a decentralized manner under
Sybil attack. While we can conclude that robot swarms are better
off with blockchain technology, certain constraints need to be
considered at the design stage before choosing to work with
blockchain-controlled robot swarms.

A first possible issue is the fact that blockchains can introduce
delays. Transactions first have to be mined to be considered
by the smart contracts. Therefore, if fast reactions to messages
are required, blockchains are not advisable. Instead, blockchains
should be used for security-relevant data and should be combined
with traditional local processing to yield hybrid approaches.
Therefore, it is important to determine which information is
security-relevant and should be processed via smart contracts
(“on-chain”) and which information can be processed locally by
single robots (“off-chain”).

Another possible issue is connected with blockchain
technology’s storage requirements. This was however not the
case in our experiments, where the size of an escrow blockchain
transaction was 148 Bytes and the total size of the blockchain
(including auxiliary files) reached on average 6.8 MB after
1,000 s. During these 1,000 s, on average, 350 transactions were
stored in the blockchain. To further test scalability, we conducted
experiments with a run-time of 24 h with 20 robots. After the
24 h, the total size of the blockchain reached on average 33 MB.
The blockchain size grows linearly after an initialization phase
of approximately 6 h during which approximately one block
is created per second; in the beginning, the network needs to
adapt to the hash power in the network; after 6 h, one block
is created approximately every 15 s. This time interval is the
default in Ethereum, and could be changed if necessary. If we
hypothesize robots with 16 GB of storage capacity—this is within
the capacity of state-of-the-art swarm robotic platforms, such as
the Pi-puck robot (Millard et al., 2017)—the storage would last
for approximately 485 days.

Another aspect of scalability is the influence of the robot
swarm size on the blockchain size. Adding more robots to the
swarmmight increase the blockchain size because a larger swarm

12If one has, however, the possibility to choose between different robots, one may

select the robot with the longest blockchain to make sure that the chain is selected

where the highest number of participants contributed to the Proof-of-Work.

might create more transactions. In the following calculation,
we assume that 1,000 robots create 50 times more transactions
than 20 robots and that each robot creates a transaction every
45 s. With these 1,000 robots, the upper limit for the estimated
blockchain size would be 1.5 GB after 24 h. Please note that
this calculation is just a rough approximation and that the
study of scalability has other aspects that should be taken into
account in future research, such as: (i) with a larger swarm size,
it might suffice to create a transaction after longer intervals,
reducing in this way the overall dimension of the blockchain; (ii)
transactions could be aggregated or preprocessed before sending
them to the blockchain; and (iii) since the PoW algorithm
adapts to the hash power in the network, the number of mined
blocks is largely independent of the number of robots, therefore,
the space requirements for a greater number of robots will
grow sublinearly.

In this article, we used a PoW-based consensus protocol. In
contrast to popular opinion, PoW does not require sophisticated
hardware and does not become necessarily harder over time. The
difficulty of the mining puzzle depends on the total hash power in
the network. Less powerful hardware leads to lower hash power.
From a theoretical point of view, it would be possible tomine on a
Kilobot (Rubenstein et al., 2014), which has an 8MHz processor.
In addition, it has been demonstrated that a variety of single
board processors with ARM processors (e.g., the Raspberry Pi) are
able to mine and run Ethereum nodes13. If, however, an intruder
can outperform the hash power of the remaining robots (51%
attack), it can change the order of the transactions and decide
whether or not transactions should be included in the blockchain.
Therefore, the higher the hash power of the network, the more
difficult it is to perform a 51% attack. In this article, we used
2.0 GHz and 1.8 GB of RAM so that Ethereum works “out-of-
the-box,” as explained in section 4. In order to let Ethereum run
on robots with more limited hardware such as those that we
have recently acquired in our lab, we have created a modified
version of Ethereum’s source code14. With these modifications,
Ethereum, including PoW, runs on the Pi-puck robots in our lab.
By changing the initial difficulty specified in the genesis block,
it is possible to establish a direct mapping for the time it takes
to perform the PoW calculations from our simulations to the
physical hardware.

A powerful intruder cannot forge signatures or change the
logic implemented in a smart contract. Therefore, it depends
on the context whether a PoW-based consensus protocol is
adequate. If no powerful intruder is expected to enter the swarm
(e.g., in an underwater exploration), PoW can be suitable: as
long as the majority of robots acts according to the protocol,

13http://ethembedded.com/, accessed on September 17, 2019.
14The necessary modifications can be found at http://iridia.ulb.ac.be/supp/

IridiaSupp2019-009/Ethereum-on-Pi-puck/. Ethereum’s default mining

algorithm—an extension of the basic PoW algorithm, as for example used in

Bitcoin—includes a memory-hard problem to make it resistant to specialized

mining hardware using ASICs. This is done via the generation of a data structure

called DAG which requires more than 1.0 GB of RAM (for a description of

the DAG, see https://github.com/ethereum/wiki/wiki/ethash-dag, accessed on

February 16, 2020). With the described modifications, the RAM requirements can

be reduced to a few MB.
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the data in the blockchain can be trusted. In robot swarm
deployments, one might be concerned that the computational
overhead required by PoWmight lead to battery drain. However,
preliminary results (not discussed in this article) show that
the power consumption due to the blockchain mining activity
is low and compatible with experimentation with a swarm of
Pi-puck robots.

If the swarm is operating in an environment where reliable
global communication is possible, PoW does not need to be
run on the hardware of the robots. In this case, a custom
blockchain network maintained by the robots is not necessary.
Instead, a smart contract could be used in the main Ethereum
network. Since the main Ethereum network is maintained by a
decentralized network of computers, it does not pose a single
point of failure. However, such a scenario would change some
other aspects (e.g., the entry conditions for new robots) and
would possibly have a stronger focus on economics (e.g., attacks
would become expensive in terms of the “main Ethereum
network” cryptocurrency, that has a certain market price), so we
will leave it for future work. The scope of this article is strictly
limited to swarm robotics to avoid any confusion with centralized
multi-robot systems.

7.3. Future Work
In this article, we studied attacks at the collective estimation
level by sending deceitful data. However, there is a difference
between attacks at the collective estimation level and attacks
at the blockchain level. Some attacks that can pose problems
to decentralized systems, such as replay attacks, are naturally
prevented by blockchain technology. Yet, there are potential
blockchain-level attacks in robot swarms: for example, clustering
of malicious robots to perform a majority attack. In order to
prevent majority attacks, a flocking algorithm may guarantee
a certain degree of connectivity and help to avoid local
robot clusters that have different blockchain forks. As an
additional procedure to manage blockchain forks, the number
of confirmations (i.e., the number of blocks after the block
number that contains a certain transaction) can serve as a
metric indicating how probable it is that a transaction stays in
a specific block.

The robustness of the blockchain approach to much sparser
connectivity is an open research topic that we plan to address
in future research. As described in section 2.1, transactions
stay valid and can be included in the blockchain after days
of disconnectivity or after a blockchain fork gets discarded
(they then become unconfirmed transactions again that can be
included in later blocks). However, the longer the robot clusters
stay disconnected, the higher the risk that they base a decision
on a blockchain fork that is not the longest blockchain. There
are several strategies to address this issue. One option is to
increase the average time between mined blocks (block time)
via a different difficulty setting. This will introduce delays but
reduce the risk that decisions are based on non-final information.
Further possibilities are aggregation algorithms to guarantee a
certain connectivity; or “messenger robots” that can move faster
(e.g., UAVs) and bring together different blockchain information.
The robot that we are currently planning to use (the Pi-puck)

has a Wi-Fi speed of up to 72 Mbps. Therefore, if a robot in
the studied scenario would join the swarm after 20 min, it could
download the blockchain within a few seconds from other robots.
In future research, we will measure the relationship between
the time two components of the swarm were disconnected and
the time it takes to re-synchronize the blockchain across the
disconnected robots afterwards.

In future work, we plan to transfer the system to
heterogeneous robot swarms where some of the robots
might have very different computational capabilities. In such
a heterogeneous robot swarm, the overhead of blockchain
technology could be delegated to the more powerful robots. For
example, a swarm of smaller Kilobots could report back to larger
Pi-puck robots at certain intervals. The Pi-puck robots could
store the blockchain and perform the PoW, while the Kilobots
just create transactions.

Another option to bring blockchain technology to robots
of any size is to use a different blockchain framework. In the
last couple of years, blockchain technology has experienced
dramatic development. While at the start of this research
work Ethereum was the only fully-developed blockchain-based
smart contract platform, there are now more than a dozen
smart contract platforms. These frameworks differ, among other
aspects, in terms of their computational requirements, consensus
protocol, scalability, robustness, speed, and use cases. The nature
of, for example, public-key cryptography, transactions, and
smart contracts, is largely independent of the used consensus
protocol. Therefore, our work can serve as a basis for studying
other blockchain frameworks, such as, Hyperledger Sawtooth15,
Cardano16, and Tezos17 in the context of robot swarms. By
means of these blockchain frameworks, we intend to compare
alternatives to the Proof-of-Work-based consensus protocol on
both the physical robots and via the ARGoS-Blockchain interface
in future work. We plan to study Proof-of-Stake (already
implemented in some existing blockchain protocols), Proof-
of-Sensing (only robots that can produce a certain sensory
output can send or validate transactions), or even Proof-of-
physical-Work (only robots that can prove that they have
performed physical work, such as collecting an item can send or
validate transactions).

8. CONCLUSIONS

In this article, our goal was to compare consensus protocols
used in swarm robotics with regard to their resilience to
Byzantine robots. We showed that existing consensus protocols
can easily fail in the presence of Byzantine robots. With the
developed ARGoS-blockchain interface, we provide a framework
for secure robot swarm coordination via blockchain-based smart
contracts as “meta-controllers.” Blockchain technology makes
sure that every robot runs the same code, that the code
is executed exactly as specified, that the robots come to a
consensus regarding the outcome of the execution, and that

15https://sawtooth.hyperledger.org/ (accessed September 12, 2019).
16https://www.cardano.org/en/home/ (accessed on September 12, 2019).
17https://tezos.com/ (accessed September 12, 2019).
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there is not a single point of failure. Blockchains prevent Sybil
attacks via their scarce cryptocurrency that limits the number
of transactions a robot can send. Additionally, the blockchain
is able to securely store critical events. This decentralized log
can then be used to evaluate the quality of experiments and to
spot irregularities.

