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Editorial on the Research Topic

Novel Methods for Oncologic Imaging Analysis: Radiomics, Machine Learning, and
Artificial Intelligence

INTRODUCTION

Radiomics is a quantitative and high-throughput radiological method that can aid in clinical
decision-making, like treatment modality selection, and treatment plan optimization. By extracting
plentiful of parameters from standard images, plenty of information that cannot be discovered by
human naked eyes can be explored. Based on the hypothesis that these extra data provide additional
information related to gene, protein and tumor phenotype, radiomics has gained increasing
attention in cancer research. Meanwhile, because of the rich amount of data obtained in
radiomics, sophisticated image analysis tools are required to analyze it. Many image-based
signatures have been constructed by computer algorithms. Herein, this Research Topic recruited
studies that exploring the usage of radiomics and artificial intelligence assisting clinical decision-
making of tumors.

We are very glad to see that many excellent works were submitted to our Research Topic. In the
end, a total of 36 papers were published, among which 34 were original studies and two were
reviews. The researches were carried out in different countries, including China, USA, UK and
France, and most of them were retrospective studies. They used various methods to explore the role
of imaging in clinical decision-making. The methods used to select high-throughput imaging
parameters can be divided into three levels, including the mathematical formulas level, Machine
Learning level and Deep Learning level which belongs to Machine Learning but is more automatic.
These kinds of analysis methods are constantly evolving to mimic the thinking patterns of the
human brain, gaining the ability to analyze increasingly complicated data. However, for the lack of
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Xu et al.

Editorial: Radiomics and Artificial Intelligence

open platform of images and non-uniform manual feature
extraction, there is still a long way to go till a standard or a
series of standardized radiomics signatures can be constructed.

PAPERS INCLUDED IN THIS
RESEARCH TOPIC

Studies With Mathematical Formulas

As for the first level, using mathematical formulas, some studies
generally extract parameters from images, then use statistical
methods, like Mann-Whitney U-test, Spearman’s rank
correlation test, etc., to compare the internal and external
differences of parameters, and then select the most
heterogeneous data in different groups. After selecting the
appropriate features, Machine Learning algorithms will be used
to build models. This kind of studies included in the Research
Topic used textures extracted from various images, like Positron
Emission Tomography-Computed Tomography (PET/CT), CT,
Magnetic Resonance Imaging (MRI), etc., to improve the
accuracy of disease differentiation or prognosis prediction (Xu X.
etal; Xu H. et al; Gao et al; Hu et al; Wang J. et al; Zhou X. et al;
Zhang Y. et al; Zhong et al; Wu J. et al;; Zhang P. et al; Chen W.
etal; Dong Y. etal; Mai etal; Li et al.). For instance, Zhang P. et al.
differentiated seminomas and nonseminomas by MRI radiomics.
Features were selected by comparing their heterogeneity among
different groups and by assessing their relevance and redundancy.
Then, Least Absolute Shrinkage and Selection Operator (LASSO), a
regression analysis method, was used to select features to improve
the mode prediction accuracy and interpretability (Zhang P. et al.).
Mai et al. focused on the differentiation of phyllodes tumors and
fibroadenoma with breast MRI texture analysis. They used a
combination of a linear discriminant analysis and the K-Nearest
Neighbor classifier to construct differentiative models (Mai et al.).

Studies With Machine Learning Algorithms
At the second analysis level, studies mainly used Machine
Learning algorithms to select and classify radiomics features
(Zhou H-F. et al; Wang F. et al;; Yi et al; Chen C. et al.; Huang
et al.). Machine Learning algorithms build prediction models
based on patterns in the training data and make predictions by
comparing new instances to previous similar events, and they
can be divided into supervised, unsupervised and semi-
supervised learning algorithms, based on whether the data are
labeled. Some studies selected one kind of algorithms to process
data. Fei Wang et al. used LASSO to select features and Support
Vector Machine (SVM) algorithm to constructed a predictive
model and drew a nomogram to improve the preoperative T
category accuracy (Wang F et al.). Huang et al. used LASSO
regression model to select features and a multivariable logistic
regression to develop predicting models. In addition, a
nomogram was drawn by radiomics and clinical features to
evaluate peritoneal metastasis status in gastric cancer (Huang
et al.). Yi et al. predicted treatment response to neoadjuvant
chemoradiotherapy in patients with locally advanced rectal
cancer. Three aspects of the treatment response: not only

partial clinical remission and good response, but also down-
staging were evaluated. They used SVM rather than LASSO or
Random Forest (RF) to regress features into a two-dimensional
plane (Yi et al.).

Some other studies used multiple methods for feature
selection and classification, as there are many kinds of
Machine Learning methods with different advantages and
drawbacks. They found the choice of classification methods
accounted more than selection methods. Chen C. et al. used
texture features to differentiate glioblastomas from metastatic
brain tumors and differentiate glioblastoma from primary central
nervous system lymphoma. In their studies, Linear Discriminant
Analysis (LDA)-based models represented better performances
than SVM-based models and Logistic Regression (LR)-based
models (Chen C. et al; Chen C. et al.). Similar results were
found in other studies that compared different combinations
(Tian et al;; Fan et al.; Zhang Y. et al.). For example, Yang Zhang
et al. used five selection methods and nine classifiers. The
combination of LASSO and LDA represented the best
comprehensive performance (Zhang Y. et al.). LDA is a linear
classifier whose decision boundary is a plane or a line, while SVM
is a non-linear classifier with a decision boundary of a surface or
a curved line. Although the above studies showed that LDA was
superior to SVM, other studies uncovered the opposite results
(Zhang Y. et al; Payabvash et al; Delzell et al.; Hong et al.).
Zhang Y. et al. differentiated anaplastic oligodendroglioma from
atypical low-grade oligodendroglioma. The best-performed
combinations were various according to different image
parameters. The combination of LASSO and RF classifier was
the best for T1 images, while the combination of GBDT and RF
classifier was the best for the fluid attenuated inversion recovery
images (Zhang Y. et al.). In addition, Payabvash et al.
differentiated posterior fossa tumors by using different
Machine Learning classifiers, and also found RF models
achieved greater accuracy. Delzell et al. used three types of
classifying methods, including linear, nonlinear, and ensemble
predictive classifying models, and found Elastic Net and SVM
performed the best, while RF and Bagged Trees were the worst. It
is impossible to draw firm conclusions about which method is
the best, because there are too many influencing factors, such as
sample size, parameter acquisition, extraction method, etc.
However, at the very least, all the relevant articles show that
Machine Learning methods are superior to manual methods, so
more research on Machine Learning is necessary.

Studies With Deep Learning

Deep Learning is a subclass of Machine Learning that extends
Deep Neural Networks to create complex neural architectures to
solve difficult problems which would be impossible with
traditional programming based on mathematical logic.
Moawad et al. explored the feasibility of volumetric assessment
of pre- and post- Transhepatic Arterial Chemotherapy And
Embolization hepatocellular carcinoma using fully automated
segmentation that based on a Convolutional Neural Network
(CNN) approach (U-Net). For automated segmentation,
attenuation of adjacent organs and the small size of lesions
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Editorial: Radiomics and Artificial Intelligence

were the main challenges. According to the assessment of
response evaluation criteria in solid tumors, automated
segmentation was a good substitute for manual segmentation
(Moawad et al.). Sun et al. compared the deep CNN model based
on breast ultrasound parameters with the radiomics model.
Radiomics can be regarded as an accurate phenotypic analysis
of medical images in which the imaging features are carefully
defined in advance according to expert opinion. However, Deep
Learning uses the raw data and analyzes the pixels and the voxel
values by themselves. With convolution techniques, imaging
features are automatically defined in the network. Thus, Deep
Learning is the most artificial intelligent tool among these three
analyzing levels. It is closest to human mode of thinking and can
extract features and analyze them automatically.

Other Related Studies and Reviews
Moreover, there are some included studies focusing on
optimizing the original features to promote the analysis results.
Lacroix et al. optimized MR images before process with N4ITK
bias field correction and normalizing voxel intensities with fat as
a reference region. The results showed that correction of
magnetic field heterogeneity and normalization of voxel values
can promote the usage of radiomic features (Lacroix et al.). Wu
W. et al. decomposed data by a non-linear kernelization method,
Kernel Principal Component Analysis (KPCA), to find a new set
of candidates and maximize the use of data. Lu et al. used
concordance correlation coefficients to measure the fidelity in
repeated experiments. A lot of features with good repeatability
were found and their repeatability can be improved by using
specific lesion-drawing methods. Zormpas-Petridis et al.
proposed a novel multi-resolution hierarchical framework
(SuperCRF) which can introduce the spatial context of a cell as
additional information and improve the single cell classification
algorithms. In other researches, topics related to radiomics and
Machine Learning were discussed. Dong J. et al. and Ge et al.
reviewed the usage of radiomics and Machine Learning in the
management of cancers, and summarized computer-aided
clinical decision-making as a promising solution.

CONCLUSION

In conclusion, the combination of radiomics and Machine
Learning can provide clinical practice convenience, as long as
some obstacles can be solved. The limitations of Machine
Learning-based radiological decision-making mainly lie in the
following aspects: Firstly, the data quality is uneven, and thus
open data-platforms like http://www.predictcancer.org need to
be built. Secondly, based on open image sources, algorithms of
lesion delineation, feature extraction and signature construction
require more standard reference to increase the generalization of
the results. Thirdly, more studies that based on uniform data and
algorithms and comparing the efficiency of computer-aid and
conventional clinical decision-making, are required to better
promote the usage of Artificial Intelligence in clinic.

This Research Topic involved many studies, which used the
combination of radiomics and Machine Learning in tumor
management. We appreciate all the reviewers and authors for
their contributions to this Research Topic. We hope this
Research Topic can arouse more attention in the related fields.
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Background: Conventional methods for predicting treatment response to neoadjuvant
chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC)
are limited.

Methods: This study retrospectively recruited 134 LARC patients who underwent
standard nCRT followed by total mesorectal excision surgery in our institution. Based
on pre-operative axial T2-weighted images, machine learning radiomics was performed.
A receiver operating characteristic (ROC) curve was performed to test the efficiencies of
the predictive model.

Results: Among the 134 patients, 32 (23.9%) achieved pathological complete
response (PCR), 69 (51.5%) achieved a good response, and 91 (67.9%) achieved
down-staging. For prediction of pCR, good-response, and down-staging, the predictive
model demonstrated high classification efficiencies, with an AUC value of 0.91 (95% CI:
0.83-0.98), 0.90 (95% CI: 0.83-0.97), and 0.93 (95% ClI: 0.87-0.98), respectively.

Conclusion: Our machine learning radiomics model showed promise for predicting
response to NCRT in patients with LARC. Our predictive model based on the commonly
used T2-weighted images on pelvic Magnetic Resonance Imaging (MRI) scans has the
potential to be adapted in clinical practice.

Novelty and Impact Statements: Methods for predicting the response of the locally
advanced rectal cancer (LARC, T3-4, or N+) to neoadjuvant chemoradiotherapy (NCRT)
is lacking. In the present study, we developed a new machine learning radiomics
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Application of Radiomics in LARC

method based on T2-weighted images. As a non-invasive tool, this method facilitates
prediction performance effectively. It achieves a satisfactory overall diagnostic accuracy
for predicting of pCR, good response, and down-staging show an AUC of 0.908, 0.902,
and 0.930 in LARC patients, respectively.

Keywords: locally advanced rectal cancer (LARC), neoadjuvant chemoradiotherapy (nCRT), treatment response,
magnetic resonance imaging (MRI), machine learning radiomics

INTRODUCTION

Rectal cancer is a common malignancy worldwide, accounting
for ~30-50% of colorectal cancer (1, 2). Moreover, in
rectal cancer patients, lesions are usually located in middle-
low rectum, which causes increased difficulty in treatment
and worse prognosis, especially the locally advanced rectal
cancer (LARC, T3-4 or N+) (3, 4). Currently, neoadjuvant
chemoradiotherapy (nCRT) followed by total mesorectal excision
is the recommended treatment for LARC patients, especially
those with lesions located in the middle-low rectum (5). The
advantages of nCRT are usually significant (6, 7). However,
the response of LARC to nCRT varies widely, ranging from
pathological complete response (pCR, ypTONOMO) with no
viable tumor cells left in the surgical specimen, to virtually no
tumor regression at all (stable) or even tumor progression in a
small group of patients (8, 9). Among these patients, pCR is not
only associated with favorable disease-free and overall survival (7,
10), but also motivates the “watch-and-wait” treatment strategy,
a non-operative option for patients achieving clinical complete
response (11). Therefore, clinicians are motivated to identify
ways to accurately predict patients’ individual responses to nCRT.

Radiological examination has been considered to be one of
the means most likely to accomplish this task (12). Among
all modalities, Magnetic Resonance Imaging (MRI) is regarded
as the most promising method because it uses no radiation,
shows high soft tissue resolution, and has wide routine
clinical application for evaluation of rectal cancer. Notably,
some conventional and functional MRI methods have been
reported to show some advantages in predicting tumor response
to nCRT (13-15). Unfortunately, conventional MRI analysis
remains limited when predict treatment response in individual
patient using experience (16). There is a need to develop
new methods.

Quantitative image data analysis, such as texture analysis
and radiomics are procedures for converting clinical images
into high-dimensional, exploitable, and quantitative imaging
features by high-throughput extraction of data-characterization
algorithms (17). In addition to clinical outcomes, the biomedical
information contained in medical images, such as overall
information about phenotype and microenvironment of the
tumor, may be vitally important for evidence-based clinical

Abbreviations: LARC, locally advanced rectal cancer; nCRT, neoadjuvant
chemoradiotherapy; MRI, magnetic resonance imaging; RC, rectal cancer; CRC,
colorectal cancer; pCR, pathological complete response; cCR, clinical complete
response; AUC, area under curve; DWI, diffusion-weighted imaging; GR, good
response; ROI, region of interest; ROC, receiver operating characteristic.

decision support. In theory, all magnetic resonance images in
different can be used as a source of analysis. In theory, for
quantitative analysis, used features can be extracted from images
of all modalities (12, 16, 18-22). However, T2 weighted image
is almost the most widely used one, when considering the wide
availability of images which can be stably acquired based on
different machines. Quantitative image data analysis methods
have the potential to reveal such biomedical information,
providing an opportunity to improve decision-support in
oncology and non-invasively (17, 23). The potential advantage of
this kind of method has already been verified in colorectal cancer
(24) and a variety of other cancers, including nasopharyngeal
carcinoma (25), lung cancer (17), and breast cancer (26).
Recently, some independent studies (12, 19-22, 24) reported
that a multimodality MRI based radiomics model could predict
RC tumor response to nCRT with an improved accuracy
for pCR and good response prediction. However, due to the
relatively small sample size, or the inclusion of multimodality
images with other MRI sequences such as diffusion-weighted
imaging, or the lack of integration of important relevant clinical
pathological features, there is a need for improving accuracy of
the prediction model.

In the present study, we retrospectively collected
134 consecutive surgically and pathologically confirmed
LARC patients who received standard nCRT before

surgery. We developed a machine learning radiomics
model based on imaging data extracted from the
T2-weighted  images, and validated its prediction

efficiency of treatment response to nCRT
with LARC.

in patients

MATERIALS AND METHODS

Patients

This retrospective study was approved by our institutional review
board (IRB No. 201610070). The written informed consents from
patients were waived.

Medical data of consecutive biopsy-proven rectal
adenocarcinoma patients with LARC treated with nCRT
followed by total mesorectal excision between March 2009 and
December 2017 in our institution were retrospectively analyzed.
Complete clinical data, including MRI imaging of all patient’s
performed before radiotherapy, was analyzed. Details about
the inclusion and exclusion criteria, clinical and pathological
characteristics, and treatments information can be found in
Supplementary Files. The patients recruiting process was shown
in Figure 1.
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LARC patients received standard nCRT
at our instituation from January 2009 to
December 2017( n=194)

Non-adenocarcinoma (n= 4):
* squamous carcinoma: 3
* neuroendocrine neoplasm: 1

I

Y

Demonstrate metastasis
disease during nCRT (n=2)

LARC patients received nCRT (n=188)

Interval between the end of CRT
and surgery < 6 weeks (n=12)

« —>

Patients refused surgery after
nCRT (n=8)

A 4

LARC patients receiving nCRT and
TME surgery > 6 months (n=168)

Incomplete clinicopathological
(n=3)

—

MRI prior to CRT missed
(n=31)

—>
A 4

Finally enrolled patients (n= 134)

FIGURE 1 | Flow-chart. LARC, Locally advanced rectal cancer; nCRT, neoadjuvant chemoradiotherapy; TME, total mesorectal excision.

Pathological Assessments of

Tumor Samples

Each specimen was sampled and evaluated by two experienced
dedicated gastrointestinal pathologists. The two pathologists
were both blind to the MRI data and clinical data. Criteria for
PCRT and non-pCRT were defined as described in previous
reports (8). We also classified TRG 3-4 into the good response
(GR) group, and TRG 0-2 into the non-GR group according
to Dowrak/Rodel’s system (27). Changes in TNM staging were
recorded by comparing to ¢cITNM before the surgery, and
responses were classed as either down-staging or non-down-
staging (stability and progression). Details can be found in the
Supplementary Files.

MRI Image Acquisition

All patients underwent an MRI scan in our hospital with either
a 1.5 Tesla (Siemens, Erlangen, Germany) or a 3.0 Telsa scanner
(GE, Milwaukee, US), using a phased-array body coil, 3-10 days
before the start of chemoradiation. To ensure MRI image quality,
a quality assurance check was performed biweekly by a hospital
radiological physicist and executed bimonthly by the Siemens or
GE engineer, as appropriate, according to the maintenance rules
for the MRI scanners in our institute. Axial T2-weighted (T2w
fast spin echo sequence) images (T2WI) and T1-weighted (T1w
spin echo sequence) images (T1WI) were acquired regularly.
Subsequently, multiphase T1w images were obtained before and
after contrast injection, using a spoiled gradient echo sequence
(LAVA/VIBE sequence). Contrast injection and data acquisition
were triggered simultaneously. Briefly, a total of four repetitions
were acquired, including one before the contrast injection and
three after the injection (at 28, 65, and 120s). For contrast,

generally 90-100ml of the gadolinium-based contrast media
dimeglumine gadopentetate (Magnevist; Schering Diagnostics
AG, Berlin, Germany) was administrated intravenously at a rate
of 2.5 ml/s through a high pressure injector (Optistar LE, Liebel-
Flarisheim Company, OH, USA).

Since all patients had at least three kinds of MRI images
(T1IWI, T2WI, and enhanced T1WI), MRI images from these
three serials were included in the present study.

MRI Image Analysis

All MRI images of each patient were evaluated independently
by two experienced abdominal radiologists (reader 1. C.C with 7
years of experience; reader 2, L.X.Y with 15 years of experience),
who were totally blinded to all medical information. Final
disagreement was resolved in a panel format including two
additional radiologists (L.W.H and Y.X.P). The location and
boundary of the tumor were confirmed, tumor size, the distance
from the lower edge of the tumor to the anal canal, and the MRI-
based TNM stage were recorded. The findings were recorded
by consensus.

Texture Analysis Feature Extraction

For each patient, an anonymized representative axial T2WI
image in which the lesion had the largest cross-sectional
area was selected and retrieved from Picture Archiving and
Communication System (PACS, Carestrem, Canada) using
Digital Imaging and Communications in Medicine (DICOM)
Works software (version 1.3.5). Subsequently, each image was
transferred to a personal computer and inputted into the texture
analysis software (MaZda Version 4.6, Institute of Electronics,
Technical University of Lodz, Poland) (28).

Frontiers in Oncology | www.frontiersin.org

12 June 2019 | Volume 9 | Article 552


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

Yietal.

Application of Radiomics in LARC

Briefly, the process of texture analysis feature extraction was
conducted by 2-steps as follows: (a) selecting and retrieving the
suitable MRI images, and then (b) outlining the tumors as the
regions of interest (ROI), and extracting quantitative texture
analysis features by using the texture analysis software (MaZda
Version 4.6, Institute of Electronics, Technical University of
Lodz, Poland).

Tumors were outlined as a region of interest (ROI) by
performing MaZda on T2WI, while using all other image
sequences (especially gadolinium-enhanced images) as references
in cases where the margin of the rectal lesion was difficult to
define on unenhanced images. Briefly, a ROI was delineated
initially by following the tumor outline, with notation that fat
and air outside the mass are not included. Then, the ROI
was saved for subsequent texture analysis. Contouring was
performed carefully to cover the maximum extent of the tumor
without exceeding the lesion border, to avoid contamination
from adjacent normal rectal tissues or the intestinal lumen.
For each ROI, a total of 340 quantitative features were
automatically generated using MaZda software, including a
gray level histogram, gradient, run-length matrix, co-occurrence
matrix, autoregressive model, and wavelet transform analysis
according to the software settings.

Evaluation of the Reproducibility of
Radiomics Feature Extraction by the

Two Radiologists

The reproducibility assessment of the features extracted by the
two radiologists from the independent segmentations of T2WI
images of all patients was performed. The inter-observer (reader
1v reader 2) and intra-observer (reader 1 twice) correlation
coefficient values were evaluated. The final consistency is
evaluated by the following criteria regarding the correlation
coefficient values: <0.20 indicates poor reproducibility, 0.21-
0.40 fair reproducibility, 0.40-0.60 moderate reproducibility,
0.61-0.80 good reproducibility, and 0.81-1.00 excellent
reproducibility. Generally, a correlation coefficient >0.75 is
regarded as being in good agreement.

For the Kappa consistency test, excellent, good, and poor
agreement were defined as kappa values of >0.81, in the range
of 0.61-0.80, and <0.60, respectively.

The Mann-Whitney U-test was used to compare the values of
each feature between the two groups. An independent samples
t-test or Kruskal-Wallis H test, where appropriate, was used to
assess the differences between the features generated by reader 1
(first time) and those generated by reader 2, as well as between
the features generated twice by reader 1.

Inter-observer and intra-observer reproducibility of texture
feature extraction was initially analyzed with 50 randomly chosen
images from all T2WI images selected for evaluation by the
two radiologists (reader 1, and reader 2). To assess the intra-
observer reproducibility, reader 1 repeated the generation of
texture features twice within a 2-week period following the
same procedure. Reader 1 completed the workflow for the
remaining images.

Statistical Analysis, Features Selection,
Signature Generation, and Prediction
Model Building

All statistical analyses were conducted using IBM SPSS version
20.0.0 (IBM Corporation, Armonk, NY, USA). To test the
difference between groups, the Wilcoxon rank-sum test was
performed for the quantitative features, and the chi-square test
or fisher’s exact test was performed for the qualitative features.

All data processing, data reduction and feature selection,
and model built were performed using MATLAB 2017a (The
Mathworks, Inc., Natick, MA, USA). The least absolute shrinkage
and selection operator (LASSO) method, was used to select the
most useful predictive features from the primary data set, and
a radiomics score (Rad-score) was calculated for each patient
at the mean time as a linear combination of selected features
that were weighted by their respective coefficients. Based on
these selected features, another classification model was also
constructed by Random forest (RF), and the RF-score was
generated. Subsequently, a combined classification model was
finally built by the support vector machine (SVM) method (SVM-
score), based on Rad-score and RF-score in the previous step.
On the basis of two SVM-scores obtained, calculated from TE
and TRC features, respectively, a final classification model was
generated by using the SVM method again (SVM-score-final).
Through the above steps, a total of seven models were generated
representing each classification task, considering there are two
kinds of data (Texture analysis [TA] features, and Traditional
radiological-clinicopathological [TRC] features) that were used
to build the model. The seven models include three models
generated from TA features (model based on Rad-score, RF
model, and first-step SVM model), three models generated from
TRC features (model based on Rad-score, RF model, and first-
step SVM model), and one combined SVM model.

The basic idea of this algorithm is to consider LASSO and
RF as weak regressors and combine them using SVM. For
each type of data, i.e., texture feature, we first use LASSO to
obtain the Rad-score, and use its side product, i.e., important
features, as the feature set of RF to obtain the RF-score. Since
Rad-score and RF-score are independently acquired by two
different weak regressors, using SVM to regress them in a two-
dimensional plane achieves a better result than by them owns.
Moreover, data sets Texture feature and Traditional radiological-
clinicopathological data are also independent to each other. So
for the same reason, we use SVM to regress the scores from
Texture feature and Traditional radiological-clinicopathological
data to get the final regression score. Finally, the regressed scores
can be binarized for further prediction.

To evaluate the performance of the models, all patients were
divided into two cohorts: a training cohort and a validation
cohort. The models were developed in the training cohort, and
tested in the validation cohort. The classification efficiencies of
each kind of model mentioned above, including the receiver
operating characteristic (ROC) curves, both in the training
and validation cohort were calculated. A P-value < 0.05 was
considered statistically significant. Details of the flow chart for
building the classification model are shown in Figure 2.
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Enrolled LARC
patients (n=134)
2
I 1
Preoperative MR imaging data plus
T2WI image Clinicopathological data

'<i Mazda || Traditional analysis |-
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| 340 TE features | | n TRC features I
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|LASSO| |RF| |LASSO| |RF|
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(Model 2)
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(Model 1) (Model 4) (Model 5)
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(Model 7)

Crassirier

FIGURE 2 | Flow chart depicting construction of the classification models.
LARG, locally advanced rectal cancer; TE, texture features; TRC Traditional
radiological features and clinicopathological features; LASSO, least absolute
shrinkage and selection operator; RF Random forest; SVM support vector
machine. The nx or ny terms used here indicate the different numbers of
selected features used in the LASSO method with three different reduction
schemes based on 340 TE features and 31 TRC features, respectively. The
texture analysis software used was MaZda Version 4.6 (Institute of Electronics,
Technical University of Lodz, Poland).

RESULTS

Patients Characteristics

There werel34 patients enrolled in the present study. Patients’
characteristics in the training and validation cohorts were
summarized in Table 1. Patients were randomly allocated into
training cohort and validation cohort in a 3:1 ratio for
building the pCR predictive model, the down-staging model,
and the good response model. No differences were found
between the training and validation cohorts in any of the three
models. In addition, the patients’ clinicopathological data mostly
consisting of laboratory data were also used in building the
predictive models.

The Classification Model Building and
Predicting Efficiency

From a total of 340 features that were extracted from T2-wighted
images for each patient, a set of features with corresponding
numbers were selected by LASSO and used to calculate the Rad-
scores for the pCR, Good Response, and Down-staging models.

Predicting Pathological Complete Response (pCR)
On the basis of the selected 10 texture and 8 clinicopathological
features, a predictive model was finally constructed with SVM
method for pCR prediction. The SVM model yielded an AUC
of 90.78% in the training cohort, and 87.45% in the validation
cohort (Figure 3 and Supplementary Figure 1).

Predicting Good Response (GR)

The predictive model built based on the 10 texture features and
7 clinicopathological features achieved an AUC of 90.17% in the
training cohort, and 89.72% in the validation cohort (Figure 3
and Supplementary Figure 1).

Predicting Down-Staging

The predictive model with 10 texture features and 7
clinicopathological features showed an AUC of 92.97% in the
training cohort, and 89.20% in the validation cohort (Figure 3
and Supplementary Figure 1). Details about prediction
efficiency of three kinds of models could be found in Table 2.
The correlation matrix of the selected features used in the three
kinds of models was showed as Figure 4.

DISCUSSION

To the best of our knowledge, this was the first cohort
studied to date utilizing monosequence-MRI-based machine
learning radiomics to predict tumor response to neoadjuvant
chemoradiation therapy in patients with locally advanced rectal
cancer. Our predictive model constructed with both radiomics
features and clinicopathological data achieved higher accuracies
than previously reported in the literature, with an AUC
of more than 90%. Substantial evidence from prior studies
has demonstrated that a number of clinicopathologcial and
radiological features may help to predict treatment response
(16, 18, 29). Nevertheless, no single factor has stood out to be
the most reliable way for clinicians to use in decision making
process (6, 16). It is important to distinguish the LARC patients
who will likely to respond to nCRT from patients who would not.
However, this has not been achieved yet. We introduced here a
new imaging oriented strategy for a better prediction, which may
have potential for clinical practice.

Our study is in general accord with prior research (19, 30, 31).
Nie et al. (12) have reported a relatively satisfactory result by
using a radiomics method, with an AUC of 0.84 for pCR and
0.89 for good response prediction. Most recently, Cui et al. (19)
reported a further attempt on a bigger group LARC patients by
similar methods, which show very high predictive efficiency with
an AUC of 0.944. In addition, several LARC studies (20, 21) also
perform similar radiomics-based studies with good experimental
results, using features extracted from multimodality MR images
including T2WI. However, there were obvious advantages in our
study when compared to these studies. First, we fully evaluated
three aspects of the treatment response: not only pCR and good
response, but also down-staging. Our study has the potential to
provide more information on the tumor and treatment response.
Second, the number of enrolled patients in our study (n = 134),
was larger than that in the Nies (n 48), and comparable
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TABLE 1 | Clinicopathological characteristics in three tumor response predictive models.

Down-staging predictive model

PCR predictive model Good response predictive model

Training Validation P-value Training Validation P-value Training Validation P-value
cohort cohort cohort cohort cohort cohort

Gender

Male 54 (57.4%) 26 (65.0%) 0.415 57 (61.3%) 23 (56.1%) 0.572 55 (58.5%) 25 (62.5%) 0.667

Female 40 (42.6%) 14 (35.0%) 36 (38.7%) 18 (43.9%) 39 (41.5%) 15 (37.5%)
Age (years) 50.62 £ 10.29 54.70+ 10.74  0.040 52.32 £10.68 50.73 £ 10.32 0.424 52.02 £ 10.82 51.4 £10.04 0.757
Distance from the anal 5.00 (3.00-6.00) 5.30 +2.15 0.264 5.0 (4.0-6.0) 5.00 (3.00-6.50) 0.185  5.00 (3.38-6.25) 5.00 (3.00-6.00) 0.233
verge (cm)
Pathology type 0.463 0.320 0.087
Well/moderately 70 (74.5%) 33 (82.5%) 71 (76.3%) 32 (78.0%) 70 (74.5%) 33 (82.5%) 0.087
differentiated
adenocarcinoma
Poor differentiated 17 (18.1%) 6 (15.0%) 18 (19.4%) 5(12.2%) 20 (21.3%) 3 (7.5%)
adenocarcinoma
Mucinous carcinomas 7 (7.4%) 1(2.5%) 4 (4.3%) 4 (9.8%) 4 (4.3%) 4 (10.0%)
Clinical T staging (cT) 1.000 1.000 0.364
cT2 3(3.2%) 0 2 (2.2%) 1(2.4%) 1(1.1%) 2 (5.0%)
Ct3 73 (77.7%) 29 (72.5%) 71 (76.3%) 31 (75.6%) 72 (76.6%) 30 (75.0%)
cT4 18 (19.1%) 11 (27.5%) 20 (21.5%) 9 (22.0%) 21 (22.3%) 8 (20.0%)
Clinical N staging (cN) 0.632 0.847 0.540
cNO 18 (19.1%) 10 (25.0%) 17 (18.3%) 11 (26.8%) 19 (20.2%) 9 (22.5%)
cNia 18 (19.1%) 10 (25.0%) 20 (21.5%) 8 (19.5%) 18 (19.1%) 10 (25.0%)
cN1b 25 (26.6%) 8 (20.0%) 23 (24.7%) 10 (24.4%) 26 (27.7%) 7 (17.5%)
cNic 1(1.1%) 0 1(1.1%) 0 1(1.1%) 0
cN2a 20 (21.3%) 5(12.5%) 19 (20.4%) 6 (14.6%) 15 (16.0%) 10 (25.0%)
cN2b 12 (12.8%) 7 (17.5%) 13 (14.0%) 6 (14.6%) 15 (16.0%) 4 (10.0%)

to Cui y’s (n = 186), which can ensure the desired prediction
results. Third, we also included conventional MRI findings
and clinicopathological data which may further improve the
prediction. Lastly, our radiomic features were extracted from
only one sequence, i.e., the T2-weighted images, other than
the multi-sequence MRI images used in previous studies. The
T2 weighted images are commonly used in clinical practice,
which is familiar to radiologists. In addition, it can be acquired
easily and the images are quite stable in appearance, especially
when compared with images obtained by special sequence,
such as diffusion weighted images. Notably, diffusion weighted
images are prone to distortion and susceptibility artifacts, which
affect tumor segmentation and data extraction. Similarly, other
sequences such as TI1-weighted dynamic contrast enhanced
images depend on the amount and distribution of the injected
contrast-enhancing agent, which might be influenced by variable
hemodynamic conditions in the patients.

The exact reason for why quantitative MRI-based texture
data appear to be able to predict treatment response is still
largely unknown. In theory, the biological phenotype of tumors,
including treatment response, is largely determined by their
underlying molecular subtypes, whose manifestations may vary.
One of the phenotypes may be radiological heterogeneity,
including inter- and intra-tumor heterogeneity. A large body
of literature indicates that texture based radiomic modeling
can evaluate tumor heterogeneity, and can correlate radiological

findings with underlying genomic and biological characteristics,
including prognosis and treatment response (17, 23). Our study
may add into the literature in this regard as we have shown
a predictive model for treatment response with high accuracy.
From another perspective, the large amount of previous evidence
(13, 15), supporting using advanced MRI-based radiomic
features to predict different responses to nCRT in patients with
rectal cancer.

In addition, we introduced clinicopathological features into
the prediction model, which may contribute significantly to
the improvement of prediction efficiencies. These features may
represent, to some extent, some of the intrinsic properties of
the tumor (32, 33). For example, the fecal occult blood test
and red cell counts may indicate oxygen status of tumor.
Neutrophil counts, Monocyte counts, globulin, or platelet counts,
may actually reflect the immune status of LARC patients to
some extent. The hypoxia and immune status of the tumor can
influence tumor treatment response and mediate radiotherapy
resistance (34, 35). Pathology type and distance from the anal
verge also influence the tumor response, as has been shown
in previous studies (36, 37). Our study results suggest that
these clinicopathological data may play an important role in
treatment response.

There were several limitations in our study. First, as a
retrospective study, there may be a selection bias. Second, the
sample size in our study was modest, which may affect the
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FIGURE 3 | The efficiencies of machine learning models predicting treatment response in LARC patients receiving nCRT. The distribution of patients with
down-staging disease or not (A-D), pCR or not (E-H), and good response or not (I-L), in TRC based model (model 6) (A,E,l), TE based model (model 3) (B,F,J) and
the combined TRC and TE based model (Model 7) (C,G,K) were demonstrated by scatter plots. The ROC test (D,H,L) shows that the efficiency of model 7 was
significantly higher than that of either model 6 or model 3 in all three missions (all P < 0.05). There is no significant difference in prediction efficiency between model 6
and model 3 in any of the three missions (all P > 0.05).
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FIGURE 4 | Correlation matrix maps show the correlation among all TE and TRC features used in predictive models. (A) Down-staging model. (B) PCR model. (C)
Good-response model. TRC features are expressed in bold fonts.

accuracy and stability of the predictive models. Third, both  study might be helpful to further validate and optimize our
the building and validation of the models were conducted in  prediction models. The texture features were extracted from the
our institution with a single dataset. A multicenter prospective  largest cross-sectional area of the tumor rather than from the
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TABLE 2 | The efficience of models to predict the treatment response in LARC petients.

Training cohort

Validation cohort

Score 3 Score 6 Score 7 SVM1 SVM2 SVM3
DOWN-STAGING
AUC 0.8630 0.8245 0.9297 0.8006 0.8462 0.8920

(95% Cl: 78.36-94.25%) (95% Cl: 73.07-91.83%) (95% Cl: 87.62-98.31%) (95% Cl: 65.28-94.84%) (95% Cl: 72.46-96.77%) (95% Cl: 79.40-99.01%)
Specificity  0.82812 0.85938 0.90625 0.7778 0.7778 0.7778

(95% Cl: 68.750-95.312%) (95% Cl: 59.375-96.875%) (95% Cl: 73.438-98.438%) (95% Cl: 51.85-96.30%) (95% Cl: 51.85-96.30%) (95% Cl: 62.96-92.59%)
Sensitivity ~ 0.83333 0.73333 0.9000 0.8462 0.9231 0.9231

(95% Cl: 63.333-96.667 %) (95% Cl: 56.667-93.333%) (95% Cl: 73.333-100.000%)  (95% Cl: 61.54-100.00%)  (95% Cl: 69.23-100.00%)  (95% Cl: 76.92-100.00%)
Accuracy  0.82979 0.81915 0.89362 0.8000 0.8250 0.8500

(95% Cl: 74.468-89.362%) (95% Cl: 69.149-89.362%) (95% Cl: 79.787-95.745%) (95% Cl: 65.00-92.50%) (95% Cl: 67.50-92.56%) (95% Cl: 70.00-92.50%)
PCR
AUC 0.8361 0.8387 0.9078 0.8194 0.7581 0.8745

(95% Cl: 74.13-93.09%) (95% Cl: 74.83-92.91%) (95% Cl: 83.15-98.41%) (95% Cl: 69.08-94.79%) (95% Cl: 58.56-93.05%) (95% Cl: 74.82-99.49%)
Specificity  0.86364 0.77273 0.86364 1.00 0.9000 0.9000

(95% Cl: 63.64-100.00%) (95% Cl: 54.55-100.00%) (95% Cl: 72.73-100.00%) (95% Cl: 80.00-100.00%)  (95% Cl: 40.00-100.00%)  (95% Cl: 50.00-100.00%)
Sensitivity ~ 0.77465 0.85915 0.88732 0.67742 0.67742 0.80645

(95% Cl: 54.93-91.55%) (95% Cl: 49.30-95.78%) (95% Cl: 69.01-97.18%) (95% Cl: 48.39-90.32%) (95% Cl: 32.26-100.00%)  (95% Cl: 51.61-100.00%)
Accuracy  0.78495 0.82796 0.88172 0.7561 0.73171 0.85366

(95% Cl: 64.52-89.25%) (95% Cl: 61.29-90.32%) (95% Cl: 75.27-94.62%) (95% Cl: 60.98-90.24%) (95% Cl: 48.78-92.68%) (95% Cl: 63.35-95.18%)
GOOD-RESPONSE
AUC 0.8374 0.8039 0.9017 0.7920 0.7744 0.8972

(95% Cl: 75.95-91.53%) (95% Cl: 71.42-89.36%) (95% Cl: 83.30-97.05%) (95% Cl: 65.24-93.16%) (95% Cl: 62.65-92.23%) (95% Cl: 80.19-99.25%)
Specificity  0.77083 0.8125 0.875 0.7143 0.7143 0.8571

(95% Cl: 54.17-97.92%) (95% Cl: 52.08-93.75%) (95% Cl: 70.83-97.92%) (95% Cl: 38.10-100.00%)  (95% Cl: 38.10-95.24%) (95% Cl: 66.67-100.00%)
Sensitivity ~ 0.80435 0.73913 0.9130 0.8947 0.8421 0.8947

(95% Cl: 50.00-95.65%) (95% Cl: 56.52-95.65%) (95% Cl: 76.09-100.00%) (95% Cl: 47.37-100.00%)  (95% Cl: 52.63-100.00%)  (95% Cl: 68.42—-100.00%)
Accuracy  0.7766 0.7766 0.88298 0.7500 0.7750 0.8750

(95% Cl: 70.21-85.11%) (95% Cl: 69.15-85.11%) (95% Cl: 81.92-93.62%) (95% Cl: 65.00-87.50%) (95% Cl: 65.00-87.50%) (95% Cl: 75.00-95.00%)

entire tumor, which may raise questions as to whether these
features were optimally representative of the characteristics of the
entire tumor. Lastly, the MRI images used in the texture feature
extraction were obtained from three different MRI scanners
(Siemens and GE) in our hospital, and differences among the
scanners may potentially influence the texture features and
the subsequent model building. Future research is needed to
standardize the signal intensity among different MRI scanners.

CONCLUSION

Our study showed a predictive model built with radiomic
features and clinicopathological data was promising to predict
tumor response to neoadjuvant chemoradiation in patients
with locally advanced rectal cancer. In addition, our method
developed with information from the clinically obtained T2-
weighted sequence may be used as a complimentary tool to
assist clinical decision making. Nevertheless, future prospective
multicenter studies with larger samples will be needed to validate
our study result and to optimize the prediction models for
clinical practice.
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Purpose: To investigative the diagnostic performance of radiomics-based machine
learning in differentiating glioblastomas (GBM) from metastatic brain tumors (MBTSs).

Method: The current study involved 134 patients diagnosed and treated in our
institution between April 2014 and December 2018. Radiomics features were extracted
from contrast-enhanced T1 weighted imaging (T1C). Thirty diagnostic models were
built based on five selection methods and six classification algorithms. The sensitivity,
specificity, accuracy, and area under curve (AUC) of each model were calculated, and
based on these the optimal model was chosen.

Result : Two models represented promising diagnostic performance with AUC of 0.80.
The first model was a combination of Distance Correlation as the selection method and
Linear Discriminant Analysis (LDA) as the classification algorithm. In the training group, the
sensitivity, specificity, accuracy, and AUC were 0.75, 0.85, 0.80, and 0.80, respectively;
and in the testing group, the sensitivity, specificity, accuracy, and AUC of the model were
0.69, 0.86, 0.78, and 0.80, respectively. The second model was the Distance Correlation
as the selection method and logistic regression (LR) as the classification algorithm, with
sensitivity, specificity, accuracy, and AUC of 0.75, 0.85, 0.80, 0.80 in the training group
and 0.69, 0.86, 0.78, 0.80 in the testing group.

Conclusion: Radiomic-based machine learning has potential to be utilized in
differentiating GBM from MBTs.

Keywords: radiomics, machine learning, glioblastomas, metastatic brain tumors, texture analysis

INTRODUCTION

Glioblastomas (GBM) and metastatic brain tumors (MBTs) are commonly identified brain tumors
in the adult population. Pre-surgery diagnosis between these lesions is critical to assist in efficient
treatment planning, especially for MBTs with brain metastases detected before the primary tumor
(1). Magnetic resonance imaging (MRI) is highly recommended for radiological examination as
a non-invasive tool due to the advantage of identifying the location and size of lesions (2, 3).
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However, conventional MR imaging is limited in differentiating
GBM from solitary MBTs due to lacking characteristics on their
imaging, and their contrast-enhancement patterns may mimic
each other. Moreover, advanced MR techniques, like Dynamic
Susceptibility Contrast Enhanced (DSC) MR imaging and proton
magnetic resonance spectroscopy (HMRS), are not significant in
the diagnosis of these lesions either given the similarities and
the increased vascularity between these tumors or the metabolite
ratios (4-8). Evidently, even with the quantitative information
that individual MR techniques provided on specific properties
of the tumor, the single radiological technique is not enough to
provide a tumor characterization.

Considering MR data was able to reflect the pathophysiology
of tumors visually, the quantitative radiomics-based analysis
may provide a feasible solution to assist in the demanding
process. Texture analysis (TA) is the mathematical method to
calculate the voxel-intensity heterogeneity of images, including
computed tomography (CT) and magnetic resonance imaging
(MRI), and showed promising diagnostic ability in various
lesions (9, 10). Previous studies have investigated the diagnostic
ability of pattern recognition techniques combined with TA in
order to aid physicians in making clinical decisions (3, 11, 12).
However, the optimal diagnostic model is still controversial
because the performance of models could be significantly
different with various combinations of classification algorithms
and the selection method on radiomics features. In the present
study, we performed a radiomic-based machine learning method
in discriminating GBM from MBTs with five selection methods
and six classification algorithms to bring about the intuitional
selection of an optimal model. Therefore, the purpose of our
study was to assess the contribution of pattern recognition
techniques using radiomics features in the different models to
distinguish GBM from MBTs and to select the optimum one in
terms of diagnostic value.

METHODS

Patient and MR Imaging Sequence
Selection

This retrospective study was performed in our institution.
The patients were selected from the neurosurgery department
treated between April 2014 and December 2018. The initial
selection enrolled potentially qualified patients who had records
of intraoperative frozen-section confirmation on GBM or
MBTs. Then we viewed the electronic medical records to
collect the information we needed for analysis, including name,
gender, age, and pathology report. Patients were excluded
if the history of other types of intracranial diseases were
documented or observed in MRI. The preoperative MR
images were also collected from the radiological department
through Picture Archiving and Communication Systems
(PACS) (Figure 1).

In this study, we focused on conventional MR sequences,
including T1-weighted imaging (T1WI), contrast-enhanced T1-
weighted imaging (T1C), T2-weighted imaging (T2WI), and
fluid attenuated inversion recovery (FLAIR), as they are the

routine examination for patients with intracranial tumor. After
the initial evaluation on images, contrast-enhanced T1 weighted-
imaging (T1C) was chosen among all the sequences for further
analysis due to the rather precise separation of tumor tissue from
brain tissue.

Conventional MR Imaging Examination

Protocols

The MR scans were performed using the 3.0T Siemens Trio
Scanners in the MR Research Center. High-resolution 3-
dimensional T1-weighted images were collected using MPRAGE
sequence. The parameters were as follows: TR/TE/TI
1,900/2.26/900 ms, 176 axial slices with thickness = 1 mm, axial
FOV = 25.6 x 25.6 cm?, Flip angle = 9°, and data matrix
= 256 x 256. Dimeglumine (0.1 mmol/Kg) was the contrast
agent for contrast-enhanced imaging, and multi-directional data
of contrast-enhanced MRI were collected during the continuous
interval time of 90-250 s.

Texture Feature Extraction

Two neurosurgeons participated in the statistic extraction
of texture features using LifeX software (http://www.lifexsoft.
org) with the assistance of senior radiologists. Following the
software protocol, they drew along the whole lesion in each
slice to obtain the 3D-texture features. In each layer of the
image, the regions of interest (ROI) were carefully drawn
along the boundary of tumor tissue (including the necrosis
and vessels within tissue). The peritumoral edema band and
adjacent structure invasion were separated from the primary
tumor with the difference in contrast enhancement. After
segmentation on the whole tumor, the software automatically
calculated and extracted texture features with default protocols
(Figure 2). To ensure the validity and reproducibility of the
procedure, the surgeons conducted data extraction twice, and
the difference between two sets was examined with Manny-
Whitney U-test. We adjusted the g < 0.01 as significant (before
was p < 0.05) to avoid the interference of false-positive errors
rising from a large number of texture features. The results
suggested that none of the features were significantly different,
implying that the results could be reliable and reproducible
(Supplement Material 1).

Texture features were calculated from two orders. In the
first order, features on shape- and histogram-based matrixes
were extracted; and in the second order, features on the
gray-level co-occurrence matrix (GLCM), neighborhood gray-
level dependence matrix (NGLDM), gray-level zone length
matrix (GLZLM), and gray-level run length matrix (GLRLM)
were extracted. Finally, we built a statistical dataset of the
radiomic statistics consisting of 43 features for machine-
learning analysis.

Classification Procedure

The establishment on the diagnostic model involved two parts:
feature selection and classification algorithm (or known as
classifier) deployment. The feature selection serviced the purpose
that the numbers of features were so many that overfitting
was inevitable for classification of algorithms. Considering the
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ROI delineation

FIGURE 2 | Screen capture of regions of interest (ROI) delineation.

optimal selection method could be different for algorithms, selected features were adopted into classification algorithms to
five selection methods were evaluated in our study, including  establish models.

distance correlation, random forest (RF), least absolute shrinkage Six classification algorithms were evaluated in our study,
and selection operator (LASSO), eXtreme gradient boosting including Linear Discriminant Analysis (LDA, also known as
(Xgboost), and Gradient Boosting Decision Tree (GBDT). The  Fisher Linear Discriminant), Support Vector Machine (SVM),
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FIGURE 3 | Heat map of the classifiers for differentiating between GBM and MBTs. (A) The AUC of the training group. (B) The AUC of the testing group.
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TABLE 1 | Results of the optimal discriminative model in distinguishing GBM from MBTs in the training and the testing groups.

