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Editorial on the Research Topic

Novel Methods for Oncologic Imaging Analysis: Radiomics, Machine Learning, and
Artificial Intelligence

INTRODUCTION

Radiomics is a quantitative and high-throughput radiological method that can aid in clinical
decision-making, like treatment modality selection, and treatment plan optimization. By extracting
plentiful of parameters from standard images, plenty of information that cannot be discovered by
human naked eyes can be explored. Based on the hypothesis that these extra data provide additional
information related to gene, protein and tumor phenotype, radiomics has gained increasing
attention in cancer research. Meanwhile, because of the rich amount of data obtained in
radiomics, sophisticated image analysis tools are required to analyze it. Many image-based
signatures have been constructed by computer algorithms. Herein, this Research Topic recruited
studies that exploring the usage of radiomics and artificial intelligence assisting clinical decision-
making of tumors.

We are very glad to see that many excellent works were submitted to our Research Topic. In the
end, a total of 36 papers were published, among which 34 were original studies and two were
reviews. The researches were carried out in different countries, including China, USA, UK and
France, and most of them were retrospective studies. They used various methods to explore the role
of imaging in clinical decision-making. The methods used to select high-throughput imaging
parameters can be divided into three levels, including the mathematical formulas level, Machine
Learning level and Deep Learning level which belongs to Machine Learning but is more automatic.
These kinds of analysis methods are constantly evolving to mimic the thinking patterns of the
human brain, gaining the ability to analyze increasingly complicated data. However, for the lack of
July 2021 | Volume 11 | Article 62831017
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open platform of images and non-uniform manual feature
extraction, there is still a long way to go till a standard or a
series of standardized radiomics signatures can be constructed.
PAPERS INCLUDED IN THIS
RESEARCH TOPIC

Studies With Mathematical Formulas
As for the first level, using mathematical formulas, some studies
generally extract parameters from images, then use statistical
methods, like Mann–Whitney U-test, Spearman’s rank
correlation test, etc., to compare the internal and external
differences of parameters, and then select the most
heterogeneous data in different groups. After selecting the
appropriate features, Machine Learning algorithms will be used
to build models. This kind of studies included in the Research
Topic used textures extracted from various images, like Positron
Emission Tomography–Computed Tomography (PET/CT), CT,
Magnetic Resonance Imaging (MRI), etc., to improve the
accuracy of disease differentiation or prognosis prediction (Xu X.
et al.; Xu H. et al.; Gao et al.; Hu et al.; Wang J. et al.; Zhou X. et al.;
Zhang Y. et al.; Zhong et al.; Wu J. et al.; Zhang P. et al.; Chen W.
et al.; Dong Y. et al.; Mai et al.; Li et al.). For instance, Zhang P. et al.
differentiated seminomas and nonseminomas by MRI radiomics.
Features were selected by comparing their heterogeneity among
different groups and by assessing their relevance and redundancy.
Then, Least Absolute Shrinkage and SelectionOperator (LASSO), a
regression analysis method, was used to select features to improve
the mode prediction accuracy and interpretability (Zhang P. et al.).
Mai et al. focused on the differentiation of phyllodes tumors and
fibroadenoma with breast MRI texture analysis. They used a
combination of a linear discriminant analysis and the K-Nearest
Neighbor classifier to construct differentiative models (Mai et al.).

Studies With Machine Learning Algorithms
At the second analysis level, studies mainly used Machine
Learning algorithms to select and classify radiomics features
(Zhou H-F. et al.; Wang F. et al.; Yi et al.; Chen C. et al.; Huang
et al.). Machine Learning algorithms build prediction models
based on patterns in the training data and make predictions by
comparing new instances to previous similar events, and they
can be divided into supervised, unsupervised and semi-
supervised learning algorithms, based on whether the data are
labeled. Some studies selected one kind of algorithms to process
data. Fei Wang et al. used LASSO to select features and Support
Vector Machine (SVM) algorithm to constructed a predictive
model and drew a nomogram to improve the preoperative T
category accuracy (Wang F et al.). Huang et al. used LASSO
regression model to select features and a multivariable logistic
regression to develop predicting models. In addition, a
nomogram was drawn by radiomics and clinical features to
evaluate peritoneal metastasis status in gastric cancer (Huang
et al.). Yi et al. predicted treatment response to neoadjuvant
chemoradiotherapy in patients with locally advanced rectal
cancer. Three aspects of the treatment response: not only
Frontiers in Oncology | www.frontiersin.org 28
partial clinical remission and good response, but also down-
staging were evaluated. They used SVM rather than LASSO or
Random Forest (RF) to regress features into a two-dimensional
plane (Yi et al.).

Some other studies used multiple methods for feature
selection and classification, as there are many kinds of
Machine Learning methods with different advantages and
drawbacks. They found the choice of classification methods
accounted more than selection methods. Chen C. et al. used
texture features to differentiate glioblastomas from metastatic
brain tumors and differentiate glioblastoma from primary central
nervous system lymphoma. In their studies, Linear Discriminant
Analysis (LDA)-based models represented better performances
than SVM-based models and Logistic Regression (LR)-based
models (Chen C. et al.; Chen C. et al.). Similar results were
found in other studies that compared different combinations
(Tian et al.; Fan et al.; Zhang Y. et al.). For example, Yang Zhang
et al. used five selection methods and nine classifiers. The
combination of LASSO and LDA represented the best
comprehensive performance (Zhang Y. et al.). LDA is a linear
classifier whose decision boundary is a plane or a line, while SVM
is a non-linear classifier with a decision boundary of a surface or
a curved line. Although the above studies showed that LDA was
superior to SVM, other studies uncovered the opposite results
(Zhang Y. et al.; Payabvash et al.; Delzell et al.; Hong et al.).
Zhang Y. et al. differentiated anaplastic oligodendroglioma from
atypical low-grade oligodendroglioma. The best-performed
combinations were various according to different image
parameters. The combination of LASSO and RF classifier was
the best for T1 images, while the combination of GBDT and RF
classifier was the best for the fluid attenuated inversion recovery
images (Zhang Y. et al.). In addition, Payabvash et al.
differentiated posterior fossa tumors by using different
Machine Learning classifiers, and also found RF models
achieved greater accuracy. Delzell et al. used three types of
classifying methods, including linear, nonlinear, and ensemble
predictive classifying models, and found Elastic Net and SVM
performed the best, while RF and Bagged Trees were the worst. It
is impossible to draw firm conclusions about which method is
the best, because there are too many influencing factors, such as
sample size, parameter acquisition, extraction method, etc.
However, at the very least, all the relevant articles show that
Machine Learning methods are superior to manual methods, so
more research on Machine Learning is necessary.

Studies With Deep Learning
Deep Learning is a subclass of Machine Learning that extends
Deep Neural Networks to create complex neural architectures to
solve difficult problems which would be impossible with
traditional programming based on mathematical logic.
Moawad et al. explored the feasibility of volumetric assessment
of pre- and post- Transhepatic Arterial Chemotherapy And
Embolization hepatocellular carcinoma using fully automated
segmentation that based on a Convolutional Neural Network
(CNN) approach (U-Net). For automated segmentation,
attenuation of adjacent organs and the small size of lesions
July 2021 | Volume 11 | Article 628310
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Xu et al. Editorial: Radiomics and Artificial Intelligence
were the main challenges. According to the assessment of
response evaluation criteria in solid tumors, automated
segmentation was a good substitute for manual segmentation
(Moawad et al.). Sun et al. compared the deep CNN model based
on breast ultrasound parameters with the radiomics model.
Radiomics can be regarded as an accurate phenotypic analysis
of medical images in which the imaging features are carefully
defined in advance according to expert opinion. However, Deep
Learning uses the raw data and analyzes the pixels and the voxel
values by themselves. With convolution techniques, imaging
features are automatically defined in the network. Thus, Deep
Learning is the most artificial intelligent tool among these three
analyzing levels. It is closest to human mode of thinking and can
extract features and analyze them automatically.

Other Related Studies and Reviews
Moreover, there are some included studies focusing on
optimizing the original features to promote the analysis results.
Lacroix et al. optimized MR images before process with N4ITK
bias field correction and normalizing voxel intensities with fat as
a reference region. The results showed that correction of
magnetic field heterogeneity and normalization of voxel values
can promote the usage of radiomic features (Lacroix et al.). Wu
W. et al. decomposed data by a non-linear kernelization method,
Kernel Principal Component Analysis (KPCA), to find a new set
of candidates and maximize the use of data. Lu et al. used
concordance correlation coefficients to measure the fidelity in
repeated experiments. A lot of features with good repeatability
were found and their repeatability can be improved by using
specific lesion-drawing methods. Zormpas-Petridis et al.
proposed a novel multi-resolution hierarchical framework
(SuperCRF) which can introduce the spatial context of a cell as
additional information and improve the single cell classification
algorithms. In other researches, topics related to radiomics and
Machine Learning were discussed. Dong J. et al. and Ge et al.
reviewed the usage of radiomics and Machine Learning in the
management of cancers, and summarized computer-aided
clinical decision-making as a promising solution.
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CONCLUSION

In conclusion, the combination of radiomics and Machine
Learning can provide clinical practice convenience, as long as
some obstacles can be solved. The limitations of Machine
Learning-based radiological decision-making mainly lie in the
following aspects: Firstly, the data quality is uneven, and thus
open data-platforms like http://www.predictcancer.org need to
be built. Secondly, based on open image sources, algorithms of
lesion delineation, feature extraction and signature construction
require more standard reference to increase the generalization of
the results. Thirdly, more studies that based on uniform data and
algorithms and comparing the efficiency of computer-aid and
conventional clinical decision-making, are required to better
promote the usage of Artificial Intelligence in clinic.

This Research Topic involved many studies, which used the
combination of radiomics and Machine Learning in tumor
management. We appreciate all the reviewers and authors for
their contributions to this Research Topic. We hope this
Research Topic can arouse more attention in the related fields.
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Background: Conventional methods for predicting treatment response to neoadjuvant

chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC)

are limited.

Methods: This study retrospectively recruited 134 LARC patients who underwent

standard nCRT followed by total mesorectal excision surgery in our institution. Based

on pre-operative axial T2-weighted images, machine learning radiomics was performed.

A receiver operating characteristic (ROC) curve was performed to test the efficiencies of

the predictive model.

Results: Among the 134 patients, 32 (23.9%) achieved pathological complete

response (pCR), 69 (51.5%) achieved a good response, and 91 (67.9%) achieved

down-staging. For prediction of pCR, good-response, and down-staging, the predictive

model demonstrated high classification efficiencies, with an AUC value of 0.91 (95% CI:

0.83–0.98), 0.90 (95% CI: 0.83–0.97), and 0.93 (95% CI: 0.87–0.98), respectively.

Conclusion: Our machine learning radiomics model showed promise for predicting

response to nCRT in patients with LARC. Our predictive model based on the commonly

used T2-weighted images on pelvic Magnetic Resonance Imaging (MRI) scans has the

potential to be adapted in clinical practice.

Novelty and Impact Statements: Methods for predicting the response of the locally

advanced rectal cancer (LARC, T3-4, or N+) to neoadjuvant chemoradiotherapy (nCRT)

is lacking. In the present study, we developed a new machine learning radiomics
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method based on T2-weighted images. As a non-invasive tool, this method facilitates

prediction performance effectively. It achieves a satisfactory overall diagnostic accuracy

for predicting of pCR, good response, and down-staging show an AUC of 0.908, 0.902,

and 0.930 in LARC patients, respectively.

Keywords: locally advanced rectal cancer (LARC), neoadjuvant chemoradiotherapy (nCRT), treatment response,

magnetic resonance imaging (MRI), machine learning radiomics

INTRODUCTION

Rectal cancer is a common malignancy worldwide, accounting
for ∼30–50% of colorectal cancer (1, 2). Moreover, in
rectal cancer patients, lesions are usually located in middle-
low rectum, which causes increased difficulty in treatment
and worse prognosis, especially the locally advanced rectal
cancer (LARC, T3-4 or N+) (3, 4). Currently, neoadjuvant
chemoradiotherapy (nCRT) followed by total mesorectal excision
is the recommended treatment for LARC patients, especially
those with lesions located in the middle-low rectum (5). The
advantages of nCRT are usually significant (6, 7). However,
the response of LARC to nCRT varies widely, ranging from
pathological complete response (pCR, ypT0N0M0) with no
viable tumor cells left in the surgical specimen, to virtually no
tumor regression at all (stable) or even tumor progression in a
small group of patients (8, 9). Among these patients, pCR is not
only associated with favorable disease-free and overall survival (7,
10), but also motivates the “watch-and-wait” treatment strategy,
a non-operative option for patients achieving clinical complete
response (11). Therefore, clinicians are motivated to identify
ways to accurately predict patients’ individual responses to nCRT.

Radiological examination has been considered to be one of
the means most likely to accomplish this task (12). Among
all modalities, Magnetic Resonance Imaging (MRI) is regarded
as the most promising method because it uses no radiation,
shows high soft tissue resolution, and has wide routine
clinical application for evaluation of rectal cancer. Notably,
some conventional and functional MRI methods have been
reported to show some advantages in predicting tumor response
to nCRT (13–15). Unfortunately, conventional MRI analysis
remains limited when predict treatment response in individual
patient using experience (16). There is a need to develop
new methods.

Quantitative image data analysis, such as texture analysis
and radiomics are procedures for converting clinical images
into high-dimensional, exploitable, and quantitative imaging
features by high-throughput extraction of data-characterization
algorithms (17). In addition to clinical outcomes, the biomedical
information contained in medical images, such as overall
information about phenotype and microenvironment of the
tumor, may be vitally important for evidence-based clinical

Abbreviations: LARC, locally advanced rectal cancer; nCRT, neoadjuvant

chemoradiotherapy; MRI, magnetic resonance imaging; RC, rectal cancer; CRC,

colorectal cancer; pCR, pathological complete response; cCR, clinical complete

response; AUC, area under curve; DWI, diffusion-weighted imaging; GR, good

response; ROI, region of interest; ROC, receiver operating characteristic.

decision support. In theory, all magnetic resonance images in
different can be used as a source of analysis. In theory, for
quantitative analysis, used features can be extracted from images
of all modalities (12, 16, 18–22). However, T2 weighted image
is almost the most widely used one, when considering the wide
availability of images which can be stably acquired based on
different machines. Quantitative image data analysis methods
have the potential to reveal such biomedical information,
providing an opportunity to improve decision-support in
oncology and non-invasively (17, 23). The potential advantage of
this kind of method has already been verified in colorectal cancer
(24) and a variety of other cancers, including nasopharyngeal
carcinoma (25), lung cancer (17), and breast cancer (26).
Recently, some independent studies (12, 19–22, 24) reported
that a multimodality MRI based radiomics model could predict
RC tumor response to nCRT with an improved accuracy
for pCR and good response prediction. However, due to the
relatively small sample size, or the inclusion of multimodality
images with other MRI sequences such as diffusion-weighted
imaging, or the lack of integration of important relevant clinical
pathological features, there is a need for improving accuracy of
the prediction model.

In the present study, we retrospectively collected
134 consecutive surgically and pathologically confirmed
LARC patients who received standard nCRT before
surgery. We developed a machine learning radiomics
model based on imaging data extracted from the
T2-weighted images, and validated its prediction
efficiency of treatment response to nCRT in patients
with LARC.

MATERIALS AND METHODS

Patients
This retrospective study was approved by our institutional review
board (IRB No. 201610070). The written informed consents from
patients were waived.

Medical data of consecutive biopsy-proven rectal
adenocarcinoma patients with LARC treated with nCRT
followed by total mesorectal excision between March 2009 and
December 2017 in our institution were retrospectively analyzed.
Complete clinical data, including MRI imaging of all patient’s
performed before radiotherapy, was analyzed. Details about
the inclusion and exclusion criteria, clinical and pathological
characteristics, and treatments information can be found in
Supplementary Files. The patients recruiting process was shown
in Figure 1.
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FIGURE 1 | Flow-chart. LARC, Locally advanced rectal cancer; nCRT, neoadjuvant chemoradiotherapy; TME, total mesorectal excision.

Pathological Assessments of
Tumor Samples
Each specimen was sampled and evaluated by two experienced
dedicated gastrointestinal pathologists. The two pathologists
were both blind to the MRI data and clinical data. Criteria for
pCRT and non-pCRT were defined as described in previous
reports (8). We also classified TRG 3–4 into the good response
(GR) group, and TRG 0–2 into the non-GR group according
to Dowrak/Rödel’s system (27). Changes in TNM staging were
recorded by comparing to cTNM before the surgery, and
responses were classed as either down-staging or non-down-
staging (stability and progression). Details can be found in the
Supplementary Files.

MRI Image Acquisition
All patients underwent an MRI scan in our hospital with either
a 1.5 Tesla (Siemens, Erlangen, Germany) or a 3.0 Telsa scanner
(GE, Milwaukee, US), using a phased-array body coil, 3–10 days
before the start of chemoradiation. To ensure MRI image quality,
a quality assurance check was performed biweekly by a hospital
radiological physicist and executed bimonthly by the Siemens or
GE engineer, as appropriate, according to the maintenance rules
for the MRI scanners in our institute. Axial T2-weighted (T2w
fast spin echo sequence) images (T2WI) and T1-weighted (T1w
spin echo sequence) images (T1WI) were acquired regularly.
Subsequently, multiphase T1w images were obtained before and
after contrast injection, using a spoiled gradient echo sequence
(LAVA/VIBE sequence). Contrast injection and data acquisition
were triggered simultaneously. Briefly, a total of four repetitions
were acquired, including one before the contrast injection and
three after the injection (at 28, 65, and 120 s). For contrast,

generally 90–100ml of the gadolinium-based contrast media
dimeglumine gadopentetate (Magnevist; Schering Diagnostics
AG, Berlin, Germany) was administrated intravenously at a rate
of 2.5 ml/s through a high pressure injector (Optistar LE, Liebel-
Flarisheim Company, OH, USA).

Since all patients had at least three kinds of MRI images
(T1WI, T2WI, and enhanced T1WI), MRI images from these
three serials were included in the present study.

MRI Image Analysis
All MRI images of each patient were evaluated independently
by two experienced abdominal radiologists (reader 1. C.C with 7
years of experience; reader 2, L.X.Y with 15 years of experience),
who were totally blinded to all medical information. Final
disagreement was resolved in a panel format including two
additional radiologists (L.W.H and Y.X.P). The location and
boundary of the tumor were confirmed, tumor size, the distance
from the lower edge of the tumor to the anal canal, and the MRI-
based TNM stage were recorded. The findings were recorded
by consensus.

Texture Analysis Feature Extraction
For each patient, an anonymized representative axial T2WI
image in which the lesion had the largest cross-sectional
area was selected and retrieved from Picture Archiving and
Communication System (PACS, Carestrem, Canada) using
Digital Imaging and Communications in Medicine (DICOM)
Works software (version 1.3.5). Subsequently, each image was
transferred to a personal computer and inputted into the texture
analysis software (MaZda Version 4.6, Institute of Electronics,
Technical University of Lodz, Poland) (28).
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Briefly, the process of texture analysis feature extraction was
conducted by 2-steps as follows: (a) selecting and retrieving the
suitable MRI images, and then (b) outlining the tumors as the
regions of interest (ROI), and extracting quantitative texture
analysis features by using the texture analysis software (MaZda
Version 4.6, Institute of Electronics, Technical University of
Lodz, Poland).

Tumors were outlined as a region of interest (ROI) by
performing MaZda on T2WI, while using all other image
sequences (especially gadolinium-enhanced images) as references
in cases where the margin of the rectal lesion was difficult to
define on unenhanced images. Briefly, a ROI was delineated
initially by following the tumor outline, with notation that fat
and air outside the mass are not included. Then, the ROI
was saved for subsequent texture analysis. Contouring was
performed carefully to cover the maximum extent of the tumor
without exceeding the lesion border, to avoid contamination
from adjacent normal rectal tissues or the intestinal lumen.
For each ROI, a total of 340 quantitative features were
automatically generated using MaZda software, including a
gray level histogram, gradient, run-length matrix, co-occurrence
matrix, autoregressive model, and wavelet transform analysis
according to the software settings.

Evaluation of the Reproducibility of
Radiomics Feature Extraction by the
Two Radiologists
The reproducibility assessment of the features extracted by the
two radiologists from the independent segmentations of T2WI
images of all patients was performed. The inter-observer (reader
1 v reader 2) and intra-observer (reader 1 twice) correlation
coefficient values were evaluated. The final consistency is
evaluated by the following criteria regarding the correlation
coefficient values: <0.20 indicates poor reproducibility, 0.21–
0.40 fair reproducibility, 0.40–0.60 moderate reproducibility,
0.61–0.80 good reproducibility, and 0.81–1.00 excellent
reproducibility. Generally, a correlation coefficient >0.75 is
regarded as being in good agreement.

For the Kappa consistency test, excellent, good, and poor
agreement were defined as kappa values of >0.81, in the range
of 0.61–0.80, and <0.60, respectively.

The Mann-Whitney U-test was used to compare the values of
each feature between the two groups. An independent samples
t-test or Kruskal-Wallis H test, where appropriate, was used to
assess the differences between the features generated by reader 1
(first time) and those generated by reader 2, as well as between
the features generated twice by reader 1.

Inter-observer and intra-observer reproducibility of texture
feature extraction was initially analyzed with 50 randomly chosen
images from all T2WI images selected for evaluation by the
two radiologists (reader 1, and reader 2). To assess the intra-
observer reproducibility, reader 1 repeated the generation of
texture features twice within a 2-week period following the
same procedure. Reader 1 completed the workflow for the
remaining images.

Statistical Analysis, Features Selection,
Signature Generation, and Prediction
Model Building
All statistical analyses were conducted using IBM SPSS version
20.0.0 (IBM Corporation, Armonk, NY, USA). To test the
difference between groups, the Wilcoxon rank-sum test was
performed for the quantitative features, and the chi-square test
or fisher’s exact test was performed for the qualitative features.

All data processing, data reduction and feature selection,
and model built were performed using MATLAB 2017a (The
Mathworks, Inc., Natick, MA, USA). The least absolute shrinkage
and selection operator (LASSO) method, was used to select the
most useful predictive features from the primary data set, and
a radiomics score (Rad-score) was calculated for each patient
at the mean time as a linear combination of selected features
that were weighted by their respective coefficients. Based on
these selected features, another classification model was also
constructed by Random forest (RF), and the RF-score was
generated. Subsequently, a combined classification model was
finally built by the support vectormachine (SVM)method (SVM-
score), based on Rad-score and RF-score in the previous step.
On the basis of two SVM-scores obtained, calculated from TE
and TRC features, respectively, a final classification model was
generated by using the SVM method again (SVM-score-final).
Through the above steps, a total of seven models were generated
representing each classification task, considering there are two
kinds of data (Texture analysis [TA] features, and Traditional
radiological-clinicopathological [TRC] features) that were used
to build the model. The seven models include three models
generated from TA features (model based on Rad-score, RF
model, and first-step SVM model), three models generated from
TRC features (model based on Rad-score, RF model, and first-
step SVMmodel), and one combined SVMmodel.

The basic idea of this algorithm is to consider LASSO and
RF as weak regressors and combine them using SVM. For
each type of data, i.e., texture feature, we first use LASSO to
obtain the Rad-score, and use its side product, i.e., important
features, as the feature set of RF to obtain the RF-score. Since
Rad-score and RF-score are independently acquired by two
different weak regressors, using SVM to regress them in a two-
dimensional plane achieves a better result than by them owns.
Moreover, data sets Texture feature and Traditional radiological-
clinicopathological data are also independent to each other. So
for the same reason, we use SVM to regress the scores from
Texture feature and Traditional radiological-clinicopathological
data to get the final regression score. Finally, the regressed scores
can be binarized for further prediction.

To evaluate the performance of the models, all patients were
divided into two cohorts: a training cohort and a validation
cohort. The models were developed in the training cohort, and
tested in the validation cohort. The classification efficiencies of
each kind of model mentioned above, including the receiver
operating characteristic (ROC) curves, both in the training
and validation cohort were calculated. A P-value < 0.05 was
considered statistically significant. Details of the flow chart for
building the classification model are shown in Figure 2.
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FIGURE 2 | Flow chart depicting construction of the classification models.

LARC, locally advanced rectal cancer; TE, texture features; TRC Traditional

radiological features and clinicopathological features; LASSO, least absolute

shrinkage and selection operator; RF Random forest; SVM support vector

machine. The nx or ny terms used here indicate the different numbers of

selected features used in the LASSO method with three different reduction

schemes based on 340 TE features and 31 TRC features, respectively. The

texture analysis software used was MaZda Version 4.6 (Institute of Electronics,

Technical University of Lodz, Poland).

RESULTS

Patients Characteristics
There were134 patients enrolled in the present study. Patients’
characteristics in the training and validation cohorts were
summarized in Table 1. Patients were randomly allocated into
training cohort and validation cohort in a 3:1 ratio for
building the pCR predictive model, the down-staging model,
and the good response model. No differences were found
between the training and validation cohorts in any of the three
models. In addition, the patients’ clinicopathological data mostly
consisting of laboratory data were also used in building the
predictive models.

The Classification Model Building and
Predicting Efficiency
From a total of 340 features that were extracted from T2-wighted
images for each patient, a set of features with corresponding
numbers were selected by LASSO and used to calculate the Rad-
scores for the pCR, Good Response, and Down-staging models.

Predicting Pathological Complete Response (pCR)
On the basis of the selected 10 texture and 8 clinicopathological
features, a predictive model was finally constructed with SVM
method for pCR prediction. The SVM model yielded an AUC
of 90.78% in the training cohort, and 87.45% in the validation
cohort (Figure 3 and Supplementary Figure 1).

Predicting Good Response (GR)
The predictive model built based on the 10 texture features and
7 clinicopathological features achieved an AUC of 90.17% in the
training cohort, and 89.72% in the validation cohort (Figure 3
and Supplementary Figure 1).

Predicting Down-Staging
The predictive model with 10 texture features and 7
clinicopathological features showed an AUC of 92.97% in the
training cohort, and 89.20% in the validation cohort (Figure 3
and Supplementary Figure 1). Details about prediction
efficiency of three kinds of models could be found in Table 2.
The correlation matrix of the selected features used in the three
kinds of models was showed as Figure 4.

DISCUSSION

To the best of our knowledge, this was the first cohort
studied to date utilizing monosequence-MRI-based machine
learning radiomics to predict tumor response to neoadjuvant
chemoradiation therapy in patients with locally advanced rectal
cancer. Our predictive model constructed with both radiomics
features and clinicopathological data achieved higher accuracies
than previously reported in the literature, with an AUC
of more than 90%. Substantial evidence from prior studies
has demonstrated that a number of clinicopathologcial and
radiological features may help to predict treatment response
(16, 18, 29). Nevertheless, no single factor has stood out to be
the most reliable way for clinicians to use in decision making
process (6, 16). It is important to distinguish the LARC patients
who will likely to respond to nCRT from patients who would not.
However, this has not been achieved yet. We introduced here a
new imaging oriented strategy for a better prediction, which may
have potential for clinical practice.

Our study is in general accord with prior research (19, 30, 31).
Nie et al. (12) have reported a relatively satisfactory result by
using a radiomics method, with an AUC of 0.84 for pCR and
0.89 for good response prediction. Most recently, Cui et al. (19)
reported a further attempt on a bigger group LARC patients by
similar methods, which show very high predictive efficiency with
an AUC of 0.944. In addition, several LARC studies (20, 21) also
perform similar radiomics-based studies with good experimental
results, using features extracted from multimodality MR images
including T2WI. However, there were obvious advantages in our
study when compared to these studies. First, we fully evaluated
three aspects of the treatment response: not only pCR and good
response, but also down-staging. Our study has the potential to
provide more information on the tumor and treatment response.
Second, the number of enrolled patients in our study (n = 134),
was larger than that in the Nie’s (n = 48), and comparable
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TABLE 1 | Clinicopathological characteristics in three tumor response predictive models.

Down-staging predictive model pCR predictive model Good response predictive model

Training

cohort

Validation

cohort

P-value Training

cohort

Validation

cohort

P-value Training

cohort

Validation

cohort

P-value

Gender

Male 54 (57.4%) 26 (65.0%) 0.415 57 (61.3%) 23 (56.1%) 0.572 55 (58.5%) 25 (62.5%) 0.667

Female 40 (42.6%) 14 (35.0%) 36 (38.7%) 18 (43.9%) 39 (41.5%) 15 (37.5%)

Age (years) 50.62 ± 10.29 54.70 ± 10.74 0.040 52.32 ± 10.68 50.73 ± 10.32 0.424 52.02 ± 10.82 51.4 ± 10.04 0.757

Distance from the anal

verge (cm)

5.00 (3.00–6.00) 5.30 ± 2.15 0.264 5.0 (4.0–6.0) 5.00 (3.00–6.50) 0.185 5.00 (3.38–6.25) 5.00 (3.00–6.00) 0.233

Pathology type 0.463 0.320 0.087

Well/moderately

differentiated

adenocarcinoma

70 (74.5%) 33 (82.5%) 71 (76.3%) 32 (78.0%) 70 (74.5%) 33 (82.5%) 0.087

Poor differentiated

adenocarcinoma

17 (18.1%) 6 (15.0%) 18 (19.4%) 5 (12.2%) 20 (21.3%) 3 (7.5%)

Mucinous carcinomas 7 (7.4%) 1 (2.5%) 4 (4.3%) 4 (9.8%) 4 (4.3%) 4 (10.0%)

Clinical T staging (cT) 1.000 1.000 0.364

cT2 3 (3.2%) 0 2 (2.2%) 1 (2.4%) 1 (1.1%) 2 (5.0%)

Ct3 73 (77.7%) 29 (72.5%) 71 (76.3%) 31 (75.6%) 72 (76.6%) 30 (75.0%)

cT4 18 (19.1%) 11 (27.5%) 20 (21.5%) 9 (22.0%) 21 (22.3%) 8 (20.0%)

Clinical N staging (cN) 0.632 0.847 0.540

cN0 18 (19.1%) 10 (25.0%) 17 (18.3%) 11 (26.8%) 19 (20.2%) 9 (22.5%)

cN1a 18 (19.1%) 10 (25.0%) 20 (21.5%) 8 (19.5%) 18 (19.1%) 10 (25.0%)

cN1b 25 (26.6%) 8 (20.0%) 23 (24.7%) 10 (24.4%) 26 (27.7%) 7 (17.5%)

cN1c 1 (1.1%) 0 1 (1.1%) 0 1 (1.1%) 0

cN2a 20 (21.3%) 5 (12.5%) 19 (20.4%) 6 (14.6%) 15 (16.0%) 10 (25.0%)

cN2b 12 (12.8%) 7 (17.5%) 13 (14.0%) 6 (14.6%) 15 (16.0%) 4 (10.0%)

to Cui y’s (n = 186), which can ensure the desired prediction
results. Third, we also included conventional MRI findings
and clinicopathological data which may further improve the
prediction. Lastly, our radiomic features were extracted from
only one sequence, i.e., the T2-weighted images, other than
the multi-sequence MRI images used in previous studies. The
T2 weighted images are commonly used in clinical practice,
which is familiar to radiologists. In addition, it can be acquired
easily and the images are quite stable in appearance, especially
when compared with images obtained by special sequence,
such as diffusion weighted images. Notably, diffusion weighted
images are prone to distortion and susceptibility artifacts, which
affect tumor segmentation and data extraction. Similarly, other
sequences such as T1-weighted dynamic contrast enhanced
images depend on the amount and distribution of the injected
contrast-enhancing agent, which might be influenced by variable
hemodynamic conditions in the patients.

The exact reason for why quantitative MRI-based texture
data appear to be able to predict treatment response is still
largely unknown. In theory, the biological phenotype of tumors,
including treatment response, is largely determined by their
underlying molecular subtypes, whose manifestations may vary.
One of the phenotypes may be radiological heterogeneity,
including inter- and intra-tumor heterogeneity. A large body
of literature indicates that texture based radiomic modeling
can evaluate tumor heterogeneity, and can correlate radiological

findings with underlying genomic and biological characteristics,
including prognosis and treatment response (17, 23). Our study
may add into the literature in this regard as we have shown
a predictive model for treatment response with high accuracy.
From another perspective, the large amount of previous evidence
(13, 15), supporting using advanced MRI-based radiomic
features to predict different responses to nCRT in patients with
rectal cancer.

In addition, we introduced clinicopathological features into
the prediction model, which may contribute significantly to
the improvement of prediction efficiencies. These features may
represent, to some extent, some of the intrinsic properties of
the tumor (32, 33). For example, the fecal occult blood test
and red cell counts may indicate oxygen status of tumor.
Neutrophil counts, Monocyte counts, globulin, or platelet counts,
may actually reflect the immune status of LARC patients to
some extent. The hypoxia and immune status of the tumor can
influence tumor treatment response and mediate radiotherapy
resistance (34, 35). Pathology type and distance from the anal
verge also influence the tumor response, as has been shown
in previous studies (36, 37). Our study results suggest that
these clinicopathological data may play an important role in
treatment response.

There were several limitations in our study. First, as a
retrospective study, there may be a selection bias. Second, the
sample size in our study was modest, which may affect the
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FIGURE 3 | The efficiencies of machine learning models predicting treatment response in LARC patients receiving nCRT. The distribution of patients with

down-staging disease or not (A–D), pCR or not (E–H), and good response or not (I–L), in TRC based model (model 6) (A,E,I), TE based model (model 3) (B,F,J) and

the combined TRC and TE based model (Model 7) (C,G,K) were demonstrated by scatter plots. The ROC test (D,H,L) shows that the efficiency of model 7 was

significantly higher than that of either model 6 or model 3 in all three missions (all P < 0.05). There is no significant difference in prediction efficiency between model 6

and model 3 in any of the three missions (all P > 0.05).

FIGURE 4 | Correlation matrix maps show the correlation among all TE and TRC features used in predictive models. (A) Down-staging model. (B) PCR model. (C)

Good-response model. TRC features are expressed in bold fonts.

accuracy and stability of the predictive models. Third, both
the building and validation of the models were conducted in
our institution with a single dataset. A multicenter prospective

study might be helpful to further validate and optimize our
prediction models. The texture features were extracted from the
largest cross-sectional area of the tumor rather than from the
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TABLE 2 | The efficience of models to predict the treatment response in LARC petients.

Training cohort Validation cohort

Score 3 Score 6 Score 7 SVM1 SVM2 SVM3

DOWN-STAGING

AUC 0.8630

(95% CI: 78.36–94.25%)

0.8245

(95% CI: 73.07–91.83%)

0.9297

(95% CI: 87.62–98.31%)

0.8006

(95% CI: 65.28–94.84%)

0.8462

(95% CI: 72.46–96.77%)

0.8920

(95% CI: 79.40–99.01%)

Specificity 0.82812

(95% CI: 68.750–95.312%)

0.85938

(95% CI: 59.375–96.875%)

0.90625

(95% CI: 73.438–98.438%)

0.7778

(95% CI: 51.85–96.30%)

0.7778

(95% CI: 51.85–96.30%)

0.7778

(95% CI: 62.96–92.59%)

Sensitivity 0.83333

(95% CI: 63.333–96.667%)

0.73333

(95% CI: 56.667–93.333%)

0.9000

(95% CI: 73.333–100.000%)

0.8462

(95% CI: 61.54–100.00%)

0.9231

(95% CI: 69.23–100.00%)

0.9231

(95% CI: 76.92–100.00%)

Accuracy 0.82979

(95% CI: 74.468–89.362%)

0.81915

(95% CI: 69.149–89.362%)

0.89362

(95% CI: 79.787–95.745%)

0.8000

(95% CI: 65.00–92.50%)

0.8250

(95% CI: 67.50–92.56%)

0.8500

(95% CI: 70.00–92.50%)

PCR

AUC 0.8361

(95% CI: 74.13–93.09%)

0.8387

(95% CI: 74.83–92.91%)

0.9078

(95% CI: 83.15–98.41%)

0.8194

(95% CI: 69.08–94.79%)

0.7581

(95% CI: 58.56–93.05%)

0.8745

(95% CI: 74.82–99.49%)

Specificity 0.86364

(95% CI: 63.64–100.00%)

0.77273

(95% CI: 54.55–100.00%)

0.86364

(95% CI: 72.73–100.00%)

1.00

(95% CI: 80.00–100.00%)

0.9000

(95% CI: 40.00–100.00%)

0.9000

(95% CI: 50.00–100.00%)

Sensitivity 0.77465

(95% CI: 54.93–91.55%)

0.85915

(95% CI: 49.30–95.78%)

0.88732

(95% CI: 69.01–97.18%)

0.67742

(95% CI: 48.39–90.32%)

0.67742

(95% CI: 32.26–100.00%)

0.80645

(95% CI: 51.61–100.00%)

Accuracy 0.78495

(95% CI: 64.52–89.25%)

0.82796

(95% CI: 61.29–90.32%)

0.88172

(95% CI: 75.27–94.62%)

0.7561

(95% CI: 60.98–90.24%)

0.73171

(95% CI: 48.78–92.68%)

0.85366

(95% CI: 63.35–95.18%)

GOOD-RESPONSE

AUC 0.8374

(95% CI: 75.95–91.53%)

0.8039

(95% CI: 71.42–89.36%)

0.9017

(95% CI: 83.30–97.05%)

0.7920

(95% CI: 65.24–93.16%)

0.7744

(95% CI: 62.65–92.23%)

0.8972

(95% CI: 80.19–99.25%)

Specificity 0.77083

(95% CI: 54.17–97.92%)

0.8125

(95% CI: 52.08–93.75%)

0.875

(95% CI: 70.83–97.92%)

0.7143

(95% CI: 38.10–100.00%)

0.7143

(95% CI: 38.10–95.24%)

0.8571

(95% CI: 66.67–100.00%)

Sensitivity 0.80435

(95% CI: 50.00–95.65%)

0.73913

(95% CI: 56.52–95.65%)

0.9130

(95% CI: 76.09–100.00%)

0.8947

(95% CI: 47.37–100.00%)

0.8421

(95% CI: 52.63–100.00%)

0.8947

(95% CI: 68.42–100.00%)

Accuracy 0.7766

(95% CI: 70.21–85.11%)

0.7766

(95% CI: 69.15–85.11%)

0.88298

(95% CI: 81.92–93.62%)

0.7500

(95% CI: 65.00–87.50%)

0.7750

(95% CI: 65.00–87.50%)

0.8750

(95% CI: 75.00–95.00%)

entire tumor, which may raise questions as to whether these
features were optimally representative of the characteristics of the
entire tumor. Lastly, the MRI images used in the texture feature
extraction were obtained from three different MRI scanners
(Siemens and GE) in our hospital, and differences among the
scanners may potentially influence the texture features and
the subsequent model building. Future research is needed to
standardize the signal intensity among different MRI scanners.

CONCLUSION

Our study showed a predictive model built with radiomic
features and clinicopathological data was promising to predict
tumor response to neoadjuvant chemoradiation in patients
with locally advanced rectal cancer. In addition, our method
developed with information from the clinically obtained T2-
weighted sequence may be used as a complimentary tool to
assist clinical decision making. Nevertheless, future prospective
multicenter studies with larger samples will be needed to validate
our study result and to optimize the prediction models for
clinical practice.
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Purpose: To investigative the diagnostic performance of radiomics-based machine

learning in differentiating glioblastomas (GBM) from metastatic brain tumors (MBTs).

Method: The current study involved 134 patients diagnosed and treated in our

institution between April 2014 and December 2018. Radiomics features were extracted

from contrast-enhanced T1 weighted imaging (T1C). Thirty diagnostic models were

built based on five selection methods and six classification algorithms. The sensitivity,

specificity, accuracy, and area under curve (AUC) of each model were calculated, and

based on these the optimal model was chosen.

Result : Two models represented promising diagnostic performance with AUC of 0.80.

The first model was a combination of Distance Correlation as the selection method and

Linear Discriminant Analysis (LDA) as the classification algorithm. In the training group, the

sensitivity, specificity, accuracy, and AUC were 0.75, 0.85, 0.80, and 0.80, respectively;

and in the testing group, the sensitivity, specificity, accuracy, and AUC of the model were

0.69, 0.86, 0.78, and 0.80, respectively. The second model was the Distance Correlation

as the selection method and logistic regression (LR) as the classification algorithm, with

sensitivity, specificity, accuracy, and AUC of 0.75, 0.85, 0.80, 0.80 in the training group

and 0.69, 0.86, 0.78, 0.80 in the testing group.

Conclusion: Radiomic-based machine learning has potential to be utilized in

differentiating GBM from MBTs.

Keywords: radiomics, machine learning, glioblastomas, metastatic brain tumors, texture analysis

INTRODUCTION

Glioblastomas (GBM) and metastatic brain tumors (MBTs) are commonly identified brain tumors
in the adult population. Pre-surgery diagnosis between these lesions is critical to assist in efficient
treatment planning, especially for MBTs with brain metastases detected before the primary tumor
(1). Magnetic resonance imaging (MRI) is highly recommended for radiological examination as
a non-invasive tool due to the advantage of identifying the location and size of lesions (2, 3).
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However, conventional MR imaging is limited in differentiating
GBM from solitary MBTs due to lacking characteristics on their
imaging, and their contrast-enhancement patterns may mimic
each other. Moreover, advanced MR techniques, like Dynamic
Susceptibility Contrast Enhanced (DSC)MR imaging and proton
magnetic resonance spectroscopy (HMRS), are not significant in
the diagnosis of these lesions either given the similarities and
the increased vascularity between these tumors or the metabolite
ratios (4–8). Evidently, even with the quantitative information
that individual MR techniques provided on specific properties
of the tumor, the single radiological technique is not enough to
provide a tumor characterization.

Considering MR data was able to reflect the pathophysiology
of tumors visually, the quantitative radiomics-based analysis
may provide a feasible solution to assist in the demanding
process. Texture analysis (TA) is the mathematical method to
calculate the voxel-intensity heterogeneity of images, including
computed tomography (CT) and magnetic resonance imaging
(MRI), and showed promising diagnostic ability in various
lesions (9, 10). Previous studies have investigated the diagnostic
ability of pattern recognition techniques combined with TA in
order to aid physicians in making clinical decisions (3, 11, 12).
However, the optimal diagnostic model is still controversial
because the performance of models could be significantly
different with various combinations of classification algorithms
and the selection method on radiomics features. In the present
study, we performed a radiomic-based machine learning method
in discriminating GBM from MBTs with five selection methods
and six classification algorithms to bring about the intuitional
selection of an optimal model. Therefore, the purpose of our
study was to assess the contribution of pattern recognition
techniques using radiomics features in the different models to
distinguish GBM from MBTs and to select the optimum one in
terms of diagnostic value.

METHODS

Patient and MR Imaging Sequence
Selection
This retrospective study was performed in our institution.
The patients were selected from the neurosurgery department
treated between April 2014 and December 2018. The initial
selection enrolled potentially qualified patients who had records
of intraoperative frozen-section confirmation on GBM or
MBTs. Then we viewed the electronic medical records to
collect the information we needed for analysis, including name,
gender, age, and pathology report. Patients were excluded
if the history of other types of intracranial diseases were
documented or observed in MRI. The preoperative MR
images were also collected from the radiological department
through Picture Archiving and Communication Systems
(PACS) (Figure 1).

In this study, we focused on conventional MR sequences,
including T1-weighted imaging (T1WI), contrast-enhanced T1-
weighted imaging (T1C), T2-weighted imaging (T2WI), and
fluid attenuated inversion recovery (FLAIR), as they are the

routine examination for patients with intracranial tumor. After
the initial evaluation on images, contrast-enhanced T1 weighted-
imaging (T1C) was chosen among all the sequences for further
analysis due to the rather precise separation of tumor tissue from
brain tissue.

Conventional MR Imaging Examination
Protocols
The MR scans were performed using the 3.0T Siemens Trio
Scanners in the MR Research Center. High-resolution 3-
dimensional T1-weighted images were collected using MPRAGE
sequence. The parameters were as follows: TR/TE/TI =

1,900/2.26/900ms, 176 axial slices with thickness = 1mm, axial
FOV = 25.6 × 25.6 cm2, Flip angle = 9◦, and data matrix
= 256 × 256. Dimeglumine (0.1 mmol/Kg) was the contrast
agent for contrast-enhanced imaging, and multi-directional data
of contrast-enhanced MRI were collected during the continuous
interval time of 90–250 s.

Texture Feature Extraction
Two neurosurgeons participated in the statistic extraction
of texture features using LifeX software (http://www.lifexsoft.
org) with the assistance of senior radiologists. Following the
software protocol, they drew along the whole lesion in each
slice to obtain the 3D-texture features. In each layer of the
image, the regions of interest (ROI) were carefully drawn
along the boundary of tumor tissue (including the necrosis
and vessels within tissue). The peritumoral edema band and
adjacent structure invasion were separated from the primary
tumor with the difference in contrast enhancement. After
segmentation on the whole tumor, the software automatically
calculated and extracted texture features with default protocols
(Figure 2). To ensure the validity and reproducibility of the
procedure, the surgeons conducted data extraction twice, and
the difference between two sets was examined with Manny-
Whitney U-test. We adjusted the q < 0.01 as significant (before
was p < 0.05) to avoid the interference of false-positive errors
rising from a large number of texture features. The results
suggested that none of the features were significantly different,
implying that the results could be reliable and reproducible
(Supplement Material 1).

Texture features were calculated from two orders. In the
first order, features on shape- and histogram-based matrixes
were extracted; and in the second order, features on the
gray-level co-occurrence matrix (GLCM), neighborhood gray-
level dependence matrix (NGLDM), gray-level zone length
matrix (GLZLM), and gray-level run length matrix (GLRLM)
were extracted. Finally, we built a statistical dataset of the
radiomic statistics consisting of 43 features for machine-
learning analysis.

Classification Procedure
The establishment on the diagnostic model involved two parts:
feature selection and classification algorithm (or known as
classifier) deployment. The feature selection serviced the purpose
that the numbers of features were so many that overfitting
was inevitable for classification of algorithms. Considering the
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FIGURE 1 | The magnetic resonance images (T1C) of a patient with (A) GBM and (B) MBTs.

FIGURE 2 | Screen capture of regions of interest (ROI) delineation.

optimal selection method could be different for algorithms,
five selection methods were evaluated in our study, including
distance correlation, random forest (RF), least absolute shrinkage
and selection operator (LASSO), eXtreme gradient boosting
(Xgboost), and Gradient Boosting Decision Tree (GBDT). The

selected features were adopted into classification algorithms to
establish models.

Six classification algorithms were evaluated in our study,
including Linear Discriminant Analysis (LDA, also known as
Fisher Linear Discriminant), Support Vector Machine (SVM),
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FIGURE 3 | Heat map of the classifiers for differentiating between GBM and MBTs. (A) The AUC of the training group. (B) The AUC of the testing group.

TABLE 1 | Results of the optimal discriminative model in distinguishing GBM from MBTs in the training and the testing groups.

Model Training group Testing group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

Distance correlation + LDA 0.80 0.80 0.75 0.85 0.80 0.78 0.69 0.86

Distance correlation + LR 0.83 0.83 0.79 0.87 0.80 0.79 0.71 0.85

AUC, area under curve; LDA, linear discriminant analysis; LR, Logistic Regression.

random forest (RF), k-nearest neighbor (KNN), GaussianNB,
and logistic regression (LR). Patients were divided as the
training group and the testing group on a proportion of
4:1. Area under the receiver operating characteristic curve
(AUC) of each model was calculated to assess their diagnostic
performance. For each model, the progress of machine learning
was repeated over 100 times to obtain the realistic distribution of
classification accuracies.

All procedures involving human participants were in
accordance with the ethical standards of the institutional
and/or national research committee. The Ethics Committee
of Sichuan University approved this retrospective study. The
written informed consent was necessary before radiological
examination (written informed consent for patients <16 years
old was signed by parents or guardians) for all patients. They
agreed to undertake examination if needed and were informed
that the statistics (including MR image) might be used for
academic purposes in the future.

RESULT

Patients Selection
A total number of 134 patients were enrolled in this study.
Seventy-six of the patients were diagnosed with GBM, and 58 of
them were diagnosed with MBTs. The average ages of patients
were 46.9 and 57.6, respectively. The gender ratio for each type
of tumor (Male: Female) was 10:9 and 9:5, respectively. The

pathology reports represented that the majority of MBTs were
originated from lung cancer and breast cancer (N = 54).

Diagnostic Performance of Models
As for the diagnostic models we evaluated, 30 models were
established to select the suitable one, which was defined as the
one with the highest AUC in the testing group. The results
suggested the AUC of models mostly hovered around between
0.70 and 0.76 (Figure 3), and the highest value was 0.80 observed
in two models: the Distance Correlation + LDA and the
Distance Correlation + LR (Table 1). The details of each model
performance are summarized in Supplement Material 2.

For the first model (the Distance Correlation + LDA), in
the training group, the sensitivity, specificity, accuracy, and
AUC of the model were 0.75, 0.85, 0.80, and 0.80, respectively.
And in the testing group, the sensitivity, specificity, accuracy,
and AUC of the model were 0.69, 0.86, 0.78, and 0.80. For
the second model (the Distance Correlation + LR) in the
training group, the sensitivity, specificity, accuracy, and AUC
of the model were 0.79, 0.87, 0.83, and 0.83, respectively. And
in the testing group, the sensitivity, specificity, accuracy, and
AUC of the model were 0.71, 0.85, 0.79, and 0.80, respectively.
The LDA distribution suggested these two models represented
similar diagnostic performance (Figure 4). Figure 5 shows one
example of 100 independent validation cycles of the model,
representing the distribution of the first and second direct LDA
canonical functions.
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DISCUSSION

In the present study, we investigated the diagnostic ability of
pattern recognition techniques combined with texture features
extracted from conventional MRI in discriminating GBM from
MBTs. MRI could provide excellent information on soft tissue
differentiation to enable the exact localization of the tumors and
to assist in the prediction of tumor response to therapy evaluation
(13). However, pathological identification is the weakness
of conventional MRI bringing additional advanced imaging
techniques, which required additional fees and equipment, into
tumor characterization and treatment. Our study made the
evaluation on six classification algorithms consisting of five
selection methods and six classification algorithms to identify the
optimal model.

The diagnosis between MBTs and GBM on conventional
MRI is rather straightforward because of the clinical history
or observation of multiple lesions. The differences in tumor
growth could lead to characteristic descriptions that GBMusually
extends by infiltration, while MBTs usually arise within the
brain parenchyma and grow by expansion, leading to comprising

FIGURE 4 | Distribution of the discriminant functions of LDA in discriminating

GBM from MBTs.

surrounding brain tissue (14). However, the emergence of lesions
with a solitary enhancing appearance lacking information on
primary tumors brings difficulty on differential diagnosis because
high-grade GBM can present similar contrast enhancement
patterns (15). The accurate and early diagnosis of these lesions
is clinically important because the surgical planning, medical
staging, and therapeutic approach can significantly vary from
each other. Given that MR scan is the conventional radiological
examination for patients, TA on T1C has the potential to
serve as a feasible solution in clinical application without
requiring additional fees. Previous studies have illustrated that
TA combined with machine learning could assist in the diagnosis
of various brain tumors, such as GBM from primary central
nerve system lymphoma and meningioma from GBM (16, 17).
Moreover, it has also been applied in tumor grade system and
gene mutation prediction (18–22). The researchers illustrated
the potential of artificial intelligence in lightening the clinical
workload and improving early diagnostic accuracy.

Compared with the previous studies, our study involved
various selection methods and classification algorithms to choose
the optimal model with the best performance. Thirty models
were evaluated, and two of them represented feasible diagnostic
ability with AUC of 0.80 (the Distance Correlation + LDA
and the Distance Correlation + LR). In the previous study, the
SVM classifier was usually proven to be the suitable classifier
compared to the others, which made sense considering that
SVM is the suitable algorithm for small sample size. Our study
illustrated that the feasible optimal classifiers were LDA and
LR, while overfittings were almost observed in all SVM-based
models (Supplement Material 2). LDA and LR are considered
as the state-of-the-art on pattern recognition classifiers, with
much better performance in some cases. LDA is also taken as the
ground truth number of parameters in terms of performance. The
mechanisms of classifiers provide a possible explanation of the
differences in results. Both LDA and LR are the linear classifiers,
while SVM is the non-linear classifier. The main difference of
two types of classifiers consists in the shape of the decision
boundary: plane or straight line in the first case, and surface
or curved line in the second case. The choice of classification
algorithm should be a tradeoff between computational burden

FIGURE 5 | Example of distributions of the LDA function of (A) MBTs and (B) GBM for one cycle.
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and performance (23). This theory also demonstrated why
SVM could be the suitable algorithm for a small sample size
(50∼60) while LDA/LR was suitable for a relatively large sample
size (>100). However, it is worth noting that the diagnostic
performances of classifiers did not improve much in the current
research, even with the change in classification algorithm. All
studies applying machine learning in discrimination of MBTs
from GBM represented similar diagnostic performance with
AUC in the testing group of∼0.80, even when radiomics features
were selected with various selection methods and extracted from
various sequences (11, 12, 24). More research is required to
verify our results and to investigate the algorithm with better
diagnostic performance.

There were some limitations in the current study. First and
foremost, this study was a single central, retrospective study,
bringing inevitable selection bias (Supplement Material 3).
Second, the inhomogeneous histological subcategories of MBTs
could reduce the accuracy in the differentiation. Future
investigations with a larger sample size are required to assess
the ability of classification algorithms and texture parameters in
characterizing the lesion subtype. Third, only texture features
retrieved from T1C images were adapted into classifiers, while
features from other sequences (like T2WI and FLAIR) and
advanced MR techniques were not explored. Fourth, the models
were not validated in the other dataset, and we cannot guarantee
the diagnostic ability of our models for external datasets due to
the various protocols of imaging acquisition and MR scanners.
However, the analysis protocol and image processing procedure

were open-source packages and they should be validated
and reproduced.

DATA AVAILABILITY

The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

AUTHOR CONTRIBUTIONS

XM participated in the conceptualization and revised intellectual
content in the manuscript. CC collected MR image, participated
in MRI features extraction, and drafted this manuscript. XO
collected MR image, participated in MRI features extraction.
JW deployed the machine-learning algorism and responsible for
statistical analysis. WG assisted in MRI features extraction.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2019.00806/full#supplementary-material

Supplement Material 1 | The repeatability of texture feature extraction examined

by Mann-Whitney U-test.

Supplement Material 2 | The diagnostic performance of each model.

Supplement Material 3 | The radiomics quality score of research.

REFERENCES

1. Chiang IC, Kuo YT, Lu CY, Yeung KW, Lin WC, Sheu FO., et al.

Distinction between high-grade gliomas and solitary metastases using

peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion

imagings. Neuroradiology. (2004) 46:619–27. doi: 10.1007/s00234-004-

1246-7

2. Earnest F, Kelly PJ, Scheithauer BW, Kall BA, Cascino TL, Ehman RL.

et al. Cerebral astrocytomas: histopathologic correlation of MR and CT

contrast enhancement with stereotactic biopsy. Radiology. (1988) 166:823–7.

doi: 10.1148/radiology.166.3.2829270

3. Devos A, Simonetti AW, van der Graaf M, Lukas L, Suykens JA,

Vanhamme L, et al. The use of multivariate MR imaging intensities

versus metabolic data from MR spectroscopic imaging for brain tumor

classification. J Magn Reson. (2005) 173:218–28. doi: 10.1016/j.jmr.2004.

12.007

4. Korfiatis P, Erickson B. Deep learning can see the unseeable: predicting

molecular markers fromMRI of brain gliomas. Clin Radiol. (2019) 74, 367–73.

doi: 10.1016/j.crad.2019.01.028

5. Lohmann P, Werner JM, Shah NJ, Fink GR, Langen KJ, Galldiks N.

Combined amino acid positron emission tomography and advanced

magnetic resonance imaging in glioma patients. Cancers. (2019) 11:153.

doi: 10.3390/cancers11020153

6. Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW. High-

grade gliomas and solitary metastases: differentiation by using perfusion

and proton spectroscopic MR imaging. Radiology. (2002) 222:715–21.

doi: 10.1148/radiol.2223010558

7. Liu X, Tian W, Kolar B, Yeaney GA, Qiu X, Johnson MD, et al. MR

diffusion tensor and perfusion-weighted imaging in preoperative grading

of supratentorial nonenhancing gliomas. Neuro Oncol. (2011) 13:447–55.

doi: 10.1093/neuonc/noq197

8. Fan G, Sun B, Wu Z, Guo Q, Guo Y. In vivo single-voxel proton MR

spectroscopy in the differentiation of high-grade gliomas and solitary

metastases. Clin Radiol. (2004) 59:77–85. doi: 10.1016/j.crad.2003.08.006

9. Kassner A, Thornhill RE. Texture analysis: a review of neurologic

MR imaging applications. AJNR Am J Neuroradiol. (2010) 31:809–16.

doi: 10.3174/ajnr.A2061

10. Dennie C, Thornhill R, Sethi-Virmani V, Souza CA, Bayanati H, Gupta A,

et al. Role of quantitative computed tomography texture analysis in the

differentiation of primary lung cancer and granulomatous nodules. Quant

Imaging Med Surg. (2016) 6:6–15. doi: 10.3978/j.issn.2223-4292.2016.02.01

11. Svolos P, Tsolaki E, Kapsalaki E, Theodorou K, Fountas K, Fezoulidis I, et al.

Investigating brain tumor differentiation with diffusion and perfusion metrics

at 3T MRI using pattern recognition techniques. Magn Reson Imaging. (2013)

31:1567–77. doi: 10.1016/j.mri.2013.06.010

12. Tsolaki E, Svolos P, Kousi E, Kapsalaki E, Fountas K, Theodorou K, et al.

Automated differentiation of glioblastomas from intracranial metastases using

3T MR spectroscopic and perfusion data. Int J Comput Assist Radiol Surg.

(2013) 8:751–61. doi: 10.1007/s11548-012-0808-0

13. Provenzale JM, Mukundan S, Barboriak DP. Diffusion-weighted

and perfusion MR imaging for brain tumor characterization and

assessment of treatment response. Radiology. (2006) 239:632–49.

doi: 10.1148/radiol.2393042031

14. Cha S. Update on brain tumor imaging: from anatomy to physiology. AJNR

Am J Neuroradiol. (2006) 27:475–87.

15. Oh J, Cha S, Aiken AH, Han ET, Crane JC, Stainsby JA, et al. Quantitative

apparent diffusion coefficients and T2 relaxation times in characterizing

contrast enhancing brain tumors and regions of peritumoral edema. J Magn

Reson Imaging. (2005) 21:701–8. doi: 10.1002/jmri.20335

16. Nakagawa M, Nakaura T, Namimoto T, Kitajima M, Uetani H, Tateishi

M, et al. Machine learning based on multi-parametric magnetic

resonance imaging to differentiate glioblastoma multiforme from primary

Frontiers in Oncology | www.frontiersin.org 6 August 2019 | Volume 9 | Article 80625

https://www.frontiersin.org/articles/10.3389/fonc.2019.00806/full#supplementary-material
https://doi.org/10.1007/s00234-004-1246-7
https://doi.org/10.1148/radiology.166.3.2829270
https://doi.org/10.1016/j.jmr.2004.12.007
https://doi.org/10.1016/j.crad.2019.01.028
https://doi.org/10.3390/cancers11020153
https://doi.org/10.1148/radiol.2223010558
https://doi.org/10.1093/neuonc/noq197
https://doi.org/10.1016/j.crad.2003.08.006
https://doi.org/10.3174/ajnr.A2061
https://doi.org/10.3978/j.issn.2223-4292.2016.02.01
https://doi.org/10.1016/j.mri.2013.06.010
https://doi.org/10.1007/s11548-012-0808-0
https://doi.org/10.1148/radiol.2393042031
https://doi.org/10.1002/jmri.20335
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chen et al. A Preliminary Study

cerebral nervous system lymphoma. Eur J Radiol. (2018) 108:147–54.

doi: 10.1016/j.ejrad.2018.09.017

17. Nguyen AV, Blears EE, Ross E, Lall RR, Ortega-Barnett J. Machine learning

applications for the differentiation of primary central nervous system

lymphoma from glioblastoma on imaging: a systematic review and meta-

analysis. Neurosurg Focus. (2018) 45:E5. doi: 10.3171/2018.8.FOCUS18325

18. Zhang X, Yan LF, Hu YC, Li G, Yang Y, Han Y, et al. Optimizing a

machine learning based glioma grading system using multi-parametric

MRI histogram and texture features. Oncotarget. (2017) 8:47816–30.

doi: 10.18632/oncotarget.18001

19. Li Y, Qian Z, Xu K, Wang K, Fan X, Li S, et al. MRI features predict p53 status

in lower-grade gliomas via a machine-learning approach. Neuroimage Clin.

(2018) 17:306–11. doi: 10.1016/j.nicl.2017.10.030

20. Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf R, Melhem ER,

et al. Classification of brain tumor type and grade using MRI texture and

shape in a machine learning scheme. Magn Reson Med. (2009) 62:1609–18.

doi: 10.1002/mrm.22147

21. Zarinabad N, Wilson M, Gill SK, Manias KA, Davies NP, Peet AC. Multiclass

imbalance learning: Improving classification of pediatric brain tumors from

magnetic resonance spectroscopy. Magn Reson Med. (2017) 77:2114–24.

doi: 10.1002/mrm.26318

22. Takada M, Sugimoto M, Masuda N, Iwata H, Kuroi K, Yamashiro H, et al.

Prediction of postoperative disease-free survival and brain metastasis for

HER2-positive breast cancer patients treated with neoadjuvant chemotherapy

plus trastuzumab using a machine learning algorithm. Breast Cancer Res

Treat. (2018) 172:611–8. doi: 10.1007/s10549-018-4958-9

23. Dellacasa Bellingegni A, Gruppioni E, Colazzo G, Davalli A, Sacchetti R,

Guglielmelli E, et al. NLR, MLP, SVM, and LDA: a comparative analysis on

EMG data from people with trans-radial amputation. J Neuroeng Rehabil.

(2017) 14:82. doi: 10.1186/s12984-017-0290-6

24. García-Gómez JM, Luts J, Julià-Sapé M, Krooshof P, Tortajada S, Robledo

JV, et al. Multiproject-multicenter evaluation of automatic brain tumor

classification by magnetic resonance spectroscopy. Magma. (2009) 22:5–18.

doi: 10.1007/s10334-008-0146-y

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Chen, Ou, Wang, Guo and Ma. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Oncology | www.frontiersin.org 7 August 2019 | Volume 9 | Article 80626

https://doi.org/10.1016/j.ejrad.2018.09.017
https://doi.org/10.3171/2018.8.FOCUS18325
https://doi.org/10.18632/oncotarget.18001
https://doi.org/10.1016/j.nicl.2017.10.030
https://doi.org/10.1002/mrm.22147
https://doi.org/10.1002/mrm.26318
https://doi.org/10.1007/s10549-018-4958-9
https://doi.org/10.1186/s12984-017-0290-6
https://doi.org/10.1007/s10334-008-0146-y
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


ORIGINAL RESEARCH
published: 30 August 2019

doi: 10.3389/fonc.2019.00821

Frontiers in Oncology | www.frontiersin.org 1 August 2019 | Volume 9 | Article 821

Edited by:

Chunxiao Guo,

University of Texas MD Anderson

Cancer Center, United States

Reviewed by:

Zhongxiang Ding,

Hangzhou First People’s

Hospital, China

Seyedmehdi Payabvash,

Yale University School of Medicine,

United States

*Correspondence:

Shengsheng Xu

xuss@cqmu.edu.cn

Specialty section:

This article was submitted to

Cancer Imaging and Image-directed

Interventions,

a section of the journal

Frontiers in Oncology

Received: 29 May 2019

Accepted: 09 August 2019

Published: 30 August 2019

Citation:

Wu W, Ye J, Wang Q, Luo J and Xu S

(2019) CT-Based Radiomics Signature

for the Preoperative Discrimination

Between Head and Neck Squamous

Cell Carcinoma Grades.

Front. Oncol. 9:821.

doi: 10.3389/fonc.2019.00821

CT-Based Radiomics Signature for
the Preoperative Discrimination
Between Head and Neck Squamous
Cell Carcinoma Grades
Wenli Wu 1, Junyong Ye 2, Qi Wang 3, Jin Luo 2 and Shengsheng Xu 1*

1Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China, 2 Key Laboratory of

Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University, Chongqing, China, 3Department

of Information, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China

Background: Radiomics has been widely used to non-invasively mine quantitative

information from medical images and could potentially predict tumor phenotypes.

Pathologic grade is considered a predictive prognostic factor for head and neck

squamous cell carcinoma (HNSCC) patients. A preoperative histological assessment can

be important in the clinical management of patients. We applied radiomics analysis to

devise non-invasive biomarkers and accurately differentiate between well-differentiated

(WD) and moderately differentiated (MD) and poorly differentiated (PD) HNSCC.

Methods: This study involved 206 consecutive HNSCC patients (training cohort: n =

137; testing cohort: n = 69). In total, we extracted 670 radiomics features from contrast-

enhanced computed tomography (CT) images. Radiomics signatures were constructed

with a kernel principal component analysis (KPCA), random forest classifier and a

variance-threshold (VT) selection. The associations between the radiomics signatures

and HNSCC histological grades were investigated. A clinical model and combined model

were also constructed. Areas under the receiver operating characteristic curves (AUCs)

were applied to evaluate the performances of the three models.

Results: In total, 670 features were selected by the KPCA and random forest

methods from the CT images. The radiomics signatures had a good performance

in discriminating between the two cohorts of HNSCC grades, with an AUC of 0.96

and an accuracy of 0.92. The specificity, accuracy, sensitivity, positive predictive value

(PPV), and negative predictive value (NPV) of the abovementioned method with a

VT selection for determining HNSCC grades were 0.83, 0.92, 0.96, 0.94, and 0.91,

respectively; without VT, the corresponding results were 0.70, 0.83, 0.88, 0.80, and

0.84. The differences in accuracy, sensitivity and NPV were significant between these

approaches (p < 0.05). The AUCs with VT and without VT were 0.96 and 0.89,

respectively (p < 0.05). Compared to the combined model and the radiomics signatures,

The clinical model had a worse performance, and the differences were significant

(p < 0.05). The combined model had the best performance, but the difference between

the combined model and the radiomics signature weren’t significant (p > 0.05).
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Conclusions: The CT-based radiomics signature could discriminate between WD and

MD and PD HNSCC and might serve as a biomarker for preoperative grading.

Keywords: head and neck cancer, grade, computed tomography, radiomics signature, biomarker

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the sixth
most common malignant tumor worldwide. Many factors affect
the prognosis of patients with HNSCC; among these factors, the
histological differentiation grade was reported to correlate with
lymph node status, distant metastases, survival and prognosis
(1–4). A pretreatment histopathologic grade evaluation for
HNSCC provides information for clinical decision making.
Although the histological differentiation grade is routinely
confirmed by biopsy and surgical resection in many head
and neck cancer centers, invasive biopsy is sometimes of little
predictive value in early-stage oral SCC (5). In addition, intra-
tumor heterogeneity is an issue. Biopsies do not exactly reflect
the overall pathophysiology of the lesion.

Some non-invasive functional imaging modalities have been
developed in the clinic, such as diffusion-weighted imaging
(DWI), dynamic contrast-enhancedmagnetic resonance imaging
(DCE-MRI), perfusion-weighted imaging (PWI), and positron
emission tomography (PET), all of which have been applied in
the grading of HNSCC (6–8). These imaging modalities play
important roles in the evaluation of disease grade to some extent,
but combining clinical visual assessments is necessary to increase
the overall accuracy.

Radiomics, which refers to an enhanced deep analysis of
the molecular aspects of tumors and accounts for intrinsic
susceptibility in the long-term follow-up, is a qualitative and
quantitative analysis of a large amount of radiologic data
extracted in a high-throughput manner to obtain predictive or
prognostic information from cancer patients (9, 10). Radiomics
is suitable for providing some predictive, classifying, and
prognostic information for HNSCC patients (11–13). A few
radiomics studies have been conducted based on MRI regarding
the staging and grading of HNSCC (14–16). Although the vast
majority of radiomics analyses were conducted on CT images, no
studies exist about radiomics models based on CT signatures to
differentiate HNSCC grades.

A large number of machine-learning methods were used
to evaluate their applying values in HNSCC patients (17, 18).
In this study, we will use another analysis method based on
CT radiomics signatures to evaluate its predictive value in
differentiating between HNSCC grades (WD vs. MD/PD).

MATERIALS AND METHODS

Study Population
We collected patients with head and neck tumors confirmed to
be SCC by surgical pathology in our hospital from January 2012
to February 2018. This study was approved by the institutional
review board of our hospital (approval number 2019-178), and
informed consent was waived. All patients underwent both

precontrast and multiple-phase pretreatment contrast enhanced
multi-slice spiral computed tomography (MSCT) scans. In this
study, the patients were chosen and excluded according to
the criteria presented in Figure 1. A total of 206 consecutive
patients were identified met the criteria. These patients were
randomly divided into a training cohort and a testing cohort
at a ratio of 9:1 by a computer. We retrospectively analyzed
the clinical information of all patients, including race, age, sex,
tumor sites, tumor differentiation, tumor nodemetastasis (TNM)
classification, and stage.

CT Image Acquisition
All CT scans were performed using a GE Discovery 750 HD (GE
Healthcare, Milwaukee, WI, USA) multidetector CT scanner.
The CT scanning area was from the skull base down to the thorax
inlet. The scanning parameters were as follows: 120 kV; 80mA;
pitch 0.984; detector collimation, 64 × 0.625mm; rotation time,
0.6 s; matrix, 512 × 512; section thickness, 5mm; and field of
view, 220–250 × 220–250mm. First, a non-contrast enhanced

FIGURE 1 | Flowchart showed patients selection for the study.
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CT scan was performed, and then a contrast-enhanced CT scan
was performed in the arterial phase (25–30 s), portal venous
phase (60–65 s), and delayed phase (120 s), after an intravenous
injection of non-ionic iodinated contrast medium (Ultravist 370,
Bayer Schering Pharma, Berlin, Germany) (dose 1.5 mL/kg,
injection rate 3.5 mL/s).

Image Analysis
Preprocessing

Lesion segmentation and labeling
We segmented and labeled the lesions on picture archiving
and communication systems (PACS) (Carestream Health Inc.,
Rochester, NY, USA). First, the doctor’s terminal was opened
to view the enrolled patients’ CT images, especially the portal
venous phase contrast-enhanced images, and then the slice
on which the lesion was the most obviously displayed was
determined. Second, the image window width was adjusted to
350 Hounsfield units (HU), and the window level was adjusted
to 40 HU. Third, the curve measurement button on the toolbar
was clicked to set the line color to red. Then, the largest solid
part of the tumor was encircled to include themarkedly enhanced
area and excluded the necrotic or cystic areas. The enclosed area

FIGURE 2 | Steps of preprocessing: (A) cutting off the patches of ROI; (B)

detecting the edge; (C) fulfilling the edge and generating mask.

was recognized as a region of interest (ROI) and could be round,
oval or another irregular shape. The area of the ROI was more
than 1 cm2, which guaranteed a large enough area for analysis.
Finally, the image with the ROI was exported and saved in a JPG
format for subsequent processing. The segmentation and labeling
processes were performed by two head and neck radiologists
(J.F. and Y.T. with 5 and 10 years of diagnostic experience,
respectively). Any discrepancies that occurred were resolved by
a consensus between the two radiologists.

The goal of preprocessing was to delineate tumor regions, but
first, the coordinates of the tumor area needed to be detected.
Because the CT image was almost gray, the red line could easily
be detected by a sliding a 64 × 64 rectangle to scan the whole
image from the left top with step size of 1. This sliding rectangle
recorded the coordinates of the vertex as soon as the rectangle
came into contact with the closed red line.

We used a 64 × 64 window to scan the whole image with a
step size of 1. Once the closed red line was found, the scanning
process was stopped. Since we used the red line to contour the
tumor, the window had a 100% overlap with the tumor at this
time. The segmentation process was performed by two head
and neck radiologists (W.X. and C.Y. with 8 and 11 years of
diagnostic experience, respectively). We used an original non-
annotated image in case the annotated red line interfered with
the prediction. The coordinates recorded by the sliding rectangle
could help delineate a 64 × 64 tumor region on the original
image. These delineated images are called patches. Only the
tumor region was considered when discriminating WD HNSCC
from MD/PD HNSCC so that we could focus on the tumor and
reduce the amount of noise interference. In addition, compared
to a complete tumor region, a 64 × 64 patch contained some
tissues around the tumor, which could also contribute to the
tumor grade.

To extract the shape features, we need an additional mask to
describe the shape of the tumor. We extracted the edge of the

FIGURE 3 | The workflow of proposed kernelized radiomics model in HNSCC.
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patch, primarily by keeping only the red parts of the image and
then filling in the edge and erasing the small annotated area to
generate a mask. We used both the segmented patches and masks
to extract all features (Figure 2).

Extracting radiomics features
We extracted 670 radiomics features from the portal venous
phase contrast-enhanced CT images. These features quantified
the phenotypic HNSCC characteristics and were divided into
four feature groups: shape and size features; histogram features;
texture features; and transformation features. All features are
shown in Tables S1–S4, and we used all features to construct the
random forest model. The workflow of the radiomics analysis
is shown in Figure 3. The preprocessing and feature extraction
methods were coded in MATLAB and python using scikit-
image (19).

Feature decomposition and classification
Although 670 features were extracted for each patient, these
features did not contribute equally to discriminating between
WD HNSCC and MD/PD HNSCC. The features with low
discrimination capabilities or those highly correlated with each
other would overfit the classifiers and lead to a poor outcome.
Therefore, feature decomposition was performed to find a set
of candidate features with excellent discrimination capabilities
and significant differences before grade prediction. In addition
to feature selection, feature decomposition could also generate
new features that are more capable of discrimination and have
less correlation with each other than the original features. We
used a non-linear kernelization method in the analysis. KPCA,
which could be seen as a non-linear version of PCA, is a perfect
answer to non-linear requests. In this paper, the following radial
basis function (RBF) kernel was used:

kRBF
(

xi, xj
)

= exp(−

∥

∥xi − xj
∥

∥

2

2σ 2
). (1)

Then, the features extracted from the CT image could be
processed by the KPCA algorithm with a RBF kernel. The
decomposition and classification methods were implemented
using scikit-learn (20), followed by a random forest classifier, and
we finally obtained our proposed kernelized radiomics model. All
experiments were performed under a Windows OS on a machine
with CPU Intel Xeon E5 2687W V3, GPU NVIDIA GeForce
1080ti, and 16∗8GB of RAM.

Kernelized radiomics model building
To build our kernelized radiomics model, we first decided on
the dimensions of the kernelized features. When using the RBF
kernel, we tuned the dimension value from 30 to 200 with steps
of 10.

Because a little imbalance existed between the positive and
negative samples in our dataset, AUC, instead of accuracy, was
used to select the dimension value.

Since the dimension of the kernelized features had been
decided, we still needed to select the classifier parameters. For an
ensemble learning method using random feature selection, the

main factors that could affect the performance of the random
forest model are the number of basic learners (decision tree),
maximum depth of each decision tree and number of randomly
selected features.We used a gidsearch to search for the best values
of these parameters, which tuned one parameter while freezing
the others.

We removed features with a training set variance lower than
0.8. We used the python and sklearn library to implement this
method, which first calculated the variance of each feature and
then removed features with a low variance.

Clinical and combined model building
According to previous studies (1, 4, 21–25), some clinical and
radiological characteristics are related to the differentiation
grades of HNSCC. The TN classification, stage and enhancement
types were selected as the clinical parameters for clinical
model building (Supplementary Data Sheet 2). These clinical

TABLE 1 | HNSCC patients information and tumor characteristics in the study.

Information/

characteristic

Testing cohort Training cohort p-value

Age 63.57 ± 12.01 (31–87) 61.18 ± 11.87 (27–86) 0.18

Sex 0.74

Male 53 (76.8%) 108 (78.8%)

Female 16 (23.2%) 29 (21.2%)

Tumor primary location 0.45

Oral cavity 35 (50.7%) 71 (51.8%)

Oropharynx 12 (17.4%) 13 (9.5%)

Hypoharynx 12 (17.4%) 28 (20.4%)

Larynx 10 (14.5%) 22 (16.1%)

Others 0 3 (2.2%)

Tumor differentiation 0.95

WD 42 (60.9%) 84 (61.3%)

MD/PD 27 (39.1%) 53 (38.7%)

T classification 0.64

T1–2 19 (27.5%) 42 (30.7%)

T3–4 50 (72.5%) 95 (69.3%)

N classification 0.52

N0 38 (55.1%) 69 (51.1%)

N+ 31 (44.9%) 68 (48.9%)

Stage 0.79

I–II 14 (20.3%) 30 (21.9%)

III–IV 55 (79.7%) 107 (78.1%)

Enhancement types

Observer 1 0.70

Homogeneous 1 23 (33.3%) 42 (30.7%)

Heterogeneous 1 46 (66.7%) 95 (69.3%)

Observer 2 0.23

Homogeneous 2 22 (31.9%) 33 (24.1%)

Heterogeneous 2 47 (68.1%) 104 (75.9%)

Age data are mean ± standard deviation, age range in parentheses, other data are

number (percentage). P > 0.05.
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and radiological characteristics and radiomics signatures were
integrated to build the combined model.

Statistical Analysis
The discriminating performance of this model was evaluated
with ROC curves and AUCs, and these values were compared
using DeLong tests. The differences in clinical characteristics
between the training and validation sets were evaluated
using Student’s t-tests and chi-square tests, and a p < 0.05
was considered statistically significant. IBM SPSS software
ver. 24 (IBM Corp., Armonk, NY, USA) and open-source
machine learning studio were used for statistical analysis.
The inter-observer agreement in evaluating the enhancement
types (homogeneous/heterogeneous) was assessed with kappa
statistics: a kappa value between 0.00 and 0.20 indicates a
slight agreement; a value between 0.21 and 0.40 indicates a fair
agreement; a value between 0.41 and 0.60 indicates a moderate
agreement; a value between 0.61 and 0.80 indicates a substantial
agreement; and a value between 0.81 and 1.00 indicates an almost
perfect agreement.

RESULTS

Patient Population Information and Tumor
Characteristics
The clinical information of the patients and HNSCC
characteristics in this study are summarized in Table 1.
The testing cohort included 69 patients (53 males and 16
females). The training cohort included 137 patients (108 males
and 29 females). All patients were Chinese, with no patients
who were white, black or of other races. Regarding the tumor
TNM classifications, only two patients were classified as M1,
and the others were classified as M0; therefore, we did not
conduct statistical assessments on the M stage. There were no
differences between the training and testing cohorts in terms of
age, sex, tumor primary location, histological differentiation, TN
classification, stage or enhancement types (p > 0.05).

The p-value of the kappa statistics analysis was 0.000 (p
< 0.05), indicating that inter-observer agreement existed. The
kappa value was 0.510 [95% CI (confidence interval, CI)

0.379–0.642]. The degree of inter-observer agreement regarding
enhancement types was moderate.

After the parameters were finished tuning, a dimension of
130 corresponded to the biggest AUC (AUC = 0.97). Therefore,
we obtained a 130-dimensional vector after kernelizing the
features of the sample (Figure 4). We built our kernelized model,
which used KPCA with a kernelized dimension of 130 as a
feature decomposer and random forest classifier, because these
parameter values led to the best model performance in terms
of AUC.

We obtained the top two features: smoothness and
GLCM_t_45_d_1_Con_2. There were significant differences
between the WD and MD/PD HNSCC cohorts (p < 0.05).

Performance of the Models
On the basis of VT selection, which eliminated the features
with a variance <0.8, the kernelized radiomics model from the
CT images achieved the best classification performance. The
accuracy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) of using the kernelized
radiomics models both with and without VT to differentiate
WD HNSCC from MD/PD HNSCC are shown in Table 2.
ACC, SEN, and NPV in the cohort with VT selection were
significantly higher than those without VT selection. The AUCs
of the models with VT and without VT are 0.96 and 0.89,
respectively (Figure 5). There was significant difference between
them (p < 0.05).

We used 3-fold validation to split our entire dataset into
three parts and recursively used two parts as the training set
and one as the testing set. The model was trained on the

TABLE 2 | The performances of kernelized models with and without VT selection.

ACC SEN SPE PPV NPV AUC

With VT selection 0.92 0.96 0.83 0.94 0.91 0.96

Without VT selection 0.83 0.88 0.70 0.80 0.84 0.89

p-value 0.002N 0.002N 0.131 0.113 0.000N 0.000N

ACC, Accuracy; SEN, Sensitivity; SPE, Specificity. Np < 0.05.

FIGURE 4 | Tuning number of principle components.
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FIGURE 5 | Receiver operating characteristic curves of kernelized models with and without VT selection (FPR false positive rate, TPR true positive rate).

training set and validated on the testing set, which the model
could not learn from. We used ACC, SEN, SPE, PPV, NPV,
and AUC to describe the performance of the model, which
has the ability to ignore an unbalance between samples with
different classes.

The performances of each model in discriminating
tumor grades are summarized in Table 3 and
Supplementary Data Sheet 3. The clinical model had lower
performance parameters than the radiomics signature and
the combined model, and there were significant differences
among these models (p < 0.05). The combined model had
a relatively higher ACC, SEN, and NPV than the radiomics
signature, but there were no significant differences between
these two models (p > 0.05). The AUCs of the three models
are shown in Figure 6. The AUC of the clinical model was
much lower than that of the radiomics signature and that of
the combined model, which were significant differences (p <

0.05). The AUC of the radiomics signature was slightly lower
than that of the combined model, but the difference was not
significant (p > 0.05).

DISCUSSION

In this study, we combined a RBF KPCA with a random forest
classifier for the prediction of HNSCC tumor grade, especially
for differentiating WD tumors from MD/PD tumors. A total of
670 features were extracted from each tumor lesion. In total,
130 dimensions were from the PCA based on the highest AUCs
at different dimension levels (30–200). These 130 dimensions
were used as the inputs for the random forest model. Notably,
the application of VT selection to eliminate features with
variance <0.8 improved the AUC. We also constructed a clinical
and a combined model, and evaluated their performances; the
combined model achieved the best performance.

TABLE 3 | Discrimination performances of clinical model, radiomics signature

features, and the combined model.

Models ACC SEN SPE PPV NPV AUC

ClinicalN♀ 0.68 0.87 0.38 0.69 0.68 0.63

Radiomics*N 0.92 0.96 0.83 0.94 0.91 0.96

Combined*♀ 0.93 0.97 0.83 0.90 0.92 0.97

* 0.72 0.52 1.00 0.97 0.54 0.94

p valueN 0.00 0.016 0.00 0.00 0.00 0.00

♀ 0.00 0.003 0.00 0.00 0.00 0.00

*p > 0.05, Np < 0.05, ♀p < 0.05.

As the solid cancer is spatially and temporally heterogeneous,
radiomics is advantageous for non-invasively capturing intra-
tumoral heterogeneity frommedical imaging (10). Radiomics has
been reported for grading brain gliomas and can discriminate
high- vs. low-grade gliomas (26–28). Although other modalities
such as PET, DWI, histogram analysis of apparent diffusion
coefficient (ADC) maps, PWI and DCE-MRI have been used to
differentiate the histologic grades of HNSCC (6–8), these multi-
parameter imaging methods provide information regarding the
composition of HNSCC to reflect metabolism, cellularity, and
perfusion. There might exist complex associations among those
parameters depending on tumor grade (6). Additionally, intra-
and inter-observer variability are important factors in whether
these radiology diagnostic tools are independently reliable. In this
study, the AUC and ACC of our constructed model were higher
than those of PWI (8).

Radiomics is a promising tool for the non-invasive
characterization of tumor phenotypes. In our study, we
extracted a large number of quantitative features from contrast-
enhanced CT images: ROIs were characterized regarding their
shape and size features, histogram features, texture features
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FIGURE 6 | Receiver operating characteristic curves of the performances of three models.

and transformation features. A few radiomics studies have
been performed based on MRI to stage and grade HNSCC,
and these studies used various methods and obtained some
quantitative parameters. Ren et al. (14) also constructed
radiomics signatures with the method of least absolute shrinkage
and selection operator (LASSO) logistic regression and explored
the associations between radiomics signatures and HNSCC stage.
The researchers used MRI with contrast-enhanced T1-weighted
imaging (CET1WI) and T2-weighted imaging (T2WI) and found
that there were three radiomics signatures that were significantly
different between stage III-IV and stage I-II in both the testing
and training cohorts. Fujima et al. (15) used MRI histograms
and a texture analysis of fat-suppressed T2WI to predict the
histological grade of HNSCC and found that the relative
mean signal and contrast were significantly lower in poorly
differentiated SCC than in the well/moderately differentiated
SCC. The homogeneity was higher in poorly differentiated
SCC than in the well/moderately differentiated SCC. Ahn et al.
(16) studied different b values to determine whether histogram
analyses of ADC maps can differentiate histologic grades of
HNSCC; the researchers found that at a high b value (2,000
s/mm2), the mean ADC and kurtosis ratio were significantly
different among cohorts of different grades, and the diagnostic
accuracies varied among various cohorts.

On the basis of VT selection, which eliminated features with a
variance <0.8, the kernelized radiomics model from CT images
achieved a good performance. The ACC, SEN, and NPV of the
kernelized radiomics models with VT were significantly higher
than those of the model without VT. The variance threshold
could clearly help improve the performance of the model in
grading HNSCC.

Of all 670 features extracted from the portal venous
phase contrast-enhanced images, the top two features were
smoothness and GLCM_t_45_d_1_Con_2. The smoothness
feature concerns the texture of the image, which is either

smooth or rough. When the image contains constant gray level
intensity values, the texture is smooth. When the intensity
levels rapidly vary, the texture is considered rough. In this
study, the images of the WD cohort were smoother than
those of the MD/PD cohort. We speculated that a WD
tumor would resemble normal squamous epithelium, be slightly
more keratinized, have slight atypia nuclei, and show less
necrosis than a MD/PD tumor; these observations reflect the
pathological characteristics of the WD tumor and may relate
to smoothness. Regarding the feature GLCM_t_45_d_1_Con_2,
GLCM describes the spatial relationship of the pixels and
characterizes the image texture by calculating how often
pairs of pixels with specific values and spatial relationships
occur in an image. HNSCC tumors of different grades
have various pathological characteristics, including cellularity,
necrosis, vessels, desmoplasia, and inflammatory infiltration, all
of which have various pixel values and spatial relationships.
Fujima et al. (15) also reported that the contrast and homogeneity
parameters of the GLCM texture features based on MRI were
significantly different between WD/MD and PD SCC patients.
GLCM features may be useful for determining HNSCC grade.
Surov et al. (29) reported that ADC histogram parameters
represent the proliferation potential and cellularity of HNSCC.
In G1/2 and G3 tumors, various ADC parameters correlated with
Ki67 expression, cellularity, cell count, and total nucleic area, all
of which depend on the tumor grade.

To assess the performance of the radiomics signature
for discriminating among HNSCC grades, we additionally
constructed two models, a clinical model and a combined
model, and compared the performances of these models. Among
these three models, the combined model achieved the best
performance, although there were no significant differences
between the radiomics signature and the combined model.
When we incorporated clinical and radiological information
into the radiomics signature, the performance of the combined
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model was not significantly different from that of the radiomics
signature, which explains why the radiomics signature also played
a predominant role in discriminating between HNSCC grades.
A computerized algorithm analysis can make quantitative and
qualitative improvements in grading HNSCC tumors with CT
images. In prospective radiomics, a signature analysis may serve
as a useful, non-invasive tool that is extensively applied in
clinical practice.

There were several limitations in our study. First, this was
a retrospective and single center study. The study data are
limited; multi-center datasets, larger sample data and prospective
studies will be needed to validate the performance of our
model. Second, the ROIs were subjectively identified by observers
according to the most significantly enhanced area inside the
tumor on one slice of a CT image. Only 2-dimensional (2D)
analysis, rather than 3-dimensional (3D) analysis, was conducted
for the radiomics analysis. 3D analyses tend to be more
representative of tumor tissue heterogeneity, but a 3D analysis
may be more complex and time-consuming. In the future,
we will use the automatic segmentation method to define the
ROIs. Finally, the methodology used in this study needs to
be improved. As machine learning techniques develop, deep
learning method has emerged. Convolutional neural network
(CNN) is a representative, more advanced method in deep
learning. In the future, if the study sample size is enough for
deep learning, we will try CNN method for image segmentation
and feature extraction. Then the model can be worthy of
explaining more.

CONCLUSIONS

In conclusion, in this study, we constructed a radiomics
model that could non-invasively discriminate WD HNSCC
from MD/PD HNSCC. This radiomics model could be used in
precision medicine and improve therapeutic strategies in the
clinic. The radiomics model had a better performance with the
use of a KPCA, random forest classifier andVT selection andmay
serve as a potential method for assessing imaging biomarkers for
HNSCC patients.
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Objectives: This study compared the diagnostic ability of image-based parameters with

texture parameters in the differentiation of hepatocellular carcinoma (HCC) and hepatic

lymphoma (HL) by positron emission tomography–computed tomography (PET/CT).

Methods: Patients with pathological diagnosis of HCC and HL were included in this

study. Image-based and texture parameters were obtained by manual drawing of region

of interest. Receiver operating characteristic (ROC) was used to test the diagnostic

capacity of each parameter. Binary logistic regression was used to transform the most

discriminative image-based parameters, texture parameters, and the combination of

these parameters into three regression models. ROC was used to test the diagnostic

capacity of these models.

Result: Ninety-nine patients diagnosed with HCC (n = 76) and HL (n = 23, 10 primary

HL, 13 secondary HL) by histological examination were included in this study (From

2011 to 2018, West China hospital). According to the AUC and p-value, 2 image-based

parameters and five texture parameters were selected. The diagnostic ability of texture-

based model was better than that of image-based model, and after combination of those

two groups of parameters the diagnostic capacity improved.

Conclusion: Texture parameters can differentiate HCC from HL quantitatively and

improve the diagnostic ability of image-based parameters.

Keywords: hepatocellular carcinoma, hepatic lymphoma, positron emission tomography–computed tomography,

texture, differentiation

INTRODUCTION

Malignant hepatic nodules include primary malignant hepatic neoplasms, such as hepatocellular
carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), and metastatic diseases from bile
duct, lymphoid cells, endothelial cells. Hepatocellular carcinoma (HCC) accounts for almost 80%
of all primary malignant hepatic neoplasms (1). Primary hepatic lymphoma (PHL) is rare, while
secondary hepatic lymphoma (SHL), widespread lymphoma with liver involved, appears in 50%
patients with non-Hodgkin lymphoma and 20% patients with Hodgkin lymphoma (2).
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Differentiation between HCC and hepatic lymphoma, both
in its primary and secondary form, is difficult. The images of
HL is variable and can be similar to that of HCC, and several
studies have reported cases about patients with PHL mimicking
HCC (3–5). SHL is characterized by hepatosplenomegaly and
systemic involvement which contributes to clinic diagnosis, but
radiological diagnosis of SHL still requires further improvement
since it has no specific features in sonography, and can appear
as a solitary lesion (2, 6). Although the Biopsy has been
extensively used as a clinic tool to distinguish HCC from
HL, cancer cells extracted only represent part of the lesion
and therefore may cause selection bias. Positron emission
tomography-computed tomography (PET/CT), a non-invasive
clinic examination, reveals the anatomical structure as well as
the glucose metabolism of tissues and therefore has been widely
used in the diagnosis and prognosis of hepatic lesions (7, 8).
However, the accuracy of PET/CT in the diagnosis of different
hepatic lesions remains to be improved (9).

Texture analysis is a newly-developed high throughput way to
extract digital information from images that naked eyes cannot
detect, and can thus explore more characteristics of images
(10). Some studies have adopted texture analysis combined
with PET/CT to differentiate benign from malignant mediastinal
lymph nodes and distinguish malignant from benign bone and
soft-tissue lesions (11, 12). Aiming at distinguishing HCC from
HL in a non-invasive way, we explored the ability of texture
and image-based parameters of PET/CT in differentiating HCC
and HL.

METHODS

Patients
This study was approved by the West China Hospital Ethics
Committee and had a waiver of patients written informed
consent. From Jan. 2011 to Dec. 2018, all patients diagnosed
with liver lesions by PET/CT were recruited, and only patients
with pathological diagnosis of HCC and HL were included.
Their information was obtained from the clinical and radiological
databases of our hospital. The inclusion criteria were having:
(1) images obtained before treatment for hepatic lesions, (2)
images obtained from a same system, (3) complete clinical and
radiological information, (4) pathological diagnosis of HCC or
HL; exclusion criteria were having: (1) incomplete image or
clinical information, (2) FDG uptake of liver lesions below or
comparable to background activity, (3) liver transplantation.

PET/CT Examination
Patients were fasted 4–6 h and had serum glucose concentration
<200 mg/dl before the intravenous injection of 185–370 MBq
of 18F-FDG (4 MBq/kg of body weight). After injection,
patients rested in a quiet room for 1 h. Then, a whole-body
PET/CT scanner (Gemini GXL; Philips Medical Systems, The
Netherlands) was used for imaging. During imaging process,
patients were in supine position with both arms extended in
the cranial direction and breathing quietly. PET images were
obtained at 2 min/bed.

The CT images were acquired simultaneously with parameters
as follows: 40 mAs, 120 kVp, a slice thickness of 2mm, and
a pitch of 4mm. After acquisition completed, the transverse,
sagittal, and coronal plane images of CT and PET were
reconstructed automatically by the computer. The PET images
were reconstructed by the line of response (LOR) method after a
CT attenuation correction.

Radiomics Extraction
All scans were analyzed by two senior residents independently
(HYX, 3 year of training; WG, 4 year of training) and were
supervised by a senior radiologist (XLM, 13 years of experience)
in order to handle the non-consensus. All of them were blinded
to the histological outcomes. Each region of interest (ROI) was
manually drawn along the liver lesion, slice by slice on axial
images, by using a dedicated software for image analysis (LIFEx
software, version 3.74, French Alternative Energies and Atomic
Energy Commission). Figure 1 shows PET/CT images of two
case examples, HCC and HL, respectively. Intra-luminal water,
cavity, and necrotic components that can be distinguished from
tumor solid portion by naked eye were excluded via a fixed 40%
threshold of SUV max.

Radiomics Features Analysis
A total of 45 radiomics parameters were extracted from
images and divided into seven categories, including conventional
PET/CT parameters (SUV and TLG), Histogram (HISTO),
Shape value, Gray Level Co-occurrence Matrix (GLCM), Gray-
Level Run Length Matrix (GLRLM), Neighborhood Gray-Level
Different Matrix (NGLDM), Gray-Level Zone Length Matrix
(GLZLM). The conventional PET/CT parameters included
the minimum, average, maximum Standardized Uptake Value
(SUV), and the Total Lesion Glycolysis (CONV_TLG) in the
Volume of Interest. HISTO reflects the gray level of ROIs,
regarding the “number of gray level” as “the size of bin”. Shape
value is the sum total of volume of ROIs in mL and in voxels.
GLCM describes the gray-level value distribution of voxel pairs
along from 13 different directions at different distances in the
ROI. GLRLM corresponds to the amount of homogeneous in 13
directions of the ROIs. NGLDM reflects the difference of gray-
level between one voxel and its 26 neighbors in three dimensions.
GLZLM describes the size of homogeneous zones for each gray-
level in three dimensions.

The Mann-Whitney U test (U test) and χ2 test were used
for comparing the baseline characteristics of those two groups.
Since not all the parameters contributed to differentiating HCC
and HL, we resorted to the results of operation characteristic
curve (ROC curve) to select the most discriminative parameters
in each category (Table 2). The binary logistic regression was
used to transform the group of related parameters into a set
of corresponding variables by three models. The discrimination
ability of these models based on image-based parameters, texture
parameters, and the combination of the two parameters were
measured by the Area Under Curve (AUC) of ROC curves.
P-values <0.05 were considered to be statistically significant.
All statistical analyses were performed by SPSS (version 25,
IBM, USA).
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FIGURE 1 | PET/CT images of HCC and HL case examples. (A,B) An example of hepatocellular carcinoma mimicking hepatic lymphoma, and region of interest was

drawn in (B). (CONVENTIONAL_SUVmin = 2.1, CONVENTIONAL_TLG = 293.5, SHAPE_Compacity = 2.41, GLCM_Correlation = 0.637, GLRLM_GLNU = 105.7,

NGLDM_Contrast=0.055, and GLZLM_GLNU=14.4); (C,D) An example of secondary hepatic lymphoma mimicking hepatocellular carcinoma, and region of interest

was drawn in (D). (CONVENTIONAL_SUVmin = 6.6, CONVENTIONAL_TLG = 425.9, SHAPE_Compacity = 1.98, GLCM_Correlation = 0.567, GLRLM_GLNU =

43.4, NGLDM_Contrast=0.238, and GLZLM_GLNU = 18.9).

RESULT

Patients
The characteristics of patients and lesions were summarized in
Table 1. There were 74 men (mean age, 54 years ± 14.5; age
range 22–86 years) and 25 women (mean age, 52 years ± 16.3;
age range 19–76 years). Based on histopathological proof, 23
patients had HL (10 PHL, 13 SHL) and 76 patients had HCC
were prospectively included. Themedian ages of patients withHL
was 51 and that of HCC was 54. Based on the TNM classification
of malignant tumors, patients with HCC were divided into four
groups, one patient of I stage, 16 of II stage, 14 of III stage, and
45 of IV stage. Among patients with HL, there were 12 Diffuse
large B cell lymphoma (DLBCL), four B cell lymphoma (except
DLBCL), six Hodgkin lymphoma, and one NK/T-cell lymphoma.

Imaging Features
A total of six image-based parameters and 39 texture
parameters were extracted and compared. The top two
image-based parameters (CONVENTIONAL_SUVmin,
CONVENTIONAL_TLG, AUC: 0.642, 0.686, p < 0.05) and the
top five discriminative texture parameters (SHAPE_Compacity,
GLCM_Correlation, GLRLM_GLNU, NGLDM_Contrast, and
GLZLM_GLNU, AUC: 0.784, 0.726, 0.774, 0.721, 0.704, p <

0.05) were selected by ROC analysis (Supplementary Table 1).
Binary logistic regression was used to transform groups of
parameters into correspondent predictive models, including

models transformed from image-based parameters, texture
features, and the combination of those two kinds of parameters.
Three predictive models were shown in Table 3: MODimage,
MODtexture, and MODcombination. Table 4 showed the ROC
results of these three models. AUC of the model transformed
from image-based parameters was 0.822, with sensitivity of
69.6%, specificity of 73.7%. AUC of the model related with
texture parameters was 0.870, with increased sensitivity of 91.3%
and specificity of 77.6%. AUC of model transformed from the
combination of image-based parameters and texture parameters
was 0.898, with the same sensitivity and specificity as that of
texture-based model (Figure 2).

DISCUSSION

In this study, we used image-based parameters and texture
parameters from 18F-FDG PET/CT to differentiate HCC
from HL, and found many parameters significantly different
between those two diseases. By comparing AUC of diagnostic
models of image-based parameters, texture parameters, and
the combination of the two parameters, we found that texture
parameters presented better diagnostic ability than image-
based parameters and that combination of the two parameters
possessed a more effective diagnostic capacity than the other
two groups.

Frontiers in Oncology | www.frontiersin.org 3 September 2019 | Volume 9 | Article 84438

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Texture Analysis in Hepatic Lesions

The differentiation between HCC andHL is necessary, as their
managements are different. Early stage HCC can be treated by
excision of lesions, while themain treatment choice for secondary
HL is multiagent chemotherapy (2). As an invasive method, the
liver biopsy is prone to selection bias and may cause metastasis
though it can offer reliable proofs for cancer diagnosis (13).
The traditional radiological diagnosis could provide images with

TABLE 1 | Patient characteristics.

HL (N = 23)

Median (Range

or %)

HCC (N = 76)

Median (Range

or %)

P-value

Gender

Male 10 64 <0.05

Female 13 12

Age 51 (19–85) 54 (23–86) 0.878

Histopathologic diagnosis of HL

Diffuse large B cell lymphoma

(DLBCL)

12 (52%) NA NA

B cell lymphoma (except

DLBCL)

4 (17%)

Hodgkin lymphoma 6 (26%)

NK/T-cell lymphoma 1 (5%)

TNM Stage SUV mean

(sd)

I NA 1 2.67

II 16 3.41 (0.96)

III 14 3.63 (1.33)

IV 45 4.82 (1.90)

all 76 4.27 (1.75)

Ann Arbor Stage SUV mean

(sd)

II 2 NA 4.79 (0.50)

IV 21 6.17 (5.05)

all 23 6.05 (4.83)

HL, hepatic lymphoma; HCC, hepatocellular carcinoma; NK, natural killer; NA, not

applicable; sd, standard deviation.

summarized features of the lesion. For instance, on contrast-
enhanced images, HCC is characterized by “wash-out” pattern
and fibrous tumor capsule (13). However, the images of HL are
less specific and too variable to provide solid evidence for clinic
diagnosis (4). Consequently, non-invasive and precise methods
are required to differentiate HCC between HL.

PET/CT can reveal the metabolic characters of organs, and
as tumor cells have enhanced glycolysis, they have higher 18F-
FDG uptake compared with normal tissue. Previous studies
have indicated that the SUV metrics of lymphoma was higher
than that of carcinoma in PET/CT images when differentiating
renal carcinoma and lymphoma with renal involvement (14,
15). However, a study claimed that the SUV max was not

TABLE 3 | Regression models composed of image-based parameters, texture

features, and the combination of those two kinds of parameters.

Model Formula

MODimage −2.154 CONVENTIONAL_SUVmin + 2.349

CONVENTIONAL_TLG - 1.065

MODtexture 20.405 SHAPE_Compacity-0.031

GLCM_Correlation+0.888 GLRLM_GLNU-2.498

NGLDM_Contrast-18.289 GLZLM_GLNU-0.758

MODcombination 36.534 SHAPE_Compacity+0.122

GLCM_Correlation+0.926 GLRLM_GLNU-1.783

NGLDM_Contrast-16.767 GLZLM_GLNU-0.975

CONVENTIONAL_SUVmin-17.756

CONVENTIONAL_TLG-0.76

TABLE 4 | Comparison of differential diagnostic ability of the three predictive

models.

Test result

variable(s)

Sensitivity Specificity AUC (95% CI) Asymptotic

Sig.b

Image based 0.696 0.737 0.822(0.740–0.904) <0.001

Texture 0.913 0.776 0.870(0.788–0.953) <0.001

Combination 0.913 0.776 0.898(0.838–0.959) <0.001

TABLE 2 | The results of ROC analysis of optimal image-based and texture parameters in PET and CT images for hepatocellular carcinoma vs. hepatic lymphoma.

HCC HL AUC P-value

Median Range Median Range

Image-based parameters

CONVENTIONAL_SUVmin (SUV) 2.28 1.06–4.64 3.73 0.89–9.87 0.642 0.039

CONVENTIONAL_TLG (mL) 751.67 8.22–4403.85 552.96 11.50–6299.10 0.686 0.007

Texture parameters

SHAPE_Compacity 2.53 0.77–5.78 1.52 0.00–6.13 0.784 <0.001

GLCM_Correlation 0.63 0.20–0.86 0.52 0.20–0.78 0.726 0.001

GLRLM_GLNU 238.79 8.58–2777.08 104.75 3.22–1622.28 0.774 <0.001

NGLDM_Contrast 0.08 0.01–0.46 0.22 0.03–1.42 0.721 0.001

GLZLM_GLNU 21.53 1.00–148.42 13.83 1.25–121.32 0.704 <0.001

GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLNU, Gray-Level Non-Uniformity; NGLDM, Neighborhood Gray-Level Different Matrix; GLZLM, gray-level

zone-length matrix.
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FIGURE 2 | ROC curves of the three radiomic predictive models.

conclusive when distinguishing between primary nasopharyngeal
lymphoma and nasopharyngeal carcinoma (16). Though many
kinds of lymphoma are FDG avid, the diagnostic capacity of
PET/CT remains unconfirmed (8). In our study, the SUV min
of HL was higher than that of HCC while the TLG of HL
was lower than that of HCC. The SUV min, a measurement
of metabolic activity per body weight, could reflect the lowest
point of metabolic activity within the tumor, but TLG takes into
account the volume of the tumor lesion additionally. Therefore,
this result may be affected by the volume of HCC.

Texture analysis can quantify image features by extracting
the distribution and relation of pixel or voxel grayscale
in images. Some studies have applied texture analysis to
classifying benign and malignant liver lesions or stratifying
different stages of liver fibrosis (17–19). However, no study
has used texture analysis to distinguish HCC from HL, and
it may because the morbidity of HL is relatively low, and
the similarity of malignant lesions is more than that of
benign and malignant liver lesions. In our study, texture
parameters are more effective than image-based parameters
in differentiation HCC from HL (AUC: 0.822 VS. 0.870).
Previous studies compared carcinoma with lymphoma via
texture analysis and proposed that the pixel gray-level value has
a tight correlation with diagnosis, which is further confirmed
by our results (20, 21). Early texture analysis in CT to
differentiate malignant and benign liver lesion found that the
First Order Statistics (FOS) performed best (22). However, in
our study, FOS is less effective, while the secondary features,
GLCM_Correlation, GLRLM_GLNU, NGLDM_Contrast, and
GLZLM_GLNU, presented more significant differences between
these two diseases. The result demonstrated that the gray levels of

ROIs of HCC and HL were not distinguishing enough, and thus
the second-order features such as gray-level value comparison
were necessary.

Based on the better diagnostic capacity of texture parameters,
we hypothesized that the combination of image-based and
texture parameters contributes more to the clinic diagnosis of
cancers. The result of AUC indicated that the combination
group improved diagnostic capacity (AUC: 0.898), though the
sensitivity of the specificity of the combination model remained
the same as that of the texture model. Consistent with our
previous studies, the same results were found in the diagnosis of
breast carcinoma and breast involved lymphoma (23). Besides,
another study found the same result in the differentiation of
benign and malignant breast tumors (24). The combination of
texture and image-based parameters could quantify and enhance
the accuracy of the imaged-based PET/CT diagnosis.

However, the limited number of lymphoma group which
did not include all kinds of lymphoma may lead to selected
bias and therefore impact the accuracy of our result. Moreover,
characterized as labor-intensive, ROIs are subject to manual
measurement errors when compared with rectangular ROIs
used drawn by computers. Finally, the relationship between
texture parameters and histopathological structures requires
further study.

In conclusion, our study confirmed the role of texture
analysis in diagnosing different pathological cancer types and
therefore proposed a new method for differentiating HCC and
HL. Although both image-based and texture parameters can
distinguish HCC fromHL, the latter one is more efficient and the
combination of the two parameters contribute to the diagnosis of
HCC and HL more effectively.
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Introduction: Glioblastoma and anaplastic astrocytoma (ANA) are two of the most

common primary brain tumors in adults. The differential diagnosis is important for

treatment recommendations and prognosis assessment. This study aimed to assess the

discriminative ability of texture analysis usingmachine learning to distinguish glioblastoma

from ANA.

Methods: A total of 123 patients with glioblastoma (n = 76) or ANA (n = 47) were

enrolled in this study. Texture features were extracted from contrast-enhanced Magnetic

Resonance (MR) images using LifeX package. Three independent feature-selection

methods were performed to select the most discriminating parameters:Distance

Correlation, least absolute shrinkage and selection operator (LASSO), and gradient

correlation decision tree (GBDT). These selected features (datasets) were then randomly

split into the training and the validation group at the ratio of 4:1 and were fed into linear

discriminant analysis (LDA), respectively, and independently. The standard sensitivity,

specificity, the areas under receiver operating characteristic curve (AUC) and accuracy

were calculated for both training and validation group.

Results: All three models (Distance Correlation + LDA, LASSO + LDA and GBDT +

LDA) showed promising ability to discriminate glioblastoma from ANA, with AUCs ≥0.95

for both the training and the validation group using LDA algorithm and no overfitting was

observed. LASSO+ LDA showed the best discriminative ability in horizontal comparison

among three models.

Conclusion: Our study shows that MRI texture analysis using LDA algorithm had

promising ability to discriminate glioblastoma from ANA. Multi-center studies with greater

number of patients are warranted in future studies to confirm the preliminary result.

Keywords: texture features, machine learning, linear discriminant analysis, differential diagnosis, glioblastoma,

anaplastic astrocytoma
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INTRODUCTION

Glioblastoma and anaplastic astrocytoma (ANA) are two of the
most common primary brain tumors in adults (1). There is a
true increase in incidence rates, especially in the elderly (1–
3). In clinical practice, it is difficult to differentiate patients
with glioblastoma from those with ANA before surgery or
biopsy, because the symptoms and signs of the two tumors
are relatively uniform and non-specific (4, 5). However, the
management for them are different, such as the chemotherapy
protocol, dosage, and mode of administration (6). For example,
for patients with ANA (WHO grade III), it is recommended
to receive radiotherapy or TMZ after resection or biopsy;
while for patients newly diagnosed with glioblastoma (WHO
grade IV), it is radiotherapy plus concurrent TMZ, followed
by adjuvant TMZ. According to previous studies, glioblastoma
and ANA grow by invasion into normal brain tissue, spread
through the cerebrospinal fluid (CSF), and extend beyond a
single carotid or vertebral artery distribution, thus they both
have a poor response to medical management and become
leading causes of cancer-related death in adults (7, 8). Besides,
the prognosis of glioblastoma and ANA are different. In the
elderly population, there is no significant difference in prognosis
between glioblastoma and ANA, but the difference may exist
in younger population (9). Therefore, it is hard but crucial to
distinguish glioblastoma from ANA.

Magnetic Resonance Imaging (MRI) is the optimal
neuroimaging in the preoperative diagnosis of glioblastoma
and ANA for its multiplanar capability and superior soft
tissue contrast. Although some studies demonstrated that the
presence of ring-like enhancement and necrosis was suggestive
of glioblastoma, in most cases, both glioblastoma and ANA
appear as irregular shapes on MR images (hyperdense on T2-
weighted sequence and hypodense on T1-weighted sequence)
with various degree of Gd-based contrast enhancement and
edema, of which the differences were usually imperceptible to
the human eye (10–12).

Recently, texture analysis (TA), also known as radiomics, has
been widely applied in different fields. Researchers found that
TA was a feasible and promising method to facilitate differential
diagnosis, since it enabled acquisition of additional quantitative
information from MR images which was invisible to human
assessment (13–15). TA describes the frequency distribution and
the spatial organization of voxel value to reveal the possible
differences in tumor tissue (16). Previous studies have explored
the feasibility of applying TA in differential diagnosis, subtype
classification of tumors and detection of heterogeneity of tumor
tissue (17–19). To our acknowledgment, the application of TA

Abbreviations: ANA, Anaplastic astrocytoma; LDA, linear discriminant analysis;

MRI, Magnetic Resonance Imaging; MR, Magnetic Resonance; LASSO, Least

absolute shrinkage and selection operator; GBDT, Gradient correlation decision

tree; CSF, Cerebrospinal fluid; TA, Texture analysis; ROI, Regions of interest;

HISTO, Histogram-based matrix; GLCM, Grey-level co-occurrence matrix;

GLRLM, Grey-level run length matrix; GLZLM, Grey-level zone length matrix;

NGLDM, Neighborhood grey-level dependence matrix; AUC, Area under the

receiver operating characteristic curve; PCNSL, Primary central nervous system

lymphoma; MLP, Multilayer perceptron; IDH, Isocitrate dehydrogenase.

in differential diagnosis between glioblastoma and ANA has not
been reported yet. The purpose of this study was to evaluate
the discriminative ability of MRI texture analysis using machine
learning algorithms to differentiate glioblastoma and ANA.

MATERIALS AND METHODS

Patient Selection
We retrospectively searched our institution database and
screened all patients histopathologically diagnosed as
glioblastoma or ANA, from January 2015 to December
2018. Eligibility criteria for qualified patients were: (1) conclusive
histopathological diagnosis of glioblastoma or ANA; (2) elaborate
electronic medical records, especially pathologic material; (3)
diagnostic MR scan at our institution before surgical resection.
Exclusion criteria were: (1) history of intracranial disease
(e.g., brain trauma, intracranial infection or other types of
brain tumor), considering the interference of scar tissue on
the intensity of the images; (2) presence of motion artifact on
MRI; (3) history of treatments before MR scan (e.g., surgery,
chemotherapy or radiotherapy); (4) patients who did not reach
the criteria for diagnosis of glioblastoma or ANA according to
the 2016 WHO classification system. A senior neuropathologist
with 10-year experience judged whether the patient met the
criteria (the 2016WHO classification system) for glioblastoma or
ANA. The institutional review board approved this retrospective
study. The written informed consent was obtained from
participants enrolled in this study. The Ethics Committee of
Sichuan University and radiology department of our institution
have approved of the utilization of the statistics for this study.

MR Image Acquisition
For all patients included in this study, contrast-enhanced T1-
weighted sequences were available and were obtained on 3.0T
Siemens Trio Scanner with the following parameters: TR/TE/TI
= 1900/2.26/900ms, Flip angle = 9 ◦, 20 axial slices with
thickness = 5mm, axial FOV = 25.6 × 25.6 cm2 and data
matrix = 256 × 256. Contrast-enhanced T1-weighted imaging
used gadopentetate dimeglumine (0.1 mmol/Kg) was the contrast
agent for contrast-enhanced image, and multi-directional data
of contrast-enhanced MRI were collected during the continuous
interval time of 90–250 s.

Texture Extraction
In our study, LifeX package (http://www.lifexsoft.org) was used
to extract texture features. Post-contrast T1-weighted (T1C)
images were selected for further analysis due to the clear
depiction of tumor location and border (20). Region of interest
(ROI) was manually drawn slice-by-slice in the axial plane
along the lesions on contrast-enhanced images to obtain texture
features. Two experienced neurosurgeons, blind to patients’
medical records and histopathological diagnosis, drew the ROI
followed by editing by a senior radiologist and a senior
neurosurgeon. The disagreements were addressed by discussing
and consulting with the senior radiologist and the senior
neurosurgeon. A total of 40 texture features were extracted from
the MRI images, including minValue, meanValue, maxValue,
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stdValue, and parameters derived from six matrixes: Histogram-
based matrix (HISTO), Shape, Gray-level co-occurrence matrix
(GLCM), Gray-level run length matrix (GLRLM), Gray-level
zone length matrix (GLZLM), and Neighborhood gray-level
dependence matrix (NGLDM).

Features Selection
There were 40 texture features in total derived from six selected
matrixes. The explanation of the 40 texture features were shown
in Supplementary Table 1. The statistics of these texture features
were shown in Supplementary Table 2. Feature selection was
performed to determine relevant features and thereby avoid
overfitting. Besides, the machine learning algorithm applied in
this study could not take all 40 texture features into analysis.
Three independent feature-selection methods were used to
select optimal texture features, including Distance Correlation,
least absolute shrinkage, and selection operator (LASSO), and
gradient correlation decision tree (GBDT). Three subsets of
texture features were thereby formed and constituted three
different datasets.

Classification
Linear discriminant analysis (LDA) is a robust classification
method to separate two classes by searching for the linear
combination of predictors thatmaximizes the separation between
groups. In this study, three classification models were established
based on LDA algorithm: Distance Correlation+ LDA, LASSO+

LDA, and GBDT + LDA. Datasets were fed into LDA algorithm,
respectively, and independently. Each dataset was randomly
split into training and validation group at the ratio of 4:1.
The model trained by training group was then applied to the
independent validation group to evaluate its performance. To
appraise the robustness of LDA algorithm, the procedure was
repeated for 100 cycles with different, random and independent
case assignment. A confusion matrix was determined using the
true assignment from histopathology and predictions of LDA
algorithm. The standard sensitivity, specificity, the areas under
receiver operating characteristic curve (AUC) and accuracy were
calculated for both the training and validation group to reveal
the discriminative ability of the models. The comparison of
three models (Distance Correlation + LDA, LASSO + LDA,
and GBDT + LDA) was carried out to determine the optimal
discriminative model for glioblastoma and ANA. The flowchart
of MRI classification by texture features is shown in Figure 1.

RESULTS

Patients Characteristics
A total of 133 patients with glioblastoma (n = 76) or ANA (n
= 57) fulfilled inclusion criteria. All patients with glioblastoma
were enrolled in this study, while 10 patients with ANA were
excluded according to the exclusion criteria. Finally, 76 patients
with glioblastoma and 46 patients with ANA were included in
this study. The mean ages of patients were 46.9 (15–67) and
40.0 (7–69), respectively. All patients underwent surgically tumor
resection in our neurosurgery department from 2015 to 2018.
Figure 2 shows two cases of the axial plane of contrast-enhanced
images in patients with glioblastoma and ANA.

Glioblastoma vs. ANA
There were three models analyzed in this study, including
Distance Correlation + LDA, LASSO + LDA, GBDT + LDA.
The texture features used for classification in these models
were shown in Supplementary Table 3. The performance of each
model was presented in Table 1 (including sensitivity, specificity,
accuracy, and AUC of the training and the validation group).
LASSO + LDA achieved the best performance with the highest
AUCs in both training and validation group. The sensitivity,
specificity, accuracy and AUC for its training group were 0.989,
0.993, 0.996, and 0.997, respectively; and for validation group,
they were 0.927, 0.989, 0.968, and 0.974, respectively. In addition,
Distance Correlation + LDA and GBDT + LDA also showed
promising ability to discriminate glioblastoma from ANA, with
AUC ≥0.95 for both training groups and validation groups.

Figure 3 shows the relationship between the canonical
discriminative functions from LASSO + LDA models for the
glioblastoma and ANA groups (triangles and circles) and for the
group centroids (squares). Minimal overlapping was observed
in this figure. Qualitatively, analysis of the data selected by
LASSO could separate glioblastoma from ANA. Figure 4 shows
the distribution of the direct LDA function determined for the
glioblastoma and ANA for one of the 100 independent training
cycles in the data analysis to illustrate the performance of the
LASSO + LDA model. There were clear shifts of LDA function
values, with left shift for ANA and right shift for glioblastoma.

DISCUSSION

The pre-treatment differential diagnosis between glioblastoma
and ANA is important considering the significant difference
in treatment strategy and patient prognosis. MR scan, the
main radiological preoperative examination for brain tumors,
is highly recommended as the good sensitivity in lesion
detection. However, the accurate diagnosis before operation is
still challenging due to the reason that both tumors present
similar characteristics on conventional MR images which are
beyond human naked eye assessment (4, 5). In this study, we
extracted texture features making quantitative description of
images to maximize the utilization of MR examination, with
which three LDA-based models were established. The results
demonstrated that MRI-based texture analysis combining with
LDA algorithm could enable the feasible differentiation between
glioblastoma and ANA.

TA is a mathematical approach to characterize the
heterogeneity of voxel value on images. It could visualize
spatial histologic heterogeneity which is invisible to human
eye assessment (21). Theoretically, the characteristics of lesions
images could be quantitively analyzed as texture features due to
their different enhanced patterns on MR images (22). Moreover,
previous studies suggested the textures features could reflect a
series of abnormal pathology process of tumor such as edema,
effusion, and necrosis, providing a potential mechanism for
texture features in discriminating glioblastoma from ANA
(23, 24).

Artificial intelligence has been widely explored in recent
researches. Combined with texture features extracted from
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FIGURE 1 | Flowchart of MRI classification by texture features. ANA, anaplastic astrocytoma; LDA, linear discriminant analysis; MRI, Magnetic Resonance Imaging;

LASSO, least absolute shrinkage and selection operator; GBDT, gradient correlation decision tree; HISTO, histogram-based matrix; GLCM, Gray-level co-occurrence

matrix; GLRLM, Gray-level run length matrix; GLZLM, Gray-level zone length matrix; NGLDM, Neighborhood gray-level dependence matrix; AUC, area under the

receiver operating characteristic curve.

images, it was reported to assist in tumor grading, clinical
diagnosis, and outcome prediction. A study aimed to evaluate
the diagnostic performance of TA-based machine-learning
algorithms in differentiating PCNSL from glioblastoma
presented optimal performance with the mean AUC
of 0.921, while the AUC of three readers were all <

0.8. Thus, the researchers concluded that the diagnostic
performance of TA-based machine-learning algorithms
was superior to that of human readers (25). Other studies

with similar purpose also demonstrated similar results with
AUCs higher than 0.85 (18, 26). Moreover, researchers
aiming to apply machine learning in astrocytoma grading
also reported promising ability in discrimination (27).
In our study, the classification models were established
based on LDA algorithms. LDA is the statistic classifier
combining inputted parameters into a discriminant function
to classify cases in different groups (28). Our results
demonstrated that LDA-based model represented promising
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FIGURE 2 | Examples of two cases from the contrast-enhanced MR images in patients with glioblastoma and ANA. (A) Contrast-enhanced images with ANA,

(B) contrast-enhanced images with glioblastoma. ANA, Anaplastic astrocytoma.

TABLE 1 | Discrimination between glioblastoma and ANA.

Training Validation

Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy AUC

Distance Correlation 0.995 0.979 0.987 0.982 0.996 0.955 0.972 0.966

LASSO 0.989 0.993 0.996 0.997 0.927 0.989 0.968 0.974

GBDT 0.909 0.991 0.963 0.970 0.918 0.994 0.964 0.972

Entries in bold were most significant. ANA, anaplastic astrocytoma; AUC, area under the receiver operating characteristic curve; LASSO, least absolute shrinkage and selection operator;

GBDT, gradient correlation decision tree.

