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Editorial on the Research Topic

Genome Wide Association Studies and Genomic Selection for Crop Improvement in the Era of
Big Data

The exploitation of the genetic diversity of crops is essential for breeding purposes, as the
identification of useful/beneficial alleles for target traits within plant genetic resources allows the
development of new varieties capable of responding to the challenges of global agriculture (Food and
Agriculture Organization of the United Nations, 2010).

Whole genome re-sequencing, genome skimming, fractional genome sequencing strategies,
and high-density genotyping arrays enable large-scale assessment of genetic diversity for a
wide range of species, including major and “orphan” crops (D’Agostino and Tripodi, 2017;
Rasheed et al., 2017). This is however of limited value unless associated with adaptation and
functional improvement of crops. Recently, several advances in high-throughput phenotyping
have overcome the “phenotyping bottleneck” (Walter et al., 2015; Pieruschka and Schurr,
2019; Song et al., 2021), making available robust phenotypic data points acquired following the
precise characterization of the agronomic and physiological attributes of crops. More and
more studies are taking advantage of these scientific advances and of data science techniques to
uncover the genome-to-phenome relationship and unlock the breeding potential of plant
genetic resources. Genome-wide association studies (GWAS) and genomic selection (GS) are
powerful data science approaches to investigate marker-trait associations (MTAs) for the basic
understanding of simple and complex adaptive and functional traits (Liu and Yan, 2019; Voss-
Fels et al., 2019; Varshney et al., 2021). Both approaches accelerate the rate of genetic gain in
crops and reduce the breeding cycle in a cost-effective manner.

For this Research Topic we sought high-quality contributions, covering various aspects of
genomics-assisted-breeding: increase in yield, improvement of nutritional content and end-use
quality of crops, climate-smart agriculture, cropping systems in agriculture. We did not miss to ask
for contributions on technical challenges related to the design of GWAS and GS experiments and
data analysis.

Enhancing knowledge on (a)biotic stress tolerance of plants has a major impact on crop
improvement strategies that aim to develop high yielding varieties in suboptimal environmental
conditions.

Odilbekov et al. performed GWAS on a collection of nearly 200 winter wheat accessions to
identify loci associated with seedling-stage resistance to Septoria tritici blotch (STB) disease, which is
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responsible for severe yield losses worldwide. Association tests
with different statistical models returned a strong signal on
chromosome 1B. Seven genes were identified as the most
probable candidate genes for this QTL, as they play a key role
in plant immunity and modulate the defense response. Finally,
the authors demonstrated that the accuracy of the GS model for
STB resistance can be improved when modeling GWAS
associated variants as fixed effects.

Thapa et al. performed GWAS on a panel of 257 rice
accessions to identify the QTLs and the underlying candidate
genes responsible for cold tolerance and cold recovery during the
germination phase. Their findings enrich the toolbox available to
breeders for the development of new varieties with tolerance to
low temperatures.

Hernández and Cortés subjected 78 geo-referenced wild
common bean accessions to genotyping-by-sequencing (GBS)
and derived three heat stress indices from phenotypic data points.
Then, they applied the latest-generation GWAS models under a
genome–environment association framework to identify putative
loci underlying heat stress adaptation. The goal was to identify
new sources of tolerance in the wild gene pool for use in breeding
programs.

Increasing of crop yield potential is one of the main goals of
breeding. Indeed, producing more with less is the key to feeding
the growing world population. Within this motivating context,
Zaïm et al., tested in the open field and in different environments
four recombinant inbred line populations of durum wheat. GBS
and the construction of a consensus linkage map led to the
identification of over 30 QTLs for key agronomic traits. Six
QTLs were found to be associated with grain yield and
thousand kernel weight. The SNP markers anchored to these
QTLs were then included as fixed effects into GS models,
improving overall accuracy.

Sidhu et al. performed GWAS on a collection of almost 300
winter wheat accessions to determine SNP markers associated
with coleoptile length. As a result, the authors identified eight
candidate regions within which they found genes possibly
involved in determining the target phenotype.

Many articles aimed to improve the predictive accuracy of GS
models by considering some variables that influence traits or by
proposing innovative technological solutions to fully exploit the
genetic variability of plant genetic resources.

The article by Crossa et al. is about the comparison of the genome-
based prediction accuracy of four methods: the additive genomic best
linear unbiased predictor (GB), non-additive Gaussian kernel (GK),
arc-cosine kernel (AK), and Deep Learning (DL). Single-
environment and multi-environment G × E models on two real
wheat datasets were used for benchmarking. Comparative analysis
showed that AK outperformed the remaining methods, as it ensures
competitive predictions at low costs in the tuning process.

Olatoye et al. identified main effect and epistatic effect loci of
flowering time, maturity, and seed size in cowpea using a MAGIC
population. Then, they used the identified quantitative trait
nucleotides as fixed effects in parametric, semi-parametric, and
non-parametric GS models and demonstrated that a priori
knowledge of the genetic architecture of a trait improves
prediction accuracy.

Allier et al. proposed adjustments to two parameters, namely
the expected genetic value in the progeny (V) under a certain
constraint on inbreeding (D), of the cross-selection strategy they
published earlier. This arises from the need to consider within-
family selection in recurrent genomic selection programs. The
authors compared their UCPC-based optimal cross-selection
strategy with the existing ones and proved that it was more
efficient for converting genetic diversity into short- and long-
term genetic gains.

Klápště et al. improved genomic predictions for traits with
relatively low heritability and poor prediction accuracy by
implementing multi-trait models based on the use of a
marker-based relationship matrix, instead of classic pedigrees.
The models applied to the diameter at breast height (target trait)
did not outperform the multivariate model using all genetic
markers in the case of the Pinus radiata population;
conversely the strategy was advantageous in the case of the
Eucalyptus nitens population, where the target trait had a low/
moderate correlation with other heritable traits.

The untapped genetic variation preserved in germplasm banks
serves as a source for future food and nutritional security for the
globe. However, a major obstacle that prevents the use of bank
accessions is the lack of adequate characterization and
performance evaluation. In Kehel et al., 789 bread wheat
landraces held in-trust at the gene bank of the International
Center for Agricultural Research in the Dry Areas were scanned
for seed traits and genetically evaluated using 12k DArTSeq SNP
markers. Based on cross-validation, predicting untyped seed traits
can be as accurate as 74% for seed width. Moreover, when
incorporating climatic and environmental variables based on
passport data, the prediction accuracy improved by an
additional 8%. These findings advocate the advancement in
predictive analytics and genomic technologies for identifying
potential donors of desirable alleles for genetic introgression.

Considering the long reaction time and the expensive cost in
conservation and sustainability of forest resources, Lstibůrek et al.
conducted a multi-trait and multi-site large-scale genetic analysis
with 4,625 25–35 years old European larch trees grown over 21
reforestation sites across four distinct climatic regions. In this
study, the capacity of the marker-based pedigree information was
demonstrated by comparing in situ heritability estimates.
Furthermore, using this approach, a higher genetic response of
the selected individuals can be expected for fitness and
productivity attributes, suggesting that broad-spectrum
climatic genetic evaluation can be an effective guiding
principle for reforestation and genetic resource management
without the reliance on structured tree breeding methods.

Finally, the last series of articles describes some data resources
available for future studies or technical challenges related to the
design of GWAS experiments.

Piot et al. analyzed over 1,000 Populus trichocarpa genomes to
assess genomic diversity and identify rare and common alleles
with high confidence for subsequent use in GWAS.
Approximately 5% of the variants identified were non-
synonymous and could represent rare defective genetic
variants hypothetically associated with poplar phenotypic
plasticity.
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The mini-review by Srivastava et al. is quite different in
content, as it provides an overview of the latest development
of genetic and genomic resources in pearl millet and their use in
GWAS and in the development of GS models for the estimation
of GBEVs (genomic estimated breeding values).

The review by Pavan et al. provides advice on how to plan the
experiments and choose the most appropriate and cost-effective
genotyping method for crop GWAS. It also describes which
quality control procedures should be applied on genotypic
data points to avoid bias and false signals in genotype-
phenotype association tests.

As genomics-driven knowledge advances rapidly and data
science techniques for omics data continue to evolve and
improve, the combination of the huge amount of genetic and
phenotypic data points becomes more and more reachable. We
looked at innovative examples whose purpose was to describe the
genome-to-phenome connection and causation and to highlight
the strengths and weaknesses of popular data mining strategies.
We hope that the articles in this Research Topic can give further

impetus to this area of research and can help expand the tools
available to breeders.
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Genetic architecture reflects the pattern of effects and interaction of genes underlying 
phenotypic variation. Most mapping and breeding approaches generally consider the 
additive part of variation but offer limited knowledge on the benefits of epistasis which 
explains in part the variation observed in traits. In this study, the cowpea multiparent 
advanced generation inter-cross (MAGIC) population was used to characterize the 
epistatic genetic architecture of flowering time, maturity, and seed size. In addition, 
consideration for epistatic genetic architecture in genomic-enabled breeding (GEB) was 
investigated using parametric, semi-parametric, and non-parametric genomic selection 
(GS) models. Our results showed that large and moderate effect–sized two-way epistatic 
interactions underlie the traits examined. Flowering time QTL colocalized with cowpea 
putative orthologs of Arabidopsis thaliana and Glycine max genes like PHYTOCLOCK1 
(PCL1 [Vigun11g157600]) and PHYTOCHROME A (PHY A [Vigun01g205500]). Flowering 
time adaptation to long and short photoperiod was found to be controlled by distinct 
and common main and epistatic loci. Parametric and semi-parametric GS models 
outperformed non-parametric GS model, while using known quantitative trait nucleotide(s)  
(QTNs) as fixed effects improved prediction accuracy when traits were controlled by large 
effect loci. In general, our study demonstrated that prior understanding of the genetic 
architecture of a trait can help make informed decisions in GEB.

Keywords: cowpea, genetic architecture, epistasis, QTL, genomic-enabled breeding, genomic selection, flowering 
time, photoperiod

INTRODUCTION

Asymmetric transgressive variation in quantitative traits is usually controlled by non-additive gene 
interaction known as epistasis (Rieseberg et al., 1999). Epistasis has been defined as the interaction 
of alleles at multiple loci (Mathew et al., 2018). The joint effect of alleles at these loci may be lower 
or higher than the total effects of the loci (Johnson, 2008). In selfing species, epistasis is common due 
to high level of homozygosity (Volis et al., 2010) and epistatic interactions have been found among 
loci underlying flowering time in barley (Mathew et al., 2018), rice (Chen et al., 2015; Chen et al., 
2018b), and sorghum (Li et al., 2018a). Although, theoretical models and empirical studies involving 
simulations have suggested the significant role for epistasis in breeding (Melchinger et al., 2007; Volis 
et al., 2010; Messina et al., 2011; Howard et al., 2014), empirical evidence from practical breeding 
are limited. In addition, most of the current statistical models cannot efficiently characterize or 
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account for epistasis (Mackay, 2001; Moore and Williams, 2009; 
Sun et al., 2012; Mathew et al., 2018). Common quantitative traits 
mapping approaches are often single-locus analysis techniques. 
These techniques focus on the additive contribution of genomic 
loci (Barton and Keightley, 2002), which only explains a fraction 
of the genetic variation which can lead to missing heritability.

Regardless of the limitations of genomic mapping approaches, 
characterization of the genetic basis of complex agronomic 
traits has been beneficial for breeding purposes. For example, 
markers tagging quantitative trait loci (QTL) have been used in 
marker-assisted selection (MAS) in breeding programs (Zhang 
et al., 2003; Pan et al., 2006; Saghai Maroof et al., 2008; Foolad 
and Panthee, 2012; Massman et al., 2013; Mohamed et al., 2014; 
Zhao et al., 2014). However, the efficiency of QTL-based MAS 
approach in breeding is limited. First, the small sample size of 
bi-parental populations where QTL is detected often results in 
overestimation of the respective QTL effect sizes, a phenomenon 
known as Beavis effect (Utz et al., 2000; Xu, 2003; King and Long, 
2017). Second, linkage mapping is limited in power to detect small 
effect loci; thus, only the available large effect loci are used for 
MAS (Ben-Ari and Lavi, 2012). Third, genetic diversity is limited 
to the two parents forming the bi-parental population; thus, QTL 
may not reflect the entire variation responsible for the trait and 
may not be transferable to other genetic backgrounds (Xu et al., 
2017). Multi-parental populations as nested association mapping 
(NAM) and multiple advanced generation intercross (MAGIC) 
offer increased power, resolution, reliable estimate of QTL effects, 
and increased diversity than bi-parentals. Additionally, the 
MAGIC mapping population presents greater genetic diversity 
than bi-parentals to identify higher-order epistatic interactions 
(Mathew et al., 2018).

Notably, MAS is more efficient with traits controlled by few 
genomic loci than polygenic traits (Bernardo, 2008). In contrast, 
genomic selection (GS) that employs genome wide markers 
has been found to be more suited for complex traits, and also 
having higher response to selection than MAS (Bernardo and 
Yu, 2007; Wong and Bernardo, 2008; Cerrudo et al., 2018). In 
GS, a set of genotyped and phenotyped individuals are first used 
to train a model that estimates the genomic estimated breeding 
values (GEBVs) of un-phenotyped but genotyped individuals 
(Jannink et al., 2010). GS models often vary in performance 
with the genetic architecture of traits. Parametric GS models are 
known to capture additive genetic effects but are not efficient 
with epistatic effects due to the computational burden of high-
order interactions (Moore and Williams, 2009; Howard et al., 
2014). Parametric GS models with incorporated kernels (marker 
based relationship matrix) for epistasis have recently been 
developed (Covarrubias-Pazaran, 2016). Semi-parametric and 
non-parametric GS models capturing epistatic interactions have 
been developed and implemented in plant breeding (Gianola 
et al., 2006; Gianola and de los Campos, 2008; De Los Campos 
et al., 2010). Semi-parametric models as reproducing Kernel 
Hilbert space (RKHS) reduces parametric space dimensions to 
efficiently capture epistatic interactions among markers (Jiang 
and Reif, 2015; de Oliveira Couto et al., 2017). Using simulated 
data, Howard et al. (2014) showed that semi-parametric and non-
parametric GS models can improve prediction accuracies under 

epistatic genetic architectures. In summary, different models may 
fit different genetic architectures. In general, GS has been widely 
studied and applied to major crop species including both cereals 
and legumes while its applications in orphan crop species has 
gained increased attention in recent times.

Cowpea (Vigna unguiculata L. Walp) is a widely adapted 
warm-season orphan herbaceous leguminous annual crop and 
an important source of protein in developing countries (Muchero 
et al., 2009; Varshney et al., 2012; Boukar et al., 2018; Huynh 
et al., 2018). Due to its flexibility as a “hungry season crop” 
(Langyintuo et al., 2003), cowpea is part of the rural families’ 
coping strategies to mitigate the effect of changing climatic 
conditions. Cowpea’s nitrogen fixing and drought tolerance 
capabilities make it a valuable crop for low-input and smallholder 
farming systems (Hall et al., 2003; Boukar et al., 2018). Breeding 
efforts using classical approaches have been made to improve 
cowpea’s tolerance to both biotic (disease and pest) and abiotic 
(drought and heat) stressors (Hall et al., 2003; Hall, 2004). 
Advances in applications of next-generation sequencing (NGS) 
and development of genomic resources (consensus map, draft 
genome, and multi-parent population) in cowpea have provided 
the opportunity for the exploration for GEB (Muchero et al., 
2009; Boukar et al., 2018; Huynh et al., 2018). MAS and GS have 
improved genetic gain in soybean (Glycine max) (Jarquin et al., 
2016; Kurek, 2018; Matei et al., 2018), common bean (Phaseolus 
vulgaris) (Schneider et al., 1997; Yu et al., 2000; Wen et al., 2019), 
chickpea (Roorkiwal et al., 2016; Li et al., 2018b), pigeonpea 
(Varshney et al., 2010; Pazhamala et al., 2015), and lentil (Haile 
et al., 2019). However, cowpea still lags behind major legumes in 
the area of GEB applications. GEB has the potential to expedite 
cowpea breeding to ensure food security in developing countries 
where national breeding programs still depend on labor-intensive 
and time-consuming classical breeding approaches.

In this study, we used the cowpea MAGIC population to first 
characterize the genetic architecture (main effect and epistatic 
effect loci) of flowering time, maturity, and seed size, and second, 
to evaluate considerations for genetic architecture in genomic-
enabled breeding using parametric, semi-parametric, and 
non-parametric GS models and MAS. Our results showed that 
flowering time and maturity under short day are both controlled 
by moderate effect loci, while flowering time under long day and 
seed size are controlled by large and moderate effect loci. Also, 
accounting for large effect loci as fixed effects in parametric GS 
model improved prediction accuracy.

EXPERIMENTAL PROCEDURES

Plant Genetic Resource and Phenotypic 
Evaluation
This study was performed using publicly available cowpea 
MAGIC population’s phenotypic and genotypic data (Huynh 
et  al., 2018). The MAGIC population was derived from an 
intercross between eight founders. The F1s were derived from 
eight-way intercross between the founders and were subsequently 
selfed through single-seed descent for eight generations. The F8 
RILs were later genotyped with 51,128 SNPs using the Illumina 

9

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Epistasis Detection and Modeling for GS in CowpeaOlatoye et al.

3 July 2019 | Volume 10 | Article 677Frontiers in Genetics | www.frontiersin.org

Cowpea Consortium Array. A core set of 305 MAGIC RILs were 
selected and phenotyped (Huynh et al., 2018). The RILs were 
evaluated under two irrigation regimes.