Model Training group Testing group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity
Distance correlation + LDA 0.80 0.80 0.75 0.85 0.80 0.78 0.69 0.86
Distance correlation + LR 0.83 0.83 0.79 0.87 0.80 0.79 0.71 0.85

AUC, area under curve; LDA, linear discriminant analysis; LR, Logistic Regression.

random forest (RF), k-nearest neighbor (KNN), GaussianNB,
and logistic regression (LR). Patients were divided as the
training group and the testing group on a proportion of
4:1. Area under the receiver operating characteristic curve
(AUC) of each model was calculated to assess their diagnostic
performance. For each model, the progress of machine learning
was repeated over 100 times to obtain the realistic distribution of
classification accuracies.

All procedures involving human participants were in
accordance with the ethical standards of the institutional
and/or national research committee. The Ethics Committee
of Sichuan University approved this retrospective study. The
written informed consent was necessary before radiological
examination (written informed consent for patients <16 years
old was signed by parents or guardians) for all patients. They
agreed to undertake examination if needed and were informed
that the statistics (including MR image) might be used for
academic purposes in the future.

RESULT

Patients Selection

A total number of 134 patients were enrolled in this study.
Seventy-six of the patients were diagnosed with GBM, and 58 of
them were diagnosed with MBTs. The average ages of patients
were 46.9 and 57.6, respectively. The gender ratio for each type
of tumor (Male: Female) was 10:9 and 9:5, respectively. The

pathology reports represented that the majority of MBTs were
originated from lung cancer and breast cancer (N = 54).

Diagnostic Performance of Models

As for the diagnostic models we evaluated, 30 models were
established to select the suitable one, which was defined as the
one with the highest AUC in the testing group. The results
suggested the AUC of models mostly hovered around between
0.70 and 0.76 (Figure 3), and the highest value was 0.80 observed
in two models: the Distance Correlation + LDA and the
Distance Correlation + LR (Table 1). The details of each model
performance are summarized in Supplement Material 2.

For the first model (the Distance Correlation + LDA), in
the training group, the sensitivity, specificity, accuracy, and
AUC of the model were 0.75, 0.85, 0.80, and 0.80, respectively.
And in the testing group, the sensitivity, specificity, accuracy,
and AUC of the model were 0.69, 0.86, 0.78, and 0.80. For
the second model (the Distance Correlation + LR) in the
training group, the sensitivity, specificity, accuracy, and AUC
of the model were 0.79, 0.87, 0.83, and 0.83, respectively. And
in the testing group, the sensitivity, specificity, accuracy, and
AUC of the model were 0.71, 0.85, 0.79, and 0.80, respectively.
The LDA distribution suggested these two models represented
similar diagnostic performance (Figure 4). Figure 5 shows one
example of 100 independent validation cycles of the model,
representing the distribution of the first and second direct LDA
canonical functions.
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DISCUSSION

In the present study, we investigated the diagnostic ability of
pattern recognition techniques combined with texture features
extracted from conventional MRI in discriminating GBM from
MBTs. MRI could provide excellent information on soft tissue
differentiation to enable the exact localization of the tumors and
to assist in the prediction of tumor response to therapy evaluation
(13). However, pathological identification is the weakness
of conventional MRI bringing additional advanced imaging
techniques, which required additional fees and equipment, into
tumor characterization and treatment. Our study made the
evaluation on six classification algorithms consisting of five
selection methods and six classification algorithms to identify the
optimal model.

The diagnosis between MBTs and GBM on conventional
MRI is rather straightforward because of the clinical history
or observation of multiple lesions. The differences in tumor
growth could lead to characteristic descriptions that GBM usually
extends by infiltration, while MBTs usually arise within the
brain parenchyma and grow by expansion, leading to comprising
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FIGURE 4 | Distribution of the discriminant functions of LDA in discriminating
GBM from MBTs.

surrounding brain tissue (14). However, the emergence of lesions
with a solitary enhancing appearance lacking information on
primary tumors brings difficulty on differential diagnosis because
high-grade GBM can present similar contrast enhancement
patterns (15). The accurate and early diagnosis of these lesions
is clinically important because the surgical planning, medical
staging, and therapeutic approach can significantly vary from
each other. Given that MR scan is the conventional radiological
examination for patients, TA on T1C has the potential to
serve as a feasible solution in clinical application without
requiring additional fees. Previous studies have illustrated that
TA combined with machine learning could assist in the diagnosis
of various brain tumors, such as GBM from primary central
nerve system lymphoma and meningioma from GBM (16, 17).
Moreover, it has also been applied in tumor grade system and
gene mutation prediction (18-22). The researchers illustrated
the potential of artificial intelligence in lightening the clinical
workload and improving early diagnostic accuracy.

Compared with the previous studies, our study involved
various selection methods and classification algorithms to choose
the optimal model with the best performance. Thirty models
were evaluated, and two of them represented feasible diagnostic
ability with AUC of 0.80 (the Distance Correlation + LDA
and the Distance Correlation + LR). In the previous study, the
SVM classifier was usually proven to be the suitable classifier
compared to the others, which made sense considering that
SVM is the suitable algorithm for small sample size. Our study
illustrated that the feasible optimal classifiers were LDA and
LR, while overfittings were almost observed in all SVM-based
models (Supplement Material 2). LDA and LR are considered
as the state-of-the-art on pattern recognition classifiers, with
much better performance in some cases. LDA is also taken as the
ground truth number of parameters in terms of performance. The
mechanisms of classifiers provide a possible explanation of the
differences in results. Both LDA and LR are the linear classifiers,
while SVM is the non-linear classifier. The main difference of
two types of classifiers consists in the shape of the decision
boundary: plane or straight line in the first case, and surface
or curved line in the second case. The choice of classification
algorithm should be a tradeoff between computational burden

MBTs
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and performance (23). This theory also demonstrated why
SVM could be the suitable algorithm for a small sample size
(50~60) while LDA/LR was suitable for a relatively large sample
size (>100). However, it is worth noting that the diagnostic
performances of classifiers did not improve much in the current
research, even with the change in classification algorithm. All
studies applying machine learning in discrimination of MBTs
from GBM represented similar diagnostic performance with
AUC in the testing group of ~0.80, even when radiomics features
were selected with various selection methods and extracted from
various sequences (11,12,24). More research is required to
verify our results and to investigate the algorithm with better
diagnostic performance.

There were some limitations in the current study. First and
foremost, this study was a single central, retrospective study,
bringing inevitable selection bias (Supplement Material 3).
Second, the inhomogeneous histological subcategories of MBTs
could reduce the accuracy in the differentiation. Future
investigations with a larger sample size are required to assess
the ability of classification algorithms and texture parameters in
characterizing the lesion subtype. Third, only texture features
retrieved from T1C images were adapted into classifiers, while
features from other sequences (like T2WI and FLAIR) and
advanced MR techniques were not explored. Fourth, the models
were not validated in the other dataset, and we cannot guarantee
the diagnostic ability of our models for external datasets due to
the various protocols of imaging acquisition and MR scanners.
However, the analysis protocol and image processing procedure
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Background: Radiomics has been widely used to non-invasively mine quantitative
information from medical images and could potentially predict tumor phenotypes.
Pathologic grade is considered a predictive prognostic factor for head and neck
squamous cell carcinoma (HNSCC) patients. A preoperative histological assessment can
be important in the clinical management of patients. We applied radiomics analysis to
devise non-invasive biomarkers and accurately differentiate between well-differentiated
(WD) and moderately differentiated (MD) and poorly differentiated (PD) HNSCC.

Methods: This study involved 206 consecutive HNSCC patients (training cohort: n =
137; testing cohort: n = 69). In total, we extracted 670 radiomics features from contrast-
enhanced computed tomography (CT) images. Radiomics signatures were constructed
with a kernel principal component analysis (KPCA), random forest classifier and a
variance-threshold (VT) selection. The associations between the radiomics signatures
and HNSCC histological grades were investigated. A clinical model and combined model
were also constructed. Areas under the receiver operating characteristic curves (AUCs)
were applied to evaluate the performances of the three models.

Results: In total, 670 features were selected by the KPCA and random forest
methods from the CT images. The radiomics signatures had a good performance
in discriminating between the two cohorts of HNSCC grades, with an AUC of 0.96
and an accuracy of 0.92. The specificity, accuracy, sensitivity, positive predictive value
(PPV), and negative predictive value (NPV) of the abovementioned method with a
VT selection for determining HNSCC grades were 0.83, 0.92, 0.96, 0.94, and 0.91,
respectively; without VT, the corresponding results were 0.70, 0.83, 0.88, 0.80, and
0.84. The differences in accuracy, sensitivity and NPV were significant between these
approaches (p < 0.05). The AUCs with VT and without VT were 0.96 and 0.89,
respectively (o < 0.05). Compared to the combined model and the radiomics signatures,
The clinical model had a worse performance, and the differences were significant
(o < 0.05). The combined model had the best performance, but the difference between
the combined model and the radiomics signature weren’t significant (o > 0.05).
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CT Radiomics Predicts HNSCC Grading

Conclusions: The CT-based radiomics signature could discriminate between WD and
MD and PD HNSCC and might serve as a biomarker for preoperative grading.

Keywords: head and neck cancer, grade, computed tomography, radiomics signature, biomarker

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the sixth
most common malignant tumor worldwide. Many factors affect
the prognosis of patients with HNSCC; among these factors, the
histological differentiation grade was reported to correlate with
lymph node status, distant metastases, survival and prognosis
(1-4). A pretreatment histopathologic grade evaluation for
HNSCC provides information for clinical decision making.
Although the histological differentiation grade is routinely
confirmed by biopsy and surgical resection in many head
and neck cancer centers, invasive biopsy is sometimes of little
predictive value in early-stage oral SCC (5). In addition, intra-
tumor heterogeneity is an issue. Biopsies do not exactly reflect
the overall pathophysiology of the lesion.

Some non-invasive functional imaging modalities have been
developed in the clinic, such as diffusion-weighted imaging
(DWI), dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI), perfusion-weighted imaging (PWI), and positron
emission tomography (PET), all of which have been applied in
the grading of HNSCC (6-8). These imaging modalities play
important roles in the evaluation of disease grade to some extent,
but combining clinical visual assessments is necessary to increase
the overall accuracy.

Radiomics, which refers to an enhanced deep analysis of
the molecular aspects of tumors and accounts for intrinsic
susceptibility in the long-term follow-up, is a qualitative and
quantitative analysis of a large amount of radiologic data
extracted in a high-throughput manner to obtain predictive or
prognostic information from cancer patients (9, 10). Radiomics
is suitable for providing some predictive, classifying, and
prognostic information for HNSCC patients (11-13). A few
radiomics studies have been conducted based on MRI regarding
the staging and grading of HNSCC (14-16). Although the vast
majority of radiomics analyses were conducted on CT images, no
studies exist about radiomics models based on CT signatures to
differentiate HNSCC grades.

A large number of machine-learning methods were used
to evaluate their applying values in HNSCC patients (17, 18).
In this study, we will use another analysis method based on
CT radiomics signatures to evaluate its predictive value in
differentiating between HNSCC grades (WD vs. MD/PD).

MATERIALS AND METHODS
Study Population

We collected patients with head and neck tumors confirmed to
be SCC by surgical pathology in our hospital from January 2012
to February 2018. This study was approved by the institutional
review board of our hospital (approval number 2019-178), and
informed consent was waived. All patients underwent both

precontrast and multiple-phase pretreatment contrast enhanced
multi-slice spiral computed tomography (MSCT) scans. In this
study, the patients were chosen and excluded according to
the criteria presented in Figure 1. A total of 206 consecutive
patients were identified met the criteria. These patients were
randomly divided into a training cohort and a testing cohort
at a ratio of 9:1 by a computer. We retrospectively analyzed
the clinical information of all patients, including race, age, sex,
tumor sites, tumor differentiation, tumor node metastasis (TNM)
classification, and stage.

CT Image Acquisition

All CT scans were performed using a GE Discovery 750 HD (GE
Healthcare, Milwaukee, WI, USA) multidetector CT scanner.
The CT scanning area was from the skull base down to the thorax
inlet. The scanning parameters were as follows: 120 kV; 80 mA;
pitch 0.984; detector collimation, 64 x 0.625 mm; rotation time,
0.6 s; matrix, 512 x 512; section thickness, 5mm; and field of
view, 220-250 x 220-250 mm. First, a non-contrast enhanced

Inclusion criteria:

(D primary HNSCC patients didn’t receive any radiotherapy or
chemotherapy:

@ with surgical resection, biopsy and pathological confirmation;
3 with CT plain and contrast enhanced scan

379 patients met the criteria and included at first

Exclusion criteria:

(D nasopharygeneal carcinoma patients; (n=138)

@) the lesion located in the superficial mucus; the
lesion was too small and its diameter was less than
10mm;(n=16)

(3 CT scan examination wasn’t accomplished
successfully:(n=8)

@ CT images had motion and other artifacts, poor
image quality that affected the analysis and
diagnosis;(n=11)

206 HNSCC patients were eventually enrolled

A 4

126(61.17%) WD HNSCC
patients cohort

80(38.83%) MD (n=48) and
PD(n=32) HNSCC patients
cohort

FIGURE 1 | Flowchart showed patients selection for the study.
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CT scan was performed, and then a contrast-enhanced CT scan
was performed in the arterial phase (25-30s), portal venous
phase (60-65s), and delayed phase (120 s), after an intravenous
injection of non-ionic iodinated contrast medium (Ultravist 370,
Bayer Schering Pharma, Berlin, Germany) (dose 1.5 mL/kg,
injection rate 3.5 mL/s).

Image Analysis

Preprocessing

Lesion segmentation and labeling

We segmented and labeled the lesions on picture archiving
and communication systems (PACS) (Carestream Health Inc.,
Rochester, NY, USA). First, the doctor’s terminal was opened
to view the enrolled patients’ CT images, especially the portal
venous phase contrast-enhanced images, and then the slice
on which the lesion was the most obviously displayed was
determined. Second, the image window width was adjusted to
350 Hounsfield units (HU), and the window level was adjusted
to 40 HU. Third, the curve measurement button on the toolbar
was clicked to set the line color to red. Then, the largest solid
part of the tumor was encircled to include the markedly enhanced
area and excluded the necrotic or cystic areas. The enclosed area

Cc

FIGURE 2 | Steps of preprocessing: (A) cutting off the patches of ROI; (B)
detecting the edge; (C) fulfilling the edge and generating mask.

was recognized as a region of interest (ROI) and could be round,
oval or another irregular shape. The area of the ROI was more
than 1 cm?, which guaranteed a large enough area for analysis.
Finally, the image with the ROI was exported and saved in a JPG
format for subsequent processing. The segmentation and labeling
processes were performed by two head and neck radiologists
(J.F. and Y.T. with 5 and 10 years of diagnostic experience,
respectively). Any discrepancies that occurred were resolved by
a consensus between the two radiologists.

The goal of preprocessing was to delineate tumor regions, but
first, the coordinates of the tumor area needed to be detected.
Because the CT image was almost gray, the red line could easily
be detected by a sliding a 64 x 64 rectangle to scan the whole
image from the left top with step size of 1. This sliding rectangle
recorded the coordinates of the vertex as soon as the rectangle
came into contact with the closed red line.

We used a 64 x 64 window to scan the whole image with a
step size of 1. Once the closed red line was found, the scanning
process was stopped. Since we used the red line to contour the
tumor, the window had a 100% overlap with the tumor at this
time. The segmentation process was performed by two head
and neck radiologists (W.X. and C.Y. with 8 and 11 years of
diagnostic experience, respectively). We used an original non-
annotated image in case the annotated red line interfered with
the prediction. The coordinates recorded by the sliding rectangle
could help delineate a 64 x 64 tumor region on the original
image. These delineated images are called patches. Only the
tumor region was considered when discriminating WD HNSCC
from MD/PD HNSCC so that we could focus on the tumor and
reduce the amount of noise interference. In addition, compared
to a complete tumor region, a 64 x 64 patch contained some
tissues around the tumor, which could also contribute to the
tumor grade.

To extract the shape features, we need an additional mask to
describe the shape of the tumor. We extracted the edge of the

==
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FIGURE 3 | The workflow of proposed kernelized radiomics model in HNSCC.
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patch, primarily by keeping only the red parts of the image and
then filling in the edge and erasing the small annotated area to
generate a mask. We used both the segmented patches and masks
to extract all features (Figure 2).

Extracting radiomics features

We extracted 670 radiomics features from the portal venous
phase contrast-enhanced CT images. These features quantified
the phenotypic HNSCC characteristics and were divided into
four feature groups: shape and size features; histogram features;
texture features; and transformation features. All features are
shown in Tables S1-84, and we used all features to construct the
random forest model. The workflow of the radiomics analysis
is shown in Figure 3. The preprocessing and feature extraction
methods were coded in MATLAB and python using scikit-
image (19).

Feature decomposition and classification

Although 670 features were extracted for each patient, these
features did not contribute equally to discriminating between
WD HNSCC and MD/PD HNSCC. The features with low
discrimination capabilities or those highly correlated with each
other would overfit the classifiers and lead to a poor outcome.
Therefore, feature decomposition was performed to find a set
of candidate features with excellent discrimination capabilities
and significant differences before grade prediction. In addition
to feature selection, feature decomposition could also generate
new features that are more capable of discrimination and have
less correlation with each other than the original features. We
used a non-linear kernelization method in the analysis. KPCA,
which could be seen as a non-linear version of PCA, is a perfect
answer to non-linear requests. In this paper, the following radial
basis function (RBF) kernel was used:

i = |
202

krr (xi»xj) = exp(— )- (1)
Then, the features extracted from the CT image could be
processed by the KPCA algorithm with a RBF kernel. The
decomposition and classification methods were implemented
using scikit-learn (20), followed by a random forest classifier, and
we finally obtained our proposed kernelized radiomics model. All
experiments were performed under a Windows OS on a machine
with CPU Intel Xeon E5 2687W V3, GPU NVIDIA GeForce
1080ti, and 16*8GB of RAM.

Kernelized radiomics model building

To build our kernelized radiomics model, we first decided on
the dimensions of the kernelized features. When using the RBF
kernel, we tuned the dimension value from 30 to 200 with steps
of 10.

Because a little imbalance existed between the positive and
negative samples in our dataset, AUC, instead of accuracy, was
used to select the dimension value.

Since the dimension of the kernelized features had been
decided, we still needed to select the classifier parameters. For an
ensemble learning method using random feature selection, the

main factors that could affect the performance of the random
forest model are the number of basic learners (decision tree),
maximum depth of each decision tree and number of randomly
selected features. We used a gidsearch to search for the best values
of these parameters, which tuned one parameter while freezing
the others.

We removed features with a training set variance lower than
0.8. We used the python and sklearn library to implement this
method, which first calculated the variance of each feature and
then removed features with a low variance.

Clinical and combined model building

According to previous studies (1, 4, 21-25), some clinical and
radiological characteristics are related to the differentiation
grades of HNSCC. The TN classification, stage and enhancement
types were selected as the clinical parameters for clinical
model building (Supplementary Data Sheet 2). These clinical

TABLE 1 | HNSCC patients information and tumor characteristics in the study.

Information/ Testing cohort Training cohort p-value
characteristic
Age 63.57 + 12.01 (31-87) 61.18 + 11.87 (27-86) 0.18
Sex 0.74
Male 53 (76.8%) 108 (78.8%)
Female 16 (23.2%) 29 (21.2%)
Tumor primary location 0.45
Oral cavity 35 (50.7%) 71 (51.8%)
Oropharynx 12 (17.4%) 13 (9.5%)
Hypoharynx 12 (17.4%) 28 (20.4%)
Larynx 10 (14.5%) 22 (16.1%)
Others 0 3(2.2%)
Tumor differentiation 0.95
WD 42 (60.9%) 84 (61.3%)
MD/PD 27 (39.1%) 53 (38.7%)
T classification 0.64
T1-2 19 (27.5%) 42 (30.7%)
T3-4 50 (72.5%) 95 (69.3%)
N classification 0.562
NO 38 (55.1%) 69 (51.1%)
N+ 31 (44.9%) 68 (48.9%)
Stage 0.79
-l 14 (20.3%) 30 (21.9%)
-V 55 (79.7%) 107 (78.1%)
Enhancement types
Observer 1 0.70
Homogeneous 1 23 (33.3%) 42 (30.7%)
Heterogeneous 1 46 (66.7%) 95 (69.3%)
Observer 2 0.23
Homogeneous 2 22 (31.9%) 33 (24.1%)

Heterogeneous 2 47 (68.1%) 104 (75.9%)

Age data are mean =+ standard deviation, age range in parentheses, other data are
number (percentage). P > 0.05.
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and radiological characteristics and radiomics signatures were
integrated to build the combined model.

Statistical Analysis

The discriminating performance of this model was evaluated
with ROC curves and AUCs, and these values were compared
using DeLong tests. The differences in clinical characteristics
between the training and validation sets were evaluated
using Student’s t-tests and chi-square tests, and a p < 0.05
was considered statistically significant. IBM SPSS software
ver. 24 (IBM Corp., Armonk, NY, USA) and open-source
machine learning studio were used for statistical analysis.
The inter-observer agreement in evaluating the enhancement
types (homogeneous/heterogeneous) was assessed with kappa
statistics: a kappa value between 0.00 and 0.20 indicates a
slight agreement; a value between 0.21 and 0.40 indicates a fair
agreement; a value between 0.41 and 0.60 indicates a moderate
agreement; a value between 0.61 and 0.80 indicates a substantial
agreement; and a value between 0.81 and 1.00 indicates an almost
perfect agreement.

0.379-0.642]. The degree of inter-observer agreement regarding
enhancement types was moderate.

After the parameters were finished tuning, a dimension of
130 corresponded to the biggest AUC (AUC = 0.97). Therefore,
we obtained a 130-dimensional vector after kernelizing the
features of the sample (Figure 4). We built our kernelized model,
which used KPCA with a kernelized dimension of 130 as a
feature decomposer and random forest classifier, because these
parameter values led to the best model performance in terms
of AUC.

We obtained the top two features: smoothness and
GLCM_t_45_d_1_Con_2. There were significant differences
between the WD and MD/PD HNSCC cohorts (p < 0.05).

Performance of the Models

On the basis of VT selection, which eliminated the features
with a variance <0.8, the kernelized radiomics model from the
CT images achieved the best classification performance. The
accuracy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) of using the kernelized
radiomics models both with and without VT to differentiate

RESULTS WD HNSCC from MD/PD HNSCC are shown in Table 2.

ACC, SEN, and NPV in the cohort with VT selection were
Patient Population Information and Tumor significantly higher than those without VT selection. The AUCs
Characteristics of the models with VT and without VT are 0.96 and 0.89,

The clinical information of the patients and HNSCC
characteristics in this study are summarized in Table 1.
The testing cohort included 69 patients (53 males and 16
females). The training cohort included 137 patients (108 males
and 29 females). All patients were Chinese, with no patients
who were white, black or of other races. Regarding the tumor
TNM classifications, only two patients were classified as M1,
and the others were classified as MO; therefore, we did not
conduct statistical assessments on the M stage. There were no

respectively (Figure 5). There was significant difference between
them (p < 0.05).

We used 3-fold validation to split our entire dataset into
three parts and recursively used two parts as the training set
and one as the testing set. The model was trained on the

TABLE 2 | The performances of kernelized models with and without VT selection.

differences between the training and testing cohorts in terms of AcC  SEN  SPE PPV NPV AUC

age, sex, tumor primary location, histological differentiation, TN ..\ < cection 0.92 006 083 094 091 0.96

das;;lﬁcauonl’ Stag; Ozenlﬁancemenf types (p T 0.05). Without VT selection 0.8 088 070 080 084 089
e p-value of the kappa statistics analysis was 0.000 (p p-value 00024 00024 0131 0113 00004 0.0004

< 0.05), indicating that inter-observer agreement existed. The
kappa value was 0.510 [95% CI (confidence interval, CI)

ACC, Accuracy; SEN, Sensitivity; SPE, Specificity. 4p < 0.05.

Performance«
{
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FIGURE 4 | Tuning number of principle components.
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FIGURE 5 | Receiver operating characteristic curves of kernelized models with and without VT selection (FPR false positive rate, TPR true positive rate).

training set and validated on the testing set, which the model
could not learn from. We used ACC, SEN, SPE, PPV, NPV,
and AUC to describe the performance of the model, which
has the ability to ignore an unbalance between samples with
different classes.

The performances of each model in discriminating
grades are summarized in Table3 and
Supplementary Data Sheet 3. The clinical model had lower
performance parameters than the radiomics signature and
the combined model, and there were significant differences
among these models (p < 0.05). The combined model had
a relatively higher ACC, SEN, and NPV than the radiomics
signature, but there were no significant differences between
these two models (p > 0.05). The AUCs of the three models
are shown in Figure 6. The AUC of the clinical model was
much lower than that of the radiomics signature and that of
the combined model, which were significant differences (p <
0.05). The AUC of the radiomics signature was slightly lower
than that of the combined model, but the difference was not
significant (p > 0.05).

tumor

DISCUSSION

In this study, we combined a RBF KPCA with a random forest
classifier for the prediction of HNSCC tumor grade, especially
for differentiating WD tumors from MD/PD tumors. A total of
670 features were extracted from each tumor lesion. In total,
130 dimensions were from the PCA based on the highest AUCs
at different dimension levels (30-200). These 130 dimensions
were used as the inputs for the random forest model. Notably,
the application of VT selection to eliminate features with
variance <0.8 improved the AUC. We also constructed a clinical
and a combined model, and evaluated their performances; the
combined model achieved the best performance.

TABLE 3 | Discrimination performances of clinical model, radiomics signature
features, and the combined model.

Models ACC SEN SPE PPV NPV AUC
ClinicalA® 0.68 0.87 0.38 0.69 0.68 0.63
Radiomics*4 0.92 0.96 0.83 0.94 0.91 0.96
Combined*? 0.93 0.97 0.83 0.90 0.92 0.97

* 0.72 0.52 1.00 0.97 0.54 0.94
p valued 0.00 0.016 0.00 0.00 0.00 0.00

Q 0.00 0.003 0.00 0.00 0.00 0.00

*0 > 0.05, Ap < 0.05, ®p < 0.05.

As the solid cancer is spatially and temporally heterogeneous,
radiomics is advantageous for non-invasively capturing intra-
tumoral heterogeneity from medical imaging (10). Radiomics has
been reported for grading brain gliomas and can discriminate
high- vs. low-grade gliomas (26-28). Although other modalities
such as PET, DWI, histogram analysis of apparent diffusion
coefficient (ADC) maps, PWI and DCE-MRI have been used to
differentiate the histologic grades of HNSCC (6-8), these multi-
parameter imaging methods provide information regarding the
composition of HNSCC to reflect metabolism, cellularity, and
perfusion. There might exist complex associations among those
parameters depending on tumor grade (6). Additionally, intra-
and inter-observer variability are important factors in whether
these radiology diagnostic tools are independently reliable. In this
study, the AUC and ACC of our constructed model were higher
than those of PWI (8).

Radiomics is a promising tool for the non-invasive
characterization of tumor phenotypes. In our study, we
extracted a large number of quantitative features from contrast-
enhanced CT images: ROIs were characterized regarding their
shape and size features, histogram features, texture features
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and transformation features. A few radiomics studies have
been performed based on MRI to stage and grade HNSCC,
and these studies used various methods and obtained some
quantitative parameters. Ren et al. (14) also constructed
radiomics signatures with the method of least absolute shrinkage
and selection operator (LASSO) logistic regression and explored
the associations between radiomics signatures and HNSCC stage.
The researchers used MRI with contrast-enhanced T1-weighted
imaging (CET1WI) and T2-weighted imaging (T2WI) and found
that there were three radiomics signatures that were significantly
different between stage III-IV and stage I-II in both the testing
and training cohorts. Fujima et al. (15) used MRI histograms
and a texture analysis of fat-suppressed T2WI to predict the
histological grade of HNSCC and found that the relative
mean signal and contrast were significantly lower in poorly
differentiated SCC than in the well/moderately differentiated
SCC. The homogeneity was higher in poorly differentiated
SCC than in the well/moderately differentiated SCC. Ahn et al.
(16) studied different b values to determine whether histogram
analyses of ADC maps can differentiate histologic grades of
HNSCC; the researchers found that at a high b value (2,000
s/mm?), the mean ADC and kurtosis ratio were significantly
different among cohorts of different grades, and the diagnostic
accuracies varied among various cohorts.

On the basis of VT selection, which eliminated features with a
variance <0.8, the kernelized radiomics model from CT images
achieved a good performance. The ACC, SEN, and NPV of the
kernelized radiomics models with VT were significantly higher
than those of the model without VT. The variance threshold
could clearly help improve the performance of the model in
grading HNSCC.

Of all 670 features extracted from the portal venous
phase contrast-enhanced images, the top two features were
smoothness and GLCM_t_45_d_1_Con_2. The smoothness

feature concerns the texture of the image, which is either

smooth or rough. When the image contains constant gray level
intensity values, the texture is smooth. When the intensity
levels rapidly vary, the texture is considered rough. In this
study, the images of the WD cohort were smoother than
those of the MD/PD cohort. We speculated that a WD
tumor would resemble normal squamous epithelium, be slightly
more keratinized, have slight atypia nuclei, and show less
necrosis than a MD/PD tumor; these observations reflect the
pathological characteristics of the WD tumor and may relate
to smoothness. Regarding the feature GLCM_t_45_d_1_Con_2,
GLCM describes the spatial relationship of the pixels and
characterizes the image texture by calculating how often
pairs of pixels with specific values and spatial relationships
occur in an image. HNSCC tumors of different grades
have various pathological characteristics, including cellularity,
necrosis, vessels, desmoplasia, and inflammatory infiltration, all
of which have various pixel values and spatial relationships.
Fujima et al. (15) also reported that the contrast and homogeneity
parameters of the GLCM texture features based on MRI were
significantly different between WD/MD and PD SCC patients.
GLCM features may be useful for determining HNSCC grade.
Surov et al. (29) reported that ADC histogram parameters
represent the proliferation potential and cellularity of HNSCC.
In G1/2 and G3 tumors, various ADC parameters correlated with
Ki67 expression, cellularity, cell count, and total nucleic area, all
of which depend on the tumor grade.

To assess the performance of the radiomics signature
for discriminating among HNSCC grades, we additionally
constructed two models, a clinical model and a combined
model, and compared the performances of these models. Among
these three models, the combined model achieved the best
performance, although there were no significant differences
between the radiomics signature and the combined model.
When we incorporated clinical and radiological information
into the radiomics signature, the performance of the combined
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model was not significantly different from that of the radiomics
signature, which explains why the radiomics signature also played
a predominant role in discriminating between HNSCC grades.
A computerized algorithm analysis can make quantitative and
qualitative improvements in grading HNSCC tumors with CT
images. In prospective radiomics, a signature analysis may serve
as a useful, non-invasive tool that is extensively applied in
clinical practice.

There were several limitations in our study. First, this was
a retrospective and single center study. The study data are
limited; multi-center datasets, larger sample data and prospective
studies will be needed to validate the performance of our
model. Second, the ROIs were subjectively identified by observers
according to the most significantly enhanced area inside the
tumor on one slice of a CT image. Only 2-dimensional (2D)
analysis, rather than 3-dimensional (3D) analysis, was conducted
for the radiomics analysis. 3D analyses tend to be more
representative of tumor tissue heterogeneity, but a 3D analysis
may be more complex and time-consuming. In the future,
we will use the automatic segmentation method to define the
ROIs. Finally, the methodology used in this study needs to
be improved. As machine learning techniques develop, deep
learning method has emerged. Convolutional neural network
(CNN) is a representative, more advanced method in deep
learning. In the future, if the study sample size is enough for
deep learning, we will try CNN method for image segmentation
and feature extraction. Then the model can be worthy of
explaining more.
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Objectives: This study compared the diagnostic ability of image-based parameters with
texture parameters in the differentiation of hepatocellular carcinoma (HCC) and hepatic
lymphoma (HL) by positron emission tomography—computed tomography (PET/CT).

Methods: Patients with pathological diagnosis of HCC and HL were included in this
study. Image-based and texture parameters were obtained by manual drawing of region
of interest. Receiver operating characteristic (ROC) was used to test the diagnostic
capacity of each parameter. Binary logistic regression was used to transform the most
discriminative image-based parameters, texture parameters, and the combination of
these parameters into three regression models. ROC was used to test the diagnostic
capacity of these models.

Result: Ninety-nine patients diagnosed with HCC (n = 76) and HL (n = 23, 10 primary
HL, 13 secondary HL) by histological examination were included in this study (From
2011 to 2018, West China hospital). According to the AUC and p-value, 2 image-based
parameters and five texture parameters were selected. The diagnostic ability of texture-
based model was better than that of image-based model, and after combination of those
two groups of parameters the diagnostic capacity improved.

Conclusion: Texture parameters can differentiate HCC from HL quantitatively and
improve the diagnostic ability of image-based parameters.

Keywords: hepatocellular carcinoma, hepatic lymphoma, positron emission tomography-computed tomography,
texture, differentiation

INTRODUCTION

Malignant hepatic nodules include primary malignant hepatic neoplasms, such as hepatocellular
carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), and metastatic diseases from bile
duct, lymphoid cells, endothelial cells. Hepatocellular carcinoma (HCC) accounts for almost 80%
of all primary malignant hepatic neoplasms (1). Primary hepatic lymphoma (PHL) is rare, while
secondary hepatic lymphoma (SHL), widespread lymphoma with liver involved, appears in 50%
patients with non-Hodgkin lymphoma and 20% patients with Hodgkin lymphoma (2).
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Differentiation between HCC and hepatic lymphoma, both
in its primary and secondary form, is difficult. The images of
HL is variable and can be similar to that of HCC, and several
studies have reported cases about patients with PHL mimicking
HCC (3-5). SHL is characterized by hepatosplenomegaly and
systemic involvement which contributes to clinic diagnosis, but
radiological diagnosis of SHL still requires further improvement
since it has no specific features in sonography, and can appear
as a solitary lesion (2, 6). Although the Biopsy has been
extensively used as a clinic tool to distinguish HCC from
HL, cancer cells extracted only represent part of the lesion
and therefore may cause selection bias. Positron emission
tomography-computed tomography (PET/CT), a non-invasive
clinic examination, reveals the anatomical structure as well as
the glucose metabolism of tissues and therefore has been widely
used in the diagnosis and prognosis of hepatic lesions (7, 8).
However, the accuracy of PET/CT in the diagnosis of different
hepatic lesions remains to be improved (9).

Texture analysis is a newly-developed high throughput way to
extract digital information from images that naked eyes cannot
detect, and can thus explore more characteristics of images
(10). Some studies have adopted texture analysis combined
with PET/CT to differentiate benign from malignant mediastinal
lymph nodes and distinguish malignant from benign bone and
soft-tissue lesions (11, 12). Aiming at distinguishing HCC from
HL in a non-invasive way, we explored the ability of texture
and image-based parameters of PET/CT in differentiating HCC
and HL.

METHODS

Patients

This study was approved by the West China Hospital Ethics
Committee and had a waiver of patients written informed
consent. From Jan. 2011 to Dec. 2018, all patients diagnosed
with liver lesions by PET/CT were recruited, and only patients
with pathological diagnosis of HCC and HL were included.
Their information was obtained from the clinical and radiological
databases of our hospital. The inclusion criteria were having:
(1) images obtained before treatment for hepatic lesions, (2)
images obtained from a same system, (3) complete clinical and
radiological information, (4) pathological diagnosis of HCC or
HL; exclusion criteria were having: (1) incomplete image or
clinical information, (2) FDG uptake of liver lesions below or
comparable to background activity, (3) liver transplantation.

PET/CT Examination

Patients were fasted 4-6 h and had serum glucose concentration
<200 mg/dl before the intravenous injection of 185-370 MBq
of 18F-FDG (4 MBq/kg of body weight). After injection,
patients rested in a quiet room for 1h. Then, a whole-body
PET/CT scanner (Gemini GXL; Philips Medical Systems, The
Netherlands) was used for imaging. During imaging process,
patients were in supine position with both arms extended in
the cranial direction and breathing quietly. PET images were
obtained at 2 min/bed.

The CT images were acquired simultaneously with parameters
as follows: 40 mAs, 120 kVp, a slice thickness of 2 mm, and
a pitch of 4mm. After acquisition completed, the transverse,
sagittal, and coronal plane images of CT and PET were
reconstructed automatically by the computer. The PET images
were reconstructed by the line of response (LOR) method after a
CT attenuation correction.

Radiomics Extraction

All scans were analyzed by two senior residents independently
(HYX, 3 year of training; WG, 4 year of training) and were
supervised by a senior radiologist (XLM, 13 years of experience)
in order to handle the non-consensus. All of them were blinded
to the histological outcomes. Each region of interest (ROI) was
manually drawn along the liver lesion, slice by slice on axial
images, by using a dedicated software for image analysis (LIFEx
software, version 3.74, French Alternative Energies and Atomic
Energy Commission). Figure 1 shows PET/CT images of two
case examples, HCC and HL, respectively. Intra-luminal water,
cavity, and necrotic components that can be distinguished from
tumor solid portion by naked eye were excluded via a fixed 40%
threshold of SUV max.

Radiomics Features Analysis

A total of 45 radiomics parameters were extracted from
images and divided into seven categories, including conventional
PET/CT parameters (SUV and TLG), Histogram (HISTO),
Shape value, Gray Level Co-occurrence Matrix (GLCM), Gray-
Level Run Length Matrix (GLRLM), Neighborhood Gray-Level
Different Matrix (NGLDM), Gray-Level Zone Length Matrix
(GLZLM). The conventional PET/CT parameters included
the minimum, average, maximum Standardized Uptake Value
(SUV), and the Total Lesion Glycolysis (CONV_TLG) in the
Volume of Interest. HISTO reflects the gray level of ROIs,
regarding the “number of gray level” as “the size of bin”. Shape
value is the sum total of volume of ROIs in mL and in voxels.
GLCM describes the gray-level value distribution of voxel pairs
along from 13 different directions at different distances in the
ROIL GLRLM corresponds to the amount of homogeneous in 13
directions of the ROIs. NGLDM reflects the difference of gray-
level between one voxel and its 26 neighbors in three dimensions.
GLZLM describes the size of homogeneous zones for each gray-
level in three dimensions.

The Mann-Whitney U test (U test) and x2 test were used
for comparing the baseline characteristics of those two groups.
Since not all the parameters contributed to differentiating HCC
and HL, we resorted to the results of operation characteristic
curve (ROC curve) to select the most discriminative parameters
in each category (Table 2). The binary logistic regression was
used to transform the group of related parameters into a set
of corresponding variables by three models. The discrimination
ability of these models based on image-based parameters, texture
parameters, and the combination of the two parameters were
measured by the Area Under Curve (AUC) of ROC curves.
P-values <0.05 were considered to be statistically significant.
All statistical analyses were performed by SPSS (version 25,
IBM, USA).
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43.4, NGLDM_Contrast=0.238, and GLZLM_GLNU = 18.9).

FIGURE 1 | PET/CT images of HCC and HL case examples. (A,B) An example of hepatocellular carcinoma mimicking hepatic lymphoma, and region of interest was
drawn in (B). (CONVENTIONAL_SUVmin = 2.1, CONVENTIONAL_TLG = 293.5, SHAPE_Compacity = 2.41, GLCM_Correlation = 0.637, GLRLM_GLNU = 105.7,
NGLDM_Contrast=0.055, and GLZLM_GLNU=14.4); (C,D) An example of secondary hepatic lymphoma mimicking hepatocellular carcinoma, and region of interest
was drawn in (D). (CONVENTIONAL_SUVmin = 6.6, CONVENTIONAL_TLG = 425.9, SHAPE_Compacity = 1.98, GLCM_Correlation = 0.567, GLRLM_GLNU =

RESULT

Patients

The characteristics of patients and lesions were summarized in
Table 1. There were 74 men (mean age, 54 years + 14.5; age
range 22-86 years) and 25 women (mean age, 52 years £ 16.3;
age range 19-76 years). Based on histopathological proof, 23
patients had HL (10 PHL, 13 SHL) and 76 patients had HCC
were prospectively included. The median ages of patients with HL
was 51 and that of HCC was 54. Based on the TNM classification
of malignant tumors, patients with HCC were divided into four
groups, one patient of I stage, 16 of II stage, 14 of III stage, and
45 of IV stage. Among patients with HL, there were 12 Diffuse
large B cell lymphoma (DLBCL), four B cell lymphoma (except
DLBCL), six Hodgkin lymphoma, and one NK/T-cell lymphoma.

Imaging Features

A total of six image-based parameters and 39 texture
parameters were extracted and compared. The top two
image-based parameters (CONVENTIONAL_SUVmin,
CONVENTIONAL_TLG, AUC: 0.642, 0.686, p < 0.05) and the
top five discriminative texture parameters (SHAPE_Compacity,
GLCM_Correlation, GLRLM_GLNU, NGLDM_ Contrast, and
GLZLM_GLNU, AUC: 0.784, 0.726, 0.774, 0.721, 0.704, p <
0.05) were selected by ROC analysis (Supplementary Table 1).
Binary logistic regression was used to transform groups of
parameters into correspondent predictive models, including

models transformed from image-based parameters, texture
features, and the combination of those two kinds of parameters.
Three predictive models were shown in Table 3: MODimage,
MODtexture, and MODcombination. Table 4 showed the ROC
results of these three models. AUC of the model transformed
from image-based parameters was 0.822, with sensitivity of
69.6%, specificity of 73.7%. AUC of the model related with
texture parameters was 0.870, with increased sensitivity of 91.3%
and specificity of 77.6%. AUC of model transformed from the
combination of image-based parameters and texture parameters
was 0.898, with the same sensitivity and specificity as that of
texture-based model (Figure 2).

DISCUSSION

In this study, we used image-based parameters and texture
parameters from 18F-FDG PET/CT to differentiate HCC
from HL, and found many parameters significantly different
between those two diseases. By comparing AUC of diagnostic
models of image-based parameters, texture parameters, and
the combination of the two parameters, we found that texture
parameters presented better diagnostic ability than image-
based parameters and that combination of the two parameters
possessed a more effective diagnostic capacity than the other
two groups.
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The differentiation between HCC and HL is necessary, as their
managements are different. Early stage HCC can be treated by
excision of lesions, while the main treatment choice for secondary
HL is multiagent chemotherapy (2). As an invasive method, the
liver biopsy is prone to selection bias and may cause metastasis
though it can offer reliable proofs for cancer diagnosis (13).
The traditional radiological diagnosis could provide images with

TABLE 1 | Patient characteristics.

HL(N=23) HCC (N =76) P-value
Median (Range Median (Range
or %) or %)
Gender
Male 10 64 <0.05
Female 13 12
Age 51 (19-85) 54 (23-86) 0.878
Histopathologic diagnosis of HL
Diffuse large B cell ymphoma 12 (52%) NA NA
(bLBCL)
B cell ymphoma (except 4 (17%)
DLBCL)
Hodgkin lymphoma 6 (26%)
NK/T-cell lymphoma 1(6%)
TNM Stage SUV mean
(sd)
| NA 1 2.67
Il 16 3.41 (0.96)
Il 14 3.63 (1.33)
% 45 4.82 (1.90)
all 76 4.27 (1.75)
Ann Arbor Stage SUV mean
(sd)
I 2 NA 4.79 (0.50)
v 21 6.17 (5.05)
all 23 6.05 (4.83)

HL, hepatic lymphoma; HCC, hepatocellular carcinoma; NK, natural killer; NA, not
applicable; sd, standard deviation.

summarized features of the lesion. For instance, on contrast-
enhanced images, HCC is characterized by “wash-out” pattern
and fibrous tumor capsule (13). However, the images of HL are
less specific and too variable to provide solid evidence for clinic
diagnosis (4). Consequently, non-invasive and precise methods
are required to differentiate HCC between HL.

PET/CT can reveal the metabolic characters of organs, and
as tumor cells have enhanced glycolysis, they have higher 18F-
FDG uptake compared with normal tissue. Previous studies
have indicated that the SUV metrics of lymphoma was higher
than that of carcinoma in PET/CT images when differentiating
renal carcinoma and lymphoma with renal involvement (14,
15). However, a study claimed that the SUV max was not

TABLE 3 | Regression models composed of image-based parameters, texture
features, and the combination of those two kinds of parameters.

Model Formula

MODimage —2.154 CONVENTIONAL_SUVmin + 2.349
CONVENTIONAL_TLG - 1.065

MODtexture 20.405 SHAPE_Compacity-0.031
GLCM_Correlation+0.888 GLRLM_GLNU-2.498
NGLDM_Contrast-18.289 GLZLM_GLNU-0.758

MODcombination 36.534 SHAPE_Compacity+0.122

GLCM_Correlation+0.926 GLRLM_GLNU-1.783
NGLDM_Contrast-16.767 GLZLM_GLNU-0.975
CONVENTIONAL_SUVmIin-17.756
CONVENTIONAL_TLG-0.76

TABLE 4 | Comparison of differential diagnostic ability of the three predictive
models.

Test result Sensitivity Specificity AUC (95% CI) Asymptotic
variable(s) Sig.b
Image based 0.696 0.737 0.822(0.740-0.904) <0.001
Texture 0.913 0.776 0.870(0.788-0.953) <0.001
Combination 0.913 0.776 0.898(0.838-0.959) <0.001

TABLE 2 | The results of ROC analysis of optimal image-based and texture parameters in PET and CT images for hepatocellular carcinoma vs. hepatic lymphoma.

HCC HL AUC P-value
Median Range Median Range

Image-based parameters
CONVENTIONAL_SUVmin (SUV) 2.28 1.06-4.64 3.73 0.89-9.87 0.642 0.039
CONVENTIONAL_TLG (mL) 751.67 8.22-4403.85 552.96 11.50-6299.10 0.686 0.007
Texture parameters
SHAPE_Compacity 2.53 0.77-5.78 1.52 0.00-6.13 0.784 <0.001
GLCM_Correlation 0.63 0.20-0.86 0.52 0.20-0.78 0.726 0.001
GLRLM_GLNU 238.79 8.68-2777.08 104.75 3.22-1622.28 0.774 <0.001
NGLDM_Contrast 0.08 0.01-0.46 0.22 0.03-1.42 0.721 0.001
GLZLM_GLNU 21.58 1.00-148.42 13.83 1.25-121.32 0.704 <0.001

GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLNU, Gray-Level Non-Uniformity; NGLDM, Neighborhood Gray-Level Different Matrix; GLZLM, gray-level

zone-length matrix.
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FIGURE 2 | ROC curves of the three radiomic predictive models.

conclusive when distinguishing between primary nasopharyngeal
lymphoma and nasopharyngeal carcinoma (16). Though many
kinds of lymphoma are FDG avid, the diagnostic capacity of
PET/CT remains unconfirmed (8). In our study, the SUV min
of HL was higher than that of HCC while the TLG of HL
was lower than that of HCC. The SUV min, a measurement
of metabolic activity per body weight, could reflect the lowest
point of metabolic activity within the tumor, but TLG takes into
account the volume of the tumor lesion additionally. Therefore,
this result may be affected by the volume of HCC.

Texture analysis can quantify image features by extracting
the distribution and relation of pixel or voxel grayscale
in images. Some studies have applied texture analysis to
classifying benign and malignant liver lesions or stratifying
different stages of liver fibrosis (17-19). However, no study
has used texture analysis to distinguish HCC from HL, and
it may because the morbidity of HL is relatively low, and
the similarity of malignant lesions is more than that of
benign and malignant liver lesions. In our study, texture
parameters are more effective than image-based parameters
in differentiation HCC from HL (AUC: 0.822 VS. 0.870).
Previous studies compared carcinoma with lymphoma via
texture analysis and proposed that the pixel gray-level value has
a tight correlation with diagnosis, which is further confirmed
by our results (20, 21). Early texture analysis in CT to
differentiate malignant and benign liver lesion found that the
First Order Statistics (FOS) performed best (22). However, in
our study, FOS is less effective, while the secondary features,
GLCM_Correlation, GLRLM_GLNU, NGLDM_Contrast, and
GLZLM_GLNU, presented more significant differences between
these two diseases. The result demonstrated that the gray levels of

ROIs of HCC and HL were not distinguishing enough, and thus
the second-order features such as gray-level value comparison
were necessary.