FIGURE 3 | Relationship between the canonical discriminative functions from

LASSO + LDA models for the glioblastoma and ANA groups (triangles and

circles) and for the group centroids (squares). Minimal overlapping was

observed in this figure. Qualitatively, analysis of the data selected by LASSO

could separate glioblastoma from ANA. LASSO, least absolute shrinkage and

selection operator; LDA, linear discriminant analysis; ANA, Anaplastic

astrocytoma.

performance in accurate diagnosis between glioblastoma
and ANA.

The adoption on optimal features for machine learning
algorithms was challenging but was necessary relative to

diagnostic performance. Previous studies perform feature
selection with varied methods: Mann-Whitney U test with AUC
of ROC, Student’s t-test with recursive feature elimination,
random forest, and entropy-based discretization, respectively
(18, 25, 29, 30). Based on the results of these studies, we
could draw the conclusion that the suitable selection method
play a key role in classifier performance. As for our study,
a relatively large number of parameters were extracted
from different matrixes, increasing the chance in selecting
the optimal features but also increasing the difficulty in
selection. Therefore, three feature-selection methods (Distance
Correlation, LASSO, and GBDT) were evaluated to select
the one with best performance. The results of this study
demonstrated that LASSO+LDA was the suitable discriminative
model for glioblastoma from ANA with highest AUC in the
testing group of 0.997. LASSO was proposed as a non-linear
variable selection method for neural network in previous
study with advantage in minimizing the common sum of
squared errors. It could produce interpretable models (similar
to the subset selection) when simultaneously exhibiting
the stability of ridge regression. Previous study illustrated
that it represented superior performance over other state-
of-the-art variable selection methods (31). However, we
must interpret the results carefully that the additional
gain in information from comparing different machine
learning techniques is quite limited, specifically given that
all classifier/feature selection methods investigated seem
perform quite comparably and variance in AUC maybe partially
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FIGURE 4 | Distribution of the direct LDA function determined for the glioblastoma and ANA for one of the 100 independent training cycles in the data analysis to

illustrate the performance of the LASSO + LDA model. There were clear shifts of LDA function values, with left shift for ANA and right shift for glioblastoma. The

minimal overlap is observed between the two groups and a strong qualitative similarity is apparent between the plots for cycles and triangles. LDA, linear discriminant

analysis; ANA, anaplastic astrocytoma; LASSO, least absolute shrinkage and selection operator.

attributed due to the statistical group. Therefore, our study
could only be regarded as hypothesis generation for future,
larger studies.

There were some limitations of our study. First, as a
retrospective single-center study, the bias in patient selection
was inevitable. Second, the number of included patients was
relatively small, and greater number of patients were required
in further studies to validate the results. Third, ANA is
now divided into three categories according to the 2016
World Health Organization Classification of Central Nervous
System Tumors: IDH-mutant, IDH- wildtype, and NOS (32).
The ability of machine learning in discriminating subtypes
of ANA were required to be explored in future studies.
Fourth, the machine learning models in our study were not
actually validated in other datasets. We did not adopt other
institution datasets because that texture features could be
different when extracted from images acquired with various
scanners or protocols. This could be regarded as a double-
edged sword. On the one hand, a set of controlled variables
could be provided; on the other hand, the results could not
be guaranteed widely applied. The analysis protocol and image
processing procedure were open-source packages and study
with large population are required to validate and reproduce
our results.

CONCLUSION

In this work, we extracted quantitative parameters from
contrast-enhanced MR images and used three feature-selection
methods to select the most discriminating parameters. Then
we applied LDA algorithm to analyze the selected parameters.
Our study shows that texture features has promising ability
to discriminate glioblastoma from ANA. Multi-center studies
with greater number of patients are warranted to confirm this
preliminary result.
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Radiomics Facilitates Candidate
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Among Patients With Unresectable
Pancreatic Cancer
Hai-Feng Zhou 1†, Yu-Qi Han 2,3†, Jian Lu 1†, Jing-Wei Wei 3,4†, Jin-He Guo 1†, Hai-Dong Zhu 1†,

Ming Huang 5, Jian-Song Ji 6, Wei-Fu Lv 7, Li Chen 1, Guang-Yu Zhu 1, Zhi-Cheng Jin 1,

Jie Tian 3,4,8,9* and Gao-Jun Teng 1*

1Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School,

Southeast University, Nanjing, China, 2 School of Life Science and Technology, Xidian University, Xi’an, China, 3 Key
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Chinese Academy of Sciences, Beijing, China, 5Department of Minimally Invasive Interventional Radiology, Yunnan Tumor

Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China, 6Department of Radiology, Lishui

Central Hospital, Wenzhou Medical University, Lishui, China, 7Department of Interventional Radiology, Anhui Provincial
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Innovation Centre for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China,
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Technology, Xidian University, Xi’an, China

Purpose: To develop a model to select appropriate candidates for irradiation stent

placement among patients with unresectable pancreatic cancer with malignant biliary

obstruction (UPC-MBO).

Methods: This retrospective study included 106 patients treated with an irradiation stent

for UPC-MBO. These patients were randomly divided into a training group (74 patients)

and a validation group (32 patients). A clinical model for predicting restenosis-free survival

(RFS) was developed with clinical predictors selected by univariate and multivariate

analyses. After integrating the radiomics signature, a combined model was constructed

to predict RFS. The predictive performance was evaluated with the concordance index

(C-index) in both the training and validation groups. The median risk score of progression

in the training group was used to divide patients into high- and low-risk subgroups.

Results: Radiomics features were integrated with clinical predictors to develop a

combined model. The predictive performance was better in the combined model

(C-index, 0.791 and 0.779 in the training and validation groups, respectively) than in

the clinical model (C-index, 0.673 and 0.667 in the training and validation groups,

respectively). According to the median risk score of 1.264, the RFS was significantly

different between the high- and low-risk groups (p < 0.001 for the training group, and

p = 0.016 for the validation group).

Conclusions: The radiomics-based model had good performance for RFS prediction in

patients with UPC-MBOwho received an irradiation stent. Patients with slow progression

should consider undergoing irradiation stent placement for a longer RFS.

Keywords: radiomics, pancreatic cancer, malignant biliary obstruction, irradiation stent, survival
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INTRODUCTION

Pancreatic cancer is one of the leading causes of cancer-related
death (1), and it has the lowest five-year relative survival
rate among those with any type of cancer (approximately 8%
for all stages) (2). Less than 20% of patients with pancreatic
cancer are candidates for surgical resection (3, 4), and over
half of them develop obstructive jaundice (5). Considering
that patients with advanced pancreatic cancer have only a 6–
10 month median survival, the general treatment is palliative
care (6). Chemotherapy, radiotherapy, targeted therapy and
immunotherapy are not always used for unresectable pancreatic
cancer (UPC) patients due to poor performance status, limited
effects and added toxicity (3, 7). Placement of a self-expanding
metal stent is the standard palliative care for UPC patients
with malignant biliary obstruction (MBO) (8–10). Intraluminal
irradiation stents, which combined a self-expanding metal
stent with brachytherapy to treat local obstructive lesions,
were demonstrated to have better patency and be associated
with longer survival than conventional stents (uncovered
self-expanding metal stents) for unresectable MBO (11, 12).
Although the subgroup analysis of overall survival according
to tumor etiology showed better survival for biliary tract
cancer, there did not appear to be a significant difference in
patients with pancreatic cancer (12). Therefore, it is important
to select appropriate candidates with pancreatic cancer to
undergo irradiation stent placement, not only for individual and
reasonable stent selection, but also for prolonged patency and
improved survival.

Currently, different models have been developed to predict
survival outcomes in patients with different stages of pancreatic
cancer (13–16). A consensus statement also proposed clinical
prognostic variables for UPC (17). Moreover, imaging-based or
radiomic biomarkers have been reported to be available for the
prognostic prediction of patients with pancreatic cancer, based
on computed tomography (CT) (18–23), magnetic resonance
imaging (24, 25), positron-emission tomography (25–27) and
fluorescence microscopic imaging (28) findings. Radiomics, a
novel method of in-depth feature analysis, is to quantify and
extract the high-throughput imaging features from radiographic
images (20). Radiomics, such as texture analysis, reflects different
imaging phenotypes and tumor heterogeneity, which can be
used to assess survival outcomes and predict treatment response
(19, 21, 27). However, there are no tools to predict the survival
benefits from irradiation stent placement in patients with UPC-
MBO. A predictive model based on clinical and imaging features
will offer an objective, convenient and non-invasive method
for determining appropriate treatment options and making
better clinical decisions, especially critical decisions in patients
with UPC-MBO.

In this study, we proposed a novel model incorporating
clinical biomarkers and CT radiomics features to predict
restenosis-free survival (RFS) for individual patients with UPC-
MBO who undergoing irradiation biliary stent placement.
According to our proposed model, irradiation stent placement
could be recommended for appropriate candidates with slow
progression for a longer RFS.

MATERIALS AND METHODS

This multicenter retrospective study was approved by the
institutional review boards at all participating centers. The
need for informed consent was waived due to the study’s
retrospective nature.

Patients
Between January 2012 and December 2017, 106 patients (69
males, 37 females; mean age, 66 ± 12 years [standard deviation];
age range, 40–86 years) treated with irradiation stent placement
for UPC-MBO from four centers were finally included and
randomly divided into a training group (74 patients) and a
validation group (32 patients). The sample size calculation is
shown in Appendix E1. The study design and patient exclusion
criteria are illustrated in Figure 1.

The inclusion criteria were as follows: (a) age 18 years or
older; (b) clinical or histopathological diagnosis of UPC-MBO;
(c) unresectable disease due to extensive lesions, metastases,
a poor medical condition, or refusal to undergo surgery; (d)
initial percutaneous transhepatic biliary stent placement; and
(e) standard contrast-enhanced CT performed <2 weeks before
stenting. The exclusion criteria were as follows: (a) history of
surgical resection, (b) presence of severe infection or organ
failure before stenting, (c) Eastern Cooperative Oncology Group
score of 4 before stenting, (d) any other anticancer therapy except
supportive treatment after stenting, (e) incomplete clinical or CT
imaging data, or (f) loss to follow-up.

The following clinical characteristics were recorded: (a)
demographics, including sex, age, and body mass index; (b)
preprocedural status, including pain as assessed by a visual analog
scale score, Eastern Cooperative Oncology Group performance
status, prior biliary drainage, history of chemotherapy, history
of radiotherapy, and degree of ascites; (c) preprocedural blood
biochemical analysis, including total bilirubin, direct bilirubin,
direct bilirubin/total bilirubin ratio, carbohydrate antigen (CA)
19-9, CA125, and carcinoembryonic antigen; and (d) parameters
related to pancreatic cancer, such as the tumor stage according
to the TNM classification system (American Joint Committee on
Cancer, 8th ed., 2017) (29), liver metastasis, number of metastatic
lesions, and length of obstruction.

A standard percutaneous transhepatic biliary stenting
procedure was performed under fluoroscopic guidance with or
without ultrasonographic guidance by interventional radiologists
with more than 15 years of experience. The irradiation stent
consisted of two overlapping parts, an outer 125I seed-loaded
stent and an inner conventional uncovered self-expanding metal
stent (Nanjing Micro-Tech Co., Ltd., Nanjing, China). The two
parts were assembled in the biliary tract during the procedure.
The 125I seeds (CIAE-6711; Chinese Atomic Energy Science
Institution, Beijing, China) were preloaded into the sheaths that
were attached to the outer surface of the stent immediately before
the procedure. According to the Treatment Planning System
(TPS, FTT Technology Ltd. Co., Beijing, China), the number,
dosage, and distribution of the 125I seeds were calculated. The
standards of radiation safety and management were performed
after irradiation stent placement (30).
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FIGURE 1 | Flowchart of the study design and patient exclusion.

Routine follow-up, including performance status, clinical
signs, postprocedural treatment, blood biochemical analysis,
and imaging, was performed 1 week after stent placement,
monthly for 6 months, and then every 3 months. The endpoint
of this study was the occurrence of restenosis or death. RFS
was calculated from the date of stenting to the date of
the endpoint, which equaled the duration of stent function.
Restenosis indicated stent dysfunction, which was defined by
clinical signs of recurrent jaundice with elevated bilirubin levels
along with biliary reobstruction as evidenced on CT, ultrasound,
magnetic resonance cholangiopancreatography, or percutaneous
transhepatic cholangiography. RFS was censored at the date of
the last follow-up visit for restenosis-free patients.

CT Image Acquisition and Tumor
Segmentation
Imaging feature extraction was performed on each patient’s CT
images within 2 weeks before stent placement. The pancreatic
CT scan included an arterial phase and a portal-venous
phase, which were used to extract imaging features. The CT
acquisition protocols and image preprocessing were described
in Appendix E2. The region of interest (ROI) was drawn with
ITK-SNAP software (version 3.4.0; www.itksnap.org) by an
experienced radiologist (reader 1). Each two-dimensional CT

image covering the visible tumor region was delineated along the
tumor boundaries, and the overlap in the delineated areas was
selected as the final ROI (Figure E1). The ROIs for the arterial
and venous phases were annotated. The stability of radiomics
features was verified from the ROI regions that were annotated
by two radiologists (reader 1 and reader 2) separately through
intra- and interobserver correlation coefficients. Correlation
coefficients ranging from 0 to 1 were considered, and values >

0.8 were considered almost perfect agreement (31).

Imaging Feature Extraction
Radiomics features were extracted from the ROIs usingMATLAB
(version R2018a; Mathworks; Natick, USA), including 25 non-
texture features, 51 texture features and wavelet features in
wavelet images decomposed on different scales. Non-texture
features reflect the shape, size and intensity of tumor lesions,
and texture features represent the inherent heterogeneity of
tumors based on four textural matrices. In addition, a three-
dimensional wavelet transform was applied to decouple the
first-order statistical features and texture features for each CT
image. Finally, we extracted 620 radiomics features from original
CT images and wavelet decompositions in each phase from
each patient. The details of these features are exhibited in
Appendix E3 and Table E1.
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Image Feature Reduction and Radiomics
Model Construction
For feature preselection, intra-, and inter-observer coefficients
were used to detect the stability of features with a threshold
of 0.8. Then, Pearson’s correction analysis was applied to
identify redundant and collinear features, and features with
mutual correlation coefficients >0.9 were excluded. After
initial selection, the least absolute shrinkage and selection
operator (LASSO)-Cox regression approach was used to identify
predictive factors for RFS in the training group (32). Ten-fold
cross-validation was used to optimize the regression model to
select the most reliable model. The minimum tuning parameter
(lambda) was used in LASSO-Cox regression approach. A
radiomics signature was constructed by a weighted linear
combination of selected features in the arterial and portal-
venous phases, separately. A radiomics model was constructed
by both radiomics signatures of the two phases using the Cox
proportional hazard regression method. The Harrel concordance
index (C-index) was calculated to describe the performance of the
radiomics model.

Clinical and Combined Models
Clinical and combined models were also built for comparison
with the radiomics model. Univariate and multivariate Cox
proportional hazard analyses were applied to identify effective
clinical predictors. Based on the Cox proportional hazard
regression model, a clinical model was constructed with
clinical predictors, and the combined model integrated clinical
predictors and the radiomics signature. In the combined model,
the radiomics signature was calculated as the Rad-score for
quantification. The C-index of the clinical and combined models
was also calculated to illustrate their performance. The 3-month
RFS rate of the combined model was assessed through receiver
operating characteristic curve analysis along with the area under
the curve. Decision curve analysis was used to compare the net
benefit at different threshold probabilities from the clinical and
combined nomograms.

Statistical Analysis
Continuous variable is described as mean ± standard deviation,
and categorical variable is described as number and percentage.
Baseline characteristics between two groups were compared by
Student’s t-test for continuous variables and by Pearson’s chi
squared or Fisher’s exact test for categorical variables. With the
R package (version 3.4.4; R Package for Statistical Computing;
www.r-project.org), the nomograms were formulated in the
training group based on the results of the multivariate analysis
and by the Cox proportional hazard regression modeling
strategies. Receiver operating characteristic curves were drawn
and the area under the curve was calculated to evaluate the
discrimination performance for 3-month RFS. Calibration curves
were drawn to compare the 3-month RFS between the predicted
and actual outcomes using the Hosmer–Lemeshow test. Decision
curve analysis was used to evaluate the clinical utility of the
nomogram by calculating the net benefit at different threshold
probabilities. The combined model generated a risk score for RFS

TABLE 1 | Patient characteristics in the training and validation groups.

Characteristics Total Training Validation p-value

(n = 106) (n = 74) (n = 32)

Age, mean ± SD,

years

65.63 ± 11.95 66.41 ± 12.27 63.84 ± 11.71 0.313

Sex, n (%) 0.713

Male 69 (65.1) 49 (66.2) 20 (62.5)

Female 37 (34.9) 25 (33.8) 12 (37.5)

BMI, mean ± SD,

kg/m2
20.59 ± 3.07 20.39 ± 3.12 21.05 ± 2.94 0.312

Length of

obstruction, mean

± SD, mm

37.67 ± 10.03 37.61 ± 9.91 37.81 ± 10.47 0.924

TB, mean ± SD,

µmol/L

185.09 ± 134.44 179.60 ± 137.04 197.78 ± 129.45 0.525

DB, mean ± SD,

µmol/L

139.33 ± 97.67 135.80 ± 99.51 147.48 ± 94.32 0.574

DB/TB ratio, mean

± SD

0.758 ± 0.110 0.756 ± 0.115 0.761 ± 0.100 0.829

Pain, n (%) 0.250

None 23 (21.7) 19 (25.7) 4 (12.5)

Mild 63 (59.4) 43 (58.1) 20 (62.5)

Moderate or

severe

20 (18.9) 12 (16.2) 8 (25)

T stage, n (%) 0.319

2 10 (9.4) 9 (12.2) 1 (3.1)

3 11 (10.4) 8 (10.8) 3 (9.4)

4 85 (80.2) 57 (77) 28 (87.5)

N stage, n (%) 0.255

0 26 (24.5) 15 (20.3) 11 (34.4)

1 68 (64.2) 51 (68.9) 17 (53.1)

2 12 (11.3) 8 (10.8) 4 (12.5)

M stage, n (%) 0.051

0 68 (64.2) 52 (70.3) 16 (50.0)

1 38 (35.8) 22 (29.7) 16 (50.0)

Liver metastasis,

n (%)

0.361

No 76 (71.7) 55 (74.3) 21 (65.6)

Yes 30 (28.3) 19 (25.7) 11 (34.4)

Number of

metastatic

lesions, n (%)

0.099

0 68 (64.2) 50 (67.6) 18 (56.3)

1 12 (11.3) 10 (13.5) 2 (6.3)

≥2 26 (24.5) 14 (18.9) 12 (37.5)

Ascites level, n

(%)

0.541

None 85 (80.2) 61 (82.4) 24 (75)

Mild 14 (13.2) 8 (10.8) 6 (18.8)

Moderate or

severe

7 (6.6) 5 (6.8) 2 (6.3)

Radiotherapy, n

(%)

0.137

No 101 (95.3) 72 (97.3) 29 (90.6)

Yes 5 (4.7) 2 (2.7) 3 (9.4)

(Continued)
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TABLE 1 | Continued

Characteristics Total Training Validation p-value

(n = 106) (n = 74) (n = 32)

Chemotherapy, n

(%)

0.775

No 91 (85.8) 64 (86.5) 27 (84.4)

Yes 15 (14.2) 10 (13.5) 5 (15.6)

ECOG score, n

(%)

0.774

0 3 (2.8) 2 (2.7) 1 (3.1)

1 11 (10.4) 9 (12.2) 2 (6.3)

2 60 (56.6) 40 (54.1) 20 (62.5)

3 32 (30.2) 23 (31.1) 9 (28.1)

Prior PTBD, n

(%)

0.219

No 31 (29.2) 19 (25.7) 12 (37.5)

Yes 75 (70.8) 55 (74.3) 20 (62.5)

CA19-9, n (%) 0.349

<1,000 U/ml 57 (53.8) 42 (56.8) 15 (46.9)

≥1,000 U/ml 49 (46.2) 32 (43.2) 17 (53.1)

CA125, n (%) 0.660

<35 U/ml 33 (31.1) 24 (32.4) 9 (28.1)

≥35 U/ml 73 (68.9) 50 (67.6) 23 (71.9)

CEA, n (%) 0.870

<5 ng/ml 41 (38.7) 29 (39.2) 12 (37.5)

≥5 ng/ml 65 (61.3) 45 (60.8) 20 (62.5)

Continuous variable is described as mean ± SD, and categorical variable is described as

number and percentage. Baseline characteristics between two groups were compared

by Student’s t-test for continuous variables and by Pearson’s chi squared or Fisher’s

exact test for categorical variables. SD, standard deviation; BMI, body mass index;

TB, total bilirubin; DB, direct bilirubin; ECOG, Eastern Cooperative Oncology Group;

PTBD, percutaneous transhepatic biliary drainage; CA, carbohydrate antigen; CEA,

carcinoembryonic antigen.

and dichotomized the patients into two groups with different
risks of progression using the median risk score in the training
group. Kaplan-Meier curves were generated to evaluate the
ability of the risk score to stratify the patients, and log-rank tests
were applied to assess the statistical significance with p < 0.05.

RESULTS

Patients
A total of 106 patients (69 males, 37 females; mean age, 66 ± 12
years [standard deviation]; age range, 40–86 years) were included
in this study, including 74 patients in the training group and
32 patients in the validation group. The clinical characteristics
showed no significant differences between the two groups (all
p > 0.05, Table 1). During the mean follow-up time of 165.3
days, 99 of 106 (93%) patients reached the endpoint. There
was no significant difference in the median RFS between the
training group (139.5 days) and the validation group (120 days)
(p= 0.926).

TABLE 2 | The C-indexes of clinical, radiomic, and combined models.

Models Training Validation

C-index 95% CI C-index 95% CI

Clinical model 0.673 (0.594, 0.751) 0.667 (0.541, 0.793)

Arterial phase features 0.735 (0.559, 0.911) 0.719 (0.445, 0.994)

Portal-venous phase features 0.768 (0.523, 1) 0.788 (0.413, 1)

Radiomics signature 0.787 (0.542, 1) 0.796 (0.421, 1)

Combined model 0.791 (0.614, 0.967) 0.779 (0.504, 1)

C-index, concordance index; CI, confidence interval.

Radiomics Features
We extracted 620 features from the arterial and venous
phases. After intra- and interobserver agreement analysis,
368 features from the arterial phase and 324 features from
the portal-venous phase were retained for collinearity testing
(Figure E2). A total of 61 features from the arterial phase and
49 features from the portal-venous phase were identified as
independent after Pearson’s correlation analysis (Table E2).
The LASSO-Cox model identified that eight features from
the arterial phase and six features from the portal-venous
phase were most efficient for predicting RFS (Figure E3). The
eight biomarkers from arterial phase were “glszm_LZHGE,”
“fos_median,” “glszm_SZSE,” “glcm_inverse_variance,”
“fos_minimum,” “glcm_IMC2,” “glszm_LGLZE,” and
“glszm_HGLZE.” The six biomarkers from portal-venous
phase were “glszm_ZSV,” “fos_uniformity,” “glrlm_SRHGLE,”
“glcm_correlation,” “ngtdm_complexity,” and “glszm_HGLZE.”
These radiomics biomarkers showed no significant difference
between the training and validation groups (all p > 0.05,
Table E3).

Radiomics Model
Regarding the LASSO-Cox model, the C-index in the
arterial phase was 0.735 and 0.719 for the training and
validation groups, respectively; the C-index in the portal
venous phase was 0.768 and 0.788 for the training and
validation groups, respectively. The radiomics model, which
was developed by integrating the radiomics signatures
of both phases, yielded higher C-indices of 0.787 and
0.796 for the training and validation groups, respectively
(Table 2).

The arterial phase score for progression to the endpoint was
calculated with the following formula.

AP_score = exp (−0.32651538+ 0.18816560

×AP_Coif1_glszm_LZHGE− 0.01513133

×AP_Coif2_fos_median− 0.05629135

×AP_Coif5_glszm_SZSE− 0.03575725

×AP_Coif7_glcm_inverse_variance+0.10324552

×AP_Coif8_fos_minimum− 0.06760264

×AP_Coif8_glcm_IMC2− 0.22867284

×AP_Coif8_glszm_LGLZE+0.03670083

×AP_Coif8_glszm_HGLZE)
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The portal-venous phase score for progression to the endpoint
was calculated with the following formula.

PP_score = exp (−0.29073968+0.14320514

×PP_ori_glszm_ZSV+0.05375225

×PP_Coif1_fos_uniformity− 0.26501636

×PP_Coif2_glrlm_SRHGLE− 0.03923173

×PP_Coif5_glcm_correlation− 0.01452813

×PP_Coif6_ngtdm_complexity+0.01951407

×PP_Coif8_glszm_HGLZE)

The total radiomics score for progression to the endpoint was
calculated with the following formula.

Rad-score = exp (0.463× AP_score+0.665× PP_score)

Clinical and Combined Models
After univariate and multivariate analysis, N stage (HR [95% CI],
1.663 [1.041–2.659]; p = 0.033), M stage (HR [95% CI], 2.861
[1.114–7.352]; p = 0.029), and CA19-9 (HR [95% CI], 1.898
[1.024–3.520]; p = 0.042) were ultimately selected as clinical
predictors of RFS (Table 3). The C-index for the clinical model
was 0.673 in the training group and 0.667 in the validation
group. The performance of the combined model was increased
when the radiomics signature was added to the model, with
a C-index of 0.791 in the training group and 0.779 in the
validation group (Table 2). The nomograms for the clinical
and combined models are shown in Figure 2. The performance
for predicting 3-month RFS as shown by the area under
the receiver operating characteristic curve was better with
the combined model than with the clinical model for both
groups (Figure 3). The calibration curves for the combined
model demonstrated good agreement between the predicted and
observed probabilities of progression at 3 months with p-values
of 0.823 for the training group and 0.329 for the validation group
(Figure 4).

Clinical Use
The risk score for progression to the endpoint was calculated with
the following formula.

risk score = exp (1.179075+0.931×M+0.753

×N+0.509× CA19-9+ 1.139× Rad-score)

The median risk score for progression in the training group
(score = 1.264) was used to divide patients into high- (score
≥1.264) and low-risk (score < 1.264) groups. Kaplan-Meier
curves and the log-rank test indicated significant differences in
RFS between the high- and low-risk groups (median RFS: 90
days vs. 198 days, p < 0.001 for the training group; and median
RFS: 118 days vs. 265 days, p = 0.016 for the validation group,
Figure 5). The risk score also showed satisfactory stratification
ability when adjusting to the different subgroups (all p < 0.05,
Figure E4). As shown in Figure E5, the decision curve analysis
for the individualized nomograms shows the overall net benefit

TABLE 3 | The univariate and multivariate analyses for clinical features in training

group.

Characteristics HR 95% CI p-value

UNIVARIATE ANALYSIS

Age 1.000 (0.980, 1.021) 0.990

Sex 0.948 (0.573, 1.570) 0.948

BMI 0.965 (0.895, 1.040) 0.347

Length of obstruction 0.983 (0.958, 1.010) 0.213

TB 1.000 (0.998, 1.002) 0.962

DB 1.000 (0.998, 1.003) 0.806

DB/TB ratio 1.747 (0.164, 18.626) 0.644

Pain 1.278 (0.853, 1.914) 0.234

T stage 1.251 (0.843, 1.857) 0.265

N stage 1.868 (1.238, 2.818) 0.003*

M stage 2.026 (1.194, 3.435) 0.009*

Liver metastasis 1.518 (0.858, 2.688) 0.152

Number of metastatic lesions 1.559 (1.131, 2.148) 0.007*

Ascites 1.602 (1.050, 2.444) 0.029*

Radiotherapy 1.489 (0.361, 6.146) 0.582

Chemotherapy 0.607 (0.276, 1.331) 0.213

ECOG score 1.096 (0.785, 1.529) 0.592

Prior PTBD 1.211 (0.706, 2.077) 0.487

CA19-9 2.442 (1.454, 4.102) 0.001*

CA125 2.230 (1.286, 3.865) 0.004*

CEA 1.410 (0.870, 2.287) 0.163

MULTIVARIATE ANALYSIS

N stage 1.663 (1.041, 2.659) 0.033*

M stage 2.861 (1.114, 7.352) 0.029*

Number of metastatic lesions 0.666 (0.345, 1.285) 0.225

Ascites 1.328 (0.825, 2.139) 0.243

CA19-9 1.898 (1.024, 3.520) 0.042*

CA125 1.627 (0.877, 3.016) 0.123

*Data are statistically significant with p < 0.05. HR, hazard ratio; CI, confidence interval;

BMI, body mass index; TB, total bilirubin; DB, direct bilirubin; ECOG, Eastern Cooperative

Oncology Group; PTBD, percutaneous transhepatic biliary drainage; CA, carbohydrate

antigen; CEA, carcinoembryonic antigen.

in predicting RFS for the combined model was not inferior to the
clinical model, the treat-all-patients scheme, and the treat-none
scheme if the threshold probability of a patient was >51.0%.

DISCUSSION

Although irradiation stents have been applied to manage
malignant intraluminal obstructive diseases (11, 12, 33–38), it is
necessary to optimize the selection of appropriate patients for
personalized treatment. In this study, a CT radiomics signature
was combined with clinical features to establish an objective,
preprocedural, and non-invasive model to select appropriate
patients with UPC-MBO for irradiation stent placement. The
combined model performed better than the clinical model.

With the combined nomogram, the 3-, 6-, and 12-month RFS
probabilities can be calculated for each individual undergoing
irradiation stent placement. With the risk score formula, each
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FIGURE 2 | Nomograms for the clinical and combined models. (A) Clinical nomogram based on three clinical predictors. (B) Combined nomogram based on three

clinical predictors and the radiomics signature. To use these nomograms, the user locates an individual patient’s value on each variable axis and draws a line up to

determine the number of points received for each variable value. The sum of these numbers is located on the axis of total points, and three lines are drawn down to

the risk axes to determine the 3-, 6-, and 12-month RFS probabilities.

FIGURE 3 | Receiver operating characteristic (ROC) curves with the area under the curve (AUC) for the predictive performance for 3-month RFS. Clinical model vs.

combined model in the training group (A) and the validation group (B).

individual can be grouped into a low- or high-risk group.
Two actual patients were classified using the combined model,
as shown in Appendix E4 and Table E4, which demonstrated
accurate prediction. “Patient A” with an RFS of 347 days had
predicted 3-, 6-, and 12-month RFS probabilities of 0.85, 0.55,
and 0.10, respectively, and was grouped into the low-risk group
“Patient B” with an RFS of 129 days had predicted 3-, 6-, and 12-
month RFS probabilities of 0.65, 0.18 and < 0.01, respectively,
and was grouped into the high-risk group. It seems useful
for clinical decision making that “Patient A” should undergo
irradiation stent placement, but “Patient B” should undergo
alternative treatment.

For patients with UPC-MBO, few biomarkers or models
with good discrimination have been reported for prognostic
prediction. Clinical indexes, including the CA19-9 level and N
and M stages, have been applied to develop a model to predict
prognosis in this study. The clinical model had a moderate
C-index for discrimination (0.673 and 0.667 in the training and

validation groups, respectively), while the radiomics signature
showed a better C-index (0.787 and 0.796 in the training and
validation groups, respectively). This result indicated better
predictive performance of radiomic biomarkers than of clinical
biomarkers. Moreover, the combined model also performed well
with C-indexes of 0.791 and 0.779 in the training and validation
groups, respectively. The reason may be that radiomics features
from the tumor can provide more information on the cancer
phenotype and the tumormicroenvironment (39, 40), but clinical
characteristics are limited.

As shown in Figure E4, regardless of which subgroup the
patient was included in, he or she had a longer RFS in the low-risk
group than in the high-risk group. Male sex, age older than 65
years, and an abnormal carcinoembryonic antigen level seemed
to have less influence on RFS. Recently, researchers have been
interested in the role of CA125 in pancreatic cancer (41). Positive
CA125 levels may indicate tumor-associated Treg enrichment,
which promotes tumor cell escape from the immune system (42).

Frontiers in Oncology | www.frontiersin.org 7 September 2019 | Volume 9 | Article 97355

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhou et al. Radiomics for Choosing Irradiation Stent

FIGURE 4 | Calibration curves for the predictive performance for 3-month RFS. Clinical model in the training group (A, p = 0.105) and the validation group (B, p =

0.343). Combined model in the training group (C, p = 0.823) and the validation group (D, p = 0.329).

FIGURE 5 | Kaplan-Meier curves for the stratified groups. The low-risk group had a longer RFS than the high-risk group in the training group (A, p < 0.001) and the

validation group (B, p = 0.016).
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A high CA125 level is also associated with a high metabolic
tumor burden (43) and poor prognosis (44–46). Although the
CA125 level was a potential risk factor for RFS in the univariate
analysis, this factor was not ultimately included in the predictive
model developed with multivariate analysis (HR [95%]: 1.627
[0.877, 3.016]; p = 0.123). The prognostic importance of CA125
in pancreatic cancer should be further evaluated.

Imaging-based texture analysis is used to quantify
intratumoral heterogeneity in patients with pancreatic
cancer (21, 47, 48). Sandrasegaran et al. (19) demonstrated
that contrast-enhanced CT-based radiomics features were
associated with survival among patients with UPC, but only two-
dimensional texture features from axial slices with maximum
tumor dimensions were analyzed rather than features from
multiple sections through the whole tumor. Cassinotto et al.
(22) and Attiyeh et al. (23) evaluated only CT texture features
in patients with surgically resectable pancreatic cancer. In our
study, comprehensive radiomics features included intensity,
shape, texture, and wavelet features that covered one-, two- and
three-dimensional features in both the arterial and portal-venous
phases. The radiomics signature based on both phases had good
discrimination. In the arterial phase, the C-indexes were 0.735
and 0.719 in the training and validation groups, respectively. In
the portal-venous phase, the C-indexes were 0.768 and 0.788 in
the training and validation groups, respectively. Currently, few
studies have explained the biological mechanisms of radiomics
features for predicting treatment outcomes. However, this fact
does not compromise the effectiveness and robustness of the
proposed model for prognostic prediction.

This study has several limitations. First, as shown in Table E5,
this study was a retrospective study with a small population.
Second, evaluation of data from several independent centers for
external validation is needed; however, this study was developed
based on a limited sample. Third, the model was mainly used
to choose appropriate patients for irradiation stent placement
but was less able to predict the prognosis of patients who
underwent placement of other stents or drainage mechanisms.
Therefore, additional trials with large samples are needed to
prospectively validate the findings in several independent centers.
Radiogenomics-based studies are proposed for personalized
treatment with radiotherapy or irradiation-related interventions
for patients with pancreatic cancer.

CONCLUSIONS

In conclusion, the proposed model based on radiomics had
good performance for RFS prediction in patients with UPC-
MBO who underwent irradiation stent placement. Patients with
slow progression should consider undergoing irradiation stent
placement for a longer RFS.With further sufficient validation and
future clinical trials, this model might be an important tool for
clinical decision making in interventional oncology.
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We extracted image features from serial 18F-labeled fluorodeoxyglucose (FDG) positron

emission tomography (PET) / computed tomography (CT) scans of anal cancer patients

for the prediction of tumor recurrence after chemoradiation therapy (CRT). Seventeen

patients (4 recurrent and 13 non-recurrent) underwent three PET/CT scans at baseline

(Pre-CRT), in the middle of the treatment (Mid-CRT) and post-treatment (Post-CRT) were

included. For each patient, Mid-CRT and Post-CRT scans were aligned to Pre-CRT scan.

Comprehensive image features were extracted from CT and PET (SUV) images within

manually delineated gross tumor volume, including geometry features, intensity features

and texture features. The difference of feature values between two time points were also

computed and analyzed. We employed univariate logistic regression model, multivariate

model, and naïve Bayesian classifier to analyze the image features and identify useful

tumor recurrent predictors. The area under the receiver operating characteristic (ROC)

curve (AUC) was used to evaluate the accuracy of the prediction. In univariate analysis, six

geometry, three intensity, and six texture features were identified as significant predictors

of tumor recurrence. A geometry feature of Roundness between Post-CRT and Pre-CRT

CTs was identified as the most important predictor with an AUC value of 1.00 by

multivariate logistic regression model. The difference of Number of Pixels on Border

(geometry feature) between Post-CRT and Pre-CRT SUVs and Elongation (geometry

feature) of Post-CRT CT were identified as the most useful feature set (AUC = 1.00)

by naïve Bayesian classifier. To investigate the early prediction ability, we used features

only from Pre-CRT and Mid-CRT scans. Orientation (geometry feature) of Pre-CRT SUV,

Mean (intensity feature) of Pre-CRT CT, andMean of Long Run High Gray Level Emphasis

(LRHGLE) (texture feature) of Pre-CRT CT were identified as the most important feature

set (AUC = 1.00) by multivariate logistic regression model. Standard deviation (intensity
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feature) of Mid-CRT SUV and difference of Mean of LRHGLE (texture feature) between

Mid-CRT and Pre-CRT SUVs were identified as the most important feature set

(AUC = 0.86) by naïve Bayesian classifier. The experimental results demonstrated the

potential of serial PET/CT scans in early prediction of anal tumor recurrence.

Keywords: serial PET/CT, chemoradiation therapy, recurrence prediction, image analysis, anal cancer

INTRODUCTION

Anal cancer is a relatively uncommon malignancy. In the
United States, the National Cancer Institute estimated
8,580 new cases and 1,160 deaths from anal cancer in
20181. Chemoradiation therapy (CRT) is preferred over
abdominoperineal resection for the treatment of anal cancer
patients because of sphincter preservation, although surgery can
be an effective salvage option (1–4). After CRT, early detection
of tumor recurrence is important for initiating salvage surgery
and preventing the spread of disease to distant sites (5, 6).
Current guideline recommendations for treatment response
evaluation after CRT includes serial digital rectal examination
with biopsy of clinically progressive lesions, beginning 8–12
weeks after therapy is completed. However, early detection of
residual and progressive disease can sometimes be challenging
because of treatment-related mucositis and dermatitis that may
limit adequate physical examination (5). Alternatively, as a
non-invasive evaluation tool, anatomical imaging techniques
(CT, ultrasound, and MRI) have been widely used in the tumor
staging and treatment response evaluation. Because the region
of anal tumors has similar intensity to the surrounding normal
structures in the anatomical images and tumor margins may
blend with surrounding normal tissues (5), these techniques may
fail to accurately assess the presence of tumor.

Positron emission tomography (PET) scans provide metabolic
information of tumors and can assist in differentiating recurrent
tumors from surrounding tissue. As such, 18F-FDG PET scans
obtained after CRT has been increasingly used for the anal
cancer recurrence prediction (7, 8) alongside CT scans (18F-FDG
PET/CT), which provide corresponding anatomic information.
However, there are few reports in the literature about the usage
of interim PET/CT scans (Mid-CRT) obtained during CRT to
assess treatment response for anal cancer. In a recent paper of
Hong et al. (9), they reported a anal cancer chemoradiation
treatment evaluation study using pretreatment and interim
PET/CT scans. Some commonly used standardized uptake
value (SUV) based image features were evaluated, including
maximum SUV (SUVmax), mean SUV (SUVmean), metabolic
tumor volume (MTV), and total lesion glycolysis (TLG).
However, no correlation between tumor recurrence and relative
change of those image features was detected.

Recent studies have shown that spatial PET/CT features are
more informative than the commonly used SUV based measures
(10, 11). In this study, instead of conventional SUV image
features, comprehensive image features from both CT and SUV

1http://seer.cancer.gov/statfacts/html/anus.html

of serial PET/CT scans (Pre-CRT, Mid-CRT, and Post-CRT) were
analyzed to identify useful image features for the prediction
of anal cancer recurrence. In particular, we investigated the
image features from Pre-CRT and Mid-CRT PET/CT scans
only to explore their potential in the early prediction of tumor
recurrence. The image features we used in this study include
geometry, intensity, and texture features.

MATERIALS AND METHODS

Patients and PET/CT Scans
IRB approval was obtained from both institutions involved in
the analysis. The PET/CT scans used in this study were collected
from Department of Radiation Oncology of one major cancer
center in the United States for patients with non-metastatic
squamous cell carcinoma of the anal canal treated with definitive
CRT between 2008 and 2010. Seventeen patients were included in
this study, including 4 recurrent and 13 non-recurrent. Clinical
characteristics of the patients were shown in Table 1. One of the
recurrent patients developed a locoregional recurrence and the
other three were diagnosed with distant metastasis. The typical
approach and clinical outcomes for managing anal cancer with
CRT from this institution have been previously published (12).
Patients received CRT for 32–50 total elapsed days (median
43 days) with initial prescription gross tumor volume (GTV)
dose of 36–50Gy and GTV boost dose of 0–22Gy. The median
GTV total dose was 56Gy (range 50–62.5Gy). Pre-CRT PET/CT
imaging was performed 6–46 days before CRT (median 20 days),
Mid-CRT PET/CT was performed 22–38 days (median 32 days)
after the starting of CRT, and Post-CRT imaging was performed
42–141 days (median 88 days) after completion of CRT. All
PET/CT scans were acquired with a Discovery-VCT (DVCT)
scanner (GE Medical System, Milwaukee, USA). Each patient
fasted for a minimum of 6 h before intravenous injection of 10
mCi 18F-FDG. Whole-body PET and CT imaging was started
90min after tracer injection. The CT scans were acquired with
110 mAs and 120 kVp. Each slice had a matrix size of 512 × 512
pixels; the pixel was 1.37 × 1.37mm with a 12-bit gray-level in
Hounsfield Units (HU). The slice thickness was 3.27mm. PET
images were attenuation corrected with a matrix size of 128 ×

128 pixels; the pixel was 5.47 × 5.47mm. The slice thickness
was 3.27mm. To compare the PET-based image features between
patients, standardized uptake value (SUV) was calculated on
a voxel-by-voxel basis and a SUV image was created for each
PET scan.

An experienced radiation oncologist (MC) contoured the
GTVs in the Pre-, Mid-, and Post-CRT PET/CT scans,
respectively, using mainly CT while referring to PET. In general,
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TABLE 1 | Clinical characteristics of patients.

Non-recurrent

patients

Recurrent

patients

n 13 4

Gender

Male 5 1

Female 8 3

Age

Median 53 49

Range 36 ∼ 78 45 ∼ 76

BMI 20.6 ∼ 35.7 19.8 ∼ 28.2

HIV+ 2 0

Weight decrease during CRT (%) −1.7 ∼ 12.9 −1.9 ∼ 22.4

ECOG performance status

0 10 3

1 3 1

T stage

1 3 0

2 6 1

3 4 1

4 0 2

N stage

0 10 2

1 0 1

2 2 1

3 1 0

AJCC stage (TNM stage)

2 3 0

3 7 1

4 0 2

5 3 1

anal tumors have similar intensity to the surrounding normal
structures in CT scans. Thus, it would be hard for the radiation
oncologists to contour the tumors accurately. FDG uptake of the
tumors in PET scans could help in identify the tumor regions.
However, high FDG uptake caused by non-tumor lesions, such
as tissue inflammation, could affect the accuracy of delineated
GTVs. In this study, we did not find such difficult cases.

Image Registration
A rigid image registration followed by a B-Spline deformable
image registration was used to align the Mid-CRT CT and
Post-CRT CT to the Pre-CRT CT, respectively by maximizing
their normalized cross correlation. To achieve higher registration
accuracy in the tumor area, registration was constrained within a
cuboid region, excluding irrelevant structures. The region ranged
from the top of femoral head to the inferior pubic ramus, from
the right lateral aspect of the right femoral head to the left lateral
aspect of the left femoral head, and from the anterior border of
the pubis to the most posterior border of sacrum.

The registration results were visually evaluated, and no
obvious misalignments were observed. The resulting registration

transform was applied to warp the manually delineated
GTVs from Mid-CRT and Post-CRT scans to Pre-CRT scan,
respectively. The Mid-CRT and Post-CRT SUV images were
similarly warped to the Pre-CRT SUV image using the same
transform as above, respectively. The following image analysis
was performed in the same frame of reference, i.e., the Pre-CRT
coordinate system.

Extraction of Image Features
Weused the Insight Segmentation and Registration Toolkit (ITK,
National Library of Medicine; Bethesda, MD) to extract image
features. Nineteen geometry features, nine intensity features,
eight texture features based on co-occurrence matrix, and ten
texture features based on run-length matrix were computed
within the GTVs in the Pre-, Mid-, and Post-CRT CT and SUV
images, respectively. The difference or change of feature values
between two time points were also computed, including Diff1 =
Mid-CRT - Pre-CRT, Diff2 = Post-CRT - Mid-CRT, and Diff3
= Post-CRT - Pre-CRT. The detailed definition of these features
was described in Appendix A.

Geometry Features
Geometry features described the shape, size, or relative position
of a tumor. Nineteen geometry features were computed (13,
14), including volume, major axis length, minor axis length,
eccentricity, elongation, orientation, bounding box volume,
oriented bounding box volume, equivalent spherical perimeter,
equivalent spherical radius, ferret diameter, number of lines,
number of pixel on border, perimeter, perimeter on border,
perimeter on border ratio, physical size, region elongation, and
roundness. For instance, Roundness (R) is defined by

R = A/v

where v is the surface area of the GTV, A is the surface area of the
hyper-sphere with the same volume of the GTV.

Intensity Features
Nine intensity features were computed based on the intensity
(CT number in CT images and SUV in PET images) of all voxels
within the GTV, including minimum, maximum, mean, standard
deviation, sum, median, skewness, kurtosis, and variance.

Texture Features
Texture features quantify the spatial patterns of tumor from
images (15). In each CT or SUV image, the intensity was
first normalized into 64 gray levels. The texture features were
computed based on the gray level co-occurrence matrix (GLCM)
(16–18) and gray level run-length matrix (GLRM) (18, 19).

An element of a GLCM measures the number of two
specified gray levels separated by a given distance in a specified
direction (16–18). After the construction of the GLCM, the
following eight frequently used features were computed (16–
18): Energy, entropy, correlation, inverse difference moment,
inertia, cluster shade, cluster prominence, Haralick correlation.
Each GLCM feature was computed in 13 directions (in 3D)
with a distance of one voxel between the pair of voxels. The
feature was then averaged over the 13 directions. The standard
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deviation of each feature over the 13 directions was computed
as well.

An element of a GLRM measures the number of “runs”
with a specific length and specific gray level (18, 19), where
a “run” is defined as a block of consecutive voxels with the
same gray level in a specific direction. In this study, we set
the maximum allowed length of runs to the length of the
minimum bounding box of the GTV. After the construction
of the GLRM, the following ten frequently used features were
computed: short run emphasis (SRE), long run emphasis (LRE),
gray level non-uniformity (GLN), run length non-uniformity
(RLN), low gray level run emphasis (LGLRE), high gray level
run emphasis (HGLRE), short run low gray level emphasis
(SRLGLE), short run high gray level emphasis (SRHGLE), long
run low gray level emphasis (LRLGLE), long run high gray level
emphasis (LRHGLE). Each GLRM feature was also computed
in 13 directions. The feature was then averaged over the 13
directions. The standard deviation of each feature over the 13
directions was computed as well.

Predictive Model Construction
For this study the binary response variable of interest is the
recurrence of anal cancer, coded 1 = recurrence and 0 = non-
recurrence. The area under the receiver operating characteristic
(ROC) curve (AUC) was used to evaluate the accuracy of
the prediction.

Firstly, we used a univariate logistic regression model (20)
to identify individually significant image features for predicting
recurrence. The AUC of each image feature was obtained and p-
value was calculated with Wilcoxon rank-sum test (21). A cut-off
p-value of 0.05 was used to identify significant tumor recurrence
predictors, i.e., an image feature was identified as a significant
predictor, if its p-value was lower than 0.05.

Secondly, we used a multivariate logistic regression model
(20) to select the most significant feature set (as single feature
or multiple features) for predicting recurrence. The initial
null hypothesis was that there was no relationship between
the image features and recurrence. When multivariate logistic
regression was used, null hypotheses of adding image features
to the multiple logistic regression do not improve the prediction
accuracy any more than expected by chance were tested. Again,
p-value of 0.05 from the null hypotheses was used to select the
most significant feature set.

Lastly, we used an advanced pattern classification framework
of naïve Bayesian classifier (22) for predicting recurrence using
the identified feature set as input. Due to the small patient
cohort, leave-one-out cross-validation was used. Let C be the
outcome (recurrence) class, which is modeled as a random
variable, and let X be a vector of random variables denoting the
input features. Further, let c and x represent particular class of
C and particular observed value of X. Our model uses Bayes’
rule to compute the probability of each class given the observed
values as,

p (C = c |X = x ) =
p (C = c) p (X = x |C = c )

p (X = x)
(1)

Because in naïve Bayesian classifier the features are assumed to
be conditionally independent, we have

p (X = x |C = c ) =
∏

i

p (Xi = xi |C = c )

which is simple to estimate from training data as well as
to compute for test data. For example, for each recurrent
class and continuous image feature, we will estimate the
mean and standard deviation of the feature given the class.
Traditionally a single Gaussian distribution assumption was used
when estimating the mean and standard deviation. Here this
assumption was eliminated in favor of kernel density estimation,
but still maintaining the independence assumption (22). Finally,
the probability computed from (1) is used to determine the most
probable class.

RESULTS

Univariate Analysis of Logistic Regression
Model
Six geometry features, three intensity features, and six texture
features (three co-occurrence matrix features and three run-
length matrix features) were identified as individually significant
predictors (p ≤ 0.05) to differentiate recurrence and non-
recurrence using the univariate logistic regression model. The
identified predictors were listed in Table 2.

Multivariate Analysis of Logistic
Regression
By applying the multivariate logistic regression model, the Diff3
of roundness of CT, i.e., the difference in tumor roundness

TABLE 2 | Selected anal cancer recurrence predictors from all the image features

by univariate logistic regression model.

Features aAssociation AUC p-value

Diff3 Roundness + 1.00 0.00

Post-CRT Roundness – 0.96 0.00

Diff2 Roundness + 0.90 0.01

Diff3 Perimeter on Border Ratio – 0.77 0.02

Diff3 CT Minimum + 0.85 0.02

Post-CRT CT SD of Correlation – 0.77 0.03

Post-CRT Major Axis Length – 0.81 0.03

Diff3 CT Mean of Inverse Difference Moment – 0.83 0.03

Post-CRT CT Elongation – 0.83 0.04

Diff3 CT Mean of Short Run Emphasis + 0.83 0.04

Post-CRT CT Minimum + 0.62 0.04

Post-CRT CT Mean of Inverse Difference

Moment

– 0.63 0.05

Post-CRT SUV SD of Cluster Shade + 0.69 0.05

Diff3 CT Mean + 0.79 0.05

Diff1 CT SD of Long Run High Gray Level

Emphasis

– 0.83 0.05

aAssociation = “+” indicates the larger a feature, the more likely tumor recurrent;

Association = “−” indicates the larger a feature, the less likely tumor recurrent.
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between Post-CRT and Pre-CRT, was identified as the most
powerful predictor with an AUC of 1.0. Using Pre-CRT andMid-
CRT scans only, Orientation of Pre-CRT SUV and LRHGLE of
Pre-CRT CT were selected as the most important feature set with
a high AUC of 1.00. The results were shown in Table 3.

Naïve Bayesian Classifier Based Analysis
By applying the naïve Bayesian classifier, Diff3 of Number of
Pixels on Border of SUV and Elongation of Post-CRT CT were
identified as the most useful feature set with AUC = 1.00. Using
Pre-CRT and Mid-CRT scans only, standard deviation of Mid-
CRT SUV, Diff1 of Mean of LRHGLE of SUV were selected as the
most important feature set with an AUC of 0.86. The results were
shown in Table 4.

DISCUSSION

Almost all the predictors identified by univariate logistic
regression model, multivariate logistic regression model, and
naïve Bayesian classifier were derived from Post-CRT scans
or from Diff3 (Post-CRT - Pre-CRT). To investigate the early
prediction ability of the features, we applied the multivariate
logistic regression model and naïve Bayesian classifier by using
features from Pre-CRT and Mid-CRT scans and Diff1 only. As
shown in Table 3, Orientation of Pre-CRT SUV, Mean of Pre-
CRTCT, andMean of LRHGLE of Pre-CRTCTwere identified as
the most useful feature set by the multivariate logistic regression
model with an AUC of 1.0. As shown in Table 4, standard
deviation of Mid-CRT SUV and Diff1 of Mean of LRHGLE
of SUV were identified as the most useful feature set by the
naïve Bayesian classifier with an AUC of 0.86. These results
demonstrated the potential of Pre-CRT and Mid-CRT PET/CT
scans for the early predication of anal cancer recurrence.

TABLE 3 | Selected anal cancer recurrence predictors (correlation to the

recurrence in parentheses) by multivariate logistic regression model.

Using Pre-CRT, Mid-CRT, and

Post-CRT

Using Pre-CRT and Mid-CRT

Features Diff3 CT Roundness (0.83) Pre-CRT SUV Orientation

(−0.31), Pre-CRT CT Mean

(−0.15), Pre-CRT CT Mean of

Long Run High Gray Level

Emphasis (0.41)

AUC 1.00 1.00

TABLE 4 | Selected anal cancer recurrence predictors (correlation to the

recurrence in parentheses) by naïve Bayesian classifier.

Using Pre-CRT, Mid-CRT, and

Post-CRT

Using Pre-CRT and Mid-CRT

Features Diff3 SUV Number of Pixels on

Border (−0.07) and Post-CRT

CT Elongation (−0.28)

Mid-CRT SUV Standard

Deviation (−0.15), Diff1 SUV

Mean of Long Run High Gray

Level Emphasis (0.16)

AUC 1.00 0.86

One geometry feature Diff3 of roundness, has been identified
as the most useful predictor by both univariate and multivariate
logistic regression models. Roundness measures how similar the
shape of a tumor is to a sphere with range [0, 1]. A larger value
of roundness means higher similarity to a sphere. As shown in
Figure 1 and Table 5 the roundness of all four recurrent tumors
increased from Pre-CRT to Post-CRT by 0.05 or more, with a
mean increase of 0.08, whereas the roundness of the 13 non-
recurrent tumors either decreased (11 tumors), or did not change
(2 tumors), or increased slightly by 0.01 (1 tumor), with a mean
decrease of 0.06. Therefore, by using Diff3 of roundness only, we
were able to correctly predict all cases with an AUC of 1.0.

As shown in Table 5, the roundness of many of the non-
recurrent tumors decreased from Pre-CRT to Post-CRT and
the roundness of recurrent tumors increased from Pre-CRT to
Post-CRT. The difference in roundness may reflect that the
normal anal canal has a low roundness value, which would be
consistent with decreased anal tumor burden; to the contrary,
higher gross tumor burden would have a higher roundness value.
Figure 2 shows an example of the comparison between Pre-
CRT and Post-CRT of a non-recurrent tumor. Its roundness
decreased from 0.70 to 0.58. The tumor regressed significantly
in coronal direction. However, it enlarged in axial direction
on CT. We further investigated all the tumors in our dataset.
For non-recurrent patients, the changes of tumor size were
mainly in superior-inferior direction. However, the changes
were not consistent, i.e., some tumors decreased, and other
tumors increased in superior-inferior direction. On the other
hand, the changes in axial plane were generally quite small.
For recurrent patients, changes could be observed in both axial
plane and superior-inferior direction. However, we did not find
a consistent pattern in the trend of size changes either. It is
important to note that the radiation oncologist who delineated
the tumor volumes was blinded to the prior contours while
contouring the follow up scans, which could have affected
the consistency of the volumes over time including perceived
enlargement of delineated tumor regions in follow up scans
of non-recurrent patients. Therefore, the recurrence prediction
purely based on the geometry measurements, such as roundness,
volume, etc., may not be reliable enough. Intensity and texture-
based imaging features would be useful complementary to
the geometry measurements in the recurrence prediction. In
addition, this experimental result could raise a hypothesis—
tumors may regress in a non-uniform manner after CRT.
The tumors with positive response to the treatment may have
regressed asymmetrically, which also may have contributed to
their roundness measurement decreasing. We were unable to
find other published literature about directional tumor regression
after CRT and therefore warrant further evaluation.

In addition to roundness, some other features were identified
as recurrence predictors by multivariate logistic regressionmodel
(Table 3) and by naïve Bayesian classifier (Table 4). Each of
these features had low correlation (<0.50) to tumor recurrence
and was weak classifier by itself. However, the performance
can be improved significantly by systematically combining a
number of weak classifiers (23) and using well-designed training
procedure, such as the multivariable logistic regression model
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FIGURE 1 | Manually delineated tumor contour (white) in Pre-CRT, Mid-CRT, and Post-CRT scans of a non-recurrent patient (A–C) and a recurrent patient (D–F)

Post-CRT. Roundness showed different changing patterns (in Diff3 = Post-CRT – Pre-CRT) between recurrent and non-recurrent groups.

TABLE 5 | The roundness of each patient at Pre-CRT, Mid-CRT, and Post-CRT

and their differences.

Recurrent Status

(1 = recurrent, 0 =

non-recurrent)

Pre Mid Post Diff1 Diff2 Diff3

0 0.78 0.70 0.67 −0.08 −0.04 −0.12

0 0.68 0.64 0.69 −0.04 0.05 0.01

0 0.80 0.61 0.75 −0.19 0.14 −0.05

0 0.72 0.73 0.70 0.01 −0.04 −0.03

0 0.80 0.64 0.70 −0.15 0.05 −0.10

0 0.72 0.70 0.62 −0.01 −0.08 −0.09

0 0.70 0.78 0.58 0.08 −0.20 −0.12

0 0.84 0.67 0.76 −0.17 0.09 −0.09

0 0.78 0.73 0.78 −0.04 0.04 0.00

0 0.73 0.80 0.70 0.06 −0.10 −0.03

0 0.88 0.76 0.77 −0.12 0.01 −0.11

0 0.75 0.72 0.74 −0.02 0.02 0.00

0 0.76 NA 0.72 NA NA −0.04

1 0.68 0.66 0.76 −0.02 0.10 0.08

1 0.78 0.69 0.83 −0.09 0.14 0.05

1 0.67 0.71 0.78 0.04 0.07 0.11

1 0.72 0.73 0.80 0.01 0.07 0.08

Mean of non-recurrent 0.76 0.71 0.71 −0.06 0.00 −0.06

Mean of recurrent 0.71 0.70 0.79 −0.01 0.10 0.08

Diff1 = Mid-CRT – Pre-CRT; Diff2 = Post-CRT – Mid-CRT; Diff3 = Post-CRT – Pre-CRT.

FIGURE 2 | The CT images with manually delieated tumor contour of anal

cancer patient with no tumor recurrence. The tumor regressed in coronal

directions (B) vs. (D). However, it progressed in axial direction (A) vs. (C). The

roundness of this tumor was changed from 0.70 (Pre-CRT) to 0.58 (Post-CRT).

and the naïve Bayesian classifier in this study. By use of these
combined features, relatively high performance in the tumor
recurrence prediction was achieved (high AUC values) as shown
in Tables 3, 4.
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Traditional naïve Bayesian classifier assumes that numeric
features are generated by a single Gaussian distribution. It is
a reasonable approximation to many real-world applications,
but not always the best. Our approach extended the traditional
naïve Bayesian by eliminating the single Gaussian assumption,
which certainly could be violated in cancer recurrence prediction.
Another advantage of the method is that it does not suffer
from the high dimensionality of the model. This is because
features are assumed to be conditionally independent in Naïve
Bayesian classifier, so that the curse-of-dimensionality can be
avoided by allowing the join distribution to be decomposed.
Naïve Bayesian classifier is also closely related to the widely used
logistic regression classifier. While naïve Bayesian classifier fits a
probability that optimizes the joint likelihood, logistic regression
fits the same probability model that optimizes the conditional
probability. It has been shown that in some practical cases naïve
Bayesian can outperform logistic regression because it converges
faster (24).

One limitation of this study was that this was a retrospective
analysis of a small patient cohort (n = 17), particularly only 4
patients with recurrence. This was a small, unbalanced dataset
for reliable prediction. Although we used cross-validations to
avoid potential over fitting, the predictive accuracy and stability
of the model should be validated in a larger and independent
patient cohort. Another limitation is the lack of standard
dose prescription for each patient. The total dose a patient
received was based subjectively on tumor response as per Mid-
CRT PET. Finally, it was hard to provide biological or clinic
explanations for why the extracted image features were important
for recurrence prediction.

CONCLUSIONS

Early prediction of tumor persistence or recurrence using
PET/CT scans obtained prior to or during CRT for anal
cancer may be possible through analysis of quantitative imaging
features. Additional study is warranted in a larger patient
population to confirm our findings. A future study to investigate
the correlation between clinical characteristics (e.g., T staging,

N staging, radiation dose, etc.) and the image features is needed
as well.
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Introduction: Assessment of lymph node metastasis (LNM) is crucial for treatment

decision and prognosis prediction for endometrial cancer (EC). However, the sensitivity

of the routinely used magnetic resonance imaging (MRI) is low in assessing normal-sized

LNM (diameter, 0–0.8 cm). We aimed to develop a predictive model based on magnetic

resonance (MR) images and clinical parameters to predict LNM in normal-sized lymph

nodes (LNs).

Materials andMethods: A total of 200 retrospective patients were enrolled and divided

into a training cohort (n = 140) and a test cohort (n = 60). All patients underwent

preoperative MRI and had pathological result of LNM status. In total, 4,179 radiomic

features were extracted. Four models including a clinical model, a radiomic model, and

two combined models were built. Area under the receiver operating characteristic (ROC)

curves (AUC) and calibration curves were used to assess these models. Subgroup

analysis was performed according to LN size. All patients underwent surgical staging

and had pathological results.

Results: All of the four models showed predictive ability in LNM. One of the

combined models, ModelCR1, consisting of radiomic features, LN size, and cancer

antigen 125, showed the best discrimination ability on the training cohort [AUC, 0.892;

95% confidence interval [CI], 0.834–0.951] and test cohort (AUC, 0.883; 95% CI,

0.786–0.980). The subgroup analysis showed that this model also indicated good

predictive ability in normal-sized LNs (0.3–0.8 cm group, accuracy = 0.846; <0.3 cm

group, accuracy = 0.849). Furthermore, compared with the routinely preoperative MR

report, the sensitivity and accuracy of this model had a great improvement.

Conclusions: A predictive model was proposed based on MR radiomic features and

clinical parameters for LNM in EC. The model had a good discrimination ability, especially

for normal-sized LNs.
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INTRODUCTION

Endometrial cancer (EC) is the most common gynecological
malignancy in industrialized countries (1, 2). In China, EC is the
secondmost commonmalignancy of the female genital tract with
patients steadily increasing, especially in high urbanization areas
(3). Lymph node metastasis (LNM) is an important risk factor
for EC prognosis. Systematic lymphadenectomy is routinely
performed according to International Federation of Gynecology
and Obstetrics (FIGO). However, there is long-term controversy
regarding whether it is necessary for low-risk or stage IA disease
(4), as the incidence of LNM is very low in these patients
(5). In addition, indiscriminative lymphadenectomy may lead
to overtreatment and increase in post-operative complications,
including chronic lymphedema, lymphocysts, infection, and
nerve/vascular injuries (6).

Several histopathological findings, such as histological
subtype, depth of myometrial invasion (DMI), primary tumor
diameter (PTD), lymphovascular space invasion, and tumor
grade, are known to be risk factors for LNM (4, 5), and
researchers proposed various risk-classification models (4, 7).
However, most of them are only available post-operatively.
Sentinel lymph nodes mapping was proposed to evaluate LNM
intraoperatively (8), but the technological dependence on
experienced surgeons and relatively high false-negative rates
limited its clinical application. Accurate preoperative and non-
invasive evaluation of LNM is crucial, which can provide valuable
information for prognosis prediction and treatment decision,
especially in determining the extent of lymphadenectomy.

Magnetic resonance imaging (MRI) is a routinely used
imaging modality for preoperative evaluation of EC. It plays
an important role in assessing DMI (9), but its value for LNM
assessment remains unsatisfactory, with reported sensitivities
of 25–50% (10, 11). Radiomics, as a novel data mining
technique, could extract high-dimensional quantitative features
from medical images and select reliable features for the
establishment of prediction models that could be used in
computer-assisted decision support. Some recent researches
showed that radiomics had the potential to evaluate therapeutic
effects, predict the recurrence and metastasis, predict survival
time (12–14), and aid the differential diagnosis of cancers (15).
Currently, radiomic investigations in preoperative prediction of
LNM showed encouraging achievement (16–18). However, to our
knowledge, there is no literature that has determined whether

Abbreviations: LNM, lymph node metastasis; EC, endometrial cancer; LN,

lymph node; AUC, area under the curve; MRI, magnetic resonance imaging;

IGO, International Federation of Gynecology and Obstetrics; DMI, depth of

myometrial invasion; A125, cancer antigen 125; PTD, primary tumor diameter;

WHO, World Health Organization; DCE, dynamic contrast enhanced; VOI,

volume of interest; ICC, intraclass correlation coefficient; mRMR, minimum

redundancy/maximum relevance; RFE, recursive feature elimination; HGLE, high

gray-level emphasis; LASSO, least absolute shrinkage and selection operator; ROC,

receiver operating characteristic; PV, positive predictive value; TP, true positive;

FN, false negative; FP, false positive; pN+, pathologically LN positive; 3D-iso-

LAVA-XV, three-dimensional liver acquisition with volume acceleration DCE with

isotropy scanning; CI, confidence interval; ADC, apparent diffusion coefficient;

DWI, diffusion-weighted MR imaging; HE4, human epididymis secretory protein

4; GLCM, gray-level cooccurrence matrix.

a radiomics-based study would render superior prediction of
metastasis in different size groups of LNs, and there has been no
study on EC.

The purpose of this study was to investigate the efficacy
of multiplanar enhanced MRI-based radiomics for preoperative
prediction of metastasis in normal-sized (diameter 0–0.8 cm on
MRI) LNs in EC patients.

MATERIALS AND METHODS

Study Design and Participants
This retrospective study with anonymous data was approved by
the Ethics Committee of our hospital, and the informed consent
requirement was waived.

Two hundred consecutive patients with EC who had been
treated between January 2011 and December 2017 were enrolled.
Figure 1 shows the patient recruitment pathway. Patients were
divided into two independent cohorts: 140 patients treated
between January 2011 andMarch 2016 in the training cohort, and
60 patients treated between April 2016 and December 2017 in the
test cohort.

As shown in Table 1, clinical parameters including age,
blood serum cancer antigen 125 (CA125) level, preoperative
histological type, and differentiation were derived from
medical records.

All MR imaging data were reviewed together by two board-
certified radiologists (reader 1 and reader 2) specialized in
gynecological tumor imaging with 6 and 20 years of experience.
The PTD, DMI, involvement of the cervix, cornua, adnexa,
parametrium, and LN status including the size and positive or
negative were recorded. Maximal short-axis diameter of LN was
measured on delayed phase of dynamic contrast enhanced (DCE)
sequence at axial–sectional images (see details below). Patients
with pelvic LN > 8mm or abdominal LN > 10mm, or with non-
homogeneous enhancement and central necrosis on DCE images
were regarded as MR report LN-positive (19). The consistency
between the two radiologists was assessed by calculating the
Cohen’s kappa coefficients. Any disagreement was resolved by
consultation. Note that LN status was defined by case.

MR Image Acquisition, Region of Interest
Segmentation, and Radiomic Feature
Extraction
Before receiving standard FIGO surgical staging, all patients
underwent pelvic DCE MRI on two 3.0-T MR scanners (Signa
HDxt and Discovery MR750, GE Medical Systems) with 8-
channel phased array body coils. Two non-enhanced and one
enhanced sequence were obtained and collected for analysis.
Detailed scanning parameters are listed in Table 2.

Tumor volume of interest (VOI), covering the whole tumor
volume on each MR image, were manually segmented by reader
1 using ITK-SNAP software (www.itksnap.org, version 3.6.0).
Radiomic feature extraction was performed with algorithms
implemented in Python (www.python.org, version 3.6.5) (20).
Three-dimensional radiomic features were extracted from the
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FIGURE 1 | Recruitment pathway for patients in this study.

corresponding VOIs, including first-order statistics, shape-
based, and texture features. More information about the
radiomic feature extraction methodology can be found in
Supplementary Method 1.

Surgery and Histopathologic Work-Up
All patients underwent FIGO surgical staging, and accepted
template systematic lymphadenectomy. All lymph node
specimens were processed and evaluated according to a standard
protocol. Histologic analysis of each template lymph node
dissection specimen included the following parameters: total
number of histologically detected lymph nodes and number
of positive nodes in each region as follows: external iliac,
internal iliac and obturator, and common iliac. Note that the
histopathologic LN status was still considered by case level in
our analysis. The 2014 World Health Organization (WHO)
classification (21) and the 2009 revised FIGO staging criteria
for EC (22) were used for histological diagnosis, grading, and
pathological staging.

DATA ANALYSIS

Feature Selection and Model Construction
Stability analysis of radiomic features between inter-/intra-
reader segmentations was firstly carried out. Thirty patients
were randomly chosen, and all of their images were segmented
separately by the two radiologists, thereinto, reader 1 then
re-segmented these images 1 week later. The intraclass

correlation coefficients (ICCs) are usually adopted to assess
the stability of radiomic features extracted from VOIs
delineated by different readers or segmented by the same
reader at different times. The radiomic features with ICC
>0.75 were retained since they had good agreement between
different segmentations.

Then, stability analysis between different versions of MR
scanners on radiomic features was carried out. With all the
patients randomly assigned to twoMR scanners, Mann–Whitney
U test was used to find out whether a radiomic feature showed
statistical difference between different versions of MR scanners
in the training cohort. We removed the radiomic features
that had significant differences in the two versions of MR
scanners, which would improve the generalization capability of
our classifier.

Figure 2 shows the workflow of model development and
decision-making process for model selection. Four models
were constructed, including a clinical model with only clinical
parameters (ModelC), a radiomic model with only radiomic
features (ModelR), and two combined model (ModelCR1 and
ModelCR2). After model evaluation, the final model was selected
to be visualized as a clinical useful preoperative nomogram.
The detailed construction processes of the four models were
as follows.

ModelC

The original feature set of the ModelC consisted of all of the 10
clinical parameters, including age, CA125, tumor pathologic type
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TABLE 1 | Baseline characteristics of the training and test cohorts.

Training cohort (n = 140) Test cohort (n = 60)

pN(+) pN(–) P pN(+) pN(–) P P*

n = 52 n = 88 n = 15 n = 45

Age, years 0.840 0.017 0.077

Mean ± SD 55.271 ± 7.936 55.723 ± 8.382 57.403 ± 6.926 51.730 ± 9.111

Median (range) 56.000 (28.000–68.000) 56.000 (26.000–80.000) 59.000 (45.000–67.000) 53.000 (35.000–76.000)

CA125 level

(ng/ml),

Mean ± SD

86.740 ± 133.348 24.962 ± 23.559 0.002 84.491 ± 100.066 26.772 ± 32.407 0.044 0.539

MR-reported DMI 0.001 0.033 0.524

Less than 50% 19 66 5 35

More than 50% 33 22 10 10

MR-reported PTD

(mm), Mean ± SD

3.802 ± 2.435 3.929 ± 1.994 0.735 3.758 ± 2.341 3.072 ± 1.535 0.300 0.031

MR-reported tumor

staging

<0.001 <0.001 0.659

I 16 68 3 38

II 3 10 2 2

III 32 10 10 5

IV 1 0 0 0

MR-reported LN

status

<0.001 0.367 0.104

cN(+) 17 6 2 2

cN(–) 35 82 13 43

pN(+), pathologically LN positive; pN(−), pathologically LN negative; SD, standard deviation; CA125, cancer antigen 125; DMI, depth of myometrial invasion; PTD, primary tumor

diameter; LN, lymph node; cN(+), clinically LN positive; cN(−), clinically LN negative.

CA125 level was acquired within 1 week before surgery with a threshold value between 0 and 35 U/ml.

The P* was derived from the univariate association analyses between each clinical parameter and different cohort.

TABLE 2 | Detailed acquired parameters in two MR scanners.

GE signa excite HD 3.0T GE discovery HD750 3.0T

Axial T2-fs-FSE# Sagittal T2-FSE Axial 3D-iso-LAVA-XV* Axial T2-fs-FSE# Sagittal T2-FSE Axial 3D-iso-LAVA-XV*

TR/TE 5900/121 3300/130 4.1/1.8 5541/85 4633/120 7.9/4.1

FOV (cm) 40.0 22.0 35.0 40.0 22.0 35.0

Matrix Freq 320/Phase 256 Freq 320/Phase 256 Freq 350/Phase 350 Freq 320/Phase 256 Freq 320/Phase 256 Freq 350/Phase 350

Slice thickness (mm) 5.0 4.0 1.0 5.0 4.0 1.0

Slice gap 1.0 1.0 0 1.0 0.4 0

#T2-weighted fat-suppressed fast spin echo (T2-fs-FSE).

*Three-dimensional liver acquisition with volume acceleration DCE with isotropy scanning (3D-iso-LAVA-XV).

TR, repetition time; TE, echo time; FOV, field of view.

Enhanced scan was done by injecting gadopentetate dimeglumine (Omniscan, GE Healthcare) into the upper limb vein by using a high-pressure syringe, with a flow rate at 2.0 ml/s

and a total dose of 0.2 mmol/kg body weight. A total of 15 phases were obtained post-drug injection with a time interval of 15 s in the sagittal plane, followed by a delayed phase with

isotropy axial scanning.

and differentiation by biopsy, tumor long-axis diameter, DMI, the
ratio of tumor infiltration depth to myometrium depth, LN size,
and adnexa or other organ involvement, which were all observed
on MR images. After feature selection via Mann–Whitney U test
and the least absolute shrinkage and selection operator (LASSO)
method, six features were retained to fit the ModelC. The logistic
regression model was constructed to examine the ability of the
clinical parameters in classifying LNM.

ModelR

The stable original feature set of the ModelR consisted of
3,040 radiomic features that were dimensionally reduced by
stability analysis. Univariate analysis (Mann–Whitney U test
and chi-square test) was performed to evaluate the difference
in LNM status, and the distribution of the p-values for the
radiomic features is shown in Supplementary Figure 1. The
retained significant features were then ranked by minimum
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FIGURE 2 | Flow diagram of radiomic model construction. (A) MR images segmentation. The tumor region in each MRI slice was manually segmented, and then the

whole tumor volume was reconstructed in order to extract 3D radiomic feature. (B) Radiomic feature extraction. Three types of radiomic features were extracted from

tumor volume. (C) Feature selection process including stability, univariate analysis, and multivariate analysis. The construction of ModelC starts from univariate

analysis. (D) Clinical application. After evaluating the four models, an optimal model was selected to plot nomogram for clinical computer-assisted decision support.

MRI, magnetic resonance image; 3D, three-dimensional.

redundancy/maximum relevance (mRMR), and the most
redundant features were removed. The LASSO method was
used to prevent overfitting. Two radiomic features were finally
selected to fit the ModelR. Similarly, logistic regression model
was constructed to examine the ability of the radiomic features
in classifying LNM.

ModelCR1

All of the clinical parameters and retained 3,040 radiomic
features formed the stable feature set. Univariate analysis was
performed on this feature set. After removing features with
p-values > 0.05, we computed the mRMR ranking for the
feature set based on the concordance index (23, 24), and the
top 5% features were retained. Then, the recursive feature
elimination (RFE) method was performed to further select the
LNM-related features. The RFE algorithm repeatedly constructed
the model and removed the features, depending on the root
mean square error of the model by a cross-validation in the
training cohort.

ModelCR2

The stable original feature set of the ModelCR2 consisted of
stable radiomic features and clinical parameters except LN
size. Univariate analysis was first performed on this feature
set. Then, in the multivariable analysis, mRMR and the
LASSO method were performed successively. Logistic regression
model was constructed to examine the classification ability
of the combination of radiomic features and clinical primary
lesion information.

Assessment and Validation of Model
Performance
The receiver operating characteristic (ROC) curves were plotted
to assess the performance of the four models in both
cohorts. Area under ROC curve (AUC) was calculated for
quantitative comparison. The model with the highest AUC
was selected as the final model. Delong test was used to
compare AUCs between the training cohort and test cohort,
and a p-value > 0.05 indicated that there was no significant
difference in AUCs, which ensured that the model had an
enough low risk of over-fitting. Calibration curve was plotted
to evaluate the agreement between prediction result and
gold standard.

In previous research, good effects were gained in predicting
the metastasis of an EC-LN larger than 1 cm (25). However,
there is no study that ever focused on metastasis prediction on
different sized LNs. So, we carried out a subgroup analysis on
LN size. Patients were divided into three subgroups according
to the LN size measured on MRI, including enlarged LNs
with diameter larger than 0.8 cm (>0.8 cm), normal-sized
LNs with diameter between 0.3 and 0.8 cm (0.3–0.8 cm), and
normal-sized LNs with diameter smaller than 0.3 cm (<0.3 cm).
F-score (F1 =

2Recall×Precision
Recall+Precision

) was calculated in these subgroups,

assuming that recall (equivalently, sensitivity, TP
TP+FN ) and

precision (equivalently, PPV, positive predictive value, TP
TP+FP )

are of equal importance, where TP, FN, and FP represent
true positive, false negative, and false positive, respectively.
The higher F-score synthetically reflects higher sensitivity and
higher PPV.
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TABLE 3 | Pathological characteristics of the patients in our study.

Training cohort

(n = 140)

Test cohort

(n = 60)

P

Surgically histological

type, n (%)

0.602

Endometrioid 112 (80%) 47 (78.33%)

Non-endometrioid 28 (20%) 13 (21.67%)

Histological grade, n (%) 0.041

Well-differentiated 67 (47.86%) 17 (28.33%)

Moderately differentiated 52 (37.14%) 37 (61.67%)

Poorly differentiated 21 (15.00%) 6 (10.00%)

Pathological N stage, n (%) 0.133

pN– 88 (62.86%) 45 (75.00%)

pN+ 52 (37.14%) 15 (25.00%)

Pathological staging, n (%) 0.250

pI 68 (48.57%) 38 (63.33%)

pII 16 (11.43%) 6 (10.00%)

pIII 50 (35.71%) 15 (25.00%)

pIV 6 (4.29%) 1 (1.67%)

Clinical Utility of the Final Model
In order to determine the clinical significance of the final model,
decision curves were plotted by quantifying the net benefits in
the training and test cohort. For the convenience of clinical
application, a visualized preoperative nomogram was developed
based on the formula exported by the logistic regression of the
final model.

Statistical Analysis
In this study, statistical analysis programs were completed by R
software (version 3.5.0; https://www.r-project.org). All statistical
hypothesis tests were two-sided, and p-values < 0.05 were
considered significant.

RESULTS

Patient Characteristics
The clinical and pathological characteristics in the two cohorts
are shown in Tables 1, 3, respectively. Pathologically LN positive
(pN+) patients formed 37.14% (52/140) and 25.00% (15/60)
of the training and test cohorts, respectively, and there was
no significant difference between them (p-value = 0.133, χ

2

test). The clinical parameters age and CA125 had no differences
between the two cohorts (p-value= 0.077 and 0.539 respectively,
Mann–Whitney U-test). In total, sensitivity and specificity were
28.36% (19/67) and 93.98% (125/133) according to theMR report
LN status after consensus within two radiologists in our study.
Also, the judgments by two radiologists on MRI were basically
stable (sensitivity was 0.642 and 0.552, and the specificity was
0.917 and 0.940, respectively). The inconsistency of judgment
was resolved by consultation. The Cohen’s kappa coefficients to
test consistency of the main MR indicators evaluated by the two
radiologists are listed in Supplementary Table 1.

Feature Selection and Model Construction
In total, 1,393 radiomic features were extracted from each of
the three MR scanning sequences. Then, 4,179 radiomic features
were reduced to 3,040 by stability analysis.

In ModelC, six clinical parameters were selected including
CA125, tumor differentiation by biopsy, DMI, the ratio of tumor
infiltration depth to myometrium depth, LN size, and adnexa
involvement, which were all observed on MR. In ModelR, two
radiomic features were selected including correlation and HGLE.
In ModelCR1, four risk factors including two clinical parameters
(CA125 and LN size) and two radiomic features (correlation
and HGLE) were used to build the prediction model (Figure 3)
(13). The two radiomic features were extracted from the delayed
phase of the 3D-Iso-LAVA and sagittal T2WI FSE, respectively.
In ModelCR2, the LN size was removed and the same other three
indicators (CA125, correlation, and HGLE) were selected. The
detailed calculation formulas for ModelCR1 and ModelCR2 were
given in Supplementary Method 2.

Assessment of Predictive Models
ModelCR1 showed a significant ability in detecting pN+ with
an AUC of 0.892 [95% confidence interval [CI]: 0.834–0.951]
in the training cohort and an AUC of 0.883 (95% CI: 0.786–
0.980) in the test cohort. Nomogram (Figure 4C) was established
for ModelCR1. The p values calculated from Delong tests were
0.875, 0.8416, 0.7008, and 0.5865 for ModelCR1, ModelCR2,
ModelR, and ModelC, respectively, indicating that there were no
significant differences in AUCs between the training cohort and
test cohort for each model. Performances of the four models
in the training and test cohort are shown in Figures 4A,B.
Based on the threshold determined by Youden’s index in the
training cohort, we used net reclassification index (NRI) to
analyze the improvement brought by ModelCR1 compared with
other models. The results showed that ModelCR1 outperformed
ModelR (NRI = 0.306, P < 0.001), ModelC (NRI = 0.134, P =

0.010), and ModelCR2 (NRI = 0.090, P = 0.077). Meanwhile,
ModelCR1 also significantly surpassed MR reports by radiologists
(NRI = 0.489, P = 0.006). Besides, the calibration curves were
plotted in both cohorts for further performance evaluation of
ModelCR1 (Figures 5A,B). Calibration curves show good fitness
for probability of LNM (Hosmer–Lemeshow test, p-value =

0.961 in the training cohort, 0.803 in the test cohort). Figure 5C
shows patients’ risk scores calculated from ModelCR1, intuitively
indicating its high classification ability.

As shown in Figure 6A, in the subgroup of enlarged LNs,
ModelCR1 achieved the highest sensitivity of 0.970, equal to that
predicted by MR report. In the subgroup of normal-sized LNs
(0.3–0.8 cm), ModelCR1 displayed the highest accuracy of 0.846
and a sensitivity of 0.647, which far surpassed the MR report
(accuracy, 0.785; sensitivity, 0.235). In the subgroup of normal-
sized LNs (<0.3 cm), ModelCR1 showed the best accuracy of
0.849 and a moderate sensitivity of 0.471, however, still greatly
outperforming theMR report (accuracy, 0.817; sensitivity, 0.000).
Meanwhile, F-score and accuracy in three subgroups are shown
in Figures 6B,C, respectively. The highest F-score and most
powerful accuracy of ModelCR1 were reflected among the five
predictive models.
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FIGURE 3 | (A) LASSO coefficient profiles of the clinical parameters in ModelC. According to the 1 standard error of the minimum criteria (the 1-SE criteria), the dotted

line was plotted at the selected log(λ) (−2.914) via 10-fold cross-validation. (B) LASSO coefficient profiles of the radiomic features in ModelR. A log(λ) value of −1.750

was chosen (10-fold cross-validation, 1-SE criteria). (C) Feature selection using the RFE method in ModelCR1. The rank of feature importance was obtained using the

random forest method; RFE built the model continuously by eliminating the lower ranking feature. The RMSE was used to select the optimal feature set in a 10-fold

cross-validation. (D) LASSO coefficient profiles of the combined feature set in ModelCR2. A log(λ) value of −1.983 was chosen (10-fold cross-validation, 1-SE criteria).

RFE, recursive feature elimination; RMSE, root mean square error.

DISCUSSION

In the present study, we developed four predictive models based
onmultiplanar DCEMR images and clinical parameters for LNM
in EC patients. ModelCR1, which consisted of radiomic features,
LN size, and CA125, showed the best discrimination ability,
especially in patients with normal-sized LNs (diameter, 0–0.8 cm
onMRI) and the sensitivity was greatly improved compared with
the routine MR reports. The high F-scores indicated that while
the sensitivity increased significantly, the PPV remained high.

A non-invasive and convenient preoperative assessment for

LNM is crucial for EC treatment decision and prognosis

prediction. Patients’ data from preoperative procedures such

as MRI, biopsy, and CA125 have been studied to assess LNM
in recent years. MRI still remained the cornerstone in LN
assessment in EC, showing satisfactory specificity but relatively
low sensitivity. The combination of relative apparent diffusion
coefficient (ADC) value and LN size was reported to result in
a significant increase in sensitivity from 25 to 83% compared

with conventionalMRI (26); however, there have been conflicting
reports in the literature regarding the detection of LNM at
diffusion-weighted MR imaging (DWI). Nakai et al. (27) used
1.5-T MRI to evaluate nodal ADC values in gynecologic
malignancies and were unable to differentiate benign from
malignant LNs. Wang et al. (28) proposed a tumor biomarker
predictive method by combining human epididymis secretory
protein 4 (HE4) and CA125, achieving a high sensitivity of 94.1%
but a low specificity of 30.7%. Notably, there is no clearly defined
HE4 cutoff value for EC at present. In our study, we incorporated
CA125 in our models, which was more generally accepted than
HE4. Kang et al. (29) developed a low-risk prediction model for
LNM based on MRI and serum CA125 data in endometrioid-
type EC patients, and obtained sensitivity and specificity of 84.9
and 55.5%, respectively. Here, three MRI parameters including
DMI, LN enlargement, and extension beyond uterine corpus
were identified to be independent risk factors for LNM. In our
study, we obtained CA125 and MR report LN size as risk factors
for EC LNM prediction, which was similar to that result, and
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FIGURE 4 | (A) ROC of the four models in training cohort. (B) ROC of the four models in test cohort. (C) Preoperative nomogram of ModelCR1. ROC, receiver

operating characteristic.

showed good discrimination ability on both cohorts and different
LN size subgroups, especially for those normal-sized LNs, which
previous researches had not yet focused on.

In our study, we collected and analyzed all available
preoperative clinical parameters and established four prediction
models. We aimed to determine the prediction efficiency of
different models compared with the MR report in different
sized LN subgroups. MRI uses several common morphological
criteria in differentiating benign from malignant nodes (30) but
nodal size still remains the commonly accepted standard. Low
sensitivity is a recognized limitation when nodal size criteria
are used on cross-sectional imaging, especially for normal-sized
nodes due to limited spatial resolution. In this study, with node
size gradually decreasing, the MR report and ModelC showed a

decreasing sensitivity, whereas the ModelR and ModelCR2 were
more stable because of the high sensitivity in each sized LN
subgroup (Supplementary Figure 2). The performance of the
above classifiers confirmed our thoughts: When the LN was
normal sized on MRI, combining LN size in classifiers could
improve prediction accuracy but greatly reduce sensitivity. It
is already accepted that normal-sized LNs may also contain
metastases (31). The results of the MR report rely too much on
LN size so that when LN size is normal on MRI, the sensitivity
becomes very low. The concept remains the same when LN size
is enlarged (>0.8 cm), then the specificity becomes very low. This
can be due to the fact that it is usually difficult to differentiate
enlarged nodes because of benign pathology, such as infection,
granulomatous disease, and reactive hyperplasia vs. malignant
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FIGURE 5 | (A) The calibration curve in the training cohort. (B) The calibration curve in the test cohort. (C) Patient risk score output by ModelCR1, while red bars show

scores for those who were pathologically LN(–).

disease (30). LN size was not a significant predictor for the
fusion model based on radiomics, although it could improve the
predictive accuracy. This may indicate that there was enough
information contained in the primary tumor region that could
detect LNM. It is feasible to predict LNM status without the
dependence on information of LNs.

Although ModelCR1 showed a slightly lower sensitivity than
ModelR and ModelCR2 in the normal-sized group, its accuracy in
each group is the highest, and the F-score with normal-sized LNs
is greatly improved. Therefore, it was proposed as the optimal
prediction model. To our knowledge, this is the first subgroup
analysis on different sized LNs with preoperative nomogram
study in EC.

Due to a variety ofMR scanner parameter settings and scanner
models, it is difficult to guarantee different scanners with exactly
the same imaging quality, thus making it difficult to ensure
the stability of radiomic features. By eliminating the radiomic
features sensitive to scanner models and parameter settings in the

training cohort, the radiomic model generalization ability can be
improved. The radiomic texture features (correlation and HGLE)
selected in ModelCR1, ModelCR2, and ModelR reflected two kinds
of heterogeneity of VOI with a Pearson correlation coefficient
of 0.095. Correlation shows the linear dependency of gray-level
values to the corresponding voxels in the gray-level cooccurence
matrix (GLCM) of MRI. HGLE is a measure of the proportion of
areas with higher gray values in the tumor. These two radiomic
features indicated that the extent of heterogeneity of tumor is
associated with LNM. The more heterogeneous the tumor, the
higher the risk of LNM.

The limitations of the present study include two aspects. First,
there was no external validation. Multicenter investigation with
a larger dataset was needed to further validate the generalization
ability of our model. Second, genomic information was not yet
incorporated into our models. A combination of gene marker
panels and radiomic features will be promising in evaluation
of EC.
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FIGURE 6 | (A) Heatmap of showing the classifiers’ performance in different LN size subgroups. A deeper blue indicates a larger value. (B) Line chart of F-score,

(C) histogram of accuracy in three subgroups. Red, blue, green, yellow, and purple lines and boxes, respectively, represent ModelCR1, MR report, ModelCR2, ModelR,

and ModelC.

In conclusion, our study presented a predictive model based
on multiplanar contrast enhanced MR images and incorporated
both the radiomic features and clinical parameters, which showed
good predictive accuracy for preoperative LNM in EC, especially
in patients with normal-sized LNs.
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Computational pathology-based cell classification algorithms are revolutionizing the

study of the tumor microenvironment and can provide novel predictive/prognosis

biomarkers crucial for the delivery of precision oncology. Current algorithms used on

hematoxylin and eosin slides are based on individual cell nuclei morphology with limited

local context features. Here, we propose a novel multi-resolution hierarchical framework

(SuperCRF) inspired by the way pathologists perceive regional tissue architecture

to improve cell classification and demonstrate its clinical applications. We develop

SuperCRF by training a state-of-art deep learning spatially constrained- convolution

neural network (SC-CNN) to detect and classify cells from 105 high-resolution (20×)

H&E-stained slides of The Cancer Genome Atlas melanoma dataset and subsequently,

a conditional random field (CRF) by combining cellular neighborhood with tumor regional

classification from lower resolution images (5, 1.25×) given by a superpixel-based

machine learning framework. SuperCRF led to an 11.85% overall improvement in the

accuracy of the state-of-art deep learning SC-CNN cell classifier. Consistent with a

stroma-mediated immune suppressive microenvironment, SuperCRF demonstrated that

(i) a high ratio of lymphocytes to all lymphocytes within the stromal compartment

(p = 0.026) and (ii) a high ratio of stromal cells to all cells (p < 0.0001 compared to

p= 0.039 for SC-CNN only) are associated with poor survival in patients with melanoma.

SuperCRF improves cell classification by introducing global and local context-based

information and can be implemented in combination with any single-cell classifier.

SuperCRF provides valuable tools to study the tumor microenvironment and identify

predictors of survival and response to therapy.

Keywords: deep learning, machine learning, conditional random fields, digital pathology, cell classification,

melanoma, tumor microenvironment
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INTRODUCTION

Cancer is a highly complex, non-autonomous disease. The
interactions between microenvironmental selective pressures
and cancer cells dictate how cancer progresses and evolves.
Accurate and spatially explicit characterization of the tumor
microenvironmental landscape including how cancer cells
interact with the extra-cellular matrix and other cellular players
such as stromal cells and immune cells within the tumoral niche,
is needed to understand the context in which cancer evolves, and
may also provide robust predictor of cancer behavior for risk-
stratification (1). More specifically the recent success of cancer
immunotherapy including the spectacular response observed in
patients with previously incurable melanoma, a highly aggressive
form of skin cancer, calls for a better understanding of the
cancer-immune interface.

In the new era of digital pathology, advanced image analysis
can objectively, consistently, and quantitatively characterize the
different components of the tumor and how they spatially
interact, and as a result assist pathologists in tasks such as tumor
grading (2). Algorithms for cell detection and classification
are key components of this process. Machine learning, and
more recently deep learning algorithms, both exploiting the
phenotypic differences in nuclear morphology between each cell
type, revolutionized the field yielding significantly better cell
detection, segmentation, and classification results (3–9).

However, even state-of-the-art deep learning algorithms can
underperform especially in cases where different cell types appear
morphologically similar. Current computed pathology tools
focus on individual cell nuclei morphology with limited abstract
local context features, whereas pathologists incorporate regional
tissue architecture (in practice, by zooming in/out), together with
cell morphological features to accurately classify cells.

Here, we hypothesize that robust tumor regional classification
from lower resolution images can provide the contextual
information that is key to further improve single cell classification
algorithms. Our aim is to introduce dependencies on global tissue
context and cell neighborhood and enhance learning results
for cell classification from deep convolution neural networks
(CNNs). Probabilistic graphical models have successfully been
applied to improve cell classification in time-lapse imaging by
taking into account the temporal context of a cell (10–15).
Probabilistic graphical models have also been used successfully in
histopathology images for pathology detection and segmentation
(16–19), disease and tissue staging (20, 21), and nuclei
segmentation (22). In our study, instead of time dependency, we
apply graphical models to introduce the spatial context of a cell
as additional information to improve single-cell classification.
A multi-resolution hierarchical framework was proposed to
mirror the way pathologists perceive tumor architecture, and
applied to whole-slide images (WSI) hematoxylin and eosin
(H&E)-stained slides of melanoma skin cancer (Figure 1A). We
demonstrated that our new system is computationally efficient
and significantly improves single cell classification. The increased
accuracy in cell classification further enabled us to shed new
light on the understanding of cancer-immune-stroma interface
of melanoma.

MATERIALS AND METHODS

Datasets
In total, 105 full-face, H&E stained section images from formalin-
fixed, paraffin-embedded (FFPE) diagnostic blocks of melanoma
skin cancer from The Cancer Genome Atlas (TCGA) were
used. We scaled all digitized (Aperio ImageScope) histology
images to 20, 5, and 1.25× magnification with pixel resolution
0.504, 2.016, and 8.064µm, respectively, using Bio-Formats
(https://www.openmicroscopy.org/bio-formats/). WSIs at 20×
magnification (representative size: 30,000 × 30,000 pixels), were
split into sub-images (tiles) of 2,000 × 2,000 pixels each, for
computational efficiency.

For the purpose of training and testing the different
parts of our system we divided the dataset into sub-
datasets, namely single-cell classification dataset, 5× sub-dataset,
1.25× sub-dataset and discovery sub-dataset (Table 1, also see
Supplementary Tables 1–4).

Single-Cell Classification Using a Spatially
Constrained Convolutional Neural Network
We used a Spatially Constrained Convolutional Neural Network
(SC-CNN) (6) for single cell classification (Figure 1E). SC-CNN
uses spatial regression in order to predict the probability of a
pixel being the center of the nucleus. The nucleus is classified
by a neighboring ensemble predictor (NEP) in conjunction
with a standard softmax CNN. We randomly initialized the
network’s layers as we have found that to perform better than
transfer learning from real-world datasets in our experiments
with pathological samples.

Superpixel-Based Tumor Region
Classification
A machine learning superpixel-based framework was
implemented in Matlab (23) to classify tumor tissue regions
and was subsequently applied to low resolution (5 and 1.25×)
images. Reinhard stain normalization (24) was applied separately
on each of the 5 and 1.25× sub-datasets to account for stain
variabilities that could affect the classification (25).

Downscaled images were segmented using the simple linear
iterative clustering (SLIC) superpixels algorithm (26), which is
designed to provide roughly uniform superpixels. Choosing the
optimal number of superpixels is important to ensure that the
superpixels capture homogeneous areas and adhere to image
boundaries. With our pathologist’s input, we visually identified a
size of superpixels that met these criteria and chose the number of
superpixels automatically based on each image’s size (Equation 1).

Ni = ceiling

(

Si

U

)

(1)

where Ni is the number of superpixels in the ith image, Si is
the size of image i in pixels, and U (here U = 1,250) is a
constant held across all images that defined a desired size of the
superpixels. This means, on average, a superpixel occupies an
area of approximately 35 × 35 pixels, equivalent to 280 × 280
mm2. We identified the superpixels belonging to each area by
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FIGURE 1 | Overview of the SuperCRF framework for analyzing H&E-stained pathological images of melanoma. (A) Major histological features of melanoma

architecture. (B) Projection of regional classification results using superpixels from various scales to the 20× magnification for the improvement of single-cell

classification. (C) Graphical representation of node dependencies (cells and superpixels) across different scales. (D) Region classification scheme using a superpixel

based machine-learning method in whole-slide images (5× and 1.25× magnification) (E) Single-cell classification using a state-of-the-art spatially

constrained-convolution neural network (SC-CNN) classifier (F) representative results of the SC-CNN cell classifier alone and combined with our SuperCRF system.

Note the misclassification of various stromal cells by the SC-CNN, which are corrected by our model.

determining whether their central points fell within the regions
annotated by the pathologist.

Overall, for the 1.25× training sub-dataset, we found 15,477
superpixels belonging in tumor areas, 6,989 in stroma areas,
141 in epidermis and 691 in lumen/white space, while for the
5× training sub-dataset we found 1,193 superpixels belonging
in tumor areas, 1,324 in stroma areas, 360 in epidermis, 506 in
lymphocyte clusters and 830 in lumen/white space.

Next, we extracted four types of features, 85 in total,
from each superpixel, including seven histogram features

(mean values of hue, saturation, and brightness, sum of
intensities, contrast, standard deviation, and entropy),
and well-established texture features [12 Haralick features
(27), 59 rotation-invariant local binary patterns (RILBP), 7
segmentation-based fractal texture analysis (SFTA) features
(28)]. Features were standardized into z-scores. The mean
values and standard deviation of the features from the
training set were used for the normalization of the test set.
A support vector machine (SVM) with a radial basis function
(RBF, γ = 1/number_of_features) was trained with these
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TABLE 1 | Summary of the data used to train and test the different parts of the SuperCRF system, as well as study the cancer-immune-stroma interface (also, see

Supplementary Tables 1–4).

Name Number of WSIs Purpose

Single-cell classification

sub-dataset

8

Training SC-CNN: 3 (348 tiles)

Training SuperCRF: 2 (84 tiles)

Testing: 3 (290 tiles)

Single-cell classification into four categories: cancer cells, lymphocytes, stromal cells,

epidermal cells

5x sub-dataset 16

Training: 10

Testing: 6

Region classification into five categories: tumor, normal stroma, lymphocyte cluster, normal

epidermis, lumen/white space

1.25x sub-dataset 58

Training: 21

Testing: 37

Region classification into four categories: tumor, normal stroma, normal epidermis, lumen/white

space

Discovery dataset 97 Study of the tumor-stroma interface. To accelerate the analysis, 50 tiles (2,000 × 2,000 pixels)

containing tumors were randomly sampled from every whole-slide image (WSI)

The values are bold for visual (illustration) purposes.

features to classify superpixels into different biologically
meaningful categories.

For the 5× sub-dataset, superpixels were classified into
five categories: tumor area, normal stroma, normal epidermis,
lymphocytes cluster, and lumen/white space. We increased the
penalty in the cost function for the epidermis and lumen/white
space classes by a factor of 10 when training the SVM, to account
for class imbalance. For the 1.25× sub-dataset superpixels
classification consisted of four categories: tumor area, normal
stroma, normal epidermis, and lumen/white space.We randomly
selected a subset of 5,000 cancer and stroma superpixels and
increased the penalty in the cost function for the epidermis and
lumen/white space classes by a factor of 10, again to account for
class imbalance (Figure 1D).

SuperCRF
Single-cell based classification approaches often assign a
class label based on the morphology of -individual cells,
regardless of their neighboring cells. However, these spatial
relationships provide important information that is used by
pathologists. Conditional random fields (CRF) are undirected
graphical models that represent efficient ways to model
dependences, by factorizing the probability density into a
specific set of conditional dependence (29). Therefore, the tumor
microenvironment can be modeled by a CRF by introducing
nodes for cells and superpixels, as well as edges whenever there
is a spatial relationship between nodes.

We excluded lymphocytes from the CRF assumption that
neighboring cells have a higher probability to share the same
class labels, since they infiltrate, in an inconsistent manner
ranging from sparse to highly dense, in tumor as well as stromal
tissue. Therefore, lymphocytes kept their label as assigned by
the SC-CNN.

Let n be the total number of cells (besides lymphocytes) in
the image and ci ∈

{

stromal, cancer, epidermis
}

, i = 1, 2, . . . , n
the input labels of the cells as assigned by the SC-CNN. Let
si, be the corresponding superpixel for a cell ci with si ∈
{

stromal, cancer, epidermis,white space
}

for 1.25× superpixels
and si ∈

{

stromal, cancer, epidermis, lymphocyte,whitespace
}

for 5× superpixels. x ∈ {c, s} comprises the nodes
of the CRF. The CRF assigns output labels yi ∈
{

stromal, cancer, epidermis, lymphocyte, white space
}

based
on the input data. The joint probability distribution over input
data and output labels, p(y1, y2, . . . , yn ⌊x1 , x2, . . . , xn) can be
modeled by factorizing the probability density into a specific set
of conditional dependence relationships (Figure 1C).

p
(

y| x
)

=

i=1
∏

n

p
(

yi |xi
)

=
1

Z
exp(

∑

E
(

xi, yi, xNi, yNi

)

) (2)

where Z is a normalizing constant, w is a weight vector and

E
(

xi, yi, xNi, yNi,
)

=

∑

8

(

xi, yi
)

+

∑

ψc

(

xNi, yNi

)

(3)

defines the energy function of the CRF.
The node potentials8

(

xi, yi
)

represent the evidence that a cell
i,with the input label xi takes the class label yi. The node potential
can be defined as 8

(

xi, yi
)

= f (xi, yi)+b, with f
(

xi, yi
)

=
{

1
0

if yi = xi
else

and b representing the bias.

The edge potentials ψc

(

xNi, yNi
)

model the probability that
neighboring cells take a similar cell label. Ni is the neighborhood
of cell i, defined as all the cells that can be found in a defined
distance. The edge potentials are defined as: ψc

(

xi, yi, xNi, yNi

)

= f
(

xi, yi
)

∗f
(

xNi, yNi

)

+ b.
The CRF was trained with stochastic gradient descent and the

decoding was applied using loopy belief propagation. The toolbox
of M. Schmidt was used to train and decode the CRF (30).

The source code for the study is available at Github (https://
github.com/Henrik86/SuperCRF).

Survival Analysis
We evaluated the prognosis value of the abundance of stromal
cells and location of lymphocytes in our discovery sub-dataset.
The ratio of stromal cells to all cells, the ratio of lymphocytes in
cancer areas to all lymphocytes, and the ratio of lymphocytes in
stroma areas to all lymphocytes were calculated for each patient.
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Patients were divided into high and low ratio groups, split at the
median value of all scores. Patients with a ratio of lymphocytes
being high inside the tumor area and low in the stroma were
categorized as the “immune infiltration” group whereas patients
with a ratio of lymphocytes being low in the tumor area and
high in the stroma were categorized as “immune excluded,” based
on the recent classification of the main immune phenotypes of

anticancer immunity that predict response to immunotherapy
(31). The number of patients belonging to neither of these two
groups (high/high n = 6 and low/low n = 5) was too small
to perform the survival analysis. Non-parametric Kaplan-Meier
estimation was used to analyze overall survival in 94 patients.
Differences between survival estimates were assessed with the
log-rank test. Finally, Cox regression models were adjusted,

FIGURE 2 | Representative examples of both superpixel and single-cell classification with or without SuperCRF. (A) Superpixels-based regional classification on

representative whole slide images (5× magnification) of melanoma. Green: tumor area, Red: stroma area, Blue: normal epidermis, Yellow: lymphocyte cluster.

(B) Representative images showing cell classification using a state-of-the-art spatially constrained-convolution neural network (SC-CNN) and four conditional random

fields (CRF) models. Note the mislabeling of many cancer and stromal cells as epidermis cells when using the SC-CNN and the gradual increase in classification

accuracy with the best accuracy achieved with the SuperCRF. Green, cancer cells; Red, stromal cells; Blue, lymphocytes; Yellow, epidermis cells.
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testing for the independent prognostic relevance of our risk
scores. To test if Breslow-thickness (the distance between the
upper layer of the epidermis and the deepest point of tumor
penetration) was contributing to a high ratio of stromal cells,
we created a multivariate model containing both stromal cells
ratio and Breslow-thickness, as well as two univariate models
containing the covariates separately. Pearson’s correlation was
used to test for linear relation between the two variables.

RESULTS

SuperCRF Improves Accuracy of Cell
Classification
First, we trained the state-of-the-art deep learning method,
spatially-constrained CNN (SC-CNN) algorithm, to detect and
classify cells in high resolution (20×) WSI into four categories:
cancer cells, stroma cells, lymphocytes, and epidermis cells. The
SC-CNN network yielded an accuracy of 84.63% over 4,059 cells
in the independent test set (Table 1, Supplementary Table 5).
Visual inspection revealed that themajority of false positives were
misclassification of stromal and cancer cells as epidermis, which
confirmed our initial motive for the incorporation of regional and
spatial information to improve classification.

Subsequently, we trained a conditional random field (CRF)
by combining the cellular neighborhood with tumor region
classification (cancer area, normal stroma, normal epidermis,
lymphocyte cluster, and lumen/white space) from low resolution
images (5 and 1.25×, Figure 1B), given by the superpixel-based
machine-learning framework. The SLIC superpixels algorithm
has previously been shown to be computationally efficient,
requiring only 3s on average to segment a single downscaled
image of 2,500 × 2,500 pixels using a 2.9 GHz Intel core i7
processor. Performance of classification using individual and
various combinations of feature sets was tested and the use of all
85 features, yielded the highest accuracy (23). It was then applied
on the two datasets of 1.25 and 5× magnification (Figure 2A)
and achieved high accuracy in regional classification (1.25× sub-
dataset: Overall accuracy 97.7% in the training set using 10-fold
cross validation and 95.7% in 2,997 superpixels annotated in the
37 images of the independent test set; 5× sub-dataset: Overall
accuracy 97.1% in the training set using 10-fold cross validation
and 95.2% in 1,798 superpixels annotated in the six images of the
independent test set).

To train SuperCRF, we first introduced dependencies on cell
neighborhood. Cells were considered neighbors in the CRF,
if they were located in a spatial proximity of 15µm (or 30
pixels), which resulted in an average of 1.3 neighbors per cell.
Subsequently, we integrated this local neighborhood with global
context by connecting the CRF single-cell nodes to the regional
classification results from superpixels. To determine the best
configuration, we trained four different CRFs and compared
their performance in terms of single-cell classification on a
test set, including three samples, 290 tiles and 4,059 single-cell
annotations (1,527 cancer cells, 676 lymphocytes, 837 normal
epidermis cells, 1,019 stromal cells).

In detail, for the first CRF we did not use any context
classification, just cell neighborhood dependencies, i.e., the

TABLE 2 | Evaluation of different conditional random fields (CRF) versions and a

state-of-the-art spatially constrained-convolution neural network (SC-CNN) deep

learning cell-classifier.

Method Accuracy (%) Precision Recall

SC-CNN 84.63 0.8756 0.8808

singleCellCRF 87.61 0.8973 0.8946

CRF1.25× 90.79 0.9248 0.9110

CRF5× 91.70 0.9298 0.9126

SuperCRF 96.48 0.9644 0.9629

The values are bold to indicate the highest achieved accuracy, precision and recall.

only edges of the CRF were between neighboring cells
(singleCellCRF). For the second and third CRF we introduced
superpixel nodes. Now, single-cell nodes are not only connected
to neighboring cells but every single-cell node is also connected
to a superpixel node. We trained a CRF for 5× superpixel
classification (CRF5×) and 1.25× superpixel classification
(CRF1.25×). Furthermore, we trained a CRF in which every
single-cell node was connected to two superpixel nodes in 5
and 1.25× resolution (SuperCRF). Already the singleCellCRF
(Accuracy: 87.6%, Precision: 89.7%, Recall: 89.5%, Table 2)
improves the classification accuracy compared to the SC-CNN
(84.6%, Precision: 87.6%, Recall: 88.1%, Table 2). However, the
use of contextual information by the introduction of superpixel
nodes, markedly improves the classification metrics (Accuracy
90.8%, Precision: 92.5%, Recall: 91.1%, Table 2) for CRF1.25×
and (Accuracy 91.7%, Precision: 93%, Recall: 91.3%, Table 2)
for the CRF5×. The SuperCRF, using nodes from superpixels in
both 5 and 1.25× resolution images, as well as the neighboring
cells, resulted in the highest classification outcome (Accuracy
96.5%, Precision: 96.4%, Recall: 96.3%, Table 2, Figures 1F, 2B,
Supplementary Tables 5–9).

SuperCRF’s Increased Accuracy of Cell
Classification Improves Confidence in
Stromal Cell Ratio as a Predictive Feature
of Survival in Melanoma
The crosstalk between cancer cells and stromal cells play an
active role in tumor invasion and metastasis, and controlling
immune infiltration and is increasingly recognized as a hallmark
of cancer (32). Tumor-stromal cell ratio has been shown to
hold prognostic and predictive information in patient with solid
tumors (31, 33, 34). Here, we demonstrate that a high stromal
cell ratio is also a predictor of poor prognosis in melanoma
using both values derived from the multivariate models of SC-
CNN and SuperCRF in our discovery sub-dataset. Yet SuperCRF
yields a significantly higher confidence in the predictive value of
the stromal cell ratio (SuperCRF: p < 0.0001, Coxph-Regression
(discretized by median): HR = 4.1, p = 0.006; SC-CNN: p =

0.039, Coxph-Regression (discretized by median): HR = 2.4, p
= 0.05, Figure 3A).

Similar regression coefficients for both stromal cells ratio
and Breslow-thickness covariates were observed between the
multivariate and the two univariate survival models (1.404 and
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FIGURE 3 | Associations between survival outcomes and SuperCRF-define risk groups in the Cancer Genome Atlas (TCGA) cohorts of patients with melanoma. (A)

Kaplan-Meier Survival curves for patients in the high-risk group (blue) and low risk group classified by stromal cells ratio derived from SuperCRF (left) and using only

the SC-CNN classifier. Note the difference in the p-value using the two methods. (B) Kaplan-Meier Survival curves for patients in the high-risk group (blue) and low risk

group classified by immune phenotype based on spatial distribution of lymphocytes in different tumor compartments derived from SuperCRF.

0.171, respectively, for the multivariate model and 1.633 and
0.179 for the univariate models) of the SuperCRF. Pearson’s
correlation showed no correlation between stromal cells ratio and
Breslow-thickness (r = −0.05), overall indicating that stromal
cells ratio is independent to Breslow-thickness.

Combining Cell and Region Classification:
Location of the Immune Infiltrate Is
Predictive of Survival in Melanoma
There is increasing evidence of the value of immune infiltration
to provide prognostic information and predictors of response
in patient with melanoma [recently reviewed in (35)]. The
spatial compartmentalization of immune cells afforded by our
SuperCRF (by the cell and region classification results) was used
to define the recently-described main immune phenotypes of
anticancer immunity that predict response to immunotherapy
(31). Patients with a classified “immune excluded” phenotype,
defined by a low lymphocyte ratio inside the tumor area and
high inside the stroma area, was associated with a significantly
worse prognosis compared to “inflamed” tumors characterized
by a high ratio of lymphocytes inside the tumor and a low ratio
inside the stroma (p = 0.026, Cox PH –regression: HR = 2.57,
p = 0.032, Figure 3B). Taken together, our data is consistent
with the model of a stroma-mediated immune suppressive
microenvironment that exclude T cells from the vicinity of
cancer cells.

DISCUSSION

In this study, we implemented a framework which fuses
traditional machine learning with deep learning to model the
way pathologists incorporate large-scale tissue architecture

and context across spatial scales, to improve single-cell
classification in large whole-section slide images. Using
this approach, we demonstrated a marked 11.85% overall
improvement in the accuracy of the state-of-art deep
learning SC-CNN cell classifier. Also, the similar values
of both precision and recall and their simultaneous
increase in every step show the unbiased nature of
our approach.

Computational pathology algorithms, typically exploit the
inter-cell phenotypic differences for cell classification, yet even
state-of-art deep learning algorithms tend to underperform in
this task, mainly due to the disproportional numbers of cells
sharing similar nuclear morphological features, or due to intra-
class diversity, seen for example in tumor stroma (fatty tissue,
necrosis, vessels, muscle, fibroblasts, and associated collagen).
Whilst computers can quantify morphological differences in
a considerably more complex way, pathologists still generally
outperform computers in cell classification. An essential
reason is that they incorporate key contextual information
such as heterogeneous tissue architecture, together with cell
morphological features.

The idea that a cancer cell is dependent on its neighboring
cells and global context is comparable to the fundamental
concept in landscape ecology that a living population depends
on the existing habitats and is not equally spread on the terrain.
A particular habitat could favor the development of specific
organisms. In practice, landscape ecologists denote the habitats
from satellite images and then “ground-truth” them by detailed
small-scale sampling of the habitats of interest (36). This inspired
the design of our framework by introducing CRF dependencies
between (i) the cells and their neighbors and (ii) the cells and to
the global context (i.e., habitats from low resolution captured by
the classified superpixels).
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Our proposed framework connects deep learning and classical
image processing using probabilistic graphical models. All the
information was combined using a CRF graphical model, which
have been widely applied in image analysis for pathological
images, yet mainly for semantic segmentation (16, 17, 37, 38).
Here, (1) we introduce a new way to capture high-level spatial
context using superpixels, (2) propose a new CRF model that
introduces dependences over space and across different spatial
scales, thereby modeling multiple cells and their associated
superpixels simultaneously for more accurate classification, (3)
introduce the concept of context-specific CRF modeling, given
that the strength of dependence can be variable according
to tumor compartments. There is an increasing interest in
combining deep learning with different strategies, or “umbrella
approaches,” such as the use of traditional machine learning to
spatially explicit context used in this study, with the aim to,
not only refine and improve the overall existing deep learning
network (17, 39–41), but also facilitate biological interpretation
compared to the “black-box”-like approach of deep-learning-
only methods. However, optimizing and inventing new and
refined deep learning networks is of equal importance, as during
experimentation we observed that the better we made our
single-cell classifier baseline, the more effective our SuperCRF
approach became.

We also showed that combining cell classification with the
global context given by the region classification (both inherent
parts of the SuperCRF architecture) can open new avenues
to study the cancer microenvironment from histopathological
slides. For example, the spectacular response observed in clinical
trials of immunotherapy in patients with incurable melanoma
calls for a better understanding of the tumor microenvironment
and in particular the cancer-immune-stroma interface. Here,
our approach and its ability to look at lymphocytes within
their cellular and global context can predict melanoma patient
survival and potentially provide biomarker stratification for
immunotherapeutic approaches, by identifying the three main
types of tumor immunophenotypes including (i) inflamed
tumors which are characterized by infiltrated T Cells within
the tumor, and associated with a generally good prognosis (ii)
immune-excluded tumors, in which T cells are present but
prevented to infiltrate the tumor due to stromal interaction, and
associated with worse prognosis (and obviously (iii) immune
desert tumors). This could also potentially be extended to provide
quantitative biomarkers to characterize the immune infiltrating
response to immunotherapy. We also demonstrated that in
accordance with the immune-excluded phenotype, tumors rich
in stromal cells had a marked poorer prognosis in patients with
melanoma. With p-value lower by two orders of magnitude,
our method provide stronger predictive power than by using
deep-learning only method for cell classification.

In the future, we plan to extend our framework and include
an upward optimization step for the superpixels which may
include additional classes for cells, regions and structures in
order to provide a complete characterization of the tumor
microenvironment. This may include deriving further classes
from higher resolution images as we did for lymphocyte
clusters in this study which were difficult to visualize in

1.25× resolution images. Incorporating additional deep learning
methods should also be explored to perfect the classification
of superpixels, for example by incorporating features extracted
from a DCNN or a deep autoencoder, or to provide a potential
alternative to superpixels, which may not be appropriate for the
characterization of complicated structures, such as glands (42).

The primary aim of this study was to demonstrate proof-of-
principle that the introduction of global and local context as cell
dependencies using a probabilistic graphical model as a post-
processing step, like an “umbrella,” can significantly improve
the performance of deep learning or classical machine learning
cell classifiers based only on cell-morphology and abstract
local context information. We chose the SC-CNN architecture
as our primary cell classification step due to its state-of-the-
art performance in cell detection and classification compared
to other well-established deep learning and classical machine
learning approaches (6). Alternatively, other promising deep
learning networks could potentially be used including Inception
v3 (43), Inception v4 (44), or a VGG architecture (45).

Overall, our vision is to establish a network which will provide
a complete characterization of every component of the tumor
microenvironment where all the parts will interact with each
other like an ecological landscape. Such system has immense
potential and can be virtually transferred to any cancer type,
to provide a better understanding of the cancer-immune cell
interface, cell-stroma interactions, and predictive biomarkers of
response to novel therapies, including immunotherapy, which
has radically changed melanoma patient survival.

CONCLUSION

The novel general framework SuperCRF improves cell
classification by introducing global and local context-based
information much like pathologists do. SuperCRF can be
implemented in combination with any single-cell classifier
and represent valuable tools to study the cancer-stroma-
immune interface, which we used to identify predictors
of survival in melanoma patients from conventional H&E
stained histopathology.
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Surgical decision-making on advanced laryngeal carcinoma is heavily depended on the

identification of preoperative T category (T3 vs. T4), which is challenging for surgeons.

A T category prediction radiomics (TCPR) model would be helpful for subsequent

surgery. A total of 211 patients with locally advanced laryngeal cancer who had

undergone total laryngectomy were randomly classified into the training cohort (n =

150) and the validation cohort (n = 61). We extracted 1,390 radiomic features from the

contrast-enhanced computed tomography images. Interclass correlation coefficient and

the least absolute shrinkage and selection operator (LASSO) analyses were performed

to select features associated with pathology-confirmed T category. Eight radiomic

features were found associated with preoperative T category. The radiomic signature

was constructed by Support Vector Machine algorithm with the radiomic features. We

developed a nomogram incorporating radiomic signature and T category reported by

experienced radiologists. The performance of the model was evaluated by the area under

the curve (AUC). The T category reported by radiologists achieved an AUC of 0.775 (95%

CI: 0.667–0.883); while the radiomic signature yielded a significantly higher AUC of 0.862

(95% CI: 0.772–0.952). The predictive performance of the nomogram incorporating

radiomic signature and T category reported by radiologists further improved, with an AUC

of 0.892 (95%CI: 0.811–0.974). Consequently, for locally advanced laryngeal cancer, the

TCPR model incorporating radiomic signature and T category reported by experienced

radiologists have great potential to be applied for individual accurate preoperative T

category. The TCPR model may benefit decision-making regarding total laryngectomy

or larynx-preserving treatment.
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BACKGROUND

Laryngeal cancer is a common malignant tumor in the head
and neck and occurs mainly in smoking men (1). A study by
the International Agency for Research on Cancer showed that
177,422 new laryngeal cancer cases occurred and resulted in
74,771 cancer-related deaths in 2018 (2).

The cancer control and functional outcomes of laryngeal
cancer patients are highly relied on the treatment strategy.
However, the management of laryngeal cancer remains
controversial to date (3, 4). Currently, total laryngectomy is
considered the most appropriate therapy for patients with
advanced laryngeal carcinoma because they usually have a poor
prognosis. Although total laryngectomy helps disease control,
it has obvious adverse effects on patients’ quality of life due
to the loss of voice, permanent tracheostomy and issues with
swallowing. In respect of which, Larynx-preserving surgery was
thus performed to preserve laryngeal function (5). Decision-
making about surgery are highly relied on tumor T category
pursuant to the newest National Comprehensive Cancer
Network (NCCN) Guidelines. The guidelines recommends
total laryngectomy for all T4 stage and most of T3 stage
laryngeal cancers, while some T3 stage diseases can benefit from
larynx-preserving surgery instead (6).

Usually, the distinction between T3 and T4 categories is
mainly based on the destruction degree of the extra-laryngeal
spread and/or outer cortex of thyroid cartilage (7). However,
accurate preoperative T category is clinically challenging.
Currently, the most commonly used imaging techniques for
T category (T3 vs. T4) are conventional imaging techniques
including CT and MRI. CT generally demonstrates higher
specificity but lower sensitivity as compared with MRI when
identifying thyroid cartilage invasion (8). Although CT is useful
in assessing the extent of extra-laryngeal spread or thyroid
cartilage penetration of tumor, it has obvious limitations. Beitler
et al. showed 74 and 81% positive predictive value of CT for
assessing the extent of thyroid cartilage invasion and extra-
laryngeal spread, respectively (9). However, Li et al. indicated
that CT was less useful for assessing full-thickness cartilage
invasion, with 47% of T4 disease being down-staged to T3
disease after pathological review (10). In contrast, MRI is more
sensitive than CT in detecting cartilage invasion, yet peritumoral
inflammation, edema and fibrosis may demonstrate similar
features with cartilage invasion (11). These findings indicated
the difficulty of accurate T category before surgery. Therefore, to
develop new non-invasive methods for preoperative evaluation
are needed for the purpose of determining the extent of extra-
laryngeal spread and thyroid cartilage penetration, which are the
most important considerations for selecting total laryngectomy
or larynx conservation.