Blockchain-controlled robot swarms must meet certain
computational and memory requirements. Compared to
Internet-based blockchain networks, in robot swarms, the
computational capacities are limited, the delays can be much
longer, and failing entities are more probable due to rough
environmental conditions or flat batteries. While we discussed
these characteristics, we do not question the fact that there are
still many open challenges for blockchain-based swarm robotics.
Nevertheless, we are convinced that the synthesis of these two
technologies offers unprecedented possibilities and that the
various challenges can gradually be addressed. In this article
we have shown that blockchain-based smart contracts are a
promising and versatile tool to address security issues in swarm
robotics. If we ever want robot swarms to be deployed in the real
world, we need to start preparing them to the possible presence
of Byzantine robots: the work we have presented is a first step in
this direction.
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Robot swarms are groups of robots that each act autonomously based on only

local perception and coordination with neighboring robots. While current swarm

implementations can be large in size (e.g., 1,000 robots), they are typically constrained

to working in highly controlled indoor environments. Moreover, a common property of

swarms is the underlying assumption that the robots act in close proximity of each other

(e.g., 10 body lengths apart), and typically employ uninterrupted, situated, close-range

communication for coordination. Many real world applications, including environmental

monitoring and precision agriculture, however, require scalable groups of robots to

act jointly over large distances (e.g., 1,000 body lengths), rendering the use of dense

swarms impractical. Using a dense swarm for such applications would be invasive

to the environment and unrealistic in terms of mission deployment, maintenance and

post-mission recovery. To address this problem, we propose the sparse swarm concept,

and illustrate its use in the context of four application scenarios. For one scenario, which

requires a group of rovers to traverse, and monitor, a forest environment, we identify

the challenges involved at all levels in developing a sparse swarm—from the hardware

platform to communication-constrained coordination algorithms—and discuss potential

solutions. We outline open questions of theoretical and practical nature, which we hope

will bring the concept of sparse swarms to fruition.

Keywords: swarm robotics, multirobot systems, field robotics, forest robots, sparse coupling, communication

networks, information propagation, long-range radio

1. INTRODUCTION

Swarm robotics takes inspiration from observed behaviors of collective systems in nature
(Camazine et al., 2003) to develop large-scale teams of robots with limited individual capabilities;
the collective behavior emerging from the self-organized interactions between the many robots of
a swarm allow it to solve complex tasks (Beni, 2004; Sahin, 2004). To date, robot swarms have been
demonstrated to solve tasks such as aggregation (Gauci et al., 2014), coordinatedmovement (Virágh
et al., 2014), transportation of objects (Wang and Schwager, 2016), self-assembly (Rubenstein
et al., 2014; Mathews et al., 2017), collective construction of structures (Werfel et al., 2014), and
decentralized consensus formation (Schmickl and Crailsheim, 2008; Valentini et al., 2016).

Despite the variety of movement-centric and simple cognitive tasks that robot swarms have been
demonstrated to perform (Bayındır, 2016), they continue to function largely as demonstration
platforms in carefully controlled laboratory environments (Schranz et al., 2020), unable to
transition to realistic application scenarios due to the following challenges:
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Difficulties maintaining a high-density swarm: A common
feature of existing swarm robotic systems is the underlying
assumption that the robots of the swarm act in close proximity of
each other. Inter-robot distances of existing swarms are typically
around 1–10 body lengths, both in indoor (Rubenstein et al.,
2014; Pickem et al., 2017), and outdoor (Duarte et al., 2016;
Zoss et al., 2018) environments. Densely packed robot swarms are
inspired by social insect colonies, and rely on inter-robot physical
interactions to complete their task. However, in employing such
swarms in real-world outdoor applications encompassing large
areas, the end-user faces a number of challenges involving
the deployment and maintenance of such large numbers of
robots during the mission. The recovery of the swarm post-
mission is also problematic, particularly considering the high
environmental cost of unrecovered robots. Furthermore, densely
packed swarms are more likely to physically disrupt the other
mission-participants, such as emergency workers in search and
rescue operations.
Constraints on inter-robot communication: In most robot
swarms, inter-robot coordination is reliant on an uninterrupted
access to situated, close-range communication of coordination
messages between robots (Duarte et al., 2016; Mathews et al.,
2017, 2019; Garattoni and Birattari, 2018; Albani et al., 2019).
However, in real-world scenarios robot swarms may face a
number of challenges in exchanging coordination messages
across the swarm. Swarms would be required to share
communication channels with other participants in a mission,
with high-bandwidth wireless channels most likely being
reserved for human operators. Additionally, due to regulatory
imposed channel-specific limitations on the communication
duty-cycle (i.e., the proportion of time the transmitter is sending
messages) (Semtech, 2015; Bor and Roedig, 2017), the robots
of the swarm may also expect significant latency in receiving
coordination messages.
Restricted mobility and low endurance of robot platforms:

Most commercially available swarm robot platforms are designed
to be operated over short distances (i.e., limited endurance)
in carefully controlled indoor laboratory environments. This
is particularly the case for swarms of ground robots that are
typically constrained to operate on smooth, leveled surfaces such
as table-tops (Mondada et al., 2009; Chamanbaz et al., 2017; Jones
et al., 2018). Furthermore, low-cost outdoor platforms typically
offer low autonomy and endurance, and are not thoroughly
tested, compared to more costly alternatives.

In summary, despite the desirable characteristics of
robustness and flexibility observed in collective systems in
nature (Camazine et al., 2003), robot swarms inspired by such
systems remain ill suited for realistic application scenarios. In
mimicking the densities and coordination strategies of swarms
in nature, swarm robotics faces a number of technological
challenges relating to materials and their fabrication, power-
efficiency, and battery-technologies for developing small-scale
robots of a swarm that are compliant and autonomous
in manners similar to their biological counterparts (Yang
et al., 2018). Therefore, for robot swarms to be employed in
realistic application scenarios, swarm technologies need to
be reconceptualized.

In this paper, we propose the concept of sparse swarms, where
the group of robots interact while (i) not being in close proximity
to each other, and/or (ii) it is not possible for information
to rapidly propagate within the group. Sparse swarms could
be particularly relevant in application scenarios, where the
robots are operating in the order of 1, 000 body lengths apart
under sporadic low-bandwidth communication constraints. In
such scenarios, the robots would be likely be required to
coordinate their activities via informational interactions rather
than physical interactions.

2. RELATED CONCEPTS

This section notes similarities and differences between
sparse swarms and two related concepts, cloud robotics
and multirobot systems.

2.1. Cloud Robotics
In the domain of cloud robotics, robots separated by large
distances perform some tasks, for example, grasping objects,
while storing and sharing task-critical information over a
“cloud” (Beetz et al., 2011; Kehoe et al., 2015; Wan et al., 2016).
This is realized via machine-to-cloud (M2C) and/or machine-
to-machine (M2M) communications (Hu et al., 2012). In both
cloud robotics and sparse swarms, robots may rely on long-
range interactions, for example, to share and learn from each
others’ experiences. However, while cloud-linked robots work
on independent tasks in different environments, sparse swarm
robots work on a common task in a shared environment,
which requires them to coordinate their activities. Moreover,
cloud-linked robots rely on costly external infrastructure—
Internet connections providing high-bandwidth, low-latency
communication with cloud services—whichmay not be available
to sparse swarms deployed in real-world scenarios, for example,
outdoors. The robots in a typical sparse swarm scenario are
also likely to be less expensive than those in a typical cloud
robotics scenario.

2.2. Multirobot Systems
While any robot swarm can be considered a multirobot
system, the former term is usually preferred where a system
comprises a relatively homogeneous group of robots, typically
a dozen or more, which are unable to solve a given task
efficiently on their own, but coordinate their activities, by
exploiting only information that they can locally obtain, in
the absence of global infrastructure (Sahin, 2004). With sparse
swarms we consider groups of robots that are more sparsely
distributed than present robot swarms, and evenmost multirobot
systems (Chamanbaz et al., 2017). The high cost of currently
available outdoor multirobot platforms prevents their adoption
in robot swarms1. Moreover, many implementations of outdoor
multirobot systems lack a fully decentralized, fault-tolerant
control architecture, with the robots receiving instructions from

1Note that we are not postulating to reduce the number of robots in swarms—

merely their density.
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a central planning/coordination node (Tardioli et al., 2016;
Weinstein et al., 2018).

Some studies have focused on multirobot systems operating
in communication-constrained environments (Amigoni et al.,
2017; Tardioli et al., 2019). One approach is using some robots
to physically deliver information to within communication
range of other robots (Ducatelle et al., 2014; Cesare et al.,
2015). Another approach is using some robots to form multi-
hop communication chains, allowing for rapid propagation of
information beyond the communication range of individual
robots (Nouyan et al., 2009; Tardioli et al., 2010; Pei et al., 2013;
Luo et al., 2019). Yet another approach is for the robots to
reestablish contact, for example, periodically, at a priori known
locations (Hollinger and Singh, 2012; Kantaros and Zavlanos,
2017) or using search (Banfi et al., 2018; Vandermeulen et al.,
2018). Some of these approaches rely on a priori knowledge
regarding how well robots can communicate between any two
points in the environment (Amigoni et al., 2017; Banfi et al.,
2018; Vandermeulen et al., 2018), which makes their application
in real-world scenarios challenging.

3. CONCEPTUALIZING A SPARSE SWARM

In the following, we describe two alternative characterizations of
the sparse swarm concept. In both cases, we consider a swarm of
n robots, S = {1, 2, . . . , n}.

3.1. Constraints on Inter-robot Proximity
In a sparse swarm, it would be costly for the robots to get into
close proximity of each other (e.g., 10 body lengths away). To
formalize this idea, we examine the swarm from a given time step,
k0 ≥ 0, during themission, for example, its start, k0 = 0.We refer
to the swarm as sparse at time step k0 if the following condition is
satisfied by a typical robot, i ∈ S:

costi(“move to nearest neighbor”, k0) >>

costi(“perform typical operation”, k0), (1)

where >> is defined as “at least one order of magnitude
greater than,” and costi is a function that defines the cost
for robot i to perform a given task at a given time. The
cost could reflect the time taken, or energy expended, to
complete the task. It would depend on the robot’s capabilities
and the environment the swarm resides in. What constitutes a
“typical” operation would depend on the application scenario.
For example, task “perform typical operation” could involve
collecting a physical sample, or moving to the next waypoint.
Task “move to nearest neighbor” could involve moving directly
to the robot’s nearest neighbor, or moving along a path of
minimal cost.

Equation (1) suggests that for the typical robot in a sparse
swarm, it may be prohibitively expensive to get into close
proximity of another robot. The definition is sufficiently flexible
to allow for occasional close encounters among somemembers of
the swarm.