Based on the better diagnostic capacity of texture parameters,
we hypothesized that the combination of image-based and
texture parameters contributes more to the clinic diagnosis of
cancers. The result of AUC indicated that the combination
group improved diagnostic capacity (AUC: 0.898), though the
sensitivity of the specificity of the combination model remained
the same as that of the texture model. Consistent with our
previous studies, the same results were found in the diagnosis of
breast carcinoma and breast involved lymphoma (23). Besides,
another study found the same result in the differentiation of
benign and malignant breast tumors (24). The combination of
texture and image-based parameters could quantify and enhance
the accuracy of the imaged-based PET/CT diagnosis.

However, the limited number of lymphoma group which
did not include all kinds of lymphoma may lead to selected
bias and therefore impact the accuracy of our result. Moreover,
characterized as labor-intensive, ROIs are subject to manual
measurement errors when compared with rectangular ROIs
used drawn by computers. Finally, the relationship between
texture parameters and histopathological structures requires
further study.

In conclusion, our study confirmed the role of texture
analysis in diagnosing different pathological cancer types and
therefore proposed a new method for differentiating HCC and
HL. Although both image-based and texture parameters can
distinguish HCC from HL, the latter one is more efficient and the
combination of the two parameters contribute to the diagnosis of
HCC and HL more effectively.
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Introduction: Glioblastoma and anaplastic astrocytoma (ANA) are two of the most
common primary brain tumors in adults. The differential diagnosis is important for
treatment recommendations and prognosis assessment. This study aimed to assess the
discriminative ability of texture analysis using machine learning to distinguish glioblastoma
from ANA.

Methods: A total of 123 patients with glioblastoma (n = 76) or ANA (n = 47) were
enrolled in this study. Texture features were extracted from contrast-enhanced Magnetic
Resonance (MR) images using LifeX package. Three independent feature-selection
methods were performed to select the most discriminating parameters:Distance
Correlation, least absolute shrinkage and selection operator (LASSO), and gradient
correlation decision tree (GBDT). These selected features (datasets) were then randomly
split into the training and the validation group at the ratio of 4:1 and were fed into linear
discriminant analysis (LDA), respectively, and independently. The standard sensitivity,
specificity, the areas under receiver operating characteristic curve (AUC) and accuracy
were calculated for both training and validation group.

Results: All three models (Distance Correlation + LDA, LASSO + LDA and GBDT +
LDA) showed promising ability to discriminate glioblastoma from ANA, with AUCs >0.95
for both the training and the validation group using LDA algorithm and no overfitting was
observed. LASSO + LDA showed the best discriminative ability in horizontal comparison
among three models.

Conclusion: Our study shows that MRI texture analysis using LDA algorithm had
promising ability to discriminate glioblastoma from ANA. Multi-center studies with greater
number of patients are warranted in future studies to confirm the preliminary result.

Keywords: texture features, machine learning, linear discriminant analysis, differential diagnosis, glioblastoma,
anaplastic astrocytoma
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INTRODUCTION

Glioblastoma and anaplastic astrocytoma (ANA) are two of the
most common primary brain tumors in adults (1). There is a
true increase in incidence rates, especially in the elderly (1-
3). In clinical practice, it is difficult to differentiate patients
with glioblastoma from those with ANA before surgery or
biopsy, because the symptoms and signs of the two tumors
are relatively uniform and non-specific (4, 5). However, the
management for them are different, such as the chemotherapy
protocol, dosage, and mode of administration (6). For example,
for patients with ANA (WHO grade III), it is recommended
to receive radiotherapy or TMZ after resection or biopsy;
while for patients newly diagnosed with glioblastoma (WHO
grade IV), it is radiotherapy plus concurrent TMZ, followed
by adjuvant TMZ. According to previous studies, glioblastoma
and ANA grow by invasion into normal brain tissue, spread
through the cerebrospinal fluid (CSF), and extend beyond a
single carotid or vertebral artery distribution, thus they both
have a poor response to medical management and become
leading causes of cancer-related death in adults (7, 8). Besides,
the prognosis of glioblastoma and ANA are different. In the
elderly population, there is no significant difference in prognosis
between glioblastoma and ANA, but the difference may exist
in younger population (9). Therefore, it is hard but crucial to
distinguish glioblastoma from ANA.

Magnetic Resonance Imaging (MRI) is the optimal
neuroimaging in the preoperative diagnosis of glioblastoma
and ANA for its multiplanar capability and superior soft
tissue contrast. Although some studies demonstrated that the
presence of ring-like enhancement and necrosis was suggestive
of glioblastoma, in most cases, both glioblastoma and ANA
appear as irregular shapes on MR images (hyperdense on T2-
weighted sequence and hypodense on T1-weighted sequence)
with various degree of Gd-based contrast enhancement and
edema, of which the differences were usually imperceptible to
the human eye (10-12).

Recently, texture analysis (TA), also known as radiomics, has
been widely applied in different fields. Researchers found that
TA was a feasible and promising method to facilitate differential
diagnosis, since it enabled acquisition of additional quantitative
information from MR images which was invisible to human
assessment (13-15). TA describes the frequency distribution and
the spatial organization of voxel value to reveal the possible
differences in tumor tissue (16). Previous studies have explored
the feasibility of applying TA in differential diagnosis, subtype
classification of tumors and detection of heterogeneity of tumor
tissue (17-19). To our acknowledgment, the application of TA

Abbreviations: ANA, Anaplastic astrocytoma; LDA, linear discriminant analysis;
MRI, Magnetic Resonance Imaging; MR, Magnetic Resonance; LASSO, Least
absolute shrinkage and selection operator; GBDT, Gradient correlation decision
tree; CSE, Cerebrospinal fluid; TA, Texture analysis; ROI, Regions of interest;
HISTO, Histogram-based matrix; GLCM, Grey-level co-occurrence matrix;
GLRLM, Grey-level run length matrix; GLZLM, Grey-level zone length matrix;
NGLDM, Neighborhood grey-level dependence matrix; AUC, Area under the
receiver operating characteristic curve; PCNSL, Primary central nervous system
lymphoma; MLP, Multilayer perceptron; IDH, Isocitrate dehydrogenase.

in differential diagnosis between glioblastoma and ANA has not
been reported yet. The purpose of this study was to evaluate
the discriminative ability of MRI texture analysis using machine
learning algorithms to differentiate glioblastoma and ANA.

MATERIALS AND METHODS

Patient Selection

We retrospectively searched our institution database and
screened all patients histopathologically diagnosed as
glioblastoma or ANA, from January 2015 to December
2018. Eligibility criteria for qualified patients were: (1) conclusive
histopathological diagnosis of glioblastoma or ANA; (2) elaborate
electronic medical records, especially pathologic material; (3)
diagnostic MR scan at our institution before surgical resection.
Exclusion criteria were: (1) history of intracranial disease
(e.g., brain trauma, intracranial infection or other types of
brain tumor), considering the interference of scar tissue on
the intensity of the images; (2) presence of motion artifact on
MRI; (3) history of treatments before MR scan (e.g., surgery,
chemotherapy or radiotherapy); (4) patients who did not reach
the criteria for diagnosis of glioblastoma or ANA according to
the 2016 WHO classification system. A senior neuropathologist
with 10-year experience judged whether the patient met the
criteria (the 2016 WHO classification system) for glioblastoma or
ANA. The institutional review board approved this retrospective
study. The written informed consent was obtained from
participants enrolled in this study. The Ethics Committee of
Sichuan University and radiology department of our institution
have approved of the utilization of the statistics for this study.

MR Image Acquisition

For all patients included in this study, contrast-enhanced T1-
weighted sequences were available and were obtained on 3.0T
Siemens Trio Scanner with the following parameters: TR/TE/TI
= 1900/2.26/900 ms, Flip angle = 9 °, 20 axial slices with
thickness = 5mm, axial FOV = 25.6 x 25.6 cm? and data
matrix = 256 x 256. Contrast-enhanced T1-weighted imaging
used gadopentetate dimeglumine (0.1 mmol/Kg) was the contrast
agent for contrast-enhanced image, and multi-directional data
of contrast-enhanced MRI were collected during the continuous
interval time of 90-250 s.

Texture Extraction

In our study, LifeX package (http://www lifexsoft.org) was used
to extract texture features. Post-contrast T1-weighted (T1C)
images were selected for further analysis due to the clear
depiction of tumor location and border (20). Region of interest
(ROI) was manually drawn slice-by-slice in the axial plane
along the lesions on contrast-enhanced images to obtain texture
features. Two experienced neurosurgeons, blind to patients’
medical records and histopathological diagnosis, drew the ROI
followed by editing by a senior radiologist and a senior
neurosurgeon. The disagreements were addressed by discussing
and consulting with the senior radiologist and the senior
neurosurgeon. A total of 40 texture features were extracted from
the MRI images, including minValue, meanValue, maxValue,
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stdValue, and parameters derived from six matrixes: Histogram-
based matrix (HISTO), Shape, Gray-level co-occurrence matrix
(GLCM), Gray-level run length matrix (GLRLM), Gray-level
zone length matrix (GLZLM), and Neighborhood gray-level
dependence matrix (NGLDM).

Features Selection

There were 40 texture features in total derived from six selected
matrixes. The explanation of the 40 texture features were shown
in Supplementary Table 1. The statistics of these texture features
were shown in Supplementary Table 2. Feature selection was
performed to determine relevant features and thereby avoid
overfitting. Besides, the machine learning algorithm applied in
this study could not take all 40 texture features into analysis.
Three independent feature-selection methods were used to
select optimal texture features, including Distance Correlation,
least absolute shrinkage, and selection operator (LASSO), and
gradient correlation decision tree (GBDT). Three subsets of
texture features were thereby formed and constituted three
different datasets.

Classification

Linear discriminant analysis (LDA) is a robust classification
method to separate two classes by searching for the linear
combination of predictors that maximizes the separation between
groups. In this study, three classification models were established
based on LDA algorithm: Distance Correlation + LDA, LASSO +
LDA, and GBDT + LDA. Datasets were fed into LDA algorithm,
respectively, and independently. Each dataset was randomly
split into training and validation group at the ratio of 4:1.
The model trained by training group was then applied to the
independent validation group to evaluate its performance. To
appraise the robustness of LDA algorithm, the procedure was
repeated for 100 cycles with different, random and independent
case assignment. A confusion matrix was determined using the
true assignment from histopathology and predictions of LDA
algorithm. The standard sensitivity, specificity, the areas under
receiver operating characteristic curve (AUC) and accuracy were
calculated for both the training and validation group to reveal
the discriminative ability of the models. The comparison of
three models (Distance Correlation + LDA, LASSO + LDA,
and GBDT + LDA) was carried out to determine the optimal
discriminative model for glioblastoma and ANA. The flowchart
of MRI classification by texture features is shown in Figure 1.

RESULTS

Patients Characteristics

A total of 133 patients with glioblastoma (n = 76) or ANA (n
= 57) fulfilled inclusion criteria. All patients with glioblastoma
were enrolled in this study, while 10 patients with ANA were
excluded according to the exclusion criteria. Finally, 76 patients
with glioblastoma and 46 patients with ANA were included in
this study. The mean ages of patients were 46.9 (15-67) and
40.0 (7-69), respectively. All patients underwent surgically tumor
resection in our neurosurgery department from 2015 to 2018.
Figure 2 shows two cases of the axial plane of contrast-enhanced
images in patients with glioblastoma and ANA.

Glioblastoma vs. ANA
There were three models analyzed in this study, including
Distance Correlation + LDA, LASSO + LDA, GBDT + LDA.
The texture features used for classification in these models
were shown in Supplementary Table 3. The performance of each
model was presented in Table 1 (including sensitivity, specificity,
accuracy, and AUC of the training and the validation group).
LASSO + LDA achieved the best performance with the highest
AUCs in both training and validation group. The sensitivity,
specificity, accuracy and AUC for its training group were 0.989,
0.993, 0.996, and 0.997, respectively; and for validation group,
they were 0.927, 0.989, 0.968, and 0.974, respectively. In addition,
Distance Correlation + LDA and GBDT + LDA also showed
promising ability to discriminate glioblastoma from ANA, with
AUC >0.95 for both training groups and validation groups.
Figure 3 shows the relationship between the canonical
discriminative functions from LASSO + LDA models for the
glioblastoma and ANA groups (triangles and circles) and for the
group centroids (squares). Minimal overlapping was observed
in this figure. Qualitatively, analysis of the data selected by
LASSO could separate glioblastoma from ANA. Figure 4 shows
the distribution of the direct LDA function determined for the
glioblastoma and ANA for one of the 100 independent training
cycles in the data analysis to illustrate the performance of the
LASSO + LDA model. There were clear shifts of LDA function
values, with left shift for ANA and right shift for glioblastoma.

DISCUSSION

The pre-treatment differential diagnosis between glioblastoma
and ANA is important considering the significant difference
in treatment strategy and patient prognosis. MR scan, the
main radiological preoperative examination for brain tumors,
is highly recommended as the good sensitivity in lesion
detection. However, the accurate diagnosis before operation is
still challenging due to the reason that both tumors present
similar characteristics on conventional MR images which are
beyond human naked eye assessment (4, 5). In this study, we
extracted texture features making quantitative description of
images to maximize the utilization of MR examination, with
which three LDA-based models were established. The results
demonstrated that MRI-based texture analysis combining with
LDA algorithm could enable the feasible differentiation between
glioblastoma and ANA.

TA is a mathematical approach to characterize the
heterogeneity of voxel value on images. It could visualize
spatial histologic heterogeneity which is invisible to human
eye assessment (21). Theoretically, the characteristics of lesions
images could be quantitively analyzed as texture features due to
their different enhanced patterns on MR images (22). Moreover,
previous studies suggested the textures features could reflect a
series of abnormal pathology process of tumor such as edema,
effusion, and necrosis, providing a potential mechanism for
texture features in discriminating glioblastoma from ANA
(23,24).

Artificial intelligence has been widely explored in recent
researches. Combined with texture features extracted from
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FIGURE 1 | Flowchart of MRI classification by texture features. ANA, anaplastic astrocytoma; LDA, linear discriminant analysis; MRI, Magnetic Resonance Imaging;
LASSO, least absolute shrinkage and selection operator; GBDT, gradient correlation decision tree; HISTO, histogram-based matrix; GLCM, Gray-level co-occurrence
matrix; GLRLM, Gray-level run length matrix; GLZLM, Gray-level zone length matrix; NGLDM, Neighborhood gray-level dependence matrix; AUC, area under the

images, it was reported to assist in tumor grading, clinical
diagnosis, and outcome prediction. A study aimed to evaluate
the diagnostic performance of TA-based machine-learning
algorithms in differentiating PCNSL from glioblastoma
presented optimal performance with the mean AUC
of 0921, while the AUC of three readers were all <
0.8. Thus, the researchers concluded that the diagnostic
performance of TA-based machine-learning algorithms
was superior to that of human readers (25). Other studies

with similar purpose also demonstrated similar results with
AUCs higher than 0.85 (18, 26). Moreover, researchers
aiming to apply machine learning in astrocytoma grading
also reported promising ability in discrimination (27).
In our study, the classification models were established
based on LDA algorithms. LDA is the statistic classifier
combining inputted parameters into a discriminant function
to classify cases in different groups (28). Our results
demonstrated that LDA-based model represented promising
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(B) contrast-enhanced images with glioblastoma. ANA, Anaplastic astrocytoma.

FIGURE 2 | Examples of two cases from the contrast-enhanced MR images in patients with glioblastoma and ANA. (A) Contrast-enhanced images with ANA,

TABLE 1 | Discrimination between glioblastoma and ANA.

Training Validation
Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy AUC
Distance Correlation 0.995 0.979 0.987 0.982 0.996 0.955 0.972 0.966
LASSO 0.989 0.993 0.996 0.997 0.927 0.989 0.968 0.974
GBDT 0.909 0.991 0.963 0.970 0.918 0.994 0.964 0.972

Entries in bold were most significant. ANA, anaplastic astrocytoma; AUC, area under the receiver operating characteristic curve; LASSO, least absolute shrinkage and selection operator;

GBDT, gradient correlation decision tree.
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FIGURE 3 | Relationship between the canonical discriminative functions from
LASSO + LDA models for the glioblastoma and ANA groups (triangles and
circles) and for the group centroids (squares). Minimal overlapping was
observed in this figure. Qualitatively, analysis of the data selected by LASSO
could separate glioblastoma from ANA. LASSO, least absolute shrinkage and
selection operator; LDA, linear discriminant analysis; ANA, Anaplastic
astrocytoma.

performance in accurate diagnosis between glioblastoma
and ANA.

The adoption on optimal features for machine learning
algorithms was challenging but was necessary relative to

diagnostic performance. Previous studies perform feature
selection with varied methods: Mann-Whitney U test with AUC
of ROC, Student’s t-test with recursive feature elimination,
random forest, and entropy-based discretization, respectively
(18, 25, 29, 30). Based on the results of these studies, we
could draw the conclusion that the suitable selection method
play a key role in classifier performance. As for our study,
a relatively large number of parameters were extracted
from different matrixes, increasing the chance in selecting
the optimal features but also increasing the difficulty in
selection. Therefore, three feature-selection methods (Distance
Correlation, LASSO, and GBDT) were evaluated to select
the one with best performance. The results of this study
demonstrated that LASSO+LDA was the suitable discriminative
model for glioblastoma from ANA with highest AUC in the
testing group of 0.997. LASSO was proposed as a non-linear
variable selection method for neural network in previous
study with advantage in minimizing the common sum of
squared errors. It could produce interpretable models (similar
to the subset selection) when simultaneously exhibiting
the stability of ridge regression. Previous study illustrated

that it represented superior
of-the-art variable selection
must interpret the results
gain in information from
learning techniques is quite

performance over other state-
methods (31). However, we
carefully that the additional
comparing different machine
limited, specifically given that

all classifier/feature selection methods investigated seem
perform quite comparably and variance in AUC maybe partially
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FIGURE 4 | Distribution of the direct LDA function determined for the glioblastoma and ANA for one of the 100 independent training cycles in the data analysis to
illustrate the performance of the LASSO + LDA model. There were clear shifts of LDA function values, with left shift for ANA and right shift for glioblastoma. The
minimal overlap is observed between the two groups and a strong qualitative similarity is apparent between the plots for cycles and triangles. LDA, linear discriminant
analysis; ANA, anaplastic astrocytoma; LASSO, least absolute shrinkage and selection operator.
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attributed due to the statistical group. Therefore, our study
could only be regarded as hypothesis generation for future,
larger studies.

There were some limitations of our study. First, as a
retrospective single-center study, the bias in patient selection
was inevitable. Second, the number of included patients was
relatively small, and greater number of patients were required
in further studies to validate the results. Third, ANA is
now divided into three categories according to the 2016
World Health Organization Classification of Central Nervous
System Tumors: IDH-mutant, IDH- wildtype, and NOS (32).
The ability of machine learning in discriminating subtypes
of ANA were required to be explored in future studies.
Fourth, the machine learning models in our study were not
actually validated in other datasets. We did not adopt other
institution datasets because that texture features could be
different when extracted from images acquired with various
scanners or protocols. This could be regarded as a double-
edged sword. On the one hand, a set of controlled variables
could be provided; on the other hand, the results could not
be guaranteed widely applied. The analysis protocol and image
processing procedure were open-source packages and study
with large population are required to validate and reproduce
our results.

CONCLUSION

In this work, we extracted quantitative parameters from
contrast-enhanced MR images and used three feature-selection
methods to select the most discriminating parameters. Then
we applied LDA algorithm to analyze the selected parameters.
Our study shows that texture features has promising ability
to discriminate glioblastoma from ANA. Multi-center studies
with greater number of patients are warranted to confirm this
preliminary result.
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Purpose: To develop a model to select appropriate candidates for irradiation stent
placement among patients with unresectable pancreatic cancer with malignant biliary
obstruction (UPC-MBO).

Methods: This retrospective study included 106 patients treated with an irradiation stent
for UPC-MBO. These patients were randomly divided into a training group (74 patients)
and a validation group (32 patients). A clinical model for predicting restenosis-free survival
(RFS) was developed with clinical predictors selected by univariate and multivariate
analyses. After integrating the radiomics signature, a combined model was constructed
to predict RFS. The predictive performance was evaluated with the concordance index
(C-index) in both the training and validation groups. The median risk score of progression
in the training group was used to divide patients into high- and low-risk subgroups.

Results: Radiomics features were integrated with clinical predictors to develop a
combined model. The predictive performance was better in the combined model
(C-index, 0.791 and 0.779 in the training and validation groups, respectively) than in
the clinical model (C-index, 0.673 and 0.667 in the training and validation groups,
respectively). According to the median risk score of 1.264, the RFS was significantly
different between the high- and low-risk groups (p < 0.001 for the training group, and
p = 0.016 for the validation group).

Conclusions: The radiomics-based model had good performance for RFS prediction in
patients with UPC-MBO who received an irradiation stent. Patients with slow progression
should consider undergoing irradiation stent placement for a longer RFS.

Keywords: radiomics, pancreatic cancer, malignant biliary obstruction, irradiation stent, survival
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INTRODUCTION

Pancreatic cancer is one of the leading causes of cancer-related
death (1), and it has the lowest five-year relative survival
rate among those with any type of cancer (approximately 8%
for all stages) (2). Less than 20% of patients with pancreatic
cancer are candidates for surgical resection (3, 4), and over
half of them develop obstructive jaundice (5). Considering
that patients with advanced pancreatic cancer have only a 6-
10 month median survival, the general treatment is palliative
care (6). Chemotherapy, radiotherapy, targeted therapy and
immunotherapy are not always used for unresectable pancreatic
cancer (UPC) patients due to poor performance status, limited
effects and added toxicity (3, 7). Placement of a self-expanding
metal stent is the standard palliative care for UPC patients
with malignant biliary obstruction (MBO) (8-10). Intraluminal
irradiation stents, which combined a self-expanding metal
stent with brachytherapy to treat local obstructive lesions,
were demonstrated to have better patency and be associated
with longer survival than conventional stents (uncovered
self-expanding metal stents) for unresectable MBO (11, 12).
Although the subgroup analysis of overall survival according
to tumor etiology showed better survival for biliary tract
cancer, there did not appear to be a significant difference in
patients with pancreatic cancer (12). Therefore, it is important
to select appropriate candidates with pancreatic cancer to
undergo irradiation stent placement, not only for individual and
reasonable stent selection, but also for prolonged patency and
improved survival.

Currently, different models have been developed to predict
survival outcomes in patients with different stages of pancreatic
cancer (13-16). A consensus statement also proposed clinical
prognostic variables for UPC (17). Moreover, imaging-based or
radiomic biomarkers have been reported to be available for the
prognostic prediction of patients with pancreatic cancer, based
on computed tomography (CT) (18-23), magnetic resonance
imaging (24, 25), positron-emission tomography (25-27) and
fluorescence microscopic imaging (28) findings. Radiomics, a
novel method of in-depth feature analysis, is to quantify and
extract the high-throughput imaging features from radiographic
images (20). Radiomics, such as texture analysis, reflects different
imaging phenotypes and tumor heterogeneity, which can be
used to assess survival outcomes and predict treatment response
(19, 21, 27). However, there are no tools to predict the survival
benefits from irradiation stent placement in patients with UPC-
MBO. A predictive model based on clinical and imaging features
will offer an objective, convenient and non-invasive method
for determining appropriate treatment options and making
better clinical decisions, especially critical decisions in patients
with UPC-MBO.

In this study, we proposed a novel model incorporating
clinical biomarkers and CT radiomics features to predict
restenosis-free survival (RFS) for individual patients with UPC-
MBO who undergoing irradiation biliary stent placement.
According to our proposed model, irradiation stent placement
could be recommended for appropriate candidates with slow
progression for a longer RES.

MATERIALS AND METHODS

This multicenter retrospective study was approved by the
institutional review boards at all participating centers. The
need for informed consent was waived due to the study’s
retrospective nature.

Patients

Between January 2012 and December 2017, 106 patients (69
males, 37 females; mean age, 66 = 12 years [standard deviation];
age range, 40-86 years) treated with irradiation stent placement
for UPC-MBO from four centers were finally included and
randomly divided into a training group (74 patients) and a
validation group (32 patients). The sample size calculation is
shown in Appendix E1. The study design and patient exclusion
criteria are illustrated in Figure 1.

The inclusion criteria were as follows: (a) age 18 years or
older; (b) clinical or histopathological diagnosis of UPC-MBO;
(c) unresectable disease due to extensive lesions, metastases,
a poor medical condition, or refusal to undergo surgery; (d)
initial percutaneous transhepatic biliary stent placement; and
(e) standard contrast-enhanced CT performed <2 weeks before
stenting. The exclusion criteria were as follows: (a) history of
surgical resection, (b) presence of severe infection or organ
failure before stenting, (c) Eastern Cooperative Oncology Group
score of 4 before stenting, (d) any other anticancer therapy except
supportive treatment after stenting, (e) incomplete clinical or CT
imaging data, or (f) loss to follow-up.

The following clinical characteristics were recorded: (a)
demographics, including sex, age, and body mass index; (b)
preprocedural status, including pain as assessed by a visual analog
scale score, Eastern Cooperative Oncology Group performance
status, prior biliary drainage, history of chemotherapy, history
of radiotherapy, and degree of ascites; (c) preprocedural blood
biochemical analysis, including total bilirubin, direct bilirubin,
direct bilirubin/total bilirubin ratio, carbohydrate antigen (CA)
19-9, CA125, and carcinoembryonic antigen; and (d) parameters
related to pancreatic cancer, such as the tumor stage according
to the TNM classification system (American Joint Committee on
Cancer, 8th ed., 2017) (29), liver metastasis, number of metastatic
lesions, and length of obstruction.

A standard percutaneous transhepatic biliary stenting
procedure was performed under fluoroscopic guidance with or
without ultrasonographic guidance by interventional radiologists
with more than 15 years of experience. The irradiation stent
consisted of two overlapping parts, an outer 125I seed-loaded
stent and an inner conventional uncovered self-expanding metal
stent (Nanjing Micro-Tech Co., Ltd., Nanjing, China). The two
parts were assembled in the biliary tract during the procedure.
The 1251 seeds (CIAE-6711; Chinese Atomic Energy Science
Institution, Beijing, China) were preloaded into the sheaths that
were attached to the outer surface of the stent immediately before
the procedure. According to the Treatment Planning System
(TPS, FTT Technology Ltd. Co., Beijing, China), the number,
dosage, and distribution of the 1251 seeds were calculated. The
standards of radiation safety and management were performed
after irradiation stent placement (30).
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Patients with UPC-MBO underwent irradiation stent Placement at
participant centers from January 2012 to December 2017 (n=142)
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FIGURE 1 | Flowchart of the study design and patient exclusion.

Routine follow-up, including performance status, clinical
signs, postprocedural treatment, blood biochemical analysis,
and imaging, was performed 1 week after stent placement,
monthly for 6 months, and then every 3 months. The endpoint
of this study was the occurrence of restenosis or death. RFS
was calculated from the date of stenting to the date of
the endpoint, which equaled the duration of stent function.
Restenosis indicated stent dysfunction, which was defined by
clinical signs of recurrent jaundice with elevated bilirubin levels
along with biliary reobstruction as evidenced on CT, ultrasound,
magnetic resonance cholangiopancreatography, or percutaneous
transhepatic cholangiography. RFS was censored at the date of
the last follow-up visit for restenosis-free patients.

CT Image Acquisition and Tumor

Segmentation

Imaging feature extraction was performed on each patient’s CT
images within 2 weeks before stent placement. The pancreatic
CT scan included an arterial phase and a portal-venous
phase, which were used to extract imaging features. The CT
acquisition protocols and image preprocessing were described
in Appendix E2. The region of interest (ROI) was drawn with
ITK-SNAP software (version 3.4.0; www.itksnap.org) by an
experienced radiologist (reader 1). Each two-dimensional CT

image covering the visible tumor region was delineated along the
tumor boundaries, and the overlap in the delineated areas was
selected as the final ROI (Figure E1). The ROIs for the arterial
and venous phases were annotated. The stability of radiomics
features was verified from the ROI regions that were annotated
by two radiologists (reader 1 and reader 2) separately through
intra- and interobserver correlation coefficients. Correlation
coefficients ranging from 0 to 1 were considered, and values >
0.8 were considered almost perfect agreement (31).

Imaging Feature Extraction

Radiomics features were extracted from the ROIs using MATLAB
(version R2018a; Mathworks; Natick, USA), including 25 non-
texture features, 51 texture features and wavelet features in
wavelet images decomposed on different scales. Non-texture
features reflect the shape, size and intensity of tumor lesions,
and texture features represent the inherent heterogeneity of
tumors based on four textural matrices. In addition, a three-
dimensional wavelet transform was applied to decouple the
first-order statistical features and texture features for each CT
image. Finally, we extracted 620 radiomics features from original
CT images and wavelet decompositions in each phase from
each patient. The details of these features are exhibited in
Appendix E3 and Table E1.
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Image Feature Reduction and Radiomics

Model Construction

For feature preselection, intra-, and inter-observer coefficients
were used to detect the stability of features with a threshold
of 0.8. Then, Pearson’s correction analysis was applied to
identify redundant and collinear features, and features with
mutual correlation coefficients >0.9 were excluded. After
initial selection, the least absolute shrinkage and selection
operator (LASSO)-Cox regression approach was used to identify
predictive factors for RES in the training group (32). Ten-fold
cross-validation was used to optimize the regression model to
select the most reliable model. The minimum tuning parameter
(lambda) was used in LASSO-Cox regression approach. A
radiomics signature was constructed by a weighted linear
combination of selected features in the arterial and portal-
venous phases, separately. A radiomics model was constructed
by both radiomics signatures of the two phases using the Cox
proportional hazard regression method. The Harrel concordance
index (C-index) was calculated to describe the performance of the
radiomics model.

Clinical and Combined Models

Clinical and combined models were also built for comparison
with the radiomics model. Univariate and multivariate Cox
proportional hazard analyses were applied to identify effective
clinical predictors. Based on the Cox proportional hazard
regression model, a clinical model was constructed with
clinical predictors, and the combined model integrated clinical
predictors and the radiomics signature. In the combined model,
the radiomics signature was calculated as the Rad-score for
quantification. The C-index of the clinical and combined models
was also calculated to illustrate their performance. The 3-month
RES rate of the combined model was assessed through receiver
operating characteristic curve analysis along with the area under
the curve. Decision curve analysis was used to compare the net
benefit at different threshold probabilities from the clinical and
combined nomograms.

Statistical Analysis

Continuous variable is described as mean =+ standard deviation,
and categorical variable is described as number and percentage.
Baseline characteristics between two groups were compared by
Student’s t-test for continuous variables and by Pearson’s chi
squared or Fisher’s exact test for categorical variables. With the
R package (version 3.4.4; R Package for Statistical Computing;
www.r-project.org), the nomograms were formulated in the
training group based on the results of the multivariate analysis
and by the Cox proportional hazard regression modeling
strategies. Receiver operating characteristic curves were drawn
and the area under the curve was calculated to evaluate the
discrimination performance for 3-month RFS. Calibration curves
were drawn to compare the 3-month RFS between the predicted
and actual outcomes using the Hosmer-Lemeshow test. Decision
curve analysis was used to evaluate the clinical utility of the
nomogram by calculating the net benefit at different threshold
probabilities. The combined model generated a risk score for RFS

TABLE 1 | Patient characteristics in the training and validation groups.

Characteristics Total Training Validation  p-value
(n =106) (n=74) (n=32)

Age, mean + SD, 65.63 +11.95 66.41+ 1227 63.84+11.71 0.313
years
Sex, n (%) 0.718
Male 69 (65.1) 49 (66.2) 20 (62.5)
Female 37 (34.9) 25 (33.9) 12 (37.5)
BMI, mean + SD,  20.59 + 3.07 20.39 £ 3.12 21.05+£294 0.312
kg/m?
Length of 37.67 £10.03 37.61+£9.91 37.81 £10.47 0.924
obstruction, mean
+ SD, mm
TB, mean £ SD, 185.09 + 134.44 179.60 + 137.04 197.78 £ 129.45 0.525
pmol/L
DB, mean + SD, 139.33 +97.67 135.80 +£ 99.51 147.48 £94.32 0.574
pmol/L
DB/TB ratio, mean 0.758 £ 0.110 0.756 +£0.115  0.761 +£0.100  0.829
+SD
Pain, n (%) 0.250
None 23 (21.7) 19 (25.7) 4 (12.5)
Mild 63 (59.4) 43 (68.1) 20 (62.5)

Moderate or 20 (18.9) 12 (16.2) 8 (25)

severe
T stage, n (%) 0.319
2 10 (9.4) 9(12.2) 1(3.1)
3 11 (10.4) 8(10.8) .
4 85 (80.2) 57 (77) 28 (87.5)
N stage, n (%) 0.255
0 26 (24.5) 15 (20.3) 11 (34.4)
1 68 (64.2) 51 (68.9) 17 (63.1)
2 12 (11.3) 8(10.8) 4 (12.5)
M stage, n (%) 0.051
0 68 (64.2) 52 (70.9) 16 (50.0)
1 38 (35.9) 22 (29.7) 16 (50.0)
Liver metastasis, 0.361
n (%)
No 76 (71.7) 55 (74.9) 21 (65.6)
Yes 30 (28.3) 19 (25.7) 11 (34.4)
Number of 0.099
metastatic
lesions, n (%)
0 68 (64.2) 50 (67.6) 18 (66.3)
1 12 (11.3) 10 (13.5) 2(6.3)
=2 26 (24.5) 14 (18.9) 12 (37.5)
Ascites level, n 0.541
(%)
None 85 (80.2) 61 (82.4) 24 (75)
Mild 14 (13.2) 8(10.8) 6(18.8)

Moderate or 7 (6.6) 5(6.8) 2(6.3)

severe
Radiotherapy, n 0.137
(%)
No 101 (95.3) 72 (97.3) 29 (90.6)
Yes 5(4.7) 2(2.7) 3(9.4)

(Continued)
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TABLE 1 | Continued

TABLE 2 | The C-indexes of clinical, radiomic, and combined models.

Characteristics Total Training Validation p-value
(n =106) (n=74) (n=32)

Chemotherapy, n 0.775

(%)

No 91 (85.8) 64 (86.5) 27 (84.4)

Yes 15 (14.2) 10 (13.5) 5(15.6)

ECOG score, n 0.774

(%)

0 3(2.8) 2(2.7) 1(3.1)

1 11 (10.4) 9(12.2) 2 (6.9)

2 60 (56.6) 40 (54.1) 20 (62.5)

3 32 (30.2) 23 (31.1) 9(28.1)

Prior PTBD, n 0.219

(%)

No 31(29.2) 19 (25.7) 12 (37.5)

Yes 75 (70.8) 55 (74.3) 20 (62.5)

CA19-9, n (%) 0.349

<1,000 U/ml 57 (63.8) 42 (56.8) 15 (46.9)

>1,000 U/ml 49 (46.2) 32 (43.2) 17 (53.1)

CA125, n (%) 0.660

<35 U/ml 33(31.1) 24 (32.4) 9 (28.1)

>35 U/ml 73 (68.9) 50 (67.6) 23 (71.9)

CEA, n (%) 0.870

<5ng/ml 41 (38.7) 29 (39.2) 12 (37.5)

>5ng/ml 65 (61.3) 45 (60.8) 20 (62.5)

Continuous variable is described as mean + SD, and categorical variable is described as
number and percentage. Baseline characteristics between two groups were compared
by Student’s t-test for continuous variables and by Pearson’s chi squared or Fisher’s
exact test for categorical variables. SD, standard deviation; BMI, body mass index;
TB, total bilirubin; DB, direct bilirubin; ECOG, Eastern Cooperative Oncology Group;
PTBD, percutaneous transhepatic biliary drainage; CA, carbohydrate antigen;, CEA,
carcinoembryonic antigen.

and dichotomized the patients into two groups with different
risks of progression using the median risk score in the training
group. Kaplan-Meier curves were generated to evaluate the
ability of the risk score to stratify the patients, and log-rank tests
were applied to assess the statistical significance with p < 0.05.

RESULTS

Patients

A total of 106 patients (69 males, 37 females; mean age, 66 & 12
years [standard deviation]; age range, 40-86 years) were included
in this study, including 74 patients in the training group and
32 patients in the validation group. The clinical characteristics
showed no significant differences between the two groups (all
p > 0.05, Table 1). During the mean follow-up time of 165.3
days, 99 of 106 (93%) patients reached the endpoint. There
was no significant difference in the median RFS between the
training group (139.5 days) and the validation group (120 days)
(p = 0.926).

Models Training Validation
C-index 95% CI C-index 95% ClI
Clinical model 0.673 (0.594,0.751) 0.667 (0.541,0.793)
Arterial phase features 0.735 (0.559,0.911) 0.719 (0.445, 0.994)
Portal-venous phase features  0.768 (0.523, 1) 0.788 (0.413, 1)
Radiomics signature 0.787 (0.542, 1) 0.796 (0.421,1)
Combined model 0.791 (0.614,0.967) 0.779 (0.504, 1)

C-index, concordance index; Cl, confidence interval.

Radiomics Features

We extracted 620 features from the arterial and venous
phases. After intra- and interobserver agreement analysis,
368 features from the arterial phase and 324 features from
the portal-venous phase were retained for collinearity testing
(Figure E2). A total of 61 features from the arterial phase and
49 features from the portal-venous phase were identified as
independent after Pearson’s correlation analysis (Table E2).
The LASSO-Cox model identified that eight features from
the arterial phase and six features from the portal-venous
phase were most efficient for predicting RFS (Figure E3). The
eight biomarkers from arterial phase were “glszm_LZHGE,
“fos_median,’ “glszm_SZSE, “glem_inverse_variance;”
“fos_minimum,’ “glem_IMC2, “glszm_LGLZE, and
“glszm_HGLZE.” The six biomarkers from portal-venous
phase were “glszm_ZSV;” “fos_uniformity;,” “glrlm_SRHGLE,
“glem_correlation,” “ngtdm_complexity,” and “glszm_HGLZE.”
These radiomics biomarkers showed no significant difference
between the training and validation groups (all p > 0.05,
Table E3).

Radiomics Model
Regarding the LASSO-Cox model, the C-index in the
arterial phase was 0.735 and 0.719 for the training and
validation groups, respectively; the C-index in the portal
venous phase was 0.768 and 0.788 for the training and
validation groups, respectively. The radiomics model, which
was developed by integrating the radiomics signatures
of both phases, yielded higher C-indices of 0.787 and
0.796 for the training and validation groups, respectively
(Table 2).

The arterial phase score for progression to the endpoint was
calculated with the following formula.

AP_score = exp (—0.32651538+ 0.18816560
x AP_Coifl_glszm_LZHGE — 0.01513133
x AP_Coif2_fos_median — 0.05629135
x AP_Coif5_glszm_SZSE — 0.03575725
x AP_Coif7_glem_inverse_variance+0.10324552
x AP_Coif8_fos_minimum — 0.06760264
x AP_Coif8_glem_IMC2 — 0.22867284
x AP_Coif8_glszm_LGLZE+0.03670083
x AP_Coif8_glszm_HGLZE)
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The portal-venous phase score for progression to the endpoint
was calculated with the following formula.

PP_score = exp (—0.29073968+0.14320514
xPP_ori_glszm_ZSV+0.05375225
x PP_Coifl_fos_uniformity — 0.26501636
xPP_Coif2_glrlm_SRHGLE — 0.03923173
xPP_Coif5_glcm_correlation — 0.01452813
x PP_Coif6_ngtdm_complexity+0.01951407
x PP_Coif8_glszm_HGLZE)

The total radiomics score for progression to the endpoint was
calculated with the following formula.

Rad-score = exp (0.463 x AP_score+0.665 x PP_score)

Clinical and Combined Models

After univariate and multivariate analysis, N stage (HR [95% CI],
1.663 [1.041-2.659]; p = 0.033), M stage (HR [95% CI], 2.861
[1.114-7.352]; p = 0.029), and CA19-9 (HR [95% CI], 1.898
[1.024-3.520]; p = 0.042) were ultimately selected as clinical
predictors of RFS (Table 3). The C-index for the clinical model
was 0.673 in the training group and 0.667 in the validation
group. The performance of the combined model was increased
when the radiomics signature was added to the model, with
a C-index of 0.791 in the training group and 0.779 in the
validation group (Table2). The nomograms for the clinical
and combined models are shown in Figure 2. The performance
for predicting 3-month RFS as shown by the area under
the receiver operating characteristic curve was better with
the combined model than with the clinical model for both
groups (Figure 3). The calibration curves for the combined
model demonstrated good agreement between the predicted and
observed probabilities of progression at 3 months with p-values
of 0.823 for the training group and 0.329 for the validation group
(Figure 4).

Clinical Use
The risk score for progression to the endpoint was calculated with
the following formula.

risk score = exp (1.17907540.931 x M+0.753
xN+0.509 x CA19-9 + 1.139 x Rad-score)

The median risk score for progression in the training group
(score = 1.264) was used to divide patients into high- (score
>1.264) and low-risk (score < 1.264) groups. Kaplan-Meier
curves and the log-rank test indicated significant differences in
RFS between the high- and low-risk groups (median RES: 90
days vs. 198 days, p < 0.001 for the training group; and median
RFS: 118 days vs. 265 days, p = 0.016 for the validation group,
Figure 5). The risk score also showed satisfactory stratification
ability when adjusting to the different subgroups (all p < 0.05,
Figure E4). As shown in Figure E5, the decision curve analysis
for the individualized nomograms shows the overall net benefit

TABLE 3 | The univariate and multivariate analyses for clinical features in training

group.

Characteristics HR 95% CI p-value
UNIVARIATE ANALYSIS

Age 1.000 (0.980, 1.021) 0.990
Sex 0.948 (0.573, 1.570) 0.948
BMI 0.965 (0.895, 1.040) 0.347
Length of obstruction 0.983 (0.958, 1.010) 0.218
B 1.000 (0.998, 1.002) 0.962
DB 1.000 (0.998, 1.003) 0.806
DB/TB ratio 1.747 (0.164, 18.626) 0.644
Pain 1.278 (0.853, 1.914) 0.234
T stage 1.251 (0.843, 1.857) 0.265
N stage 1.868 (1.238, 2.818) 0.003*
M stage 2.026 (1.194, 3.435) 0.009*
Liver metastasis 1.518 (0.858, 2.688) 0.152
Number of metastatic lesions 1.559 (1.131, 2.148) 0.007*
Ascites 1.602 (1.050, 2.444) 0.029"
Radiotherapy 1.489 (0.361, 6.146) 0.582
Chemotherapy 0.607 (0.276, 1.331) 0.213
ECOG score 1.096 (0.785, 1.529) 0.592
Prior PTBD 1.211 (0.708, 2.077) 0.487
CA19-9 2.442 (1.454, 4.102) 0.001*
CA125 2.230 (1.286, 3.865) 0.004*
CEA 1.410 (0.870, 2.287) 0.163
MULTIVARIATE ANALYSIS

N stage 1.663 (1.041, 2.659) 0.033*
M stage 2.861 (1.114, 7.352) 0.029*
Number of metastatic lesions 0.666 (0.345, 1.285) 0.225
Ascites 1.328 (0.825, 2.139) 0.243
CA19-9 1.898 (1.024, 3.520) 0.042*
CA125 1.627 (0.877, 3.016) 0.123

*Data are statistically significant with p < 0.05. HR, hazard ratio; Cl, confidence interval;
BMIl, body mass index; TB, total bilirubin; DB, direct bilirubin; ECOG, Eastern Cooperative
Oncology Group, PTBD, percutaneous transhepatic biliary drainage; CA, carbohydrate
antigen; CEA, carcinoembryonic antigen.

in predicting RFS for the combined model was not inferior to the
clinical model, the treat-all-patients scheme, and the treat-none
scheme if the threshold probability of a patient was >51.0%.

DISCUSSION

Although irradiation stents have been applied to manage
malignant intraluminal obstructive diseases (11, 12, 33-38), it is
necessary to optimize the selection of appropriate patients for
personalized treatment. In this study, a CT radiomics signature
was combined with clinical features to establish an objective,
preprocedural, and non-invasive model to select appropriate
patients with UPC-MBO for irradiation stent placement. The
combined model performed better than the clinical model.

With the combined nomogram, the 3-, 6-, and 12-month RFS
probabilities can be calculated for each individual undergoing
irradiation stent placement. With the risk score formula, each
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FIGURE 2 | Nomograms for the clinical and combined models. (A) Clinical nomogram based on three clinical predictors. (B) Combined nomogram based on three
clinical predictors and the radiomics signature. To use these nomograms, the user locates an individual patient’s value on each variable axis and draws a line up to
determine the number of points received for each variable value. The sum of these numbers is located on the axis of total points, and three lines are drawn down to
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FIGURE 3 | Receiver operating characteristic (ROC) curves with the area under the curve (AUC) for the predictive performance for 3-month RFS. Clinical model vs.
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individual can be grouped into a low- or high-risk group.
Two actual patients were classified using the combined model,
as shown in Appendix E4 and Table E4, which demonstrated
accurate prediction. “Patient A” with an RFS of 347 days had
predicted 3-, 6-, and 12-month RFS probabilities of 0.85, 0.55,
and 0.10, respectively, and was grouped into the low-risk group
“Patient B” with an RFS of 129 days had predicted 3-, 6-, and 12-
month RFS probabilities of 0.65, 0.18 and < 0.01, respectively,
and was grouped into the high-risk group. It seems useful
for clinical decision making that “Patient A” should undergo
irradiation stent placement, but “Patient B” should undergo
alternative treatment.

For patients with UPC-MBO, few biomarkers or models
with good discrimination have been reported for prognostic
prediction. Clinical indexes, including the CA19-9 level and N
and M stages, have been applied to develop a model to predict
prognosis in this study. The clinical model had a moderate
C-index for discrimination (0.673 and 0.667 in the training and

validation groups, respectively), while the radiomics signature
showed a better C-index (0.787 and 0.796 in the training and
validation groups, respectively). This result indicated better
predictive performance of radiomic biomarkers than of clinical
biomarkers. Moreover, the combined model also performed well
with C-indexes of 0.791 and 0.779 in the training and validation
groups, respectively. The reason may be that radiomics features
from the tumor can provide more information on the cancer
phenotype and the tumor microenvironment (39, 40), but clinical
characteristics are limited.

As shown in Figure E4, regardless of which subgroup the
patient was included in, he or she had a longer RFS in the low-risk
group than in the high-risk group. Male sex, age older than 65
years, and an abnormal carcinoembryonic antigen level seemed
to have less influence on RFS. Recently, researchers have been
interested in the role of CA125 in pancreatic cancer (41). Positive
CA125 levels may indicate tumor-associated Treg enrichment,
which promotes tumor cell escape from the immune system (42).
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FIGURE 4 | Calibration curves for the predictive performance for 3-month RFS. Clinical model in the training group (A, p = 0.105) and the validation group (B, p =
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FIGURE 5 | Kaplan-Meier curves for the stratified groups. The low-risk group had a longer RFS than the high-risk group in the training group (A, p < 0.001) and the
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A high CA125 level is also associated with a high metabolic
tumor burden (43) and poor prognosis (44-46). Although the
CA125 level was a potential risk factor for RES in the univariate
analysis, this factor was not ultimately included in the predictive
model developed with multivariate analysis (HR [95%]: 1.627
[0.877, 3.016]; p = 0.123). The prognostic importance of CA125
in pancreatic cancer should be further evaluated.

Imaging-based texture analysis is wused to quantify
intratumoral heterogeneity in patients with pancreatic
cancer (21, 47, 48). Sandrasegaran et al. (19) demonstrated
that contrast-enhanced CT-based radiomics features were
associated with survival among patients with UPC, but only two-
dimensional texture features from axial slices with maximum
tumor dimensions were analyzed rather than features from
multiple sections through the whole tumor. Cassinotto et al.
(22) and Attiyeh et al. (23) evaluated only CT texture features
in patients with surgically resectable pancreatic cancer. In our
study, comprehensive radiomics features included intensity,
shape, texture, and wavelet features that covered one-, two- and
three-dimensional features in both the arterial and portal-venous
phases. The radiomics signature based on both phases had good
discrimination. In the arterial phase, the C-indexes were 0.735
and 0.719 in the training and validation groups, respectively. In
the portal-venous phase, the C-indexes were 0.768 and 0.788 in
the training and validation groups, respectively. Currently, few
studies have explained the biological mechanisms of radiomics
features for predicting treatment outcomes. However, this fact
does not compromise the effectiveness and robustness of the
proposed model for prognostic prediction.