In recent years, the proposed “radiomics” is developed
rapidly and has attracted great attention. It aims to extract

Abbreviations: TCPR, T category prediction radiomics; LASSO, least absolute

shrinkage and selection operator; AUC, area under the curve; ICC, interclass

correlation coefficient; ROC, receiver operating characteristic; SVM, support

vector machine.

huge amounts of objective features from medical images and
find out the significant features which have great potential to
expose disease characteristics that failed to be discovered by
naked eyes (12–15). Previous studies showed that radiomic
signatures as biomarkers have close correlations with clinical
stages, lymph nodemetastasis, and survival outcomes (16–19). As
there is no study explored whether radiomics would enhance the
accuracy of preoperative T category for patients with advanced
laryngeal cancer, we tried to explore CT-based TCPR as a novel
approach for individual accurate preoperative T category for
those patients, which would benefit clinical decision-making
(total laryngectomy or larynx conservation) before surgery.

MATERIALS AND METHODS

Patient Population
This retrospective study was approved by the Institutional
Review Board and the informed consent requirement was waived.
The whole cohort of this study was acquired from the medical
records of the Institutional database from April 2007 to March
2015. Patients with histologically confirmed laryngeal cancer
who had received total laryngectomy were included. Contrast-
enhanced CT examinations of the neck had been performed on
all patients before surgery. The inclusion criteria were as follows:
(1) newly diagnosed patients underwent contrast-enhanced CT
scans of neck before any treatment; (2) patients received total
laryngectomy 15 days after initial CT acquisition; and (3) patients
had pathologically confirmed T3 or T4 stage laryngeal cancer
after operation. The exclusion criteria were as follows: (1) poor
quality of CT images due to patients’ movement or artifacts, etc.;
(2) the slice thickness of CT scan >2.5mm; and (3) patients
received treatment.

A total of 211 patients met these criteria. Among which, 150
patients constituted the training cohort, including 146 males and
four females with mean age of 61.38 ± 8.54 ranging from 39
to 85. A total of 61 patients (59 males, two females) with mean
age of 60.23 ± 6.65 ranging from 30 to 78 were allocated to the
validation cohort.

Clinicopathologic data was collected from the medical records
and the data of baseline CT scans, including age, gender,
preoperative T category reported by head and neck radiologists,
and pathologically confirmed T category. T classification was
conducted pursuant to the 8th Edition of AJCC TNM Staging
System Guidelines (20), and then reassessed by a head and neck
radiologist with 20 years of experience who was blinded to the
pathology results. Figure 1 showed the workflow of radiomic
analysis in the current study.

CT Image Acquisition and Tumor
Segmentation
Two CT systems were adopted for CT image acquisition: United
Imaging uCT780 and Siemens SOMATOM Force CT. The
parameters for CT image acquisition were as follows: 110–120
kV; 116–168 mAs; detector collimation: 192 × 0.6mm or 160 ×
0.25mm; rotation time: 1.0 s; slice thickness: 1–2.5mm; field of
view: 250× 250mm; matrix: 512× 512.

Frontiers in Oncology | www.frontiersin.org 2 October 2019 | Volume 9 | Article 106490

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. TCPR in Advanced Laryngeal Cancer

FIGURE 1 | The workflow of radiomic analysis in the current study. After feature extraction, stable features were selected by LASSO for further analysis. SVM model

was used to build radiomic signature. The predictive nomogram was constructed based on the radiomic signature and other predictors.

Axial venous phase CT images (DICOM format) were
prepared for tumor segmentation. An open-source software ITK-
SNAP (www.itk-snap.org) was applied for the three dimensional
manual segmentation. Tumor region in each layer was outlined
by a radiologist with 12 years of experience in head and neck
cancer, and then validated by a senior radiologist with 20
years of experience in head and neck cancer. The regions of
interest covering the entire tumor were used for subsequent
feature extraction.

Radiomic Features Extraction and
Radiomic Signature Construction
Radiomic features were extracted by Pyradiomics (version 2.1.2),
an open-source python platform (http://www.radiomics.io/
pyradiomics.html) (21). Pyradiomics provides a stably operated
open-source platform for easy and reproducible radiomic
features extraction that can be compared across different
institutions. Features of high throughput were extracted from
CT images by matrix operation, wavelet transform and
other mathematical methods, whose purpose was to find out
the association between radiomic features and pathologically
confirmed T category. The extracted radiomic features were
classified into 4 categories: first-order features (n= 126), textural

features (n = 515), shape-based features (n = 13), wavelet
features (n = 736). In order to identify the most significant
features, we used the interclass correlation coefficient and least
absolute shrinkage and selection operator (ICC-LASSO) to
remove abundant high dimensional features. Only features with
an ICC > 0.75 were retained for further LASSO, while the
remaining radiomic features were excluded to ensure the stability
and reproducibility. After that, the most significant features
were used to build the support vector machine (SVM) machine
learning prediction model. Grid search and cross validation
were conducted to select model parameters, which optimize
the performance of the model. Then, radiomic signature was
obtained from the trained SVMmodel.

Diagnostic Validation of Radiomic
Signature
We used AUC, sensitivity, specificity, and accuracy to verify
the association between radiomic signature and pathologically
confirmed T category in order to determine the overall
performance of the model. The performance of radiomic
signature was established in the training cohort and internally
validated in the validation cohort.
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Development of an Individualized T
Category Prediction Nomogram
Univariate analysis was performed on clinical features, such as
age, gender, tumor location, and T category reported by an
experienced radiologist. Themost significant clinical features and
radiomic signature were combined to establish a multivariable
logistics model so as to develop a radiomic nomogram.

Validation of the Radiomic Nomogram
The utility of the radiomic nomogram in the training and
validation cohorts was assessed by the receiver operating
characteristic (ROC) curves. The ROC curve was plotted basing
on the predictors of multi-logistics model including AUC,
sensitivity, specificity, and accuracy. In addition, we plotted the
calibration curves and conducted the Hosmer-Lemeshow test to
demonstrate the calibration of the radiomic nomogram.

Statistical Analysis
Continuous data were presented as mean ± standard deviation
(SD), while categorical data were presented as counts and
percentages. Continuous and categorical data were compared
by independent t (or Mann-Whitney U) test and Chi-square
(or Fisher’s exact) statistics, respectively. Patients were randomly
divided into the training and validation cohorts at a ratio of
∼2.5:1. The average performance of the model was obtained
by bootstrapping for 2,000 times. All statistical analyses were
conducted by R software (version 3.5.1) and Python (version
3.6). The R software was used for features selection and building
nomogram with packages of “psych,” “glmnet,” and “rms,” while
the Python was used to build SVMmodel with “sklearn” package.

RESULTS

Clinical Characteristics
Table 1 summarizes the patient characteristics of the training
and validation cohorts. Only T category reported by radiologists
showed significant difference (P < 0.001). After pathological
review, 20.5% (17/83) of patients down-staged fromT4 to T3, and
28.9% (37/128) of patients over-staged from T3 to T4.

Radiomic Features Extraction and
Radiomic Signature Construction
We extracted 1,390 features in total from CT images, among
which, 565 had ICC > 0.75, which indicted a good inter-
measurer agreement. LASSO was then used to remove the
redundancy of high dimensional features, and eight significant
radiomic features were selected at last (Figure 2), including two
first order features (gradient_first order_Skewness, lbp.2D_first
order_Mean), two shape features (original_shape_LeastAxis,
original_shape_Sphericity), and four wavelet features
(wavelet-LLH_first order_Kurtosis, wavelet-LLH_glcm_Idn,
wavelet-LLH_first order_Median, wavelet-LLL_glcm_Imc1). A
SVM-based radiomic signature was constructed based on the
eight features.

Diagnostic Validation of Radiomic
Signature
The AUCs of radiomic signature were 0.850 (95% CI: 0.788–
0.912) and 0.862 (95% CI: 0.772–0.952) in the training and
validation cohorts, respectively (Table 2). Correspondingly, the
specificity were 0.792 (95% CI: 0.698–0.885) and 0.743 (0.598–
0.888); the sensitivity were 0.782 (95%CI: 0.690–0.874) and 0.808
(95% CI: 0.656–0.959); and the accuracy were 0.787 (95% CI:
0.784–0.789) and 0.770 (95% CI: 0.765–0.776) (Table 2).

Development of an Individualized T
Category Prediction Nomogram
Logistic regression analysis of clinical features demonstrated
that only T category reported by experienced radiologist was
significantly correlated with pathologically confirmed T category
(p < 0.001). Radiomic nomogram was established by combining
radiomic signature and T category reported by radiologists
(Figure 3A). The calibration curves of nomogram showed a good
agreement between prediction and observation in both of the
training and validation cohorts (Figures 3B,C).

Validation of the Radiomic Nomogram
In the training cohort, the AUC of T category reported by
radiologists was 0.751 (95% CI: 0.684–0.818), with specificity of
0.861 (95% CI: 0.781–0.941), sensitivity of 0.641 (95% CI: 0.535–
0.747), and accuracy of 0.747 (95% CI: 0.744–0.749) (Table 2).
The AUC of the combined nomogram incorporating radiomic
signature and T category reported by radiologists was 0.899 (95%
CI: 0.850–0.947), with sensitivity of 0.782 (95% CI: 0.690–0.874),
specificity of 0.889 (95% CI: 0.816–0.961), and accuracy of 0.833
(95% CI: 0.832–0.835) (Table 2).

In the validation cohort, the AUC of T category reported by
radiologists was 0.775 (95% CI: 0.667–0.883) with specificity of
0.857 (95% CI: 0.741–0.973), sensitivity of 0.692 (95% CI: 0.515–
0.870), and accuracy of 0.787 (95% CI: 0.781–0.792) (Table 2,
Figure 4). The AUC of the nomogram incorporating radiomic
signature and T category reported by radiologists was 0.892 (95%
CI: 0.811–0.974), with sensitivity of 0.808 (95% CI: 0.656–0.959),
specificity of 0.771 (95% CI: 0.632–0.911), and accuracy of 0.787
(95% CI: 0.781–0.792) (Table 2, Figure 4).

DISCUSSION

This study developed and validated a radiomic nomogram
for the accurate prediction of T category (T3 vs. T4) before
surgery for patients with locally advanced laryngeal cancer. The
combined nomogram incorporated the CT-reported T stage
and the radiomic signature. By only CT, radiologists couldn’t
satisfactorily stratified patients into T3 and T4 categories (AUC
= 0.775). However, the combination of the radiomic signature
and the T category reported by radiologists could significantly
improve the predictive performance, achieving an AUC of 0.892
in the validation cohort.

Locally advanced laryngeal cancer includes those classified as
T3 or T4 category (22). For locally advanced laryngeal cancer,
the treatment option of total laryngectomy or organ preservation
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TABLE 1 | Patient characteristics in the training and validation cohorts.

Characteristics Training cohort

(n = 150)

Validation cohort

(n = 61)

T3 category T4 category P T3 category T4 category P

Gender, No (%) 0.343 0.501

Male 70 (95.9%) 76 (98.7%) 33 (94.3%) 26 (100%)

Female 3 (4.1%) 1 (1.3%) 2 (5.7%) 0

Age, mean ± SD, years 61.38 ± 8.54 63.72 ± 8.97 0.157 60.23 ± 6.65 60.31 ± 10.91 0.737

Location, No (%) 0.022 0.579

Supra-glottis 31 (42.5%) 21 (27.3%) 11 (31.4%) 10 (38.5%)

Glottis 40 (54.8%) 56 (72.7%) 24 (68.6%) 16 (61.5%)

Sub-glottis 2(2.7%) 0 0 0

T category reported by radiologist, No (%) <0.001 <0.001

T3 category 61 (83.6%) 29 (37.7%) 30 (85.7%) 8 (30.8%)

T4 category 12 (16.4%) 48 (62.3%) 5 (14.3%) 18 (69.2%)

FIGURE 2 | After initial screening by ICC analysis, feature selection was performed using the LASSO method with a logistic regression model. (A) The model

coefficient trendlines of the 1,390 radiomics features. The profile graph was plotted by coefficients against the L1 norm (inverse proportional to log λ = −2.184).

(B) Tuning parameter λ in the LASSO model. The parameter λ = 0.220 were selected under the minimum criteria. The vertical line was drawn at the value selected by

10-fold cross-validation, including optimized eight non-zero coefficients.

remains to be a hot-debated topic. The goal of larynx preservation
is to achieve good function without altering patients’ survival.
When determining larynx preservation or total laryngectomy for
patients, some issues must be considered, such as T category
of tumor, patients’ will, and prospects for a good functional
outcome (23). Therefore, preoperative T category is particularly
important. If we could distinguish T3 from T4 patients with
laryngeal cancer, they can receive appropriate treatment and
benefit a lot. This study is focused on patients with local advanced
laryngeal cancer and tried to find out a newmethod to distinguish
T3 from T4 disease accurately.

Previous studies demonstrated that CT, MRI, PET-CT images
can reflect the tumor morphology (24–26). Clinicians rely on
medical imaging to determine whether patients suffered from
T3 or T4 disease. Reliable imaging tools are indispensable. CT is

the preferred imaging method for laryngeal cancer staging (11),
which is much faster than MRI. MRI has better discrimination
of soft tissue changes and cartilage abnormalities, however, it
requires longer image acquisition time, thus challenging patients’
cooperation and hampering its utilization (27). Still, it is very
important for imaging techniques being able to differentiate
inner cortical invasion (T3) from destruction of the outer cortex
and extra-laryngeal spread. The evaluation on thyroid cartilage
invasion and extra-laryngeal spread is important and sometimes
difficult, and the positive predictive value of CT-reported T
category is 71.1%, similar with Li et al. (10). MRI seems to be
more sensitive than CT in detecting cartilage invasion, however,
the MRI findings are not specific, and the positive predictive
value of MRI was unsatisfactory (9). This is because that
peritumoral inflammation, edema and fibrosis may demonstrate
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TABLE 2 | Diagnostic performance of models in the training and validation cohorts.

Models Training cohort

(n = 150)

Validation cohort

(n = 61)

AUC

(95% CI)

Specificity

(95% CI)

Sensitivity

(95% CI)

Accuracy

(95% CI)

AUC

(95% CI)

Specificity

(95% CI)

Sensitivity

(95% CI)

Accuracy

(95% CI)

T category

reported by

radiologist

0.751

(0.684–0.818)

0.861

(0.781–0.941)

0.641

(0.535–0.747)

0.747

(0.744–0.749)

0.775

(0.667–0.883)

0.857

(0.741–0.973)

0.692

(0.515–0.870)

0.787

(0.781–0.792)

Radiomic

signature

0.850

(0.788–0.912)

0.792

(0.698–0.885)

0.782

(0.690–0.874)

0.787

(0.784–0.789)

0.862

(0.772–0.952)

0.743

(0.598–0.888)

0.808

(0.656–0.959)

0.770

(0.765–0.776)

Combined

nomogram

0.899

(0.850–0.947)

0.889

(0.816–0.961)

0.782

(0.690–0.874)

0.833

(0.832–0.835)

0.892

(0.811–0.974)

0.771

(0.632–0.911)

0.808

(0.656–0.959)

0.787

(0.781–0.792)

FIGURE 3 | The nomogram of T category diagnostic model. Our radiomics based nomogram was constructed in the training cohort. The radiomic signature, T

category reported by radiologist were incorporated as factors (A). The calibration curves showed good agreement between the nomogram-predicted T category and

actual T category in the training cohort (B) and validation cohort (C).
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FIGURE 4 | ROC curves for the nomogram, radiomic signature, and T

category reported by radiologist in the training and validation datasets.

similar features with cartilage invasion (11). Currently, the
guidelines recommends total laryngectomy for patients with T4
stage diseases, while for T3 stage diseases, organ preservation or
total laryngectomy are all listed options (6). It is indicated that
some patients who were treated by total laryngectomy could have
been offered laryngeal preservation or who received laryngeal
preservation actually need total laryngectomy to extend the
survival time if more accurately staging was performed at initial
diagnosis (10, 28).

Radiomics is a new concept in recent years, and it is
gaining importance in cancer research for improving diagnostic,
prognostic, and predictive accuracy (29). Zhang et al. established
and internally validated MRI-derived radiomics as a new
approach to evaluate progression-free survival in patients with
stage III–IVb nasopharyngeal carcinoma before treatment (30).
Liang et al. demonstrated that a combined nomogram model
could preoperatively predict histologic grade in patients with
pancreatic neuroendocrine tumors (18). For patients with locally
advanced laryngeal cancer, we identified a radiomic nomogram
to perform preoperative predicting of tumor T category (T3 vs.
T4). To construct a radiomic signature, 1,382 (99.4%) radiomic
features were filtered, and only eight features were saved by ICC
and LASSO analysis. For huge amounts of radiomic features
extracted from a relatively small sample, LASSO can avoid
model overfitting (31). In addition, the features selected by
LASSO are generally accurate and can be easily interpreted
because the vast majority of irrelevant features’ coefficients
are shrunk toward zero during model fitting. The radiomic
signature was constructed through LASSO-SVM by combining
radiomic features with other clinical features, such as age, gender,
tumor location, T category reported by radiologists. Our study
showed that preoperative T category reported by radiologists
was easily obtained and significantly correlated with actual T

category, and it might significantly influence the accuracy of the
prediction of T category. Therefore, the radiomic nomogram
incorporates both the T category reported by radiologists and the
radiomic signature to ensure accuracy. The T category reported
by radiologists can stratify patients into T3 and T4 groups
with an AUC of 0.751. However, the combined nomogram
model can further improve the predictive performance, achieving
an AUC of 0.899. This prediction model was also tested by
the validation cohort (AUC = 0.892), verifying the reliability
and reproducibility.

The main limitation of this study derived from its
retrospective nature. To keep the consistency of data, the
training and validation cohorts were from a single institution.
When determining the most suitable treatment strategy for
advanced laryngeal cancer, preoperative T category is not the
only factor under consideration, other conditions should also
be considered, such as tumor volume, lymphatic metastasis,
pre-treatment voice quality, laryngoscopy findings, patient
comorbidities, and preferences.

In conclusion, this study established a TCPR model as a novel
approach for the accurate preoperative T category for patients
with locally advanced laryngeal cancer. As a non-invasive,
preoperative and precise T category evaluation tool, the model
could assist head and neck surgeons to make an appropriate
surgical decision, which will benefit patients in the future.
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Background: The preoperative diagnosis of phyllodes tumors (PTs) of the breast is

critical to appropriate surgical treatment. However, reliable differentiation between PT and

fibroadenoma (FA) remains difficult in daily clinical practice. The purpose of this study was

to investigate the utility of breast MRI texture analysis for differentiating PTs from FAs.

Materials and Methods: Forty-two PTs and 42 FAs were enrolled in this retrospective

study. Clinical and conventional MRI features (CCMF) and MRI texture analysis were

used to distinguish between PT and FA. Texture features were extracted from the axial

short TI inversion recovery T2-weighted (T2W-STIR), T1-weighted pre-contrast, and two

contrast-enhanced series (first contrast and third contrast). The Mann–Whitney U test

was used to select statistically significant features of texture analysis and CCMF. Using

a linear discriminant analysis, the most discriminative features were determined from

statistically significant features. The K-nearest neighbor classifier and ROC curve were

applied to evaluate the diagnostic performance.

Results: With a higher classification accuracy (89.3%) and an AUC of 0.89, the texture

features on T2W-STIR outperformed the texture features on other MRI sequences and

CCMF. The AUC of the combination of CCMF with texture features on T2W-STIR was

significantly higher than that of CCMF or texture features on T2W-STIR alone (p < 0.05).

Based on the result of the classification accuracy (95.2%) and AUC (0.95), the diagnostic

performance of the combination strategy performed better than texture features on

T2W-STIR or CCMF separately.

Conclusions: Texture features on T2W-STIR showed better diagnostic performance

compared to CCMF for the distinction between PTs and FAs. After further validation of

multi-institutional large datasets, MRI-based texture features may become a potential

biomarker and be a useful medical decision tool in clinical trials having patients with

breast fibroepithelial neoplasms.

Keywords: texture analysis, breast, magnetic resonance imaging, phyllodes tumor, fibroadenoma
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INTRODUCTION

Phyllodes tumor (PT) is a rare tumor accounting for 0.3–1.0% of
all mammary tumors and comprises 2–3% of all fibroepithelial
mammary neoplasms (1, 2). The histological classification is
subdivided into benign, borderline, or malignant (3); however,
histological type is found to poorly correlate with clinical
behavior (4, 5). Incidence of local relapse is high regardless of
the histological grading, and distant metastasis may occur in
approximately 25% of malignant PTs (6, 7). With similar clinical
features and histopathological appearance, PT may mimic a
fibroadenoma (FA), which is the most common benign tumor
of the breast. Sometimes, even preoperative invasive procedures
such as fine-needle aspiration cytology and core needle biopsy
may fail to correctly differentiate these two entities, primarily
owing to lack of adequate and representative samples (8, 9).
Given the different prognosis, a surgical excision is essential with
a wide margin of at least 1 cm for all grades of PT to avoid local
relapse and subsequent surgery (10, 11); on the other hand, a
FA can usually be safely followed-up or managed by a simple
enucleation (12). Therefore, accurate preoperative diagnosis is
crucial to offer an appropriate clinical strategy, thus avoiding
operative complications resulting from inadequate excision or
surgical overtreatment.

Clinically, in contrast to FA, PT can grow rapidly to huge
bulky ones with a high reported incidence of local relapse (13).
In addition, PT was generally thought to develop later in life than
FA (6, 14).

According to previous reports, MRI features have been
valuable in the differentiation between PTs and FAs. Kamitani
et al. (15) described theMRI features of PTs and noticed a pattern
of heterogeneous enhancement, internal cystic components, and
increased lobulations in PTs. Although certain clinical and MRI
features may raise the index of suspicion, it is challenging to
make a reliable differentiation between PT and FA. In daily
clinical practice, a benign, small-sized borderline or malignant
PT can be easily mistaken for a FA, whereas giant FAs may show
overlapping MRI features of PTs.

Radiomics has drawn increasing attention in recent
years. It is based on a hypothesis that medical imaging
information can be converted into quantitative and mineable
features via automatically high-throughput extraction of data
characterization algorithms that in turn provide valuable
diagnostic, prognostic, or predictive assessment (16–18).
Several radiomics studies have shown that some quantitative
imaging signatures, such as texture features derived from
MRI, can provide an opportunity to facilitate better clinical
decision-making in oncology at low cost and non-invasively.
For example, texture analysis has been used to predict sentinel
lymph node metastasis in breast cancer (19), differentiate
estrogen receptor-positive breast cancer molecular subtypes
(20), and identify healthy breast tissue and breast cancer
lesions (21).

Abbreviations: PT, Phyllodes tumor; FA, Fibroadenoma; T2W-STIR, Short TI

inversion recovery T2-weighted; CCMF, Clinical and conventional MRI features;

TIC, time–intensity curve.

Thus, in the present study, we hypothesized that texture
features on routine, enhancement, and non-enhanced T1-
and T2-weighted MR images, could help to improve the
differentiation between PTs and FAs.

MATERIALS AND METHODS

Patients
The retrospective study protocol was approved by our
institutional review board. In this study, 53 female patients
with histologically confirmed PT between June 2012 and June
2018 were enrolled and 78 female patients with histologically
confirmed FA were randomly selected. The inclusion criteria
were as follows: (1) female patients were histologically diagnosed
with PT or FA by two experienced pathologists based on findings
in the specimens obtained at surgical resection, (2) those who
underwent breast MRI prior to surgical resection, and (3) those
with lesions measuring >1 cm in diameter avoiding the possible
unfavorable effects on textural features extracted from image
data. The exclusion criteria were as follows: (1) a previous history
of breast cancer and radiotherapy, and (2) poor image quality.
Finally, 41 female patients with 42 PTs and 37 female patients
with 42 FAs were eligible in this study.

MRI Acquisition
All patients were scanned using a 1.5T dedicated breast
MRI system (Aurora Dedicated Breast MRI Systems) with a
single channel breast coil. For dynamic imaging, gadolinium-
diethylenetriamine pentaacetic acid (Gd-DTPA, Magnevist) was
intravenously injected as a bolus of 0.2ml per kg of body weight
at a rate of 2 mL/s followed by a 20-mL normal saline flush. A
dynamic series of transverse T1-weighted fat-suppression images
were acquired at pre-contrast and post-contrast at 90, 270, 450,
and 630 s by using the following imaging parameters: TR =

29ms, TE = 4.8ms, slice thickness = 1.1mm, matrix = 360
× 360 × 128, and FOV = 36 cm. In addition, axial short
TI inversion recovery T2-weighted (T2W-STIR) images were
performed under the following conditions: TR = 6,680ms, TE
= 68ms, slice thickness = 3.0mm, matrix = 320 × 192, FOV
= 36 cm. Fat suppression was applied using a short TI-inversion
recovery technique.

Clinical and Conventional MRI Features
Assessment
Clinical and conventional MRI features (CCMF) was used
to differentiate PTs from FAs. The clinical variables assessed
included age, whether the lesions showed rapid enlargement, and
whether the lesions were primary or recurrent. The conventional
MRI features for each patient were independently reviewed by
two radiologists with 12 and 5 years of experience, respectively,
blinded to the histopathological diagnoses. For the cases
with discrepancies in the CCMF assessment between the two
radiologists, these were jointly reviewed by the two radiologists
to reach a consensus for further analysis. Interpretation of
some conventional MRI features was based on three following
characteristics as per the American College of Radiology Breast
Imaging Reporting and Data System MR imaging criteria
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FIGURE 1 | (A) Axial short TI inversion recovery T2-weighted (T2W-STIR) and

(B) third post-contrast image showing a mass with cystic component (red

arrow), weak lobulation with obtuse angle (green arrows), septation (white

arrow), and heterogeneous enhancement. Strong lobulation with acute angle

(yellow arrow) was detected on (C) T2W-STIR and heterogeneous

enhancement was detected on (D) third post-contrast image.

(version 5) (22, 23): the margin of masses (circumscribed vs.
non-circumscribed); initial signal intensity enhancement (slow,
medium, or fast); and time–intensity curve (TIC) pattern on
dynamic contrast-enhanced images (the persistent, plateau, or
washout pattern). The presence or absence of a cystic component
and internal septation were determined, and the extent of
lobulation was divided into strong (with an acute angle) or
weak (obtuse angle). In addition, we analyzed the tumor size
(the greatest lesion diameter); tumor signal intensity on T2W-
STIR (homogeneous vs. heterogeneous); and signal intensity
enhancement of third sequence of post-contrast (homogeneous
vs. heterogeneous). For the measurements of enhancement
features including initial signal intensity enhancement and TIC,
the region of interest (ROI) was placed onto the area of the lesion
where the enhancement was strongest in the first sequence of the
post-contrast image. Examples of these MRI features were shown
in Figure 1. For recurrence patients, only clinical andMRI data at
the time of recurrence was included and evaluated in this study.

Texture Analysis
The T2W-STIR, T1-weighted pre-contrast, and two contrast-
enhanced series were chosen for texture analysis. Image slices
were selected on the basis of presentation of the largest lesion
diameter. The ROI, containing the entire visible tumor and
excluding equivocal normal breast tissue, was manually drawn
for each image. Texture analysis was performed by software

TABLE 1 | Texture features used summary.

Algorithm Texture features

Histogram Mean, variance, skewness, kurtosis, percentiles 1, 10, 50,

90, and 99%

Absolute gradient

(GrM)

Mean, variance, skewness, kurtosis, and percentage of

pixels with non-zero gradient

Co-occurrence

matrix (COM)

Angular second moment, contrast, correlation, sum of

squares, inverse difference moment, sum average, sum

variance, sum entropy, entropy, difference variance and

difference entropy; parameters computed for 4 directions:

(a, 0), (0, a), (a, a), (a, –a) and 5 distances: a = 1, 2, 3, 4, 5,

between image pixels

Run-length matrix

(RLM)

Run-length non-uniformity, gray-level non-uniformity,

long-run emphasis, short run emphasis, and fraction of

image in runs; parameters computed for horizontal, 45◦,

vertical, and 135◦ directions

Autoregressive

model (ARM)

Model parameter vector includes 4 parameters; Sigma:

standard deviation of the driving noise

Wavelet Energy of the wavelet coefficients in sub-bands

package MaZda 4.60 (The Technical University of Lodz, Institute
of Electronics) (24, 25).

MaZda allows the quantitative analysis of approximately 300
texture features based on the following algorithms: histogram,
absolute gradient, run length matrix, co-occurrence matrix,
autoregressive model, and wavelet transform (24, 25), as shown
in Table 1. All these texture features were calculated for each
ROI. The co-occurrence matrix parameters were calculated in
four directions (θ = 0, 45, 90, and 135◦) with interpixel distances
of n = 1, 2, 3, 4, and 5. The gray-level normalization, which
is known to minimize the effect of contrast variation and
brightness, was carried out using amethod that normalizes image
intensities within µ ± 3σ (µ, gray-level mean; and σ, gray-level
standard deviation).

In MaZda, a combination of feature selection algorithms
including mutual information, classification error probability
combined with average correlation coefficients, and Fisher
coefficient were applied to determine 30 texture parameters with
the highest discriminative power for classification on each MRI
pulse sequence. These features were then exported for further
processing and classification to a statistical program B11 (24).

Feature Selection and Classification
Statistically significant features were selected among the raw
texture features on each MRI sequence and CCMF. A linear
discriminant analysis was performed for statistically significant
features using MaZda to obtain the most discriminative features
(26). Then, the K-nearest neighbor classifier (K = 3) was
employed to distinguish between PT and FA based on the
most discriminative features using software routines written in
MATLAB 7 (Mathworks). For training the classifier, 28 PTs and
28 FAs were used, whereas for testing the classifier, the remaining
14 PTs and 14 FAs were used.

A workflow chart of the distinction between PT and FA based
on texture features and CCMF are illustrated in Figure 2.
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FIGURE 2 | Workflow chart of distinction between phyllodes tumors and fibroadenomas based on clinical and conventional MRI features, and texture features.

Processes in green boxes were performed in MaZda.

Statistical Analysis
We compared the raw texture parameters on each sequence and
CCMF between PTs and FAs using the Mann–Whitney U test.
For evaluating the diagnostic efficiency of each approach, we
employed receiver operating characteristic (ROC) analysis. These
analyses were performed using package SPSS 22.0 for Windows.
For each ROC curve, comparisons of the area under the curve
(AUC) were performed with methods described by Hanley (27).
P < 0.05 was considered to indicate statistical significance.

RESULTS

Clinical and Conventional MRI Features
The clinical characteristics and conventional MRI findings of 42
PTs and 42 FAs are summarized inTable 2. There were 25 benign,
14 borderline, and 3 malignant PTs based on the histological
findings. Patients with PTs were significantly older than those
with FAs (p < 0.001). The mean maximal diameter (standard
deviation) was 4.70 ± 3.45 cm for the PT group and 3.48 ±

2.36 cm for the FA group. The PTs tended to be larger than the
FAs, although this difference was not statistically significant (p
> 0.05). The local recurrence rates of PTs and FAs were 26.2
and 0%, respectively. Overall, 61.9% PTs (26/42) showed strong
lobulation, whereas only 13 (31.0%) FAs among 42 expressed
strong lobulation. The PTs showed strong lobulation pattern
more frequently than FAs (p = 0.004). Cystic components were
seen in 20 (47.6%) PTs but only in 6 (14.3%) FAs (p = 0.001).

The PTs had a significantly higher frequency of internal septum
than the FAs (p = 0.009). The FAs tended to be homogeneous
more frequently seen on T2W-STIR than the PTs (p = 0.001).
There were no significant differences between the PTs and FAs
in rapid growth, margin, septation enhancement, tumor signal
intensity on the third post-contrast images, initial signal intensity
enhancement, and TIC curve pattern.

For clinical and conventional MRI features (CCMF), the
classification accuracy of K-nearest neighbor classifier was 76.2%.
For ROC analysis, the AUC was 0.76 (95% CI: 0.66, 0.87), and the
sensitivity and specificity were both 76.2%.

Texture Features
PTs and FAs presented a differential textural pattern. Certain
texture features extracted using MaZda were significantly
different, as shown in Table 3 and Supplementary Information.
The number of statistically significant texture features on T2W-
STIR was greater than other MRI sequences. For texture features
on MRI, the classification accuracies were 89.3, 69.1, 71.4,
and 67.9%, for T2W-STIR, T1-weighted pre-contrast, and two
contrast-enhanced series (first and third post-contrast sequence),
respectively. For ROC analysis, the AUCswere 0.89 (95%CI: 0.82,
0.97); 0.69 (95%CI: 0.58, 0.81); 0.71 (95%CI: 0.60, 0.83); and 0.68
(95% CI: 0.56, 0.80) for T2W-STIR, T1-weighted pre-contrast,
and the first and third post-contrast sequences, respectively.
The most discriminative features on T2W-STIR had higher
classification accuracy (89.3%); AUC (0.89, 95% CI: 0.82, 0.97);
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TABLE 2 | Clinical and conventional MRI features of phyllodes tumors

and fibroadenomas.

PT FA P-value

Mean age (SD) 44.38 ± 6.72 35.07 ± 12.90 <0.001

Rapid enlargement

Absent 30 (71.4%) 33 (78.6%) 0.614

Present 12 (28.6%) 9 (21.4%)

Primary/recurrence

Primary 31 (73.8%) 42 (100%) <0.001

Recurrence 11 (26.2%) 0 (0)

Diameter 4.70 ± 3.45 3.48 ± 2.36 0.07

Margin

Circumscribed 32 (76.2%) 34 (81.0%) 0.79

Not circumscribed 10 (23.8%) 8 (19.0%)

Strong lobulation

Absent 16 (38.1%) 29 (69.0%) 0.004

Present 26 (61.9%) 13 (31.0%)

Septation

Absent 15 (35.7%) 27 (64.3%) 0.009

Present 27 (64.3%) 15 (35.7%)

Enhancement 7 (16.7%) 3 (7.1%) 0.312

No enhancement 35 (83.3%) 39 (92.9%)

Cystic component

Absent 22 (52.4%) 36 (85.7%) 0.001

Present 20 (47.6%) 6 (14.3%)

T2W-STIR

Homogeneous 22 (52.4%) 36 (85.7%) 0.001

Heterogeneous 20 (47.6%) 6 (14.3%)

Initial enhancement

Slow 4 (9.5%) 6 (14.3%) 0.636

Medium 15 (35.7%) 17 (40.5%)

Fast 23 (54.8%) 19 (45.2%)

Contrast third

Homogeneous 16 (38.1%) 23 (54.8%) 0.126

Heterogeneous 26 (61.9%) 19 (45.2%)

TIC pattern

Persistent pattern 17 (40.5%) 22 (52.4%) 0.367

Plateau pattern 17 (40.5%) 16 (38.1%)

Washout pattern 8 (19.0%) 4 (9.5%)

sensitivity (88.1%); and specificity (90.5%) than those on other
MRI sequences. The result of K-nearest neighbor classifier and
ROC analysis are listed in Table 4.

Combination
For the combination of CCMF with texture features on T2W-
STIR, the classification accuracy was 95.2%. The AUC was 0.95
(95% CI: 0.90, 1.00), with a specificity of 95.2% and sensitivity
of 95.2%.

Comparison of Diagnostic Performance
Figure 3 shows the ROC curves for the K-nearest neighbor
classifier when the classifier was trained with most discriminative
features of CCMF, texture features on each MRI sequence,
and the combination strategy. The texture features on T2W-
STIR, with higher classification accuracy (89.3 vs. 76.2%) and

TABLE 3 | Statistically significant texture features on axial short TI inversion

recovery T2-weighted images.

Texture feature P Z

WavEnHH_s-3 <0.001 −3.757

WavEnHH_s-1 <0.001 −4.258

WavEnHL_s-1 0.002 −3.042

GrKurtosis <0.001 −4.634

GrSkewness <0.001 −5.573

GrMean <0.001 −3.569

45dgr_Fraction <0.001 −4.258

45dgr_ShrtREmp <0.001 −4.169

45dgr_LngREmph <0.001 −4.258

S(5,5)SumAverg 0.002 −3.051

S(0,5)SumAverg 0.021 −2.308

S(0,5)InvDfMom 0.003 −2.934

S(4,4)SumAverg 0.003 −2.952

S(4,4)InvDfMom <0.001 −3.918

S(3,0)Contrast 0.014 −2.460

S(2,2)InvDfMom <0.001 −3.811

S(2,0)DifVarnc 0.011 −2.541

S(1, −1)DifEntrp 0.004 −2.845

S(1,1)DifEntrp <0.001 −3.695

S(1,1)InvDfMom <0.001 −4.053

S(1,1)Correlat 0.002 −3.131

S(1,1)Contrast 0.001 −3.382

S(1,0)DifEntrp <0.001 −3.543

S(1,0)Correlat 0.001 −3.185

S(1,0)Contrast 0.001 −3.319

Variance <0.001 −4.348

AUC (0.89 vs. 0.76), outperformed CCMF. In addition, CCMF
was less sensitive than texture features on T2W-STIR (76.2
vs. 88.1%) resulting in a few false negative results (example
shown in Figure 4), and exhibited lower specificity (76.2 vs.
90.5%) resulting in a few false positive results (example shown
in Figure 5). The AUC of the combination was significantly
higher than that of CCMF or texture features on T2W-STIR
alone (p < 0.05). According to the result of K-nearest neighbor
classification and AUC, the diagnostic performance of the
combination performed better than texture features on T2W-
STIR or CCMF alone.

DISCUSSION

In the current study, texture analysis based on MRI was
applied to evaluate the differential diagnosis between breast
PTs and FAs. Texture features on T2W-STIR with higher
classification accuracy and AUC performed better than clinical
and conventional MRI features (CCMF). Texture features on
T2W-STIR were more sensitive than CCMF which exhibited
higher specificity. In our study, PT could be mistaken for FA
using CCMF but was correctly identified using texture features
on T2W-STIR, regardless of whether the lesion was benign or
malignant. In addition, we found that the diagnostic performance
using the combination of CCMF with texture features based on
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TABLE 4 | Features classification and receiver operating characteristic analysis of

phyllodes tumors and fibroadenomas.

Classification

accuracy

AUC

(95% CI)

Sensitivity Specificity

T2W-STIR 89.3% 0.89

(0.82, 0.97)

88.1%

(37/42)

90.5%

(38/42)

Pre-contrast 69.1% 0.69

(0.58, 0.81)

73.8%

(31/42)

64.3%

(27/42)

First

post-contrast

71.4% 0.71

(0.60, 0.83)

71.4%

(30/42)

71.4%

(30/42)

Third

post-contrast

67.9% 0.68

(0.56, 0.80)

66.7%

(28/42)

69.0%

(29/42)

CCMF 76.2% 0.76

(0.66, 0.87)

76.2%

(32/42)

76.2%

(32/42)

Combination 95.2% 0.95

(0.90, 1.00)

95.2%

(40/42)

95.2%

(40/42)

FIGURE 3 | The receiver operating characteristic curves from each approach

for differentiation between phyllodes tumors and fibroadenomas.

T2W-STIR was better than CCMF or texture features on T2W-
STIR alone. The classification accuracy reached 95.2%, when
the most discriminative features of combination strategy were
used to train the classifier. By using a combination strategy,
the AUC, specificity, and sensitivity were 0.95, 95.2%, and
95.2%, respectively.

Prior studies (15, 28–30) have indicated differences in the
clinical and conventional MRI characteristics for differentiating
between PTs and FAs, which was also validated in this study.
Our study showed that higher age, recurrence, strong lobulation,
and internal cystic components were detected significantly more
frequently in PTs than in FAs, which were in line with prior
studies (15, 28–30). Some groups report that hypointense internal
septation was more likely to be presented in PTs than in FAs, but
this difference was not statistically significant (15). Even though
PTs showed significantly more frequent hypointense internal
septations than FAs onMRI in this study, septation enhancement
was not statistically significant between PTs and FAs. As reported
in some articles (8, 15), PTs were frequently larger than FAs,

FIGURE 4 | Magnetic resonance images of a 37-year-old female patient with a

borderline phyllodes tumor: (A) axial short TI inversion recovery T2-weighted

(T2W-STIR) (B) first post-contrast (C) third post-contrast. The texture features

on T2W-STIR correctly identified a phyllodes tumor which was falsely

interpreted as a fibroadenoma on clinical and conventional MRI features,

possibly owing to the weak lobulation, homogeneous signal on T2W-STIR,

and absence of cystic component and septation.

but there was no significant difference in size between them
in our study, likely because the selected tumors were of a
relatively large size (>1 cm in diameter). Kamitani et al. (15)
found that FAs tended to be homogeneous more frequently than
PTs on T1-weighted post-contrast images, but this difference
was not significant; there was no significant difference in the
TIC curve pattern between the two groups; both of which were
consistent with our results. In addition, we found a significantly
higher frequency of heterogeneous signals in PTs than in FAs
on T2W-STIR, which had been rarely mentioned in previous
literatures (15).

Both PTs and FAs are breast fibroepithelial neoplasms.
Histologically, they share a dimorphic pattern with both
epithelial and stromal components. However, PT can usually be
differentiated from FA by its exaggerated intracanalicular growth
pattern with increased and heterogeneous stromal cellularity
(9). Internal cystic components, septation, and heterogeneous
signal on T2W-STIR may be caused by the histopathologically
heterogeneous nature of PT, and the stronger lobulation might
be related to the rapid growth.

Texture analysis was utilized to evaluate the ability to
differentiate PTs from FAs. The number of statistically significant
texture features on T2W-STIR was larger than those on
T1-weighted pre-contrast and two contrast-enhanced series.
Furthermore, the diagnostic performance of these statistically
significant texture features on T2W-STIR outperformed that on
other MRI sequences, with an AUC of 0.89 and a classification
accuracy of 89.3%. The result of texture analysis was in line
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FIGURE 5 | Magnetic resonance images of a 26-year-old female patient with

fibroadenomas: (A,C) axial short TI inversion recovery T2-weighted

(T2W-STIR), (B) third post-contrast. The texture features on T2W-STIR

correctly identified the fibroadenoma which was falsely interpreted as a

phyllodes tumor on clinical and conventional MRI features, possibly due to the

cystic component, strong lobulation, and septation.

with that of conventional MRI characteristics that the signal
intensity on T2W-STIR was significantly different, but there were
no significant differences in features after enhancement between
PTs and FAs, such as tumor signal intensity on the third sequence
of post-contrast images, initial signal intensity enhancement,
and the TIC curve pattern. Previous breast MRI studies mainly
focused on dynamic enhancement sequence probably because
of its detailed morphological and hemodynamic information;
however, dynamic contrast-enhanced MRI was less significant
than T2W-STIR to distinguish between PTs and FAs in
our study. The echo time of T2W-STIR is relatively long,
which offers a higher signal-to-noise ratio, spatial resolution,
and soft tissue contrast of breast PTs and FAs. Hence, we
hypothesized that texture analysis based on these T2W-STIR
images might reveal more subtle alterations in the tumor
microenvironment. Textural features extracted from T2W-STIR
reflect more differences between PTs and FAs, by capturing the
intra-tumoral heterogeneity.

In our study, mean lesion sizes were >3 cm for both PT and
FA. With lesion sizes >3 cm, it would be advisable that all these
lesions should be resected anyway (8), but they require different
surgical procedures. FAs need only enucleation, whereas both
benign and malignant PTs require wide local excision with a
margin of at least 1 cm (10, 11) because the high recurrence rate
in patients with resection margins of <1 cm around the primary
tumor (10, 13). A combination of CCMF with texture features on
T2W-STIR can provide accurate preoperative diagnosis for these

cases with mean sizes >3 cm, which allows appropriate clinical
strategy and avoidance of operative complications resulting from
inadequate excision or surgical overtreatment.

There were several limitations in our study. First, some of
the MRI images were collected after fine needle aspiration of the
primary tumor, and thus the hemorrhage or edema caused by the
biopsy could have potentially affected feature calculation. Second,
we did not explore differences among PTs of all the histologic
grading due to the lack of a sufficient number of borderline
and malignant PTs. Third, little pathophysiological semantics of
the textural features are currently known. Additional work is
necessary to understand the underlying biology of these tumors
evaluated by texture analysis. Last, as a retrospective study
with a small sample size of 84 cases, inherent variations and
biases may have influenced the results. Further validation with
a larger dataset from different centers and scanners should be
strongly considered.

In conclusion, textural features extracted from T2W-STIR
showed better diagnostic performance than CCMF. In addition,
a combination of CCMF with texture features on T2W-STIR
can reflect better diagnostic performance than CCMF or texture
features on T2W-STIR alone. Texture analysis provided a
novel approach to non-invasively and accurately distinguish
PTs from FAs. With ongoing validation, MRI-based texture
features may become a potential biomarker and provide a useful
medical decision tool in clinical trials in patients with breast
fibroepithelial neoplasms.
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Purpose: The aim of this study was to test whether radiomics-based machine learning

can enable the better differentiation between glioblastoma (GBM) and anaplastic

oligodendroglioma (AO).

Methods: This retrospective study involved 126 patients histologically diagnosed as

GBM (n = 76) or AO (n = 50) in our institution from January 2015 to December 2018.

A total number of 40 three-dimensional texture features were extracted from contrast-

enhanced T1-weighted images using LIFEx package. Six diagnostic models were

established with selection methods and classifiers. The optimal radiomics features were

separately selected into three datasets with three feature selection methods [distance

correlation, least absolute shrinkage and selection operator (LASSO), and gradient

boosting decision tree (GBDT)]. Then datasets were separately adopted into linear

discriminant analysis (LDA) and support vector machine (SVM) classifiers. Specificity,

sensitivity, accuracy, and area under curve (AUC) of each model were calculated to

evaluate their diagnostic performances.

Results: The diagnostic performance of machine learning models was superior to

human readers. Both classifiers showed promising ability in discrimination with AUC

more than 0.900 when combined with suitable feature selection method. For LDA-

based models, the AUC of models were 0.986, 0.994, and 0.970 in the testing group,

respectively. For the SVM-based models, the AUC of models were 0.923, 0.817, and

0.500 in the testing group, respectively. The over-fitting model was GBDT + SVM,

suggesting that this model was too volatile that unsuitable for classification.

Conclusion: This study indicates radiomics-based machine learning has the potential

to be utilized in clinically discriminating GBM from AO.

Keywords: machine learning, magnetic resonance imaging, glioblastoma, anaplastic oligodendroglioma, texture

analysis
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INTRODUCTION

High-grade gliomas, the most common malignant solidary brain
tumors in adults, are traditionally classified into anaplastic
oligodendroglioma (AO), anaplastic astrocytoma (AA), and
Glioblastoma (GBM) (1, 2). According to theWHO classification,
AO was ascribed in Grade III while GBM was ascribed
in Grade IV based on their histology characteristics. The
early diagnosis of GBM and AO is clinically challenging but
necessary due to their different treatment choice as well as
the therapeutic responsiveness and patient survival (3). As for
GBM extended resection is recommended to increase patient
survival, whereas for AO this strategy lacks solid evidence (4–6).
The treatment after surgery is also different as well. For GBM,
standardized therapy after surgery recommended by NCCN
guidelines is standard brain radiation therapy (RT)+ concurrent
temozolomide (TMZ) followed by adjuvant chemotherapy
(7). While for AO, it is recommended to use fractionated
external beam RT together with neoadjuvant or adjuvant PCV
(procarbazine, lomustine, and vincristine) regarding the specific
condition of each patient (7, 8).

A glioma-specific blood biomarker for glioma has not been
identified yet. Therefore, the radiology examination is critical
for tumor detection and lesion localization. Brain magnetic
resonance imaging (MRI) plays a key role in the preoperative
diagnostic of gliomas with high image resolution on tumor
tissue. However, in some cases, MRI may be unable to
provide enough information for differentiation between GBM
and AO. The MRI characteristics of two tumors are pretty
similar when GBM is characterized by perilesional vasogenic
edema and ring-like enhancement (9–11); while AO also shows
peritumoral edema and heterogeneous enhancement (11, 12).
In this regard, the urgency of new radiological method has
been highlighted.

Given that texture analysis on images provides a more
objective information beyond naked eye assessment, quantitative
descriptions of tumor characteristics could be an option for
clinical diagnosis (13–16). Moreover, with digital parameters,
new technology, such as machine learning, can be introduced
for further statistical analysis. Machine learning, a hotspot in the
field of artificial intelligence, enables the extraction of meaningful
patterns from massive datasets and thereby achieving precise
predictions with the model built (17). Machine learning has
demonstrated outstanding performance in previous research
including segmentation of the tumor, classification of certain
types of tumor, and prediction of survival or genotype (18–
23). Although the differentiation between GBM and AO is
of high clinical relevance, the machine learning approach has
never been explored yet. In this study, we investigated the
feasibility of radiomics-based machine learning to differentiate
GBM and AO.

Abbreviations: AO, anaplastic oligodendroglioma; AUC, area under curve;

GBDT, gradient boosting decision tree; GBM, glioblastoma; LASSO, least absolute

shrinkage and selection operator; LDA, linear discriminant analysis; MRI,

magnetic resonance imaging; SVM, support vector machine; T1C image, contrast-

enhanced T1-weighted image; VOI, volume of interest.

MATERIALS AND METHODS

Study Patients
In this retrospective single-center research, we viewed medical
records in neurosurgery department to initially search for
patients histologically diagnosed with GBM or AO from January
2015 to December 2018. The medical records were reviewed
by two researchers to enroll the potentially qualified patients
and to collect relevant clinical information for our research.
The inclusion criteria for patients were: (1) with pathological
diagnosis of GBM or AO in intraoperative freezing biopsy, and
(2) with available high-quality pre-treatmentMR scan performed
at our institution before surgical resection. Then the pre-
surgical MRI images of patients were exported from radiological
department though Picture Archiving and Communication
Systems (PACS) with uniform standard.

For patients before 2016, we made correction on their
pathological diagnoses based on the new World Health
Organization 2016 classification of gliomas by a senior
neuropathologist with working experience of 10 years (24). The
new standards required the presence of both IDH-mt and 1p19q
co-deletion for the diagnosis of AO, otherwise it could only
be regarded as NOS (Not Otherwise Specified) (24). Therefore,
we excluded patients based on new classification who were
with incomplete gene reports or with absent presence of both
gene expression.

Seventy-nine consecutive patients with GBM and 56
consecutive patients with AO fulfilled inclusion criteria in the
initial selection. Three patients with GBM and six patients with
AO were excluded in the following evaluation according to the
exclusion criteria, which were: (1) presence of motion artifacts
on MRI, (2) previous history of brain surgery or biopsy, (3)
previous history of intracranial diseases, such as subarachnoid
hemorrhage, cerebral infarction, etc. Based on this strategy, a
study cohort was built consisting of 76 GBM patients (mean age:
46.5 years) and 50 AO patients (mean age: 47.1 years).

All procedures performed in studies involving human
participants were in accordance with the ethical standards of
the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. The institutional review board
approved this retrospective study. The written informed consent
was obtained from participants enrolled in this study. The
written informed consent was necessary before radiological
examination (written informed consent for patients <16 years
old was signed by parents or guardians) for each patient. The
patients agreed to undertake examination when needed and were
informed that the statistics (including MR image), which could
be used for academic purpose in the future, would be stored
in our institutional database. The Ethics Committee of Sichuan
University and radiology department of our institution have
approved for statistics export and utilization for this study.

MR Image Acquisition
The current study focused on the conventional MR sequences.
The suitable sequence should be chosen first for two reasons,
that the descriptions on features boundary were vague in some
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FIGURE 1 | Two examples of contrast-enhanced MRI images. (A–C) Patient with GBM in (A) parasagittal, (B) axial, and (C) coronal view. (D–F) Patient with AO in (D)

parasagittal, (E) axial, and (F) coronal view. GBM, glioblastoma; AO, anaplastic oligodendroglioma.

sequences, and that features from all sequences would bring too
much burden on classifiers. After initial evaluation on images and
consultation with senior radiologists, the contrast-enhancedMRI
sequence was the only one used to perform texture analysis in
this study.

The MR scans were performed in the radiology department
of institution. The contrast-enhanced MRI sequences were
obtained with a 3.0T Siemens Trio Scanner using a MPRAGE
sequence with the following imaging parameters: TR/TE/TI =
1900/2.26/900ms, Flip angle = 9◦, slice thickness = 1mm,
axial FOV = 25.6 × 25.6 cm2 and data matrix = 256 ×

256. Intravenous injection of gadopentetate dimeglumine (0.1
mmol/Kg) was taken as contrast agent for patients. Multi-
directional data for contrast-enhanced MRI were collected
during the interval time of 90-250s. Figure 1 shows two examples
of contrast-enhanced MRI images.

Human Readers Assessment
To test whether machine learning could outperform human
readers, the diagnostic performance of them was compared.
A senior neurosurgeon and a senior radiologist independently
made diagnosis based on contrast-enhanced T1-weighted
images, which were presented randomly, regarding classification
as GBM or AO. Both readers were blinded to patient information

and pathology reports. Then, the accuracy, sensitivity, and
specificity were calculated for further analysis.

Texture Feature Extraction
The texture features of tumor tissue were extracted by two
researchers using the LIFEx package under the supervision of a
senior radiologist (25). Disagreements between researchers were
recorded and adjudicated by consulting senior radiologists and
neurosurgeons. The volume of interest (VOI) was drawn on T1C
images by contouring the outer margin of tumor tissues slice
by slice. The peritumoral edema band and adjacent structure
invasion were separated from the primary tumor with the
difference in contrast enhancement. For the lesions with multiple
(>2) enhancement foci, ROI was only performed on the biggest
one for those with clear boundary, and on tumor-confirmed area
for those with vague boundary. After the ROI delineation, texture
features were calculated automatically with default setting.

A total of 40 three-dimensional (3D) texture features
were calculated from two orders. In the first order, texture
features were calculated from shape histogram-based matrix and
histogram-based matrix. In the second or higher order, features
were calculated from gray-level co-occurrence matrix (GLCM),
gray-level zone lengthmatrix (GLZLM), neighborhood gray-level
dependence matrix (NGLDM), and gray-level run length matrix
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(GLRLM). To avoid the interference of the lower image matrix
resolution, texture analysis performed only on the VOIs with
more than 64 voxels by default setting. All original data about
extracted features were shown in Supplementary Material 1.

To ensure the validity and reproducibility of the extraction,
the procedure was performed twice, and the difference between
two sets was examined withManny-WhitneyU-test. We adjusted
the q < 0.01 as significant (before was p < 0.05) to avoid
the interference of false-positive errors rising from a large
number of texture features. The results suggested that none
of the features were significantly different, implying that the
results could be considered reliable and reproducible (shown in
Supplementary Material 2).

Classification Model Establishment
The purpose of machine learning was to train the models
to predict whether each tumor was a GBM or AO with
radiomics parameters extracted from the tumor tissue image.
However, feature selection was necessary to eliminate statistically
insignificant features and to avoid overfitting, which contributes
to decreased running time and increased accuracy of the
resulting models (26–28). In this study, we employed three
selection methods with different selection mechanisms: distance
correlation as representative of filter models, least absolute
shrinkage and selection operator (LASSO) and gradient boosting
decision tree (GBDT) as representatives of embedded models.
Then, three datasets were generated with three different selection
methods, which were each classified separately. The list of
features selected with three different methods are shown in
Supplementary Material 3, and the explanation of the features
are summarized in Supplementary Material 4.

The next step was to choose suitable classifiers. Since linear
classifier and non-linear classifier represent the state-of-the-
art in pattern recognition, we adopted linear discriminant
analysis (LDA) and support vector machine (SVM) classification
algorithms in the current study as representatives of two
classifier types (29). This way, overall six diagnostic models were
established based on three selection methods and two classifiers.

As for the algorithm deployment, the study cohort was
randomly divided into two subsets as training group and
validation group on a proportion of 4:1. When the training on
classifiers finished, the validation group was fed to evaluate the
diagnostic performance of the models. Sensitivity, specificity,
accuracy, and area under receiver operating characteristic curve
(AUC)were calculated for both the training and validation group.
To appraise the robustness of the methods, the procedure was
repeated for 100 cycles with different and independent case
assignments. The schematic workflow from image processing to
machine learning is shown in Figure 2.

RESULTS

Patient Characteristics
Among 126 patients were enrolled in the current study, 76
patients were diagnosed with GBM, and 50 patients with AO. The
sex ratio, mean age, and time between MR scan and pathological
diagnosis were summarized in Table 1. As for the human reader

assessment, the accuracy for the neurosurgeon was 63.49%, and
for the radiologist was 66.77%. Based on the results, a strong
tendency on misdiagnosis of AO could be observed.

Diagnostic Performance of Models
The classification models exhibited promising discriminative
ability when combined with suitable selectionmethods. For LDA-
based models, all three models presented feasible performance
with the AUC in the validation groups of 0.986, 0.994, and
0.970, respectively. For the SVM-based models, the models
showed feasible performance with the AUC in the training groups
of 0.923, 0.817, and 0.500. Overfitting was observed in one
SVM-based model (SVM + GBDT), suggesting this model was
volatile in application. The value of average sensitivity, specificity,
accuracy, and AUC of training group and testing group are
summarized in Table 2.

Figure 3 represents the two-dimensional projection of the
LDA-based models, illustrating that the GBM and AO formed
distinctive clusters in the space defined by discriminant functions
1 and 2 generated by LASSO + LDA. Figure 4 shows the
examples of performance of LDA-based models in terms of the
distribution of the canonical functions in the 100 independent
training cycles in the MRI analysis. A clear negative-values
shift of the LDA function can be observed for AO, and all
positive-values shift for GBM. ROCs of all models are shown in
Supplementary Material 5.

DISCUSSION

For patients with high-grade gliomas, accurate tumor
classification is clinically important because of its close relation
with treatment strategy as well as therapeutic responsiveness
and prognosis (3). In this study, we applied radiomics-based
machine learning to pre-surgically differentiate between GBM
and AO. Six models based on three selection methods (distance
correlation, LASSO, and GBDT) and two classifiers (LDA and
SVM) were built and evaluated. Our results demonstrated that
machine learning approaches can be utilized and are clearly
superior to human reader diagnosis.

Previous studies have explored the possibility of using
machine learning for classification of brain tumor types (18, 21,
30). In the setting of gliomas, several studies have proved the
utility of machine learning to differentiate between high-grade
and low-grade glioma with high accuracy (0.80 and 0.945) (31,
32). In the setting of differentiation among specific histological
subtypes of gliomas, a computer-aided diagnosis system was
proposed and evaluated in a previous study to distinguish
GBM from lower-grade gliomas, with positive results (33). A
multicenter investigation also confirmed the feasibility of using
3D texture analysis for pediatric glioma subtype classification
(medulloblastoma, pilocytic astrocytoma, and ependymoma)
with an overall accuracy of 0.87 (34). The current study
investigated a subject that has never been explored before,
that the feasibility of radiomics-based machine learning in
discriminating GBM from AO. Diagnostic performance of six
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FIGURE 2 | The schematic workflow from image processing to machine learning.

models was assessed in the current study built on three selection

methods (distance correlation, LASSO, and GBDT) coupled

with two classifiers (LDA and SVM). In general, both classifiers
showed high diagnostic performance with AUC more than 0.900

when combined with a suitable selection method. Nevertheless,
when comparing between two classifiers, LDA-based models

had slightly better diagnostic performance than that of SVM-
based models.

The diagnostical models were established based on two types

of classifies which differ in computing mechanism considering

the performance of a certain classifier may be various in the
settings of different tumors. LDA is a representative of the linear
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TABLE 1 | Demographics of patients.

Number Sex Age, mean

(range), y

Time between MR scan and

pathological diagnosis

Human reader 1

accuracy

Human reader 2

accuracy

GBM 76 47% male, 53% female 46.5 (15–80) 6.5 days 81.58% 85.53%

AO 50 50% male, 50% female 47.1 (16–76) 7.9 days 36.00% 38.00%

All patients 126 48% male, 52% female 46.8 (15–80) 7.1 days 63.49% 66.77%

GBM, glioblastoma; AO, anaplastic oligodendroglioma.

TABLE 2 | Results of the discriminative model in distinguishing GBM from AO in the training and validation group.

Classifier Selection Method Training group Validation group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

LDA Distance correlation 0.992 0.994 0.994 0.990 0.986 0.988 0.993 0.982

LASSO 0.997 0.997 0.993 0.998 0.994 0.992 0.980 0.995

GBDT 0.969 0.963 0.916 0.994 0.970 0.962 0.907 0.992

SVM Distance correlation 0.922 0.938 1.000 0.906 0.923 0.938 1.000 0.910

LASSO 0.831 0.868 0.972 0.826 0.817 0.831 0.935 0.798

GBDT (over-fitting) 1.000 1.000 1.000 1.000 0.500 0.623 0.935 0.798

GBM, glioblastoma; AO, anaplastic oligodendroglioma; AUC, area under curve; LDA, linear discriminant analysis; LASSO, least absolute shrinkage and selection operator; GBDT,

gradient boosting decision tree; SVM, support vector machine.

FIGURE 3 | Relationships between the canonical discriminant functions for GBM, AO and the group centroids. The two distinctive clusters formed by GBM and AO

suggest three LDA-based models have excellent discriminant ability for GBM and AO. GBM, glioblastoma; AO, anaplastic oligodendroglioma; LDA, linear discriminant

analysis; LASSO, least absolute shrinkage and selection operator; GBDT, gradient boosting decision tree; SVM, support vector machine. (A) Canonical discriminant

functions for Distance Correlation + LDA. (B) Canonical discriminant functions for LASSO + LDA. (C) Canonical discriminant functions for GBDT + LDA.

classifier which uses a straight line (a vector) to separates two
classes (GBM and AO in this case), while SVM, a representative
of the non-linear classifier, uses so-called support vectors to
define a polynomic hyperplane to separate classes (35). In the
settings of differentiating GBM andAO, our results showed LDA-
based models had slightly better diagnostic performance than
that of SVM-based models. However, the difference between
the models was too slight to select the superior one, specifically
given that all models investigated seemed to perform quite
comparably and variance in AUC might be partially attributed
due to the small statistical group. Therefore, limited by the small
study cohort and relatively complicated methods, our results
could only be regarded as hypothesis generation for future
larger studies.

The results also implied that feature selection methods have
impacts on diagnostic performance, especially for SVM-based

models. Current feature selection methods can be categorized
into three types depending on their selection mechanism: (1)
Filter models select features by ranking them based on certain
general characteristics such as correlation to remove irrelevant
features without using any machine-learning algorithms. (2)
Wrapper Models utilize a specific classifier to evaluate the quality
of selected features, and offer a simple and powerful way to
address the problem of feature selection, regardless of the chosen
learning machine. (3) Embedded models are similar to wrapper
models but embeds feature selection with classifier construction.
Suchmodels have the advantages of wrappermodels-they include
the interaction with the classification model, while embedded
models are far less computationally intensive than wrapper
models (28). In this study, we employed three selection methods
as representatives of different selection mechanisms: distance
correlation as representative of filter models, LASSO, and GBDT
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FIGURE 4 | Examples of performance of the LDA-based models in terms of the distribution of the canonical functions determined for the GBM and AO for two of the

100 independent training cycles in the MRI analysis. Minimal overlap is observed, suggesting high differential ability of the models. (A) Distance Correlation + LDA, (B)

LASSO + LDA, (C) GBDT + LDA. GBM, glioblastoma; AO, anaplastic oligodendroglioma; AUC, area under curve; LDA, linear discriminant analysis; LASSO, least

absolute shrinkage and selection operator; GBDT, gradient boosting decision tree.

as representatives of embedded models. There was a common set
of features selected by all three selection methods or two of the
methods, which suggested these features might be important for
the classification. For other features, it is hard to tell what extent
they influenced the algorithms, since the AUCs showed minimal
difference. However, even with feature selection, overfitting was

still observed in one model (GBDT + SVM). We are unable to
provide the exact reason but hypothesis that this model might be
overly complex to be used as a discriminative tool to differentiate
between GBM and AO.

Besides the comparison between machine learning models,
we also performed comparison between machine and human
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readers in this study. Two readers unaware of the information
on the exact number of patients were asked to make diagnosis
on GBM or AO based on MR images. The readers were
chosen from neurosurgery department or radiology department
to ensure the convincing and reliable conclusions. The results
were unexpected, considering there were only two options,
that the diagnostical accuracy on AO was even lower than
0.500. Specifically, AO was easily misdiagnosed as GBM in
human readers’ radiological assessments. The explanations
from the readers were the same that GBM and AO usually
represented similar patterns on MR images, and they prefer
to choose GBM rather than AO in these cases due to the
epidemiological reason that the incidence of GBM ismuch higher
than AO. As we mentioned before, the accurate pre-surgical
diagnosis for two types of tumor is clinical important given
the differences in surgical strategy. Therefore, it is reasonable
to draw the conclusion that the patients will benefit from
better treatment with machine learning clinical assistances.
Machine intelligence will urge the radiological practice to change
dramatically. However, we should also realize that the current
machine technology is far from replacing human readers, and a
combination of radiologist and machine might be the best choice
for the foreseeable future. Radiologists still lead the central role in
diagnosis while machine only act as assistance. This combination
virtually eliminates simple blunders, increases play level, and
provides better insight into the decision process (36).

Our study has several limitations. Firstly, it was a retrospective
single-center investigation, which may lead to a patient selection
bias and limited sample size. However, at present stage, it is
still unknowable how much data is required to establish a
predictive model, which may be answered through empirical
investigation. The number of patients enrolled in previous
studies focusing on similar topic ranged from 25 to 534 (31–
34, 37–39). Secondly, we did not perform subgroup analysis
regarding the IDH mutation status of GBM patients. Recent
studies reported machine-learning based MRI texture analysis
could be used as a new method for prediction of IDH
mutational status, which suggested that IDH mutational status
might have bearing on texture features (37, 39, 40). Thirdly,
we used conventional contrast-enhanced MRI images only
and did not use other sequences or advanced imaging tools
such as magnetic resonance spectroscopy (MRS). Contrast-
enhanced MRI sequence was chosen in this study for the clear
delineation of tumor boundaries. The combined use of other
sequences or imaging tools may enable better diagnostic ability.
Fourthly, models built in current study were not externally
validated. Since medical centers use different MRI scanners,
imaging parameters and contrast, radiomic features may change
accordingly. Therefore, the efficacy of machine learning-based
models in this study cannot be guaranteed for external datasets.
Nevertheless, we used the open-source package to perform the
image processing and texture analysis, which allows others to
reproduce the texture analysis with other datasets.

CONCLUSION

In conclusion, radiomics-based machine learning enables
differentiation between glioblastoma and anaplastic

oligodendroglioma. Our data indicate that the performance
of this approach is superior to a human reader. This method
may be a valuable addition to routine clinical practice to
improve GBM and AO differentiation. However, multicenter
investigations including larger patient cohorts and analysis
combined with other MRI sequences or imaging techniques are
warranted so that this non-invasive approach can be introduced
into routine clinical practice.
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Background: To evaluate the accuracy of radiomics algorithm based on original radio

frequency (ORF) signals for prospective prediction of microvascular invasion (MVI) in

hepatocellular carcinoma (HCC) lesions.

Methods: In this prospective study, we enrolled 42 inpatients diagnosed with HCC from

January 2018 to December 2018. All HCC lesions were proved by surgical resection

and histopathology results, including 21 lesions with MVI. Ultrasound ORF data and

grayscale ultrasound images of HCC lesions were collected before operation for further

radiomics analysis. Three ultrasound feature maps were calculated using signal analysis

and processing (SAP) technology in first feature extraction. The diagnostic accuracy

of model based on ORF signals was compared with the model based on grayscale

ultrasound images.

Results: A total of 1,050 radiomics features were extracted from ORF signals of each

HCC lesion. The performance of MVI prediction model based on ORF was better than

those based on grayscale ultrasound images. The best area under curve, accuracy,

sensitivity, and specificity of ultrasound radiomics in prediction of MVI were 95.01, 92.86,

85.71, and 100%, respectively.

Conclusions: Radiomics algorithm based on ultrasound ORF data combined with SAP

technology can effectively predict MVI, which has potential clinical application value for

non-invasively preoperative prediction of MVI in HCC patients.

Keywords: hepatocellular carcinoma, microvascular invasion, prediction, radiomics analysis, original radio

frequency signals

INTRODUCTION

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide and
the first leading cancer in East Asia (1). Resection is the most commonly used treatment for patients
with early stage HCC. However, recurrence within 2 years after surgery still occurs in 30–50% of
patients, which becomes the major cause of mortality (2). The early recurrence of HCC has been
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found to be associated with the microvascular invasion (MVI) of
tumor emboli in close proximity to the primary HCC (3). MVI
was proved to be an important factor not only for predicting
early recurrence but also for assessing long-term patient survival
(4). The presence of MVI is a histopathological indication of
aggressive behavior of HCC (5), especially in the first 2 years
after liver resection and transplantation (3). Both univariable
and multivariable analyses revealed that MVI was independently
associated with poorer overall survival rate and recurrence-free
survival rate after partial hepatectomy for HCC (6). Accurate
and successful preoperative assessment of MVI in patients with
HCC may be helpful to make appropriate clinical management
strategy, and finally, to improve survival rate of HCC patients.

At present, MVI could only be diagnosed by surgical
pathology after operations and was reportedly presented in
15.0–57.1% HCC surgical specimens (5, 7). Some studies have
made persistent endeavors toward the preoperative prediction of
MVI (8–10). Several radiological features on contrast-enhanced
magnetic resonance imaging (MRI) and computed tomography
(CT) images, such as tumor margin, internal arteries, and
hypodense halos, were found to be associated with MVI (11–
13). However, MR or CT imaging has limitations for predicting
the tumor MVI in HCC (14, 15). The reported sensitivity and
specificity of preoperative prediction of MVI in HCC lesions
based on contrast-enhanced CT were only 81.7 and 88.1%,
respectively (16). The results of MRI showed that the mismatch
between diffusion-weighted imaging (DWI) and T2-weighted
imaging of regions was an independent predictor of MVI, with
higher specificity (95.65%) but less sensitivity (18.18%) (14, 15).
In addition, it is difficult to predict MVI in small tumors; the
imaging predictors such as internal arteries and hypodense halos
were not frequently observed in small tumors (8). Up till now,
there is still debate about the best imaging predictive feature of
MVI in HCC (11–13).

Recently, radiomics analysis based on ultrasound imaging
(RA-USI) technology has achieved some good results in the
early diagnosis, prognosis, and prediction of diseases (17–19).
The accuracy of grading diagnosis of liver cirrhosis using RA-
USI was proved to be more accurate than that of traditional
ultrasound elastography technology (20). In our previous study,
we also confirmed that the multiparametric ultrasound model
based RA-USI achieved a good performance with mean AUC
values of 0.78–0.85 (20). However, current radiomics analysis

Abbreviations: ORF, Original radio frequency signals; MVI, Microvascular

invasion; HCC, Hepatocellular carcinoma; RA-ORF, Radiomics analysis method

based on ultrasound original radio frequency signal; ROI, Region of interest;

SR, Sparse representation; SVM, Support vector machine; LOOCV, Leave-one-

out cross-validation; DEA, Direct energy attenuation; OND, Omega of Nakagami

distribution; SDSD, Standard deviation of spectrum difference; SAP, Signal

analysis and processing; DM, Microvascular invasion prediction model based

on direct energy attenuation; DOM, Microvascular invasion prediction model

based on direct energy attenuation and omega of Nakagami distribution; DOSM,

Microvascular invasion prediction model based on direct energy attenuation,

omega of Nakagami distribution and standard deviation of spectrum difference;

AUC, Area under curve; MRI, Magnetic resonance imaging; CT, Computed

tomography; RA-USI, Radiomics analysis based on conventional ultrasound

image; ANOVA, Analysis of variance; ROC, Receiver operating characteristic

curve; PRC, Precision recall curve; DCA, Decision curve analysis.

was based on conventional ultrasound images; it faced some
limitations, such as influence of standardization of ultrasound
images, diversity of electronic characteristics caused by different
ultrasound equipment, and speckle noise of different ultrasound
equipment (19).

To improve the diagnosis and treatment efficiency, original
image with abundant signal information might be necessary.
Comparing with conventional ultrasound images, ultrasound
original radio frequency (ORF) signal is not affected by
postprocess such as brightness compensation, envelope
detection, depth compensation, or dynamic range adjustment
(21). ORF contains all the acoustic information, including
attenuation, scattering, sound speed, phase, and so on,
which might provide more abundant tissue information
than conventional ultrasound images (22). ORF signal would
only be related to the physical transmitting and receiving
mechanism of imaging equipment (23). Therefore, ORF signal
contains more abundant macro- and microtissue information
than conventional ultrasound images (24). It is expected to
obtain higher stability and consistency in further radiomics
analysis process.

In this study, we aimed to investigate the value of
radiomics algorithm based on ultrasound ORF data (RA-ORF)
in preoperative detection of MVI in HCC patients.

MATERIALS AND METHODS

Patients
From January 2018 to December 2018, patients preoperatively
diagnosed with HCC in a single institution were enrolled. The
inclusion criteria were (1) adult patients suspected to be primary
HCC by imaging methods and planned to accept surgery in our
hospital; (2) solitary tumor; (3) all patients accepted preoperative
grayscale ultrasound examinations within 1 week before surgery;
(4) HCC lesions located in the right lobe of liver; and (5)
all cases were confirmed by histopathological examination and
MVI evaluation.

Exclusion criteria included the following: (1) target HCC
lesion not clearly visible on the grayscale ultrasound scan; (2)
patients with preoperative biopsy or adjuvant therapy (radio
frequency therapy, chemotherapy, targeted therapy, etc.); (3)
incomplete clinical or histopathological data; and (4) patients
with HCC larger than 5 cm in maximum diameter, since such
tumors are known to have a greater risk of MVI.

Final Diagnosis
The final histopathological results including MVI grade were the
gold standard for our current study. According to the practice
guidelines of Chinese Society of Pathology, MVI was defined
based on the number of cells that can be found in the endothelial
vascular lumen under microscopy. MVI were divided into three
additional subgrades, including M0, no MVI; M1 (the low-risk
group), ≤5 MVI in adjacent liver tissue ≤1 cm away from the
tumor; and M2 (the high-risk group), >5 MVI or MVI in liver
tissue >1 cm away from the tumor (25).

Two pathologists with at least 10 years of experience in hepatic
pathology reviewed all the specimen slices. Both investigators
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were blinded to the clinical and imaging information of
the patients. In cases of discordance, a consensus reading
was performed.

Ultrasound Imaging Procedure and ORF
Data Acquisition
All patients fasted for at least 8 h before ultrasound examinations.
The grayscale ultrasound examinations of the hepatic lesions
were performed according to the standardized protocol.
Ultrasound examinations were performed by a single
experienced radiologist (more than 18 years’ experience of
liver ultrasound scan), who was aware of the patients’ clinical
history. All ultrasound examinations were performed with an
EPIQ-7 ultrasound system certificated with ORF data (Philips
Medical Company). A C5-1 curved transducer (1–5 MHz) was
used for data acquisition.

First, conventional grayscale ultrasound scan was performed.
After a clear ultrasound image of tumor was obtained, the
process of ORF data acquisition was started. We clicked the
“freeze” button to freeze the grayscale ultrasound images and to
save the current ORF data retrospectively. The corresponding
conventional grayscale ultrasound images were also captured to
build a comparison test for ultrasound ORF signals. Both of them
would be further used to establish MVI preoperative prediction
radiomics models.

ORF Data Processing and Radiomics
Analysis Procedure
Overall Design
RA-ORF method was applied for MVI preoperative prediction.
The radiomics analysis process consisted of the following steps:
(1) to obtain grayscale image andORF data of HCC lesions before
operation; (2) tumor segmentation on gray scale ultrasound
images of ORF data to obtain the ORF data from the region
of interest (ROI) in the tumor; (3) first feature extraction to
obtain three ultrasound feature maps of ORF data of ROI; (4)
second feature extraction to obtain radiomics features from
three ultrasound feature maps and related grayscale ultrasound
images; (5) feature selection based on sparse representation (SR)
algorithm (19); and (6) train support vector machine (SVM)
classifier with the features sorted in step (5) to achieve further
feature selection and dimension reduction, and predict MVI in
patients with HCC (Figure 1).

The radiomics analysis based on ultrasound ORF signal
(RA-ORF) method will be built on three ultrasound feature
parameters, including direct energy attenuation (DEA), omega
of Nakagami distribution (OND), and standard deviation
of spectrum difference (SDSD). Leave-one-outcross-validation
(LOOCV) was employed to validate the trained model.

Conventional grayscale ultrasound images will be used as
the control group. The radiomics analysis for conventional
ultrasound images processing included tumor segmentation,
feature extraction, feature selection, and classification
preoperative prediction.

All images and data were processed on MATLAB R2014b
(Math Works, Inv., Natick, MA, USA).

Tumor Segmentation
For conventional grayscale ultrasound images obtained from
the first step of “data acquisition,” the ROIs were marked
by an ultrasound doctor as four white forks points; then,
the grayscale data of the tumor could obtained from the
conventional grayscale ultrasound images by segmenting along
those markers (Figure 2A).

For ORF data matrix, they were drawn directly in columns
called scan-line way (Figure 2B). Data were covered with the
whole picture. It is different from Figure 2A, which had values
of 0 outside the sector area. Adding Hilbert transform and
logarithmic compression to Figure 2B, we could get the grayscale
ultrasound images in scan-line way, which clearly showed the
location of the tumor. Then, segmentation was processed to
obtain the location of ROI and get the ROI’s ORF data. The
shapes of ROI were stretched laterally at a shallow position.
ROI segmented by an ultrasound doctor was used to ensure the
accuracy of segmentation (Figure 2C).

First Feature Extraction
Feature extraction of multiparameter ultrasound features was
the key step of the RA-ORF method. Three kinds of
ultrasound feature parameters of ORF included time domain
feature, frequency domain feature, and statistical feature and
were applied.

In the first feature extraction, ORF data of ROI was used
to calculate three ultrasound feature parameters and further
form the corresponding three ultrasound feature maps. Three
ultrasound feature maps, including DEA feature map (time-
domain feature), SDSD feature map (frequency-domain feature),
and OND feature map (statistical feature), were established and
saved in ∗.bmp formats (Figure 3).

Second Feature Extraction
Second feature extraction were based on ROIs of conventional
grayscale ultrasound images and the ROIs of three ultrasound
feature maps obtained from ORF data. Each image can get 70
texture features: 16 features of histogram, 23 features based on
gray-level co-occurrence matrix (26), 13 features based on gray-
level run-length matrix (27), 13 features based on gray-level size-
zone matrix (28), and five features based on neighborhood gray-
tone difference matrix (29). Summary of the 70 texture features
was listed in the feature extraction section of the Appendix.
Then, the wavelet transformation to strip the image information
layer-upon-layer by high- and low-pass filters were performed.
Thereafter, four images of different frequency sub-bands and
another 280 texture features could be obtained. Finally, we
obtained 350 texture features from each grayscale ultrasound
image and ultrasound feature maps.

Feature Selection and Dimension
Reduction
Iterative SR method were used to select key features for the
classifier before classification to improve the stability of final
models (30, 31). The SR coefficients of each feature were
calculated by selecting part of the 42 samples in each iteration.
In the SR method, the threshold Tal is set to 0.004. Then, the
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FIGURE 1 | Overall design of radiomics analysis. The radiomics analysis process consisted of the following steps: (1) grayscale images and original radio frequency

(ORF) data of HCC lesions obtained; (2) tumor segmentation on grayscale ultrasound images for ORF data; (3) first feature extraction to obtain three ultrasound feature

maps of ORF data of region of interest (ROI); (4) second feature extraction to obtain radiomics features from three ultrasound feature maps and related grayscale

ultrasound images; (5) feature selection based on sparse representation (SR) algorithm; and (6) support vector machine (SVM) classifier trained with the selected

features for MVI prediction.

FIGURE 2 | Tumor segmentation. On grayscale ultrasound image, the region of interest (ROI) was manually marked by a doctor with four white forks points (A). Image

were segmented in scan-line imaging way for original radio frequency (ORF) data (B). After Hilbert transform and logarithmic compression of ORF signals, the

grayscale ultrasound images under the scan-line images could be obtained (C).

average SR coefficients of each feature were taken as the final
SR coefficients of each feature. The importance of the features
was quantified as SR coefficients. Finally, the features were sorted
based on the absolute value of the final SR coefficients, and
features that did not meet the threshold Tal condition were
remove to achieve feature dimensionality reduction. A detailed

description of SR method in feature selection is included in the
feature selection section of the Supplementary Appendix.

Classification and Prediction
SVM classifier was used in this section. Starting from number
1, the different numbers of features ranked by SR method
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FIGURE 3 | First feature extraction. The calculation principle of original radio frequency signal (ORF) signals from region of interest (ROI) in three ultrasound feature

maps, including direct energy attenuation (DEA) feature map, standard deviation of spectrum difference (SDSD) feature map, and omega of Nakagami distribution

(OND) feature map.

in Feature Selection and Dimension Reduction were put into
the SVM classifier to calculate AUC, accuracy, sensitivity, and
specificity ofMVI prediction in patients with HCC.We evaluated
the MVI prediction models through the above parameters. The
final feature dimensions of the MVI prediction models were the
number of features put into the SVM classifier with the best
performance in MVI prediction. This process effectively realized
dimension reduction of features. Feature selection is mainly
based on sparse representation, but the dimensions of features
are still high after sparse representation. When implementing the
classifier, the SVM uses the kernel function mapping technique
to obtain the same classification result as the high-dimensional
space in the low-dimensional space. In this sense, the SVM
implements the further selection of features.

Statistical Analysis
Descriptive statistics are summarized as the mean ± SD.
LOOCV statistical analysis method was used to evaluate the MVI
prediction models. A Tukey test, in conjunction with analysis of
variance (ANOVA), was used to test the signification between
any two pairs of the three ultrasound features. Receiver operating
characteristic curve (ROC), precision–recall curve (PRC), and
model decision curve analysis (DCA) were employed to show the

overall performance of the models. Other assessment indicator
included area under the ROC (AUC), accuracy, sensitivity,
and specificity.

RESULTS

Final Diagnosis of Patients
A total of 42 HCC patients (34 men and 8 women; age
range, 23–80 years; mean, 58.5 ± 11.9 years) were finally
included in our study. The surgical procedures comprised
segmentectomy (n = 12), right anterior sectionectomy (n =

19), and right posterior sectionectomy (n = 11). The mean
time between ultrasound scan and surgery was 6 days (range,
3–7 days).

Pathology data revealed the presence of MVI in 21 HCC
patients as grade 1 (M1), and 21 patients were diagnosed without
MVI as grade 0 (M0).

Multiparameter Ultrasound Feature
Extraction Results of ORF Signals
Multiple ultrasound parameters were extracted from ORF
signals, including DEA, OND, and SDSD. They played various
degrees of positive role in the MVI preoperative prediction.
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Compared with the M0 group, the M1 group showed larger
absolute value of DEA and more serious attenuation. ANOVA
analysis showed significant difference in DEA, OND, and SDSD
between patient with and without MVI (P < 0.05).

Second Feature Extraction and Feature
Selection Results
Four pictures were included in our second feature extraction
results, including grayscale ultrasound image, DEA feature map,
OND feature map, and SDSD feature map. The MVI prediction
model based on ultrasound grayscale image was referred to as
GM. The MVI prediction model based on DEA feature map was
referred to as DM. The MVI prediction model based on DEA
feature map and OND feature map was referred to as DOM. The
MVI prediction model based on DEA feature map, OND feature
map, and SDSD feature map was referred to as DOSM.

In this texture feature extraction, we extracted 350 texture
features from MVI prediction model of GM, 350 texture features
from DM, 700 texture features from DOM, and 1,050 texture

FIGURE 4 | Diagnostic performances of MVI prediction models with different

number of features. After feature selection, the performance of DOSM, DOM,

DM, and GM models were increased gradually and maintained at a relative

stable level. The changes in AUC with the increase in feature numbers were

helpful to find the optimal feature dimensions of each model. The final feature

dimensions of MVI prediction models of GM, DM, DOM, and DOSM were 6,

10, 19, and 11, respectively.

features from DOSM. The number of selected features of GM,
DM, DOM, and DOSMMVI prediction model based SR method
were 214, 253, 427, and 536, respectively.

Diagnostic Performances of Different MVI
Prediction Models
In SVM classifier to constructMVI predictionmodel, the training
process of the above-mentioned model achieved further feature
dimensionality reduction. Figure 4 used top 50 features after
feature selection to show the performance of models utilizing
different number of features. According to Figure 4, the final
feature dimensions ofMVI predictionmodels of GM,DM,DOM,
and DOSM were 6, 10, 19, and 11, respectively. The maximum
accuracy of the corresponding above four models by dimension
reduction were 83.33, 85.71, 88.1, and 92.86%.

Table 1 shows the performance parameters of the GM model
based on the conventional grayscale ultrasound images and
the other three models based on the ORF signals. GM based
on grayscale ultrasound image was used as a comparison test
to the three MVI prediction models based on ORF signals.
The AUC, accuracy, sensitivity, and specificity of GM were
the lowest among the four MVI prediction models of GM,
DM, DOM, and DOSM, respectively. Among the three ORF-
based prediction models, the accuracy, AUC, sensitivity, and
specificity of the DOSM were the highest. In the 11 selected
features of DOSM, 6 features were obtained from the DEA
ultrasound feature map, three features from the OND ultrasound
feature map, and two features from the SDSD ultrasound
feature map.

The AUC of DOSM (95.01%, 0.835–0.993) was the highest one
among the four prediction models. The AUC of GM (85.94%,
0.717–0.947) was the lowest (Figure 5).

Precision recall curves (PRC) of DOSM, DOM, DM, and GM
are shown in Figure 6. The results showed that DOSM based
on three ultrasound feature maps selected from ORF signals
had more advantage compared with the other three models in
predicting the MVI classification of HCC.

DISCUSSION

Previously, several studies proved that radiomics analysis
algorithm based on ultrasound images could be helpful
to extract massive features and to assist clinical decision-
making. The reported ultrasound radiomics analysis algorithm

TABLE 1 | Diagnostic performance of DOSM, DM, DOM, and GM for MVI classification.

Model type AUC (%, 95% CI) Accuracy (%) Sensitivity (%) Specificity (%)

DOSM 95.01 (0.835–0.993) 92.86 85.71 100

DOM 91.84 (0.792–0.980) 88.1 80.95 95.24

DM 90.93 (0.780–0.976) 85.71 80.95 90.48

GM 85.94 (0.717–0.947) 83.33 80.95 85.71

AUC, area under the receiver operating characteristic curve; DOSM, MVI prediction model based on DEA feature map, OND feature map and SDSD feature map of ORF signals; DM,

MVI prediction model based on DEA feature map; DOM, MVI prediction model based on DEA feature map and OND feature map; GM, MVI prediction model based on gray-scale

ultrasound image.
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FIGURE 5 | Diagnostic performances of different MVI prediction models. While

comparing the AUC curves between DOSM, DOM, DM, and GM models. The

AUC of DOSM (95.01%, 0.835–0.993) was the highest one among the DOSM,

DOM, DM, and GM models. The AUC of GM (85.94%, 0.717–0.947) was the

lowest. The AUC of DOSM is 0.95 ± 0.04, which is the highest one among the

four MVI prediction models.

FIGURE 6 | Precision-recall curves of models for prediction of MVI.

Precision–recall curves (PRC) of GM, DM, DOM, and DOSM models for

prediction of microvascular invasion (MVI). The DOSM based on three

ultrasound feature maps selected from radio frequency signals (ORF) signals

showed the best performance among GM, DM, DOM, and DOSM models in

predicting the MVI classification of HCC.

based on grayscale ultrasound images, ultrasound elastography
images, and contrast enhanced ultrasound images (19, 32–34).
With the development of radiomics analysis, a large number
of valuable features could be extracted from conventional

ultrasound images, including texture features, morphological
features, and some other specific features (35, 36). However,
conventional ultrasound images might be affected by post-
processing procedure; as a result, they will lose a lot of
useful information compared with ORF signals (21–24). The
radiomics analysis technology based on ORF data was applied
in our present study. We extracted three ultrasound feature
maps of ORF signal of HCC lesions, combining with the
iterative SR method and SVM classifiers to reduce the feature
dimensions and build MVI prediction model. In our results,
11 highly correlated radiomics features were finally obtained
to establish an effective MVI prediction model of DOSM.
DOSM prediction model based on RA-ORF showed superior
performance for MVI prediction, which make full use of the
advantages of signal processing technology. It could extract
more useful radiomics features and improve the accuracy of
MVI classification.

Previously, several studies tried to classify diseases by ORF
signal combined with radiomics analysis (34, 37) to prove that
time-domain features (38), statistical distribution features, and
frequency-domain features (39) of ultrasound ORF signals be
helpful in disease recognition (40). In signal processing, the
ultrasound feature parameters of DEA, SDSD, and OND, which
were obtained from ORF signals in time, frequency, and statistics
domains, always have clear and valuable physical significance.
DEA of time-domain characteristics of ORF signals represents
the direct energy attenuation in ROI. When the normal tissue
changes, its microstructure will change accordingly, which
leads to the change in attenuation. SDSD of frequency-domain
characteristics of ORF signals represents standard deviation of
spectrum difference, which is a common parameter to reflect
spectrum differences between tissues in spectrum analysis. OND
of statistical characteristics of ORF signals represents omega
of Nakagami distribution of ROI. The parameter values of
Nakagami distribution for the second harmonic envelope signals
from different degrees of non-linearity in tissue are significantly
different. According to this, we can quantitatively analyze the
difference in non-linear characteristics between normal and
diseased biological tissue (41). At present, advanced radiomics
method makes it possible to extract huge amounts of features
and to select valuable features from multiclass ultrasound
feature maps consisting of DEA, SDSD, and OND. In our
results, ROC and PRC curves both validated the reliability of
DOSM model in MVI prediction of HCC lesions. Our RA-
ORF method combined ORF-based signal processing technology
with radiomics analysis, which showed a good classification
performance on MVI prediction. Among the three ORF-based
prediction models, the accuracy, AUC, sensitivity, and specificity
were gradually improved. Some valuable radiomics features
were further extracted for MVI prediction. Meanwhile, the
performance of MVI prediction models in HCC lesions was
improved accordingly. The radiomics algorithm based on ORF
signal was superior to that based on conventional grayscale
ultrasound images.

Pathologically, MVI is defined as the presence of
micrometastatic HCC emboli within the vessels of the liver
(9). Relevant studies have shown that there is a correlation
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between tissue microstructures and spectrum feature (42).
Spectrum analysis based on ORF signals can obtain abundant
microstructural information, which might be completely lost
in conventional grayscale ultrasound images (21–24, 42).
Therefore, by extracting frequency-domain features and
combining radiomics analysis, different pathological tissues
could be analyzed. The presence of MVI in HCC lesions may
cause changes in tissue attenuation coefficient accordingly.
It is possible for us to use the time-domain features of DEA
calculated from radiomics analysis of ORF signals to predict
MVI in HCC lesions. The DOSM prediction model based
on RA-ORF in our study reached sensitivity of 85.71%,
specificity of 100%, and AUC of 95.01%. It was proved to be
superior to DOM, DM, and GM models. Our initial results
showed that the AUC of the DM model based on RA-ORF,
which uses time-domain features of DEA, was better than
the GM model based on RA-USI with conventional grayscale
ultrasound images.

Our study has several limitations: the patient number is
relatively limited; only three ultrasound parameters of DEA,
OND, and SDSD based on ORF signals were included. The
stability evaluation of RA-ORF based radiomic analysis
would be further improved by multicenter studies in
the future.

CONCLUSION

In conclusion, radiomics algorithm based on RA-ORF and SAP
technology might provide useful information for preoperative
MVI prediction in HCC lesions. Depending on the unique
advantages of ultrasound imaging such as real-time imaging, low
cost, and no radiation exposure risk, it might be a promising
method in future clinical application.
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Purpose: To retrospectively identify the relationships between both CT morphological

features and histogram parameters with pulmonary metastasis in patients with

colorectal cancer (CRC) and compare the efficacy of single-slice and whole-lesion

histogram analysis.

Methods: Our study enrolled 196 CRC patients with pulmonary nodules (136 in the

training dataset and 60 in the validation dataset). Twenty morphological features of

contrast-enhanced chest CT were evaluated. The regions of interests were delineated

in single-slice and whole-tumor lesions, and 22 histogram parameters were extracted.

Stepwise logistic regression analyses were applied to choose the independent factors

of lung metastasis in the morphological features model, the single-slice histogram

model and whole-lesion histogram model. The areas under the curve (AUC) was

applied to quantify the predictive accuracy of each model. Finally, we built a

morphological-histogram nomogram for pulmonary metastasis prediction.

Results: The whole-lesion histogram analysis (AUC of 0.888 and 0.865 in

the training and validation datasets, respectively) outperformed the single-slice

histogram analysis (AUC of 0.872 and 0.819 in the training and validation datasets,

respectively) and the CT morphological features model (AUC of 0.869 and 0.845

in the training and validation datasets, respectively). The morphological-histogram

model, developed with significant morphological features and whole-lesion

histogram parameters, achieved favorable discrimination in both the training

dataset (AUC = 0.919) and validation dataset (AUC = 0.895), and good calibration.
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Conclusions: CT morphological features in combination with whole-lesion histogram

parameters can be used to prognosticate pulmonary metastasis for patients with

colorectal cancer.

Keywords: colorectal cancer, pulmonary metastases, histogram, morphological, morphological features,

nomogram

INTRODUCTION

Colorectal cancer (CRC) is the third common cause of morbidity
and mortality worldwide (1, 2). Pulmonary is the most common
extra-abdominal site of metastasis for those with CRC, with
5–10% of CRC patients developing pulmonary metastasis
(PM) (3, 4). The 5-year survival rates after initial colorectal
surgery in patients with and without resection for pulmonary
metastasis are 68 and 13%, respectively (3). The strong survival
benefits of pulmonary metastasectomy make this treatment the
generally accepted treatment for patients to achieve long-term
survival when there is a definite and clear diagnosis (5, 6).
Furthermore, if pulmonary metastasis is diagnosed early and
resected aggressively, the survival rate is further improved (7).

However, with chest CT applied as part of preoperative
routine examination, an increasing number of CRC patients are
being diagnosed with indeterminate pulmonary nodules (IPNs)
of unknown nature (8). The reported incidence of IPNs in CRC
patients is 25–45.5% (8–10). Further diagnostic tests can also be
problematic as nodules <10mm in diameter may fall below the
threshold of detection for positron emission tomography (PET)
(11), and fine-needle aspiration cytology may not be feasible for
thoracoscopic localization (12). Therefore, in CRC patients with
IPNs, the accurate diagnosis of metastatic disease at an early and
surgically treatable stage remains a challenge.

Though early-stage metastatic nodules and benign
lesions have similar appearance in images, the importance
of morphology should not be underestimated (13). CT imaging
allows detailed observation of the morphological features of
nodules and lesions, such as their internal density, shape,
margin, and other typical characteristics. In recent years,
texture analysis has emerged as a valuable methodology for
facilitating diagnosis through the deep mining of information
from medical images (14, 15). It has achieved great utility
in evaluating many kinds of pulmonary diseases, including
pulmonary embolisms (16), interstitial lung disease (17), and
pulmonary nodules (18, 19). By extracting features of subtle
pixel distributions and spatial variations of the gray levels of
lesions that are imperceptible to the naked eye, texture analysis
provides a complementary method for evaluating subjective and
megascopic morphological features.

To date, studies concentrating on the morphological and
textural features of IPNs 5–20mm in diameter on contrast-
enhanced CT in CRC patients remain limited. This study sought
to determine the morphological characteristics and histogram
parameters derived from texture analysis for CRC patients with
IPNs and to construct a risk model with a combination of
independent predictors to facilitate the accurate diagnosis of
pulmonary metastasis.

MATERIALS AND METHODS

Patients
This retrospective analysis had obtained the ethical approval,
and the informed consent requirement was waived. Our study
enrolled 196 consecutive colorectal cancer patients (88F/108M;
age range, 32–80 years; mean age, 58.49 ± 10.80 years) with
lung nodules admitted in our institution between January 2010
and December 2017. The inclusion criteria were as follows:
(i) colorectal cancer was histopathologically confirmed; (ii) at
least one lung nodule measuring 5–20mm detected by contrast-
enhanced chest CT examination; (iii) available pathology reports
with diagnosis of pulmonary metastasis or primary lung cancer
for the malignant nodules and at least 2 years follow-up for
the benign nodules; and (iv) complete medical history. The
exclusion protocol were as follows: (i) with pretreatment 6
months before initial CT examination (including chemotherapy
or pneumonectomy); (ii) obsolete nodules detected 6 months
before colorectal cancer was detected; (iii) obvious benign
nodules with typical imaging characteristics (such as cysts,
tuberculosis, or inflammatory nodules); and (iv) adjuvant therapy
(including radiation therapy or chemotherapy) applied for no-
progress lesions in the process of follow-up. When there are
multiple nodules, we choose the largest nodule for morphological
and radiomics analysis. Of the 196 people included in the study,
194 of them have been published in our previous research (20).

Nodules were divided into two groups: (i) a pathologically
confirmed lung metastasis group (95 PMs; 42F/53M; mean age,
57.46 ± 10.58 years), and (ii) a non-metastasis (NM) group
(101 NMs; 46F/55M; mean age, 59.47 ± 10.91 years), including
benign nodules (90 cases) with at least 2 years follow-up (88
cases) and pathology confirmation (2 cases) or primary lung
cancer confirmed by pathology (11 cases). We used a computer
algorithm to randomly divide the patients into a training dataset
and a validation dataset at the ratio of 7:3. Figure 1 shows the
process of patients’ recruitment.

CT Scanning Protocol
Chest CT examinations were performed at our institution with
the Sensation 64 scanner (Siemens Healthcare) or the Somatom
Definition AS scanner (Siemens Healthcare). The Contrast-
enhanced CT scan parameters were as follows: contrast medium,
inhexol; tube voltage, 120 kVp; tube current, 250–350mA; slice
thickness, 1.5mm; slice interval, 1.5mm; matrix, 512 × 512;
field of view (FOV), 35–50 cm; pitch, 1.078; reconstruction
algorithm, standard. The arterial phase of the target nodule which
was pathologically confirmed or under follow-up was selected
for reconstruction.
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FIGURE 1 | Flow chat of patients’ recruitment pathway.

CT Image Interpretation
The interpretations of CT features are listed in
Supplementary Table 1. The CT morphological features
were independently evaluated by two operators (SW and TH,
with 20 and 3 years of experience in chest CT, respectively).
In cases of disagreement, a third radiologist (TT, with 20 years
of experience in CT imaging) was consulted, and the majority
value was used. Mean values were calculated for continuous
variables. The CT images were read with both mediastinal and
lung window settings. All of the operators were blinded to the
clinical and histologic findings.

Histogram Analysis
Reconstructed images were transferred to the MIM software
(v6.6.3; MIM Software Inc.) for histogram analysis. For each
patient, regions of interest (ROIs) were first semi-automatically
contoured in the largest-cross sectional area of the tumor outline
and then manually delineated by an operator and verified by
an expert radiologist. Each ROI was propagated to include the
entire tumor volume in each consecutive slice using the same
contouring method. In the process of delineation, we excluded
the border of the lesion and any other irrelevant tissues or
regions, such as pleura, normal tissue, air, peripheral vessels, and
surrounding organs. Supplementary Figure 1 shows an example
of ROI delineation.

The histogram parameters were automatically measured by
the software using a volumetric approach on the ROI of
the nodule. Single-slice and whole-lesion histogram parameters
were extracted and analyzed. From each segmented tumor,

we extracted 11 single-slice histogram parameters and 11
whole-lesion histogram features. More information about the
methodology used to extract histogram features can be found in
Supplementary Material.

Statistical Analysis
R software (version 3.3) was applied for statistical analysis.
To measure the agreement of CT morphological features
between two readers, intraclass correlation coefficients (ICCs)
were calculated (poor: 0.00–0.20; fair: 0.21–0.40; moderate:
0.41–0.60; good: 0.61–0.80; excellent: 0.81–1.00). To compare
the proportional differences between the training dataset
and the validation dataset, chi-square tests were applied for
the categorical variables, and two-sample t-tests were used
for the continuous variables. To compare the differences
between the PM and NM group, chi-square and two-
sample t-tests were applied as appropriate for both the
training and validation datasets. Two-sided p < 0.05 was
considered significant.

Model Selection
The significant factors were introduced into the stepwise logistic
regression to select the independent features for the CT
morphological model, the single-slice histogram model and the
whole-lesion histogrammodel. The Akaike information criterion
(AIC) was employed as the stopping rule. The validation dataset
was used to test the diagnostic performance of the models by
applying the multivariable regression formula derived from the
training dataset to the patients of the validation dataset, and the
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TABLE 1 | Comparison of morphological features of lung metastasis (PM) and non- metastasis (NM) in the training and validation datasets.

Training dataset Validation dataset

Characteristics NM PM p NM PM p

Age 59.82 ± 10.530 58.17 ± 11.360 0.382 58.54 ± 12.188 56.06 ± 9.055 0.372

Gender 0.676 0.316

1 42 (57.5%) 34 (54.0%) 13 (46.4%) 19 (59.4%)

2 31 (42.5%) 29 (46.0%) 15 (53.6%) 13 (40.6%)

Lobe location 0.025* 0.507

1 12 (16.4%) 19 (30.2%) 7 (25.0%) 6 (18.8%)

2 12 (16.4%) 10 (15.9%) 4 (14.3%) 10 (31.3%)

3 23 (31.5%) 9 (14.3%) 8 (28.6%) 5 (15.6%)

4 12 (16.4%) 5 (7.9%) 1 (3.6%) 1 (3.1%)

5 14 (19.2%) 20 (31.7%) 8 (28.6%) 10 (31.3%)

Size category <0.001* 0.00% 0.00% 0.095

1 56 (76.7%) 22 (34.9%) 20 (71.4%) 14 (43.8%)

2 10 (13.7%) 24 (38.1%) 4 (14.3%) 10 (31.3%)

3 7 (9.6%) 17 (27.0%) 4 (14.3%) 8 (25.0%)

Long-axis diameter 8.988 ± 3.493 12.662 ± 4.200 <0.001* 9.221 ± 4.422 11.819 ± 4.180 0.023*

Short-axis diameter 5.825 ± 2.144 9.611 ± 9.253 0.001* 5.682 ± 2.031 8.184 ± 3.071 <0.001*

Density <0.001* 0.002*

1 12 (16.4%) 0 (0.0%) 6 (21.4%) 0 (0.0%)

2 15 (20.5%) 2 (3.2%) 6 (21.4%) 2 (6.3%)

3 46 (63.0%) 61 (96.8%) 16 (57.1%) 30 (93.8%)

Contour 0043* 0.011*

1 2 (2.7%) 10 (15.9%) 1 (3.6%) 1 (3.1%)

2 21 (28.8%) 20 (31.7%) 2 (7.1%) 8 (25.0%)

3 29 (39.7%) 19 (30.2%) 11 (39.3%) 19 (59.4%)

4 21 (28.8%) 14 (22.2%) 14 (50.0%) 4 (12.5%)

Border <0.001* <0.001*

1 28 (38.4%) 2 (3.2%) 13 (46.4%) 1 (3.1%)

2 24 (32.9%) 43 (68.3%) 10 (35.7%) 20 (62.5%)

3 21 (28.8%) 18 (28.6%) 5 (17.9%) 11 (34.4%)

Air bronchogram 0.032* 0.178

0 72 (98.6%) 57 (90.5%) 28 (100.0%) 30 (93.8%)

1 1 (1.4%) 6 (9.5%) 0 (0.0%) 2 (6.3%)

Lymphadenopathy 0.032* 0.369

0 72 (98.6%) 57 (90.5%) 27 (96.4%) 29 (90.6%)

1 1 (1.4%) 6 (9.5%) 1 (3.6%) 3 (9.4%)

Chi-square tests were used to compare the differences in categorical variables while a two-sample t-test was used to compare the differences in continuous variables.

NM, non-metastasis group; PM, lung metastasis group.

*p < 0.05.

probability of metastasis was calculated for each. The area under
the receiver characteristic curve (AUC) was calculated to quantify
the predictive accuracy of the three models in the training and
validation datasets. We also calculated the accuracy, sensitivity,
specificity, positive predictive value, and negative predictive value
for each model.

We compared the relative strengths of the single-slice
and whole-lesion histogram models and then used the more
efficient model in combination with the morphological
features to construct the morphological-histogram model. A
morphological-histogram nomogram was then constructed for
clinical application. A receiver operating characteristic (ROC)

curve was used to describe the discrimination abilities of the
nomogram. An AUC above 0.75 is considered as good (21).
Nomogram performance was graphically demonstrated by
calibration plots in both the training and validation datasets.
Finally, decision curve analysis (DCA) was applied to assess the
clinical usefulness of the nomogram.

RESULTS

Patient Characteristics
The patients characteristics and statistically significant
CT morphological features are shown in Table 1
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TABLE 2 | Comparison of single-slice and whole-lesion histogram parameters of PM and NM in the training and validation datasets.

Parameters Training dataset Validation dataset

NM PM p NM PM p

S-ASD −2.976 ± 15.859 −2.902 ± 8.077 0.973 −2.312 ± 9.593 0.490 ± 6.293 0.181

S-STD 161.602 ± 101.977 135.420 ± 60.213 0.076 129.270 ± 68.500 130.685 ± 59.258 0.932

S-Average ratio 0.428 ± 0.685 1.345 ± 1.414 <0.001* 0.523 ± 0.888 0.993 ± 0.887 0.045*

S-Mean −58.878 ± 340.285 −15.669 ± 330.362 0.456 −73.787 ± 164.636 −37.878 ± 88.316 0.289

S-Skewness 0.088 ± 1.089 −0.854 ± 0.816 <0.001* 0.231 ± 1.035 −0.871 ± 0.995 <0.001*

S-Kurtosis 0.987 ± 4.616 1.163 ± 3.397 0.802 1.364 ± 3.860 1.727 ± 5.520 0.772

S-Area 0.775 ± 0.357 1.236 ± 0.416 <0.001* 0.795 ± 0.419 1.128 ± 0.373 0.002*

S-Volume 0.428 ± 0.685 1.345 ± 1.414 <0.001* 0.523 ± 0.888 0.993 ± 0.887 0.045*

S-Median −50.810 ± 344.826 −73.250 ± 146.112 <0.001* −299.820 ± 296.139 −29.190 ± 114.492 <0.001*

S-Maximum 190.590 ± 450.767 156.170 ± 176.689 0.57 123.320 ± 600.592 197.130 ± 112.848 0.498

S-Minimum −58.970 ± 233.980 −69.970 ± 252.732 0.035* −623.040 ± 210.656 −532.810 ± 289.115 0.178

W-ASD 364.124 ± 909.629 218.649 ± 176.266 0.214 211.019 ± 314.358 204.203 ± 179.826 0.917

W-STD 161.978 ± 101.572 135.300 ± 60.134 0.07 128.909 ± 68.194 130.383 ± 59.421 0.929

W-Average ratio 0.960 ± 0.466 1.610 ± 0.522 <0.001* 0.960 ± 0.404 1.485 ± 0.450 <0.001*

W-Mean −39.095 ± 326.163 −99.504 ± 129.099 0.002* −292.437 ± 290.740 −56.853 ± 106.652 <0.001*

W-Skewness 0.064 ± 1.016 −0.851 ± 0.824 <0.001* 0.245 ± 1.041 −0.859 ± 1.008 <0.001*

W-Kurtosis 3.723 ± 4.279 4.185 ± 3.455 0.494 4.373 ± 3.957 4.713 ± 5.622 0.791

W-Area 86.586 ± 145.308 206.406 ± 221.798 <0.001* 93.797 ± 112.534 167.841 ± 189.459 0.076

W-Volume 134.501 ± 340.853 394.708 ± 510.214 0.001* 122.925 ± 184.577 301.584 ± 380.789 0.028*

W-Median −42.164 ± 337.581 −73.365 ± 146.188 <0.001* −299.839 ± 295.991 −29.359 ± 114.730 <0.001*

W-Maximum 188.810 ± 450.066 156.140 ± 176.460 0.589 138.640 ± 586.255 195.940 ± 110.947 0.59

W-Minimum −18.330 ± 250.784 −57.700 ± 263.027 0.172 −613.680 ± 225.487 −505.530 ± 311.857 0.134

ASD, Average standard deviation ratio; STD, Standard deviation.

S-, single-slice histogram parameters; W-, whole-lesion histogram parameters. A two-sample t-test was used to compare the differences of those parameters.

*p < 0.05.

(Supplementary Table 3 contains complete morphological
features comparison), and the histogram parameters are
presented in Table 2. There were no significant differences
between the training and validation datasets except in pleural
attachment (Supplementary Table 2). The agreement between
the two operators was excellent for most characteristics and good
for several features (Supplementary Table 4).

Significant Morphological Features and
Histogram Parameters
Regarding the CT morphological features, the chi-square tests
and t-tests revealed that nine CT features were associated with
lung metastasis, including lobe location (p= 0.025), size category
(p < 0.001), long-axis diameter (p < 0.001), short-axis diameter
(p = 0.001), density (p < 0.001), contour (p = 0.043), border (p
< 0.001), air bronchogram (p = 0.032), and lymphadenopathy
(p = 0.032). After stepwise logistic analysis, long-axis diameter
(OR = 1.360, 95%CI: 1.198–1.544, P < 0.001), density (OR =

11.166, 95%CI: 2.721–45.815, P < 0.001) and contour (OR =

0.317, 95%CI: 0.177–0.569, P = 0.001) remained independent
predictors in the CT morphological model, as shown in Table 3.

Regarding the single-slice histogram parameters (S- means
the parameters from the single-slice histogram analysis and W-
from the whole-slice histogram), t-tests revealed that the S-
average ratio (p < 0.001), S-skewness (p < 0.001), S-area (p <

0.001), S-volume (p < 0.001), S-median (p < 0.001), and S-
minimum (p = 0.035) were significant variables related to PM.

TABLE 3 | Comparison of the models by multivariate logistic regression analysis.

OR (95%CI) P AIC

CT morphological features 127.34

Long-axis diameter 1.360 (1.198–1.544) <0.001*

Density 11.166 (2.721–45.815) <0.001*

Contour 0.317 (0.177–0.569) 0.001*

Single-slice histogram 130.90

S-Average ratio 0.268 (0.111–0.642) 0.003*

S-Area 559.372 (42.344–7389.333) <0.001*

S-Median 1.004 (1.002–1.005) <0.001*

Whole-lesion histogram 130.25

W-Average ratio 12.764 (4.653–35.018) <0.001*

W-Mean 0.977 (0.961–0.994) 0.004*

W-Median 1.024 (1.008–1.041) 0.009*

Morphological-histogram 121.74

Density 5.434 (1.161–25.440) 0.032*

Contour 0.495 (0.286–0.858) 0.012*

W-Average ratio 9.727 (3.538–26.740) <0.001*

W-Mean 0.977 (0.959–0.995) 0.009*

W-Median 1.023 (1.006–1.042) 0.013*

OR, odds ratio; CI, confidence interval; AIC, Akaike information criterion.

*p < 0.05.

After stepwise logistic analysis, the S-average ratio (OR = 0.268,
95%CI: 0.111–0.642, P = 0.003), S-area (OR = 559.372, 95%CI:
42.344–7389.333, P< 0.001), and S-median (OR= 1.004, 95%CI:
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FIGURE 2 | Boxplot of the selected histogram parameters in the LM and NM group. (A–C) Boxplot of the S-Average ratio, S-Median, S-Area from the single-slice

histogram in the LM and NM group, respectively. (D–F) Boxplot of the W-Average ratio, W-Median, W-Mean from the whole-lesion histogram in the LM and NM

group, respectively.

1.002–1.005, P < 0.001) were selected as independent predictors
for the single-slice histogram model.

Regarding the whole-lesion histogram parameters, t-tests
revealed that the W-average ratio (p < 0.001), W-mean (p =

0.002), W-skewness (p < 0.001), W-area (p < 0.001), S-volume
(p= 0.001), W-median (p < 0.001), and S-minimum (p= 0.035)
were significant parameters associated with PM. After stepwise
logistic analysis, the W-average ratio (OR = 12.764, 95%CI:
4.653–35.018, P = 0.003), W-mean (OR = 0.977, 95%CI: 0.961–
0.994, P = 0.004), and S-median (OR = 1.024, 95%CI: 1.008–
1.041, P = 0.009) were selected as independent predictors for the
whole-lesion histogram model. Figure 2 shows the distributions
of the significant histogram parameters in the training and
validation datasets.

Comparison of Single-Slice and
Whole-Lesion Histogram Analyses
The whole-lesion histogram model (AIC = 130.25) had lower
AIC value than the single-slice model (AIC = 130.9) and
achieved better discrimination. It yielded an AUC of 0.888 for the
training dataset and of 0.865 for the validation dataset, exceeding
the AUC values of the single-slice model (AUC = 0.872 for the
training dataset and AUC= 0.819 for the validation dataset). The
ROC curves of the two models are presented in Figure 3.

Development and Validation of the
Morphological-Histogram Nomogram
We subjected the CT morphological features and the whole-
lesion histogram parameters to stepwise logistic regression
analysis. Density (OR = 5.434, 95%CI: 1.161–25.440, P =

0.032), contour (OR = 0.495, 95%CI: 0.286–0.858, P = 0.012),
the W-average ratio (OR = 9.727, 95%CI: 3.538–26.740, P <

0.001), W-mean (OR = 0.977, 95%CI: 0.959–0.995, P = 0.009),
and W-median (OR = 1.023, 95%CI: 1.006–1.042, P = 0.013)
were identified as independent risk factors in the model. The
integrated model also achieved the best performance among the
models, with an AUC of 0.919 (95%CI: 0.871–0.968, accuracy:
88.2%, sensitivity: 84.9%, specificity: 92.1%, PPV: 92.5%, NPV:
84.1%) for the training dataset and of 0.895 (95%CI: 0.813–
0.977, accuracy: 81.7%, sensitivity: 78.5%, specificity: 84.4%, PPV:
81.5%, NPV: 81.8%) for the validation dataset (Table 4). The
ROC curves of the models for both the training and validation
datasets are presented in Figure 3.

The morphological-histogram nomogram was successfully
constructed, with good discrimination, based on the
morphological-histogram model (Figure 4A). The calibration
plots also presented good accordance between the nomogram
prediction and actual outcome for PM and NM in both the
training and validation datasets (Figures 4B,C). The decision
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FIGURE 3 | (A,B) The ROC curves of the single-slice histogram model and whole-lesion histogram model in the training (A) and validation sets (B), respectively. (C,D)

The ROC curves of the CT morphological model, the whole-lesion histogram model and the integrated morphological-histogram model in the training (C) and

validation cohorts (D), respectively.

curve analysis demonstrated that given a threshold probability
ranging from 0 to 100%, the morphological-histogram model
was superior to the treat-all and treat-none schemes in predicting
lung metastasis (Figure 4D).

DISCUSSION

In the present study, we investigated the imaging characteristics
of IPNs 5–20mm in diameter on initial CT in CRC patients
and compared the predictive accuracy of whole-lesion and
single-slice histogram parameters. We then constructed a
morphological-histogram nomogram using a combination of
morphological features and whole-lesion histogram parameters
for IPNs. This nomogram may be clinically useful for
discriminating CRC patients who might benefit from early and

curable metastasectomy for metastatic lesions or an appropriate
surveillance program.

CT offers direct visualization of lesions and potentially allows
a detailed characterization of the morphologic extent of lesions.
The careful evaluation ofmorphologic features is an essential step
in pulmonary nodules assessment (13). Although several studies
(22–24) have sought to identify significant image features for
metastatic nodules, there is no consensus regarding the definition
of IPNs, which led to slight differences between our results and
previously published ones. In our study, we found that significant
morphological features associated with pulmonary metastasis
were long-axis diameter, density, and contour.

As reported by many other studies, nodule diameter is a
reliable indicator of malignant potential (22, 23, 25). We found
that solid nodules are more likely to be metastatic lesions.
As more than 95% of nodules that originate from colorectal
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TABLE 4 | Accuracy and predictive value between those models.

Training dataset AUC 95%CI Sensitivity Specificity Accuracy PPV NPV

CT morphological features 0.877 0.819–0.935 83.6% (61/73) 79.4% (50/63) 81.6% (111/136) 82.4% (61/74) 80.7% (50/62)

Single-slice histogram 0.872 0.813–0.931 86.3% (63/73) 76.2% (48/63) 81.6% (111/136) 80.8% (63/78) 82.8% (48/58)

Whole-lesion histogram 0.888 0.830–0.946 82.2% (60/73) 87.3% (55/63) 84.6% (115/136) 88.2% (60/68) 80.9% (55/68)

Morphological-histogram 0.919 0.871–0.968 84.9% (62/73) 92.1% (58/63) 88.2% (120/136) 92.5% (62/67) 84.1% (58/69)

Validation dataset AUC 95%CI Sensitivity Specificity Accuracy PPV NPV

CT morphological features 0.823 0.708–0.938 78.5% (22/28) 75% (24/32) 76.7% (46/60) 73.3% (22/30) 80% (24/30)

Single-slice histogram 0.819 0.702–0.936 75% (21/28) 71.9% (23/32) 73.3% (44/60) 70% (21/30) 76.7% (23/30)

Whole-lesion histogram 0.865 0.773–0.957 75% (21/28) 84.4% (27/32) 80% (48/60) 80.8% (21/26) 79.4% (27/34)

Morphological-histogram 0.895 0.813–0.977 78.5% (22/28) 84.4% (27/32) 81.7% (49/60) 81.5%(22/27) 81.8%(27/33)

CI, confidence interval; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.

*p < 0.05.

FIGURE 4 | (A) The developed morphological-histogram nomogram for predicting the probability of pulmonary metastases. By summing the scores of each point and

locating on the total score scale, the estimated probability of pulmonary metastases could be determined. (B,C) The Calibration curves for predicting pulmonary

metastases in the training and validation cohort. The y axis represents the actual rate of LM. The x axis represents the predicted probability of LM. The ideal line

represents a perfect prediction by an ideal model. The apparent line represents the performance of the nomogram model, of which a closer fit to the ideal line

represents a better prediction. (D) The decision curves analysis for the morphological-histogram nomogram. The red line represents the net benefit of

morphological-histogram model. Across the various threshold probabilities, the morphological-histogram curve showed great net benefit.

cancer are adenocarcinomas (4), metastatic lesions tend to
appear as solid pulmonary nodules (SPN) in CT scans, whereas
benign lesions, such as inflammation lesions, or organizing
pneumonia/fibrosis consistently present as patchy consolidations

or mixed-density regions surrounded by ground-glass opacity
(GGO) owing to inflammatory cell infiltration (26). Primary lung
cancer consistently evolves from pre-invasive lesions (AIS/AAH)
that manifested as pure GGO (27) at the early stage. A post-hoc
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analysis (24) found that a solid consistency and increasing size
were statistically associated with malignancy.

In addition, our study found that metastatic nodules tended
to be round or oval, consistent with previous research (28).
We speculate that as metastatic nodules often exhibit a largely
uniform growth rate and homogenous invasion in all directions,
these features contribute to a round or quasi-circular contour,
whereas non-metastatic lesions, including benign lesions and
primary lung cancer, have irregular shapes due to uneven growth
rates at various sites (26). Thus, short-interval CT follow-up is
highly recommended for IPNs larger than 5mm in diameter with
solid components and approximately regular margins detected
on preoperative chest CT.

In addition to the identification of morphological features,
the use of texture analysis is a strength of our study. Previous
studies have demonstrated that texture analysis can not only
distinguish malignant nodules from benign ones (18) but also
differentiate in situ and minimally invasive lung adenocarcinoma
subtypes (19). These studies have shown that texture parameters
can reveal the underlying histological changes in tissue below
the resolution of the given modality or protocol. In this study,
we found that the W-average ratio, W-mean, and W-median,
which represent the zone of CT attenuation within the ROI, were
substantially higher in the metastasis group than in the non-
metastasis group. Thus, short-interval CT follow-up is highly
recommended for IPNs larger than 5mm in diameter with
solid components and approximately regular margins detected
on preoperative chest CT. This speculation is also in line with
another finding of our study that vascular convergence was
more common and the enhancement degree was higher in the
metastasis group than in the non-metastasis group. However,
as texture analysis is a mathematical method, the biological
mechanisms underlying the textural features are complex and not
completely understood (29). In cases where vascular convergence
or the enhancement degree is insufficient to differentiate
metastatic lesions, the values from the CT attenuation zonemight
exhibit local variation and more sensitive preservation of spatial
information (30).

Another finding of our study was that the whole-lesion texture
analysis outperformed the single-slice analysis in evaluating
pulmonary nodules, consistent with a previous study (31).
Whole-lesion analysis may provide a more comprehensive
understanding of the stereo structure of the whole lesion
and thereby reflect the integral heterogeneity better than can
single-slice analysis. Despite the time-consuming process of the
contouring around the whole lesion, it seems more cost-efficient
to use this method as it provides improved prediction relative
to single-slice analysis and a more definite diagnosis, allowing
timely treatment and maximizing the benefits to the patient.