3.2. Constraints on Inter-robot Coupling
In a sparse swarm, it would not be possible for information to
propagate rapidly to all of its members. To formalize this idea, we
examine the swarm from a given time step, k0 ≥ 0, during the
mission. Let xi[k] denote the state of robot i ∈ S at time step k.
A robot’s state could reflect its external configuration (e.g., pose)
as well as its internal configuration (e.g., behavioral state, battery
level). Let zi[k] denote the measurements that robot i ∈ S obtains

at time step k. Let z̃
(j)
i [k] denote the correspondingmeasurements

that robot i would obtain had robot j not been present in the
environment at time step k, and had all modifications that robot j
made to the environment on or after time step k0 been discarded.
By default, we assume that a robot’s state transition function is
affected by noise. Let P(xi[k]) denote the state distribution of
robot i at time step k ≥ k0. For k > k0, let A[k] be the n × n
matrix with

Ai,j[k] =










1, P(xi[k] | xi[k− 1], xj[k− 1], zi[k− 1], zj[k− 1])

6= P(xi[k] | xi[k− 1], z̃
(j)
i [k− 1]);

0, otherwise.

(2)

Term P(xi[k] | xi[k− 1], xj[k− 1], zi[k− 1], zj[k− 1]) represents
the conditional probability distribution of the state of robot i at
time step k when the states and measurements of robots i and
j are known at time step k − 1. It may depend on additional
information, such as the environment, which is not explicitly

represented here. Term P(xi[k] | xi[k− 1], z̃
(j)
i [k− 1]) represents

the corresponding distribution under the assumption that robot
j and all of its modifications made to the environment since time
step k0 are currently discarded. If such “removal” of robot jwould
influence the conditional state distribution of robot i at time step
k, the corresponding element of the matrix,Ai,j[k], is 1, otherwise
0. Matrix A hence describes the possible interactions between all
pairs.2 The couplings are directional. In other words, Ai,j[k] = 1
does not imply Aj,i[k] = 1. We assume that Aii = 1 for all i, as
robot i, once removed, would no longer have a well-defined state.

For τ ∈ {1, 2, . . . }, let

D(τ ) =

k0+τ
∏

k=k0+1

A[k]. (3)

In other words, matrix D(τ ) is a product of matrices, which
models the dependencies between pairs of robots within time
period τ , starting from k0. Intuitively we consider all robots to be
fully independent at time k0, that is, we discard the whole history
of interactions up to time k0. Note that if a robot i influenced
robot j, and robot j influenced robot l thereafter, then robot i
influenced robot l as well.

2Note that if the states of two robots are correlated this would not necessarily

imply that an interaction took place. It could be that both robots independently

discovered a same environmental feature.
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Let

τmin = argminτ

(

D(τ ) is not sparse
)

, (4)

where a matrix is considered sparse if half or more of its elements
are zero. In other words, τmin reflects the time it takes for
information to propagate within the swarm. In particular, it
denotes the earliest time after which robot i could have influenced
robot j for the majority of pairs, (i, j) ∈ S×S. In the following, we
assume that τmin is finite. If τmin = ∞, we would not refer to S as
a swarm.

We refer to the swarm as sparse at time step k0 if

τmin = �(n), (5)

that is, if τmin is “at least as large as a constant times [n] for
all large n” (Knuth, 1976). In other words, the time it takes for
information to propagate grows at least linearly with the number
of robots in the swarm.

A broad range of interactions can be captured using
Equation (3). If the state of a robot described its position,
an interaction could involve one robot pushing another robot,
whether deliberately, or not. An interaction could involve one
robot approaching a second robot, unless the presence of the
second robot did not inform the choice of motion of the
first. An interaction could involve a robot changing its state
due to receiving a message by another robot. An interaction
could involve a robot changing its state due to encountering
a modification to the environment that was made by another
robot. This latter form of interaction is commonly referred to as
stigmergic communication.

The above two criteria are meant to complement each other.
Where a swarm system is investigated in a concrete situation, the
constraints on inter-robot proximity criterion can be used, taking
into account the costs for a typical operation and that to reach
the nearest neighbor. Where a swarm system is investigated over
an infinite set of situations, involving groups of arbitrary size,
the constraints on inter-robot coupling criterion can be used. This

allows to evaluate the�(n) expression, which cannot be evaluated
for swarms of constant size.

Figure 1 illustrates the sparse swarm concept in four concrete
situations, reflecting a range of application scenarios. In the first
scenario, a group of 10 ground rovers operate in a squared forest
region of side length 5 km. A typical operation for a ground rover
may be to extract and store a sample of soil, which may take
30 s of time. The (median) distance to its nearest neighbor is
261m. Assuming a terrain that allows the robot to move with an
average speed of 0.2m/s, the (median) time tomove to the nearest
neighbor would be 1,305 s. In the second scenario, a group of
16 unmanned surface vessels monitor the perimeter of an island
of size 35 km North-to-South and 30 km East-to-West. A typical
operation for a surface vehicle may be to maintain its position
along the perimeter, which would require significantly less energy
than that required for the vehicle to sail a (median) distance
of 6.8 km to its nearest neighbor. Such station-keeping mission
scenario for a swarm of surface vehicles may also be extrapolated
to 3-D for underwater, aerial and space environments, requiring
larger sized swarms that are still sparse. Given the constraints on
inter-robot proximity, above groups could be considered sparse
swarms. Moreover, they are characterized by predominantly
linear inter-robot communication networks. As the swarms
would have to encompass larger environments, they would have
to be proportionally larger in size, and the time it takes for
information to propagate within the swarm would increase
linearly with the number of robots. This would thus satisfy
our constraint for inter-robot coupling for sparse swarms. An
interesting scenario are in-body applications where using a dense
swarm of robots may be too invasive. Instead, a sparse swarm of
microrobots could be used, for example, to explore the vascular
network for blockages. In such applications, the microrobots may
coordinate their response using stigmergic interactions.

4. FOREST APPLICATION SCENARIO

In this section, we discuss the aforementioned forest application
scenario, including the associated challenges in realizing the

FIGURE 1 | Application scenarios involving sparse swarms. A swarm of ten rovers (red markers) is tasked to monitor a 25 km2 forest ground. The rovers travel from

South West to North East through the forest (depicted by tree symbols and green background), and the rovers that encountered the lake (depicted in blue) need to

find a detour around it, leading to a concentration of rovers westwards of the lake (A). A swarm of 16 surface vehicles is tasked to monitor the costal waters at the

perimeter of an island of size 30× 35 km2 (outlined in brown), which involves station-keeping around the island (B). In both (A,B), the communication links (indicated

by dotted lines) are intermittent for the moving robots, due to signal attenuation by features of the environment. Free line-of-sight across the lake (in A) enhances the

communication range. A swarm of 445 satellites self-organize into a 3-D spatial pattern providing continuous coverage for high-resolution imaging (C). A swarm of

around 100 microrobots search for blockages in a vascular network, using stigmergic interactions for coordination (D).
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concept of a sparse swarm. Consider a sparse swarm of 10
terrestrial robots (i.e., rovers) tasked withmonitoring a large tract
of 25 km2 forest ground (Figure 1A). The robots are deployed at
one end of the forest equidistant to each other, and are tasked
with sweeping through the forest in a quasi line-formation;
quasi as the robots are traversing on uneven terrain and are
consequently unable to maintain a constant velocity across the
swarm. The proposed scenario allows us to assess the following
challenges: (i) the mechanical design of platform hardware in
terms of its capability to efficiently traverse difficult terrain;
(ii) algorithms for terrain perception and robot locomotion over
difficult terrain; (iii) the selection of a long-range inter-robot
communication technology for a forest environment; and (iv) the
design of the decentralized coordination strategies for the sparse
swarm. We detail these challenges and introduce our ongoing
work to address them.

4.1. Robot Platform Design
Although different forest environments may present different
sets of requirements, the latter have typically the following
ones in common: (i) the ability of the rover to progress fast
through simple terrain; (ii) the ability to either overcome or
avoid obstacles in its path, and (iii) long endurance. The need to
traverse long distances requires energy efficient mobility, which
is easiest achieved by rolling. For practicality, our interest is
in rovers that are small enough to fit in a backpack. The size
of obstacles the rover will be able to overcome is accordingly
limited. Furthermore, the overall cost of each rover should be low
enough that sizeable swarms are practical. In the context of these
constraints the robot platform needs to address the challenges of
mobility and communication.

4.1.1. Mechanical Design for Mobility
A rover that is well-adapted to the forest environment will
provide a good trade-off between the ability to climb over
obstructions to avoid detours at the reduced endurance that
results from the extra weight of this climbing ability. We use
an iterative design strategy where data on energy consumption

and mobility is gathered by teleoperated prototype platforms
(Figures 2A–E). In addition to the on-board data collection,
telemetry provides real-time feedback during such test runs to
improve our understanding of what obstacles can be tackled by
a particular rover design, what are suitable approaches to do so,
and what is the energy expended for a particular path.

4.1.2. Hardware for Communication
Communication is the only form of direct interaction that is
considered here. It needs to be scalable to many units and
work over long range even with antennas located close to
the ground. In many application scenarios the intra-swarm
communication cannot be prioritized over other services. For
radio communication these requirements point to limits in the
frequency spectrum and transmission power that in combination
with the range requirement lead to low channel capacity.
Such a low capacity channel could be established over satellite
communication or over text messages transmitted in a mobile
phone network. However, a solution that does not rely on
infrastructure is preferred, both from a cost and from an
availability perspective. In the field of sensor networks and
internet of things ultra-high-frequency radio technologies have
recently come to the fore that aim for long range communication
with low power requirements, scalability to several thousands
nodes, and low hardware cost. One of these technologies, called
long-range radio (LoRa), is particularly attractive in the present
context of rovers. Our preliminary exploration of the suitability
of LoRa for rovers operating at forest ground indicate that several
hundred meters communication range is realistic at about 60
bytes per second. This is the case, even in the highly attenuating
forest environment and with the ground plane effect inherent in
a low antenna position (tip of antenna 17 cm above ground).

4.2. Locomotion on Difficult Terrain
Navigating off-trail in a forest environment is a challenging task
and an open problem in the area of field robotics (Yang et al.,
2018). The robots are required to assess their traversability on
a priori unknown terrains in their proximity, relying solely on

FIGURE 2 | Hardware platforms for the forest environment. Aside from four-/six-wheel drive, and tracks, other locomotion concepts are also investigated for their

suitability on forest ground (A). The torque available to platforms with brushless motors (e.g., B–E) is helpful for tackling the ubiquitous small obstacles typical for this

environment. Additional data for computer vision development is collected with a manual rig (F). Depth and color images are recorded with a global shutter camera

(D435i, www.intel.com) to a laptop in a backpack. Meta data is collected from the camera’s inertial measurement unit, rotary encoders on the wheels, and a GPS. A

mobile phone mounted on the telescopic push rod gives remote access to the laptop.
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onboard sensors under varying lighting and weather conditions,
where GPS signal localization may not always be available.
The problem is made further difficult by the varying nature of
traversability; the traversability of a robot on a terrain depends
not only on the innate characteristics of the terrain, but also on
the dynamics of interaction between the robot and the terrain,
which itself is susceptible to change (e.g., from a thick layer of
mud stuck on the left side of a six-wheeled robot, or a damaged
leg sustained by a quadruped robot).