This study has several limitations. First, as shown in Table E5,
this study was a retrospective study with a small population.
Second, evaluation of data from several independent centers for
external validation is needed; however, this study was developed
based on a limited sample. Third, the model was mainly used
to choose appropriate patients for irradiation stent placement
but was less able to predict the prognosis of patients who
underwent placement of other stents or drainage mechanisms.
Therefore, additional trials with large samples are needed to
prospectively validate the findings in several independent centers.
Radiogenomics-based studies are proposed for personalized
treatment with radiotherapy or irradiation-related interventions
for patients with pancreatic cancer.

CONCLUSIONS

In conclusion, the proposed model based on radiomics had
good performance for RFS prediction in patients with UPC-
MBO who underwent irradiation stent placement. Patients with
slow progression should consider undergoing irradiation stent
placement for a longer RES. With further sufficient validation and
future clinical trials, this model might be an important tool for
clinical decision making in interventional oncology.
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We extracted image features from serial '8F-labeled fluorodeoxyglucose (FDG) positron
emission tomography (PET) / computed tomography (CT) scans of anal cancer patients
for the prediction of tumor recurrence after chemoradiation therapy (CRT). Seventeen
patients (4 recurrent and 13 non-recurrent) underwent three PET/CT scans at baseline
(Pre-CRT), in the middle of the treatment (Mid-CRT) and post-treatment (Post-CRT) were
included. For each patient, Mid-CRT and Post-CRT scans were aligned to Pre-CRT scan.
Comprehensive image features were extracted from CT and PET (SUV) images within
manually delineated gross tumor volume, including geometry features, intensity features
and texture features. The difference of feature values between two time points were also
computed and analyzed. We employed univariate logistic regression model, multivariate
model, and naive Bayesian classifier to analyze the image features and identify useful
tumor recurrent predictors. The area under the receiver operating characteristic (ROC)
curve (AUC) was used to evaluate the accuracy of the prediction. In univariate analysis, six
geometry, three intensity, and six texture features were identified as significant predictors
of tumor recurrence. A geometry feature of Roundness between Post-CRT and Pre-CRT
CTs was identified as the most important predictor with an AUC value of 1.00 by
multivariate logistic regression model. The difference of Number of Pixels on Border
(geometry feature) between Post-CRT and Pre-CRT SUVs and Elongation (geometry
feature) of Post-CRT CT were identified as the most useful feature set (AUC = 1.00)
by naive Bayesian classifier. To investigate the early prediction ability, we used features
only from Pre-CRT and Mid-CRT scans. Orientation (geometry feature) of Pre-CRT SUV,
Mean (intensity feature) of Pre-CRT CT, and Mean of Long Run High Gray Level Emphasis
(LRHGLE) (texture feature) of Pre-CRT CT were identified as the most important feature
set (AUC = 1.00) by multivariate logistic regression model. Standard deviation (intensity
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feature) of Mid-CRT SUV and difference of Mean of LRHGLE (texture feature) between
Mid-CRT and Pre-CRT SUVs were identified as the most important feature set
(AUC = 0.86) by naive Bayesian classifier. The experimental results demonstrated the
potential of serial PET/CT scans in early prediction of anal tumor recurrence.

Keywords: serial PET/CT, chemoradiation therapy, recurrence prediction, image analysis, anal cancer

INTRODUCTION

Anal cancer is a relatively uncommon malignancy. In the
United States, the National Cancer Institute estimated
8,580 new cases and 1,160 deaths from anal cancer in
2018!. Chemoradiation therapy (CRT) is preferred over
abdominoperineal resection for the treatment of anal cancer
patients because of sphincter preservation, although surgery can
be an effective salvage option (1-4). After CRT, early detection
of tumor recurrence is important for initiating salvage surgery
and preventing the spread of disease to distant sites (5, 6).
Current guideline recommendations for treatment response
evaluation after CRT includes serial digital rectal examination
with biopsy of clinically progressive lesions, beginning 8-12
weeks after therapy is completed. However, early detection of
residual and progressive disease can sometimes be challenging
because of treatment-related mucositis and dermatitis that may
limit adequate physical examination (5). Alternatively, as a
non-invasive evaluation tool, anatomical imaging techniques
(CT, ultrasound, and MRI) have been widely used in the tumor
staging and treatment response evaluation. Because the region
of anal tumors has similar intensity to the surrounding normal
structures in the anatomical images and tumor margins may
blend with surrounding normal tissues (5), these techniques may
fail to accurately assess the presence of tumor.

Positron emission tomography (PET) scans provide metabolic
information of tumors and can assist in differentiating recurrent
tumors from surrounding tissue. As such, ¥ F-FDG PET scans
obtained after CRT has been increasingly used for the anal
cancer recurrence prediction (7, 8) alongside CT scans (8 E-FDG
PET/CT), which provide corresponding anatomic information.
However, there are few reports in the literature about the usage
of interim PET/CT scans (Mid-CRT) obtained during CRT to
assess treatment response for anal cancer. In a recent paper of
Hong et al. (9), they reported a anal cancer chemoradiation
treatment evaluation study using pretreatment and interim
PET/CT scans. Some commonly used standardized uptake
value (SUV) based image features were evaluated, including
maximum SUV (SUVpax), mean SUV (SUViean), metabolic
tumor volume (MTV), and total lesion glycolysis (TLG).
However, no correlation between tumor recurrence and relative
change of those image features was detected.

Recent studies have shown that spatial PET/CT features are
more informative than the commonly used SUV based measures
(10, 11). In this study, instead of conventional SUV image
features, comprehensive image features from both CT and SUV

Uhttp://seer.cancer.gov/statfacts/html/anus.html

of serial PET/CT scans (Pre-CRT, Mid-CRT, and Post-CRT) were
analyzed to identify useful image features for the prediction
of anal cancer recurrence. In particular, we investigated the
image features from Pre-CRT and Mid-CRT PET/CT scans
only to explore their potential in the early prediction of tumor
recurrence. The image features we used in this study include
geometry, intensity, and texture features.

MATERIALS AND METHODS
Patients and PET/CT Scans

IRB approval was obtained from both institutions involved in
the analysis. The PET/CT scans used in this study were collected
from Department of Radiation Oncology of one major cancer
center in the United States for patients with non-metastatic
squamous cell carcinoma of the anal canal treated with definitive
CRT between 2008 and 2010. Seventeen patients were included in
this study, including 4 recurrent and 13 non-recurrent. Clinical
characteristics of the patients were shown in Table 1. One of the
recurrent patients developed a locoregional recurrence and the
other three were diagnosed with distant metastasis. The typical
approach and clinical outcomes for managing anal cancer with
CRT from this institution have been previously published (12).
Patients received CRT for 32-50 total elapsed days (median
43 days) with initial prescription gross tumor volume (GTV)
dose of 36-50 Gy and GTV boost dose of 0-22 Gy. The median
GTYV total dose was 56 Gy (range 50-62.5 Gy). Pre-CRT PET/CT
imaging was performed 6-46 days before CRT (median 20 days),
Mid-CRT PET/CT was performed 22-38 days (median 32 days)
after the starting of CRT, and Post-CRT imaging was performed
42-141 days (median 88 days) after completion of CRT. All
PET/CT scans were acquired with a Discovery-VCT (DVCT)
scanner (GE Medical System, Milwaukee, USA). Each patient
fasted for a minimum of 6 h before intravenous injection of 10
mCi "®F-FDG. Whole-body PET and CT imaging was started
90 min after tracer injection. The CT scans were acquired with
110 mAs and 120 kVp. Each slice had a matrix size of 512 x 512
pixels; the pixel was 1.37 x 1.37 mm with a 12-bit gray-level in
Hounsfield Units (HU). The slice thickness was 3.27 mm. PET
images were attenuation corrected with a matrix size of 128 x
128 pixels; the pixel was 5.47 x 5.47 mm. The slice thickness
was 3.27 mm. To compare the PET-based image features between
patients, standardized uptake value (SUV) was calculated on
a voxel-by-voxel basis and a SUV image was created for each
PET scan.

An experienced radiation oncologist (MC) contoured the
GTVs in the Pre-, Mid-, and Post-CRT PET/CT scans,
respectively, using mainly CT while referring to PET. In general,
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TABLE 1 | Clinical characteristics of patients.

Non-recurrent Recurrent
patients patients

n 13 4
Gender
Male 5 1
Female 8 3
Age
Median 53 49
Range 36~ 78 45~ 76
BMI 20.6 ~ 35.7 19.8 ~28.2
HIV+ 2 0
Weight decrease during CRT (%) —-1.7~129 —-1.9~224
ECOG performance status
0 10 3
1 1
T stage
1 3 0
2 6 1
3 4 1
4 0 2
N stage
0 10 2
1 0 1
2 1
3 0
AJCC stage (TNM stage)
2 3 0
3 7 1
4 0 2
5 3 1

anal tumors have similar intensity to the surrounding normal
structures in CT scans. Thus, it would be hard for the radiation
oncologists to contour the tumors accurately. FDG uptake of the
tumors in PET scans could help in identify the tumor regions.
However, high FDG uptake caused by non-tumor lesions, such
as tissue inflammation, could affect the accuracy of delineated
GTVs. In this study, we did not find such difficult cases.

Image Registration
A rigid image registration followed by a B-Spline deformable
image registration was used to align the Mid-CRT CT and
Post-CRT CT to the Pre-CRT CT, respectively by maximizing
their normalized cross correlation. To achieve higher registration
accuracy in the tumor area, registration was constrained within a
cuboid region, excluding irrelevant structures. The region ranged
from the top of femoral head to the inferior pubic ramus, from
the right lateral aspect of the right femoral head to the left lateral
aspect of the left femoral head, and from the anterior border of
the pubis to the most posterior border of sacrum.

The registration results were visually evaluated, and no
obvious misalignments were observed. The resulting registration

transform was applied to warp the manually delineated
GTVs from Mid-CRT and Post-CRT scans to Pre-CRT scan,
respectively. The Mid-CRT and Post-CRT SUV images were
similarly warped to the Pre-CRT SUV image using the same
transform as above, respectively. The following image analysis
was performed in the same frame of reference, i.e., the Pre-CRT
coordinate system.

Extraction of Image Features

We used the Insight Segmentation and Registration Toolkit (ITK,
National Library of Medicine; Bethesda, MD) to extract image
features. Nineteen geometry features, nine intensity features,
eight texture features based on co-occurrence matrix, and ten
texture features based on run-length matrix were computed
within the GT'Vs in the Pre-, Mid-, and Post-CRT CT and SUV
images, respectively. The difference or change of feature values
between two time points were also computed, including Diffl =
Mid-CRT - Pre-CRT, Diff2 = Post-CRT - Mid-CRT, and Dift3
= Post-CRT - Pre-CRT. The detailed definition of these features
was described in Appendix A.

Geometry Features

Geometry features described the shape, size, or relative position
of a tumor. Nineteen geometry features were computed (13,
14), including volume, major axis length, minor axis length,
eccentricity, elongation, orientation, bounding box volume,
oriented bounding box volume, equivalent spherical perimeter,
equivalent spherical radius, ferret diameter, number of lines,
number of pixel on border, perimeter, perimeter on border,
perimeter on border ratio, physical size, region elongation, and
roundness. For instance, Roundness (R) is defined by

R=A/v

where v is the surface area of the GTV, A is the surface area of the
hyper-sphere with the same volume of the GTV.

Intensity Features

Nine intensity features were computed based on the intensity
(CT number in CT images and SUV in PET images) of all voxels
within the GT'V, including minimum, maximum, mean, standard
deviation, sum, median, skewness, kurtosis, and variance.

Texture Features

Texture features quantify the spatial patterns of tumor from
images (15). In each CT or SUV image, the intensity was
first normalized into 64 gray levels. The texture features were
computed based on the gray level co-occurrence matrix (GLCM)
(16-18) and gray level run-length matrix (GLRM) (18, 19).

An element of a GLCM measures the number of two
specified gray levels separated by a given distance in a specified
direction (16-18). After the construction of the GLCM, the
following eight frequently used features were computed (16—
18): Energy, entropy, correlation, inverse difference moment,
inertia, cluster shade, cluster prominence, Haralick correlation.
Each GLCM feature was computed in 13 directions (in 3D)
with a distance of one voxel between the pair of voxels. The
feature was then averaged over the 13 directions. The standard
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deviation of each feature over the 13 directions was computed
as well.

An element of a GLRM measures the number of “runs”
with a specific length and specific gray level (18, 19), where
a “run” is defined as a block of consecutive voxels with the
same gray level in a specific direction. In this study, we set
the maximum allowed length of runs to the length of the
minimum bounding box of the GTV. After the construction
of the GLRM, the following ten frequently used features were
computed: short run emphasis (SRE), long run emphasis (LRE),
gray level non-uniformity (GLN), run length non-uniformity
(RLN), low gray level run emphasis (LGLRE), high gray level
run emphasis (HGLRE), short run low gray level emphasis
(SRLGLE), short run high gray level emphasis (SRHGLE), long
run low gray level emphasis (LRLGLE), long run high gray level
emphasis (LRHGLE). Each GLRM feature was also computed
in 13 directions. The feature was then averaged over the 13
directions. The standard deviation of each feature over the 13
directions was computed as well.

Predictive Model Construction

For this study the binary response variable of interest is the
recurrence of anal cancer, coded 1 = recurrence and 0 = non-
recurrence. The area under the receiver operating characteristic
(ROC) curve (AUC) was used to evaluate the accuracy of
the prediction.

Firstly, we used a univariate logistic regression model (20)
to identify individually significant image features for predicting
recurrence. The AUC of each image feature was obtained and p-
value was calculated with Wilcoxon rank-sum test (21). A cut-off
p-value of 0.05 was used to identify significant tumor recurrence
predictors, i.e., an image feature was identified as a significant
predictor, if its p-value was lower than 0.05.

Secondly, we used a multivariate logistic regression model
(20) to select the most significant feature set (as single feature
or multiple features) for predicting recurrence. The initial
null hypothesis was that there was no relationship between
the image features and recurrence. When multivariate logistic
regression was used, null hypotheses of adding image features
to the multiple logistic regression do not improve the prediction
accuracy any more than expected by chance were tested. Again,
p-value of 0.05 from the null hypotheses was used to select the
most significant feature set.

Lastly, we used an advanced pattern classification framework
of naive Bayesian classifier (22) for predicting recurrence using
the identified feature set as input. Due to the small patient
cohort, leave-one-out cross-validation was used. Let C be the
outcome (recurrence) class, which is modeled as a random
variable, and let X be a vector of random variables denoting the
input features. Further, let ¢ and x represent particular class of
C and particular observed value of X. Our model uses Bayes’
rule to compute the probability of each class given the observed
values as,

_p(C=0pX=x|C=c)

pC=clX=x) P X =%

(1)

Because in naive Bayesian classifier the features are assumed to
be conditionally independent, we have

p(X:xIC:c)sz(XiZXHC:C)

which is simple to estimate from training data as well as
to compute for test data. For example, for each recurrent
class and continuous image feature, we will estimate the
mean and standard deviation of the feature given the class.
Traditionally a single Gaussian distribution assumption was used
when estimating the mean and standard deviation. Here this
assumption was eliminated in favor of kernel density estimation,
but still maintaining the independence assumption (22). Finally,
the probability computed from (1) is used to determine the most
probable class.

RESULTS

Univariate Analysis of Logistic Regression
Model

Six geometry features, three intensity features, and six texture
features (three co-occurrence matrix features and three run-
length matrix features) were identified as individually significant
predictors (p < 0.05) to differentiate recurrence and non-
recurrence using the univariate logistic regression model. The
identified predictors were listed in Table 2.

Multivariate Analysis of Logistic

Regression
By applying the multivariate logistic regression model, the Dift3
of roundness of CT, i.e., the difference in tumor roundness

TABLE 2 | Selected anal cancer recurrence predictors from all the image features
by univariate logistic regression model.

Features dAssociation AUC p-value
Diff38 Roundness + 1.00 0.00
Post-CRT Roundness - 0.96 0.00
Diff2 Roundness + 0.90 0.01
Diff3 Perimeter on Border Ratio - 0.77 0.02
Diff3 CT Minimum + 0.85 0.02
Post-CRT CT SD of Correlation - 0.77 0.08
Post-CRT Major Axis Length - 0.81 0.08
Diff3 CT Mean of Inverse Difference Moment - 0.83 0.03
Post-CRT CT Elongation - 0.83 0.04
Diff3 CT Mean of Short Run Emphasis + 0.83 0.04
Post-CRT CT Minimum + 0.62 0.04
Post-CRT CT Mean of Inverse Difference - 0.63 0.05
Moment

Post-CRT SUV SD of Cluster Shade + 0.69 0.05
Diff3 CT Mean + 0.79 0.05
Difft CT SD of Long Run High Gray Level - 0.83 0.05
Emphasis

dAssociation = “+” indicates the larger a feature, the more likely tumor recurrent;
Association = “—” indicates the larger a feature, the less likely tumor recurrent.
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between Post-CRT and Pre-CRT, was identified as the most
powerful predictor with an AUC of 1.0. Using Pre-CRT and Mid-
CRT scans only, Orientation of Pre-CRT SUV and LRHGLE of
Pre-CRT CT were selected as the most important feature set with
a high AUC of 1.00. The results were shown in Table 3.

Naive Bayesian Classifier Based Analysis
By applying the naive Bayesian classifier, Diff3 of Number of
Pixels on Border of SUV and Elongation of Post-CRT CT were
identified as the most useful feature set with AUC = 1.00. Using
Pre-CRT and Mid-CRT scans only, standard deviation of Mid-
CRT SUV, Diftl of Mean of LRHGLE of SUV were selected as the
most important feature set with an AUC of 0.86. The results were
shown in Table 4.

DISCUSSION

Almost all the predictors identified by univariate logistic
regression model, multivariate logistic regression model, and
naive Bayesian classifier were derived from Post-CRT scans
or from Diff3 (Post-CRT - Pre-CRT). To investigate the early
prediction ability of the features, we applied the multivariate
logistic regression model and naive Bayesian classifier by using
features from Pre-CRT and Mid-CRT scans and Diffl only. As
shown in Table 3, Orientation of Pre-CRT SUV, Mean of Pre-
CRT CT, and Mean of LRHGLE of Pre-CRT CT were identified as
the most useful feature set by the multivariate logistic regression
model with an AUC of 1.0. As shown in Table 4, standard
deviation of Mid-CRT SUV and Diffl of Mean of LRHGLE
of SUV were identified as the most useful feature set by the
naive Bayesian classifier with an AUC of 0.86. These results
demonstrated the potential of Pre-CRT and Mid-CRT PET/CT
scans for the early predication of anal cancer recurrence.

TABLE 3 | Selected anal cancer recurrence predictors (correlation to the
recurrence in parentheses) by multivariate logistic regression model.

Using Pre-CRT, Mid-CRT, and Using Pre-CRT and Mid-CRT

Post-CRT
Features  Diff38 CT Roundness (0.83) Pre-CRT SUV Orientation
(—=0.31), Pre-CRT CT Mean
(—0.15), Pre-CRT CT Mean of
Long Run High Gray Level
Emphasis (0.41)
AUC 1.00 1.00

TABLE 4 | Selected anal cancer recurrence predictors (correlation to the
recurrence in parentheses) by naive Bayesian classifier.

Using Pre-CRT, Mid-CRT, and Using Pre-CRT and Mid-CRT

Post-CRT
Features  Diff38 SUV Number of Pixels on Mid-CRT SUV Standard
Border (—0.07) and Post-CRT Deviation (—0.15), Difft SUV
CT Elongation (—0.28) Mean of Long Run High Gray
Level Emphasis (0.16)
AUC 1.00 0.86

One geometry feature Diff3 of roundness, has been identified
as the most useful predictor by both univariate and multivariate
logistic regression models. Roundness measures how similar the
shape of a tumor is to a sphere with range [0, 1]. A larger value
of roundness means higher similarity to a sphere. As shown in
Figure 1 and Table 5 the roundness of all four recurrent tumors
increased from Pre-CRT to Post-CRT by 0.05 or more, with a
mean increase of 0.08, whereas the roundness of the 13 non-
recurrent tumors either decreased (11 tumors), or did not change
(2 tumors), or increased slightly by 0.01 (1 tumor), with a mean
decrease of 0.06. Therefore, by using Diff3 of roundness only, we
were able to correctly predict all cases with an AUC of 1.0.

As shown in Table 5, the roundness of many of the non-
recurrent tumors decreased from Pre-CRT to Post-CRT and
the roundness of recurrent tumors increased from Pre-CRT to
Post-CRT. The difference in roundness may reflect that the
normal anal canal has a low roundness value, which would be
consistent with decreased anal tumor burden; to the contrary,
higher gross tumor burden would have a higher roundness value.
Figure 2 shows an example of the comparison between Pre-
CRT and Post-CRT of a non-recurrent tumor. Its roundness
decreased from 0.70 to 0.58. The tumor regressed significantly
in coronal direction. However, it enlarged in axial direction
on CT. We further investigated all the tumors in our dataset.
For non-recurrent patients, the changes of tumor size were
mainly in superior-inferior direction. However, the changes
were not consistent, i.e., some tumors decreased, and other
tumors increased in superior-inferior direction. On the other
hand, the changes in axial plane were generally quite small.
For recurrent patients, changes could be observed in both axial
plane and superior-inferior direction. However, we did not find
a consistent pattern in the trend of size changes either. It is
important to note that the radiation oncologist who delineated
the tumor volumes was blinded to the prior contours while
contouring the follow up scans, which could have affected
the consistency of the volumes over time including perceived
enlargement of delineated tumor regions in follow up scans
of non-recurrent patients. Therefore, the recurrence prediction
purely based on the geometry measurements, such as roundness,
volume, etc., may not be reliable enough. Intensity and texture-
based imaging features would be useful complementary to
the geometry measurements in the recurrence prediction. In
addition, this experimental result could raise a hypothesis—
tumors may regress in a non-uniform manner after CRT.
The tumors with positive response to the treatment may have
regressed asymmetrically, which also may have contributed to
their roundness measurement decreasing. We were unable to
find other published literature about directional tumor regression
after CRT and therefore warrant further evaluation.

In addition to roundness, some other features were identified
as recurrence predictors by multivariate logistic regression model
(Table 3) and by naive Bayesian classifier (Table 4). Each of
these features had low correlation (<0.50) to tumor recurrence
and was weak classifier by itself. However, the performance
can be improved significantly by systematically combining a
number of weak classifiers (23) and using well-designed training
procedure, such as the multivariable logistic regression model
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A Pre-CRT B Mid-CRT ¢ Post-CRT

p Pre-CRT e Mid-CRT F Post-CRT

FIGURE 1 | Manually delineated tumor contour (white) in Pre-CRT, Mid-CRT, and Post-CRT scans of a non-recurrent patient (A=C) and a recurrent patient (D-F)
Post-CRT. Roundness showed different changing patterns (in Diff38 = Post-CRT — Pre-CRT) between recurrent and non-recurrent groups.

TABLE 5 | The roundness of each patient at Pre-CRT, Mid-CRT, and Post-CRT
and their differences.

Recurrent Status Pre Mid Post Diff1 Diff2 Diff3
(1 =recurrent, 0 =
non-recurrent)

directions (B) vs. (D). However, it progressed in axial direction (A) vs. (C). The

0.78  0.69 0.83  —0.09 0.14 0.05
roundness of this tumor was changed from 0.70 (Pre-CRT) to 0.58 (Post-CRT).

0.67 0.71 0.78 0.04 0.07 0.11
072 073 0.80 0.01 0.07 0.08

0 078 070 067 -0.08 —-0.04 —-0.12

0 068 064 069 -0.04 0.05 0.01

0 0.80  0.61 0.75 -0.19 0.14  —-0.05

0 0.72 073 0.70 0.01 -0.04 -0.03

0 0.80 064 070 -0.15 0.05 —0.10

0 072 070 062 -001 -008 —0.09 Post-CRT Axial View

0 070 078 0.58 0.08 -020 -0.12 /' .

0 0.84 067 076 -0.17 0.09  —0.09 \\

0 078 073 078 -0.04 0.04 0.00 ~

0 073 080 0.70 0.06 -0.10 —-0.03

0 088 076 077 -0.12 0.01 -0.11

0 075 072 074 -0.02 0.02 0.00

0 0.76 NA 0.72 NA NA —0.04 FIGURE 2 | The CT images with manually delieated tumor contour of anal
1 068 066 076 —0.02 0.10 0.08 cancer patient with no tumor recurrence. The tumor regressed in coronal
1

1

1

and the naive Bayesian classifier in this study. By use of these
combined features, relatively high performance in the tumor
recurrence prediction was achieved (high AUC values) as shown
Diff1 = Mid-CRT ~ Pre-CRT; Diff2 = Post-CRT ~ Mid-CRT; Diff3 = Post-CRT ~ Pre-CRT. in Tables 3, 4.

Mean of non-recurrent 0.76 0.71 0.71 —0.06 0.00 —0.06
Mean of recurrent 0.71 0.70 0.79 —-0.01 0.10 0.08
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Traditional naive Bayesian classifier assumes that numeric
features are generated by a single Gaussian distribution. It is
a reasonable approximation to many real-world applications,
but not always the best. Our approach extended the traditional
naive Bayesian by eliminating the single Gaussian assumption,
which certainly could be violated in cancer recurrence prediction.
Another advantage of the method is that it does not suffer
from the high dimensionality of the model. This is because
features are assumed to be conditionally independent in Naive
Bayesian classifier, so that the curse-of-dimensionality can be
avoided by allowing the join distribution to be decomposed.
Naive Bayesian classifier is also closely related to the widely used
logistic regression classifier. While naive Bayesian classifier fits a
probability that optimizes the joint likelihood, logistic regression
fits the same probability model that optimizes the conditional
probability. It has been shown that in some practical cases naive
Bayesian can outperform logistic regression because it converges
faster (24).

One limitation of this study was that this was a retrospective
analysis of a small patient cohort (n = 17), particularly only 4
patients with recurrence. This was a small, unbalanced dataset
for reliable prediction. Although we used cross-validations to
avoid potential over fitting, the predictive accuracy and stability
of the model should be validated in a larger and independent
patient cohort. Another limitation is the lack of standard
dose prescription for each patient. The total dose a patient
received was based subjectively on tumor response as per Mid-
CRT PET. Finally, it was hard to provide biological or clinic
explanations for why the extracted image features were important
for recurrence prediction.

CONCLUSIONS

Early prediction of tumor persistence or recurrence using
PET/CT scans obtained prior to or during CRT for anal
cancer may be possible through analysis of quantitative imaging
features. Additional study is warranted in a larger patient
population to confirm our findings. A future study to investigate
the correlation between clinical characteristics (e.g., T staging,
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Introduction: Assessment of lymph node metastasis (LNM) is crucial for treatment
decision and prognosis prediction for endometrial cancer (EC). However, the sensitivity
of the routinely used magnetic resonance imaging (MRI) is low in assessing normal-sized
LNM (diameter, 0-0.8 cm). We aimed to develop a predictive model based on magnetic
resonance (MR) images and clinical parameters to predict LNM in normal-sized lymph
nodes (LNs).

Materials and Methods: A total of 200 retrospective patients were enrolled and divided
into a training cohort (n = 140) and a test cohort (n = 60). All patients underwent
preoperative MRI and had pathological result of LNM status. In total, 4,179 radiomic
features were extracted. Four models including a clinical model, a radiomic model, and
two combined models were built. Area under the receiver operating characteristic (ROC)
curves (AUC) and calibration curves were used to assess these models. Subgroup
analysis was performed according to LN size. All patients underwent surgical staging
and had pathological results.

Results: All of the four models showed predictive ability in LNM. One of the
combined models, Model°!, consisting of radiomic features, LN size, and cancer
antigen 125, showed the best discrimination ability on the training cohort [AUC, 0.892;
95% confidence interval [Cl], 0.834-0.951] and test cohort (AUC, 0.883; 95% Cl,
0.786-0.980). The subgroup analysis showed that this model also indicated good
predictive ability in normal-sized LNs (0.3-0.8 cm group, accuracy = 0.846; <0.3cm
group, accuracy = 0.849). Furthermore, compared with the routinely preoperative MR
report, the sensitivity and accuracy of this model had a great improvement.

Conclusions: A predictive model was proposed based on MR radiomic features and
clinical parameters for LNM in EC. The model had a good discrimination ability, especially
for normal-sized LNSs.

Keywords: endometrial cancer, lymph node, metastasis, magnetic resonance imaging, radiomics
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INTRODUCTION

Endometrial cancer (EC) is the most common gynecological
malignancy in industrialized countries (1, 2). In China, EC is the
second most common malignancy of the female genital tract with
patients steadily increasing, especially in high urbanization areas
(3). Lymph node metastasis (LNM) is an important risk factor
for EC prognosis. Systematic lymphadenectomy is routinely
performed according to International Federation of Gynecology
and Obstetrics (FIGO). However, there is long-term controversy
regarding whether it is necessary for low-risk or stage IA disease
(4), as the incidence of LNM is very low in these patients
(5). In addition, indiscriminative lymphadenectomy may lead
to overtreatment and increase in post-operative complications,
including chronic lymphedema, lymphocysts, infection, and
nerve/vascular injuries (6).

Several histopathological findings, such as histological
subtype, depth of myometrial invasion (DMI), primary tumor
diameter (PTD), lymphovascular space invasion, and tumor
grade, are known to be risk factors for LNM (4, 5), and
researchers proposed various risk-classification models (4, 7).
However, most of them are only available post-operatively.
Sentinel lymph nodes mapping was proposed to evaluate LNM
intraoperatively (8), but the technological dependence on
experienced surgeons and relatively high false-negative rates
limited its clinical application. Accurate preoperative and non-
invasive evaluation of LNM is crucial, which can provide valuable
information for prognosis prediction and treatment decision,
especially in determining the extent of lymphadenectomy.

Magnetic resonance imaging (MRI) is a routinely used
imaging modality for preoperative evaluation of EC. It plays
an important role in assessing DMI (9), but its value for LNM
assessment remains unsatisfactory, with reported sensitivities
of 25-50% (10, 11). Radiomics, as a novel data mining
technique, could extract high-dimensional quantitative features
from medical images and select reliable features for the
establishment of prediction models that could be used in
computer-assisted decision support. Some recent researches
showed that radiomics had the potential to evaluate therapeutic
effects, predict the recurrence and metastasis, predict survival
time (12-14), and aid the differential diagnosis of cancers (15).
Currently, radiomic investigations in preoperative prediction of
LNM showed encouraging achievement (16-18). However, to our
knowledge, there is no literature that has determined whether

Abbreviations: LNM, lymph node metastasis; EC, endometrial cancer; LN,
lymph node; AUC, area under the curve; MRI, magnetic resonance imaging;
IGO, International Federation of Gynecology and Obstetrics; DMI, depth of
myometrial invasion; A125, cancer antigen 125; PTD, primary tumor diameter;
WHO, World Health Organization; DCE, dynamic contrast enhanced; VOI,
volume of interest; ICC, intraclass correlation coefficient; mRMR, minimum
redundancy/maximum relevance; RFE, recursive feature elimination; HGLE, high
gray-level emphasis; LASSO, least absolute shrinkage and selection operator; ROC,
receiver operating characteristic; PV, positive predictive value; TP, true positive;
EN, false negative; FP, false positive; pN+, pathologically LN positive; 3D-iso-
LAVA-XV, three-dimensional liver acquisition with volume acceleration DCE with
isotropy scanning; CI, confidence interval; ADC, apparent diffusion coefficient;
DWI, diffusion-weighted MR imaging; HE4, human epididymis secretory protein
4; GLCM, gray-level cooccurrence matrix.

a radiomics-based study would render superior prediction of
metastasis in different size groups of LNs, and there has been no
study on EC.

The purpose of this study was to investigate the efficacy
of multiplanar enhanced MRI-based radiomics for preoperative
prediction of metastasis in normal-sized (diameter 0-0.8 cm on
MRI) LNs in EC patients.

MATERIALS AND METHODS
Study Design and Participants

This retrospective study with anonymous data was approved by
the Ethics Committee of our hospital, and the informed consent
requirement was waived.

Two hundred consecutive patients with EC who had been
treated between January 2011 and December 2017 were enrolled.
Figure 1 shows the patient recruitment pathway. Patients were
divided into two independent cohorts: 140 patients treated
between January 2011 and March 2016 in the training cohort, and
60 patients treated between April 2016 and December 2017 in the
test cohort.

As shown in Tablel, clinical parameters including age,
blood serum cancer antigen 125 (CA125) level, preoperative
histological type, and differentiation were derived from
medical records.

All MR imaging data were reviewed together by two board-
certified radiologists (reader 1 and reader 2) specialized in
gynecological tumor imaging with 6 and 20 years of experience.
The PTD, DMI, involvement of the cervix, cornua, adnexa,
parametrium, and LN status including the size and positive or
negative were recorded. Maximal short-axis diameter of LN was
measured on delayed phase of dynamic contrast enhanced (DCE)
sequence at axial-sectional images (see details below). Patients
with pelvic LN > 8 mm or abdominal LN > 10 mm, or with non-
homogeneous enhancement and central necrosis on DCE images
were regarded as MR report LN-positive (19). The consistency
between the two radiologists was assessed by calculating the
Cohen’s kappa coefficients. Any disagreement was resolved by
consultation. Note that LN status was defined by case.

MR Image Acquisition, Region of Interest
Segmentation, and Radiomic Feature

Extraction

Before receiving standard FIGO surgical staging, all patients
underwent pelvic DCE MRI on two 3.0-T MR scanners (Signa
HDxt and Discovery MR750, GE Medical Systems) with 8-
channel phased array body coils. Two non-enhanced and one
enhanced sequence were obtained and collected for analysis.
Detailed scanning parameters are listed in Table 2.

Tumor volume of interest (VOI), covering the whole tumor
volume on each MR image, were manually segmented by reader
1 using ITK-SNAP software (www.itksnap.org, version 3.6.0).
Radiomic feature extraction was performed with algorithms
implemented in Python (www.python.org, version 3.6.5) (20).
Three-dimensional radiomic features were extracted from the

Frontiers in Oncology | www.frontiersin.org

69

October 2019 | Volume 9 | Article 1007


www.itksnap.org
www.python.org
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

Xu et al.

Predict Lymphopathy in Endometrial Cancer

Archive data of patients who receive standard FIGO
surgical staging for EC between January 2011 and
December 2017 (n=502)

Exclusion:

* patients without DCE-MRI 2 weeks before surger (n=87)

* patients with serious MR artifacts (n=5) and without uniform MR
scanner (n=99)

* patients missing clinical characteristics data and endometrial
biopsy histological information (n=99)

* patients with any preoperative therapy (2 with chemotherapy and 3
with drug therapy) (n=5)

* patients
concurrently (5 with breast cancer, 2 with thyroid cancer) (n=7)

suffering from other malignant tumor diseases

A

200 patients were included

A4 v

training cohort

validation cohort

140 patients treated between
January 2011 and March 2016

60 patients treated between
April 2016 and December 2017

FIGURE 1 | Recruitment pathway for patients in this study.

corresponding VOIs, including first-order statistics, shape-
based, and texture features. More information about the
radiomic feature extraction methodology can be found in
Supplementary Method 1.

Surgery and Histopathologic Work-Up

All patients underwent FIGO surgical staging, and accepted
template systematic lymphadenectomy. All lymph node
specimens were processed and evaluated according to a standard
protocol. Histologic analysis of each template lymph node
dissection specimen included the following parameters: total
number of histologically detected lymph nodes and number
of positive nodes in each region as follows: external iliac,
internal iliac and obturator, and common iliac. Note that the
histopathologic LN status was still considered by case level in
our analysis. The 2014 World Health Organization (WHO)
classification (21) and the 2009 revised FIGO staging criteria
for EC (22) were used for histological diagnosis, grading, and
pathological staging.

DATA ANALYSIS

Feature Selection and Model Construction
Stability analysis of radiomic features between inter-/intra-
reader segmentations was firstly carried out. Thirty patients
were randomly chosen, and all of their images were segmented
separately by the two radiologists, thereinto, reader 1 then
re-segmented these images 1 week later. The intraclass

correlation coefficients (ICCs) are usually adopted to assess
the stability of radiomic features extracted from VOIs
delineated by different readers or segmented by the same
reader at different times. The radiomic features with ICC
>0.75 were retained since they had good agreement between
different segmentations.

Then, stability analysis between different versions of MR
scanners on radiomic features was carried out. With all the
patients randomly assigned to two MR scanners, Mann-Whitney
U test was used to find out whether a radiomic feature showed
statistical difference between different versions of MR scanners
in the training cohort. We removed the radiomic features
that had significant differences in the two versions of MR
scanners, which would improve the generalization capability of
our classifier.

Figure 2 shows the workflow of model development and
decision-making process for model selection. Four models
were constructed, including a clinical model with only clinical
parameters (Model©), a radiomic model with only radiomic
features (Model®?), and two combined model (Model®}! and
Model“R?). After model evaluation, the final model was selected
to be visualized as a clinical useful preoperative nomogram.
The detailed construction processes of the four models were
as follows.

Model®
The original feature set of the Model® consisted of all of the 10
clinical parameters, including age, CA125, tumor pathologic type
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TABLE 1 | Baseline characteristics of the training and test cohorts.

Training cohort (n = 140) Test cohort (n = 60)
PN(+) pN() P PN(+) PN(-) P P*
n=>52 n =288 n=15 n =45

Age, years 0.840 0.017 0.077

Mean + SD 55.271 £ 7.936 55.723 + 8.382 57.403 + 6.926 51.730 £ 9.111

Median (range) 56.000 (28.000-68.000) 56.000 (26.000-80.000) 59.000 (45.000-67.000)  53.000 (35.000-76.000)
CA125 level 86.740 + 133.348 24.962 + 23.559 0.002 84.491 + 100.066 26.772 £ 32.407 0.044 0.539
(ng/m),
Mean + SD
MR-reported DMI 0.001 0.033 0.524

Less than 50% 19 66 5 35

More than 50% 33 22 10 10
MR-reported PTD 3.802 £+ 2.435 3.929 + 1.994 0.735 3.758 £+ 2.341 3.072 + 1.535 0.300 0.031
(mm), Mean + SD
MR-reported tumor <0.001 <0.001 0.659
staging

| 16 68 3 38

Il 3 10

Il 32 10 10

% 1 0
MR-reported LN <0.001 0.367 0.104
status

cN(+) 17 6 2 2

cN(-) 35 82 13 43

pN(+), pathologically LN positive; pN(—), pathologically LN negative; SD, standard deviation; CA125, cancer antigen 125; DMI, depth of myometrial invasion; PTD, primary tumor
diameter; LN, lymph node; cN(+), clinically LN positive; cN(—), clinically LN negative.

CA125 level was acquired within 1 week before surgery with a threshold value between 0 and 35 U/ml.

The P* was derived from the univariate association analyses between each clinical parameter and different cohort.

TABLE 2 | Detailed acquired parameters in two MR scanners.

GE signa excite HD 3.0T GE discovery HD750 3.0T

Axial T2-fs-FSE# Sagittal T2-FSE Axial 3D-iso-LAVA-XV*  Axial T2-fs-FSE* Sagittal T2-FSE Axial 3D-iso-LAVA-XV*

TR/TE 5900/121 3300/130 41/1.8 5541/85 4633/120 7.9/41

FOV (cm) 40.0 22.0 35.0 40.0 22.0 35.0

Matrix Freq 320/Phase 256  Freq 320/Phase 256 Freq 350/Phase 350 Freq 320/Phase 256  Freq 320/Phase 256 Freq 350/Phase 350
Slice thickness (mm) 5.0 4.0 1.0 5.0 4.0 1.0

Slice gap 1.0 1.0 0 1.0 0.4 0

#T2-weighted fat-suppressed fast spin echo (T2-fs-FSE).

*Three-dimensional liver acquisition with volume acceleration DCE with isotropy scanning (3D-iso-LAVA-XV).

TR, repetition time; TE, echo time; FOV, field of view.

Enhanced scan was done by injecting gadopentetate dimeglumine (Omniscan, GE Healthcare) into the upper limb vein by using a high-pressure syringe, with a flow rate at 2.0 mi/s
and a total dose of 0.2 mmol/kg body weight. A total of 15 phases were obtained post-drug injection with a time interval of 15's in the sagittal plane, followed by a delayed phase with
isotropy axial scanning.

and differentiation by biopsy, tumor long-axis diameter, DMI, the ~ ModelR

ratio of tumor infiltration depth to myometrium depth, LN size, ~ The stable original feature set of the Model® consisted of
and adnexa or other organ involvement, which were all observed =~ 3,040 radiomic features that were dimensionally reduced by
on MR images. After feature selection via Mann-Whitney U test  stability analysis. Univariate analysis (Mann-Whitney U test
and the least absolute shrinkage and selection operator (LASSO)  and chi-square test) was performed to evaluate the difference
method, six features were retained to fit the Model®. The logistic =~ in LNM status, and the distribution of the p-values for the
regression model was constructed to examine the ability of the = radiomic features is shown in Supplementary Figure 1. The
clinical parameters in classifying LNM. retained significant features were then ranked by minimum
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A MRI segmentation B Feature extraction

. |
First-order: M

features

Slice image
segmentation

Shape-based
features

Texture
features

3D reconstruction

MRI, magnetic resonance image; 3D, three-dimensional.

FIGURE 2 | Flow diagram of radiomic model construction. (A) MR images segmentation. The tumor region in each MRI slice was manually segmented, and then the
whole tumor volume was reconstructed in order to extract 3D radiomic feature. (B) Radiomic feature extraction. Three types of radiomic features were extracted from
tumor volume. (C) Feature selection process including stability, univariate analysis, and multivariate analysis. The construction of ModelC starts from univariate
analysis. (D) Clinical application. After evaluating the four models, an optimal model was selected to plot nomogram for clinical computer-assisted decision support.

C Feature selection D Clinical application

Subgroup analysis
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analysis
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Multivariate analysis = Preoperative nomogram

redundancy/maximum relevance (mRMR), and the most
redundant features were removed. The LASSO method was
used to prevent overfitting. Two radiomic features were finally
selected to fit the Model®. Similarly, logistic regression model
was constructed to examine the ability of the radiomic features
in classifying LNM.

ModelCR1

All of the clinical parameters and retained 3,040 radiomic
features formed the stable feature set. Univariate analysis was
performed on this feature set. After removing features with
p-values > 0.05, we computed the mRMR ranking for the
feature set based on the concordance index (23, 24), and the
top 5% features were retained. Then, the recursive feature
elimination (RFE) method was performed to further select the
LNM-related features. The RFE algorithm repeatedly constructed
the model and removed the features, depending on the root
mean square error of the model by a cross-validation in the
training cohort.

ModelCR2

The stable original feature set of the Model“®? consisted of
stable radiomic features and clinical parameters except LN
size. Univariate analysis was first performed on this feature
set. Then, in the multivariable analysis, mRMR and the
LASSO method were performed successively. Logistic regression
model was constructed to examine the classification ability
of the combination of radiomic features and clinical primary
lesion information.

Assessment and Validation of Model

Performance

The receiver operating characteristic (ROC) curves were plotted
to assess the performance of the four models in both
cohorts. Area under ROC curve (AUC) was calculated for
quantitative comparison. The model with the highest AUC
was selected as the final model. Delong test was used to
compare AUCs between the training cohort and test cohort,
and a p-value > 0.05 indicated that there was no significant
difference in AUCs, which ensured that the model had an
enough low risk of over-fitting. Calibration curve was plotted
to evaluate the agreement between prediction result and
gold standard.

In previous research, good effects were gained in predicting
the metastasis of an EC-LN larger than 1cm (25). However,
there is no study that ever focused on metastasis prediction on
different sized LNs. So, we carried out a subgroup analysis on
LN size. Patients were divided into three subgroups according
to the LN size measured on MRI, including enlarged LNs
with diameter larger than 0.8cm (>0.8cm), normal-sized
LNs with diameter between 0.3 and 0.8cm (0.3-0.8 cm), and
normal-sized LNs with diameter smaller than 0.3 cm (<0.3 cm).

F-score (F; = %%) was calculated in these subgroups,

assuming that recall (equivalently, sensitivity, ij-;-ipm) and
precision (equivalently, PPV, positive predictive value, %)
are of equal importance, where TP, FN, and FP represent
true positive, false negative, and false positive, respectively.
The higher F-score synthetically reflects higher sensitivity and
higher PPV.
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TABLE 3 | Pathological characteristics of the patients in our study.

Training cohort Test cohort P
(n = 140) (n = 60)

Surgically histological 0.602
type, n (%)

Endometrioid 112 (80%) 47 (78.33%)

Non-endometrioid 28 (20%) 13 (21.67%)
Histological grade, n (%) 0.041

Well-differentiated 67 (47.86%) 17 (28.33%)

Moderately differentiated 52 (37.14%) 37 (61.67%)

Poorly differentiated 21 (15.00%) 6 (10.00%)
Pathological N stage, n (%) 0.138

pN- 88 (62.86%) 45 (75.00%)

pN+ 52 (37.14%) 15 (25.00%)
Pathological staging, n (%) 0.250

pl 68 (48.57%) 38 (63.33%)

pll 16 (11.43%) 6 (10.00%)

plll 50 (35.71%) 15 (25.00%)

plV 6 (4.29%) 1(1.67%)

Clinical Utility of the Final Model

In order to determine the clinical significance of the final model,
decision curves were plotted by quantifying the net benefits in
the training and test cohort. For the convenience of clinical
application, a visualized preoperative nomogram was developed
based on the formula exported by the logistic regression of the
final model.

Statistical Analysis

In this study, statistical analysis programs were completed by R
software (version 3.5.0; https://www.r-project.org). All statistical
hypothesis tests were two-sided, and p-values < 0.05 were
considered significant.

RESULTS

Patient Characteristics

The clinical and pathological characteristics in the two cohorts
are shown in Tables 1, 3, respectively. Pathologically LN positive
(pN+) patients formed 37.14% (52/140) and 25.00% (15/60)
of the training and test cohorts, respectively, and there was
no significant difference between them (p-value = 0.133, x>
test). The clinical parameters age and CA125 had no differences
between the two cohorts (p-value = 0.077 and 0.539 respectively,
Mann-Whitney U-test). In total, sensitivity and specificity were
28.36% (19/67) and 93.98% (125/133) according to the MR report
LN status after consensus within two radiologists in our study.
Also, the judgments by two radiologists on MRI were basically
stable (sensitivity was 0.642 and 0.552, and the specificity was
0.917 and 0.940, respectively). The inconsistency of judgment
was resolved by consultation. The Cohen’s kappa coefficients to
test consistency of the main MR indicators evaluated by the two
radiologists are listed in Supplementary Table 1.

Feature Selection and Model Construction
In total, 1,393 radiomic features were extracted from each of
the three MR scanning sequences. Then, 4,179 radiomic features
were reduced to 3,040 by stability analysis.

In Model®, six clinical parameters were selected including
CA125, tumor differentiation by biopsy, DMI, the ratio of tumor
infiltration depth to myometrium depth, LN size, and adnexa
involvement, which were all observed on MR. In Model®, two
radiomic features were selected including correlation and HGLE.
In Model“R!, four risk factors including two clinical parameters
(CA125 and LN size) and two radiomic features (correlation
and HGLE) were used to build the prediction model (Figure 3)
(13). The two radiomic features were extracted from the delayed
phase of the 3D-Iso-LAVA and sagittal T2WT FSE, respectively.
In Model“®?, the LN size was removed and the same other three
indicators (CA125, correlation, and HGLE) were selected. The
detailed calculation formulas for Model“?! and Model“®? were
given in Supplementary Method 2.