For clinical use, we constructed a risk stratification nomogram
for the clinician to predict the risk of PM for an individual
CRC patient. As the early and accurate diagnosis of pulmonary
metastasis has been recognized as one of themost important steps
in treating potential curable lesions with surgery, we propose
that patients with a high risk of PM be considered candidates
for thoracotomy for resectable lesions to enhance local control
and improve the survival rate. We also hope this model can

help low-risk patients avoid aggressive follow-up and reduce the
burden of radiation exposure. We believe that the clinical use
of the nomogram can contribute to reliable diagnoses and help
clinicians optimize therapeutic plans for IPNs at an early stage
after detection.

Our study has several limitations. First, as a retrospective
study, thin-slice contrast-enhanced CT images from our database
were used, which limited the number of cases for analysis.
And the inclusion and exclusion criteria also limits the
implementation of the study in clinical practice. Second, only
histogram parameters were extracted in this study. In our
previous research (20), 203 radiomic features, including first-
and second-order parameters, attained a prognostic value in
the differentiation of pulmonary metastasis with an AUC of
0.888, which is slightly higher than that obtained using the
histogram parameters (AUC = 0.887). However, the process of
extracting radiomic features through MATLAB is intricate and
demanding for radiologists and clinicians, which constrains its
clinical utilization. The volume histogram analysis performed
here allowed the simple, efficient, and automatic acquisition of
a density histogram and achieved an accuracy comparable to
that of the radiomics analysis. Thus, volume histogram analysis
may be more appropriate for imperative clinical decisions, and
radiomics analysis can be used as a supplementary method
when needed. Another limitation is that the development and
validation were performed in a single institution. External
validation andmulti-center clinical trials are therefore needed for
further generalization.

In conclusion, the results of our study demonstrated that
histogram parameters may serve as non-invasive imaging
biomarkers for differentiating pulmonary metastasis from non-
metastatic lesions. When complemented with morphological
features, the morphological-histogram nomogram can greatly
benefit the diagnosis of pulmonary metastasis in CRC patients.
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Objective: To develop and evaluate a diffusion-weighted imaging (DWI)-based radiomic

nomogram for lymph node metastasis (LNM) prediction in advanced gastric cancer

(AGC) patients.

Overall Study: This retrospective study was conducted with 146 consecutively

included pathologically confirmed AGC patients from two centers. All patients underwent

preoperative 3.0 T magnetic resonance imaging (MRI) examination. The dataset was

allocated to a training cohort (n = 71) and an internal validation cohort (n = 47) from

one center along with an external validation cohort (n = 28) from another. A summary

of 1,305 radiomic features were extracted per patient. The least absolute shrinkage

and selection operator (LASSO) logistic regression and learning vector quantization

(LVQ) methods with cross-validations were adopted to select significant features in a

radiomic signature. Combining the radiomic signature and independent clinical factors,

a radiomic nomogramwas established. TheMRI-reported N staging and theMRI-derived

model were built for comparison. Model performance was evaluated considering

receiver operating characteristic (ROC) analysis, calibration curves, and decision curve

analysis (DCA).

Results: A two-feature radiomic signature was found significantly associated with

LNM (p < 0.01, training and internal validation cohorts). A radiomic nomogram was

established by incorporating the clinical minimum apparent diffusion coefficient (ADC) and

MRI-reported N staging. The radiomic nomogram showed a favorable classification ability

with an area under ROC curve of 0.850 [95% confidence interval (CI), 0.758–0.942] in the

training cohort, which was then confirmed with an AUC of 0.857 (95% CI, 0.714–1.000)

in internal validation cohort and 0.878 (95% CI, 0.696–1.000) in external validation

cohort. Meanwhile, the specificity, sensitivity, and accuracy were 0.846, 0.853, and

0.851 in internal validation cohort, and 0.714, 0.952, and 0.893 in external validation

cohort, compensating for the MRI-reported N staging and MRI-derived model. DCA

demonstrated good clinical use of radiomic nomogram.
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Conclusions: This study put forward a DWI-based radiomic nomogram incorporating

the radiomic signature, minimum ADC, and MRI-reported N staging for individualized

preoperative detection of LNM in patients with AGC.

Keywords: lymph node metastasis, magnetic resonance imaging, diffusion-weighted imaging, advanced gastric

cancer, radiomics

INTRODUCTION

Gastric cancer is a common and debilitating disease negatively
impacting the physical and mental health of patients, worldwide.
The onset of early gastric cancer is concealed, and most of
them have become advanced gastric cancer (AGC) related
to poor prognosis when clinically discovered (1). Evidence
from studies shows that perioperative treatment of AGC
(neoadjuvant chemotherapy/radiotherapy and adjuvant
chemotherapy/radiotherapy) has been proven superior to
surgery alone in many Western countries. The Chinese
Society of Clinical Oncology also indicates that preoperative
chemotherapy can well-improve the tumor remission rate and
R0 resection rate with good safety in Asian countries based on
D2 lymphadenectomy studies (2). As a crucial factor affecting
the prognosis quality and survival of AGC patients, knowing the
lymph node metastasis (LNM) status in advance has potential
guiding significance for the decision making of therapeutic
strategies including neoadjuvant chemotherapy, surgery, or
intraoperative lymph node dissection (1–3). Morphological
changes of lymph node architecture have been regarded as
the reasonable and clinically acknowledged criteria for the
determination of LNM currently (3). However, these changes
do not correspond exactly to pathology. For example, small
lymph nodes have metastasized, while large lymph nodes may be
simply caused by inflammation (2, 4). Both errors offer a glimpse
into the potential pitfalls of current LNM analysis methods.
Therefore, a method allowing more accurate identification of
LNM status should be considered as an urgent issue for clinical
decision making.

Diffusion-weighted imaging (DWI) describes a magnetic
resonance imaging (MRI) sequence which analyzes the
Brownian movement of water molecules in vivo to determine
morphological and functional parameters (5). Currently, DWI
is a powerful modality to differentiate malignant and benign
legions with the assumption that malignant lesions generally
display higher cellularity. However, the correlation between
DWI signal and LNM is not completely uniform, so the current
accuracy of DWI-based analysis still falls below the clinical
requirement in most cases (6).

Radiomics is a burgeoning field which involves converting
imaging data into potential high-dimensional radiomic features

Abbreviations: ADC, apparent diffusion coefficient; AGC, advanced gastric

cancer; AUC, area under the curve; DCA, decision curve analysis; DWI, diffusion-

weighted imaging; ICC, intraclass correlation coefficient; LASSO, least absolute

shrinkage and selection operator; LNM, lymph node metastasis; LVQ, learning

vector quantization; MRI, magnetic resonance imaging; OOB, out-of-bag; ROC,

receiver operating characteristic; VOI, volume of interest.

through a large series of automatic feature extraction and
data characterization algorithms (7–9). Quantitative radiomic
feature analysis is now a widely recognized method in
capturing distinct phenotypic differences along with changes
in internal structure from a microscopic perspective (10). An
increasing number of high-quality datasets and advanced pattern
recognition algorithms have contributed to the rapid growth and
development of radiomics (11). Furthermore, previous studies
(5, 6, 9, 12) have indicated that certain quantitative radiomic
signature had a surprising correlation with the prediction and
evaluation of cancers. However, there is no article about DWI-
based radiomic models for LNM prediction in AGC yet. Thereby,
a combination of radiomics and DWI may provide a reliable
method of precision medicine for the individualized prediction
of LNM in patients with AGC.

OVERALL STUDY

Research Materials
Patients
Ethical approval for this retrospective study was granted
by the ethics committee of the First Affiliated Hospital of
Zhejiang Chinese Medical University and Hangzhou Hospital
of Traditional Chinese Medicine. We waived the requirement
for informed consent. This study consecutively enrolled 146
pathologically diagnosed AGC patients with total or partial
radical gastrectomy from February 2016 to December 2018.
Supplementary Figure 1 shows the detailed recruitment
diagram for study population from the two centers. The
inclusion and exclusion criteria are defined as follows.

The inclusion criteria were the following: (a) patients with
confirmed AGC according to the American Joint Committee on
Cancer staging manual (1), and (b) a standard 3.0 T MRI was
performed <2 weeks before surgical resection.

The exclusion criteria were the following: (a) patients
with combined malignant neoplasm, distant metastasis,
or preoperative therapy (radiotherapy, chemotherapy, or
chemoradiotherapy); (b) incomplete clinical information or
pathological information; (c) inflammatory diseases, including
infections, ischemic heart disease, hereditary gastric cancer,
collagen disease, and bowel perforation or obstruction; (d) the
total number of intraoperative lymph node dissections was <16;
and (e) low MRI resolution or small tumor lesion (<1 cm).

MRI Acquisition and Tumor Segmentation
All patients were given written informed consent before MRI
examinations. Patients attending the inspection fasted for at
least 8 h and drank 700–1,000ml warm water within 5min to
fill the stomach cavity. Each patient was asked to cooperate
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with the respiratory training before examination to ensure the
normal inspection operation and reduce motion artifacts. A full
diagnostic abdominal MRI protocol was executed. The MRI
scans, covering the entire stomach region from the diaphragmatic
dome to the level of the renal hilum, were performed during
a breath-hold, with the patient supine in all the phases.
All the patients underwent MRI scans successfully without
any discomfort.

The images were exported from the Institutional Picture
Archiving and Communication System (PACS, Carestream).
MRI was performed using a whole-body 3.0 T scanner (Discovery
750, GE Healthcare, Milwaukee, WI, USA). Eight-channel head
phased array coils and conventional sequences were used to
obtain all the sequences. The scanning parameters of Axial DWI
Shim are as follows: gradient factor b values are 0, 1,000 s/mm2,
matrix 128 × 130, TE = minimum, number of layers are 26
(maximum slices are 38), thickness of layer is 6.0mm, spacing
between layers is 2.0mm, NEX for T2 is 4.00.

Manual segmentation of the entire tumor volume of interest
(VOI) was conducted with ITK-SNAP software (version 3.6;
www.itksnap.org) on the axial DWI sequence. VOI included
the inner border of the lesion on whole axial slices and
avoided necrotic tissue and surrounding adipose tissue (5).
The T2-weighted images and contrast-enhanced T1-weighted
images were used as references for the VOI segmentation on
DWI sequence.

Three-dimensional volume images were delineated by two
radiologists (WC and XG, with 7 and 25 years of experience
in MRI abdominal diagnosis, respectively). They were both
blind to pathological information of patients. WC performed
tumor segmentation for all 146 patients and then repeated the
segmentation procedure after 2 weeks on 30 randomly selected
patients to test the intrareader consistency. XG only segmented
the above 30 cases to assess the interreader consistency of the
radiomic features.

Clinical Factors
Clinical factors for center 1 patients in this study are summarized
in Table 1, including age, sex, the primary site of the tumor,
tumor size, MRI-reported T staging, MRI-reported N staging,
pathological T staging, average apparent diffusion coefficient
(ADC) value, minimum ADC value, and combined markers
(CA19-9, CA72-4, and CEA). The clinical factors for center
2 patients are given in Supplementary Table 1. The detailed
grouping criteria are given as follows.

MRI-reported N staging
Patients were classified as N-positive if a regional lymph node
with a measurement of >8mm on its shortest axis was found,
or if a regional lymph node had a higher signal intensity
than muscle. The absence of enlarged (>8mm) or hyperintense
lymph nodes was defined as N-negative, which was consistent
with the definition of radiological positive nodal status in most
previous studies.

Primary site of the tumor
In the coronal position, the stomach was divided into upper,
middle, and lower parts according to the tripartite connection of
the greater curvature and the lesser curvature.

MRI-reported T staging
“T4 staging” defines a tumor lesion that infiltrates the serous
layer, while T3 or T2 denotes a tumor that has not invaded the
serous layer.

Combined markers
A combined marker was defined as positive when either of the
three markers (CA19-9, CA72-4, and CEA) was positive, and all
maker results came from the examination 1 week before surgery.

Radiomic Analysis Procedures
A dataset of 118 AGC patients from center 1 were separated
into a training cohort (n = 71) and an internal validation cohort
(n = 47) at a ratio of 3:2 randomly. Patients from center 2
constituted an external validation cohort (n = 28). As shown
in Figure 1, the radiomics workflow consists of four steps,
including tumor masking, radiomic feature extraction, radiomic
signature construction, and radiomic nomogram development
and evaluation.

Radiomic Feature Extraction
Radiomic features in this study were extracted from tumor VOIs
on DWI images with algorithms implemented in Python 2.7
(https://www.python.org). The radiomic features (summarized
in Supplementary Table 2) were composed of three groups:
shape features, first-order features, and texture features.

To test the reproducibility and stability of extracted
features, intraclass correlation coefficients (ICCs) were calculated
(Supplementary Material 1.1). Features with ICC values >0.75
were reserved due to their good reproducibility. Then, all
radiomic features were normalized.

Feature Selection and Radiomic Signature

Construction
Radiomic feature selection as well as radiomic signature
construction were carried out in the training cohort. The least
absolute shrinkage and selection operator (LASSO) logistic
regression was conducted by 5-fold cross-validation for feature
reduction. Then, radiomic features were ranked according
to their importance to LMN status using learning vector
quantization (LVQ). LVQ is a kind of supervised neural network
algorithm using a small number of weighted vectors to represent
original data based on Euclidean distance measurements (13).
Comparative out-of-bag (OOB) bootstrapping estimates with
logistic regression models were performed 10 times for each
feature subset consisting of the top 5, 10, 15, 20, and 25 features
from LVQ, respectively. The average testing area under curve
(AUC) and average bias between training AUC and testing AUC
from 10 measurements were used as an approach to confirm
the number of features in the optimal feature subset. Backward
stepwise elimination with Akaike information criterion was
then applied. Finally, selected radiomic features weighted by
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TABLE 1 | Clinical and imaging characteristics of patients with AGC.

Clinical factors Training cohort (n = 71) p value Validation cohort (n = 47) p value

LNM (+) LNM (–) LNM (+) LNM (–)

Age, mean ± SD, years 64.7 ± 12.22 66.06 ± 11.06 0.7458 61.24 ± 13.67 67.77 ± 7.51 0.1566

Sex, no. (%) 0.1615 0.6921

Male 43 (81.1) 11 (61.1) 28 (82.4) 10 (76.9)

Female 10 (18.9) 7 (38.9) 6 (17.6) 3 (23.1)

Primary site, no. (%) 0.5205 0.1796

Upper 12 (22.6) 6 (33.3) 6 (17.6) 3 (23.1)

Middle 19 (35.8) 7 (38.9) 15 (44.1) 2 (15.4)

Under 22 (41.5) 5 (27.8) 13 (38.2) 8 (61.5)

Tumor size, no. (%) 0.1134 0.6771

<5.0 cm 21 (39.6) 11 (61.1) 15 (44.1) 7 (53.8)

≥5.0 cm 32 (60.4) 7 (38.9) 19 (55.9) 6 (46.2)

MRI-reported T staging, no. (%) 0.1726 0.4597

T2–3 17 (32.1) 9 (50.0) 10 (29.4) 6 (46.2)

T4 36 (67.9) 9 (50.0) 24 (70.6) 7 (53.8)

MRI-reported N staging, no. (%) 0.0172* 0.0489

Positive 42 (79.2) 9 (50.0) 29 (85.3) 7 (53.8)

Negative 11 (20.8) 9 (50.0) 5 (14.7) 6 (46.2)

pT staging, no. (%) 0.0005* <0.0001*

T2–3 8 (15.1) 11 (61.1) 2 (5.9) 9 (69.2)

T4 45 (84.9) 7 (38.9) 32 (94.1) 4 (30.8)

Average ADC value, mean 1,419 (74.6) 1,387 (25.4) 0.9473 1,428 (72.3) 1,499 (27.7) 0.3788

Minimum ADC value, no. (%) 0.0312* 0.0095*

0 (<700) 7 (13.2) 5 (27.8) 1 (2.9) 4 (30.8)

1 (700–1,200) 36 (67.9) 6 (33.3) 26 (76.5) 5 (38.4)

2 (≥1,200) 10 (18.9) 7 (38.9) 7 (20.6) 4 (30.8)

Combined makers, no. (%) 0.2458 0.4146

Positive 29 (54.7) 7 (38.9) 14 (41.2) 3 (23.1)

Negative 24 (45.3) 11 (61.1) 20 (58.8) 10 (76.9)

Radiomic signature <0.0001* 0.0059*

Median 1.771 0.215 1.913 1.024

(Interquartile range) (1.136–2.495) (−0.258–0.981) (1.059–2.685) (0.251–1.461)

Radiomic nomogram <0.0001* <0.0001*

Median 2.073 0.245 2.273 0.452

(Interquartile range) (1.064–2.989) (−0.610–0.843) (1.868–2.892) (−0.047–0.957)

p values are calculated from univariate analysis between each clinical factor and corresponding LNM status. AGC, advanced gastric cancer; LNM, lymph node metastasis; MRI, magnetic

resonance imaging; pT staging, pathological T staging; ADC, apparent diffusion coefficient; SD, standard deviation; *p < 0.05.

corresponding logistic regression coefficients provided a linear
mathematical formula to calculate a radiomic signature.

Performance Evaluation of Radiomic Signature
Pearson correlation coefficients were calculated to verify definite
contribution of the radiomic signature in classifying LNM status
in the training and internal validation cohorts. Receiver operating
characteristic (ROC) curves and AUCs were used to evaluate
the performance of radiomic signature in the three cohorts.
Sensitivity, specificity, and accuracy results were also calculated.

Development of Radiomic Nomogram
Preoperative clinical factors shown in Table 1 were taken into
consideration to establish a more powerful predictive radiomic

nomogram. In univariate analysis for selecting significant clinical
factors in the training cohort, Mann-Whitney U-test was used
for numerical variables, and Chi-square test and fisher’s exact test
were applied for categorical features. Subsequently, multivariate
logistic regression was used to build a radiomic nomogram by
integrating radiomic signature and significant clinical factors.
The output of the radiomic nomogram is the probability of LNM.

Assessment of Radiomic Nomogram
The radiomic nomogram was assessed by ROC curves and
AUC values in the training, internal validation, and external
validation cohorts. Calibration curves as well as Hosmer-
Lemeshow tests were used to assess the fitting degree of
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FIGURE 1 | Radiomics workflow of this study. (A) Tumor masking of AGC patients based on DWI. (B) Radiomic feature extraction, quantifying tumor shape, intensity,

and texture. (C) Strategies for radiomic signature development. (D) Radiomic nomogram with evaluation of ROC, calibration curves, and DCA. AGC, advanced gastric

cancer; DWI, diffusion-weighted imaging; DCE-MRI, dynamic contrast enhanced-magnetic resonance imaging; T2WI, T2-weighted images; ICC, intraclass correlation

coefficient; LASSO, least absolute shrinkage and selection operator; LVQ, learning vector quantization; ROC, receiver operating characteristic; DCA, decision curve

analysis.

radiomic nomogram. An MRI-derived model constructed
by significant clinical factors and an MRI-reported N
staging scheme was developed for comparison. Sensitivity,
specificity, and accuracy results of comparative experiments were
also calculated.

Decision curve analysis (DCA) was carried out in the
internal validation cohort by quantifying the net benefits at

some threshold probabilities and determining clinical use of
radiomic nomogram.

Statistical Analysis
A two-sided p < 0.05 of every statistical test was deemed
significantly different, and all analyses were based on R language
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FIGURE 2 | (A) Twenty-nine features ranked in descending order of importance to LNM by LVQ. (B) OOB bootstrapping estimates with logistic regression of top 5,

10, 15, 20, and 25 features ranked by LVQ, respectively, confirming an optimal feature subset of five features. Average bias of AUC equals average training AUC minus

average testing AUC. LNM, lymph node metastasis; LVQ, learning vector quantization; OOB, out-of-bag; AUC, area under the curve.

(version 3.4.3; https://www.r-project.org). R packages used in our
work are described in Supplementary Material 1.2.

RESULTS

Clinical Factors
Baseline characteristics of patients from center 1 are shown
in Table 1. LNM positive patients covered 74.6% (53/71) and
72.3% (34/47) of the training and internal validation cohorts,
respectively, with no significant difference (p = 0.7804, Chi-
square test) in LNM status between the two cohorts. There
showed no significant statistical difference in sex (p = 0.5384),

age (p = 0.5039), and all the other clinical factors (p = 0.1202–
0.7747) between the two cohorts. LNM status had significant
associations with MRI-reported N staging (p = 0.0172) and
minimum ADC (p = 0.0312), while other clinical factors were
excluded during the univariate analysis.

Feature Selection and Radiomic Signature
Building
Among 1,305 original radiomic features per patient, 813
features were first selected after ICC analysis. Then, the
multivariate LASSO method indicated 29 potential features
(Supplementary Figures 2A,B). As shown in Figure 2, a logistic
regression model consisting of features ranking the top 5 in
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TABLE 2 | Performance evaluation of models in three cohorts.

Cohorts Models TP TN FN FP Sensitivity Specificity Accuracy AUC (95% CI)

Training

MRI-reported N staging 42 9 11 9 0.792 0.500 0.718 0.646 (0.515–0.777)

MRI-derived model 28 15 25 3 0.528 0.833 0.606 0.736 (0.602–0.871)

Radiomic signature 42 14 11 4 0.792 0.778 0.789 0.821 (0.720–0.922)

Radiomic nomogram 36 17 17 1 0.679 0.944 0.746 0.850 (0.758–0.942)

Internal validation

MRI-reported N staging 29 6 5 7 0.853 0.462 0.745 0.657 (0.504–0.811)

MRI-derived model 21 12 13 1 0.618 0.923 0.702 0.818 (0.688–0.948)

Radiomic signature 26 6 8 7 0.765 0.462 0.681 0.758 (0.591–0.925)

Radiomic nomogram 29 11 5 2 0.853 0.846 0.851 0.857 (0.714–1.000)

External validation

MRI-reported N staging 17 5 4 2 0.810 0.714 0.786 0.762 (0.562–0.962)

MRI-derived model 15 7 6 0 0.714 1.000 0.786 0.884 (0.765–1.000)

Radiomic signature 20 1 1 4 0.952 0.429 0.821 0.741 (0.513–0.971)

Radiomic nomogram 20 5 1 2 0.952 0.714 0.893 0.878 (0.696–1.000)

MRI, magnetic resonance imaging; TP, true positive; TN, true negative; FN, false negative; FP, false positive; AUC, area under the receiver operating characteristic curve; CI,

confidence interval.

LVQ method gained a higher average testing AUC (0.774) and
a smaller average bias between training AUC and testing AUC
(0.037). After backward stepwise selection, two key features
(square_glcm_Imc1, p = 0.0013; wavelet.LLH_glcm_Imc2, p
= 0.0062) remained and made up the radiomic signature.
Detailed explanations for the two radiomic features are given
in Supplementary Material 1.3. The formula for the radiomic
signature is given as below.

Radiomic signature = −1.3383× square_glcm

_Imc1− 1.0139× wavelet.LLH

_glcm_Imc2+ 1.5145

The Performance of Radiomic Signature
There was a significant correlation (Pearson’s r = 0.448, 0.432,
and 0.458) between the radiomic signature and LNM status
in the three cohorts. A significant difference (p < 0.0001) was
found in radiomic signature [median (interquartile range)]
between LNM and non-LNM groups in training cohort [1.771
(1.136–2.495) vs. 0.215 (−0.258–0.981), respectively]. This
difference was confirmed in the validation cohort [1.913 (1.059–
2.685) vs. 1.024 (0.251–1.461), p = 0.0059]. As estimated,
patients with LNM generally got a higher radiomic signature
score than those with non-LNM. The distinguishing ability of
radiomic signature in training cohort and internal validation
cohort was indicated with an AUC of 0.821 [95% confidence
interval (CI), 0.720–0.922] and 0.758 (95% CI, 0.591–0.925),
respectively. Furthermore, the AUC in external validation
cohort achieved 0.741 (95% CI, 0.513–0.971). Detailed
sensitivity, specificity, and accuracy results are presented
in Table 2. Their corresponding 95% CI are attached in
Supplementary Table 3.

Given the limited sample size, a 10-fold cross-validation in
the center 1 cohort was conducted to avoid overfitting. Results

TABLE 3 | Ten-fold cross-validation to build radiomic signature in center 1 cohort.

Index AUC Bias Number of features

Training Validation

1 0.841 0.556 0.285 7

2 0.795 0.700 0.095 2

3 0.796 0.833 −0.037 2

4 0.788 1.000 −0.212 2

5 0.802 0.833 −0.031 2

6 0.710 0.722 −0.012 2

7 0.745 0.533 0.212 2

8 0.868 0.611 0.257 5

9 0.866 0.800 0.066 5

10 0.773 0.875 −0.102 2

Average bias 0.798 0.746 0.052

Bias equals training AUC value minus validation AUC. Numbers of radiomic

features selected in each fold are given. AUC, area under the receiver operating

characteristic curve.

given in Table 3 indicated an average bias across 10-fold of
0.052 between training AUC values and validation AUC values.
In addition, feature selection was conducted in each fold. The
histogram in Supplementary Figure 3 summarized the counts
of selected feature’s appearance, showing that the two radiomic
features (square_glcm_Imc1, wavelet.LLH_glcm_Imc2) used in
our radiomic signature appeared most frequently and were the
most stable.

Development and Assessment of Radiomic
Nomogram
A radiomic nomogram combining the radiomic signature,
minimum ADC value, and MRI-reported N staging is shown
in Figure 3. The formula for the radiomic nomogram is shown

Frontiers in Oncology | www.frontiersin.org 7 November 2019 | Volume 9 | Article 1265141

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Radiomics for LNM in AGC

FIGURE 3 | A radiomic nomogram integrated radiomic signature, clinical minimum ADC value, and MRI-reported N staging. The value of each predictor can be

converted into a risk score according to the “Points.” After adding up the individual risk score of these predictors in “Total Points,” we can get the corresponding

prediction probability of LNM in “Risk of LNM” at the bottom. ADC, apparent diffusion coefficient; MRI, magnetic resonance imaging; LNM, lymph node metastasis.

FIGURE 4 | (A–C) Performance of radiomic nomogram, radiomic signature, and MRI-reported N staging scheme in the training, internal validation, and external

validation cohorts. (D–F) Delong tests for AUCs of four models in the three cohorts. Red box represents p < 0.05. “a”, MRI-reported N staging; “b”, MRI-derived

model; “c”, radiomic signature; “d”, radiomic nomogram; MRI, magnetic resonance imaging; AUC, area under the curve.

as below, where “IF(minimum ADC = 1)” represents 700 ≤

minimum ADC < 1,200, “IF(minimum ADC = 2)” means
minimum ADC ≥ 1,200, and “IF(MRI-reported N staging =

1)” represents positive MRI-reported N staging. MRI-derived
model was built by minimum ADC and MRI-reported
N staging.
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Radiomic nomogram = 0.8592× Radiomic signature

+ 1.5085× IF (minimum ADC = 1)

+ 0.5829× IF (minimum ADC = 2)

+ 1.0957× IF
(

MRI-reported N staging

= 1) − 1.5102

There was a significant correlation (Pearson’s r = 0.530, 0.602,
and 0.677) between radiomic nomogram and LNM status in the
three cohorts. ROC curves are given in Figures 4A–C. Sensitivity,
specificity, and accuracy results are presented in Table 2. In the
internal validation cohort, our radiomic nomogram showed good
discrimination performance of LNM status and surpassed the
routinely used MRI-reported N staging, reaching an AUC of
0.857 vs. 0.657, with an accuracy of 0.851 vs. 0.745, a specificity
of 0.846 vs. 0.462, and a same sensitivity of 0.853. Compared
with the MRI-derived model, our radiomic nomogram still
showed superior predictive ability with an AUC of 0.857 vs.
0.818, an accuracy of 0.851 vs. 0.702, and a sensitivity of
0.853 vs. 0.618, although falling behind a little in specificity.
In the external validation cohort, the radiomic nomogram also
outperformed MRI-reported N staging in AUC (0.878 vs. 0.762),
sensitivity (0.952 vs. 0.810), and accuracy (0.878 vs. 0.786).
Similarly, the radiomic nomogram could still compensate the
MRI-derived model for sensitivity and accuracy. Figures 4D–F

show the quantitative AUC comparisons of the four models with
Delong test.

As shown in Supplementary Figure 4, calibration curves
of the radiomic nomogram suggested an agreement between

FIGURE 5 | Decision curve analysis for radiomic nomogram, MRI-derived

model, and MRI-reported N staging in the internal validation cohort. Red line

represents radiomic nomogram. Green line represents MRI-derived model.

Blue line represents MRI-reported N staging. Gray line assumes all patients

have LNM. Black line assumes no patients have LNM. MRI, magnetic

resonance imaging; ADC, apparent diffusion coefficient; LNM, lymph node

metastasis.

model and actual outputs. Furthermore, DCA (Figure 5)
indicated that the radiomic nomogram added more benefit when
directing treatment decisions if the threshold probability
was set between 0.24 and 0.86 compared with treat-
none, treat-all, MRI-derived model, and MRI-reported N
staging scheme.

DISCUSSION

In this study, we established a radiomic nomogram which
incorporated the radiomic signature and clinical factors
including the minimum ADC value and MRI-reported N
staging for non-invasive prediction of LNM in AGC patients.
The radiomic nomogram showed better performance in
determining and evaluating preoperative LNM status than
clinical radiologists. The practical radiomic nomogram could
facilitate a more accurate and objective assessment of LNM
in AGC while providing personalized support for clinical
decision making.

In terms of machine learning radiomics, typical LASSO
method followed by OOB bootstrapping estimates of different
feature subsets defined by LVQ was adopted to select crucial
radiomic features in this study, which were later on fed
to the generally used logistic regression for model building.
Jiang’s study (4) analyzed the association between computed
tomography (CT)-based radiomic signature and LNM in gastric
cancer using LASSO logistic regression. Taking a step forward,
Wang’s study (8) used ICC for feature selection and random
forest algorithm to construct a radiomic signature. Upon
the consistence in feature selection and model building with
their studies, our radiomic models not only brought a novel
view of LVQ in radiomics methods but also achieved similar
model performance.

Radiomic features adopted in this study were both texture
features about informational measure of correlation between
local grayscale pixels calculated from gray level co-occurrence
matrix. Results of cross-validation showed their great stability.
Further analysis of these two features revealed that the radiomic
signature score increased as the values of square_glcm_Imc1 and
wavelet.LLH_glcm_Imc2 decreased according to the radiomic
signature formula, which represented the uneven texture features
of images and high heterogeneity of tumors. This suggested
that radiomic signature could reflect a preclinical potential
in establishing a connection between image information and
LNM status.

LNM is an intricate biological process in AGC, in which the
primary tumor lesions undoubtedly play an important role (14–
16). Jiang’s study (4) established a radiomic nomogram based
on CT images and clinicopathological findings to estimate the
LNM in patients with gastric cancer. However, the ROIs only
covering the single maximum level of the tumor lesion may
lead to incomplete radiomic features. Besides, some small lymph
nodes have metastasized, while large lymph nodes may be simply
caused by inflammation, so the judgment of CT-reported findings
could also bring some bias. Compared to CT images, MRI signal
variations are more visible to detect and diagnose qualitatively
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(17–19). However, cases need to be noted that nodes with a
diameter <8mm or no obvious signal changes were later found
to be metastatic nodes, while the opposite were found benign
(20, 21). The low specificity in radiological diagnosis of LNM
would preferentially overestimate the severity of disease and lead
to excessive medical treatment. Without taking sample bias into
account, a possible explanation was that while the tumor cells
had already invaded into lymph nodes, changes in morphology
and MRI signal were unlikely to present during the incubation
period (18–21). The results of the current study thus showed the
predictive power and potential for radiomics to reveal additional
information invisible to the naked eye.

The ADC value mainly reflects tumor cell signal as a
functional index that may provide an effective approach for
the judgment of malignancy clinically (18, 20). Previous studies
(3, 6, 19) have qualitatively studied the ADC value on the
target lymph nodes, revealing a great correlation between low
ADC value and metastatic nodes. Liu’s study (22) showed that
LNM had a correlation with ADC values of gastric cancer
tissue. Traditional cognition displayed a greater tendency for a
target node with a lower ADC to have greater malignancy (18).
However, previous research results did not mention whether
it was the average or the minimum ADC value, so many
articles adopted default average ADC values. However, tumor
heterogeneity should not only be expressed by a simple average
ADC value but also by minimum ADC values, which would
reflect the most heterogeneous ingredient in pathology type.
By studying subjects with a minimum ADC value <700 and
600 mm2/s in this dataset, 52.9% (9/17) and 100% (3/3) of
the cases were pathologically confirmed as a negative LNM,
respectively. A possible explanation for this result is that the
tumor cells have high malignancy and increased cell alignment
(23). Besides, unabsorbed hematoma may also lead to an
extrememinimumADC value. Even so, the nomogram indicated
improved discrimination for nodal assessment with a reported
accuracy of 85% compared to 75 and 50% for endoscopic
ultrasound and CT, respectively (24). This was an innovative
attempt in the image-data combination era in AGC, and further
study would improve upon the construction and development of
radiomic nomograms with increased sample sizes and upgraded
iterations of technological computer-aided algorithms (25).

Considering the close relationship between T staging and
the presence of peritoneal seeding (4, 17), we hypothesized a
connection between LNM and T staging. However, the actual
results showed no statistical significance (p = 0.1726). Some
tumor indicators and combined markers have been shown to
be associated with LNM in gastric cancer. However, the results
showed no significant correlation in this study (p = 0.2458). An
explanation for this phenomenon was that combined markers
were only divided into negative and positive results. Some
indicators only showed significance when they were many times
higher than the normal value (26).

The quality of the VOI could directly affect final experimental
results, as the VOI acquisition was the raw material of all
procedures (9). DWI sequence was utilized, as the gastric lesions
showed better contrast and clearer circumscription even if some
lesions were in high-grade T staging or exhibited invasive
growth (16). To avoid the influence of lymph node signals

and visual judgment errors, each modality was necessary to
combine multiple sequences as a reference to accurately judge
the profile of lesions (14, 16, 17). The shape of gastric tumors
was irregular in their appearance on cross-section due to the
congenital differences in anatomical location and morphology
(19). Hence, the VOI of AGC lesionsmay have some insufficiency
in terms of volume- and shape-related radiomic signature.

Despite the advantages offered by the approaches presented
herein, there are some limitations to be noted. The inherent
selection bias and an incomplete dataset are known issues of
retrospective studies. The robustness and reproducibility of the
radiomic models, although validated in an external cohort, still
need to be optimized using a larger sample size. Subsequent
studies should subdivide the N staging into more categories,
especially for N3a and N3b staging, which would be of great use
for clinical decision making (16, 27).

In conclusion, this study provided a radiomic nomogram
incorporating the radiomic signature, minimum ADC value,
and MRI-reported N staging, to establish an effective method
to improve the preoperative individualized predictive efficacy of
LNM in AGC patients conveniently and accurately.
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Purpose: The aim of this study was to investigate the value of radiomics analysis

of iodine-based material decomposition (MD) images with dual-energy computed

tomography (DECT) imaging for preoperatively predicting microsatellite instability (MSI)

status in colorectal cancer (CRC).

Methods: This study included 102 CRC patients proved by postoperative pathology,

and their MSI status was confirmed by immunohistochemistry staining. All patients

underwent preoperative DECT imaging scanned on either a Revolution CT or Discovery

CT 750HD scanner, and the iodine-based MD images in the venous phase were

reconstructed. The clinical, CT-reported, and radiomics features were obtained and

analyzed. Data from the Revolution CT scanner were used to establish a radiomics model

to predict MSI status (70% samples were randomly selected as the training set, and

the remaining samples were used to validate); and data from the Discovery CT 750HD

scanner were used to test the radiomics model. The stable radiomics features with

both inter-user and intra-user stability were selected for the next analysis. The feature

dimension reduction was performed by using Student’s t-test or Mann–Whitney U-test,

Spearman’s rank correlation test, min–max standardization, one-hot encoding, and least

absolute shrinkage and selection operator selection method. The multiparameter logistic

regression model was established to predict MSI status. The model performances

were evaluated: The discrimination performance was accessed by receiver operating

characteristic (ROC) curve analysis; the calibration performance was tested by calibration

curve accompanied by Hosmer–Lemeshow test; the clinical utility was assessed by

decision curve analysis.

Results: Nine top-ranked features were finally selected to construct the radiomics

model. In the training set, the area under the ROC curve (AUC) was 0.961 (accuracy:

0.875; sensitivity: 1.000; specificity: 0.812); in the validation set, the AUC was 0.918

(accuracy: 0.875; sensitivity: 0.875; specificity: 0.857). In the testing set, the diagnostic
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performance was slightly lower with AUC of 0.875 (accuracy: 0.788; sensitivity: 0.909;

specificity: 0.727). A nomogram based on clinical factors and radiomics score was

generated via the proposed logistic regression model. Good calibration and clinical utility

were observed using the calibration and decision curve analyses, respectively.

Conclusion: Radiomics analysis of iodine-based MD images with DECT imaging holds

great potential to predict MSI status in CRC patients.

Keywords: microsatellite instability, colorectal neoplasms, iodine-based material decomposition image,

radiomics, dual-energy computed tomography

INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer and
the second leading cause of cancer-related death worldwide
(1). The occurrence and development of CRC are accompanied
by a series of genetic abnormalities, of which microsatellite
instability (MSI) is an important pathway in carcinogenesis
(2). According to previous reports, even though MSI occurs in
only approximately 15% of CRCs, it has gained considerable
attention by clinicians owing to its significant value for CRC
prognosis and treatment (2, 3). Microsatellite stability (MSS)
status is maintained by the mismatch repair (MMR) genes,
which are applied to repair genetic sequences that have been
erroneous during replication in normal tissues. When MMR
system is impaired, the error microsatellite sequences will
accumulate, resulting in MSI and early onset of CRC (2).
Obtaining MSI status is necessary because the MSI CRC tissues
possess special biological behaviors, they are more likely to
have a better prognosis and benefit from immunotherapy,
and they may be resistant to fluorouracil chemotherapy (4).
However, the methods for assessing MSI status including
immunohistochemistry (IHC) and polymerase chain reaction
(PCR) are all based on pathological tissues obtained by invasive
methods. And these advanced biological tests have not been
widely generalized owing to the limitation of advanced medical
equipment in local institutions (5). Thus, development of non-
invasive and cost-effective method for predicting MSI status
could be meaningful for clinicians to obtain more diagnostic
clues and guide further treatment strategies.

Given the growing number of applications in clinical
diagnosis, dual-energy computed tomography (DECT) has
been considered as a milestone in CT imaging because
it can provide quantitative measurements to characterize
the lesions (6). DECT can generate accurate iodine-based
material decomposition (MD) images, which can reflect the
vascularization of various tissues via measuring the contrast
material (iodine) concentration (IC) (7–9). And the correlation

Abbreviations: AUC, area under the ROC curve; CRC, colorectal cancer;

DECT, dual-energy computed tomography; DICOM, digital imaging

data and communications in medicine; GLCM, gray level co-occurrence

matrix; GLZSM, grey-level zone size matrix; IC, iodine concentration; IHC,

immunohistochemistry; LASSO, least absolute shrinkage and selection operator;

MD, material decomposition; MMR, mismatch repair; MSI, microsatellite

instability; MSS, microsatellite stability; PCR, polymerase chain reaction; ROC,

receiver operating characteristic; ROI, region of interest.

between IC values and MSI status has been reported in previous
studies (10, 11). However, from the iodine-based MD images,
we can only routinely obtain the mean value of IC in lesions,
and more imaging characteristics such as heterogeneity remain
untapped. Radiomics analysis achieved the conversion of medical
images to high-dimensional mineable data to quantitatively and
comprehensively describe tissues’ characteristics from imaging
(12). Several scholars have reported that the radiomics features
extracted from CT images showed some value in predicting MSI
status in CRC patients; however, the diagnostic performance
was limited (13, 14). Accordingly, we have presumed that the
radiomics analysis of iodine-based MD images might serve as
a non-invasive and reproducible way to preoperatively assess
MSI status in CRC patients and set up a study to investigate its
diagnostic efficacy.

MATERIALS AND METHODS

Patient Population
Our institutional review board approved this retrospective study
with waiver of the informed consent. Patients examined in
our institution from January 2016 to March 2019 who met
the following criteria were included in our study. Inclusion
criteria are as follows: (1) underwent curative-intent surgical
resection and diagnosed as CRC by postoperative pathology;
(2) underwent abdominal enhanced DECT examination within
about 1 week before surgery; and (3) withMSI information tested
by IHC staining in pathological report. Exclusion criteria are (1)
with any local or systematic anticancer therapy (radiotherapy,
chemotherapy, and biotherapy) before CT imaging; (2) without
available digital imaging data and communications in medicine
(DICOM) files in our system; (3) without available or complete
clinical data; and (4) with invisible target lesion on CT images.
According to the outcomes of MSI testing in the pathological
report, we collected 653 CRC patients including 34 MSI CRC
patients (incidence rate of 5.2%) and 619 MSS CRC patients.
For further statistical analysis, 34 MSI CRC patients (23 scanned
on Revolution CT and 11 scanned on Discovery CT 750HD)
and 68 controls with MSS CRC (46 scanned on Revolution CT
and 22 scanned on Discovery CT 750HD) in a 1:2 ratio (15)
(randomly selected from 619 MSS CRC patients) were ultimately
included in our study (61 males and 41 females; age: 63.82
± 11.51 years; range 26–87 years). The flowchart of patient
selection process is shown in Figure 1. The demographics of
CRC patients is listed in Table 1. The clinical data of all CRC

Frontiers in Oncology | www.frontiersin.org 2 November 2019 | Volume 9 | Article 1250147

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wu et al. DECT Imaging for Predicting MSI

FIGURE 1 | Flowchart of patient selection process.

patients including age, gender, carcinoembryonic antigen (CEA)
(normal level, 0–5 U/ml), carbohydrate antigen 19-9 (CA19-
9) (normal level, 0–27 U/ml), alcohol history, smoking history,
hypertension history, diabetes history, and family history of
cancer were recorded. The included CRC patients were divided
into two independent cohorts: (1) primary cohort: CRC patients
examined on the Revolution CT scanner were used to establish
a radiomics model to predict MSI status (70% samples were
randomly selected as the training set, and the remaining samples
were used to validate); and (2) testing cohort: CRC patients
examined on the Discovery CT 750HD scanner were used to test
the predictive model.

Microsatellite Instability Status
Assessment
The MSI status was assessed by IHC staining of MMR
proteins (MLH1, MSH2, PMS2, and MSH6). IHC staining

was routinely performed based on postoperative tissues via
standard streptavidin biotin-peroxidase procedure. According to
the staining results of MMR proteins, patients were classified
into the MSI or MSS group. CRC tissues with at least one of
four negatively stained MMR proteins were defined as MSI CRC;
others with four positively stained proteins were defined as MSS
CRC (2).

Iodine-Based Material Decomposition
Image Acquisition and Analysis
The abdominal DECT scans were performed on a Revolution
CT scanner or Discovery CT 750HD scanner (GE Healthcare)
in supine position. The non-enhanced abdominal CT scan was
performed first with the conventional CT protocol of using
the tube voltage of 120 kVp. The contrast-enhanced CT scans
were performed using the dual-energy spectral CT scanning
mode using the following scan parameters: helical, rapid switch
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TABLE 1 | Demographics of CRC patients.

Characteristic Primary cohort

(Revolution CT)

(n = 69)

Validation cohort

(Discovery CT

750HD) (n = 33)

MSI

(n = 23)

MSS

(n = 46)

MSI

(n = 11)

MSS

(n = 22)

Age (years) (mean ±

SD)

60.22 ±

11.95

63.5 ±

10.96

61.18 ±

10.83

69.59 ±

11.01

Gender, n (%)

Male 12 (52.2) 28 (60.9) 7 (63.6) 14 (63.6)

Female 11 (47.8) 18 (39.1) 4 (36.4) 8 (36.4)

CEA, n (%)

Normal 17 (73.9) 31 (67.4) 7 (63.6) 9 (40.9)

Abnormal 6 (26.1) 15 (32.6) 4 (36.4) 13 (59.1)

CA19-9, n (%)

Normal 19 (82.6) 39 (84.8) 9 (81.8) 15 (68.2)

Abnormal 4 (17.4) 7 (15.2) 2 (18.2) 7 (31.8)

Alcohol history, n (%)

Yes 2 (8.7) 4 (8.7) 2 (18.2) 2 (9.1)

No 21 (91.3) 42 (91.3) 9 (81.8) 20 (90.9)

Smoking history, n (%)

Yes 1 (4.3) 8 (17.4) 2 (18.2) 2 (9.1)

No 22 (95.7) 38 (82.6) 9 (81.8) 20 (90.9)

Hypertension, n (%)

Yes 7 (30.4) 21 (45.7) 1 (9.1) 5 (22.7)

No 16 (69.6) 25 (54.3) 10 (90.9) 17 (77.3)

Diabetes, n (%)

Yes 3 (13) 8 (17.4) 1(9.1) 1 (4.5)

No 20 (87) 38 (82.6) 10 (90.9) 21 (95.5)

Family history of cancer, n (%)

Yes 2 (8.7) 1 (2.2) 2 (18.2) 0 (0)

No 21 (91.3) 45 (97.8) 9 (81.8) 22 (100)

CT-reported tumor size

(cm) (mean ± SD)

2.46 ±

1.41

1.83 ±

1.39

2.83 ±

1.76

2.11 ±

1.61

CT-reported tumor location, n (%)

Right colon 12 (52.2) 14 (30.4) 7 (63.6) 13 (59.1)

Left colon 9 (39.1) 26 (56.5) 2 (18.2) 6 (27.3)

Rectum 2 (8.7) 6 (13) 2 (18.2) 3 (13.6)

CT-reported serous invasion, n (%)

Yes 21 (91.3) 28 (60.9) 8 (72.7) 18 (81.8)

No 2 (8.7) 18 (39.1) 3 (27.3) 4 (18.2)

CT-reported lymph node invasion, n (%)

Yes 17 (73.9) 32 (69.6) 8 (72.7) 9 (40.9)

No 6 (26.1) 14 (30.4) 3 (27.3) 13 (59.1)

CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; CRC, colorectal

cancer; MSI, microsatellite instability; MSS, microsatellite stability.

between tube voltages of 80 and 140 kVp in 0.5ms; tube current,
230–445mA; detector width, 80mm; helical pitch, 0.992:1 on
the Revolution CT scanner and 1.375:1 on the Discovery CT
750HD scanner; rotation time, 0.6–0.8 s; slice thickness, 1.25mm;
and slice interval, 1.25mm. For the contrast-enhanced CT scans,
1.2 ml/kg of non-ionic contrast media iohexol (Omnipaque 300
mg/ml, GE Healthcare) was used. The contrast medium was

administered via the antecubital vein at an injection rate of
3 ml/s. The arterial phase, venous phase, and delayed phase
scans were obtained after 30, 60, and 120 s following the
administration of contrast agents. The CT scans covered the
abdomen and pelvis from the dome of diaphragm to pubic
symphysis. After CT scans, the iodine-based MD images in
the venous phase were reconstructed at 1.25-mm image slice
thickness and interval using the Gemstone Spectral Imaging
(GSI) software on an advanced workstation 4.6 (AW 4.6;
GE Healthcare).

Image analysis was performed by an abdominal radiologist
with 3 years of experience and independently verified by
another trained radiologist with 5 years of experience to
reduce possible bias. Their discrepant interpretations were
resolved via consultation. These observers were blinded to
all clinical and pathological information of CRC patients.
The following data extracted from CT images were analyzed
and recorded: (a) tumor size, defined as the maximum
axial diameter of tumors on images; (b) tumor location,
subclassified as right colon, left colon, and rectum; (c) CT-
reported serous invasion, defined as irregular projections
from the serosal surface, and/or clouding of the pericolic
fat, and/or loss of the normal fat planes, and/or thickened
contiguous fascial reflections; (d) CT-reported lymph
node invasion, defined as enlarged lymph node (short-axis
diameter > 1 cm), and/or clustered at least three lymph
nodes (16).

Tumor Segmentation and Radiomics
Feature Extraction
The ROI was placed by two experienced abdominal radiologists
independently. Radiologist 1 (with 5 years of experience)
performed the segmentation of all patients twice with a 6-
month interval. Radiologist 2 (with 3 years of experience)
performed the segmentation of all patients once. From the
iodine-based MD images of venous phase, the two radiologists
selected the slice with the largest axial diameter of CRC
tumor and its adjacent upper and lower slices. Then, they
manually outlined the boundary of the visible tumor on the
selected slices via an open-source software ITK-SNAP (version
3.6.0) (17). The ROIs were required to include the area of
necrosis and bleeding within the tumor and excluded perienteric
fat and intestinal contents. To correct for acquisition-related
differences of differing voxel resolutions in the two different
CT scanners, voxel dimensions (mm) of each iodine-based
MD image dataset were isotropically resampled to a common
voxel spacing 0.5 × 0.5 × 0.5 mm3 (x, y, z) via linear
interpolation algorithm (18, 19). Next, a total of 606 radiomics
features for each CRC patient were extracted via Artificial
Intelligent Kit (GEHealthcare) in concordance with the reference
manual by the “Image Biomarker Standardization Initiative.”
These features were divided into four groups: (1) first-order
histogram features (n = 42); (2) second-order texture features:
gray level co-occurrence matrix (GLCM) (n = 240), Haralick
features (n = 10); (3) grey-level zone size matrix (GLZSM)
(n = 11); and (4) Gaussian transform (n = 303). The inter-user
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variability for radiologist 1 and intra-user variability between
radiologist 1 and radiologist 2 in tumor segmentation were
analyzed via intraclass correlation coefficient (ICC) method
[type: single rater; definition: absolute agreement; model: inter-
user ICC: two-way random effects; intra-user ICC: two-way
mixed effects (20)]. Details of radiomics features are described
in Figure 2. The formulas of radiomics parameters are shown in
Supplementary I.

Feature Selection and Prediction Model
Building
The dimensionality reduction of all features including clinical,
CT-reported, and radiomics features was performed based on
training dataset for further analysis. First, the radiomics features
with both inter-user and intra-user stability (with ICC values
>0.90) were selected via ICC analysis. Second, the continuous
features with significant differences (p < 0.05) between MSI

and MSS groups were selected by Student’s t-test (for normally
distributed data) or Mann–Whitney U-test (for non-normally
distributed data). Then, the categorical features (gender, CEA,
CA19-9, alcohol history, smoking history, hypertension history,
diabetes history, family history of cancer, tumor location,
CT-reported serous invasion, and CT-reported lymph node
invasion) were encoded by using one-hot encoding. One-
hot encoding uses N-bit state registers to encode N status,
each of which has its own register bits, and at any time,
only one of them is valid. One-hot encoding can convert the
category variables into a form readily available to machine
learning algorithms (21). For example, the “CT-reported tumor
location” has three status, right colon, left colon, and rectum,
which were coded as “1, 2, 3” in our study first. Then
we used one-hot encoding method to encode right colon,
left colon, and rectum as 100, 010, 001, respectively. One-
hot encoding method can ensure that “1, 2, 3” represents

FIGURE 2 | Details of radiomics features: (1) first-order histogram features (n = 42); (2) second-order texture features: gray level co-occurrence matrix (GLCM)

(n = 240), Haralick features (n = 10); (3) grey-level zone size matrix (GLZSM) (n = 11); (4) Gaussian transform (n = 303).
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FIGURE 3 | Workflow of radiomics analysis: iodine-based MD imaging and segmentation; feature extraction, feature selection, model building, and model evaluation.

MD, material decomposition.

the tumor location instead of the true value of 1, 2, or 3.
Third, Spearman’s rank correlation test was performed for each
feature. Radiomics features with correlation coefficient≥0.9 were
selected into the following steps and then transferred with min–
max standardization, whereas all features were normalized to
a range of 0 to 1. Finally, the least absolute shrinkage and
selection operator (LASSO) selection method was further used
to identify the top-ranked and most valuable features to build the
predictive model.

The selected features were applied to construct
multiparameter logistic regression model to predict MSI
status. The 5-fold cross-validation technique was used for
model selection. The data in training set were divided into
five subsets equally. Then, four subsets were selected each
time to train, and the remaining one subset was used to test.
By changing the subtest set in turn, five loss function values
(L (w)) during the above five models would be obtained.
The average value of L (w) was calculated. When the average
L (w) reached a minimum value, the optimization of the
logistic regression model would be completed, and the final
model would be constructed. The details of L (w) are shown
in Supplementary II. A nomogram based on clinical factors
and radiomics score was generated via the proposed logistic
regression model. The probability of MSI status defined as a
nomogram score can be calculated for each patient by using
the developed nomogram. The data from the Revolution CT

equipment were used to establish and validate the radiomics
model, and the data from the Discovery CT 750HD equipment
were used to test the radiomics model.

Radiomics Model Evaluation
The discrimination performance was accessed by using receiver
operating characteristic (ROC) curve analysis. The area under
the ROC curve (AUC), accuracy, sensitivity, and specificity was
calculated. DeLong’s test was used to compare the statistically
difference between AUCs. The calibration performance was
tested by using the calibration curve accompanied by the
Hosmer–Lemeshow test (H-L test). The calibration curves
measure the consistency between the predicted MSI status
probability and the actual MSI status probability. The H-L test
assesses the goodness of fit of the prediction models. The clinical
utility of radiomics model was assessed by using decision curve
analysis. For decision curve, the horizontal axis indicates the
threshold probability with a range of 0.0 to 1.0. The vertical axis
indicates the clinical net benefit values. There are two reference
lines defined under the assumption that all patients are diagnosed
to be either MSI or MSS. A larger area under the decision
curve suggests a better clinical utility. All statistical analyses
were conducted with R software (version 3.6.0; https://www.
r-project.org/). The workflow of radiomics analysis is shown
in Figure 3.
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RESULTS

Inter-user and Intra-user Variabilities
The stable radiomics features (with ICC values >0.90) were as
follows: 503 features between the two sets of measurements for

FIGURE 4 | The heat map gives a good visual representation of the feature

correlation. The x axis and y axis indicate features. Color scale on the right

side displays the absolute value of the correlation coefficient (higher from 0 to

1, and from blue to yellow).

radiologist 1, 568 features between the first measurement of
radiologist 1 and radiologist 2, and 430 features between the
second measurement of radiologist 1 and radiologist 2. Finally,
429 features were considered stable with both inter-user and
intra-user stability. These 429 features obtained by radiologist 1
in the first measurement were used for the next analysis.

Feature Selection and Radiomics Model
Building
From a total of 429 radiomics features and 13 clinical
or CT-reported features, the nine top-ranked features
were finally selected for subsequent analysis: gender,
smoking, family history of cancer, MaxIntensity,
uniformity, GLCMEnergy_AllDirection_offset6_SD_Gaussian,
GLCMEnergy_angle90_offset8_Gaussian, GLCMEntropy_
AllDirection_offset8_Gaussian, and HaralickCorrelation_
AllDirection_offset8_SD_Gaussian. The correlation heat map
summarizes the correlations of features (Figure 4). Feature
selection using the LASSO algorithm is shown in Figure 5.
The nomogram based on clinical factors and radiomics score is
shown in Figure 6.

Rad − score =

−5.63e− 01 × MaxIntensity

−5.08e− 01 × uniformity

−1.76e− 02 × GLCMEnergy_AllDirection_offset6_SD_Gaussian

−8.25e− 02 × GLCMEnergy_angle90_offset8_Gaussian

−3.70e− 02 × GLCMEntropy_AllDirection_offset8_Gaussian

−6.30e− 01 × HaralickCorrelation_AllDirection_offset8_SD

_Gaussian

FIGURE 5 | Feature selection using the LASSO algorithm. (A) The LASSO tuning parameter (lambda,λ) is iteratively updated by the optimization theory, and the

optimal values of λ are indicated by the dotted vertical lines, a value λ of 0.0612 with log(λ) = −2.79 is chosen. (B) The LASSO algorithm performs the trend of the

coefficients in the feature selection process. A coefficient profile plot is generated by violating the log (λ) sequence. The parameter λ is optimized by a five-fold

cross-validation technique, and when the loss function reaches a minimum, 12 variables are selected. The 12 variables correspond to nine features including three

clinical features and six radiomics features. The vertical line indicates the coefficient size of each variable and the corresponding log(λ) value when the model is

optimal. LASSO, least absolute shrinkage and selection operator.
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FIGURE 6 | Nomogram based on clinical factors and radiomics score.

Radiomics Model Evaluation
ROC analysis was applied to evaluate themodel’s performance for
predicting MSI status. In the training set, AUC was 0.961 (95%CI
[0.861, 0.996]; accuracy: 0.875; sensitivity: 1.000; specificity:
0.812); in the validation set, AUC was 0.918 (95%CI [0.714,
0.992]; accuracy: 0.875; sensitivity: 0.875; specificity: 0.857); and
in the testing set, AUCwas 0.875 (95%CI [0.715, 0.964]; accuracy:
0.788; sensitivity: 0.909; specificity: 0.727) (Table 2). DeLong’s
test revealed that above AUCs had no significant difference,
which suggested that there was no overfitting among training,
validation, and testing sets: p= 0.535 (1 = 0.043, 95%CI [0.0416,
0.0894]) between the training and validation sets; p = 0.198
(1 = 0.085, 95%CI [0.0266, 0.1476]) between the training and
testing sets; and p = 0.631 (1 = 0.042, 95%CI [0.0224, 0.1492])
between the validation and testing sets. The ROC curves are
shown in Figure 7. Good calibrations of radiomics models for
predicting MSI status in training, validation, and testing sets
are shown in Figure 8. The H-L test was not significant (p >

0.05), demonstrating a good fit (training set: p= 0.462; validation
set: p = 0.785; testing set: p = 0.568). The decision curves for
radiomics models in training, validation, and testing sets (with
net benefit of 17.44, 15.40, and 13.43, respectively) are presented
in Figure 9.

DISCUSSION

In our study, we established a radiomics model based on iodine-
based MD images to predict MSI status in CRC patients before
surgery. We achieved a good diagnostic performance based on
data from the Revolution CT equipment in both the training set
(AUC, 0.961) and validation set (AUC, 0.918). And this radiomics
model was also suitable for the iodine-basedMD images acquired
on another CT equipment (Discovery CT 750HD) although with
slightly lower diagnostic performance (AUC, 0.875).

Iodine-based MD images can quantitatively reflect the
vascularization of tissues. A clear relationship between blood
supply and IC values calculated from iodine-based MD images
has been confirmed; the richer blood supply is accompanied

TABLE 2 | ROC analysis for predicting MSI status.

Revolution CT Discovery CT 750HD

Training set Validation set Testing set

AUC 0.961 0.918 0.875

95%CI [0.861, 0.996] [0.714, 0.992] [0.715, 0.964]

Accuracy 0.875 0.875 0.788

Sensitivity 1.000 0.875 0.909

Specificity 0.812 0.857 0.727

ROC, receiver operating characteristic; AUC, area under the ROC curve; CI, confidence

interval; MSI, microsatellite instability.

FIGURE 7 | ROC curves of the radiomics models in training, validation, and

testing sets. ROC, receiver operating characteristic.
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FIGURE 8 | Calibration curves for radiomics models in training (A), validation (B), and testing sets (C). The diagonal dashed reference line represents a perfect

estimated MSI status by an ideal model. Solid lines represent estimated MSI status of the model. Good alignment of diagonal dashed reference line and solid line

indicates a good performance. MSI, microsatellite instability.

by a higher IC value (8, 22, 23). Our previous study has found
that IC value of MSI CRC was significantly lower than that
of MSS CRC and demonstrated the clinical value of using the
IC values to distinguish MSI status with limited diagnostic
performance (10). The measurement of IC in the previous
study only reflected the average IC value in ROIs, and more
information (such as tumor heterogeneity) was not evaluated.
Therefore, radiomics approach, which can provide a wealth
of complementary information of the images, should further
extend our knowledge and improve the diagnosis (24–26). In
our study, six radiomics features were finally selected as the most
closely related features to the MSI status. For iodine-based MD
images, the MaxIntensity generally represents the most abundant
blood supply value within the predefined ROI. This may be
explained by the biological characteristics of MSI CRC with
less angiogenic phenotype confirmed by previous investigations
(11, 27). The uniformity is a measure of the sum of the squares of
each intensity value. From the perspective of image smoothness,
the higher the intensity value, the higher the uniformity of the
image. GLCMEnergy_AllDirection_offset6_SD_Gaussian
and GLCMEnergy_angle90_offset8_Gaussian describe
the uniformity of the intensity level distribution.
GLCMEntropy_AllDirection_offset8_Gaussian describes
the randomness of image values. It mainly calculates the
average amount of information to encode image values.
HaralickCorrelation_AllDirection_offset8_SD_Gaussian
measures the linear dependency of grey levels of neighboring
pixels; in other words, it measures the similarity of the grey
levels in neighboring pixels and tells how correlated a pixel is
to its neighbor over the whole image (28, 29). They have all
served as recognized parameters to reflect tumor heterogeneity.
We reviewed the biological differences between MSI and MSS
tumors and tried to explain the imaging heterogeneity observed
in this study. De Smedt et al. suggested that the morphological
heterogeneity was the most striking feature to distinguish MSI
from MSS CRC. Histologically, MSI CRC is often more inclined
to present with a mixed morphological patterns including

glandular, mucinous, and solid content, which caused the tumor
heterogeneity (30). In addition, the higher incidence of internal
heterogeneity in MSI CRC may also be explained by a higher
density of tumor-infiltrating lymphocytes and a lower cell
proliferation rate than MSS CRC (31, 32). Our results that the
imaging heterogeneity was a biomarker for MSI tumors were
consistent with those of previous studies (14). During radiomics
analysis, integrating diverse clinical features plays an important
role in improving the performance of the diagnostic model.
We recorded the clinical features and CT reported features,
which were discrete data except for age and tumor size. We used
the one-hot encoding to process category variables, with the
main benefits of one-hot encoding as follows: (1) to solve the
problem that the classifier is not good at processing category
data; (2) to a certain extent also play a role in expanding features;
and (3) to choose the most representative new features. In our
study, we found that the gender, smoking, and family history
of cancer were closely related with the MSI status in CRC
patients, and further explorations were required based on larger
samples (13, 33).

Radiomics analysis is a promising method to unveil large
amount of tumor features hidden in medical images. However,
previous studies have reported that the repeatability of radiomics
features can be influenced by different CT scanners (34). Our
study included data from two different DECT scanners including
Revolution CT and Discovery CT 750HD. We first used the
data obtained from the Revolution CT scanner to establish a
model for preoperatively predicting MSI status; the AUCs of
training and validation sets were 0.961 and 0.918, respectively.
Subsequently, we analyzed whether this radiomics model was
suitable for another DECT scanner (Discovery CT 750HD), and
we found that the performance was good with AUC of 0.875.
Our results suggested that the radiomics model established in
this study was applicable to both Revolution CT and Discovery
CT 750HD, and this might be attributed to the stability of
the iodine quantification, and that there is little effect of
various DECT scanners and acquisition parameters on iodine
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FIGURE 9 | Decision curves for radiomics models in training (A), validation (B),

and testing sets (C). The grey reference line indicates the assumption that all

patients are diagnosed to be MSI CRC; black dashed reference line indicates

the assumption that all patients are diagnosed to be MSS CRC. In training,

validation, testing sets, the net benefit is 17.44, 15.40, and 13.43, respectively.

A larger area under the decision curve indicates a better clinical utility. MSI,

microsatellite instability; CRC, colorectal cancer; MSS, microsatellite stability.

density (35). Hence, further studies are recommended to focus
on the radiomics analysis of iodine-based MD images with
DECT imaging.

Our study has several limitations. First, the study was
retrospective and may result in inherent biases. Second, although
IHC test is a reliable way to assess MSI status, the PCR should
still be recommended. Third, only a handful of patients were
analyzed owing to the low incidence rate of MSI in CRC patients.
Further studies are required using a larger sample. Fourth, only
three slices of CT images were analyzed, and we plan to compare
the performance of using three slices and whole tumors in future
investigations. Fifth, some discrepancies caused by manually
outlined ROIs are unavoidable, even though we had made efforts

to minimize the bias by using two trained radiologists. Sixth, our
data were only from a single center. In the future, we will try to
collect multicenter data to reinforce the conclusions of our study.

In conclusion, radiomics analysis based on iodine-based
MD images with DECT imaging can provide a relatively high
diagnostic value for predicting MSI status in CRC patients.
This study provides insight into the potential applications of
using radiomics analysis of iodine-based MD images produced
via DECT in predicting MSI status, and its usefulness for
preoperatively providing more information in CRC clinical
outcome and treatment decision making.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by The First Affiliated Hospital of
Dalian Medical University. Written informed consent
for participation was not required for this study
in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

Data analysis and interpretation, study design, manuscript
writing, and manuscript approval were performed by JW,
QZ, and AL, and they are accountable for all aspects
of the work. CT data and pathological data analysis and
interpretation, statistical analysis, and manuscript approval
were performed by YZ. CT data analysis and manuscript
approval were performed by YL and AC. Statistical analysis
and manuscript approval were performed by XL, TW, JL,
and YG.

FUNDING

This work was supported by the Program for Training
Capital Science and Technology Leading Talents (grant number
Z181100006318003). The funding body contributes to the design
of the study and analysis of data.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2019.01250/full#supplementary-material

REFERENCES

1. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A,

et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. (2017) 67:104–

117. doi: 10.3322/caac.21395

2. Gelsomino F, Barbolini M, Spallanzani A, Pugliese G, Cascinu S. The evolving

role of microsatellite instability in colorectal cancer: a review. Cancer Treat

Rev. (2016) 51:19–26. doi: 10.1016/j.ctrv.2016.10.005

3. Chang L, Chang M, Chang HM, Chang F. Microsatellite instability: a

predictive biomarker for cancer immunotherapy. Appl Immunohistochem

Frontiers in Oncology | www.frontiersin.org 10 November 2019 | Volume 9 | Article 1250155

https://www.frontiersin.org/articles/10.3389/fonc.2019.01250/full#supplementary-material
https://doi.org/10.3322/caac.21395
https://doi.org/10.1016/j.ctrv.2016.10.005
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wu et al. DECT Imaging for Predicting MSI

Mol Morphol. (2017) 26:e15–21. doi: 10.1097/PAI.00000000000

00575

4. Rd BA, Venook AP, Cederquist L, Chan E, Chen YJ, Cooper HS, et al. Colon

cancer, version 1.2017, NCCN clinical practice guidelines in oncology. J Natl

Compr Canc Netw. (2017) 15:370–98. doi: 10.6004/jnccn.2017.0036

5. Yan W, Hu J, Xie L, Cheng L, Yang M, Li L, et al. Prediction of

biological behavior and prognosis of colorectal cancer patients by tumor

MSI/MMR in the Chinese population. Onco Targets Ther. (2016) 9:7415–

24. doi: 10.2147/OTT.S117089

6. Goo HW, Goo JM. Dual-energy CT: new horizon in medical imaging. Korean

J Radiol. (2017) 18:555–69. doi: 10.3348/kjr.2017.18.4.555

7. Muenzel D, Lo GC, Yu HS, Parakh A, Patino M, Kambadakone

A, et al. Material density iodine images in dual-energy CT:

detection and characterization of hypervascular liver lesions

compared to magnetic resonance imaging. Eur J Radiol. (2017)

95:300–6. doi: 10.1016/j.ejrad.2017.08.035

8. Mirus M, Tokalov SV, Wolf G, Heinold J, Prochnow V, Abolmaali N.

Noninvasive assessment and quantification of tumour vascularisation using

MRI and CT in a tumour model with modifiable angiogenesis - an

animal experimental prospective cohort study. Eur Radiol Exper. (2017)

1:15. doi: 10.1186/s41747-017-0014-5

9. Chen XH, Ren K, Liang P, Chai Y, Chen KS, Gao JB. Spectral computed

tomography in advanced gastric cancer: can iodine concentration non-

invasively assess angiogenesis? World J Gastroenterol. (2017) 23:1666–

75. doi: 10.3748/wjg.v23.i9.1666

10. Wu J, Lv Y, Wang N, Zhao Y, Zhang P, Liu Y, et al. The value of single-

source dual-energy CT imaging for discriminating microsatellite instability

from microsatellite stability human colorectal cancer. Eur Radiol. (2019) 29:

3782–90. doi: 10.1007/s00330-019-06144-5

11. Wendum D, Boëlle PY, Rigau V, Sebbagh N, Olschwang S, Mourra N,

et al. Mucinous colon carcinomas with microsatellite instability have a lower

microvessel density and lower vascular endothelial growth factor expression.

Virchows Arch. (2003) 442:111–7. doi: 10.1007/s00428-002-0737-3

12. Aerts HJWL, Rios Velazquez E, Leijenaar RTH, Parmar C, Grossmann P,

Carvalho S, et al. Erratum: Corrigendum: decoding tumour phenotype by

noninvasive imaging using a quantitative radiomics approach. Nat Commun.

(2014) 5:4006. doi: 10.1038/ncomms5644

13. Fan S, Li X, Cui X, Zheng L, Ren X, Ma W, et al. Computed tomography-

based radiomic features could potentially predict microsatellite instability

status in stage II colorectal cancer: a preliminary study. Acad Radiol. (2019).

doi: 10.1016/j.acra.2019.02.009. [Epub ahead of print].

14. Golia Pernicka JS, Gagniere J, Chakraborty J, Yamashita R, Nardo L, Creasy

JM, et al. Radiomics-based prediction of microsatellite instability in colorectal

cancer at initial computed tomography evaluation. Abdom Radiol. (2019)

44:3755–63. doi: 10.1007/s00261-019-02117-w

15. Adebanji A, Nokoe S, Adeyemi A. Effects of sample size ratio on the

performance of the quadratic discriminant function. J Nat Sci Eng Technol.

(2010) 3:97–108.

16. Grant LA, Griffin N. Grainger & Allison’s Diagnostic Radiology Essentials.

London: Churchill Livingstone (2013).

17. Yushkevich PA, Piven J, Cody Hazlett H, Gimpel Smith R, Ho

S, Gee JC, et al. User-guided 3D active contour segmentation of

anatomical structures: significantly improved efficiency and reliability.

Neuroimage. (2006) 31:1116–28. doi: 10.1016/j.neuroimage.2006.

01.015

18. Chirra P, Bloch NB, Rastinehead A, Purysko A, Madabhushi A, Viswanath

SE, et al. Empirical evaluation of cross-site reproducibility in radiomic

features for characterizing prostate MRI. Computer-aided Diagnosis.

(2018). doi: 10.1117/12.2293992

19. Shen TX, Liu L, Li WH, Fu P, Xu K, Jiang YQ, et al. CT imaging-based

histogram features for prediction of EGFRmutation status of bone metastases

in patients with primary lung adenocarcinoma. Cancer Imaging. (2019)

19:34. doi: 10.1186/s40644-019-0221-9

20. Koo TK, Li MY. A guideline of selecting and reporting intraclass

correlation coefficients for reliability research. J Chiropr Med. (2016)

15:S1556370716000158. doi: 10.1016/j.jcm.2016.02.012

21. Qiao Y, Yang X, Wu E. The research of BP neural network based on one-hot

encoding and principle component analysis in determining the therapeutic

effect of diabetes mellitus. In: IOP Conference Series: Earth and Environmental

Science. Xian (2019). p. 267.

22. Hawighorst H, Knapstein PG, Knopp MV, Vaupel P, Kaick GV. Cervical

carcinoma: standard and pharmacokinetic analysis of time–intensity curves

for assessment of tumor angiogenesis and patient survival. MAGMA. (1999)

8:55–62. doi: 10.1016/S1352-8661(99)00007-1

23. Zhang XF, Lu Q, Wu LM, Zou AH, Hua XL, Xu JR. Quantitative iodine-based

material decomposition images with spectral CT imaging for differentiating

prostatic carcinoma from benign prostatic hyperplasia. Acad Radiol. (2013)

20:947–56. doi: 10.1016/j.acra.2013.02.011

24. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al.

Artificial intelligence in cancer imaging: clinical challenges and applications.

CA Cancer J Clin. (2019) 69:127–57. doi: 10.3322/caac.21552

25. Dong D, Tang L, Li ZY, Fang MJ, Gao JB, Shan XH, et al. Development

and validation of an individualized nomogram to identify occult peritoneal

metastasis in patients with advanced gastric cancer.AnnOncol. (2019) 30:431–

8. doi: 10.1093/annonc/mdz001

26. Shuo W, Jingyun S, Zhaoxiang Y, Di D, Dongdong Y, Mu Z, et al.

Predicting EGFR mutation status in lung adenocarcinoma on computed

tomography image using deep learning. Eur Respir J. (2019) 53:1800986.

doi: 10.1183/13993003.00986-2018

27. Wendum D, Comperat E, Boëlle PY, Parc R, Masliah J, Trugnan G, et al.

Cytoplasmic phospholipase A2 alpha overexpression in stromal cells is

correlated with angiogenesis in human colorectal cancer. Mod Pathol. (2005)

18:212–20. doi: 10.1038/modpathol.3800284

28. Kim JH, Ko ES, Lim Y, Lee KS, Han BK, Ko EY, et al. Breast cancer

heterogeneity: MR imaging texture analysis and survival outcomes. Radiology.

(2016) 282:160261. doi: 10.1148/radiol.2016160261

29. Liu S, Zheng H, Pan X, Chen L, Shi M, Guan Y, et al. Texture analysis of

CT imaging for assessment of esophageal squamous cancer aggressiveness. J

Thorac Dis. (2017) 9:4724–32. doi: 10.21037/jtd.2017.06.46

30. De Smedt L, Lemahieu J, Palmans S, Govaere O, Tousseyn T, Van Cutsem E,

et al. Microsatellite instable vs stable colon carcinomas: analysis of tumour

heterogeneity, inflammation and angiogenesis. Brit J Cancer. (2015) 113:500–

9. doi: 10.1038/bjc.2015.213

31. Pauline M, David T, Mohamad H, Bernhard M, Hafid K, Gabriela

B, et al. Correlation between density of CD8+ T-cell infiltrate in

microsatellite unstable colorectal cancers and frameshift mutations: a

rationale for personalized immunotherapy. Cancer Res. (2015) 75:3446–

55. doi: 10.1158/0008-5472.CAN-14-3051

32. Sinicrope FA, Rego RL, Garrity-Park MM, Foster NR, Sargent DJ, Goldberg

RM, et al. Alterations in cell proliferation and apoptosis in colon

cancers with microsatellite instability. Int J Cancer. (2007) 120:1232–

8. doi: 10.1002/ijc.22429

33. Zhang L, Zhao J, Yu B, Song X, Sun G, Han L, et al. Correlations

between microsatellite instability, ERCC1/XRCC1 polymorphism

and clinical characteristics, and FOLFOX adjuvant chemotherapy

effect of colorectal cancer patients. Cancer Genet. (2017) 218–219:51–

7. doi: 10.1016/j.cancergen.2017.09.004

34. Berenguer R, Pastor-Juan MDR, Canales-Vázquez J, Castro-García M,

Villas MV, Mansilla Legorburo F, et al. Radiomics of ct features may be

nonreproducible and redundant: influence of ct acquisition parameters.

Radiology. (2018) 288:172361. doi: 10.1148/radiol.2018172361

35. KimH, Park CM, Kang CK, Yoon J, Chae KJ, Goo JM. Effect of CTAcquisition

parameters on iodine density measurement at dual-layer spectral CT. AJR Am

J Roentgenol. (2018) 211:19381. doi: 10.2214/AJR.17.19381

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Wu, Zhang, Zhao, Liu, Chen, Li, Wu, Li, Guo and Liu. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Oncology | www.frontiersin.org 11 November 2019 | Volume 9 | Article 1250156

https://doi.org/10.1097/PAI.0000000000000575
https://doi.org/10.6004/jnccn.2017.0036
https://doi.org/10.2147/OTT.S117089
https://doi.org/10.3348/kjr.2017.18.4.555
https://doi.org/10.1016/j.ejrad.2017.08.035
https://doi.org/10.1186/s41747-017-0014-5
https://doi.org/10.3748/wjg.v23.i9.1666
https://doi.org/10.1007/s00330-019-06144-5
https://doi.org/10.1007/s00428-002-0737-3
https://doi.org/10.1038/ncomms5644
https://doi.org/10.1016/j.acra.2019.02.009
https://doi.org/10.1007/s00261-019-02117-w
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1117/12.2293992
https://doi.org/10.1186/s40644-019-0221-9
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1016/S1352-8661(99)00007-1
https://doi.org/10.1016/j.acra.2013.02.011
https://doi.org/10.3322/caac.21552
https://doi.org/10.1093/annonc/mdz001
https://doi.org/10.1183/13993003.00986-2018
https://doi.org/10.1038/modpathol.3800284
https://doi.org/10.1148/radiol.2016160261
https://doi.org/10.21037/jtd.2017.06.46
https://doi.org/10.1038/bjc.2015.213
https://doi.org/10.1158/0008-5472.CAN-14-3051
https://doi.org/10.1002/ijc.22429
https://doi.org/10.1016/j.cancergen.2017.09.004
https://doi.org/10.1148/radiol.2018172361
https://doi.org/10.2214/AJR.17.19381
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


ORIGINAL RESEARCH
published: 28 November 2019
doi: 10.3389/fonc.2019.01330

Frontiers in Oncology | www.frontiersin.org 1 November 2019 | Volume 9 | Article 1330

Edited by:

Rong Tian,

Sichuan University, China

Reviewed by:

Di Dong,

Institute of Automation (CAS), China

Zhenyu Shu,

Chinese Academy of Medical

Sciences and Peking Union Medical

College, China

*Correspondence:

Xiangde Min

minxiangde0129@126.com

Liang Wang

wang6@tjh.tjmu.edu.cn

Specialty section:

This article was submitted to

Cancer Imaging and Image-directed

Interventions,

a section of the journal

Frontiers in Oncology

Received: 23 July 2019

Accepted: 14 November 2019

Published: 28 November 2019

Citation:

Zhang P, Feng Z, Cai W, You H, Fan C,

Lv W, Min X and Wang L (2019)

T2-Weighted Image-Based Radiomics

Signature for Discriminating Between

Seminomas and Nonseminoma.

Front. Oncol. 9:1330.

doi: 10.3389/fonc.2019.01330

T2-Weighted Image-Based
Radiomics Signature for
Discriminating Between Seminomas
and Nonseminoma
Peipei Zhang 1, Zhaoyan Feng 1, Wei Cai 1, Huijuan You 1, Chanyuan Fan 1, Wenzhi Lv 2,

Xiangde Min 1* and Liang Wang 1*

1Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,

China, 2 Julei Technology, Wuhan, China

Objective: To evaluate the performance of a T2-weighted image (T2WI)-based radiomics

signature for differentiating between seminomas and nonseminomas.

Materials andMethods: In this retrospective study, 39 patients with testicular germ-cell

tumors (TGCTs) confirmed by radical orchiectomy were enrolled, including 19 cases

of seminomas and 20 cases of nonseminomas. All patients underwent 3T magnetic

resonance imaging (MRI) before radical orchiectomy. Eight hundred fifty-one radiomics

features were extracted from the T2WI of each patient. Intra- and interclass correlation

coefficients were used to select the features with excellent stability and repeatability.

Then, we used the minimum-redundancy maximum-relevance (mRMR) and the least

absolute shrinkage and selection operator (LASSO) algorithms for feature selection and

radiomics signature development. Receiver operating characteristic curve analysis was

used to evaluate the diagnostic performance of the radiomics signature.

Results: Five features were selected to build the radiomics signature. The radiomics

signature was significantly different between the seminomas and nonseminomas

(p < 0.01). The area under the curve (AUC), sensitivity, and specificity of the

radiomics signature for discriminating between seminomas and nonseminomas were

0.979 (95% CI: 0.873–1.000), 90.00 (95% CI: 68.3–98.8), and 100.00 (95% CI:

82.4–100.0), respectively.

Conclusion: The T2WI-based radiomics signature has the potential to non-invasively

discriminate between seminomas and nonseminomas.

Keywords: magnetic resonance imaging, T2-weighted imaging, testicular neoplasms, testicular germ cell tumors,

radiomics

INTRODUCTION

Testicular cancer represents 1% of neoplasms and 5% of urological tumors in males. However,
testicular cancer is the most common malignancy among men aged between 14 and 44 years (1, 2).
Statistics show that there were 71,105 new cases and 9,507 deaths of testicular cancer worldwide
in 2018 (3). Approximately 90–95% of testicular cancers are testicular germ cell tumors (TGCTs),
which are split into two broad categories: seminomas and nonseminomas (4).
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Radical orchiectomy is the main treatment for testicular
tumors and can be supplemented by radiotherapy and
chemotherapy (4, 5). In view of the different sensitivities
of seminomas and nonseminomas to radiotherapy and
chemotherapy, characterizing the histologic type of testicular
tumors is of great importance (6–8). For patients undergoing
orchidectomy, the differentiation of seminomas from
nonseminomas would not affect patient management. However,
the information gained preoperatively might help physicians
to explain the patient’s condition and tumor prognosis before
surgery, which would help decrease the patient’s anxiety.
However, for patients who are unwilling to undergo orchiectomy,
the seminomas, and nonseminomas must be identified by
other non-invasive means, such as imaging examinations,
because the guidelines do not recommend that patients with
suspected testicular tumors undergo punctures in order to avoid
tumor spread and metastasis (5). Therefore, several studies
have evaluated the value of sonography or magnetic resonance
imaging (MRI) for the non-invasive differentiation of seminomas
from nonseminomas (4, 9–11).

Currently, ultrasonography (US) is the initial imaging method
for confirming the existence of a testicular mass (5, 12). MRI
has emerged as a valuable modality that can be an alternative
diagnostic tool, especially in cases of non-diagnostic or equivocal
sonographic findings (13). Compared to US, MRI can provide
more abundant anatomical and functional information and is
less dependent on operator technique. Some MRI features of
TGCTs have been found to closely correlate with histopathologic
characteristics (4, 9). T2-weighted imaging (T2WI) is an essential
component of MRI in oncology. Some previous studies reported
that seminomas and nonseminomas have different features on
T2WI (8, 9). Most of the previous studies only used qualitative
features or limited quantitative features, which may not fully
explore the potential value of MRI.

Radiomics uses advanced image processing techniques to
extract a large number of quantitative features from imaging data
(14–16). It has been applied to various diseases such as lung
and head-and-neck cancer (17), gastric cancer (18), colorectal
cancer (19), liver fibrosis (20), and prostate cancer (21), etc., and
remarkably encouraging results have been reported. However,
to date, no study has applied radiomics to the evaluation of
testicular diseases.

The purpose of our study was to investigate whether a
T2WI-based radiomics signature could differentiate seminomas
from nonseminomas.

MATERIALS AND METHODS

Patient Information
Our institutional review board approved this retrospective study.
From February 2014 to March 2019, patients were included
according to the following inclusion criteria (Figure 1): (a)
had scrotal lesions on sonography or physical examination, (b)
underwent a preoperative 3T MRI examination, (c) underwent
radical orchiectomy, and (d) had pathologically confirmed
TGCTs. Patients were excluded if apparent susceptibility or
movement artifacts existed on the MR images. A total of 39

men (age range, 18–61 years; median age, 29 years) with 39
lesions were included. Nineteen tumors were pathologically
confirmed as seminomas, and 20 tumors were pathologically
confirmed as nonseminomas. The patients with nonseminomas
had embryonal carcinomas (n = 8), teratomas (n = 4), yolk sac
tumor (n = 1), and mixed germ cell tumors (n = 7) [embryonal
carcinomas and teratomas (n = 3), seminoma and embryonal
carcinoma (n = 1), teratoma, yolk sac tumor and embryonal
carcinoma (n = 1), seminoma, teratoma and yolk sac tumor
(n = 1), and seminoma, embryonal carcinoma, teratoma, and
yolk sac tumor (n = 1)]. The classification of the tumor types in
the current study was based on the NCCN guideline (22).

MRI Protocol
All the MR images were acquired with a 3T MR scanner
(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany)
and an 18-element body matrix coil in combination with
a 32-channel spine coil. The patients were positioned in
a feet-first supine position. Transverse, sagittal and coronal
T2-weighted turbo spin-echo sequences with the following
parameters were used: repetition time/echo time (TR/TE) range
6500-6870/104ms, slice thickness of 3∼5mm, interslice gap of
0∼0.5mm, field of view (FOV) of 180 × 180 mm2, and a matrix
of 384× 320. Transverse T1-weighted turbo spin-echo sequences
were acquired with the following parameters: TR of 750ms, TE
of 13ms, slice thickness of 3∼5mm, interslice gap of 0∼0.5mm,
FOV of 300×300 mm2, and matrix of 320 × 240. Diffusion-
weighted imaging (DWI) and dynamic contrast enhanced (DCE)
sequences were performed for some patients, but these images
were not included in the analysis due to the limited number
of scans.

MRI Segmentation and Radiomics Feature
Extraction
ITK-SNAP software (version 3.4.0; www.itksnap.org) was used
for manual segmentation. Preoperative transverse T2WI was
obtained for image analysis. A three-dimensional volume of
interest (VOI) covering the tumor was delineated by stacking
regions of interest slice-by-slice on the transverse T2WI. Manual
segmentation of the tumors on the images was initially performed
by a radiologist (Reader 1). Twenty patients were randomly
selected from the study cohort. One month later, Reader
1 performed a second segmentation of the 20 patients to
assess the intraobserver reproducibility. Another radiologist
(Reader 2) performed a manual segmentation of these patients
independently to assess the interobserver reproducibility. Both
readers were blinded to the histologic results.

The radiomics features were extracted using the PyRadiomics
library (https://github.com/Radiomics/pyradiomics.git, version
2.1.2) in Python (version 3.7.0). PyRadiomics is a flexible open-
source platform capable of extracting a large panel of engineered
features from medical images (23). For the feature extraction
method, please reference the PyRadiomics documentation
(https://pyradiomics.readthedocs.io/en/latest/). All MRI data
were subjected to images normalization and resampled to the
same resolution (0.46875 × 0.46875 × 3mm) before feature
extraction. A total of 851 radiomics features were extracted,
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FIGURE 1 | Flow chart of patients’ inclusion and exclusion.

including the following four groups: 14 shape features, 18 first-
order intensity statistics features, 75 texture features [Gray Level
Co-occurrence Matrix (24), Gray Level Size Zone Matrix (16),
Gray Level Run Length Matrix (16), Neighboring Gray Tone
Difference Matrix (5), and Gray Level Dependence Matrix (14)],
and 744 wavelet features.

Statistical Analysis
As high-dimensional features were extracted in the current study,
we performed a feature dimension reduction process to select the
most relevant features for the classification of testicular lesions
to construct a radiomics signature. Features selection included
the following steps. First, we used the intra- and interclass
correlation coefficient (ICC) to assess the effects of the manual
segmentation variations on the value of the features. The ICC
was calculated for each radiomics feature. Features with good
agreement (ICC ≥ 0.8) were regarded as robust features and
selected for the following analyses. Second, we compared all
the features between seminomas and nonseminomas using the
Mann-Whitney U test for non-normally distributed features
or the independent t-test for normally distributed features.

Features with p < 0.05 were considered significant variables
and selected. To control the false-positive rate in multiple
comparisons, the false discovery rate-adjusted p-value was used
in the Mann-Whitney U test and the independent t-test (24).
Third, spearman’s correlation coefficient was used to compute
the relevance and redundancy of the features. Redundant
features indicated by a Spearman’s correlation coefficient ≥ 0.8
were eliminated. Fourth, we applied the maximum relevance
minimum redundancy (mRMR) algorithm to assess the relevance
and redundancy of the remaining features (25). The mRMR
algorithm was used to select the most relevant features for
the classification of testicular lesions, avoiding redundancy
between features. By using the mRMR method, the features were
ranked according to their relevance-redundancy scores (mRMR
scores). The mRMR score of a feature is defined as the mutual
information between the status of the lesions and this feature
minus the average mutual information of previously selected
features and this feature. The top 10 features with high-relevance
and low-redundancy were selected for the following analyses.
Fifth, the 10 features selected by the above steps were applied to
least absolute shrinkage and selection operator (LASSO) logistic
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regression model (26). The LASSO logistic regression model
with 5-fold cross-validation was adopted for further features
selection and radiomics signature construction. LASSO is a
regression analysis method that performs feature selection and
regularization to improve the mode prediction accuracy and
interpretability. Some candidate features coefficients were shrunk
to zero and the remaining variables with non-zero coefficients
were selected by LASSO. Then, the selected features were linearly
combined to construct a radiomics signature.

The differences in the radiomics signature between
seminomas and nonseminomas were compared using the
Mann-Whitney U test. The diagnostic performance of the

radiomics signature was evaluated using the receiver operating
characteristic (ROC) curve. The area under the curve (AUC),
sensitivity, and specificity were calculated. In addition, the
diagnostic performance of the top 10 features selected from
mRMR was also evaluated using ROC curve analysis. An
overview of the radiomics signature development process is
presented in Figure 2.

The statistical analyses were performed using R software
(version 3.3.4; https://www.r-project.org). The following R
packages were used: the “corrplot” package was used to calculate
Spearman’s correlation coefficient; the “mRMRe” package was
used to implement the mRMR algorithm; the “glmnet” was used

FIGURE 2 | The framework for the radiomics workflow. (a) All patients were scanned with preoperative MRI. (b) Tumors were delineated by stacking regions of

interest slice-by-slice on the transverse T2WI. (c) Radiomics features were extracted from the T2WI in a high-throughput manner. (d) Data analysis for the features

selection and a radiomics signature construction.

FIGURE 3 | Correlation matrix heatmaps of the features before (A) and after (B) correlation filtering. Before correlation filtering, a mass of redundant features with high

correlation coefficients existed.
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to perform the LASSO logistic regressionmodel, and the “pROC”
package was used to construct the ROC curve.

RESULTS

In the current study, 851 radiomics features were extracted from
the T2WI of each patient. Seven hundred eighty features with an
ICC≥ 0.8 were further selected. Two hundred twenty-seven non-
significant features were first eliminated using univariate analysis.
After removing the redundant features using a Spearman’s
correlation coefficient threshold value of 0.8, a total of 67
features with low correlation remained. The correlation matrix
heatmaps of the features before and after correlation filtering
are shown in Figure 3. The features were ranked according to
their mRMR scores. The top 10 features were selected using

TABLE 1 | The top 10 features selected by mRMR.

Features mRMR scores Groups

wavelet.LLL_glcm_MaximumProbability 0.31769474 Wavelet feature

wavelet.LLH_glcm_Idmn 0.08877716 Wavelet feature

wavelet.LHH_gldm_LargeDependenceLow

GrayLevelEmphasis

0.07167124 Wavelet feature

original_shape_Sphericity 0.07024193 Shape feature

wavelet.HHH_gldm_DependenceNon-

UniformityNormalized

0.07355068 Wavelet feature

wavelet.LHL_glcm_Idn 0.04066711 Wavelet feature

wavelet.LLH_gldm_DependenceEntropy 0.04644461 Wavelet feature

wavelet.LLH_glcm_MCC 0.02630265 Wavelet feature

wavelet.LHL_glrlm_LongRunHighGray

LevelEmphasis

0.02301324 Wavelet feature

wavelet.LHL_firstorder_Skewness 0.02354773 Wavelet feature

the mRMR algorithm (Table 1). Through the 5-fold cross-
validation of the LASSO algorithm, five features with non-zero
coefficients were included to construct the radiomics signature.
The feature selection process using the LASSO algorithm is
shown in Figure 4. The calculation formula to construct the
radiomics signature is shown in Table 2. The contribution of the
five features to the radiomics signature is shown in Figure 5A.
The radiomics signature of each patient is shown in Figure 5B.

The radiomics signature was significantly different between
seminomas and nonseminomas (p < 0.01). The ROC curves
of the radiomics signature and the top 10 features selected
from mRMR for discriminating between seminomas and
nonseminomas are shown in Figure 6 and Table 3. The AUC,
sensitivity, and specificity of the radiomics signature were 0.979
(95% CI: 0.873–1.000), 90.00 (95% CI: 68.3–98.8), and 100.00
(95% CI: 82.4–100.0), respectively. The AUC of the radiomics
signature was relativity higher than the AUCs of the top 10
features selected from mRMR.

DISCUSSION

In this study, an MRI-based radiomics signature was established
to preoperatively discriminate between seminomas and

TABLE 2 | Calculation formula for the radiomics signature.

Variables Coefficients

Intercept −0.04258474

wavelet.LLL_glcm_MaximumProbability −1.05440198

wavelet.LLH_glcm_Idmn −0.27559477

wavelet.LHH_gldm_LargeDependenceLowGrayLevelEmphasis −0.29108858

original_shape_Sphericity 0.10820225

wavelet.HHH_gldm_DependenceNon-UniformityNormalized 0.05352220

FIGURE 4 | Features selection using the LASSO algorithm. (A) Selection of the tuning parameter (Lambda) in the LASSO model using 5-fold cross-validation.

Binomial deviances from the LASSO regression cross-validation model were plotted as a function of log(Lambda). The dotted vertical line at the right was drawn at the

optimal value based on the minimum criteria and the 1-standard error rule (the 1-SE criteria). An optimal Lambda value of 0.102 with log(Lambda) = −2.280 and 5

non-zero coefficients were selected. (B) LASSO coefficient profiles of the 10 texture features. A vertical line was drawn at the optimal value selected using the 5-fold

cross-validation process in (A). The 5 features with non-zero coefficients were included to construct the radiomics signature.
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FIGURE 5 | (A) The contribution of the features to the radiomics signature. The histogram shows the contribution of the five features with non-zero coefficients to the

radiomics signature. The features that contributed to the radiomics signature are plotted on the y-axis, and their coefficients in the LASSO Cox analysis are plotted on

the x-axis. (B) Bar charts of the radiomics signature for each patient. The red bars indicate the radiomics signature of seminomas, while the light green bars indicate

the radiomics signature of non-seminomas.

FIGURE 6 | ROC analysis of the radiomics signature and 10 features [(A) the top 5; (B) the bottom five)] selected from mRMR. The AUC of the radiomics signature

was 0.979 (95% CI: 0.873–1.000).

nonseminomas. Our results showed that the radiomics
signature could provide an excellent diagnostic performance
(AUC = 0.979) by employing a large number of quantitative
imaging features (851 features were extracted).

Non-invasively discriminating between seminomas and
nonseminomas is of great significance. MRI has been proposed
as a valuable supplemental imaging technique for characterizing
testicular tumors (4, 9, 11). Tsili AC et al. enrolled 21 patients
(10 seminomas and 11 nonseminomas) to investigate the value
of MRI for differentiating seminomas from nonseminomas (9).
Their results showed that the MRI findings led to a correct
histologic diagnosis in 19 (91%) of 21 cases and the researchers

concluded that tumor heterogeneity on MRI is indicative of
nonseminomas. Another study including 15 seminomas and
11 nonseminomas showed that the mean apparent diffusion
coefficient (ADC) values of seminomas were significantly lower
than those of nonseminomas, while no significant differences
were observed in DCE between seminomas and nonseminomas
(4). Min et al. included 14 seminomas and 10 nonseminomas
to assess the value of whole-tumor ADC histogram parameters
for discriminating between seminomas and nonseminomas (11).
Their results showed that the 10th percentile ADC value yielded
the highest diagnostic performance. Although some positive
results for distinguishing seminomas from nonseminomas have
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TABLE 3 | ROC analysis of the features selected from mRMR.

Features AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Radiomics signature 0.979 (0.873–1.000) 90.00 (68.3–98.8) 100.00 (82.4–100.0)

wavelet.LLL_glcm_MaximumProbability 0.903 (0.764–0.974) 90.00 (68.3–98.8) 84.21 (60.4–96.6)

wavelet.LLH_glcm_Idmn 0.792 (0.632–0.905) 60.00 (36.1–80.9) 94.74 (74.0–99.9)

wavelet.LHH_gldm_LargeDependenceLowGrayLevelEmphasis 0.839 (0.687–0.937) 70.00 (45.7–88.1) 94.74 (74.0–99.9)

original_shape_Sphericity 0.718 (0.552–0.850) 85.00 (62.1–96.8) 57.89 (33.5–79.7)

wavelet.HHH_gldm_DependenceNonUniformityNormalized 0.703 (0.535–0.838) 65.00 (40.8–84.6) 84.21 (60.4–96.6)

wavelet.LHL_glcm_Idn 0.758 (0.594–0.880) 95.00 (75.1–99.9) 52.63 (28.9–75.6)

wavelet.LLH_gldm_DependenceEntropy 0.711 (0.543–0.844) 55.00 (31.5–76.9) 84.21 (60.4–96.6)

wavelet.LLH_glcm_MCC 0.679 (0.510–0.819) 55.00 (31.5–76.9) 84.21 (60.4–96.6)

wavelet.LHL_glrlm_LongRunHighGrayLevelEmphasis 0.737 (0.571–0.865) 75.00 (50.9–91.3) 73.68 (48.8–90.9)

wavelet.LHL_firstorder_Skewness 0.647 (0.478–0.793) 100.00 (83.2–100.0) 36.84 (16.3–61.6)

been reported, most previous studies used only some qualitative
features or limited quantitative features, which may not fully
explore the potential information of MRI, and no established
prediction model has been built. In contrast to the above studies,
in our study, a large number of quantitative radiomics features
were extracted from the images and the most useful features
were selected to construct a radiomics signature. Moreover, the
sample size included in our study was relatively larger than that
in previous studies.

Medical imaging provides valuable information for the
diagnosis and evaluation of diseases. The conventional methods
only use some qualitative features observable by the naked
eyes or basic quantitative features, which cannot fully mine
potential information from the images. Radiomics may help find
potentially valuable information through the high-throughput
extraction of quantitative features (14, 15). The newly proposed
radiomics method has been successfully applied to various
diseases (17, 18, 27–30). In a recent study, Lewin et al.
applied radiomics to predict the pathology of postchemotherapy
retroperitoneal nodal masses in germ cell tumors (27). Their
results showed that the discriminative accuracy, sensitivity, and
specificity of radiomics to identify GCT/teratoma vs. fibrosis
was 72, 56.2, and 81.9%, respectively. When combined with
clinical variables, the accuracy improved to 88%. In another
study, Dong et al. suggested that a CT-based radiomic nomogram
had excellent predictive ability for occult peritoneal metastasis
in advanced gastric cancer patients (18). In our study, we
used radiomics analysis to extract 851 features from T2WI
and constructed a radiomics signature that includes features
with excellent stability and reproducibility. Our results showed
that the radiomics signature provides excellent efficiency for
discriminating seminomas from nonseminomas. The AUC,
sensitivity, and specificity of the radiomics signature were 0.979,
90.00, and 100.00, respectively. The AUC of the radiomics
signature was 7.6–33.2% higher than the AUCs of the top 10
features selected from mRMR.

In this study, we only included T2WI for analysis, because
T2WI is an essential component of testicular MRI with high
contrast and spatial resolution. Previous studies have reported
that seminomas and nonseminomas have different characteristics

on T2WI (9). The presence of a relatively homogeneous testicular
mass with low signal intensity on T2WI is considered indicative
of seminomas. On the other hand, tumor heterogeneity is the
most valuable finding in the characterization of nonseminomas.
Although some studies have demonstrated the value of DWI
and DCE in the characterization of testicular tumors (4, 11),
these sequences have their limitations. The geometric distortion,
susceptibility, and signal intensity dropout of DWI on tissue-air
boundaries, such as the prostate, scrotum, and thyroid gland,
are remarkable. Moreover, the DWI sequence usually has a low
spatial resolution. These factors will limit the application and
efficiency of DWI in characterizing testicular tumors. In recent
years, some new techniques have been applied to DWI sequence
to reduce geometric distortion and susceptibility artifacts, as well
as to improve image resolution. However, few of these techniques
had been used in testes; we will explore the value of new DWI
techniques in testes in future studies (31–33). DCE-MRI usually
requires the injection of a gadolinium-based contrast agent,
which may increase the patient’s risk for nephrogenic systemic
fibrosis. Considering the above reasons and the limited sample
size, we did not include DWI and DCE in the analysis.

There are some limitations in this study. First, our sample
size was small. Although the number of patients included
was higher than that of most previous studies, the sample
size was still relatively small due to the low morbidity of
testicular tumors. Further large-scale and multicenter studies are
therefore warranted to obtain high-level evidence for clinical
application. Second, rather than an independent validation
cohort, internal validation was used in the current study, because
there is insufficient data available to create an independent
training cohort and a validation cohort. In this case, a fair
way to accurately estimate the diagnostic performance of the
radiomics signature is to use cross-validation (34). Third, the
MRI sequences employed similar parameters but slightly varied
slice numbers and thicknesses to cover some large lesions. To
this end, we resampled the images before feature extraction to
decrease the variability of the radiomics features extracted from
the MRI sequences (35).

In conclusion, in the present study, we established a
radiomics signature based on the features extracted from T2WI
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to characterize TGCTs. The radiomics signature provides a
non-invasive and quantitative method to differentiate between
seminomas from nonseminomas. Further studies are warranted
to validate our initial results.
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Bladder cancer is a fatal cancer that happens in the genitourinary tract with quite high

morbidity and mortality annually. The high level of recurrence rate ranging from 50 to

80% makes bladder cancer one of the most challenging and costly diseases to manage.

Faced with various problems in existing methods, a recently emerging concept for

the measurement of imaging biomarkers and extraction of quantitative features called

“radiomics” shows great potential in the application of detection, grading, and follow-up

management of bladder cancer. Furthermore, machine-learning (ML) algorithms on the

basis of “big data” are fueling the powers of radiomics for bladder cancermonitoring in the

era of precision medicine. Currently, the usefulness of the novel combination of radiomics

and ML has been demonstrated by a large number of successful cases. It possesses

outstanding strengths including non-invasiveness, low cost, and high efficiency, which

may serve as a revolution to tumor assessment and emancipate workforce. However,

for the extensive clinical application in the future, more efforts should be made to break

down the limitations caused by technology deficiencies, inherent problems during the

process of radiomic analysis, as well as the quality of present studies.

Keywords: radiomics, machine learning, bladder cancer, full-cycle management, precision medicine

INTRODUCTION

Bladder cancer ranks ninth of the most common malignancies and the 13th most common
predisposing cause of cancer-related mortality all over the world, with over 357,000 new cases and
over 130,000 deaths annually (1). Bladder cancer is more likely to develop in patients over 65 years
old, which has a high recurrence rate ranging from 50 to 80% (2).

Clinical decision and follow-up management of bladder cancer predominantly depend on the
presence or absence of muscle invasion and accurate grade of malignancy and also take specific
pathological types into consideration (3, 4).

However, all aspects in the management of bladder cancer including tumor staging, diagnosis,
treatment, and prognostic evaluation have still been limited by various factors. The gold standard
nowadays for bladder cancer detection is telescopic checking of the bladder (cystoscopy) (5).
Considering the high recurrence rate, cystoscopy examinations are required to be performed every
3–6 months to monitor bladder cancer patients for recurrence or progression to a more advanced
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stage. However, the expensive and invasive characteristics restrict
the frequent use of cystoscopy and further cause significant
economic and psychological pressure to patients. Furthermore,
cystoscopy has still quite limited accuracy for the detection of
tumors in low grade, with the sensitivity of 61% (6), nor the
muscle-invasive depth. Another universally applied approach
in condition detection is biopsy but it can be restricted by
an inability to sample every part of the tumor at any point
in time. Moreover, heterogeneous disease spectrums as bladder
cancer processes, it can always confound correct classification
and staging (5), and then influences the choice of treatment plans
and finally makes the risk of undertreatment or overtreatment
increase. To simplify the detection process of bladder cancer, the
concept of urinary biomarkers has been put forward recently.
However, no studies have proposed molecular markers with
sufficient sensitivity and specificity to replace cystoscopy (1).
Furthermore, this method is unable to determine the extent of
surrounding tissue invasion andmetastasis, which blocks the way
of non-invasive bladder cancer detection.

Apart from the difficulties in accurate tumor detection and
clinical grading, the prediction of treatment efficacy is also a
major obstacle in the management of bladder cancer. It has
been widely accepted that patients with nonmuscle-invasive
bladder cancer (NMIBC, stage ≤T1) are mostly at early stage
and are advised to be treated with TURBT followed by treatment
applying Bacillus Calmette-Guérin (BCG) (7), whereas muscle-
invasive bladder cancer (MIBC, stage ≥T2) patients usually have
a poorer prognosis and the treatment plan for these patients is
supposed to be radical cystectomy (RC) (8). Despite appropriate
cancer control in local lesions, over 50% of patients who have
undergone RC meet the disturbance of tumor metastasis in no
more than 2 years after cystectomy and thus fail to survive
(9). Neoadjuvant chemotherapy ahead of cystectomy has been
demonstrated to reducing the odds of developing extravesical
lesions when compared to taking RC alone, afterward improves
the overall survival (OS) of bladder cancer patients (10, 11).
However, there is still short of a reliable method to predict the
posttreatment response of a specific individual to whether BCG
or neoadjuvant chemotherapy currently. Thus, some patients
who receive inappropriate therapies tend to suffer from adverse
reactions. Worse, these patients are likely to miss the best time to
make an adjustment on the strategies of therapy, consequently
pose damage to their physical condition and increase the
difficulty of cancer management.

Confronting the above problems and limitations, a novel
concept of radiomics has emerged for solving the issues of
the generalization of precision medicine and how it can
be applied in the field of bladder cancer monitoring. It is
a high-throughout quantitative feature extraction method to
mine the information contained in the multimodality medical
images including computed tomography (CT), positron emission
tomography (PET), magnetic resonance imaging (MRI), and
ultrasonography (US) (12), then comprehensively analyze these
massive images to extract phenotypic features (also known as
radiomics biomarkers) and explore the associations between
patients’ prognosis and these extracted features and improve
the decision-making process. ML algorithms on the basis

of “big data” are fueling the powers of radiomics in three
main tasks related to bladder cancer imaging: initial detection
of the existence and localization of volume; pretreatment
characterization including the diagnosis, grading, and staging
of tumor; posttreatment monitoring by predicting prognosis or
factors irrelevant to treatment plans, such as OS, recurrence,
and pathological subtypes (13, 14). Therefore, radiomicsmethods
in combination with an optimal ML method may potentially
extend the practical use of precision medicine approaches in
radiotherapy by providing a non-invasive, high-efficiency, but
low-cost way to predict clinical outcomes (15).

In this paper, we review the present studies in association with
our topic and discuss the promising usages and hidden challenges
of this novel method adapting acute imaging analysis, combining
radiomics with ML in the precise management of bladder cancer.
This review paper considers and discusses the issues as follows:

1. The concept of radiomics and its significance
2. Workflow of radiomics
3. Clinical applications of the combination of radiomics withML

in bladder cancer management
4. Challenges and future directions.

THE CONCEPT OF RADIOMICS AND ITS
SIGNIFICANCE

The meaning of “precision medicine” indicates that the
reasonable strategies of treatment are singled out according
to the characteristics of different subtypes. It has substantially
changed the treatment strategies in the recent 10 years. To
make a precise treatment for an individual, accurate detection,
characterization, and monitoring after treatment are very
important. Unfortunately, the current tumor assessment is far
from our expectation because of variable technology deficiency.
One important problem is that radiologists usually use subjective,
qualitative features to make tumor assessment, which make the
results less reproducible and more unstable. Besides, with the
rapid development of gene therapy and immunotherapy, gene
expression signature and immune phenotype are also essential
parts for a comprehensive tumor assessment. Current evaluation
for gene expression and immune phenotype is most based on
the biopsy, which is invasive and expensive, let alone the result
is confused because of intratumoral heterogeneity. Thus, the
demand for a non-invasive, cheap, and stable method to assess
and monitor tumor has never been greater.

The computationalmedical imaging, also known as radiomics,
was first invented by Lambin in 2012 (16, 17). It was based
on the underlying hypothesis that medical imaging contains
much more information than we have already utilized, even
including cellular and molecular information of target tissue
(18). The aim of radiomics is to analyze and translate medical
images into quantitative data and provide an image-based
biomarker to aid clinical decisions. Compared with biopsy,
radiomics biomarker is invasive, reproducible, and has the
ability to make an evaluation of tumors’ microenvironment,
spatial heterogeneity, and longitudinal assessment for disease
progression. In recent years, several studies have presented the

Frontiers in Oncology | www.frontiersin.org 2 November 2019 | Volume 9 | Article 1296167

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ge et al. Novel Methods for Bladder Cancer

potential usage of radiomics in the development of precision
medicine. Among all, many pieces of research demonstrated the
immense application value of radiomics in combination with ML
algorithms to overcome the drawbacks of precision medicine in
the diagnosis and treatment of non-small-cell lung cancer (19).
Since the breakthrough in the intelligent management of lung
cancer, researches on the application of this new technology to
other cancers have been carried out one after another with great
advances among them. The characteristics of bladder cancer itself
and the need for enhanced imaging analysis technology make it
one of the major research hot spots.

WORKFLOW OF RADIOMICS

Radiomics is a multidisciplinary-based technology. There are
four main steps to complete a radiomics program (Figure 1):

(1) Image acquisition and preprocessing
(2) Volumes of interest (VOIs) segmentation
(3) Feature extraction and quantization
(4) Model building.

Image Acquisition
Image acquisition is the first and an important step in radiomics.

There are two common formats of the image data recorded,
including Picture Archiving and Communication System (PACS)
and the Digital Imaging and Communication in Medicine
(DICOM), and they are used in most of the medical institutions,
which provide a great convenience for the radiology study.

The accuracy and reproducibility of the final radiomics
model lie on the quality of image acquisition. However, there
is no guideline nor consensus on image acquisition. As a
result, the acquisition strategies in different research teams
can be distinctive, which can cause heterogeneity among
separate studies. Meanwhile, it is difficult for researchers to
take labeling, annotation, segmentation, and quality assurance
seriously. Because these processes require well training, wasting
both time and money.

Various imaging modalities such as modern CT, MRI, PET,
and US scanners allow for acquisition and image reconstruction
in wide variations (20). The radiological images applied for
radiomic analysis are obtained from different hospitals or
institutions using divided parameters and protocols. Thus,
they are supposed to be preprocessed to ensure consistency
and comparability.

VOIs Segmentation
The region for image data capture is defined as “The Volume of
Interest” (VOI). VOIs segmentation is the core step of radiomics
study because it determines which volume is analyzed within a
medical image.

The ideal VOI includes the complete information for the
target lesions, nothing more nor less. Unfortunately, usually, it
is hard for the radiologists to make it because many tumors
have indistinct borders (21). Besides, the microenvironment
around the lesions also provides useful information of the
lesions, but there is no guideline in VOIs segmentation for how

much microenvironment should be put in radiomics model. For
instance, in a recent radiomics study, the research team use
2-mm peripheral ring on each side of the lesions to involve
microenvironment of the lesions while another team use 1-mm
peripheral ring (22).

VOIs can be created manually, automatically, or
semiautomatically. In the past 5 years, most current radiomics
study created VOIs manually. However, it is time-consuming
and laborious when utilizing big data in radiomics study. Thus,
many pieces of research try to create VOI automatically. There
are lots of algorithms on VOI creation. A common segmentation
algorithm is the “seed method.” The radiologist will place some
seeds in VOI, and the computer will create VOI automatically
(23). Unfortunately, it only works well when the lesion is
uniform. There are many other methods used in radiomics
study, such as Graph-Cut Methods (24), Level-Set Methods (25),
and Active Contour Algorithms (26). In summary, all algorithms
have their own deficiencies and need manual correction.
Therefore, there is a great demand for algorithms with maximum
automation, minimal human intervention, high time efficiency,
and repeatability.

Feature Extraction
Feature extraction is the next step after a VOI is reasonably
segmented, which is the essence in the workflow of radiomics.
It mainly performs the extraction of high-throughput data of
quantitative imaging features to identify VOIs and the selection
of useful information to aid in the discrimination of normal and
abnormal images.

The quantitative data usually can be classified into four types:

(1) Shape characteristics: Description of the shape and
geometric features of target lesions. For example, the volume
of VOI, maximum diameter along with different orthogonal
directions, maximum surface area, tumor compactness
and sphericity.

(2) First-order statistical characteristics: Description of the
distribution of individual but do not describe its spatial
arrangement, including the mean, median, maximum and
minimum of voxel intensity, skewness (asymmetry), kurtosis
(flatness), uniformity, and randomness (entropy).

(3) Second-order statistical characteristics: Also known as
texture features. It is calculated from a statistical correlation
between adjacent voxels, usually by Gray-Level Co-
Occurrence Matrix (GLCM) (27). Texture features provide
heterogeneity information among the lesions.

(4) High-order statistical characteristics: Quantitative data
from the filter or mathematical transformation on images,
including fragment analysis, Minkowski function, wavelet
transform, and Laplace transform of gaussian filtered image.
The aim of filer and mathematical transformation is to
identify repetitive or non-repetitive patterns, suppress noise,
or highlight details.

Model Building
To conclude, the building of radiomics model involves three
main aspects, including the selection of radiomic features, choice
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FIGURE 1 | A typical workflow of radiomics in bladder cancer.

of ML methods, and final validation of the developed model.
Image analysis software can provide many features, so it is vital
to select essential features for further study. At the same time,
model selection is as important as feature selection. Selecting
a suitable model can help obtain a reliable and stable result,
which is very important for clinical decision making. Complete
radiomics analysis should include validation, and both internal
validation and external validation are indispensable.

Feature Selection
There are two common processes for determining radiomic
parameters. One is to make a preliminary analysis of captured
features and select most repeatable and reproducible ones (28).
Another method is based on features’ mathematical definitions.
It makes a priori selection of features on those definitions and
selects targeted parameters (29). In the formal process of analysis,
different kinds of image analysis software may output a variety
of features ranging from hundreds to thousands (30, 31). The
inclusion of all features without selection in the development of
radiomics model could cause the result in overfitting inevitably,
since some of them might have a high degree of correlation (32).
Hence, the inclusion of appropriate features, which are strongly
linked to the aiming task but not redundant, is highlighted for
improved value for specific clinical applications.

Modeling Methodology
ML is commonly used in radiomics model development, which
can be hypothetically defined as a branch of artificial intelligence
(AI) (33), which is actually an algorithm trained by inferences
from data sets and then helps establish prediction models with
high precision and efficiency on the basis of radiomic analysis.
As a result, radiomics with ML may improve the clinician
decision-making process as it is able to encompass many greater
quantities of parameters than manual work and make these
various parameters extracted in the workflow of radiomics
into comprehensive utilization. With regard to the choice
of appropriate radiomic methodology, the identification and
application of optimal MLmethods for radiomic applications are
very crucial steps toward the achievement of clinical relevance.
Thus, appropriateML algorithms should be employed (34) to fuel

the detective, diagnostic, and prognostic powers of radiomics in
the field of bladder cancer.

Model Validation
Model validation is a dispensable step in model building,
which serves as a useful tool to assess the performance and
applicability of the developed radiomics model. To make sure
that the model is effective for all of the targeted patients, not
only the patients selected in the model building process, the
internal and/or external validation should be tested. Typically,
model performance is measured according to its discrimination,
which can be expressed in the form of the receiver operating
characteristic (ROC) curve or be calculated as the area under
the ROC curve (AUC) in a quantitative way. ROC curve can
easily display the ability of disease recognition at any threshold.
When comparing two or more models, the ROC curves can draw
each model in the same coordinate to identify advantages and
disadvantages visually.

CLINICAL APPLICATIONS OF RADIOMICS
WITH ML IN BLADDER CANCER
MANAGEMENT

Accurate Cancer Staging and Grading
Accurate grading is of vital importance in the follow-up
management of bladder cancer and serves as the starting point
of radiomics applied in bladder cancer as shown in Table 1.
Reading radiographic images produced by CT, MRI, PET, or
US is essentially a matter of identifying complex patterns, in
which computers can be trained to process efficiently, repeatedly,
and rapidly. In the recent 5 years, ML techniques have shown
latent capacity in accurate grading of bladder cancer. Confronted
with the great significance of precise staging in the decision
of appropriate treatment plan, Garapati et al. (35) developed
a predictive model to serve as a classification tool for layering
bladder cancer into two different grading categories and chose
T2 as the critical point. They created a data set containing 84
bladder cancer lesions from 76 CT urography (CTU) cases and
found that the morphological features, as well as texture features
were helpful to stage the lesions of bladder cancer. In this study,
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TABLE 1 | Present studies that combined radiomics and machine learning (ML) in bladder cancer.

References Study type Application Cases

number

Data

modality

ML

algorithm

Type of

validation

Results

Garapati et al. (35) Retrospective

study

Bladder cancer

staging

76 CTU LDA, NN,

SVM, RAF

Two-fold cross

validation

Four types of classifier showed equal

promise in bladder cancer staging

Zhang et al. (36) Retrospective

study

Bladder cancer

grading

61 MRI SVM-RFE Single-center

validation

The SVM classifier adapting the optimal

feature subset performed best (AUC =

0.861; accuracy 82.9%; sensitivity 78.4%;

specificity 87.1%)

Wang et al. (37) Retrospective

study

Bladder cancer

grading

70 MRI LASSO

algorithm

Ten-fold cross

validation

Joint-Model performed best (AUC =

0.9276)

Zheng et al. (38) Retrospective

study

Differentiation of

NMIBC and MIBC

199 MRI LASSO

logistic

regression

algorithm

Single-center

validation

The radiomic-clinical nomogram

developed on the basis of

three-dimensional features showed

favorable usage (AUC 0.922)

Wang et al. (39) Retrospective

study

Prediction of

mortality after

radical cystectomy

117 Clinical

data

BPN, RBFN,

ELM, RELM,

SVM, NB,

and KNN

Ten-fold cross

validation

The models with RELM and ELM achieved

the highest sensitivity and specificity (over

0.8)

Xu et al. (40) Retrospective

study

Recurrence

stratification of

bladder cancer

71 MRI SVM-RFE,

LASSO

algorithm

Five-fold cross

validation

The radiomic clinical nomogram achieved

more benefits than the radiomics or clinical

model alone

Lin et al. (41) Retrospective

study

Prediction of

progression-free

interval

62 CECT LASSO

algorithm

Single-center

validation

Radiomics risk model (AUC 0.956) and

transcriptomics risk model (AUC 0.948)

showed independent prognostic role to

determine the progression

Cha et al. (42) Retrospective

study

Assessment of

therapy response

62 CT DL-CNN Leave-one-case-

out cross

validation

DL-CNN has the potential to assist in the

treatment response

Cha et al. (43) Retrospective

study

Assessment of

treatment

response

123 CT DL-CNN Single-center

validation

The radiomics-based system is advisable

to serve as a second option to assist in

therapy evaluation

Chalkidou et al.

(44)

Retrospective

study

Evaluation of

sensitivity to

neoadjuvant

chemotherapy

123 CT DL-CNN Single-center

validation

The improvement of the physicians’

performance was statistically significant (P

<.05)

LDA, linear discriminant analysis; NN, neural network; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; RFE, recursive feature elimination; BPN, back-propagation neural network; RBFN, radial basis function; ELM,

extreme learning machine; RELM, regularized ELM; NB, naive Bayes; KNN, k-nearest neighbor; DL-CNN, deep-learning convolution neural network; MIBC, muscle-invasive bladder cancer; NMIBC, non-muscle-invasive bladder cancer.
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the data were divided into two subsets for further two-fold cross
validation. As a result, all of the linear discriminant analysis
(LDA), neural network (NN), support vector machine (SVM),
and random forest (RAF) classifiers included in this study led
to relatively unanimous results in their staging accuracy, which
effectively demonstrated that ML method can be a promising
way to reduce the inaccuracy rate of bladder cancer staging
by up to 50% (45) and aid to the implementation in daily
care. To achieve better grading of bladder cancer for the
sake of appropriate clinical decision, a recent study proposed
textural features from diffusion-weighted imaging (DWI) and
apparent diffusion coefficient (ADC) maps to distinguish low-
grade bladder cancers from high-grade ones and recommended
an optimal feature subset selected by SVM with recursive feature
elimination (SVM-RFE) for cancer grading using histogram
and gray-level co-occurrence matrix (GLCM)-based radiomic
features (36). Sixty-one patients with bladder cancer were
included in this study to prove that the grading performance in
bladder cancer was improved through the candidate or extraction
of optimal features, with accuracy, sensitivity, specificity, and
AUC achieving 82.9, 78.4, 87.1, and 0.861, respectively.

Recently, there have also been notable advances in
MRI technology. Wang et al. (37) built and validated a
multiparametric MRI-based radiomic analysis model for the
preoperative grading of bladder cancer tumors. This study
enrolled 70 bladder cancer patients and applied five radiomic
models including T2-weighted imaging (T2WI), DWI, ADC,
Max-out, and Joint models, then assessed by ROC curve analysis.
By comparing AUC values, the performance in terms of the
accuracy, sensitivity, and specificity of the Joint_model in the
validation set was obviously superior to that of the other four
single-modality models, achieving an AUC of 0.9233 according
to the training cohort and 0.9276 in the validation one. As
the first study considering pathological grading of bladder
cancer applying radiomics, it showed encouraging feasibility
for avoiding subjectivity and promote extended future usage in
preoperative grade assessment of bladder cancer.