In this study, the flowering time (FLT), maturity (MAT), 
and seed size (SS) data were analyzed for environment-by-
environment correlations and best linear unbiased predictions 
(BLUPs). The traits analyzed in this study are: FTFILD (FLT 
under full irrigation and long day), FTRILD (FLT under restricted 
irrigation and long day), FTFISD (FLT under full irrigation and 
short day), FTRISD (FLT under restricted irrigation and short 
day), FLT_BLUP (BLUP of FLT across environments), MFISD 
(MAT under full irrigation and short day), MRISD (MAT under 
restricted irrigation and short day), MAT_BLUP (BLUP of MAT 
across environments), SSFISD (SS under full irrigation and short 
day), SSRISD (SS under restricted irrigation and short day), and 
SS_BLUP(BLUP of SS across environments). In addition, using 
both genomic and phenotypic data, narrow sense heritability was 
estimated using rrBLUP package in R (Endelman, 2011).

QTL and Epistasis Mapping
QTL mapping was performed for all traits using the stepwise 
regression model implemented in TASSEL 5.0 standalone version 
(Bradbury et al., 2007). The approach implements both forward 
inclusion and backward elimination steps. The model accounts 
for major effect loci and reduces collinearity among markers. 
The model was designed for multi-parental populations, and 
no family term was used in the model since MAGIC population 
development involved several steps of intercross that reshuffles 
the genome and minimizes phenotype-genotype covariance. A 
total of 32,130 SNPs across 305 RILs were used in the analysis.  
A permutation of 1,000 was used in the analysis.

To characterize the epistatic genetic architecture underlying 
FLT, MAT, and SS, the Stepwise Procedure for constructing an 
Additive and Epistatic Multi-Locus model (SPAEML; Chen et al., 
2018a) epistasis pipeline implemented in TASSEL 5.0 was used 
to perform epistasis mapping for phenotypic traits (FTFILD, 
FTRILD, FTFISD, FTRISD, FT_BLUP, MFISD, MRISD, MT_
BLUP, SSFISD, SSRISD, and SS_BLUP). One critical advantage of 
SPAEML that led to its consideration for this study is its ability to 
correctly distinguish between additive and epistatic loci. SPAEML 
source code is available at https://bitbucket.org/wdmetcalf/
tassel-5-threaded-model-fitter. The minor allele frequency of 
each marker was estimated using a custom R script from http://
evachan.org/rscripts.html. The additive effect of the marker was 
estimated as the difference between the mean phenotypic value 
of two homozygous classes of the alleles of a marker divided by 
two. The proportion of phenotypic variation explained (PVE) by 
each marker was estimated by multiplying the R2 obtained from 
fitting a regression between the marker and the trait of interest by 
100. The regression model for estimating PVE is:

 yij = +µ γ + εi ij  [1]

where yij is the phenotype, μ is the overall mean, γi is the term 
for associated marker/SNP, and εij is the residual term. This was 
implemented using the lm function in R.

A set of a priori genes (n = 100; Data S1) was put together from 
Arabidopsis thaliana and G. max FLT and SS genes obtained from 
literature and https://www.mpipz.mpg.de/14637/Arabidopsis_
flowering_genes. The cowpea orthologs of these genes were 
obtained by blasting the A. thaliana and G. max sequence of the 
a priori genes on the new Vigna genome assembly v.1 on Phytozome 
(Goodstein et al., 2012). The corresponding cowpea gene with the 
highest score was selected as a putative ortholog. Colocalizations 
between the cowpea putative orthologs and associated markers 
were identified using a custom R script. Only significant marker 
and a priori genes at the same genetic position were reported.

Marker-Assisted Selection Pipeline
In order to evaluate the performance of MAS in cowpea, a custom 
pipeline was developed in R. Using subbagging approach, 80% of 
the 305 RILs randomly sampled without replacement was used 
as the training population, followed by performing a multi-locus 
GWAS (multi-locus mixed model, MLMM) (Segura et al., 2012) 
on both genomic and phenotypic data of the training population. 
The MLMM approach implements stepwise regression involving 
both forward and backward regressions. This model accounts for 
major effect loci and reduces the effect of allelic heterogeneity. 
A  K-only model that accounts for a random polygenic term 
(kinship relationship matrix) was used in the MLMM model. No 
term for population structure was used in the model since MAGIC 
population development involved several steps of intercross 
that reshuffles the genome and minimizes phenotype-genotype 
covariance. A total of 32,130 SNPs across 305 RILs were used in the 
GWAS analysis and coded as −1 and 1 for homozygous markers/
SNPs and 0 for heterozygous SNPs. Bonferroni correction with 
α = 0.05 was used to determine the cut-off threshold for each trait 
association (α/total number of markers = 1.6 e-06).

 y S= + ∝ + +X Zu eβ  [2]

where y is the vector of phenotypic data, β is a vector of fixed 
effects other than SNPs, ∝ is the vector of SNP effects, u is a 
vector of polygenic background effects, and e is the vector of 
residual effects. X, S, and Z are incident matrices of 1s and 0s 
relating y to β, ∝, and u (Yu et al., 2006).

Afterwards, the top three most significant associations were 
then selected from the genomic data of the training population 
to train a regression model by fitting the SNPs as predictors 
in a regression model with the phenotypic information as the 
response variable. This training model was later used alongside 
the predict function in R to predict the phenotypic information 
of the validation population (20% that remained after sub-setting 
the training population). The prediction accuracy of MAS was 
obtained as the correlation between this predicted phenotypic 
information and the observed phenotypic information for the 
validation data.

Genomic Selection Pipeline
In order to evaluate the performance of using known 
marker/SNP as fixed effects in GS models and to compare 
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the performance of parametric, semi-parametric, and non-
parametric GS models, a custom GS pipeline was developed in 
R. The GS pipeline was made up of four GS models, which were 
named as FxRRBLUP (ridge regression BLUP where markers 
were fitted as both fixed and random effects; parametric), 
RRBLUP (RRBLUP where markers were only fitted as random 
effects; parametric), reproducing Kernel Hilbert space (RKHS; 
semi-parametric), and support vector regression (SVR; non-
parametric). First, using subagging approach, 80% of the 
RILs were randomly sampled without replacement (training 
population) followed by running MLMM GWAS and selecting 
the three most significant associations, which were used as 
fixed effects in the FxRRBLUP. These three SNPs were removed 
from the rest of SNPs that were fitted as random effects in the 
FxRRBLUP model. Using a high number of SNPs as fixed 
effects have been found to increase bias (Rice and Lipka, 2019), 
as a result, three QTNs were fitted as fixed effects. The RRBLUP, 
RKHS, and SVR models were fitted simultaneously in the 
same cycle as FxRRBLUP to ensure unbiased comparison of 
GS models. Likewise, in order to ensure unbiased comparison 
between GS and MAS approaches, similar seed numbers 
were used for the subagging sampling of training populations 
across 100 cycles for GS and MAS. The validation set was 
composed of the remaining 20% of the RILs after sampling the 
80% (training set). Prediction accuracy in GS was estimated 
as the  Pearson correlation between measured phenotype 
and GEBVs of the validation population. Also, for FLT, each 
environment was used as a training population to predict the 
other three environments.

Ridge Regression BLUP (RRBLUP)
The two RRBLUP models (with and without fixed-effect term) 
can be described as;

 
y Z e= + +

=∑µ m m
m

p
u

1
 [3]

 
y = + X Z eµ αk k

k

q

m m
m

p
u+ +

= =∑ ∑1 1
 [4]

where y is the vector (n x 1) of observations (phenotypic data), 
μ is the vector of the general mean, q is the number of selected 
significant associated markers (q = 3), Xk is the kth column of 
the design matrix X, α is the fixed additive effect associated 
with markers k … q, u random effects term, with E(um) = 0, 
Var um um

( ) = σ 2  (variance of marker effect), p is the marker 
number (p > n), Zm is the mth column of the design matrix Z, 
and u is the vector of random marker effects associated with 
markers m … p. In the model, u random effects term, with 
E(um) = 0, Var um um

( ) = σ 2  (variance of marker effect), Var(e) = 
σ2 (residual variance), Cov(u, e) = 0, and the ridge parameter λ 

equals 
σ

σ
e

u

2

2  (Meuwissen et al., 2001; Endelman, 2011; Howard 

et al., 2014). In this study, RRBLUP with and without fixed effects 
were implemented using the mixed.solve function in rrBLUP R 
package (Endelman, 2011).

Reproducing Kernel Hilbert Space (RKHS)
Semi-parametric models are known to capture interactions 
among loci. The semi-parametric GS approach used in this study 
was implemented as Bayesian RKHS in BLGR package in R 
(Perez, 2014), and described as follows:

 y = u1µ ε+ +  [5]

where y is the vector of phenotype, 1 is a vector of 1’s, μ is the 
mean, u is vector of random effects ~MVN (0, Kh uσ 2 ), and ε is 
the random residual vector ~ MVN (0, I σ ε

2 ). In Bayesian RKHS, 
the priors p(μ, u, ε) are proportional to the product of density 
functions MVN (0, Kh uσ 2 ) and MVN (0, I σ ε

2 ). The kernel 
entries matrix (Kh) with a Gaussian kernel uses the squared 
Euclidean distance between marker genotypes to estimate the 
degree of relatedness between individuals, and a smoothing 
parameter (h) multiplies each entry in Kh by a constant. In the 
implementation of RKHS, a default smoothing parameter h of 
0.5 was used alongside 1,000 burns and 2,500 iterations.

Support Vector Regression (SVR)
Support vector regression method (Vapnik, 1995; Maenhout 
et al., 2007; Long et al., 2011) was used to implement non-
parametric GS approach in this study. The aim of the SVR 
method is to minimize prediction error by implementing models 
that minimizes large residuals (Long et al., 2011). Thus, it is also 
referred to as the “ε-intensive” method. It was implemented in 
this study using the normal radial function kernel (rbfdot) in the 
ksvm function of kernlab R package (Karatzoglou et al., 2004).

Parameters Evaluated in GS and MAS
Additional parameters were estimated to further evaluate the 
performance of GS and MAS models. A regression model was 
fitted between observed phenotypic information and GEBV of 
the validation set to obtain both intercept and slope for both 
GS and MAS in each cycle of prediction. The estimates of the 
intercept and slope of the regression of the observed phenotypic 
information on GEBVs are valuable since their deviations from 
expected values can provide insight into deficiencies in the GS 
and MAS models (Daetwyler et al., 2013). The bias estimate 
(slope and intercept) signifies how the range of values in 
measured and predicted traits differ from each other. In addition, 
the coincidence index between the observed and GEBVs for 
both GS and MAS models was evaluated. The coincidence index 
(Fernandes et al., 2018) evaluates the proportion of individuals 
with highest trait values (20%) that overlapped between the 
measured phenotypes and predicted phenotypic trait values for 
the validation population.

RESULTS

Phenotypic and Genotypic Variation  
in Cowpea
Results showed variation between number of days to 50% 
flowering under long-day photoperiod and short-day 
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photoperiod. Days to FLT were higher for RILs under long 
day than short day (Figure 1). Results showed positive high 
correlations between environments for each trait (Tables S1 
and S2). Furthermore, genomic heritability were moderate for 
the traits ranging between 0.41 under long-day photoperiod to 
0.48 for FLT under short-day photoperiod, 0.21 under restricted 
irrigation to 0.30 under full irrigation for MAT, and 0.39 under 
restricted irrigation to 0.47 under full irrigation for SS (Tables S1 
and S2).

Genetic Architecture of Traits
Main Effect QTL
The cowpea multi-parental advanced generation intercross 
(MAGIC) population facilitated the characterization of the 
genetic architecture of FLT, MAT, and SS. In this study, QTL 
associated with FLT, MAT, and SS were identified using stepwise 
regression analysis (Table S3, Data S2). Results showed that 
32 QTL (22 unique) in total were associated with FLT traits 
(FT_BLUP [eight QTLs, explaining 73.2% of phenotypic 
variation (PV)], FTFILD [five QTL, explaining 66.2% of PV], 
FTRILD [five QTL explaining 48.6% of PV], FTFISD [eight 
QTL explaining 52.1% of PV], and FTRISD [six QTL explaining 
43.9% of PV]). Each of the total QTL associated with FLT traits 
explained between 2 and 28% of the phenotypic variation. QTL 
qVu9:23.36, qVu9:24.77, and qVu9:22.65 (MAF = 0.29, 0.28, and 
0.49) explained the largest proportion of variation (28%, 24%, 
and 19%) with additive effects of 7, 7, and 6 days, respectively. 
The minor allele frequency (MAF) of the FLT QTL ranges from 
0.13 to 0.50. For MAT traits, 13 QTL (11 unique QTL) in total 
were identified with five QTL (explaining 35.9% of PV) for 
MAT_BLUP, four QTL (explaining 24.5% of PV) for MFISD, and 
four QTL (explaining 27.9% of PV) for MRISD. All MAT trait 

QTL explained between 4.5 to 10% of phenotypic variation and 
MAF ranges from 0.15 to 0.49.

Furthermore, for SS traits, 10 QTL (seven unique QTL) in 
total were identified with three QTL (explaining 39.3% of PV) 
for SS_BLUP, three QTL (explaining 41% of PV) for SSFISD, and 
four QTL (explaining 39.4% of PV) for SSRISD. QTL qVu8:74.21, 
qVu8:74.29, and qVu8:76.81 associated with SSFISD, SS_BLUP, 
and SSRISD explained the largest PV (29%, 25%, and 20%). All SS 
trait QTL explained between 3 and 29% of PV and with MAF range 
between 0.21 and 0.49. A pleiotropic QTL qVu8:74.21 (MAF = 
0.24) was associated with both MRISD and SSRISD (explained 5% 
and 29% of PV, respectively). In summary, QTL effects range from 
small to large for all traits in this study (Figure 2).

Two-Way Epistatic Interaction QTL
Currently, there is limited knowledge about what role epistasis plays 
in phenotypic variation in cowpea. Our results identified epistatic 
loci underlying FLT, MAT, and SS (Table S4, Data S3). For FLT 
traits, there were 42 two-way epistatic interactions at 84 epistatic 
loci (only 65 loci were unique). Among these are; 20 epistatic loci 
for FLT_BLUP, 18 epistatic or FTFILD, 12 epistatic loci for FTRILD, 
14 epistatic loci for FTFISD, and 20 epistatic loci for FTRISD. Some 
large effect loci were involved in epistatic interactions in FLT; 
examples include, QTL qVu9:25.39 (MAF = 0.28, FT_BLUP PVE 
= 23.5%, FTFILD PVE = 24.5%, FTRILD PVE = 26%) and QTL 
qVu9:3.46 (MAF = 0.35, FLT_BLUP PVE = 13.5%, FTRILD PVE 
= 14.1%). For MAT, there were 17 pairwise epistatic interactions 
across 34 loci (of which 30 were unique). Among the MAT QTL, 
qVu9:8.37 had the largest effect explaining ~9% of the phenotypic 
variation. One epistatic interaction overlapped with both FTRISD, 
MRISD, and MT_BLUP (qVu2:48.05+ qVu9:8.37, MAF = 0.30, 
and 0.39, respectively). For SS, there were 13 interactions at 26 
loci (19 were unique). Only one QTL (qVu8:74.29, MAF = 0.25) 
had interactions with multiple QTL. The largest effect epistatic 
QTL associated with the three SS traits (SS_BLUP, SSFISD, and 
SSRISD) is qVu8:74.29 (MAF0.25). Some QTL were found to 
overlap among main effect QTL and epistatic effect QTL for FLT 
(nine QTL), MAT (three QTL), and SS (three QTL) (Figure S1).

Main Effect and Epistatic QTL Colocalized with  
A priori Genes
Gene functions can be conserved across species (Huang et al., 
2017). In this study, a set of a priori genes was compiled from both 
A. thaliana and G. max. Both main effect QTL and epistatic QTL 
colocalized with putative cowpea orthologs of A. thaliana and G. 
max FLT and SS genes (Figures 3–6, Figures S2–S11, Data S4) at 
the same genetic position. However, two genes (TOE2 and AHK2) 
did not colocalize with the QTL at the same genetic position but 
were reported due to their proximity and biological relevance. 
A putative cowpea ortholog (Vigun09g050600) of A.   thaliana 
circadian clock gene phytochrome E (PHYE; AT4G18130) 
(Aukerman and Sakai, 2003) colocalized with FTFILD QTL 
(qVu9:22.65; PVE = 19.5%; main effect QTL) at the same genetic 
position. Also, a putative cowpea ortholog (Vigun07g241700) 
of A. thaliana circadian clock gene TIME FOR COFFEE (TIC; 
AT3G22380) (Hall et al., 2003) colocalized at the same genetic 
position with FTFISD QTL (qVu7:86.92; PVE = 2.6%; main 

FIGURE 1 | The reaction norm plot for flowering time variation under long-
day and short-day periods. Evaluation environments are represented on the 
x-axis (full irrigation and long day [FILD], full irrigation and short day [FISD], 
restricted irrigation and long day [RILD], and restricted irrigation and short 
day [RISD]). The number of days to 50% flowering is represented on the 
y-axis.
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effect QTL). The cowpea FLT gene (VuFT; Vigun06g014600; 
CowpeaMine v.06) colocalized with an epistatic QTL (qVu6:0.68; 
PVE = 3.5%) associated with FLT_BLUP and FTRILD at the 
same genetic position. The cowpea ortholog (Vigun11g157600) 
of A. thaliana circadian clock gene PHYTOCLOCK1 (PCL1; 
AT3G46640) (Hazen et al., 2005) colocalized with an epistatic 
QTL (qVu11:50.94; PVE = 8–10%) associated with both FTFILD 
and FTRILD at the same genetic position.