Assessment of Predictive Models

Model“R! showed a significant ability in detecting pN+ with
an AUC of 0.892 [95% confidence interval [CI]: 0.834-0.951]
in the training cohort and an AUC of 0.883 (95% CI: 0.786-
0.980) in the test cohort. Nomogram (Figure 4C) was established
for Model“R!. The p values calculated from Delong tests were
0.875, 0.8416, 0.7008, and 0.5865 for Model“R!, Model“®?,
Model®, and Model®, respectively, indicating that there were no
significant differences in AUCs between the training cohort and
test cohort for each model. Performances of the four models
in the training and test cohort are shown in Figures 4A,B.
Based on the threshold determined by Youden’s index in the
training cohort, we used net reclassification index (NRI) to
analyze the improvement brought by Model“R! compared with
other models. The results showed that Model“R! outperformed
Model® (NRI = 0.306, P < 0.001), Model® (NRI = 0.134, P =
0.010), and Model“®? (NRI = 0.090, P = 0.077). Meanwhile,
Model“R! also significantly surpassed MR reports by radiologists
(NRI = 0.489, P = 0.006). Besides, the calibration curves were
plotted in both cohorts for further performance evaluation of
Model“R! (Figures 5A,B). Calibration curves show good fitness
for probability of LNM (Hosmer-Lemeshow test, p-value
0.961 in the training cohort, 0.803 in the test cohort). Figure 5C
shows patients’ risk scores calculated from Model“R!, intuitively
indicating its high classification ability.

As shown in Figure 6A, in the subgroup of enlarged LN,
Model®R! achieved the highest sensitivity of 0.970, equal to that
predicted by MR report. In the subgroup of normal-sized LNs
(0.3-0.8 cm), Model“R! displayed the highest accuracy of 0.846
and a sensitivity of 0.647, which far surpassed the MR report
(accuracy, 0.785; sensitivity, 0.235). In the subgroup of normal-
sized LNs (<0.3cm), ModelCR1 showed the best accuracy of
0.849 and a moderate sensitivity of 0.471, however, still greatly
outperforming the MR report (accuracy, 0.817; sensitivity, 0.000).
Meanwhile, F-score and accuracy in three subgroups are shown
in Figures 6B,C, respectively. The highest F-score and most
powerful accuracy of ModelCR1 were reflected among the five
predictive models.
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FIGURE 3 | (A) LASSO coefficient profiles of the clinical parameters in ModelC. According to the 1 standard error of the minimum criteria (the 1-SE criteria), the dotted
line was plotted at the selected log()) (—2.914) via 10-fold cross-validation. (B) LASSO coefficient profiles of the radiomic features in ModelR. A log(x) value of —1.750
was chosen (10-fold cross-validation, 1-SE criteria). (C) Feature selection using the RFE method in Model®R. The rank of feature importance was obtained using the
random forest method; RFE built the model continuously by eliminating the lower ranking feature. The RMSE was used to select the optimal feature set in a 10-fold
cross-validation. (D) LASSO coefficient profiles of the combined feature set in Model®R2, A log(x) value of —1.983 was chosen (10-fold cross-validation, 1-SE criteria).
RFE, recursive feature elimination; RMSE, root mean square error.

DISCUSSION with conventional MRI (26); however, there have been conflicting
reports in the literature regarding the detection of LNM at

In the present study, we developed four predictive models based diffusion-weighted MR imaging (DWI). Nakai et al. (27) used
on multiplanar DCE MR images and clinical parameters for LNM 15T MRI to evaluate nodal ADC values in gynecologic
in EC patients. Model“R!, which consisted of radiomic features, malignancies and were unable to differentiate benign from
LN size, and CA125, showed the best discrimination ability,  malignant LNs. Wang et al. (28) proposed a tumor biomarker
especially in patients with normal-sized LNs (diameter, 0-0.8cm  predictive method by combining human epididymis secretory
on MRI) and the sensitivity was greatly improved compared with  protein 4 (HE4) and CA125, achieving a high sensitivity of 94.1%
the routine MR reports. The high F-scores indicated that while  but a low specificity of 30.7%. Notably, there is no clearly defined
the sensitivity increased significantly, the PPV remained high. HE4 cutoff value for EC at present. In our study, we incorporated
A non-invasive and convenient preoperative assessment for  CA125 in our models, which was more generally accepted than
LNM is crucial for EC treatment decision and prognosis  HE4. Kang et al. (29) developed a low-risk prediction model for
prediction. Patients’ data from preoperative procedures such  LNM based on MRI and serum CA125 data in endometrioid-
as MRI, biopsy, and CA125 have been studied to assess LNM  type EC patients, and obtained sensitivity and specificity of 84.9
in recent years. MRI still remained the cornerstone in LN  and 55.5%, respectively. Here, three MRI parameters including
assessment in EC, showing satisfactory specificity but relatively =~ DMI, LN enlargement, and extension beyond uterine corpus
low sensitivity. The combination of relative apparent diffusion  were identified to be independent risk factors for LNM. In our
coefficient (ADC) value and LN size was reported to result in  study, we obtained CA125 and MR report LN size as risk factors
a significant increase in sensitivity from 25 to 83% compared  for EC LNM prediction, which was similar to that result, and
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FIGURE 4 | (A) ROC of the four models in training cohort. (B) ROC of the four models in test cohort. (C) Preoperative nomogram of ModelR1. ROC, receiver
operating characteristic.

showed good discrimination ability on both cohorts and different
LN size subgroups, especially for those normal-sized LNs, which
previous researches had not yet focused on.

In our study, we collected and analyzed all available
preoperative clinical parameters and established four prediction
models. We aimed to determine the prediction efficiency of
different models compared with the MR report in different
sized LN subgroups. MRI uses several common morphological
criteria in differentiating benign from malignant nodes (30) but
nodal size still remains the commonly accepted standard. Low
sensitivity is a recognized limitation when nodal size criteria
are used on cross-sectional imaging, especially for normal-sized
nodes due to limited spatial resolution. In this study, with node
size gradually decreasing, the MR report and Model® showed a

decreasing sensitivity, whereas the Model® and Model“®? were
more stable because of the high sensitivity in each sized LN
subgroup (Supplementary Figure 2). The performance of the
above classifiers confirmed our thoughts: When the LN was
normal sized on MRI, combining LN size in classifiers could
improve prediction accuracy but greatly reduce sensitivity. It
is already accepted that normal-sized LNs may also contain
metastases (31). The results of the MR report rely too much on
LN size so that when LN size is normal on MRI, the sensitivity
becomes very low. The concept remains the same when LN size
is enlarged (>0.8 cm), then the specificity becomes very low. This
can be due to the fact that it is usually difficult to differentiate
enlarged nodes because of benign pathology, such as infection,
granulomatous disease, and reactive hyperplasia vs. malignant
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FIGURE 5 | (A) The calibration curve in the training cohort. (B) The calibration curve in the test cohort. (C) Patient risk score output by Model°R1, while red bars show
scores for those who were pathologically LN(-).

disease (30). LN size was not a significant predictor for the
fusion model based on radiomics, although it could improve the
predictive accuracy. This may indicate that there was enough
information contained in the primary tumor region that could
detect LNM. It is feasible to predict LNM status without the
dependence on information of LNs.

Although Model“R! showed a slightly lower sensitivity than
Model® and Model“®? in the normal-sized group, its accuracy in
each group is the highest, and the F-score with normal-sized LNs
is greatly improved. Therefore, it was proposed as the optimal
prediction model. To our knowledge, this is the first subgroup
analysis on different sized LNs with preoperative nomogram
study in EC.

Due to a variety of MR scanner parameter settings and scanner
models, it is difficult to guarantee different scanners with exactly
the same imaging quality, thus making it difficult to ensure
the stability of radiomic features. By eliminating the radiomic
features sensitive to scanner models and parameter settings in the

training cohort, the radiomic model generalization ability can be
improved. The radiomic texture features (correlation and HGLE)
selected in Model“R!, Model“R?, and ModelR reflected two kinds
of heterogeneity of VOI with a Pearson correlation coefficient
of 0.095. Correlation shows the linear dependency of gray-level
values to the corresponding voxels in the gray-level cooccurence
matrix (GLCM) of MRI. HGLE is a measure of the proportion of
areas with higher gray values in the tumor. These two radiomic
features indicated that the extent of heterogeneity of tumor is
associated with LNM. The more heterogeneous the tumor, the
higher the risk of LNM.

The limitations of the present study include two aspects. First,
there was no external validation. Multicenter investigation with
a larger dataset was needed to further validate the generalization
ability of our model. Second, genomic information was not yet
incorporated into our models. A combination of gene marker
panels and radiomic features will be promising in evaluation
of EC.
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In conclusion, our study presented a predictive model based
on multiplanar contrast enhanced MR images and incorporated
both the radiomic features and clinical parameters, which showed
good predictive accuracy for preoperative LNM in EC, especially
in patients with normal-sized LNs.
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Superpixel-Based Conditional
Random Fields (SuperCRF):
Incorporating Global and Local
Context for Enhanced Deep Learning
in Melanoma Histopathology
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Computational pathology-based cell classification algorithms are revolutionizing the
study of the tumor microenvironment and can provide novel predictive/prognosis
biomarkers crucial for the delivery of precision oncology. Current algorithms used on
hematoxylin and eosin slides are based on individual cell nuclei morphology with limited
local context features. Here, we propose a novel multi-resolution hierarchical framework
(SuperCRF) inspired by the way pathologists perceive regional tissue architecture
to improve cell classification and demonstrate its clinical applications. We develop
SuperCRF by training a state-of-art deep learning spatially constrained- convolution
neural network (SC-CNN) to detect and classify cells from 105 high-resolution (20x)
H&E-stained slides of The Cancer Genome Atlas melanoma dataset and subsequently,
a conditional random field (CRF) by combining cellular neighborhood with tumor regional
classification from lower resolution images (5, 1.25x) given by a superpixel-based
machine learning framework. SuperCRF led to an 11.85% overall improvement in the
accuracy of the state-of-art deep learning SC-CNN cell classifier. Consistent with a
stroma-mediated immune suppressive microenvironment, SuperCRF demonstrated that
(i) a high ratio of lymphocytes to all lymphocytes within the stromal compartment
(o = 0.026) and (ii) a high ratio of stromal cells to all cells (p < 0.0001 compared to
p = 0.039 for SC-CNN only) are associated with poor survival in patients with melanoma.
SuperCRF improves cell classification by introducing global and local context-based
information and can be implemented in combination with any single-cell classifier.
SuperCRF provides valuable tools to study the tumor microenvironment and identify
predictors of survival and response to therapy.

Keywords: deep learning, machine learning, conditional random fields, digital pathology, cell classification,
melanoma, tumor microenvironment
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SuperCRF: Digital Histopathology Hierarchical Framework

INTRODUCTION

Cancer is a highly complex, non-autonomous disease. The
interactions between microenvironmental selective pressures
and cancer cells dictate how cancer progresses and evolves.
Accurate and spatially explicit characterization of the tumor
microenvironmental landscape including how cancer cells
interact with the extra-cellular matrix and other cellular players
such as stromal cells and immune cells within the tumoral niche,
is needed to understand the context in which cancer evolves, and
may also provide robust predictor of cancer behavior for risk-
stratification (1). More specifically the recent success of cancer
immunotherapy including the spectacular response observed in
patients with previously incurable melanoma, a highly aggressive
form of skin cancer, calls for a better understanding of the
cancer-immune interface.

In the new era of digital pathology, advanced image analysis
can objectively, consistently, and quantitatively characterize the
different components of the tumor and how they spatially
interact, and as a result assist pathologists in tasks such as tumor
grading (2). Algorithms for cell detection and classification
are key components of this process. Machine learning, and
more recently deep learning algorithms, both exploiting the
phenotypic differences in nuclear morphology between each cell
type, revolutionized the field yielding significantly better cell
detection, segmentation, and classification results (3-9).

However, even state-of-the-art deep learning algorithms can
underperform especially in cases where different cell types appear
morphologically similar. Current computed pathology tools
focus on individual cell nuclei morphology with limited abstract
local context features, whereas pathologists incorporate regional
tissue architecture (in practice, by zooming in/out), together with
cell morphological features to accurately classify cells.

Here, we hypothesize that robust tumor regional classification
from lower resolution images can provide the contextual
information that is key to further improve single cell classification
algorithms. Our aim is to introduce dependencies on global tissue
context and cell neighborhood and enhance learning results
for cell classification from deep convolution neural networks
(CNNs). Probabilistic graphical models have successfully been
applied to improve cell classification in time-lapse imaging by
taking into account the temporal context of a cell (10-15).
Probabilistic graphical models have also been used successfully in
histopathology images for pathology detection and segmentation
(16-19), disease and tissue staging (20, 21), and nuclei
segmentation (22). In our study, instead of time dependency, we
apply graphical models to introduce the spatial context of a cell
as additional information to improve single-cell classification.
A multi-resolution hierarchical framework was proposed to
mirror the way pathologists perceive tumor architecture, and
applied to whole-slide images (WSI) hematoxylin and eosin
(H&E)-stained slides of melanoma skin cancer (Figure 1A). We
demonstrated that our new system is computationally efficient
and significantly improves single cell classification. The increased
accuracy in cell classification further enabled us to shed new
light on the understanding of cancer-immune-stroma interface
of melanoma.

MATERIALS AND METHODS

Datasets

In total, 105 full-face, H&E stained section images from formalin-
fixed, paraffin-embedded (FFPE) diagnostic blocks of melanoma
skin cancer from The Cancer Genome Atlas (TCGA) were
used. We scaled all digitized (Aperio ImageScope) histology
images to 20, 5, and 1.25x magnification with pixel resolution
0.504, 2.016, and 8.064 um, respectively, using Bio-Formats
(https://www.openmicroscopy.org/bio-formats/). WSIs at 20x
magnification (representative size: 30,000 x 30,000 pixels), were
split into sub-images (tiles) of 2,000 x 2,000 pixels each, for
computational efficiency.

For the purpose of training and testing the different
parts of our system we divided the dataset into sub-
datasets, namely single-cell classification dataset, 5x sub-dataset,
1.25x sub-dataset and discovery sub-dataset (Table 1, also see
Supplementary Tables 1-4).

Single-Cell Classification Using a Spatially

Constrained Convolutional Neural Network
We used a Spatially Constrained Convolutional Neural Network
(SC-CNN) (6) for single cell classification (Figure 1E). SC-CNN
uses spatial regression in order to predict the probability of a
pixel being the center of the nucleus. The nucleus is classified
by a neighboring ensemble predictor (NEP) in conjunction
with a standard softmax CNN. We randomly initialized the
network’s layers as we have found that to perform better than
transfer learning from real-world datasets in our experiments
with pathological samples.

Superpixel-Based Tumor Region

Classification

A machine learning superpixel-based framework was
implemented in Matlab (23) to classify tumor tissue regions
and was subsequently applied to low resolution (5 and 1.25x)
images. Reinhard stain normalization (24) was applied separately
on each of the 5 and 1.25x sub-datasets to account for stain
variabilities that could affect the classification (25).

Downscaled images were segmented using the simple linear
iterative clustering (SLIC) superpixels algorithm (26), which is
designed to provide roughly uniform superpixels. Choosing the
optimal number of superpixels is important to ensure that the
superpixels capture homogeneous areas and adhere to image
boundaries. With our pathologist’s input, we visually identified a
size of superpixels that met these criteria and chose the number of
superpixels automatically based on each image’s size (Equation 1).

. Si
N; = ceiling <ﬁ)

where N; is the number of superpixels in the ith image, S; is
the size of image i in pixels, and U (here U = 1,250) is a
constant held across all images that defined a desired size of the
superpixels. This means, on average, a superpixel occupies an
area of approximately 35 x 35 pixels, equivalent to 280 x 280
mm?. We identified the superpixels belonging to each area by

(1)
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FIGURE 1 | Overview of the SuperCRF framework for analyzing H&E-stained pathological images of melanoma. (A) Major histological features of melanoma
architecture. (B) Projection of regional classification results using superpixels from various scales to the 20x magnification for the improvement of single-cell
classification. (C) Graphical representation of node dependencies (cells and superpixels) across different scales. (D) Region classification scheme using a superpixel
based machine-learning method in whole-slide images (5x and 1.25x magnification) (E) Single-cell classification using a state-of-the-art spatially
constrained-convolution neural network (SC-CNN) classifier (F) representative results of the SC-CNN cell classifier alone and combined with our SuperCRF system.
Note the misclassification of various stromal cells by the SC-CNN, which are corrected by our model.
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determining whether their central points fell within the regions
annotated by the pathologist.

Overall, for the 1.25x training sub-dataset, we found 15,477
superpixels belonging in tumor areas, 6,989 in stroma areas,
141 in epidermis and 691 in lumen/white space, while for the
5x training sub-dataset we found 1,193 superpixels belonging
in tumor areas, 1,324 in stroma areas, 360 in epidermis, 506 in
lymphocyte clusters and 830 in lumen/white space.

Next, we extracted four types of features, 85 in total,
from each superpixel, including seven histogram features

(mean values of hue, saturation, and brightness, sum of
intensities, contrast, standard deviation, and entropy),
and well-established texture features [12 Haralick features
(27), 59 rotation-invariant local binary patterns (RILBP), 7
segmentation-based fractal texture analysis (SFTA) features
(28)]. Features were standardized into z-scores. The mean
values and standard deviation of the features from the
training set were used for the normalization of the test set.
A support vector machine (SVM) with a radial basis function
(RBE, vy 1/number_of_features) was trained with these
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TABLE 1 | Summary of the data used to train and test the different parts of the SuperCRF system, as well as study the cancer-immune-stroma interface (also, see

Supplementary Tables 1-4).

Name Number of WSIs Purpose

Single-cell classification 8

sub-dataset Training SC-CNN: 3 (348 tiles)
Training SuperCRF: 2 (84 tiles)
Testing: 3 (290 tiles)

5x sub-dataset 16
Training: 10
Testing: 6

1.25x sub-dataset 58
Training: 21
Testing: 37

Discovery dataset 97

space

Single-cell classification into four categories: cancer cells, lymphocytes, stromal cells,
epidermal cells

Region classification into five categories: tumor, normal stroma, lymphocyte cluster, normal

epidermis, lumen/white space

Region classification into four categories: tumor, normal stroma, normal epidermis, lumen/white

Study of the tumor-stroma interface. To accelerate the analysis, 50 tiles (2,000 x 2,000 pixels)

containing tumors were randomly sampled from every whole-slide image (WSI)

The values are bold for visual (illustration) purposes.

features to classify superpixels into different biologically
meaningful categories.

For the 5x sub-dataset, superpixels were classified into
five categories: tumor area, normal stroma, normal epidermis,
lymphocytes cluster, and lumen/white space. We increased the
penalty in the cost function for the epidermis and lumen/white
space classes by a factor of 10 when training the SVM, to account
for class imbalance. For the 1.25x sub-dataset superpixels
classification consisted of four categories: tumor area, normal
stroma, normal epidermis, and lumen/white space. We randomly
selected a subset of 5,000 cancer and stroma superpixels and
increased the penalty in the cost function for the epidermis and
lumen/white space classes by a factor of 10, again to account for
class imbalance (Figure 1D).

SuperCRF

Single-cell based classification approaches often assign a
class label based on the morphology of -individual cells,
regardless of their neighboring cells. However, these spatial
relationships provide important information that is used by
pathologists. Conditional random fields (CRF) are undirected
graphical models that represent efficient ways to model
dependences, by factorizing the probability density into a
specific set of conditional dependence (29). Therefore, the tumor
microenvironment can be modeled by a CRF by introducing
nodes for cells and superpixels, as well as edges whenever there
is a spatial relationship between nodes.

We excluded lymphocytes from the CRF assumption that
neighboring cells have a higher probability to share the same
class labels, since they infiltrate, in an inconsistent manner
ranging from sparse to highly dense, in tumor as well as stromal
tissue. Therefore, lymphocytes kept their label as assigned by
the SC-CNN.

Let n be the total number of cells (besides lymphocytes) in
the image and ¢; € {stromal, cancer, epidermis}, i=12...,n
the input labels of the cells as assigned by the SC-CNN. Let
si» be the corresponding superpixel for a cell ¢; with s; €
{stromal, cancer, epidermis, white space} for 1.25x superpixels
and 5; € {stromal, cancer, epidermis, lymphocyte, whitespace}

for 5x superpixels. x € {c,s} comprises the nodes
of the CRF. The CRF assigns output labels y; €
{stromal, cancer, epidermis, lymphocyte, white space} based
on the input data. The joint probability distribution over input
data and output labels, p(y1, 2, ..., ¥n %1 ,%2, ..., X,) can be
modeled by factorizing the probability density into a specific set
of conditional dependence relationships (Figure 1C).

1
7 exp(Z E (xi,yi, xNi, )’Ni)) (2)

i=1
P2 =]p0ilx) =
n
where Z is a normalizing constant, w is a weight vector and
E (xi,}/b .X'Ni, )’Nb) = Z @ (xi)}/i) + Z Wc (XN[, le) (3)

defines the energy function of the CRF.

The node potentials & (x;, y;) represent the evidence that a cell
i, with the input label x; takes the class label y;. The node potential
can be defined as @ (xi,y,-) = f(xi,yi)+b, with f (xi,yi) =

1 ifyi=x
{ 0 else

The edge potentials . (xNi, yNi) model the probability that
neighboring cells take a similar cell label. Nj is the neighborhood
of cell i, defined as all the cells that can be found in a defined
distance. The edge potentials are defined as: . (x,-, ¥i, xNj, yNi)
= f (xi-yi) #f (xNi, yN;) + b.

The CRF was trained with stochastic gradient descent and the
decoding was applied using loopy belief propagation. The toolbox
of M. Schmidt was used to train and decode the CRF (30).

The source code for the study is available at Github (https://
github.com/Henrik86/SuperCRF).

" and b representing the bias.

Survival Analysis

We evaluated the prognosis value of the abundance of stromal
cells and location of lymphocytes in our discovery sub-dataset.
The ratio of stromal cells to all cells, the ratio of lymphocytes in
cancer areas to all lymphocytes, and the ratio of lymphocytes in
stroma areas to all lymphocytes were calculated for each patient.
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Patients were divided into high and low ratio groups, split at the
median value of all scores. Patients with a ratio of lymphocytes
being high inside the tumor area and low in the stroma were
categorized as the “immune infiltration” group whereas patients
with a ratio of lymphocytes being low in the tumor area and
high in the stroma were categorized as “immune excluded,” based
on the recent classification of the main immune phenotypes of

anticancer immunity that predict response to immunotherapy
(31). The number of patients belonging to neither of these two
groups (high/high n = 6 and low/low n = 5) was too small
to perform the survival analysis. Non-parametric Kaplan-Meier
estimation was used to analyze overall survival in 94 patients.
Differences between survival estimates were assessed with the
log-rank test. Finally, Cox regression models were adjusted,

Example 1

Example 2

FIGURE 2 | Representative examples of both superpixel and single-cell classification with or without SuperCRF. (A) Superpixels-based regional classification on
representative whole slide images (5x magnification) of melanoma. Green: tumor area, Red: stroma area, Blue: normal epidermis, Yellow: lymphocyte cluster.

(B) Representative images showing cell classification using a state-of-the-art spatially constrained-convolution neural network (SC-CNN) and four conditional random
fields (CRF) models. Note the mislabeling of many cancer and stromal cells as epidermis cells when using the SC-CNN and the gradual increase in classification
accuracy with the best accuracy achieved with the SuperCRF. Green, cancer cells; Red, stromal cells; Blue, lymphocytes; Yellow, epidermis cells.

CRF (5x) SuperCRF
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testing for the independent prognostic relevance of our risk
scores. To test if Breslow-thickness (the distance between the
upper layer of the epidermis and the deepest point of tumor
penetration) was contributing to a high ratio of stromal cells,
we created a multivariate model containing both stromal cells
ratio and Breslow-thickness, as well as two univariate models
containing the covariates separately. Pearson’s correlation was
used to test for linear relation between the two variables.

RESULTS

SuperCRF Improves Accuracy of Cell

Classification

First, we trained the state-of-the-art deep learning method,
spatially-constrained CNN (SC-CNN) algorithm, to detect and
classify cells in high resolution (20x) WSI into four categories:
cancer cells, stroma cells, lymphocytes, and epidermis cells. The
SC-CNN network yielded an accuracy of 84.63% over 4,059 cells
in the independent test set (Table 1, Supplementary Table 5).
Visual inspection revealed that the majority of false positives were
misclassification of stromal and cancer cells as epidermis, which
confirmed our initial motive for the incorporation of regional and
spatial information to improve classification.

Subsequently, we trained a conditional random field (CRF)
by combining the cellular neighborhood with tumor region
classification (cancer area, normal stroma, normal epidermis,
lymphocyte cluster, and lumen/white space) from low resolution
images (5 and 1.25x, Figure 1B), given by the superpixel-based
machine-learning framework. The SLIC superpixels algorithm
has previously been shown to be computationally efficient,
requiring only 3s on average to segment a single downscaled
image of 2,500 x 2,500 pixels using a 2.9 GHz Intel core i7
processor. Performance of classification using individual and
various combinations of feature sets was tested and the use of all
85 features, yielded the highest accuracy (23). It was then applied
on the two datasets of 1.25 and 5x magnification (Figure 2A)
and achieved high accuracy in regional classification (1.25x sub-
dataset: Overall accuracy 97.7% in the training set using 10-fold
cross validation and 95.7% in 2,997 superpixels annotated in the
37 images of the independent test set; 5x sub-dataset: Overall
accuracy 97.1% in the training set using 10-fold cross validation
and 95.2% in 1,798 superpixels annotated in the six images of the
independent test set).

To train SuperCRE we first introduced dependencies on cell
neighborhood. Cells were considered neighbors in the CRE
if they were located in a spatial proximity of 15um (or 30
pixels), which resulted in an average of 1.3 neighbors per cell.
Subsequently, we integrated this local neighborhood with global
context by connecting the CRF single-cell nodes to the regional
classification results from superpixels. To determine the best
configuration, we trained four different CRFs and compared
their performance in terms of single-cell classification on a
test set, including three samples, 290 tiles and 4,059 single-cell
annotations (1,527 cancer cells, 676 lymphocytes, 837 normal
epidermis cells, 1,019 stromal cells).

In detail, for the first CRF we did not use any context
classification, just cell neighborhood dependencies, i.e., the

TABLE 2 | Evaluation of different conditional random fields (CRF) versions and a
state-of-the-art spatially constrained-convolution neural network (SC-CNN) deep
learning cell-classifier.

Method Accuracy (%) Precision Recall
SC-CNN 84.63 0.8756 0.8808
singleCellCRF 87.61 0.8973 0.8946
CRF1.25x 90.79 0.9248 0.9110
CRF5x 91.70 0.9298 0.9126
SuperCRF 96.48 0.9644 0.9629

The values are bold to indicate the highest achieved accuracy, precision and recall.

only edges of the CRF were between neighboring cells
(singleCellCRF). For the second and third CRF we introduced
superpixel nodes. Now, single-cell nodes are not only connected
to neighboring cells but every single-cell node is also connected
to a superpixel node. We trained a CRF for 5x superpixel
classification (CRF5x) and 1.25x superpixel classification
(CRF1.25x%). Furthermore, we trained a CRF in which every
single-cell node was connected to two superpixel nodes in 5
and 1.25x resolution (SuperCRF). Already the singleCellCRF
(Accuracy: 87.6%, Precision: 89.7%, Recall: 89.5%, Table 2)
improves the classification accuracy compared to the SC-CNN
(84.6%, Precision: 87.6%, Recall: 88.1%, Table 2). However, the
use of contextual information by the introduction of superpixel
nodes, markedly improves the classification metrics (Accuracy
90.8%, Precision: 92.5%, Recall: 91.1%, Table 2) for CRF1.25x
and (Accuracy 91.7%, Precision: 93%, Recall: 91.3%, Table 2)
for the CRF5x. The SuperCRE, using nodes from superpixels in
both 5 and 1.25x resolution images, as well as the neighboring
cells, resulted in the highest classification outcome (Accuracy
96.5%, Precision: 96.4%, Recall: 96.3%, Table 2, Figures 1F, 2B,
Supplementary Tables 5-9).

SuperCRF’s Increased Accuracy of Cell
Classification Improves Confidence in
Stromal Cell Ratio as a Predictive Feature

of Survival in Melanoma
The crosstalk between cancer cells and stromal cells play an
active role in tumor invasion and metastasis, and controlling
immune infiltration and is increasingly recognized as a hallmark
of cancer (32). Tumor-stromal cell ratio has been shown to
hold prognostic and predictive information in patient with solid
tumors (31, 33, 34). Here, we demonstrate that a high stromal
cell ratio is also a predictor of poor prognosis in melanoma
using both values derived from the multivariate models of SC-
CNN and SuperCREF in our discovery sub-dataset. Yet SuperCRF
yields a significantly higher confidence in the predictive value of
the stromal cell ratio (SuperCRF: p < 0.0001, Coxph-Regression
(discretized by median): HR = 4.1, p = 0.006; SC-CNN: p =
0.039, Coxph-Regression (discretized by median): HR = 2.4, p
= 0.05, Figure 3A).

Similar regression coeflicients for both stromal cells ratio
and Breslow-thickness covariates were observed between the
multivariate and the two univariate survival models (1.404 and
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FIGURE 3 | Associations between survival outcomes and SuperCRF-define risk groups in the Cancer Genome Atlas (TCGA) cohorts of patients with melanoma. (A)
Kaplan-Meier Survival curves for patients in the high-risk group (blue) and low risk group classified by stromal cells ratio derived from SuperCRF (left) and using only
the SC-CNN classifier. Note the difference in the p-value using the two methods. (B) Kaplan-Meier Survival curves for patients in the high-risk group (blue) and low risk
group classified by immune phenotype based on spatial distribution of lymphocytes in different tumor compartments derived from SuperCRF.

0.171, respectively, for the multivariate model and 1.633 and
0.179 for the univariate models) of the SuperCRF. Pearson’s
correlation showed no correlation between stromal cells ratio and
Breslow-thickness (r = —0.05), overall indicating that stromal
cells ratio is independent to Breslow-thickness.

Combining Cell and Region Classification:
Location of the Immune Infiltrate Is

Predictive of Survival in Melanoma

There is increasing evidence of the value of immune infiltration
to provide prognostic information and predictors of response
in patient with melanoma [recently reviewed in (35)]. The
spatial compartmentalization of immune cells afforded by our
SuperCREF (by the cell and region classification results) was used
to define the recently-described main immune phenotypes of
anticancer immunity that predict response to immunotherapy
(31). Patients with a classified “immune excluded” phenotype,
defined by a low lymphocyte ratio inside the tumor area and
high inside the stroma area, was associated with a significantly
worse prognosis compared to “inflamed” tumors characterized
by a high ratio of lymphocytes inside the tumor and a low ratio
inside the stroma (p = 0.026, Cox PH -regression: HR = 2.57,
p = 0.032, Figure 3B). Taken together, our data is consistent
with the model of a stroma-mediated immune suppressive
microenvironment that exclude T cells from the vicinity of
cancer cells.

DISCUSSION

In this study, we implemented a framework which fuses
traditional machine learning with deep learning to model the
way pathologists incorporate large-scale tissue architecture

and context across spatial scales, to improve single-cell
classification in large whole-section slide images. Using
this approach, we demonstrated a marked 11.85% overall
improvement in the accuracy of the state-of-art deep
learning SC-CNN cell classifier. Also, the similar values
of both precision and recall and their simultaneous
increase in every step show the wunbiased nature of
our approach.

Computational pathology algorithms, typically exploit the
inter-cell phenotypic differences for cell classification, yet even
state-of-art deep learning algorithms tend to underperform in
this task, mainly due to the disproportional numbers of cells
sharing similar nuclear morphological features, or due to intra-
class diversity, seen for example in tumor stroma (fatty tissue,
necrosis, vessels, muscle, fibroblasts, and associated collagen).
Whilst computers can quantify morphological differences in
a considerably more complex way, pathologists still generally
outperform computers in cell classification. An essential
reason is that they incorporate key contextual information
such as heterogeneous tissue architecture, together with cell
morphological features.

The idea that a cancer cell is dependent on its neighboring
cells and global context is comparable to the fundamental
concept in landscape ecology that a living population depends
on the existing habitats and is not equally spread on the terrain.
A particular habitat could favor the development of specific
organisms. In practice, landscape ecologists denote the habitats
from satellite images and then “ground-truth” them by detailed
small-scale sampling of the habitats of interest (36). This inspired
the design of our framework by introducing CRF dependencies
between (i) the cells and their neighbors and (ii) the cells and to
the global context (i.e., habitats from low resolution captured by
the classified superpixels).
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Our proposed framework connects deep learning and classical
image processing using probabilistic graphical models. All the
information was combined using a CRF graphical model, which
have been widely applied in image analysis for pathological
images, yet mainly for semantic segmentation (16, 17, 37, 38).
Here, (1) we introduce a new way to capture high-level spatial
context using superpixels, (2) propose a new CRF model that
introduces dependences over space and across different spatial
scales, thereby modeling multiple cells and their associated
superpixels simultaneously for more accurate classification, (3)
introduce the concept of context-specific CRF modeling, given
that the strength of dependence can be variable according
to tumor compartments. There is an increasing interest in
combining deep learning with different strategies, or “umbrella
approaches,” such as the use of traditional machine learning to
spatially explicit context used in this study, with the aim to,
not only refine and improve the overall existing deep learning
network (17, 39-41), but also facilitate biological interpretation
compared to the “black-box”-like approach of deep-learning-
only methods. However, optimizing and inventing new and
refined deep learning networks is of equal importance, as during
experimentation we observed that the better we made our
single-cell classifier baseline, the more effective our SuperCRF
approach became.

We also showed that combining cell classification with the
global context given by the region classification (both inherent
parts of the SuperCRF architecture) can open new avenues
to study the cancer microenvironment from histopathological
slides. For example, the spectacular response observed in clinical
trials of immunotherapy in patients with incurable melanoma
calls for a better understanding of the tumor microenvironment
and in particular the cancer-immune-stroma interface. Here,
our approach and its ability to look at lymphocytes within
their cellular and global context can predict melanoma patient
survival and potentially provide biomarker stratification for
immunotherapeutic approaches, by identifying the three main
types of tumor immunophenotypes including (i) inflamed
tumors which are characterized by infiltrated T Cells within
the tumor, and associated with a generally good prognosis (ii)
immune-excluded tumors, in which T cells are present but
prevented to infiltrate the tumor due to stromal interaction, and
associated with worse prognosis (and obviously (iii) immune
desert tumors). This could also potentially be extended to provide
quantitative biomarkers to characterize the immune infiltrating
response to immunotherapy. We also demonstrated that in
accordance with the immune-excluded phenotype, tumors rich
in stromal cells had a marked poorer prognosis in patients with
melanoma. With p-value lower by two orders of magnitude,
our method provide stronger predictive power than by using
deep-learning only method for cell classification.

In the future, we plan to extend our framework and include
an upward optimization step for the superpixels which may
include additional classes for cells, regions and structures in
order to provide a complete characterization of the tumor
microenvironment. This may include deriving further classes
from higher resolution images as we did for lymphocyte
clusters in this study which were difficult to visualize in

1.25x resolution images. Incorporating additional deep learning
methods should also be explored to perfect the classification
of superpixels, for example by incorporating features extracted
from a DCNN or a deep autoencoder, or to provide a potential
alternative to superpixels, which may not be appropriate for the
characterization of complicated structures, such as glands (42).

The primary aim of this study was to demonstrate proof-of-
principle that the introduction of global and local context as cell
dependencies using a probabilistic graphical model as a post-
processing step, like an “umbrella,” can significantly improve
the performance of deep learning or classical machine learning
cell classifiers based only on cell-morphology and abstract
local context information. We chose the SC-CNN architecture
as our primary cell classification step due to its state-of-the-
art performance in cell detection and classification compared
to other well-established deep learning and classical machine
learning approaches (6). Alternatively, other promising deep
learning networks could potentially be used including Inception
v3 (43), Inception v4 (44), or a VGG architecture (45).

Opverall, our vision is to establish a network which will provide
a complete characterization of every component of the tumor
microenvironment where all the parts will interact with each
other like an ecological landscape. Such system has immense
potential and can be virtually transferred to any cancer type,
to provide a better understanding of the cancer-immune cell
interface, cell-stroma interactions, and predictive biomarkers of
response to novel therapies, including immunotherapy, which
has radically changed melanoma patient survival.

CONCLUSION

The novel general framework SuperCRF improves cell
classification by introducing global and local context-based
information much like pathologists do. SuperCRF can be
implemented in combination with any single-cell classifier
and represent valuable tools to study the cancer-stroma-
immune interface, which we used to identify predictors
of survival in melanoma patients from conventional H&E
stained histopathology.
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Surgical decision-making on advanced laryngeal carcinoma is heavily depended on the
identification of preoperative T category (T3 vs. T4), which is challenging for surgeons.
A T category prediction radiomics (TCPR) model would be helpful for subsequent
surgery. A total of 211 patients with locally advanced laryngeal cancer who had
undergone total laryngectomy were randomly classified into the training cohort (n =
150) and the validation cohort (n = 61). We extracted 1,390 radiomic features from the
contrast-enhanced computed tomography images. Interclass correlation coefficient and
the least absolute shrinkage and selection operator (LASSO) analyses were performed
to select features associated with pathology-confirmed T category. Eight radiomic
features were found associated with preoperative T category. The radiomic signature
was constructed by Support Vector Machine algorithm with the radiomic features. We
developed a nomogram incorporating radiomic signature and T category reported by
experienced radiologists. The performance of the model was evaluated by the area under
the curve (AUC). The T category reported by radiologists achieved an AUC of 0.775 (95%
Cl: 0.667-0.883); while the radiomic signature yielded a significantly higher AUC of 0.862
(95% CI: 0.772-0.952). The predictive performance of the nomogram incorporating
radiomic signature and T category reported by radiologists further improved, with an AUC
0f 0.892 (95% CI: 0.811-0.974). Consequently, for locally advanced laryngeal cancer, the
TCPR model incorporating radiomic signature and T category reported by experienced
radiologists have great potential to be applied for individual accurate preoperative T
category. The TCPR model may benefit decision-making regarding total laryngectomy
or larynx-preserving treatment.

Keywords: advanced laryngeal cancer, computed tomography, radiomics, T category, nomogram
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Wang et al.

TCPR in Advanced Laryngeal Cancer

BACKGROUND

Laryngeal cancer is a common malignant tumor in the head
and neck and occurs mainly in smoking men (1). A study by
the International Agency for Research on Cancer showed that
177,422 new laryngeal cancer cases occurred and resulted in
74,771 cancer-related deaths in 2018 (2).

The cancer control and functional outcomes of laryngeal
cancer patients are highly relied on the treatment strategy.
However, the management of laryngeal cancer remains
controversial to date (3, 4). Currently, total laryngectomy is
considered the most appropriate therapy for patients with
advanced laryngeal carcinoma because they usually have a poor
prognosis. Although total laryngectomy helps disease control,
it has obvious adverse effects on patients’ quality of life due
to the loss of voice, permanent tracheostomy and issues with
swallowing. In respect of which, Larynx-preserving surgery was
thus performed to preserve laryngeal function (5). Decision-
making about surgery are highly relied on tumor T category
pursuant to the newest National Comprehensive Cancer
Network (NCCN) Guidelines. The guidelines recommends
total laryngectomy for all T4 stage and most of T3 stage
laryngeal cancers, while some T3 stage diseases can benefit from
larynx-preserving surgery instead (6).

Usually, the distinction between T3 and T4 categories is
mainly based on the destruction degree of the extra-laryngeal
spread and/or outer cortex of thyroid cartilage (7). However,
accurate preoperative T category is clinically challenging.
Currently, the most commonly used imaging techniques for
T category (T3 vs. T4) are conventional imaging techniques
including CT and MRI. CT generally demonstrates higher
specificity but lower sensitivity as compared with MRI when
identifying thyroid cartilage invasion (8). Although CT is useful
in assessing the extent of extra-laryngeal spread or thyroid
cartilage penetration of tumor, it has obvious limitations. Beitler
et al. showed 74 and 81% positive predictive value of CT for
assessing the extent of thyroid cartilage invasion and extra-
laryngeal spread, respectively (9). However, Li et al. indicated
that CT was less useful for assessing full-thickness cartilage
invasion, with 47% of T4 disease being down-staged to T3
disease after pathological review (10). In contrast, MRI is more
sensitive than CT in detecting cartilage invasion, yet peritumoral
inflammation, edema and fibrosis may demonstrate similar
features with cartilage invasion (11). These findings indicated
the difficulty of accurate T category before surgery. Therefore, to
develop new non-invasive methods for preoperative evaluation
are needed for the purpose of determining the extent of extra-
laryngeal spread and thyroid cartilage penetration, which are the
most important considerations for selecting total laryngectomy
or larynx conservation.

In recent years, the proposed “radiomics” is developed
rapidly and has attracted great attention. It aims to extract

Abbreviations: TCPR, T category prediction radiomics; LASSO, least absolute
shrinkage and selection operator; AUC, area under the curve; ICC, interclass
correlation coefficient; ROC, receiver operating characteristic; SVM, support
vector machine.

huge amounts of objective features from medical images and
find out the significant features which have great potential to
expose disease characteristics that failed to be discovered by
naked eyes (12-15). Previous studies showed that radiomic
signatures as biomarkers have close correlations with clinical
stages, lymph node metastasis, and survival outcomes (16-19). As
there is no study explored whether radiomics would enhance the
accuracy of preoperative T category for patients with advanced
laryngeal cancer, we tried to explore CT-based TCPR as a novel
approach for individual accurate preoperative T category for
those patients, which would benefit clinical decision-making
(total laryngectomy or larynx conservation) before surgery.

MATERIALS AND METHODS

Patient Population

This retrospective study was approved by the Institutional
Review Board and the informed consent requirement was waived.
The whole cohort of this study was acquired from the medical
records of the Institutional database from April 2007 to March
2015. Patients with histologically confirmed laryngeal cancer
who had received total laryngectomy were included. Contrast-
enhanced CT examinations of the neck had been performed on
all patients before surgery. The inclusion criteria were as follows:
(1) newly diagnosed patients underwent contrast-enhanced CT
scans of neck before any treatment; (2) patients received total
laryngectomy 15 days after initial CT acquisition; and (3) patients
had pathologically confirmed T3 or T4 stage laryngeal cancer
after operation. The exclusion criteria were as follows: (1) poor
quality of CT images due to patients’ movement or artifacts, etc.;
(2) the slice thickness of CT scan >2.5mm; and (3) patients
received treatment.

A total of 211 patients met these criteria. Among which, 150
patients constituted the training cohort, including 146 males and
four females with mean age of 61.38 + 8.54 ranging from 39
to 85. A total of 61 patients (59 males, two females) with mean
age of 60.23 £ 6.65 ranging from 30 to 78 were allocated to the
validation cohort.

Clinicopathologic data was collected from the medical records
and the data of baseline CT scans, including age, gender,
preoperative T category reported by head and neck radiologists,
and pathologically confirmed T category. T classification was
conducted pursuant to the 8th Edition of AJCC TNM Staging
System Guidelines (20), and then reassessed by a head and neck
radiologist with 20 years of experience who was blinded to the
pathology results. Figure 1 showed the workflow of radiomic
analysis in the current study.

CT Image Acquisition and Tumor

Segmentation

Two CT systems were adopted for CT image acquisition: United
Imaging uCT780 and Siemens SOMATOM Force CT. The
parameters for CT image acquisition were as follows: 110-120
kV; 116-168 mAs; detector collimation: 192 x 0.6 mm or 160 x
0.25 mm; rotation time: 1.0s; slice thickness: 1-2.5 mm; field of
view: 250 x 250 mm; matrix: 512 x 512.
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FIGURE 1 | The workflow of radiomic analysis in the current study. After feature extraction, stable features were selected by LASSO for further analysis. SVM model
was used to build radiomic signature. The predictive nomogram was constructed based on the radiomic signature and other predictors.

Axial venous phase CT images (DICOM format) were
prepared for tumor segmentation. An open-source software ITK-
SNAP (www.itk-snap.org) was applied for the three dimensional
manual segmentation. Tumor region in each layer was outlined
by a radiologist with 12 years of experience in head and neck
cancer, and then validated by a senior radiologist with 20
years of experience in head and neck cancer. The regions of
interest covering the entire tumor were used for subsequent
feature extraction.

Radiomic Features Extraction and

Radiomic Signature Construction

Radiomic features were extracted by Pyradiomics (version 2.1.2),
an open-source python platform (http://www.radiomics.io/
pyradiomics.html) (21). Pyradiomics provides a stably operated
open-source platform for easy and reproducible radiomic
features extraction that can be compared across different
institutions. Features of high throughput were extracted from
CT images by matrix operation, wavelet transform and
other mathematical methods, whose purpose was to find out
the association between radiomic features and pathologically
confirmed T category. The extracted radiomic features were
classified into 4 categories: first-order features (n = 126), textural

features (n 515), shape-based features (n 13), wavelet
features (n = 736). In order to identify the most significant
features, we used the interclass correlation coefficient and least
absolute shrinkage and selection operator (ICC-LASSO) to
remove abundant high dimensional features. Only features with
an ICC > 0.75 were retained for further LASSO, while the
remaining radiomic features were excluded to ensure the stability
and reproducibility. After that, the most significant features
were used to build the support vector machine (SVM) machine
learning prediction model. Grid search and cross validation
were conducted to select model parameters, which optimize
the performance of the model. Then, radiomic signature was
obtained from the trained SVM model.

Diagnostic Validation of Radiomic

Signature

We used AUC, sensitivity, specificity, and accuracy to verify
the association between radiomic signature and pathologically
confirmed T category in order to determine the overall
performance of the model. The performance of radiomic
signature was established in the training cohort and internally
validated in the validation cohort.
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Development of an Individualized T

Category Prediction Nomogram

Univariate analysis was performed on clinical features, such as
age, gender, tumor location, and T category reported by an
experienced radiologist. The most significant clinical features and
radiomic signature were combined to establish a multivariable
logistics model so as to develop a radiomic nomogram.

Validation of the Radiomic Nomogram

The utility of the radiomic nomogram in the training and
validation cohorts was assessed by the receiver operating
characteristic (ROC) curves. The ROC curve was plotted basing
on the predictors of multi-logistics model including AUC,
sensitivity, specificity, and accuracy. In addition, we plotted the
calibration curves and conducted the Hosmer-Lemeshow test to
demonstrate the calibration of the radiomic nomogram.

Statistical Analysis

Continuous data were presented as mean =+ standard deviation
(SD), while categorical data were presented as counts and
percentages. Continuous and categorical data were compared
by independent t (or Mann-Whitney U) test and Chi-square
(or Fisher’s exact) statistics, respectively. Patients were randomly
divided into the training and validation cohorts at a ratio of
~2.5:1. The average performance of the model was obtained
by bootstrapping for 2,000 times. All statistical analyses were
conducted by R software (version 3.5.1) and Python (version
3.6). The R software was used for features selection and building
nomogram with packages of “psych,” “glmnet,” and “rms,” while
the Python was used to build SVM model with “sklearn” package.

RESULTS

Clinical Characteristics

Table 1 summarizes the patient characteristics of the training
and validation cohorts. Only T category reported by radiologists
showed significant difference (P < 0.001). After pathological
review, 20.5% (17/83) of patients down-staged from T4 to T3, and
28.9% (37/128) of patients over-staged from T3 to T4.

Radiomic Features Extraction and

Radiomic Signature Construction

We extracted 1,390 features in total from CT images, among
which, 565 had ICC > 0.75, which indicted a good inter-
measurer agreement. LASSO was then used to remove the
redundancy of high dimensional features, and eight significant
radiomic features were selected at last (Figure 2), including two
first order features (gradient_first order_Skewness, Ibp.2D_first
order_Mean), two shape features (original shape_LeastAxis,
original_shape_Sphericity), and four features
(wavelet-LLH_first order_Kurtosis, wavelet-LLH_glcm_Idn,
wavelet-LLH_first order_Median, wavelet-LLL_glcm_Imcl1). A
SVM-based radiomic signature was constructed based on the
eight features.

wavelet

Diagnostic Validation of Radiomic

Signature

The AUCs of radiomic signature were 0.850 (95% CI: 0.788-
0.912) and 0.862 (95% CI: 0.772-0.952) in the training and
validation cohorts, respectively (Table 2). Correspondingly, the
specificity were 0.792 (95% CI: 0.698-0.885) and 0.743 (0.598-
0.888); the sensitivity were 0.782 (95% CI: 0.690-0.874) and 0.808
(95% CI: 0.656-0.959); and the accuracy were 0.787 (95% CI:
0.784-0.789) and 0.770 (95% CI: 0.765-0.776) (Table 2).