Tumor Classification and Prognosis
Prediction
Undoubtedly, clear discrimination between NMIBC and
MIBC is crucial for pretreatment decision, posttreatment
prognosis, and lasting period consequent management of
bladder cancer patients. Considering the large percentage
of diagnostic errors caused by conventional cystoscopic
examination (36), researches proposed a new radiomics
scheme that combined histogram features, co-occurrence
matrix (CM) features, and run-length matrix (RLM) features.
Based on the novel developed model (4), they assessed the
performance of tumor classification based on multiparametric
MRI radiomic features for accurate differentiation between
NMIBC and MIBC preoperatively in searching for management
of bladder cancer patients and finally got a positive result
with the AUC and Youden index improving to 0.8610 and
0.7192, respectively.

With regard to the reflection on the heterogeneity of cancer
caused by analyzing radiomic features extracted from the whole
tumor tissue, Zheng et al. (38) suggested a hypothesis that the
radiomics features of the basal part can be used for determining
the degree of muscle invasiveness more conclusively. To further
validate their assumption, they first developed a radiomic-
clinical nomogram incorporating the radiomic signature and
extract three-dimensional features for subsequent analysis. The
usefulness of this novel nomogram in discriminatingNMIBC and
MIBC was favored, with an AUC of 0.922 in the training set, and
was also confirmed with an AUC of 0.876 in the validation set.
By overthrowing existing views, this study came up with a new
idea in the extraction of radiomic features and demonstrated the
latent capacity of the radiomic-clinical nomogram to serve as an
auxiliary tool for bladder cancer classification.

Realizing the high risk of metastasis and mortality of MIBC
that is in need of immediate treatment to improve the living
quality of patients while faced with the various kinds of ML
models emerging, researchers have begun to seek for the urgently
needed strategy. A confirmative research was conducted for
selection in which seven models including radial basis function
(RBFN), back-propagation neural network (BPN), extreme
learning machine (ELM), regularized ELM (RELM), SVM, naive
Bayes (NB) classifier, and k-nearest neighbor (KNN) were ever
explored and compared to predict the 5-year mortality of 117
MIBC patients who had undergone RC (39). The eventual
results indicated that the algorithm on the basis of RELM and
ELM presented higher mean sensitivity and specificity (over 0.8)
relatively in the prediction of mortality in MIBC patients after
RC, with an ideally fast learning speed.

Regarding the importance of preoperative prediction of the
risk of bladder cancer recurrence, Xu et al. (40) developed
a radiomic nomogram for personalized prediction of the
first 2 years (TFTY) risk in tumor recurrence. This study
took the important baseline variations involving gender, age,
cancer grading, MIS of the lesions, size, and the number of
the tumor, as well as the recording of previous operations
into consideration to ensure the accuracy of the developed
model. This multiparametric model finally showed excellent
performance in both the validation and training cohorts. The
decisive curve exhibited the threshold of risk was more than 0.3;
more benefits and higher accuracy were observed by applying the
radiomic nomogram than using either the radiomics or clinical
model separately.

All of these studies showed the great potential of radiomics
aided by ML in the improvement of tumor classification and
prognosis prediction of bladder cancer, overcoming the defects
traditionally and obviously improved the living quality of bladder
cancer patients. Great progression as radiomics made in the
prognosis of bladder cancer, the correlations between the imaging
features and genomic signatures have rarely been explored up to
now in the field of bladder cancer management. Confronting the
blank of related researches, Lin et al. (41) put forward a successful
case that integrated radiomics and transcriptomics to predict
the progression-free interval (PFI) of bladder cancer patients. In
this study, both of the radiomics risk model (AUC 0.956) and
transcriptomics risk model (AUC 0.948) showed independent
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prognostic roles to determine the progression of the bladder
tumor, which first provided a novel insight into the microscopic
mechanisms of bladder cancer.

Evaluation of Individual Therapy
Responses
Once a definite diagnosis is made and the tumor subtype is
identified, early evaluation of therapeutic efficacy and response
can aid in clinicians’decision on whether to discontinue
chemotherapy at an optimal phase. In the research conducted
by Cha et al. (42), the feasibility of a radiomics-based
prognostic model using CT images obtained before or after
treatment in distinguishing bladder cancers with chemotherapy
responses or not was explored, which applied deep-learning
convolution neural network (DL-CNN) for accurate bladder
lesion segmentation. This study indicated that the computerized
assessment on the basis of radiomics information extracted
from CT images of pretreatment or posttreatment bladder
cancer patients had the possibility to aid in the evaluation of
therapy response, with the prediction accuracy estimated by
AUCs improving by 0.03 in comparison with manual contours.
Previously, one of the reasons for optimization has been
demonstrated that the complicated tumor size change in response
to treatment can be better reflected by the computerized three-
dimensional (3-D) segmentation rather than traditional criteria
(46). Recognizing the important role played by radiomics and
ML in the evaluation of individual therapy response, another
feasibility study adopted three radiomics predictive models in
the assessment of chemotherapy response and finally reached an
agreement among all these models and two expert radiologists’
prediction. Instead of replacing artificial analysis, researchers are
more supportive to consider the computer-aided system as a
second option to assist in the evaluation process. However, the
final decision still relies on the judgment of radiologists on the
basis of advice given by radiomics-aided models (43).

Regarding the aggressiveness of MIBC, studies were
conducted to assess whether a CT-based decision-support system
could improve identification of patients who have complete or
partial response to neoadjuvant chemotherapy (47). This study
investigated 123 subjects, and the AUCwas estimated. Compared
to the accuracy of the assessment of doctors alone (AUC 0.74),
the decision-support system (AUC 0.80) showed statistically
significant improvement of therapeutic evaluation.

CHALLENGES AND FUTURE DIRECTIONS

Up to now, there has been a large number of studies to illustrate
the rapid development of radiomics and ML algorithms, as
well as the effectiveness of their combination in the full-cycle
management of bladder cancer, but we also need to realize the
limitations when applied in actual use comprehensively.

First, the defects in the aspect of inherent technologies
should be recognized. Usefulness as quantitative features based
on medical images show in the management of bladder
cancer patients, their tendency of causing significant errors and
overestimation has also been reported (44). It is prevalent to

see that the number of radiological features examined is much
larger than the number of patients included in retrospective
studies, which may lead to bias in feature selection and even high
false-positive result. Furthermore, results obtained from different
studies might be hard to compare and evaluate because of the lack
of standardized methods for analysis. Larue et al. (48) conducted
an overview and put forward a thought-provoking conclusion
that there still exist various kinds of challenges to overcome in
the whole process of radiomics. In terms of ML, although specific
algorithms can improve the accuracy of the prediction with the
usage of regression models by extracting complex features in the
data set, no amount of algorithm skills or computing power can
extrude unwanted information (49).

Second, limitations mentioned in current articles that have
already been published should be highlighted and overcome.
Quite a large percent of studies are conducted in a single
institution, and the sample size is too small to be convincing.
Apart from that, some studies lack external validation for model
development. For the extensive clinical application, the studies
should be designed in a much more comprehensive and delicate
way to raise the reliability of research results. To achieve future
optimization of this novel method, more investigations should
be carried out to test the potential of optimizing the predictive
model by the combination of imaging biomarkers with other
non-imaging biomarkers.

Third, it has been a long-lasting debate whether such AI-
supported systems are much smarter than clinical practitioners
(50, 51). However, what we should do is to take the best
advantages of the new adjuvant imaging techniques and apply
radiomics together with ML to bladder cancer monitoring.
Combining all of these imaging analysis methods with the
experience of experts will make assurance for the delivery
of medical care that outperforms what either of them can
achieve alone. Since no code is shared in most papers
involving radiomics application, it is impossible to exactly
assess the validity of the results up to now. Thus, another
direction for future improvement is to achieve the validity of
predictive results based on the public full code and imaging
data sets and optimize the model performance in a more
scientific way.

Moreover, the application of radiomics in bladder cancer
remains at themacroscopic level. Althoughwe have witnessed the
breakthrough of various researches from basic tumor detection
to accurate grading, even recent studies have moved toward
the prediction of treatment outcomes. However, gene therapy
and immunotherapy, which involve gene expression signature
and immune phenotype, have been introduced as revolutionary
tools for comprehensive tumor assessment and divert our
attention to the microscopic level. A novel concept named
“radiogenomics” perfectly presents the integration of genomics
with radiomics and serves as an alternative to the invasive biopsy
(52). Tremendous value as this research spot shows in several
common diseases (53, 54), few studies are conducted to further
validate its clinical uses in bladder cancer, which highlights
that the combination of radiogenomics and bladder cancer full-
cycle management can be an essential breakthrough point for
future research.
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Objective: The purpose of the current study is to investigate whether texture

analysis-based machine learning algorithms could help devise a non-invasive imaging

biomarker for accurate classification of meningiomas using machine learning algorithms.

Method: The study cohort was established from the hospital database by reviewing the

medical records. Patients were selected if they underwent meningioma resection in the

neurosurgery department between January 2015 and December 2018. A total number

of 40 texture parameters were extracted from pretreatment postcontrast T1-weighted

(T1C) images based on six matrixes. Three feature selection methods were adopted,

namely, distance correlation, least absolute shrinkage and selection operator (LASSO),

and gradient boosting decision tree (GBDT). Multiclass classification methods of linear

discriminant analysis (LDA) and support vector machine (SVM) algorithms were employed

to establish the classification models. The diagnostic performances of models were

evaluated with confusion matrix based on which the areas under the curve, accuracy,

and Kappa value of models were calculated.

Result: Confusion matrix showed that the LDA-based models represented better

diagnostic performances than SVM-based models. The highest accuracy among

LDA-based models was 75.6%, shown in the combination of Lasso + LDA. The optimal

models for SVM-based models was Lasso+SVM, with accuracy of 59.0% in the testing

group. One of the SVM-based models, GBDT+SVM, was overfitting, suggesting that this

model was not suitable for application.

Conclusion: Machine learning algorithms with texture features extracted from T1C

images could potentially serve as the assistant imaging biomarkers for presurgically

grading meningiomas.

Keywords: radiomics, machine learning, magnetic resonance imaging, meningioma, tumor grade
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INTRODUCTION

According to the survey conducted by the Central Brain
Tumor Registry of the United States (CBTRUS), meningiomas
are one of the most frequent intracranial tumors in adults,
with an incidence of 8.14/100,000, accounting for 36.8% of
the primary central nervous system tumors (1). In most
cases, meningiomas are histologically recognized as low-grade
meningioma (WHO grade I) with benign behaviors, but
approximately 10–20% of meningiomas are recognized as
high-grade meningioma (WHO grades II and III), exhibiting
aggressive behaviors (2–4). The treatment and prognosis for
meningioma are intimately related to the histopathological
grade (5). Surgical resection is the first-line treatment for all
types of meningiomas, the extent of surgical resection is the
most important prognostic factor for high-grade meningioma
outcomes. According to the previous investigations, adjuvant
radiotherapy is associated with statistically improved overall
survival (OS) and progression-free survival (PFS) outcomes (6–
9). Moreover, the prognoses of different grades of meningiomas
are dramatically different that higher grades meningiomas are
correlated to higher recurrence rate (7–25, 29–52, and 50–94%,
respectively) and poor survival outcomes (5, 10). Given these
differences in treatment and prognosis, the accurate presurgical
assessment on tumor grade is clinically important to facilitate
treatment decisions.

Lacking specific blood biomarkers, magnetic resonance
imaging (MRI) is the most importent imaging technique
in the detection and presurgical assessment of intracranial
meningiomas. Previous studies demonstrated that preoperative
MRI was useful for assessing the grades and evaluating
histopathological characteristics of meningiomas (11–14).
However, the image patterns of different grades of meningiomas
could mimic each other in some cases, resulting in limited
diagnostic accuracy and highlighting the urgency of new
radiological evaluation methods (15). Texture analysis is a subset
of radiomics. With the ability of mathematically converting
medical images into mineable quantitative statistics, it has
been considered as the emerging field providing a non-invasive
assessment on tumor heterogeneity (16). Theoretically, the
texture parameters can objectively calculate the structural and
spectral characteristics of pixel intensities within an area to
extract quantitative metrics that are impossible to assess visually
(17, 18). Compared with traditional visual assessment, texture
analysis can describe the image with quantitative statistics more
sensitively and accurately (19).

Texture analysis has shown promising diagnostic ability

in meningioma grading in previous studies (14, 20–22).

Additionally, the quantitative evaluation of texture features

has been applied into machine learning technology to

differentiate high-grade meningiomas from low-grade
meningiomas (20, 21). In the current study, we applied
multiple classification methods to systematically grade
meningiomas. Six models were established and evaluated,
aiming to preliminarily investigate the value of radiomics-based
machine learning technology in in preoperative prediction of
meningioma grades.

MATERIALS AND METHODS

Patient Selection
This retrospective study was led in the neurosurgery department
of our hospital. We viewed the electronic medical records
to search for patients with detailed pathological reports on
meningiomas between January 2015 and December 2018. The
presurgical high-quality MR images of patients were also
exported with standard format through PACS (Picture Archiving
and Communication System). After the initial evaluation on
images and patient profiles, we excluded some patients due
to the following reasons: (1) images with motion artifacts; (2)
relevant tumor treatment history (like radiotherapy or surgery)
in other hospitals; (3) recorded intracranial diseases history,
such as subarachnoid hemorrhage, cerebral infarction, and so
on. Finally, a total number of 150 meningioma patients were
introduced in our study. Clinical information and pathological
reports were also recorded for further analysis. It is worth noting
that pathological grading was corrected based on the 2016 WHO
classification system, adjusted by a senior neuropathologist with
10 years of experience.

The institutional review board approved this retrospective
study. All procedures performed in studies involving human
participants were in accordance with the ethical standards of
the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. The obligatory written informed
consent was obtained from participants enrolled in this study
(written informed consent for patients <16 years old was signed
by parents or guardians). The patients agreed to undertake
examination and were informed that the statistics (including
MR image), which could be used for academic purpose in the
future, would be stored in our institutional database. The Ethics
Committee of Sichuan University and neurosurgery department
of our institution have given approval for statistics export and
utilization for this study.

MRI Acquisition
After consulting with senior radiologists and neurosurgeons,
postcontrast T1-weighted (T1C) images were selected for
further analysis due to clear depiction of tumor location and
boundary (Figure 1). The MR scan was conducted in the
MR Research Center of our hospital with 3.0T Siemens Trio
Scanner. High-quality three-dimensional T1-weighted images
were obtained by using a magnetization prepared rapid gradient-
echo (MPRAGE) sequence by the following protocols: TR/TE/TI
= 1,900/2.26/900ms, Flip angle = 9◦, 176 axial slices with
thickness = 1mm, axial FOV = 25.6 × 25.6 cm2, and data
matrix = 256 × 256. The contrast-enhanced image was acquired
with gadopentetate dimeglumine (dose: 0.1 mmol/kg) as the
contrast agent.

Texture Features Extraction
The texture analysis was conducted with LIFEx software
by two neurosurgeons following the software instructions
(23). The authors contoured along the tumor tissue slice by
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FIGURE 1 | The magnetic resonance images [postcontrast T1-weighted (T1C)] of a patient with (A) WHO I meningioma, (B) WHO II meningioma, and (C) WHO III

meningioma.

slice to draw the region of interest (ROI), and the three-
dimensional texture features were automatically generated
with default setting. Any disagreement regarding the tumor
location or border of lesions were resolved by consulting senior
neurosurgeons and the senior radiologist. Forty quantified
texture features were extracted, including features from
histogram-based matrix and shape-based matrix from the
first order and features from gray-level co-occurrence matrix
(GLCM), gray-level zone length matrix (GLZLM), neighborhood
gray-level dependence matrix (NGLDM), and gray-level
run length matrix (GLRLM) from second or higher order
(Supplement Material 1). The definitions of texture parameters
were summarized in Supplement Material 2. The association
between texture parameters was evaluated using Pearson
correlation coefficient test.

Machine Learning Classification
The classification models were built with different combinations
of three selection methods [distance correlation, least absolute
shrinkage and selection operator (LASSO), and gradient
boosting decision tree (GBDT)] and two multiclass classification
algorithms [linear discriminant analysis (LDA) and support

vector machine (SVM)]. The feature selection was essential
to the diagnostic performance given that diagnostic values
on all features were discrepant, and that optimal features can
statistically eliminate overfitting. Moreover, it can contribute
to decreased running time and increased accuracy of the
models. With selected features retrieved from different methods,
the statistics were employed into algorithms separately.
Two multiple classification algorithms were adopted in the
current study, including LDA and SVM, representing the
linear classifier and non-linear classifier, respectively. The
patients were randomly separated into two parts in the
proportion of 4:1 as the training group and the testing group.
Confusion matrixes and areas under the curve (AUC) of
each model were calculated to evaluate the performance
of the models. The algorithms deployment procedure was
repeated 100 times to obtain the realistic distribution of
classification accuracies.

The regular statistical analyses in this study were conducted
using SPSS software (version 21; IBM, Chicago), including
Mann-Whitney U-test and Pearson correlation coefficient. The
machine learning algorithms were programmed using Python
Programming Language and scikit-learn package.
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RESULTS

Characteristics of the Study Cohort
A total number of 150 patients were involved in the current study,
among whom 61 were diagnosed with WHO I meningioma, 59
withWHO II meningiomas, and 30 withWHO III meningiomas.
The mean ages of patients were 49.38, 54.41, and 56.93
years, respectively. The gender ratio for patients was 62:88
(male:female). The clinical characteristics of patients and tumors
were summarized in Table 1.

Characteristics of Texture Parameters
The results of Mann-Whitney suggested that there was no
statistically significant difference among the parameters extracted
by two neurosurgeons, implying that the results could be
considered reliable and reproducible (Supplement Material 3).
The Pearson correlation coefficient suggested that most texture
features were correlated with each other rather than independent
(Figure 2).

Diagnostic Performance of Models
In the feature selection, somemutual features were selected when
using different methods, suggesting that they were the most
significant features in discrimination (Table 2). Generally, the
LDA-based models represented better performance than SVM-
based models. The accuracy rates for the LDA-based models
were 73.0, 75.6, and 73.3 in the testing group whereas for
the SVM-based models were 57.6 and 59.0%. Overfitting was
observed in one model, SVM+GBDT, suggesting that this model
was inappropriate in application. The AUC, Kappa value, and
accuracy of each model were represented in Table 3.

Figure 3 illustrated the performance of the LDA-basedmodels
in terms of the distribution of the canonical functions for one
of the 100 independent training cycles. Figure 4 illustrated the
examples of distributions of the LDA function determined for the
lesions for one cycle.

TABLE 1 | Characteristics of patients and lesions.

Low-grade

meningioma

High-grade meningioma

WHO I

meningioma

WHO II

meningioma

WHO III

meningioma

Number 61 59 30

Age 49.38 54.41 56.93

Gender (n, %)

Male 16 (26.23%) 32 (54.24%) 14 (46.67%)

Female 45 (73.77%) 27 (45.76%) 16 (53.33%)

Maximum diameter (cm) 4.06 ± 1.53 5.75 ± 1.50 6.93 ± 2.03

Location (n, %)

Cerebral convexity 32 (52.46%) 40 (67.80%) 21 (70.00%)

Falx 11 (18.03%) 8 (13.56%) 2 (6.67%)

Skull base 18 (29.51%) 11 (18.64%) 7 (23.33%)

Days between MR scan and

surgery

8.7 days 7.2 days 6.7 days

DISCUSSION

The prediction of the histopathological meningioma grade is
important because it is closely related to survival outcomes
and treatment strategies. According to the instructions of the
National Comprehensive Cancer Network (NCCN) guideline,
the recommended treatment for WHO grade I meningioma was
surgical resection or observation; forWHOgrade IImeningioma,
it was gross total resection combined with/without radiotherapy;
and for aWHO grade III meningioma, it was radical surgery with
radiotherapy (24). Therefore, the accurate preoperative diagnosis
should assist clinicians in making a personalized treatment plan
to improve the quality of life. In the current study, we investigated
the diagnostic value of texture analysis-based machine learning
technology in meningioma grade. The texture features adopted
into the classifiers were extracted from T1C images, which
brought the possibility to utilize the technology in standard
routine care imaging analyses.

Texture analysis provides information on the heterogeneity of
tumor imaging, such as tumor cellularity, degenerative changes,
and neovascularization, which are hard to assess visually. By
analyzing the spectral distribution of pixels, abnormal tumor
microenvironment and pathology could be represented as a
series of statistics (25). It has been reported that an imaging
technology extends beyond radiology to histopathology, like
prediction on gene mutation and tumor grading (26–32). As for
the different grade meningiomas, the characteristics of enhanced
pattern have been reported in previous researches. Specifically,
MRI features, such as positive capsular enhancement, indistinct
tumor–brain interface, and heterogeneous tumor enhancement,
were suggested to be related to a higher tumor grade (33,
34). These MRI features could be reflected in GLZLM_ZLNU,
one of the mutual selected features in our study. This feature
calculates the non-uniformity of the gray-levels or the length
of the homogeneous zones, reflecting the heterogeneity within
the delineated area. Fluctuance on value of features from
second or higher order represented irregular changes in the
gray pixels of aggressive meningiomas due to the heterogeneous
structure inside tumor tissue (11). Therefore, it is reasonable
to consider that this MRI feature was closely correlated to
this texture feature. Another mutual feature, SHAPE_Volume
(ml), suggested that the tumor volume was also in relation to
grade, according to the differences in tumor diameter. However,
it is worthy to note that most features were correlated with
each other; the specific reason is still unclear that is why
GLZLM_ZLNU was selected as the strongest correlated feature
while others were not. Future researches are required to explore
this question.

The value of radiomics-based machine learning in
meningioma grading has been explored before. Retrieved
parameters, feature selection method, sample size, and
classification algorithms determined the performance of
models. However, all of these studies, as well as this study, was
seriously limited by the small sample size due to the rather
low incidents of grade III meningioma. Therefore, most of
them simply classified them into low-grade and high-grade
(21, 35). Only one study explored the multiple classification
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FIGURE 2 | The heat map of relationship among texture analysis parameters.

TABLE 2 | Selected features using distance correlation, LASSO, and GBDT.

Selection

method

Selected features

Distance

Correlation

HISTO_Kurtosis, HISTO_Entropy, HISTO_Energy, SHAPE_Volume,

GLCM_Energy, GLCM_Entropy_log10, NGLDM_Contrast,

GLZLM_ZLNU

LASSO minValue, meanValue, stdValue, SHAPE_Volume (ml),

GLCM_Contrast, GLRLM_HGRE, GLRLM_LRHGE,

GLRLM_GLNU, GLRLM_RLNU, GLZLM_LZE, GLZLM_HGZE,

GLZLM_SZHGE, GLZLM_LZHGE, GLZLM_GLNU, GLZLM_ZLNU

GBDT minValue, HISTO_Skewness, SHAPE_Volume (ml),

GLCM_Homogeneity, GLCM_Energy, GLCM_Correlation,

GLCM_Entropy_log10, GLCM_Dissimilarity, GLRLM_LRLGE,

GLRLM_RLNU, NGLDM_Contrast, GLZLM_SZE, GLZLM_LZHGE,

GLZLM_ZLNU

LASSO, least absolute shrinkage and selection operator; GBDT, gradient boosting

decision tree.

models in discrimination, which established models with
the parameters extracted from ADC map and decision
trees algorithms, demonstrating the equivalent diagnostic
performance of machine learning technology compared to
experienced neuroradiologists (accuracy = 79.51%, Kappa value
= 0.6393) (14). As for this study, we employed different multiple

classification algorithms and texture features from different

sequences. However, we should note that the differences between

the models were not strong enough to select the optimal one,

specifically considering that the investigated models seemed to

perform quite comparably and that the variance in AUC might

be partially attributed to the small sample size. Therefore, our

results could only be regarded as a hypothesis and need to be

verified in future studies.
LDA and SVM were employed as classification algorithms

in the current study. Both of them are considered state-of-
the-art in pattern recognition technology, representing two
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TABLE 3 | Diagnostic performance of classification models.

Models Training group Validation group

WHO Grade

I

WHO Grade

II

WHO Grade

III

Kappa value WHO Grade

I

WHO Grade

II

WHO Grade

III

Kappa value

LDA Distance

Correlation

0.928 0.865 0.882 0.578

(Accuracy = 75.4%)

0.884 0.820 0.846 0.563

(Accuracy = 73.0%)

LASSO 0.955 0.914 0.915 0.693

(Accuracy = 80.8%)

0.934 0.846 0.783 0.603

(Accuracy = 75.6%)

GBDT 0.928 0.950 0.908 0.570

(Accuracy = 73%)

0.886 0.854 0.887 0.572

(Accuracy = 73.3%)

SVM Distance

Correlation

0.870 0.831 0.876 0.356

(Accuracy = 61.1%)

0.845 0.798 0.845 0.274

(Accuracy = 57.6%)

LASSO 0.898 0.806 0.877 0.373

(Accuracy = 62.0%)

0.840 0.772 0.833 0.298

(Accuracy = 59.0%)

GBDT

(Overfitting)

– – – – – – –

LDA, Linear Discriminate Analysis; SVM, Support Vector Machine; LASSO, Least absolute shrinkage and selection operator; GBDT, gradient boosting decision tree.

FIGURE 3 | Distribution of the discriminant functions of LDA models. (A) Distance correlation + LDA; (B) least absolute shrinkage and selection operator (LASSO) +

LDA; and (C) gradient boosting decision tree (GBDT) + LDA.

different types of classifiers (36). LDA is the linear classifier,
consisting of the shape of the decision boundary of straight
line in the first case and straight line in second, whereas SVM
is the non-linear classifier, of which the shape of the decision
boundary is a plane in the first case and a plane in the second
(36, 37). Computational time and complexity usually increase
together when trying to improve the performance. Therefore,
the importance on the trade-off between computational burden
and performance has been highlighted to require a suitable
selection method. Previous studies performed feature selection
with Friedman test or Mann-Whitney U-test to choose the most
significant features into classifiers, suggesting that the selected
features could improve the classifier performances (11, 14, 35).
The results of our study showed that all LDA-based models
represented better performances than SVM-based models, and
that the improvement using different selected models was
limited. It seemed that the algorithms have more priority
than the selection method in the improvement of diagnostic
performances. Therefore, in futures studies, researchers should
focus on the algorithm selection, and novel algorithms should
be investigated.

There were some limitations in the current study. First, this is
a single-institution retrospective study that enrolled 150 patients.
The patient sample was relatively small, and the selection
bias was inevitable. Second, the texture features into classifiers
were extracted from T1C sequence, while the value of features
from other sequences was unclear. Given that the research
using parameters extracted from ADC images represented better
performance, future researches were required to investigate
whether the diagnostic performance could be improved when
combined with features from other sequences and advanced
MR technology. Third, novel radiomics parameters have been
identified in recent years, while our studies only involved
traditional texture parameters. Compared to many other studies
in the same field, the number of radiomics features (n = 40)
is fairly small. Fourth, we did not perform comparison to the
performance of a human reader with classifiers. Fifth, only few
classification algorithms were evaluated in our study. Machine
learning has been developed rapidly in recent years, and new
algorithms are being programmed. Sixth, we did not verify the
efficacy of machine learning-based models in external datasets.
We tried to search the public datasets, but all of them were
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FIGURE 4 | Example of distributions of the linear discriminant analysis (LDA)-based models determined for the lesions for one cycle. (A) Distance correlation + LDA;

(B) least absolute shrinkage and selection operator (LASSO) + LDA; and (C) gradient boosting decision tree (GBDT) + LDA.

for gliomas. The software used to extract texture parameters

and package to perform machine learning is the open-source

package, providing a potential for other researchers to reproduce

our researches.
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As awareness of the habits and risks associated with lung cancer has increased, so

has the interest in promoting and improving upon lung cancer screening procedures.

Recent research demonstrates the benefits of lung cancer screening; the National Lung

Screening Trial (NLST) found as its primary result that preventative screening significantly

decreases the death rate for patients battling lung cancer. However, it was also noted

that the false positive rate was very high (>94%).In this work, we investigated the ability

of various machine learning classifiers to accurately predict lung cancer nodule status

while also considering the associated false positive rate. We utilized 416 quantitative

imaging biomarkers taken from CT scans of lung nodules from 200 patients, where the

nodules had been verified as cancerous or benign. These imaging biomarkers were

created from both nodule and parenchymal tissue. A variety of linear, nonlinear, and

ensemble predictive classifying models, along with several feature selection methods,

were used to classify the binary outcome of malignant or benign status. Elastic net and

support vector machine, combined with either a linear combination or correlation feature

selection method, were some of the best-performing classifiers (average cross-validation

AUC near 0.72 for these models), while random forest and bagged trees were the worst

performing classifiers (AUC near 0.60). For the best performing models, the false positive

rate was near 30%, notably lower than that reported in the NLST.The use of radiomic

biomarkers with machine learning methods are a promising diagnostic tool for tumor

classification. The have the potential to provide good classification and simultaneously

reduce the false positive rate.

Keywords: radiomics, machine learning, CT image, biomarkers, lung cancer

1. INTRODUCTION

Publication of primary results from the National Lung Screening Trial (NLST) reported that lung
cancer screening, especially when performed with low dose computed tomography (CT) scans,
can significantly reduce the mortality rate of lung cancer. This result highlights the benefits of
lung cancer screening; however, the NLST also found that screening results had a notably high
rate of false positive results. Of the total number of low dose CT scans in the NLST, the false
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positive rate surpassed 94% (1). The NLST researchers noted
that the high false positive rate was a challenge which required
further research, and that challenge persists to the present. The
negative consequences associated with false positive exam results
can include patient anxiety and unnecessary invasive diagnostic
procedures such as biopsy (2, 3).

High-throughput extraction of features from imaging data
composes the essence of radiomics, an emerging field of research
which offers significant improvement to decision-support in
oncology (4, 5). Current work examines the predictive power of
quantitative imaging biomarkers, which are quantitative features
extracted from routine medical images (4, 6, 7), as inputs within
predictive classifying models. The information contained in the
imaging biomarkers has the potential to improve classification
accuracy in a variety of statistical models (2).

Across the literature, quantitative biomarkers taken from
imaging data have been used to develop models with the intent
to identify and analyze associations between radiomic/nodule
features (stages or histological characteristics) and clinical
outcomes (survival, recurrence, etc.). Previous work in radiomics
aimed at classification of lung nodules has examined a variety
of outcomes (5, 8–12). Zhu et al. used outcome categories for
lung cancer type with a LASSO classification model (13). Zhang
et al. examined outcomes for local/distant failure using several
machine learning classifiers (5). Pamar et al. used clusters of
biomarkers as predictors inmodels of overall survival (14). Dilger
et al. used an expanded set of radiomic features that included
both nodule and parenchymal tissue. They showed an increase
in classification performance when the parenchymal tissue was
included in feature extraction (3).

In this paper, we investigate the predictive power of
biomarkers (computed from both nodule and parenchymal
tissue as calculated by Dilger et al. (3)) to classify lung nodule
status as malignant/benign while also considering the false
positive rate. Our comprehensive approach includes multiple
combinations of models and filtering techniques. In particular,
combinations of twelve machine learning classifiers along with
six feature selection methods were compared, using area under
the receiver operating characteristic curve (AUC) as the model
performance metric.

2. METHODS

2.1. Dataset
This retrospective study analyzed data originally taken from 200
CT scans of the lungs of patients at the University of Iowa
Hospital. Pathology and radiology reports were reviewed to
identify an analysis set of patients who met eligibility criteria
of having (a) a solitary lung nodule (5–30mm) and (b) a
malignant nodule confirmed on histopathology or a benign
nodule confirmed on histopathology or by size stability for
at least 24 months. Manual segmentations were performed
by a graduate student trained in medical image analysis in
order to define a region of interest (ROI) around each nodule.
The ROIs were defined to include amounts of parenchyma
approximately proportional to the nodule sizes. Individual ROI
voxels were labeled as belonging to either the nodule or the

TABLE 1 | Demographics of patient cohort.

Malignant Benign

Number of patients 110 90

Female 51 (46.4%) 63 (70.0%)

Male 59 (53.6%) 27 (30.0%)

Age, yrs (mean ± SD) 65.7± 11.2 58.2± 13.2

Pack-years (mean ± SD) 38.4± 31.2 11.2± 16.9

Nodule size, mm (range, mean ± SD) 7− 44, 19.1± 6.3 6− 30, 15.2± 5.8

parenchyma, with radiomic features calculated separately for
each to produce the complete set of 416 (approximately half
nodule and half parenchyma) quantitative imaging biomarkers.
These biomarkers measured features such as intensity, shape,
and texture of the ROI (15). This study is a secondary analysis
of de-identified data originally collected with approval from
the University of Iowa institutional review board. Demographic
information can be found in Table 1.

A strength of the dataset is its fairly balanced malignant/
benign status breakdown, with 45% of the cases malignant
and 55% benign. Many machine learning-based classifying
algorithms assume that the outcomes of a data set are balanced,
but this assumption is not met when the proportion of outcomes
is highly uneven. The data set used in this work has a nearly even
ratio of malignant and benign nodules (16).

2.2. Radiomic Features
The 416 radiomic features which were available for this
investigation quantified nodule characteristics from CT images
acquired from a variety of scanner protocols through the
University of Iowa Hospital. The most common CT models
used were Siemens SOMATOM Definition, Siemens Sensation
16, Sensation Biograph 40, and Toshiba Aquilion. Using these
machines, several protocols were used, including Chest CT scans
with and without contrast, CT Angiography scans, Extrenal CT
scans, PET/CT scans, and CT: Chest, Abdomen, and Pelvis scans.
Slice thickness ranged from 1.0 to 6.0 mm with an average of
3.3 mm (15). From these scans, voxels labeled as parenchyma
and nodule were used in the extraction of four classes of
features: intensity, shape, border, and texture. The intensity of
CT images described the radiodensity of the anatomy [measured
using Hounsfield units (HU)] as well as heterogeneity of the
nodule. Shape features examined sphericity and the maximum
diameter of the nodule. Sphericity was computed by comparing
the volume of the nodule to its surface area, and maximum
diameter was measured using the Response Evaluation Criteria
in Solid Tumors (RECIST). The border features were measured
using a rubber band straightening transform (RBST). The texture
features were extracted from the nodule and parenchyma regions
using Laws’ Texture Energy Measures (TEM). From these TEMs,
the mean, variance, kurtosis, and skewness of the nodule and
parenchyma were extracted. Radiomic features were extracted
using aMatlab based CAD tool, and the mathematical definitions
for all of the radiomic measurements are described in full
in Dilger (17).
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TABLE 2 | Summary of feature selection methods.

Feature selection method Abbreviation

Linear combination lincom

Pairwise correlation corr.95

PCA - 0.85 cutoff pca.85

PCA - 0.90 cutoff pca.90

PCA - 0.95 cutoff pca.95

Unfiltered nofilter

2.3. Feature Selection Methods
As is common in radiomics studies with hundreds of features,
many of the biomarkers (features) used as predictors were highly
correlated with one another; this challenge necessitated feature
selection in order to avoid collinearity, reduce dimensionality,
and minimize noise (11, 16, 18, 19). To this end, we considered
three feature selection methods: a linear combinations filter, a
pairwise correlation filter, and principle component analysis.

For the linear combinations filter (lincom), a QR
decomposition along with an iterative procedure is used to
determine if some predictors are linear combinations of others.
Predictors are sequentially removed until the design matrix is
full rank. The pairwise correlation filter removes those predictors
whose pairwise correlation is greater than a specified cutoff.
The two predictors with the largest absolute correlation are
first considered. Of those two, the predictor with the highest
average absolute correlation with all other variables is removed.
This process continues until all the predictors left have pairwise
absolute correlations less than the cutoff. After investigating
multiple cutoffs, we chose a cutoff value of 0.95 for the pairwise
correlation filter (corr.95) since this cutoff removed highly
correlated variables but still retained a large number of features.
Principal component analysis reduces dimensionality by creating
new, uncorrelated predictors which explain a large proportion of
the variance in the predictor space. Principal component analysis
was implemented at three different cutoffs (pca.85, pca.90,
pca.95), where the number of components accounted for either
85, 90, or 95% of the variance in the predictor space (Table 2).

2.4. Classifiers and Performance Metrics
Combinations of the six feature selection methods and twelve
classifiers were investigated by implementing a 10-fold repeated
cross-validation framework with five repeats, a standard
validation technique (5, 13, 16, 20, 21). The feature selection
methods were included in the cross-validation algorithm so
that their contribution to the final model fit is reflected
in the performance metrics. The classifiers are from three
different families: linear, nonlinear, and ensemble (22). Of the
linear classifiers, an elastic net (elasticnet), a logistic regression
(logistic), a partial least squares model (pls), and a logistic
regression with Step AIC were fit. The nonlinear classifiers
include a K-nearest neighbors model (knn), a neural network
(nnet), and three support vector machines: a linear kernel
(svml), a polynomial kernel (svmpoly), and a radial kernel
(svmr). The ensemble models used included bagged classification

TABLE 3 | Summary of classifiers.

Model family Classifier Abbreviation

Linear

Elastic net elasticnet

Logistic regression logistic

Partial least squares pls

Logistic regression with step AIC glmStepAIC

Nonlinear

K-nearest neighbors knn

Neural network nnet

Support vector machine (linear kernel) svml

SVM (polynomial kernel) svmpoly

SVM (radial kernel) svmr

Ensemble

Bagged trees bag

Random forest rf

Stochastic gradient boosting gbm

trees (bag), random forest (rf), and stochastic gradient boosting
(gbm) (Table 3).

The quality of model performance in most machine learning
algorithms is dependent upon the choice of various tuning
parameters. Some tuning parameters take into account the
number of predictors after feature selection. For example, the
mtry tuning parameter for rf, which determines the number
of candidate variables at each branch, is equal to the square
root of the number of predictors. Other tuning parameters were
chosen based on standard practice (22, 23). For example, the
decay tuning parameter for nnet, which helps prevent overfitting,
generally takes the values of 0.1, 0.01, and 0.001. All models were
fit using the caret R package (24). Our R code implementing
the feature selection and classification models is presented as
Supplementary Material.

3. RESULTS

The linear combinations filter removed 217 biomarkers, leaving
a set of 199 predictors. The pairwise correlation filter retained 39
predictors, while principal components analysis retained 12, 14,
and 18 components at the 85, 90, and 95% levels, respectively.

Figure 1 gives the predictive performance (AUC) of each
feature selection method (in rows) and classifier (in columns),
averaged over the 50-folds/repeats in the cross-validation.
Logistic regression models cannot be calculated when the
number of predictors is larger than the number of observations,
so the nofilter row is blank for this classifier. The large number of
predictors also caused multiple computing issues with the neural
net classifier, so training this classifier without using any feature
selection was not considered. Table 4 gives the highest average
AUC for each classifier across the various feature selection
methods. Principal component analysis yields lower AUC values
for all of the classifying models. Using lincom, the top four
classification methods perform well, with AUC ≥ 0.728 (we note
that svmr with corr.95 also has an average AUC = 0.728). The
standard deviation over the folds/repeats is also given, along with
sensitivity, specificity, and false positive rate statistics. Specificity
and sensitivity were computed using a 0.5 threshold from the
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FIGURE 1 | Average AUC values (over the 50 repeated cross-validation testing sets) of each feature selection/classifier combination.

TABLE 4 | AUC values for classifiers with highest predictive performance (SD

taken over the 50 cross-validation testing sets).

Feature

method

AUC SD Sensitivity Specificity False

positive

rate

SD

Classifier

elasticnet lincom 0.747 0.111 0.616 0.729 0.271 0.136

svml lincom 0.745 0.112 0.549 0.765 0.235 0.126

svmpoly lincom 0.741 0.113 0.569 0.781 0.219 0.132

pls lincom 0.728 0.111 0.627 0.707 0.293 0.126

svmr corr.95 0.728 0.106 0.542 0.780 0.220 0.148

gbm lincom 0.714 0.106 0.596 0.733 0.267 0.140

glmStepAIC corr.95 0.714 0.110 0.636 0.684 0.316 0.130

nnet lincom 0.709 0.113 0.620 0.707 0.293 0.143

logistic corr.95 0.684 0.108 0.600 0.689 0.311 0.116

knn corr.95 0.676 0.109 0.482 0.738 0.262 0.117

rf corr.95 0.663 0.124 0.473 0.730 0.270 0.127

bag lincom 0.658 0.106 0.529 0.702 0.298 0.146

model predicted class probabilities. The AUC standard deviations
are fairly similar, while sensitivity and specificity have larger
variation. The false positive rates are more variable than the
AUC values, and the mean false positive rates are all notably
lower (all less than 32%) than the 94% found in the results of
the NLST.

Figure 2 shows the distribution of the AUC scores for the four
best performing classifiers: elasticnet, svml, svmpoly, and pls.
Among all feature selection methods, corr.95 and lincom yielded
the highest AUC values on average across these four classifiers.

The lincom feature selection with the elasticnet classifier has
the best overall predictive performance (AUC = 0.747), followed
by the svml classifier with the lincom feature selection (AUC
= 0.745). As has been observed in other radiomic studies,
support vector machines perform well with respect to predictive
performance (21).

The boxplots in Figure 3 show the distribution of the false
positive rates for the four best performing classifiers. These
distributions show that the lowest false positive rates were
achieved in combination with either the lincom or corr.95 feature
selection methods for all four of these classifiers. These two
feature selection methods result in both the highest average AUC
values and the lowest false positive rates.

Figure 4 gives the ROC curve for the best performing
classifier/feature selection combination (elasticnet/lincom).
Although the NLST did not report false negative rates, the ROC
curve displays the tradeoff between specificity and sensitivity.
While the classifiers have reduced the false positive rate, the
tradeoff is an increase in the false negative rate, which would be
estimated to be near 0.38 for this particular classifier. This natural
tradeoff between specificity and sensitivity for classifiers would
suggest that radiomic methods should not be the sole diagnostic
tool in lung cancer diagnosis. However, the reduction of the
false positive rate for a non-invasive procedure is a substantial
improvement and supports the inclusion of these methods in
clinical practice.

4. DISCUSSION

While awareness of the benefits of preventative screening for
lung cancer has increased in recent years, there is still a need
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FIGURE 2 | Boxplots of AUC values (over the 50 repeated cross-validation testing sets) for each feature selection method for the four best-performing classifiers.

FIGURE 3 | Boxplots of the false positive rates (over the 50 repeated cross-validation testing sets) for each feature selection method for the four best-performing

classifiers.
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FIGURE 4 | ROC curve for the elastic net classifier with the linear combinations filter.

for improved accuracy in nodule classification. Moreover, a high
false positive rate for the diagnostic outcome of lung cancer
screening remains a major challenge. Nodule characteristics
(biomarkers) calculated from CT scans offer the possibility
of improved nodule classification through various modeling
techniques. Machine learning algorithms have the potential to
harness the predictive power in nodule characteristics. However,
little work has been done to compare the performance of various
machine learning methods used in conjunction with different
feature selection methods, especially as they relate to lung cancer
tumor diagnosis.

However, models to predict pulmonary nodule status have
been developed and evaluated in other studies. Chen et al.
extracted 750 imaging features and compared the performance
of a support vector machine (SVM) trained with all to an SVM
trained with a sequential forward selection of 4 features (2).
Leave-one-out cross-validation demonstrated superior accuracy
of 84% for the 4-feature model vs. 56% for all features. Alahmari
et al. studied the prognostic performance of radiomics features
and found the addition of feature changes over time (delta
radiomics) to improve AUC performance from 0.773 to 0.822
(25). SVM and random forest models as well as different feature
selection algorithms were considered in their analysis. Final
results are presented for random forest models and ReliefF
feature selection, suggesting that these were the optimal choices,
although comparisons to the others were not presented. A
computer-aided lung nodule detection system was proposed
by Ma et al. (26). In their approach, multiscale nodule and
vessel enhancement filters were applied to patient images prior
to extracting 979 radiomics features for training of a random
forest classifier. Comparisons to other modeling approaches
were not made. Uthoff et al. used a set of 922 radiomics
features that is an extension of ours with both nodule features
and parenchyma features calculated in 25, 50, 75, and 100%
bands around the maximal in-plane diameter of the nodule
(27). They used k-medoids clustering to select features for

training of an artificial neural network. K-medoids feature
selection is similar in spirit to the high correlation selection
approach we used in that both reduce the number of features
by selecting representative ones from those that are similar.
Comparisons to other modeling approaches are not presented in
their publication.

In this study, we considered the ability of nodule biomarkers
to accurately predict malignant/benign status. The elastic net,
support vector machines with polynomial and linear kernels,
and partial least squares were the most predictive classifiers.
When combined with the linear combination and correlation
feature selection methods, these four classifiers had AUC values
comparable in accuracy to the most predictive models studied
in previous radiomic analyses (14, 16, 21). Furthermore, we
observed that these classifiers greatly reduced the false positive
rate from that given in the NLST results.

The observations from this investigation suggest that
classifiers such as support vector machines and elastic net
perform well with quantitative imaging biomarkers as their
predictors. We also show that the chosen feature selection
method will impact model performance, and we recommend
using linear combination or a correlation-based reduction
method over principal components. Different CT modalities
and/or different patient population characteristics may yield
different results. In order to recommend a particular model for
application in a clinical setting, these results would need to be
externally validated.

As as comparison, the two best classifier/feature selection
combinations were fit with both the 416 biomarkers, as well as the
demographic variables of sex, age, and pack-years (the number
of packs smoked per day multiplied by the number of years
smoked). Elastic Net with the Linear Combination filter had an
average AUC of 0.747 (see Table 4) without the demographic
variables included. This number was increased to 0.854 when
these variables were added. The Linear Support Vector Machine
with the Linear Combination filter had an average AUC of
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0.745 without the demographic variables included. This number
was increased to 0.820 when these variables were added. This
suggests that radiomic features, while having good predictive
performance, can be enhanced when other patient characteristics
are included in the model.

Taken together, a number of common themes emerge from
our present work and the past work of others. First, methods
that reduce the number of features prior to model training
appear to improve predictive performance. We believe this is
especially true in the field of radiomics where large numbers of
features tend to be highly correlated. Oftentimes, there are many
features that do not provide additional information because they
are linear combinations of others and may be removed with a
linear combination filter. In addition, radiomics features tend
to exhibit strong clustering for which high correlation or k-
medoid selection seems to improve prediction even when in
the cases of models, like random forests and gradient boosting,
that perform automatic feature selection. Second, our work
suggests that SVM performs well in the radiomics setting and
supports its use by others. Furthermore, we found the commonly
used random forest model to have poor performance; whereas,
the less commonly used in radiomics—but commonly used
in genomics—elastic net model was our top performer. Thus,
we encourage consideration and reporting of more than one
modeling approach in radiomics research. Finally, there is strong
evidence that pulmonary features derived from the parenchyma
and that reflect changes over time help with prediction. Likewise,

as is the case in many fields, improvements in prediction are
often achieved when utilizing subject matter expertise in the
development of features and modeling approaches.
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A Corrigendum on

Machine Learning and Feature Selection Methods for Disease Classification With Application

to Lung Cancer Screening Image Data

by Delzell, D. A. P., Magnuson, S., Peter, T., Smith, M., and Smith, B. J. (2019). Front. Oncol. 9:1393.
doi: 10.3389/fonc.2019.01393

The data analyzed for this study were generated by Samantha Dilger, Ph.D and Jessica Sieren,
Ph.D (Departments of Radiology and Biomedical Engineering, University of Iowa, Iowa City, IA,
United States) who control the rights to the data and do not intend for the data to be shared publicly.
Accordingly, this data which was included as Supplementary Material in the original article is being
removed. In addition, the data were taken from a mix of low and high-dose CT scans, which were
incorrectly referred to in the original article as low-dose scans.

The corrections below have been made to theMethods, subsection Dataset, paragraph 1.
“This retrospective study analyzed data originally taken from 200 CT scans of the lungs of

patients at the University of Iowa Hospital. Pathology and radiology reports were reviewed to
identify an analysis set of patients who met eligibility criteria of having (a) a solitary lung nodule
(5–30mm) and (b) a malignant nodule confirmed on histopathology or a benign nodule confirmed
on histopathology or by size stability for at least 24 months. Manual segmentations were performed
by a graduate student trained in medical image analysis in order to define a region of interest (ROI)
around each nodule. The ROIs were defined to include amounts of parenchyma approximately
proportional to the nodule sizes. Individual ROI voxels were labeled as belonging to either the
nodule or the parenchyma, with radiomic features calculated separately for each to produce
the complete set of 416 (approximately half nodule and half parenchyma) quantitative imaging
biomarkers. These biomarkers measured features such as intensity, shape, and texture of the ROI
(15). This study is a secondary analysis of de-identified data originally collected with approval
from the University of Iowa institutional review board. Demographic information can be found
in Table 1.”
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The dataset has been removed from the online Supplementary
Material and replaced with R code implementing the feature
selection and classificationmodels described inMethods Sections
2.3 and 2.4 of the article. The Methods section, subsection
Classifiers and Performance Metrics, paragraph 2 has been
updated to include a reference to the supplementary code
as follows:

“The quality of model performance in most machine learning
algorithms is dependent upon the choice of various tuning
parameters. Some tuning parameters take into account the
number of predictors after feature selection. For example, the
mtry tuning parameter for rf, which determines the number
of candidate variables at each branch, is equal to the square
root of the number of predictors. Other tuning parameters were
chosen based on standard practice (22, 23). For example, the
decay tuning parameter for nnet, which helps prevent overfitting,

generally takes the values of 0.1, 0.01, and 0.001. All models were
fit using the caret R package (24). Our R code implementing
the feature selection and classification models is presented as
Supplementary Material.”

The authors apologize for the inclusion of the data in the
Supplementary Material and misstatement of “low-dose” CT.
We state that these do not change the scientific conclusions of
the article in any way. The original article has been updated.
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Objectives: To investigate the ability of radiomics features from MRI in differentiating

anaplastic oligodendroglioma (AO) from atypical low-grade oligodendroglioma using

machine-learning algorithms.

Methods: A total number of 101 qualified patients (50 participants with AO and

51 with atypical low-grade oligodendroglioma) were enrolled in this retrospective,

single-center study. Forty radiomics features of tumor images derived from six matrices

were extracted from contrast-enhanced T1-weighted (T1C) images and fluid-attenuation

inversion recovery (FLAIR) images. Three selection methods were performed to select the

optimal features for classifiers, including distance correlation, least absolute shrinkage

and selection operator (LASSO), and gradient boosting decision tree (GBDT). Then

three machine-learning classifiers were adopted to generate discriminative models,

including linear discriminant analysis, support vector machine, and random forest (RF).

Receiver operating characteristic analysis was conducted to evaluate the discriminative

performance of each model.

Results: Nine predictive models were established based on radiomics features from

T1C images and FLAIR images. All of the classifiers represented feasible ability in

differentiation, with AUC more than 0.840 when combined with suitable selection

method. For models based on T1C images, the combination of LASSO and RF classifier

represented the highest AUC of 0.904 in the validation group. For models based on

FLAIR images, the combination of GBDT and RF classifier showed the highest AUC of

0.861 in the validation group.

Conclusion: Radiomics-based machine-learning approach could potentially serve as a

feasible method in distinguishing AO from atypical low-grade oligodendroglioma.

Keywords: radiomics, machine learning, oligodendroglioma, anaplastic oligodendroglioma, magnetic resonance

imaging, grading
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INTRODUCTION

Oligodendroglial tumors, one of the most common subtypes of
gliomas, are classified into oligodendroglioma (grade II) and
anaplastic oligodendroglioma (AO) (grade III) according to
the 2016 World Health Organization (WHO) classification
system (1). The clinical management and prognosis of
oligodendrogliomas are closely relevant to the histopathological
grade. AO is considered as the malignant tumor with aggressive
behavior and requires radiotherapy and chemotherapy after
the maximum safe resection, whereas patients with low-grade
oligodendroglioma usually undergo less postoperative treatment
and have better survival outcomes (2, 3). Therefore, the accurate
preoperative assessment of tumor grade is clinically important
for treatment planning and prognosis prediction. Magnetic
resonance (MR) scan is recommended in pre-surgical evaluation
of oligodendroglioma grade, as the contrast enhancement pattern
is typically considered as the characteristics of high-grade glioma
(2, 4). However, up to 50% of low-grade oligodendroglioma
showed similar patterns with enhancement on MR imaging
(MRI), making the discrimination from AO challenging in these
cases (5).

Radiomics is an emerging field that can extract quantitative
parameters from medical images to provide non-visual
information calculated with mathematical formulas (6). Previous
studies suggested that the combination of radiomics and
machine-learning algorithms showed promising potential in
differential diagnosis, pre-surgical grading, and prognosis
prediction of intracranial tumors (7–10). However, it has never
been applied in the grade prediction of oligodendrogliomas.
Because radiomics could potentially reflect the underlying
pathophysiology of lesions, we hypothesized that it might
detect the differences that were difficult to obtain by visual
inspection between AO and atypical oligodendroglioma
(6, 11). Therefore, the purpose of the present study was to
investigate the ability of radiomics-based machine learning
technology in distinguishing AO from atypical low-grade
oligodendroglioma. A set of radiomics parameters was extracted
from MR images, and a series of discriminative models were
established using different combinations of selection methods
and machine-learning algorithms.

MATERIALS AND METHODS

Patient Selection
In this retrospective study, we screened our institutional database
to review the patients who were diagnosed and treated at the
neurosurgery department of our institution from January 2015
to December 2018. According to the 2016 WHO Classification
of Tumors of the Central Nervous System, the presence of
isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion
is necessary for diagnosis of both oligodendroglioma and AO.
Therefore, we carefully viewed the pathological reports and
genetic testing results of all participants, ensuring that enrolled
patients histopathologically and genetically met the 2016 WHO
criteria. We initially selected 241 potentially eligible patients who
were: (1) with pathological confirmation of oligodendroglioma

(N = 182) or AO (N = 59); (2) with conclusive genetic testing
results (presence of IDH mutation and 1p/19q codeletion); (3)
with pre-therapeutic MR images. Among 182 patients with low-
grade oligodendroglioma, 68 of them were selected as atypical
oligodendroglioma defined as a low-grade oligodendroglioma
with enhancement patterns on MRI. The exclusion criteria were
as follows: (1) incomplete medical records (N = 11); (2) recorded
history of receiving radiosurgery, chemotherapy, or radiotherapy
before MR scans (N = 9); (3) previous history of any other
cerebral diseases, such as stroke, subarachnoid hemorrhage (N
= 6). The process of patient enrollment was shown in Figure 1.
The clinical parameters, such as gender, age, Ki-67 labeling index
of tumor, and days between MR scan and surgery were also
recorded. This study was approved by the Ethics Committee of
Sichuan University. The written informed consent was obtained
from all participants enrolled in this study (written informed
consent for patients under the age of 16 was obtained from
parents or guardians).

MRI Acquisition
All patients enrolled took MR scan via 3.0T GE SIGNA MRI
scanner in our institution. In this study, contrast-enhanced
T1-weighted (T1C) and fluid-attenuation inversion recovery
(FLAIR) images were selected to perform texture analysis for the
following reasons: first, they were the most important sequences
in the diagnosis of oligodendrogliomas; second, the boundary of
tumor and normal brain tissue should be clear and recognizable
on images for precise delineation (Figure 2). The parameters of
T1C image were as follows: TR/TE= 1,540/2.4ms, slice thickness
= 1mm, axial FOV = 24 × 24 cm2, and data matrix = 256 ×

256. The parameters of FLAIR image were as follows: TR/TE =

4,000/393ms, slice thickness= 1mm, axial FOV= 24× 24 cm2,
and data matrix = 516 × 516. Gadopentetate dimeglumine (0.1
mmol/kg) was used as the contrast agent for T1C sequence. MR
images of all participants were collected with uniform standards
through Picture Archiving and Communication Systems from
our institutional radiology department.

Texture Features Extraction
Texture features were extracted from MR images by two
researchers together under the guidance of senior radiologists
using LIFEx software (http://www.lifexsoft.org) (12). Following
the instructions of the software, we manually contoured the
regions of interest (ROI) on axial image slice by slice (obvious
cystic area was not included in ROI considering the interference
of cystic fluid). Disagreements between researchers on tumor
boundary were addressed by consulting the senior radiologists.
The edema band and adjacent structure invasion were carefully
separated from the tumor tissue through the difference in
contrast enhancement patterns in T1C images. Anatomic
structures around the tumor were also recorded to help with
delineation in FLAIR images. To ensure the accuracy of texture
parameters, ROI was only drawn on the biggest one for tumors
with clear boundary and on tumor-confirmed area for tumors
with vague boundary. Even following this strategy, 12 FLAIR
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FIGURE 1 | The flowchart of patient enrollment process. MR, magnetic resonance.

FIGURE 2 | Examples of atypical low-grade oligodendroglioma and anaplastic oligodendroglioma on MRI. (A) A patient with atypical low-grade oligodendroglioma in

contrast-enhanced T1-weighted (T1C) image. (B) A patient with atypical low-grade oligodendroglioma in fluid-attenuation inversion recovery (FLAIR) image. (C) A

patient with anaplastic oligodendroglioma in T1C image. (D) A patient with anaplastic oligodendroglioma in FLAIR image.
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FIGURE 3 | The workflow chart from image processing to model establishment. ROI, regions of interest; LASSO, least absolute shrinkage and selection operator;

GBDT, gradient boosting decision tree; LDA, linear discriminant analysis; RF, random forest; SVM, support vector machine; AUC, area under the curve.

images were excluded because we were unable to delineate the
tumor due to the interference of edema.

A total of 40 texture features were extracted from six matrices
in the first or the second orders, including Histogram-based
matrix, Shape-based matrix, Gray-level co-occurrence matrix
(GLCM), Gray-level run length matrix (GLRLM), neighborhood
gray-level dependence matrix (NGLDM), and Gray-level
zone length matrix (GLZLM) (Supplementary Material 1).
The association between features was assessed with Pearson’s
correlations (Supplementary Material 2).

Model Establishment
The optimal features needed to be selected first because the
number of radiomics features was too large and not all of them
were statistically significant. Features were chosen using three
selection methods, namely, distance correlation, least absolute
shrinkage and selection operator (LASSO), and gradient boosting
decision tree (GBDT). Then three machine-learning classifiers
were adopted to generate discriminative models, including
random forest (RF), linear discriminant analysis (LDA), and
support vector machine (SVM). LDA and SVM classifiers were
chosen because they were representatives of linear and non-linear
classification algorithms, respectively (13). Different from LDA
or SVM, RF was considered the hybrid model of linear and non-
linear classifiers by some researchers (14, 15). The patients were
randomly divided into the training group and the validation
group with the ratio of 4:1. The models were first trained
with the training group and then applied to the independent
validation group to test their discriminative performance, and
this procedure was repeated for 100 cycles. A confusion matrix
was established combining the histopathological results and
predictions of models based on which the sensitivity, specificity,

and accuracy were calculated. Area under the receiver operating
characteristic curve (AUC) for both training group and validation
group was also recorded to evaluate the discriminative ability
of different models. The workflow from imaging processing to
model establishment was shown in Figure 3.

RESULTS

Patient Characteristics
A total number of 101 qualified patients (50 individuals with
AO and 51 with atypical low-grade oligodendroglioma) were
enrolled in the present study. The gender ratio of participants was
54:47 (male:female). The average ages of patients with AO and
atypical low-grade oligodendroglioma were 47.1 and 38.7 years,
respectively. The detailed characteristics of patients and lesions
were summarized in Table 1.

Model Assessment
A total of nine predictive models were built through the
combination of three selection methods (distance correlation,
LASSO, and GBDT) and three machine-learning classifiers (RF,
LDA, and SVM). Radiomics features from T1C images and
FLAIR images were introduced into models, respectively. All
of the classifiers represented feasible discriminative ability with
AUC more than 0.840 in the validation group when combined
with the suitable selection method.

Among models using parameters from T1C images, the
combination of LASSO and RF classifier (LASSO + RF) was
proven to show the highest AUC of 0.904 in the validation
group. Moreover, RF classifier seemed to be the optimal
classification algorithm in differentiation for the reason that
all RF-based models showed excellent performance with AUC
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TABLE 1 | Characteristics of patients and lesions.

Characteristics Atypical low-grade

oligodendroglioma

(n = 51)

Anaplastic

oligodendroglioma

(n = 50)

Age, n (%)

0–20 years 5 (9.8) 1 (2.0)

21–40 years 22 (43.1) 15 (30.0)

41–60 years 19 (37.3) 23 (46.0)

61–80 years 5 (9.8) 11 (22.0)

Mean age (range) (year) 38.7 (7–71) 47.1 (16–76)

Gender, n (%)

Male 29 (56.9) 25 (50.0)

Female 22 (43.1) 25 (50.0)

Ki-67 labeling index, n (%)

<10% 35 (68.6) 9 (18.0)

≥10% 16 (31.4) 41 (82.0)

Average days between MR

scan and surgery

9.4 7.9

MR, magnetic resonance.

over 0.920 in training group and 0.870 in the validation group
(Table 2). For three models using the LDA classifier, receiver
operating characteristic (ROC) analysis suggested that they all
represented feasible discriminative ability, with AUC of 0.880
(distance correlation + LDA), 0.835 (LASSO + LDA), and
0.879 (GBDT + LDA) in the validation group (Table 3). For
SVM-based models, only distance correlation + SVM showed
feasible performance, with AUC of 0.866 in the validation group.
Inadequate discriminative ability was observed in LASSO +

SVM (AUC = 0.702 in the validation group) compared to
other models, and overfitting was observed in GBDT + SVM
(Table 4).

Among models using parameters from FLAIR images, GBDT
+ RF was found to represent the highest AUC of 0.861 in
the validation group. Besides, other two models using RF
classifier also displayed feasible discriminative ability, with
AUC of 0.836 (distance correlation + RF) and 0.855 (LASSO
+ RF) in the validation group (Table 2). For three models
using LDA classifier, ROC analysis demonstrated that the
AUC in the validation group were 0.843, 0.819, and 0.848,
respectively (Table 3). Among SVM-based models, distance
correlation + SVM represented the best performance in
differentiation with AUC of 0.860 in the validation group.
Overfitting was observed in GBDT + SVM again, indicating
that this model might be unsuitable for the grade prediction
(Table 4).

DISCUSSION

Accurate preoperative evaluation of tumor grade is important
for treatment facilitation and prognosis prediction. Lacking
specific blood biomarkers, MR scan is commonly performed
to evaluate oligodendroglioma grade pre-surgically with high
spatial resolution and tissue resolution. However, atypical
low-grade oligodendroglioma with contrast enhancement could

complicate the differentiation from AO (16). Searching for
accurate diagnosis, the value of advanced MRI techniques
in oligodendroglioma grading had been investigated in
previous studies (17, 18). Nevertheless, these advanced imaging
techniques require additional expense and platforms and are
not routinely conducted for every patient in clinical work.
In the current study, a series of radiomics parameters were
extracted from conventional MR sequences and fed into
machine-learning classifiers to differentiate AO from atypical
low-grade oligodendroglioma. Several predictive models with
suitable combination were proven to represent feasible ability
in grade prediction. Given that both T1C and FLAIR sequences
are routinely performed in clinical examination, machine
learning-based radiomics could potentially serve as the imaging
biomarkers to aid preoperative diagnosis.

Radiomics has been investigated in recent studies, implying
that the parameters are associated with tumor histopathology
and abnormal microenvironment. The texture features calculate
the image characteristics from different aspects, statistically
reflecting intratumoral heterogeneity, cellular density, and level
of vascularization (19–21). This theory has been verified by
previous researches that the shift of texture parameters was
associated with irregularity in blood vessel distribution and
intratumoral hypoxia (22, 23). Given that these biological
procedures were regulated by DNA, texture parameters were also
related to molecular pathologic characteristics of tumors, such as
mutation status of IDH and Kirsten Ras (KRAS) (24, 25). As for
oligodendrogliomas, AO is histologically characterized by high
cellular density, nuclear atypia, and microvascular proliferation,
which might contribute to its radiological characteristics, such
as contrast enhancement. Thus, we hypothesized that texture
parameters might help discriminate between grade II and
III oligodendrogliomas.

Moreover, with analyzable statistics converted from images,
the novel computer technology could be employed. Similar
researches suggested that radiomics combined with machine-
learning algorithms displayed promising potential in various
fields, including differential diagnosis of glioblastoma, pre-
surgical grading of glioma, and prediction of patient survival
outcomes (8, 26–28). It is worth noting that previous studies
primarily focused the value of radiomics in distinguishing
low-grade glioma vs. high-grade glioma, whereas the possible
different characteristics among the histological subtypes of
glioma were not taken into consideration (29–31). However, the
heterogeneity of different glioma subtypes might interfere with
the accuracy of the models. Therefore, our study first applied
radiomics in grade prediction of oligodendrogliomas, a specific,
common subtype of gliomas. More importantly, we focused
on the situation where visual inspection was not sufficient
in discrimination, aiming to explore the ability of radiomics-
based machine learning in differentiating AO from atypical low-
grade oligodendroglioma.

Compared with previous studies on glioma grading, we
employed more selection methods (distance correlation, LASSO,
and GBDT) and machine learning classifiers (RF, LDA, and
SVM), wishing to identify the optimal model with the best
discriminative performance. The results indicated that all of
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TABLE 2 | Discriminative performance of models using RF classifier and different selection methods in distinguishing anaplastic oligodendroglioma from atypical

low-grade oligodendroglioma in the training group and the validation group.

Selection method Training group Validation group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

T1C image

Distance correlation 0.927 0.928 0.959 0.901 0.874 0.876 0.925 0.825

LASSO 0.945 0.946 0.976 0.921 0.904 0.900 0.971 0.833

GBDT 0.959 0.960 0.984 0.939 0.896 0.895 0.952 0.838

FLAIR image

Distance correlation 0.911 0.835 0.775 0.915 0.836 0.833 0.813 0.868

LASSO 0.946 0.863 0.844 0.882 0.855 0.756 0.780 0.725

GBDT 0.957 0.882 0.839 0.931 0.861 0.783 0.770 0.806

RF, random forest; AUC, area under the curve; LASSO, least absolute shrinkage and selection operator; GBDT, gradient boosting decision tree; T1C, contrast-enhanced T1-weighted;

FLAIR, fluid-attenuation inversion recovery.

TABLE 3 | Discriminative performance of models using LDA classifier and different selection methods in distinguishing anaplastic oligodendroglioma from atypical

low-grade oligodendroglioma in the training group and the validation group.

Selection method Training group Validation group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

T1C image

Distance correlation 0.896 0.898 0.919 0.879 0.880 0.886 0.935 0.835

LASSO 0.928 0.929 0.949 0.911 0.835 0.829 0.926 0.748

GBDT 0.918 0.918 0.918 0.917 0.879 0.881 0.904 0.854

FLAIR image

Distance correlation 0.866 0.796 0.727 0.900 0.843 0.783 0.740 0.887

LASSO 0.891 0.807 0.752 0.879 0.819 0.739 0.735 0.746

GBDT 0.943 0.862 0.836 0.889 0.848 0.817 0.802 0.841

LDA, linear discriminant analysis; AUC, area under the curve; LASSO, least absolute shrinkage and selection operator; GBDT, gradient boosting decision tree; T1C, contrast-enhanced

T1-weighted; FLAIR, fluid-attenuation inversion recovery.

TABLE 4 | Discriminative performance of models using SVM classifier and different selection methods in distinguishing anaplastic oligodendroglioma from atypical

low-grade oligodendroglioma in the training group and the validation group.

Selection method Training group Validation group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

T1C

Distance correlation 0.885 0.889 0.981 0.829 0.866 0.857 0.989 0.760

LASSO 0.759 0.770 0.930 0.700 0.702 0.657 0.881 0.570

GBDT 1.000 1.000 1.000 1.000 / / / /

FLAIR

Distance correlation 0.904 0.738 0.650 0.965 0.860 0.772 0.715 0.953

LASSO 0.712 0.689 0.616 0.878 0.606 0.678 0.664 0.716

GBDT 1.000 1.000 1.000 1.000 / / / /

SVM, support vector machine; AUC, area under the curve; LASSO, least absolute shrinkage and selection operator; GBDT, gradient boosting decision tree; T1C, contrast-enhanced

T1-weighted; FLAIR, fluid-attenuation inversion recovery; /, overfitting.

the classifiers represented feasible discriminative ability when
combined with suitable selection method, and RF-based models
showed the best performance with highest AUC in the validation
group. RF classifier is a robust classification algorithm that has
represented high discriminative performance in many studies
(24, 32, 33). The mechanism of RF classification algorithm

is to build subtrees by using the training bootstrap samples
and choose the classification with the most votes over all
trees in the forest (34). On the other hand, the results also
indicated that the selection method with different mechanisms
may have effects on the performance of the models. Distance
correlation is the representative of filter models that rank features
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based on certain characteristics and remove irrelevant features
without classification algorithms, whereas LASSO and GBDT
were representatives of embedded models that embed feature
selection with classifier construction (35). However, wemust note
that most models represented similar diagnostic performance,
and the differences in AUC may be partly attributed to the
relatively small study cohort. Future studies with larger sample
sizes are required to validate our results and further investigate
the optimal model for grade prediction.

There were some limitations in the present study. First, this
was a retrospective study; the selection bias was inevitable.
Second, radiomics features were extracted from T1C and FLAIR
sequences, whereas the value of features from other sequences
like diffusion-weighted imaging (DWI) was unclear. Future
studies are required to explore whether the features from other
sequences could help improve the discriminative ability. Third,
our models were not externally validated because this study was
conducted in a single institution. However, the image processing
and model establishment were conducted using open-source
packages, providing the potential for researchers to verify our
results in the future. Fourth, considering IDH and 1p/19q status
could be reflected in texture parameters, it is reasonable to
think that other molecular biomarkers may be associated with
parameters. However, this point was not considered in the
current study because of the relatively small sample size and
single subtype of gliomas. Future larger studies are required to
validate our results and to rectify the defects.
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Background: Accurate characterization of small (3 cm) hepatocellular carcinoma (sHCC)

and dysplastic nodules (DNs) in cirrhotic liver is challenging. We aimed to investigate

whether texture analysis (TA) based on T2-weighted images (T2WI) is superior to

qualitative diagnosis using gadoxetic acid-enhanced MR imaging (Gd-EOB-MRI) and

diffusion-weighted imaging (DWI) for distinguishing sHCC from DNs in cirrhosis.

Materials and methods: Sixty-eight patients with 73 liver nodules (46 HCCs, 27 DNs)

pathologically confirmed by operation were included. For imaging diagnosis, three sets

of images were reviewed by two experienced radiologists in consensus: a Gd-EOB-MRI

set, a DWI set, and a combined set (combination of Gd-EOB-MRI and DWI). For TA, 279

texture features resulting from T2WI were extracted for each lesion. The performance of

each approach was evaluated by a receiver operating characteristic analysis. The area

under the receiver operating characteristic curve (Az), sensitivity, specificity, and accuracy

were determined.

Results: The performance of TA (Az = 0.96) was significantly higher than that of

imaging diagnosis using Gd-EOB-MRI set (Az = 0.86) or DWI set (Az = 0.80) alone in

differentiation of sHCC from DNs (P = 0.008 and 0.025, respectively). The combination

of Gd-EOB-MRI and DWI showed a greater sensitivity (95.6%) but reduced specificity

(66.7%). The specificity of TA (92.6%) was significantly higher than that of the combined

set (P < 0.001), but no significant difference was observed in sensitivity (97.8 vs. 95.6%,

P = 0.559).
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Conclusion: TA-based T2WI showed a better classification performance than that of

qualitative diagnosis using Gd-EOB-MRI and DW imaging in differentiation of sHCCs from

DNs in cirrhotic liver. TA-based MRI may become a potential imaging biomarker for the

early differentiation HCCs from DNs in cirrhosis.

Keywords: hepatocellular carcinoma, liver cirrhosis, diffusion magnetic resonance imaging, gadoxetic acid,

texture analysis

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
malignancies; almost 80% of HCC occurs in patients with
cirrhosis (1, 2). Hepatocarcinogenesis in cirrhosis usually shows
a multistep progression from benign nodules, early HCC, and
progressive HCC (3). Early detection of HCC, differentiation
from benign cirrhotic nodules, provides the greatest chance for
long-term survival (4). However, a complete characterization of
these nodules still remains a difficult diagnostic dilemma due to
the overlap of imaging features (5, 6).

Based on the criteria of the American Association for
the Study of Liver Diseases, arterial enhancement followed
by later (portal or equilibrium phase) washout is defined as
a conclusive diagnosis for HCC (7). However, this typical
enhancement pattern is not always presented, especially for some
well-differentiated or small HCCs (8, 9). Diffusion-weighted
imaging (DWI) can provide additional value to routine dynamic
MRI by improving the diagnostic sensitivity (10, 11). The
restricted diffusion facilitates HCC diagnosis by reflecting tissue
hypercellularity (12). Nevertheless, some small HCCs may not
show restricted diffusion (13, 14).

Recently, as a hepatocyte-specific intake agent MR imaging,
gadoxetic acid-enhanced MR imaging (Gd-EOB-MRI) provides
both early dynamic vascular phase and delayed hepatobiliary
phase (HBP) information, which has been increasingly applied
in the characterization of liver nodules. Gd-EOB-MRI has
been demonstrated a higher sensitivity for detecting HCCs
than conventional dynamic MRI due to hypointensity on HBP
images (5, 15, 16). However, some small HCCs may not show
hypointensity on HBP images; in contrast, some DNs are
hypointensity (5, 17, 18).

Texture analysis (TA) based on medical images is a
postprocessing approach in differential diagnosis of benign and
malignant diseases (19). TA based on MRI has been used for
distinguishing breast cancer from normal tissue and classifying
histological types (20), e.g., differentiating prostate cancer from
normal tissue and classifying prostate cancers with different
Gleason scores (21). In liver assessments, texture-based MRI can
be used to differentiate different single liver lesions (22, 23),
evaluate hepatic fibrosis and cirrhosis grades (24), and predict the
HCC histological grade (25).

The value of TA-based MRI for discriminating cirrhotic
nodules remains unclear; we hypothesized that MRI-based TA
may be helpful to distinguish HCCs from DNs. Thus, we
performed this study to estimate the feasibility of TA-based
T2-weighted images in the differentiation of sHCC from DNs in
cirrhotic liver.

MATERIALS AND METHODS

Patient Samples
This retrospective study was approved by the institutional review
board of our hospital, and patient’s informed consent was
waived.We reviewed 455 consecutive patients with cirrhosis who
underwent liver MRI to exclude HCC between January 2015
and October 2018. The inclusion criteria were as follows: (1)
pathologically proven HCCs or DNs by surgical resection, (2)
nodule diameter smaller than 3 cm and larger than 1 cm, (3)
underwent both DW and Gd-EOB-MRI, and (4) received no
treatment before MRI. Based on the inclusion criteria, ultimately
a total of 68 patients [42men, 26 women;median, 56 years (range,
30–73 years)] with 73 liver nodules (46 HCCs, 27 DNs) were
enrolled. The patient inclusion flowchart is shown in Figure 1.

MRI Acquisition
MR imaging was performed in a 3.0-T whole-body MR system
(Achieva; Philips Healthcare, Best, Netherlands) with a 16-
channel phased-array coil. The MRI protocol consisted of a
respiratory-triggered T1-weighted turbo field-echo in-phase and
opposed sequence [TR/first echo TE and second echo TE,
10/2.5ms (in-phase) and 3.55ms (opposed-phase); flip angle,
10◦; matrix, 256 × 224; bandwidth, 434.3 Hz/pixel] and a
breath-hold fat-saturated T2-weighted fast spin-echo sequence
(TR/TE, 2,096/72ms; flip angle, 90◦; matrix size, 324 × 256;
bandwidth, 258.4 Hz/pixel) with a 5-mm section thickness and
a field of view (FOV) of 30–38 cm. DWI was performed using a
respiratory triggering single-shot echo planar imaging sequence
with b values of 0 and 800 s/mm2, spectral presaturation with
inversion recovery for fat suppression, using a TR/TE of 1,600/70,
matrix size of 100 × 100, acceleration factor of SENSE of 4.0,
FOV of 30–35 cm, slice thickness of 5mm, slice gap of 1mm,
and 33 axial slices. For Gd-EOB-MRI, unenhanced, arterial-phase
(20–35 s), portal-phase (60 s), late-phase (3min), and 20-min
delayed HBP images were obtained using a T1-weighted three-
dimensional (3D) turbo-field-echo sequence (T1 high-resolution
isotropic volume examination; Philips Healthcare) (3.1/1.5; flip
angle, 10◦; matrix size, 228 × 211; bandwidth, 724.1 Hz/pixel)
with a 2-mm section thickness and an FOV of 32–38 cm. The
contrast agent was automatically administered intravenously at
a rate of 1 ml/s for a dose of 0.025 mmol/kg body weight using a
power injector, followed by a 20-ml saline flush.

Image Analysis
All images were analyzed separately and independently reviewed
by two radiologists (B.G.L and P.Y.Y, with 15 and 10 years’
experience of liver MR imaging, respectively) who were

Frontiers in Oncology | www.frontiersin.org 2 January 2020 | Volume 9 | Article 1382203

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhong et al. Differentiation of Small HCC From DNs

FIGURE 1 | Flowchart of the study population.

blinded to the patients’ clinical data and the pathological
diagnosis. Three image sets were reviewed, respectively: a Gd-
EOB-MRI set (precontrast T1- and T2-weighted images and
arterial, portal, equilibrium, and HBP images), a DWI set
(precontrast T1- and T2-weighted images and DW images),
and combined sets. Four-week interval between image reviews
was performed for the three reviewing sessions to avert
any recall bias. The signal intensity (SI) of each lesion
was evaluated on Gd-EOB-MR and DW images. The SI
features were classified into three groups: hypointensity,
isointensity, or hyperintensity compared to the surrounding
liver parenchyma.

As described in previous studies (5, 15, 26), in Gd-EOB-MRI

set, the diagnostic criteria for HCC were defined as follows:
(a) a nodule showed typical enhancement pattern (arterial
enhancement and late portal or equilibrium washout); (b) a
nodule with arterial enhancement without later washout, but
hypointensity on HBP images, or peripheral rim enhancement
on the late dynamic phase images (capsular appearance); and (c)
a nodule without arterial enhancement, but larger than 1.5 cm
and showed hypointensity on HBP images. In the DW set, if a
lesion showed hyperintensity on DW images, it was interpreted

as an HCC (14). In combined sets, if a lesion satisfied the
HCC criteria of Gd-EOB-MRI or DWI, it would be identified as
an HCC.

Texture Analysis
Texture Calculation

The axial FS T2-weighted images were exported in “.dicom”
format from the PACS for texture analysis. One of the radiologists
(X.Z) manually segmented images for each lesion using a free
open-source software package MaZda 4.6 (URL: http://www.
eletel.p.lodz.pl/programy/mazda/), and a single region of interest
(ROI) was defined and delineated on the image section depicting
the maximum lesion diameter (Figure 2A). Seven lesions (two
HCCs and five DNs) were isointense on FS-T2-WI, in this case,
T1-weighted or gadoxetic acid-enhanced images were used for
accurate ROI placement. Refer to previous studies (20, 23),
ROI gray-level normalization was performed by adjusting image
intensities in the range of u± 3σ (where u is the gray-level mean
and σ is the gray-level standard deviation). A total of 279 texture
parameters that derived from six statistical image descriptors
were computed for each ROI (Table 1).
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FIGURE 2 | (A) Texture calculation for a 63-year-old man with a pathologically proven hepatocellular carcinoma (HCC) on fat-saturated T2-weighted images by using

MaZda. A single region of interest (ROI) was defined and delineated on the image section depicting the maximum lesion diameter. (B) Procedure of texture analysis:

texture calculation and feature selection were performed using MaZda; data analysis and classification were performed using program B11. ROI, region of interest;

FC, Fisher coefficients; MI, mutual information; POE + ACC, minimization of both classification error probability and average correlation coefficients; PCA, principal

component analysis; LDA, linear discriminant analysis; 1-NN, first nearest neighbor.
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TABLE 1 | Texture parameters calculated in MaZda.

Computational

methods

Number Texture parameters

Histogram 9 Mean, variance, skewness, kurtosis, percentiles 1, 10, 50, 90, and 99%

Co-occurrence matrix 220 Angular second moment, contrast, correlation, sum of squares, inverse difference moment, sum average, sum variance,

sum entropy, entropy, difference variance, and difference entropy. Features are computed for 5 between-pixels distances (1,

2, 3, 4, and 5) and for four various directions (vertical, horizontal, 0, and 135).

Run-length matrix 20 Run-length non-uniformity, gray-level non-uniformity, long-run emphasis, short run emphasis, and fraction of image in runs.

Features are computed for four various directions (vertical, horizontal, 0, and 135).

Absolute gradient 5 Mean, variance, skewness, kurtosis, and percentage of pixels with nonzero gradient

Autoregressive model 5 Teta1 (θ1), Teta2 (θ2), Teta3 (θ3), Teta4 (θ4), and Sigma (σ)

Wavelet (n = 20) 20 WavEn (wavelet energy). Feature is computed at five scales within four frequency bands LL, LH, HL, and HH.

TABLE 2 | Patients’ characteristics.

Parameters Value

Patient number 68

Age median [range] (years) 56 (30–73)

Male/female 42/26

Child-pugh

A 50

B 12

C 6

AFP serum >200 ng/ml 11

AFP serum<200 ng/ml 51

AFP unobtainable 6

Etiology of liver cirrhosis*

HBV 51

HCV 13

Ethanol 8

Others 2

AFP, Alpha-fetoprotein; *A patient could have multiple etiologies.

Feature Selection

To determine the most discriminative texture features
for differentiating sHCCs from DNs, as mentioned
previously (23), we used three texture feature selection
methods, including Fisher coefficients, minimization of
both classification error probability and average correlation
coefficients (POE + ACC), and mutual information
(MI), respectively.

Feature Classification

Feature classification was performed in a statistical program B11
(version 4.6). As described in a previous study (27), principal
component analysis (PCA) and linear discriminant analysis
(LDA) were used for reducing the feature vector dimension
and increasing the discriminative power. Then, the first nearest
neighbor (1-NN) classifier with feature vector standardization
was applied to determine classification accuracy (23, 24). The
procedure of TA is shown in Figure 2B.

TABLE 3 | Signal features of hepatocellular nodules.

SI features HCCs (n = 46) DNs (n = 27) HGDN (n = 13)

DWI

Hypointensity 0 (0%) 4 (14.8%) 2 (15.4%)

Isointensity 5 (10.9%) 15 (55.6%) 4 (30.8%)

Hyperintensity 41 (89.1%) 8 (29.6%) 7 (53.8%)

Arterial phase

Hypointensity 6 (13.1%) 4 (14.8%) 1 (7.7%)

Isointensity 10 (21.7%) 10 (37.0%) 4 (30.8%)

Hyperintensity 30 (65.2%) 13 (48.1%) 8 (61.5%)

Portal phase

Hypointensity 30 (65.2%) 4 (14.8%) 1 (7.7%)

Isointensity 4 (8.7%) 8 (29.6%) 2 (15.4%)

Hyperintensity 12 (26.1%) 15 (55.6%) 10 (76.9%)

Equilibrium phase

Hypointensity 36 (78.3%) 6 (22.2%) 3 (23.0%)

Isointensity 6 (13.0%) 16 (59.2%) 5 (38.5%)

Hyperintensity 4 (8.7%) 5 (18.6%) 5 (38.5%)

HBPI

Hypointensity 40 (87.0%) 3 (11.1%) 2 (15.4%)

Isointensity 5 (10.9%) 19 (70.3%) 7 (53.8%)

Hyperintensity 1 (2.1%) 5 (18.6%) 4 (30.8%)

SI, signal intensity; HCC, Hepatocellular carcinoma; DNs, Dysplastic nodules; HGDN,

high-grade dysplastic nodules; DW, Diffusion-weighted imaging; HBPI, Hepatobiliary

phase imaging.

Histopathology Evaluation
International Working Party criteria was used for the
evaluation of hepatocellular nodular (28). DNs were
defined as a lesion with hepatocytes dysplasia but no
definite histological features of malignancy, which were
classified as low- or high-grade based on the cytological and
architectural atypia (29).

Statistical Analysis
The sensitivity and specificity for differentiation of sHCCs
from DNs were calculated for qualitative diagnosis and TA.
The overall diagnostic efficiency was evaluated by calculating
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area under the receiver operating characteristic (ROC) curve
(Az), and the ROC curves were plotted based on the
dichotomous classification results of each diagnostic approach,
and the diagonal segments are produced by ties. Mann–
Whitney and chi-square test (or Fisher test) were performed
for quantitative and categorical variables, respectively. All the
statistical tests were performed using SPSS 16.0 (SPSS Inc.,
Chicago, IL, USA) package, and statistical significance was
accepted for P < 0.05.

RESULT

Patient Characteristics
Patients’ characteristics are summarized in Table 2. Of the 68
patients, 63.2% (43/68) with 46 lesions were diagnosed with
HCCs (diameter range, 1.2–3.0 cm; mean, 1.9 cm), and 36.8%
(25/68) of patients with 27 nodules were diagnosed with DNs
(diameter range, 1.0–2.9 cm; mean, 1.7 cm). Of the 27 DNs,

TABLE 4 | Diagnostic performance of DW and gadoxetic acid-enhanced imaging.

Imaging sets Az [95% CI] Sensitivity Specificity Accuracy

Gd-EOB-MRI set 0.86 [0.76, 0.95] 82.6% (38/46) 88.9% (24/27) 84.9% (62/73)

DWI set 0.80 [0.68, 0.91] 89.1% (41/46) 70.3% (19/27) 82.2% (60/73)

Combined sets 0.81 [0.69, 0.93] 95.6% (44/46) 66.7% (18/27) 84.9% (62/73)

13 were high-grade DNs (HGDNs) and 14 were low-grade
DNs (LGDNs).

Diagnostic Performance of Qualitative MRI
Diagnosis
The SI features of HCCs and DNs on Gd-EOB-MRI and DWI are
shown in Table 3. The diagnostic performance of each imaging
set for differentiating sHCCs from DNs are shown in Table 4.

In Gd-EOB-MRI set, among the 46 sHCCs, 50% (23/46)
of lesions showed typical enhancement patterns (Figure 3):
13 lesions showed arterial enhancement without late washout
but hypointensity on HBP images (Supplementary Figure 1), 2
nodules showed hypovascular on dynamic study, but larger than
1.5 cm and showed hypointensity on HBP images (Figure 4),
and the other 8 nodules satisfied none of the Gd-EOB-MRI
criteria for HCC (Supplementary Figure 2). Of the 27 DNs, no
nodule showed atypical enhancement patterns, 24 nodules (11
HGDNs, 13 LGDNs) showed iso/hyperintensity on HBP images
(Figure 5), and 3 lesions (2 HGDNs, 1 LGDN) showed arterial
enhancement and hypointensity on HBP images. The sensitivity
and specificity for differentiating sHCCs from DNs in Gd-EOB-
MRI set were 82.6% (38/46) and 88.9% (24/27), respectively.

In DWI set, 41 nodules among the 46 sHCCs showed
hyperintensity on DWI (Figure 3), and 5 nodules showed
iso/hypointensity on DWI (Figure 4). Of the 27 DNs, 19 nodules
(6 HGDNs, 13 LGDNs) showed iso/hypointensity on DWI
(Supplementary Figure 3), and 8 nodules (6 HGDNs, 2 LGDNs)

FIGURE 3 | MR images of a 58-year-old man with a pathologically proven HCC (white arrows) and a history of hepatitis B virus infection. An arterial-phase image (A)

shows an enhancing nodule in segment VI of the liver. An equilibrium phase MR image (B) shows a nodule demonstrating washout of contrast material, and showing

capsular appearance. At the hepatobiliary phase (C), the lesion is hypointensity compared to the surrounding liver parenchyma. On diffusion-weighted image (D), the

lesion is hyperintensity compared to the surrounding liver parenchyma.
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FIGURE 4 | MR images of a 66-year-old woman with a pathologically proven HCC (white arrows) and a history of hepatitis C virus infection. An arterial-phase image

(A) shows a hypovascular nodule in segment I of the liver. An equilibrium phase MR image (B) shows a slightly hypointensity nodule compared to the surrounding liver

parenchyma. A hepatobiliary phase image (C) shows a hypointensity lesion compared to the surrounding liver parenchyma. On diffusion-weighted image (D), the

lesion is nearly isointensity compared to the surrounding liver parenchyma.

FIGURE 5 | MR images of a 56-year-old man with a pathologically proven high-grade dysplastic nodule (white arrows) and a history of hepatitis B virus infection.

Arterial-phase image (A) shows an enhancing nodule in segment VIII of the liver. Equilibrium-phase MR image (B) shows a nodule not demonstrating washout of the

contrast material. A hepatobiliary phase image (C) shows nearly isointensity compared to the surrounding liver parenchyma. On diffusion-weighted image (D), the

lesion shows hyperintensity compared to the surrounding liver parenchyma.
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TABLE 5 | Texture feature subsets best-suited for the discrimination of w-HCCs

and DNs on T2-W images, according to Fisher coefficient, the PEO+ACC, and

Mutual information.

Feature rank Fisher coefficient POE + ACC Mutual information

1 WavEnLL_s-1 WavEnHH_s-3 WavEnLL_s-2

2 WavEnLL_s-2 WavEnLH_s-3 WavEnLL_s-1

3 S(0,1)SumOfSqs WavEnLL_s-3 S(0,5)SumAverg

4 S(0,1)SumAverg WavEnHH_s-2 S(0,3)SumOfSqs

5 S(0,1)SumVarnc WavEnLH_s-2 S(0,2)SumOfSqs

6 S(1,0)SumOfSqs WavEnLL_s-2 S(1,-1)SumVarnc

7 S(1,0)SumVarnc WavEnLH_s-1 S(1,-1)SumAverg

8 S(0,2)SumAverg WavEnLL_s-1 S(0,1)SumAverg

9 S(1,-1)SumAverg Vertl_LngREmph S(0,1)SumOfSqs

10 S(0,3)SumAverg S(0,1)SumAverg S(1,0)SumOfSqs

POE + ACC, minimization of both classification error probability and average correlation

coefficients; WavEn, Wavelet energy; SumOfSqs, Sum of squares; SumAverg, Sum

average; SumVarnc, Sum variance; Vertl_LngREmph, Vertical long-run emphasis.

showed hyperintensity on DWI (Figure 5). The sensitivity and
specificity for identifying sHCCs from DNs in DWI set were
89.1% (41/46) and 70.3% (19/27), respectively.

In combined sets, of the 46 sHCCs, only 2 nodules were
mistaken for DNs. Among the 27 DNs, 18 nodules (7 HGDNs, 11
LGDNs) were diagnosed accurately. Consequently, the sensitivity
and specificity for differentiating sHCCs from DNs in combined
sets was 95.6% (44/46) and 66.7% (18/27), respectively.

TA Results
Texture subsets based on MI and Fisher coefficients were
frequently derived from the co-occurrence matrix, whereas
texture features created using the POE + ACC method were
frequently derived from wavelet (Table 5).

Fisher coefficients, POE + ACC, and MI methods resulted in
a similar misclassification rate of 4.1–6.8, 4.1–6.8, and 4.1–5.5%,
respectively (Table 6). In terms of feature classification, PCA and
LDA resulted in an equivalent misclassification rate of 4.1–6.8
and 4.1–5.5%, respectively (Table 6).

Both LDA combining Fisher coefficients and PCA combining
MI Fisher showed the lowest misclassification rate of 4.1% (3/73).
Only one HCC was misclassified as a DN, and two DNs were
misclassified as HCCs (Figures 6A,B). With regard to the ROC
analysis, TA demonstrated an Az, sensitivity, specificity, and
accuracy of 0.96 (95% CI: 0.91, 1), 97.8% (45/46), 92.6% (25/27),
and 95.9% (70/73), respectively (Table 5).

Comparison of Diagnostic Performance
The ROC curve of each diagnosticmethod is shown in Figure 6C.
The diagnostic performance of TA (Az = 0.96, 95% CI: 0.91, 1)
was significantly higher than that of imaging diagnosis with DWI
(Az = 0.80, 95% CI: 0.68, 0.91) or Gd-EOB-MRI (Az = 0.86,
95% CI: 0.76, 0.95) alone (P = 0.008 and 0.025, respectively).
The specificity of TA (92.6%) was significantly higher than that
of DWI and Gd-EOB-MRI combined (66.7%) (P< 0.001), but no
significant difference was observed in sensitivity (97.8 vs. 95.6%;
P = 0.559).

DISCUSSION

This study aimed to identify whether MRI-based TA can be
used to distinguish sHCC from DNs in cirrhotic liver. We also
compared the performance of TA with DWI and Gd-EOB-MRI.
The findings showed that TA-based T2WI had a satisfactory
diagnostic value. The diagnostic efficacy of TA was significantly
higher than that of qualitative diagnosis with DWI or Gd-EOB-
MRI alone. Although the combination of DWI and Gd-EOB-
MRI showed sensitivity equivalent to that of TA, TA showed
significantly higher specificity than that of the combination
qualitative diagnosis.

In the present study, we found that only 50% of sHCCs fit the
American Association for the Study of Liver Diseases criteria, but
HBP imaging improved the detection of sHCC; up to 15 sHCCs
with atypical enhancement were detected by hypointensity on
HBP images. In Gd-EOB-MRI set, the sensitivity and specificity
were 82.6 and 88.9%, respectively, which is similar to the 85%
sensitivity but significantly higher than the 42% specificity on
imaging using gadoxetic acid disodium (14), and is similar
to the 92% specificity but higher than the 71% sensitivity on
imaging using gadobenate dimeglumine (30). Furthermore, Gd-
EOB-MRI yields a better specificity than that of DWI set,
with a specificity 18.6% greater than that of DWI, which is
inconsistent with one study (14) in which Gd-EOB-MRI showed
lower specificity than DWI for differentiating HCC from benign
hepatic nodules. Nevertheless, we still found that 13.4% of sHCCs
did not show hypointensity on 20-mine HBP images, which may
be related to the overexpression of organic anionic transporting
polypeptide 8 (OATP-8) in tumors; about 5–12% of small HCCs
overexpress organic anionic transporting polypeptide 8 (18).

In DWI set, we found that the overall sensitivity in the
identification of sHCCs and DNs was almost 89.1%, which was
supported by previous reports showing that 81–88% of sHCCs
showed hyperintensity on DW images (14, 31). Nevertheless,
our study showed a relatively low specificity of 70.3% compared
with some previous studies that reported specificity values of
79.0–94.4% (32, 33), which may be attributed to six HGDNs
that showed some imaging features supporting HCC, such as
hyperintensity on arterial phase without washout, hypointensity
on HBP images, and/or hyperintensity on DWI.

In our study, the combination DW and Gd-EOB-MRI
demonstrated an increase in the sensitivity for diagnosing sHCC
compared with each imaging modality alone. Thus, the results
are concordant with the previous data reported by Park et al.
(34). However, our study resulted in a lower specificity of only
66.7%. Other than the expected variation between observers and
institutions, the difference might be attributable to the fact that
the benign hepatic nodules included in our study were all DNs.

The feasibility of TA in the classification of liver lesions has
been widely discussed in CT and MRI (22, 23, 25, 35, 36). It
is well-known that ROI placement plays a key role for TA; if
a lesion shows isointensity, it may be difficult to place an ROI
accurately. In this study, relatively large number of liver nodules
showed isointensity on both DWI and dynamic Gd-EOB-MRI.
Thus, this study analyzed the value of TA based on T2W-MRI
images in discrimination of sHCC from DNs in cirrhosis. To our
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TABLE 6 | Diagnostic performance of texture analysis.

Feature selection method TA Method Misclassified Az Sensitivity Specificity Accuracy

rates [95% CI]

Fisher coefficient PCA 5/73 (6.8%) 0.94 [0.87, 1] 97.8% (45/46) 85.2% (23/27) 93.2% (68/73)

LDA 3/73 (4.1%) 0.96 [0.91, 1] 97.8% (45/46) 92.6% (25/27) 95.9% (70/73)

POE + ACC PCA 4/73 (5.5%) 0.94 [0.87, 1] 95.7% (44/46) 92.6% (25/27) 94.5% (69/73)

MI LDA 5/73 (6.8%) 0.93 [0.85, 1] 95.7% (44/46) 88.9% (24/27) 93.2% (68/73)

PCA 3/73 (4.1%) 0.96 [0.91, 1] 97.8% (45/46) 92.6% (25/27) 95.9% (70/73)

LDA 4/73 (5.5%) 0.94 [0.87, 1] 95.7% (44/46) 92.6% (25/27) 94.5% (69/73)

POE + ACC, Minimization of both classification error probability and average correlation coefficients; MI, Mutual information; PCA, Principle component analysis; LDA, Linear

discriminant analysis.

FIGURE 6 | (A) Linear discriminant analysis (LDA) combining Fisher coefficient for classifying small hepatocellular carcinoma (sHCC) and dysplastic nodules (DNs), 1

(red) represents sHCC and 2 (green) represents DNs; it shows that one sHCC was misclassified as a DN, and two DNs were misclassified as sHCC. (B) Principal

component analysis (PCA) combining MI for classifying sHCC and DNs, 1 (red) represents sHCC and 2 (green) represents DNs; it shows that one sHCC was

misclassified as a DN, and two DNs were misclassified as sHCC. (C) Receiver operating characteristic (ROC) curves of imaging sets and TA for the differentiation of

sHCC from DNs, the ROC curves were plotted based on the dichotomous classification results of each diagnostic approach, and the diagonal segments are

produced by ties. The position of the “kink” of curves represented diagnostic efficacy; Y-axis represented sensitivity, and X-axis represented 1-specificity.

knowledge, this is the first study to assess whether HCCs and
DNs in cirrhosis can be fully classified using TA. In comparison
with previous studies that used T2WI-based TA for classification
of liver lesions, the misclassification rate by TA was 4.1%, which
was lower than the 9.7% misclassification rate for distinguishing
HCC from hepatic hemangioma and metastases (22) and the
12% misclassification rate for distinguishing liver cysts and
hemangiomas (23). Furthermore, the primary advantage of
our study was that we compared the diagnostic efficacy of

TA with imaging diagnosis and found that TA showed better
performance than that shown by imaging diagnosis with DW
and gadoxetic acid-enhanced imaging alone. Although combined
imaging strategy showed similar sensitivity as TA (95.6 vs.
97.8%) for identification of sHCC and DNs, the specificity of
TA (92.6%) was significantly higher than that of the combined
approach (63.0%).

In terms of misclassification rates, the performances of
these feature selection methods (Fisher, POE + ACC, or MI)
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showed no clear superiority, supporting the results of previous
studies (20, 23). For the MI and Fisher methods, the texture
parameters resulting from the co-occurrence matrix were more
frequently assigned to the feature subsets than parameters of
any other category, thus supporting findings of previous studies.
Interestingly, for POE + ACC selection, texture parameters
resulting from the wavelet were more frequently assigned to the
feature subsets than parameters of any other category.

This study had some limitations. First, we could not divide
the study population into training and test datasets due to the
relatively small size and because we were primarily interested
in the feasibility of texture-based classification for identification
of sHCCs and DNs in cirrhosis. Second, we did not assess the
lesions that were not detected on MRI because the TA and
imaging diagnosis is quite difficult to perform in those lesions,
so it might cause the possibility of a bias at inclusion. Third, the
performance of TA combined with qualitative diagnosis was not
assessed because TA has showed significantly higher performance
than qualitative imaging diagnosis. Actually, the combination
of TA and qualitative diagnosis may improve performance, and
it needs further researches to confirm the additional value of
combination diagnosis.

In conclusion, this preliminary study demonstrates that MRI-

based TA shows better classification performance than imaging

diagnosis for discriminating sHCC from DNs in cirrhotic
liver. Although promising, these results are preliminary and
require verification using a larger and independent dataset to
appraise their potential for clinical translation. After validation,

texture-based MRI may become a potential imaging biomarker
for early differentiating HCCs from DNs in cirrhosis.
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Objective: Axillary lymph node (ALN) metastasis status is important in guiding treatment

in breast cancer. The aims were to assess how deep convolutional neural network (CNN)

performed compared with radiomics analysis in predicting ALN metastasis using breast

ultrasound, and to investigate the value of both intratumoral and peritumoral regions in

ALN metastasis prediction.

Methods: We retrospectively enrolled 479 breast cancer patients with 2,395 breast

ultrasound images. Based on the intratumoral, peritumoral, and combined intra- and

peritumoral regions, three CNNs were built using DenseNet, and three radiomics models

were built using random forest, respectively. By combining the molecular subtype,

another three CNNs and three radiomics models were built. All models were built on

training cohort (343 patients 1,715 images) and evaluated on testing cohort (136 patients

680 images) with ROC analysis. Another prospective cohort of 16 patients was enrolled

to further test the models.

Results: AUCs of image-only CNNs in both training/testing cohorts were 0.957/0.912

for combined region, 0.944/0.775 for peritumoral region, and 0.937/0.748 for

intratumoral region, which were numerically higher than their corresponding radiomics

models with AUCs of 0.940/0.886, 0.920/0.724, and 0.913/0.693. The overall

performance of image-molecular CNNs in terms of AUCs on training/testing cohorts

slightly increased to 0.962/0.933, 0.951/0.813, and 0.931/0.794, respectively. AUCs of

both CNNs and radiomics models built on combined region were significantly better than

those on either intratumoral or peritumoral region on the testing cohort (p < 0.05). In the

prospective study, the CNN model built on combined region achieved the highest AUC

of 0.95 among all image-only models.
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Conclusions: CNNs showed numerically better overall performance compared with

radiomics models in predicting ALN metastasis in breast cancer. For both CNNs and

radiomics models, combining intratumoral, and peritumoral regions achieved significantly

better performance.

Keywords: breast cancer, deep learning, radiomics, axillary lymph nodemetastasis, breast ultrasound, peritumoral

region

INTRODUCTION

Breast cancer is the leading malignancy in females (1). Axillary
lymph node (ALN)metastasis status is one of the most important
factors in guiding treatment decision making in breast cancer
(2). Traditionally, the nodal status was assessed by surgical
methods such as sentinel lymph node biopsy (SLNB) and
axillary lymph node dissection (ALND) (3). According to the
guideline from American Society of Clinical Oncology, SLNB
is considered to have a high overall accuracy ranging from 93
to 97.6% with a relatively low false negative rate (FNR) ranging
from 4.6 to 16.7% in detecting axillary metastasis (4). However,
these surgical approaches have been considered controversial
due to the invasiveness, potential complications, and possible
overtreatment (3–6).

Ultrasound is a widely-used tool in breast cancer assessment
as it is non-invasive, radiation-free, real-time and well-tolerated
in women. Previous studies have shown that axillary ultrasound

(AUS) may provide useful information relevant to ALN status in
breast cancer (7). However, AUS alone has moderate sensitivity

and may not be a reliable predictor for nodal metastasis (7, 8).
Recently, imaging-based machine learning approaches have been

demonstrated promising in cancer diagnosis. There are two most

popular machine learning approaches: radiomics analysis and

convolutional neural networks (CNN). Radiomics analysis relies
on a pipeline including extraction of numerous handcrafted

imaging features, followed by feature selection and machine
learning-based classification. Handcrafted radiomics features
extracted from the breast tumor area have been demonstrated
predictive in ALN metastasis, with FNRs ranging from 13.9 to

25% (9, 10). However, handcrafted features are limited to the
current knowledge of medical imaging, which may limit the
potential of the predictive model. Deep learning improves this

handcrafted pipeline by automatically learning discriminative
features directly from images. Recent studies have shown
that deep CNN-based approaches can achieve state-of-the-art

performance in lesion detection and cancer diagnosis (11–13). To
our knowledge, no studies have assessed breast ultrasound-based
CNN in predicting ALN status for breast tumor.

Most studies have focused on mining predictive imaging
features within the tumor, while the surrounding tissues were
ignored. Previous evidence has shown that the peritumoral
region—the tumor-adjacent parenchyma immediately
surrounding the tumor mass—may offer valuable outcome-
associated information (14–16). Two recent studies have
demonstrated that handcrafted imaging features from
peritumoral region in Dynamic Contrast-Enhanced MRI

(DCE-MRI) are associated with sentinel lymph node metastasis
(9) and pathological complete response to neoadjuvant
chemotherapy (17) in breast cancer. Here, we hypothesize that
deep CNN built based on intra- and peritumoral regions in breast
ultrasound could provide relevant information in predicting
ALN status. We are interested in comparing the performance
of deep CNNs and radiomics models. Additionally, breast
cancer can be classified into different molecular subtypes with
distinct prognosis and respond differently to specific therapies
(18). Therefore, we further assessed if deep CNNs or radiomics
models combining imaging features and molecular subtypes
could offer improved accuracy.

In this hypothesis-driven study, we first developed deep CNNs
and radiomics models based on intratumoral, peritumoral, and
combined regions in breast ultrasound images for predicting
ALN metastasis. We then aimed to find out how on each region
deep CNNs performed compared with radiomics models.

MATERIALS AND METHODS

Study Population
The study was approved by the Ethics Committee of Peking
University Shenzhen Hospital (PUSH). Informed consent was
waved from all patients by the ethics committee of PUSH. From
the pathology and radiology databases in PUSH, a retrospective
search was performed to recruit female patients with breast
cancer between January 2016 and December 2018. The inclusion
criteria were patients (1) with histologically-confirmed primary
breast cancer, (2) with pretreatment breast ultrasound images,
(3) with known ALN metastasis status determined by final
histopathology, (4) with known molecular subtypes, and (5)
without neoadjuvant chemotherapy prior to SLNB or ALND. The
exclusion rules were that patients (1) with very small region of
interest in the ultrasound images (<100 pixels) and (2) without
SLNB or ALND. Finally, 479 patients with 479 breast tumors
(136 positive and 343 negative ALNs) were included in this study.
This cohort was randomly divided into a training cohort of 359
patients and a testing cohort of 120 patients at a ratio 3:1. The
patient recruitment pathway was shown in Figure S1.

The baseline clinical and histopathological data were derived
from patient medical records, including age, histological grade,
immunohistochemistry (IHC) results and ALN status (positive or
negative). According to the 2017 St Gallen International Expert
Consensus, each patient was classified into one of four molecular
subtypes: human epidermal growth factor receptor-2 (HER2)
positive, triple-negative, Luminal A, and Luminal B (18). The
status of HER2, ER, progesterone receptors (PR) and Ki-67 was
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assessed by IHC. Based on the IHC results, the subtype can
be determined.

Ultrasound Image Acquisition
The breast ultrasound examinations were performed by breast
radiologists in our center using the Hitachi Ascendus ultrasound
system equipped with 13–3 MHz linear array transducers. The
examinations and assessments were conducted according to the
5th edition of Breast Imaging Reporting and Data System (BI-
RADS) presented by American College of Radiology (ACR) (19).
The parameters were set as follows: depth, 4–5 cm; brightness
gain, 10–25 dB; dynamic range, 70 dB; frame rate, 26 frame per
second. Patients were placed in supine or lateral position. The
field of view was set to have the pectoralis muscle at the deepest
aspect of the image. The focal zone was adjusted to be centered
at the lesion. Ultrasound images were acquired and documented
into the Picture Archiving and Communication Systems (PACS).
For each lesion, five images were selected from PACS by a breast
radiologist (XL with 5 years’ experience in breast radiology) and
used in our study according to the following scheme: (1) an image
along the longest axis of lesion. (2) an image orthogonal to the
first image. (3) three images at other angles where the lesion
was clearly presented. The five images together represented the
ultrasonographic features of a 3D lesion from different angels.
For all 479 patients, we finally obtained 2395 images in total,
including 1715 images (343 patients) in the training cohort and
680 images (136 patients) in the testing cohort.

ROI Delineation
The tumor region in each ultrasound image was manually
delineated using the ITK-SNAP software (http://www.itksnap.
org) by one radiologist (XL) who were blinded to the clinical and
histopathological data of patients. A second breast radiologist
(DS with 12 years’ experience in breast radiology) reviewed all
the delineations. Any disagreement between the two raters was
resolved by discussion and consensus. The peritumoral regions
were obtained by dilating the delineated tumor contour by
∼5mm based on a standard morphological dilation operation
using an inhouse program implemented in Matlab 2016b
(MathWorks, Natick, MA). For each ultrasound slice, three
region of interest (ROI) images were finally obtained: the
intratumor ROI, the peritumor ROI, and the combined ROI that
merged the intratumor and the peritumoral regions. Examples of
ultrasound slices overlapped with intratumoral and peritumoral
ROIs for two patients were shown in Figure 1.

Deep Learning With DenseNet
Deep CNN can automatically learn discriminative features from
imaging data by stacking multiple convolutional layers. Among
different CNN variants, densely connected convolutional
network (DenseNet) has shown superior classification
performance as it strengthens feature propagation while
reduces parameter number (20). This is accomplished by
connecting each layer to every other layer in a feed-forward
fashion with less computational complexity. Here, our model
was built based on the standard DenseNet-121 (20). All ROI
images were resized into 224 × 224. The resized ROI images

were used as input and transformed through the chained
convolutional layers, yielding a class probability vector as the
prediction results. The network was trained from scratch with
cross entropy loss function and Adam optimizer with a learning
rate of 0.0001, a batch size of 16, and a regularization weight of
0.0001. In the training cohort, data augmentation approaches
including random rotation, random shear and random zoom
were employed before the training procedure to avoid possible
overfitting. The network was implemented on Keras (https://
keras.io/) with the TensorFlow library as the backend (https://
www.tensorflow.org/). The architecture of the image-only CNN
network was shown in Figure 2. The details of the convolutional
network implementation can be found in Table S1.

Deep Learning-Based Predictive Model
Building
For predicting the nodal status, three image-only CNN models,
including the intratumoral CNN, the peritumoral CNN and the
combined-region CNN, were built with the DenseNet based
on the intratumor ROI images, the peritumor ROI images,
and the combined ROI images, respectively. Furthermore, three
corresponding image-molecular models were also built based on
the DenseNet by using both ROI images and molecular subtype
information as the network input. Specifically, the molecular
subtype information was incorporated as input to the fully-
connected layers of the DenseNet, as shown in Figure 2.

Radiomics Feature Extraction and
Selection
For each ultrasound slice, 104 radiomics features were extracted
from each of the three ROI areas by using an open-source
toolbox named Pyradiomics (https://pyradiomics.readthedocs.
io) (21). Three groups of features were extracted, including
shape features, intensity features, and texture features, as
summarized in Table S2. Eleven shape features describing the
geometric characteristics of the ROI were extracted. Eighteen
intensity features describing the first-order distribution of the
ROI intensities were extracted. Seventy-five texture features
were computed to describe the patterns, or the high-order
distributions of the ROI intensities with five different methods,
including the gray-level co-occurrence matrix (GLCM), gray-
level run length matrix (GLRLM), gray level size zone
matrix (GLSZM), gray level dependence matrix (GLDM), and
neighborhood gray-tone difference matrix (NGTDM). The
detailed definitions of the radiomics features used can be found
in two articles (22, 23). Having high-dimensional radiomics
features, feature selection is required to reduce the dimension
and avoid overfitting. Here an efficient machine learning-based
wrapper algorithm, Boruta, was used to select a subset of
features that were relevant to the prediction outcome (24).
Boruta evaluated feature relevance iteratively by comparing the
importance of original features with that achieved by artificially
added random features, yielding an all-relevant subset of features
that was considered optimal for the classification task. Here we
used the R package Boruta for Boruta feature selection.
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FIGURE 1 | Examples of ultrasound slices overlapped with intratumoral regions (green) and peritumoral regions (red) from two patients. (Top) A patient with positive

ALN. (Bottom) A patient with negative ALN.

FIGURE 2 | The architecture of the deep CNN used in our study.

Radiomics-Based Predictive Model
Building
Based on the selected radiomics features, three image-only
radiomics models were built using random forest algorithm
(25) based on the intratumor ROI, the peritumor ROI, and
the combined ROI, respectively. Correspondingly, three image-
molecular radiomics models were also built using random forest
by integrating ROI images and molecular subtype information as
the input. After testing different settings, the tree number of all
random forest classifiers was set to 300. Gini index was used as
importance measure (26). The R package randomForest was used
for random forest classification.

Statistical Analysis
The difference in age, histological grades and molecular
subtypes between training and testing cohorts was assessed
with χ

2 test or Wilcoxon rank-sum test, where appropriate.

All 12 prediction models (3 image-only CNNs, 3 image-
only radiomics models, 3 image-molecular CNNs and 3
image-molecular radiomics models) were trained on the
training cohort and evaluated on the testing cohort. Because
each tumor had five ultrasound images, there were five
corresponding prediction outcomes in the form of class
probabilities. Among them, the median probability was chosen
as the final prediction of each tumor and was used for
statistical analysis. The prediction performance was assessed
by the area under the receiver operating characteristic (ROC)
curve (AUC), accuracy (ACC), sensitivity (SEN), specificity
(SPE), positive predictive value (PPV), and negative predictive
value (NPV). The AUCs between two models were statistically
compared using a DeLong test (27). All statistical analyses
were performed with R software, version 3.5.1 (https://www.r-
project.org/). All statistical tests were two sided, and p < 0.05
indicated significant.
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RESULTS

Patient and tumor characteristics are summarized in Table 1.
No significant difference was found in patient age, histological
grades, molecular subtypes and ALN status between the training
and testing cohorts (p= 0.457 to 0.844).

Image-Only Deep CNNs vs. Radiomics
Models
The predictive performance of the three image-only deep CNNs
and the three image-only radiomics models in both training and
testing cohorts is summarized in Table 2. Their ROC curves
in both training and testing cohorts are shown in Figure 3,
respectively. The radiomics feature selection results can be found
in Table S3. Among all six image-only models, the combined-
region CNN achieved the best performance with a highest AUC
of 0.912 and a highest accuracy of 89.3% in the testing cohort.
In the testing cohort, the CNN built on each region performed
better than the corresponding radiomics model built on the same
region in terms of AUC and accuracy, but the differences of AUCs
between the CNNs and their corresponding radiomics models
were not statistically significant (Image-only CNN vs. Radiomics:
Intratumoral: AUC 0.748 vs. 0.693, p= 0.534; Peritumoral: AUC
0.775 vs. 0.724, p = 0.531; Combined-region: AUC 0.912 vs.
0.886, p= 0.601).

Image-Molecular Deep CNNs vs.
Radiomics Models
The performance of the three image-molecular CNNs and
the three image-molecular radiomics models is summarized in
Table 3. Their ROC curves in both training and testing cohorts
are shown in Figure 4. From Tables 2, 3, it can be found that the
overall performance of the image-molecular models was slightly
higher than those of their corresponding image-only models in
the testing cohort, but no significant AUC differences were found
between them. Among all 12 predictive models built in our study,
the image-molecular CNN model built based on the combined-
region achieved the best performance with a highest AUC of
0.933, a highest accuracy of 90.3% and a highest NPV of 0.958
in the testing cohort. All image-molecular CNNs achieved higher
AUCs and higher accuracy than their corresponding radiomics
models built based on the same tumoral region, but there were
no significant differences between their AUCs (Image-molecular
CNN vs. Radiomics: Intratumoral: AUC 0.794 vs. 0.706, p =

0.308; Peritumoral: AUC 0.813 vs. 0.743, p = 0.334; Combined-
region: AUC 0.933 vs. 0.905, p= 0.531).

Assessment of Peritumoral and
Intratumoral Regions
The predictive value of different tumoral regions were assessed
by comparing the models built with the same machine learning
methods (CNN or radiomics). It was observed that for the
image-only CNNs and image-only radiomics models, the AUCs
of the peritumoral models were slightly higher than those of
the intratumoral models in the testing cohort, and their AUC
differences were not significant (Image-only Peritumoral vs.
Intratumoral: CNN: AUC 0.775 vs. 0.748, p = 0.746; Radiomics:

AUC 0.724 vs. 0.693, p = 0.707). Similar results have been
observed for the image-molecular models (Image-molecular
Peritumoral vs. Intratumoral: CNN: AUC 0.813 vs. 0.794, p =

0.806; Radiomics: AUC 0.743 vs. 0.706, p= 0.647).
The image-only CNNs and image-only radiomics models built

based on combined-region achieved higher AUCs than their
corresponding models built based on either the intratumoral
or peritumoral region in the testing cohort, where the
AUC differences between them were significant (Image-only
Combined-region vs. [Peritumoral, Intratumoral]: CNN: AUC
0.912 vs. [0.775, 0.748], [p = 0.049, p = 0.031]; Radiomics:
AUC 0.886 vs. [0.724, 0.693], [p = 0.014, p = 0.004]). The
image-molecular CNNs and image-molecular radiomics models
built based on combined-region also achieved higher AUCs.
For image-molecular models, the difference between AUCs of
the combined-region CNN and either the intratumoral CNN or
peritumoral CNN was significant (Image-molecular Combined-
region vs. [Peritumoral, Intratumoral]: CNN: AUC 0.933 vs.
[0.813, 0.794], [p = 0.048, p = 0.046]; Radiomics: AUC 0.905 vs.
[0.743, 0.706], [p= 0.006, p= 0.003]).

Prospective Validation
To further validate the CNNs and radiomics models, we
performed a validation study using a relatively small prospective
cohort. From November 18 2019 to December 12 2019, 16 breast
cancer patients (6 node positive and 10 node negative) with
80 breast ultrasound images (each had 5 images as described
in section Ultrasound Image Acquisition) were finally enrolled
for analysis. Age, grade, and node status were obtained for the
16 patients and were summarized in Table 1. All six image-
only prediction models were tested. As we did not obtain IHC
results, the image-molecular models were not tested. The model
performance in this prospective cohort was summarized in
Table 4. The ROC curves of all tested models were shown in
Figure S2. We observed that the CNN built on the combined
region achieved the highest AUC of 0.95 and the highest accuracy
of 81.3%, where two patients with positive node and one
patient with negative node were misclassified. In general, CNNs
outperformed radiomics models; prediction models built on
combined region outperformed those built on either intratumor
region or peritumor region only. The results were consistent with
previous observation on the retrospective cohort.

DISCUSSION

The major findings of this study were that deep CNN, built
by combining intratumoral and peritumoral regions in breast
ultrasound images, outperformed radiomicsmodels in predicting
ALN metastasis. Although imaging-based machine learning
approaches have been demonstrated useful in assessing breast
cancers, few studies have been done on evaluating the value
of intra- and peritumoral regions in metastasis prediction (9),
and no studies have investigated how breast ultrasound-based
deep CNNs performed compared with radiomics models. In
this study, we first developed three types of CNN models
based on intratumoral, peritumoral, and combined regions,
respectively in ultrasound images for assessing the nodal

Frontiers in Oncology | www.frontiersin.org 5 January 2020 | Volume 10 | Article 53217

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Sun et al. Ultrasound-CNN Predicted Breast Cancer Metastasis

TABLE 1 | A summary of patient and tumor characteristics of the study population.

Variables All retrospective

patients (n = 479)

Training

cohort (n = 359)

Testing

cohort (n = 120)

P-value Prospective

cohort (n = 16)

P-value

Age (mean ± SD) 48.7 ± 11.1 48.9 ± 10.9 47.9 ± 11.9 0.844 49.8 ± 11.3 0.680

Histological grade 0.755 0.556

I 187 (39.0%) 140 (39.0%) 47 (39.2%) 8 (50.0%)

II 249 (52.0%) 190 (52.9%) 59 (49.2%) 7 (43.7%)

III 43 (9.0%) 29 (8.1%) 14 (11.6%) 1 (6.3%)

Molecular subtype 0.457 - -

Luminal A 45 (9.4%) 33 (9.2%) 12 (10.0%) -

Luminal B 322 (67.2%) 239 (66.6%) 83 (69.2%) -

HER2 positive 57 (11.9%) 44 (12.3%) 13 (10.8%) -

Triple negative 55 (11.5%) 43 (11.9%) 12 (10.0%) -

ALN 0.829 0.418

Positive 136 (28.4%) 101 (28.1%) 35 (29.2%) 6 (37.5%)

Negative 343 (71.6%) 258 (71.9%) 85 (70.8%) 10 (62.5%)

P-values were calculated by using χ
2 test or Wilcoxon rank-sum test. P-values in the fifth column were calculated between training and testing cohorts. P-values in the seventh column

were calculated between training and prospective cohorts.

TABLE 2 | A performance summary of the image−only CNNs and image−only radiomics models in training and testing cohorts in predicting ALN metastasis of breast

cancer.