A putative cowpea ortholog (Vigun11g148700) of A. thaliana 
photoperiod gene TARGET OF EAT2 (TOE2; AT5G60120) 
(Mathieu et al., 2009) was found at a proximity of 0.6cM from a 
QTL (qVu11:49.06; PVE = 7–11%; main effect QTL) associated 
with FTFILD, FTRILD, and FLT_BLUP. Some of the a priori genes 
colocalized with some QTL that are both main effect and epistatic 
QTL. For instance, the cowpea ortholog (Vigun01g205500) of G. 
max FLT gene phytochrome A (PHYA; Glyma19g41210) (Tardivel 
et al., 2014) colocalized with a FTFILD QTL (qVu1:66.57; 
PVE = 5.3%; both main effect and epistatic QTL) at the same 
genetic position (Data S4). Lastly, a putative cowpea ortholog 
(Vigun08g217000) of A. thaliana histidine kinase2 gene (AHK2; 
AT5G35750) (Orozco-Arroyo et al., 2015) was found at a proximity 
of about 1–2cM from three QTL (qVu8:74.29, qVu8:74.21, 
qVu8:76.81; PVE = 25%, 29.3%, and 20%, respectively; main effect 
and epistatic QTL) associated with SS traits SS_BLUP, SSFISD, and 
SSRISD). In addition, some a priori genes were associated with 
multiple traits. The putative cowpea ortholog (Vigun05g024400) 
of A. thaliana circadian clock gene CONSTANS (CO; AT5G15840) 

(Wenkel et al., 2006) colocalized at the same genetic position with 
a QTL (qVu5:8.5; PVE = 6–8%; both main effect and epistatic 
QTL) associated with FLT and MAT traits (FLT_BLUP, FTFISD, 
FTRILD, FTRISD, MAT_BLUP, and MFISD). The putative cowpea 
ortholog (Vigun09g025800) of A. thaliana circadian clock gene 
ZEITLUPE (ZTL; AT5G57360) (Somers et al., 2000) colocalized at 
the same genetic position with a QTL (qVu9:8.37; PVE = 9–11%; 
both main effect and epistatic QTL) associated with FLT and MAT 
traits (FTFISD, FTRISD, and MRISD).

GS and MAS for Flowering Time
Prior knowledge about the genetic architecture of a trait can 
help make informed decisions in breeding. Comparing the 
performance of GS and MAS models for FLT within each 
daylength results showed that, under long day length (FTFILD 
and FTRILD), FxRRBLUP (mean prediction accuracy [mPA] = 
0.68, 0.68; mean coincidence index [mCI] = 0.49, 0.40) and MAS 
(mPA = 0.64, 0.61; mCI = 0.45, 0.37) outperformed RRBLUP 
(mPA = 0.55, 0.58; mCI = 0.37, 0.35), RKHS (mPA = 0.55, 0.58; 
mCI = 0.37, 0.36), and SVR (mPA = 0.54, 0.50; mCI = 0.35, 0.28) 
(Figures 7 and 8, Tables S3 and 4). For FLT under long day, 
coincidence index values were higher under full irrigation than 
under restricted irrigation. For FLT under short day (FTFISD and 
FTRISD), all GS models outperformed MAS (mPA = 0.33, 0.25; 
mCI = 0.30, 0.26). Among the GS models, RKHS and RRBLUP 
had the highest prediction accuracies. However, the coincidence 

FIGURE 2 | Distribution of effect size of quantitative traits loci (QTL) associated with traits in the cowpea MAGIC population. Box plots of the distribution of 
proportion of variation explained (PVE) by quantitative traits loci (QTL) associated with best linear unbiased predictions (BLUP) of flowering time across environments 
(FLT_BLUP), flowering time under full irrigation and long day (FTFILD), flowering time under restricted irrigation and long day (FTRILD), flowering time under full 
irrigation and short day (FTFISD), flowering time under restricted irrigation and short day (FTRISD), BLUP of maturity across environments (MAT_BLUP) maturity 
under full irrigation and short day (MFISD), maturity under restricted irrigation and short day (MRISD), BLUP of seed size across environments (SS_BLUP) seed size 
under full irrigation and short day (SSFISD), and seed size under restricted irrigation and short day (SSRISD).
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index of FxRRBLUP was higher than the rest of the GS models 
for FTRISD. In general, the mean of the slope and intercept for 
the GS models except SVR were usually close to the expected 
(1 and 0) (Figures S12–S13). MAS also deviated away from the 
expected slope and intercept (1 and 0) more than the FxRRBLUP, 
RKHS, and RRBLUP for FTRISD (Figures S12–S13). To 
evaluate the effect of photoperiod and irrigation regime on the 
performance of training population, each environment (day 
length and irrigation regime combination) was used as a training 
population to predict the rest in a di-allele manner. Results 
showed that prediction accuracy between environments in the 
same photoperiod was higher than environments in different 
photoperiod (Figure S14). Also, when training populations 
were under full irrigation, their prediction accuracies were 

higher than when training populations were under restricted 
irrigation (Figure S14). For FT_BLUP, GS models outperformed 
MAS except SVR which had the same mPA (0.59) as MAS while 
FxRRBLUP had the highest mPA and mCI among the GS 
models (Figures S15 and 16). Overall, Table S7 showed that 
FxRRBLUP had the best performance in six out of the eight traits 
by environment combination.

GS and MAS for Maturity and Seed Size
For MAT (MT_BLUP, MFISD, and MRISD), RKHS and RRBLUP 
had better performance (Figures 7 and 8; Tables S4 and S5) than 
the rest of the models including MAS. All models deviated from 
the expected slope and intercept estimates, but RRBLUP had 

FIGURE 3 | Main QTL plot for flowering time traits in the cowpea MAGIC population. QTL plots for flowering time under full irrigation and long day (FTFILD), flowering 
time under restricted irrigation and long day (FTRILD), flowering time under full irrigation and short day (FTFISD), flowering time under restricted irrigation and short 
day (FTRISD), and BLUPs of environments (FLT_BLUP). The chromosome numbers are located on the x-axis and the negative log of the P-values on the y-axis. The 
genetic position of the colocalization between QTL and a priori genes are indicated by broken vertical lines. The texts displayed on the vertical broken lines are the 
names of a priori genes (blue for genes associated with multiple environments or traits, and black for genes associated with single environments or trait).
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the least deviation for MRISD. For SS, FxRRBLUP had the best 
performance followed by MAS compared to the rest of the GS 
models (RKHS, RRBLUP, and SVR) (Figures 7 and 8; Tables  S5 
and S6). GS and MAS models had varying levels of deviation 
from the expected estimates of slope and intercept. RKHS and 
RRBLUP were closer to the expected than FxRRBLUP and MAS 
(Figures S12–S13) while SVR had the highest deviation.

DISCUSSION

Epistasis Plays Important Roles in 
Determining the Genetic Architecture 
of Agronomic Traits in Cowpea
Multi-parental populations have demonstrated ability to 
facilitate robust characterization of genetic architecture in 
terms of genetic effect size, pleiotropy, and epistasis (Buckler 
et al., 2009; Brown et al., 2011; Peiffer et al., 2014; Bouchet 
et al., 2017; Mathew et al., 2018). Using the cowpea MAGIC 
population, this study showed that both additive main QTL and 
additive × additive epistatic QTL with large and (or) moderate 
effects underlie FLT, MAT, and SS in cowpea. Although we 
identified two-way epistatic interactions, results showed that 
some loci were involved in interactions with more than one 
independent loci (Figures 4 and 5 and Figures S4–11). This 
implies the possibility of three-way epistatic interactions 
underlying some of the traits. Our inability to identify and 
discuss three-way epistatic interactions is due to the mapping 
approach used, which only mapped two-way epistatic 

FIGURE 4 | Epistatic QTL for FLT_BLUP for MAGIC population. 
Chromosomes are shown in shades of gray, two-way interacting loci are 
connected with black solid lines, and colocalized a priori genes are texts 
between chromosomes and genetic map.

FIGURE 5 | Epistatic QTL for MAT_BLUP in MAGIC population. 
Chromosomes are shown in shades of gray, two-way interacting loci are 
connected with black solid lines, and colocalized a priori genes are texts 
between chromosomes and genetic map.

FIGURE 6 | Epistatic QTL for MAT_BLUP in MAGIC population. 
Chromosomes are shown in shades of gray, two-way interacting loci are 
connected with black solid lines, and colocalized a priori genes are texts 
between chromosomes and genetic map.
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interactions. Three-way epistatic interactions have been found 
to underlie FLT in the selfing crop specie barley (Mathew 
et al., 2018). Furthermore, overlaps between main and epistatic 
loci (Figure S2) indicate these to be main effect loci that are 
involved in epistatic interactions with other loci. However, one 
caveat that may also be responsible for some of the QTL among 
the overlaps is the false positive rate of SPEAML. The SPEAML 
software used for epistasis mapping showed high false positive 
rate with a sample size of 300 individuals (Chen et al., 2018a). 
It is possible that some of the overlapped QTL are main QTL 
that were miscategorized as epistatic loci by SPEAML since our 
cowpea MAGIC population had 305 RILs.

Distinct and Common Genetic Regulators 
Underlie Flowering Time
FLT is an important adaptive trait in breeding. Photoperiod 
impacted days to FLT as observed from the reaction norm plot 
for cowpea MAGIC FLT data which showed drastic reductions 
in days to flowering for RILs under short day compared to 
long days (Figure 1). Our mapping results (main effect and 
epistatic) showed that both unique and common loci underlie 
FLT variation under long and short photoperiod (Figure 1;  

Figures S4–S8). Epistatic loci underlie FLT in both selfing 
(Komeda, 2004; Juenger et al., 2005; Huang et al., 2013; Chen 
et al., 2018b; Li et al., 2018a; Mathew et al., 2018) and outcrossing 
(Buckler et al., 2009; Durand et al., 2012) species. In addition, 
the effect size of FLT loci differs between selfing and out crossing 
species as QTL effect sizes are large in the former (Lin et al., 
1995; Maurer et al., 2015) and small in the later (Buckler et al., 
2009). In the present study, the large effects (up to 25% PVE and 
additive effect of 7 days) of FLT loci were only identified under 
long-day photoperiod and not under short-day photoperiod 
(Figure 2, Tables S3 and S4). The loci detected under short-
day photoperiod were of moderate effects (PVE = 1–10% and 
maximum additive effect size of 2 days). The large effect size 
attributed to some of the loci that are unique to FLT adaptation 
under long photoperiod suggests the possible effect of recent 
selection ate these loci (Orr, 1998; Orr, 1999; Brown et al., 2011; 
Dittmar et al., 2016).

Conserved genetic pathways often underlie traits in plant 
species (Liu et al., 2013; Huang et al., 2017). Examination of 
colocalizations between a priori genes and QTL in this study 
identified putative cowpea orthologs of A. thaliana and G. max 
FLT that may underlie phenotypic variation in cowpea. FLT 
is affected by photoperiodicity and regulated by a network of 

FIGURE 7 | Comparison of prediction accuracy across GS and MAS models. Boxplots in each panel showed the distribution of prediction accuracy values 
across 100 cycles for FxRRBLUP (ridge regression best linear unbiased prediction: parametric model with fixed effects), RKHS (reproducing Kernel Hilbert space; 
semi-parametric model), RRBLUP (ridge regression best linear unbiased prediction: parametric model with no fixed effects), SVR (support vector regression: non-
parametric model), and MAS (marker-assisted selection) for flowering time under full irrigation and long day (FTFILD), flowering time under restricted irrigation and 
long day (FTRILD), flowering time under full irrigation and short day (FTFISD), flowering time under restricted irrigation and short day (FTRISD), maturity under full 
irrigation and short day (MFISD), maturity under restricted irrigation and short day (MRISD), seed size under full irrigation and short day (SSFISD), and seed size 
under restricted irrigation and short day (SSRISD).
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genes (Sasaki et al., 2018) involved in floral initiation, circadian 
clock regulation, and photoreception (Lin, 2002). In addition, 
certain a priori genes were unique to either FLT under long 
day or short day. For instance, cowpea putative orthologs 
of photoreceptors (PHY A [Vigun01g205500] and PHY E 
[Vigun09g050600]) and circadian clock gene PHYTOCLOCK1 
(PCL1 [Vigun11g157600]) colocalized with only QTL associated 
with FLT under long day, while cowpea putative orthologs of 
circadian clock genes (Time for Coffee [TIC (Vigun07g241700)] 
and Zeitlupe [ZTL]) colocalized with only QTL associated with 
FLT under short day. However, the cowpea putative ortholog 
of photoperiod gene CONSTANS (CO [Vigun05g024400]) 
colocalized with QTL associated with FLT under both long 
and short days. Thus, our study suggests that distinct and 
common genetic regulators control FLT adaptation to both 
long- and short-day photoperiod in cowpea. Further studies 
utilizing functional approaches will be helpful to decipher gene 
regulation patterns under both long- and short-photoperiod  
in cowpea.

Genetic Basis of Maturity and Seed Size
In this study, the genetic basis of MAT and SS were evaluated 
under short-day photoperiod only. Our study demonstrated that 

MAT under short day is controlled by moderate and small effect 
main and epistatic loci. MAT QTL were found to colocalize with 
cowpea putative orthologs of Arabidopsis circadian clock and 
photoperiod (ZTL [ZEITLUPE], CO [CONSTANS]) genes. One 
pleiotropic QTL (qVu9:8.37 colocalized with ZTL [ZEITLUPE]) 
was found to be associated with both MAT and FLT under 
restricted irrigation and short-day photoperiod. Pleiotropic 
QTL between MAT and FLT were also reported in soybean 
(Kong et al., 2018). This suggest a possible genetic basis for the 
positive relationship found between MAT and FLT in prior 
studies (Huynh et al., 2018; Owusu et al., 2018). A major large 
effect locus explaining up to 29% of the phenotypic variation 
was found to be associated with SS. This QTL was found at 
about 2cM from the cowpea ortholog of Arabidopsis AHK2 SS 
gene. Further studies, using mapping panels with more diverse 
founders and more a priori genes will be required to identify 
further genes underlying natural variations in MAT and  
SS in cowpea.

Genetic Architecture Influenced GS and 
MAS Performance
GS models differ in their efficiency to capture complex cryptic 
interactions among genetic markers (de Oliveira Couto et al., 2017). 

FIGURE 8 | Comparison of coincidence index across GS and MAS models. Boxplots in each panel showed the distribution of coincidence index values across 
100 cycles for FxRRBLUP (ridge regression best linear unbiased prediction: parametric model with fixed effects), RKHS (reproducing Kernel Hilbert space; semi-
parametric model), RRBLUP (ridge regression best linear unbiased prediction: parametric model with no fixed effects), SVR (support vector regression: non-
parametric model), and MAS (marker-assisted selection) for flowering time under full irrigation and long day (FTFILD), flowering time under restricted irrigation and 
long day (FTRILD), flowering time under full irrigation and short day (FTFISD), flowering time under restricted irrigation and short day (FTRISD), maturity under full 
irrigation and short day (MFISD), maturity under restricted irrigation and short day (MRISD), seed size under full irrigation and short day (SSFISD), and seed size 
under restricted irrigation and short day (SSRISD).
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The traits evaluated in this study are controlled by both 
main effect and epistatic loci. In this study, comparison 
among the GS models showed that parametric and semi-
parametric GS models outperformed non-parametric GS 
model for all traits. SVR, a non-parametric model, had the 
least prediction accuracy and coincidence index and also 
had the highest bias (Figures S12 and S13). Previous studies 
have shown that semi-parametric and non-parametric 
models increased prediction accuracy under epistatic genetic 
architecture (Howard et al., 2014; Jacquin et al., 2016). In this 
study, none of semi-parametric and non-parametric models 
outperformed parametric models (Figures 6 and 7). Some 
of the studies comparing the performance of parametric, 
semi-parametric, and non-parametric GS models were based 
on simulations of traits controlled solely by epistatic genetic 
architectures. Therefore, the performance of the models under 
simulated combined genetic effects (additive + epistasis) is 
not well understood. The comparable performance of RKHS 
to RRBLUP (parametric model) in this study in terms of 
prediction accuracy, coincidence index, and bias estimates 
attests to RKHS ability to capture both additive and epistatic 
interactions (Gianola et al., 2006; Gianola and Van Kaam, 
2008; De Los Campos et al., 2010; Gota and Gianola, 2014) for 
both prediction accuracy and selection of top performing lines. 
The performance of GS models is often indistinguishable, and 
RRBLUP has been recommended as an efficient parametric 
GS model (Heslot et al., 2012; Lipka et al., 2015). SVR had the 
worst performance with extremely high bias estimates.

Understanding the genetic architecture of agronomic traits 
can help improve accuracy of genomic predictions (Hayes et al., 
2010; Swami, 2010). Our study demonstrated that the effect size 
of QTL associated with a trait played a role in the performance 
of GS and MAS models. For instance, for traits controlled by 
both large and moderate effect loci (FTFILD, FTRILD, SSFISD, 
and SSRISD), parametric model with known loci as fixed effect 
(FxRRBLUP) followed by MAS outperformed the rest of the 
GS models (RRBLUP, RKHS, and SVR). The use of known 
markers as fixed effects has been shown to increase prediction 
accuracy (Bernardo, 2014; Spindel et al., 2016) in parametric 
GS models. For traits that were controlled by moderate effect 
loci (FTFISD, FTRISD, MFISD, and MTRISD), our results 
showed that the two parametric GS models (FxRRBLUP and 
RRBLUP) and semi-parametric (RKHS) had similar prediction 
accuracy; however, FxRRBLUP had higher bias than RRBLUP 
and RKHS (Figure S12–S13). Furthermore, the performance 
of MAS in comparison to GS models in this study supported 
the fact that large effect loci are important influencers of MAS 
(Bernardo, 2008). For small breeding programs in developing 
countries, MAS might be a prudent choice over GS for traits 
controlled by large effects loci in cowpea since GS will require 
genotyping of more markers than MAS. The large effect loci 
identified in this study can be transferred to different breeding 
populations because they were identified in a MAGIC 
population with wide genetic background (Descalsota et al., 
2018; Huynh et al., 2018). Our study thus demonstrates that 
prior knowledge of the genetic architecture of a trait can 

help make informed decision about the best GEB method  
to employ in breeding.