Development of an Individualized T

Category Prediction Nomogram

Logistic regression analysis of clinical features demonstrated
that only T category reported by experienced radiologist was
significantly correlated with pathologically confirmed T category
(p < 0.001). Radiomic nomogram was established by combining
radiomic signature and T category reported by radiologists
(Figure 3A). The calibration curves of nomogram showed a good
agreement between prediction and observation in both of the
training and validation cohorts (Figures 3B,C).

Validation of the Radiomic Nomogram

In the training cohort, the AUC of T category reported by
radiologists was 0.751 (95% CI: 0.684-0.818), with specificity of
0.861 (95% CI: 0.781-0.941), sensitivity of 0.641 (95% CI: 0.535-
0.747), and accuracy of 0.747 (95% CI: 0.744-0.749) (Table 2).
The AUC of the combined nomogram incorporating radiomic
signature and T category reported by radiologists was 0.899 (95%
CI: 0.850-0.947), with sensitivity of 0.782 (95% CI: 0.690-0.874),
specificity of 0.889 (95% CI: 0.816-0.961), and accuracy of 0.833
(95% CI: 0.832-0.835) (Table 2).

In the validation cohort, the AUC of T category reported by
radiologists was 0.775 (95% CI: 0.667-0.883) with specificity of
0.857 (95% CI: 0.741-0.973), sensitivity of 0.692 (95% CI: 0.515-
0.870), and accuracy of 0.787 (95% CI: 0.781-0.792) (Table 2,
Figure 4). The AUC of the nomogram incorporating radiomic
signature and T category reported by radiologists was 0.892 (95%
CI: 0.811-0.974), with sensitivity of 0.808 (95% CI: 0.656-0.959),
specificity of 0.771 (95% CI: 0.632-0.911), and accuracy of 0.787
(95% CI: 0.781-0.792) (Table 2, Figure 4).

DISCUSSION

This study developed and validated a radiomic nomogram
for the accurate prediction of T category (T3 vs. T4) before
surgery for patients with locally advanced laryngeal cancer. The
combined nomogram incorporated the CT-reported T stage
and the radiomic signature. By only CT, radiologists couldn’t
satisfactorily stratified patients into T3 and T4 categories (AUC
= 0.775). However, the combination of the radiomic signature
and the T category reported by radiologists could significantly
improve the predictive performance, achieving an AUC of 0.892
in the validation cohort.

Locally advanced laryngeal cancer includes those classified as
T3 or T4 category (22). For locally advanced laryngeal cancer,
the treatment option of total laryngectomy or organ preservation
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TABLE 1 | Patient characteristics in the training and validation cohorts.

Characteristics Training cohort

Validation cohort

(n = 150) (n=61)
T3 category T4 category P T3 category T4 category P
Gender, No (%) 0.343 0.501
Male 70 (95.9%) 76 (98.7%) 33 (94.3%) 26 (100%)
Female 3 (4.1%) 1(1.3%) 2 (5.7%) 0
Age, mean + SD, years 61.38 £ 8.54 63.72 £ 8.97 0.157 60.23 £+ 6.65 60.31 + 10.91 0.737
Location, No (%) 0.022 0.579
Supra-glottis 31 (42.5%) 21 (27.3%) 11 (31.4%) 10 (38.5%)
Glottis 40 (54.8%) 56 (72.7%) 24 (68.6%) 16 (61.5%)
Sub-glottis 2(2.7%) 0 0 0
T category reported by radiologist, No (%) <0.001 <0.001
T3 category 61 (83.6%) 29 (37.7%) 30 (85.7%) 8 (30.8%)
T4 category 12 (16.4%) 48 (62.3%) 5 (14.3%) 18 (69.2%)
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FIGURE 2 | After initial screening by ICC analysis, feature selection was performed using the LASSO method with a logistic regression model. (A) The model
coefficient trendlines of the 1,390 radiomics features. The profile graph was plotted by coefficients against the L1 norm (inverse proportional to log » = —2.184).
(B) Tuning parameter . in the LASSO model. The parameter » = 0.220 were selected under the minimum criteria. The vertical line was drawn at the value selected by
10-fold cross-validation, including optimized eight non-zero coefficients.

remains to be a hot-debated topic. The goal of larynx preservation
is to achieve good function without altering patients’ survival.
When determining larynx preservation or total laryngectomy for
patients, some issues must be considered, such as T category
of tumor, patients’ will, and prospects for a good functional
outcome (23). Therefore, preoperative T category is particularly
important. If we could distinguish T3 from T4 patients with
laryngeal cancer, they can receive appropriate treatment and
benefit a lot. This study is focused on patients with local advanced
laryngeal cancer and tried to find out a new method to distinguish
T3 from T4 disease accurately.

Previous studies demonstrated that CT, MRI, PET-CT images
can reflect the tumor morphology (24-26). Clinicians rely on
medical imaging to determine whether patients suffered from
T3 or T4 disease. Reliable imaging tools are indispensable. CT is

the preferred imaging method for laryngeal cancer staging (11),
which is much faster than MRI. MRI has better discrimination
of soft tissue changes and cartilage abnormalities, however, it
requires longer image acquisition time, thus challenging patients’
cooperation and hampering its utilization (27). Still, it is very
important for imaging techniques being able to differentiate
inner cortical invasion (T3) from destruction of the outer cortex
and extra-laryngeal spread. The evaluation on thyroid cartilage
invasion and extra-laryngeal spread is important and sometimes
difficult, and the positive predictive value of CT-reported T
category is 71.1%, similar with Li et al. (10). MRI seems to be
more sensitive than CT in detecting cartilage invasion, however,
the MRI findings are not specific, and the positive predictive
value of MRI was unsatisfactory (9). This is because that
peritumoral inflammation, edema and fibrosis may demonstrate
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TABLE 2 | Diagnostic performance of models in the training and validation cohorts.

Models Training cohort Validation cohort
(n = 150) (n=61)
AUC Specificity Sensitivity Accuracy AUC Specificity Sensitivity Accuracy
(95% Cl) (95% Cl) (95% Cl) (95% Cl) (95% Cl) (95% ClI) (95% Cl) (95% CI)
T category 0.751 0.861 0.641 0.747 0.775 0.857 0.692 0.787
reported by (0.684-0.818) (0.781-0.941) (0.535-0.747) (0.744-0.749) (0.667-0.883) (0.741-0.973) (0.515-0.870) (0.781-0.792)
radiologist
Radiomic 0.850 0.792 0.782 0.787 0.862 0.743 0.808 0.770
signature (0.788-0.912) (0.698-0.885) (0.690-0.874) (0.784-0.789) (0.772-0.952) (0.598-0.888) (0.656-0.959) (0.765-0.776)
Combined 0.899 0.889 0.782 0.833 0.892 0.771 0.808 0.787
nomogram (0.850-0.947) (0.816-0.961) (0.690-0.874) (0.832-0.835) (0.811-0.974) (0.632-0.911) (0.656-0.959) (0.781-0.792)
A
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similar features with cartilage invasion (11). Currently, the
guidelines recommends total laryngectomy for patients with T4
stage diseases, while for T3 stage diseases, organ preservation or
total laryngectomy are all listed options (6). It is indicated that
some patients who were treated by total laryngectomy could have
been offered laryngeal preservation or who received laryngeal
preservation actually need total laryngectomy to extend the
survival time if more accurately staging was performed at initial
diagnosis (10, 28).

Radiomics is a new concept in recent years, and it is
gaining importance in cancer research for improving diagnostic,
prognostic, and predictive accuracy (29). Zhang et al. established
and internally validated MRI-derived radiomics as a new
approach to evaluate progression-free survival in patients with
stage III-IVb nasopharyngeal carcinoma before treatment (30).
Liang et al. demonstrated that a combined nomogram model
could preoperatively predict histologic grade in patients with
pancreatic neuroendocrine tumors (18). For patients with locally
advanced laryngeal cancer, we identified a radiomic nomogram
to perform preoperative predicting of tumor T category (T3 vs.
T4). To construct a radiomic signature, 1,382 (99.4%) radiomic
features were filtered, and only eight features were saved by ICC
and LASSO analysis. For huge amounts of radiomic features
extracted from a relatively small sample, LASSO can avoid
model overfitting (31). In addition, the features selected by
LASSO are generally accurate and can be easily interpreted
because the vast majority of irrelevant features coefficients
are shrunk toward zero during model fitting. The radiomic
signature was constructed through LASSO-SVM by combining
radiomic features with other clinical features, such as age, gender,
tumor location, T category reported by radiologists. Our study
showed that preoperative T category reported by radiologists
was easily obtained and significantly correlated with actual T

category, and it might significantly influence the accuracy of the
prediction of T category. Therefore, the radiomic nomogram
incorporates both the T category reported by radiologists and the
radiomic signature to ensure accuracy. The T category reported
by radiologists can stratify patients into T3 and T4 groups
with an AUC of 0.751. However, the combined nomogram
model can further improve the predictive performance, achieving
an AUC of 0.899. This prediction model was also tested by
the validation cohort (AUC = 0.892), verifying the reliability
and reproducibility.

The main limitation of this study derived from its
retrospective nature. To keep the consistency of data, the
training and validation cohorts were from a single institution.
When determining the most suitable treatment strategy for
advanced laryngeal cancer, preoperative T category is not the
only factor under consideration, other conditions should also
be considered, such as tumor volume, lymphatic metastasis,
pre-treatment voice quality, laryngoscopy findings, patient
comorbidities, and preferences.

In conclusion, this study established a TCPR model as a novel
approach for the accurate preoperative T category for patients
with locally advanced laryngeal cancer. As a non-invasive,
preoperative and precise T category evaluation tool, the model
could assist head and neck surgeons to make an appropriate
surgical decision, which will benefit patients in the future.
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Background: The preoperative diagnosis of phyllodes tumors (PTs) of the breast is
critical to appropriate surgical treatment. However, reliable differentiation between PT and
fioroadenoma (FA) remains difficult in daily clinical practice. The purpose of this study was
to investigate the utility of breast MRI texture analysis for differentiating PTs from FAs.

Materials and Methods: Forty-two PTs and 42 FAs were enrolled in this retrospective
study. Clinical and conventional MRI features (CCMF) and MRI texture analysis were
used to distinguish between PT and FA. Texture features were extracted from the axial
short Tl inversion recovery T2-weighted (T2W-STIR), T1-weighted pre-contrast, and two
contrast-enhanced series (first contrast and third contrast). The Mann-Whitney U test
was used to select statistically significant features of texture analysis and CCMF. Using
a linear discriminant analysis, the most discriminative features were determined from
statistically significant features. The K-nearest neighbor classifier and ROC curve were
applied to evaluate the diagnostic performance.

Results: With a higher classification accuracy (89.3%) and an AUC of 0.89, the texture
features on T2W-STIR outperformed the texture features on other MRI sequences and
CCMF. The AUC of the combination of CCMF with texture features on T2W-STIR was
significantly higher than that of CCMF or texture features on T2W-STIR alone (p < 0.05).
Based on the result of the classification accuracy (95.2%) and AUC (0.95), the diagnostic
performance of the combination strategy performed better than texture features on
T2W-STIR or CCMF separately.

Conclusions: Texture features on T2W-STIR showed better diagnostic performance
compared to CCMF for the distinction between PTs and FAs. After further validation of
multi-institutional large datasets, MRI-based texture features may become a potential
biomarker and be a useful medical decision tool in clinical trials having patients with
breast fibroepithelial neoplasms.

Keywords: texture analysis, breast, magnetic resonance imaging, phyllodes tumor, fibroadenoma
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INTRODUCTION

Phyllodes tumor (PT) is a rare tumor accounting for 0.3-1.0% of
all mammary tumors and comprises 2-3% of all fibroepithelial
mammary neoplasms (1, 2). The histological classification is
subdivided into benign, borderline, or malignant (3); however,
histological type is found to poorly correlate with clinical
behavior (4, 5). Incidence of local relapse is high regardless of
the histological grading, and distant metastasis may occur in
approximately 25% of malignant PTs (6, 7). With similar clinical
features and histopathological appearance, PT may mimic a
fibroadenoma (FA), which is the most common benign tumor
of the breast. Sometimes, even preoperative invasive procedures
such as fine-needle aspiration cytology and core needle biopsy
may fail to correctly differentiate these two entities, primarily
owing to lack of adequate and representative samples (8, 9).
Given the different prognosis, a surgical excision is essential with
a wide margin of at least 1 cm for all grades of PT to avoid local
relapse and subsequent surgery (10, 11); on the other hand, a
FA can usually be safely followed-up or managed by a simple
enucleation (12). Therefore, accurate preoperative diagnosis is
crucial to offer an appropriate clinical strategy, thus avoiding
operative complications resulting from inadequate excision or
surgical overtreatment.

Clinically, in contrast to FA, PT can grow rapidly to huge
bulky ones with a high reported incidence of local relapse (13).
In addition, PT was generally thought to develop later in life than
FA (6, 14).

According to previous reports, MRI features have been
valuable in the differentiation between PTs and FAs. Kamitani
etal. (15) described the MRI features of PTs and noticed a pattern
of heterogeneous enhancement, internal cystic components, and
increased lobulations in PTs. Although certain clinical and MRI
features may raise the index of suspicion, it is challenging to
make a reliable differentiation between PT and FA. In daily
clinical practice, a benign, small-sized borderline or malignant
PT can be easily mistaken for a FA, whereas giant FAs may show
overlapping MRI features of PTs.

Radiomics has drawn increasing attention recent
years. It is based on a hypothesis that medical imaging
information can be converted into quantitative and mineable
features via automatically high-throughput extraction of data
characterization algorithms that in turn provide valuable
diagnostic, prognostic, or predictive assessment (16-18).
Several radiomics studies have shown that some quantitative
imaging signatures, such as texture features derived from
MRI, can provide an opportunity to facilitate better clinical
decision-making in oncology at low cost and non-invasively.
For example, texture analysis has been used to predict sentinel
lymph node metastasis in breast cancer (19), differentiate
estrogen receptor-positive breast cancer molecular subtypes
(20), and identify healthy breast tissue and breast cancer
lesions (21).

in

Abbreviations: PT, Phyllodes tumor; FA, Fibroadenoma; T2W-STIR, Short TI
inversion recovery T2-weighted; CCME Clinical and conventional MRI features;
TIC, time-intensity curve.

Thus, in the present study, we hypothesized that texture
features on routine, enhancement, and non-enhanced T1-
and T2-weighted MR images, could help to improve the
differentiation between PTs and FAs.

MATERIALS AND METHODS

Patients

The retrospective study protocol was approved by our
institutional review board. In this study, 53 female patients
with histologically confirmed PT between June 2012 and June
2018 were enrolled and 78 female patients with histologically
confirmed FA were randomly selected. The inclusion criteria
were as follows: (1) female patients were histologically diagnosed
with PT or FA by two experienced pathologists based on findings
in the specimens obtained at surgical resection, (2) those who
underwent breast MRI prior to surgical resection, and (3) those
with lesions measuring >1 cm in diameter avoiding the possible
unfavorable effects on textural features extracted from image
data. The exclusion criteria were as follows: (1) a previous history
of breast cancer and radiotherapy, and (2) poor image quality.
Finally, 41 female patients with 42 PTs and 37 female patients
with 42 FAs were eligible in this study.

MRI Acquisition

All patients were scanned using a 1.5T dedicated breast
MRI system (Aurora Dedicated Breast MRI Systems) with a
single channel breast coil. For dynamic imaging, gadolinium-
diethylenetriamine pentaacetic acid (Gd-DTPA, Magnevist) was
intravenously injected as a bolus of 0.2 ml per kg of body weight
at a rate of 2 mL/s followed by a 20-mL normal saline flush. A
dynamic series of transverse T1-weighted fat-suppression images
were acquired at pre-contrast and post-contrast at 90, 270, 450,
and 630s by using the following imaging parameters: TR =
29ms, TE = 4.8ms, slice thickness = 1.1 mm, matrix = 360
x 360 x 128, and FOV = 36cm. In addition, axial short
TI inversion recovery T2-weighted (T2W-STIR) images were
performed under the following conditions: TR = 6,680 ms, TE
= 68ms, slice thickness = 3.0 mm, matrix = 320 x 192, FOV
= 36 cm. Fat suppression was applied using a short TI-inversion
recovery technique.

Clinical and Conventional MRI Features

Assessment

Clinical and conventional MRI features (CCMF) was used
to differentiate PTs from FAs. The clinical variables assessed
included age, whether the lesions showed rapid enlargement, and
whether the lesions were primary or recurrent. The conventional
MRI features for each patient were independently reviewed by
two radiologists with 12 and 5 years of experience, respectively,
blinded to the histopathological diagnoses. For the cases
with discrepancies in the CCMF assessment between the two
radiologists, these were jointly reviewed by the two radiologists
to reach a consensus for further analysis. Interpretation of
some conventional MRI features was based on three following
characteristics as per the American College of Radiology Breast
Imaging Reporting and Data System MR imaging criteria
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FIGURE 1 | (A) Axial short Tl inversion recovery T2-weighted (T2W-STIR) and
(B) third post-contrast image showing a mass with cystic component (red
arrow), weak lobulation with obtuse angle (green arrows), septation (white
arrow), and heterogeneous enhancement. Strong lobulation with acute angle
(yellow arrow) was detected on (C) T2W-STIR and heterogeneous
enhancement was detected on (D) third post-contrast image.

(version 5) (22, 23): the margin of masses (circumscribed vs.
non-circumscribed); initial signal intensity enhancement (slow,
medium, or fast); and time-intensity curve (TIC) pattern on
dynamic contrast-enhanced images (the persistent, plateau, or
washout pattern). The presence or absence of a cystic component
and internal septation were determined, and the extent of
lobulation was divided into strong (with an acute angle) or
weak (obtuse angle). In addition, we analyzed the tumor size
(the greatest lesion diameter); tumor signal intensity on T2W-
STIR (homogeneous vs. heterogeneous); and signal intensity
enhancement of third sequence of post-contrast (homogeneous
vs. heterogeneous). For the measurements of enhancement
features including initial signal intensity enhancement and TIC,
the region of interest (ROI) was placed onto the area of the lesion
where the enhancement was strongest in the first sequence of the
post-contrast image. Examples of these MRI features were shown
in Figure 1. For recurrence patients, only clinical and MRI data at
the time of recurrence was included and evaluated in this study.

Texture Analysis

The T2W-STIR, T1-weighted pre-contrast, and two contrast-
enhanced series were chosen for texture analysis. Image slices
were selected on the basis of presentation of the largest lesion
diameter. The ROI, containing the entire visible tumor and
excluding equivocal normal breast tissue, was manually drawn
for each image. Texture analysis was performed by software

TABLE 1 | Texture features used summary.

Algorithm Texture features

Histogram Mean, variance, skewness, kurtosis, percentiles 1, 10, 50,

90, and 99%

Absolute gradient Mean, variance, skewness, kurtosis, and percentage of

(Griv) pixels with non-zero gradient
Co-occurrence Angular second moment, contrast, correlation, sum of
matrix (COM) squares, inverse difference moment, sum average, sum

variance, sum entropy, entropy, difference variance and
difference entropy; parameters computed for 4 directions:
(@, 0),(0,a),(a a), (@ —a) and 5 distances: a= 1, 2, 3, 4, 5,
between image pixels

Run-length matrix Run-length non-uniformity, gray-level non-uniformity,

(RLM) long-run emphasis, short run emphasis, and fraction of
image in runs; parameters computed for horizontal, 45°,
vertical, and 135° directions

Autoregressive Model parameter vector includes 4 parameters; Sigma:

model (ARM) standard deviation of the driving noise

Wavelet Energy of the wavelet coefficients in sub-bands

package MaZda 4.60 (The Technical University of Lodz, Institute
of Electronics) (24, 25).

MaZda allows the quantitative analysis of approximately 300
texture features based on the following algorithms: histogram,
absolute gradient, run length matrix, co-occurrence matrix,
autoregressive model, and wavelet transform (24, 25), as shown
in Table 1. All these texture features were calculated for each
ROI. The co-occurrence matrix parameters were calculated in
four directions (6 = 0, 45, 90, and 135°) with interpixel distances
of n =1, 2, 3, 4, and 5. The gray-level normalization, which
is known to minimize the effect of contrast variation and
brightness, was carried out using a method that normalizes image
intensities within i £ 3o (|, gray-level mean; and o, gray-level
standard deviation).

In MaZda, a combination of feature selection algorithms
including mutual information, classification error probability
combined with average correlation coefficients, and Fisher
coeficient were applied to determine 30 texture parameters with
the highest discriminative power for classification on each MRI
pulse sequence. These features were then exported for further
processing and classification to a statistical program B11 (24).

Feature Selection and Classification
Statistically significant features were selected among the raw
texture features on each MRI sequence and CCMF. A linear
discriminant analysis was performed for statistically significant
features using MaZda to obtain the most discriminative features
(26). Then, the K-nearest neighbor classifier (K = 3) was
employed to distinguish between PT and FA based on the
most discriminative features using software routines written in
MATLAB 7 (Mathworks). For training the classifier, 28 PTs and
28 FAs were used, whereas for testing the classifier, the remaining
14 PTs and 14 FAs were used.

A workflow chart of the distinction between PT and FA based
on texture features and CCMF are illustrated in Figure 2.
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MRI scan

!

Texture features

a. Histogram; b. Absolute gradient;

c. Wavelet; d. Co-occurence matrix;

e. Run-length matrix;

!

Feature selection

|

Feature analysis

!

Classification

Processes in green boxes were performed in MaZda.

eXtraIctlon f. Autoregressive model;
Clinical & conventional v
30 texture I ) ]
A combination of feature selection algorithms
MRI features )
parameters in Mazda

Statistically significant features selected by Mann-Whitney U test
in SPSS

Linear discriminant analysis in Mazda

K-nearest neighbor classification in Matlab

FIGURE 2 | Workflow chart of distinction between phyllodes tumors and fibroadenomas based on clinical and conventional MRI features, and texture features.

Statistical Analysis

We compared the raw texture parameters on each sequence and
CCMF between PTs and FAs using the Mann-Whitney U test.
For evaluating the diagnostic efficiency of each approach, we
employed receiver operating characteristic (ROC) analysis. These
analyses were performed using package SPSS 22.0 for Windows.
For each ROC curve, comparisons of the area under the curve
(AUC) were performed with methods described by Hanley (27).
P < 0.05 was considered to indicate statistical significance.

RESULTS

Clinical and Conventional MRI Features

The clinical characteristics and conventional MRI findings of 42
PTs and 42 FAs are summarized in Table 2. There were 25 benign,
14 borderline, and 3 malignant PTs based on the histological
findings. Patients with PTs were significantly older than those
with FAs (p < 0.001). The mean maximal diameter (standard
deviation) was 4.70 = 3.45cm for the PT group and 3.48 £
2.36 cm for the FA group. The PTs tended to be larger than the
FAs, although this difference was not statistically significant (p
> 0.05). The local recurrence rates of PTs and FAs were 26.2
and 0%, respectively. Overall, 61.9% PTs (26/42) showed strong
lobulation, whereas only 13 (31.0%) FAs among 42 expressed
strong lobulation. The PTs showed strong lobulation pattern
more frequently than FAs (p = 0.004). Cystic components were
seen in 20 (47.6%) PTs but only in 6 (14.3%) FAs (p = 0.001).

The PTs had a significantly higher frequency of internal septum
than the FAs (p = 0.009). The FAs tended to be homogeneous
more frequently seen on T2W-STIR than the PTs (p = 0.001).
There were no significant differences between the PTs and FAs
in rapid growth, margin, septation enhancement, tumor signal
intensity on the third post-contrast images, initial signal intensity
enhancement, and TIC curve pattern.

For clinical and conventional MRI features (CCMF), the
classification accuracy of K-nearest neighbor classifier was 76.2%.
For ROC analysis, the AUC was 0.76 (95% CI: 0.66, 0.87), and the
sensitivity and specificity were both 76.2%.

Texture Features

PTs and FAs presented a differential textural pattern. Certain
texture features extracted using MaZda were significantly
different, as shown in Table 3 and Supplementary Information.
The number of statistically significant texture features on T2W-
STIR was greater than other MRI sequences. For texture features
on MRI, the classification accuracies were 89.3, 69.1, 71.4,
and 67.9%, for T2W-STIR, T1-weighted pre-contrast, and two
contrast-enhanced series (first and third post-contrast sequence),
respectively. For ROC analysis, the AUCs were 0.89 (95% CI: 0.82,
0.97); 0.69 (95% CI: 0.58, 0.81); 0.71 (95% CI: 0.60, 0.83); and 0.68
(95% CI: 0.56, 0.80) for T2W-STIR, T1-weighted pre-contrast,
and the first and third post-contrast sequences, respectively.
The most discriminative features on T2W-STIR had higher
classification accuracy (89.3%); AUC (0.89, 95% CI: 0.82, 0.97);
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TABLE 2 | Clinical and conventional MR features of phyllodes tumors
and fibroadenomas.

PT FA P-value
Mean age (SD) 44.38 £ 6.72 35.07 £ 12.90 <0.001
Rapid enlargement
Absent 30 (71.4%) 33 (78.6%) 0.614
Present 2 (28.6%) 9 (21.4%)
Primary/recurrence
Primary 31 (73.8%) 42 (100%) <0.001
Recurrence 11 (26.2%) 0(0)
Diameter 4.70 £ 3.45 3.48 + 2.36 0.07
Margin
Circumscribed 32 (76.2%) 34 (81.0%) 0.79
Not circumscribed 0 (23.8%) 8 (19.0%)
Strong lobulation
Absent 6 (38.1%) 29 (69.0%) 0.004
Present 26 (61.9%) 3 (31.0%)
Septation
Absent 15 (35.7%) 27 (64.3%) 0.009
Present 27 (64.3%) 15 (35.7%)
Enhancement 7 (16.7%) 3(7.1%) 0.312
No enhancement 35 (83.3%) 39 (92.9%)
Cystic component
Absent 22 (52.4%) 36 (85.7%) 0.001
Present 20 (47.6%) 6 (14.3%)
T2W-STIR
Homogeneous 22 (52.4%) 36 (85.7%) 0.001
Heterogeneous 20 (47.6%) 6 (14.3%)
Initial enhancement
Slow 4 (9.5%) 6 (14.3%) 0.636
Medium 15 (35.7%) 17 (40.5%)
Fast 23 (54.8%) 19 (45.2%)
Contrast third
Homogeneous 6 (38.1%) 23 (54.8%) 0.126
Heterogeneous 26 (61.9%) 9 (45.2%)
TIC pattern
Persistent pattern 17 (40.5%) 22 (52.4%) 0.367
Plateau pattern 17 (40.5%) 16 (38.1%)
Washout pattern 8 (19.0%) 4 (9.5%)

sensitivity (88.1%); and specificity (90.5%) than those on other
MRI sequences. The result of K-nearest neighbor classifier and
ROC analysis are listed in Table 4.

Combination

For the combination of CCMF with texture features on T2W-
STIR, the classification accuracy was 95.2%. The AUC was 0.95
(95% CI: 0.90, 1.00), with a specificity of 95.2% and sensitivity
0f 95.2%.

Comparison of Diagnostic Performance

Figure 3 shows the ROC curves for the K-nearest neighbor
classifier when the classifier was trained with most discriminative
features of CCMEF, texture features on each MRI sequence,
and the combination strategy. The texture features on T2W-
STIR, with higher classification accuracy (89.3 vs. 76.2%) and

TABLE 3 | Statistically significant texture features on axial short Tl inversion
recovery T2-weighted images.

Texture feature P z

WavEnHH_s-3 <0.001 —3.757
WavEnHH_s-1 <0.001 —4.258
WavEnHL _s-1 0.002 —3.042
GrKurtosis <0.001 —4.634
GrSkewness <0.001 —5.573
GrMean <0.001 —3.569
45dgr_Fraction <0.001 —4.258
45dgr_ShrtREmp <0.001 —4.169
45dgr_LngREmph <0.001 —4.258
S(5,5)SumAverg 0.002 —3.051
S(0,5)SumAverg 0.021 —2.308
S(0,5)InvDfMom 0.003 —2.934
S(4,4)SumAverg 0.003 —2.952
S(4,4)InvDfMom <0.001 -3.918
S(3,0)Contrast 0.014 —2.460
S(2,2)InvDfMom <0.001 —3.811
S(2,0)DifVarnc 0.011 —2.541
S(1, —1)DifEntrp 0.004 —2.845
S(1,1)DifEntrp <0.001 —3.695
S(1,1)InvDfMom <0.001 —4.053
S(1,1)Correlat 0.002 —3.131
S(1,1)Contrast 0.001 —3.382
S(1,0)DifEntrp <0.001 —3.543
S(1,0)Correlat 0.001 —3.185
S(1,0)Contrast 0.001 —3.319
Variance <0.001 —4.348

AUC (0.89 vs. 0.76), outperformed CCMF. In addition, CCMF
was less sensitive than texture features on T2W-STIR (76.2
vs. 88.1%) resulting in a few false negative results (example
shown in Figure4), and exhibited lower specificity (76.2 vs.
90.5%) resulting in a few false positive results (example shown
in Figure5). The AUC of the combination was significantly
higher than that of CCMF or texture features on T2W-STIR
alone (p < 0.05). According to the result of K-nearest neighbor
classification and AUC, the diagnostic performance of the
combination performed better than texture features on T2W-
STIR or CCMF alone.

DISCUSSION

In the current study, texture analysis based on MRI was
applied to evaluate the differential diagnosis between breast
PTs and FAs. Texture features on T2W-STIR with higher
classification accuracy and AUC performed better than clinical
and conventional MRI features (CCMF). Texture features on
T2W-STIR were more sensitive than CCMF which exhibited
higher specificity. In our study, PT could be mistaken for FA
using CCMF but was correctly identified using texture features
on T2W-STIR, regardless of whether the lesion was benign or
malignant. In addition, we found that the diagnostic performance
using the combination of CCMF with texture features based on
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TABLE 4 | Features classification and receiver operating characteristic analysis of
phyllodes tumors and fibroadenomas.

Classification AUC Sensitivity Specificity
accuracy (95% CI)
T2W-STIR 89.3% 0.89 88.1% 90.5%
(0.82, 0.97) (37/42) (38/42)
Pre-contrast 69.1% 0.69 73.8% 64.3%
(0.58, 0.81) (31/42) (27/42)
First 71.4% 0.71 71.4% 71.4%
post-contrast (0.60, 0.83) (30/42) (30/42)
Third 67.9% 0.68 66.7% 69.0%
post-contrast (0.56, 0.80) (28/42) (29/42)
CCMF 76.2% 0.76 76.2% 76.2%
(0.66, 0.87) (32/42) (32/42)
Combination 95.2% 0.95 95.2% 95.2%
(0.90, 1.00) (40/42) (40/42)
1.0
— Precontrast
— 1st contrast
/ 3rd contrast
0.8 T2W-STIR
— CCMF
—— Combination
2> 067
2
.‘u;.'
c
@
9 0.4
0.2
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FIGURE 3 | The receiver operating characteristic curves from each approach
for differentiation between phyllodes tumors and fibroadenomas.

T2W-STIR was better than CCMF or texture features on T2W-
STIR alone. The classification accuracy reached 95.2%, when
the most discriminative features of combination strategy were
used to train the classifier. By using a combination strategy,
the AUC, specificity, and sensitivity were 0.95, 95.2%, and
95.2%, respectively.

Prior studies (15, 28-30) have indicated differences in the
clinical and conventional MRI characteristics for differentiating
between PTs and FAs, which was also validated in this study.
Our study showed that higher age, recurrence, strong lobulation,
and internal cystic components were detected significantly more
frequently in PTs than in FAs, which were in line with prior
studies (15, 28-30). Some groups report that hypointense internal
septation was more likely to be presented in PTs than in FAs, but
this difference was not statistically significant (15). Even though
PTs showed significantly more frequent hypointense internal
septations than FAs on MRI in this study, septation enhancement
was not statistically significant between PTs and FAs. As reported
in some articles (8, 15), PTs were frequently larger than FAs,

FIGURE 4 | Magnetic resonance images of a 37-year-old female patient with a
borderline phyllodes tumor: (A) axial short Tl inversion recovery T2-weighted
(T2W-STIR) (B) first post-contrast (C) third post-contrast. The texture features
on T2W-STIR correctly identified a phyllodes tumor which was falsely
interpreted as a fibroadenoma on clinical and conventional MRI features,
possibly owing to the weak lobulation, homogeneous signal on T2W-STIR,
and absence of cystic component and septation.

but there was no significant difference in size between them
in our study, likely because the selected tumors were of a
relatively large size (>1cm in diameter). Kamitani et al. (15)
found that FAs tended to be homogeneous more frequently than
PTs on T1-weighted post-contrast images, but this difference
was not significant; there was no significant difference in the
TIC curve pattern between the two groups; both of which were
consistent with our results. In addition, we found a significantly
higher frequency of heterogeneous signals in PTs than in FAs
on T2W-STIR, which had been rarely mentioned in previous
literatures (15).

Both PTs and FAs are breast fibroepithelial neoplasms.
Histologically, they share a dimorphic pattern with both
epithelial and stromal components. However, PT can usually be
differentiated from FA by its exaggerated intracanalicular growth
pattern with increased and heterogeneous stromal cellularity
(9). Internal cystic components, septation, and heterogeneous
signal on T2W-STIR may be caused by the histopathologically
heterogeneous nature of PT, and the stronger lobulation might
be related to the rapid growth.

Texture analysis was utilized to evaluate the ability to
differentiate PTs from FAs. The number of statistically significant
texture features on T2W-STIR was larger than those on
T1-weighted pre-contrast and two contrast-enhanced series.
Furthermore, the diagnostic performance of these statistically
significant texture features on T2ZW-STIR outperformed that on
other MRI sequences, with an AUC of 0.89 and a classification
accuracy of 89.3%. The result of texture analysis was in line
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FIGURE 5 | Magnetic resonance images of a 26-year-old female patient with
fioroadenomas: (A,C) axial short Tl inversion recovery T2-weighted
(T2W-STIR), (B) third post-contrast. The texture features on T2W-STIR
correctly identified the fibroadenoma which was falsely interpreted as a
phyllodes tumor on clinical and conventional MRI features, possibly due to the
cystic component, strong lobulation, and septation.

with that of conventional MRI characteristics that the signal
intensity on T2W-STIR was significantly different, but there were
no significant differences in features after enhancement between
PTs and FAs, such as tumor signal intensity on the third sequence
of post-contrast images, initial signal intensity enhancement,
and the TIC curve pattern. Previous breast MRI studies mainly
focused on dynamic enhancement sequence probably because
of its detailed morphological and hemodynamic information;
however, dynamic contrast-enhanced MRI was less significant
than T2W-STIR to distinguish between PTs and FAs in
our study. The echo time of T2W-STIR is relatively long,
which offers a higher signal-to-noise ratio, spatial resolution,
and soft tissue contrast of breast PTs and FAs. Hence, we
hypothesized that texture analysis based on these T2W-STIR
images might reveal more subtle alterations in the tumor
microenvironment. Textural features extracted from T2W-STIR
reflect more differences between PTs and FAs, by capturing the
intra-tumoral heterogeneity.

In our study, mean lesion sizes were >3 cm for both PT and
FA. With lesion sizes >3 cm, it would be advisable that all these
lesions should be resected anyway (8), but they require different
surgical procedures. FAs need only enucleation, whereas both
benign and malignant PTs require wide local excision with a
margin of at least 1 cm (10, 11) because the high recurrence rate
in patients with resection margins of <1 cm around the primary
tumor (10, 13). A combination of CCMF with texture features on
T2W-STIR can provide accurate preoperative diagnosis for these

cases with mean sizes >3 cm, which allows appropriate clinical
strategy and avoidance of operative complications resulting from
inadequate excision or surgical overtreatment.

There were several limitations in our study. First, some of
the MRI images were collected after fine needle aspiration of the
primary tumor, and thus the hemorrhage or edema caused by the
biopsy could have potentially affected feature calculation. Second,
we did not explore differences among PTs of all the histologic
grading due to the lack of a sufficient number of borderline
and malignant PTs. Third, little pathophysiological semantics of
the textural features are currently known. Additional work is
necessary to understand the underlying biology of these tumors
evaluated by texture analysis. Last, as a retrospective study
with a small sample size of 84 cases, inherent variations and
biases may have influenced the results. Further validation with
a larger dataset from different centers and scanners should be
strongly considered.

In conclusion, textural features extracted from T2W-STIR
showed better diagnostic performance than CCMF. In addition,
a combination of CCMF with texture features on T2W-STIR
can reflect better diagnostic performance than CCMF or texture
features on T2W-STIR alone. Texture analysis provided a
novel approach to non-invasively and accurately distinguish
PTs from FAs. With ongoing validation, MRI-based texture
features may become a potential biomarker and provide a useful
medical decision tool in clinical trials in patients with breast
fibroepithelial neoplasms.
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Purpose: The aim of this study was to test whether radiomics-based machine learning
can enable the better differentiation between glioblastoma (GBM) and anaplastic
oligodendroglioma (AO).

Methods: This retrospective study involved 126 patients histologically diagnosed as
GBM (n = 76) or AO (n = 50) in our institution from January 2015 to December 2018.
A total number of 40 three-dimensional texture features were extracted from contrast-
enhanced T1-weighted images using LIFEx package. Six diagnostic models were
established with selection methods and classifiers. The optimal radiomics features were
separately selected into three datasets with three feature selection methods [distance
correlation, least absolute shrinkage and selection operator (LASSO), and gradient
boosting decision tree (GBDT)]. Then datasets were separately adopted into linear
discriminant analysis (LDA) and support vector machine (SVM) classifiers. Specificity,
sensitivity, accuracy, and area under curve (AUC) of each model were calculated to
evaluate their diagnostic performances.

Results: The diagnostic performance of machine learning models was superior to
human readers. Both classifiers showed promising ability in discrimination with AUC
more than 0.900 when combined with suitable feature selection method. For LDA-
based models, the AUC of models were 0.986, 0.994, and 0.970 in the testing group,
respectively. For the SVM-based models, the AUC of models were 0.923, 0.817, and
0.500 in the testing group, respectively. The over-fitting model was GBDT + SVM,
suggesting that this model was too volatile that unsuitable for classification.

Conclusion: This study indicates radiomics-based machine learning has the potential
to be utilized in clinically discriminating GBM from AQO.

Keywords: machine learning, magnetic resonance imaging, glioblastoma, anaplastic oligodendroglioma, texture
analysis
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Texture Analysis Enables Gliomas Differentiation

INTRODUCTION

High-grade gliomas, the most common malignant solidary brain
tumors in adults, are traditionally classified into anaplastic
oligodendroglioma (AO), anaplastic astrocytoma (AA), and
Glioblastoma (GBM) (1, 2). According to the WHO classification,
AO was ascribed in Grade III while GBM was ascribed
in Grade IV based on their histology characteristics. The
early diagnosis of GBM and AO is clinically challenging but
necessary due to their different treatment choice as well as
the therapeutic responsiveness and patient survival (3). As for
GBM extended resection is recommended to increase patient
survival, whereas for AO this strategy lacks solid evidence (4-6).
The treatment after surgery is also different as well. For GBM,
standardized therapy after surgery recommended by NCCN
guidelines is standard brain radiation therapy (RT) + concurrent
temozolomide (TMZ) followed by adjuvant chemotherapy
(7). While for AO, it is recommended to use fractionated
external beam RT together with neoadjuvant or adjuvant PCV
(procarbazine, lomustine, and vincristine) regarding the specific
condition of each patient (7, 8).

A glioma-specific blood biomarker for glioma has not been
identified yet. Therefore, the radiology examination is critical
for tumor detection and lesion localization. Brain magnetic
resonance imaging (MRI) plays a key role in the preoperative
diagnostic of gliomas with high image resolution on tumor
tissue. However, in some cases, MRI may be unable to
provide enough information for differentiation between GBM
and AO. The MRI characteristics of two tumors are pretty
similar when GBM is characterized by perilesional vasogenic
edema and ring-like enhancement (9-11); while AO also shows
peritumoral edema and heterogeneous enhancement (11, 12).
In this regard, the urgency of new radiological method has
been highlighted.

Given that texture analysis on images provides a more
objective information beyond naked eye assessment, quantitative
descriptions of tumor characteristics could be an option for
clinical diagnosis (13-16). Moreover, with digital parameters,
new technology, such as machine learning, can be introduced
for further statistical analysis. Machine learning, a hotspot in the
field of artificial intelligence, enables the extraction of meaningful
patterns from massive datasets and thereby achieving precise
predictions with the model built (17). Machine learning has
demonstrated outstanding performance in previous research
including segmentation of the tumor, classification of certain
types of tumor, and prediction of survival or genotype (18-
23). Although the differentiation between GBM and AO is
of high clinical relevance, the machine learning approach has
never been explored yet. In this study, we investigated the
feasibility of radiomics-based machine learning to differentiate
GBM and AO.

Abbreviations: AO, anaplastic oligodendroglioma; AUC, area under curve;
GBDT, gradient boosting decision tree; GBM, glioblastoma; LASSO, least absolute
shrinkage and selection operator; LDA, linear discriminant analysis; MRI,
magnetic resonance imaging; SVM, support vector machine; T1C image, contrast-
enhanced T1-weighted image; VOI, volume of interest.

MATERIALS AND METHODS
Study Patients

In this retrospective single-center research, we viewed medical
records in neurosurgery department to initially search for
patients histologically diagnosed with GBM or AO from January
2015 to December 2018. The medical records were reviewed
by two researchers to enroll the potentially qualified patients
and to collect relevant clinical information for our research.
The inclusion criteria for patients were: (1) with pathological
diagnosis of GBM or AO in intraoperative freezing biopsy, and
(2) with available high-quality pre-treatment MR scan performed
at our institution before surgical resection. Then the pre-
surgical MRI images of patients were exported from radiological
department though Picture Archiving and Communication
Systems (PACS) with uniform standard.

For patients before 2016, we made correction on their
pathological diagnoses based on the new World Health
Organization 2016 classification of gliomas by a senior
neuropathologist with working experience of 10 years (24). The
new standards required the presence of both IDH-mt and 1p19q
co-deletion for the diagnosis of AO, otherwise it could only
be regarded as NOS (Not Otherwise Specified) (24). Therefore,
we excluded patients based on new classification who were
with incomplete gene reports or with absent presence of both
gene expression.

Seventy-nine consecutive patients with GBM and 56
consecutive patients with AO fulfilled inclusion criteria in the
initial selection. Three patients with GBM and six patients with
AO were excluded in the following evaluation according to the
exclusion criteria, which were: (1) presence of motion artifacts
on MRI, (2) previous history of brain surgery or biopsy, (3)
previous history of intracranial diseases, such as subarachnoid
hemorrhage, cerebral infarction, etc. Based on this strategy, a
study cohort was built consisting of 76 GBM patients (mean age:
46.5 years) and 50 AO patients (mean age: 47.1 years).

All procedures performed in studies involving human
participants were in accordance with the ethical standards of
the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. The institutional review board
approved this retrospective study. The written informed consent
was obtained from participants enrolled in this study. The
written informed consent was necessary before radiological
examination (written informed consent for patients <16 years
old was signed by parents or guardians) for each patient. The
patients agreed to undertake examination when needed and were
informed that the statistics (including MR image), which could
be used for academic purpose in the future, would be stored
in our institutional database. The Ethics Committee of Sichuan
University and radiology department of our institution have
approved for statistics export and utilization for this study.

MR Image Acquisition

The current study focused on the conventional MR sequences.
The suitable sequence should be chosen first for two reasons,
that the descriptions on features boundary were vague in some
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FIGURE 1 | Two examples of contrast-enhanced MRI images. (A-C) Patient with GBM in (A) parasagittal, (B) axial, and (C) coronal view. (D-F) Patient with AO in (D)
parasagittal, (E) axial, and (F) coronal view. GBM, glioblastoma; AO, anaplastic oligodendroglioma.

sequences, and that features from all sequences would bring too
much burden on classifiers. After initial evaluation on images and
consultation with senior radiologists, the contrast-enhanced MRI
sequence was the only one used to perform texture analysis in
this study.

The MR scans were performed in the radiology department
of institution. The contrast-enhanced MRI sequences were
obtained with a 3.0T Siemens Trio Scanner using a MPRAGE
sequence with the following imaging parameters: TR/TE/TT =
1900/2.26/900 ms, Flip angle = 9°, slice thickness = 1mm,
axial FOV = 25.6 x 25.6 cm? and data matrix = 256 x
256. Intravenous injection of gadopentetate dimeglumine (0.1
mmol/Kg) was taken as contrast agent for patients. Multi-
directional data for contrast-enhanced MRI were collected
during the interval time of 90-250s. Figure 1 shows two examples
of contrast-enhanced MRI images.

Human Readers Assessment

To test whether machine learning could outperform human
readers, the diagnostic performance of them was compared.
A senior neurosurgeon and a senior radiologist independently
made diagnosis based on contrast-enhanced T1-weighted
images, which were presented randomly, regarding classification
as GBM or AO. Both readers were blinded to patient information

and pathology reports. Then, the accuracy, sensitivity, and
specificity were calculated for further analysis.

Texture Feature Extraction

The texture features of tumor tissue were extracted by two
researchers using the LIFEx package under the supervision of a
senior radiologist (25). Disagreements between researchers were
recorded and adjudicated by consulting senior radiologists and
neurosurgeons. The volume of interest (VOI) was drawn on T1C
images by contouring the outer margin of tumor tissues slice
by slice. The peritumoral edema band and adjacent structure
invasion were separated from the primary tumor with the
difference in contrast enhancement. For the lesions with multiple
(>2) enhancement foci, ROI was only performed on the biggest
one for those with clear boundary, and on tumor-confirmed area
for those with vague boundary. After the ROI delineation, texture
features were calculated automatically with default setting.

A total of 40 three-dimensional (3D) texture features
were calculated from two orders. In the first order, texture
features were calculated from shape histogram-based matrix and
histogram-based matrix. In the second or higher order, features
were calculated from gray-level co-occurrence matrix (GLCM),
gray-level zone length matrix (GLZLM), neighborhood gray-level
dependence matrix (NGLDM), and gray-level run length matrix
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(GLRLM). To avoid the interference of the lower image matrix
resolution, texture analysis performed only on the VOIs with
more than 64 voxels by default setting. All original data about
extracted features were shown in Supplementary Material 1.

To ensure the validity and reproducibility of the extraction,
the procedure was performed twice, and the difference between
two sets was examined with Manny-Whitney U-test. We adjusted
the g < 0.01 as significant (before was p < 0.05) to avoid
the interference of false-positive errors rising from a large
number of texture features. The results suggested that none
of the features were significantly different, implying that the
results could be considered reliable and reproducible (shown in
Supplementary Material 2).

Classification Model Establishment

The purpose of machine learning was to train the models
to predict whether each tumor was a GBM or AO with
radiomics parameters extracted from the tumor tissue image.
However, feature selection was necessary to eliminate statistically
insignificant features and to avoid overfitting, which contributes
to decreased running time and increased accuracy of the
resulting models (26-28). In this study, we employed three
selection methods with different selection mechanisms: distance
correlation as representative of filter models, least absolute
shrinkage and selection operator (LASSO) and gradient boosting
decision tree (GBDT) as representatives of embedded models.
Then, three datasets were generated with three different selection
methods, which were each classified separately. The list of
features selected with three different methods are shown in
Supplementary Material 3, and the explanation of the features
are summarized in Supplementary Material 4.

The next step was to choose suitable classifiers. Since linear
classifier and non-linear classifier represent the state-of-the-
art in pattern recognition, we adopted linear discriminant
analysis (LDA) and support vector machine (SVM) classification
algorithms in the current study as representatives of two
classifier types (29). This way, overall six diagnostic models were
established based on three selection methods and two classifiers.