Model Dataset AUC ACC (%) SEN (%) SPE (%) PPV (%) NPV (%)

Image−only CNN Intra Training 0.937

(0.908, 0.968)

84.6

−

95.7

(80.4, 98.9)

80.3

(76.6, 95.4)

65.2

(60.7, 87.8)

98.0

(92.5, 99.5)

Testing 0.748

(0.622, 0.874)

71.8 76.0

(48.0, 92.0)

70.5

(60.3, 94.9)

45.2

(39.2, 77.8)

90.2

(84.0, 96.7)

Peri Training 0.944

(0.920, 0.969)

87.0

−

95.7

(89.1, 100.0)

83.7

(78.7, 91.6)

69.3

(63.5, 81.1)

98.0

(95.3, 100.0)

Testing 0.775

(0.665, 0.886)

72.8

−

80.0

(56.0, 92.0)

70.5

(64.1, 92.3)

46.5

(40.9, 72.7)

91.7

(85.3, 96.8)

Cmb Training 0.957

(0.926, 0.989)

93.7

−

92.6

(86.2, 97.9)

94.1

(90.8, 99.6)

86.1

(80.0, 98.8)

97.0

(94.5, 99.1)

Testing 0.912

(0.834, 99.0)

89.3

−

85.7

(67.9, 96.4)

90.7

(84.0, 100.0)

77.4

(66.7, 100.0)

94.4

(89.0, 98.6)

Image−only

radiomics

Intra Training 0.913

(0.870, 0.956)

87.9

−

84.8

(75.0, 91.3)

89.1

(86.6, 95.8)

75.0

(70.9, 88.6)

93.8

(90.6, 96.4)

Testing 0.693

(0.573, 0.812)

68.9

−

56.0

(32.0, 100.0)

73.1

(28.2, 100.0)

40.0

(30.0, 100.0)

83.8

(81.0, 100.0)

Peri Training 0.920

(0.882, 0.958)

87.3

−

82.6

(72.8, 93.5)

89.1

(80.3, 96.7)

74.5

(63.6, 89.9)

93.0

(90.2, 97.0)

Testing 0.724

(0.609, 0.839)

70.9

−

64.0

(48.0, 100.0)

73.1

(38.5, 91.0)

43.2

(32.4, 66.7)

86.4

(83.5, 100.0)

Cmb Training 0.940

(0.908, 0.973)

87.1

−

92.3

(81.3, 96.7)

85.2

(82.3, 95.9)

70.0

(66.1, 88.1)

96.7

(92.8, 98.6)

Testing 0.886

(0.831, 0.942)

83.3

−

87.5

(72.5, 97.5)

81.8

(75.5, 91.8)

63.6

(55.7, 78.7)

94.7

(90.0, 98.9)

ACC, AUC, SEN, SPE, PPT, and NPV are short for accuracy, area under the receiver operating characteristic curve, sensitivity, specificity, positive prediction value, and negative

prediction value, respectively. Intra, Peri and Cmb indicate the intratumoral model, the peritumoral model and the combined−region model, respectively. Statistical quantifications were

demonstrated with 95% confidential interval (CI), when applicable.

metastasis, and further compared the performance of the
three CNNs with three radiomics models built based on the
same regions in nodal metastasis prediction. Moreover, we
evaluated if further benefit can be obtained by integrating

ultrasound images and molecular subtype information into
the predictive models. Note that besides a high AUC, a high
NPV is also important as accurately identifying patients with
negative nodes [∼65% in all breast cancer patients (28)]
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FIGURE 3 | The ROC curves of the three image-only deep CNNs and the three image-only radiomics models in both training and testing cohorts. (A) ROC curves

of image-only CNNs in training cohort. (B) ROC curves of image-only CNNs in testing cohort. (C) ROC curves of image-only radiomics models in training cohort.

(D) ROC curves of image-only radiomic models in testing cohort.

helps to avoid axillary overtreatment and reduce associated
serious complications.

Identification of possible association between breast
ultrasound features and ALN status has undoubtful clinical
benefit. In clinical routine, the axilla can be staged clinically
by palpation or surgically by SLNB or ALND. Although
SLNB has less severe complications compared with ALND,
it is not risk-free and SLNB- associated complications have
been reported in large prospective trials (6). As palpation is
inaccurate (29), AUS is performed to provide more relevant
information. AUS alone has a reported sensitivity of 39–60%,
specificity of 90–96%, PPV of 80–91%, and NPV of 75–83%
(6, 30, 31). This implied that despite of an acceptable specificity
above 90%, prior to surgery about 40–60% of nodal metastases
cannot be found by AUS and about 20–25% of patients with
a negative AUS have been assessed as modal metastases after
surgery. In case of suspicious ALN, AUS alone or combined
with ultrasound-guided needle biopsy is performed for axillary
staging to select patients who would benefit from ALND. A

recent meta-analysis has shown that the use of AUS in stratifying
patients directly to fast-track ALND without SLNB leads to
overtreatment in up to two-thirds of patients (32). These
data indicated that AUS alone is not sufficiently accurate for
axillary staging.

Recent studies have shown the value of radiomics features
from primary lesion in predicting the lymph node metastasis for
different cancer sites, e.g., CT radiomics features in colorectal
cancer (33), MRI/CT radiomics features in bladder cancer
(34, 35) and esophageal cancer (36). For breast cancer, two
recent studies have assessed the value of radiomics features
extracted from the primary tumor region at DCE-MRI and
diffusion-weighted MRI (DWI) in predicting sentinel lymph
node metastasis, where the reported AUC, sensitivity and
specificity ranging from 0.805 to 0.869, 0.700–0.778, and 0.747–
861 respectively (9, 10). In our study, we built three image-only
radiomics models by using both peri- and intratumoral regions
in multiple ultrasound slices per lesion. The combined-region
radiomics model achieved an AUC of 0.886, a sensitivity of 87.5%
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TABLE 3 | A performance summary of the image−molecular CNNs and image−molecular radiomics models in training and testing cohorts in predicting ALN metastasis

of breast cancer.

Model Dataset AUC ACC (%) SEN (%) SPE (%) PPV (%) NPV (%)

Image−molecular

CNN

Intra Training 0.931

(0.898, 0.964)

84.9

−

93.4

(78.2, 98.9)

81.7

(76.3, 96.3)

65.9

(60.3, 88.8)

97.0

(92.0, 99.5)

Testing 0.794

(0.677, 0.911)

72.8

−

80.0

(48.0, 96.0)

70.5

(60.3, 100.0)

46.5

(40.3, 100.0)

91.7

(84.5, 98.0)

Peri Training 0.951

(0.928, 0.973)

88.5

−

95.7

(90.2, 100.0)

85.8

(79.9, 91.6)

72.1

(65.2, 81.1)

98.1

(96.1, 100.0)

Testing 0.813

(0.717, 0.909)

75.7

−

88.0

(64.0, 100.0)

71.8

(64.1, 92.3)

50.0

(43.1, 74.1)

94.9

(88.2, 100.0)

Cmb Training 0.962

(0.933, 0.990)

92.8

−

93.5

(83.9, 97.8)

92.5

(89.6, 100.0)

82.9

(77.9, 100.0)

97.4

(94.1, 99.1)

Testing 0.933

(0.864, 1.000)

90.3

−

89.3

(75.0, 100.0)

90.7

(82.7, 100.0)

78.1

(67.5, 100.0)

95.8

(91.0, 100.0)

Image−molecular

radiomics

Intra Training 0.931

(0.898, 0.964)

85.8

−

89.0

(78.0, 95.6)

84.6

(78.7, 94.6)

68.6

(61.5,84.8)

95.3

(91.7, 98.1)

Testing 0.706

(0.583, 0.828)

71.8

−

64.0

(40.0, 88.0)

74.4

(46.1, 89.7)

44.4

(32.9, 66.7)

86.6

(81.1, 93.9)

Peri Training 0.916

(0.877, 0.955)

88.2

−

84.8

(76.1, 91.3)

89.5

(85.8, 95.4)

75.7

(70.0, 87.2)

93.9

(90.9, 96.5)

Testing 0.743

(0.640, 0.847)

71.8

−

72.0

(60.0, 100.0)

71.8

(39.7, 85.9)

45.0

(33.8, 60.7)

88.9

(86.1, 100.0)

Cmb Training 0.950

(0.921, 0.980)

90.1

−

89.0

(81.3, 96.7)

90.5

(81.5, 96.7)

77.9

(65.9, 90.4)

95.7

(93.1, 98.7)

Testing 0.905

(0.855, 0.956)

84.0

−

90.0

(77.5, 97.5)

81.8

(74.5, 93.6)

64.3

(56.5, 82.9)

95.7

(91.2, 98.9)

ACC, AUC, SEN, SPE, PPT, and NPV are short for accuracy, area under the receiver operating characteristic curve, sensitivity, specificity, positive prediction value, and negative

prediction value, respectively. Intra, Peri and Cmb indicate the intratumoral model, the peritumoral model and the combined−region model, respectively. Statistical quantifications were

demonstrated with 95% confidential interval (CI), when applicable.

and a specificity of 81.8% on the testing cohort, which were
comparable with the previous radiomics models built with MRI.

Although promising, an efficient radiomics analysis heavily
relies on a handcrafted image processing pipeline comprising
three tightly coupled steps: feature extraction, feature selection
and machine learning model building. Small variations in each
stage may affect the prediction accuracy and stability (37). Deep
CNN improves this pipeline by automatically learning predictive
features on its own and yields a class probability vector as
output. Currently, CNN-based learning methods have achieved
diagnostic accuracy levels in skin cancer (11) and retinal diseases
(12, 13), which have been unattainable via radiomics approaches.
For breast cancer, a comparative study (38) demonstrated that
CNN was superior to radiomic analysis in terms of a significantly
higher AUC (0.88 vs. 0.81, p < 0.001) for classification of
enhancing lesions as benign or malignant at MRI. Another
comparative study in Kooi et al. (39) also demonstrated that
CNN was superior to radiomics-based software in detection of
mammographic breast lesions. In our study, all six CNNs (three
image-only and three image-molecular) achieved higher AUC
and accuracy than corresponding radiomics models built on the
same regions on both training and testing cohorts. Note that
in our results the differences between their AUCs (CNN vs.
radiomics) were not significant (DeLong p > 0.05).

Most image analysis studies on breast cancer was focused
on the intratumoral region. Evidences have demonstrated that

imaging features of peritumoral regions can offer outcome-
related information. Several studies have demonstrated that the
enhancement patterns of tumor-adjacent parenchyma in DCE-
MRI were associated with chemotherapy response (14), local
recurrence (15), and survival (16) in breast cancer. In a recent
study (40) the grade of peritumoral edema identified in breast
MRI has been independently associated with disease recurrence.
In study by Zhou et al. (41), it was demonstrated that the
peritumoral stiffness assessed by ultrasound elastography of
malignant breast lesions was higher than that of benign lesions.
A 2017 study (17) was the first attempt to extract radiomics
features from both intratumoral and peritumoral regions in
breast DCE-MRI, where the features successfully predicted the
pathological complete response to neoadjuvant chemotherapy.
A more recent 2019 study (9) for the first time demonstrated
the feasibility of predicting sentinel lymph node metastasis
by using intratumoral and peritumoral radiomics features in
DCE-MRI, achieving an AUC of 0.806 and an NPV of 82.4%
with radiomics features only. Our study has shown the value
of peritumoral ultrasonographic CNN features in predicting
nodal metastasis with an AUC of 0.775 and an NPV of 91.6%.
By combining both intra- and peritumoral regions, the CNN
achieved a significantly better AUC of 0.912 and an NPV
of 94.4%. The FNRs of the image-only CNN model built by
combining the intra- and peritumoral regions achieved 5.9, 9.3,
and 10% in the training, testing, and prospective data sets,
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FIGURE 4 | The ROC curves of the three image-molecular deep CNNs and the three image-molecular radiomics models in both training and testing cohorts. (A) ROC

curves of image-molecular CNNs in training cohort. (B) ROC curves of image-molecular CNNs in testing cohort. (C) ROC curves of image-molecular radiomics

models in training cohort. (D) ROC curves of image-molecular radiomic models in testing cohort.

TABLE 4 | A performance summary of the image-only CNNs and image-only radiomics models in the prospective cohorts in predicting ALN metastasis of breast cancer.

Model AUC ACC (%) SEN (%) SPE (%) PPV (%) NPV (%)

Image-only CNN Intra 0.767 75.6 50.0 90.0 75.0 75.0

Peri 0.850 75.0 50.0 90.0 75.0 75.0

Cmb 0.950 81.3 66.7 90.0 80.0 81.8

Image-only

radiomics

Intra 0.533 68.8 33.3 90.0 66.7 69.2

Peri 0.533 68.8 33.3 90.0 66.7 69.2

Cmb 0.833 81.3 83.3 80.0 71.4 88.9

ACC, AUC, SEN, SPE, PPT, and NPV are short for accuracy, area under the receiver operating characteristic curve, sensitivity, specificity, positive prediction value, and negative prediction

value, respectively. Intra, Peri and Cmb indicate the intratumoral model, the peritumoral model and the combined-region model, respectively.

respectively, which were superior to the image-only radiomics
model with FNRs of 14.8, 18.25, and 20% in the training,
testing, and prospective data sets, respectively. The FNRs of
the CNN model were comparable with those of SLNB [4.6
to 16.7% (4)] and were higher than the radiomics models
[13.9 to 25% (9, 10)] reported previously. By integrating the
molecular subtype information, all the obtained image-molecular

models, either CNN or radiomics, achieved slighter higher AUCs
and NPVs.

The biological mechanism underlying the peritumoral
imaging features and their association with clinical outcomes
remains unclear. Many cancer studies have shown that biological
changes in the tissue immediately surrounding the breast
tumor mass might be potential predictive or prognostic
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markers, such as peritumor lymphovascular invasion (42, 43),
peritumoral lymphocytic infiltration (44), and peritumoral
edema (45). In study by Zhao et al. (46) it was suggested
that vascular endothelial growth factor (VEGF)-C/D induced
peritumoral lymphangiogenesis may be one mechanism that
leads to metastatic spread. In study by Wu et al. (16) the
prognostic peritumoral features were associated with the
tumor necrosis factor (TNF) signaling pathway that has been
involved in oncogenic angiogenesis, invasion, and metastasis
(47). Further studies are warranted to determine how the
underlying biological changes were reflected by peritumor
imaging features.

Our study has several limitations. The first limitation was
the limited population size which may lead to bias. Larger
patient population from more centers should be involved
in future to improve the machined learning-based models.
The population size of the prospective cohort is particularly
small, where significant bias may occur. We will recruit more
prospective data in future to further evaluate our methods
in clinical practice. The second limitation was that all image
data was obtained on the same type of ultrasound machine.
In future we will evaluate our models on more heterogeneous
image data acquired with different machines. Moreover, we
built our CNNs and radiomics models using only ultrasound
images and molecular subtypes. In future we will build
more comprehensive models by incorporating more clinical
and pathological data. Our future research also includes the
exploring of biological mechanism underlying the association
between intratumoral/peritumoral imaging features and nodal
metastasis. We will also assess the possible incremental value
of the tumoral ultrasonographic features over the AUS in
axillary staging.

In conclusion, CNNs built on tumoral regions in ultrasound
images allowed accurate prediction of ALN metastasis, which
achieved higher AUC and NPV than radiomics models.
Either CNNs or radiomic models built on peritumor regions
performed slighter better than those built on intratumor
regions, while combining both intra- and peritumoral regions
achieved significantly better AUCs and higher NPVs. Further

integrating the molecular subtype information into either CNNs
or radiomics models can slightly benefit the performance.
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Purpose: To design and validate a preprocessing procedure dedicated to T2-weighted

MR images of lung cancers so as to improve the ability of radiomic features to distinguish

between adenocarcinoma and other histological types.

Materials and Methods: A discovery set of 52 patients with advanced lung cancer

who underwent T2-weighted MR imaging at 3 Tesla in a single center study from August

2017 to May 2019 was used. Findings were then validated using a validation set of

19 additional patients included from May to October 2019. Tumor type was obtained

from the pathology report after trans-thoracic needle biopsy, metastatic lymph node or

metastasis samples, or surgical excisions. MR images were preprocessed using N4ITK

bias field correction and by normalizing voxel intensities with fat as a reference region.

Segmentation and extraction of radiomic features were performed with LIFEx software on

the raw images, on the N4ITK-corrected images and on the fully preprocessed images.

Two analyses were conductedwhere radiomic features were extracted: (1) from the whole

tumor volume (3D analysis); (2) from all slices encompassing the tumor (2D analysis).

Receiver operating characteristic (ROC) analysis was used to identify features that could

distinguish between adenocarcinoma and other histological types. Sham experiments

were also designed to control the number of false positive findings.

Results: There were 31 (12) adenocarcinomas and 21 (7) other histological

types in the discovery (validation) set. In 2D, preprocessing increased the number

of discriminant radiomic features from 8 without preprocessing to 22 with

preprocessing. 2D analysis yielded more features able to identify adenocarcinoma

than 3D analysis (12 discriminant radiomic features after preprocessing in 3D).

Preprocessing did not increase false positive findings as no discriminant features

were identified in any of the sham experiments. The greatest sensitivity of the

2D analysis applied to preprocessed data was confirmed in the validation set.
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Conclusion: Correction for magnetic field inhomogeneities and normalization of voxel

values are essential to reveal the full potential of radiomic features to identify the tumor

histological type from MR T2-weighted images, with classification performance similar to

those reported in PET/CT and in multiphase CT in lung cancers.

Keywords: lung cancer, radiomics, histological types of lung cancer, T2-weightedMR images, bias field correction,

MRI normalization

INTRODUCTION

Radiomics consists in the extraction of a large number of
quantitative features from radiology images to describe the
shape, intensity distribution, and texture characteristics of a
region of interest (1–3). The assumption is that such image-
derived features can outperform visual analysis to characterize
abnormalities. In particular, in oncology, radiomic features might
reflect tumor heterogeneity observed at the histological and
genetic levels (4). Macroscopic structural heterogeneity can
unveil differences in tumor biology, which cannot be identified
by clinical data alone (5, 6). In medical images, the macroscopic
heterogeneity corresponds to variations of image intensities
between neighboring voxels, which are described by radiomic
features. Radiomic features are thus expected to be related to
the phenotype, genotype and microenvironment of the tumor,
and thus be of interest to support therapeutic decisions (7).
Radiomics is therefore largely investigated to assist cancer
diagnosis, prognosis, and prediction of response to therapy (8, 9).

Many radiomic studies have been devoted to lung cancer,
which is a major public health problem (10–16). These studies
mostly focus on nodules detected on CT and/or PET scans
and that can be removed surgically (8, 17, 18). CT and PET
are indeed used in daily practice for managing lung cancer
patients. MR images are also of interest to characterize tumors
because of their excellent contrast (19–21). Yet, to the best of our
knowledge, very few studies have investigated the usefulness of
MR radiomic features in lung cancer patients. A study defined
the optimal timing to extract radiomic features on T1-weighted
images after contrast medium injection in order to predict 2-
years progression-free survival (15). Another preliminary study
suggested that MR-derived radiomic features (based on True
Fast MR images with a Steady State Precession sequence) may
improve the accuracy of models that predict the response to
therapy and survivals at different time points compared to
that of models based on CT features only (22). No radiomic
study involving anatomical MR sequences has been reported.
Predicting histology from functional MR data was reported
in a meta-analysis (23) showing that diffusion MR sequences
could distinguish between malignant and benign lung lesions.
It was also suggested that small cell cancers had significantly
lower Apparent Diffusion Coefficients than other subtypes (23).
However, these functional MR sequences could not differentiate
adenocarcinomas from squamous cell carcinomas.

CT intensities are expressed in Hounsfield Units (HUs)
linearly related to the tissue attenuation coefficients at the energy
of the CT scanner. PET images are expressed in Standardized
Uptake Values (SUV) that are directly related to the tracer
concentration. As a result, CT or PET image values have the

same meaning, from a physics point of view, in all patient
scans acquired with the same scanner and using the same
protocol for the image acquisition and reconstruction. Still, the
use of different scanners and/or different image acquisition and
reconstruction protocols introduces some variability in voxel
values hence in radiomic features (24) and some harmonization
techniques have been proposed to realign radiomic features
measured in different conditions (25). In anatomical MR
sequences, images are initially expressed in arbitrary units,
meaning that a given tissue type (for instance fat) will not
always yield a similar voxel value, even when the images are
acquired in the same patient and same conditions using the
same scanner (26). Therefore, a measured voxel value cannot be
readily interpreted in terms of well-understood physics quantity
unlike in CT (a HU does correspond to a unique attenuation
coefficient) and in PET (an SUV corresponds to a unique tracer
concentration in a given patient). This makes radiomic studies
more challenging in MR compared to PET and CT.

In that context, the present study had three objectives: (1) to
design and validate a new normalization procedure dedicated
to T2-weighted MR images of lung cancer patients, using
subcutaneous fat as a reference tissue; (2) to perform a systematic
comparison of a 3D analysis of radiomic features with a 2D
analysis taking into account all slices; (3) to demonstrate the
usefulness of the normalization procedure and the 2D analysis
to identify relevant T2-weighted MR radiomic features for
differentiating adenocarcinoma from other types of lung cancer.

MRI preprocessing, posterior to acquisitions, including
magnetic bias field correction and normalization has been
successfully applied to brain studies using white matter as
the reference tissue (26, 27). This approach has been rarely
applied to other organs. For prostate T2w images, a recent study
considered muscle as the reference tissue, reporting mitigated
results in terms of feature reproducibility (28). To the best of
our knowledge, this normalization based on a reference tissue
has never been used for lung MR images. Unlike many studies
comparing 3D and 2D radiomic features where the 2D approach
only exploits the slice presenting the largest tumor area or
diameter, our 2D analysis calculates radiomic features in all
slices and selects the median value of each feature as being
representative of the tumor.

MATERIALS AND METHODS

Population
Patient imaging, pathology, and clinical data were selected
from the single-center MRI-omics database built as part of a
retrospective study approved by the Institutional Review Board
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(protocol 32-2016, study number: 2016-A00813-48). All patients
gave their written informed consents. From August 2017 to May
2019, patients with advanced lung cancer referred for brain MR
imaging to detect cerebral metastases were proposed to undergo
additional lung MRI sequences. Among 83 eligible patients, 8
were not included because the pathology of the tumor was not
available, and 23 were excluded because of motion artifacts or
incomplete MR protocol (Figure 1). The final population thus
included 52 patients (34 men and 18 women) from 44 to 89
years old (mean age 66 years; SD 11.3 years). Among these
patients, 42 subjects (80%) were active smokers and 2 (4%) were
exposed to asbestos. These 52 patients defined the discovery
set of the current study. In addition, the following 21 patients
enrolled between May and October 2019 were used to create a
validation set. Two were excluded because of inconsistent slice
thickness. This additional population included 17 men and 2
women from 41 to 85 years old (mean age 71 years; SD 12.1
years). Among them, 13 (68%) were active smokers and 1 (5%)
exposed to asbestos.

MRI Acquisition
All acquisitions were performed with a 3T MRI unit (Discovery
MR750, GE Healthcare, Waukesha—WI, USA), using an 18-
channel phased-array body coil on the thorax. All study
participants were scanned in the supine position with the arms
along the body. All patients had a T2-weighted (T2w) sequence
with a vendor-specific implementation of the periodically
rotated overlapping parallel lines with enhanced reconstruction
technique (PROPELLER) acquired in free breathing. The T2w

PROPELLER sequence was selected since it provided few motion
artifacts (29) and a good image quality (30, 31). The main
parameters of the sequence are given in Table 1.

Pathological Assessments of Tumor
Samples
A dedicated pathologist (JB, with more than 30 years of
experience in lung cancer pathology), blinded to theMR findings,

TABLE 1 | Parameters of MR images acquisition protocols.

Parameter T2w PROPELLER

Plane Axial

TR (ms) 9,677

TE (ms) 96

FA (degree) 160

FOV (mm) 500 × 500

Matrix 240 × 240

Slice thickness (mm) 4

Inter slice spacing (mm) 0

Frequence 384

NEx 1.5

Gating Respiratory

Breath hold No

Acquisition time (s) 65

TR, repetition time; TE, echo time; FA, flip angle; FOV, field of view; NEx, number

of excitations.

FIGURE 1 | Data selection pipelines.
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reviewed all pathology reports and filled a structured pathology
worksheet. The pathology information came from trans-thoracic
core needle biopsy (n = 31 in the discovery set, n = 11 in
the validation set), metastatic lymph node samples (n = 11 in
the discovery set, n = 3 in the validation set), other metastatic
location samples (n = 6 in the discovery set, n = 4 in the
validation set), and surgical excisions (n = 4 in the discovery set,
n = 1 in the validation set). Detailed characteristics are reported
in Table 2.

Based on the pathology worksheet, two groups were defined:
the first group included all patients with adenocarcinoma and the
second group included all other patients.

MR Image Analysis
Lung MR images were retrieved from the Pictorial Archive and
Communication System (Carestream 3.2. Carestream Health,
Rochester, New York), anonymized and loaded in a workstation
for radiomic analysis. Preprocessing of images included two
steps: a correction for magnetic field (B1) inhomogeneity in
order to reduce the signal intensity variation across the field of
view, followed by a normalization of intensities based on the
delineation of a reference tissue. Tumors were then segmented
and 3D and 2D radiomic features were extracted for raw data,
N4ITK corrected data, and normalized N4ITK-corrected data.
Statistical analyses were performed to identify the features that

TABLE 2 | Tumor characteristics.

Population Discovery set Validation set

Number of cases 52 19

Type of tumor: n (%)

Adenocarcinoma 31 (60%) 12 (63%)

Other types 21 (40%) 7 (37%)

Squamous cell carcinoma 16 (76%) 4 (57%)

Small cell carcinoma 2 (9.5%) 1 (14%)

Sarcomatoid tumor 2 (9.5%) 2 (29%)

Large cell carcinoma 1 (5%) 0

Mean size in long axis (mm) 63.4 ± 23.2 67.7 ± 21.1

(Range: 23–110) (Range: 27–109)

Location: n (%)

Right upper lobe 24 (46%) 10 (53%)

Middle lobe 3 (6%) 0

Right lower lobe 8 (15%) 4 (21%)

Left upper lobe 10 (19%) 3 (16%)

Left lower lobe 7 (14%) 2 (10%)

T status (Lung-cancer TNM 8th edition): n (%)

T1 3 (6%) 1 (5%)

T2 4 (8%) 2 (11%)

T3 10 (19%) 5 (26%)

T4 35 (67%) 11 (58%)

Invasion

No parietal or mediastinal invasion 17 (33%) 6 (32%)

Parietal invasion 18 (35%) 4 (21%)

Mediastinal invasion 13 (25%) 8 (42%)

Parietal and mediastinal invasion 4 (7%) 1 (5%)

could distinguish between the group of adenocarcinoma and the
group including other tumor types.

Correction of Magnetic Field Inhomogeneity
Magnetic field inhomogeneity artifacts were corrected based on
the estimation of a bias field constrained to be spatially smooth
(32). The bias field was estimated with the publicly available
N4ITK algorithm using ANTs software (http://stnava.github.io/
ANTs) with the standard setting of hyper-parameters. Each voxel
value in the raw image was then modified by dividing its value
by the corresponding voxel value in the bias field. This approach
is widely used for brain studies (26), but not for other organs. It
reduces variations of the mean intensity between similar tissues
located at different positions within the field of view.

Image Intensity Normalization
Significant variations in mean intensity values measured in
similar tissues (for instance subcutaneous fat for lung studies,
white matter for brain studies) can be observed between different
patients even when using a similar acquisition protocol on
the same scanner (26). These variations are a major pitfall
for radiomic studies (26). The intensity normalization aims at
reducing the intensity variations between different patients. The
proposed approach relies on the definition of a reference region
that is always in the field of view of thoracic acquisitions, namely
the fat. When compared to vertebra and muscle, fat was chosen
as the most appropriate reference region because it showed the
smallest intra-patient variability (see Results section). Three 2D
regions-of-interest (ROIs) were therefore drawn in the normal
subcutaneous fat while avoiding vessels, with each region drawn
in a different slice. A linear transform was then applied to every
image voxel v so that the mean value of the reference tissue was
equal to 0 and its standard deviation was equal to 1:

Is(v) = [I(v)− F]/σ,

where I(v) is the original intensity of each voxel in the bias
field corrected image, F and σ are the mean intensity and
associated standard deviation over all voxels belonging to the
three fat regions, and Is(v) is the intensity in voxel v of the
normalized image.

Segmentation
An expert radiologist with 4 years experience in thoracic imaging
segmented the tumors using the LIFEx software (www.lifexsoft.
org) (33). A coarse region surrounding the tumor was manually
defined and then refined using an intensity threshold manually
set for each patient to delineate the tumor from the lung tissue.
The borders between the tumor, the mediastinum and the chest
wall were manually delineated. The tumor volume was defined
as a single 3D connected component. To further investigate the
impact of the segmentation on the results, the original ROIs were
modified by automatically shrinking the contours by two pixels.

Radiomic Feature Extraction
Radiomic features were computed in the tumor region for both
the raw, the N4ITK-corrected and the normalized N4ITK-
corrected MR images using the LIFEx software compliant with
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the Image Biomarker Standardization Initiative guidelines
(https://arxiv.org/abs/1612.07003). Features included shape
features, first-order features that do not account for the spatial
arrangement of voxel values, and second-order (textural)
features that reflect how voxel values are spatially arranged.
The definition of the matrices needed for textural feature
calculations requires gray level quantization. For raw images,
N4ITK corrected images, and normalized N4ITK images, fixed
bin sizes were used for that gray level quantization step. The bin
size was chosen so that 256 bins always encompassed all voxel
values observed in the tumors, yielding a bin size of 15 units for
raw images, 10 units for N4ITK corrected images, and 0.2 for
normalized N4ITK corrected images.

For each patient and each image (without and with
preprocessing), two sets of features were extracted. A first set
of 48 3D radiomic features was obtained from the 3D tumor
volume. All feature names are given in Supplemental Tables 2, 3
and precisely defined in the LIFEx online documentation (www.
lifexsoft.org). A second set of 46 2D radiomic features was
extracted for each slice of the tumor, by performing the
calculations in the largest 2D connected component present in
the slice (the two 3D shape features were not calculated in
2D analysis). Slices with too small regions (<64 pixels) were
removed from the analysis, as calculating second-order features
in regions with <64 pixels could be meaningless (34). Using
the 2D approach, the median value of each feature among the
whole set of slices encompassing the patient tumor was defined
as the representative value of the corresponding feature for that
tumor. Therefore, for each approach, called 2D and 3D in the
following, each patient was associated with one 2D value and one
3D value for each feature. Our 2D approach was compared to the
conventional 2D approach that consists in selecting the feature
value measured from the slice including the largest tumor area.

Classification Tasks
To test the predictive power of each radiomic feature, we
determined the ability of each feature to distinguish between
adenocarcinoma (ADK) and other tumors (OTH). This task is
further referred to as the ADK task. To check the relevance of
our findings, a “sham” task was also used by randomly defining a
sham ADK group and a shamOTH group. To do so, each patient
was randomly assigned to the sham ADK or sham OTH group,
whatever the actual tumor type of the patient, but still using the
same prevalence of ADK as in the real data (31 patients in the
sham ADK group and 21 patients in the sham OTH group). This
task is further referred as the RAND task.

Statistical Analysis
To assess the impact of the correction for magnetic field
inhomogeneity (N4ITK correction) on voxel values throughout
the image volume, three ROIs were manually drawn in the
vertebra body of Th3, Th4, and Th5, three ROIs were drawn
in the pectoral muscles, in addition to the three ROIs defined
in the fat (Figure 2). For each type of tissue, the coefficient of
variation defined as the standard deviation divided by the mean
over all the voxels belonging to the different ROIs of the same
tissue was calculated in the original images and in the images after

FIGURE 2 | Example of ROI positioning for three candidate reference tissues:

subcutaneous fat in red color, vertebral body in green color, pectoral muscle in

blue color.

the N4ITK correction. Paired Wilcoxon signed-rank tests were
used to determine whether the N4ITK correction significantly
impacted the coefficients of variation.

To investigate the ability of radiomic feature to predict
whether the tumor was an ADK or an OTH tumor, ROC analysis
was performed for each feature, and resulting areas under the
curve (AUC) were computed. 2D and 3D feature values were
used, as calculated from the raw images, from the images after
N4ITK correction and from the fully preprocessed images, i.e.,
normalized N4ITK corrected images. Following (35), the p-value
of the Wilcoxon sum rank test was used to test whether the
AUC differed significantly from 0.5. Features for which p-value
was <0.05 were thus selected as candidate discriminant features.
The same ROC analyses were performed for the RAND task. To
reduce the possible false discovery rate, features that remained
significant after Benjamini-Hochberg correction for multiple
tests were also identified. All these analyses were performed
separately using the discovery set and the validation set.

RESULTS

Pathological Data
The pathologic characteristics of tumors are listed in Table 2.
In the discovery set, there were 31 adenocarcinomas (ADK
group) and 21 other histological types (OTH group). The
OTH group contained a majority of squamous cell carcinoma
(76%). In the validation set, there were 12 adenocarcinomas
and 7 other histological types, with a majority of squamous cell
carcinoma (57%).

Impact of the Correction of Magnetic Field
Inhomogeneity on Voxel Values
Figure 3 shows an example of a bias field as estimated by
the N4ITK algorithm for one patient. As expected, the largest
variations are observed between the center of the field of
view and the periphery near the coil. For the three types
of tissue (fat, vertebra, and pectoral muscle), the coefficients
of variation demonstrated a statistically significant reduction
after bias field correction (see Supplemental Table 1). As fat
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FIGURE 3 | Bias field as estimated using the N4ITK algorithm. The bias field is

displayed in color and superimposed to the image in gray scale.

yielded the smallest coefficient of variation, it was chosen as the
reference tissue.

Segmentation
Figure 4 shows two examples of tumor segmentation with LIFEx,
highlighting the signal heterogeneity within these tumors.

Impact of Pre-processing on the Predictive
Values of Radiomic Features
The discovery set was first analyzed. Table 3 summarizes the
significant features (AUC significantly greater that 0.5, p < 0.05)
when using the 2D and 3D approaches, without preprocessing,
with N4ITK correction only and with preprocessing involving
the two steps (N4ITK correction and normalization), for
both real data and sham data. Supplemental Tables 2, 3

provide the AUC and associated 95% confidence intervals for
each feature. For the ADK classification task, 8 discriminant
features are extracted systematically whatever the configuration
tested (except GLRLM_GLNU for 3D N4ITK corrected data,
and HISTO_Skewness for 2D N4ITK corrected data, both
having a p-value of 0.054). These 8 features (HISTO_Skewness,
SHAPE_Volume, GLCM_Correlation, GLRLM_GLNU,
GLRLM_RLNU, NGLDM_Coarseness, GLZLM_GLNU,
GLZLM_ZLNU) are subsequently called common discriminant
features. For the RAND task, no feature yielded an AUC
significantly different from 0.5. Correcting for the magnetic
field inhomogeneity did not substantially change the number
of predictive features. However, when combining bias field
correction and normalization, some additional predictive
features were observed especially for the 2D configuration with
14 new discriminant features in addition to the 8 common
discriminant features. In the 3D analysis, the feature yielding
the largest AUC was the “GLCM_Correlation” textural feature

FIGURE 4 | Example of tumor segmentation for two patients. First row:

patient with a lung adenocarcinoma of the right lower lobe (long axis: 77mm).

Raw image (A) and image after N4ITK correction with the segmented tumor

volume in pink (B). Second row: patient with a squamous cell carcinoma of the

left upper lobe (long axis: 93mm). Raw image (C) and image after N4ITK

correction with the segmented tumor volume in pink (D).

with an AUC of 0.77. The same feature yielded the largest AUC
in the 2D analysis, with an AUC of 0.82. Figure 5 shows the
associated boxplot corresponding to the 2D analysis for the ADK
and OTH groups.

The validation set was analyzed with the same approach.
Table 4 shows the significantly predictive features for all
configurations. Compared with the discovery set, less
significantly predictive features were identified, partly due
to the lower number of patients hence larger confidence intervals
(see examples in Supplemental Table 4). In all cases, the
significant features were part of the 8 common discriminant
features identified in the discovery set.

In the best configuration (2D analysis), a Wilcoxon signed-
rank test showed that there was no statistically significant
difference between the AUC of the eight common discriminant
features for the different tested configurations: raw data vs.
N4ITK corrected data, raw data vs. normalized N4ITK corrected
data, and N4ITK corrected data vs. normalized N4ITK corrected
data, and this was true for both the discovery and the validation
sets (Table 5). There were statistically significant differences
between the AUC of the 14 additional features (revealed on the
discovery set) for the normalized N4ITK corrected data when
compared to raw data or N4ITK corrected data (Table 5) and
again, this was observed both for the discovery set and for the
validation set.

Impact of Segmentation and of 2D Analysis
on the Predictive Values of Radiomic
Features
Supplemental Table 5 demonstrates the low impact of the tumor
border erosion on the 2D discriminant features. Indeed eight
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TABLE 3 | Number and list of features with an AUC significantly >0.5 for the different analyses (3D and 2D for raw data, N4ITK corrected data, and N4ITK corrected and

normalized data—ADK task based on real data and RAND task based on sham data).

Raw data N4ITK corrected

data

N4ITK corrected and

normalized data

3D FEATURES (DISCOVERY SET)

ADK task 8 (1) 7 (1) 12 (1)

RAND task 0 0 0

Feature name HISTO_Skewness

SHAPE_Volume

GLCM_Correlation

GLRLM_GLNU

GLRLM_RLNU

NGLDM_Coarseness

GLZLM_GLNU

GLZLM_ZLNU

HISTO_Skewness

SHAPE_Volume

GLCM_Correlation

GLRLM_RLNU

NGLDM_Coarseness

GLZLM_GLNU

GLZLM_ZLNU

HISTO_Skewness

SHAPE_Volume

GLCM_Correlation

GLRLM_LRE

GLRLM_GLNU

GLRLM_RLNU

NGLDM_Coarseness

NGLDM_Busyness

GLZLM_SZE

GLZLM_LZE

GLZLM_GLNU

GLZLM_ZLNU

2D FEATURES (DISCOVERY SET)

ADK task 8 (5) 9 (4) 22 (20)

RAND task 0 0 0

Feature name HISTO_Skewness

SHAPE_Volume

GLCM_Correlation

GLRLM_GLNU

GLRLM_RLNU

NGLDM_Coarseness

GLZLM_GLNU

GLZLM_ZLNU

SHAPE_Volume

GLCM_Correlation

GLCM_Entropy_log2

GLCM_Entropy_log10

GLRLM_GLNU

GLRLM_RLNU

NGLDM_Coarseness

GLZLM_GLNU

GLZLM_ZLNU

HISTO_Skewness

SHAPE_Volume

GLCM_Homogeneity

GLCM_Contrast

GLCM_Correlation

GLCM_Entropy_log2

GLCM_Entropy_log10

GLCM_Dissimilarity

GLRLM_SRE

GLRLM_LRE

GLRLM_GLNU

GLRLM_RLNU

GLRLM_RP

NGLDM_Coarseness

NGLDM_Contrast

NGLDM_Busyness

GLZLM_SZE

GLZLM_LZE

GLZLM_SZHGE

GLZLM_GLNU

GLZLM_ZLNU

GLZLM_ZP

Bold numbers in brackets give the numbers of significant features after Benjamini-Hochberg correction for multiple comparisons, with corresponding feature names in bold.

FIGURE 5 | Boxplot showing the values of the 2D “GLCM-correlation” feature

for the group of patients with adenocarcinomas (ADK) and the group of

patients having a different histological status (OTH).

features (the eight common discriminant features) were revealed
using both the initial tumor regions and the eroded regions in
the raw data, nine in the N4ITK corrected data (including seven
of the eight common discriminant features), and 22 in the N4ITK
corrected and normalized data (the eight common discriminant
features and the 14 additional features shown in Table 3).

Supplemental Table 6 shows the interest of using our 2D
approach, selecting the median value of the 2D features

computed for all slices encompassing the tumor as opposed to the
conventional 2D approach that calculates the feature value from
the slice including the largest tumor area. Indeed the number of
discriminant features was always superior with our 2D approach
except for one supplemental feature for the raw data. For instance
we found 6 additional discriminant features for N4ITK corrected
and normalized data using our 2D approach instead of the
conventional 2D approach.

DISCUSSION

In this study, we investigated the potential of MRI radiomics
for lung cancer assessment and demonstrated the need for
careful preprocessing of MR images to identify radiomic features
correlated with the tumor pathology. While CT and PET scans
are the standard imaging procedures to manage lung cancer
patients, the clinical workflow can easily include additional
lung acquisitions when MRI is prescribed for brain metastasis
screening. Here, we focused on an anatomical T2w PROPELLER
sequence that produced good quality images in the lung area as
assessed by the radiologists in our department. We determined
whether radiomic features calculated from these T2-weighted
images could predict whether the tumor was an ADK, a question
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TABLE 4 | Number and list of features with an AUC significantly >0.5 in the

validation set for the 3D and 2D analyses (raw data, N4ITK corrected data, and

N4ITK corrected and normalized data—ADK task based on real data).

Raw data N4ITK corrected

data

N4ITK corrected

and normalized data

3D FEATURES (VALIDATION SET)

ADK task 0 1 1

Feature

name

GLCM_Correlation GLCM_Correlation

2D FEATURES (VALIDATION SET)

ADK task 4 3 6

Feature

name

SHAPE_Volume

GLRLM_GLNU

NGLDM_Coarseness

GLZLM_GLNU

SHAPE_Volume

GLRLM_RLNU

NGLDM_Coarseness

SHAPE_Volume

GLRLM_GLNU

GLRLM_RLNU

NGLDM_Coarseness

GLZLM_GLNU

GLZLM_ZLNU

that has already been addressed using CT or PET radiomics (10,
36–40). The best reported performance from non-injected CT
scans was an AUC of 0.72 (multivariate analysis) to differentiate
ADK and squamous cell carcinomas (36). Using enhanced CT,
an AUC of 0.86 was reported at the venous phase for the
same classification task (10). Radiomic features extracted from
PET/CT could also differentiate adenocarcinoma from other
histological types (37–40) with an AUC of 0.81 reported in
Kirienko et al. (38), and a radiomic signature to distinguish ADK
from squamous cell carcinoma with an AUC of 0.90 reported in
Zhu et al. (40).

Interestingly, we found that several MR radiomic features
analyzed independently yielded an AUC >0.65 and up to 0.82.
Yet, identifying these features required thorough preprocessing,
without which up to 66% of the informative features (14 out of
the 22 in the 2D approach, see Supplemental Table 3) were not
identified as such.

The need for some preprocessing steps before extracting MRI
radiomic features has been very recently acknowledged for other
tumor types (41, 42). Although there is no consensus on the
preprocessingmethods that should be used, twomain pitfalls that
are specific to MRI have been identified. The first one results
from the B1 magnetic field inhomogeneities (43, 44) caused by
MR gradients that introduces variability in signal intensity of a
given tissue type as a function of its location within the field of
view. This bias is more severe in high field MR and was present
in our 3T data. The second challenge is the significant variation in
pixel values between different patients (42, 45, 46) in anatomical
MR images, even when using the same scanner and the same
acquisition sequences, due to the arbitrary units used to represent
the anatomical MR images.

In our work, we proposed two complementary approaches
to deal with these two issues. A bias field correction was
performed using the N4ITK method, which is the state-of-
art method for brain studies. N4ITK is a histogram based
technique that estimates a slowly varying bias field bymaximizing
the high frequency histogram content in the image (32). Our
goal was to validate its use in thoracic imaging and assess
its impact on subsequent radiomic analysis. Using normal

TABLE 5 | Paired Wilcoxon signed rank tests to compare AUC between (1) raw

data and N4ITK corrected data, (2) raw data and N4ITK corrected and normalized

data, (3) N4ITK corrected data and N4ITK corrected and normalized data for the

discriminant features (common and additional) using the discovery and the

validation sets.

2D analysis

AUC comparison Common discriminant

features

(n = 8)

Additional discriminant

features

(n = 14)

Discovery

set

Validation

set

Discovery

set

Validation

set

N4ITK corrected data

vs. raw data

ns ns ns ns

N4ITK corrected and

normalized data

vs. raw data

ns ns p = 0.001** p = 0.001**

N4ITK corrected and

normalized data

vs. N4ITK corrected

data

ns ns p = 0.001** p = 0.003**

ns, not significant.
**Stands for p-values smaller than 0.005.

tissues, such as the vertebral bodies, subcutaneous fat, and
pectoral muscle, we demonstrated that this correction was
successful at reducing the variations of voxel values in all
these tissues (Supplemental Table 1), the largest effect being
observed in the subcutaneous fat. This is very likely due to the
fat peripheral location. The identification of radiomic features
able to predict ADK tumors was only slightly impacted by
this correction (Table 3). Indeed this correction did not aim at
increasing the identification of informative radiomic features,
but at improving the subsequent normalization procedure, by
reducing the coefficients of variation in the reference tissue.
Other techniques of bias field correction, such as B1 mapping
could also be of interest. Yet, a definite advantage of N4ITK is
that it can be retrospectively used, which is especially useful as
many radiomic studies are still performed retrospectively.

The challenge of image intensity normalization was addressed
by defining a reference tissue. We chose the subcutaneous
fat as it was always present in the thoracic field of view
and showed the lowest coefficient of variation within patients
(Supplemental Table 1). The principle of the normalization
was to arbitrarily set the MR intensity to 0 in fat regions
and its associated standard deviation to 1, similar to setting
Hounsfield Units to 0 in water in CT imaging. Doing so, for
any patient, the value will be 0 in the fat for these anatomical
T2-weighted PROPELLER images, and all image values will
be scaled linearly. The linear transformation is a very simple
model with respect to the complexity of the MR signal intensity
and more sophisticated models could certainly be used, but
our aim was to determine whether this simple transformation
could already reduce the variability of MR signal intensity across
patients hence increase the statistical power of MR radiomic
analysis. Our results suggest that the number of informative
features for identifying ADK is substantially increased when
using the image intensity normalization combined with the
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bias field correction (Table 3). In the 3D approach, four
additional features were identified while in the 2D analysis,
14 additional features were identified as discriminant. The
eight common discriminant features that were already identified
as informative before preprocessing remained informative
after preprocessing, demonstrating that these features were
robust with respect to the magnetic field heterogeneity and
intensity scaling. Indeed five (SHAPE_Volume, GLRLM_GLNU,
GLRLM_RLNU, GLZLM_GLNU, GLZLM_ZLNU) of these eight
features are highly correlated with the volume of the region
of interest (34), and that volume remains identical whatever
the preprocessing steps. The question of whether the 14 new
radiomic features identified as informative after preprocessing
were truly informative for the classification task or were
“false positive” features was answered by designing the sham
experiment and by analyzing the validation set. In the sham
experiment, we knew that we should not find any feature that
would be related to the “fake” ADK or OTH status of the
tumors, as each tumor was randomly assigned as ADK or
OTH, whatever its actual pathological report. Table 3 confirmed
that without preprocessing, with N4ITK correction, and with
full preprocessing, no feature was identified as informative of
the fake tumor type. Table 5 shows that the trends observed
on the discovery set for the 14 additional features identified
using the normalized N4ITK corrected data were confirmed
on the validation set. All additional features were textural
features, demonstrating the need for preprocessing to compute
robust discriminant textural features. Altogether, these results
demonstrate that the preprocessing does not produce an inflation
of false positive and suggests that the additional features
identified in the real classification task are truly informative.

In our cohort, all images had the same voxel size. It was thus
not necessary to resample the images as previously proposed
(47, 48) to reduce the variability induced by different voxel
size. To characterize the tumor type based on the MR radiomic
features, we compared two approaches: a 2D approach where
radiomic features were computed in each slice and the median
value over all slices was chosen as the representative value for the
tumor, and a 3D approach in which the features directly pertain
to the whole tumor volume. The 2D approach identified more
informative radiomic features than then 3D approach (Table 3).
Several hypotheses might explain this result. First, voxels are
not isotropic, because the slice thickness (4mm) is greater than
the intra-plane voxel size (0.8mm). As a result, 3D calculation
of second-order feature is biased. Another reason might be the
large size of most tumors in our study. All patients had advanced
tumors with amean diameter of 63± 23mm, so each slice already
contained a representative view of the tumor that might be
sufficient to estimate the tumor type (see Figure 4). Two previous
studies compared 2D and 3D radiomic feature performance for
lung cancer in CT (49, 50). The first one did not find any
significant difference between 2D and 3D results (49), while the
second study reported better performance using the 3D analysis
(50). Yet, for these two studies, the 2D analysis was limited to the
slice that included the largest cross-section of the lesion, while
in our so-called 2D approach, we still accounted for all slices
encompassing the tumor. The selection of one single slice might
lead to information loss while our 2D approach used all 2D slices

to end up with a single feature value per tumor volume. Our
2D approach identified more discriminant features than the one-
slice based 2D approach (Supplemental Table 6), especially for
N4ITK corrected and normalized data.

The feature that yielded the largest AUC was
GLCM_Correlation. This feature has actually already been
reported as predictive in other MRI radiomic study: lower values
of GLCM_Correlation on DiffusionWeighted Images and higher
values of GLCM_Contrast on T2w sequences were shown to be
correlated to an early disease progression in rectal cancers (51).

There are several limitations in our study. First, our results
related to the prediction of ADK should be confirmed on a
larger cohort. As all data were acquired in the same institution
and using the same scanner, our findings would also need a
multi-center validation. Another limitation is due to the fact
that only one operator segmented the tumors and the robustness
of the findings with respect to the tumor delineation should
be further investigated (52). To investigate the impact of the
tumor delineation on our results, all the segmented tumors were
automatically eroded by an element of size 1.5mm and results
were similar, confirming the greater sensitivity of 2D analysis
on normalized N4ITK corrected data to identify discriminant
features (see Supplemental Table 5). This suggests that for
tumors with large volumes as in our study, significant variations
in results due to small changes in tumor contour delineation
are unlikely. Histology was mostly determined by trans-thoracic
core needle biopsy, which might not be representative of the
whole tumor volume. This is a definite limitation as lung tumors
may have heterogeneous histological types depending on the
location in the lesion (53). Our task was to distinguish between
ADK and all other tumor types, so this second tumor group
was quite heterogeneous in itself. The reason why we did not
separate the OTH group into different tumor types was to keep
enough tumors in each group for the classification task. Last,
the best prediction accuracy we obtained (AUC of 0.82) is not
sufficient for clinical applicability (36). This accuracy might be
limited by the fact that we used univariate models only, because
of the relatively small size of our cohort. Our results warrant
multivariate analyses based on larger patient cohorts. Also, we
focused on one MR sequence only, while combining radiomic
features from different MR sequences might be useful to enhance
the accuracy of the classification.

CONCLUSION

We demonstrated that MRI T2-weighted sequences of lung
cancer patients yielded radiomic features related to the
pathological tumor type and that the number of informative
radiomic features was significantly increased by appropriate
processing of the MR images. Key preprocessing steps
are correction for the magnetic field inhomogeneity and
normalization of the voxel values to set a intensity scale
common to all patient images. In addition, in our cohort, the
2D analysis selecting the median value of each feature among
the different slices encompassing the tumor volume revealed
more discriminant radiomic features than the 3D analysis. Based
on these results, further exploration of the potential of MR
radiomics in lung cancer patients is warranted.
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Purpose: To develop and validate a radiomic signature to identify EGFR mutations in

patients with advanced lung adenocarcinoma.

Methods: This study involved 201 patients with advanced lung adenocarcinoma (140

in the training cohort and 61 in the validation cohort). A total of 396 features were

extracted from manual segmentation based on enhanced and non-enhance CT imaging

after image preprocessing. The Lasso algorithm was used for feature selection, 6

machine learning methods were used to construct radiomics models. Receiver operating

characteristic (ROC) curve analysis was applied to evaluate the performance of the

radiomic signature between different data and methods. A nomogram was developed

using clinical factors and the radiomics signature, then it was analyzed based on its

discriminatory ability and calibration. Decision curve analysis (DCA) was implemented to

evaluate the clinical utility.

Results: Ten features for contrast data and eleven features for non-contrast data were

selected through LASSO algorithm. The performance of the radiomics signature for

contrast images was better than that for non-contrast images in all of the 6 different

machine learning methods. Finally, the best radiomics signature was built with logistic

regression method based on enhanced CT imaging with an area under the curve (AUC)

of 0.851 (95% CI, 0.750 to 0.951) in the validation cohort. A nomogram was developed

using the radiomics signature and sex with a C-index of 0.908 (95%CI, 0.862 to 0.954) in

the training cohort and 0.835 (95% CI, 0.825 to 0.845) in the validation cohort. It showed

good discrimination and calibration (Hosmer-Lemeshow test, P = 0.621 for the training

cohort and P = 0.605 for the validation cohort).

Conclusion: Radiomics signature can help to distinguish between EGFR positive and

wild type advanced lung adenocarcinomas.

Keywords: advanced lung adenocarcinoma, tomography, epidermal growth factor receptor, mutation, radiomics

INTRODUCTION

Lung cancer is one of the most common malignant tumors in the world and the leading cause of
cancer-related death worldwide (1). The World Health Organization (WHO) divides lung cancer
into two major categories: non-small cell lung cancer (NSCLC), representing more than 85% of
all cases, and small cell lung cancer (SCLC). Adenocarcinoma in NSCLC is the major histological
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subtype, accounting for almost half of all lung cancer cases
(2). The 5-year survival rate is >50% when the disease is still
localized; however, 75% of cases are diagnosed at an advanced
stage with unresectable lesions (3).

Over the last decade, advances in molecularly targeted
drugs for thoracic oncology have led to a new emphasis
on accurate analyses of biomolecular markers in a subset
of lung adenocarcinoma (4). Patients with advanced lung
adenocarcinoma harboring epidermal growth factor receptor
(EGFR)-activating mutations showed a significant progression-
free survival (PFS) benefit with reduced side effects by
treatment with tyrosine kinase inhibitor (TKIs) (5). TKI
therapy had already been used as first-line systemic therapy
before chemotherapy (6, 7). Biopsy is the only widely used
means to identify mutations of EGFR in unresectable lesions,
but some patients refuse the procedure due to the risk of
hemorrhage and pneumothorax. Furthermore, it is difficult
to obtain tissue samples from inaccessible locations in some
cases. Therefore, automatic, non-invasive, and cost-effective
alternatives are desired (8). Radiomics refers to the systematic
extraction and analysis of features from digital medical images
with the intent of creating mineable databases to aid in
diagnosis and treatment. Radiogenomics even involves specific
features connecting genomic phenotypes and radiological

FIGURE 1 | Workflow of the radiomic analysis.

images. The aim of this study was to develop a radiogenomic
approach to identify EGFR mutations in advanced lung
adenocarcinoma non-invasively.

MATERIALS AND METHODS

Patients
Institutional review board approval was obtained for this

retrospective study, and with a waiver for the informed consent
requirement. Consecutive patients (n = 449) with advanced
lung adenocarcinoma who were admitted to the hospital from

January 2014 to January 2016 were enrolled in this retrospective
study. All cases were histologically confirmed by transthoracic
biopsy and classified as stage IIIB-IV according to the Eighth
Edition of the Lung Cancer Stage Classification (9). EGFR
mutations in exons 18, 19, 20, and 21 were detected using
human EGFR gene mutations detection kit (AmoyDx, China)
via Amplification Refractory Mutation System (ARMS) real-
time Polymerase Chain Reaction (PCR) technology. A total of
248 patients were excluded based on the following exclusion
criteria: [1] examined by an unassigned CT scanner (n = 105);
[2] received previous anticancer therapy or with other types of
cancer (n = 19); [3] no EGFR mutation analysis available (n =

81); [4] difficulty in drawing regions of interest (ROIs) (n = 43).
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Finally, 201 patients were included in the study. The clinical data
collected for analysis included sex, age, smoking status, and stage.
The patients were randomly divided into two individual cohorts
for training and validation at a ratio of 7:3. The workflow of the
radiomic analysis is illustrated in Figure 1.

Image Acquisition
Contrast-enhanced computed tomography (CT) images were
acquired at our hospital using either a Toshiba Aquilion One
(Toshiba Medical Systems) or Phillips Brilliance iCT (Philips
Medical Systems) system. The scanning parameters were as
follows: 120 kVp; 100-200 mAs; detector collimation of 64× or
128× 0.625mm; field of view of 350 × 350mm; and matrix
of 512 × 512. After routine CT, a dose of 85mL non-ionic
iodinated contrast material (350mg iodine/mL, Omnipaque, GE
Healthcare) was injected into the antecubital vein at a rate of
3.0 mL/s using an automated injector (Ulrich CT Plus 150,
Ulrich Medical). CT scanning was performed again with a 25-
second delay after the injection. All images were reconstructed
at a slice thickness of 2mm. Contrast and non-contrast images
were retrieved separately from the Picture Archiving and
Communication System (PACS) workstation (IMPAX, AGFA).

Image Preprocessing
Due to the use of different CT scans, image preprocessing
(Figure 2) before segmentation and feature extraction was
performed to improve the robustness of the radiomic features.
The process included two steps: Step 1. To eliminate the
intrinsic dependency on voxel size for the radiomic features,
a resampling method with a linear interpolation algorithm
was used to normalize the voxel size. Meanwhile, higher-order
texture analysis features, such as GLCM and GLRLM features,
were derived from different directions (also called “angles”) and
different scales (denoted here as “offsets”); thus, the anisotropic
voxels scanned at 0.743 mm∗0.743 mm∗2.000mm or other size

were resampled to form isotropic voxels, i.e., 1.000 mm∗1.000
mm∗1.000mm. Step 2. A Gaussian filter was used to remove
“unwanted signals”, i.e., noise beyond the scope of the (µ ±

3σ) CT values. The gray level was consistent across the different
scanners, so gray level normalization was not used here.

Tumor Segmentation
ROIs were manually contoured along the boundaries of the
tumor layer by layer in reference to images in both the
mediastinum and lung windows. Segmentation was strictly
performed by a chest radiologist (W.XT.) with 7-year experience
in lung CT using ITK-Snap (version 3.4.0, www.itk-snap.org)
software and confirmed by another chest radiologist (H.D.)
with 13-year experience. Both radiologists were blinded to the
diagnosis and EGFR mutation status.

Feature Extraction
Four types of radiomic features were extracted from both contrast
and non-contrast CT images, and the details are shown in
Figure S1. Features based on the three-dimensional volume of
interest (3D VOI) were generated automatically using in-house
software (Artificial Intelligence Kit, A.K., GE Healthcare).

Feature Selection
Some features might contribute to the positive performance of
classification while others might add noise to it (10). The least
absolute shrinkage and selection operator (LASSO) algorithm,
which is suitable for high-dimensional low-sample size data with
the problem of collinearity (11, 12), was used to select effective
and predictable features in the training cohort after data split.
Features with nonzero coefficients were chosen based on 10-
fold cross-validation.

FIGURE 2 | Image preprocessing.
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Model Construction
After feature selection, 6 machine learning methods were used to
construct models which include NBC (Naive Bayesian Classifier),
KNN (K-Nearest Neighbor), RF (Radom Forest), SVM (Support
Vector Machine), DT (Decision Tree), LR (Logistic Regression).
Their predictive performance was measured by using area under
the curve (AUC) of receiver operating characteristic (ROC) curve
analysis in the validation cohort. First, AUC of each model in
contrast and non-contrast data were compared, and inferior data
was abandoned, then in superior data, the optimal model was
chosen for further analysis.

Nomogram Construction
The nomogram was constructed based on multivariable logistic
regression analysis. Clinical factors and radiomics signature were
included in a nomogram model for predicting EGFR mutations
in the training cohort. The discriminative power of the model
was evaluated byHarrell’s concordance index (C-index) with 95%
confidence intervals in both cohorts. The calibration curve was
plotted to explore the predictive accuracy of the model. Decision
curve analysis (DCA) was implemented to evaluate the clinical
usefulness by quantifying the net benefits of the nomogram
model in both the training and validation cohorts.

Statistical Analysis
All statistical tests were performed using R statistical software
version 3.5.2. The “glmnet” package was used for executing
the LASSO algorithm. For the baseline characteristic analyses,
quantitative data were compared using Student’s t-test, and
categorical data were compared using the χ2 test. All
statistical tests were two-tailed, and p < 0.05 indicated a
significant difference.

RESULTS

The baseline clinical characteristics of the training and validation
cohorts are listed in Table 1. There was no significant difference
between training and validation cohorts in overall distribution of
age, sex, smoking status or stage.

A total of 396 features were extracted. In the training cohort,
10 features for contrast images and 11 features for non-contrast
images were evaluated to construct models through LASSO
algorithm (Figure S2, Table S1).

The predictive performance of all six models based on
contrast and non-contrast data were described in Figure 3. The
predictive performance of all six models based on contrast

TABLE 1 | Demographic data of patients in the training and validation cohorts.

Variable Training cohort Validation cohort p

Mutant Wild type p Mutant Wild type p

Age (y, mean ± SD) 58.24 ± 11.05 57.93 ± 8.43 0.85 59.23 ± 7.62 57.07 ± 8.38 0.276 0.929

Sex, n (%) 0.007* 0.149 0.437

Male 28(40.0) 44(62.9) 15(46.6) 20(66.7)

Female 42(60.0) 26(37.1) 16(53.4) 10(33.3)

Smoking Status, n (%) 0.003* 0.09 0.396

Smoker 13(18.6) 29(41.4) 8(25.8) 14(46.7)

Never smoker 57(81.4) 41(58.6) 23(74.2) 16(53.3)

Stage, n (%) 0.002* 0.119 0.103

III 4 (5.7) 17 (24.3) 5 (16.1) 10 (33.3)

IV 66 (94.3) 53 (75.7) 26 (83.9) 20 (66.7)

Radiomic score, median (interquartile range) 1.42 (0.57 to 2.46) −1.63 (−2.88 to 0.42) <0.001* 1.01 (−0.53 to 2.21) −1.93 (−4.47 to −1.22) <0.001* 0.145

*P-value < 0.05.

FIGURE 3 | The predictive performance of all machine learning methods based on contrast (CE-CT) and non-contrast (nonCE-CT) data.
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and non-contrast data were described in Figure 3. Although
there was no significant difference by Delong test in all results,
the value of AUC in contrast images was better than non-
contrast images in all models, hence, the non-contrast data
was excluded from further analysis. The machine learning
method of LR which could assign each patient a radiomic
score (rad-score) obtained a better value than other models,
therefore, the nomogram was built based on the LR model in
contrast data.

Table 2 shows the results of multivariable logistic
regression analysis including sex, age, smoking status, and
rad-score. Sex and rad-score appeared to be independent
prognostic predictors of mutations in this model. The
model that incorporated the above independent predictors
is presented as the nomogram (Figure 4). The model showed
a favorable C-index of 0.908 (95% CI, 0.862 to 0.954) in the
training cohort and 0.835 (95% CI, 0.825 to 0.845) in the
validation cohort.

The calibration curve of the radiomic nomogram for the
probability of EGFR mutations demonstrated good agreement
between the predicted and observed results in both cohorts
(Figure 5). The Hosmer-Lemeshow test showed no significant
statistical difference between calibration curves and ideal curves

TABLE 2 | Multivariable logistic regression for nomogram construction.

Coefficient Odds ratio 95% CI p

Lower Upper

Intercept −0.734 0.049*

Radiomic score −1.023 0.359 0.256 0.504 < 0.001*

Sex# 1.139 3.124 1.116 9.742 0.030*

Smoking status† 0.450 1.569 0.521 4.726 0.424

#Male was denoted as 0, and Female as 1. The Odds Ratio was 3.124 means that female

showed higher likelihood of EGFR (+).
†
Smoker was denoted as 0, and Never smoker as 1. The Odds Ratio was 1.569 means

that Never smoker showed higher likelihood of EGFR (+).

* P-value < 0.05, which showed significance.

FIGURE 4 | Radiomic nomogram. In the training cohort, the nomogram

incorporated the radiomic signature and sex.

(P = 0.621 for the training cohort and P = 0.605 for the
validation cohort).

DCA was performed for the radiomic model (light blue line)
and nomogram model (dark blue line) as shown in Figure 6.
Using the radiomic model and the nomogram model to predict
the EGFR status added more benefit than using the treat-
all scheme or the treat-none scheme at any given threshold
probability in the training cohort. For threshold probabilities >

20%, using the radiomic model and the nomogram model to
predict the EGFR status added more benefit than using the treat-
all scheme or the treat-none scheme in the validation cohort.

DISCUSSION

The NCCN (2019, v3) recommended that testing for EGFR
mutations should be applied in patients with non-squamous
NSCLC or NSCLC NOS (not otherwise specified) so that
patients with this genetic abnormality can receive effective
treatment with targeted agents. Although patients with advanced
adenocarcinoma benefit most from TKIs, accessibility to obtain
transbronchial or transthoracic biopsy samples is not always
satisfactory or safe in these patients. The adverse event rate in
thoracic biopsy was reported to be 17.1% (13), and sufficient
tissue for molecular analysis can only be obtained in 20–50% of
NSCLC patients, even in large well-designed clinical trials (14). In
addition, the heterogeneity of the tumor may mislead the clinical
decision (15, 16).

We developed and validated a radiomics signature-based
nomogram for the non-invasive detection of EGFR mutations in
patients with advanced adenocarcinoma through preprocessing,
parameters screening and model building from CT images. In
the validation cohort, the AUC of radiomics signature was 0.851
(95% CI, 0.750 to 0.951). Previous studies have demonstrated
such correlations in all stages of peripheral lung adenocarcinoma
(17, 18), with AUC of 0.709 (95% CI, 0.645 to 0.766) and 0.751
(95% CI, 0.631 to 0.848), respectively. For early-stage resectable
adenocarcinoma, the detection is less important, whereas for
advanced-stage patients with EGFR mutations, TKIs are the
first-line standard modality for the treatment today (19), so the
detection is urgently needed. Thus, it is of greater significance to
establish relatively inexpensive and safe imaging biomarker for
the advanced-stage patients to help making treatment decision.
However, stage selection brought limitation at the same time. The
signature could not act as an alone biomarker in patients with
unknown pulmonary nodules and it is also a time-consuming
thing to stage before using the biomarker.

Previous articles on pulmonary tumor radiomics were
generally based on non-contrast CT images (20–22). Some
studies have used contrast images alone (23, 24), and some have
used both, but no comparisons or descriptions regarding which
type of image is better for further analysis have been reported
(25). In this study, we managed contrast and non-contrast
data separately and compared their diagnostic value using ROC
curve analysis; we finally chose the contrast data for subsequent
analysis. This result is consistent with clinical applications.
Contrast-enhanced CT can be used to better delineate and
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FIGURE 5 | Calibration curve. (A) Calibration curve of the nomogram in the training cohort. (B) Calibration curve of the nomogram in the validation cohort.

FIGURE 6 | Decision curve analysis (DCA). The y axis represents the net benefit, which was determined by calculating the difference between the expected benefit

and the expected harm associated with each proposed model [net benefit = true-positive rate (TPR) – (false-positive rate (FPR)× weighting factor), where the

weighting factor = threshold probability/ (1-threshold probability)]. The gray line represents the assumption that all tumors were EGFR (+) (the treat-all scheme). The

black line represents the assumption that all tumors were EGFR (-) (the treat-none scheme). (A) DCA in the training cohort. Using the radiomic model and the

nomogram model to predict the EGFR status added more benefit than using the treat-all scheme or the treat-none scheme at any given threshold probability. (B) DCA

in the validation cohort. For threshold probabilities >20%, using the radiomic model and the nomogram model to predict the EGFR status added more benefit than

using the treat-all scheme or the treat-none scheme.

define tumor regions in relationship to surrounding structures
than non-contrast CT, and also demonstrates the increased
vascularity that occurs within malignancies and provides
additional information on the tumor’s physiology and active
blood supply. All of this information is reflected by radiomic
features, leading to better models.

However, some limitations to this work still exist. First,
although image acquisition was confined to two CT systems and
all the images were preprocessed before segmentation, differences
between devices may influence the results. Second, in the baseline
clinical characteristics, there was no significant difference in the
overall distribution of age, sex, smoking status or stage between
the training and validation cohorts, thus we believed that there
was no bias for the training and validation cohorts. But when

taking into consideration the distribution in mutant and wild-
type EGFR patients, sex and smoking status showed significant
differences between the two groups in the training cohort but
no significance in the validation cohort, which we considered
may due to the small sample size in the validation cohort.
Third, less sample size and lack of external validation of the
model, more multicenter studies and prospective studies should
be carried out to increase the generalizability and robustness of
the radiomic findings. Fourth, all samples were obtained through
biopsy. They were smaller than those obtained by surgery, which
could better represent the tumor heterogeneity. Further studies
may also include testing for cell-free tumor DNA (ctDNA) and
circulating tumor cells (CTCs) to ensure the homogeneity of
mutations (14).
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CONCLUSION

In conclusion, radiomics signature can help to distinguish
between EGFR positive and wild type advanced
lung adenocarcinomas. Compared with non-contrast
CT, contrast-enhanced CT provided more value for
radiomic predication.
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We applied machine learning algorithms for differentiation of posterior fossa tumors using

apparent diffusion coefficient (ADC) histogram analysis and structural MRI findings. A total

of 256 patients with intra-axial posterior fossa tumors were identified, of whom 248 were

included in machine learning analysis, with at least 6 representative subjects per each

tumor pathology. The ADC histograms of solid components of tumors, structural MRI

findings, and patients’ age were applied to construct decisionmodels using Classification

and Regression Tree analysis. We also compared different machine learning classification

algorithms (i.e., naïve Bayes, random forest, neural networks, support vector machine

with linear and polynomial kernel) for dichotomized differentiation of the 5 most common

tumors in our cohort: metastasis (n = 65), hemangioblastoma (n = 44), pilocytic

astrocytoma (n = 43), ependymoma (n = 27), and medulloblastoma (n = 26). The

decision tree model could differentiate seven tumor histopathologies with terminal nodes

yielding up to 90% accurate classification rates. In receiver operating characteristics

(ROC) analysis, the decision tree model achieved greater area under the curve (AUC)

for differentiation of pilocytic astrocytoma (p = 0.020); and atypical teratoid/rhabdoid

tumor ATRT (p = 0.001) from other types of neoplasms compared to the official clinical

report. However, neuroradiologists’ interpretations had greater accuracy in differentiating

metastases (p = 0.001). Among different machine learning algorithms, random forest

models yielded the highest accuracy in dichotomized classification of the 5 most

common tumor types; and in multiclass differentiation of all tumor types random forest

yielded an averaged AUC of 0.961 in training datasets, and 0.873 in validation samples.

Our study demonstrates the potential application of machine learning algorithms and

decision trees for accurate differentiation of brain tumors based on pretreatment MRI.

Using easy to apply and understandable imaging metrics, the proposed decision tree

model can help radiologists with differentiation of posterior fossa tumors, especially in

tumors with similar qualitative imaging characteristics. In particular, our decision tree

model provided more accurate differentiation of pilocytic astrocytomas from ATRT than

by neuroradiologists in clinical reads.
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INTRODUCTION

The current standard of care for patients presenting with
posterior fossa tumors is maximal safe resection of tumor,
decompression to eliminate mass effect, and radiochemotherapy.
While histopathological evaluation is currently the gold standard
for brain tumors diagnosis, there is growing body of evidence that
combination of quantitative imagining and machine learning
algorithms can help with non-invasive differentiation of brain
neoplasms based on pre-treatment MRI (1, 2). An accurate
presurgical diagnosis can play an important role in surgical
planning, determining the extent of resection (3, 4), evaluating
the need for neoadjuvant therapy, defining radiation therapy
field, and counseling patients and their families (5).

The apparent diffusion coefficient (ADC) values are
reflective of tumor cellularity, and help with diagnostic and
prognostic assessment of posterior fossa tumors (6, 7). Recent
studies demonstrate the added value of quantitative diffusion
analysis in differentiation of posterior fossa tumors, besides
conventional structural MRI findings such as peritumoral
edema, enhancement pattern, location, or extension through the
foramina of Luschka/Magendie (8–10). However, prior studies
were limited by restricting their analysis pool to select tumor
types, analyzing few ADC quantitative metrics (e.g., ADCmeans,
median, or minimum), or only evaluating ADC values on a
single slice, thus not accounting for tumor heterogeneity (11, 12).

In current study, we assessed the volumetric voxel-based
ADC histogram analysis of the tumor solid components in
a large sample of posterior fossa neoplasms. Using machine
learning algorithms, we utilized clinical variables, quantitative
ADC histogram metrics, and qualitative MRI imaging features
extracted by 2 neuroradiologists on presurgical MRI to devise
decision trees for accurate diagnosis of posterior fossa tumors.
We chose unequivocal imaging metrics, which can be reliably
assessed on widely available image viewer software in all
hospitals, and thus can be readily used in neuroradiology
and neuro-oncology practices. We also compared different
machine learning classification models for differentiation of
the most common posterior fossa tumors, which presents as
a challenge in clinical practice. Including a large number of
patients with a variety of pathologies allowed us to devise
comprehensive differentiation models that represent a broad
range of tumor types and imitate the real-world practice in a
tertiary referral center.

METHODS

Patients’ Characteristics
Clinical and imaging records of all patients with posterior fossa
tumor and surgical pathology results, between January 200 Re
reviewer’s comment #and December 2015 at our institution, were
reviewed. Patients were included if they had (1) intra-axial or
intra-ventricular posterior fossa tumor, (2) surgical pathology
diagnosis of a neoplasm (Table 1), and (3) a presurgical MRI
including ADC map, T2-weighted, Fluid Attenuated Inversion
Recovery (FLAIR), and post contrast T1-weighted sequences.
The exclusion criteria were pathological diagnosis other than a

malignant process (e.g., cavernoma), extra-axial location except
intraventricular tumors, and an ADC map quality precluding
histogram analysis. In addition, tumor pathologies with <6
subjects in our cohort were excluded from univariate, and
machine learning analyses (i.e., Choroid plexus papilloma, n= 4;
Rosette-forming glioneuronal tumor, n = 2; Ganglioglioma, n
= 1; Anaplastic pleomorphic xanthoastrocytoma, n = 1). The
Institutional Review Board approved the study design, granting
a waiver of informed consent given the retrospective nature
of study.

MRI Acquisition
The presurgical MRI was performed on 1.5 and 3 Tesla
MRI scanners using surgical navigation (BrainLab) imaging
protocol—which included axial 2D T1 weighted images, axial
diffusion-weighted images (DWI), 3D T2 weighted images, 3D
FLAIR, axial susceptibility weighted imaging, dynamic contrast
enhancement perfusion, and 3D post contrast T1 sequences. In
majority of patients, spin-echo echo-planar DWI was performed
in 2D axial plane on a GE Discovery MR750 3T scanner
(Waukesha, WI), with image acquisition at b= 0 s/mm2 and b=
1,000 s/mm2; repeat time= 8,300ms, echo time= 65ms, section
thickness of 2mm, field of view of 250mm, and matrix size of
128× 128.

Qualitative Assessment of Posterior Fossa
Tumors
All MRI scans were reviewed independently by two board-
certified neuroradiologists (SP and MA), each with 8 years
of experience in interpretation of brain tumor MRI. Except
for the patients’ age, the reviewers were blinded to clinical
information, radiology report, and pathological diagnosis at
the time of review. Both SP and MA predicted the single
most likely differential diagnosis for each tumor based on
presurgical brain MRI. In addition, the official “clinical report”

TABLE 1 | List of (intra-axial/intra-ventricular) posterior cranial fossa neoplasms

(n = 256).

Surgical pathology diagnosis Patients number (frequency)

Metastasis 65 (25.4%)

Hemangioblastoma 44 (17.2%)

Pilocytic astrocytoma 43 (16.8%)

Ependymoma 27 (10.5%)

Medulloblastoma 26 (10.2%)

Low grade glioma/astrocytoma 10 (3.9%)

Lymphoma 8 (3.1%)

Anaplastic astrocytoma 7 (2.7%)

Atypical teratoid/rhabdoid tumor 6 (2.3%)

Glioblastoma multiforme 6 (2.3%)

Subependymoma 6 (2.3%)

Choroid plexus papilloma 4 (1.6%)

Rosette-forming glioneuronal tumor 2 (0.8%)

Ganglioglioma 1 (0.4%)

Anaplastic pleomorphic xanthoastrocytoma 1 (0.4%)
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in the electronic medical records were examined to identify
the foremost differential diagnosis in the “impression,” which
considered as the most likely diagnosis for comparison purposes.
In addition, the imaging characteristics—listed in Table 2—
were extracted and corroborated with the official clinical report.
In case of discrepancy between the neuroradiologist reviewers
and official clinical report, the senior author (SC) reviewed
the scan to reach consensus. The lesion morphology was
categorized as predominantly solid (>80% solid component),
mixed solid and cystic, cystic/necrotic (>80%) with irregular
wall, and cystic (>80%) with smooth mural nodule. A “T2
hyperintense” solid component was determined by T2 signal
greater than the gray matter (Figure 1) (13). The presence of
prominent vascular flow void was assessed on T2-weighted
images and confirmed on post contrast series. The tumor
volumes, including both solid and cystic components, were
calculated after manual segmentation on post-contrast T1
images with attention to T2/FLAIR series for non-enhancing
component. We also measured the maximum radial width of
FLAIR hyperintensity surrounding the tumor on axial slices as
a surrogate for peritumoral edema.

ADC Histogram Analysis
On a GE Advantage Workstation (GE healthcare, Milwaukee,
WI), we manually segmented the solid component of tumors
on ADC maps with attention to post-contrast T1-weighted,
T2-weighted, and FLAIR imaging. The volumetric voxel-based
ADC histograms of the solid component were calculated and
normalized to the average ADC value from cerebrospinal
fluid in the body of lateral ventricles, as described previously
(8). For each tumor, a total of 24 histogram metrics were
calculated—including 21 ADC percentile values with 5 percentile
increments (i.e., minimum, 5th, 10th, 15th percentile. . . ) as
well as the mean, kurtosis, and skewness. The schematic mean
ADC histograms of different tumor types were developed for
visual comparison.

Decision Tree Model
For development of decision trees, we applied the “rpart”
R package for Classification and Regression Tree (CART)
models (14). At each split/node, a variable is selected to
maximize the variance explanation of dependent variable. The
patients’ characteristics (age and gender), structural MRI findings
(Table 2), and ADC histogram metrics were included as input
for the model. By default, a 10-fold cross-validation and
fitting at each sub-tree were applied. The final classification
of the decision tree model was separately compared with
the top differential diagnosis from the clinical report and
two independent neuroradiologists using the receiver operating
characteristics (ROC) analysis implemented by “pROC” package
in R (Table 3). We also determined the Cohen’s Kappa
inter-rater agreement coefficient (Table 4). The CART models
were first applied for differentiation of all tumors, and
then separately for dichotomized classification of the 5 most
common posterior fossa tumors. The block diagram in Figure 2

summarizes the analysis steps in decision tree and machine
learning models.

Machine Learning Classification
Different machine learning models were applied and compared
for dichotomized classification of the 5 most common posterior
fossa tumors—including the naïve Bayes, random forest, support
vector machine (SVM), and neural networks (Figure 2). For
development of the naïve Bayes models, we applied the
“naivebayes” R package with a Laplace smoothing value of 0,
as suggested by the package developers. The “randomForest”
package was used for random forest ensemble learning
classification (15). For each random forest model, 500 trees
were constructed applying a randomly-selected one-third of
variables at each split (16–19). In our preliminary experiments,
the error rate consistently plateaued after constructing 160–300
tree splits in random forests; thus, the default recommendation
of 500 trees by the R package deemed adequate to achieve
optimal accuracy in our models. For SVM algorithms, we
used the “e1071” R package to construct dichotomized
classification models. We applied both linear and non-linear
kernels for data classification—in this series, polynomial kernel
was used for non-linear kernel function. During finetuning
of the hyperparameters for SVM models, a cost of 0.1
yielded the optimal error rate, and was applied for all linear
kernels. For polynomial kernel, we used a sigma of 1 as
the optimal cutoff. For neural networks, we applied the
“neuralnet” package, and used the “rBayesianOptimization”
package to optimize the number of nodes in the neural network
hidden layer.

In order to present realistic estimates from our cohort
and minimize the risk of overfitting, we opted to report the
averaged results from “stratified” cross-validation. Given the
uneven distribution of tumor types in our cohort, a “stratified”
sampling strategy seemed appropriate to ensure that enough
number of each tumor type is allocated in every training
and validation sample. Using stratified random sampling, we
applied 5-fold cross validation, preserving the tumor subtype
percentage in both training and validation samples. The random
sampling was repeated 100 times, and the averaged results
from “stratified” cross validation across 500 permutations are
presented. In each pair of randomly selected training/validation
samples, the model was constructed on training sample,
and tested on corresponding validation sample. A confusion
matrix was constructed based on prediction results in each
training and validation sample, and the corresponding accuracy
(number of correctly classified subjects divided by sample
size), sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) were calculated. In addition, the
ROC area under the curve (AUC) and 95% confidence interval
(CI) were computed using 2000 stratified bootstrap replicates
per the default implementation in pROC package. The average
test characteristics across 500 training and validation samples
are reported.

All models were first applied and compared for differentiation
of the five most common posterior fossa tumors—with each
combination of tumor type and machine learning analyzed
separately. Given that random forest models yielded higher
accuracy for classification of tumor types compared to other
algorithms, we applied the random forest for multi-class
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TABLE 2 | Structural MRI findings and clinical characteristics among various posterior fossa neoplasms.

MET

(n = 65)

HB

(n = 44)

PA

(n = 43)

EP

(n = 27)

MB

(n = 26)

LGG

(n = 10)

LYM

(n = 8)

AA

(n = 7)

ATRT

(n = 6)

GBM

(n = 6)

SEP

(n = 6)

P-value

Patients’ characteristics

Age (years) 57.6±12.2 49.3±17.9 18.7±11.2 26.1±20.1 21.8±16.8 35.6±27.9 63.2±12.9 36.1±23.7 1.3±1.0 31.7±22.3 50.2±13.3 <0.001

Gender (male) 18 (33%) 19 (49%) 11 (61%) 2 (22%) 3 (50%) 2 (40%) 1 (25%) 2 (22%) 3 (50%) 2 (40%) 1 (25%) 0.304

Tumor localization

Cerebellar hemisphere 54 (83%) 39 (89%) 18 (42%) 3 (11%) 9 (35%) 5 (50%) 6 (75%) 1 (14%) 2 (33%) 4 (67%) 0 (0%) <0.001

Fourth ventricle 3 (5%) 3 (7%) 13 (30%) 21 (78%) 17 (65%) 0 (0%) 1 (13%) 0 (0%) 4 (67%) 0 (0%) 6 (100%) <0.001

Vermis/midline 4 (6%) 2 (5%) 10 (23%) 2 (7%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0.013

Brainstem 4 (6%) 0 (0%) 2 (5%) 1 (4%) 0 (0%) 5 (50%) 1 (13%) 6 (86%) 0 (0%) 2 (33%) 0 (0%) <0.001

Cerebellar peduncle

involvement

4 (6%) 6 (14%) 4 (9%) 4 (15%) 5 (19%) 5 (50%) 1 (13%) 4 (57%) 2 (33%) 4 (67%) 0 (0%) <0.001

Lesion morphology

Predominantly solid

(>80%)

46 (71%) 6 (14%) 7 (16%) 13 (48%) 17 (65%) 6 (60%) 8 (100%) 6 (86%) 3 (50%) 4 (67%) 6 (100%) <0.001

Mixed solid and cystic 6 (9%) 12 (27%) 20 (47%) 14 (52%) 9 (35%) 4 (40%) 0 (0%) 1 (14%) 3 (50%) 1 (17%) 0 (0%) <0.001

Cystic (>80%) with

mural nodule

4 (6%) 26 (59%) 15 (35%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) <0.001

Necrotic with irregular

wall

9 (14%) 0 (0%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (17%) 0 (0%) 0.013

Enhancement pattern

Homogenous

enhancement

16 (25%) 39 (89%) 8 (19%) 0 (0%) 5 (19%) 0 (0%) 5 (62%) 1 (14%) 0 (0%) 0 (0%) 1 (17%) <0.001

Heterogeneous

enhancement

49 (75%) 5 (11%) 35 (81%) 26 (96%) 20 (77%) 6 (60%) 3 (38%) 4 (57%) 6 (100%) 5 (83%) 5 (83%) <0.001

No enhancement 0 (0%) 0 (0%) 0 (0%) 1 (4%) 1 (4%) 4 (40%) 0 (0%) 2 (29%) 0 (0%) 1 (17%) 0 (0%) <0.001

Extension along the neuroaxis

Multiple lesions 16 (25%) 4 (9%) 2 (5%) 0 (0%) 2 (8%) 1 (10%) 2 (25%) 1 (14%) 0 (0%) 2 (33%) 0 (0%) 0.016

Leptomeningeal drop

metastasis

5 (8%) 0 (0%) 1 (2%) 0 (0%) 1 (4%) 1 (10%) 0 (0%) 0 (0%) 0 (0%) 1 (17%) 0 (0%) 0.354

T2/FLAIR findings

Prominent vascular

flow voids

2 (3%) 25 (57%) 0 (0%) 3 (11%) 6 (23%) 0 (0%) 0 (0%) 0 (0%) 2 (33%) 0 (0%) 0 (0%) <0.001

Surrounding FLAIR

(cm)

1.8±0.9 1.7±0.9 0.5±0.5 0.4±0.6 0.7±0.6 0.5±0.4 1.8±0.6 1.0±1.0 0.4±0.3 1.0±0.9 0.1±0.1 <0.001

T2 hyperintense solid

component*

9 (14%) 17 (39%) 33 (77%) 10 (37%) 6 (23%) 10 (100%) 1 (13%) 7 (100%) 0 (0%) 1 (17%) 0 (0%) <0.001

Mass effect

Volume (mL) 11.4±9.3 19.8±15.5 29.7±30.1 21.6±18.0 27.4±19.8 14.2±13.8 10.6±9.1 21.4±12.3 42.8±35.6 12±9.0 4.8±4.3 <0.001

Hydrocephalus 22 (34%) 23 (52%) 27 (63%) 20 (74%) 19 (73%) 5 (50%) 2 (25%) 4 (57%) 5 (83%) 2 (33%) 0 (0%) <0.001

Results of univariate comparison between different neoplasm types.
*A “T2 hyperintense” solid component was determined by T2 signal greater than the gray matter (13).

AA, anaplastic astrocytoma; ATRT, atypical teratoid/rhabdoid tumors; EP, Ependymoma; GBM, glioblastoma multiforme; HB, hemangioblastoma; LGG, low-grade glioma/astrocytoma; LYM, lymphoma; MB, medulloblastoma; MET,

metastasis; PA, pilocytic astrocytoma; SEP, subependymoma.

A p-value < 0.05 was considered statistically significant, and depicted in bold.
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FIGURE 1 | Post contrast T1, T2, Diffusion Weighted Imaging (DWI) and Apparent Diffusion Coefficient (ADC) scans from representative posterior cranial fossa tumors.

differentiation of all tumor types. The average multiclass
ROC AUC was determined for random forest models and
neuroradiologist interpretations using the “multiROC” package.
Notably, comparison and calculation of 95% CI for multiclass
averaged AUC is not feasible. In addition, the averaged “mean
decrease in Gini coefficient” are reported to depict the relative
effect of each variable on random forest model accuracy if the
variable is deleted.

Statistical Analysis
The data are expressed as mean ± standard deviation, and
frequency (percentage). Kolmogorov–Smirnov test confirmed
normal distribution of continuous variables in our analysis.
For univariate comparison between different tumor types, the
ANOVA with Tukey post-hoc analysis was used for continuous

variables, and Chi square test was used for nominal variables.
MANOVA was applied to evaluate the effects of 1.5 vs. 3
Tesla scanners on ADC measurement. In addition to R package
(https://cran.r-project.org/), we used SPSS 22.0 (IBM, Somers,
NY) for statistical analysis.

RESULTS

Posterior Fossa Tumors
Of 403 consecutive patients with pathologic diagnosis of
posterior cranial fossa neoplasm over 12-year period, 256
patients had intra-axial/intra-ventricular tumors. We excluded
136 patients with extra-axial tumors (except intraventricular
tumors), and 11 subjects with poor quality of MRI. Excluded
extra-axial tumors were schwannoma, meningioma, metastases,
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TABLE 3 | Comparing the accuracy of decision tree model (Figure 5) with the official clinical interpretation and independent neuroradiologist reviewers.

Decision tree model Clinical report Reader #1 Reader #2

ROC AUC

(95% CI)

ROC AUC

(95% CI)

P-value ROC AUC

(95% CI)

P-value ROC AUC

(95% CI)

P-value

Metastasis 0.857

(0.810–0.904)

0.958

(0.935–0.982)

0.001 0.917

(0.877–0.957)

0.056 0.956

(0.935–0.975)

0.001

Hemangioblastoma 0.885

(0.826–0.944)

0.891

(0.829–0.951)

0.9148 0.913

(0.858–0.968)

0.510 0.847

(0.779–0.916)

0.448

Pilocytic astrocytoma 0.885

(0.825–0.946)

0.792

(0.718–0.867)

0.020 0.855

(0.788–0.922)

0.403 0.830

(0.759–0.901)

0.151

Ependymoma 0.759

(0.663–0.855)

0.857

(0.780–0.934)

0.0841 0.773

(0.678–0.867)

0.838 0.876

(0.801–0.953)

0.018

Medulloblastoma 0.8545

(0.767–0.942)

0.788

(0.692–0.884)

0.345 0.856

(0.769_0.944)

0.969 0.912

(0.841–0.983)

0.178

Low grade glioma/astrocytoma 0.6358

(0.515–0.785)

0.721

(0.557–0.885)

0.392 0.737

(0.574–0.901)

0.308 0.815

(0.664–0.965)

0.1049

Atypical teratoid/rhabdoid tumor 0.913

(0.749–1.000)

0.579

(0.415–0.742)

0.001 0.742

(0.522–0.961)

0.306 0.750

(0.531–0.969)

0.329

The receiver operating characteristics (ROC) area under the curve (AUC) with 95% confidence interval (CI) were calculated for the decision tree model (Figure 5) vs. official clinical

interpretation, and independent neuroradiologists (separately) in differentiation of posterior fossa tumors. A p-value < 0.05 was considered statistically significant, and depicted in bold.

TABLE 4 | Inter-rater agreement in differentiation of posterior cranial fossa

neoplasms.

Diagnosis Cohen’s Kappa

Clinical report vs

Reader #1

Clinical report vs

Reader #2

Reader #1 vs

Reader #2

Metastasis 0.802 0.839 0.787

Hemangioblastoma 0.788 0.820 0.728

Pilocytic

astrocytoma

0.749 0.662 0.679

Ependymoma 0.664 0.781 0.677

Medulloblastoma 0.724 0.615 0.823

Low grade

glioma/astrocytoma

0.718 0.569 0.423

Lymphoma 0.388 −0.006 −0.006

Anaplastic

astrocytoma

0.435 −0.006 −0.006

Atypical

teratoid/rhabdoid

tumor

0.057 −0.012 0.593

Glioblastoma

multiforme

0.559 0.535 0.291

Subependymoma 0.000 0.000 0.063

Choroid plexus

papilloma

−0.008 −0.005 −0.005

Ganglioglioma 0.000 0.000 0.000

Rosette-forming

glioneuronal tumor

0.000 0.000 0.000

The Cohen’s Kappa co-efficient for inter-rater agreement in classification of

each neoplasm type among the official clinical report, and two independent

neuroradiologist reviewers.

and hemangiopericytoma. Among tumors included in our
analysis (Table 1), metastasis, hemangioblastoma, pilocytic
astrocytoma, ependymoma, and medulloblastoma were the

most common types, comprising 205/256 (80%) subjects.
Representative tumors from different pathologies are depicted
in Figure 1.

Patients’ Characteristics and Qualitative
MRI Analysis
A summary of the univariate analysis comparing various
posterior fossa tumors is shown in Table 2. The patients’
age at presentation, tumor lesion localization, tumor
morphology, enhancement pattern, degree of peritumoral
FLAIR hyperintensity, whole tumor volume, and presence of
hydrocephalus were significantly different among tumor types in
univariate analyses. The results of post-hoc analysis for patients’
age, peri-tumor FLAIR hyperintensity width, and tumor volume
between different neoplasms are depicted in Figure 3.

ADC Histogram Analysis
Figure 4 depicts the schematic representation of the averaged
ADC percentile values among different posterior fossa tumors.
Medulloblastomas, followed by ATRT and lymphomas had the
lowest ADC histogram percentile values; whereas, pilocytic
astrocytomas, followed by hemangioblastomas had the highest
ADC histogram percentile values (Figure 4). Using ANOVA,
there was significant difference in all ADC percentile metrics,
average, skewness, and kurtosis values among 11 different tumor
types (with ≥6 subjects) in our cohort (p-values < 0.001). There
has been no significant difference in ADC histogram metrics
between DWI series from 1.5 Tesla (n= 34) vs. 3 Tesla (n= 214)
scanners in MANOVA.

Decision Tree Models for Differentiation of
Posterior Fossa Tumors
The CART decision tree model successfully differentiated
7 types of neoplasms in our cohort (Figure 5). The first
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FIGURE 2 | A block diagram of decision tree model (A) and machine learning algorithms (B). ADC, apparent diffusion coefficient.

decision node identified by the model was patients’ age
with a cut off of 35 years. Subsequent nodes used ADC
histogram values, presence/absence of prominent flow voids
on T2 weighted images, homogenous enhancement pattern,
solid tumor morphology, and the fourth ventricle localization,
respectively, for further tumor classification (Figure 5). The
terminal nodes (leaves) of the decision tree yielded 30 to 90%
correct classification ratios. Moreover, the likelihood of each
tumor type, based on classification criteria is calculated in each
terminal node (Figure 5).

Using ROC curve analysis, we compared the accuracy
of the decision tree model with clinical interpretation, and
each of independent neuroradiologists (Table 3). The decision
tree model yielded a greater AUC compared to the clinical
interpretation in differentiation of the pilocytic astrocytoma (p
= 0.020) and ATRT (p = 0.001) from other neoplasm subtypes;
whereas, the clinical interpretation and reviewer #2 had higher
ROC AUC in differentiation of metastasis (p = 0.001) from
other tumors. The Cohen’s Kappa analysis, showed substantial
inter-rater agreement (>0.6) between the clinical interpretation
and neuroradiologists among the 5 most common tumor types;
however, the agreement rates were lower for the less common
tumors (Table 4).

In order to further delineate specific imaging characteristics of
common posterior fossa tumors and achieve higher classification
accuracy, we also developed separate CART decision treesmodels
for dichotomized classification of the 5 most common tumors in
our cohort (Figure 6). The patients’ age, ADC histogrammetrics,
peritumoral FLAIR hyperintensity width, presence of prominent
flow void, enhancement pattern, presence of cystic component,
fourth ventricle location, cerebellar hemisphere localization,
extension through foramina of Luschka/Magendie, and tumor
volume, were included in these CART decision tree models
(Figure 6).

Machine Learning Algorithm for Tumor
Classification
The ratio of tumor types included in the stratified training
(n = 199) and validation (n = 49) datasets are tabulated in
Supplemental Table 1. In separate classification models devised
for the dichotomized differentiation of the 5 most common
posterior fossa tumors, random forest models achieved the
highest ROC AUC, sensitivity, specificity, PPV, and NPV across
training and validation samples from the ×100 repeat of 5-fold
stratified cross validation (Figure 7, Supplemental Tables 2, 3).

Then, we applied random forest model for multiclass
differentiation of posterior fossa tumor types. Using a multiclass
ROC analysis, the average AUC of random forest models was
0.961 in training datasets, and 0.873 in validation dataset. Using
multiclass ROC analysis in same 248 patients, the average AUC of
clinical interpretation, reviewer #1, and reviewer #2 were 0.832,
0.799, and 0.834, respectively. There was significant correlation
between pathological diagnosis and random forest model
prediction in the training (averaged r = 0.96, p < 0.001), and
validation (averaged r = 0.51, p < 0.001) datasets. The patients’
age, width of peritumoral FLAIR hyperintensity, cerebellar
hemisphere location, involvement of cerebellar peduncle, tumor
volume, and ADC histogram metrics had the greatest impact on
accuracy of random forest models (Figure 8).

DISCUSSION

Using the CART decision tree model analysis, we have devised
differentiation algorithms for posterior fossa tumors based on
patients’ age, ADC histogram analysis, and qualitative imaging
features on pretreatment MRI. The proposed decision tree model
(in Figure 5) could differentiate 7 histopathologies with 30
to 90 % accurate classification rates in terminal nodes. This
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FIGURE 3 | (A) On post-hoc analysis, patients with atypical teratoid/rhabdoid

tumors (ATRT) had significantly lower age at presentation compare to all other

tumor types except medulloblastoma and pilocytic astrocytoma. Patients with

medulloblastoma, pilocytic astrocytoma, and ependymoma were significantly

younger compared to those with metastasis, lymphoma, hemangioblastoma,

(Continued)

FIGURE 3 | and subependymoma. Patients with metastasis and

hemangioblastomas were also older than those with anaplastic astrocytoma,

low-grade glioma, and glioblastoma multiforme. (B) On post hoc analysis,

metastases, hemangioblastomas, and lymphomas had larger diameter of

peritumoral FLAIR hyperintensity compared to medulloblastoma, pilocytic

astrocytomas, ependymomas, low-grade glioma, ATRT, and

subependymomas—likely since latter tumors tend to be intraventricular with

virtually no peritumoral edema. Also, the peritumoral FLAIR hyperintensity

surrounding metastases, and hemangioblastomas was larger in diameter

compared to anaplastic astrocytoma, and glioblastoma multiforme. (C) On

post hoc analysis of tumor volumes, pilocytic astrocytomas,

medulloblastomas, and ATRTs had larger size compared to metastases. The

ATRTs were also significantly larger compared to subependymomas. ATRT,

atypical teratoid/rhabdoid tumors; FLAIR, fluid attenuated inversion recovery.

FIGURE 4 | The schematic representation of the averaged ADC histogram

distribution among different posterior fossa neoplasms. Medulloblastomas,

ATRT, and lymphomas had the lowest; whereas, pilocytic astrocytomas, and

hemangioblastomas had the highest ADC histogram percentile values. The

average percentile values for each tumor type were calculated, and

representative averaged histograms were modified so that the median values

would be depicted at the same height on the y axis. ADC, apparent diffusion

coefficient; ATRT, atypical teratoid/rhabdoid tumors; GBM, glioblastoma

multiforme.

decision tree model appears to be most helpful in differentiation
of pilocytic astrocytoma and ATRT - as it achieved higher
accuracy compared to clinical report in our cohort. We also
demonstrated the feasibility of random forest machine learning
algorithms in devising classification models for differentiation
of posterior fossa tumors. Applying multiclass ROC analysis,
we achieved an averaged AUC of 0.961 in training datasets,
and 0.873 in validation dataset, as compared to 0.799 and 0.834
by neuroradiologists.

Recent studies demonstrated the feasibility of machine
learning algorithms in prediction of glioma histopathological
grade, and classification of the most common pediatric posterior
fossa tumors (20–22). These studies, however, utilized small
training datasets with few select types of tumors, therefore
clinical application of these models may be limited (23). In
our study, we used a large comprehensive cohort of patients
including 15 different types of posterior fossa tumors and at
least 6 representative patients for each tumor histology. Our
decision tree models rely on qualitative imaging features and
quantitative histogram analysis, which can be easily translated to
commercially-available image viewer systems in clinical practice;
thus, providing a ready-to-apply tool for neuroradiologists to
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FIGURE 5 | The CART decision tree model could differentiate 7 histopathologies among posterior fossa tumors. In each box (node/leaf), the accurate classification

rate (positive predictive value) is expressed as ratios of the most common tumor type per total number of cases fulfilling the criteria. Each box is colored to represent

the tumor type, and the intensity of the color reflects the accurate classification ratio. ADC, apparent diffusion coefficient; ATRT, atypical teratoid/rhabdoid tumors;

CART, Classification and Regression Tree; EP, Ependymoma; HB, Hemangioblastoma; LGG, low-grade glioma/astrocytoma; MET, metastases; MB, Medulloblastoma;

PA, pilocytic astrocytoma. *The ADC nth refers to the ADC histogram nth percentile value ×10−6 mm2/s; for example, ADC 5th percentile <658 × 10−6 mm2/s. **Both

low-grade glioma and anaplastic astrocytoma had 3/10 (30%) ratios in this terminal node.

formulate their differential diagnosis before pathology results
becomes available. The decision tree model and the “mean
decrease in Gini coefficient” in random forest models also
provide an insight into the innerworkings of machine learning
models in their prediction decision.

The patients’ age is one of the most important factors in
differentiation of posterior fossa tumors, and it is well established
that adult and pediatric patients are prone to different types of
posterior fossa tumors. In this study, instead of using preset
age cutoffs as inclusion or exclusion criteria, we applied CART
models to identify data driven and tumor-specific age thresholds
for differentiation of various neoplasms; and indeed, an age
cutoff of 35 years was the first step in decision tree model
for differentiation of various tumor types (Figure 5). Moreover,
in our cohort, an age cutoff of ≤3 years was identified as
differentiation criteria for ATRT from other tumors—including
medulloblastoma (Figure 5); and an age cutoff of <27 years was
helpful for differentiation of pilocytic astrocytoma from rest of
tumors (Figure 6C).

While similar qualitative and quantitative imaging
characteristics were previously used to differentiate posterior

fossa tumors, our decision tree model provides step-wise
approach for differentiation of wide various posterior
fossa tumors (Figures 5, 6, 8). For example, high ADC
values in solid component of the tumor and young age at
presentation could help differentiate pilocytic astrocytoma
from other tumors in posterior fossa (Figures 5, 6C). In
dichotomized analysis, age younger than 27 years, high ADC
percentile values (10th percentile >1,055 × 10−6 mm2/s
and 95th percentile >2,805 × 10−6 mm2/s), and presence
of cystic component had 96% accurate classification rate
(positive predictive value) for differentiation of pilocytic
astrocytoma from other tumors (Figure 6C). On the other
hand, age at presentation of <35 year and low ADC values
are suggestive of medulloblastoma (or ATRT), regardless of
extension through foramina of Luschka/Magendie, tumor
localization, or enhancement pattern (Figures 5, 6E). Although
the number of ATRT patients in our cohort was too small
to draw a firm conclusion, we found that an age cutoff ≤3
years can help differentiate ATRT from other neoplasms
of posterior fossa—including medulloblastoma (Figure 5).
Indeed, an ADC 5th percentile <658×10−6 mm2/s and
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FIGURE 6 | Decision tree models for dichotomized differentiation of the 5 most common posterior cranial fossa neoplasms: (A) metastasis, (B) hemangioblastomas,

(C) pilocytic astrocytoma, (D) ependymomas, and (E) medulloblastomas. In each box (node/leaf), the accurate classification rate (positive predictive value) is

expressed as ratios of the most common tumor type per total number of cases fulfilling the criteria. The intensity of the green color reflects the accurate classification

ratio. Froaminal extension refers to tumoral extension through the foramina of Luschka and/or Magendie. *The ADC nth refers to the ADC histogram nth percentile

value ×10−6 mm2/s; for example, ADC 70th percentile <1,636 ×10−6 mm2/s. **Peritumoral FLAIR hyperintensity width. ***ADC histogram skewness.

age ≤3 years of age had 71% accuracy (positive predictive
value) for differentiation of ATRT from other posterior fossa
tumors (Figure 5).

In this study, we included consecutive patients with posterior
cranial fossa tumors, which is a distinction from many prior
studies restricting their cohorts based on age, select tumor

Frontiers in Oncology | www.frontiersin.org 10 February 2020 | Volume 10 | Article 71253

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Payabvash et al. Posterior Fossa Tumors Differentiation Models

FIGURE 7 | Heat map summary for classification performance of different machine learning algorithms in dichotomized differentiation of the 5 most common posterior

fossa tumors. The test characteristics were calculated in validation datasets from ×100 repeats of 5-fold cross validation– details in Supplemental Tables 2, 3. NPV,

negative predictive value; PPV, positive predictive value; SVM, support vector machine.
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FIGURE 8 | The “mean decrease in Gini coefficient” in random forest models for differentiation of posterior cranial fossa tumors. Separate random forests models

were developed for differentiation of all posterior fossa tumors from each other in multiclass analysis, as well as dichotomized classification for the 5 most common

posterior fossa neoplasms. The top 10 variables with the highest averaged “mean decrease in Gini coefficient” among from ×100 repeats of 5-fold cross validation are

reported. ADC, apparent diffusion coefficient; FLAIR, fluid attenuated inversion recovery.

Frontiers in Oncology | www.frontiersin.org 12 February 2020 | Volume 10 | Article 71255

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Payabvash et al. Posterior Fossa Tumors Differentiation Models

types, or location (5, 8, 11, 12, 24). In terms of image analysis,
prior research focused on 2D region of interest measurements,
restricted use of ADC histogram metrics, and exclusion of
qualitative features from analysis (6, 8, 11, 12). The strength of
our analysis is defined by volumetric voxel-based ADC histogram
analysis, use of comprehensive ADC histogram metrics, and
incorporation of qualitative imaging analysis and patient’s age
(6, 8, 11, 12).

Almost all prior machine learning schemes for differentiation
of posterior fossa tumors have limited their study to
differentiation of ependymoma, medulloblastoma, and pilocytic
astrocytoma (25). Rodriguez Gutierrez et al. have applied
support vector machine classification of 17 medulloblastomas,
16 pilocytic astrocytomas, and 7 ependymomas (8). They
reported that combination of the ADC histogram 25th
percentile, 75th percentile, and skewness values could achieve
the highest accuracy of 91% (8). Orphanidou-Vlachou
et al. have applied principal component analysis for feature
selection in combination with probabilistic neural network to
classify 21 medulloblastomas, 14 pilocytic astrocytomas and 5
ependymomas patients based on T1- and T2-weighted image
texture features (8, 25). In leave-one-out cross validation,
they achieved 85.8% overall accuracy (25). Fetit et al.
analyzed 21 medulloblastomas, 20 pilocytic astrocytomas
and 7 ependymomas patients; and compared naïve Bayes,
classification tree, k nearest neighbor, SVM, artificial neural
network, and logistic regression classification models using
three-dimensional texture data (26). In leave-one-out cross-
validation, the SVM and artificial neural networks achieved
the highest accuracy of 92% (26). In 2017, Zarinabad et al.
reported the results of 1.5 Tesla 1H-MR spectroscopy for
differentiation of 42 pilocytic astrocytoma, 38 medulloblastomas,
and 10 ependymomas, comparing Naïve Bayes, SVM, artificial
neural networks, and linear discriminative analysis (27).
Using AdaBoost ensemble technique and synthetic minority
oversampling technique (SMOTE), they could achieve an
averaged balanced accuracy rate of 91% in oversampled-data
based on metabolite concentration (27). In 2018, Zarinabad
et al. reported the results of 3 Tesla 1H-MR spectroscopy
for differentiation of 17 medulloblastomas, 20 pilocytic
astrocytomas, and 4 ependymomas, and could achieve the
highest Balanced Accuracy Rate of 86% using SVM classifiers
(28). In our study, there was no exclusion based on the patients’
age or the tumor histopathology, and we could achieve 0.873
averaged AUC among validation datasets for differentiation
of 11 posterior fossa tumor types in the multiclass random
forest analysis.

Of note, ADC histogram metrics were among variables
with the greatest effects on accuracy of random forest
models for differentiation of posterior fossa tumors (Figure 8).
While prior studies have shown the value of ADC maps
in differentiation of posterior fossa tumors (8–10), current
results depict how combination of ADC histogram analysis and
qualitative MR imaging features defined by neuroradiologists
can help with diagnostic differentiation of these tumors.
For example, among adult posterior fossa tumors, both
metastases and hemangioblastomas present with prominent

surrounding vasogenic edema (Figure 3). However, homogenous
enhancement pattern, presence of prominent vascular flow voids,
and higher ADC histogram percentile values favor the diagnosis
of hemangioblastoma over metastasis (Figures 5, 6).

While individual CART decision trees are prone to overfitting,
random forest ensemble learning method theoretically reduces
the potential overfitting. In addition, we opted to report
the averaged results of machine learning models among 500
randomly selected training and validation cohorts to represent
a realistic reflection of machine learning algorithm accuracy
for prediction of tumor type, and compensate for potential
overfitting. By doing so, however, we could not directly compare
the performance of machine learning algorithm with clinical
interpretation or neuroradiologist results. Nevertheless, the
results of multiclass ROC analysis as well as the ROC AUC
of reviewers in Table 3 and averaged ROC AUC of machine
learning models can provide an indirect comparison between
neuroradiologist interpretation and machine learning models.

One of the strengths of our study is the use of a large
cohort of patients presenting with posterior fossa tumor, which
is representative of a patient population in a tertiary care center.
A large and diverse cohort allowed us to have an appropriate
training set for development of an accurate machine learning
based model that differentiates a wide variety of posterior fossa
tumors encountered in a tertiary care center practice. The natural
next step of current study is training of machine learning models
for prediction of molecular subtypes in specific posterior tumors.
Future studies and prospective validation of decision tree models
can also determine the impact of proposed machine learning
algorithms on pretreatment diagnosis and therapy strategies
in patients with posterior fossa tumors. Our results, however,
provide the first step in devising a “no priori” and “data
driven” decision models for differentiation of posterior fossa
tumors, and are a new guide for methodological design of future
machine learning classifiers. In addition, combination of clinical,
and genetic biomarkers with imaging features can provide
multivariate wholistic models for accurate prognostication and
targeted therapy plan.

The major limitations of current study are the small
number of rare tumor types; and the lack of molecular
subtyping in medulloblastomas and ependymomas, which affect
neoplasm prognosis and treatment planning (29). The study
is also inherently limited in devising statistically powerful
diagnostic models for less frequent posterior fossa tumors.
Moreover, we only included subjects with known posterior
fossa tumor; whereas, the machine learning model should
preferably differentiate non-neoplastic tumor-mimics from
tumors. However, designing the selection criteria for inclusion
of potential tumor-mimic lesions for training machine learning
models can be challenging due to lack of consensus on which
lesions are qualified as tumor-mimic. Manual segmentation
of brain tumors and measurement of peritumoral FLAIR
hyperintensity can be challenging and a source of variability,
particularly in non-enhancing T2 hyperintense glial tumors.
Acquisition of MRIs in two different field strengths and on
various scanners may also introduce heterogeneity in our data,
although ADC obtained with repetition time >3,000ms and b
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value of 1,000 s/mm2 are not substantially affected by scanner
magnet strength (30). Additionally, there was no homogenous
standardized imaging performed. Finally, the difference in
imaging protocols, heterogeneity of patients’ population, and age
group can limit generalizability of our models.

CONCLUSION

We developed objective and quantitative decision tree models
for differentiation of posterior fossa tumors based on ADC
histogram metrics, patients’ age, and qualitative MR imaging
features that can easily be extracted on common image viewer
platforms by radiologists. In addition, we have compared
different machine learning classifiers for prediction of the most
common posterior fossa tumors, and found that random forest
models achieved greater accuracy in tumor differentiation.
However, the results of our study need to be used with
caution; and the proposed differentiation model should be
validated in a larger prospective cohort before being used
for clinical decision making. Pending prospective validation,
such quantitative and objective diagnostic tools can potentially
guide surgical planning or treatment decision for presurgical
neoadjuvant therapy.
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Hybrid PET/MR: Initial Experience
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and Biao Li

Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Objectives: To assess the imaging biomarkers of glucose metabolic activity

and diffusion-weighted imaging (DWI) derived from pretreatment integrated
18F-fluorodeoxyglucose positron emission tomography-magnetic resonance

(18F-FDG PET/MR) imaging as potential predictive factors of metastasis in patients with

pancreatic ductal adenocarcinoma (PDAC).

Patients and Methods: We retrospectively included 17 consecutive patients with

pathologically confirmed PDAC by pretreatment 18F-FDG PET/MR. The study subjects

were divided into a non-metastatic group (M0, six cases) and a metastatic group (M1,

11 cases). The 18F-FDG PET/MR images were reviewed independently by two board

certificated nuclear medicine physicians and one radiologist. Conventional characteristics

and quantitative parameters from both PET and apparent diffusion coefficient (ADC) were

assessed. The texture features were extracted from LIFEx packages (www.lifexsoft.org),

and a 3D tumor volume of interest was manually drawn on fused PET/ADC images.

Chi-square tests, independent-samples t-tests and Mann–Whitney U-tests were used

to compare the differences in single parameters between the two groups. A logistic

regression analysis was performed to determine independent predictors. A receiver

operating characteristic (ROC) curve analysis was performed to assess the discriminatory

power of the selected parameters. Correlations between metabolic parameters and ADC

features were calculated with Spearman’s rank correlation coefficient test.

Results: For conventional parameters, univariable analysis demonstrated that the

M1 group had a significantly larger size and a higher peak of standardized uptake

value (SUVpeak), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) than

those of the M0 group (p < 0.05 for all). TLG remained significant predictor in the

multivariable analysis, but there were no significant differences for the area under

the ROC curve (AUC) among the four conventional features in differential diagnoses

(p > 0.05 for all). For the texture features, there were four features from the PET image

and 13 from the ADC map that showed significant differences between the two groups.

Multivariate analysis indicated that one feature from PET and three from the ADC
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were significant predictors. TLG was associated with ADC-GLRLM_GLNU (r = 0.659),

ADC-GLRLM_LRHGE (r = 0.762), and PET-GLRLM_LRHGE (r = 0.806).

Conclusions: Multiple parameters and texture features of primary tumors from 18F-FDG

PET/MR images maybe reliable biomarkers to predict synchronous metastatic disease

for the pretreatment PDAC.

Keywords: pancreas—adenocarcinoma, metastasis, PET/MR hybrid imaging, multiparametric, texture analysis

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) has poor prognosis,
and ranks the fourth among cancer-related death. It often
presents at a late stage, and exhibits a 5-year overall survival rate
of <8% (1). Distant metastasis is still frequently encountered
in the operation of patients with potentially resectable PDAC
(2, 3). Currently surgical resection is the only curative treatment
for PADC. But it is very challenging to identify occult
metastatic disease (OMD) by conventional images in the patients
with resectable tumor before surgery, which makes further
development of preoperative imaging essential. The accurate
diagnosis of pancreatic cancer is important for determining the
optimal management strategy. The predicting of patients with
poor prognosis in advance would help in initial management,
including the use of neoadjuvant chemotherapy or radiation,
or adopting adjuvant therapy after surgery. Although OMD
in PDAC is common, the mechanism and risk factors of its
development are largely unknown.

Positron emission tomography/magnetic resonance
(PET/MR) imaging is a newly developed technology that
combines the anatomical and functional characteristics of MR
imaging with the metabolic information of PET in one-stop
examination. Hybrid PET/MR has been introduced into the
clinical application setting since 2011. Studies on the feasibility
and potential applications of PET/MR imaging have been
reported soon after that, and oncology was one of the hot
topic (4–8). Because multiparametric PET/MR imaging can
provide many biomarkers of the studied diseases non-invasively,
it was widely used in oncological research, especially for
the tumor diagnosis, treatment planning, surveillance, and
follow-up. Compared with PET/CT plus contrast-enhanced
multidetector CT (MDCT), 18F-FDG PET/MR imaging obtained
a similar diagnostic performance in the preoperative staging and
resectability assessment of pancreatic neoplasms (9).

MRI with diffusion weighted imaging (DWI) has incremental
value in detecting small hepatic metastasis and peritoneal
implants when combined with FDG PET imaging, which can
avoid unnecessary surgery (10, 11). With the integration of the
advantages of PET and MR imaging, PET/MR imaging bears
great potential in detecting and diagnosing of metastatic disease
in PDAC patients.

By extracting and analyzing a large number of putative
imaging features, which may reflect the heterogeneity of tissues,
texture analysis and radiomics played an increasingly important
role in cancer research (12). The rationale is that image
texture features and radiomics characteristics may contain

information of tumor phenotypes, which can reflect patient
prognosis indirectly. Texture analysis and radiomics using CT
images, which are widely available, has been used to predict
aggressiveness, disease-free survival (DFS), and overall survival
(OS) in patients with PDAC (13–15). DWI can reflect the
tissue cellularity, and has been used in texture analysis in many
other studies (16–19). Quantitative parameters obtained from
current-generation hybrid imaging can provide complementary
information of morphology and function simultaneously, which
might be related to tumor biological behavior (16, 20). In the
present study, we first explored the value of three-dimensional
texture analysis based on hybrid 18F-FDG PET/ADC images in
predicting of metastatic disease in PDAC patients.

Our hypothesis is that different kind of imaging parameters
and features from pretreatment multiparametric PET/MR can
be used to predict synchronous distant metastasis in patients
with PDAC. In addition, the automated analysis of quantitative
imaging features may complement conventional imaging metrics
for prognostic evaluation. The purpose of this study was to assess
conventional PET/MR findings and tumor texture features on
pretreatment PET/MR imaging as potential predictive factors of
metastasis for PDAC.

MATERIALS AND METHODS

Subjects
This retrospective study was approved by the Institutional
Ethics Committee of Ruijin Hospital, and informed consent
was obtained from the patients who participated in another
clinical study (application of abdominal PET/MR sequentially
after whole body 18F-FDG PET/CT). No written informed
consent was required for the other patients who underwent whole
body PET/MR according to clinical indications. From March
2018 to January 2020, 29 consecutive patients (mean age, 60.8
± 10.1 years; men/women, 12/17) with suspected pancreatic
cancer underwent hybrid multiparametric 18F-FDG PET/MR
with DWI before treatment. The patients were considered
eligible based on the following criteria: (1) histopathological
examination via either biopsy or surgical procedure; (2) hybrid
18F-FDG PET/MR scans (with DWI) performed before biopsy
and surgical intervention; and (3) no local or systemic treatments
to pancreatic cancer. Of the 29 patients, 12 patients without
a pathological-confirmed diagnosis were excluded. Finally, 17
patients (mean age, 57.4 ± 10.1 years; range, 40–75 years; eight
men, nine women) with PDAC were included in our study
population. All patients tolerated this examination. Tumor size
was measured according to MRI images, and the maximum
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diameter was recorded. Synchronous distant metastases were
confirmed with imaging techniques and, if possible, by either
surgical operation or biopsy. The study subjects were divided
into two groups [without synchronous distant metastasis (M0
group) and with synchronous distant metastasis (M1 group)].
The patient characteristics are summarized in Table 1.

PET/MR Protocol
Whole-body PET/MR was performed using an integrated
PET/MR system (Biograph mMR; Siemens Healthineers,
Erlangen, Germany). All participants were fasted for at least 6 h
before the study and given intravenous 18F-FDG 2.5 to 6MBq/kg
at 40–100min before each PET/MR study. For whole body
examination, PET was performed from the mid-thighs to the
skull base in four bed positions (acquisition time, 4 min/position)
with the patient in a supine arm-down position, and head was
scanned with 1 bed position for 8min. Simultaneous MRI
with axial T2-weighted 2D half-Fourier acquisition single-
shot turbo spin-echo sequences(HASTE), axial DWI with
echo planar sequence(b-values, 50 and 800 s/mm2), and axial
T1-weighted imaging (T1WI) with a DIXON sequence were
performed and PET data were acquired at each bed position.
For abdominal examination, the simultaneous acquisition
of PET and MRI data was performed. Unenhanced studies,
including coronal T2WI half-Fourier acquisition single-shot
fast spin-echo, axial and coronal T2WI with fat saturation, axial
T1-weighted fat-suppressed three-dimensional gradient-recalled
echo imaging were performed. DWI was performed by using
a single-shot echo-planar imaging sequence with b values of
50 and 800 sec/mm2. The ADC map was calculated using
a monoexponential function (b-values, 50 and 800 s/mm2;
Supplementary Table 1).

The PET images were reconstructed with an ordered-subset,
expectation-maximization, iterative algorithm (4 iterations, 21
subsets), with a 4-mm post reconstruction Gaussian filter and
a matrix of 172 ∗ 172. Attenuation correction of PET data was
obtained by a 4-tissue-class (air, lung, fat, soft tissue) segmented
attenuation map from a 2-point Dixon MR pulse sequence.
Eight patients were subjected to abdominal PET/MR (after
whole body PET/CT), one patient was subjected to whole body
PET/MR, and eight patients were subjected to whole body plus
abdominal PET/MR.

Image Analysis
The focal 18F-FDG uptake at the primary tumor, the lymph
nodes and distant metastases were reviewed independently by
two board certificated nuclear medicine physicians (12 and 4
years of experience) on PET/MR images. A radiologist who
specialized in abdominal MRI with 13 years of experience and 2
years of experience in nuclearmedicine read the PET/MR studies.
The nuclear medicine physicians and radiologists independently
performed their analyses on the workstation. Any disagreement
was resolved by discussion. The volume of interest (VOI) was
manually drawn on the PET image, and a region of interest
(ROI) was drawn manually on ADC maps with consensus by
three readers, and the ADC values and PET parameters of the
pancreatic tumor were measured.

The PET-related parameters included maximum standardized
uptake value (SUVmax), mean SUV (SUVmean), maximum
average SUV within a 1 cm3 spherical volume (SUVpeak),
standard deviation of SUV(SUVsd), MTV, and TLG. The
SUVmax and SUVmean were defined as the maximum and
mean radioactivity concentration of images enclosed by the
VOI divided by the whole body concentration of the injected

TABLE 1 | Basic characteristics of the study participants (17 cases).