In summary, using the cowpea MAGIC population, our 
study identified both main QTL and two-way epistatic loci 
underlying FLT, MAT, and SS. These traits are oligogenic in 
genetic architecture with QTL effects ranging from small to large 
sizes. The effect size of the markers/QTL reported in this study 
may be upwardly biased due to the small size (n = 305) of the 
cowpea MAGIC population. Thus, studies with higher sample 
sizes (n > 1,000) will prove more accurate (Xu, 2003; King and 
Long, 2017). The identified QTL and their colocalized a priori 
genes will serve as stepping stone for future studies considering 
the molecular characterization of the genes underlying FLT, 
MAT, and SS in cowpea. Further, we demonstrated that prior 
knowledge of the genetic architecture of a trait can help make 
informed decision in GEB. Due to variations observed across 
photoperiod/environments for FLT, we will recommend 
the development of photoperiod insensitive lines in cowpea 
breeding. Also, given that some QTL were identified in specific 
environments, considerations should be given to field evaluation 
of mapping populations under contrasting environments that are 
representative of natural populations’ environmental conditions. 
In addition, the cowpea MAGIC population may not capture all 
the genetic variation available in cowpea for FLT, MAT, and SS 
because only eight founders were used for its development. Thus, 
some of our markers may not be well diagnostic in breeding 
populations that do not share close ancestry with the cowpea 
MAGIC founders. Despite this limitation, this study still provides 
technical details that can be part of considerations for GS and 
MAS in cowpea breeding.
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The implementation of genomic selection in recurrent breeding programs raises the 
concern that a higher inbreeding rate could compromise the long-term genetic gain. An 
optimized mating strategy that maximizes the performance in progeny and maintains 
diversity for long-term genetic gain is therefore essential. The optimal cross-selection 
approach aims at identifying the optimal set of crosses that maximizes the expected 
genetic value in the progeny under a constraint on genetic diversity in the progeny. Optimal 
cross-selection usually does not account for within-family selection, i.e., the fact that only a 
selected fraction of each family is used as parents of the next generation. In this study, we 
consider within-family variance accounting for linkage disequilibrium between quantitative 
trait loci to predict the expected mean performance and the expected genetic diversity in 
the selected progeny of a set of crosses. These predictions rely on the usefulness criterion 
parental contribution (UCPC) method. We compared UCPC-based optimal cross-selection 
and the optimal cross-selection approach in a long-term simulated recurrent genomic 
selection breeding program considering overlapping generations. UCPC-based optimal 
cross-selection proved to be more efficient to convert the genetic diversity into short- and 
long-term genetic gains than optimal cross-selection. We also showed that, using the 
UCPC-based optimal cross-selection, the long-term genetic gain can be increased with 
only a limited reduction of the short-term commercial genetic gain.

Keywords: genomic prediction, optimal cross-selection, usefulness criterion, parental contributions, genetic 
diversity, Bulmer effect

INTRODUCTION

Successful breeding requires strategies that balance immediate genetic gain with the maintenance of 
population diversity to sustain long-term progress (Jannink, 2010). At each selection cycle, plant breeders 
are facing the choice of new parental lines and the way in which these are mated, to improve the mean 
population performance and generate the genetic variation on which selection will act. As breeding 
programs from different companies compete for short-term gain, breeders tend to use intensively the 
most performant individuals sometimes at the expense of genetic diversity (Rauf et al., 2010; Gerke et al., 
2015; Allier et al., 2019a). The identification of the crossing plan that maximizes the performance in 
progeny and limits diversity reduction for long-term genetic gain is essential.
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Historically, breeders used to select the best individuals based 
on phenotypic observations, considered as a proxy of their 
breeding value, i.e., the expected value of their progeny. In order 
to better estimate the breeding value of individuals, phenotypic 
selection has been complemented by pedigree-based prediction of 
breeding values (Henderson, 1984; Piepho et al., 2008) and more 
recently by genomic prediction of breeding values (Meuwissen 
et al., 2001), taking advantage of the availability of cheap high-
density genotyping. In genomic selection (GS), a model calibrated 
on phenotype and genotype information of a training population 
is used to predict genomic estimated breeding values (GEBVs) 
from genome-wide marker information. A truncation selection 
is commonly applied on GEBVs, and the selected individuals 
are intercrossed to create the next generation. The interest of 
GS is due to the acceleration of selection progress by shortening 
generation interval, the increase in selection intensity, and the 
increase in accuracy (Hayes et al., 2010; Daetwyler et al., 2013; 
Heslot et al., 2015). As a consequence, compared to phenotypic 
selection, GS is expected to accelerate the loss of genetic diversity 
due to the rapid fixation of genomic regions with large effects, 
but also the higher probability to select individuals that are the 
closest to the training population and are therefore predicted 
more accurately (Clark et al., 2011; Pszczola et al., 2012). As a 
result, it has been shown in an experimental study (Rutkoski 
et al., 2015) and by stochastic simulations (Jannink, 2010; Lin 
et al., 2016) that GS increases the loss of diversity compared to 
phenotypic selection. Thus, the optimization of mating strategies 
in GS breeding programs is a critical area of theoretical and 
applied research.

Several approaches have been suggested to balance the short- 
and long-term genetic gain while selecting crosses in GS. In line 
with Kinghorn, (2011), Pryce et al. (2012), and Akdemir and 
Isidro-Sánchez (2016), the selection of a set of crosses requires 
two components: (i) a cross-selection index (CSI) that measures 
the interest of a set of crosses and (ii) an algorithm to find the set 
of crosses that maximizes the CSI.

The CSI may consider crosses individually; i.e., the interest 
of a cross does not depend on the other crosses in the selected 
set. In classical recurrent GS, candidates with the highest GEBVs 
are selected and intercrossed to maximize the expected progeny 
mean in the next generation. In this case, the CSI is simply the 
mean of parental GEBVs. However, such an approach maximizes 
neither the expected response to selection in the progeny, which 
involves genetic variance generated by Mendelian segregation 
within each family, nor the long-term genetic gain. Alternative 
measures of the interest of a cross have been proposed to account 
for parent complementarity, based on within cross variability 
and expected response to selection. Daetwyler et al. (2015) 
proposed the optimal haploid value (OHV) that accounts for 
the complementarity between parents of a cross for predefined 
haplotype segments. Using stochastic simulations, the authors 
observed that OHV selection yielded higher long-term genetic 
gain and preserved greater amount of genetic diversity than 
truncation GS. However, OHV accounts for neither the position 
of quantitative trait loci (QTLs) nor the linkage disequilibrium 
between QTLs (Lehermeier et al., 2017b; Müller et al., 2018). 
Schnell and Utz (1975) proposed the usefulness criterion (UC) 

of a cross to evaluate the expected response to selection in its 
progeny. The UC of a cross accounts for the progeny mean (μ) 
that is the mean of parental GEBVs and the progeny standard 
deviation (σ) the selection intensity (i) and the selection accuracy 
(h): UC = μ + ihσ. Zhong and Jannink (2007) proposed to predict 
progeny variance using estimated QTL effects, accounting for 
linkage between loci. Genome-wide marker effects have also been 
considered to predict the progeny variance with computationally 
intensive stochastic simulations (e.g., Mohammadi et al., 2015). 
Recently, an unbiased predictor of progeny variance (σ2) has 
been derived in Lehermeier et al. (2017b) for two-way crosses 
and extended in Allier et al. (2019b) for multiparental crosses 
implying up to four parents. Lehermeier et al. (2017b) observed 
that using UC as a CSI increased the short-term genetic gain 
compared to using OHV or mean parental GEBV. Similar results 
have been obtained by simulations by Müller et al. (2018), 
considering the expected maximum haploid breeding value 
(EMBV) that is akin to the UC for normally distributed and fully 
additive traits.

Alternatively, one can consider a more holistic CSI for which 
the interest of a cross depends on the other selected crosses. This 
is the case in optimal contribution selection (Wray and Goddard, 
1994; Meuwissen, 1997; Woolliams et al., 2015), where a set of 
candidate parents is evaluated as a whole regarding the expected 
short-term gain and the associated risk on loosing long-term gain. 
Optimal contribution selection aims at identifying the optimal 
contributions (c) of candidate parents to the next generation 
obtained by random mating, in order to maximize the expected 
genetic value in the progeny (V) under a certain constraint on 
inbreeding (D). Optimal cross-selection, further referred as OCS, 
is an extension of the optimal contribution selection to deliver 
a crossing plan that maximizes V by considering additional 
constraints on the allocation of mates in crosses to limit D 
(Kinghorn et al., 2009; Kinghorn, 2011; Akdemir and Isidro-
Sánchez, 2016; Gorjanc et al., 2018; Akdemir et al., 2018). In GS, 
the expected genetic value in progeny (V) to be maximized is the 
mean of parental GEBV (a) weighted by parental contributions 
c, i.e c’a, and the constraint on inbreeding (D) to be minimized 
is c’Kc with K a genomic coancestry matrix. Differential 
evolutionary algorithms have been proposed to obtain optimal 
solutions for c and the crossing plan (Storn and Price, 1997; 
Kinghorn et al., 2009; Kinghorn, 2011). Optimal contribution 
selection is commonly used in animal breeding (Woolliams et al. 
2015) and is increasingly adopted in plant breeding (Akdemir 
and Isidro-Sánchez, 2016; De Beukelaer et al., 2017; Lin et al., 
2017; Gorjanc et al., 2018; Akdemir et al., 2018).

In plant breeding, one typically has larger biparental families 
than in animal breeding. Especially with GS, the selection 
intensity within-family can be largely increased so that plant 
breeders capitalize much more on the segregation variance 
within families than animal breeders. In previous works, the 
genetic gain (V) and constraint (D) have been defined at the 
level of the progeny before within-family selection. Exceptions 
are the work of Shepherd and Kinghorn (1998) and Akdemir 
and Isidro-Sánchez (2016); Akdemir et al. (2018), who added a 
term to V accounting for within cross variance assuming linkage 
equilibrium between QTLs. To our knowledge, no previous 
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study considered linkage disequilibrium (LD) between QTLs. 
Furthermore, as observed in historical wheat data (Fradgley 
et al., 2019) and using simulations in a maize context (Allier 
et al., 2019b), within-family selection also affects the effective 
contribution of parents to the next generation. This likely biases 
the prediction of inbreeding/diversity in the next generation, 
which to our knowledge has not been considered in previous 
studies.

In this study, we propose to adjust V and D terms so that 
within-family selection of the candidate parents for the next 
generation is accounted for. We propose to use the usefulness 
criterion parental contribution (UCPC) approach (Allier et al., 
2019b) that enables to predict the expected mean performance of 
the selected fraction of progeny and to predict the contribution 
of parents to the selected fraction of progeny. We compared 
our OCS strategy based on UCPC with other cross-selection 
strategies, in a long-term simulated recurrent GS breeding 
program involving overlapping generations (Figure 1A). Our 
objectives were to demonstrate (1) the interest of UCPC to 
predict the genetic diversity in the selected fraction of progeny 
and (2) the interest of accounting for within-family selection in 
OCS for both short- and long-term genetic gains.

MATERIALS AND METHODS

Simulated Breeding Program
Breeding Program
We simulated a breeding program to compare the effect of 
different CSIs on short- and long-term genetic gain in a realistic 
breeding context considering overlapping and connected 
generations (i.e., cohorts) and the use of doubled haploid (DH) 

technology to derive progeny (Figure 1A). We considered that 
the process to derive DH progeny from a cross and to phenotype 
and genotype DH lines takes 3 years. Furthermore, we considered 
as candidate parents of a cohort T the selected fraction of DH 
progeny of the three last available cohorts, i.e., T-3, T-4 and T-5 
(Figures 1A, B).

Each simulation replicate started from a population of 40 
founders sampled among 57 Iodent maize genotypes from the 
Amaizing project (Rio et al., 2019; Allier et al., 2019b). We 
sampled 1,000 biallelic QTLs among the 40,478 high-quality 
single-nucleotide polymorphisms (SNPs) from the Illumina 
MaizeSNP50 BeadChip (Ganal et al. 2011), with consensus 
genetic positions from Giraud et al. (2014). The sampling process 
obeyed two constrains: a QTL minor allele frequency ≥ 0.2 and a 
distance between two consecutive QTLs ≥ 0.2 cM. Each QTL was 
assigned an additive effect sampled from a Gaussian distribution 
with a mean of zero and a variance of 0.05, and the favorable 
allele was attributed at random to one of the two SNP alleles.

We initiated a virtual breeding program starting from the 
founder genotypes with a burn-in period of 20 years that mimicked 
recurrent phenotypic selection. Burn-in started by randomly 
crossing the 40 founders into 20 biparental families, i.e., two-
way crosses, during the first 3 years to initiate three overlapping 
cohorts. In each cohort, 80 DH progeny genotypes per cross were 
simulated. Phenotypes were simulated considering the genotype 
at QTLs, an error variance corresponding to a trait repeatability 
of 0.4 in the founder population and no genotype by environment 
interactions. For phenotyping, every individual was evaluated 
in four environments in 1 year. Since no secondary trait was 
considered and sufficient seed production for extensive progeny 
testing was assumed, we simulated a unique within-family selection 
of the 5% best progeny (i.e., 4 DHs) that is a common selection 

FIGURE 1 | Schematic view of the simulated breeding program. (A) Overall view of the breeding program and overlapping cohorts. (B) Life cycle of a given post 
burn-in cohort T depending on the scenario considered (TRUE with 1,000 known QTL effects, PS in absence of genomic information or GS with 2,000 noncausal 
SNPs estimated effects).
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intensity in maize breeding. During burn-in, we first considered 
within-family phenotypic selection and then used the 50 DHs 
with the largest phenotypic mean as potential parents of the next 
cohort. These were randomly mated, i.e., without any constraint 
on parental contributions, to generate 20 biparental families of 80 
DH lines. After 20 years of burn-in, this created extensive linkage 
disequilibrium as often observed in elite plant breeding programs 
(e.g., Van Inghelandt et al., 2011). We then compared different 
CSIs for 60 years of recurrent GS using DH technology (Figure 
1). As in burn-in, each cohort T was generated by 20 two-way 
crosses (|nc|=20) of 80 DH progeny each (nProg = 80). Candidate 
parents of cohort T were selected from the available DH of the 
three cohorts: T=3, T-4, and T-5 (Figures 1A, B). Per family, the 
4 DH lines (i.e., 5%) with the largest breeding values, detailed in 
“Evaluation scenario” section, were considered as potential parents, 
yielding 4 DH lines/family × 20 families/cohort × 3 cohorts = 240 
potential parents. Considering these N  = 240 potential parents, 
N(N-1)/2 = 28,680 two-way crosses are possible. The set of |nc| 
= 20 two-way crosses among these 28,680 candidate crosses was 
defined using different CSI detailed in the following sections. This 
simulated scheme yielded overlapping and connected cohorts as 
it is standard in practical plant breeding (Figure 1A). A detailed 
description of the simulated breeding program and the material is 
provided in Supplementary Material (File S1).

Evaluation Scenarios
We considered different scenarios for genome-wide marker effects 
and progeny evaluation. In order to eliminate the uncertainty 
caused by the estimation of marker effects, we first compared 
several CSI assuming that we have access to the positions and 
effects of the 1,000 QTLs (referred to as TRUE scenario). For a 
representative subset of the CSI showing differentiated results in 
the TRUE scenario, we also considered a more realistic scenario 
where the effects of QTLs are unknown and selection was based 
on the effects of 2,000 noncausal SNPs randomly sampled over 
the genome. In this scenario, marker effects were obtained by 
back-solving (Wang et al., 2012) a G-BLUP model fitted using 
blupf-90 AI-REML solver (Misztal, 2008). This scenario was 
referred to as GS scenario, and marker effects used to predict 
the CSI were estimated every year with all candidate parents that 
were phenotyped and genotyped. The progeny were selected on 
their GEBV considering their phenotypes and their genotypes at 
noncausal SNPs. As a benchmark, we also considered a phenotypic 
selection scenario where progeny were selected based on their 
phenotypic mean (PS scenario). For details on the evaluation 
models, see Supplementary Material (File S1). In the following, 
for sake of clarity, we present the different cross-selection strategies 
considering selection based on known QTL effects and positions 
(TRUE scenario). In GS scenario, QTL effects and positions were 
replaced by estimated marker effects and positions.

Cross-Selection Strategies
Optimal Cross-Selection Not Accounting for Within-
Family Selection
Considering N homozygote candidate parents, N(N-1)/2 two-
way crosses are possible. We define a crossing plan nc as a set of 

|nc| crosses out of possible two-way crosses, giving the index of 
selected crosses, i.e., with the ith element nc(i)∈[1,N(N-1)/2]. The 
(N × 1) dimensional vector of candidate parents contributions c 
is defined as 

 
c Z c Z c= +( )1

nc 1 1 2 2  , (1)

where Z1 (respectively Z2) is a (N × |nc|) dimensional design 
matrix that links each N candidate parent to the first (respectively 
second) parent in the set of crosses nc, c1 (respectively, c2) is a 
(|nc| × 1) dimensional vector containing the contributions of the 
first (respectively, second) parent to progeny, i.e., a vector of 0.5 
when assuming no selection within crosses.