As for the algorithm deployment, the study cohort was
randomly divided into two subsets as training group and
validation group on a proportion of 4:1. When the training on
classifiers finished, the validation group was fed to evaluate the
diagnostic performance of the models. Sensitivity, specificity,
accuracy, and area under receiver operating characteristic curve
(AUC) were calculated for both the training and validation group.
To appraise the robustness of the methods, the procedure was
repeated for 100 cycles with different and independent case
assignments. The schematic workflow from image processing to
machine learning is shown in Figure 2.

RESULTS

Patient Characteristics

Among 126 patients were enrolled in the current study, 76
patients were diagnosed with GBM, and 50 patients with AO. The
sex ratio, mean age, and time between MR scan and pathological
diagnosis were summarized in Table 1. As for the human reader

assessment, the accuracy for the neurosurgeon was 63.49%, and
for the radiologist was 66.77%. Based on the results, a strong
tendency on misdiagnosis of AO could be observed.

Diagnostic Performance of Models

The classification models exhibited promising discriminative
ability when combined with suitable selection methods. For LDA-
based models, all three models presented feasible performance
with the AUC in the validation groups of 0.986, 0.994, and
0.970, respectively. For the SVM-based models, the models
showed feasible performance with the AUC in the training groups
of 0.923, 0.817, and 0.500. Overfitting was observed in one
SVM-based model (SVM + GBDT), suggesting this model was
volatile in application. The value of average sensitivity, specificity,
accuracy, and AUC of training group and testing group are
summarized in Table 2.

Figure 3 represents the two-dimensional projection of the
LDA-based models, illustrating that the GBM and AO formed
distinctive clusters in the space defined by discriminant functions
1 and 2 generated by LASSO + LDA. Figure4 shows the
examples of performance of LDA-based models in terms of the
distribution of the canonical functions in the 100 independent
training cycles in the MRI analysis. A clear negative-values
shift of the LDA function can be observed for AO, and all
positive-values shift for GBM. ROCs of all models are shown in
Supplementary Material 5.

DISCUSSION

For patients with high-grade gliomas, accurate tumor
classification is clinically important because of its close relation
with treatment strategy as well as therapeutic responsiveness
and prognosis (3). In this study, we applied radiomics-based
machine learning to pre-surgically differentiate between GBM
and AO. Six models based on three selection methods (distance
correlation, LASSO, and GBDT) and two classifiers (LDA and
SVM) were built and evaluated. Our results demonstrated that
machine learning approaches can be utilized and are clearly
superior to human reader diagnosis.

Previous studies have explored the possibility of using
machine learning for classification of brain tumor types (18, 21,
30). In the setting of gliomas, several studies have proved the
utility of machine learning to differentiate between high-grade
and low-grade glioma with high accuracy (0.80 and 0.945) (31,
32). In the setting of differentiation among specific histological
subtypes of gliomas, a computer-aided diagnosis system was
proposed and evaluated in a previous study to distinguish
GBM from lower-grade gliomas, with positive results (33). A
multicenter investigation also confirmed the feasibility of using
3D texture analysis for pediatric glioma subtype classification
(medulloblastoma, pilocytic astrocytoma, and ependymoma)
with an overall accuracy of 0.87 (34). The current study
investigated a subject that has never been explored before,
that the feasibility of radiomics-based machine learning in
discriminating GBM from AO. Diagnostic performance of six
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VOI Delineation

3D VOI is formed by contouring boundary of tumor on each layer.

GBM, glioblastoma (VOI in blue) AO, anaplastic oligodendroglioma (VOI in red)

Textural Feature Extraction

minValue, meanValue, maxValue, stdValue
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GLCM (Homogeneity, Energy, Contrast, Correlation, Entropy_log10, Dissimilarity)
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¥
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v
Confusion matrices are determined

}

Sensitivity, Specificity, Accuracy, AUC

FIGURE 2 | The schematic workflow from image processing to machine learning.

models was assessed in the current study built on three selection
methods (distance correlation, LASSO, and GBDT) coupled
with two classifiers (LDA and SVM). In general, both classifiers
showed high diagnostic performance with AUC more than 0.900
when combined with a suitable selection method. Nevertheless,
when comparing between two classifiers, LDA-based models

had slightly better diagnostic performance than that of SVM-
based models.

The diagnostical models were established based on two types
of classifies which differ in computing mechanism considering
the performance of a certain classifier may be various in the
settings of different tumors. LDA is a representative of the linear

Frontiers in Oncology | www.frontiersin.org

November 2019 | Volume 9 | Article 1164


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

Fan et al.

Texture Analysis Enables Gliomas Differentiation

TABLE 1 | Demographics of patients.

Number Sex Age, mean Time between MR scan and Human reader 1 Human reader 2
(range), y pathological diagnosis accuracy accuracy
GBM 76 47% male, 53% female 46.5 (15-80) 6.5 days 81.58% 85.53%
AO 50 50% male, 50% female 47.1 (16-76) 7.9 days 36.00% 38.00%
All patients 126 48% male, 52% female 46.8 (15-80) 7.1 days 63.49% 66.77%
GBM, glioblastoma, AO, anaplastic oligodendroglioma.
TABLE 2 | Results of the discriminative model in distinguishing GBM from AO in the training and validation group.
Classifier Selection Method Training group Validation group
AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity
LDA Distance correlation 0.992 0.994 0.994 0.990 0.986 0.988 0.993 0.982
LASSO 0.997 0.997 0.993 0.998 0.994 0.992 0.980 0.995
GBDT 0.969 0.963 0.916 0.994 0.970 0.962 0.907 0.992
SVM Distance correlation 0.922 0.938 1.000 0.906 0.923 0.938 1.000 0.910
LASSO 0.831 0.868 0.972 0.826 0.817 0.831 0.935 0.798
GBDT (over-fitting) 1.000 1.000 1.000 1.000 0.500 0.623 0.935 0.798

GBM, glioblastoma,; AO, anaplastic oligodendroglioma; AUC,
gradient boosting decision tree; SVM, support vector machine.
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classifier which uses a straight line (a vector) to separates two
classes (GBM and AO in this case), while SVM, a representative
of the non-linear classifier, uses so-called support vectors to
define a polynomic hyperplane to separate classes (35). In the
settings of differentiating GBM and AO, our results showed LDA-
based models had slightly better diagnostic performance than
that of SVM-based models. However, the difference between
the models was too slight to select the superior one, specifically
given that all models investigated seemed to perform quite
comparably and variance in AUC might be partially attributed
due to the small statistical group. Therefore, limited by the small
study cohort and relatively complicated methods, our results
could only be regarded as hypothesis generation for future
larger studies.

The results also implied that feature selection methods have
impacts on diagnostic performance, especially for SVM-based

models. Current feature selection methods can be categorized
into three types depending on their selection mechanism: (1)
Filter models select features by ranking them based on certain
general characteristics such as correlation to remove irrelevant
features without using any machine-learning algorithms. (2)
Wrapper Models utilize a specific classifier to evaluate the quality
of selected features, and offer a simple and powerful way to
address the problem of feature selection, regardless of the chosen
learning machine. (3) Embedded models are similar to wrapper
models but embeds feature selection with classifier construction.
Such models have the advantages of wrapper models-they include
the interaction with the classification model, while embedded
models are far less computationally intensive than wrapper
models (28). In this study, we employed three selection methods
as representatives of different selection mechanisms: distance
correlation as representative of filter models, LASSO, and GBDT
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as representatives of embedded models. There was a common set
of features selected by all three selection methods or two of the
methods, which suggested these features might be important for
the classification. For other features, it is hard to tell what extent
they influenced the algorithms, since the AUCs showed minimal
difference. However, even with feature selection, overfitting was

still observed in one model (GBDT + SVM). We are unable to
provide the exact reason but hypothesis that this model might be
overly complex to be used as a discriminative tool to differentiate
between GBM and AO.

Besides the comparison between machine learning models,
we also performed comparison between machine and human
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readers in this study. Two readers unaware of the information
on the exact number of patients were asked to make diagnosis
on GBM or AO based on MR images. The readers were
chosen from neurosurgery department or radiology department
to ensure the convincing and reliable conclusions. The results
were unexpected, considering there were only two options,
that the diagnostical accuracy on AO was even lower than
0.500. Specifically, AO was easily misdiagnosed as GBM in
human readers’ radiological assessments. The explanations
from the readers were the same that GBM and AO usually
represented similar patterns on MR images, and they prefer
to choose GBM rather than AO in these cases due to the
epidemiological reason that the incidence of GBM is much higher
than AO. As we mentioned before, the accurate pre-surgical
diagnosis for two types of tumor is clinical important given
the differences in surgical strategy. Therefore, it is reasonable
to draw the conclusion that the patients will benefit from
better treatment with machine learning clinical assistances.
Machine intelligence will urge the radiological practice to change
dramatically. However, we should also realize that the current
machine technology is far from replacing human readers, and a
combination of radiologist and machine might be the best choice
for the foreseeable future. Radiologists still lead the central role in
diagnosis while machine only act as assistance. This combination
virtually eliminates simple blunders, increases play level, and
provides better insight into the decision process (36).

Our study has several limitations. Firstly, it was a retrospective
single-center investigation, which may lead to a patient selection
bias and limited sample size. However, at present stage, it is
still unknowable how much data is required to establish a
predictive model, which may be answered through empirical
investigation. The number of patients enrolled in previous
studies focusing on similar topic ranged from 25 to 534 (31—
34, 37-39). Secondly, we did not perform subgroup analysis
regarding the IDH mutation status of GBM patients. Recent
studies reported machine-learning based MRI texture analysis
could be used as a new method for prediction of IDH
mutational status, which suggested that IDH mutational status
might have bearing on texture features (37, 39, 40). Thirdly,
we used conventional contrast-enhanced MRI images only
and did not use other sequences or advanced imaging tools
such as magnetic resonance spectroscopy (MRS). Contrast-
enhanced MRI sequence was chosen in this study for the clear
delineation of tumor boundaries. The combined use of other
sequences or imaging tools may enable better diagnostic ability.
Fourthly, models built in current study were not externally
validated. Since medical centers use different MRI scanners,
imaging parameters and contrast, radiomic features may change
accordingly. Therefore, the efficacy of machine learning-based
models in this study cannot be guaranteed for external datasets.
Nevertheless, we used the open-source package to perform the
image processing and texture analysis, which allows others to
reproduce the texture analysis with other datasets.

CONCLUSION

In conclusion, radiomics-based machine learning enables
differentiation ~ between  glioblastoma and  anaplastic

oligodendroglioma. Our data indicate that the performance
of this approach is superior to a human reader. This method
may be a valuable addition to routine clinical practice to
improve GBM and AO differentiation. However, multicenter
investigations including larger patient cohorts and analysis
combined with other MRI sequences or imaging techniques are
warranted so that this non-invasive approach can be introduced
into routine clinical practice.
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Background: To evaluate the accuracy of radiomics algorithm based on original radio
frequency (ORF) signals for prospective prediction of microvascular invasion (MVI) in
hepatocellular carcinoma (HCC) lesions.

Methods: In this prospective study, we enrolled 42 inpatients diagnosed with HCC from
January 2018 to December 2018. All HCC lesions were proved by surgical resection
and histopathology results, including 21 lesions with MVI. Ultrasound ORF data and
grayscale ultrasound images of HCC lesions were collected before operation for further
radiomics analysis. Three ultrasound feature maps were calculated using signal analysis
and processing (SAP) technology in first feature extraction. The diagnostic accuracy
of model based on ORF signals was compared with the model based on grayscale
ultrasound images.

Results: A total of 1,050 radiomics features were extracted from ORF signals of each
HCC lesion. The performance of MVI prediction model based on ORF was better than
those based on grayscale ultrasound images. The best area under curve, accuracy,
sensitivity, and specificity of ultrasound radiomics in prediction of MVI were 95.01, 92.86,
85.71, and 100%, respectively.

Conclusions: Radiomics algorithm based on ultrasound ORF data combined with SAP
technology can effectively predict MVI, which has potential clinical application value for
non-invasively preoperative prediction of MVI in HCC patients.

Keywords: hepatocellular carcinoma, microvascular invasion, prediction, radiomics analysis, original radio
frequency signals

INTRODUCTION

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide and
the first leading cancer in East Asia (1). Resection is the most commonly used treatment for patients
with early stage HCC. However, recurrence within 2 years after surgery still occurs in 30-50% of
patients, which becomes the major cause of mortality (2). The early recurrence of HCC has been
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found to be associated with the microvascular invasion (MVI) of
tumor emboli in close proximity to the primary HCC (3). MVI
was proved to be an important factor not only for predicting
early recurrence but also for assessing long-term patient survival
(4). The presence of MVI is a histopathological indication of
aggressive behavior of HCC (5), especially in the first 2 years
after liver resection and transplantation (3). Both univariable
and multivariable analyses revealed that MVI was independently
associated with poorer overall survival rate and recurrence-free
survival rate after partial hepatectomy for HCC (6). Accurate
and successful preoperative assessment of MVI in patients with
HCC may be helpful to make appropriate clinical management
strategy, and finally, to improve survival rate of HCC patients.

At present, MVI could only be diagnosed by surgical
pathology after operations and was reportedly presented in
15.0-57.1% HCC surgical specimens (5, 7). Some studies have
made persistent endeavors toward the preoperative prediction of
MVI (8-10). Several radiological features on contrast-enhanced
magnetic resonance imaging (MRI) and computed tomography
(CT) images, such as tumor margin, internal arteries, and
hypodense halos, were found to be associated with MVI (11—
13). However, MR or CT imaging has limitations for predicting
the tumor MVI in HCC (14, 15). The reported sensitivity and
specificity of preoperative prediction of MVI in HCC lesions
based on contrast-enhanced CT were only 81.7 and 88.1%,
respectively (16). The results of MRI showed that the mismatch
between diffusion-weighted imaging (DWI) and T2-weighted
imaging of regions was an independent predictor of MVI, with
higher specificity (95.65%) but less sensitivity (18.18%) (14, 15).
In addition, it is difficult to predict MVI in small tumors; the
imaging predictors such as internal arteries and hypodense halos
were not frequently observed in small tumors (8). Up till now,
there is still debate about the best imaging predictive feature of
MVIin HCC (11-13).

Recently, radiomics analysis based on ultrasound imaging
(RA-USI) technology has achieved some good results in the
early diagnosis, prognosis, and prediction of diseases (17-19).
The accuracy of grading diagnosis of liver cirrhosis using RA-
USI was proved to be more accurate than that of traditional
ultrasound elastography technology (20). In our previous study,
we also confirmed that the multiparametric ultrasound model
based RA-USI achieved a good performance with mean AUC
values of 0.78-0.85 (20). However, current radiomics analysis

Abbreviations: ORE, Original radio frequency signals; MVI, Microvascular
invasion; HCC, Hepatocellular carcinoma; RA-ORE Radiomics analysis method
based on ultrasound original radio frequency signal; ROI, Region of interest;
SR, Sparse representation; SVM, Support vector machine; LOOCYV, Leave-one-
out cross-validation; DEA, Direct energy attenuation; OND, Omega of Nakagami
distribution; SDSD, Standard deviation of spectrum difference; SAP, Signal
analysis and processing; DM, Microvascular invasion prediction model based
on direct energy attenuation; DOM, Microvascular invasion prediction model
based on direct energy attenuation and omega of Nakagami distribution; DOSM,
Microvascular invasion prediction model based on direct energy attenuation,
omega of Nakagami distribution and standard deviation of spectrum difference;
AUC, Area under curve; MRI, Magnetic resonance imaging; CT, Computed
tomography; RA-USI, Radiomics analysis based on conventional ultrasound
image; ANOVA, Analysis of variance; ROC, Receiver operating characteristic
curve; PRC, Precision recall curve; DCA, Decision curve analysis.

was based on conventional ultrasound images; it faced some
limitations, such as influence of standardization of ultrasound
images, diversity of electronic characteristics caused by different
ultrasound equipment, and speckle noise of different ultrasound
equipment (19).

To improve the diagnosis and treatment efficiency, original
image with abundant signal information might be necessary.
Comparing with conventional ultrasound images, ultrasound
original radio frequency (ORF) signal is not affected by
postprocess such as brightness compensation, envelope
detection, depth compensation, or dynamic range adjustment
(21). ORF contains all the acoustic information, including
attenuation, scattering, sound speed, phase, and so on,
which might provide more abundant tissue information
than conventional ultrasound images (22). ORF signal would
only be related to the physical transmitting and receiving
mechanism of imaging equipment (23). Therefore, ORF signal
contains more abundant macro- and microtissue information
than conventional ultrasound images (24). It is expected to
obtain higher stability and consistency in further radiomics
analysis process.

In this study, we aimed to investigate the value of
radiomics algorithm based on ultrasound ORF data (RA-ORF)
in preoperative detection of MVI in HCC patients.

MATERIALS AND METHODS

Patients

From January 2018 to December 2018, patients preoperatively
diagnosed with HCC in a single institution were enrolled. The
inclusion criteria were (1) adult patients suspected to be primary
HCC by imaging methods and planned to accept surgery in our
hospital; (2) solitary tumor; (3) all patients accepted preoperative
grayscale ultrasound examinations within 1 week before surgery;
(4) HCC lesions located in the right lobe of liver; and (5)
all cases were confirmed by histopathological examination and
MVI evaluation.

Exclusion criteria included the following: (1) target HCC
lesion not clearly visible on the grayscale ultrasound scan; (2)
patients with preoperative biopsy or adjuvant therapy (radio
frequency therapy, chemotherapy, targeted therapy, etc.); (3)
incomplete clinical or histopathological data; and (4) patients
with HCC larger than 5cm in maximum diameter, since such
tumors are known to have a greater risk of MVL

Final Diagnosis
The final histopathological results including MVI grade were the
gold standard for our current study. According to the practice
guidelines of Chinese Society of Pathology, MVI was defined
based on the number of cells that can be found in the endothelial
vascular lumen under microscopy. MVI were divided into three
additional subgrades, including M0, no MVI; M1 (the low-risk
group), <5 MVI in adjacent liver tissue <1 cm away from the
tumor; and M2 (the high-risk group), >5 MVI or MVT in liver
tissue >1 cm away from the tumor (25).

Two pathologists with at least 10 years of experience in hepatic
pathology reviewed all the specimen slices. Both investigators
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were blinded to the clinical and imaging information of
the patients. In cases of discordance, a consensus reading
was performed.

Ultrasound Imaging Procedure and ORF

Data Acquisition

All patients fasted for at least 8 h before ultrasound examinations.
The grayscale ultrasound examinations of the hepatic lesions
were performed according to the standardized protocol.
Ultrasound performed by a single
experienced radiologist (more than 18 years experience of
liver ultrasound scan), who was aware of the patients’ clinical
history. All ultrasound examinations were performed with an
EPIQ-7 ultrasound system certificated with ORF data (Philips
Medical Company). A C5-1 curved transducer (1-5 MHz) was
used for data acquisition.

First, conventional grayscale ultrasound scan was performed.
After a clear ultrasound image of tumor was obtained, the
process of ORF data acquisition was started. We clicked the
“freeze” button to freeze the grayscale ultrasound images and to
save the current ORF data retrospectively. The corresponding
conventional grayscale ultrasound images were also captured to
build a comparison test for ultrasound ORF signals. Both of them
would be further used to establish MVI preoperative prediction
radiomics models.

examinations were

ORF Data Processing and Radiomics

Analysis Procedure

Overall Design

RA-ORF method was applied for MVI preoperative prediction.
The radiomics analysis process consisted of the following steps:
(1) to obtain grayscale image and ORF data of HCC lesions before
operation; (2) tumor segmentation on gray scale ultrasound
images of ORF data to obtain the ORF data from the region
of interest (ROI) in the tumor; (3) first feature extraction to
obtain three ultrasound feature maps of ORF data of ROL; (4)
second feature extraction to obtain radiomics features from
three ultrasound feature maps and related grayscale ultrasound
images; (5) feature selection based on sparse representation (SR)
algorithm (19); and (6) train support vector machine (SVM)
classifier with the features sorted in step (5) to achieve further
feature selection and dimension reduction, and predict MVI in
patients with HCC (Figure 1).

The radiomics analysis based on ultrasound ORF signal
(RA-ORF) method will be built on three ultrasound feature
parameters, including direct energy attenuation (DEA), omega
of Nakagami distribution (OND), and standard deviation
of spectrum difference (SDSD). Leave-one-outcross-validation
(LOOCYV) was employed to validate the trained model.

Conventional grayscale ultrasound images will be used as
the control group. The radiomics analysis for conventional
ultrasound images processing included tumor segmentation,
feature extraction, feature selection, and classification
preoperative prediction.

All images and data were processed on MATLAB R2014b
(Math Works, Inv., Natick, MA, USA).

Tumor Segmentation

For conventional grayscale ultrasound images obtained from
the first step of “data acquisition,” the ROIs were marked
by an ultrasound doctor as four white forks points; then,
the grayscale data of the tumor could obtained from the
conventional grayscale ultrasound images by segmenting along
those markers (Figure 2A).

For ORF data matrix, they were drawn directly in columns
called scan-line way (Figure 2B). Data were covered with the
whole picture. It is different from Figure 2A, which had values
of 0 outside the sector area. Adding Hilbert transform and
logarithmic compression to Figure 2B, we could get the grayscale
ultrasound images in scan-line way, which clearly showed the
location of the tumor. Then, segmentation was processed to
obtain the location of ROI and get the ROI's ORF data. The
shapes of ROI were stretched laterally at a shallow position.
ROI segmented by an ultrasound doctor was used to ensure the
accuracy of segmentation (Figure 2C).

First Feature Extraction

Feature extraction of multiparameter ultrasound features was
the key step of the RA-ORF method. Three kinds of
ultrasound feature parameters of ORF included time domain
feature, frequency domain feature, and statistical feature and
were applied.

In the first feature extraction, ORF data of ROI was used
to calculate three ultrasound feature parameters and further
form the corresponding three ultrasound feature maps. Three
ultrasound feature maps, including DEA feature map (time-
domain feature), SDSD feature map (frequency-domain feature),
and OND feature map (statistical feature), were established and
saved in *.bmp formats (Figure 3).

Second Feature Extraction

Second feature extraction were based on ROIs of conventional
grayscale ultrasound images and the ROIs of three ultrasound
feature maps obtained from ORF data. Each image can get 70
texture features: 16 features of histogram, 23 features based on
gray-level co-occurrence matrix (26), 13 features based on gray-
level run-length matrix (27), 13 features based on gray-level size-
zone matrix (28), and five features based on neighborhood gray-
tone difference matrix (29). Summary of the 70 texture features
was listed in the feature extraction section of the Appendix.
Then, the wavelet transformation to strip the image information
layer-upon-layer by high- and low-pass filters were performed.
Thereafter, four images of different frequency sub-bands and
another 280 texture features could be obtained. Finally, we
obtained 350 texture features from each grayscale ultrasound
image and ultrasound feature maps.

Feature Selection and Dimension

Reduction

Iterative SR method were used to select key features for the
classifier before classification to improve the stability of final
models (30, 31). The SR coefficients of each feature were
calculated by selecting part of the 42 samples in each iteration.
In the SR method, the threshold Tal is set to 0.004. Then, the
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FIGURE 1 | Overall design of radiomics analysis. The radiomics analysis process consisted of the following steps: (1) grayscale images and original radio frequency
(ORF) data of HCC lesions obtained; (2) tumor segmentation on grayscale ultrasound images for ORF data; (3) first feature extraction to obtain three ultrasound feature
maps of ORF data of region of interest (ROI); (4) second feature extraction to obtain radiomics features from three ultrasound feature maps and related grayscale
ultrasound images; (5) feature selection based on sparse representation (SR) algorithm; and (6) support vector machine (SVM) classifier trained with the selected
features for MVI prediction.
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FIGURE 2 | Tumor segmentation. On grayscale ultrasound image, the region of interest (ROI) was manually marked by a doctor with four white forks points (A). Image
were segmented in scan-line imaging way for original radio frequency (ORF) data (B). After Hilbert transform and logarithmic compression of ORF signals, the
grayscale ultrasound images under the scan-line images could be obtained (C).

average SR coefficients of each feature were taken as the final  description of SR method in feature selection is included in the
SR coeflicients of each feature. The importance of the features  feature selection section of the Supplementary Appendix.

was quantified as SR coefficients. Finally, the features were sorted

based on the absolute value of the final SR coefficients, and ~ Classification and Prediction

features that did not meet the threshold Tal condition were  SVM classifier was used in this section. Starting from number
remove to achieve feature dimensionality reduction. A detailed 1, the different numbers of features ranked by SR method
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FIGURE 3 | First feature extraction. The calculation principle of original radio frequency signal (ORF) signals from region of interest (ROI) in three ultrasound feature
maps, including direct energy attenuation (DEA) feature map, standard deviation of spectrum difference (SDSD) feature map, and omega of Nakagami distribution

in Feature Selection and Dimension Reduction were put into
the SVM classifier to calculate AUC, accuracy, sensitivity, and
specificity of MVI prediction in patients with HCC. We evaluated
the MVI prediction models through the above parameters. The
final feature dimensions of the MVI prediction models were the
number of features put into the SVM classifier with the best
performance in MVI prediction. This process effectively realized
dimension reduction of features. Feature selection is mainly
based on sparse representation, but the dimensions of features
are still high after sparse representation. When implementing the
classifier, the SVM uses the kernel function mapping technique
to obtain the same classification result as the high-dimensional
space in the low-dimensional space. In this sense, the SVM
implements the further selection of features.

Statistical Analysis

Descriptive statistics are summarized as the mean £ SD.
LOOCYV statistical analysis method was used to evaluate the MVI
prediction models. A Tukey test, in conjunction with analysis of
variance (ANOVA), was used to test the signification between
any two pairs of the three ultrasound features. Receiver operating
characteristic curve (ROC), precision-recall curve (PRC), and
model decision curve analysis (DCA) were employed to show the

overall performance of the models. Other assessment indicator
included area under the ROC (AUC), accuracy, sensitivity,
and specificity.

RESULTS

Final Diagnosis of Patients
A total of 42 HCC patients (34 men and 8 women; age
range, 23-80 years; mean, 58.5 + 11.9 years) were finally
included in our study. The surgical procedures comprised
segmentectomy (n = 12), right anterior sectionectomy (n
19), and right posterior sectionectomy (n 11). The mean
time between ultrasound scan and surgery was 6 days (range,
3-7 days).

Pathology data revealed the presence of MVI in 21 HCC
patients as grade 1 (M1), and 21 patients were diagnosed without
MVTI as grade 0 (MO).

Multiparameter Ultrasound Feature
Extraction Results of ORF Signals

Multiple ultrasound parameters were extracted from ORF
signals, including DEA, OND, and SDSD. They played various
degrees of positive role in the MVI preoperative prediction.
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Compared with the MO group, the M1 group showed larger
absolute value of DEA and more serious attenuation. ANOVA
analysis showed significant difference in DEA, OND, and SDSD
between patient with and without MVI (P < 0.05).

Second Feature Extraction and Feature

Selection Results
Four pictures were included in our second feature extraction
results, including grayscale ultrasound image, DEA feature map,
OND feature map, and SDSD feature map. The MVI prediction
model based on ultrasound grayscale image was referred to as
GM. The MVI prediction model based on DEA feature map was
referred to as DM. The MVI prediction model based on DEA
feature map and OND feature map was referred to as DOM. The
MVI prediction model based on DEA feature map, OND feature
map, and SDSD feature map was referred to as DOSM.

In this texture feature extraction, we extracted 350 texture
features from MVI prediction model of GM, 350 texture features
from DM, 700 texture features from DOM, and 1,050 texture
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FIGURE 4 | Diagnostic performances of MVI prediction models with different
number of features. After feature selection, the performance of DOSM, DOM,
DM, and GM models were increased gradually and maintained at a relative
stable level. The changes in AUC with the increase in feature numbers were
helpful to find the optimal feature dimensions of each model. The final feature
dimensions of MVI prediction models of GM, DM, DOM, and DOSM were 6,
10, 19, and 11, respectively.

features from DOSM. The number of selected features of GM,
DM, DOM, and DOSM MVI prediction model based SR method
were 214, 253, 427, and 536, respectively.

Diagnostic Performances of Different MVI

Prediction Models

In SVM classifier to construct MVI prediction model, the training
process of the above-mentioned model achieved further feature
dimensionality reduction. Figure4 used top 50 features after
feature selection to show the performance of models utilizing
different number of features. According to Figure 4, the final
feature dimensions of MVI prediction models of GM, DM, DOM,
and DOSM were 6, 10, 19, and 11, respectively. The maximum
accuracy of the corresponding above four models by dimension
reduction were 83.33, 85.71, 88.1, and 92.86%.

Table 1 shows the performance parameters of the GM model
based on the conventional grayscale ultrasound images and
the other three models based on the ORF signals. GM based
on grayscale ultrasound image was used as a comparison test
to the three MVI prediction models based on ORF signals.
The AUC, accuracy, sensitivity, and specificity of GM were
the lowest among the four MVI prediction models of GM,
DM, DOM, and DOSM, respectively. Among the three ORF-
based prediction models, the accuracy, AUC, sensitivity, and
specificity of the DOSM were the highest. In the 11 selected
features of DOSM, 6 features were obtained from the DEA
ultrasound feature map, three features from the OND ultrasound
feature map, and two features from the SDSD ultrasound
feature map.

The AUC of DOSM (95.01%, 0.835-0.993) was the highest one
among the four prediction models. The AUC of GM (85.94%,
0.717-0.947) was the lowest (Figure 5).

Precision recall curves (PRC) of DOSM, DOM, DM, and GM
are shown in Figure 6. The results showed that DOSM based
on three ultrasound feature maps selected from ORF signals
had more advantage compared with the other three models in
predicting the MVI classification of HCC.

DISCUSSION

Previously, several studies proved that radiomics analysis
algorithm based on ultrasound images could be helpful
to extract massive features and to assist clinical decision-
making. The reported ultrasound radiomics analysis algorithm

TABLE 1 | Diagnostic performance of DOSM, DM, DOM, and GM for MVI classification.

Model type AUC (%, 95% CI) Accuracy (%) Sensitivity (%) Specificity (%)
DOSM 95.01 (0.835-0.993) 92.86 85.71 100
DOM 91.84 (0.792-0.980) 88.1 80.95 95.24

DM 90.93 (0.780-0.976) 85.71 80.95 90.48

GM 85.94 (0.717-0.947) 83.33 80.95 85.71

AUC, area under the receiver operating characteristic curve; DOSM, MVI prediction model based on DEA feature map, OND feature map and SDSD feature map of ORF signals; DM,
MV prediction model based on DEA feature map, DOM, MVI prediction model based on DEA feature map and OND feature map; GM, MVI prediction model based on gray-scale
ultrasound image.
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FIGURE 5 | Diagnostic performances of different MVI prediction models. While
comparing the AUC curves between DOSM, DOM, DM, and GM models. The
AUC of DOSM (95.01%, 0.835-0.993) was the highest one among the DOSM,
DOM, DM, and GM models. The AUC of GM (85.94%, 0.717-0.947) was the
lowest. The AUC of DOSM is 0.95 + 0.04, which is the highest one among the
four MVI prediction models.

precision-recall graph

1 . .
0.8
.S 0.6
K2
O
Q
Q04r 1
—DOSM
0.2} ——DOM ||
DM
, —GM
0~ : : ; :
0 0.2 0.4 0.6 0.8 1

recall

FIGURE 6 | Precision-recall curves of models for prediction of MVI.
Precision-recall curves (PRC) of GM, DM, DOM, and DOSM models for
prediction of microvascular invasion (MVI). The DOSM based on three
ultrasound feature maps selected from radio frequency signals (ORF) signals
showed the best performance among GM, DM, DOM, and DOSM models in
predicting the MVI classification of HCC.

based on grayscale ultrasound images, ultrasound elastography
images, and contrast enhanced ultrasound images (19, 32-34).
With the development of radiomics analysis, a large number
of valuable features could be extracted from conventional

ultrasound images, including texture features, morphological
features, and some other specific features (35, 36). However,
conventional ultrasound images might be affected by post-
processing procedure; as a result, they will lose a lot of
useful information compared with ORF signals (21-24). The
radiomics analysis technology based on ORF data was applied
in our present study. We extracted three ultrasound feature
maps of ORF signal of HCC lesions, combining with the
iterative SR method and SVM classifiers to reduce the feature
dimensions and build MVI prediction model. In our results,
11 highly correlated radiomics features were finally obtained
to establish an effective MVI prediction model of DOSM.
DOSM prediction model based on RA-ORF showed superior
performance for MVI prediction, which make full use of the
advantages of signal processing technology. It could extract
more useful radiomics features and improve the accuracy of
MVI classification.

Previously, several studies tried to classify diseases by ORF
signal combined with radiomics analysis (34, 37) to prove that
time-domain features (38), statistical distribution features, and
frequency-domain features (39) of ultrasound ORF signals be
helpful in disease recognition (40). In signal processing, the
ultrasound feature parameters of DEA, SDSD, and OND, which
were obtained from ORF signals in time, frequency, and statistics
domains, always have clear and valuable physical significance.
DEA of time-domain characteristics of ORF signals represents
the direct energy attenuation in ROI. When the normal tissue
changes, its microstructure will change accordingly, which
leads to the change in attenuation. SDSD of frequency-domain
characteristics of ORF signals represents standard deviation of
spectrum difference, which is a common parameter to reflect
spectrum differences between tissues in spectrum analysis. OND
of statistical characteristics of ORF signals represents omega
of Nakagami distribution of ROIL The parameter values of
Nakagami distribution for the second harmonic envelope signals
from different degrees of non-linearity in tissue are significantly
different. According to this, we can quantitatively analyze the
difference in non-linear characteristics between normal and
diseased biological tissue (41). At present, advanced radiomics
method makes it possible to extract huge amounts of features
and to select valuable features from multiclass ultrasound
feature maps consisting of DEA, SDSD, and OND. In our
results, ROC and PRC curves both validated the reliability of
DOSM model in MVI prediction of HCC lesions. Our RA-
ORF method combined ORF-based signal processing technology
with radiomics analysis, which showed a good classification
performance on MVI prediction. Among the three ORF-based
prediction models, the accuracy, AUC, sensitivity, and specificity
were gradually improved. Some valuable radiomics features
were further extracted for MVI prediction. Meanwhile, the
performance of MVI prediction models in HCC lesions was
improved accordingly. The radiomics algorithm based on ORF
signal was superior to that based on conventional grayscale
ultrasound images.

Pathologically, MVI is defined as the presence of
micrometastatic HCC emboli within the vessels of the liver
(9). Relevant studies have shown that there is a correlation
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between tissue microstructures and spectrum feature (42).
Spectrum analysis based on ORF signals can obtain abundant
microstructural information, which might be completely lost
in conventional grayscale ultrasound images (21-24, 42).
Therefore, by extracting frequency-domain features and
combining radiomics analysis, different pathological tissues
could be analyzed. The presence of MVI in HCC lesions may
cause changes in tissue attenuation coefficient accordingly.
It is possible for us to use the time-domain features of DEA
calculated from radiomics analysis of ORF signals to predict
MVI in HCC lesions. The DOSM prediction model based
on RA-ORF in our study reached sensitivity of 85.71%,
specificity of 100%, and AUC of 95.01%. It was proved to be
superior to DOM, DM, and GM models. Our initial results
showed that the AUC of the DM model based on RA-ORE
which uses time-domain features of DEA, was better than
the GM model based on RA-USI with conventional grayscale
ultrasound images.

Our study has several limitations: the patient number is
relatively limited; only three ultrasound parameters of DEA,
OND, and SDSD based on ORF signals were included. The
stability evaluation of RA-ORF based radiomic analysis
would be further improved by multicenter studies in
the future.

CONCLUSION

In conclusion, radiomics algorithm based on RA-ORF and SAP
technology might provide useful information for preoperative
MVI prediction in HCC lesions. Depending on the unique
advantages of ultrasound imaging such as real-time imaging, low
cost, and no radiation exposure risk, it might be a promising
method in future clinical application.
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Purpose: To retrospectively identify the relationships between both CT morphological
features and histogram parameters with pulmonary metastasis in patients with
colorectal cancer (CRC) and compare the efficacy of single-slice and whole-lesion
histogram analysis.

Methods: Our study enrolled 196 CRC patients with pulmonary nodules (136 in the
training dataset and 60 in the validation dataset). Twenty morphological features of
contrast-enhanced chest CT were evaluated. The regions of interests were delineated
in single-slice and whole-tumor lesions, and 22 histogram parameters were extracted.
Stepwise logistic regression analyses were applied to choose the independent factors
of lung metastasis in the morphological features model, the single-slice histogram
model and whole-lesion histogram model. The areas under the curve (AUC) was
applied to quantify the predictive accuracy of each model. Finally, we built a
morphological-histogram nomogram for pulmonary metastasis prediction.

Results: The whole-lesion histogram analysis (AUC of 0.888 and 0.865 in
the training and validation datasets, respectively) outperformed the single-slice
histogram analysis (AUC of 0.872 and 0.819 in the training and validation datasets,
respectively) and the CT morphological features model (AUC of 0.869 and 0.845
in the training and validation datasets, respectively). The morphological-histogram
model, developed with significant morphological features and whole-lesion
histogram parameters, achieved favorable discrimination in both the training
dataset (AUC = 0.919) and validation dataset (AUC = 0.895), and good calibration.
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Conclusions: CT morphological features in combination with whole-lesion histogram
parameters can be used to prognosticate pulmonary metastasis for patients with

colorectal cancer.

Keywords: colorectal cancer, pulmonary metastases, histogram, morphological, morphological features,

nomogram

INTRODUCTION

Colorectal cancer (CRC) is the third common cause of morbidity
and mortality worldwide (1, 2). Pulmonary is the most common
extra-abdominal site of metastasis for those with CRC, with
5-10% of CRC patients developing pulmonary metastasis
(PM) (3, 4). The 5-year survival rates after initial colorectal
surgery in patients with and without resection for pulmonary
metastasis are 68 and 13%, respectively (3). The strong survival
benefits of pulmonary metastasectomy make this treatment the
generally accepted treatment for patients to achieve long-term
survival when there is a definite and clear diagnosis (5, 6).
Furthermore, if pulmonary metastasis is diagnosed early and
resected aggressively, the survival rate is further improved (7).

However, with chest CT applied as part of preoperative
routine examination, an increasing number of CRC patients are
being diagnosed with indeterminate pulmonary nodules (IPNs)
of unknown nature (8). The reported incidence of IPNs in CRC
patients is 25-45.5% (8-10). Further diagnostic tests can also be
problematic as nodules <10 mm in diameter may fall below the
threshold of detection for positron emission tomography (PET)
(11), and fine-needle aspiration cytology may not be feasible for
thoracoscopic localization (12). Therefore, in CRC patients with
IPNs, the accurate diagnosis of metastatic disease at an early and
surgically treatable stage remains a challenge.

Though early-stage metastatic nodules and benign
lesions have similar appearance in images, the importance
of morphology should not be underestimated (13). CT imaging
allows detailed observation of the morphological features of
nodules and lesions, such as their internal density, shape,
margin, and other typical characteristics. In recent years,
texture analysis has emerged as a valuable methodology for
facilitating diagnosis through the deep mining of information
from medical images (14, 15). It has achieved great utility
in evaluating many kinds of pulmonary diseases, including
pulmonary embolisms (16), interstitial lung disease (17), and
pulmonary nodules (18, 19). By extracting features of subtle
pixel distributions and spatial variations of the gray levels of
lesions that are imperceptible to the naked eye, texture analysis
provides a complementary method for evaluating subjective and
megascopic morphological features.

To date, studies concentrating on the morphological and
textural features of IPNs 5-20mm in diameter on contrast-
enhanced CT in CRC patients remain limited. This study sought
to determine the morphological characteristics and histogram
parameters derived from texture analysis for CRC patients with
IPNs and to construct a risk model with a combination of
independent predictors to facilitate the accurate diagnosis of
pulmonary metastasis.

MATERIALS AND METHODS

Patients
This retrospective analysis had obtained the ethical approval,
and the informed consent requirement was waived. Our study
enrolled 196 consecutive colorectal cancer patients (88F/108M;
age range, 32-80 years; mean age, 58.49 £ 10.80 years) with
lung nodules admitted in our institution between January 2010
and December 2017. The inclusion criteria were as follows:
(i) colorectal cancer was histopathologically confirmed; (ii) at
least one lung nodule measuring 5-20 mm detected by contrast-
enhanced chest CT examination; (iii) available pathology reports
with diagnosis of pulmonary metastasis or primary lung cancer
for the malignant nodules and at least 2 years follow-up for
the benign nodules; and (iv) complete medical history. The
exclusion protocol were as follows: (i) with pretreatment 6
months before initial CT examination (including chemotherapy
or pneumonectomy); (ii) obsolete nodules detected 6 months
before colorectal cancer was detected; (iii) obvious benign
nodules with typical imaging characteristics (such as cysts,
tuberculosis, or inflammatory nodules); and (iv) adjuvant therapy
(including radiation therapy or chemotherapy) applied for no-
progress lesions in the process of follow-up. When there are
multiple nodules, we choose the largest nodule for morphological
and radiomics analysis. Of the 196 people included in the study,
194 of them have been published in our previous research (20).
Nodules were divided into two groups: (i) a pathologically
confirmed lung metastasis group (95 PMs; 42F/53M; mean age,
57.46 £ 10.58 years), and (ii) a non-metastasis (NM) group
(101 NMs; 46F/55M; mean age, 59.47 & 10.91 years), including
benign nodules (90 cases) with at least 2 years follow-up (88
cases) and pathology confirmation (2 cases) or primary lung
cancer confirmed by pathology (11 cases). We used a computer
algorithm to randomly divide the patients into a training dataset
and a validation dataset at the ratio of 7:3. Figure 1 shows the
process of patients’ recruitment.

CT Scanning Protocol

Chest CT examinations were performed at our institution with
the Sensation 64 scanner (Siemens Healthcare) or the Somatom
Definition AS scanner (Siemens Healthcare). The Contrast-
enhanced CT scan parameters were as follows: contrast medium,
inhexol; tube voltage, 120 kVp; tube current, 250-350 mA; slice
thickness, 1.5mm; slice interval, 1.5 mm; matrix, 512 x 512;
field of view (FOV), 35-50cm; pitch, 1.078; reconstruction
algorithm, standard. The arterial phase of the target nodule which
was pathologically confirmed or under follow-up was selected
for reconstruction.
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Colorectal cancer patients who underwent contrast-enhanced CT
between between January 2010 and December 2017 in our institution

Inclusion criteria

1.histopathologically confirmed colorectal cancer;

2.with at least one pulmonary nodules measuring 5-20 mm
3.with complete CT datasets and medical history
4.available pathology reports after thoracotomy

5.at least 2 years follow-up for the benign nodules

Patients Outcome

Lung metastasis Non-metastasis

Exclusion criteria

1.with pretreatment 6 months ago before initial CT examination
2.0bsolete nodules detected 6 months before colorectal cancer ~
was confirmed

3.obvious benign nodules with typical imaging characteristics
4.with adjuvant therapy for no-progress lesions during follow-up

Y

95 cases 101 cases
Benign nodules Primary lung cancer
90 cases 11 cases
, Confirmed by at least 2-y .
bCor;ftlr:r;':(e;d ears follow-up (88 cases bCor;f‘lr:r;zd
yP 9y ) and pathology (2 cases) y P oy

Final inclusion(n=196)

Primary cohort(n=136)

| Validation cohort(n=60)

Lung metastasis Non-metastasis
n=63 n=73

Lung metastasis Non-metastasis
n=32 n=28

FIGURE 1 | Flow chat of patients’ recruitment pathway.

CT Image Interpretation

The interpretations of CT features are listed in
Supplementary Table 1. The CT morphological features
were independently evaluated by two operators (SW and TH,
with 20 and 3 years of experience in chest CT, respectively).
In cases of disagreement, a third radiologist (T'T, with 20 years
of experience in CT imaging) was consulted, and the majority
value was used. Mean values were calculated for continuous
variables. The CT images were read with both mediastinal and
lung window settings. All of the operators were blinded to the
clinical and histologic findings.

Histogram Analysis

Reconstructed images were transferred to the MIM software
(v6.6.3; MIM Software Inc.) for histogram analysis. For each
patient, regions of interest (ROIs) were first semi-automatically
contoured in the largest-cross sectional area of the tumor outline
and then manually delineated by an operator and verified by
an expert radiologist. Each ROI was propagated to include the
entire tumor volume in each consecutive slice using the same
contouring method. In the process of delineation, we excluded
the border of the lesion and any other irrelevant tissues or
regions, such as pleura, normal tissue, air, peripheral vessels, and
surrounding organs. Supplementary Figure 1 shows an example
of ROI delineation.

The histogram parameters were automatically measured by
the software using a volumetric approach on the ROI of
the nodule. Single-slice and whole-lesion histogram parameters
were extracted and analyzed. From each segmented tumor,

we extracted 11 single-slice histogram parameters and 11
whole-lesion histogram features. More information about the
methodology used to extract histogram features can be found in
Supplementary Material.

Statistical Analysis

R software (version 3.3) was applied for statistical analysis.
To measure the agreement of CT morphological features
between two readers, intraclass correlation coefficients (ICCs)
were calculated (poor: 0.00-0.20; fair: 0.21-0.40; moderate:
0.41-0.60; good: 0.61-0.80; excellent: 0.81-1.00). To compare
the proportional differences between the training dataset
and the validation dataset, chi-square tests were applied for
the categorical variables, and two-sample t-tests were used
for the continuous variables. To compare the differences
between the PM and NM group, chi-square and two-
sample t-tests were applied as appropriate for both the
training and validation datasets. Two-sided p < 0.05 was
considered significant.

Model Selection

The significant factors were introduced into the stepwise logistic
regression to select the independent features for the CT
morphological model, the single-slice histogram model and the
whole-lesion histogram model. The Akaike information criterion
(AIC) was employed as the stopping rule. The validation dataset
was used to test the diagnostic performance of the models by
applying the multivariable regression formula derived from the
training dataset to the patients of the validation dataset, and the
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TABLE 1 | Comparison of morphological features of lung metastasis (PM) and non- metastasis (NM) in the training and validation datasets.

Training dataset

Validation dataset

Characteristics NM PM p NM PM p
Age 59.82 + 10.530 58.17 + 11.360 0.382 58.54 +12.188 56.06 + 9.055 0.372
Gender 0.676 0.316
1 42 (57.5%) 34 (54.0%) 3 (46.4%) 9 (59.4%)

2 31 (42.5%) 29 (46.0%) 5 (563.6%) 3 (40.6%)

Lobe location 0.025* 0.507
1 2 (16.4%) 19 (30.2%) 7 (25.0%) 6 (18.8%)

2 2 (16.4%) 10 (15.9%) 4 (14.3%) 10 (31.3%)

3 23 (31.5%) 9 (14.3%) 8 (28.6%) 5 (15.6%)

4 2 (16.4%) 5 (7.9%) 1(3.6%) 1(3.1%)

5 4 (19.2%) 20 (31.7%) 8 (28.6%) 10 (31.3%)

Size category <0.001* 0.00% 0.00% 0.095
1 56 (76.7%) 22 (34.9%) 20 (71.4%) 14 (43.8%)

2 10 (13.7%) 24 (38.1%) 4 (14.3%) 10 (31.3%)

3 7 (9.6%) 17 (27.0%) 4 (14.3%) 8 (25.0%)

Long-axis diameter 8.988 + 3.493 12.662 + 4.200 <0.001* 9.221 + 4.422 11.819 £ 4.180 0.023*
Short-axis diameter 5.825 £ 2.144 9.611 £ 9.253 0.001* 5.682 £ 2.031 8.184 £ 3.071 <0.001*
Density <0.001* 0.002*
1 12 (16.4%) 0 (0.0%) 6 (21.4%) 0 (0.0%)

2 15 (20.5%) 2 (3.2%) 6 (21.4%) 2 (6.3%)

3 46 (63.0%) 61 (96.8%) 16 (57.1%) 30 (93.8%)

Contour 0043* 0.011*
1 2 (2.7%) 0 (15.9%) 1(3.6%) 18.1%)

2 21 (28.8%) 0 (31.7%) 2 (7.1%) 8 (25.0%)

3 29 (39.7%) 19 (30.2%) 11 (39.3%) 19 (59.4%)

4 21 (28.8%) 4 (22.2%) 14 (50.0%) 4 (12.5%)

Border <0.001* <0.001*
1 28 (38.4%) 2 (3.2%) 13 (46.4%) 1(3.1%)

2 24 (32.9%) 43 (68.3%) 10 (35.7%) 20 (62.5%)

3 21 (28.8%) 18 (28.6%) 5 (17.9%) 11 (34.4%)

Air bronchogram 0.032* 0.178
0 72 (98.6%) 57 (90.5%) 28 (100.0%) 30 (93.8%)

1 1(1.4%) 6 (9.5%) 0 (0.0%) 2 (6.3%)

Lymphadenopathy 0.032* 0.369
0 72 (98.6%) 57 (90.5%) 7 (96.4%) 9 (90.6%)

1 1(1.4%) 6 (9.5%) 1(3.6%) 3(9.4%)

Chi-square tests were used to compare the differences in categorical variables while a two-sample t-test was used to compare the differences in continuous variables.