Patient number Gender Age (years) Height (cm) Body weight (Kg) Tumor location Tumor size (cm) Location of metastasis Group

1 Female 62 164 55 Body/tail 4.7 Peritoneum Metastatic

2 Female 40 154 40 Body/tail 5.1 Liver Metastatic

3 Male 66 170 65 Head/neck 4.3 Non-metastatic

4 Male 61 172 57 head/neck 4.6 Non-metastatic

5 Male 66 170 57 Head/neck 3.9 Liver Metastatic

6 Female 55 160 45 Body/tail 5.7 peritoneum metastatic

7 Female 47 159 60 Head/neck 2.2 Non-metastatic

8 Male 49 173 64 Body/tail 4.6 Multiple* Metastatic

9 Male 72 170 78 Head/neck 2.5 Non-metastatic

10 Female 75 160 55 Body/tail 4.5 Supraclavicular lymph node Metastatic

11 Female 43 155 56 Head/neck 3.2 Non-metastatic

12 Male 57 170 66 Body/tail 6.0 Peritoneum Metastatic

13 Female 51 164 47 Body/tail 4.7 Liver Metastatic

14 Male 63 170 70 Body/tail 4.0 Liver Metastatic

15 Female 65 163 60 Body/tail 2.7 Liver Metastatic

16 Male 48 180 69 Head/neck 3.3 Non-metastatic

17 Female 56 160 47 Body/tail 3.2 Liver, peritoneum Metastatic

Multiple*, liver, left adrenal gland, remote lymph nodes, bones.
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radioactivity. SUVmax, SUVmean, SUVpeak, and MTV values were
then measured automatically using commercial software (Syngo
Via Workstation; Siemens Healthineers, Erlangen, Germany).
The peak of the SUV (SUVpeak) was determined using a 1 cm3

spherical volume of interest automatically centered on the tumor
area with the maximum uptake. The MTV was determined by
segmentation of the tumor based on a 40% threshold of SUVmax.
TLG was calculated as SUVmean

∗ MTV.
Tomeasure the ADC, ROIs were manually drawn on the ADC

map along the contour of the tumor on a single slice containing
the largest area of the tumor. The DWI parameters included
the mean ADC (ADCmean), standard deviation of ADC value
(ADCsd), and minimum ADC (ADCmin). The lowest ADC value
in an ROI, ADCmin, represented the greatest tumor cellularity.

Among all 17 patients enrolled, the following imaging
biomarkers were recorded for the primary tumor: SUVmean,
SUVmax, SUVpeak, SUVsd, MTV, TLG, ADCmean, ADCmin,
ADCsd, and tumor size (maximum diameter of the tumor
from MRI). A total of 10 PET/MR parameters were applied
for differentiation.

TNM staging system of American Joint Committee on
Cancer (8th edition) was applied for the study patients by a
multidisciplinary team for pancreatic cancer at our hospital.
Among those who did not receive curative surgery, the stage was
determined by biopsy and all available image results.

Computerized Textual Analysis
Features of the primary tumor were extracted using the Local
Image Features Extraction (LIFEx) package (http://www.lifexsoft.
org). The texture analysis was performed inside the VOI retrieved
from the fused PET/ADC images. The VOI was manually drawn
with consensus by three nuclear medicine-certified physicians
and radiologist together. Histogram-based features, the gray-
level cooccurrence matrix (GLCM), the neighborhood gray-level
different matrix (NGLDM), the gray level run length matrix
(GLRLM) and the gray level zone length matrix (GLZLM) were
obtained. There were 37 texture indices analyzed in this study
(Supplementary Table 2). The18F-FDG uptake intensity data
were rescaled using 64 discrete values to reduce the image noise.

Statistical Analysis
Summary statistics are presented as the mean ± SD for
quantitative variables or frequency for qualitative variables.
Appropriate statistical tests were used to assess differences
in 18F-FDG PET/MR imaging biomarkers between patients
with and without synchronous metastatic disease. We first
performed univariate analyses on a series of variables, followed
by multivariate analyses on selected variables with significant
differences in the univariate analysis. The patient gender and
tumor location between two groups were compared using
the Chi-square test with Fisher’s exact test. The patient age,
height, body weight, and tumor size between the two groups
were compared using an independent-samples t-test. The ADC
values, PET parameters, and textural parameters between the
two groups were compared using the independent-samples
Mann–Whitney U-test. Multivariable analysis was investigated
using the stepwise forward logistic regression model with

significant parameters. Receiver operating characteristic (ROC)
analyses were performed to evaluate the diagnostic accuracy
of predicting synchronous metastatic disease (M1 or M0),
and the area under the ROC curve (AUC) was calculated to
identify the optimal cut-off values for each parameter. The
parameter was most likely to accurately identify a positive
instance (with synchronous metastatic disease) when the AUC
value was high (p < 0.05). The 95% confidence intervals (CI)
for AUC and p-values for comparison of related ROC curves
were obtained with the method described by DeLong and
coworkers (21). The relationship between metabolic parameters
and texture features from the ADC map was also evaluated
using Spearman’s rank correlation coefficient test. A p <

0.05 was considered statistically significant, and all p-values
presented were two-sided. Data were analyzed using SPSS
software (SPSS for Windows 23; IBM Corp., Armonk, USA)
and MedCalc for Windows, version 11.4 (MedCalc Software,
Ostend, Belgium).

RESULTS

Patient Characteristics
Six patients without synchronous metastatic disease (M0) and 11
patients with synchronous metastatic disease (M1) were included
in this study. The average age was 56.2 ± 11.8 years (range
from 43 to 72 years) in M0 patients and 58.1 ± 9.5 years (range
from 40 to 75 years) in M1 patients. There were four males and
two females in the M0 patient group and four males and seven
females in the M1 patient group. The age, gender, height, and
body weight did not differ significantly between the two groups (p
> 0.05 for all). The characteristics of the patients are summarized
in Table 1.

Conventional Parameters
Tumor location, tumor size, SUVpeak, MTV, and TLG differed
significantly (p < 0.05 for all) between M0 and M1 patients.
More tumors were located in the body/tail in the M1 group
than in the M0 group (p = 0.001). The M1 group showed
a larger tumor size than that in the M0 group (p = 0.039).
Patients with synchronous metastatic disease demonstrated
increased SUVpeak, MTV, and TLG in the primary tumor.
SUVmax, SUVmean, and SUVsd did not differ significantly
between the two groups (p > 0.05 for all). ADCmean, ADCmin,
and ADCsd did not differ significantly between the two
groups (p > 0.05 for all). Table 2 shows the conventional
quantitative parameters of the two groups. Three of the 11
patients in M1 group had FDG-negative metastatic lesions.
One patient had metastatic foci in the liver (Figure 1),
and two patient had metastatic peritoneal lesions. One of
the six patients in M0 group had FDG-negative primary
tumors (Tables 1,2).

The conditional logistic regression model using significant
parameters identified TLG as an independent predictor
for synchronous metastatic disease diagnosis. The other
parameters did not reach significance. Based on multivariate
regression analysis, and we performed an ROC analysis
for the selected parameters. The AUC was 0.848 for TLG.
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TABLE 2 | The diagnostic performance of conventional quantitative 18F-FDG PET/MR parameters for predicting synchronous distant metastasis in pancreatic ductal

adenocarcinoma patients.

Parameter Comparison of mean value Receiver operating characteristic (ROC) analysis

M0 group M1 group p AUC 95% CI p Optimal cutoff value Se (%) Sp (%)

Age (years) 56.2 ±11.8 58.1 ±9.5 0.719
†

Height (cm) 167.7 ±9.1 164.4 ±5.8 0.373
†

Body weight (Kg) 64.2 ±8.4 55.1 ±9.5 0.07
†

Tumor size (cm) 3.4 ±1.0 4.5 ±1.0 0.039
†

0.803 0.543–0.952 0.006 >3.3 81.8 66.7

SUVmean 2.6 ±1.1 3.6 ±1.3 0.149‡

SUVmax 4.5 ±2.0 6.3 ±2.3 0.216
‡

SUVpeak 3.0 ±1.1 4.8 ±1.5 0.037
‡

0.818 0.560–0.960 0.004 >4.06 72.7 100.0

SUVsd 0.6 ±0.3 0.8 ±0.3 0.149
‡

MTV 8.4 ±6.1 20.7 ±13.1 0.037
‡

0.818 0.560–0.960 0.003 >15.04 63.6 100.0

TLG 21.3 ±16.7 67.7 ±42.1 0.020
‡

0.848 0.595–0.973 <0.001 >41.3 72.7 100.0

ADCmean (s/mm2 ) 1192 ±625 1311 ±219 0.884
‡

ADCmin (s/mm2 ) 1093 ±274 974 ±334 0.733
‡

ADCsd (s/mm2 ) 128 ±25 134 ±20 0.525
‡

†
Independent-samples t-test, bold value indicates p-value is significant <0.05; ‡ Independent-samples Mann-Whitney U-test, bold value indicates p-value is significant <0.05.

ADC, apparent diffusion coefficient; ADCmean, mean apparent diffusion coefficient; ADCmin, minimum apparent diffusion coefficient; ADCsd : standard deviation of apparent diffusion

coefficient; AUC, area under receiver operating characteristic (ROC) curve; M0, no synchronous distant metastasis; M1, with synchronous distant metastasis; MTV, metabolic tumor

volume; Se, sensitivity; Sp, specificity; SUV, standardized uptake values; SUVmax , maximum standardized uptake value; SUVmean, mean standardized uptake value; SUVpeak , the peak

of SUV in 1ml; SUVsd , standard deviation of standardized uptake value; TLG, total lesion glycolysis; 95% CI, 95% confidence interval.

When the optimal cut-off point was 41.3, the TLG showed
a sensitivity of 72.7% and a specificity of 100.0% (Table 2).
There were no significant differences in the AUC among
tumor size, SUVpeak, MTV, and TLG (p > 0.05 for all;
Figure 2).

Texture Features
Regarding the texture features, four features from the PET
image (two GLRLM, one NGLDM and one GLZLM) and
13 features from the ADC map (two histogram based, seven
GLRLM, and four GLZLM) showed significant differences
between the two groups (Table 3 and Supplementary Table 3).
Conditional logistic regression analysis demonstrated that
Long-Run High Gray-level Emphasis of Gray-Level Run
Length Matrix (GLRLM_LRHGE) from PET image, Long-
Run High Gray-level Emphasis (LRHGE), Gray-level
Non-Uniformity for run (GLNU), and Run Length Non-
Uniformity (RLNU) of Gray-Level Run Length Matrix
(GLRLM) from the ADC map were significant independent
predictors for predicting synchronous metastatic disease
in PDAC. The metastatic group showed significantly
higher PET-GLRLM_LRHGE, ADC-GLRLM_LRHGE,
ADC-GLRLM_GLNU, and ADC-GLRLM_RLNU (p <

0.05 for all). The AUC was 0.939, 0.894, 0.924, and 0.909
for PET-GLRLM_LRHGE, ADC-GLRLM_LRHGE, ADC-
GLRLM_GLNU, and ADC-GLRLM_RLNU, respectively. The
logistic regression model with proposed features obtained
an AUC of 1.000 (95% CI 0.805–1.000, p < 0.001), but
there were no significant differences in the AUC for a single
parameter vs. that for the logistic regression model (p > 0.05 for
all, Figure 3).

Correlations Between PET/MR Parameters
and Texture Features
The PET parameter of TLG showed positive correlations with
the texture feature of ADC-GLRLM_GLNU (r = 0.659, P =

0.004), ADC-GLRLM_LRHGE (r = 0.762, P < 0.001), and PET-
GLRLM_LRHGE (r= 0.806, P < 0.001).

DISCUSSION

In this study, we demonstrated differences in multiparametric
18F-FDG PET/MR imaging biomarkers obtained from the
primary tumor of PDAC between patients with and without
synchronous metastasis. Then, we identified prognostic
PET/MR imaging signatures in patients with PDAC by
using conventional parameters and a texture analysis
approach. We found that metastatic PDAC patients showed
significantly larger tumor sizes, more frequent body/tail
locations and higher SUVpeak, MTV, and TLG values in
the primary tumor than those in non-metastatic patients
(p < 0.05 for all). In addition, TLG remained significant
predictor in the multivariable analysis. Regarding the texture
features, we found that GLRLM_RLNU, GLRLM_GLNU, and
GLRLM_ LRHGE from the ADC map, and GLRLM_LRHGE
from PET image were also significant predictors of
synchronous metastatic disease. In addition, TLG was
associated with ADC-GLRLM_GLNU, ADC-GLRLM_LRHGE,
and PET-GLRLM_LRHGE.

Regarding the tumor size and location, our results were
consistent with previous studies (2, 3, 22, 23). The larger the
tumor, the more likely it is to have distant metastasis. The
cut-off value of tumor size was similar between our study
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FIGURE 1 | A 51-year-old female with pancreatic ductal adenocarcinoma in body and tail with hepatic metastases. (A–J) Whole body PET image with maximum

intensity projection (MIP) (A) and axial abdominal PET image (B) showed FDG metabolism increased lesion in pancreatic body and tail, with SUVmax 7.52, SUVpeak

6.39, and MTV 17.43 cm3. Diffusion weighted imaging (DWI, b = 800) (C) and apparent diffusion coefficient (ADC) map (D) showed a diffusion restricted lesion in

pancreatic body and tail. (E) Fused image of PET and ADC showed a diffusion restricted lesion with hyper FDG metabolism. (F) Contrast enhanced (CE) T1 weighted

image (T1WI) with fat suppression (fs) on late arterial phase showed hypo-vascular lesion and dilated main pancreatic duct, and the maximum diameter of the lesion

was 4.7 cm. (G,H) Metastasis in the right lobe of the liver (arrow) confirmed by surgery operation (2 days after the initial PET/MR examination) and histo-pathological

examination, and the lesion showed slightly hyper-intensity on T2 weighted image with fat saturation (G), no FDG avid lesion on PET image (H). (I–J) Follow up

PET/MR 112 days after operation showed the operated region with hyper-intensity in T2 weighted image with fat saturation (J) and without abnormal FDG uptake on

PET image (I).

(3.3 cm) and the studies of Liu et al. (4.0 cm) and Karabicak
et al. (4.2 cm) (2, 22). In a cohort of 1,423 patients with
PDAC who underwent pancreatectomies, the occurrence of
occult metastatic disease in PDAC accounted for 8% of cases,
and multivariable analysis defined four independent predictors
for occult metastatic disease (3). Patients with abdominal pain,
preoperative CA 19-9 > 192U/ml, tumor bigger than 3 cm,
and indeterminate lesions on preoperative CT had high risk of
occult metastatic disease (3). The cut-off value of tumor size
was slightly smaller in the study of Gemenetzis et al. (3) than
that in our study, which might be because that the patients
were potentially resectable with occult but not obvious metastasis
and the sample size was large in that study. Another study
of 110 patients with PDAC (22), patients with high CA 19-9
levels and large size tumor located in body-tail are at greater
risk for latent distant organ metastasis or peritoneal metastasis.
Tumors located in the body/tail of the pancreas are more likely to
metastasize (22, 23), which was also confirmed in our study. The
metabolic parameters of 18F-FDG PET could reflect biological
aggressiveness and predict prognosis in various studies (24–
29), and we demonstrated similar results in this study. A study
of 93 patients with pathologic T3 (pT3) resectable pancreatic

cancer showed that tumor with high MTV2.5 is associated
with both lymph node metastasis and early systemic metastasis
(24). Patients who developed metastatic disease during follow-
up after chemoradiotherapy had higher SUVmax (3.8 vs. 8.6),
SUVpeak (2.5 vs. 7.5), SUVmean (1.8 vs. 3.3), SUVmedian (1.7
vs. 3.0), and TLG (26.9 vs. 115.9) than did those without
metastatic disease (25). The average SUVpeak was 3.0 and 4.8
for M0 and M1 group in our study. The SUVpeak of PDAC
without metastasis was similar between the two studies, and the
SUVpeak of metastatic PDAC was slightly higher in the study of
Wilson et al. (25) than that of the present study. Other recent
studies (26–29) which made use of the PET/CT technique, unlike
PET/MR, as was the case in our study, have addressed PET-
derived parameters (TLG, MTV, or SUVpeak) as independent
predictors for OS and PFS outcome in patients with pancreatic
adenocarcinoma. A PET/CT scoring system with combination
of quantitative parameters helps to improve the prognostication
significantly (28).

According to our knowledge only two studies about
overall survival(OS), prognosis, and imaging biomarkers of
PDAC and periampullary cancer have been published using
integrated PET/MR imaging (30, 31). In a study with 60
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PET/MRI of pancreatic and periampullary cancer patients,
the imaging biomarkers (ADCmin, Choline levels, TLG, MTV,
MTV/ADCmin ratio) may predict clinical stage and progression-
free survival (PFS) of the patients (30). Recently, Chen
et al. have showed that multiparametric PET/MR imaging
biomarkers of pancreatic cancer patients were associated with

FIGURE 2 | Receiver operating characteristic (ROC) curves of tumor size,

SUVpeak, MTV, and TLG for diagnosing synchronous metastatic disease in

pancreatic ductal adenocarcinoma.

their OS (31). The application of PET/MR has just started,
and more research is needed to find out the potential value
of PET/MR. And more sophisticated methods are needed
to improve the existing diagnostic capabilities. Radiomics

in nuclear medicine is fastly developing. The advantage

of radiomics should be fully explored from now on to

improve the clinical value of multiparametric imaging, such as

PET/CT and PET/MR, in predicting disease phenotypes and

personalized diagnosis and treatment. In this study, texture

analysis showed significant differences between M0 and M1

PDAC for two first-level (histogram skewness and kurtosis
from ADC map) and for 15 third-level features(four from PET

and 11 from ADC map). ADC-HISTO_Skewness and ADC-
HISTO_Kurtosis were the first-level features with significant
differences between the two groups based on the ROC analysis.

According to the literature, ADC histogram analysis has the

potential to provide valuable information on tumor biology and

to predict tumor behavior in several malignancies (17, 18, 32, 33).

The skewness and kurtosis were higher in cervical cancer patients

with metastatic lymph nodes than those with negative nodal

status (33). Another study showed that skewness and kurtosis
of histogram analysis from ADC map were able to differentiate
thyroid carcinoma with lymph nodemetastasis from that without
metastasis (32). In the study of non-small cell lung cancer, higher
ADC skewness and kurtosis were associated with lymphovascular
invasion and pleural invasion (34). In a study of pediatric diffuse
intrinsic potine glioma using 18F-FDG PET and MRI ADC
histogram, higher ADC skewness and kurtosis of the enhancing

TABLE 3 | The diagnostic performance of texture features derived from simutanous18F-FDG PET image and the ADC map for predicting synchronous distant metastasis

in pancreatic ductal adenocarcinoma patients.

Texture feature M0 group M1 group P1 AUC 95% confidence intervals P2 Optimal cut-off value

PET-GLRLM_RLNU 467 ± 173 1391 ± 738 0.002 0.939 0.711–0.998 <0.0001 >751

PET-GLRLM_LRHGE 172 ± 77 288 ± 96 0.037 0.818 0.560–0.960 0.005 >120.6

PET-NGLDM_Coarseness 0.015 ± 0.008 0.007 ± 0.003 0.037 0.803 0.543–0.952 0.034 <=0.01

PET-GLZLM_GLNU 5.4 ± 2.3 11.3 ± 6.8 0.020 0.848 0.595–0.973 0.0004 >8.3

ADC-HISTO_Skewness −0.02 ± 0.59 0.72 ± 0.80 0.048 0.795 0.534–0.948 0.001 >0.14

ADC-HISTO_Kurtosis 3.32 ± 1.16 5.25 ± 2.01 0.048 0.803 0.543–0.952 0.008 >3.84

ADC-GLRLM_LRE 36 ± 10 66 ± 24 0.007 0.894 0.650–0.989 <0.0001 >42.98

ADC-GLRLM_SRHGE 786 ± 51 654 ± 131 0.048 0.803 0.543–0.952 0.006 <=691

ADC-GLRLM_LRLGE 0.008 ± 0.002 0.019 ± 0.009 0.005 0.879 0.631–0.984 <0.0001 >0.012

ADC-GLRLM_LRHGE 0.15E+6 ± 0.04E+6 0.28E+6 ± 0.10E+6 0.007 0.894 0.650–0.989 <0.0001 >0.18E+6

ADC-GLRLM_GLNU 227 ± 96 442 ± 142 0.003 0.924 0.690–0.996 <0.0001 >269.4

ADC-GLRLM_RLNU 30 ± 8 45 ± 9 0.005 0.909 0.670–0.993 <0.0001 >32.6

ADC-GLRLM_RP 0.212 ± 0.023 0.165 ± 0.033 0.007 0.879 0.631–0.984 <0.0001 <0.18

ADC-GLZLM_LZE 1.53E+6 ± 1.67E+6 9.50E+6 ± 8.71E+6 0.010 0.879 0.631–0.984 <0.0001 >4.62E+6

ADC-GLZLM_LZLGE 362 ± 395 2249 ± 2061 0.010 0.879 0.631–0.984 <0.0001 >1094.1

ADC-GLZLM_LZHGE 0.65E+10 ± 0.70E+10 4.01E+10 ± 3.68E+10 0.010 0.879 0.631–0.984 <0.0001 >1.95E+10

ADC-GLZLM_ZP 0.0016 ± 0.0017 0.0006 ± 0.0004 0.050 0.795 0.534–0.948 0.010 <=0

ADC, apparent diffusion coefficient; AUC, area under receiver operating characteristic (ROC) curve; FDG, fluorodeoxyglucose; M0, no synchronous distant metastasis; M1, with

synchronous distant metastasis; NA, not applicable; P1, P-value for independent- samples Mann-Whitney U-test, indicates p-value is significant <0.05; P2, p-value for AUC, indicates

P-value is significant <0.05; PET, positron emission tomography; 95% CI, 95% confidence interval; GLRLM, Gray level run length matrix; GLZLM, Gray level zone length matrix; SRHGE,

Short-nun high gray-level emphasis; GLNU, Gray-level non-uniformity; RLNU, Run length non-uniformity; LZE, Long-zone emphasis; NGLDM, Neighborhood gray-level different matrix;

SZHGE, Short-zone high gray-level emphasis; LZHGE, Long-zone high gray-level emphasis.
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FIGURE 3 | Receiver operating characteristic (ROC) curves of PET-GLRLM_LRHGE, ADC-GLRLM_LRHGE, ADC-GLRLM_GLNU, ADC-GLRLM_RLNU, and logistic

regression model with combination of four texture features for diagnosing synchronous metastatic disease in pancreatic ductal adenocarcinoma.

portion of the tumor were associated with shorter PFS (16).
HISTO_Skewness is the asymmetry of the gray-level distribution
in the histogram. If the peak of the frequency distribution shifts
to the left, the long tail extends to the right, which is called a
positive skewed distribution. Kurtosis reflects the sharpness of
the histogram peak. So in this study, in M1 patients most voxels
containing an ADC less than the mean. The lower ADC value
indicates the higher cellularity and aggressiveness. Unexpectedly,
the conventional ADC values (ADCmean, ADCmin, ADCsd) had
no significant differences between metastatic and non-metastatic
PDAC. Considering that the sample size of this pilot study is
too small, it would be hasty to draw any conclusions from this
negative finding.

The first-level texture feature describes the characteristics
related to the voxel intensity distribution, while the meaning of
second- and third-level features is non-figurative. In this study,
the texture features of GLRLM_RLNU, GLRLM_GLNU, and
GLRLM_LRHGE from the ADC map, and GLRLM_LRHGE
from PET image were independent predictors of synchronous
metastatic disease. GLRLM reflects the comprehensive
information of the image grayscale with respect to direction,
adjacent interval, and variation amplitude. GLRLM is a set of
statistical feature extracted from medical images and applied in
radiomics frequently (35–37). HGRE measures the distribution
of sections of high intensity, and its value is expected to be
large if the number of sections of high intensity is high. In a
study of breast cancer using 18F-FDG PET texture analysis,
triple negative breast cancer (TNBC) had higher RHGE value
than non-TNBC and exhibited more tumor heterogeneity (38).
Gray-level Non-Uniformity for run (GLNU) measures similarity
of values of gray-level and Run Length Non-Uniformity
(RLNU) measures similarity of run length. In this study,

the PET-GLRLM_LRHGE, ADC-GLRLM_LRHGE, ADC-
GLRLM_GLNU, and ADC-GLRLM_RLNU values were higher
in M1 patients than in M0 patients. This may indicate that the
higher heterogeneity in PET image and ADC map of PDAC,
the higher risk of metastasize. ADC-GLRLM_LRHGE and
ADC-GLRLM_GLNU were positively correlated with TLG,
which indicate that PDAC with higher TLG might have higher
heterogeneity of ADC map. Whether there is an intrinsic link
between these texture features and tumor biological behaviors
requires further research. Ultimately, like the readings of a
radiologist, texture analyses should contain all image sequences.
Since such research has just begun, separate and gradually
deepening study may be a suitable method. Although radiomics
is a promising tool for high-tech hybrid imaging technology
such as PET/CT and PET/MR (39–41), but many factors such
as attenuation correction techniques, different uptake times
and voxel size may influence the radiomic features (42, 43),
which makes the application value obscure. We need to be
cautious about the results of the present study, and continue
to increase the sample size and research centers to further
investigate the exact value of texture features and radiomics
in PET/MR.

This study has several limitations. First, this study is a
retrospective study, and the number of patients is limited.
Second, evaluating of serum tumor markers vs. imaging
parameters was not included in this study. Third, there is a
certain degree of subjectivity in manually delineating the tumor
boundaries. Therefore, prospective studies with a larger sample
and multicenter studies are needed to confirm the present
findings. Another limitation of this study is that some of the
patients underwent only abdominal PET/MR sequentially after
a whole body 18F-FDG PET/CT.
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In conclusion, our preliminary study showed that multi-
parameter and textural features of primary tumors in 18F-
FDG PET/MR images are reliable biomarkers for predicting
synchronous metastatic disease in pretreatment PDAC, which
might be helpful for the selection of optimal therapeuticmethods.
This technique may provide a convenient and non-invasive
approach to evaluate the prognosis of PDAC in clinical practice.
However, multicenter studies with a large population are needed
to confirm these results.
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Background: Hepatocellular carcinoma (HCC) is the most common liver malignancy

and the leading cause of death in patients with cirrhosis. Various treatments for

HCC are available, including transarterial chemoembolization (TACE), which is the

commonest intervention performed in HCC. Radiologic tumor response following

TACE is an important prognostic factor for patients with HCC. We hypothesized

that, for large HCC tumors, assessment of treatment response made with automated

volumetric response evaluation criteria in solid tumors (RECIST) might correlate with

the assessment made with the more time- and labor-intensive unidimensional modified

RECIST (mRECIST) and manual volumetric RECIST (M-vRECIST) criteria. Accordingly,

we undertook this retrospective study to compare automated volumetric RECIST

(A-vRECIST) with M-vRECIST and mRESIST for the assessment of large HCC tumors’

responses to TACE.

Methods: We selected 42 pairs of contrast-enhanced computed tomography (CT)

images of large HCCs. Images were taken before and after TACE, and in each of

the images, the HCC was segmented using both a manual contouring tool and a

convolutional neural network. Three experienced radiologists assessed tumor response

to TACE using mRECIST criteria. The intra-class correlation coefficient was used

to assess inter-reader reliability in the mRECIST measurements, while the Pearson

correlation coefficient was used to assess correlation between the volumetric and

mRECIST measurements.

Results: Volumetric tumor assessment using automated and manual segmentation

tools showed good correlation with mRECIST measurements. For A-vRECIST and

M-vRECIST, respectively, r = 0.597 vs. 0.622 in the baseline studies; 0.648 vs. 0.748 in

the follow-up studies; and 0.774 vs. 0.766 in the response assessment (P < 0.001 for

all). The A-vRECIST evaluation showed high correlation with the M-vRECIST evaluation

(r = 0.967, 0.937, and 0.826 in baseline studies, follow-up studies, and response

assessment, respectively, P < 0.001 for all).

Conclusion: Volumetric RECIST measurements are likely to provide an early marker

for TACE monitoring, and automated measurements made with a convolutional neural

network may be good substitutes for manual volumetric measurements.

Keywords: volumetric RECIST, hepatocellular carcinoma, TACE, automated segmentation, tumor response
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common liver
malignancy and the leading cause of death in patients with
cirrhosis. Despite advances in various treatment modalities
over the past several years, the prognosis for HCC remains
poor, with 5-year overall survival ranging from 24 to 41%
(1, 2). Efforts have been made to improve early detection
of HCC by the performance of frequent screening in high-
risk populations. However, most cases are still diagnosed at
intermediate to advanced stages (3). These patients are not
candidates for curative therapies, such as surgical resection or
liver transplant. As a result, treatment options for this patient
population are limited to loco-regional treatments, including
local radiofrequency ablation, radio and chemoembolization, and
systemic chemotherapy with Sorafenib (4–6).

In the United States, transarterial chemoembolization (TACE)
is the most common intervention for HCC (7). It is the standard
of care for patients with intermediate-stage HCC (according to
Barcelona clinic liver cancer (BCLC) staging, whether it is large
tumor or multi-nodular). In addition, it may be used in advanced
HCC prior to systemic therapy or as a bridging therapy prior
to surgery (8). There is evidence that repeat TACE may also
be beneficial in patients with advanced HCC (9–11). Radiologic
tumor response following initial TACE has been shown to be
an important prognostic factor for patients with HCC. Baseline
imaging is usually obtained 2–3 weeks before therapy and follow-
up imaging is performed 4–6 weeks after therapy. The most
commonly used criteria for tumor response following HCC is
mRECIST (1-dimension) or EASL (2-dimensions).

The recent attempts to improve the accuracy of radiologic
response criteria to predict overall survival and Progression-free
survival have focused on using quantitative volumetric analysis.
This has resulted in the development of the volumetric RECIST
(vRECIST) and quantitative EASL (qEASL) methods with better
results in predicting patient’s outcome than the currently used
mRECIST (12–15).

The volumetric assessment of tumor response depends
on manual segmentation of tumor and needs contouring of
the lesion in every single slice of the study. This process
is time consuming and tedious. The manual volumetric
assessment show high inter- and intra-observer variability
which make it impractical in daily practice (16–18). On
the other hand, automated volumetric segmentation has the
potential to reduce time for this process and make volumetric
assessment of tumors more practical, with lower inter and intra-
observer variability than both mRECIST and manual volumetric
assessment (12, 18, 19).

Abbreviations: A-vRECIST, automated volumetric response evaluation criteria in

solid tumors; CNN, convolutional neural network; CT, computed tomography;

HCC, hepatocellular carcinoma; ICC, intra-class correlation coefficient; mRECIST,

modified response evaluation criteria in solid tumors; MRI, magnetic resonance

imaging; M-vRECIST, manual volumetric response evaluation criteria in

solid tumors; RECIST, response evaluation criteria in solid tumors; TACE,

transarterial chemo embolization; TNM, tumor-node-metastasis; vRECIST,

volumetric response evaluation criteria in solid tumors.

Convolutional neural network (CNN) shows promise to
achieve automated segmentation of liver and liver masses. These
are, however, computationally demanding (12, 13). CNN in
tumor segmentation has been found to be more accurate and
closer to the manual volumetric segmentation in larger tumors,
with far lower accuracy in smaller liver masses (14, 15).

The purpose of this study is to assess the feasibility of
volumetric assessment of pre- and post-TACE HCC using fully
automated segmentation and to evaluate the correlation of
automated volumetric assessment with both manual volumetric
assessment and mRECIST measurements.

MATERIALS AND METHODS

Study Cohort
This is a retrospective, single-institution, IRB approved study.
This study included patients with large HCC tumors (≥5 cm)
diagnosed and treated at our institution between November
2002 and June 2012. Patients were included in the study if
(1) they had undergone TACE as their sole first-line or initial
bridging therapy; (2) their medical records included multiphasic,
contrast-enhanced CT images that were obtained at baseline
and that included no image artifacts (e.g., surgical clips);
and (3) their tumor was diagnosed as tumor-node-metastasis
(TNM) stage III or IV HCC based on the American Joint
Committee on Cancer (AJCC). Although there are numerous
HCC scoring systems that incorporate liver functional reserve,
patient performance, and gross tumor characteristics (e.g., size,
vascular invasion, number of lesions), we chose the TNM staging
system because it is the only HCC staging system that considers
tumor characteristics (including size) without taking any other
factor into consideration (20, 21).

TACE
Briefly, TACE is delivery method of chemotherapy delivery to the
tumor through its feeding arteries using trans-arterial approach.
The hepatic artery was selected and injected with chemotherapy
by super selection of the feeding vasculature using advanced
micro-catheters. There are two main chemotherapeutic regimens
that may be delivered. In conventional TACE, a mixture of radio-
opaque ethiodized emulsion oil (Lipiodol; Guerbet, Villepinte,
France) and doxorubicin or cisplatin was injected followed by
embolization of the feeding vessels. While in TACE with drug
eluting beads (DEB-TACE), a mixture of micro-sphere particles,
doxorubicin and soluble non-ionic contrast was injected (22).

Our patients received one of the following chemotherapeutic
regimens (Drug regimen details are missed from 2 cases):
(1) embolic microsphere beads (Biocompatibles, UK) loaded
with doxorubicin (DEBDOX; drug-eluting bead doxorubicin)
(15 lesions), (2) cisplatin, doxorubicin, and mitomycin C (22
lesions), or (3) cisplatin and mitomycin C only (3 lesions) (such
information is missed from 2 cases).

CT Imaging Technique
All patients underwent dynamic, contrast-enhanced CT scans of
the abdomen on 4-, 16-, or 64-slice multidetector CT LightSpeed
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scanners (GE Healthcare, Chicago, IL) pre-TACE and post-
TACE. Liver protocol was used in all studies (the arterial, porto-
venous, and delayed phases were captured 17, 60 s, and ∼5min,
respectively, after peak enhancement of the descending aorta).
Injection was done with an automated contrast injector using a
bolus tracking technique and an injection rate of about 3–5 mL/s.
The image reconstruction thicknesses were 2.5mm and 5 mm.

Assessment of Tumor Response
Tumor TACE response was assessed using mRECIST, M-
vRECIST, and A-vRECIST (Figure 1). Three different board
certified radiologists (KE, JS, and AQ), each with more than
20 years of experience in abdominal imaging, independently
measured tumors using mRECIST criteria. The changes in
measurements between the follow-up and baseline CT scans were
reported, and tumor viability and enhancement in the late arterial
phase were taken into consideration. Volume assessment using
M-vRECIST and A-vRECIST at baseline and follow-up studies
was also done. The Convert3Dmedical image processing tool was
used to extract the segmentation volumes according to the voxel
extensions (23).

Tumor Segmentation
The porto-venous phase of CT (both baseline and
follow-up) were used to simplify lesion assessment, they
were exported in DICOM format from our institution’s
picture archiving and communication system to a
separate research server. Subsequently, the images
were converted into the format recommended by the
Neuroimaging Informatics Technology Initiative (Nifti)
to preserve the orientation information for further data
processing. Then the files were compressed and the images
were reoriented into right-anterior-inferior orientation
with Convert3D.

Manual segmentations were performed in the portal-venous
phase of contrast administration. This was performed for

the baseline and follow-up CT studies. A semi-automated
segmentation tool available in Amira Software (Thermo Fisher
Scientific, Waltham, MA) was used to delineate the tumors,
including the (i) enhancing portions, (ii) non-enhancing
portions, and Lipiodol containing portions of the tumors.
Enhancing tumor tissue was defined as a “region with uptake
of contrast agent in the arterial phase of dynamic contrast
CT” while non-enhancing tumor tissue was defined as a
“region of no enhancement within HCC on the arterial phase
images,” while Lipidol was defined as a “portions of high
attenuation in pre-contrast images.” Manual segmentation of
the whole tumor in the baseline study was done by one
author (AM) to ensure the consistency of the segmentation
throughout the dataset. The segmentation was done for all
axial CT images. These manual segmentations provided the
training data (n = 42 pairs) used to develop a neural network
classifier for segmentation of tumors from the background
liver tissue. Automated segmentation, performed using a
CNN approach (U-Net), was used to segment the liver
and tumor in two steps (24). To determine the correlation
between mRECIST and MvRECIST and mRECIST and A-
vRECIST, we compared the average uni-dimensional mRECIST
measurements of the 3 readers to the M-vRECIST and A-
vRECIST volumetric assessments.

Statistical Analysis
Statistical analysis was performed using IBM SPSS Statistics
V.24.0 software (IBM, Armonk, NY). Inter-reader reliability
for mRECIST measurement was assessed using the intraclass
correlation coefficient (ICC). The Pearson correlation coefficient
(r) was used to measure the correlation between the diameter
change (the average reading from mRECIST) and (i) the
automated and (ii) manual volume changes after TACE. A P-
value of 0.05 was used to determine the statistical significance of
the measurements.

FIGURE 1 | Axial sections from a pre-TACE abdominal CT scan of a 64-year old male patient with advanced HCC. (A) Shows an 8.5 cm lesion measured with

mRECIST criteria. (B) Shows the manual segmentation of the hepatic parenchyma (red) and the HCC tissue (green); the tumor volume, measured with M-vRECIST,

was 377.25 cm3. (C) Shows the automated segmentation of the parenchyma (red) and HCC tissue (green); the tumor volume measured with A-vRECIST was 187.9

cm3. (D,E) Show the 3-dimensional voxel rendering according to M-vRECIST and A-vRECIST, respectively. A-vRECIST, automated volumetric response evaluation

criteria in solid tumors; CT, computed tomography; HCC, hepatocellular carcinoma; mRECIST, modified response evaluation criteria in solid tumors; M-vRECIST,

manual volumetric response evaluation criteria in solid tumors; RECIST, response evaluation criteria in solid tumors; TACE, transarterial chemo embolization.
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RESULTS

Patient Characteristics
There were 320 patients (with complete medical and survival
data) found in our institutional database with HCC patients
underwent TACE, we excluded 8 patients due to difference in
their treatment plan (either TACE was used as second line or
combined with other form of therapy). After thorough review
of patients imaging studies, another 209 patients were excluded
for different reasons (Figure 2). The final 103 patients were
categorized according to their TNM stage into stage I, II, III,
and IV with 36, 25, 24, and 18 patients. A total of 42 patients
met our inclusion criteria for the study (TNM stage III and IV).
On average, patients’ baseline CT scans were performed 4 weeks
(range between 2 and 7 weeks) before the first TACE session, and

their follow-up scans were performed 11 weeks (range between 8
and 13 weeks) after the first TACE session. Patients’ demographic
data and baseline tumor characteristics are provided in Table 1.

Manual and Automated Volumetric
Assessment
The mRECIST response comparing the pre- and post-TACE
images is listed in Table 2 for the three radiologists’.

The manual vRECIST and automated vRECIST response
comparing the pre- and post TACE are presented in Table 3,
A-vRECIST was obtained with CNN. Assessment with the ICC
showed statistically significant correlation between the three
readers (ICC= 0.824; 95% CI= 0.70–0.89; P < 0.001).

FIGURE 2 | A schematic Flowchart of patient cohort selection process including the exclusion criteria.
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TABLE 1 | Patient demographic data and baseline tumor characteristics.

Baseline characteristics Value (n or mean ± SD)

n = 42, 100%

Demographics

Age, years 67 ± 7

Sex ratio (male/female) 29 (69%)/13 (31%)

Cirrhosis (yes/no) 31 (74%)/11 (26%)

Etiology

Tobacco use (yes/no) 28 (67%)/14 (33%)

Alcohol (yes/no) 25 (60%)/17 (40%)

Diabetes mellitus (yes/no) 12 (29%)/30 (71%)

Family history of cancer (yes/no) 24 (57%)/18 (43%)

Hepatitis (HBV/HCV/both/none) 3/7/8/24

Tumor extension

Overall tumor size (cm)* 10 ± 5

Vascular invasion present 17 (40%)

Diffuse/infiltrative pattern 10 (24%)

Tumor involvement (≤50%/>50% of liver volume) 31/11

Alpha fetoprotein (ng/ml)** 38.5 ± 1567.3

Distant metastasis present 7 (17%)

Nodal metastasis present 14 (33%)

Portal vein thrombosis present 13 (31%)

Tumor nodularity (uni-/multilobular) 14/28

mRECIST category (CR/PR/SD/PD) 10/20/7/5

HCC scoring

CLIP staging

Stage 0 4 (9%)

Stage 1 17 (40%)

Stage 2 10 (24%)

Stage 3 7 (17%)

Stage 4 2 (5%)

Stage 5 2 (5%)

Okuda staging

Stage I 26 (62%)

Stage II 16 (38%)

TNM staging

Stage III 24 (57%)

Stage IV 18 (43%)

BCLC staging

Stage B 7 (17%)

Stage C 35 (83%)

*Overall tumor size was determined based on RECIST measurements.

**Alpha fetoprotein is reported using median ± interquartile range.

BCLC, Barcelona clinic liver cancer; CLIP, Cancer of the Liver Italian Program; HBV,

hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; RECIST,

response evaluation criteria in solid tumors; SD, standard deviation; TNM, tumor-node-

metastasis; CR, Complete Response; PR, Partial Response; SD, Stable disease; PD,

Progressive Disease.

To determine the correlation between mRECIST and
vRECIST (both manual and automated), we compared the
average unidimensional mRECIST measurements to the M-
vRECIST and A-vRECIST volumetric assessments (Figure 1) and
compared the diameter changes determined through the manual

TABLE 2 | Radiologists’ unidimensional mRECIST measurements of HCC tumors

and average readings.

Baseline

mRECIST (cm)

Mean ± SD; 95% CI

Follow-up mRECIST

(cm)

Mean ± SD; 95% CI

Diameter

change (cm)

Mean ± SD; 95% CI

Reader 1 7.9 ± 4.8 (6.4–9.4) 5.9 ± 4.7 (4.4–7.4) −1.9 ± 4.1

(−3.3 to −0.7)

Reader 2 8.6 ± 5.3 (6.9–10.2) 6 ± 4.9 (4.4–7.5) −2.6 ± 3.2

(−3.3 to −1.6)

Reader 3 7.8 ± 4.7 (6.4–9.4) 5.6 ± 4.9 (4.1–7.2) −2.2 ± 2.9

(−3.2 to −1.3)

Average 8.1 ± 4.7 (6.6– 9.6) 5.9 ± 4.6 (4.4–7.3) −2.3 ± 2.9

(−3.2 to −1.3)

CI, confidence interval; HCC, hepatocellular carcinoma; mRECIST, modified response

evaluation criteria in solid tumors; SD, standard deviation.

TABLE 3 | Voxel-based volumetric measurements of HCC tumors made using

M-vRECIST and A-vRECIST with CNN.

M-vRECIST

Mean ± SD; 95% CI (cm3)

A-vRECIST with CNN

Mean ± SD; 95% CI (cm3)

Baseline study 466.8 ± 600 (279.8–653.9) 438.6 ± 552.9 (266.4–611)

Follow-up study 537.9 ± 772.8

(297.1–778.8)

426.2 ± 673.9

(216.3–636.3)

Volume change 71 ± 322.9 (−29.5–171.7) −12.39 ± 395.4

(−135.6–110.8)

A-vRECIST, automated volumetric response evaluation criteria in solid tumors; CI,

confidence interval; CNN, convolutional neural network; HCC, hepatocellular carcinoma;

M-vRECIST, manual volumetric response evaluation criteria in solid tumors; SD,

standard deviation.

and automated volumetric assessments. The correlation between
mRECIST and M-vRECIST was moderate for both the baseline
and the follow-up studies (r= 0.622 and 0.748, respectively). The
correlation between tumor diameter measurement changes was
higher (r = 0.766). The differences between these measurements
were statistically significant (P < 0.001 for all). The correlation
between mRECIST and A-vRECIST was similar: r = 0.597 for
the baseline and r = 0.648 for the follow-up studies (P < 0.001
for all). For the correlation between the baseline and follow-up
tumor measurements, r = 0.774.

We used the Pearson correlation coefficient to compare M-
vRECIST and A-vRECIST and found strong linear correlation
between the two approaches (r = 0.967 for the baseline studies,
r = 0.937 for the follow-up studies, and r = 0.826 for the tumor
volume change after TACE [P < 0.001 for all]) (Figures 3, 4).

DISCUSSION

In this study, we hypothesized that, for large HCC tumors,
assessment of volume changes before and after TACE using A-
vRECIST would correlate with the measurement changes using
uni-dimentional mRECIST and that, accordingly, A-vRECIST
can be used to assess tumor response to TACE therapy.
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FIGURE 3 | Scatter plots compare tumor assessments from unidimensional mRECIST with those from A-vRECIST and M-vRECIST in pre- and post-TACE studies

[graphs (A,B), respectively]. Graph (C) shows the difference between the A-vRECIST and M-vRECIST measurements. The best-fit lines and Pearson coefficients (r) are

shown. A-vRECIST, automated volumetric response evaluation criteria in solid tumors; mRECIST, modified response evaluation criteria in solid tumors; M-vRECIST,

manual volumetric response evaluation criteria in solid tumors; RECIST, response evaluation criteria in solid tumors; TACE, transarterial chemo embolization.

Volumetric assessment of HCC have been emerged as
recent tool for assessing of HCC response to treatment.
Although assessment of treatment response of is some patterns
of HCC is challenging (especially diffuse/infiltrative type)

due to its indistinct borders. Previous studies showed that
both uni-dimensional and volumetric measurement highly
correlated with the actual pathological tumor volume, with
volumetric assessment was similar to pathological volume while
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FIGURE 4 | Scatter plots compare diameter changes from M-vRECIST vs. A-vRECIST assessments in the (A) baseline and (B) follow-up studies. Graph (C) shows

the tumor measurement changes. The best-fit lines (dashed line) and Pearson correlation coefficients (r) are shown. A-vRECIST, automated volumetric response

evaluation criteria in solid tumors; M-vRECIST, manual volumetric response evaluation criteria in solid tumors.

uni-dimensional measurement overestimate the volume by 28%
(25, 26). Such studies demonstrate the superiority of volumetric
assessment to estimate the real tumor volume, which is more
important during assessment og treatment response.

Another study showed that HCC response to Sorafenib
using volumetric assessment can be used an alternative tool

for monitoring therapy better than mRECIST measurement
(27). Another study used functional MRI volumetric analysis
of HCC tumors to separate patients into responders and
non-responders following treatment with combination TACE
and Sorafenib (23, 28). Both of these studies made 3D
measurements of HCC tumor volumes. However, manual
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FIGURE 5 | Axial sections from pre-TACE (A–C) and 4-week post-TACE (D–F) scans from a 70-year old male patient with advanced HCC. (A,D) Show changes in

tumor size made with mRECIST measurements and indicative of tumor shrinkage. (B,E) Show A-vRECIST segmentation of the hepatic parenchyma (red) and the

HCC tissue (green) and indicate tumor size increase. (C,F) Show the 3-dimensional voxel renderings of the A-vRECIST measurements.

volumetric assessment is time consuming and highly variable
leading to motivate scientists to automate this process.
Automated tumor volume and enhancement measurements
using cross-sectional images are proven to be both reproducible
and feasible in clinical application (29). In addition, it
have been demonstrated that automated quantitative tumor
volume assessment can become part of monitoring response to
TACE (29).

There are challenges to the automated segmentation of the
liver on CT. Among these is that the attenuation of adjacent
organs and tissues that may be very similar to the liver tissue
itself. In addition, model-based approaches to segmentation are
challenging due to the liver’s widely varying shape (30). Also,
automated segmentation of small liver tumors showed lower
accuracy compared to both manual segmentation and automated
segmentation of larger tumors (12, 24). As a result, there have
been multiple attempts to develop methods of automated liver
segmentation using CT (31, 32).

In our study, we found that A-vRECIST measurements
highly correlated with both M-vRECIST and unidimensional
mRECIST measurements in large HCCs from patients who had
undergone TACE.

Because mRECIST is currently the preferred method of
monitoring TACE therapy, we used it as the standard to which
vRECIST was compared. Our results showed that, between our
experienced radiologists, there was moderate to high inter-
reader agreement for monitoring therapy using mRECIST
measurements (ICC = 0.824). Our study also showed that
correlation between unidimensional mRECIST and the vRECIST
measurements was good r= 0.766 for M-vRECIST and r= 0.774
for A-vRECIST.

Results of our vRECIST measurements are likely to provide
an early marker for TACE monitoring (23, 28, 32). We found
that A-vRECIST measurements made using our neural network
model could be a good substitute for M-vRECIST measurements
and mRECIST (Figure 5). It also can improve the workflow
as an alternate measure of response assessment because the
measurements were highly correlated to each other in the
baseline study, follow-up study, and volume change results (r =
0.967, 0.937, and 0.826, respectively).

Our study had some limitations. First, the small cohort
(42 patients) may have masked variability in the automated
segmentation results. However, this study was a pilot, and
we were aware from the outset that its findings would need

Frontiers in Oncology | www.frontiersin.org 8 May 2020 | Volume 10 | Article 572276

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Moawad et al. Automated vRECIST in TACE Response

to be confirmed prospectively in a larger population with
more variable tumor sizes and stages. Second, we did not
examine correlation between A-vRECIST and patient’s outcome.
However, this study serves as a step for further evaluation of
clinical importance of A-vRECIST and its relation to patient’s
survival endpoints. The small differences observed between
A-vRECIST and M-vRECIST in the follow-up images (r =

0.648 vs. 0.748, respectively) may have been due to differences
in TACE techniques, as the Lipiodol used in conventional
TACE can distort CNNs, leading to differences in automated
tumor segmentation.

Our next step is to confirm our findings with a larger sample
size offering higher variability in tumor sizes and stages. We plan
to use A-vRECIST results to classify patients according to their
responses to TACE (partial response vs. no response). Also, we
will thoroughly study the confounding factors, such as chronic
parenchymal liver disease, that may affect the performance of
neural networks.
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Background: Multiparametric magnetic resonance imaging (mpMRI) has emerged as a

non-invasive modality to diagnose and monitor prostate cancer. Quantitative metrics on

the regions of abnormality have shown to be useful descriptors to discriminate clinically

significant cancers. In this study, we evaluate the reproducibility of quantitative imaging

features using repeated mpMRI on the same patients.

Methods: We retrospectively obtained the deidentified records of patients, who

underwent two mpMRI scans within 2 weeks of the first baseline scan. The patient

records were obtained as deidentified data (including imaging), obtained through the

TCIA (The Cancer Imaging Archive) repository and analyzed in our institution with

an institutional review board–approved Health Insurance Portability and Accountability

Act–compliant retrospective study protocol. Indicated biopsied regions were used as a

marker for our study radiologists to delineate the regions of interest. We extracted 307

quantitative features in each mpMRI modality [T2-weighted MR sequence image (T2w)

and apparent diffusion coefficient (ADC) with b values of 0 and 1,400 mm/s2] across

the two sequential scans. Concordance correlation coefficients (CCCs) were computed

on the features extracted from sequential scans. Redundant features were removed by

computing the coefficient of determination (R2) among them and replaced with a feature

that had the highest dynamic range within intercorrelated groups.

Results: We have assessed the reproducibility of quantitative imaging features among

sequential scans and found that habitat region characterization improves repeatability

in ADC maps. There were 19 T2w features and two ADC features in radiologist drawn

regions (native raw image), compared to 18 T2w and 15 ADC features in habitat regions

(sphere), which were reproducible (CCC ≥0.65) and non-redundant (R2 ≥ 0.99). We also

found that z-transformation of the images prior to feature extraction reduced the number

of reproducible features with no detrimental effect.

Conclusion: We have shown that there are quantitative imaging features that are

reproducible across sequential prostate mpMRI acquisition at a preset level of filters.
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We also found that a habitat approach improves feature repeatability in ADC. A validated

set of reproducible image features in mpMRI will allow us to develop clinically useful

disease risk stratification, enabling the possibility of using imaging as a surrogate to

invasive biopsies.

Keywords: radiomics, mpMRI, prostate cancer, test–retest inmpMRI, prostate TRUS-MRI, repeatableMRI features

INTRODUCTION

Prostate cancer detection using multiparametric magnetic
resonance imaging (mpMRI) has been gaining consensus in
the community for disease detection due to superior lesion
sensitivity compared to transrectal ultrasound (TRUS) imaging
(1, 2). Multiparametric MRI modalities have been useful in
estimating size, volume, and relation to the underlying pathology
of prostate cancer (3). Improvements in imaging technologies
coupled with advances in mpMRI have led to its combined use
with TRUS to guide prostate biopsies that improve detection
of clinically aggressive cancers (4). Most clinical diagnoses
follow a consensus reporting standard with the adoption of
Prostate Imaging Reporting and Data Systems (PI-RADS v2)
(5), which provides qualitative guidelines for clinical assessment.
Variability in mpMRI scan interpretations among radiologists
can in part be attributed to the steep learning curve required
to interpret the scans (6). Quantitative imaging metrics or
radiomics has been used to distinguish clinical abnormalities
found in medical imaging (7, 8). For example, radiomics has
been shown to be both reproducible in lung cancer computed
tomography imaging and prognostic of lung cancer patient
survival (9, 10). Recently, quantitative imaging features obtained
from tumor regions on prostate mpMRI scans have been shown
to be both predictive of clinically aggressive disease (11) and
improve PI-RADS performance (12). In a recent survey on the
role of imaging biomarkers in clinical decision making, the
European Organization for Research and Treatment of Cancer
and Cancer Research UK released a consensus statement with
key recommendations to accelerate clinical biomarker translation
(13). The key component of the consensus statement emphasizes
the importance of validating the repeatability and reproducibility
of these biomarkers for.

Information extraction (as part of a technical assay) and
for proper downstream clinical utilization. Repeatability and
reproducibility are necessary, but not sufficient, conditions for
clinical usage of imaging biomarkers, as there is a higher
relevance requirement such as accurate cancer prediction and
prognosis (14, 15). As mpMRI has no biological reference
for derived image intensity values, there are studies that have
proposed standardizing these values (16–18). Recently, there
have been efforts to find repeatable quantitative (radiomic)
features in mpMRI scan of various cancers, such as rectal
(19), cervix (20), lacrimal gland (21), and prostate (22, 23).
Notably in prostate (23) and cervical studies (20), enrolled
patients were scanned in a test–retest setting. Quantification
of regions of interest has been accomplished in various ways,
either through the use of a few open source tools (24) or more
commonly through custom implementation methods. Recently,

there has been an initiative to standardize definitions of these
quantitative metrics, as recommended by the Image Biomarker
Standardization Initiative (IBSI) (25). In our study, we obtained
test–retest deidentified prostate mpMRI studies from patients
enrolled at the Brigham and Women’s Hospital, shared in
a public repository (26). Patients with pathologically verified
lesions were scored by a clinical pathologist (Gleason score).
Independently marked regions of interest were standardized and
quantified using custom radiomic features that followed the
IBSI consensus criteria (25). We investigated the feasibility of
reproducing these features across the cohort for a diverse set of
prostate lesions. We also propose a habitat-based approach that
converges regions of interest, followed by lesion characterization
to improve repeatability of image features. This work will provide
the basis for using repeatable quantitative features in prognostic
evaluation of prostate cancer patients.

MATERIALS AND METHODS

We obtained deidentified mpMRI patient images along
with segmentation masks (Dicom-Seg) through The Cancer
Imaging Archive (TCIA) collection titled “QIN-PROSTATE-
Repeatability” with detailed descriptions summarized about the
cohort (26).

The patients were accrued for a research study at Brigham
and Women’s Hospital, Harvard Medical School. The patients
waived informed consent, and their deidentified records were
analyzed through our institutional review board–approved
Health Insurance Portability and Accountability Act–compliant
retrospective study protocol. The original study collection had
15 treatment-naive men who had mpMRI scans and biopsy-
confirmed pathology and were scanned again within 2 weeks of
their first baseline scan, during which patients did not receive any
interim treatment. The cohort had 11 patients with a standard
template biopsy and four patients who had suspicion of prostate
cancer based on their clinical record. The mpMRI scans had T2w
axial images [repetition time (TR) 3,350–5,109ms, time to echo
(TE) 84–107ms, field of view (FOV) 140–200 nm] and ADCmap
derived from the diffusion-weighted MRI (b = 0, 1,400 s/mm,
TR 2,500–8,250ms, TE 76–80ms, FOV 760–280mm). Figure 1
illustrates sample lesions delineated on the test and retest T2w
axial images.

Our study radiologist (H.L.) read the patient scans and
localized lesions within the regions on patient scans identified
by the prior study and provided consensus region segmentation
in consultation with the second study radiologist (J.Q.). A third
radiologist (K.G.) provided a random overread. Our radiologists
in consensus agreed to use 13 of the 15 patient mpMRIs; scans
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FIGURE 1 | Screen capture of mpMRI prostate scan (A) with

radiologist-marked lesion shown for the baseline and follow-up scans in T2w,

(B) habitat converged with a sphere (15mm), and (C) habitat (≤median) (in

cyan) for a lesion (in red) shown for test and retest (along the rows) in T2w,

ADC (along the column).

from two patients were dropped because of disagreements in
identifying the abnormality and suboptimal quality of the scans.
Among the converged patients, our radiologists in consensus

identified 15 tumor lesions that were anatomically matched,
longitudinally, across the test and retest time images. Of these,
11 identified lesion boundaries were verified to match with
the prior study at the same anatomical location that had
been pathologically verified (Gleason score); in addition, four
additional lesion abnormalities were identified by our study
radiologist(s), matched longitudinally. Table 1 provides patient
clinical details, including subject identifier, lesions anatomical
location, prostate-specific antigen (PSA) value, and pathological
diagnostic (Gleason) score. Newly identified lesions without
corroborating pathological findings were marked as not available
(NA), by our study radiologists.

Segmentation and Feature Extraction
Our study radiologists used MIMTM PACS [MIM Software
Inc. (Cleveland, OH, USA)] to delineate regions of interest
three-dimensionally (3D) on the prostate mpMRI scans, using
T2w images as the reference sequence. Lesion boundaries were
independently marked on the test and retest scans, whose
cancer status was pathological identified by prior study. Four
additional abnormalities that appeared radiologically malignant
were identified and anatomically matched in sequential time
points by our radiologists, but these lesions did not have
pathological assessment. All lesion boundary segmentation was
carried out as consensus reads by the study radiologists.
Independent boundary delineation between lesions in the test
and retest time point scan not only depicts the real clinical
situation, but also introduces boundary variations, which can
increase variability in the computed quantitative features.

Using the MIM libraries, T2w and ADC sequences were
coregistered to avoid any motion artifacts in acquisition between
the modalities. The registered multimodal image sequences were
exported as 3D image matrices along with segmentation masks.
We developed custom radiomic feature extraction tools, whose
feature definition and formulation followed the IBSI consensus
recommendations (25). We extracted 307 quantitative imaging
features in the converged region of interest, which could be
broadly categorized into three broad groups: C1: size and shape
(45 features), C2: intensity, co-occurrence, run length (107
features), and C3: texture—laws and wavelets (155 features); see
Supplemental Tables S1–S3.

Standardization of Image Regions
To assess the role of standardization procedures on feature
stability in test–retest imaging, we propose to use conventional
z-score standardization. We started by segmenting the prostate
gland in 3D, and the region voxels were standardized by
subtracting the mean and dividing by the deviation obtained
at the gland level. The standardization was carried out
independently for each modality (T2w and ADC) at a patient
level. The lesion region of interest is standardized at the scan level
and tend to have relative intensity with respect to the entire gland
for a patient scan.

Habitat Image Region
We intend to find aggressive tumor-like regions in a marked
lesion boundary of interest, which we call a habitat region.
We define this region as one with restricted diffusion, whose
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TABLE 1 | Summary of patient scans with clinical diagnosis for the biopsies.

# Subject MRI exam PSA, ng/mL Gleason(Bx) Gland PI-RADS v2 (test) PI_RADS v2 (retest) Comment

1 1-b1 Known Pca, staging 5.4 3 + 4 PZ 4 4 Identified

2 1-b2 NA PZ 4 4 Additional

3 2-b1 Known Pca, assess change 7.5 3 + 4 PZ 2 3 Identified

4 2-b2 NA PZ 2 3 Additional

5 3 Known Pca, staging 8.2 3 + 3 PZ 4 4 Identified

6 4 Known Pca, staging 4.3 3 + 3 PZ/TZ 2 2 Identified

7 5-b2 Suspected Pca, staging NA NA TZ 2 2 Additional

8 6-b2 Elevated PSA, staging 5 Benign TZ 1 1 Additional

9 7 Elevated PSA, staging 6.2 4 + 5 PZ 4 4 Identified

10 8 Known Pca, assess change 4.8 4.8 PZ 4 4 Identified

11 9 Elevated PSA, staging 9.4 Benign PZ 4 4 Identified

12 10 Known Pca, assess change 3.15 3 + 3 PZ 4 4 Identified

13 11 Known Pca, assess change 9.7 3 + 3 PZ 4 4 Identified

14 12 Elevated Pca, staging 5.5 Benign PZ 3 4 Identified

15 13 Known Pca, assess change 4.16 3 + 4 PZ 4 3 Identified

16 14 No biopsy performed 7 NA NA 2 2 Ignored

17 15 Benign 9.5 Benign NA 1 2 Ignored

NA, biopsies pathological score not available or cannot be determined; Identified, identified abnormality as stated; Additional, additional abnormality; Ignored, unable to locate abnormality.

characteristics resemble malignancy. We converge on a habitat
region in two different ways: (a) sphere around lesion and (b)
converge region within lesion. To find such a region, we first
consider the entire lesion in 3D and on a colocalized volume
acrossmodalities. In the first case (a), we increase the search space
to a 3D sphere with a fixed diameter of 15mm and converge on a
restricted diffusion region based onADC values using a threshold
defined by the distributional deviation (27, 28) and conforming
regions to within the prostate gland structure. In the second case
(b), we find the most contiguous lower median cutoff that is
spanned in the ADC map within the radiologist-marked lesion
region of interest. Converged habitat region will be mapped back
to each modality of interest (T2w and ADC), and quantitative
features are computed on a newly defined boundary. In the first
case, it is possible to obtain a region larger than that marked by
the radiologists. In the second case, the habitat region will always
be contained within the marked lesion.

Concordant Features
Quantitative features that are reproducible in repeated
experiments and can describe differential physiology are a
necessary step for consideration as biomarkers. The feature
values that are consistent between the test and retest experiment
were evaluated. For each image feature, the concordance
correlation coefficient (CCC) was computed to quantify
reproducibility between the two scans for a patient across the
cohort and independently computed in each modality (T2w,
ADC). The CCC measures deviation from the diagonal line
averaged over samples in the cohort and is commonly used
to measure fidelity in repeated experiments (25). On this set
of highly reproducible features, the next step was to select the
features with a large interpatient variability, measured using the
dynamic range (DR) metric. The normalized DR for a feature

was defined by the inverse of the ratio of the average difference
between measurements to the observed interpatient variability
or biological range:

DR=

(

1-1�n

n
∑

i=1

∣

∣Test(i)-Retest(i)
∣

∣

Max-Min

)

(1)

where n is the total number of patient case; the DR varies from
0 to 1. Values close to 1 are preferred and imply that the feature
has a large relative biological range, limited by the diversity in
the cohort. As the variation between test–retest features increases,
the DR values will show a reduction. Screening for a large DR will
eliminate features that show greater variability in the repeat scans
compared to the range of coverage. It is critical that a clinically
relevant feature have a large DR to adequately distinguish the
variations with tumor types, but show minimal variability in
describing the same tumor type.

Redundancy Reduction
We propose to eliminate redundancies in features that are found
to be reproducible.We computed the coefficient of determination
(R2) between the features that are considered to be reproducible,
which measures the level of dependency between features. The
R2 has a range of 0 to 1 and is a ratio of the known variance
as measured by linear model to the total variance between two
variables or features, where one is the outcome, and the other is
used to form the predictor. Values close to 1 would mean that the
data points are close to the fitted line (i.e., closer to dependency)
(24, 25). The coefficient of determination of simple regression is
equal to the square of the Pearson correlation coefficient (29, 30).
The features were grouped based on the R2 values between them;
in this subset, one representative was picked that had the highest
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TABLE 2 | Distribution of quantitative imaging features at various levels of

concordance and redundancy limits (Rsq at ≥0.99 and ≥0.95) for regions

identified by (A) radiologist marked and (B) habitats converged (sphere), (C)

habitat converged (≤median, ADC map).

(A). Radiologist marked

Concordance and dynamic range with redundancy reduction (Rsq ≥

0.99) Test–retest mpMRI: number of features (radiologist)

CCC and DR and (Rsq ≥ 0.99) ADC ADCz T2 T2z

≥0.95 0 0 0 0

≥0.90 0 0 3 0

≥0.85 0 0 4 1

≥0.80 0 0 5 3

≥0.75 0 0 9 6

≥0.70 1 3 13 10

≥0.65 2 3 19 12

(B). Habitat converged (Sphere)

Concordance and dynamic range with redundancy reduction (Rsq ≥0.99)

Test–retest mpMRI: number of features (habitats)

CCC and DR and (Rsq ≥0.95) ADC ADCz T2 T2z

≥0.95 0 0 0 1

≥0.90 0 0 1 2

≥0.85 1 0 3 6

≥0.80 4 3 6 11

≥0.75 6 5 8 14

≥0.70 9 8 13 18

≥0.65 15 15 18 23

(C). Habitat (≤median ADC map)

Concordance and dynamic range ≥ 0.65 and Rsq ≥0.99

CCC and DR ADC ADCz T2 T2z

≥0.95 0 0 3 1

≥0.90 0 0 4 1

≥0.85 0 0 4 1

≥0.80 0 0 4 3

≥0.75 0 0 7 3

≥0.70 0 0 10 5

≥0.65 1 1 12 10

DR. The procedure was repeated recursively to cover all the
features. We implemented different cutoff values for R2 that
assess linear dependence with any of the other features in the
list. The purpose of this filter step is to eliminate redundancies,
but not necessarily identify independence. The test–retest values
were averaged before computing the R2. We set different cutoff
limits to reduce redundancy and combine features that are over
the cutoff range. We repeated this process for a range of cutoffs
(0.95–0.99), in our study.

RESULTS

As described in the Materials and Methods, the lesion was
independently delineated in test and retest mpMRI scan,

TABLE 3 | Radiomic features that show concordance and non-redundancy in the

test–retest cohort (CCC and DR ≥ 0.65;Rsq ≥ 0.99) for (A) radiologist-marked

region, (B) habitat region (sphere, 15mm), (C) habitat (≤median, ADC).

(A). Radiologist regions

Radiologist marked region (T2): CCC and DR >=0.65; Rsq ≥ 0.99.

T2 (raw): 19 features T2 (z-normalized): 12 features

F138:GLSZM_Large-zone-low-gray-

level-emphasis-

F149:NGTDM_Contrast-

F10:Stat-Max-gray-level

F150:NGTDM_Busyness-

F107:avgCooc_3D_Inv-diff-mom-norm

F284:3D-Wave-P1-L2-C4-

F115:avgCooc_3D_Second-measure-

of-information-correlation-

F113:avgCooc_3D_Cluster-

prominence-F93:avgCooc_3D_Joint-

var

F99:avgCooc_3D_Sum-var-

F151:NGTDM_Complexity

F302:3D-Wave-P1-L2-C13

F300:3D-Wave-P1-L2-C12

F27:Int-hist-90th-percentile

F294:3D-Wave-P1-L2-C9

F304:3D-Wave-P1-L2-C14

F152:NGTDM_Strength

F19:Stat-Root-Mn-Sq-

F149:NGTDM_Contrast-

F10:Stat-Max-gray-level-

F12:Stat-range-

F107:avgCooc_3D_Inv-diff-mom-norm-

F171:3D-LawsF-L5-R5-R5-

F284:3D-Wave-P1-L2-C4-

F3:Stat-SD-

F152:NGTDM_Strength-

F8:Stat-10th-percentile-

Shape and Size Shape and size

F47:Vol-at-Int-fraction-diff

F43:Vol-at-Int-Fraction-10-

F47:Vol-at-Int-fraction-diff-

F43:Vol-at-Int-Fraction-10-

Radiologist marked region (ADC): CCC and DR ≥ 0.65; Rsq ≥ 0.99

ADC (raw): two features ADC (z-normalized): three features

F9:Stat-90th percentile

F8:Stat-10th percentile

F96:avgCooc_3D_Difference-var

F120:avg_3D_SRLGE-(Short-run-low-

gray-level-emphasis)

Shape and size

F88:Center-of-mass-shift-(mm)

(B). Habitat regions

Habitat using sphere (ADC): CCC and DR ≥ 0.65; Rsq ≥ 0.99

ADC (raw): 15 features ADC (z-score): 15 features

F228:3D-LawsF-R5-L5-L5-ADC-Auto

F126:avg_3D_RLN-(Run-length-non-

uniformity)-ADC

F157:3D-LawsF-L5-L5-W5-ADC

F231:3D-LawsF-R5-L5-R5-ADC

F246:3D-LawsF-R5-R5-R5-ADC

F170:3D-LawsF-L5-R5-S5-ADC

F154:3D-LawsF-L5-L5-E5-ADC

F155:3D-LawsF-L5-L5-S5-ADC

F169:3D-LawsF-L5-R5-E5-ADC

F171:3D-LawsF-L5-R5-R5-ADC

F140:GLSZM_Gray-level-non-

uniformity

F124:avg_3D_GLN-(Gray-level-non-

uniformity)

F148:NGTDM_Coarseness

F302:3D-Wave-P1-L2-C13-ADC

F294:3D-Wave-P1-L2-C9-ADC

F218:3D-LawsF-S5-R5-L5-ADC

F296:3D-Wave-P1-L2-C10-ADC

F304:3D-Wave-P1-L2-C14-ADC

F228:3D-LawsF-R5-L5-L5-ADC

F243:3D-LawsF-R5-R5-L5-ADC

F198:3D-LawsF-E5-W5-L5-ADC

F151:NGTDM_Complexity-ADC

F140:GLSZM_Gray-level-non-

uniformity-ADC

F7:Stat-Min-gray-level-ADC

F115:avgCooc_3D_Second-measure-

of-information-correlation-ADC

F148:NGTDM_Coarseness-ADC

(Continued)
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TABLE 3 | Continued

Shape and size: Shape and size:

F90:Border-length-(mm)

F54:Surface-area-(mm∧2)-ADC

F52:Vol-(mm∧3)-ADC

F54:Surface-area-(mm∧2)-ADC

Habitats using sphere (T2): CCC and DR >=0.65; Rsq ≥0.99

T2 (raw): 18 features T2 (z-normalized): 23 features

F117:avg_3D_LRE-(Long-runs-

emphasis)-ADC

F126:avg_3D_RLN-(Run-length-non-

uniformity)-ADC

F144:GLSZM_Zone-percentage-ADC

F27:Int-hist-90th-percentile-ADC

F100:avgCooc_3D_Sum-entropy-ADC

F161:3D-LawsF-L5-E5-R5-ADC

F141:GLSZM_Gray-level-non-

uniformity-normalized-ADC-

F124:avg_3D_GLN-(Gray-level-non-

uniformity)-ADC

F150:NGTDM_Busyness-ADC

F243:3D-LawsF-R5-R5-L5-ADC

F149:NGTDM_Contrast-ADC

F231:3D-LawsF-R5-L5-R5-ADC

F300:3D-Wave-P1-L2-C12-ADC

F140:GLSZM_Gray-level-non-

uniformity-ADC

F115:avgCooc_3D_Second-measure-

of-information-correlation-ADC

F114:avgCooc_3D_First-measure-of-

information-correlation-ADC

F148:NGTDM_Coarseness-ADC

F115:avgCooc_3D_Second-measure-

of-information-correlation-ADC

F149:NGTDM_Contrast-ADC

F29:Int-hist-mode-ADC

F19:Stat-Root-Mn-Sq-ADC

F159:3D-LawsF-L5-E5-E5-ADC

F122:avg_3D_LRLGE-(Long-run-low-

gray-level-emphasis)-ADC

F298:3D-Wave-P1-L2-C11-ADC

F306:3D-Wave-P1-L2-C15-ADC

F40:Max-hist-Gradient-gray-level-ADC

F42:Min-hist-Gradient-gray-level-ADC

F8:Stat-10th-percentile-ADC

F136:GLSZM_Small-zone-low-gray-

level-emphasis-ADC

F152:NGTDM_Strength-ADC

F139:GLSZM_Large-zone-high-gray-

level-emphasis-ADC

F97:avgCooc_3D_Difference-entropy-

ADC-

F41:Min-hist-Gradient-ADC-

F140:GLSZM_Gray-level-non-

uniformity-ADC

F231:3D-LawsF-R5-L5-R5-ADC

F54:Surface-area-(mm∧2)-ADC

F114:avgCooc_3D_First-measure-of-

information-correlation-ADC

F148:NGTDM_Coarseness-ADC

Shape and Size: Shape and Size:

F54:Surface-area-(mm∧2)- F88:Center-of-mass-shift-(mm)-ADC

F87:Weighted-CoM_z-(mm)-ADC

(C). Habitat within lesion

Habitat within lesion (≤ Median): ADC: CCC and DR ≥ 0.65; Rsq ≥ 0.99

ADC (raw): 1 feature ADC (z-normalized): 1 feature

F10:Stat-Max-gray-level-ADC F143:GLSZM_Zone-size-non-

uniformity-normalized-ADCz-Auto

Habitat within lesion (≤ Median): T2: CCC and DR ≥ 0.65; Rsq ≥0.99

T2 (raw): 12 features T2 (z-normalized): 10 features

F93:avgCooc_3D_Joint-var-ADC-T2

F151:NGTDM_Complexity-ADC-T2

F152:NGTDM_Strength-ADC-T2

F27:Int-hist-90th-percentile-ADC-T2

F131:avg_3D_RE-(Run-entropy)-ADC-

T2

F113:avgCooc_3D_Cluster-

prominence-ADC-T2

F282:3D-Wave-P1-L2-C3-ADC-T2

F290:3D-Wave-P1-L2-C7-ADC-T2

F149:NGTDM_Contrast-ADC-T2

F18:Stat-ENERGY-ADC-T2

F40:Max-hist-Gradient-gray

-level-ADC-T2

F99:avgCooc_3D_Sum-var-ADC-T2

F3:Stat-SD-T2z

F9:Stat-90th-percentile-T2z

F149:NGTDM_Contrast-T2z

F93:avgCooc_3D_Joint-var-T2z

F27:Int-hist-90th-percentile-T2z

F113:avgCooc_3D_Cluster-

prominence-T2z

F151:NGTDM_Complexity-T2z

F152:NGTDM_Strength-T2z

F19:Stat-Root-Mn-Sq-T2z

F30:Int-hist-interquartile-range-T2z

with each delineation done in consensus between the study
radiologists. Using the lesion boundary as reference, the habitat
region was converged automatically. We define habitat as a
contiguous region colocalized to a low diffusion region defined
by the ADC map. We then standardize the image voxels
using z-score prior to any computations; in addition, we
contrasted our findings with a non-standardized (raw) image
region. In total, four image regions were investigated (raw-
radiologist, z-score radiologist, raw-habitat, z-score habitat)
by computing 307 quantitative image features in each of
the regions, independently in test and retest images. We
computed CCC to find repeatable image features, followed by
application of a DR filter. Additionally, redundant features
were removed based on coefficient of determination between
the feature sets, repeated at different cutoffs. Distribution of
features with different level settings in concordance correlation
(CCC) and DR across the patient cohort is shown in
Table 2. The imaging features that were extracted for respective
modalities are listed in Table 3, obtained with R2 ≥ 0.99
(CCC and DR ≥0.65) and Supplemental Tables 4,5, obtained
with R2 ≥ 0.95 (CCC and DR ≥0.65). Figure 2 shows the
distribution of CCC and DR for features extracted using
different boundary regions; radiologist delineated (R), habitat
converged (H), and habitat within the manually delineated
region (H50).

In our analysis, we find there are similar distributions of
features between T2w- raw (native intensity values), radiologist-
marked regions (19 features, CCC ≥0.65), and T2w-habitat with
sphere regions (18 features, CCC ≥0.65), with standardized T2w
z-score habitat (23 features, CCC ≥0.65) regions showing more
stable features compared to T2w z-score raw regions. There were
12 stable features in T2w and 10 in T2w z-normalized regions,
both evaluated at CCC ≥0.65 and with redundancy R2 ≥ 0.99
(Tables 2B,C, 3B,C). Of the 19 features that are stable in T2w
radiologist-marked regions, there are two volume features that
measure within a certain intensity range and 17 others that are
texture features.

In ADC map images, there were two features found within
radiologist-marked regions compared to three features in ADC
z-score regions, both evaluated at CCC ≥0.65 and with
redundancy R2 ≥ 0.99. Using ADC-sphere–based habitats, we
find the number of stable features increased to 15 in the ADC-
habitat, seen in both radiologist-marked and z-scored normalized
regions. While using habitat region within lesion approach, the
new region was restricted to be within the lesion. We find there
was one stable feature in ADC and ADC z-normalized region; in
these regions, five and one feature were concordant, respectively
(see Supplemental Tables). It seems z-score standardization
moderately helps to improve the number of repeatable features
in ADC maps.

Figures 3, 4 show the distribution of concordance coefficient
and DR metric values, computed on features, respectively.
They are grouped into the following broad categories: size and
shape (C1), intensity and co-occurrence (C2), and laws and
wavelets (C3). Texture features in the C2 intensity and co-
occurrence category show higher concordance compared to other
categories of features in T2w. The features computed in ADC
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FIGURE 2 | Repeatability of quantitative features across different lesion boundaries. (A) Concordance coefficient, (B) dynamic range.

map do not show any consistent trend. It is also interesting
to note that features in size and shape categories show lower
concordance values.

While the ADC map shows intensity statistics to be
reproducible, the z-score region shows reproducible co-
occurrence matrix. The habitat region using sphere approach
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FIGURE 3 | Concordance of quantitative features across feature subgroup.

(A) T2w, (B) T2w z-normalized, (C) ADC, (D) ADC z-normalized.

shows more than eight features related to fine texture (Laws)
and two features related to shape category. While the T2-habitat
(sphere) shows more features from co-occurrence, neighborhood

FIGURE 4 | Dynamic range of quantitative features across feature subgroup.

(A) T2w, (B) T2w z-normalized, (C) ADC, (D) ADC z-normalized.

gray tone difference categories. In region converged by habitat
within lesions, ADC map shows one feature related to gray level
that is stable and non-redundant. The T2-habitat (within lesion)
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shows 12 features that are related to texture–neighborhood
gray tone, co-occurrence, and wavelet based. The z-score
standardization in T2-habitat (within lesion) region shows
features related to gray-level intensities, co-occurrence, and
neighborhood gray tone features that are reproducible and stable.

DISCUSSION

Clinically relevant imaging biomarkers are expected to be
repeatable in a test–retest patient cohort, reproducible across
centers, and relevant to describing the tumor physiology across
different conditions. It is essential for imaging features to be used
as a biomarker to be repeatable, at an acceptable level, which
is dependent on the current imaging technology. In our study,
we obtained prostate patient mpMRI scans within 2 weeks of
the baseline time point and believe that the cohort is a unique
public data set in prostate cancer. While we understand that
the cohort size may be small for obtaining elaborate inferences,
the methods applied by our study nonetheless allow us to assess
feature stability and generate potential biomarkers in prostate
mpMRI. We analyzed the repeatability in four different regions:
(a) raw, radiologist-drawn; (b) Z score, radiologist drawn; (c)
raw, habitats; (d) z-score, habitat regions. The study allowed us
to contrast the reproducible features under these constraints.

The sphere-based habitat tends to increase the capture region
that may provide a larger lesion boundary. This certainly helps to
find stable and reproducible features in the ADC map and T2w
image region. In comparison to habitat region formed within the
lesion, it seems to restrict ADC intensity gray level that helps to
find stable features in T2w, with more than 21 features with high
concordance (CCC ≥0.75), of which 18 features are stable and
reproducible (CCC ≥0.85, R2 > 0.099).

We believe that the habitat approach reduces variability in
T2w and rather highly variable ADCmap images, which typically
have lower resolution. There are a number of automated and
semiautomated segmentation procedures that could be used
in mpMRI, but we restricted our approach to manual, expert
radiologist–drawn boundaries to initially delineate the lesions.
We used the manual segmented region as an initial seed point
for habitat region delineation, which is automatically converged
using multimodal sequences (T2w, ADC).

In a prior study (23), they used an interclass correlation
with a cutoff of 0.85 and reported features related to entropy,
inverse difference moments to be highly repeatable. In our
study, we find that co-occurrence and neighborhood gray tone
difference matrices (NGTDMs) are two feature categories that
are repeatable in T2w and T2w z. In ADC maps, the statistics
of intensity-type features seem to show up as stable even in raw
intensities (without any standardization), whereas average co-
occurrence, short run length gray level emphasis-type features are
stable in z-normalized ADC maps. We also find habitat (sphere)
approach seems to improve the number of repeatable features in
ADC maps and in T2w (Figure 2).

In the previously mentioned study, the authors claimed
neither standardization nor prefiltering improved repeatability
of image features. In our study, we used CCC with additional

criteria such as DR and redundancy reduction to filter the
features. We also find that most size and shape–based features
show lower concordance in T2w/T2w z, but a larger spread on
ADCmap in comparison to two categories of features (Figure 3).
This is probably due to the use of different regional convergence
methods coupled with independently defined, delineated lesion
boundaries in the test and retest scans. In comparison, the prior
study (23) claimed high concordance for features in the size and
shape–based category.

Because of scan quality limitations, some of the prior
marked regions could not be ascertained by our radiologist,
and additional regions of abnormality were located in consensus
by the study radiologists. Additionally, prior studies (22, 23)
restricted lesions to the peripheral zone, while our study
radiologists identified lesions without any zonal restrictions.
These differences have certainly increased the feature variability,
which could be one cause for a lower number of repeatable
features. Nevertheless, our cohort of patients provides a diverse
set of lesions that are spread across the gland. The habitat
approach proposed in the study shows promise in increasing the
number of repeatable imaging features.

Study Limitations
This study provides a unique patient cohort with test–retest
scans obtained within 2 weeks between scans; the cohort
size is certainly a limited factor for a broader inference. The
methodology used in the study with endorectal coils introduced
artifacts that could have altered the voxel intensities and
influenced the image feature reproducibility. We have taken
effort to remove patient scans that show large artifacts and
regions that could not be converged in a consensus read. Despite
our efforts, there could be a certain level of variation in features
value due to voxel level changes.

CONCLUSIONS

In the current study, we demonstrate that there are quantitative
imaging features that can be obtained repeatedly in prostate
mpMRI. We show that sublocalized regions or habitats can
improve repeatability of imaging features, possibly by restricting
the range of variations in the voxel intensity levels in these
MRI scan modalities. We also find that z-score normalization
of the image intensities had minimal effect on the feature
reproducibility. Current findings allow us to obtain reproducible
and non-redundant sets of image features that could be used for
predictive and prognostic purpose.
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Background and Purpose: Lymph node status is a key factor for the recommendation

of organ preservation for patients with locally advanced rectal cancer (LARC) following

neoadjuvant therapy but generally confirmed post-operation. This study aimed to

preoperatively predict the lymph node status following neoadjuvant therapy using

multiparametric magnetic resonance imaging (MRI)-based radiomic signature.

Materials andMethods: A total of 391 patients with LARCwho underwent neoadjuvant

therapy and TME were included, of which 261 and 130 patients were allocated to the

primary cohort and the validation cohort, respectively. The tumor area, as determined by

preoperative MRI, underwent radiomics analysis to build a radiomic signature related

to lymph node status. Two radiologists reassessed the lymph node status on MRI.

The radiomic signature and restaging results were included in a multivariate analysis

to build a combined model for predicting the lymph node status. Stratified analyses

were performed to test the predictive ability of the combined model in patients with

post-therapeutic MRI T1-2 or T3-4 tumors, respectively.

Results: The combinedmodel was built in the primary cohort, and predicted lymph node

metastasis (LNM+) with an area under the curve of 0.818 and a negative predictive value

(NPV) of 93.7% were considered in the validation cohort. Stratified analyses indicated

that the combined model could predict LNM+ with a NPV of 100 and 87.8% in the

post-therapeutic MRI T1-2 and T3-4 subgroups, respectively.

Conclusion: This study reveals the potential of radiomics as a predictor of lymph node

status for patients with LARC following neoadjuvant therapy, especially for those with

post-therapeutic MRI T1-2 tumors.

Keywords: lymph node metastasis, prediction, neoadjuvant therapy, locally advanced rectal cancer, radiomics
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INTRODUCTION

Neoadjuvant therapy followed by total mesorectal excision
(TME) is the standard treatment for patients with locally
advanced rectal cancer (LARC) (1). After neoadjuvant therapy,
∼50–60% of patients are downstaged, and ∼20% show
pathologic complete response (1–3). Although TME is effective at
providing local tumor control, it is also associated with significant
genitourinary and gastrointestinal morbidity and long-lasting
complications such as sexual dysfunction and urinary or fecal
problems (4–6). Hence, organ preservation strategies, such as
watchful waiting and local excision (7) following neoadjuvant
therapy, are becoming more popular for preserving organ
function and improving the patients’ quality of life (8–12).

One of the disadvantages of organ preservation is a lack
of exact pathologic lymph node staging. Leaving lymph node
metastasis (LNM+) unresected can potentially lead to local
recurrence or distant spread. Magnetic resonance imaging (MRI)
and computer tomography are the routine imaging modalities
for restaging following neoadjuvant therapy for rectal cancer,
but with limited accuracy and with no consensus regarding
the standard definitions of LNM+ (13). Neoadjuvant therapy
results in changes in shape, size, and texture of a positive
lymph node, but these changes still cannot exactly indicate a
positive node turning out to be negative. The remains of tumor
cells in small nodes make nodal restaging a challenge, which
makes patients to have to undergo TME to obtain the precise
pathological nodal stage (14). Several studies have investigated
the predictive factors for LNM+ but have not identifiedmeasures
with sufficient predictive precision to enable clinical decisions.
For example, a nomogram based on preoperatively available
clinicopathologic features has been created to predict LNM+

following neoadjuvant treatment for LARC. If the threshold of
0.3 nomogram predicting the risk of positive nodes is used,
almost 80% of the patients with LNM+ will be correctly
identified (15). Azizian et al. found that changes of circulating
miR-18b and miR-20a expression levels during neoadjuvant
treatment could predict LNM+ with a NPV of 79 and 85%,
respectively (16). A recent study reported that two factors
(ypT stage <3 and lymphovascular invasion) were associated
with ypN0 status in good responders following neoadjuvant
therapy, indicating a high positive predictive value (PPV) for
identifying ypN0 patients (17). However, this study had a small
sample size and lacked validation, and the predictive factors
were derived from resection specimens; this precluded desirable
preoperative decision-making.

Radiomics is a rapid developing field of quantitative image
analysis that may facilitate the prediction of lymph node status
following neoadjuvant therapy (18, 19). The utility of radiomics
is evident from clinical research, such as the prediction of
therapeutic responses (20–23), survival analysis (24, 25), and

Abbreviations: ADC, apparent diffusion coefficient; AUC, area under curve;

CI, confidence interval; LARC, locally advanced rectal cancer; LNM+, lymph

node metastasis; LNM-, lymph node non-metastasis; LoG, Laplacian of Gaussian;

MRI, magnetic resonance imaging; NPV, negative predictive value; PPV, positive

predictive value; ROC, receiver operating characteristic; TME, total mesorectal

excision

prediction of clinical events (26, 27). Recently, two studies (28,
29) have attempted to detect the associations between local
tumor region information on imaging and surrounding nodals
and demonstrated the potential of preoperative tumor radiomic
features in predicting LNM+ in rectal cancer; however, their
analyses were limited to patients that were not administered with
any preoperative treatment. Therefore, we hypothesize that local
tumor region information following neoadjuvant therapy may
also associate with regional nodal status.

Radiomics could quantitatively analyze image information,
which may help to detect some associations between local
tumor information on imaging and surrounding nodal status.
This study aimed to assess if preoperative MRI-based radiomic
features could reliably predict lymph node status following
neoadjuvant therapy in LARC to improve patient management.
Briefly, we first attempted to construct a multiparametric
MRI-based radiomic signature. Then, we built and validated
a prediction model incorporating the radiomic signature
and radiologist’s assessment results. Finally, we evaluated the
prediction model’s performance in two subgroups with different
post-therapeutic MRI T (ymrT) stages to identify the ideal
population in which this model would be applicable.

MATERIALS AND METHODS

Patients
This retrospective study was approved by the institutional
review board of the Sixth Affiliated Hospital of Sun Yat-sen
University. The requirement for informed patient consent was
waived. A total of 425 patients who were initially diagnosed
with N+ or T3/T4 rectal cancer, also named as LARC, and
received neoadjuvant therapy followed by TME surgery between
November 2012 and May 2017 at the Sixth Affiliated Hospital
of Sun Yat-sen University were included. The exclusion criteria
were as follows: (i) lack of multiparametric MRI data including
T1-weighted fast spin-echo imaging (T1w), T2 weighted fast
spin-echo imaging (T2w), diffusion-weighted imaging (DWI),
or contrast-enhanced T1-weighted fast spin-echo imaging (CE-
T1w) 1 week before TME surgery; (ii) insufficient MRI quality
due to bowel peristalsis-related artifacts; (iii) lack of clinical
information including sex, age, and carcinoembryonic antigen
(CEA) (cutoff: ≥ 5 ng/ml, < 5 ng/ml) blood level; and (iv) lack
of pathology reports, since the pathological lymph nodal status
will be obtained from the pathology reports. The recruitment
of patients is depicted in Figure 1. Patients were then randomly
allocated to a primary cohort and a validation cohort in a
ratio of 2:1.

Multiparametric MRI Acquisition
All patients were scanned with a 1.5-Tesla MR (Optima MR
360, GE Medical Systems, USA) using an eight-element body
array coil with fixed image protocols. The scanning sequences
consisted of T1w, T2w, DWI (two b-values including 0 and 800
s/mm2), and CE-T1w. The technical MRI parameters are listed in
Supplementary Table A2.
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FIGURE 1 | Recruitment pathway for patients in this study. LARC, locally advanced rectal cancer; T1w, T1-weighted; CE-T1w, contrast-enhanced T1-weighted; DWI,

diffusion-weighted imaging; MRI, magnetic resonance imaging.

FIGURE 2 | (A) Sample images of LNM+, where the red line indicates the tumor margin. (B) Sample images of LNM–. Cutoffs for the radiomic signature and

combined model are −1.4208 and 0.0897, respectively, for patients with ymrT1-2 tumors in this study. These two patients were misdiagnosed by the radiologist but

were correctly assessed by radiomics analysis. LNM+, lymph node metastasis; LNM–, lymph node non-metastasis; DWI, diffusion-weighted imaging; T1w,

T1-weighted; CE-T1w, contrast-enhanced T1-weighted; T2w, T2-weighted.

Tumor Masking and Radiomic Feature
Extraction
Two gastrointestinal radiologists with 5 (radiologist #1) and 10
(radiologist #2) years of experience examined the MR images
and independently defined the regions of interest by manually

outlining the tumor margin using itk-SNAP software (www.
itksnap.org) on axial slices containing the largest cross-sectional
tumor area on each imaging sequence, as shown in Figure 2.

At an intuitive level, the most reasonable way to predict the

lymph node status is to perform radiomic analysis on each
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node. However, doing so in this retrospective study is almost
impossible as it needs to know every node’s pathological status
and needs tomap every lymph node tissue onMRIs. In this study,
we could only obtain the patient-level lymph node status from
the post-operative pathology report, which was the number of
positive nodes and all nodes from the resection specimens. There
even existed some small nodes that could be identified under
the microscope but are missed on MRIs following neoadjuvant
therapy. In addition, one problem must be solved if we perform
radiomic analysis on identifiable nodes on MRIs. The number
of identifiable nodes can vary a lot between different patients.
That means that we will obtain feature sets with different feature
numbers between different patients. Transforming these feature
sets into the same feature space is difficult to solve. Thus, we
defined a local tumor area as a region of interest like most of
the published study (28, 30, 31). Local tumor region information
following neoadjuvant therapy may also associate with regional
nodal status. Intraclass correlation coefficients were used to assess
the agreement of extracted features by two radiologists. The
regions of interest on DWI were delineated at a b value of 800
s/mm2 and were then copied onto the corresponding apparent
diffusion coefficient (ADC) maps.

The radiomic features extracted are listed in
Supplementary Table A3. A total of 264 features were extracted
from each of the T1w, T2w, and CE-T1w images and the ADC
maps. These features could be divided into three categories,
including first-order statistics, textural features, and Laplacian of
Gaussian (LoG) filtration features. Radiomic feature extraction
was conducted using an in-house software written in MATLAB
(MathWorks, Inc., Natick, MA, USA). All features were linearly
normalized into a range [0, 1] with the formula as follows:

Xnorm
i = (Xi − Xmin

i )/(Xmax
i − Xmin

i ) (1)

where Xnorm
i was the ith normalized feature value, Xi was the ith

raw feature value, and Xmin
i and Xmax

i were the minimum value
and maximum value of the ith raw feature values in the primary
cohort, respectively.

Feature Selection and Radiomic Signature
Construction
We built a model for predicting LNM+ in the primary cohort
and evaluated its generalizability in the validation cohort. Before
modeling, a feature selection program consisting of three steps
was executed in the primary cohort. First, the Wilcoxon rank-
sum test was performed for every feature between the LNM+

and LNM- groups as a rough identification of features with p
≤ 0.1 to be used in further processing. Second, the Spearman
correlation coefficient was calculated between any two features,
and the feature with the bigger Wilcoxon rank-sum test p-
value was excluded when the absolute value of the correlation
coefficient exceeded 0.9. Third, the least absolute shrinkage and
selection operator (LASSO) method was applied to select the
most predictive features (32). To avoid over-fitting, the best
LASSO regularization parameter “lambda” was determined by a
10-fold cross-validation. Features with one standard error from
the minimum criterion were selected for modeling. Then, a

multivariate logistic regression model was built based on the
selected features. Summation of the selected features multiplied
by the corresponding coefficients was performed for each patient
as a radiomic signature, which was mathematically represented
as follows:

radiomic signature =

n
∑

i=1

C ∗
i Xi + b (2)

Y = 1/

(

1+ exp

(

−

(

n
∑

i=1

C ∗
i Xi + b

)))

(3)

where Y was the probability of LNM+ predicted by this model,
b was the intercept, Xi was the ith selected feature, and Ci

was the coefficient of the ith selected feature. Receiver operating
characteristic (ROC) curve analysis was performed in both
cohorts to evaluate the predictive ability of radiomic signatures
in differentiating LNM+ from LNM-. All steps were performed
with R version 3.5.2 (www.r-project.org) using the “glmnet,”
“glm2,” and “pROC” packages.

Comparison of Radiomic Signature and
Radiologists’ Diagnostic Performance
Radiologists #1 and #2, who were blinded to any medical
record information, independently reviewed the MRIs and
independently determined the post-therapeutic ymrT stage and
post-therapeutic MRI N (ymrN) stage. The ymrT stage was
based on the depth of tumor penetration (mucin or soft
components) relative to the muscularis propria as T1 (limited to
the mucosa and submucosa), T2 (invasion but no penetration of
the muscularis propria), T3 (penetration beyond the muscularis
propria), or T4 (involvement of other organs). The ymrN status
was defined as positive metastasis if the regional lymph node
manifested with a small diameter (≥ 6mm), irregular border,
mixed signal intensity (SI), or high SI assumed to represent
mucin. The N stage was based on the number of positive
lymph nodes: N1 (at least one but less than three nodes) or N2
(more than or equal to three nodes). If the smallest diameter
of the largest lymph node was <6mm and had no features of
irregular border and no mixed SI was observed, the N status was
graded as N0 (33). Mcnemar test (34) and net reclassification
improvement (NRI) test (35) were used for statistical analysis of
the prediction results of the radiomic signature and radiologists’
diagnosis. Univariate logistic regression analysis was performed
in the primary cohort to select the clinical variables with a
significant association. Finally, we established a combined model
incorporating the radiomic signature and the associated clinical
variables by multivariate logistic regression and evaluated this
model in the validation cohort. A clinical model incorporating
associated clinical variables without radiomic signature was also
built through multivariate logistic regression for comparison
purposes. To provide an easily used quantitative tool to predict
the probability of LNM+, we converted the combined model to
a nomogram. The calibration curves were plotted to assess the
consistency between the predicted probability and the actual rate
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of LNM+. Hosmer-Lemeshow test with p-value > 0.05 indicates
a good fit of the model (36). Decision curve analysis was also
conducted to assess the clinical use of this nomogram.

Unlike patients with ymrT3-4 tumors, patients with ymrT1-
2 tumors usually exhibit a lower probability of LNM+ and a
smaller depth of invasion (37); thus, they are more suitable
candidates for local excision. The predictive ability of the model
may differ in subgroups divided according to ymrT stage.
Thus, we conducted stratified analyses in ymrT1-2 and ymrT3-4
groups, respectively.

Area under the curve (AUC), accuracy, sensitivity, specificity,
PPV, and negative predictive value (NPV) according to the
Youden cutoff (38) were calculated to quantize the predictive
ability of the prediction models in both cohorts.

RESULTS

Demographic and Clinical Data
A total of 391 patients were enrolled in the study, as described in
Figure 1; 231 of these patients underwent preoperative treatment

with four to six cycles of mFOLFOX6 chemotherapy (infusional
fluorouracil plus oxaliplatin of 85 mg/m2 intravenously on
day 1 of each chemotherapy cycle). Postoperative adjuvant
chemotherapy was performed with seven cycles of mFOLFOX6;
the rest of the 160 patients received preoperative treatment with
five cycles of infusional fluorouracil (leucovorin 400 mg/m2

intravenously followed by fluorouracil 400 mg/m2 intravenously
and fluorouracil 2.4 g/m2 by 48-h continuous intravenous
infusion) and concurrent radiation treatment. Radiotherapy was
delivered at 1.8 to 2.0Gy daily from Monday through Friday
for a total of 23 to 28 fractions over 5 to 6 weeks and a
total dose of 46.0 to 50.4Gy. Radiation was delivered with a
minimum energy of 6-MV photons through a three- or four-
field box technique to the primary tumor and to mesorectal,
presacral, and internal iliac lymph nodes (39). A post-operative
pathological examination indicated that 87 patients were LNM+.
The number of positive nodes ranges from 1 to 12, with a median
number of 2. The other 304 patients were LNM-. The clinical
characteristics of the patients enrolled are summarized in Table 1

and in Supplementary Table A1. There were no significant

TABLE 1 | Clinical characteristics of patients in primary and validation cohorts.

Characteristic Primary cohort (n = 261) p Validation cohort (n = 130) p

LNM+ (n = 58) LNM- (n = 203) LNM+ (n = 29) LNM- (n = 101)

Age, years 50.24 ± 11.76 54.61 ± 12.69 0.203 53.17 ± 12.95 53.88.06 ± 11.36 0.775

cT stage, n (%) 0.520 0.247

T2 2 (4) 14 (7) 0 (0) 9 (9)

T3 42 (72) 149 (73) 24 (83) 75 (74)

T4 14 (24) 40 (20) 5 (17) 17 (17)

cN stage, n (%) 0.003 0.100

N0 6 (11) 42 (21) 5 (17) 30 (30)

N1 17 (29) 88 (43) 10 (35) 43 (43)

N2 35 (60) 73 (36) 14 (48) 28 (27)

Concurrent radiation, n (%) 0.759 0.533

Yes 21 (36) 78 (38) 12 (41) 49 (48)

No 37 (64) 125 (62) 17 (59) 52 (52)

Sex, n (%) 0.717 0.293

Male 42 (72) 142 (70) 23 (79) 70 (69)

Female 16 (28) 61 (30) 6 (21) 31 (31)

CEA, n (%) 0.317 0.247

Positive 14 (24) 37 (18) 8 (28) 18 (18)

Negative 44 (76) 166 (82) 21 (72) 83 (82)

ymrT stage, n (%) 0.018 0.032

T1 1 (2) 25 (12) 0 (0) 7 (7)

T2 11 (19) 55 (27) 3 (10) 32 (32)

T3 36 (62) 105 (52) 23 (80) 57 (56)

T4 10 (17) 18 (9) 3 (10) 5 (5)

ymrN stage, n (%) <0.001 0.006

N0 24 (41) 142 (70) 14 (49) 73 (72)

N1 19 (33) 51 (25) 10 (34) 25 (25)

N2 15 (26) 10 (5) 5 (17) 3 (3)

Age is presented as mean± standard deviation. The p-value for age was calculated using independent samples t-test analysis. The p-values for the categorical variables were calculated

using Pearson’s chi-square test analysis. ymrT stage and ymrN stage were restaged by radiologist #2 who has 10 years of experience. Bold font indicates p < 0.05. LNM+, lymph

node metastasis; LNM–, lymph node non-metastasis; CEA, carcinoembryonic antigen; ymr, restaging MRI assessments.
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differences in the clinical variables between the primary and the
validation cohorts. Table 2 exhibited the agreement of ymrT/N
stage and ypT/N stage. The ymrT could predict ypT stage with
an accuracy of 88.2%. The major predicted error was derived
from overstaging of ypT0–2. However, in terms of node restaging,
ymrN and ypN showed bad concordance.

Radiomic Signature Construction
The intraclass correlation coefficients calculated for features
extracted by the two radiologists ranged from 0.725 to 0.942,
reflecting a good agreement. The features extracted from the
regions of interest delineated by the radiologist with 10 years

of experience were used for further analysis. Thirteen features
were selected to build a radiomic signature, as listed in
Supplementary Table A4. None of the T1w feature was selected,

TABLE 2 | Confusion matrice for tumor restaging and node restaging.

ypT0-2 ypT3-4 yN0 yN+

ymrT1–2 120 14 ymrN0 215 38

ymrT3–4 32 225 ymrN+ 89 49

The ymrT/N stages were assessed by radiologist #2 who has 10 years of experience.

FIGURE 3 | (A) Distribution of radiomic signature in the primary and validation cohorts, where the green line indicates the Youden cutoff in the primary cohort, and the

p-value was calculated using Wilcoxon rank-sum test. (B) ROC curves of radiologists’ and prediction models. LNM+, lymph node metastasis; LNM-, lymph node

non-metastasis; ROC, receiver operating characteristic.
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indicating a poor predictive ability of T1w features. In both
cohorts, the radiomic signature was significantly higher in the
LNM+ group than in the LNM- group, as shown in Figure 3.
The radiomic signature yielded an AUC of 0.787 [95% confidence
interval (CI): 0.726–0.848] and 0.783 (95% CI: 0.690–0.875) in
the primary and validation cohorts, respectively.

Comparison of Radiomic Signature and
Radiologists’ Diagnostic Performance
The assessment results of the two radiologists were highly
consistent, yielding a Kappa value of 0.936 and 0.933 for ymrT
stage and ymrN stage, respectively. The confusion matrices, as
shown in Supplementary Figure A1, indicated that radiologist
#1 and radiologist #2 yielded a sensitivity of 50.57% (95% CI:
35.6–64.7%) and 56.32% (95% CI: 42.3–70.8%), respectively. The
AUC of radiologist #2 was 0.62 (95% CI: 0.518–0.722) in the
validation cohort, which was significantly (Delong test p-value:
0.021) smaller than that of the radiomic signature. The sensitivity
of the radiomic signature reached a score of 82.8% (95%CI: 68.8–
96.6%), which was significantly (Mcnemar test p-value: 0.022)
different from that of radiologist #2 in the validation cohort.
The specificity values of radiomic signature and radiologist #2
were 58.4% (95% CI: 48.8–67.7%) vs. 72.2% (95% CI: 63.5–
81.0%), which were also significantly different (Mcnemar test
p-value: 0.044).

As the diagnostic accuracy of radiologist #2 was higher than
that of radiologist #1, here we only reported the prediction results
based on post-therapeutic restaging results from radiologist #2,
and those based on the restaging results from radiologist #1
were provided in the Supplementary File. In univariate logistic
regression analysis in the primary cohort, post-therapeutic ymrT
stage, ymrN stage, and radiomic signature were statistically
significant (Table 3). We built a combined model to integrate
the staging results of radiologist #2 and the radiomic signature
using multivariate logistic regression in the primary cohort and
converted it into a nomogram, as shown in Figure 4. Compared
to the radiologists’ performance, the prediction accuracy in the
validation cohort using the combined model was improved (NRI
test p-value: 0.125) to 75.4% from the accuracy value of 63.8%

of radiologist #2, yielding a sensitivity of 82.8% (95% CI: 68.5–
82.8%), specificity of 73.3% (95% CI: 64.8–81.9%), PPV of 47.1%
(33.2–60.8%), and NPV of 93.7% (88.3–99.0%). The clinical
model incorporating ymrT and ymrN yielded an AUC value of
0.696 (95% CI: 0.619–0.773) and 0.701 (95% CI: 0.601–0.801) in
the primary cohort and the validation cohort, respectively. The
Delong test analysis showed that the clinical model performed
significantly (p < 0.05) worse than the combined model but
was comparable to the radiomic signature (p > 0.05) in both
cohorts. All these results are listed in Supplementary Table A5

and Figure 2A.
The stratified analyses indicated that radiologist #2 yielded

a better prediction in the ymrT1-2 subgroup than that in the
ymrT3-4 subgroup with NPV of 90.7 vs. 80%. The combined
model also performed better in the ymrT1-2 subgroup of
the validation cohort with an AUC of 0.915 and a NPV of
100%. In the ymrT3-4 subgroup of the validation cohort, the
combined model yielded an AUC of 0.764 and a NPV of
87.8% according to the Youden cutoff. Detailed results are
shown in Figures 5, 6 and in Supplementary Tables A6, A7. For
comparison, the combined model based on radiomic signature
and restaging results from radiologist #1 yielded a NPV of
100 and 86.7% in ymrT1–2 subgroup and ymrT3-4 subgroup,
respectively (Supplementary Table A8).

DISCUSSION

In this study, a major finding was that radiomics is a promising
approach for the preoperative prediction of LNM+ following
neoadjuvant therapy in patients with LARC. Radiomic signature
was a powerful predictor independent of the radiologists’
diagnostic results, offering a NPV of 92.2% in the validation
cohort. Combining radiomic signature with the radiologists’
diagnostic results improved the NPV to 93.7%. In the post-
therapeutic ymrT1-2 subgroup, the combined model yielded a
NPV of 100% and specificity of 59%. However, in the post-
therapeutic ymrT3-4 subgroup, the combined model did not
achieve 100% NPV.

TABLE 3 | Univariate and multivariate logistic regression analysis for clinical characteristics and radiomic signature.

Parameter Univariate Multivariate

p OR 95% CI p Coefficient OR 95% CI

Sex 0.7169 0.89 0.46–1.69 – – – –

Age 0.2029 0.78 0.53–1.14 – – – –

CEA 0.3183 1.43 0.71–2.87 – – – –

Concurrent radiation 0.7590 0.91 0.49–1.66 – – – –

ymrT stage 0.0020 1.93 1.27–2.93 0.4210 0.2000 1.22 0.75–1.99

ymrN stage <0.0001 7.72 3.31–18.02 0.0063 0.6963 4.03 1.48–10.94

Radiomic signature <0.0001 6.31 3.45–11.55 <0.0001 1.7705 5.15 2.78–9.55

Intercept – – – 0.8685 −0.1320 – –

The p-values were calculated using Wald test analysis. Bold font indicates p < 0.05. OR, odds ratio; CI, confidence interval; CEA, carcinoembryonic antigen; ymr, restaging

MRI assessments.
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FIGURE 4 | (A) Nomogram of the combined model. (B) Calibration curves of the combined model in both cohorts. (C) Decision curve analysis of the combined model

in both cohorts. LNM+, lymph node metastasis; HL, Hosmer-Lemeshow.

A major factor limiting the clinical application of organ
preservation strategies is that the precise assessment of lymph
node status is challenging (14, 40) since the completeness of
tumor resection can be determined by pathological examination,

but residual LNM+ has a high risk of leading to an adverse
prognosis. Although the size and the morphological features
(i.e., round shape, irregular border, and heterogeneous texture)
have been proposed to define a clinically positive lymph node
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FIGURE 5 | (A) Distribution of combined model predicted probability of LNM+ in post-therapeutic ymrT1-2 subgroups of both cohorts, where the green line indicates

the Youden cutoff in the primary cohort. (B) ROC curves of radiologists’ and prediction models in post-therapeutic ymrT1-2 subgroups of both cohorts. LNM+, lymph

node metastasis; LNM-, lymph node non-metastasis; ROC, receiver operating characteristic.

on MRI, the correspondence between post-therapeutic cN+ and
pN+ is still poor. Recently, a large retrospective study from the
Netherlands revealed that using post-therapeutic cN+ to predict
pN+ yielded a sensitivity of 56%, specificity of 67%, PPV of 47%,
and NPV of 75% for rectal cancer patients who received a short
course of radiotherapy with short interval to surgery between
2011 and 2014 (41). Our study obtained similar results, whereby
the more experienced radiologist’s visual assessments could only
accurately detect a small proportion of LNM+ with a sensitivity
of 56.3%, specificity of 70.7%, PPV of 35.5%, and NPV of 84.9%.

Although receiver operating characteristic analysis indicated
that the radiomic signature had superior predictive ability to that
of the more experienced radiologist, the radiologist’s assessment
results should not be overlooked. Compared with the radiomic
signature, the radiologist exhibited a lower sensitivity and a
higher specificity. In the univariate logistic regression analysis,
ymrT and ymrN stages were significantly associated with LNM+.
In particular, ymrN stage was still an independent predictor for
LNM+ even when considering radiomic signature and ymrT
stage as covariates. Thus, based on the advantages of radiomic
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FIGURE 6 | (A) Distribution of combined model predicted probability of LNM+ in post-therapeutic ymrT3-4 subgroups of both cohorts, where the green line indicates

the Youden cutoff in the primary cohort. (B) ROC curves of radiologists and prediction models in post-therapeutic ymrT3-4 subgroups of both cohorts. LNM+, lymph

node metastasis; LNM–, lymph node non-metastasis; ROC, receiver operating characteristic.

signature and the radiologist’s restaging results, the combined
model was able to achieve a higher prediction accuracy.

The results of the stratified analyses highlight the potential
of the combined model for clinical application. For patients
with post-therapeutic ymrT1-2 tumors following neoadjuvant
therapy, the combined model achieved a NPV of 100% and
corresponding specificity of 63.8 and 59% in the primary cohort
and validation cohort, respectively. This result indicates that
approximately 60% of ymrT1-2 patients with LNM- would
benefit from the model’s prediction results. In practice, choosing
less invasive treatment after neoadjuvant therapy for rectal cancer

is a difficult and complex decision for both the doctor and
the patient. Local excision or wait-and-watch is typically only
considered for ypT0-2, lymph node-negative patients. However,
we cannot obtain the ypT stage and lymph node status other than
by pathologic evaluation after TME. This contradiction spurs us
on to achieve a more precise clinical T/N staging. We believe
that our combined model can serve as an important assistive tool
for assessing the likelihood of node status following neoadjuvant
therapy. Further research aiming at the simultaneous precise
prediction of ypT stage and ypN before TME is indispensable to
promote organ preservation strategies in the clinic.
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Radiomics is a data-driven approach which has been
successfully used to assess treatment response after neoadjuvant
therapy (30) and to predict pathological features such as degree
of differentiation, T stage, and N stage (31). It is an advanced
framework which selects the most useful features from a high-
throughput feature set to build a signature correlated to an object
in a linear or a non-linear way. To the best of our knowledge, our
study may be one of the first attempts to cope with this clinical
problem by using radiomics. The selected radiomic features
included understandable first-order statistics features such as
LoG3-FOS_Mean, LoG2-FOS_Skewness, and so on, which reflect
the strength information of tumor. The selected features also
included textural features such as LoG3-GLCM_cshade, LoG2-
GLSZM_LZLGE, and so on, which reflect a high-order statistical
property among image elements and usually cannot be visually
examined, but we believe that these features can be associated
with an underlying pathology. Some published studies have
mapped radiomic features to gene mutation (42, 43) and
molecular pathway activation (44–46) by a radiogenomicmethod
(47, 48). In the future, interpreting these selected features by
specific genetic profiles may help to improve decision making in
node restaging.

Several limitations existed in this study. It was a
retrospective study with single-center samples in China.
The chemoradiotherapy regimens usually are not the same
in different hospitals, which may cause different lymph node
responses. The imaging equipment parameters are usually
different in multicenter research, which makes the reliability
of the extracted features challenged. In order to control for
confounders as much as possible, we conducted our study in a
single hospital. Another limitation is that the enrolled sample size
was relatively small, especially for the post-therapeutic ymrT1-
2 subgroup. Thus, a prospective, international, multicenter
clinical trial with a large sample size is needed to confirm our
findings. In addition, only two radiologists were involved in the
diagnosis in our study, and the more experienced radiologist
provided a more accurate diagnosis. Thus, future research should
include more experienced radiologists. Perirectal environment
is another area that is worth to analyze, but blood vessels,
muscles, nerves, and posttreatment edema may exist in this area.
These confounding factors may affect the extracted features,
causing negative effects to the accuracy of the prediction
results. Although manually excluding these confounding
factors on MRI is very time-consuming, it is worth trying to
analyze the perirectal environment in a further study to get
better prediction accuracy. Deep learning is an emerging field
that surpasses radiomics in many tasks. Modeling with deep
learning to correctly identify more LNM- patients may be a
promising direction.

In summary, we demonstrated that combining a radiologist’s
staging results and radiomics analysis assists in the prediction of
lymph node status in patients with LARC following neoadjuvant
therapy, especially for patients with post-therapeutic ymrT1-2
tumors. An external validation of this study is warranted to guide
the treatment recommendations for patients eligible for organ
preservation strategies.
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Purpose: The aim of this study was to investigate the diagnostic value of

machine-learning models with radiomic features and clinical features in preoperative

differentiation of common lesions located in the anterior skull base.

Methods: A total of 235 patients diagnosed with pituitary adenoma, meningioma,

craniopharyngioma, or Rathke cleft cyst were enrolled in the current study. The

discrimination was divided into three groups: pituitary adenoma vs. craniopharyngioma,

meningioma vs. craniopharyngioma, and pituitary adenoma vs. Rathke cleft cyst. In each

group, five selection methods were adopted to select suitable features for the classifier,

and nine machine-learning classifiers were employed to build discriminative models. The

diagnostic performance of each combination was evaluated with area under the receiver

operating characteristic curve (AUC), accuracy, sensitivity, and specificity calculated for

both the training group and the testing group.

Results: In each group, several classifiers combined with suitable selection methods

represented feasible diagnostic performance with AUC of more than 0.80. Moreover, the

combination of least absolute shrinkage and selection operator as the feature-selection

method and linear discriminant analysis as the classification algorithm represented the

best comprehensive discriminative ability.

Conclusion: Radiomics-based machine learning could potentially serve as a novel

method to assist in discriminating common lesions in the anterior skull base prior

to operation.

Keywords: pituitary adenoma, meningioma, craniopharyngioma, Rathke cleft cyst, anterior skull base, radiomics,

machine learning
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INTRODUCTION

A variety of lesions are present in the anterior skull base. The
most common types of tumors in this area are pituitary adenoma,
craniopharyngioma, and meningioma (1, 2). Rathke cleft cyst is
also taken as the common differential diagnosis for the sellarmass
as a congenital lesion (3). The importance of early diagnosis for
lesions in this region has been highlighted because even these
benign lesions may be progressive and unrelenting if situated in
an area where growth cannot be controlled, and some of them
could show aggressive behavior (4). Magnetic resonance (MR)
scan is highly recommended for preoperative evaluation of the
anterior skull base lesion owing to the advantage of excellent soft
tissue resolution. Descriptions of the four types of lesions in MR
imaging (MRI) are characteristic (5). However, the diagnostic
accuracy of MR images depends on experiences of radiologists,
and in some cases, these lesions with similar MRI patterns
may mimic each other and complicate the radiological diagnosis
(6, 7). Therefore, new methods that could assist in preoperative
differentiation may be of clinical value.

Radiomics could extract high-dimensional features from
medical images and provide information associated with the
pathophysiology of lesions that is difficult to be assessed
by visual inspection (8–10). Moreover, mineable radiomic
features of lesions could be analyzed with the novel machine-
learning technology that has shown promising prospects in
the biomedical domain (11). Radiomics-based machine learning
has been applied in differential diagnosis of various brain
tumors in previous studies, representing the potential to
be utilized in clinical practice to facilitate diagnosis, and
offer guidance for decision making (12–16). In the present
study, we evaluated the ability of machine-learning technology
combined with MRI radiomic features and clinical parameters
in differentiating the four common types of lesions in the
anterior skull base. Considering the epidemiology and position
of lesions, the differential analysis was divided into three
groups: pituitary adenoma vs. craniopharyngioma (the most
common tumors in the sellar/suprasellar region), meningioma
vs. craniopharyngiomas (the most common tumors in the
parasellar region), and pituitary adenoma vs. Rathke cleft cyst
(the most common lesions in the intrasellar region).

METHOD

Patient Selection
Institution database was reviewed to search for patients treated at
our neurosurgery department fromNovember 2014 to June 2018.
We initially selected the potentially qualified patients according
to the following criteria: (a) with the pathological confirmation of
pituitary adenoma, craniopharyngioma, meningioma, or Rathke
cleft cyst; (b) the lesion was located at the anterior skull base;
and (c) with preoperative sellar MR images. Exclusion criteria
were as follows: (a) history of any other intracranial diseases,
such as stroke and intracranial infection; (b) history of any
anti-tumor treatment prior to MR scans, such as brain surgery,
chemotherapy, or radiotherapy; and (c) incomplete electronic
medical records. The flowchart of patient selection is shown

in Figure 1. Clinical parameters were recorded, including age,
gender, lesion size, and the time between MR scan and surgery.
The lesion size was measured by the maximum diameter of
the lesion that was collected from radiological reports. This
retrospective study was approved by the institutional review
board. The written informed consent was obtained from all
participants (written informed consent for patients<16 years old
was obtained from their parents or guardians).

Image Acquisition
All patients underwent MR scans via a 3.0-T GE scanner with
an eight-channel phase array head coil. The parameters of the
contrast-enhanced T1-weighted imaging were as follows: TR/TE
= 552/10ms, slice thickness = 5mm, flip angle = 90◦, field of
view= 150× 150 mm2, data matrix= 256× 256, and voxel size
= 1.0× 1.0× 1.0 mm3. The scanning was conducted within 200 s
after injection of gadopentetate dimeglumine (0.1 mmol/kg) as
the contrast agent. The preoperative MR images were collected
from picture archiving and communication system (PACS) of our
institutional radiology department (Figure 2).

Feature Extraction
Texture features were extracted from MR images as radiomic
parameters by two neurosurgeons together with the assistance
of senior radiologists using LIFEx software (http://www.lifexsoft.
org) (17). Following protocols of the software, the region
of interest (ROI) was manually drawn within the border of
the lesion in each slice. Considering the clear depiction of
the boundary of lesions, ROI delineation was performed on
the contrast-enhanced T1-weighted imaging, in which lesions
were carefully separated from adjacent brain tissues through
different enhancement patterns and surrounding anatomic
structures. Any disagreements regarding the border of lesions
were recorded and solved by senior radiologists. After the
whole lesion was contoured slice by slice, three-dimensional
radiomic parameters could be automatically calculated by the
software with established formulas (Supplementary Material 1).
A total of 40 features were obtained from two orders,
including the first-order features from shape-based matrix
and histogram-based matrix, and the second-order/higher-
order features from gray-level co-occurrence matrix (GLCM),
gray-level zone length matrix (GLZLM), neighborhood gray-
level dependence matrix (NGLDM), and gray-level run length
matrix (GLRLM) (Supplementary Material 2). Examples of ROI
delineation are shown in Supplementary Material 3. Combined
with two clinical parameters (age and gender), a dataset was built
for further analysis.

Machine-Learning Modeling
Given that there was a relatively large number of statistics and
some parameters may not be associated with the differential
process, optimal features should be selected first for the
predictive model. The feature-selection method was important
but complicated considering the sample size and efficiency in
discrimination. Least absolute shrinkage and selection operator
(LASSO) regression model was reported to be appropriate
for high-dimensional data regression analysis (18, 19). Other
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FIGURE 1 | Workflow chart of the patient enrollment process.

FIGURE 2 | Examples of different lesions on contrast-enhanced T1-weighted image. (A) Craniopharyngioma; (B) meningioma; (C) pituitary adenoma; (D) Rathke

cleft cyst.
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TABLE 1 | Characteristics of patients and lesions.

Craniopharyngioma Meningioma Pituitary adenoma Rathke cleft cyst P-value

Number 63 64 68 40

Gender, n (%) 0.006

Male 37 (58.7) 18 (28.1) 32 (47.1) 18 (45.0)

Female 26 (41.3) 46 (71.9) 36 (52.9) 22 (55.0)

Age, n (%) <0.001

≤18 years 21 (33.3) 2 (3.1) 1 (1.5) 0 (0.0)

19∼30 years 11 (17.5) 0 (0.0) 7 (10.3) 11 (27.5)

31∼60 years 27 (42.9) 51 (79.7) 43 (63.2) 26 (65.0)

>60 years 4 (6.3) 11 (17.2) 17 (25.0) 3 (7.5)

Mean age (range) (year) 31.62 (2∼73) 49.19 (9∼72) 49.16 (18∼73) 44.23 (21∼68)

Maximum diameter (mm) 28.86 (12.5∼52.4) 20.41 (8∼40) 23.21 (7∼50.5) 19.87 (8∼38.3) <0.001

Average time between MR scan and surgery (day) 6.2 7.5 5.3 6.4 0.321

MR, magnetic resonance.

TABLE 2 | Results of the discriminative model of LASSO + LDA in distinguishing lesions in the training group and the testing group.