Many studies have investigated terrain traversability for robot
navigation algorithms in off-road environments, pioneered by
the DARPA PerceptOR (Krotkov et al., 2007) and later the
DARPA Learning Applied to Ground Vehicles (LAGR) programs
(Huang et al., 2009a,b). The approaches developed for terrain
traversability analysis use exteroceptive sensory information
such as geometry-based and appearance-based features, as
well as proprioceptive sensory information (Papadakis, 2013),
and typically employ near-to-far type of learning algorithms
(Bagnell et al., 2010) to predict traversable terrain for the robot.
However, the robots employed in such off-road situations are
relatively large (e.g., the DARPA LAGR vehicle was over 1 m
in length and weighed around 100 kg), and equipped with
expensive sensors such as radar, 2D lidar and multiple stereo
cameras for off-road navigation (Jackel et al., 2006; Zhou et al.,
2012; Milella et al., 2015; Santamaria-Navarro et al., 2015).
In comparison, our small-scale low-cost robots running off-
trail in the forest are faced with bigger challenges: Almost
everything is an obstacle, and due to their small size the
robots are much more likely to topple over. The development
of computationally inexpensive computer vision and machine
learning algorithms for the robots to efficiently locomote over a
priori unknown terrains is part of our ongoing effort to realize
our sparse swarm.

In addressing the traversability challenge we are in the
process of developing a forest environment RGBD data-set,
using a two-wheel mobile sensor platform (Figure 2F). The
platform comprising an Intel D435i depth camera including
an IMU, left and right wheel encoders, and GPS, is to be
pushed manually along various off-trail “paths.” Our developed
data-set is to be employed to train a depth estimation
model, to predict depth with RGB image data from a
monocular camera.

4.2.1. Terrain Traversability for a Single Robot
Using the depth-estimation model, the robots of the sparse
swarm are required to learn closed-loop policies to efficiently
traverse across different terrains. Forest terrain the robot may
have to overcome include wet leaves on the forest floor, ditches
with varying inclinations, muddy tracks and fallen tree branches.
Challenges involved in learning locomotion behaviors for such
terrain include investigating suitable representations for a closed-
loop policy, characterizing metrics to estimate success of a policy
in overcoming terrain, and accounting for progress between trials
in evaluating multiple policies episodically on the robot. Trial-
and-error based algorithms for rapid behavior adaptation (e.g.,
see Cully et al., 2015) appear to be a promising approach to begin
addressing these challenges.

4.2.2. Collaborative Learning Across the Swarm
The available LoRa communication channel may be employed
by the swarm for collaborative learning of traversable terrain
in the forest environment. In such a transfer learning scenario,
the robots of the swarm share information on their experiences
traversing different terrains. Information shared may comprise
metrics providing situational information on robot-terrain
interaction, for instance energy consumption statistics, and
the stability of the robot in traversing the terrain. Policies
employed by robots to traverse terrain may also be shared,
for recipient robots to bootstrap their exploration of new
locomotion behaviors to adapt to changes in their proximal
terrain. Additionally, in forest environments, some a priori
unknown terrains may be unsafe for the robot to traverse
over. The discovery of such terrains by the swarm may be
accomplished by learning with “deliberative” catastrophic failure.
Herein, the swarm may vote for one or a few robots to attempt
to traverse over potentially hazardous terrain and share the
resulting traversability information generated with the rest of
the swarm.

4.3. Coordination in
Communication-Constrained
Environments
In the forest application scenario, the robots assume a linear
formation that moves across a defined region. In a simple
linear formation, the robots would occupy equidistant points
on a line segment; each robot, bar the ones at the two ends,
would have two neighbors. An alternative linear formation
would place the robots alternatingly onto two parallel lines
such that they form equilateral triangles; each robot within
the formation would have four equidistant neighbors. To ease
deployment, the robots could determine their order within
the formation at run-time, for example, using their unique
identifiers. While linear formations lend themselves for tasks
such as coordinated search and coverage (Durham et al., 2012;
Kolling et al., 2018), our scenario is particularly challenging,
because the robots will be unable to interact with their neighbors
for most of the time. Moreover, they do not know in advance
the terrain to be encountered. This makes it difficult to predict
individual progress. Some robots may have to take a detour of
several hundreds of meters after discovering that a floodplain
ahead of them is not traversable. To cope efficiently with these
challenges, the robots need to move even when having had no
recent contact with any neighbor. Yet, they should prevent the
overall formation from becoming disconnected indefinitely. The
robots could generate waypoints, and use the potential field
method to approach them while avoiding obstacles. New way
points could be suggested in an attempt to move the formation
forward, and to repair it. The robots would use beliefs regarding
their neighborhood, that is, which robots are present and their
locations. Algorithms that allow robots to reestablish contact
with lost, and potentially immobilized, members of the group
could be considered (Banfi et al., 2018; Vandermeulen et al.,
2018).
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5. DISCUSSION

In this perspective article, we have highlighted the challenges that
prevent most swarm robotic systems from transitioning to real-
world applications. At present, robot swarms typically operate
in highly controlled indoor laboratory environments. They are
frequently interacting with each other, which is facilitated by
their spatial proximity (e.g., 10 body lengths). Consequentially,
such swarms are impractical for many real-world applications,
in particular those, requiring the robots to act jointly over large
distances (e.g., 1,000 body lengths). To address this problem,
we have proposed the sparse swarm concept, which focuses
on robot swarms that self-organize despite severe constraints
regarding inter-robot proximity and coupling.Moreover, we have
illustrated its use in a forest application scenario.

The sparse swarm concept opens up a number of theoretical
questions. While sparse swarms are robot swarms, they are
subject to additional constraints on inter-robot proximity and
inter-robot coupling. A question to investigate is how the
performance for a given swarm changes as these constraints are
progressively enforced. A related question is how the minimal
number of robots to exhibit self-organization changes as the
constraints increase. For example, will swarms degenerate once
the time for information to propagate is no longer polynomially
bounded with the number of robots? Another question relates
to the types of interactions. Where members of sparse swarms
interact solely via non-situated communication, can they still
spatially organize, for example, by sharing information on how
to interact with the environment? And given the lack of spatial
proximity, would the members of sparse swarms be required to
encounter a similar set of environmental features (which could
be empty) to exhibit self-organization? A further question relates
to whether sparse swarms could be realized at all scales, with their
members ranging in size from hundreds of meters (e.g., fleets of
container ships) to micrometers (e.g., robot swarms within the
human body).

For a sparse robot swarm to solve real-world problems in a
land, sea, air or space environment, the individual robots are
likely to require a high degree of autonomy and the ability to
travel and to communicate over long distances. Depending on
the environment and the task at hand the practical challenges
to achieving the required capabilities differ. In environments
that allow for energy harvesting (e.g., consider solar-powered

aerial drones or autonomous sailboats), endurance is not limited
by power, but by the device life-time. As a consequence of the
much increased deployment time across the sparse swarm, rare
events can no longer be ignored. For such a system, what general
strategies that broaden the ability of a system to recover from
unforeseen situations (e.g., Cully et al., 2015) can be developed?
Moreover, in many sparse swarm scenarios the channel capacity
for communicating within the swarm is severely restricted (e.g.,
robots operating under water). How can the mismatch between
the amount of data available from local sensors and the amount
of data that can be received from others robots be reconciled for
effective learning?

In conclusion, directly mimicking the densities and associated
coordination strategies of natural swarms may be impractical
for applications that require groups of robots to cover outdoor
areas that are very large relative to their own size. We postulate
that for these applications, swarm technologies need to be
reconceptualized for robots to coordinate over large distances.
Such coordination without any physical inter-robot interaction
would require higher autonomy from individual robots of the
swarm. Robots of the swarm would also require to traverse
large distances to complete their mission, thus requiring low-
cost, high-endurance hardware platforms. With this perspective
article, we invite the robotics community to address the various
challenges to bring sparse swarms to fruition.
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Group interactions are widely observed in nature to optimize a set of critical collective

behaviors, most notably sensing and decision making in uncertain environments.

Nevertheless, these interactions are commonly modeled using local (proximity) networks,

in which individuals interact within a certain spatial range. Recently, other interaction

topologies have been revealed to support the emergence of higher levels of scalability

and rapid information exchange. One prominent example is scale-free networks. In this

study, we aim to examine the impact of scale-free communication when implemented

for a swarm foraging task in dynamic environments. We model dynamic (uncertain)

environments in terms of changes in food density and analyze the collective response of

a simulated swarm with communication topology given by either proximity or scale-free

networks. Our results suggest that scale-free networks accelerate the process of building

up a rapid collective response to cope with the environment changes. However, this

comes at the cost of lower coherence of the collective decision. Moreover, our findings

suggest that the use of scale-free networks can improve swarm performance due

to two side-effects introduced by using long-range interactions and frequent network

regeneration. The former is a topological consequence, while the latter is a necessity

due to robot motion. These two effects lead to reduced spatial correlations of a

robot’s behavior with its neighborhood and to an enhanced opinion mixing, i.e., more

diversified information sampling. These insights were obtained by comparing the swarm

performance in presence of scale-free networks to scenarios with alternative network

topologies, and proximity networks with and without packet loss.

Keywords: swarm robotics, foraging, collective decision-making, scale-free networks, dynamic environments,

adaptive swarm

1. INTRODUCTION

The efficiency of the information sharing mechanisms used by individuals during group decision
processes determines to a large extent the fitness of the group decision. In nature, collective
systems consist of a high number of individuals living in large and unknown environments, and
needing to perform complex tasks to survive. Among the many examples of collective decision-
making is choosing a new site to build their home (Richardson et al., 2018), or deciding among a
number of foraging patches (Michelena et al., 2009). Despite the high diversity of tasks, uncertainty
and complexity are common features. Hence, individuals apply information pooling to mitigate
uncertainty and increase decision accuracy (Conradt, 2011). Achieving efficient opinion sampling
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depends to a large extent on the network topology that defines
the interaction structure and opinion sharing of these individuals
(Khaluf et al., 2018; Rausch et al., 2019b). The use of such
network is fundamental for collective decision-making. It is
generally exploited at two stages of the process (i) when spreading
information on one or multiple stimuli that are initially perceived
by a limited number of individuals that are able to trigger
the collective decision process—e.g., a predator attack—; and
(ii) when spreading the individuals’ opinions or choices to
achieve consensus (Khaluf et al., 2019a).