NM, non-metastasis group; PM, lung metastasis group.
o < 0.05.

probability of metastasis was calculated for each. The area under
the receiver characteristic curve (AUC) was calculated to quantify
the predictive accuracy of the three models in the training and
validation datasets. We also calculated the accuracy, sensitivity,
specificity, positive predictive value, and negative predictive value
for each model.

We compared the relative strengths of the single-slice
and whole-lesion histogram models and then used the more
efficient model in combination with the morphological
features to construct the morphological-histogram model. A
morphological-histogram nomogram was then constructed for
clinical application. A receiver operating characteristic (ROC)

curve was used to describe the discrimination abilities of the
nomogram. An AUC above 0.75 is considered as good (21).
Nomogram performance was graphically demonstrated by
calibration plots in both the training and validation datasets.
Finally, decision curve analysis (DCA) was applied to assess the
clinical usefulness of the nomogram.

RESULTS

Patient Characteristics

The patients characteristics and statistically significant
CT morphological features are shown in Tablel

Frontiers in Oncology | www.frontiersin.org

127

November 2019 | Volume 9 | Article 1241


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

Hu et al.

Morphological-Histogram Nomogram for LM Prediction in CRC

TABLE 2 | Comparison of single-slice and whole-lesion histogram parameters of PM and NM in the training and validation datasets.

Parameters Training dataset Validation dataset
NM PM p NM PM P

S-ASD —2.976 + 15.859 —2.902 + 8.077 0.973 —2.312 £ 9.593 0.490 + 6.293 0.181
S-STD 161.602 £ 101.977 135.420 + 60.213 0.076 129.270 + 68.500 130.685 + 59.258 0.932
S-Average ratio 0.428 + 0.685 1.345 + 1.414 <0.001* 0.5623 + 0.888 0.993 + 0.887 0.045*
S-Mean —58.878 + 340.285 —15.669 + 330.362 0.456 —73.787 + 164.636 —37.878 + 88.316 0.289
S-Skewness 0.088 + 1.089 —0.854 + 0.816 <0.001* 0.231 £+ 1.035 —0.871 £ 0.995 <0.001*
S-Kurtosis 0.987 + 4.616 1.163 + 3.397 0.802 1.364 + 3.860 1.727 £ 5.520 0.772
S-Area 0.775 £ 0.357 1.236 + 0.416 <0.001* 0.795 £ 0.419 1.128 £ 0.373 0.002*
S-Volume 0.428 + 0.685 1.345 + 1.414 <0.001* 0.523 + 0.888 0.993 + 0.887 0.045*
S-Median —50.810 + 344.826 —73.250 £+ 146.112 <0.001* —299.820 + 296.139 —29.190 £ 114.492 <0.001*
S-Maximum 190.590 + 450.767 1566.170 + 176.689 0.57 123.320 + 600.592 197.130 + 112.848 0.498
S-Minimum —58.970 + 233.980 —69.970 + 252.732 0.035* —623.040 + 210.656 —532.810 + 289.115 0.178
W-ASD 364.124 + 909.629 218.649 + 176.266 0.214 211.019 + 314.358 204.203 + 179.826 0.917
W-STD 161.978 £+ 101.572 135.300 + 60.134 0.07 128.909 + 68.194 130.383 + 59.421 0.929
W-Average ratio 0.960 + 0.466 1.610 + 0.522 <0.001* 0.960 + 0.404 1.485 + 0.450 <0.001*
W-Mean —39.095 + 326.163 —99.504 £ 129.099 0.002* —292.437 £ 290.740 —56.853 + 106.652 <0.001*
W-Skewness 0.064 + 1.016 —0.851 £ 0.824 <0.001* 0.245 £ 1.041 —0.859 + 1.008 <0.001*
W-Kurtosis 3.723 £ 4.279 4.185 £ 3.455 0.494 4.373 £ 3.957 4.713 £ 5.622 0.791
W-Area 86.586 + 145.308 206.406 + 221.798 <0.001* 93.797 + 112.534 167.841 + 189.459 0.076
W-Volume 134.501 £ 340.853 394.708 + 510.214 0.001* 122.925 + 184.577 301.584 + 380.789 0.028*
W-Median —42.164 + 337.581 —73.365 + 146.188 <0.001* —299.839 + 295.991 —29.359 + 114.730 <0.001*
W-Maximum 188.810 + 450.066 156.140 + 176.460 0.589 138.640 + 586.255 195.940 + 110.947 0.59
W-Minimum —18.330 + 250.784 —57.700 + 263.027 0.172 —613.680 + 225.487 —505.530 + 311.857 0.134

ASD, Average standard deviation ratio; STD, Standard deviation.

S-, single-slice histogram parameters; W-, whole-lesion histogram parameters. A two-sample t-test was used to compare the differences of those parameters.

0 < 0.05.

(Supplementary Table 3 contains complete morphological
features comparison), and the histogram parameters are
presented in Table2. There were no significant differences
between the training and validation datasets except in pleural
attachment (Supplementary Table 2). The agreement between
the two operators was excellent for most characteristics and good
for several features (Supplementary Table 4).

Significant Morphological Features and

Histogram Parameters
Regarding the CT morphological features, the chi-square tests
and t-tests revealed that nine CT features were associated with
lung metastasis, including lobe location (p = 0.025), size category
(p < 0.001), long-axis diameter (p < 0.001), short-axis diameter
(p = 0.001), density (p < 0.001), contour (p = 0.043), border (p
< 0.001), air bronchogram (p = 0.032), and lymphadenopathy
(p = 0.032). After stepwise logistic analysis, long-axis diameter
(OR = 1.360, 95%CI: 1.198-1.544, P < 0.001), density (OR =
11.166, 95%CI: 2.721-45.815, P < 0.001) and contour (OR =
0.317, 95%CI: 0.177-0.569, P = 0.001) remained independent
predictors in the CT morphological model, as shown in Table 3.
Regarding the single-slice histogram parameters (S- means
the parameters from the single-slice histogram analysis and W-
from the whole-slice histogram), t-tests revealed that the S-
average ratio (p < 0.001), S-skewness (p < 0.001), S-area (p <
0.001), S-volume (p < 0.001), S-median (p < 0.001), and S-
minimum (p = 0.035) were significant variables related to PM.

TABLE 3 | Comparison of the models by multivariate logistic regression analysis.

OR (95%Cl) P AIC
CT morphological features 127.34
Long-axis diameter 1.360 (1.198-1.544) <0.001*
Density 11.166 (2.721-45.815) <0.001*
Contour 0.317 (0.177-0.569) 0.001*
Single-slice histogram 130.90
S-Average ratio 0.268 (0.111-0.642) 0.003*
S-Area 559.372 (42.344-7389.333)  <0.001*
S-Median 1.004 (1.002-1.005) <0.001*
Whole-lesion histogram 130.25
W-Average ratio 12.764 (4.653-35.018) <0.001*
W-Mean 0.977 (0.961-0.994) 0.004*
W-Median 1.024 (1.008-1.041) 0.009*
Morphological-histogram 121.74
Density 5.434 (1.161-25.440) 0.032*
Contour 0.495 (0.286-0.858) 0.012*
W-Average ratio 9.727 (3.538-26.740) <0.001*
W-Mean 0.977 (0.959-0.995) 0.009*
W-Median 1.023 (1.006-1.042) 0.013*

OR, odds ratio; Cl, confidence interval; AIC, Akaike information criterion.
"0 < 0.05.

After stepwise logistic analysis, the S-average ratio (OR = 0.268,
95%CI: 0.111-0.642, P = 0.003), S-area (OR = 559.372, 95%CI:
42.344-7389.333, P < 0.001), and S-median (OR = 1.004, 95%CL:
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1.002-1.005, P < 0.001) were selected as independent predictors
for the single-slice histogram model.

Regarding the whole-lesion histogram parameters, t-tests
revealed that the W-average ratio (p < 0.001), W-mean (p =
0.002), W-skewness (p < 0.001), W-area (p < 0.001), S-volume
(p =0.001), W-median (p < 0.001), and S-minimum (p = 0.035)
were significant parameters associated with PM. After stepwise
logistic analysis, the W-average ratio (OR = 12.764, 95%CI:
4.653-35.018, P = 0.003), W-mean (OR = 0.977, 95%CI: 0.961-
0.994, P = 0.004), and S-median (OR = 1.024, 95%CI: 1.008-
1.041, P = 0.009) were selected as independent predictors for the
whole-lesion histogram model. Figure 2 shows the distributions
of the significant histogram parameters in the training and
validation datasets.

Comparison of Single-Slice and

Whole-Lesion Histogram Analyses

The whole-lesion histogram model (AIC = 130.25) had lower
AIC value than the single-slice model (AIC = 130.9) and
achieved better discrimination. It yielded an AUC of 0.888 for the
training dataset and of 0.865 for the validation dataset, exceeding
the AUC values of the single-slice model (AUC = 0.872 for the
training dataset and AUC = 0.819 for the validation dataset). The
ROC curves of the two models are presented in Figure 3.

Development and Validation of the

Morphological-Histogram Nomogram

We subjected the CT morphological features and the whole-
lesion histogram parameters to stepwise logistic regression
analysis. Density (OR = 5.434, 95%CIL 1.161-25.440, P =
0.032), contour (OR = 0.495, 95%CI: 0.286-0.858, P = 0.012),
the W-average ratio (OR = 9.727, 95%CI: 3.538-26.740, P <
0.001), W-mean (OR = 0.977, 95%CI: 0.959-0.995, P = 0.009),
and W-median (OR = 1.023, 95%CI: 1.006-1.042, P = 0.013)
were identified as independent risk factors in the model. The
integrated model also achieved the best performance among the
models, with an AUC of 0.919 (95%CI: 0.871-0.968, accuracy:
88.2%, sensitivity: 84.9%, specificity: 92.1%, PPV: 92.5%, NPV:
84.1%) for the training dataset and of 0.895 (95%CI: 0.813-
0.977, accuracy: 81.7%, sensitivity: 78.5%, specificity: 84.4%, PPV:
81.5%, NPV: 81.8%) for the validation dataset (Table 4). The
ROC curves of the models for both the training and validation
datasets are presented in Figure 3.

The morphological-histogram nomogram was successfully
constructed, with good discrimination, based on the
morphological-histogram model (Figure 4A). The calibration
plots also presented good accordance between the nomogram
prediction and actual outcome for PM and NM in both the
training and validation datasets (Figures 4B,C). The decision
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curve analysis demonstrated that given a threshold probability
ranging from 0 to 100%, the morphological-histogram model
was superior to the treat-all and treat-none schemes in predicting
lung metastasis (Figure 4D).

DISCUSSION

In the present study, we investigated the imaging characteristics
of IPNs 5-20mm in diameter on initial CT in CRC patients
and compared the predictive accuracy of whole-lesion and
single-slice histogram parameters. We then constructed a
morphological-histogram nomogram using a combination of
morphological features and whole-lesion histogram parameters
for IPNs. This nomogram may be clinically useful for
discriminating CRC patients who might benefit from early and

curable metastasectomy for metastatic lesions or an appropriate
surveillance program.

CT offers direct visualization of lesions and potentially allows
a detailed characterization of the morphologic extent of lesions.
The careful evaluation of morphologic features is an essential step
in pulmonary nodules assessment (13). Although several studies
(22-24) have sought to identify significant image features for
metastatic nodules, there is no consensus regarding the definition
of IPNs, which led to slight differences between our results and
previously published ones. In our study, we found that significant
morphological features associated with pulmonary metastasis
were long-axis diameter, density, and contour.

As reported by many other studies, nodule diameter is a
reliable indicator of malignant potential (22, 23, 25). We found
that solid nodules are more likely to be metastatic lesions.
As more than 95% of nodules that originate from colorectal
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TABLE 4 | Accuracy and predictive value between those models.

Training dataset AUC 95%CI Sensitivity Specificity Accuracy PPV NPV

CT morphological features 0.877 0.819-0.935 83.6% (61/73) 79.4% (50/63) 81.6% (111/136) 82.4% (61/74) 80.7% (50/62)
Single-slice histogram 0.872 0.813-0.931 86.3% (63/73) 76.2% (48/63) 81.6% (111/136) 80.8% (63/78) 82.8% (48/58)
Whole-lesion histogram 0.888 0.830-0.946 82.2% (60/73) 87.3% (55/63) 84.6% (115/136) 88.2% (60/68) 80.9% (55/68)
Morphological-histogram 0.919 0.871-0.968 84.9% (62/73) 92.1% (58/63) 88.2% (120/136) 92.5% (62/67) 84.1% (58/69)
Validation dataset AUC 95%CI Sensitivity Specificity Accuracy PPV NPV

CT morphological features 0.823 0.708-0.938 78.5% (22/28) 75% (24/32) 76.7% (46/60) 73.3% (22/30) 80% (24/30)

Single-slice histogram 0.819 0.702-0.936 75% (21/28) 71.9% (23/32) 73.3% (44/60) 70% (21/30) 76.7% (23/30)
Whole-lesion histogram 0.865 0.773-0.957 75% (21/28) 84.4% (27/32) 80% (48/60) 80.8% (21/26) 79.4% (27/34)
Morphological-histogram 0.895 0.813-0.977 78.5% (22/28) 84.4% (27/32) 81.7% (49/60) 81.5%(22/27) 81.8%(27/33)

Cl, confidence interval; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.

*p < 0.05.
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FIGURE 4 | (A) The developed morphological-histogram nomogram for predicting the probability of pulmonary metastases. By summing the scores of each point and
locating on the total score scale, the estimated probability of pulmonary metastases could be determined. (B,C) The Calibration curves for predicting pulmonary
metastases in the training and validation cohort. The y axis represents the actual rate of LM. The x axis represents the predicted probability of LM. The ideal line
represents a perfect prediction by an ideal model. The apparent line represents the performance of the nomogram model, of which a closer fit to the ideal line
represents a better prediction. (D) The decision curves analysis for the morphological-histogram nomogram. The red line represents the net benefit of
morphological-histogram model. Across the various threshold probabilities, the morphological-histogram curve showed great net benefit.

cancer are adenocarcinomas (4), metastatic lesions tend to
appear as solid pulmonary nodules (SPN) in CT scans, whereas
benign lesions, such as inflammation lesions, or organizing
pneumonia/fibrosis consistently present as patchy consolidations

or mixed-density regions surrounded by ground-glass opacity
(GGO) owing to inflammatory cell infiltration (26). Primary lung
cancer consistently evolves from pre-invasive lesions (AIS/AAH)
that manifested as pure GGO (27) at the early stage. A post-hoc
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analysis (24) found that a solid consistency and increasing size
were statistically associated with malignancy.

In addition, our study found that metastatic nodules tended
to be round or oval, consistent with previous research (28).
We speculate that as metastatic nodules often exhibit a largely
uniform growth rate and homogenous invasion in all directions,
these features contribute to a round or quasi-circular contour,
whereas non-metastatic lesions, including benign lesions and
primary lung cancer, have irregular shapes due to uneven growth
rates at various sites (26). Thus, short-interval CT follow-up is
highly recommended for IPNs larger than 5 mm in diameter with
solid components and approximately regular margins detected
on preoperative chest CT.

In addition to the identification of morphological features,
the use of texture analysis is a strength of our study. Previous
studies have demonstrated that texture analysis can not only
distinguish malignant nodules from benign ones (18) but also
differentiate in situ and minimally invasive lung adenocarcinoma
subtypes (19). These studies have shown that texture parameters
can reveal the underlying histological changes in tissue below
the resolution of the given modality or protocol. In this study,
we found that the W-average ratio, W-mean, and W-median,
which represent the zone of CT attenuation within the ROI, were
substantially higher in the metastasis group than in the non-
metastasis group. Thus, short-interval CT follow-up is highly
recommended for IPNs larger than 5mm in diameter with
solid components and approximately regular margins detected
on preoperative chest CT. This speculation is also in line with
another finding of our study that vascular convergence was
more common and the enhancement degree was higher in the
metastasis group than in the non-metastasis group. However,
as texture analysis is a mathematical method, the biological
mechanisms underlying the textural features are complex and not
completely understood (29). In cases where vascular convergence
or the enhancement degree is insufficient to differentiate
metastatic lesions, the values from the CT attenuation zone might
exhibit local variation and more sensitive preservation of spatial
information (30).

Another finding of our study was that the whole-lesion texture
analysis outperformed the single-slice analysis in evaluating
pulmonary nodules, consistent with a previous study (31).
Whole-lesion analysis may provide a more comprehensive
understanding of the stereo structure of the whole lesion
and thereby reflect the integral heterogeneity better than can
single-slice analysis. Despite the time-consuming process of the
contouring around the whole lesion, it seems more cost-efficient
to use this method as it provides improved prediction relative
to single-slice analysis and a more definite diagnosis, allowing
timely treatment and maximizing the benefits to the patient.

For clinical use, we constructed a risk stratification nomogram
for the clinician to predict the risk of PM for an individual
CRC patient. As the early and accurate diagnosis of pulmonary
metastasis has been recognized as one of the most important steps
in treating potential curable lesions with surgery, we propose
that patients with a high risk of PM be considered candidates
for thoracotomy for resectable lesions to enhance local control
and improve the survival rate. We also hope this model can

help low-risk patients avoid aggressive follow-up and reduce the
burden of radiation exposure. We believe that the clinical use
of the nomogram can contribute to reliable diagnoses and help
clinicians optimize therapeutic plans for IPNs at an early stage
after detection.

Our study has several limitations. First, as a retrospective
study, thin-slice contrast-enhanced CT images from our database
were used, which limited the number of cases for analysis.
And the inclusion and exclusion criteria also limits the
implementation of the study in clinical practice. Second, only
histogram parameters were extracted in this study. In our
previous research (20), 203 radiomic features, including first-
and second-order parameters, attained a prognostic value in
the differentiation of pulmonary metastasis with an AUC of
0.888, which is slightly higher than that obtained using the
histogram parameters (AUC = 0.887). However, the process of
extracting radiomic features through MATLAB is intricate and
demanding for radiologists and clinicians, which constrains its
clinical utilization. The volume histogram analysis performed
here allowed the simple, efficient, and automatic acquisition of
a density histogram and achieved an accuracy comparable to
that of the radiomics analysis. Thus, volume histogram analysis
may be more appropriate for imperative clinical decisions, and
radiomics analysis can be used as a supplementary method
when needed. Another limitation is that the development and
validation were performed in a single institution. External
validation and multi-center clinical trials are therefore needed for
further generalization.

In conclusion, the results of our study demonstrated that
histogram parameters may serve as non-invasive imaging
biomarkers for differentiating pulmonary metastasis from non-
metastatic lesions. When complemented with morphological
features, the morphological-histogram nomogram can greatly
benefit the diagnosis of pulmonary metastasis in CRC patients.
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Objective: To develop and evaluate a diffusion-weighted imaging (DWI)-based radiomic
nomogram for lymph node metastasis (LNM) prediction in advanced gastric cancer
(AGC) patients.

Overall Study: This retrospective study was conducted with 146 consecutively
included pathologically confirmed AGC patients from two centers. All patients underwent
preoperative 3.0 T magnetic resonance imaging (MRI) examination. The dataset was
allocated to a training cohort (n = 71) and an internal validation cohort (n = 47) from
one center along with an external validation cohort (n = 28) from another. A summary
of 1,305 radiomic features were extracted per patient. The least absolute shrinkage
and selection operator (LASSO) logistic regression and learning vector quantization
(LvQ) methods with cross-validations were adopted to select significant features in a
radiomic signature. Combining the radiomic signature and independent clinical factors,
a radiomic nomogram was established. The MRI-reported N staging and the MRI-derived
model were built for comparison. Model performance was evaluated considering
receiver operating characteristic (ROC) analysis, calibration curves, and decision curve
analysis (DCA).

Results: A two-feature radiomic signature was found significantly associated with
LNM (p < 0.01, training and internal validation cohorts). A radiomic nomogram was
established by incorporating the clinical minimum apparent diffusion coefficient (ADC) and
MRI-reported N staging. The radiomic nomogram showed a favorable classification ability
with an area under ROC curve of 0.850 [95% confidence interval (Cl), 0.758-0.942] in the
training cohort, which was then confirmed with an AUC of 0.857 (95% CI, 0.714-1.000)
in internal validation cohort and 0.878 (95% CI, 0.696-1.000) in external validation
cohort. Meanwhile, the specificity, sensitivity, and accuracy were 0.846, 0.853, and
0.851 in internal validation cohort, and 0.714, 0.952, and 0.893 in external validation
cohort, compensating for the MRI-reported N staging and MRI-derived model. DCA
demonstrated good clinical use of radiomic nomogram.
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Chen et al. Radiomics for LNM in AGC
Conclusions: This study put forward a DWI-based radiomic homogram incorporating
the radiomic signature, minimum ADC, and MRI-reported N staging for individualized
preoperative detection of LNM in patients with AGC.

Keywords: lymph node metastasis, magnetic resonance imaging, diffusion-weighted imaging, advanced gastric
cancer, radiomics

INTRODUCTION through a large series of automatic feature extraction and

Gastric cancer is a common and debilitating disease negatively
impacting the physical and mental health of patients, worldwide.
The onset of early gastric cancer is concealed, and most of
them have become advanced gastric cancer (AGC) related
to poor prognosis when clinically discovered (1). Evidence
from studies shows that perioperative treatment of AGC
(neoadjuvant  chemotherapy/radiotherapy and  adjuvant
chemotherapy/radiotherapy) has been proven superior to
surgery alone in many Western countries. The Chinese
Society of Clinical Oncology also indicates that preoperative
chemotherapy can well-improve the tumor remission rate and
RO resection rate with good safety in Asian countries based on
D2 lymphadenectomy studies (2). As a crucial factor affecting
the prognosis quality and survival of AGC patients, knowing the
lymph node metastasis (LNM) status in advance has potential
guiding significance for the decision making of therapeutic
strategies including neoadjuvant chemotherapy, surgery, or
intraoperative lymph node dissection (1-3). Morphological
changes of lymph node architecture have been regarded as
the reasonable and clinically acknowledged criteria for the
determination of LNM currently (3). However, these changes
do not correspond exactly to pathology. For example, small
lymph nodes have metastasized, while large lymph nodes may be
simply caused by inflammation (2, 4). Both errors offer a glimpse
into the potential pitfalls of current LNM analysis methods.
Therefore, a method allowing more accurate identification of
LNM status should be considered as an urgent issue for clinical
decision making.

Diffusion-weighted imaging (DWI) describes a magnetic
resonance imaging (MRI) sequence which analyzes the
Brownian movement of water molecules in vivo to determine
morphological and functional parameters (5). Currently, DWI
is a powerful modality to differentiate malignant and benign
legions with the assumption that malignant lesions generally
display higher cellularity. However, the correlation between
DWTI signal and LNM is not completely uniform, so the current
accuracy of DWI-based analysis still falls below the clinical
requirement in most cases (6).

Radiomics is a burgeoning field which involves converting
imaging data into potential high-dimensional radiomic features

Abbreviations: ADC, apparent diffusion coefficient; AGC, advanced gastric
cancer; AUG, area under the curve; DCA, decision curve analysis; DWI, diffusion-
weighted imaging; ICC, intraclass correlation coefficient; LASSO, least absolute
shrinkage and selection operator; LNM, lymph node metastasis; LVQ, learning
vector quantization; MRI, magnetic resonance imaging; OOB, out-of-bag; ROC,
receiver operating characteristic; VOI, volume of interest.

data characterization algorithms (7-9). Quantitative radiomic
feature analysis is now a widely recognized method in
capturing distinct phenotypic differences along with changes
in internal structure from a microscopic perspective (10). An
increasing number of high-quality datasets and advanced pattern
recognition algorithms have contributed to the rapid growth and
development of radiomics (11). Furthermore, previous studies
(5, 6, 9, 12) have indicated that certain quantitative radiomic
signature had a surprising correlation with the prediction and
evaluation of cancers. However, there is no article about DWI-
based radiomic models for LNM prediction in AGC yet. Thereby,
a combination of radiomics and DWI may provide a reliable
method of precision medicine for the individualized prediction
of LNM in patients with AGC.

OVERALL STUDY

Research Materials

Patients

Ethical approval for this retrospective study was granted
by the ethics committee of the First Affiliated Hospital of
Zhejiang Chinese Medical University and Hangzhou Hospital
of Traditional Chinese Medicine. We waived the requirement
for informed consent. This study consecutively enrolled 146
pathologically diagnosed AGC patients with total or partial
radical gastrectomy from February 2016 to December 2018.
Supplementary Figure 1 shows the detailed recruitment
diagram for study population from the two centers. The
inclusion and exclusion criteria are defined as follows.

The inclusion criteria were the following: (a) patients with
confirmed AGC according to the American Joint Committee on
Cancer staging manual (1), and (b) a standard 3.0 T MRI was
performed <2 weeks before surgical resection.

The exclusion criteria were the following: (a) patients
with combined malignant neoplasm, distant metastasis,
or preoperative therapy (radiotherapy, chemotherapy, or
chemoradiotherapy); (b) incomplete clinical information or
pathological information; (c) inflammatory diseases, including
infections, ischemic heart disease, hereditary gastric cancer,
collagen disease, and bowel perforation or obstruction; (d) the
total number of intraoperative lymph node dissections was <16;
and (e) low MRI resolution or small tumor lesion (<1 cm).

MRI Acquisition and Tumor Segmentation

All patients were given written informed consent before MRI
examinations. Patients attending the inspection fasted for at
least 8h and drank 700-1,000 ml warm water within 5min to
fill the stomach cavity. Each patient was asked to cooperate
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with the respiratory training before examination to ensure the
normal inspection operation and reduce motion artifacts. A full
diagnostic abdominal MRI protocol was executed. The MRI
scans, covering the entire stomach region from the diaphragmatic
dome to the level of the renal hilum, were performed during
a breath-hold, with the patient supine in all the phases.
All the patients underwent MRI scans successfully without
any discomfort.

The images were exported from the Institutional Picture
Archiving and Communication System (PACS, Carestream).
MRI was performed using a whole-body 3.0 T scanner (Discovery
750, GE Healthcare, Milwaukee, WI, USA). Eight-channel head
phased array coils and conventional sequences were used to
obtain all the sequences. The scanning parameters of Axial DWI
Shim are as follows: gradient factor b values are 0, 1,000 s/mm?,
matrix 128 x 130, TE = minimum, number of layers are 26
(maximum slices are 38), thickness of layer is 6.0 mm, spacing
between layers is 2.0 mm, NEX for T2 is 4.00.

Manual segmentation of the entire tumor volume of interest
(VOI) was conducted with ITK-SNAP software (version 3.6;
www.itksnap.org) on the axial DWI sequence. VOI included
the inner border of the lesion on whole axial slices and
avoided necrotic tissue and surrounding adipose tissue (5).
The T2-weighted images and contrast-enhanced T1-weighted
images were used as references for the VOI segmentation on
DWTI sequence.

Three-dimensional volume images were delineated by two
radiologists (WC and XG, with 7 and 25 years of experience
in MRI abdominal diagnosis, respectively). They were both
blind to pathological information of patients. WC performed
tumor segmentation for all 146 patients and then repeated the
segmentation procedure after 2 weeks on 30 randomly selected
patients to test the intrareader consistency. XG only segmented
the above 30 cases to assess the interreader consistency of the
radiomic features.

Clinical Factors

Clinical factors for center 1 patients in this study are summarized
in Table 1, including age, sex, the primary site of the tumor,
tumor size, MRI-reported T staging, MRI-reported N staging,
pathological T staging, average apparent diffusion coefficient
(ADC) value, minimum ADC value, and combined markers
(CA19-9, CA72-4, and CEA). The clinical factors for center
2 patients are given in Supplementary Table 1. The detailed
grouping criteria are given as follows.

MRI-reported N staging

Patients were classified as N-positive if a regional lymph node
with a measurement of >8 mm on its shortest axis was found,
or if a regional lymph node had a higher signal intensity
than muscle. The absence of enlarged (>8 mm) or hyperintense
lymph nodes was defined as N-negative, which was consistent
with the definition of radiological positive nodal status in most
previous studies.

Primary site of the tumor

In the coronal position, the stomach was divided into upper,
middle, and lower parts according to the tripartite connection of
the greater curvature and the lesser curvature.

MRI-reported T staging

“T4 staging” defines a tumor lesion that infiltrates the serous
layer, while T3 or T2 denotes a tumor that has not invaded the
serous layer.

Combined markers

A combined marker was defined as positive when either of the
three markers (CA19-9, CA72-4, and CEA) was positive, and all
maker results came from the examination 1 week before surgery.

Radiomic Analysis Procedures

A dataset of 118 AGC patients from center 1 were separated
into a training cohort (n = 71) and an internal validation cohort
(n = 47) at a ratio of 3:2 randomly. Patients from center 2
constituted an external validation cohort (n = 28). As shown
in Figure 1, the radiomics workflow consists of four steps,
including tumor masking, radiomic feature extraction, radiomic
signature construction, and radiomic nomogram development
and evaluation.

Radiomic Feature Extraction

Radiomic features in this study were extracted from tumor VOIs
on DWI images with algorithms implemented in Python 2.7
(https://www.python.org). The radiomic features (summarized
in Supplementary Table 2) were composed of three groups:
shape features, first-order features, and texture features.

To test the reproducibility and stability of extracted
features, intraclass correlation coefficients (ICCs) were calculated
(Supplementary Material 1.1). Features with ICC values >0.75
were reserved due to their good reproducibility. Then, all
radiomic features were normalized.

Feature Selection and Radiomic Signature
Construction

Radiomic feature selection as well as radiomic signature
construction were carried out in the training cohort. The least
absolute shrinkage and selection operator (LASSO) logistic
regression was conducted by 5-fold cross-validation for feature
reduction. Then, radiomic features were ranked according
to their importance to LMN status using learning vector
quantization (LVQ). LVQ is a kind of supervised neural network
algorithm using a small number of weighted vectors to represent
original data based on Euclidean distance measurements (13).
Comparative out-of-bag (OOB) bootstrapping estimates with
logistic regression models were performed 10 times for each
feature subset consisting of the top 5, 10, 15, 20, and 25 features
from LVQ, respectively. The average testing area under curve
(AUC) and average bias between training AUC and testing AUC
from 10 measurements were used as an approach to confirm
the number of features in the optimal feature subset. Backward
stepwise elimination with Akaike information criterion was
then applied. Finally, selected radiomic features weighted by
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TABLE 1 | Clinical and imaging characteristics of patients with AGC.

Clinical factors Training cohort (n = 71) p value Validation cohort (n = 47) p value
LNM (+) LNM (-) LNM (+) LNM (-)

Age, mean =+ SD, years 64.7 +£12.22 66.06 + 11.06 0.7458 61.24 + 13.67 67.77 £ 7.51 0.1566

Sex, no. (%) 0.1615 0.6921

Male 43 (81.1) 11(61.1) 28 (82.4) 10 (76.9)

Female 10 (18.9) 7 (38.9) 6(17.6) 3(23.1)

Primary site, no. (%) 0.5205 0.1796

Upper 12 (22.6) 6 (33.9) 6 (17.6) 3(23.1)

Middle 19 (35.8) 7 (38.9) 15 (44.1) 2 (15.4)

Under 22 (41.5) 5(27.8) 13(38.2) 8(61.5)

Tumor size, no. (%) 0.1134 0.6771

<5.0cm 21 (39.6) 11(61.1) 15 (44.1) 7 (53.8)

>5.0cm 32 (60.4 7(38.9) 19 (65.9) 6 (46.2

MRI-reported T staging, no. (%) 0.1726 0.4597

T2-3 17 (32.1) 9 (50.0) 10 (29.4) 6 (46.2)

T4 36 (67.9) 9 (50.0) 24 (70.6) 7 (53.8)

MRI-reported N staging, no. (%) 0.0172* 0.0489

Positive 42 (79.2) 9 (50.0) 29 (85.3) 7 (53.8)

Negative 11 (20.8) 9 (50.0) 5(14.7) 6 (46.2)

pT staging, no. (%) 0.0005* <0.0001*

T2-3 8 (15.1) 11(61.1) 2(5.9) 9(69.2)

T4 45 (84.9) 7 (38.9) 32 (94.1) 4(30.8)

Average ADC value, mean 1,419 (74.6) 1,387 (25.4) 0.9473 1,428 (72.3) 1,499 (27.7) 0.3788

Minimum ADC value, no. (%) 0.0312* 0.0095*

0 (<700) 7(13.2) 5(27.8) 1(2.9) 4(30.8)

1 (700-1,200) 36 (67.9) 6 (33.3) 26 (76.5) 5(38.4)

2 (>=1,200) 10 (18.9) 7 (38.9) 7 (20.6) 4(30.8)

Combined makers, no. (%) 0.2458 0.4146

Positive 29 (54.7) 7 (38.9) 14 (41.2) 3(23.1)

Negative 24 (45.3) 11(61.1) 20 (58.8 10 (76.9)

Radiomic signature <0.0001* 0.0059*

Median 1.771 0.215 1.913 1.024

(Interquartile range) (1.136-2.495) (—0.258-0.981) (1.059-2.685) (0.251-1.461)

Radiomic nomogram <0.0001* <0.0001*

Median 2.073 0.245 2.273 0.452

(Interquartile range) (1.064-2.989) (—0.610-0.843) (1.868-2.892) (—0.047-0.957)

p values are calculated from univariate analysis between each clinical factor and corresponding LNM status. AGC, advanced gastric cancer; LNM, lymph node metastasis; MRI, magnetic
resonance imaging; pT staging, pathological T staging; ADC, apparent diffusion coefficient; SD, standard deviation; *p < 0.05.

corresponding logistic regression coefficients provided a linear
mathematical formula to calculate a radiomic signature.

Performance Evaluation of Radiomic Signature
Pearson correlation coefficients were calculated to verify definite
contribution of the radiomic signature in classifying LNM status
in the training and internal validation cohorts. Receiver operating
characteristic (ROC) curves and AUCs were used to evaluate
the performance of radiomic signature in the three cohorts.
Sensitivity, specificity, and accuracy results were also calculated.

Development of Radiomic Nomogram
Preoperative clinical factors shown in Table 1 were taken into
consideration to establish a more powerful predictive radiomic

nomogram. In univariate analysis for selecting significant clinical
factors in the training cohort, Mann-Whitney U-test was used
for numerical variables, and Chi-square test and fisher’s exact test
were applied for categorical features. Subsequently, multivariate
logistic regression was used to build a radiomic nomogram by
integrating radiomic signature and significant clinical factors.
The output of the radiomic nomogram is the probability of LNM.

Assessment of Radiomic Nomogram

The radiomic nomogram was assessed by ROC curves and
AUC values in the training, internal validation, and external
validation cohorts. Calibration curves as well as Hosmer-
Lemeshow tests were used to assess the fitting degree of
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FIGURE 1 | Radiomics workflow of this study. (A) Tumor masking of AGC patients based on DWI. (B) Radiomic feature extraction, quantifying tumor shape, intensity,
and texture. (C) Strategies for radiomic signature development. (D) Radiomic nomogram with evaluation of ROC, calibration curves, and DCA. AGC, advanced gastric
cancer; DWI, diffusion-weighted imaging; DCE-MRI, dynamic contrast enhanced-magnetic resonance imaging; T2WI, T2-weighted images; ICC, intraclass correlation
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radiomic nomogram. An MRI-derived model constructed
by significant clinical factors and an MRI-reported N
staging scheme was developed for comparison. Sensitivity,
specificity, and accuracy results of comparative experiments were
also calculated.

Decision curve analysis (DCA) was carried out in the
internal validation cohort by quantifying the net benefits at

some threshold probabilities and determining clinical use of
radiomic nomogram.

Statistical Analysis
A two-sided p < 0.05 of every statistical test was deemed
significantly different, and all analyses were based on R language
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FIGURE 2 | (A) Twenty-nine features ranked in descending order of importance to LNM by LVQ. (B) OOB bootstrapping estimates with logistic regression of top 5,
10, 15, 20, and 25 features ranked by LVQ, respectively, confirming an optimal feature subset of five features. Average bias of AUC equals average training AUC minus
average testing AUC. LNM, lymph node metastasis; LVQ, learning vector quantization; OOB, out-of-bag; AUC, area under the curve.

(version 3.4.3; https://www.r-project.org). R packages used in our
work are described in Supplementary Material 1.2.

RESULTS

Clinical Factors

Baseline characteristics of patients from center 1 are shown
in Table 1. LNM positive patients covered 74.6% (53/71) and
72.3% (34/47) of the training and internal validation cohorts,
respectively, with no significant difference (p = 0.7804, Chi-
square test) in LNM status between the two cohorts. There
showed no significant statistical difference in sex (p = 0.5384),

age (p = 0.5039), and all the other clinical factors (p = 0.1202-
0.7747) between the two cohorts. LNM status had significant
associations with MRI-reported N staging (p = 0.0172) and
minimum ADC (p = 0.0312), while other clinical factors were
excluded during the univariate analysis.

Feature Selection and Radiomic Signature

Building

Among 1,305 original radiomic features per patient, 813
features were first selected after ICC analysis. Then, the
multivariate LASSO method indicated 29 potential features
(Supplementary Figures 2A,B). As shown in Figure 2, a logistic
regression model consisting of features ranking the top 5 in
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TABLE 2 | Performance evaluation of models in three cohorts.

Cohorts Models TP TN FN FP Sensitivity Specificity Accuracy AUC (95% CI)
Training
MRI-reported N staging 42 9 11 9 0.792 0.500 0.718 0.646 (0.515-0.777)
MRI-derived model 28 15 25 3 0.528 0.833 0.606 0.736 (0.602-0.871)
Radiomic signature 42 14 11 4 0.792 0.778 0.789 0.821 (0.720-0.922)
Radiomic nomogram 36 17 17 1 0.679 0.944 0.746 0.850 (0.758-0.942)
Internal validation
MRI-reported N staging 29 6 7 0.853 0.462 0.745 0.657 (0.504-0.811)
MRI-derived model 21 12 13 1 0.618 0.923 0.702 0.818 (0.688-0.948)
Radiomic signature 26 6 8 7 0.765 0.462 0.681 0.758 (0.591-0.925)
Radiomic nomogram 29 " 5 2 0.853 0.846 0.851 0.857 (0.714-1.000)
External validation
MRI-reported N staging 17 5 4 2 0.810 0.714 0.786 0.762 (0.562-0.962)
MRI-derived model 15 7 6 0 0.714 1.000 0.786 0.884 (0.765-1.000)
Radiomic signature 20 1 1 4 0.952 0.429 0.821 0.741 (0.513-0.971)
Radiomic nomogram 20 5 1 2 0.952 0.714 0.893 0.878 (0.696-1.000)

MRI, magnetic resonance imaging; TF, true positive; TN, true negative; FN, false negative; FF, false positive; AUC, area under the receiver operating characteristic curve; Cl,

confidence interval.

LVQ method gained a higher average testing AUC (0.774) and
a smaller average bias between training AUC and testing AUC
(0.037). After backward stepwise selection, two key features
(square_glcm_Imcl, p = 0.0013; wavelet. LLH_glcm_Imc2, p
= 0.0062) remained and made up the radiomic signature.
Detailed explanations for the two radiomic features are given
in Supplementary Material 1.3. The formula for the radiomic
signature is given as below.

Radiomic signature = —1.3383 x square_glcm
_Imcl — 1.0139 x wavelet. LLH
_glem_Imc2 + 1.5145

The Performance of Radiomic Signature
There was a significant correlation (Pearson’s r = 0.448, 0.432,
and 0.458) between the radiomic signature and LNM status
in the three cohorts. A significant difference (p < 0.0001) was
found in radiomic signature [median (interquartile range)]
between LNM and non-LNM groups in training cohort [1.771
(1.136-2.495) vs. 0.215 (—0.258-0.981), respectively]. This
difference was confirmed in the validation cohort [1.913 (1.059-
2.685) vs. 1.024 (0.251-1.461), p = 0.0059]. As estimated,
patients with LNM generally got a higher radiomic signature
score than those with non-LNM. The distinguishing ability of
radiomic signature in training cohort and internal validation
cohort was indicated with an AUC of 0.821 [95% confidence
interval (CI), 0.720-0.922] and 0.758 (95% CI, 0.591-0.925),
respectively. Furthermore, the AUC in external validation
cohort achieved 0.741 (95% CI, 0.513-0.971). Detailed
sensitivity, specificity, and accuracy results are presented
in Table2. Their corresponding 95% CI are attached in
Supplementary Table 3.

Given the limited sample size, a 10-fold cross-validation in
the center 1 cohort was conducted to avoid overfitting. Results

TABLE 3 | Ten-fold cross-validation to build radiomic signature in center 1 cohort.

Index AUC Bias Number of features
Training Validation

1 0.841 0.556 0.285 7
2 0.795 0.700 0.095 2
3 0.796 0.833 —-0.037 2
4 0.788 1.000 -0.212 2
5 0.802 0.833 —0.031 2
6 0.710 0.722 -0.012 2
7 0.745 0.533 0.212 2
8 0.868 0.611 0.257 5
9 0.866 0.800 0.066 5
10 0.773 0.875 -0.102 2
Average bias 0.798 0.746 0.052

Bias equals training AUC value minus validation AUC. Numbers of radiomic
features selected in each fold are given. AUC, area under the receiver operating
characteristic curve.

given in Table 3 indicated an average bias across 10-fold of
0.052 between training AUC values and validation AUC values.
In addition, feature selection was conducted in each fold. The
histogram in Supplementary Figure 3 summarized the counts
of selected feature’s appearance, showing that the two radiomic
features (square_glem_Imcl, wavelet. LLH_glcm_Imc2) used in
our radiomic signature appeared most frequently and were the
most stable.

Development and Assessment of Radiomic
Nomogram

A radiomic nomogram combining the radiomic signature,
minimum ADC value, and MRI-reported N staging is shown
in Figure 3. The formula for the radiomic nomogram is shown
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as below, where “IF(minimum ADC = 1)” represents 700 <  1)” represents positive MRI-reported N staging. MRI-derived
minimum ADC < 1,200, “IF(minimum ADC = 2)” means model was built by minimum ADC and MRI-reported
minimum ADC > 1,200, and “IF(MRI-reported N staging = N staging.
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Radiomic nomogram = 0.8592 x Radiomic signature

+ 1.5085 x IF (minimum ADC = 1)

+ 0.5829 x IF (minimum ADC = 2)

+ 1.0957 x IF (MRI-reported N staging
= 1) —1.5102

There was a significant correlation (Pearson’s r = 0.530, 0.602,
and 0.677) between radiomic nomogram and LNM status in the
three cohorts. ROC curves are given in Figures 4A-C. Sensitivity,
specificity, and accuracy results are presented in Table 2. In the
internal validation cohort, our radiomic nomogram showed good
discrimination performance of LNM status and surpassed the
routinely used MRI-reported N staging, reaching an AUC of
0.857 vs. 0.657, with an accuracy of 0.851 vs. 0.745, a specificity
of 0.846 vs. 0.462, and a same sensitivity of 0.853. Compared
with the MRI-derived model, our radiomic nomogram still
showed superior predictive ability with an AUC of 0.857 vs.
0.818, an accuracy of 0.851 vs. 0.702, and a sensitivity of
0.853 vs. 0.618, although falling behind a little in specificity.
In the external validation cohort, the radiomic nomogram also
outperformed MRI-reported N staging in AUC (0.878 vs. 0.762),
sensitivity (0.952 vs. 0.810), and accuracy (0.878 vs. 0.786).
Similarly, the radiomic nomogram could still compensate the
MRI-derived model for sensitivity and accuracy. Figures 4D-F
show the quantitative AUC comparisons of the four models with
Delong test.

As shown in Supplementary Figure 4, calibration curves
of the radiomic nomogram suggested an agreement between
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FIGURE 5 | Decision curve analysis for radiomic nomogram, MRI-derived
model, and MRI-reported N staging in the internal validation cohort. Red line
represents radiomic nomogram. Green line represents MRI-derived model.
Blue line represents MRI-reported N staging. Gray line assumes all patients
have LNM. Black line assumes no patients have LNM. MRI, magnetic
resonance imaging; ADC, apparent diffusion coefficient; LNM, lymph node
metastasis.

model and actual outputs. Furthermore, DCA (Figure 5)
indicated that the radiomic nomogram added more benefit when
directing treatment decisions if the threshold probability
was set between 0.24 and 0.86 compared with treat-
none, treat-all, MRI-derived model, and MRI-reported N
staging scheme.

DISCUSSION

In this study, we established a radiomic nomogram which
incorporated the radiomic signature and clinical factors
including the minimum ADC value and MRI-reported N
staging for non-invasive prediction of LNM in AGC patients.
The radiomic nomogram showed better performance in
determining and evaluating preoperative LNM status than
clinical radiologists. The practical radiomic nomogram could
facilitate a more accurate and objective assessment of LNM
in AGC while providing personalized support for clinical
decision making.

In terms of machine learning radiomics, typical LASSO
method followed by OOB bootstrapping estimates of different
feature subsets defined by LVQ was adopted to select crucial
radiomic features in this study, which were later on fed
to the generally used logistic regression for model building.
Jiang’s study (4) analyzed the association between computed
tomography (CT)-based radiomic signature and LNM in gastric
cancer using LASSO logistic regression. Taking a step forward,
Wang’s study (8) used ICC for feature selection and random
forest algorithm to construct a radiomic signature. Upon
the consistence in feature selection and model building with
their studies, our radiomic models not only brought a novel
view of LVQ in radiomics methods but also achieved similar
model performance.

Radiomic features adopted in this study were both texture
features about informational measure of correlation between
local grayscale pixels calculated from gray level co-occurrence
matrix. Results of cross-validation showed their great stability.
Further analysis of these two features revealed that the radiomic
signature score increased as the values of square_glcm_ImcI and
wavelet. LLH_glcm_Imc2 decreased according to the radiomic
signature formula, which represented the uneven texture features
of images and high heterogeneity of tumors. This suggested
that radiomic signature could reflect a preclinical potential
in establishing a connection between image information and
LNM status.

LNM is an intricate biological process in AGC, in which the
primary tumor lesions undoubtedly play an important role (14-
16). Jiangs study (4) established a radiomic nomogram based
on CT images and clinicopathological findings to estimate the
LNM in patients with gastric cancer. However, the ROIs only
covering the single maximum level of the tumor lesion may
lead to incomplete radiomic features. Besides, some small lymph
nodes have metastasized, while large lymph nodes may be simply
caused by inflammation, so the judgment of CT-reported findings
could also bring some bias. Compared to CT images, MRI signal
variations are more visible to detect and diagnose qualitatively
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(17-19). However, cases need to be noted that nodes with a
diameter <8 mm or no obvious signal changes were later found
to be metastatic nodes, while the opposite were found benign
(20, 21). The low specificity in radiological diagnosis of LNM
would preferentially overestimate the severity of disease and lead
to excessive medical treatment. Without taking sample bias into
account, a possible explanation was that while the tumor cells
had already invaded into lymph nodes, changes in morphology
and MRI signal were unlikely to present during the incubation
period (18-21). The results of the current study thus showed the
predictive power and potential for radiomics to reveal additional
information invisible to the naked eye.

The ADC value mainly reflects tumor cell signal as a
functional index 