The (N × 1) dimensional vector of candidate parents true breeding 
values is a = XβT where X = (x1,…,xN)’ is the (N × m) dimensional 
matrix of known parental genotypes at m biallelic QTLs, where xp 
denotes the (m × 1) dimensional genotype vector of parent p∈[1,N] 
with the jth element coded as 1 or −1 for the genotypes AA or aa at 
QTL j. βT is the (m × 1) dimensional vector of known additive QTL 
effects for the quantitative agronomic performance trait considered. 
The genetic gain V(nc) for this set of two-way crosses is defined as 
the expected mean performance in the DH progeny:

 V( )nc c'a= . (2)

We define the constraint on diversity (D) as the mean expected 
genetic diversity in DH progeny (He, Nei, 1973):

 
D nc c Kc( ) = − ′1   , (3)

where  K XX= +






′1
2

1 1
m

 is the (N × N) dimensional identity 

by state (IBS) coancestry matrix between the N candidates. 
Supplementary Material (File S2) details the relationship 
between the IBS coancestry among parents (K), the parental 
contributions to progeny (c) and the mean expected heterozygosity 

in progeny He
m

p p
j

m

j j= −( )
=

∑1 2 1
1

 where pj the frequency of the 

genotypes AA at QTL j in the progeny.

Accounting for Within-Family Selection in OCS
In the OCS, as defined above, the progeny derived from the nc 
crosses are all expected to contribute to the next generation. We 
propose to consider V(nc) and D(nc) terms accounting for the fact 
that only a selected fraction of each family will be candidate for 
the next generation (e.g., 5% per family in our simulation study). 
For this, we apply the UCPC approach proposed by Allier et al. 
(2019b) for two-way crosses and extend its use to evaluate the 
interest of a set nc of two-way crosses after selection in progeny.

UCPC for Two-Way Crosses
Two inbred lines P1 and P2 are considered as parental lines for 
a candidate cross P1 × P2 and (x1, x2)’ denotes their genotyping 
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matrix. Following Lehermeier et al. (2017b), the DH progeny 
mean and progeny variance of the performance in the progeny 
before selection can be computed as follows:

 
µT T T= +( )0 5 1 2.   x x' 'ββ ββ , (4a)

 σ T T T
2 = ββ ββ'    Σ , (4b)

where x1, x2 and βT were defined previously, and Σ is the (m×m) 
-dimensional variance covariance matrix of QTL genotypes in 
DH progeny defined in Lehermeier et al. (2017b). 

To follow parental contributions, we consider P1 parental 
contribution as a normally distributed trait (Allier et al., 
2019b). As we only consider two-way crosses and biallelic 
QTLs, we can simplify for computational reasons the 
formulas by using IBS parental contributions computed for 
polymorphic QTLs between P1 and P2 instead of using identity-
by-descent parental contributions (Allier et al., 2019b). We 
define the (m×1) -dimensional vector βC1 to follow P1 genome 

contribution at QTLs as ββC1
1 2

1 2 1 2

= −
−( ) −( )

x x
x x ' x x

. We compute 

the mean of P1 contribution in the progeny before selection 
μC1=0.5(x’1βC1+x’2βC1+1). The progeny variance σ C1

2  for P1 
contribution in the progeny before selection is computed 
using Eq. 4b by replacing βT by βC1 The progeny mean for P2 
contribution is then defined as μC2 = 1-μC1. 

Following Allier et al. (2019b), we compute the covariance between 
the performance and P1 contribution in progeny as follows: 

 σ T C T C,      1 1= ββ ββ' Σ . (5)

The expected mean performance of the selected fraction of 
progeny, i.e., UC (Schnell and Utz, 1975), of the cross P1×P2 is 
as follows: 

 UC ihi
T T

( ) = +µ σ , (6)

where i is the within-family selection intensity, and the exponent 
(i) in UC expresses the dependency of UC on the selection 
intensity i. We considered a selection accuracy h=1 as in 
Zhong and Jannink (2007), which holds when selecting on true 
breeding values in TRUE scenario. As discussed further, we 
also considered h = 1 when selecting crosses based on UCPC in 
GS scenario. The correlated responses to selection on P1 and P2 
genome contributions in the selected fraction of progeny are as 
follows (Falconer and Mackay, 1996):

 
c i c ci

C
T C

T

i i
1 1

1
2 11( ) ( ) ( )= + = −µ σ

σ
,  and . (7)

Cross-Selection Based on UCPC
Accounting for within-family selection intensity i, the genetic 
gain term V(i)(nc) for a set of two-way crosses nc is defined as the 
expected performance in the selected fraction of progeny: 

 
V UC ji i

j

( )
∈

( ) = ∑nc
nc nc

1   ( ).( )  (8)

The constraint on diversity D(i)(nc) in the selected progeny is 
defined as follows:

 
D i i i( ) ( ) ( )( ) = −nc c 'Kc1   , (9)

where c(i) is defined like c in Eq. 1 but accounting for within-family 
selection by replacing the ante-selection parental contributions 
c1 and c2 by the post-selection parental contributions c1

i( )  and 
c i

2 
( )  (Eq. 7), respectively. Note that considering the absence of 

selection in progeny, i.e., i = 0, yields V(i = 0)(nc) being the mean of 
parent breeding values (Eq. 2) and D(i = 0)(nc) being the expected 
diversity in progeny before selection (Eq. 3), which is equivalent 
to optimal cross-selection as proposed by Gorjanc et al. (2018). 
The R code (R Core Team, 2017) to evaluate a set of crosses as 
presented in the UCPC-based optimal cross-selection is provided 
in Supplementary Material (File S3).

Multiobjective Optimization Framework 
In practice, one does not evaluate only one set of crosses but 
several ones in order to find the optimal set of crosses to reach 
a specified target that is a function of V(i)(nc) and D(i)(nc). We 
use the ε-constraint method (Haimes et al., 1971; Gorjanc and 
Hickey, 2018) to solve the multiobjective optimization problem: 

 

max 

   

nc
V

D He t

i

i

( )

( )

( )
( ) ≥ ( )

nc

ncwith ,

 (10)

where He(t), ∀t∈[0,t*] is the minimal diversity constraint at time 
t. A differential evolutionary (DE) algorithm was implemented 
to find the set of nc crosses that is a Pareto-optimal solution of 
Eq. 10 (Storn and Price, 1997; Kinghorn et al., 2009; Kinghorn, 
2011). DE is an optimization process inspired by natural 
selection. It started from an initial population of 7,170 random 
candidate solutions that are improved during 1,000 iterations 
through mutation (random changes in candidate solutions), 
recombination (exchanges between candidate solutions), and 
selection (every iteration a candidate solution was replaced by 
its mutated and recombined version if superior). The direct 
consideration of He(t) in the optimization allows to control the 
decrease in genetic diversity similarly to what was suggested 
for controlling inbreeding rate in animal breeding (Woolliams 
et al., 1998, Woolliams et al., 2015). The loss of diversity along 
time is controlled by the targeted diversity trajectory, i.e., He(t), 
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∀t∈[0,t*], where t*∈ℕ* is the time horizon when the genetic 
diversity He(t*) = He* should be reached. In this study, He(t) is 
defined as follows:

 

He t He t
t

He He t t

He

s

( ) = +






−( ) ∀ ∈0 0 0*
* *

*

,      ,    

,,    *∀ >








 t t

,

  
  (11)

where He0 is the initial diversity at t = 0, and s is a shape parameter 
with s = 1 for a linear trajectory. Figure 2 gives an illustration of 
alternative trajectories that can be defined using Eq. 11.

Cross-Selection Indices 
We considered different cross-selection approaches varying in 
the within-family selection intensity (i) in V(i)(nc), D(i)(nc) (Eq. 
10) and in the targeted diversity trajectory He(t) (Eq. 11). We 
first considered as a benchmark the absence of constraint D(i)

(nc), i.e., He(t) = 0, ∀t. We defined two alternative CSIs PM 
(parental mean) and UC, respectively considering V(i = 0)(nc) and 
V(i = 2.06)(nc), with i = 2.06 corresponding to the selection of the 
5% most performant progeny per family. PM is equivalent to 
cross the best candidates together without accounting for within 
cross variance, while UC is defined as crossing candidates based 
on the expected mean performance of the 5% selected fraction 
of progeny. Note that the absence of constraint on diversity also 
means the absence of constraint on parental contributions. To 
compare optimal cross-selection accounting or not for within-
family selection, we considered three linear diversity trajectories 
(Eq. 11) with He* = {0.01, 0.10, 0.15} that should be reached in 
t*  = 60 years. We defined the OCS methods, further referred to as 
OCS-He*, with V(i = 0)(nc) and D(i = 0)(nc). We defined the UCPC 
cross-selection methods, further referred to as UCPC-He*, with 

V(i = 2.06)(nc) and D(i = 2.06)(nc). The eight CSIs considered are 
summarized in Table 1.

Simulation 1: Interest of UCPC to Predict 
the Diversity in the Selected Fraction 
of Progeny
Simulation 1 aimed at evaluating the interest to account for the 
effect of selection on parental contributions, i.e., post-selection 
parental contributions (using UCPC), compared to ignore 
selection, i.e., ante-selection parental contributions (similarly 
as in OCS), to predict the genetic diversity (He) in the selected 
fraction of progeny of a set of 20 crosses (using Eqs. 9 and 3, 
respectively). We considered a within-family selection intensity 
corresponding to selecting the 5% most performant progeny. 
We used the same genotypes, genetic map, and known QTL 
effects as for the first simulation replicate of the PM CSI in the 
TRUE scenario (Table 1). We extracted the simulated genotypes 
of 240 DH candidate parents of the first post burn-in cohort 
(further referred as E1) and of 240 DH candidate parents of 
the 20th post burn-in cohort (further referred as E2). Due to 
the selection process, E1 showed a higher diversity and lower 
performance compared to E2. We randomly generated 300 sets 
of 20 two-way crosses: 100 sets of intrageneration E1 crosses (E1 
× E1), 100 sets of intrageneration E2 crosses (E2 × E2), and 100 
sets of intergeneration and intrageneration crosses randomly 
sampled (E1 × E2, E1 × E1, E2 × E2). We derived 80 DH 
progeny per cross and predicted the ante- and post-selection 
parental contributions to evaluate the post-selection genetic 
diversity (He) for each set of crosses. We estimated the empirical 
post-selection diversity for each set of crosses and compared 
predicted and empirical values considering the mean prediction 
error as the mean of the difference between predicted He and 
empirical post-selection He, and the prediction accuracy as the 
squared correlation between predicted He and empirical post-
selection He. 

Simulation 2: Comparison of Different Csis
We ran 10 independent simulation replicates of all eight CSI 
summarized in Table 1 for 60 years post burn-in considering 
known effects at the 1,000 QTLs (TRUE scenario). We also 
compared in 10 independent simulation replicates the CSI: PM, 

FIGURE 2 | Targeted diversity trajectories for three different shape 
parameters (s = 1, linear trajectory; s = 2, quadratic trajectory; and s = 0.5, 
inverse quadratic trajectory) for fixed initial diversity (He0 = 0.3) at generation 0 
and targeted diversity (He* = 0.01) at generation 60 (t* = 60). We considered 
in this study only linear trajectories (s = 1).

TABLE 1 | Summary of tested cross-selection indices (CSI) in TRUE scenario 
defined for a set of crosses nc depending on the within-family selection intensity i.

Cross-selection index
(CSI)

Gain term Diversity term 

PM V(i = 0)(nc) –
OCS-He* (3 different He*) V(i = 0)(nc) D(i = 0)(nc)
UC V(i = 2.06)(nc) –
UCPC-He* (3 different He*) V(i = 2.06)(nc) D(i = 2.06)(nc)

He* = {0.15; 0.10; 0.01} to be reached linearly (s = 1) at the end of simulation (t* = 60 years). 
V(i = 0)(nc) is the averaged parental mean (PM) of crosses in nc and V(i = 2.06)(nc) is the 
averaged usefulness criterion (UC) of crosses in nc considering a within‑family selection 
intensity of 2.06. D(i = 0)(nc) and D(i = 2.06)(nc) are the expected genetic diversity in the 
progeny before and after within‑family selection, respectively.
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UC, OCS-He* and UCPC-He* with He* = 0.01 considering 
estimated marker effect at the 2,000 SNPs (GS scenario) and PM 
based only on phenotypic evaluation (PS scenario). We followed 
several variables on the 80 DH progeny/family × 20 crosses realized 
every year. At each cohort T∈[0,60] with T = 0 co rresponding to 
the last burn-in cohort, we computed the additive genetic variance 
as the variance of the 1,600 DH progeny true breeding values 
(TBVs): σ A T TBV T2 ( ) = ( )( )var . We followed the mean genetic 
merit of all progeny μ(T) = mean(TBV(T)) and of the 10 most 
performant progeny μ10(T)= mean(max(TBV(T))) as a proxy of 
realized performance that could be achieved at a commercial level 
by releasing these lines as varieties. Then, we centered and scaled 
the two genetic merits to obtain realized cumulative genetic gains 
in units of genetic standard deviation at the end of the burn-in 
(T = 0), at the whole progeny level G T T A( ) ( ) ( ) / ( )  = −( )µ σµ 0 02  

and at the commercial level G T T A10 10
20 0( ) ( ) ( ) / ( )= −( )µ µ σ .

The interest of long-term genetic gain relies on the ability to 
breed at long term, which depends on the short-term economic 
success of breeding. Following this rationale, we penalized 
strategies that compromised the short-term commercial genetic 
gain using the discounted cumulative gain following Dekkers 
et al. (1995) and Chakraborty et al. (2002). In practice, we 
computed the weighted sum of the commercial gain value in 

each generation 
T

Tw G T
=

∑ ( )
1

60

10  , where the discounted weights 

wT=1/(1+ρ)T,∀T∈[1,60] were scaled to have 
T

Tw
=

∑ =
1

60

1   and ρ is 

the interest rate per generation. The discounted weights measure 
how much breeders will care about future genetic gain compared 
to today’s genetic gain, also referred as the “net present value” of 
long-term gain in finance. For ρ = 0, the weights were wT∈[1,60] = 
1/60; i.e., the same importance was given to all cohorts. We 
compared different values of ρ and reported results for ρ = 0, 
ρ  = 0.04 giving approximatively seven times more weight to 
short-term gain (after 10 years) compared to long-term gain 
(after 60 years) and ρ = 0.2 giving nearly no weight to gain after 
30 years of breeding.

We also measured the additive genic variance at 

QTLs σ βa j j j
j

m
T p T p T2 2

1
4 1( )   ( ) ( )= −( )

=∑ , the mean 

expected heterozygosity at QTLs (He, Nei, 1973) 

He T m p T p Tj j
j

m
( )   ( ) ( ) = −( )−

=∑1

1
2 1 , and the number of 

QTLs where the favorable allele was fixed or lost in the progeny, 
with pj(T) the allele frequency at QTL j∈[1,m] in the 1,600 DH 
progeny and βj the additive effect of the QTL j. In addition, we 
considered the ratio of additive genetic over genic variance 
σ σA a

2 2/ . hich provides an estimate of the amount of additive 
genic variance captured by negative covariances between QTLs, 
known as the Bulmer effect under directional selection (Bulmer, 
1971, Bulmer, 1980; Lynch and Walsh, 1999). All these variables 
were further averaged on the 10 simulation replicates, and the 
standard error divided by the square root of the number of 
replicates is reported.

RESULTS

Simulation 1
Compared to the usual approach that ignores the effect of 
selection on parental contributions, accounting for the effect of 
within-family selection increased the squared correlation (R²) 
between predicted genetic diversity and genetic diversity in the 
selected fraction of progeny (Figures 3A, B) for all three types 
of crosses. The squared correlation between predicted genetic 
diversity and post-selection genetic diversity for intrageneration 
crosses was only slightly increased (E1 × E1: from 0.811 to 0.822 
and E2 × E2: from 0.880 to 0.888), while the squared correlation 
for sets of crosses involving also intergeneration crosses showed 
a larger increase (from 0.937 to 0.987) (Figures 3A, B). Using 
post-selection parental contributions instead of ante-selection 
parental contributions also reduced the mean prediction error of 
He (predicted − empirical He) (Figures 4A, B) for all three types 
of crosses. The mean prediction error for intrageneration crosses 

FIGURE 3 | Squared correlations (R²) between predicted genetic diversity 
(He) and empirical He in the selected fraction of progeny of a set of 20 
biparental crosses in the TRUE scenario considering (A) ante-selection 
parental contributions or (B) post-selection parental contributions to predict 
He. In total, 100 sets of each three types of crosses (intrageneration: E1xE1 
and E2xE2 or randomly intragenerations and intergenerations): random 
(E1, E2) are shown, and the squared correlations between predicted and 
empirical post-selection He are given in the corresponding color.
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was only slightly reduced (E1 × E1: from 0.006 to 0.005 and E2 × 
E2: from 0.016 to 0.015), while the mean prediction error for 
sets involving intergeneration crosses was more reduced (from 
0.032 to 0.008) (Figures 4A, B). The mean prediction error of He 
was reduced but still positive when considering post-selection 
parental contributions, which means that the genetic diversity 
in the selected fraction of progeny remains overestimated. 
Note that the ante-selection contributions predicted well the 
empirical genetic diversity before selection for all three types of 
crosses (mean prediction error = 0.000 and R² > 0.992, results 
not shown).