In artificial systems such as swarm robotics, collective
decision-making is mostly designed in static environments
(Bayındır, 2016), where options and their qualities are defined
at the beginning and do not change over time. In these studies
the focus is mainly on the design of efficient voting mechanisms
that enable a high level of decision coherence within the shortest
time possible (Khaluf et al., 2018). Alternatively, other studies
were addressing the design of decision strategies that tackle
the accuracy vs. speed trade-off (Valentini, 2017)—i.e., taking
longer time to gather enough information and making more
accurate decisions vs. exploiting the available information and
taking the decision as soon as possible. In both cases, the
speed of converging on a decision is a fundamental goal in
the design of decision-making. The decision speed strongly
depends on the interaction topology the individuals are part of, to
spread stimuli or opinions during the decision-making process.
Interactions in collective systems are frequently modeled using
local (i.e., proximity) communication, where the neighborhood
of an individual is defined spatially based on their interaction
range, i.e., interacting with all peers within the individual’s
communication radius. Nevertheless, other interaction models
such as scale-free networks were revealed in several real-
world examples (Albert and Barabási, 2002; Holme, 2019).
A comprehensive review on scale-free phenomena in a more
general context can be found in Khaluf et al. (2017a). In various
works, scale-free networks enable scalable, fast and efficient
information transfer. For example, in Goh et al. (2001), authors
showed how the betweenness centrality scales with the scale-
free exponent. Other works showed how the ultrasmall diameter
of the scale-free networks contributes to their efficiency in
information transmission (Cohen and Havlin, 2003; Thivierge,
2014). Finally, scale-free topologies were studied in natural
collective systems such as in Cavagna et al. (2010). In this work,
the authors studied starlings flocks and suggest that collective
response to predator’s attacks may be achieved through scale-free
behavioral correlations. Based on these studies, we extend the
application of scale-free networks to artificial swarms in order
to investigate the role these networks can play in improving a
swarm’s collective decision-making process.

A key aspect of scale-free networks is the presence of hubs—
i.e., nodes with a comparably high connectivity degree—(Albert
et al., 2000; Albert and Barabási, 2002). Hubs represent a
small percentage of the network nodes, however, their high
connectivity leads to a small network diameter. This facilitates
efficient communication by enabling any two random nodes
to share information over only few hops, resulting in fast
information transfer (Cohen and Havlin, 2003). In this paper,

we exploit this critical feature of scale-free networks to help
collective systems to faster respond to changes in dynamic
environments. In dynamic environments, conditions change
over time and hence, the collective system needs to adapt its
behavior within a short period of time in order to survive. We
refer to this as the collective response time. In our study, this
is the time required for the group to collectively change the
intensity of its foraging activities as a response to a change in the
availability of the food items.

Among many examples of collective tasks in natural systems,
we select foraging (Liu et al., 2007) and perform our study
using a simulated population of swarming robots. Foraging is
a complex task used by many species to retrieve food to their
homes, but beyond that it is a metaphor for many real-world
robotics tasks such as search and rescue, retrieve materials
for collective construction and others. In foraging, individuals
(robots) need to continuously make a decision between staying
at their base or leaving to forage for food items. A large body of
literature has been dedicated to investigate foraging in artificial
systems such as swarm robotics. These studies have addressed
various research questions such as the foraging performance
under the influence of physical robot interference (Lerman and
Galstyan, 2002; Khaluf et al., 2016), the multi-foraging task
(Campo and Dorigo, 2007)—i.e., the foraging for different types
of items—or consensus achievement (Hoff et al., 2013; Khaluf
et al., 2017b). Additionally, some studies have focused on how
to optimize the task allocation in foraging using cost functions
(Pini et al., 2013; Khaluf et al., 2019b). Also how to investigate
simple probabilistic models that rely on the foraging success
probability in achieving an efficient foraging behavior (Pinciroli
et al., 2012). Other studies have gone further to investigate
whether the performance of swarms in the foraging tasks bears
a particular characteristic distribution (e.g., a power law) for any
of its time or space features (Khaluf and Dorigo, 2016; Rausch
et al., 2019a). Despite this intensive research effort, foraging
of robot swarms in dynamic environments and the influence
of different interaction models are still not well understood.
However, these questions are paramount, given the prevalence of
scale-free phenomena in real-world systems and admitting that
most real environments are dynamic. Therefore, in this paper,
we focus on the fundamental question of how the integration
of a scale-free interaction structure may influence the collective
response of simulated swarms to changes in food density
within the foraging environment. We approach this question by
analyzing the speed and coherence of the collective response to
those changes. We begin with defining the robot (microscopic)
and the swarm (macroscopic) behaviors in sections 2.1, 2.3,
respectively. The details on generating scale-free networks from
local neighborhoods are given in section 2.2. In section 2.4,
we describe the experimental setup. Thereafter, in section 3 we
compare the collective response of the swarm in presence and
absence of scale-free interactions. We discuss our findings that
suggest that the use of scale-free interactions can be advantageous
due to (i) reduced correlations between a robot’s decisions and
those of its spatial neighbors and (ii) enhanced information
spread through long-range interactions and frequent rewiring of
communication links. These insights are obtained by comparing
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the influence of scale-free networks to scenarios with alternative
random networks as well as scenarios that include packet loss.
Conclusions are drawn in section 4.

2. METHODS

2.1. Robot Behavior
Robots are placed in an arena that is divided into two areas:
the nest and the foraging environment. Inspired by the behavior
observed in harvester ants Pogonomyrmex barbatus (Schafer
et al., 2006; Pinter-Wollman et al., 2013), each robot can
switch between two essential states: resting and foraging. In the
foraging state, the robot attempts to find a food item inside the
foraging environment by performing a pseudo-random walk. In
particular, the robot moves on a straight line until it encounters
another robot or an obstacle (e.g., a wall), in which case a collision
avoidance maneuver is initiated. By executing this maneuver,
the robot attempts to move in the direction of least physical
interference, as sensed by its proximity sensors. After executing
the collision avoidance maneuver, the robot goes back to its
standard motion following a straight line. When the robot
encounters a food item, it collects this item and retrieves it back
to the nest where the robot rests for a given period of time θr .

In the resting state, the robot remains inside the nest, which is
the only area where communication with other robots can take
place. This is inspired by several natural systems, in which the
communication occurs mainly inside the nest or the hive (Liu
et al., 2007; Seeley et al., 2012; Reina et al., 2015; Valentini et al.,
2016). This approach accommodates two relevant properties of
foraging systems: (i) it is common that the foraging environment
is significantly larger than the nest area, and hence, individual
encountering rates outside the nest are negligibly low. (ii) Due
to the high density of individuals inside the nest there is a high
likelihood of interaction between individuals that have explored
different parts of the foraging environment, and hence a more
diversified sample of information about the environment can
be collected.

Robots can communicate only with neighbors that are within
a direct line of sight, sharing their individual experiences. This is
a continuous process—i.e., each robot broadcasts at every time
step its previous experience (success or failure in finding a food
item) until it switches again to the foraging state. Continuous
communication activity is a required choice of the experiment
design to research the role of network topology in the emergent
behavior (Rausch et al., 2019a).

All robots, in our study, are identical and each robot is a
probabilistic finite state machine. In particular, a robot’s behavior
is shaped by two switching probabilities that describe at every
time step the robot’s likelihood to switch from foraging to resting
(Pf→r) or the opposite (Pr→f ). These probabilities are updated
differently at the robot’s resting and foraging states. At the
foraging state, the switching probabilities are updated using the
robot’s foraging experience. The impact of this experience on
the robot’s decision-making is given by the set of two individual
cues

{

if , ir
}

∈ R
+
0 × R

+
0 . More specifically, the cue if defines

a numerical value by which the probability to switch from
resting to foraging (Pr→f ) is increased when the robot has

experienced foraging success—i.e., a discovered food item during
the latest foraging attempt. The same value is used to decrease
this switching probability in case of a failed foraging attempt, i.e.,
when the robot has spent a specific time (θf ) foraging without
finding a food item. The cue ir updates the robot’s switching
probability from foraging to resting (Pf→r) in a manner that
is inverse to if . Besides updating the switching probabilities at
the foraging state, the robot updates those while resting. This
update is performed using the experience received from the
robot’s neighbors and is numerically given by two social cues
{

sf , sr
}

∈ R
+
0 × R

+
0 . The social cue sf is used to update the

switching probability from resting to foraging (i.e., Pr→f ) by
increasing (decreasing) Pr→f when the robot’s neighbors report
primarily on successful (failed) foraging attempts. Whereas, sr is
used to update the switching probability from foraging to resting
(i.e., Pf→r), inversely to sf . In the following we define how the
switching probabilities are updated at every simulation step (as
described in Rausch et al., 2019a; to prevent divergence, both
probabilities were truncated between zero and one):

Pr→f (t + 1) = Pr→f (t)+ δη(t)sf + δφ(t)if (1)

Pf→r(t + 1) = Pf→r(t)− δη(t)sr − δφ(t)ir , (2)

where δη(t) is the difference between the successful and the failed
foraging attempts communicated to the robot by its neighbors.
Hence, it has a positive sign when there are more successful
attempts than failed ones and a negative sign otherwise.
Consequently, the former increases the switching probability
from resting to foraging and the latter increases the switching
probability from foraging to resting. δη(t) = 0 if the robot is not
resting. Additionally, the robot’s individual experience during a
foraging attempt that starts at tf is defined as follows:

δφ(t) =











+1, at tif

0, if tf < t ≤ tf + θf & no item is found

−1, if t > tf + θf & the robot is still foraging

(3)

where tif is the (unique) time step at which the robot finds an
item while in foraging state. While in the foraging state, the robot
may find an item at any time tf < tif (i.e., it could also happen
that tf + θf < tif ). After finding an item, i.e., subsequently to
tif , the robot leaves the foraging state. If no item is found and
the foraging time crosses the threshold θf , then δφ(t) = −1. This
increases Pf→r(t) at every time step t > tf + θf , guaranteeing
that the robot will probabilistically leave the foraging state at
some t, even without finding an item. δφ(t) = 0 outside of the
foraging state.

The robot behavior is illustrated in Figure 1 using a state
diagram. It includes the following states: (i) foraging: after having
spent at least θr time steps resting, the robot switches with
probability Pr→f from resting to foraging. It attempts to search
the foraging area for a food item to retrieve to the nest. If the
robot fails to find a food item within a predefined time θf , it
switches with probability Pf→r to homing; (ii) homing: in this
transitional state the robot returns to the nest, with δη(t) = 0
and δφ(t) = 0; as soon as the robot reaches nest, it switches

Frontiers in Robotics and AI | www.frontiersin.org 3 July 2020 | Volume 7 | Article 86177

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Rausch et al. Adaptive Foraging Using Scale-Free Networks

FIGURE 1 | The state transition diagram of a robot performing the

foraging task.

to distancing; (iii) distancing: having returned to the nest, the
robot searches for an empty spot in the nest where it can rest;
similar to the homing state, distancing is a transitional state with
δη(t) = 0 and δφ(t) = 0; distancing terminates after θd time
steps and the robot switches to resting; (iv) resting: subsequent
to distancing the robot rests for at least θr time steps after which
it switches with probability Pr→f to foraging. A resting robot
broadcasts “success” (or “failure”) to its neighbors if the latest
foraging attempt was successful (or not), respectively. If the robot
failed to leave the nest in state (i), it has no information about the
foraging environment and, thus, does not broadcast any message.
Throughout the entire experiment, the robot performs collision
avoidance maneuvers if other robots or walls enter its proximity
sensors’ range (not shown in Figure 1 for better readability).