Training group Testing group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

Pituitary adenoma vs. craniopharyngioma 0.845 0.851 0.897 0.820 0.804 0.800 0.888 0.734

Meningioma vs. craniopharyngioma 0.882 0.881 0.944 0.832 0.807 0.819 0.863 0.794

Pituitary adenoma vs. Rathke cleft cyst 0.873 0.887 0.861 0.901 0.816 0.836 0.829 0.840

AUC, area under curve; LASSO, least absolute shrinkage and selection operator; LDA, linear discriminant analysis.

selection methods were also evaluated by previous researchers
and reported to represent good diagnostic performances (20, 21).
To settle the dilemma, five different feature-selection methods
were adopted, namely, distance correlation, random forest (RF),
LASSO, eXtreme gradient boosting (Xgboost), and gradient
boosting decision tree (GBDT). A similar predicament also needs
to be solved in regard to the selection of machine-learning
classifiers. We employed nine classification algorithms in this
study, including linear discriminant analysis (LDA), support
vectormachine (SVM), RF, Adaboost, k-nearest neighbor (KNN),
GaussianNB, logistic regression (LR), GBDT, and decision tree
(DT). Patients were randomly divided into the training group and
the testing group at the ratio of 4:1 on the basis of experiences
from previous studies (22–24). The model was first created
by the training group and then applied to the independent
testing group, and this procedure was repeated over 100 times
to conclude the realistic distribution of classification accuracies.
Area under receiver operating characteristic (ROC) curve (AUC),
accuracy, sensitivity, and specificity were calculated based on the
confusion matrix to assess the discriminative ability of different
models. Regular statistical analyses of this study were performed
using SPSS (Version 22.0, IBM Corp. Armonk, NY, USA), and
machine-learning algorithms were programmed with Python
Programming Language and scikit-learn package.

RESULTS

Patient Characteristic
A total number of 235 patients who underwent surgical resection
of lesions in our neurosurgery department were enrolled in the

current study. Among all participants involved, 68 patients were
diagnosed with pituitary adenoma, 63 patients were diagnosed
with craniopharyngioma, 64 patients were diagnosed with
meningioma, and 40 patients were diagnosed with Rathke cleft
cyst. The average age of patients was 49.16, 31.62, 49.19, and 44.23
years, respectively. The mean value of the maximum diameter of
lesions was 23.21, 28.86, 20.41, and 19.87mm, respectively. The
characteristics of patients and lesions are summarized in Table 1.

Machine-Learning Model Assessment
In each group, 45 diagnostic models were established through
the combinations of five selection methods and nine classifiers.
The combination of LASSO as the selection method and LDA as
the classifier (LASSO + LDA) seemed to be the optimal model
in differentiating common lesions in the anterior skull base with
AUC of more than 0.80 in all three groups. It is worth noting that
some combinations represented better performance than LASSO
+ LDA in a single group, but LASSO + LDA showed the best
comprehensive discriminative ability.

Group 1 was the differentiation between pituitary adenoma
and craniopharyngioma considering these are the most common
tumors located in the sellar/suprasellar region. For LASSO
+ LDA, ROC analysis demonstrated that AUC, accuracy,
sensitivity, and specificity in the training group were 0.845, 0.851,
0.897, and 0.820, respectively. In the testing group, this predictive
model was proven to be feasible in discrimination with AUC of
0.804, accuracy of 0.800, sensitivity of 0.888, and specificity of
0.734 (Table 2). Besides, other models like RF + RF (AUC =

0.811 in the testing group) and GBDT+ RF (AUC= 0.837 in the
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TABLE 3 | Results of discriminative models in distinguishing pituitary adenoma from craniopharyngioma in the testing group.

Distance correlation RF LASSO Xgboost GBDT

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

LDA 0.719 0.727 0.778 0.782 0.800 0.804 0.730 0.734 0.793 0.799

SVM 0.696 0.712 / / 0.700 0.717 0.700 0.696 / /

RF 0.727 0.747 0.804 0.811 0.770 0.780 0.781 0.786 0.841 0.837

Adaboost 0.796 0.799 0.833 0.837 0.785 0.784 0.770 0.774 0.833 0.831

KNN 0.800 0.800 0.689 0.690 0.756 0.765 0.689 0.694 0.722 0.727

GaussianNB 0.744 0.750 0.726 0.730 0.670 0.681 0.715 0.724 0.737 0.741

LR 0.752 0.758 0.822 0.819 0.774 0.783 0.693 0.705 0.767 0.771

GBDT 0.796 0.796 0.859 0.857 0.874 0.866 0.811 0.809 0.844 0.840

DT 0.752 0.754 0.800 0.798 0.767 0.766 0.763 0.757 0.785 0.783

RF, random forest; LASSO, least absolute shrinkage and selection operator; Xgboost, eXtreme gradient boosting; GBDT, gradient boosting decision tree; LDA, linear discriminant

analysis; SVM, support vector machine; KNN, k-nearest neighbor; LR, logistic regression; DT, decision tree; AUC, area under curve.

/, over-fitting.

TABLE 4 | Results of discriminative models in distinguishing meningioma from craniopharyngioma in the testing group.

Distance correlation RF LASSO Xgboost GBDT

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

LDA 0.846 0.843 0.850 0.842 0.819 0.807 0.800 0.792 0.815 0.809

SVM 0.807 0.804 / / 0.712 0.732 / / / /

RF 0.769 0.777 0.773 0.780 0.735 0.744 0.796 0.798 0.812 0.822

Adaboost 0.753 0.766 0.746 0.758 0.777 0.784 0.784 0.790 0.773 0.781

KNN 0.838 0.846 0.708 0.713 0.742 0.746 0.669 0.663 0.650 0.656

GaussianNB 0.762 0.753 0.777 0.778 0.700 0.681 0.715 0.691 0.804 0.787

LR 0.796 0.800 0.777 0.783 0.765 0.763 0.735 0.725 0.785 0.780

GBDT 0.769 0.773 0.769 0.774 0.773 0.782 0.765 0.769 0.812 0.816

DT 0.742 0.744 0.723 0.722 0.712 0.710 0.719 0.726 0.765 0.767

RF, random forest; LASSO, least absolute shrinkage and selection operator; Xgboost, eXtreme gradient boosting; GBDT, gradient boosting decision tree; LDA, linear discriminant

analysis; SVM, support vector machine; KNN, k-nearest neighbor; LR, logistic regression; DT, decision tree; AUC, area under curve.

/, over-fitting.

testing group) also represented feasible ability in distinguishing
pituitary adenoma from craniopharyngioma (Table 3).

Group 2 was the differentiation between meningioma and
craniopharyngioma, given that they are the most common
tumors located in the parasellar region. ROC analysis illustrated
the differential ability of LASSO + LDA with AUC of 0.882,
accuracy of 0.881, sensitivity of 0.944, and specificity of 0.832
in the training group. In the testing group, AUC of LASSO
+ LDA was 0.807, accuracy was 0.819, sensitivity was 0.863,
and specificity was 0.794 (Table 2). Besides, distance correlation
+ LDA (AUC = 0.843 in the testing group), RF + LDA
(AUC = 0.842 in the testing group), GBDT + LDA (AUC =

0.809 in the testing group), and distance correlation + KNN
(AUC = 0.846 in the testing group) also represented reliable
diagnostic performance in discrimination between meningioma
and craniopharyngioma (Table 4).

Group 3 was the differentiation between pituitary adenoma
and Rathke cleft cyst, which are the most common lesions
in the intrasellar region. In the training group, ROC analysis

demonstrated that AUC of LASSO + LDA was 0.873 with
accuracy of 0.887, sensitivity of 0.861, and specificity of 0.901.
In the testing group, this model also represented feasible
discriminative ability with AUC of 0.816, accuracy of 0.836,
sensitivity of 0.829, and specificity of 0.840 (Table 2). In addition,
distance correlation + RF also represented good performance
in differentiating pituitary adenoma from Rathke cleft cyst with
AUC of 0.825 in the testing group (Table 5).

The features selected into LASSO + LDA model are
listed in Table 6. The association between discriminant
functions for LASSO + LDA model is represented in
Figure 3, in which minimal overlap between two clusters
was observed in each group. Figure 4 represents examples
of distributions of the direct LDA function for lesions for
one of the 100 independent cycles. In group 1, a shift of
the LDA function values for craniopharyngioma toward
positive values was shown while predominantly negative
values for pituitary adenoma. Similar trends could be
observed in group 2 and group 3, suggesting that the LASSO
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TABLE 5 | Results of discriminative models in distinguishing pituitary adenoma from Rathke cleft cyst in the testing group.

Distance correlation RF LASSO Xgboost GBDT

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

LDA 0.841 0.803 0.827 0.804 0.836 0.816 0.754 0.682 0.786 0.767

SVM 0.754 0.678 / / 0.627 0.500 0.645 0.544 / /

RF 0.863 0.825 0.768 0.714 0.777 0.710 0.855 0.813 0.823 0.775

Adaboost 0.813 0.794 0.804 0.774 0.818 0.778 0.818 0.778 0.836 0.809

KNN 0.786 0.735 0.745 0.696 0.732 0.666 0.759 0.706 0.768 0.723

GaussianNB 0.841 0.806 0.814 0.786 0.677 0.655 0.800 0.745 0.827 0.792

LR 0.800 0.736 0.823 0.781 0.755 0.683 0.818 0.764 0.805 0.769

GBDT 0.845 0.808 0.832 0.798 0.786 0.743 0.818 0.776 0.850 0.821

DT 0.832 0.798 0.791 0.761 0.736 0.700 0.786 0.757 0.809 0.780

RF, random forest; LASSO, least absolute shrinkage and selection operator; Xgboost, eXtreme gradient boosting; GBDT, gradient boosting decision tree; LDA, linear discriminant

analysis; SVM, support vector machine; KNN, k-nearest neighbor; LR, logistic regression; DT, decision tree; AUC, area under curve.

/, over-fitting.

+ LDA model had feasible discriminative ability in the
three groups.

DISCUSSION

In the present study, a series of clinical parameters and radiomic
features were utilized in differentiating four types of lesions in
the anterior skull base. The predictive models were built using
five feature-selection methods (distance correlation, RF, LASSO,
Xgboost, and GBDT) and nine machine-learning classification
algorithms (LDA, SVM, RF, Adaboost, KNN, GaussianNB, LR,
GBDT, and DT). The combination of LASSO as the feature-
selection method and LDA as the classification algorithm
represented the optimal comprehensive performance with AUC
of over 0.80 in all of the training groups and the testing groups.
Moreover, several models also showed reliable discriminative
ability between two types of lesions in a single group. Considering
the features we selected could be extracted from routine MR
images, the predictive model has the potential to be utilized as
a novel, convenient tool in clinical practice.

The most important result of our research was to identify
suitable discriminative models for lesions located in the anterior
skull base. In previous studies, researchers investigated various
combinations and tried to identify the optimal diagnostic
or prognostic model. For instance, one study on CT-based
survival prediction of non-small cell lung cancer involved
models with four selection and classification methods (25).
Another study made evaluations on models with 14 selection
and 12 classification methods in predicting the overall survival
of lung cancer patients (26). Similar studies were performed
in bone tumor and head and neck cancer, implicating that
the machine-learning model could potentially be a reliable
method in differential diagnosis and prognosis prediction (27–
30). However, it brought our attention and further investigation
that various classifiers were used but that unanimous results on
which one could be taken as the universal method were not
reached. Considering that the purpose of clinical application
of machine learning is to lessen the workload for doctors,

TABLE 6 | Parameters selected in the discriminative model of LASSO + LDA.

Group 1 Group 2 Group 3

Age

minValue

meanvalue

maxValue

SHAPE_Volume

GLCM_Contrast

GLRLM_HGRE

GLRLM_SRHGE

GLRLM_LRHGE

GLRLM_GLNU

GLRLM_RLNU

GLZLM_LZE

GLZLM_SZHGE

GLZLM_LZLGE

GLZLM_LZHGE

GLZLM_GLNU

GLZLM_ZLNU

Age

minValue

meanValue

stdValue

maxValue

SHAPE_Volume

GLCM_Contrast

GLRLM_HGRE

GLRLM_LRHGE

GLRLM_GLNU

GLRLM_RLNU

GLZLM_LZE

GLZLM_HGZE

GLZLM_SZHGE

GLZLM_LZHGE

GLZLM_GLNU

GLZLM_ZLNU

minValue

meanValue

maxValue

SHAPE_Volume

GLRLM_SRHGE

GLRLM_LRHGE

GLRLM_GLNU

GLRLM_RLNU

GLZLM_LZE

GLZLM_HGZE

GLZLM_SZHGE

GLZLM_LZHGE

GLZLM_ZLNU

GLCM, gray-level co-occurrence matrix; GLZLM, gray-level zone length matrix; NGLDM,

neighborhood gray-level dependence matrix; GLRLM, gray-level run length matrix;

LASSO, least absolute shrinkage and selection operator; LDA, linear discriminant analysis.

simple discriminative models between two types of lesions
are relatively meaningless because of complicated and elusive
situations in clinical practice. Based on this idea, not only
different combinations were tested, but also analyses on four
types of lesions were performed simultaneously in three groups
in the present study.

LASSO is a brilliant feature-selection method that tries to
retain useful features in both ridge regression and subset selection
(31).With the characteristics of avoiding over-fitting, it is suitable
for large sets of radiomic features when a relatively small
number of samples are involved (28). LDA is a machine-learning
classification algorithm that could find a linear model with the
best discriminative ability for two classes. The mechanism of
LDA is to identify the boundaries around clusters of two classes
and to project the statistics into a lower-dimensional space with
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FIGURE 3 | Relationships between the discriminant functions for different lesions in the three groups and for the group centroids. (A) Pituitary adenoma vs.

craniopharyngioma; (B) meningioma vs. craniopharyngioma; (C) pituitary adenoma vs. Rathke cleft cyst.

FIGURE 4 | Examples of distributions of the linear discriminant analysis (LDA) function determined for the lesions for one cycle. (A) Pituitary adenoma vs.

craniopharyngioma; (B) meningioma vs. craniopharyngioma; (C) pituitary adenoma vs. Rathke cleft cyst.

good discriminative power based on the distance to a centroid
of each cluster (32). LDA was reported to be able to reduce
the dimensionality and to preserve the class discrimination
information as much as possible. The combination of LASSO
and LDA showed optimal comprehensive results in all three
groups with AUC of more than 0.80 in each group. However,
the results of our study were not as good as those of others.
One study on the prediction of ATRX mutation in low-grade
gliomas represented brilliant results with AUC of 0.925 in the
validation group (19). Another study on differentiating sacral
chordoma from sacral giant cell tumor represented AUC of 0.984
in the validation group (30). Future researches withmore feature-
selection methods and machine-learning classifiers are required
to verify our results and to explore the optimal model with
higher reliability.

There were some limitations in the present study. First,
this study was performed in a single center, and only patients
with resectable tumors were enrolled. Second, the study cohort,
especially the testing cohort, was relatively small, which was a
common limitation of other similar studies. Multicenter studies
with larger sample sizes are required to validate our results.
Third, only the contrast-enhanced T1-weighted imaging was
used in radiomic analysis considering that this sequence was
most suitable and available for the evaluation of lesions in the
anterior skull base. Multi-model imaging statistics need to be
integrated into the model to improve its performance in future
studies. Fourth, images acquired from different MR scanners
may possibly result in the model performance discrepancy.
Standardized imaging quality and consistent protocols are
required if the predictive models are put into clinical work.
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In conclusion, we utilized MRI radiomics and clinical
parameters to build predictive models via the combinations
of selection methods and machine-learning classifiers. Our
results indicated that radiomics-based machine learning could
preoperatively differentiate common lesions in the anterior skull
base with feasible diagnostic performance and facilitate clinical
decision making.
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Background: Amide proton transfer-weighted (ATPw) imaging is a novel MRI technique

that has been used to identify benign and malignant tumors. The present study evaluated

the role of APTw imaging in differentiating papillary thyroid carcinoma from predominantly

solid adenomatous nodule.

Methods: This study included 24 cases of solitary papillary thyroid carcinoma, and

20 cases of solid adenomatous nodules. Normal thyroid tissues were examined in 12

healthy subjects. The healthy subjects, eight cases of adenomatous nodule with cystic

degeneration, and 12 cases of thyroid goiter, were only considered in the descriptive

analysis, not included in our statistical analysis. The mean APTw value and the apparent

diffusion coefficients (ADCs) of papillary thyroid carcinoma and solid adenomatous

nodule were compared via a Mann-Whitney U test and receiver operating characteristic

(ROC)-curve analyses.

Results: The adenomatous nodule (3.3 ± 1.3%) exhibited significantly higher APTw

value (p < 0.05) than that of the papillary thyroid carcinoma (1.8 ± 0.7%). The optimal

cut-off value of the mean APTw value in differentiating papillary thyroid carcinoma from

adenomatous nodule was 3.15%, with a sensitivity of 60% and a specificity of 100%. The

mean ADC of papillary thyroid carcinoma (1.2 ± 0.2 × 10−3 mm2/s) was significantly

lower than that of adenomatous nodule (2.0 ± 0.4 × 10−3 mm2/s). The optimal cut-off

value of the mean ADC was 1.35 × 10−3 mm2/s, with a sensitivity of 100% and a

specificity of 75%. Based on the ROC-curve analysis of APT and ADC, the ADC showed

a higher area under the curve (AUC) than that of APT (AUCAPT = 0.84, AUCADC = 0.95).
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Conclusion: APTw imaging may be as useful as DWI for the differentiation of

papillary thyroid carcinoma from predominantly solid adenomatous nodule. Although the

sensitivity of ADC was greater than that of APT, APT had greater specificity.

Keywords: papillary thyroid carcinoma, predominantly solid thyroid adenomatous nodule, amide proton transfer

(APT), diffusion-weighted imaging (DWI), differentiation

INTRODUCTION

Thyroid nodules are becoming increasingly prevalent. Nodular
goiters and adenomas are the most common benign thyroid
nodules, and papillary thyroid carcinoma is the most common
malignant thyroid tumors (1). Nodular goiters and adenomas
are usually treated by clinical observation, especially in the
elderly. In contrast, the optimal treatment for papillary
thyroid carcinoma is surgical excision. Therefore, the precise
preoperative differentiation of nodular goiter or adenoma and
papillary thyroid carcinoma is of significant practical relevance.
Adenomas can occur alone or in combination with nodular
goiters. Their morphologies, signals, and enhancements are
similar, often resulting in difficult differential diagnoses. In
particular, solitary solid nodular goiters are challenging to
identify with adenomas. As such, we used adenomatous nodules
(2–4) to replace solitary solid nodular goiters or thyroid
adenomas in the present study.

Amide proton transfer-weighted (ATPw) imaging is a novel
magnetic resonance imaging (MRI) technique that can detect
mobile proteins and peptides that contain abundant amide
(-CO-NH-) chemical constituents (5, 6). The APTw values can
reflect the concentrations of mobile macromolecules, such as
proteins and peptides. Early reports of APTw imaging for cancer
assessment have focused on the brain. According to the previous
literature, high-grade gliomas show higher APTw values than
low-grade gliomas (7, 8), and APTw imaging is useful for
assessing tumor aggressiveness. Investigators in recent human
studies have reported preliminary APT findings in the breast
(9), prostate (10), cervix (11), rectum (12), and lung (13). APTw
values were higher in cancers than in normal tissues or benign
tumors, and APT levels varied between different malignant
tumors groups or different histological grades. Furthermore, APT
may provide additional information to improve the results of
diffusion-weighted imaging (DWI) or other MRI techniques.

The head-neck regions are challenging for molecular MRI
techniques because of magnetic field inhomogeneity, and motion
and such tissues are prone to artifacts. In a preliminary study
on the characterization of head and neck tumors which showed
the feasibility of performing APTw imaging in the head and
neck by using a technique adapted from the brain, the authors
hypothesized that malignant tumors have higher APT levels
than healthy tissues and benign tumors and that APT levels
differ among malignant tumor groups. They studied the patients
with nasopharyngeal undifferentiated carcinoma, squamous cell
carcinoma, non-Hodgkin’s lymphoma, and benign salivary gland
tumors (14, 15).

We previously reported on a study about patients with thyroid
tumors that showed the feasibility of performing APTw imaging

in the neck. The results showed that the APTw values of
malignant nodules of the thyroid are lower than that of benign
nodules, which is different from other tumors (16). However,
thyroid tumors are prone to cystic change (17), which have a
significant influence on the measurement of APTw values. Our
previous study samples were simply divided into benign groups
and malignant groups. Both the two groups contained different
pathological types, and cystic nodules were not excluded. We
want to explore the diagnostic performance of APTw imaging in
differentiating papillary thyroid carcinoma from predominantly
solid adenomatous nodule. Now we need to further group and
measure them accurately, calculate the threshold, sensitivity, and
specificity of APT and ADC to distinguish solid papillary thyroid
carcinoma and solid adenomatous nodule.

MATERIALS AND METHODS

Subjects
The local Institutional Review Board approved this study, and all
subjects gave written, informed consent before participation in
this study. Between 2018 and 2019, 24 biopsy-proven papillary
thyroid carcinomas, 28 cases of adenomatous nodule, and 12
cases of thyroid goiter underwentMRI exam. This study included
12 healthy subjects. The healthy subjects, 8 cases of adenomatous
nodules with cystic degeneration, and 12 cases of thyroid goiter
were only considered in the descriptive analysis, not included in
statistical analysis. Thus, 24 papillary carcinomas (15 females, 9
males; 41.16 ± 13.43 years old; range, 29–68 years old) and 20
adenomatous nodules (13 females, 7 males; 42.80 ± 10.20 years
old; range, 22–72 years old) were included in the study.

MRI Protocols
MR imaging was performed with a Philips 3-Tesla (3T) scanner
(Ingenia, 3.0 T; Philips Medical Systems, The Netherlands). A
16-channel head-neck coil was used for scanning. The patients
underwent T1- [repetition time (TR)/echo time (TE), 570/18ms]
and T2-weightedMR imaging [TR (ms)/TE (ms), 2,500/100] with
the section thickness of 4mm, an intersection gap of 1mm, field-
of-views of 20–25 cm, and an acquisition matrix of 256 × 224.
The scan time of T1WI is 85 s and the scan time of T2WI is 150 s.
Images were obtained in axial and coronal planes, following scout
images in the sagittal plane.

In addition to conventional MR imaging (T1-weighted
imaging, T2-weighted imaging, and Gd-enhanced T1-weighted
imaging), APTw sequences and reduced field-of-view (r-FOV)
diffusion-weighted sequences with different b values (0, 800
mm2/s) were acquired. Other parameters of DWIwere as follows:
field-of-views of 116 × 51 mm2; voxel size of 1.81 × 1.81 mm2;
slice thickness of 4mm; TR (ms)/TE (ms) of 3,687/62; scan time
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of 221 s. APTw imaging was performed using a 3-dimensional
(3D) turbo-spin-echo Dixon sequence with these parameters as
follows: slice thickness of 4.4mm, acquisition voxel size of 1.8
× 1.8 mm2, TR (ms)/TE (ms) of 4,108/5.9, scan time of 259 s,
and turbo spin-echo factor of 158. APTw imaging was performed
with seven saturation-frequency offsets (offsets = ± 2.7, ± 3.5,
± 4.3 ppm, and 1,540 ppm). The protocol was repeated three
times at ±3.5 ppm to increase the signal-to-noise ratio within
an appropriate time frame. Saturation radio-frequency pulses for
APTw imaging were implemented with an amplitude of 2µT and
a duration of 2 s. B0 maps were obtained with three acquisitions
at 3.5 ppm of different echo times. B0-corrected ATPw images
were reconstructed online.

Imaging Analysis of APT and Apparent
Diffusion Coefficients (ADCs)
The two radiologists conducting the present study determined
by consensus whether the APTw maps and ADC maps were
acceptable for statistical analysis. All images were interpreted by
two radiologists specializing in head and neck imaging. APTw
and ADC imaging were automatically generated via a Philips
post-processing workstation. We calculated the mean APTw
value and ADC value by drawing a region of interest (ROI).
The radiologists drew an ROI around the predominantly solid
thyroid nodules or drew a ROI on the central of one leaf of the
normal thyroid tissues on the APTw image and ADC map by
using the T2WI for reference, and then the mean APTw value
and mean ADC value was obtained from the ROI, as shown
in Table 2. The ROI analysis was repeated by two observers
to assess the inter-observer agreement. The two radiologists
processed the MR images independently. They were blinded to
the histopathologic data.

Statistical Analysis
The APTw values and ADC values of the papillary thyroid
carcinoma were compared with that of the thyroid adenomatous
nodules using a Mann-Whitney U test. The diagnostic
performances of significant APTw parameters for differentiating
the papillary thyroid carcinoma from the adenomatous nodules
were assessed by using ROC-curve analyses with the AUC.
The APTw threshold was acquired by calculating the Youden
index, which is the sum of the sensitivity and specificity −1,
and the APTw value corresponding to the point where the
Yoden index is the largest was considered the APTw threshold.
Then the sensitivity, specificity of the optimal thresholds
were calculated. Statistical analysis was performed using
SPSS software 21.0. All statistical tests were two-sided, and
a p-value of <0.05 was considered to indicate a statistically
significant difference.

RESULTS

The characteristics of the patients are shown in Table 1 and
the subjects selection flowchart is shown in Figure 1. We first
assessed the radiographic features of some interesting cases and
normal thyroids using several standards sequences (T1-weight
images, T2-weight images, Gd- T1-weight images, DWI) and

TABLE 1 | Patient characteristics and pathologies.

Pathology No. Female:male Age (years)

Adenomatous nodule 20 13:7 43 ± 10

Papillary carcinoma 24 15:9 41 ± 13

Total 44 28:16 42 ± 12

TABLE 2 | The APTw values and ADC values of thyroid nodules.

Pathology APTw value (%) ADC (mm2/s) Diameter (mm) p-value

Adenomatous nodule 3.3 ± 1.3 2.0 ± 0.4 24 ± 9 <0.001

Papillary carcinoma 1.8 ± 0.7 1.2 ± 0.2 11 ± 5

APTw sequences. Figure 2 shows the normal thyroid tissue
and diffuse goiter. They appear homogenously isointense on
APTWI, and their APTw values (normal thyroid, 2.15%; diffuse
goiter, 2.36%) are similar, and neither is very high. Figure 3
shows two thyroid nodules with cystic changes. The A cyst
rich in serous fluid and appeared hypointense on T1-weight
images (T1WI), hyperintense on T2-weight images (T2WI),
and hyperintense on APTWI (APTw values = 7.33%). The B
cyst is rich in thyroid colloid and appears hyperintense on
T1WI, hypointense on T2WI, hypointense on APTWI (APTw
values = 1.53%). The solid portion appears isointense on
T1WI and hyperintense on T2WI and APTWI (APTw values
= 3.56%).

Figure 4 shows two predominantly solid adenomatous
nodules. One is an atypical adenomatous nodule and appeared
mild enhancement on Gd-T1WI, mild hyperintense on an ADC
map, and isointense on APTWI (APTw values = 2.05%). The
other is a typical adenomatous nodule and exhibited strong
enhancement on Gd-T1WI and hyperintense on the ADC map
and APTWI (APTw values= 5.21%).

Figure 5 shows a typical solid adenomatous nodule and
a papillary thyroid carcinoma. The adenomatous nodule
appeared hyperintense on both the ADC map and T2WI,
and the mean APTw value was 6.10%. The papillary thyroid
carcinoma appeared hypointense on ADC map, heterogeneous
iso-/hypo-intensity on APTWI, and the mean APTw value
was 1.93%.

The intraclass correlation coefficients (ICC) showed excellent
observer agreement (ICCAPT = 0.92, ICCADC = 0.96, p < 0.01).
Table 2 and Figure 6 show the APTw values and ADC values
of thyroid nodules in this study, and there was a significant
difference in the APTw value and ADC of the papillary thyroid
carcinoma and adenomatous nodule. The adenomatous nodule
(3.3 ± 1.3%) exhibited higher APT-weighted signal intensities
than that of papillary carcinoma (1.8 ± 0.7%; p < 0.01).
The mean ADC of the papillary thyroid carcinoma (1.2 ±

0.2 × 10−3 mm2/s) was significantly lower than that of the
adenomatous nodule (2.0 ± 0.4 × 10−3 mm2/s; p < 0.01). The
optimal cut-off value of the mean APTw value in differentiating
papillary thyroid carcinoma from the adenomatous nodule was
3.15%, with a sensitivity of 60% and a specificity of 100%
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FIGURE 1 | Subject selection flowchart.

FIGURE 2 | (A1–A3) MR images of a normal thyroid, including T2WI (A1), Gd-T1WI (A2), and APTWI (A3). (B1–B3) MR images of diffuse goiter, including T2WI (B1),

ADC map (B2), and APTWI (B3).

(Figure 7). The mean ADC of the papillary thyroid carcinoma
was significantly lower than that of the adenomatous nodule.
The optimal cut-off value of the mean ADC in differentiating
papillary carcinoma from adenomatous nodule was 1.35 × 10−3

mm2/s, with a sensitivity of 100% and specificity of 75%. The
ROC curve analysis revealed that ADC exhibited a higher AUC
value compared to that of APT (AUCAPT = 0.84, AUCADC =

0.95). The r-FOV DWI showed a better diagnostic performance
than that of APTw imaging. Although the sensitivity of DWI
(100%) was significantly higher than that of APT (60%), the
specificity of APT (100%) was substantially higher than that
of ADC (75%).

DISCUSSION

In this study, we explored the diagnostic performance of using
APTw imaging to differentiate papillary thyroid carcinoma from
the solid adenomatous nodule. The aim was to differentiate
papillary thyroid carcinoma from adenomatous nodule so that
the patients with papillary thyroid carcinoma would be able to
receive appropriate treatment at an earlier stage while avoiding
unnecessary surgery in the patients with adenomatous nodules.
The present study showed a significant difference between the
ADC and APTw value of papillary thyroid carcinoma and
adenomatous nodule, in which the most adenomatous nodules
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FIGURE 3 | MR images of two predominantly cystic thyroid nodules, including T1WI (A1,B1), T2WI (A2,B2), and APTWI (A3,B3).

FIGURE 4 | Both (A,B) are predominantly solid adenomatous nodules on Gd-T1WI (A1,B1), ADC map (A2,B2), and APTWI (A3,B3).

had higher mean ADC and APTw value than papillary thyroid
carcinoma. It is not clear why adenomatous nodules have higher
APTw value than papillary thyroid carcinoma, as opposed to
other tumors.

Diffusion-weighted imaging provides a better characterization
of tissues because it can reflect the random motion of water
molecules, which is disturbed by intracellular macromolecules.
Previous studies have evaluated the role of diffusion-weighted
imaging in differentiating benign from malignant thyroid
nodules (18–24). The APTw values can reflect the concentrations
of mobile macromolecules, such as proteins and peptides. Our
previous studies on the thyroid established a positive correlation

between APTw values with ADC. Part of the reason for this
may be because the APTWI detects free protein rather than
solid proteins.

As shows in Figure 2, the APTw value of normal thyroid
tissue and diffuse goiters are similar, and neither is very high
despite relatively abundant colloid components in the diffuse
goiter. The components of the cystic thyroid zone consist
mainly of serous fluid, thyroid colloid (thyroglobulin), and
blood from different periods, and they exhibit characteristic
MR signals (25, 26). Serous fluid often appears hypointense
on T1WI and hyperintense on T2WI, similar to that of water.
Thyroid colloid contains macromolecular thyroglobulin, which
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FIGURE 5 | (A,B) Show a solid adenomatous nodule and a papillary thyroid carcinoma on the ADC map (A1,B1), T2WI (A2,B2), and the combination of T2WI and

APTWI (A3,B3).

FIGURE 6 | Box plot of the APT (%) and the ADC (mm2/s) of adenomatous nodule and papillary thyroid carcinoma.

shortens the T1 relaxation time and shows a homogenous
high signal on T1WI. Blood fluid from different periods
can display various heterogeneous signal intensities (27, 28).
Figure 3 exhibits a thyroid nodule with the cystic change,
and the components of the cystic thyroid zone consist
mainly of thyroid colloid, but the APTw value is low. It is
speculated that the thyroid colloid does not show a high signal
intensity on APTWI, and the reasons why the APTw value of
adenomatous nodule was higher than that of papillary thyroid
carcinoma is not that adenomatous nodule contains abundant
thyroid colloid.

In the present study, most solid adenomatous nodules showed
significantly high APTw value, but some were similar to normal
thyroid tissue. The typical adenomatous nodule that showed
high signal on the APTw image exhibited isointense on T1WI,
hyperintensity on T2WI, and strong enhancement on Gd-T1WI,
indicating that there is abundant microvessel on the typical
adenomatous nodule. The typical adenomatous nodule had a

high ADC value, indicating active water-molecule movement.
On the contrary, the atypical adenomatous nodule exhibited
isointense on the ADC map and slight enhancement on Gd-
T1WI, indicating the restricted water-molecule movement and
the less microvessel compared with typical adenomatous nodule
(29). The blood supply of papillary thyroid carcinoma is not
as abundant as in typical adenomatous nodule, and papillary
thyroid carcinoma has a high density of tumor cells, small
extracellular space, and high cytoplasmic viscosity (21, 30–
34). In conclusion, abundant blood supply may underlie why
adenomatous nodule has higher APTw value than papillary
thyroid carcinoma.

The present study had some limitations. First, the sample
size was small. Second, the head and neck are challenging
regions in which to perform functional MRIs because of field
inhomogeneity, relatively low signal-to-noise ratio, movement
artifacts, and difficulties with imaging fat suppression. Third,
some thyroid microcarcinomas may occur in adenomatous
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FIGURE 7 | ROC curves of APT, ADC, and the combination of APT and ADC

for differentiation between papillary thyroid carcinoma and adenomatous

nodule: the AUC was 0.95 (ADC), 0.95 (APT and ADC), and 0.835 (APT).

nodules. In addition, there is some biases because the ROIs
were drawn manually on the APTWI and ADC maps by
using the anatomic images for reference. The APT value of
adenomatous nodules is not absolutely higher than that of
papillary thyroid carcinoma, but it is because most papillary
carcinomas are relatively small when they are found. At this
stage, the papillary carcinoma has incompletely developed
blood vessels and relatively less blood vessels. If the supply
of blood vessels to the papillary cancer in the late stage
becomes rich, then like other malignant tumors, the APT value
of papillary thyroid carcinoma will increase and close to the
adenomatous nodule.

CONCLUSIONS

APTw imaging may be useful for the differentiation of papillary
thyroid carcinoma from predominantly solid adenomatous
nodule. DWI had higher accuracy and sensitivity but lower
specificity than APTw imaging. From our present results, we
hypothesize that plentiful blood supply may be the main reason
why the APTw value of the typical adenomatous nodule is higher
than that of papillary thyroid carcinoma.
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Background: Kimura disease may be easily misdiagnosed as malignant tumors such as

lymph node metastases based on imaging and clinical symptoms. The aim of this article

is to investigate whether the radiomic features and the model based on the features

on venous-phase contrast-enhanced CT (CECT) images can distinguish Kimura disease

from lymph node metastases in the head and neck.

Methods: A retrospective analysis of 14 patients of head and neck Kimura disease

(a total of 38 enlarged lymph nodes) and 39 patients with head and neck lymph node

metastases (a total of 39 enlarged lymph nodes), confirmed by biopsy or surgery

resection, was conducted. All patients accepted CECT within 10 days before biopsy

or surgery resection. Radiomic features based on venous-phase CECT were generated

automatically from Artificial-Intelligence Kit (AK) software. All lymph nodes were randomly

divided into the training set (n = 54) and testing set (n = 23) in a ratio of 7:3. ANOVA +

Mann–Whitney, Spearman correlation, least absolute shrinkage and selection operator,

and Gradient Descent were introduced for the reduction of the highly redundant features.

Binary logistic regression model was constructed based on the selected features.

Receiver operating characteristic was used to evaluate the diagnostic performance of

the features and the model. Finally, a nomogram was established for model application.

Results : Seven features were screened out at the end. Significant difference was found

between the two groups for all the features with area under the curves (AUCs) ranging

from 0.759 to 0.915. The AUC of the model’s identification performance was 0.970 in

the training group and 0.977 in the testing group. The disease discrimination efficiency

of the model was better than that of any single feature.

Conclusions : The radiomic features and the model based on these features on

venous-phase CECT images had very good performance for the discrimination between

Kimura disease and lymph node metastases in the head and neck.

Keywords: Kimura disease, lymph node, metastases, radiomics, nomogram, texture analysis, differential

diagnosis, CT
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INTRODUCTION

Kimura disease, also known as eosinophilic lymphogranuloma, is
a rare lymphoproliferative disease, which occurs in the head and
neck with unknown origin and expounded systemically in 1948
by Kimura (1). The clinical symptoms of Kimura disease include
a painless soft tissue mass, with peripheral lymphadenopathy
or lymphadenectasis in the neck and submandibular region (2).
The imaging findings of Kimura disease are non-specific; even
though the lesions may have some features such as well-defined
boundaries, lack of liquefaction necrosis, and calcification or
fusion trend, it is still difficult to be distinguished from other
lymphadenectasis for some cancer patients with lymph node
metastases without symptoms of primary tumors (3–5). The
main treatment of Kimura disease is radiotherapy instead of
radical surgery, which is preferred for some kind of lymph
node metastases in the head and neck. So, it is essential to
make an accurate differential diagnosis for clinical intervention.
Currently, the diagnosis of Kimura disease is mainly based
on the judgment of clinical features and the histopathological
examination. However, the clinical judgment is inaccurate, and
it is uneconomical and uncomfortable for patients to undergo
non-comprehensive sampling and time-consuming and invasive
surgical resection or biopsy. An accurate, non-invasive, and
efficient method of disease identification is urgently needed.

Radiomics is a newly emerging form of imaging analysis using
a series of data mining algorithms or statistical analysis tools on
high-throughput imaging features extracted from radiographic
data to obtain diagnostic or prognostic information (6–8). By
building appropriate models with refined features, successful
assessment, and prediction abilities in various challenging clinical
tasks can be achieved (9–13). Recent studies of radiomics have
provided insights in precision medicine in oncologic practice
related to tumor detection, subtype classification, lymph node
metastases, survival, and therapeutic response evaluation (14).
A review walking through several steps necessary for radiomic
analysis in brain tumor in detail showed how it is able to
use radiomics in diseases (15). As far as we have known, the
application of radiomics for differential lymph node lesions of
Kimura disease from lymph node metastases in the head and
neck has not been reported in the literature yet.

The purpose of this study was to investigate whether radiomic
features extracted from contrast-enhanced CT (CECT) images
and the model build on the features could be used for
differentiating Kimura disease from metastases.

MATERIALS AND METHODS

General Information
This retrospective study was approved by the ethics committee
of Cangzhou Central Hospital, and the informed consent
requirement was waived. The researchmethod was in accordance
with the standard guidelines and regulations. The clinical
histopathologic and radiological data were collected from July
2011 to August 2018. The cohort inclusion criteria were as
follows: (a) lymph nodes with histopathologically confirmed
Kimura disease and lymph node metastases in head and neck

by means of biopsy or surgery resection, (b) patients with CECT
performed within 10 days before the pathological examination,
and (c) lymph nodes without liquefaction necrosis or calcification
with the minimum diameter not <1.0 cm (4, 16). The exclusion
criteria were (a) poor image quality with artifacts and (b) patients
who had previously received related therapy. Eventually, a total of
77 lymph nodes were included in our study—among them were
14 patients (12 males and two females; mean age, 36.5 years old;
range, 16–51 years) with a total of 38 lymph nodes diagnosed
as Kimura disease in head and neck. Eight lymph nodes were
located in level I, 10 in level II, one in level III, two in level V, and
17 in level VIII. There were 39 patients (20 males and 19 females;
mean age, 59.2 years old; range, 30–77 years) with 39 lesions
diagnosed as lymph node metastases. Ten lymph nodes were
located in level II, eight in level III, 14 in level IV, five in level V,
and two in level VI. The level of lymph nodes is defined according
to the method described by Gregoire et al. (17). The lymph node
metastases were derived from variously sourced cancerous foci
(see Table S1 for detailed information).

CT Image Acquisition
All enrolled patients underwent CECT examination (Light Speed
64, Waukesha, WI, USA). All patients took the supine position.
The range of the scan was from the skull base to the sternal notch.
The scan parameters were as follows: tube of voltage of 120 KV,
tube current of auto Am, slice thickness 2.5mm, interval 2.5mm,
and pitch 1.375. Ultravist (350mg I/Ml, 1.5 ml/kg) was injected
with a rate of 3.5 ml/s through the elbow vein by a high-pressure
injection. Axial arterial-phase and venous-phase CT images were
obtained at 25–30 and 60–70 s after injection and were exported
in DICOM format.

Radiomic Features
VOI Segmentation and Radiomic Feature Acquisition
The venous-phase images were used for image feature extraction
as the distribution of the contrast agent in the lesions was
more homogeneous, and the image quality was better for
distinguishing the lesions from the adjacent tissue (18–20). The
technical process of the entire study is shown in Figure 1.
The lesions were delineated on the venous-phase CECT images
using the ITK-SNAP software (available at www.itksnap.org)
in soft-tissue window (window width, 35; window level, 400).
Two experienced radiologists (ZY, reader #1, radiology resident;
ZL, reader #2; both doctors have 10 years of experience in
imaging) blinded to the clinical outcomes were involved in
ROI segmentation. The whole-tumor volume was determined
by manually drawing a region of interest along the border of
the tumor on each consecutive slice covering the whole lesion.
Therefore, a three-dimensional (3D) volume of interest (VOI)
was finally obtained. The radiomic features were automatically
calculated by AK software (Artificial Intelligence Kit, GE
Healthcare, Shanghai, China). The features extracted by the AK
software comply with the standards set by the Image Biomarker
Standardization Initiative. In total, 396 imaging features were
extracted in each lesion, including (1) histogram features, such
as mean, uniformity, skewness, kurtosis, energy, and entropy;
(2) form factor features, such as volume CC, surface, surface
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FIGURE 1 | Illustration of the process of data analysis. First, each layer of the lesion was manually segmented and automatically merged into a three-dimensional

volume of interest (VOI) in the software. Then, upon extraction of the VOI radiomic features, relevant statistical methods were carried out for feature dimensionality

reduction, and finally a statistical analysis on the selected features was performed and a model classifier was established.

volume ratio, compactness, and maximum 3D diameter; and
(3) texture features including Gray level co-occurrence matrix
(GLCM), Gray level run length matrix (GLRLM), Gray level size
zone matrix, and Haralick parameters. The offset of GLCM and
GLRLM were 1, 4, and 7. Features pre-processing was conducted
in two steps: step 1—outliers and null values were replaced by
mean values, and step 2—values standardization was carried out
to eliminate the influence of the dimension. Feature dimension
reduction was performed as follows: First, analysis of variance
(ANOVA) and Mann–Whitney U-test were performed. Second,
Spearman correlation test was conducted to remove the highly
correlated variables. Third, in the LASSO model, the value of
the minimum error rate among the 10-fold cross-validation
was selected to construct the penalty function to compress the
unimportant variable coefficients to zero (Figure 2). Gradient
Descent algorithm for further feature screening was performed
when the features were still redundant. In the study, the
morphological features of the lesions were excluded. An analysis
was made only about the texture features of the lesions (21).

Radiomic Modeling and Validation
All lymph nodes were randomly divided into training set (n
= 54) and testing set (n = 23) with a ratio of 7:3. A total
of 27 of the 38 lymph nodes of Kimura disease and 27 of 39
lymph nodes of metastases were included in the training set and
11 other lymph nodes of Kimura disease and 12 lymph nodes
of metastases were in the testing set. Then, the binary logistic

regression model was constructed based on the training set data
to validate the model with the testing set data. The features and
model identification performance were quantified by the area
under the receiver operating characteristic (ROC) curve (AUC)
in the training and the testing sets. Radiomic nomogramwas then
constructed on the basis of the binary logistic regression model.
Radscore was calculated for each lesion and then converted into
the risking probability of lymph node metastasis. A decision
curve analysis was performed to evaluate the clinical benefit of
the nomogrammodel developed in the testing dataset. The x axis
of the curve is the threshold of the predicted probability outcome
by the nomogram model. The y axis is the clinical decision net
benefit for patients based on the discrimination result under
this threshold.

Statistical Analysis
Statistical analysis was performed by R studio (1.1.463, packages:
“verification,” “pROC,” “rms,” “glmnet,” “caret,” and “rmda”) and
IBM SPSS Statistics 22. With regard to the reproducibility of
volumetric and texture analysis, inter-observer reliability was
assessed by intra-class correlation coefficient (ICC) test. Delong
test was used for significant difference test among AUCs (22).
Hosmer–Lemeshow test was used for evaluating model fit-
goodness. The normal distribution test was performed using
Shapiro–Wilk on continuous quantitative variables. Levene’s test
was used for equality of variances. P > 0.05 was considered to be
normal distribution and variance is equal. Independent-sample

Frontiers in Oncology | www.frontiersin.org 3 July 2020 | Volume 10 | Article 1121322

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics in Differentiating Kimura Disease

FIGURE 2 | Feature selection in the LASSO model. (A) LASSO error graph tuning parameter (λ) selection in the LASSO model used 10-fold cross-validation via

minimum criteria. The error value was plotted vs. log(λ). Seven features with the smallest error value were selected. (B) LASSO coefficient profiles of the texture

features. The red vertical line is drawn at the value selected using 10-fold cross-validation in log(λ) sequence and coefficients with non-zero values are indicated.

t-test was used for significant difference in variable distribution
if normally distributed; otherwise, the non-parametric Mann–
Whitney U-test was used. The qualitative variables were
compared with chi-square or Fisher’s exact test. P < 0.05 was
considered as statistically significant.

RESULTS

The ICC values of the inter-observer of our research were 0.76–
0.97, which suggest great accordance between two readers and the
reliability of VOI sketching (22, 23). Three hundred ninety-six
radiomic features were extracted automatically by AK software.
The morphological features of the lesions were excluded and
seven features were left after the redundancy reduction step,
including one histogram feature, four GLCM features, and two
GLRLM features. The seven features were significantly different
between the two groups (all P < 0.05) (Figure 3, Figure S1). In
the histogram feature of variance, the first quantile of the lymph
nodes of the metastases group was significantly higher than
the maximum value of the lymph nodes of the Kimura disease
group. The variance value of metastases is generally greater
than that of Kimura disease, which suggests that the image-
brightness-changing gradient of metastases was steeper than that
of Kimura disease. In the GLCM feature cluster, the first quantile
of the Inertia_AllDirection_offset1 and HaraVariance of the
metastases group is slightly larger than the fourth quantile of the
Kimura group. The greater the value, the greater is the difference
in the lesions. While the first quantile of the Kimura group of
InverseDifferenceMoment_angle90_offset7 and sumAverage
was greater than the fourth quantile of the metastases group,
the larger the value of these two features, the smaller is the
lesion difference. In the GLRLM cluster, the first quantile of
the LongRunHighGreyLevelEmphasis_AllDirection_offset4
feature of the Kimura group was significantly higher than
the fourth quantile of the metastases group, while in the
ShortRunEmphasis_angle90_offset7 feature, the median of
the metastases group was greater than the fourth quantile of

the Kimura group. The first quantile of the metastases group
is slightly lower than that of the Kimura group. The larger
the value, the greater is the difference in gray value between
adjacent pixels in the lesion (Figure 3). Two sets of mapped
images of CECT and radiomic features of patients with Kimura
disease and lymph node metastases are shown, respectively, in
Figure 4, wherein the histogram is the gray scale distribution
of the entire lesion. The gray distribution of the Kimura disease
patient is more concentrated than that of the metastases patient.
The variation of the run length matrix of metastases patients is
greater than that of the Kimura patients, and the GLCM shows
that the lesion complexity of the Kimura disease patient is less
than that of the metastases patient.

Radiomic Model Building and Validation
A binary logistic regression model was established using the
seven distinctive features. The radscore value of each lesion
(Formula 1) was obtained, and the predicting risking probability
of lymph nodes of metastases was obtained (Formula 2).

Radscore = 4.290+ 8.476A+ 2.587B− 2.232C

+ 7.690D+ 1.142E+ 0.092F − 10.934G (1)

Probability positive prediction probability =
1

1+ e(−radscore)

(2)

(A: Variance, B: Inertia_AllDirection_offset1, C:
HaraVariance, D: LongRunHighGreyLevelEmphasis_
AllDirection_offset4, E: ShortRunEmphasis_angle90_
offset7, F: InverseDifferenceMoment_angle90_offset7, and
G: sumAverage).

If the coefficient of the variable is negative, the smaller the
value, the greater the risk probability will be. If the coefficient of
the variable is positive, the smaller the value, the smaller the risk
of developing lymph nodes of metastases will be.
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FIGURE 3 | The distribution of positive prediction probability and the selected feature values between the two groups (A–H). Label 0 represents the Kimura disease

group and the label 1 represents the lymph node metastases group. There was a significant difference in the distribution of values between the two groups, and all

P-values were <0.05.

FIGURE 4 | Two sets of mapped images of radiomic features of patients with Kimura disease (A–E) and lymph node metastases (F–J). (A,F) CECT images. (B,G)

Volumes of interest. (C,H) Grayscale distribution histogram of the lesions. The distribution of (H) was more dispersed than the distribution of (C). (D,I) Run length

matrix features. The frequency of changing of the gray scale of (D) was smaller than that of (I). (E,J) Gray level co-occurrence matrix features. The heterogeneity of

lesions in (J) was greater than that of (E).

The radiomic signature showed favorable predictive efficacy.
The risking probability according to radscore shows a significant
difference between the two groups (P < 0.001) (Figure 3). As can
be seen from the figure, the prediction probability of the lymph
nodes of the Kimura disease group is much lower than that of the

lymph nodes of the metastases group [cutoff value: 0.490—this
cutoff value is taking into account disease prevalence (50.9%);
the value larger than 0.490 is considered to be the metastasis
group, while the value smaller than 0.490 is thought to be the
Kimura disease group]. The positive and negative predictive
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FIGURE 5 | Receiver operating characteristic plots of the selected seven

features and the model’s prediction probability based on them. According to

the area under the curve index, the identification effectiveness of the binary

logistic regression model based on the seven features is greater than the

discrimination performance of any single feature.

values of prediction were higher than the performance values
of the other seven features. According to the OR values of the
seven features, the importance of the features can be ranked,
where extreme values <1 or >1 indicate that the feature is more
important, and the values of sumAverage and variance are more
extreme, so the contribution of these two features to the model
was greater, which is consistent with their AUC value trend
(Table 1). The ROC curves of seven features and the predicted
probabilities are established to evaluate the performance of each
feature and model (Figure 5). From the figure, we can see that
the model prediction probability (AUC: 0.970) is optimal for
disease detection, followed by sumAverage (AUC: 0.915) and
variance (AUC: 0.910). The AUC value of each variable was
significantly different from the AUC of 0.5 (all P < 0.0001),
indicating that each variable is reliable for the prediction and
the identification of the disease. According to the AUC DeLong
test between prediction and the other seven features, except for
sumAverage and variance, the predictive power of prediction was
significantly different from the other five features (all P < 0.05).
All the information above can be seen in Table 2. In general, the
eight variables in the figure have a good distinguishing effect on
the disease. Sensitivity and specificity are obtained according to
the most approximate Youden index. The optimal criterion value
indicates the cutoff value which was assigned to the metastatic
tumor group.

We further tested the fit-goodness of the established binary
logistic regression model. The results show that the model is
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TABLE 2 | Significant difference test between area under the curve values of the model and the seven features.

Comparison of variables Difference

between areas

Standard

error

95% confidence

interval

z statistic Significance

level

Prediction ∼ HaraVariance 0.0912 0.0417 0.00945 to 0.173 2.187 P = 0.0288

Prediction ∼ LongRunHighGreyLevelEmphasis_AllDirection_offset4 0.101 0.05 0.00306 to 0.199 2.021 P = 0.0433

Prediction ∼ Inertia_AllDirection_offset1 0.142 0.0521 0.0403 to 0.245 2.733 P = 0.0063

Prediction ∼ ShortRunEmphasis_angle90_offset7 0.211 0.0623 0.0887 to 0.333 3.384 P = 0.0007

Prediction ∼ InverseDifferenceMoment_angle90_offset7 0.147 0.0563 0.0363 to 0.257 2.604 P = 0.0092

Prediction ∼ sumAverage 0.0556 0.0361 −0.0152 to 0.126 1.54 P = 0.1236

Prediction ∼ Variance 0.0598 0.0313 −0.00152 to 0.121 1.911 P = 0.0560

FIGURE 6 | Receiver operating characteristic curve (A) and classification effect diagram (B) for verifying the model with testing data. (A) The area under the curve is

0.977, the sensitivity is 1.0, and the specificity is 0.909 in testing data. (B) Pink and blue represent label 0 and label 1 according to the gold standard, respectively. The

model uses 0 as the classification threshold, with blues <0 and pinks >0 being cases of model misclassification. It can be seen that the classification effect of the

model in the testing group is generally good.

in good agreement with the actual model (χ2 = 2.127, P =

0.977, Hosmer–Lemeshow test). The model was validated in the
testing group and found to have good generalization ability. The
AUC of the testing set was 0.977, the sensitivity was 1, and the
specificity was 0.909 (Figure 6A). The model performed to be a
good classifier on the testing set data (Figure 6B). The decision
curve of the model shows that the net benefit of making decisions
based on the established model is much greater than treating
all patients or not treating all patients between the probability
threshold of 0.08–1.0 (Figure 7).

We have constructed a nomogram of the predictive model
for model application. After we get the patient’s image feature
data, normalize the feature, then get the corresponding points
according to the values of these seven features, and finally add
these seven points to get the total point, the total point is vertically
corresponding to the probability scale line. The probability of
having a metastatic tumor in this patient is available (Figure 8).

FIGURE 7 | Decision curve analysis for radiomic discrimination model. The

Y-axis represents the standardized net benefit. All: assuming that all patients

will be treated. None: assuming that no patient will be treated. Red line: the

nomogram prediction performance based on model. When making a decision

based on a nomogram, the standard net benefit obtained is greater than the

treatment of all patients or none in the range of threshold probability 0.08–1.0.
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FIGURE 8 | Radiomic nomogram to detect lymph node lesion. The radiomic nomogram was developed in the training set with the seven features. In the nomogram,

first, make a vertical line according to the value of the selected seven features to determine the corresponding value of points. Then, the total points are the sum of the

seven points above. Finally, make a vertical line according to the value of the total points to determine the probability of lymph node metastases.

DISCUSSION

The present study is the first to distinguish Kimura disease from
lymph node metastases in the head and neck using radiomic
features and the model based on the features on venous-
phase CECT images. In our study, seven features and predicted
probabilities have a good distinguishing effect on the disease. The
predicted probabilities are optimal for disease detection.

The morbidity of Kimura disease is low, and the majority of
reports about Kimura disease focus on clinical findings, with a
few of the imaging findings reported (24–26). There are three
types of CT manifestations of Kimura disease in the head and
neck: (1) multiple nodular type, showing multiple nodules, with
clear borders and uniform enhancement, (2) diffuse mass type,
characterized by ill-defined diffuse subcutaneous soft tissue mass,
with thickening of the adjacent skin and mild to moderate
heterogeneous enhancement, mainly located in the subcutaneous
fat space of the maxillofacial region, and (3) mixed type, with
characteristics of both of the above types.

Most patients having subcutaneous tumor-like nodules with
large parotid gland and local lymph node involvement are
easy to be misdiagnosed as malignant tumors, which make a

differential diagnosis difficult even using CT and MRI. Lymph

node metastasis is a high-risk factor for the prognosis (27);
more than one metastatic lymph node will increase the risk of
recurrence (28). Metastasis of tumors to sentinel lymph nodes
can predict disease progression and often guides a treatment
scheme (29). In clinical practice, many patients are required
for further CT or MRI to detect whether primary tumors exist.
There are different treatment modalities for Kimura disease,
and the postoperative recurrence rate is high (2, 26). The
main treatment of Kimura disease is different from malignant
tumors. There is no need to do radical surgery. Therefore, it

is necessary to make a clear diagnosis before surgery. Although
some scholars have summarized some imaging features of
Kimura disease in the head and neck, it is necessary to combine
clinical and laboratory examinations to improve the diagnostic
accuracy for lacking image characteristics and the pretty low
diagnostic accuracy.

In the recent years, radiomics increasingly draws attention
and has demonstrated that it may be a tool that can obtain high-
fidelity target information to comprehensively evaluate lesions,
especially the texture features in the image that are not recognized
by the naked eye and reveal the inherent heterogeneity of the
tissue, reflecting the subtle differences between different tissues.
Radiomics can be combined with the imaging appearance to
further improve the differential diagnosis ability of the lesion
(30, 31). The AK, an imaging analytic software used in this study,
has been used in many research reports (32, 33). A previous study
showed that radiomic feature-based CT imaging signatures allow
the prediction of lymph node metastasis in cancer and could
facilitate the preoperative individualized prediction of lymph
node status (20).

Kimura disease is a rare disease; the lymph nodes involved
in the case are often multiple. Therefore, the diseased lymph
nodes were selected as the research object, and the AK software
was used for feature extraction and dimensionality reduction. A
total of 396 features were extracted and seven texture features
were selected to identify Kimura disease from lymph node
metastases, and a logistic regression model was established. In
order to avoid model over-fitting, we adopted 10-fold cross-
validation using training set data and testing set data for the
established model. The mean AUCs of models in the two sets
were 0.7812 and 0.7628. The AUC of the testing set was 0.977,
which is a strong validation of the good performance index of
the logistic regression model established in the study. In this
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study, the seven screened out features showed a significantly
different distribution between the two groups, and from the
point of view of the features themselves, the results showed that
the heterogeneity of metastatic tumors was greater than that of
Kimura disease on CECT. This conclusion may be explained
by a previous basic study. Lee et al. (29), by using comparative
transcriptomics and metabolomics analyses of primary and
lymph node metastasis tumors in mice, found that lymph node
metastasis requires that tumor cells undergo a metabolic shift
toward fatty acid oxidation (FAO). Transcriptional coactivator
yes-associated protein (YAP) is selectively activated in lymph
node metastatic tumors, leading to the up-regulation of genes
in the FAO signaling pathway. Several bioactive bile acids
accumulated to high levels in metastatic lymph node metastasis,
and these bile acids activated YAP in tumor cells, likely through
the nuclear vitamin D receptor. The study showed that lymph
node metastases are complex.

It is also obvious that both the CECT image and the radiomic
features image of the lymph nodes in a metastatic tumor patient
have a greater changing rate and more complexity than that of
the Kimura disease (Figure 8). The discriminated efficiency of
the model is better than any single feature for the two diseases,
and the disease identification ability of the model, in addition
to variance and sumAverage, is significantly different from the
other five features. The results show that the model has a higher
identification accuracy; the decision curve of the model shows a
greater standard net benefit within a wide threshold probability
(0.08–1.0) than treating all patients or treating no patient. So,
we prefer using this model as a basis for decision making to
identify these two kinds of diseases. The nomogram is one of the
important applications of the model. Through the nomogram,
the risk of each patient can be predicted (20, 34, 35). Using
the model to classify the data of the testing set, it is found
that the correctness of the classification is good, which may
be due to the small amount of sample data in the testing set.
This study demonstrates that radiomics can help identify Kimura
disease in the head and neck and lymph node metastases, and
the established nomogram can predict the risk of lymph node
metastases in patients. Radiomics can be used as an intelligent-
aided tech to diagnose diseases.

There are some limitations in our study. First, this is a single-
institution retrospective analysis. The sample size is rather small
because of the low morbidity of Kimura disease. Second, because
of lack of data, we did not integrate clinical features and genetic
and immunohistochemical data into a statistically predictive

model. Third, this study lacks an external validation. Therefore,
the sample should be expanded and multi-center independent
samples are needed to further improve the accuracy of the
model. In the future, some clinical data will be integrated into
a statistically predictive model.

In summary, our results showed that CECT images contain
much useful information which could be used to differentiate
Kimura disease from lymph node metastases, but which could
not be seen through naked eyes. Radiomic technology can deeply
explore the image heterogeneity information, which may be an
effective and non-invasive way for differential diagnosis between
Kimura disease and lymph node metastases.
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Objective: The aim of this study is to evaluate whether radiomics imaging signatures

based on computed tomography (CT) could predict peritoneal metastasis (PM) in gastric

cancer (GC) and to develop a nomogram for preoperative prediction of PM status.

Methods: We collected CT images of pathological T4 gastric cancer in 955 consecutive

patients of two cancer centers to analyze the radiomics features retrospectively and

then developed and validated the prediction model built from 292 quantitative image

features in the training cohort and two validation cohorts. Lasso regression model was

applied for selecting feature and constructing radiomics signature. Predicting model

was developed by multivariable logistic regression analysis. Radiomics nomogram was

developed by the incorporation of radiomics signature and clinical T and N stage.

Calibration, discrimination, and clinical usefulness were used to evaluate the performance

of the nomogram.

Results: In training and validation cohorts, PM status was associated with the

radiomics signature significantly. It was found that the radiomics signature was an

independent predictor for peritoneal metastasis in multivariable logistic analysis. For

training and internal and external validation cohorts, the area under the receiver operating

characteristic curves (AUCs) of radiomics signature for predicting PM were 0.751

(95%CI, 0.703–0.799), 0.802 (95%CI, 0.691–0.912), and 0.745 (95%CI, 0.683–0.806),

respectively. Furthermore, for training and internal and external validation cohorts, the

AUCs of radiomics nomogram for predicting PM were 0.792 (95%CI, 0.748–0.836),

0.870 (95%CI, 0.795–0.946), and 0.815 (95%CI, 0.763–0.867), respectively.

Conclusions: CT-based radiomics signature could predict peritoneal metastasis, and

the radiomics nomogram can make a meaningful contribution for predicting PM status

in GC patient preoperatively.

Keywords: gastric cancer, peritoneum, metastasis, radiomics, nomogram
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INTRODUCTION

Gastric cancer (GC) is one of the most common human
malignancies and the third leading cause of cancer-related deaths
worldwide (1–3). Surgical resection is the major treatment for
GC patient (4); however, patients in advanced gastric cancer
with peritoneal metastasis, a non-curable factor, showed poor
prognosis (5). Peritoneal metastasis (PM) primary occurs in T4
stage (6, 7). Accurate evaluation of PM status in GC patients is
essential for treatment decision and prognosis. It was found that
some biomarkers and histopathological factors (e.g., T,N staging,
Greater Omental Milky Spot, and Troponin I2) could predict
PM status in GC (7, 8), but they just provided low prediction or
were merely available postoperatively. Preoperative assessment
of PM can provide useful information for performing adjuvant
treatment and avoid unnecessary surgical resection, thus
contributing to pretreatment decision. Computed tomography
(CT), which could detect obvious parietal peritoneum thickening
and ascites, is regarded as a popular non-invasive method
to diagnose PM (9). However, the signs of obvious parietal
peritoneum thickening or large amount of ascites did not
always exist in every GC patient with PM. There still exist GC
patients who were CT-diagnosed PM-negative but confirmed
PM-positive during subsequent laparoscopies (9). Therefore,
CT-diagnosed PM has low sensitivity. Laparoscopy, a golden
criterion for detecting PM status, is strongly recommended by the
European Society for Medical Oncology (ESMO) and National
Comprehensive Cancer Network (NCCN) guidelines to perform
for its diagnosis but is controversial due to the different clinical
T stage and health status; for example, some patients could not
suffer the intraperitoneal high pressure during the performance
of laparoscopy. Laparoscopy is an invasive diagnostic procedure;
hence, it is not suitable for each patient. Therefore, accurate
preoperative prediction of PM status is very important for GC
patients, especially at the late stage.

Radiomics, an arising field that involves converting digital
medical images into mineable data, analyzing data, and
improving medical decision, has attracted increasing attention in
recent years (10, 11). With radiomics, the accuracy of diagnosis,
prognosis, and prediction could be improved, especially in
oncology (12). Radiomics enables the non-invasive profiling
of tumor heterogeneity (13, 14) through integrating complex
imaging features. The applications of radiomics mainly focus
on individualized therapy associated with cancer such as tumor
detection, lymph node metastasis (LNM), subtype classification,
survival, and treatment reaction assessment (13, 15–17). It was
reported that CT texture was associated with prognosis in
patients with GC (18); however, an ideal method that can change
complex imaging features into a signature for predicting PM is
still urgent to be developed. For GC patients especially those
in clinical T3–T4, who are more likely to have higher risk of
PM, developing a predictive model with radiomics signature to
predict PM status is quite necessary.

The purpose of this study was to establish a radiomics
signature for predicting the PM status in GC patients on the
basis of preoperative CT information and to further develop
a radiomics model that incorporates the clinicopathological

findings and radiomics signature for the personal prediction of
PM status in patients with GC preoperatively.

MATERIALS AND METHODS

Patients
This study was approved by the ethics committee of every
participating center, and the informed consent requirement was
waved. We retrospectively selected three independent cohorts
of patients with GC in pathological T4 stage. The training and
internal validation cohorts comprising 562 and 106 consecutive
patients, respectively, with total or partial radical gastrectomy
were obtained from Sun Yat-sen University Cancer Center
between January 2008 and December 2012 and January 2013 and
December 2013, respectively. The external validation cohort that
comprised 287 consecutive patients was obtained from Nanfang
Hospital of Southern Medical University (Guangzhou, China)
between January 2007 and December 2013. Clinicopathological
data of each patient were collected retrospectively. Table 1

shows the characteristics of the 955 GC patients. Patients
were included if they met the following criteria: performed
standard unenhanced and contrast-enhanced abdominal CT
<4 weeks before surgery, with fundamental clinicopathological
data, without combined malignant tumor, without preoperative
chemotherapy, and being confirmed T4 GC histologically.
Exclusion criteria were as follows: CT could not distinguish
the lesions of the neoplasm, and anticancer therapy was
performed previously. Fundamental clinicopathological data,
such as gender, age, size, location, cancer antigen 19-9 (CA19-
9), carcinoembryonic antigen (CEA), status of preoperative
differentiation, were obtained from medical records. We also
collected the dates of baseline CT imaging and the clinical T
stage (cT) and N stage (cN) of patients. The details are shown
in Figure S1.

Peritoneal metastasis status was divided into two outcome
categories: PM-negative status [PM(–)] and PM-positive status
[PM(+)]. All the diagnoses of PM status were based on the
laparoscopy surgery and pathological examination.

Image Acquisition
Contrast-enhanced abdominal CT of patients was performed
by the multidetector row CT (MDCT) systems (256-MDCT
scanner Brilliance iCT, Philips Healthcare, Cleveland, OH, USA;
64-section LightSpeed VCT, GE Medical Systems, Milwaukee,
WI, USA; or GE Lightspeed 16, GE Healthcare Milwaukee, WI,
USA). To standardize the image acquisition, portal venous phase
contrast-enhanced CT images were retrieved from the picture
archiving and communication system (PACS) (Carestream,
Canada) in Digital Imaging and Communications in Medicine
(DICOM) format for feature extraction (19). The details are
shown in Supplementary Materials.

Imaging Texture Analysis
All the CT images were reviewed by two experienced radiologists
who both had clinical experience in abdominal CT study
interpretation for more than 10 years. Based on the consensus
of these two radiologists, the tumor manual segmentation
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TABLE 1 | Characteristics of patients with gastric cancer (GC) in each cohort.

Variables Training Cohort (N = 562) Internal Validation Cohort (N = 106) External Validation Cohort (N = 287)

N % N % N %

AGE (YEARS)

≥60 238 42.3 46 43.4 125 43.6

<60 324 57.7 60 56.6 162 56.4

GENDER

Male 385 68.5 76 71.7 207 72.1

Female 177 31.5 30 28.3 80 27.9

SIZE

≥4 cm 409 72.8 79 74.5 196 68.3

<4 cm 153 27.2 27 25.5 91 31.7

DIFFERENTIATION

Well or moderate 75 13.3 21 19.8 60 20.9

Poor or undifferentiation 487 86.7 85 80.2 227 79.1

LAUREN TYPE

Intestinal 157 27.9 36 34 100 34.8

Mixed and diffuse 405 72.1 70 66 187 65.2

LOCATION

Cardia 218 38.8 32 30.2 59 20.6

Body 113 20.1 31 29.2 48 16.7

Antrum 183 32.6 36 34 140 48.8

Whole 48 8.5 7 6.6 40 13.9

CEA

Elevated 139 24.7 30 28.3 50 17.4

Normal 423 75.3 76 71.7 237 82.6

CA19-9

Elevated 130 23.1 19 17.9 62 21.6

Normal 432 76.9 87 82.1 225 78.4

cT STAGE

T3 99 17.6 27 25.5 34 11.8

T4a 337 60 48 45.3 232 80.8

T4b 126 22.4 31 29.2 21 7.4

cN STAGE

N0 159 28.3 23 21.7 69 24

N1 131 23.3 18 17 58 20.2

N2 125 22.2 22 20.8 69 24

N3 147 26.2 43 40.6 91 31.8

PM

PM(–) 472 84 89 84 225 78.4

PM(+) 90 16 17 16 62 21.6

was performed and checked with ITK-SNAP software (www.
itksnap.org) (20). They constructed manually a single region
of interest (ROI) that covered the entire area of the lesion
on the transverse image section, which depicted the maximum
lesion diameter for each lesion. Based on the above procedure,
we used an available radiomics analysis package (https://github.
com/mvallieres/radiomics/) in Matlab R2016a (The MathWorks
Inc.) to extract and calculated the radiomics features of these
images. The inter- and intraobserver variability of radiomics
feature extraction of the two radiologists was initially analyzed
with 100 randomly chosen images for ROI-based texture feature

extraction; details are shown in Supplementary Methods 2. The
final feature pool included first-order intensity features, shape
features, and second- and higher-order textural features. The
detailedmathematical definitions of all imaging features are listed
in Supplementary Materials.

Radiomics Feature Selection and
Signature Development
In order to predict the PM status of patients with GC, we used
the least absolute shrinkage and selection operator (LASSO)
logistic regression model to select the optimal radiomics features
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from the primary texture features, and then, the development
of the radiomics score (Rad-score) was constructed in the
training cohort (21). For further detecting and addressing the
collinearity among features, scatterplot correlation matrix with
Person correlation coefficient was applied to investigate the
interrelationship among the primary selected features and PM
status, and if features had a correlation coefficient that was higher
than 0.80 between each other, then the one with the highest
collinearity was excluded from the analysis (22–24). In this study,
we used the R software (version 3.5.3) with the “glmnet” package
to perform the LASSO regression (25, 26). A detailed information
is provided in Supplementary Materials.

Development of an Individualized
Prediction Model
Estimation of univariate relationships between PM status and
potential predictors were developed with logistic regression
analysis. The basis of the PM status prediction model was
established by multivariate logistic regression analysis. Different
variables were analyzed by using univariate logistic regression
analysis in the training cohort, and statistically significant
variable values with P < 0.05 in each cohort were then entered
into the multivariate analyses. We used the likelihood ratio test
with Akaike’s information criterion as the stopping rule to apply
the backward step-wise selection (27). Based on the prediction
model, a nomogram was then constructed.

Validation of the Prediction Model
The accuracy of the prediction model was assessed by
measuring both discrimination and calibration. We used 1,000
bootstrapping resamples for evaluating both discrimination and
calibration. Discriminative ability was measured by the area
under the receiver operating characteristic curve (AUC). The
consistency between the predicted and actual probability of PM
status was graphically represented by calibration plots.

Clinical Use
The potential net benefit of the predictive models was assessed
by the decision curve analysis (DCA), which is popular as a
new method for evaluating predictive model recently (28). The
decision strategy based on every threshold probability would
show a potential net benefit by using this method. In this study,
we quantified the net benefits at different threshold probabilities
with the use of the DCA to identify the clinical usefulness of the
Rad-score, cT stage, cN stage, and radiomics nomogram.

Statistical Analysis
For continuous variable values, the two-tailed t-test, unpaired,
one-way ANOVA, or Mann–Whitney test were used for
comparison. For categorical variables, the χ

2 test or Fisher’s
exact test was used to compare. Standardization of the image
features was applied by transforming the data of each feature
into new scores with a mean of zero and a standard deviation
of 1 (z-score transformation) (29, 30). Most of the statistical
tests were examined by using SPSS version 21.0 (IBM) and
R version 3.5.3 (http://www.r-project.org), and the nomograms
and calibration plots were conducted by using the R version

3.5.3 with rms package. For all tests, P < 0.05 was thought to be
statistically significant.

RESULTS

Clinical Characteristics
Table 1, Tables S1–S3 are the clinicopathological characteristics
of the training cohort (n= 562), internal (n= 106), and external
validation cohort (n = 287). As are shown in the tables, the
clinical characteristics of patients among the three cohorts have
no statistical difference. PM(+) status occurred in 90 (16.0%)
patients, 17 (16.0%) patients, and 62 (21.6%) patients in the
training, internal, and external validation cohort, respectively
(Table 1).

The inter- and intraclass correlation coefficients (ICCs) for
the two radiologists’ extracted features were both higher than
0.75, indicating that the inter- and intraobserver agreements
of radiomics feature extraction of the two radiologists were
good, so all outcomes were calculated on the basis of the
measurements of the first radiologist. Details are summarized in
Supplementary Materials.

Feature Selection and Radiomics
Signature Building
On the basis of 562 patients in the primary cohort, 292
features were extracted from the CT image by using Matlab
R2016a. Then, the 292 features were reduced to 11 potential
predictors (Figure S2) by being featured with non-zero
coefficients in the LASSO logistic regression model. Features
that showed high collinearity with each other were excluded
from analysis (Figure S3). Finally, four PM status-related
features were selected for constructing a meaningful radiomics
signature, presented with a Rad-score calculation formula:
Rad-score = −1.429359e−03 × Eccentricity + 1.232216e−02
× Exten – 9.887834e−02 × GLCM_IMC1-0.5 + 8.977322e-
02 × GLCM_MaximumProbability-0.5. Details are shown
in Supplementary Materials. The associations among the
clinicopathological characteristics, Rad-score, and PM status in
different cohorts are showed in Tables S1–S3.

The relationships among PM status, Rad-score, and clinical
characteristics in each cohort were determined by three heatmaps
(Figures S4–S6). In the training and internal and external
validation cohorts, significant positive relationship was found
between Rad-score and PM status.

Diagnostic Validation of Radiomics
Signature
In the training cohort, the Rad-score between PM(–) and
PM(+) patients was significantly different (P < 0.01, Figure 1).
Similarly, in the two validation cohorts, the Rad-score was
also confirmed to be significantly different between PM(–) and
PM(+) patients (P < 0.01, Figure 1). Higher Rad-scores were
found in PM(+) patients in the training and internal and
external validation cohorts consistently. The radiomics signature
displayed an AUC for predicting PM status of 0.751 (95% CI,
0.703–0.799) in the training cohort and 0.802 (95% CI, 0.691–
0.912) and 0.745 (95% CI, 0.683–0.806) in internal and external
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FIGURE 1 | Distribution of radiomics scores according to the PM status. (A–C) The values of the radiomics scores (Rad-scores) of each patient and the median

values with interquartile range of Rad-scores. PM, peritoneal metastasis status.

TABLE 2 | Multivariate relationship between Rad-score and preoperative clinicopathological characteristics with peritoneal metastasis in each cohort.

Variables PM(+) vs. PM(–)

OR (95%CI) P OR (95%CI) P OR (95%CI) P

Training cohort Internal validation cohort External validation cohort

Rad-score 6.364 (3.387–11.959) <0.0001 13.151 (2.175–79.512) 0.005 6.544 (2.924–14.642) <0.0001

Location

Cardia 0.362 (0.156–0.838) 0.018 0.925 (0.052–16.590) 0.958 0.797 (0.271–2.339) 0.679

Body 0.803 (0.335–1.923) 0.623 2.581 (0.306–21.744) 0.383 0.667 (0.206–2.156) 0.499

Antrum 0.877 (0.394–1.951) 0.747 1.846 (0.224–15.206) 0.569 0.746 (0.295–1.890) 0.537

Whole Reference Reference Reference

cT Stage

T3 0.300 (0.120–0.754) 0.01 0.150 (0.020–1.103) 0.062 / 0.997

T4a 0.684 (0.395–1.184) 0.175 0.183 (0.040–0.842) 0.029 0.221 (0.076–0.640) 0.005

T4b Reference Reference Reference

cN Stage

N0 0.268 (0.126–0.571) 0.001 / 0.998 0.177 (0.047–0.665) 0.01

N1 0.617 (0.315–1.208) 0.159 0.085 (0.007–1.071) 0.057 0.466 (0.169–1.284) 0.14

N2 0.935 (0.499–1.753) 0.835 1.150 (0.287–4.612) 0.843 1.750 (0.799–3.833) 0.162

N3 Reference Reference Reference

PM(+), PM-positive status; PM(–), PM-negative status; CI, confidence interval; OR, odds ratio.

validation cohorts, respectively. Furthermore, when performing
the stratified analysis according to clinicopathological risk
factors, the Rad-score was still significantly associated with PM
status in the training and internal and external validation cohorts
(Tables S4–S6).

Development of Radiomics Nomogram
Using univariate analysis, we found that the radiomics signature
was correlated with PM status significantly (Table S7). Variable
values that demonstrated significance were used for multivariable
analysis. In the training and internal and external validation
cohorts, radiomics signature still remained an independent and
powerful predictor for PM status in the multivariate logistic
regression analysis (Table 2). According to the multivariate

analysis, we developed a nomogram that integrated the radiomics
signature and cT and cN stages in the training cohort (Figure 2).
Using the nomogram, first draw a vertical line to the top point
row to assign points for each variable; next, add the points from
each variable together and drop a vertical line from the total
points row to obtain the probability of PM status. For example,
for a patient with a Rad-score of 0.4 and CT reported T4aN2
gastric cancer, the radiomics nomogram would predict a total
score of more than 100, which indicates that the probability to
suffer from peritoneal metastasis would be higher than 50%. The
relationship between nomogram score and PM status is shown in
Figure S7. Higher Nom-scores were found in PM(+) patients in
the training cohorts and internal and external validation cohorts
consistently (Figure S7).
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FIGURE 2 | Development of radiomics nomogram in training cohort. The radiomics nomogram incorporating the radiomics signature and cT stage and cN stages

was developed in the training cohort.

Validation of the Nomogram
In the training cohort, an appropriate agreement between
prediction and observation was yielded by the calibration
curve of the radiomics nomogram (Figure 3A). ROC analysis
showed good diagnostic performance of the Rad-score and
nomogram in predicting gastric cancer peritoneal metastasis
in each cohort (Table S8). The prediction performance of the
model was moderate, with an AUC of 0.792 (95% CI, 0.748–
0.836) in the training cohort (Figure 4A, Table 3, Table S8).
In the validation cohort, it also displayed excellent prediction
efficacy (Figures 3B,C), with AUCs of 0.870 (95% CI, 0.795–
0.946) and 0.815 (95% CI, 0.763–0.867) in the internal and
external validation cohorts, respectively (Figures 4B,C, Table 3,
Table S8). The decision curve analysis for the nomogram in
different cohorts are shown in Figure 5.

DISCUSSION

In this study, we first established a radiomics signature
based on four texture features. This PM-related radiomics

signature was obviously correlated with PM and was an
independent predictor of PM status in GC. Second, we
constructed the preoperative individualized prediction of PM
status by developing and validating a radiomics nomogram that
incorporated the radiomics signature and cT and cN stages. Both
of the nomogram and the radiomics signature can be used to
assist clinicians to predict peritoneal metastasis non-invasively.

We excluded patients with pathological T1–T3 tumors
because, compared to pathological T4, these parts of patients
are less expected to have PM (6, 7). If we had included patients
with pT1–pT3 tumors, the total incidence rate of PM would
decrease, reducing the specificity and sensitivity of the model for
predicting PM. Actually, those CT-reported T3 or T4 patients
are more likely to have the risk of PM (9), and most of them
were eventually conformed T3 or T4 stage but less even none
T1 or T2. All of the cancer centers in this study were in the
same situation.

The LASSO method is a powerful method for the regression
of high-dimensional predictors (31, 32). In this study, we shrank
the regression coefficients with the LASSO method to examine
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FIGURE 3 | Calibration curves of radiomics nomogram of peritoneal metastasis (PM) status prediction in training and internal and external validation cohorts. The

calibration curves described the calibration in agreement between predicted and observed outcome. The 45-degree reference line means a perfect calibration with the

outcome by ideal model. The solid line is the performance of the nomogram, without correction for overfit. The dotted line is the bootstrap-corrected performance of

the nomogram, with a scatter estimate for future accuracy. (A–C) Calibration curves in the training cohort, internal and external validation cohorts.

FIGURE 4 | Receiver operating characteristic (ROC) curves of the models in training and internal and external validation cohorts. (A–C) ROC curves in the training

cohort, internal and external cohorts.

the predictor-outcome association, and as a result, 292 candidate
radiomics features that were extracted from the primary CT
image were reduced to 11 potential predictors. After addressing
the collinearity, four PM-related features were selected for the
construction of the radiomics signature.

Although CT is very popular and important in preoperative
diagnosis, the accuracy of CT for preoperatively identifying PM
status was very limited in patients with GC (9). PET-CT was a
good method for predicting the LNM status preoperatively and
had value on distant organ metastasis (33), and Findlay et al. also
pointed out in their study that when staging patients with gastric
cancer, 18F-fluorodeoxyglucose (18F-FDG) PET-CT could show
useful information in identifying unsuspected metastasis (34);

however, its accuracy for PM did not demonstrate an advantage
over CT (33). Several studies have demonstrated that some
clinicopathological factors, like CEA or CA19-9 level, size of
the tumor, invasion depth, Borrmann type, and differentiation
type, showed relationships with LNM (35). Some nomograms
were developed for predicting LNM in patient with GC by
using above clinicopathological factors, but outer validations still
require to be applied on these nomograms. What is more, no
particular nomogram has been used widely in clinical settings
(17). Dong et al. found that PM was associated with the
texture of the nearby peritoneum of tumor (36), but actually
nearby peritoneum contains lots of positive-metastasis lymph
nodes, which may increase the false positive rate of PM, as
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the PM is also strongly associated with lymph node stage
(9, 17). This had also been proven in our study. Hence, CT
texture of the nearby peritoneum of the tumor still needs
further examination.

CT images contain manymedical information, and nowadays,
radiologists could easily acquire complementary anatomical
information of human tissues and definite tumor visually from
CT images. However, there remain large amount of digital
information for precise analysis, and different analytical tools
could dig out different kinds of information. Recently, the
rise in deep learning in medical research arouse hot topic
among researchers, especially in disease detection and diagnosis
(37, 38). Our previous study found that deep-learning-based

TABLE 3 | Predictive accuracy of newly developed nomogram, Rad-score, and

clinicopathological characteristics.

Variables AUC (95% CI)

PM(+) vs. PM(–)

TRAINING COHORT

Nomogram 0.792 (0.748–0.836)

Rad-score 0.751 (0.703–0.799)

cN stage 0.639 (0.580–0.698)

cT stage 0.604 (0.542–0.667)

INTERNAL VALIDATION COHORT

Nomogram 0.870 (0.795–0.946)

Rad-score 0.802 (0.691–0.912)

cN stage 0.669 (0.557–0.780)

cT stage 0.689 (0.548–0.830)

DATION COHORT

Nomogram 0.815 (0.763–0.867)

Rad-score 0.745 (0.683–0.806)

cN stage 0.664 (0.597–0.731)

cT stage 0.647 (0.570–0.723)

AUC, area under the receiver operating characteristic curve; CI, confidence interval; PM,

peritoneal metastasis; Rad-score, radiomics score.

CT image signature could help in predicting survival for
patients with GC and in identifying which patients could benefit
from adjuvant chemotherapy (39). However, deep learning
requires large amount of sample for training. Radiomics,
which can convert digital medical images to mineable data
and analyze these data to improve detection, diagnosis, stage,
and prediction power, may help us to improve the accuracy
of detecting PM status preoperatively (11, 12, 15). Giganti
et al. reported that texture features from DW-MRI and
CE-MDCT could be promising non-invasive biomarker in
evaluating the prognosis of gastric cancer (40), suggesting that
texture analysis from medical images could facilitate clinical
decision. Recently, Liu et al. reported that venous CT radiomics
analysis could provide interesting information for predicting
occult PM in gastric cancer (41), and before this study, a
radiomics signature that could predict LNM in colorectal
cancer was developed (17); therefore, we aimed to present a
predictive model for preoperative prediction of PM status by
connecting the preoperative clinicopathological factors and the
radiomics features.

In East Asian countries, radical gastrectomy with
chemotherapy is the standard treatment for advanced GC,
and the usefulness of neoadjuvant chemotherapy is recently
being measured (42, 43). In some clinical trials, preoperative
chemotherapy was performed in GC patients with extensive
metastasis. Recently, study found that patients with peritoneal
metastases of gastric cancer may benefit from cytoreductive
surgery (CRS) and hyperthermic intraperitoneal chemotherapy
(HIPEC) (44). Therefore, the radiomics nomogram for
preoperatively predicting PM status may contribute to make an
adequate preoperative medical decision and select patients who
could benefit from above treatment.

Four-feature radiomics signature and two preoperative
clinical factors (cT and cN stages, which are easily obtained from
CT) are integrated in our radiomics nomogram. According to the
nomogram, the status of the disease could be comprehensively
reflected, and the accuracy of prediction could be obviously
improved. Calibration plots and ROC analysis were used to
validate the nomogram. The nomogram showed excellent

FIGURE 5 | Decision curve analysis of the radiomics nomogram, Rad-score, and clinical T and N stage in each cohort. (A–C) Calibration curves in the training cohort,

internal and external validation cohorts.
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prediction with a good calibration. What is more, high
AUCs were demonstrated in our radiomics nomogram
both in internal and external cohorts when predicting the
PM status; this could provide more valuable information
for determining the need for adjuvant therapy and the
adequacy of surgical resection, thus aiding in pretreatment
decision making.

In this study, our radiomics signature and nomogram could
provide meaningful message for preoperatively predicting
PM status. In the future, we will put a preoperative
prediction model into effect to help provide proper
surgical procedures or select candidates with high risk
for laparoscopy exploration and treatment based on the
comprehensive consideration of the information of the
radiomics features.

However, there are still limitations in our study. Although the
radiomics signature and nomogram could provide meaningful
message for predicting PM, the nomograms were developed and
externally validated in three retrospective data sets from two
Chinese institutions; thus, these results need to be validated in
a larger population with a multicenter and prospective study
in the future, which could develop high-level evidence needed
for clinical use. In addition, this predictive model is suitable for
those who were preoperatively diagnosed cT3 or cT4, as these
patients are more likely to have the risk of PM; however, clinical
and pathological stages are sometimes inconsistent, especially
in gastric cancer (45). For example, those who were diagnosed
clinical T3 or T4 sometimes were found to be T1 or T2, and some
patients who were diagnosed clinical T1 or T2 were confirmed
T3 or T4 after surgery. For those who were pT3 or pT4 but were
diagnosed cT1 or cT2, they would miss the opportunity to use
this model for prediction. Furthermore, some serological matter
like CA125 and HER-2 were not included in this study, as this
study is retrospective and the above data were not available from
each patient in that period.

In conclusion, this study demonstrated that the radiomics
signature based on CT can be used as a predictor for predicting
peritoneal metastasis in GC patients. Besides, this study
revealed that the radiomics nomogram, which combined the
clinicopathological risk factors with the radiomics signature, can
be effectively used to promote the preoperative individualized
prediction of PM status in patients with GC.
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Objective: Clinical trials are the most effective way to judge the merits of diagnosis and

treatment strategies. The in-depth mining of clinical trial data enables us to grasp the

application trend of artificial intelligence (AI) for cancer diagnosis. The aim of this study

was to analyze the characteristics of registered trials on AI for cancer diagnosis.

Methods: Clinical trials on AI for cancer diagnosis registered on the ClinicalTrials.gov

database were searched and downloaded. Statistical analysis was performed by using

SPSS 20.0 software.

Results: A total of 97 registered trials were included. Of them, only 27 (27.8%) were

interventional trials and 70 (72.1%) were observational trials. Fifteen (15.4%) trials had

been completed. Fifty trials were in recruitment, and another 18 remained unrecruited.

The number of cases included in the clinical trials tended to be large, 31 (32.0%) trials

including samples ranging from 100 to 499 cases and 17 (17.5%) trials including samples

ranging from 500 to 999 cases. Of the 27 interventional trials, only two trials reported

trials’ phase. Most (85.2%) interventional trials were for diagnosis, and a few (3.7%) were

for the purpose of both the diagnosis and therapy of cancers. For the observational

clinical trials, 46 (65.7%) were cohort studies, and 11 (15.7%) were case-only studies.

Among the observational trials, 46 (65.7%) were prospective studies and 13 (18.6%)

were retrospective studies. Among 97 trials, 37 (38.1%) involved colorectal cancer, 11

(11.3%) involved breast cancer, 43 (44.3%) were for imaging diagnosis, 33 (34.0%)

were for endoscopic diagnosis, and 11 (11.3%) were for pathological diagnosis. For the

interventional trials, 11 trials were parallel assignment (40.7%), and 14 were single group

assignment (51.9%). Among the 27 interventional trials, 18 (66.7%) trials were performed

without masking, 6 (22.2%) trials were performed with single masking, only 1 (3.7%) was

performed with double masking, and 2 (7.4%) was performed with triple masking.

Conclusion: It appears that most registered trials on AI for cancer diagnosis are

observational design, and more trials are needed in this field.

Keywords: clinical trial, diagnosis, artificial intelligence, ClinicalTrials.gov, cancer
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INTRODUCTION

With the development of new computing methods combined
with the availability of training data, the application of powerful
mathematical algorithms in the field of artificial intelligence (AI)
has been promoted. It is hard to define AI precisely. It has been
suggested that a machine is intelligent if its working behavior
is indistinguishable from that of a human being (1). In modern
concepts, AI refers to the ability of machines to communicate,
reason, and operate independently at work in a manner similar
to that of humans. AI programs have been developed and applied
in many medical areas, including diagnosis, treatment, drug
development, and patient cares; in addition, there are increased
researches regarding AI in various specialties, especially in cancer
diagnosis (2–5).

Because cancer is still the leading cause of death worldwide
(6), accurate diagnosis of cancers is essentially important. In
terms of the imaging diagnosis of tumors (7) [i.e., pathological
diagnosis (8) and endoscopic diagnosis (9)], the performance of
AI is as good as that of human experts. In the era of big data,
medical activities are accelerating to produce a vast amount of
health-disease data (10). With the help of AI, doctors can provide
medical services to patients more efficiently and accurately (11,
12). At present, the most critical problem for AI application
in imaging is that there is no gold standard of AI for cancer
diagnosis (12); thus, many researchers performed trials to assess
AI for cancer diagnosis, because trials are the most effective way
to judge the merits of diagnosis and treatment strategies (13).
Most trials were registered in ClinicalTrials.gov, which is a public
clinical trial registry platform jointly launched by the US Food
and Drug Administration (FDA) and the US National Library
of Medicine (NLM). Studying characteristics of registered trials
will help to know the development of trials in specific filed.
Up to now, there is no such study on AI for cancer diagnosis;
thus, we performed the current study. The aim of this study
was to analyze and summarize the characteristics of AI for
cancer diagnosis. The in-depth mining of clinical trial data from
ClinicalTrials.gov enables us to grasp the application trend of AI
in cancer diagnosis earlier.

MATERIALS AND METHODS

Inclusion Criteria and Exclusion Criteria
The inclusion criteria were registered trials on AI for cancer
diagnosis; in each trial, cancer can be a single cancer or all kinds
of cancer. The exclusion criteria were AI in purely therapeutic
applications and incomplete registration information.

Data Search
According to our previous studies (14, 15), we search the
ClinicalTrials.gov on February 20, 2020, for trials on AI for
cancer diagnosis. In case of missing any trials, we used the
following words: artificial intelligence, deep learning, machine
learning, etc. All searched results were downloaded. The data
were updated on June 18, 2020.

Trial Screening and Data Extraction
Two authors independently screened the trials according to the
inclusion and exclusion criteria. In case of any disagreement,
discussion was performed. And then, two authors independently
extracted the data of the included trials. The following
information was extracted: registered number, study type, start
date, status of the trial, study result, study sample, participant
age, primary sponsor, location, primary purpose, phases of the
trial, allocation, intervention model, masking and intervention,
and types of cancer.

Data Analysis
The methodology of the study is similar to our previous study
(14). This is a cross-sectional study, so a descriptive analysis
was used to analyze the characteristics of registered trials. The
outcomes included year, status of trials, study results, age,
enrolment, sponsor, location, funding source, characteristics of
study designs, type of cancer, and application method. Statistical
analysis was performed by using SPSS 20.0 software. P-value
<0.05 was considered statistically significant.

RESULTS

The Characteristics of the Included Trials
On June 18, 2020, 884 results were searched from the
ClinicalTrials.gov website. After a careful review of the clinical
trial information, 787 results were excluded. Finally, a total of 97
trials were included in this study.

The characteristics of the included trials are shown in Table 1.
Of the 97 trials, only 27 (27.8%) were interventional trials and
70 (72.1%) were observational trials. Fifteen (15.4%) trials were
completed, the largest proportion of trials (50 trials) were in
recruitment, and another 18 trials remained unrecruited. None
of the trials had available results. Eighty-seven (89.7%) trials
included subjects over the age of 18, and 10 trials (10.3%)
included patients of all ages. The number of cases included in the
trials tended to be large, with 31 (32.0%) trials including samples
ranging from 100 to 499 cases and 17 (17.5%) trials including
samples ranging from 500 to 999 cases. Universities were listed as
the primary sponsor for 57 (58.8%) trials, hospitals for 30 (30.9%)
trials, and industries for 10 (10.3%) trials. Of all the trials, 48
(49.5%) trials were performed in Asia, 15 in Europe, 33 in North
America, and 1 in Australia.

Characteristics of the Study Design
The characteristics of interventional trials are displayed in
Table 2. Of the 27 interventional trials, only two trials reported
phase (1 in phase 1 and 1 in phase 3), and other trials did
not report phases. Among all of the interventional trials, most
(85.2%) of the interventional trials were for diagnosis, a few
(3.7%) were for the purpose of both the diagnosis and therapy
of cancers, 2 (7.4%) trials were for the primary purpose of
screening, and 1 (3.7%) trial was for the primary purpose of
device feasibility. Among all of the interventional trials, there
were 10 randomized trials (37%) and 4 (14.8%) non-randomized
trials, and 13 (48.1%) trials did not mention the allocation
value. There were 11 parallel assignment (40.7%) and 14 single
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TABLE 1 | Characteristics of included trials.

Characteristics Number Percentage (%)

Study type

Interventional 27 27.8

Observational 70 72.1

Year

2007–2016 11 11.3

2017–2018 29 29.9

2019–2020 57 58.8

Status

Completed 15 15.4

Recruiting 50 51.5

Active, not recruiting 6 6.1

Not yet recruiting 18 18.5

Unknown status 7 7.2

Withdrawn 1 1.0

Study results

Has available results 0 0

No available results 97 100

Participant age (y)

1 to older 10 10.3

Older than 18 87 89.7

Enrollment

<99 17 17.5

100–499 31 32.0

500–999 17 17.5

>999 32 33.0

Sponsor

University 57 58.8

Hospital 30 30.9

Industry 10 10.3

Location

Europe 15 15.5

North America 33 34.0

Asia 48 49.5

Australia 1 1.0

Funded by

Other

Industry 8 8.2

Other and industry 6 6.2

Other 83 85.6

group assignment (51.9%). Among the 27 interventional trials,
18 (66.7%) trials were performed without masking, six (22.2%)
trials were performed with single masking, only one (3.7%) was
performed with double masking, and two (7.4%) was performed
with triple masking.

Table 3 shows the characteristics of the observational trials
(n = 70). For the observational trials, 46 (65.7%) were cohort
studies, 11 (15.7%) were case-only studies, 1 (1.4%) was defined
population, and 12 (17.1%) were other. Among the observational
trials, 46 (65.7%) were prospective studies and 13 (18.6%) were
retrospective studies.

TABLE 2 | Study design elements of interventional trials.

Characteristics Number Percentage (%)

Primary purpose

Diagnostic and treatment 1 3.7

Diagnostic 23 85.2

Screening 2 7.4

Device feasibility 1 3.7

Phase

Phase 1 1 3.7

Phase 2 None –

Phase 3 1 3.7

Phase 4 None –

Not applicable 25 92.6

Allocation

Randomized 10 37.0

Non-randomized 4 14.8

Missing value 13 48.1

Intervention model

Parallel assignment 11 40.7

Sequential assignment 1 3.7

Crossover assignment 1 3.7

Single group assignment 14 51.9

Masking

Single 6 22.2

Double 1 3.7

Triple 2 7.4

Without 18 66.7

TABLE 3 | Study design elements of observational trials.

Characteristics Number Percentage (%)

Observational model

Case-only 11 15.7

Cohort 46 65.7

Defined Population 1 1.4

Other 12 17.1

Time perspective

Prospective 46 65.7

Retrospective 13 18.6

Cross- Sectional 3 4.3

Other 8 11.4

Overview of Clinical Trials for Diagnosis
Table 4 shows the overview of trials for diagnosis. All 97 trials
were designed for a variety of cancers, 37 trials (38.1%) were
for colorectal cancer, and 11 (11.3%) were for breast cancer.
Of the 97 trials, 43 (44.3%) were for imaging diagnosis, 33
(34%) for endoscopic diagnosis, and 11 (11.3%) for pathological
diagnosis. To verify whether colonoscopy would be much more
effective with the assistance of an automatic quality control
system (AQCS), a prospective interventional trial was performed
(NCT03622281). The enrolled patients were randomly assigned
into the AQCS group and the control group who received
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TABLE 4 | Overview of clinical trials in diagnosis.

Characteristics Number Percentage (%)

Tumor types

Breast Cancer 11 11.3

Colorectal Cancer 37 38.1

Esophageal Cancer 3 3.1

Gastrointestinal Cancer 3 3.1

Glioma 6 6.2

Ovarian 2 2.1

Prostate 3 3.1

Pituitary 2 2.1

Lung Cancer 10 10.3

Skin Cancer 6 6.2

Other Cancer 14 14.4

Application method

Endoscopy 33 34.0

Imaging 43 44.3

Pathology 11 11.3

Biomarker 6 6.2

Biopsy 4 4.1

colonoscopy without AQCS. An increased adenoma detection
rate was seen in the AQCS group, which indicated that AQCS
could practically improve the accuracy of colonoscopy (16).

Another trial with published results aimed to confirmwhether
a designed chatbot was not inferior to physicians regarding
the satisfaction of breast cancer patients with the information
provided (NCT03556813). Two groups of randomly assigned
patients asked 12 predefined questions that were previously
answered by a chatbot or a medical committee and received the
response from either a chatbot or a physician. The chatbot group
had higher success rates (69 vs. 64%) than the physician group,
which showed noninferiority (P < 0.001) (17).

DISCUSSION

This study provided an assessment of the clinical trials registered
on ClinicalTrials.gov about AI diagnosis in cancer. Most trials
were observational, and only a few were interventional. Most
trials were registered after 2017, indicating that the application
of AI for cancer diagnosis was a new technology. More than half
of the trials were in recruitment, and only one trial published
available results.Most trials tended to be large sample size studies,
and only a few studies had an expected sample size of <100.
Most trials were sponsored by universities and hospitals. Notably,
the vast majority (n = 48) of trials were conducted in Asia,
with only 15 trials initiated in Europe and 33 trials initiated in
North America. Most interventional trials used randomization,
but most did not use blinding methods. Most observational trials
were prospective design.

Ten trials were designed to diagnose lung cancer. In terms
of the imaging diagnosis of lung cancer, it was reported that
machine learning could predict the histological type of lung
cancer through the imaging characteristics of PET/CT (18).

In 2017, Song et al. (19) reported that CT imaging features
could be used to predict the pathological type of micropapillary
adenocarcinoma, but whether it could be recognized by AI
had not been reported (20). In 2016–2017, Luo et al. (21) and
Yu et al. (22) reported that the automatic analysis method of
AI could perform pathological image analysis to predict the
prognosis of patients with lung cancer. The CT diagnosis and
pathological diagnosis of lung cancer are important prerequisites
for the treatment of lung cancer (23–25). It was expected that
AI could provide more functions for accurate diagnosis in
the future.

In reviewing all included trials, the highest proportion trials
were for colorectal cancer (37, 38.1%). This suggests that
application of AI in diagnosis of colorectal cancer is a hot topic.
Because the overall rate of missed polyps is as high as 22%, the
associated colorectal cancer after colonoscopy is of concern (26).
Computer-aided diagnosis (CAD) offers a promising solution
for reducing the rate of missed diagnoses with colonoscopy
(27). AI technology must address a number of important issues
before it can be incorporated into routine clinical practice.
The key stages for the implementation of CAD technology in
routine colonoscopy have been detailed elsewhere, particularly
by Mori et al. (28), who described the following steps: product
development and feasibility studies, clinical trials, regulatory
approval, and insurance reimbursement (29).

Eleven (11.3%) trials were for the pathological diagnosis of
cancer. In 2019, Chen et al. (30) reported that thanks to ARM
technology, AI can be integrated into the microscopic workflow
to improve the efficiency and consistency of the microscopic
inspection of biological specimens. The technology would be
used to diagnose cancers. Among all the studies of AI in the field
of cancer pathological diagnosis, the implementation in breast
cancer was earlier and more mature (8), and AI diagnosis had
an excellent application in the diagnosis of primary breast cancer
and metastatic breast cancer (31). In terms of cancer imaging
diagnosis, AI could also improve the specificity of diagnosis
by integrating patient information and image analysis (32). In
this study, we found that the diagnostic modes of lung cancer
were mainly imaging diagnosis and pathological diagnosis. The
diagnostic mode of colorectal cancer was mainly endoscopic
diagnosis. The diagnostic modes of breast cancer were mainly
imaging diagnosis and pathological diagnosis. In addition, both
published studies used the randomization method, suggesting
that the comparison of AI and traditional methods in tumor
diagnosis was more operable in trials.

With the aid of AI, the detection rate of polyps and adenomas
under endoscopy will be greatly improved (33). This apparent
advantage, however, remains to be demonstrated in multicenter
studies. The deficiency of AI in cancer diagnosis is also obvious.
Chatbots designed to aid diagnosis could communicate with
breast cancer patients like doctors, showing the potential to help
doctors. But chatbot’s questions are too routine to fully help
doctors’ diagnoses and decisions. The main purpose of this study
is to understand the current situation of the application of AI in
the field of medicine, which has a good hint to the scholars in
related fields. Therefore, our study did not focus on the specific
results of each trial.
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The study had several limitations. First, not all studies were
registered on ClinicalTrials.gov, which limits the application of
the results in the future. However, ClinicalTrials.gov contained
more than 80% of the trials on the World Health Organization’s
International Clinical Trials Registry Platform (34). Therefore,
even if our study cannot cover all trials, it still reflected the
mainstream of such trials. Second, the study analyzed data
from clinical trials in which AI was used to diagnose cancer,
but due to the short time span of the clinical trials, most
clinical trials have not published results, so the analysis of
results was insufficient. Third, this study included the application
of AI in the diagnosis of all cancer types, but as only 97
trials were included, specific cancer types were not targeted for
detailed analysis.

In conclusion, the current study presents the characteristics of
registered trials on AI for cancer diagnosis. It suggested that more
trials are needed to provide more evidence.
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Purpose: The purpose of the current study was to evaluate the ability of

magnetic resonance (MR) radiomics-based machine-learning algorithms in differentiating

glioblastoma (GBM) from primary central nervous system lymphoma (PCNSL).

Method: One-hundred and thirty-eight patients were enrolled in this study. Radiomics

features were extracted from contrast-enhanced MR images, and the machine-learning

models were established using five selection methods (distance correlation, random

forest, least absolute shrinkage and selection operator (LASSO), eXtreme gradient

boosting (Xgboost), and Gradient Boosting Decision Tree) and three radiomics-based

machine-learning classifiers [linear discriminant analysis (LDA), support vector machine

(SVM), and logistic regression (LR)]. Sensitivity, specificity, accuracy, and areas under

curves (AUC) of models were calculated, with which the performances of classifiers were

evaluated and compared with each other.

Result: Brilliant discriminative performance would be observed among all classifiers

when combined with the suitable selection method. For LDA-based models, the optimal

one was Distance Correlation + LDA with AUC of 0.978. For SVM-based models,

Distance Correlation + SVM was the one with highest AUC of 0.959, while for LR-based

models, the highest AUC was 0.966 established with LASSO + LR.

Conclusion: Radiomics-based machine-learning algorithms potentially have promising

performances in differentiating GBM from PCNSL.

Keywords: glioblastoma, primary central nervous system lymphoma, magnetic resonance imaging, radiomics,

machine learning

INTRODUCTION

Glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) are considered as
the common primary brain tumors, which share similar radiological characteristics but diverse
in therapeutic strategies (1–3). The standard of treatment for a GBM is total resection, followed
by daily radiation and chemotherapy (like temozolomide) for 6.5 weeks, then a 6-month regimen
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of oral chemotherapy given 5 days a month, while the first-
line treatment for PCNSL is systemic chemotherapy (like
high-dose methotrexate regimen) (4). In most cases, the
morphological description of two types of tumors on MRI
is characteristic enough for adequate discrimination (5, 6).
However, misdiagnosis could still incur in some cases because
the images of atypical GBM and atypical PCNSL could mimic
each other (7). Advanced MRI technology could be useful in
the differentiation. However, the urgency of novel radiological
methods focused on conventional MR sequences has still been
highlighted given that the advanced MRI cannot be performed as
the routine examination for every patient.

Texture analysis (TA) refers to a number of a set of
mathematical methods describing the features of images,
with which non-visual information could be represented with
analyzable pixel intensities and the spatial distributions (8, 9).
It has been applied as the radiological imaging biomarkers to
evaluate tumor heterogeneity, and showed promising ability in
as tumor diagnosis, presurgical grading, as well as gene mutation
prediction (10–12). Moreover, with quantified analyses of images,
it has also been incorporated with various novel computer
technologies, such as machine learning (13–16).

The purpose of the present study is to discriminate GBM
from PCNSL with radiomics-based machine-learning algorithms
in contrast-enhanced T1-weighted (T1C) imaging. In addition,
we evaluated different combinations of selection methods and
classifiers, trying to make comparison of models’ performances.

METHOD

Patient Selection
The patients were selected from neurosurgery department by
reviewing the electronic medical records between 2015 and
2018. The including criteria of patients were as follows: (1)
pathologically confirmed on GBM or PCNSL; (2) undertook MR
scan before any tumor biopsy or surgery; (3) newly diagnosed
GBM or PCNSL. Some patients were excluded because of the
history of intracranial surgery or irrelevant intracranial diseases.
In total, 138 patients (72 men, median age 48 years; and 66
women, median age 54 years) were enrolled from the institution
database, including 76 patients diagnosed with GBM and 62
diagnosed with PCNSL.

The MR images were collected from the PACS system
in the radiological department. We focused on conventional
MR sequences, including T1-weighted image (T1WI), contrast-
enhanced T1-weighted (T1C) imaging, T2-weighted image
(T2WI), and fluid-attenuated inversion recovery, considering
that the advanced MR sequences were not commonly used in
our institution. After the initial evaluation of images, T1C was
selected as the study sequences with rather clear description
of the boundary between the tumor tissues and normal brain
tissue (Figure 1).

MRI Protocol
The preoperative MR scan was conducted with 3-T GE MRI
system with an eight-channel phase-array head coil. The
protocols of the contrast-enhanced T1-weighted imaging were

time repetition = 2,000ms, field of view = 240 × 240 mm2,
time echo = 30ms, 30 axial slices, slice thickness = 5mm (no
slice gap), flip angle = 90◦, and 200 volumes in each run.
Gadopentetate dimeglumine (0.1 mmol/kg) were taken as the
contrast agent. The multi-directional data of contrast-enhanced
MRIwere collected with the continuous interval time of 90–250 s.

All procedures involving human participants were in
accordance with the ethical standards of the institutional and/or
national research committee. The Ethics Committee of Sichuan
University approved this retrospective study. Written informed
consent was necessary before radiological examination (written
informed consent for patients <16 years old was signed by
parents or guardians) for all patients. They agreed to undertake
the examination if needed and were informed that the statistics
(including MR image) might be used for academic purposes in
the future.

Texture Feature Extraction
Two neurosurgeons participated in the extraction of texture
features by using lifeX software (http://www.lifexsoft.org) under
the supervisions of senior radiologists. By manually drawing
along the tumor tissue slice by slice, the software automatically
retrieved 3D-based texture features from two sets of orders with
default settings (17). In the first order, statistics from shape-
and histogram-based matrix were retrieved. In the second order,
statistics from gray-level co-occurrence matrix (GLCM), gray-
level zone length matrix (GLZLM), neighborhood gray-level
dependence matrix (NGLDM), and gray-level run length matrix
(GLRLM) were retrieved. The images were excluded of which
the volume of interest did not reach 64 voxels to avoid the
interference of the lower image matrix resolution.

Mann–Whitney U-test was employed to explore if there
is significant statistical difference between the data extracted
by two researchers. The results suggested that none of the
features were significantly different, implying that the results
could be considered reliable and reproducible (shown in
Supplementary Material 1).

Classification Algorithm Application
The patients were randomly divided into the training group and
the validation group on the proportion of 4:1. For machine-
learning classifiers, the optimal texture features were selected
first for classifiers to reduce the number of input variables to
improve the performance of the model and to both reduce the
computational cost. Considering the optimal selection method
was controversial for different classifiers, five methods were
conducted separately, including distance correlation, random
forest (RF), least absolute shrinkage and selection operator
(LASSO), eXtreme gradient boosting (Xgboost), and Gradient
Boosting Decision Tree (GBDT).

The purpose of machine learning was to establish and train
the models to discriminate GBM from PCNSL with radiomics
features extracted from T1C imaging. Three classifiers were
tested, including linear discriminant analysis (LDA), support
vector machine (SVM), and logistic regression (LR). Thus, 15
diagnostic models were evaluated with different combinations of
selection methods and classifiers. The models were trained with
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FIGURE 1 | The magnetic resonance images (T1C) of patients with (A) primary central nervous system lymphoma (PCNSL) or (B) glioblastoma (GBM).

the statistics of the training group and tested in the validation
group. Sensitivity, specificity, area under the receiver operating
characteristic curve (AUC), and accuracy of each model were
recorded for evaluation. On application of each model, the cycle
of training-validation was performed 100 times to obtain the
realistic distribution of classification accuracies. The flow chart
of the study is represented in Figure 2.

The models were programmed using Python Programming
Language in this study. Themodels were directly established with
default hyperparameter settings of scikit-learn packages (https://
scikit-learn.org/stable/).

RESULT

The selected features with different methods are represented
in Table 1. Four features, GLRLM_LGRE, GLRLM_HGRE,
GLRLM_SRHGE, and GLZLM_HGZE, were almost selected
even using different methods, suggesting that they were the most
significant features in discrimination compared with the others.
The other selected features should be reasonably considered as
relevant in discrimination, but was hard to tell how much they
influenced the algorithms’ performances.

The performances of models are listed in Table 2. As
mentioned previously, the models were established with different
combinations of selection methods and classifiers. The results

indicated that all three classifiers represented impressive
differential ability when using suitable selected features, and
the LDA classifier showed much better compatibility compared
with other classifiers. Over-fitting was observed in six models,
including RF + SVM, Xgboost + SVM, GBDT + SVM, and RF
+ LR, Xgboost + LR, and GBDT + LR. For LDA-based models,
the AUCs in the validation group were 0.978, 0.964, 0.977, 0.750,
and 0.956; for the SVM-based models, the AUCs were 0.959 and
0.822; and for LR-based models, the AUCs were 0.933 and 0.975.

In the current study, the optimal model was Distance
Correlation + LDA. In the training group, the predictive model
showed the discriminative ability with AUC of 0.992, accuracy
of 0.993, sensitivity of 0.996, and specificity of 0.990. In the
validation group, the performance of the model was rather
good, with AUC of 0.978, accuracy of 0.979, sensitivity of 0.982,
and specificity of 0.976. The association between discriminative
functions from models is represented in Figure 3. Figure 4

represents the examples of distribution of the direct LDA
function diagnosis of GBM and PCNSL for one cycle.

DISCUSSION

In the current study, we performed research in differentiating
GBM from PCNSL with the radiomics-based machine-learning
technology. Radiomics parameters were extracted from T1C
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FIGURE 2 | Flow chart of image processing and machine learning.

TABLE 1 | The features selected with different methods.

Selection method Selected features

Distance correlation GLRLM_LGRE; GLRLM_HGRE; GLRLM_SRLGE; GLRLM_SRHGE; GLRLM_LRLGE; GLZLM_LGZE;

GLZLM_HGZE; GLZLM_SZLGE

RF GLRLM_LGRE; GLRLM_HGRE; GLRLM_SRLGE; GLRLM_SRHGE; GLRLM_LRHGE; GLZLM_HGZE

LASSO minValue; meanValue; stdValue; SHAPE_Volume; GLCM_Contrast; GLRLM_HGRE; GLRLM_SRHGE;

GLRLM_LRHGE; GLRLM_GLNU; GLRLM_RLNU; GLZLM_LZE; GLZLM_HGZE; GLZLM_SZHGE;

GLZLM_LZHGE; GLZLM_GLNU; GLZLM_ZLNU

XgBoost GLRLM_LGRE

GBDT GLRLM_LGRE; GLRLM_HGRE; GLRLM_SRLGE; GLRLM_SRHGE; GLRLM_LRHGE; GLZLM_LGZE;

GLZLM_HGZE; GLZLM_SZLGE; GLZLM_SZHGE

RF, random forest; LASSO, least absolute shrinkage and selection operator; Xgboost, eXtreme gradient boosting; GBDT, Gradient Boosting Decision Tree.

TABLE 2 | Results of the discriminative model in distinguishing GBM from PCNSL in the training and validation group.

Classifier Selection method Training group Validation group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

LDA Distance correlation 0.992 0.993 0.996 0.990 0.978 0.979 0.982 0.976

RF 0.970 0.968 0.935 0.990 0.964 0.957 0.906 0.990

LASSO 0.997 0.996 0.992 0.995 0.977 0.971 0.955 0.989

Xgboost 0.791 0.810 0.995 0.740 0.750 0.789 0.995 0.735

GBDT 0.972 0.970 0.939 0.996 0.956 0.950 0.892 0.995

SVM Distance correlation 0.957 0.962 0.998 0.934 0.959 0.964 0.997 0.943

RF (over-fitting) 1 1 1 1 0.5 0.585 1 0.943

LASSO 0.843 0.835 0.747 0.966 0.822 0.789 0.671 0.965

Xgboost (over-fitting) 0.5 0.541 0.747 0.967 0.5 0.586 0.671 0.965

GBDT (over-fitting) 1 1 1 1 0.5 0.586 0.670 0.965

LR Distance correlation 0.977 0.956 0.961 0.949 0.933 0.927 0.941 0.911

RF (over-fitting) 1 0.547 1 0.592 0.511 0.515 0.551 0.596

LASSO 0.959 0.988 0..942 0.981 0.975 0.966 0.975 0.964

Xgboost (over-fitting) 0.959 0.988 0.942 0.981 0.5 0.5 0.542 0.586

GBDT (over-fitting) 0.951 0.562 0.954 0.592 0.538 0.515 0.577 0.596

AUC, area under curve; RF, random forest; LASSO, least absolute shrinkage and selection operator; Xgboost, eXtreme gradient boosting; GBDT, Gradient Boosting Decision Tree; LDA,

linear discriminant analysis; SVM, support vector machine; LR, logistic regression.
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images to detect non-visual information of two types of tumors.
The models were established with five selection methods and
three classifiers and tested to find the optimal model. The result
showed that the radiomics-based machine-learning classifier
represented excellent performance in all classifiers with AUC
more than 0.900. The optimal model was the combination of
Distance Correlation + LDA with AUC of 0.978, accuracy of
0.979, sensitivity of 0.982, and specificity of 0.976. Given that the
T1C image was routine examination for GBM and PCNSL, our
results suggested that radiomics was a feasible solution for clinical
application without requiring additional fees or platform.

Generally, contrast-enhanced T1imaging is a routine
radiological examination for patients with GBM or PCSNL. A
previous study indicated that at the time of initial presentation
for many cases, routine morphological MRI is capable enough
in differentiating between GBM and PCNSL lesions. The image
patterns are correlated with the tumor characteristics, such as
intratumoral hemorrhage, angiogenesis, and necrotic or cystic

FIGURE 3 | Relationship between the discriminant functions for discriminating

GBM from PCNSL.

components. Specifically, heterogeneous enhancement was
present in 98.1% of GBM cases and homogenous enhancement
in 64.8% of PCNSL cases; necrosis was observed in 88.9% of
GBM lesions and 5.6% of PCNSL lesions; multiple lesions were
shown in 51.9% of PCNSL cases and 35.2% of GBM cases. Signs
of bleeding were uncommon in PCNSL (5.6%) and frequent
in GBM (44.4%) (18). Advanced imaging techniques, such as
apparent diffusion coefficient (ADC), diffusion-tensor imaging
(DTI), dynamic susceptibility-weighted contrast-enhanced
MRI, and perfusion weighted imaging, were also additionally
performed in discriminating GBM and PCNSL if necessary (19–
21). Surgeons could obtain the information on characteristics of
tumors to make diagnostic and treatment decisions. However,
even with these researches, the differential diagnosis between
GBM and PCNSL was still a challenge in some cases, especially
given that the conventional MR sequence could only make
limited discrimination between two types of tumors and that
advanced imaging techniques were not available for all patients.

Comparing with GBM, permeable neovascularization and
higher degree of cellularity were more likely to be observed in
PCNSL, which theoretically provide the mechanism of TA-based
image discrimination (22–24). In our study, radiomics of T1C
imaging were used to detect the microscopic differences between
GBM and PCNSL, and the results suggested TA was the feasible
solution in discriminating GBM and PCNSL radiologically.
Radiomics has been reported to distinguish GBM from PCNSL in
a previous study, and machine-learning classification model was
reported to improve the performance in discrimination (6, 25).
Researchers made comparison on diagnostic accuracy between
radiologists and machine-learning classifiers, and they suggested
that classifiers yielded better diagnostic performance than human
radiologists (25). However, the sample sizes of these studies were
not large enough and only a few models were tested. Our study
enrolled 138 patients with rational proportion of each group
and made an evaluation on 15 combinations. In a previous
study, RF-based classifier represented perfect performance in
discriminating atypical glioblastoma from PCNSL with AUC of
0.98 (6), and SVM-based classifier also represented non-inferior

FIGURE 4 | Example of distributions of the LDA function determined for the lesions for one cycle.
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performance to expert human with AUC of 0.877 (25). In our
study, the results showed that all three classifiers represented
perfect performance when combined with a suitable selection
method. It is worth noting that the result of the optimal SVM-
based model in our study was with AUC of 0.96, demonstrating
much better diagnostic performance than the previous study.

The possible explanation for the improvement was the
performance improvement in selection method. Radiomics
analysis involved large amounts of features, but machine learning
required the most suitable parameters. Previous researchers
selected parameters with F-statistic approach into SVM classifier,
while we selected with distance correlation, RF, LASSO, Xgboost,
or GBDT approach. The combination of LASSO + SVM
represented similar discriminative performance such as in the
previous study with AUC of 0.822. Besides performances, we can
also find that the selection methods were also important to the
model stability. Over-fitting is a problem that should be avoided
in designing the machine-learning models, which happens when
the models catch inaccurate values in the data and the noisy data.
Our results suggested that over-fitting probably occurred when
using RF, Xgboost, and GBDT as selection methods. Perhaps the
features selected with these methods contained too much noise
and led to the over-fitting of models.

As for the classifier selection, the purpose of enrollment of
three classifiers was to choose the suitable one in discriminating
GBM from PCNSL. The results suggested that with suitable
features, all of them could represent discriminative ability. It
is worthy to note that although we chose Distance Correlation
+ LDA as the optimal model, some models (like LASSO
+ LDA and LASSO + LR) also represented pretty similar
discriminative performances. The model Distance Correlation
+ LDA was chosen as the optimal one because it has the
minimal difference between sensitivity and specificity compared
with LASSO + LDA and LASSO + LR. However, given that
all classifier/feature selection methods investigated seem to
perform quite comparably and variance in AUC may be partially
attributed to small statistical group, the additional gain in
information by comparing machine-learning models was quite
limited and carefully interpreted. Future investigations with
larger sample sizes are required to address this problem and verify
our results.

There were several limitations to our study. First, the isolated
evaluation of T1C image is not representative of the real
clinical work given other sequences (such as ADC, perfusion,
DTI, and T2 gradient-echo) could also be useful. Second, the
diagnostic performance of radiomics-based machine learning

was not compared with other advanced MRI technology. Third,
the study cohort is not large enough, requiring study with a large
population to verify our results. Forth, the machine-learning
classifier was not validated in the other dataset. Considering
the considerable variability in images acquired with various
MR scanner at different institutions, we cannot guarantee the
diagnostic ability of our machine-learning classifier for external
datasets. However, the image processing and analysis protocol
were open-source packages, meaning they should be validated
and reproduced with other datasets.

CONCLUSION

Radiomics with machine-learning algorithm technology
represented promising ability in differentiating GBM
from PCNSL.
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