Simulation 2 
Interest of UC Over PM
Considering known QTL effects (TRUE scenario), we observed 
that UC yielded significantly higher short- and long-term 

genetic gain at commercial level (G10) than PM (on average, 
G10 = 9.316 [±0.208] compared to 8.338 [±0.195] 10 years post 
burn-in and G10 = 18.293 [±0.516] compared to 15.744 [±0.449] 
60 years post burn-in; Figures 5B, C; Supplementary Material 
[Table S1 File S4]). When considering the whole progeny 
mean performance (G), PM nonsignificantly outperformed UC 
for the first 5 years (on average, G = 4.647 [±0.174] compared 
to 4.633 [±0.138] 5 years post burn-in), and after 5 years, UC 
significantly outperformed PM (on average, G = 7.620 [±0.158] 
compared to 7.197 [±0.199] 10 years post burn-in) [Figure 5A, 
Supplementary Material (Table S1 File S4)]. UC showed higher 
genic ( σa

2 ) and genetic ( σ A
2 ) additive variances than PM (Figures 

6A, B), but both yielded a genic and genetic variance near zero 
after 60 years of breeding. The genetic over genic variance ratio 
( σ σA a

2 2/ ) was also higher for UC compared to PM (Figure 6C). 
The evolution of genetic diversity (He) along years followed the 
same tendency as the genic variance (Figure 7A, Figure 6A). UC 
fixed more favorable alleles at QTLs after 60 years (Figure 7B) and 
lost less favorable alleles at QTLs than PM in all 10 simulation 
replicates, with an average of 243.1 (±4.547) QTLs where the 
favorable allele was lost compared to 274.9 (±4.283) QTLs for PM 
[Figure 7C; Supplementary Material (Table S1 File S4)].

Targeted Diversity Trajectory
Considering known QTL effects (TRUE scenario), the tested 
optimal cross-selection methods OCS-He* and UCPC-He* 
showed lower short-term genetic gain at the whole progeny level 
(G; Figure 5A) and at the commercial level (G10; Figures 5B, C) 
but significantly higher long-term genetic gains than UC at 
60 years Supplementary Material (Table S1 File S4). The lower 
the targeted diversity He*, the higher the short-term and midterm 
genetic gain at both whole progeny (G; Figure 5A) and commercial 
(G10; Figures 5B, C) levels. The higher the targeted diversity He*, 
the higher the long-term genetic gain except for OCS-He* = 0.10 
and OCS-He* = 0.01 that performed similarly after 60 years (on 
average, G10 = 21.925 [±0.532] and 21.892 [±0.525]; Figure 5B, 
Supplementary Material [Table S1 File S4]). The highest targeted 
diversity (He* = 0.15) showed a strong penalty at the short term 
and midterm, while the intermediate targeted diversity (He* = 0.10) 
showed a lower penalty at the short term and midterm compared to 
the lowest targeted diversity (He* = 0.01) (Figures 5A–C). 

For all targeted diversities and all simulation replicates, 
accounting for within-family selection (UCPC-He*) yielded 
a significantly higher short-term commercial genetic gain 
(G10) after 5 and 10 years compared to OCS-He* [Figures 5B, 
C; Supplementary Material (Table S1 File S4)]. Long-term 
commercial genetic gain (G10) after 60 years was also higher for 
UCPC-He* than for OCS-He* with He* = 0.01 in the 10 simulation 
replicates (on average, G10 =  22.869 [±0.641] compared to 21.892 
[±0.525]) and less importantly with He* = 0.10 in nine out of 10 
replicates (on average, G10= 22.474 [±0.645] compared to 21.925 
[±0.532]). However, for He*  = 0.15, UCPC-He* outperformed 
OCS-He* at the long term in only three out of 10 replicates (on 
average, G10= 20.665 [±0.573] compared to 20.938 [±0.553]) 
[Figures 5B, C; Supplementary Material (Table S1 File S4)]. The 
discounted cumulative gain giving more weight to short-term 
than to long-term gain (ρ = 0.04) was higher for UCPC-He* than 

FIGURE 4 | Mean prediction error (predicted − empirical) of predicting 
the genetic diversity (He) in the selected fraction of progeny of a set of 20 
biparental crosses in the TRUE scenario depending on the mean difference 
of performance between parents (Delta true breeding value TBV). Mean 
prediction error is measured as the predicted He − empirical post-selection 
He, considering (A) ante-selection parental contributions or (B) post-
selection parental contributions to predict He. In total, 100 sets of each three 
types of crosses (intrageneration: E1 × E1 and E2 × E2 or randomly intra and 
inter-generations): random (E1, E2) are shown, and the averaged errors are 
given in the corresponding color.
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FIGURE 5 | Genetic gains for different cross-selection indices in the TRUE scenario (PM: parental mean, UC: usefulness criterion, OCS-He*: optimal cross-selection 
and UCPC-He*: UCPC-based optimal cross-selection) according to the generations. (A) Genetic gain (G) measured as the mean of the whole progeny, (B) commercial 
genetic gain (G10) measured as the mean of the 10 best progeny, and (C) G10 relative to selection based on parental mean (PM).

FIGURE 6 | Genetic and genic additive variances for different cross-selection indices in the TRUE scenario (PM: parental mean, UC: usefulness criterion, OCS-He*: 
optimal cross-selection, and UCPC-He*: UCPC-based optimal cross-selection) according to the generations. (A) Additive genic variance ( σa

2 ) measured on the whole 
progeny, (B) additive genetic variance ( σ A

2 ) measured on the whole progeny, and (C) ratio of genetic over genic variance ( σ A a
2 2/ σ ) reflecting the Bulmer effect.

FIGURE 7 | Genetic diversity at QTLs for different cross-selection indices in the TRUE scenario (PM: parental mean, UC: usefulness criterion, OCS-He*: optimal 
cross-selection, and UCPC-He*: UCPC-based optimal cross-selection) according to the generations. (A) Genetic diversity at QTLs in the whole progeny (He), 
(B) number of QTLs where the favorable allele is fixed in the whole progeny, and (C) number of QTLs where the favorable allele is lost in the whole progeny.
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TABLE 2 | Discounted cumulative gain in TRUE scenario for three different parameters ρ giving more weight to short-term gain in different levels and assuming known 
QTL effects (TRUE scenario).

Cross-selection index (CSI) Discounted cumulative gain

ρ = 0 ρ = 0.04 ρ = 0.2

UCPC - He* = 0.01 15.949 (±0.398) 12.321 (±0.284) 6.682 (±0.143)
UCPC - He* = 0.10 15.174 (±0.386) 11.788 (±0.280) 6.593 (±0.158)
UC 14.408 (±0.355) 11.689 (±0.266) 6.822 (±0.145)
OCS - He* = 0.01 15.148 (±0.346) 11.675 (±0.262) 6.360 (±0.149)
OCS - He* = 0.10 14.630 (±0.349) 11.278 (±0.264) 6.230 (±0.149)
UCPC - He* = 0.15 14.205 (±0.334) 11.176 (±0.250) 6.454 (±0.149)
OCS - He* = 0.15 14.056 (±0.337) 10.884 (±0.250) 6.103 (±0.155)
PM 12.609 (±0.280) 10.392 (±0.217) 6.345 (±0.155)

Mean discounted cumulative gain with ρ = 0 (constant weight along years), ρ = 0.04 (decreasing weight along years) and ρ = 0.2 (nearly null weights after 30 years) on the ten 
independent replicates. CSI are ordered in decreasing discounted cumulative gain with ρ = 0.04.

OCS-He* in all simulation replicates for He* = 0.01 (on average, 
12.321 [±0.284] compared to 11.675 [±0.262]), in all simulation 
replicates for He* =  0.10 (on average, 11.788 [±0.280] compared 
to 11.278 [±0.264]) and in nine out of 10 simulation replicates 
for He* = 0.15 (on average, 11.176 [±0.250] compared to 10.884 
[±0.250]) (Table 2). Discounted cumulative gain giving the same 
weight to short- and long-term gain (ρ = 0) was also higher for 
UCPC-He* compared to OCS-He* (Table 2). When giving almost 
no weight to long-term gain after 30 years (ρ = 0.2), the best CSI 
appeared to be UC [on average, 6.822 (±0.145)] followed by the 
UCPC-He* with the lowest constraint on diversity (i.e., He* =  
0.01) [on average, 6.682 (±0.143)].

For a given He*, the additive genic variance ( σa
2 ; Figure 6A) 

and genetic diversity at QTLs (He; Figure 7A) were constrained by 
the targeted diversity trajectory for both UCPC-He* or OCS-He*. 
However, UCPC-He* and OCS-He* behaved differently for genetic 
variance ( σ A

2 ; Figure 6A) resulting in differences for the ratio genetic 
over genic variances ( σ σA a

2 2/ ; Figure 6C). UCPC-He* yielded 
a higher ratio than OCS-He* (Figure 6C) independently of the 
targeted diversity He* at short term and midterm. For low targeted 
diversity (He* = 0.01), UCPC-He* showed in all 10 replicates a lower 
number of QTLs where the favorable allele was lost compared to 
OCS-He* (Figure 7C; Supplementary Material [Table S1 File S4], 
on average 173.6 [±4.031] QTLs-194.3 [±2.633] QTLs). 

GS Scenario With Estimated Marker Effects
Considering estimated marker effects (GS scenario) yielded lower 
genetic gain than when considering known marker effects [Figures 
5–8 and Supplementary Material (Tables S1 and S2 File S4)]. 
However, the short- and long-term superiority of the UC over 
the CSI ignoring within cross variance (PM) was consistent with 
estimated effects (on average, G10 = 8.338 [±0.237] compared to 7.713 
[±0.256] 10 years post burn-in and G10 = 15.367 [±0.358] compared 
to 13.287 [±0.436] 60 years post burn-in; Figure 8, Supplementary 
Material [Table S2 File S4]). Similarly, the long-term superiority 
of UCPC-He* = 0.01 over UC was conserved in all 10 replicates 
(on average, G10 = 16.398 [±0.426] compared to 14.438 [±0.320] 
40 years post burn-in and G10 = 18.161 [±0.470] compared to 15.367 
[±0.358] 60 years post burn-in; Figure 8, Supplementary Material 
[Table S2 File S4]). Before the 40th year, UC and UCPC-He* = 0.01 
performed similarly Supplementary Material (Table S2 File S4). 

In GS scenario, UCPC-He* = 0.01 outperformed OCS-He* = 0.01 
during the first 20 years in all 10 replicates (on average, G10 = 8.162 
[±0.208] compared to 7.734 [±0.237] 10 years post burn-in and 
G10 = 11.881 [±0.272] compared to 11.313 [±0.323] 20 years post 
burn-in; Figure 8, Supplementary Material [Table S2 File S4]). 
After 20 years, UCPC-He* = 0.01 outperformed OCS-He* = 0.01 
in eight out of 10 replicates (on average, G10  = 16.398 [±0.426] 
compared to 15.850 [±0.384] 40 years post burn-in and G10 = 18.161 
[±0.470] compared to 17.528 [±0.438] 60 years post burn-in; Figure 
8, Supplementary Material [Table S2 File S4]). Observations on 
the genic variance ( σ a

2 ) and genetic variance ( σ A
2 ) were consistent 

as well. We also observed that UCPC-He* = 0.01 yielded a lower 
number of QTLs where the favorable allele was lost (on average, 
218.8 [±3.852]) compared to OCS-He* = 0.01 (on average, 234.5 
[±3.908]) (Figure 8). PM not considering the marker information, 
i.e., phenotypic selection (PS scenario), yielded lower short- and 
long-term genetic gains than PM considering marker information 
(GS scenario) (on average, G10 = 6.402 [±0.166] compared to 7.713 
[±0.256] 10 years post burn-in and G10 = 10.810 [±0.329] compared 
to 13.287 [±0.436) 60 years post burn-in; Figure 8, Supplementary 
Material [Table S2 File S4]).

DISCUSSION

Predicting the Next-Generation Diversity
Accounting for within-family selection increased the squared 
correlation and reduced the mean error of post-selection genetic 
diversity prediction (Figures 3, 4). The gain in squared correlation 
(Figure 3) and the reduction in mean error (Figure 4), were more 
important for parents showing differences in performance. This 
result is consistent with observations in Allier et al. (2019b), where 
crosses between two phenotypically distant parents yielded post-
selection parental contributions that differ from their expectation 
before selection (i.e., 0.5). The mean prediction error was always 
positive, which can be explained by the use in Eq. 9 of genome-wide 
parental contributions to progeny in lieu of parental contributions 
at individual QTLs to predict allelic frequency changes due to 
selection Supplementary Material (File S2). As a result, the 
predicted extreme frequencies at QTLs in the progeny are shrunk 
toward the mean frequency, leading to an overestimation of the 
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expected heterozygosity (He) (results not shown). Local changes 
in allele frequency under artificial selection could be predicted 
following Falconer and Mackay (1996) and Gallais et al. (2007), but 
this approach would assume linkage equilibrium between QTLs, 
which is a strong assumption that does not correspond to the highly 
polygenic trait that we simulated.

Effect of UC on Short- and Long-Term 
Recurrent Selection
In a first approach, we considered no constraint on diversity 
during cross-selection and compared cross-selection maximizing 
the UC or maximizing the PM in the TRUE scenario, assuming 
known QTL effects and positions. The UC yielded higher short-
term genetic gain at commercial level (G10; Figures 5B, C). This 
was expected because UC predicts the mean performance of 
the best fraction of progeny. When considering the genetic gain 

at the mean progeny level (G; Figure 5A), UC needed 5 years 
to outperform PM. These results underline that UC maximizes 
the mean performance of the next generation issued from 
the intercross of selected progeny, sometimes at the expense 
of the current generation progeny mean performance. This 
observation is consistent with the fact that candidate parents of 
the sixth cohort came all from the three first cohorts generated 
considering UC and thus the sixth cohort took full advantage 
of the use of UC (Figure 1A). This tendency was also observed 
in simulations by Müller et al. (2018) considering the EMBV 
approach, akin to the UC for normally distributed additive 
traits. The UC also showed a higher long-term genetic gain at 
both commercial (G10) and whole progeny level (G) compared 
to intercrossing the best candidate parents (PM). This long-term 
gain was driven by a higher additive genic variance at QTLs 
( σ a

2 ; Figure 6A) and a lower genomic covariance between 
QTLs ( σ σA a

2 2/ ; Figure 6C) resulting in a higher additive genetic 

FIGURE 8 | Evolution of different variables for different cross-selection indices according to the generations in the GS scenario (PM, parental mean; UC, usefulness 
criterion; OCS-He*, optimal cross-selection; and UCPC-He*, UCPC-based optimal cross-selection for He* = 0.01) and in the PS scenario (PM, parental mean). 
(A) Genetic gain at whole progeny level (G), (B) genetic gain at commercial level (G10), and (C) G10 relatively to PM (GS), genetic gain is measured on true breeding 
values. (D) Genic variance at QTLs ( σ a

2 ). (E) genetic variance of true breeding values ( σ A
2 ) and (F) ratio of genic over genetic variance ( σ σA a

2 2/ ). (G) genetic 
diversity at QTLs and number of QTLs where the favorable allele was fixed (H) and lost (I).
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variance in UC compared to PM ( σ A
2 ; Figure 6B). Note that 

with lower σ a
2  the ratio σ σA a

2 2/  becomes less interpretable in 
the long-term (Figure 6C). UC also better managed the fixation 
(Figure 7B) or the maintenance (Figure 7C) of the favorable allele 
at QTLs compared to PM. These results highlight the interest of 
considering within cross variance in cross-selection for improving 
long-term genetic gain as observed in Müller et al. (2018).

Accounting for Within-Family Variance in 
Optimal Cross-Selection
Assuming known marker effects, we observed that considering 
a constraint on diversity, i.e., optimal cross-selection, always 
maximized the long-term genetic gain, at the cost of a variable 
penalty for short-term gain, compared to no constraint on 
diversity (e.g., UC). We further compared the OCS (Gorjanc 
et al., 2018) with the UCPC-based optimal cross-selection 
that accounts for the fact that only a selected fraction of each 
family contributes to the next generation. In the optimization 
framework considered, we compared the ability of UCPC 
(referred to as UCPC-He*) and OCS (referred to as OCS-He*) 
to convert a determined loss of diversity into genetic gain. For 
a given diversity trajectory, UCPC-He* yielded higher short-
term commercial gain than OCS-He*. Both, OCS-He* and 
UCPC-He* yielded similar additive genic variance ( σ a

2 ), but we 
observed differences in terms of the ratio σ σA a

2 2/  . As expected 
under directional selection, the ratio σ σA a

2 2/  was positive 
and inferior to one, revealing a negative genomic covariance 
between QTLs (Bulmer, 1971). UCPC-He* yielded a higher 
ratio, i.e., lower repulsion, and thus a higher additive genetic 
variance ( σ A

2 ) than OCS-He* for a similar He*. This explains 
the higher long-term genetic gain at commercial and whole 
progeny levels observed for UCPC-He*. This result supports 
the idea, suggested in Allier et al. (2019a), that accounting for 
complementarity between parents when defining crossing plans 
is an efficient way to favor recombination events to reveal part 
of the additive genic variance hidden by repulsion between 
QTLs. For low targeted diversity (He* = 0.01), UCPC-He* 
also appeared to better manage the rare favorable alleles at 
QTLs than OCS-He*. These results highlighted the interest of 
UCPC-based optimal cross-selection to convert the genetic 
diversity into genetic gain by maintaining more rare favorable 
alleles and limiting repulsion between QTLs. In case of higher 
targeted diversity (He* = 0.15), the loss of diversity was likely 
not sufficient to fully express the additional interest of UCPC 
compared to OCS to convert diversity into genetic gain. In 
this case, UCPC-He* and OCS-He* performed similarly. 
Accounting for within cross variance to measure the expected 
gain of a cross in optimal cross-selection was already suggested 
in Shepherd and Kinghorn (1998). More recently, Akdemir and 
Isidro-Sánchez (2016) and Akdemir et al. (2018) accounted for 
within cross variance considering linkage equilibrium between 
QTLs. Akdemir and Isidro-Sánchez (2016) also observed that 
accounting for within cross variance during cross-selection 
yielded higher long-term mean performance with a penalty at 
short-term mean progeny performance.