2.2. Robot Scale-Free Communication
Network
In this section, we describe the design and implementation of
the algorithm that leads to a scale-free robot communication
network. An implementation of this algorithm in C++ is publicly
available online1 (Rausch et al., 2020). The generation of a scale-
free network from local neighborhoods is an iterative process,
where at each time step t the robot communication is updated
according to the following procedure:

1. Identify all connected components (CCs) in the resting swarm
using depth-first-search. A CC is the maximal set of nodes
(robots), where each two nodes are connected through a finite
path. TheCCs are initially derived from the spatial networks in
which the robots are neighbors if they are within each other’s
communication radius.

2. Generate the scale-free network topology within a CC
using preferential attachment (Albert and Barabási, 2002) as
summarized in Algorithm 1. This algorithm is largely inspired
by previously proposed approaches (Li and Chen, 2003; Jiang

1https://osf.io/48b9h/

et al., 2014). We begin by selecting a sink node νs,0 which
is the node with the highest number of neighbors within its
spatial proximity—i.e., within the initial radius of rs = 1.25 m.
Within this rs, each spatial neighbor νs,i is linked to νs,0,
creating an initial sink network Gs. Next, we increase rs by
0.2 m. Due to this increase, new nodes νnew enter rs. Each νnew
is connected to any νs following preferential attachment. In a
preferential attachment process, the higher the degree of node
νs compared to the sum of all node degrees withinGs, themore
likely is νnew to connect to νs. After all νnew were added to Gs,
rs is increased again by 0.2 m. This process continues until Gs

is of the same size as CC.
3. Repeat 2. for every CC in the swarm.

In Algorithm 1, Nsink is the size of the sink network Gs, in terms
of the number of nodes. Similarly, NCC is the size of the selected
connected component; ds is the degree of node νs, and

∑

i di is
the sum over all degrees in the sink-network. Note that the robot
communication approaches the scale-free network topology only
for large enough CC. However, due to the relatively small area of
the nest the robots had a high tendency to self-aggregate into a
giant connected component.

To test how successful Algorithm 1 was in generating a scale-
free topology, we recorded the degree distributions at t = 10 of
1,000 simulation runs. At t = 10 the large majority of robots
was still resting inside the nest, providing us with at least one
large CC. Scale-free networks are characterized by the power law
degree distribution. Thus, we tested whether our recorded degree
distributions follow the power law using previously established
statistical methods (Clauset et al., 2009; Broido and Clauset, 2019;
Rausch et al., 2019a). Essentially, this statistical analysis is a
highly rigorous power law fitting procedure that consists of three
critical steps: (i) testing whether the shape of the distribution
is due to random fluctuations, i.e., testing the goodness-of-fit
given by a p-value. We proceed to the next step only if p <

0.1, otherwise the power law fit is considered unreliable. (ii)
As the power law behavior is commonly found at the tail of
the distribution, we proceed to the third step only if the data
that is fit the power law behavior represents at least 10% of
all data points. (iii) Finally, we compare the power law fit to
other common distributions (such as the exponential or the log-
normal) that may also tend to resemble a linear shape on a
log-log scale (which is characteristic for the power law) (Clauset
et al., 2009; Alstott et al., 2014). This is done by considering
the log-likelihood ratio of each pair of distributions, which has
a negative value if the distribution we compare the power law
to is a significantly better fit. Consequently, the hypothesis that
the data is power law distributed is not rejected only if this log-
likelihood ratio is positive and only if we did not reject it at steps
(i) and (ii). The result of the testing procedure can be captured
by a numeric value to categorize whether the support for the
hypothesis is not present, weak, moderate or strong (for more
details see Rausch et al., 2019a). The test results for Algorithm 1
have shown a statistically sound support for the power law
distribution in 76% of tests (we ran 1,000 tests), suggesting
that Algorithm 1 was considerably successful in creating
scale-free networks.
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Algorithm 1: Pseudo-code for the implementation of the
preferential attachment, executed at each time step.

initialize a sink network Gs ⊆ CC:

Choose a node ν ∈ CC with the highest degree and connect it
to its spatial neighbors within the radius rs around ν.
while Nsink < Ncc do

increase rs
for each νnew ∈ CC do

for each νs ∈ Gs do
create a bi-directional link between νnew and νs
with probability PBA = ds/

∑

i di
if no link created then

PBA ← PBA + ds/
∑

i di
end

end

end

end

Alternatively, one can use Algorithm 1 to construct networks
with a degree distribution that is less skewed than power law
and more symmetric around the mean degree, i.e., networks that
resemble more closely the well-known small-world networks.
To this end, one can simply replace the preferential attachment
component ds/

∑

i di by a real number.

2.3. Swarm Behavior
At the swarm level, the foraging behavior emerges as a result
of complex interactions between the robots as well as between
robots and their environment. As mentioned above, we evaluate
this performance in dynamic environments, in which the food
density is subject to single and periodic changes. The quality
of the emergent performance is evaluated with respect to the
swarm response (adaptivity) to the changing number of items
in the foraging environment. In particular, we define the swarm
performance with respect to (i) the speed of the swarm’s collective
response, and (ii) the number of retrieved items. The collective
response is quantified using the number of resting robots at any
time step. For instance, in case of a sudden high availability
of food items an ideal swarm’s response would be to allocate
more robots to the foraging state shortly after the increase in the
number of food items is detected.

We borrow the term of settling time from control theory to
measure the time of the swarm’s collective response, referred
to as the convergence time—i.e., the time the swarm needs
to adapt the number of resting/foraging robots to any change
in the items density. The settling time is defined as the time
elapsed from the moment of applying a particular stimulus (i.e.,
changing the items’ density) to the time the system output (i.e.,
number of robots Nrest that are in the resting state) reaches and
remains within a specified margin of error. Hence, the time to
convergence is computed as in the following:

tconv = inf {S},

where S = {t : |Fn(Nrest(t))− Fn(Nrest(tsteady))| < ζ }, (4)

TABLE 1 | Robot and arena parameters.

Parameter Value

ROBOT PARAMETERS

Physical avoidance range 0.1 m

Communication range 1.25 m

Maximum moving speed 1 m/s

Minimum resting time θr 100 s

Minimum unsuccessful foraging time θf 500 s

Minimum distancing time θd 100 s

Individual cues if ,ir 0.01

Social cues sf ,sr {0.01, 0.25, 0.99}

ARENA PARAMETERS

Total area of the arena A 50× 50 m2

Area of the Nest An 10× 50 m2

Area of the Foraging environment Af 40× 50 m2

Number of robots Nrobots 950

Number of items Nitems 30 or 300

Total experiment duration T 104 ts

where inf {S} is the greatest lower bound of the set S, and the
set S includes all time steps t at which the difference between
the transformed number of resting robots at a specific time step
Nrest(t) and the transformed number of resting robots at the
steady state Nrest(tsteady) is smaller than a threshold ζ . In our
study we set ζ = 0.1. Here, tsteady is the time step at which
the system reaches its steady state. To compute the time to
convergence, we use the matlab tool STEPINFO2, that first applies
Fn(...) to transform the input into a continuous representation.
This transformation was used for Nrest .

Finally, in addition to the convergence time, we investigate
the swarm performance in terms of the number of retrieved
items. The number of retrieved items is strongly related to the
time to convergence, since a faster convergence implies a higher
efficiency in retrieving items. We compute this performance
measure using the cumulative sum of the items retrieved
over time.

2.4. Simulation Setup
We ran the simulations using ARGoS3, a well-established
physics-based simulator for swarm robotics (Pinciroli et al.,
2012). The values of particular parameter settings that can
be used to reproduce our simulations and results are listed
in Table 1. Additionally, the reader is encouraged to find our
project on the Open Science Framwork4 (Rausch et al., 2020) to
download the development sources and run the simulations.

Figure 2 displays snapshots from simulations with proximity
(Figure 2A) and scale-free (Figure 2B) networks. The square-
shaped arena is of the size L × L (L = 50 m) and consists of
the nest An = 10 × 50 m2 (gray colored floor in Figure 2) in
addition to the foraging environment Af = 40 × 50 m2 (white

2https://www.mathworks.com/help/control/ref/stepinfo.html
3http://www.argos-sim.info/
4https://osf.io/48b9h/
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FIGURE 2 | Illustrations of the arena taken from ARGoS simulations. Gray area: nest; white area: foraging environment; black dots: items; blue objects: Footbots;

light-blue lines: communication (range-and-bearing) links. Top views onto the entire arena; the communication network is constructed in (A) using spatial network

given by the local robot interactions, and in (B) using Algorithm 1; the inset shows a close-up view on the robots. In all figures, the communication links are formed

only for resting robots inside the nest, as in our experiments moving robots neither broadcast nor listen to any messages.Therefore, it can happen that although a

robot is within the communication range of another, no communication link is established between the two.

in Figure 2). Inside the foraging environment, food items are
uniformly distributed. When a robot brings a food item to the
nest, a new food item appears at a random location within the
foraging environment, preventing item depletion that might lead
the foraging activity to halt.

The robots are able to rapidly leave or return to the nest
thanks to the phototaxis behavior. For that purpose, light beacons
are installed on one side of the nest, opposite to the foraging
environment (yellow dots at the top of Figure 2A or Figure 2B).
Robots are repelled from the lights whenever they need to
leave the nest, and attracted to the lights to return to the
nest. The swarm consists of Nrobots homogeneous robots (we
use Footbots; Bonani et al., 2010). Robots are equipped with
probabilistic controllers, which tune their behavior to forage
or rest based on the above mentioned probabilities (i.e., Pr→f

and Pf→r).
To implement the proposed networks (i.e., scale-free and

proximity), we utilize the range-and-bearing medium (that
includes sensor and actuator) provided in ARGoS. However, this
communication medium is used differently for the two networks.
In the case of proximity networks, the communication range
of the range-and-bearing medium is set to 1.25 m (as we can
see in Table 1). In the case of the scale-free networks, at each
time step, we first obtain the connected components using the
spatial proximity network, where the robots communicate via
the range-and-bearing medium within a radius of 1.25 m. In
the same time step, for each of these connected components, we
create a scale-free network in which the connections can span
over the entire length of the nest, if the connected component
spans over that area. Thus, the resulting scale-free networks can
include much longer ranges than 1.25 m. For implementing such
a communication topology in real-world swarms, it is possible to
apply other communication systems than the range-and-bearing
medium, such as other radio communication technologies
(e.g., the well-established wifi Li et al., 2008), shared memory

(Bayındır, 2016) or promising concepts such as the augmented
reality for Kilobots (ARK) (Reina et al., 2017).