Short-term economic returns of a breeding program condition 
the resources invested to maintain/increase response to selection 
and therefore long-term competitive capacity. Hence, to fully take 
advantage of their benefit at long term, it is necessary to make 
sure that tested breeding strategies do not compromise too much 
the short-term commercial genetic gain. For this reason, we 
considered the discounted cumulative commercial gain following 
Dekkers et al. (1995) and Chakraborty et al. (2002) as a summary 
variable to evaluate CSI while giving more weight to short-term 
gain in different levels. UCPC-He* outperformed OCS-He* 
for a given He* either considering uniform weights (ρ  = 0) or 
giving approximately seven times more weight to short-term gain 
compared to long-term gain (ρ = 0.04). This was also true when 
focusing only on short-term gain (ρ = 0.2), but in this case the best 
model was UC without accounting for diversity (Table 2).

Practical Implementations in Breeding
UCPC With Estimated Marker Effects
In simulations, we first considered 1,000 QTLs with known 
additive effects sampled from a centered normal distribution. 
For a representative subset of CSIs (PM, UC, UCPC-He*, and 
OCS-He* with He* = 0.01; Figure 8), we considered estimated 
effects at 2,000 SNPs. The main conclusions obtained with 
known and estimated marker effects were consistent, supporting 
the practical interest of UCPC-based optimal cross-selection 
(Figure  8). The difference was that the superiority of UCPC-
based optimal cross-selection over optimal cross-selection not 
accounting for within-family selection in GS scenario was not 
significant after 60 years Supplementary Material (Table S2 File 
S4). With estimated marker effects instead of known QTL effects, 
the predicted progeny variance (σ2) corresponded to the variance 
of the predicted breeding values, which are shrunk compared to 
TBVs, depending on the model accuracy (referred to as variance 
of posterior mean [VPM] in Lehermeier et al.). An alternative 
would be to consider the marker effects estimated at each sample 
of a Monte Carlo Markov Chain process, e.g., using a Bayesian 
ridge regression, to obtain an improved estimate of the additive 
genetic variance (referred to as posterior mean variance [PMV] 
in Lehermeier et al., 2017a; Lehermeier et al., 2017b). 

In practice, QTL effects are unknown, so the selection of 
progeny cannot be based on TBVs, and thus the selection 
accuracy (h) is smaller than one. In our simulation study 
assuming unknown QTLs (GS scenario), progeny were selected 
based on estimated breeding values taking into account genotypic 
information as well as replicated phenotypic information, 
which led to a high selection accuracy, as it can be encountered 
in breeding. Thus, the assumption h = 1 used in Eq. 6 for GS 
scenario is reasonable. In order to shorten the cycle length of the 
breeding scheme, selection of progeny can be based on predicted 
GEBVs of genotyped but not phenotyped progeny. In such a 
case, the selection accuracy (h) will be considerably reduced. In 
such a situation, one can advocate to use PMV instead of VPM 
in the computation of UCPC and to take into account the proper 
selection accuracy (h) within crosses adapted to the selection 
scheme. When selection is based on predicted values, i.e., 
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genotyped but not phenotyped progeny, the shrunk predictor 
VPM should be a good approximation of (hσ)2.

UCPC-Based Optimal Cross-Selection 
In this study, we assumed fully homozygous parents and two-way 
crosses. However, neither the optimal cross-selection nor UCPC-
based optimal cross-selection is restricted to homozygote parents. 
Considering heterozygote parents in optimal cross-selection is 
straightforward. Following the extension of UCPC to four-way 
crosses (Allier et al., 2019b), UCPC optimal cross-selection can 
be used for phased heterozygous individuals, as it is commonly 
the case in perennial plants or animal breeding. Animal breeders 
are interested in Mendelian sampling variance for individual 
and cross-selection (Segelke et al., 2014; Bonk et al., 2016; Bijma 
et al., 2018) and might be interested to incorporate it into OCS 
strategies. We considered an inbred line breeding program, but 
the extension to hybrid breeding is of interest for species such 
as maize. The use of testcross effects, i.e., estimated on hybrids 
obtained by crossing candidate lines with lines from the opposite 
heterotic pool, in UCPC-based optimal cross-selection is 
straightforward, and so the UCPC-based optimal cross-selection 
can be used to improve each heterotic pool individually. In 
order to jointly improve two pools, further investigations are 
required to include dominance effects in UCPC-based optimal 
cross-selection. In addition, this would imply that crossing plans 
in both pools are jointly optimized to manage genetic diversity 
within pools and complementarity between pools.

We considered a within-family selection intensity corresponding 
to the selection of the 5% most performant progeny as candidates 
for the next generation. Equal selection intensities were assumed 
for all families, but in practice due to experimental constraints or 
optimized resource allocation (e.g., generate more progeny for 
crosses showing high progeny variance but low progeny mean), 
within-family selection intensity can be variable. Different within-
family selection intensities (see Eqs. 8 and 9) can be considered in 
UCPC-based optimal cross-selection, but an optimization regarding 
resource allocation of the number of crosses and the selection 
intensities within crosses calls for further investigations. However, in 
marker-assisted selection schemes based on QTL detection results 
(Bernardo et al., 2006), an optimization of selection intensities per 
family was observed to be only of moderate interest.

Proposed UCPC-based optimal cross-selection was compared 
to OCS in a targeted diversity trajectory context. We considered 
a linear trajectory, but any genetic diversity trajectory can be 
considered (e.g., Figure 2). The optimal diversity trajectory cannot 
be easily determined and depends on breeding objectives and data 
considered. Optimal contribution selection in animal breeding 
considers a similar ϵ-constraint optimization with a targeted 
inbreeding trajectory determined by a fixed annual rate of inbreeding 
(e.g., 1% advocated by the Food and Agriculture Organization 
(FAO), Woolliams et al., 1998). Woolliams et al. (2015) argued that 
the optimal inbreeding rate is also not straightforward to define. 
An alternative formulation of the optimization problem to avoid 
the use of a fixed constraint is to consider a weighted index (1-α)
V(nc)+αD(nc), where α is the weight balancing the expected gain 
V(nc) and constraint D(nc) (De Beukelaer et al., 2017). However, 

the appropriate choice of α is difficult and is not explicit either in 
terms of expected diversity or expected gain.

Introgression of Diversity and Anticipation of a 
Changing Breeding Context
We considered candidate parents coming from the three 
last overlapping cohorts (Figure 1) in order to reduce the 
number of candidate crosses during the progeny covariances 
prediction (UCPC) and the optimization process. This yielded 
elite candidate parents that were not directly related (no 
parent–progeny) and that did not show strong differences in 
performances, which is standard in a commercial plant breeding 
program focusing on yield improvement. However, when the 
genetic diversity in a program is so low that long-term genetic 
gain is compromised, external genetic resources need to be 
introgressed by crosses with internal elite parents. As suggested 
by results of simulation 1, we conjecture that the advantage of 
UCPC-based optimal cross-selection over OCS increases in 
such a context where heterogeneous, i.e., phenotypically distant, 
genetic materials are crossed. This requires investigations that 
we hope to address in subsequent research. 

Our simulations also assumed fixed environments and 
a single targeted trait over 60 years. However, in a climate 
change context and with rapidly evolving societal demands for 
sustainable agricultural practices, environments and breeders 
objectives will likely change over time. In a multitrait context, the 
multiobjective optimization framework proposed in Akdemir et 
al. (2018) can be adapted to UCPC-based optimal cross-selection. 
The upcoming but yet unknown breeding objectives make the 
necessity to manage genetic diversity even more important than 
highlighted in this study.
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Genome–environment associations (GEAs) are a powerful strategy for the study of adaptive 
traits in wild plant populations, yet they still lack behind in the use of modern statistical methods 
as the ones suggested for genome-wide association studies (GWASs). In order to bridge 
this gap, we couple GEA with last-generation GWAS algorithms in common bean to identify 
novel sources of heat tolerance across naturally heterogeneous ecosystems. Common bean 
(Phaseolus vulgaris L.) is the most important legume for human consumption, and breeding 
it for resistance to heat stress is key because annual increases in atmospheric temperature 
are causing decreases in yield of up to 9% for every 1°C. A total of 78 geo-referenced wild 
accessions, spanning the two gene pools of common bean, were genotyped by sequencing 
(GBS), leading to the discovery of 23,373 single-nucleotide polymorphism (SNP) markers. 
Three indices of heat stress were developed for each accession and inputted in last-
generation algorithms (i.e. SUPER, FarmCPU, and BLINK) to identify putative associated loci 
with the environmental heterogeneity in heat stress. Best-fit models revealed 120 significantly 
associated alleles distributed in all 11 common bean chromosomes. Flanking candidate 
genes were identified using 1-kb genomic windows centered in each associated SNP marker. 
Some of these genes were directly linked to heat-responsive pathways, such as the activation 
of heat shock proteins (MED23, MED25, HSFB1, HSP40, and HSP20). We also found protein 
domains related to thermostability in plants such as S1 and Zinc finger A20 and AN1. Other 
genes were related to biological processes that may correlate with plant tolerance to high 
temperature, such as time to flowering (MED25, MBD9, and PAP), germination and seedling 
development (Pkinase_Tyr, Ankyrin-B, and Family Glicosil-hydrolase), cell wall stability (GAE6), 
and signaling pathway of abiotic stress via abscisic acid (histone-like transcription factors 
NFYB and phospholipase C) and auxin (Auxin response factor and AUX_IAA). This work 
offers putative associated loci for marker-assisted and genomic selection for heat tolerance in 
common bean. It also demonstrates that it is feasible to identify genome-wide environmental 
associations with modest sample sizes by using a combination of various carefully chosen 
environmental indices and last-generation GWAS algorithms.

Keywords: heat stress, local adaptation, genome-wide association studies (GWAS), environmental indices, 
SUPER, FarmCPU, BLINK
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INTRODUCTION

Exploring the genetic basis of adaptive traits in wild plant populations 
has been accelerated by modern genomic strategies such as genome–
phenotype [genome-wide association study (GWAS)] and genome–
environment association (GEA) studies (Frank et al., 2016). GEA 
commonly associates single-nucleotide polymorphisms (SNPs) and 
environmental variables based on the accessions’ sampling site in 
order to infer adaptation to abiotic stress. Genotyping by sequencing 
(GBS) has in turn been revealed as one of the best methods for 
GEA due to its potential to discover a considerable amount of SNP 
markers throughout the genome. For instance, coupling GEA and 
GBS recently allowed identifying adaptive variation for drought 
tolerance (Cortés and Blair, 2018). However, despite the fact that 
the GEA framework uses the latest genomic tools available, it 
has not yet taken full advantage of newer and more promising 
statistical approaches to detect genomic signatures of environmental 
adaptation while controlling for confounding effects.

GEA studies often rely on GWAS models, which typically 
couple mixed linear models (MLMs) (Zhang et al., 2010) with 
kinship and population structure analyses in order to correct 
for false positives. Yet new GWAS algorithms have recently been 
developed to gain statistical power to detect associated markers, 
increase efficiency, and decrease computational complexity 
(Wang et al., 2014b). The strategy to reconstruct the kinship 
matrix is the most relevant difference between recent methods of 
individual marker tests such as Factored Spectrally Transformed 
Linear Mixed Model (FaST-LMM-Select), Compressed MLM 
(CMLM) (Li et al., 2014), and Settlement of MLM Under 
Progressively Exclusive Relationship (SUPER), the latter 
being the most statistically powerful (Wang et al., 2014b; Liu 
et al., 2016). SUPER drastically reduces the amount of genetic 
markers used to infer kinship relationships by dividing the SNP 
dataset into bins (Wang et al., 2014b). Most influential bins, 
known as pseudo-nucleotides of quantitative rank underlying 
the phenotype (PseudoQTNs), are then optimized in size and 
number using maximum likelihood and linkage disequilibrium 
(LD). On the contrary, FaST-LMM-Select chooses SNPs to infer 
kinship relationships based only on a physical distance criterion, 
while CMLM uses kinship estimates between pairs of groups 
clustered based on their kinship value in order to reduce the size 
of the fixed effect and increase the computational power. Tests 
of multiple loci such as the multi-locus mixed model (MLMM) 
(Segura et al., 2012) have been developed, too. Both strategies, 
individual markers (CMLM, FaST-LMM-Select, and SUPER) 
and multiple loci (MLMM) tests, effectively control the false-
positive rate. Yet these algorithms have a higher rate of false 
negatives after the partition imposed on the SNP dataset to 
recreate the kinship matrix.

Alternative methods such as Fixed and random model 
Circulating Probability Unification (FarmCPU) (Liu et al., 
2016) and Bayesian-information and Linkage-disequilibrium 
Iteratively Nested Keyway (BLINK) (Huang et al., 2019) have 
been developed to control both the false-positive rate and 
the confounding variable that disfavors the real associations. 
FarmCPU and BLINK divide a typical MLMM into two parts that 

are used iteratively, a fixed effect model (FEM) and a random effect 
model (REM). BLINK replaces restricted maximum likelihood 
(REML) in FarmCPU’s REM with Bayesian information criteria 
(BIC) in a FEM. Additionally, BLINK uses LD information to 
replace the bin method. SUPER, FarmCPU, and BLINK can 
therefore be considered last-generation GWAS models. These 
powerful algorithms, already tested for conventional GWAS, are 
promising to identify adaptive loci under a GEA framework.

In turn, the potential of GEA studies to identify new sources 
of tolerance to abiotic stresses is undeniable (Cortés and Blair, 
2018) and could aid the study of the genetic adaptation to 
adverse conditions that have not previously been approached 
from a GEA perspective, which is the case of heat stress (HS). 
Annual increases in atmospheric average temperature have been 
responsible for yield losses of 9% for every 1°C across the vast 
majority of agricultural species. This situation is likely to worsen 
as by 2100 global average temperature is estimated to be 3°C 
above the present value (Abrol and Ingram, 1996), jeopardizing 
worldwide yields.

Common bean (Phaseolus vulgaris L.), a not perennial (Gentry, 
1969), is one of the most produced legumes with ~27 million tons 
worldwide, China and America being the main producers (FAO, 
2018), yet tolerance to HS is generally low in this species. Beans 
are nutritionally rich due to their high content of proteins, folic 
acid, iron, dietary fiber, and complex carbohydrates and constitute 
a main alimentary supply for communities in Latin America, 
Africa, and Asia (Sgarbieri and Whitaker, 1982; Pachico, 1993). 
Since these regions are also highly vulnerable to HS, increased 
atmospheric average temperature would impact not only yields 
in small-scale farms but also human nutrient intake via common 
bean (Jones, 1999). Most common bean varieties used by farmers 
are better adapted to regions of medium to high elevations or 
to sowing times during the colder seasons in tropical areas 
(Porch and Jahn, 2001). Some authors have reported optimal 
temperatures between 18°C and 20°C (Wantanbe, 1953; Qi et al., 
1998; Porch, 2006; Rosas et al., 2000) for the cultivation of this 
legume. The reproductive phase is the most sensitive phenological 
stage to HS, with temperatures above 28°C to 32°C (Gonçalves 
et al., 1997; Caramori et al., 2001; Silva et al., 2007; Rainey and 
Griffiths, 2019) decreasing the number of pods and seeds and 
therefore reducing yield (Weaver and Timm, 1988; Monterroso 
and Wien, 2019). In order to compensate for yield losses due to 
low tolerance of cultivated common bean to high temperatures, a 
prompt characterization of the genetic sources of HS tolerance in 
wild populations is needed.

Nowadays, there is a lack of knowledge on how the most 
recent GWAS models work under a GEA paradigm. Additionally, 
there is an urgent need to identify loci linked to HS tolerance 
in wild common bean germplasm collections, which would aid 
the development of common bean varieties resistant to high 
temperatures. Therefore, for this study, we set the following 
objectives: (1) synthetize environmental variables in order 
to estimate HS tolerance in wild common bean germplasm 
collections, which would allow identifying tolerant accessions; 
(2)  explore the utility of the most promising modern GWAS 
models (CMLM, SUPER, FarmCPU, and BLINK) for GEA 
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studies; and (3) implement GEA models with last-generation 
GWAS algorithms in order to capture adaptive genetic variation 
to HS, candidate to be integrated into common bean breeding 
programs. This first exploration of the environmental adaptation 
of wild common bean to HS will ultimately offer putative 
associated loci for marker-assisted and genomic selection 
strategies by using a combination of various well-chosen 
environmental indices and last-generation GWAS algorithms, 
while testing the utility of the latter under a GEA paradigm.