3. RESULTS AND DISCUSSION

The goal of this study is to investigate the influence of
the scale-free topology on the collective performance and
response of a swarm foraging in a dynamic environment.
The dynamics of the environment is modeled in terms of
single and periodic changes in the food density. In robot
swarms, the interaction among individuals is mostly modeled
using local communications, where each robot has a limited
communication range. The communication range is usually
much smaller than the dimension of the world. The robot’s
neighborhood is defined as the set (or a subset) of robots
that is located within its communication range. In this study,
besides local interactions, we make use of the well-known
preferential attachment mechanism (applied in Algorithm 1, see
section 2.2) to construct a scale-free topology that accelerates
information sharing. Hence, we investigate whether it may
improve the efficiency of the swarm collective response to
environmental dynamics.

As mentioned above, we define the collective response in
terms of the number of resting robots and measure it as the
change in this number over time. In our experiments, initially, the
entire swarm is in the resting state. In the following, a transient
period begins, during which the swarm displays oscillations at
the group level. First, almost all robots begin foraging during
the first 500 time steps (ts)—Note that a simulated time step is
one second, with one tick per second. Within the subsequent ≈
500 ts most of the swarm individuals come back to the nest and
switch to resting. Even though such collective behavior oscillates
over several following time periods—due to the probabilistic
nature of the robot controller—the coherence increases rapidly
and the swarm converges on a relatively stable number of resting

Frontiers in Robotics and AI | www.frontiersin.org 6 July 2020 | Volume 7 | Article 86180

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Rausch et al. Adaptive Foraging Using Scale-Free Networks

robots. The duration of this transient period is mostly shorter
than 5 · 103 ts, after which we begin our measurements. Finally,
based on preliminary results, we set the swarm size to N = 950,
which balances physical interference with swarm performance
and delivers a sufficiently large number of samples for statistically
sound analysis.

We use two experimental settings. In the first setting, after the
system converges on a number of resting robots Nrest (number
of foraging robots is then Nforg = N − Nrest), a single external
stimulus is applied. This stimulus represents an increase in the
number of food items Nitems by the factor of 10 (from 30 to 300
items) at a particular time point tcrit . In the second experimental
settings, we challenge the swarm further by applying a periodic
change in the density of the food items, hence the benefit of a
quicker response becomes clearer. The periodic change is applied
over periods of 2500 ts and can be of two types, either increasing
or decreasing the number of food items Nitems, always by a factor
of 10.

In each of the two experimental settings, two interaction
networks are implemented, proximity network (emerging
from local interactions), and scale-free network (generated
using preferential attachment). As mentioned above, for the
construction of scale-free networks, the connected components
of the robots resting at the nest site are used to impose the
network topology. Over these networks the robots exchange
specific information about their success or failure of the latest
foraging attempt seeking an accurate estimation of the current
situation in the foraging environment.

According to our experiments, there are two main cases, in
which the influence of the communication topology is negligible.
These are (i) small social cues (i.e., with sf and si values smaller
than 0.01), and (ii) small number of resting robots Nrest . The first
case is straightforward, as the social cues decrease, the impact of
the information obtained from other robots decreases, and hence
the impact of the interaction network on the emergent dynamics
vanishes. The second case is associated with the particular
implementation of the scale-free communication network in
the nest. Since the construction of this network relies on the
connected components present in the nest at every time step,
small numbers of resting robots result in scaling down the size of
such connected components and hence topological contribution
becomes negligible. Therefore, as we aim to investigate the
influence of the interaction network on the emerging dynamics,
we consider those cue configurations in which the social feedback
of the robot’s neighborhood has a distinguishable role in shaping
its decision. This is achieved by setting the social cues to have a
clear advantage over the individual cues—i.e., sf ≫ if , sr≫ ir . For
an extensive discussion on the impact of cue values on swarm
behavior in a similar settings of the foraging task the interested
reader is referred to Liu et al. (2007) and Rausch et al. (2019a).
For the reasons mentioned above, we set the cue values to sf =
0.25, sr = 0.25, if = 0.01, ir = 0.01. Nevertheless, further below
we will additionally compare our results to those obtained with
more extreme values of the social cues, i.e., sf = 0.01, sr = 0.01
and sf = 0.99, sr = 0.99.

The plots in Figure 3 depict results obtained over 30 runs.
They compare the emergent collective response of the swarm

to a single stimulus (i.e., change in food density) as well as to
multiple stimuli when individuals interact locally in comparison
to interacting via scale-free topologies. Firstly, our results reveal
a clear impact of the network structure on the robot activation
level across all types of stimuli (i.e., increasing or decreasing
food item density). This is illustrated through the number of
resting robots being considerably smaller when using the scale-
free network as opposed to the proximity network throughout the
entire simulation time (see Figures 3A,B). Proximity networks
in Figure 3B show a non-adaptive swarm behavior that is largely
due to the very low number of foraging robots. When there are
too few foraging robots, the system tends to approach a global
absorbing state in which robots cease to switch to foraging. In
case of proximity networks in Figure 3B, this tendency toward
the global resting state is due to the initial low density in food
items (i.e., Nitems = 30). Low Nitems leads to a large number
of failed attempts to find and retrieve them. Consequently, this
increases Pf→r up to its maximum Pf→r = 1, pushing the
robots to keep resting. Thus, the subsequent increase in items to
Nitems = 300 is not sensed by the swarm. As an example, this
behavior is evident at t = 7, 500 ts when Nrest did not decrease in
response to the increasing Nitems.

Therefore, it is important to consider the robustness of
the swarm behavior to initial conditions, prior to the external
stimulus. To this end, we inverted the changes of Nitems, starting
with Nitems = 300, reducing it to Nitems = 30 at t = 7, 500 ts,
then increasing it back to Nitems = 300, etc. . . Under this specific
setting, foraging robots have a higher likelihood to find items
than when the initial item density is as low as Nitems = 30.
Consequently, the returning robots broadcast a larger number of
“success” messages, increasing the robots’ probability to switch
to foraging (Pr→f ). Figure 3C shows that this configuration of
the initial conditions led to an adaptive swarm behavior for the
case of proximity networks. This adaptive behavior comes with a
reduced time to convergence (see Figure 3F vs. Figure 3E) and a
significantly higher number of retrieved items (see Figure 3I vs.
Figure 3H). Nevertheless, with scale-free networks the collective
response not only remained more rapid but also appeared to
be more robust to the initial conditions of the system, as
the trajectory of Nrest in Figure 3C is qualitatively similar to
Figure 3B. Nevertheless, the scale-free networks display higher
fluctuations of Nrest compared to the relatively coherent decision
achieved when using proximity networks (Figures 3A–C). This
is due to the high impact that a single hub can have on a large
population of the swarm.

The key contribution of the network topology is reflected
in the time the swarm requires to build up its collective
response. When using scale-free networks, hubs—i.e., robots
with an exceptionally high connectivity degree—help accelerate
the information propagation in twomanners: (i) due to their high
connectivity degree, their individual experience is shared with a
large number of robots within one time step. (ii) Their presence
creates a shorter average path of the network compared to
proifbximity networks, which allows any two robots to exchange
information over a smaller number of hops (i.e., within fewer
time steps). As mentioned above, we use the settling time
defined in Equation (4) to compute the swarm’s convergence time
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FIGURE 3 | Swarm performance comparison between the scale-free networks (blue) and the proximity networks (red). (Top) Swarm collective response in terms of

Nrest. (A) Single stimulus of item gain from Nitems = 30 to Nitems = 300 at tcrit = 7, 500 ts, and (B) multiple stimuli are executed in intervals of 1tcrit = 2, 500 ts. The

items are repeatedly increased to Nitems = 300 (indicated by △) or reduced to Nitems = 30 (indicated by ▽). (C) Similar setting to (B), but starting from Nitems = 300

and changing the items in an inverse order, as indicated by the △ and ▽ markers. (Center) Swarm convergence time. (D) Single stimulus of item gain, S1 is the index

for the stimulus applied at tcrit = 7, 500. (E) Multiple stimuli where items are repeatedly increased or reduced. S1...7 correspond to the seven stimuli applied between

tcrit = 7500 ts and t = 25, 000 ts in intervals of 1tcrit = 2, 500 ts, as in (B). (F) Similar to (E) but with an inverse order, as in (C). (Bottom) Cumulative sum of the

retrieved items. (G) Scenario with a single stimulus. (H) Scenario that starts with Nitems = 30, as in (B). (I) Scenario that starts with Nitems = 300, as in (C). In (A–C)

and in (G–I), shaded areas indicate the confidence interval of 95%. All results were averaged over 30 runs.

after each stimuli—i.e., change in the items’ density. Figure 3D
shows the time it took the swarm to converge to a steady
number of resting/foraging robots after increasing the items
at the foraging area from Nitems = 30 to Nitems = 300
at time step 1tcrit = 7, 500. Figures 3E,F show the same
measure for the repeated stimuli of items increase and decrease,
starting from Nitems = 30 (Figure 3E) and Nitems = 300
(Figure 3F). In all three findings, Figures 3D–F, we can notice
the significantly shorter convergence timewhen robots in the nest
are communicating using the scale-free network in comparison
to the proximity network. These results suggest a higher level
of swarm adaptivity to dynamic environments under scale-
free communications. Furthermore, as shown in Figures 3G–I,

using scale-free networks the cumulative sum of the retrieved
items is either considerably higher from the beginning or at the
later stages of the experiment, compared to the scenarios with
proximity networks.

An important aspect to notice is the physical division between
the site at which the information is to harvest (i.e., the foraging
environment), and the site at which the information is to
exchange (i.e., the nest). Usually, the communication speed is
considerably higher than motion speed. However, specifically in
the foraging scenario, the communication speed is limited by the
motion speed, since it is necessary for the robot to travel across
the foraging environment to reach the nest, where it can start
communicating. One of the clear consequences of this important
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remark is that even for the case of scale-free networks where the
collective response is accelerated, there is a considerably faster
swarm reaction to an increase in the food density compared
to the reaction to a decrease (see the blue line in Figure 3B).
Before the increase of food items, there were few foraging robots.
Those robots consumed time to return to the nest, switch to
resting, inform their neighbors about their foraging experience,
and, ultimately, convince more robots to leave the nest in case
of a successful foraging attempt. For scale-free networks this
resulted in a rapid activation of resting robots. Differently,
collective reaction slowed down when the environmental change
was a decrease in food items. This behavior can be explained
as follows: the large number of robots foraging while the food
density was high experienced the drop in the food density
through their failed foraging attempts. Upon returning to the
nest, these robots led to considerably higher crowding at the
nest entrance. This prolonged the time that the robots needed
to enter the nest and start communicating. Moreover, the higher
Nrest the higher the likelihood that there is one, giant, connected
component inside the nest, spanning over a large number of
robots. If such a network is scale-free, the hubs have a high
chance of influencing many robots to switch to foraging. By
contrast, a low Nrest often led to fragmented networks, reducing
the influence of hubs, lowering the number of switching robots
and, thus, slowing down the collective response compared to
a high Nrest . Hence, the collective response time—even when
using scale-free networks—is longer when there are many
robots foraging.

To obtain a closer look at the interaction network topology,
we can analyze the degree distributions of the resting robots
interacting inside nest. We draw the degree distributions for
different time steps that are selected when the item density
was both high (i.e., 300 items) and low (i.e., 30 items). As
we can see in Figure 4A, scale-free networks strongly resemble
a power-law distributed degree for all time steps at which
the networks are recorded. Similar consistent is the degree
distribution of the proximity networks in Figure 4B for all tested
time steps. However, the degree distribution here appears closer
to a Gaussian distribution which is more symmetrical around
the mean than the scale-free network and has fewer outliers.
To get a clearer look at the outliers, in Figures 4C,D, we show
the communication degree using boxplots. For the scale-free
networks the density of outliers is notably large, the most extreme
among those are the hubs in the network. We can also notice
a clear trend of a higher number of hubs when the number
of resting robots Nrest is higher due to low Nitems. This density
of outliers changes periodically between the external stimuli
Si together with Nrest . In the case of proximity networks, the
boxplots show a relatively low density of outliers and negligible
changes with Si.

Additionally, it is worthwhile considering the effect of
rewiring on the collective response. As elaborated in section 2.2,
Algorithm 1 is applied at every time step as the robots are
in motion. However, because Algorithm 1 has a stochastic
component, the resulting network at time step t is very likely
to be different from t − 1. Such dynamic rewiring increases the
probability that two remote robots share a link. Consequently,

a random robot is more likely to obtain information from
spatially uncorrelated sources, i.e., it obtains a sample that is more
representative of the swarm opinion. This resembles the common
“random mixing” paradigm often found in swarm robotics,
stating that an encounter probability between two robots is the
same for any pair of robots. Thus, the adaptive behavior that
follows from using Algorithm 1 could be largely attributed to this
rewiring-induced opinion mixing.

To examine whether this may indeed be the case, we ran
simulations with a modified version of Algorithm 1 where we
replaced the preferential attachment component ds/

∑

i di by a
real number ρ ∈ {0.01, 0.1}. Note that while this modification
aims at altering the network topology, the resulting alternative
networks are still regenerated at each time step, similar to scale-
free networks, i.e., the notion of rewiring is preserved. The results
are shown in Figure 5. The similarity to the scale-free networks
scenario is particularly striking for ρ = 0.01. When Nrest is low,
it becomes difficult to separate a scale-free network (where the
degrees are power law distributed) from a small-world network
(where the degree distribution is much less skewed, i.e., more
symmetric around the mean value). Therefore, for low Nrest the
impact of the preferential attachment component in Algorithm 1
can be well-approximated by a constant such as ρ = 0.01. More
importantly, it shows that the strong effect that dynamic rewiring
has on swarm adaptivity and collective response.

A feature that frequently occurs in realistic communication is
the packet loss. It occurs when a robot fails to receive a message
broadcast by a neighbor, due to radio-frequency interference or
due to overflow of a robot’s receiver queue. We implemented
packet loss events by allowing the robots to ignore incoming
messages with probability ppl. Figure 6 shows the results for
the proximity and scale-free networks with ppl ∈ {0.1, 0.5}.
Surprisingly, the swarm adaptivity considerably improves in
case of proximity networks, while with scale-free networks the
swarm remains more robust to the influence of the packet
loss. Higher probabilities of packet loss appears to shorten
the time to convergence and slightly increase the number of
collected items. One possible explanation for this behavior could
be that by probabilistically ignoring incoming messages the
robots become to some extent able to reduce the correlation
between their behavior and that of their spatial neighbors.
Synthetically generated networks, such as the scale-free networks
considered in this study, represent an extreme case of such spatial
decorrelation. In contrast, in proximity networks and absence of
packet loss, spatial correlations are very high, leading to feedback
mechanisms that reduce sensitivity to new information. The
presence of packet loss appears to create a middle ground that
bolsters the adaptive behavior at the swarm level. However, we
only tested two values of ppl and it is possible that for ppl > 0.5
inverse effects could be observed. Finally, when resting state can
be associated with low energy consumption, the behavior of the
system in the presence of here considered ppl may demonstrate
a high level of efficiency, in terms of increasing Nrest while
preserving the high number of retrieved items. Nevertheless,
as mentioned above, the detailed investigation of the influence
of packet loss is beyond the scope of the current study and
future research is needed to confirm the generality of our
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FIGURE 4 | Degree distributions of the networks within the nest at different time instances. (A) Scale-free networks; (B) Proximity networks. At t = 5, 000 ts and

t = 11, 250 ts there are Nitems = 30 to retrieve, while at t = 8, 750 ts and t = 13, 750 ts the item count is Nitems = 300. Additionally, box plots for the (C) scale-free and

(D) proximity networks illustrate the presence of outliers for the different onsets of stimuli S1...7 (starting at tcrit = 7, 500 ts and occurring in intervals of

1tcrit = 2, 500 ts). As expected, in contrast to the proximity networks, in case of scale-free networks, the outliers (indicated by the + markers) are so extreme that the

boxes containing the mean values are barely recognizable at the bottom of plot (C).

FIGURE 5 | Comparison of the (A) swarm collective response, (B) time to convergence, and (C) swarm performance, between scale-free networks and random

networks created with ρ = 0.01 and ρ = 0.1.
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FIGURE 6 | Swarm performance comparison between the scale-free networks (blue) and the proximity networks in presence of packet loss, with packet loss

probability ppl = 0.1 (red) and ppl = 0.5 (magenta). The number of items is repeatedly increased to Nitems = 300 (indicated by △) or reduced to Nitems = 30 (indicated

by ▽). These repeating changes occur in intervals of 1tcrit = 2, 500 ts, starting at tcrit = 7, 500 ts. (Left) Scenario with initially Nitems = 30. (Right) Scenario with initially

Nitems = 300; (A,B) Swarm collective response in terms of Nrest. (C,D) Swarm convergence time. S1...7 correspond to the seven stimuli between tcrit = 7, 500 ts and

t = 25, 000 ts. (E,F) Cumulative sum of the retrieved items. In (A,B,E,F), the shaded areas indicate the confidence interval of 95%. All results represent averages over

30 runs.
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FIGURE 7 | Comparison of the (A) swarm collective response, (B) time to convergence, and (C) swarm performance, between different values of social cues for

swarms communicating through scale-free networks. Apart from sf = sr = 0.25 we consider two extreme cases: low values (sf = sr = 0.01) and high values of social

cues (sf = sr = 0.99). All results were averaged over 30 runs.

findings5. Moreover, here we consider constant values of ppl that
are the same for every robot in the swarm and that do not
change based on the location of the robot or the number of
communication links. In contrast, in more realistic settings not
only the packet loss but also ppl itself may have fluctuating values
depending on the situation and both could be profoundly difficult
to control.

Finally, we compare the intensity of the collective response
resulting from different social cues. As mentioned above, social
cues are the main driver of the dynamics to build up a faster
response over the interaction network. Our results show that
higher social cues lead to a higher activation of the resting
robots, see Figure 7 that shows the activation of the resting
robots when setting sf = 0.99, sr = 0.99 in comparison
to the setting sf = 0.01, sr = 0.01 (results are averaged
over 30 runs). High social cues activate considerably more
resting robots (i.e., reduces number of resting robots) than low
cue values (Figure 7A). However, the convergence time with
high cue values is comparable to the previously considered
default case of sf = sr = 0.25 (see Figure 7B). The
number of collected items overlaps for all three cue values
(see Figure 7C).

4. CONCLUSION

The goal of this study is to investigate the role of network
topology in influencing the propagation of information in
a foraging scenario with changing the availability of food
items. Therefore, we have addressed scenarios with dynamic
environments, a realistic aspect of most real-world applications.
We considered two types of changes: a single abrupt change
(referred to a single stimulus) and periodic changes (multiple
stimuli). We aimed to examine how scale-free networks, in
particular, may accelerate the spreading of information and hence
enable a quicker collective response than proximity networks to
the global changes.

5To this end, the interested reader is encouraged to use our publicly available

resources provided on https://osf.io/48b9h/.

We have implemented scale-free networks across the robots
resting in the nest, as the nest is usually the part of the
environment in which communication takes place. We applied
the well-known preferential attachment technique to construct
the scale-free topology. Following preferential attachment, the
probability of connecting to a robot is proportional to its
current connectivity degree. Therefore, a number of robots
emerge to have a relatively high degree of connectivity, those
are referred to as the hub robots. When the density of food
items changes at the foraging environment, and this change is
reflected in the robots’ experience, scale-free networks enable a
faster spreading of this information in the nest. This led to a
faster collective response compared to the scenarios in which
interactions between the resting robots were implemented using
proximity networks.

Our results suggest that the use of scale-free networks can
improve the collective response of the swarm to changes in
their dynamic environment, by improving the spread of shared
information and reducing the spatial correlation in the robots’
decisions. These two desired features in collective systems are
achieved due to the introduced possibility to communicate over
long distances, as well as due to the dynamic rewiring of the
interaction network at every time step as a consequence of
robot motion. These insights were obtained by comparing the
swarm behavior in scenarios with and without systematic packet
loss, in addition to comparing the swarm performance between
scenarios with scale-free networks and with alternative random
networks. Furthermore, our findings showcase the effect of social
cues on the intensity of the collective response in presence of
scale-free networks. Our results show that higher social cues lead
to a higher activation of the resting robots, due to the increased
influence of their neighbors’ experience.

Although scale-free networks have shown to equip the swarm
with a quicker reaction to changes in dynamic environments—
studied for the collective foraging task—this came at the cost
of the coherence of the collective response. Scale-free topologies
led to more fluctuations of the swarm decision (whether to
rest or to forage). These fluctuations can be explained in
terms of the high influence of particular individuals (i.e., the
hubs) on the opinions of a large population of the resting
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robots. Two particularly promising research directions for
future work include the design of self-organized algorithms to
implement scale-free topologies in robots swarms. Additionally,
the design of efficient individual decision mechanisms that
helps the collective response to demonstrate a higher stability.
Finally, generalizing this study to other collective tasks such
as site selection, flocking, and others may also lead to new
interesting insights.
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