MATERIALS AND METHODS

Plant Material and GBS
The present work was developed with a total of 78 accessions 
of wild common bean. All genotypes were transferred by the 
Genetic Resources Unit of the International Center for Tropical 
Agriculture (CIAT) and are conserved under the genetic resources 
treaty of the Food and Agriculture Organization of the United 
Nations (FAO collection). The accessions are a representative 
sample of groups of genes and races, the selection being based on 
core collections for wild bean samples according to Tohme et al. 
(1996). Despite adaptation to environmental stress conditions 
evolved differently in the two gene pools of common bean 
(Soltani et al., 2017; Soltani et al., 2018; Oladzad et al., 2019), we 
carried out the GEA models including both gene pools in order 
to maximize the statistical power to detect significantly associated 
markers by increasing (1) the number of wild accessions and 
(2) the environmental contrast (Mesoamerican environments of 
wild common bean typically experience more heat events than 
Andean environments, Figure S8). Georeferencing was provided 
by the Genetic Resources Unit at CIAT (Table S1).1

Processing of plant material, genomic DNA extraction, GBS 
library preparation using the Apek1 enzyme (Cortés and Blair, 
2018), and sequencing and bioinformatic processing for the 78 
accessions were carried out as described by Cortés and Blair 
(2018), following Elshire et al. (2011) and Bradbury et al. (2007) 
and using as reference genome the common bean assembly 
(Schmutz et al., 2014). SNP markers with missing data that 
exceeded 20% or frequency of the minor allele (MAF) that did 
not exceed 5% were excluded from the GEA dataset in the 78 
genotyped accessions in order to finally obtain a matrix of 23,373 
SNP markers with an average depth of 13.6 X.

Compilation of Bioclimatic Data 
and HS Indices
In order to estimate heat tolerance for wild common bean, 
we extracted from the WorldClim2 database, at a 2.5-min 
resolution, environmental variables using the georeferencing of 
each accession. A total of six bioclimatic variables, putatively 
related with HS, were considered, as follows: BIO1 = annual 
mean temperature, BIO5 = maximum temperature of warmer 
month, BIO8 = mean temperature of the wettest quarter, 
BIO9 = mean temperature of the driest quarter, BIO10 = mean 

1 http://genebank.ciat.cgiar.org/genebank/main.do
2 http://www.worldclim.org

temperature of the warmest 4-month period, and Tj = average of 
absolute maximum temperature during the reproductive phase. 
Extraction was carried out using the dismo package of R v.3.4.4 
(R Core Team). Historical temperature values were obtained as 
monthly averages from 1970 to 2000. Values of each bioclimatic 
variable were adjusted for the year 2000 according to the average 
annual increase in temperature for each hemisphere, using the 
following expressions (Trenberth et al., 2007):

T Ti for theNorthernHC2000 2000 0 031675= + ( ) ×− °    . [ ]i eemisphere

 (1)

 
T i C for theSou2000 2000 0 01325                . [ ]= + − × °( )Ti tthernHemisphere

 (2)

where i is the year of collection of each accession, Ti is 
the bioclimatic variable for the year when the accession was 
collected, and T2000 is the value of each bioclimatic variable for 
the year 2000.

We generated three indices based on environmental data from 
wild common bean accessions in order to understand natural 
adaptation to high temperatures and identify associated genetic 
markers. The first index was built using the evapotranspiration 
model from (Thornthwaite, 1948), which contained an expression 
for monthly heat index, heat index Thornthwaite (HIT), as 
follows (equation 3):

 HIT T
original

m

i

k
=

=∑
1 514

1 5

.
 (3)

For all Tm > 0, Tm is the average mean monthly temperature in 
any phenological stage of the plant, and k the number of months.

This index (HIToriginal) uses average temperature (Tm) and 
not maximum temperature (Tj), despite the latter being more 
informative for HS events. Thus, we used two adjustments to refine 
HIToriginal. First, we used the absolute maximum temperature instead 
of the average temperature. Second, we narrowed the window of 
temperatures only across the reproductive phase (Tj), during which 
plants are most sensitive to HS events (Rainey and Griffiths, 2019). 
Since seeds were collected for each accession as part of the original 
sampling, the reproductive phase has an approximate duration of 2 
months prior to the month when sampling took place. The modified 
HIToriginal index was expressed through the following equation:

 HIT
Tj

i
=

=∑
1 514

1

2

5

.

 (4)

For all Tj > 0, Tj is the average of absolute maximum 
temperature during the reproductive phase and i is the month 
within that phase.

On the other hand, we built a second index of HS, heat stress 
index (HSI), as detailed in equation 5. This index is based on the 
temperature threshold during the reproductive phase (Tmax = 
28–32°C) above which common bean exhibits low grain yields 
(Gonçalves et al., 1997; Caramori et al., 2001; Silva et al., 2007; 
Rainey and Griffiths, 2019). Therefore, this suggested HS index 
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compares Tmax = 30°C and the maximum temperature during the 
reproductive phase Tj adjusted for the year 2000.

 HSI
T

HSIj=
−





× − ≤ ≤

30
30

100 100 100;           (5)

Finally, the first main principal component of all six bioclimatic 
variables explained 94.37% of the overall variance and was 
chosen as a third index of HS (hereinafter referred to as PCA1). 
Using all three indices aims characterizing different components 
of the adaptation to HS. Two important assumptions of these 
HS indices should be noted. First, poorly adapted genotypes are 
inexistent because the distribution of accessions in the study 
areas is assumed to be in equilibrium with the niche requirements 
(Forester et al., 2016). Second, it is assumed that HS indices 
are stable over the years, since they are based on climatic data 
averaged over three decades. Ecological balance and stability of 
these HS indices are a prerequisite for GEA analysis (Cortés et al., 
2013; Cortés and Blair, 2018). Since normality is also required 
for GWAS-type models, normality of each bioclimatic variable 
was verified using the skewness, kurtosis, and Shapiro–Wilk 
statistics (P ≥ 0.05) using the agricolae package (De Mendiburu, 
2014) in R v.3.4.4 (R Core Team). Dispersion diagrams, as well as 
Pearson (r) and Spearman (ρ) correlations, were made among all 
bioclimatic variables and HS indices in R v.3.4.4 (R Core Team).

Analysis of Kinship and Population Structure
Using the panel of 23,373 SNP markers, we estimated random 
and fixed effects in order to reduce the rate of false positives of 
each GEA model (i.e. MLM, CMLM, SUPER, FarmCPU, and 
BLINK). Random effects accounted for kinship relationships, 
while fixed effects accounted for population structure. Kinship 
was built in different ways according to the peculiarities of each 
algorithm. The MLM used a kinship matrix computed across 
all markers using the Loiselle, VanRaden, and EMMA methods 
available in the GAPIT package (Tang et al., 2016) of R v.3.4.4 
(R Core Team). As an exploratory phase, we tested the power 
of these three different methods in capturing random effects 
in a GEA with MLM models. MLM models were selected for 
this purpose because they consider all 23,373 SNP markers. 
MLM models were designed using the combination of all three 
HS indices as response variable “I” (HIT, his, and PCA1), two 
population stratification methods as fixed effects “Q” (PC and 
TESS3), and three kinship methods as random effects “K” 
(Loiselle, VanRaden, and EMMA) for a total of 18 MLM models 
(3I × 2Q × 3K). Among all 18 MLM models, those that used the 
EMMA algorithm to reconstruct the kinship matrix were the 
most powerful. Thus, the following GEA models only considered 
the EMMA algorithm.

Based on this exploratory phase, only the EMMA algorithm 
was implemented for the reconstruction of the kinship 
relationships in the improved MLM algorithms (i.e. CMLM) 
and the last-generation GWAS models (i.e. SUPER, FarmCPU, 
and BLINK), each of which had different criteria for sub-setting 
the SNP dataset (PseudoQTNs) according to their specifications 
(Wang et al., 2014b; Liu et al., 2016; Huang et al., 2019).

Population stratification was explored using two strategies. First, 
a traditional molecular principal component analysis (hereinafter 
referred to as PC) was carried out in TASSEL v.5 (Bradbury et al., 
2007). Second, spatial population structure was reconstructed 
using TESS3 (Caye et al., 2016) as implemented in R v.3.4.4 (R Core 
Team). TESS3 is a novel package that infers population structure 
from genotypic and geographical information. The optimum 
number of ancestral populations (K) was determined using a 
cross-entropy method implemented with the snmf function in 
the LEA package (Frichot and François, 2015) of R v.3.4.4 (R Core 
Team). The snmf algorithm was executed with 1,000 repetitions 
and a fluctuating K value from 2 to 10. The cross-entropy inference 
was further improved by exploring the percentage of masked 
genotypes at thresholds of 5% and 20%, as suggested by Frichot 
and François (2015) and Ariani et al. (2018), respectively. Results 
of population stratification were compared explicitly with previous 
studies carried out in wild common bean by Ariani et al. (2018). 
We selected a clustering coefficient (Q) cutoff of ≥0.7, following 
Ariani et  al. (2018) and Bitocchi et al. (2012), for assigning 
genotypes to subpopulations.

Identification of Loci Associated With 
HS Indices
After the exploratory phase with 18 MLM models, we built 30 
GEA models using improved MLM (CMLM) and last-generation 
GWAS (i.e. SUPER, FarmCPU, and BLINK) algorithms to 
explore single-marker associations. The improved MLM and last-
generation GWAS algorithms increase the statistical power while 
better controlling the false-positive rate. FarmCPU and BLINK 
are particularly powerful at further controlling the false-negative 
rate (Huang et al., 2019). GEA models were obtained from the 
combination of all three HS indices as response variable “I” 
(HIT, HSI, and PCA1), two population stratification methods as 
fixed effects “Q” (PC and TESS3), and a unique kinship method 
as random effect “K” (EMMA with PseudoQTNs) for a total of 
30 GEA models constructed by means of one improved MLM 
algorithm (CMLM) and three last-generation GWAS algorithms 
(SUPER, FarmCPU, and BLINK). GEA models considered a 
total of six CMLM models (3I × 2Q × 1K), six FarmCPU models 
(3I × 2Q × 1K), six BLINK models (3I × 2Q × 1K), and 12 SUPER 
models. SUPER models were initially implemented as suggested 
by Wang et al. (2014b) in order to be computationally efficient, 
yet expecting the same statistical power as any MLM and CMLM 
models. To overcome this issue, these first-stage SUPER models 
were coupled with the MLM and CMLM algorithms for a total 
of 12 second-stage SUPER models (3I × 2Q × 1K × 1 first-stage 
GWAS algorithm × 2 second-stage GWAS algorithms).

Models were abbreviated as follows: IM-Fc-Rc, where “I” refers 
to the HS index, “M” is the GWAS model family, and “Fc” and 
“Rc” are the algorithms used to reconstruct the fixed and random 
covariates, respectively. For example, the model HITFARMCPU-TESS3-

EMMA used HIT as the HS index, FarmCPU as the GWAS method, 
TESS3’s inference as a fixed covariate, and EMMA’s kinship as a 
random covariate. This nomenclature was modified to account 
for the SUPER algorithm since it employed two different GWAS 
models in the first and last steps. The first step always used a GLM 
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model, but the last step used a MLM or CMLM model. Therefore, 
SUPER models were marked as ISUPER(M)-Fc-Rc, where “M” is the 
model used in the last step (MLM or CMLM) (Table S2).

In order to choose the optimal GEA models, we drew Q–Q and 
Manhattan diagrams of the P-values with customized R scripts and 
used these diagrams to evaluate the rate of false positives. Highly 
significant associations were determined using a Bonferroni 
correction of P-values at an α = 0.05, which led to a significance 
threshold of 2.14 × 10−6 or −log102.14 × 10−6 = 5.67 for CMLM models 
(2,373 effective SNP markers), 2.13 × 10−6 or −log102.13 × 10−6 = 5.67 
for SUPER models (23,421 effective SNP markers), and 5.89 × 10−6 
or −log105.89 × 10−6 = 5.23 for FarmCPU and BLINK models (8,494 
effective SNP markers). Therefore, we used the Bonferroni threshold 
in order to evaluate the rate of false positives by visual interpretation 
of the Q–Q plots. In addition, a relax threshold of −log10 P-value = 4, 
as previously suggested (Pasam et al., 2012; Soltani et al., 2017; 
Soltani et al., 2018; Oladzad et al., 2019), was used only in the 
exploratory phase with 18 MLM models in order to identify weaker 
associations, since it is documented that the Bonferroni threshold is 
very restrictive or conservative in MLMs (Joo et al., 2016).

Identification of Candidate Genes
Putative candidate genes were identified by inspecting conservative 
flanking sections of 1 kb around each associated locus from all GEA 
models. Flanking sections were captured using the common bean 
reference genome v2.1 (Schmutz et al., 2014) and the PhytoMine 
and BioMart tools from the Phytozome v.12.3 platform.3 Identified 
genes were further annotated using the GO,4 PFAM,5 PANTHER,6 
KEGG,7 and UniProt8 databases by means of Phytozome (see note 
C). Authors such as Oladzad et al. (2019) and Soltani et al. (2017; 
2018) have suggested a genomic window to look for flanking 
genes of ~100 kb in common bean. On the other hand, LD in wild 
common bean, measured as marker correlation R2, was reported to 
decay to 0.8 per every 81 kb (Rossi et al., 2009). Thus, we further 
explored a genomic window of 81 kb (40.5 kb upstream to 40.5 kb 
downstream of the significantly associated SNP markers) using the 
common bean reference genome v2.1 and the annotation tools as 
described above.

RESULTS

Among the entire set of 78 wild common bean accessions, we 
identified five accessions (G2648, G23511A, G13094, G12869, 
and G11071) putatively tolerant to HS based on three different 
bioclimatic indices (HIT, HSI, and PCA1). Incorporating these 
indices as response variables in GEA models led to 18 traditional 
MLM models that used three contrasting kinship reconstruction 
methods and 30 improved traditional mixed (i.e. ECLMLM) and 
last-generation GWAS models (i.e. SUPER, FarmCPU, and BLINK) 

3 https://phytozome.jgi.doe.gov/pz/portal.html
4 http://geneontology.org/
5 https://pfam.xfam.org/
6 http://www.pantherdb.org/
7 https://www.genome.jp/kegg/
8 https://www.uniprot.org/

that only used the EMMA algorithm for kinship reconstruction. 
None of the improved traditional mixed models yielded significant 
results. On the other hand, 15 last-generation GWAS models 
increased the statistical power to detect 120 significant associations 
in a GEA framework. A joint inference across these models 
and the three indices allowed having a more comprehensive 
understanding of the adaptive landscape and genetic architecture 
of heat tolerance. We recovered 22 genes, flanking 24 SNP markers, 
previously reported as candidates for heat tolerance (Wang et al., 
2004; Ikeda et al., 2011; Lopes-Caitar et al., 2013; Oladzad et al., 
2019; Soltani et al., 2019) and involved in the activation of heat 
shock proteins (HSPs), protein domains related to thermostability 
in plants and signaling pathways of abiotic stress via abscisic acid 
and auxin. These allelic variants require further validation and are 
ideal to be incorporated into common bean breeding programs for 
resistance to high temperatures.

Each Bioclimatic Index Captured a 
Different Component of HS
The three HS indices captured different facets of HS. All six 
bioclimatic variables (annual average temperature, maximum 
temperature of the warmest month, average temperature of the 
wettest quarter, average temperature of the driest quarter, average 
temperature of the warmest quarter, and average of the absolute 
maximum temperature of the reproductive phase) and three 
HS indices (HIT, HSI, and PCA1) exhibited a normal behavior 
(Shapiro–Wilk P ≥ 0.05, Figure S1). HIT and PCA1 presented 
a positive bias with a skewness statistics of 0.160 and 0.271, 
respectively. On the other hand, HSI had a negative skewness with 
a skewness value of −0.166. All three HS indices allowed us to 
approximate the same HS event by different strategies. If different 
indices had distinct skewness values, contrasting extreme values 
described different facets of the HS event (Figure S1). Correlation 
coefficients estimated by Pearson (r) and Spearman (ρ) methods 
respectively ranged from 0.82 to 1 and from 0.78 to 1 among all 
bioclimatic variables and the HIT and HSI indices. The index built 
with the PCA1 had a negative correlation with all six bioclimatic 
variables and the other two HS indices (Figure S2) with Pearson 
(r) and Spearman correlation coefficients (ρ) ranging from −0.92 
to −0.99 and −0.94 to −0.99, respectively. Therefore, despite 
differences in the extreme values, there is correspondence among 
all six bioclimatic variables and the three indices. Normality, 
together with the assumptions of stability over time and genotype–
ecological niche equilibrium, makes these three HS indices suitable 
as response variables in GWAS models within a GEA framework 
aiming to capture various components of HS.

All 23,373 SNP Markers Recovered Six 
Subpopulations
Population structure as revealed by a PC (molecular PCA) analysis 
with 23,373 SNP markers suggested a total of six subpopulations 
(Figure 1). Also, cross-entropy validation implemented in TESS3 
with the same markers suggested an optimum of six subpopulations 
from Mesoamerica to northern Argentina (Figure  1B). Both 
methods, TESS3 and PC, suggested six subpopulations: MW1 
(Mesoamerican Wild 1), MW2 (Mesoamerican Wild 2), MW3 
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(Mesoamerican Wild 3), PhI (Northern Peru–Ecuador Wild), 
AW (Andean Wild), and CW (Colombian Wild) (Figures 1D–F). 
When we looked at the five subpopulations partition suggested by 
Ariani et al. (2018) based on following previous works 19,126 SNP 
markers flanking the CviAII restriction site, we did not recover 
Ariani’s MW3 (Figures 1C–E), but instead the new subpopulation 
CW reappeared in both analyses (TESS3 and PC).

EMMA Algorithm Was More Powerful at 
Reconstructing Kinship Relationships
As an exploratory phase, we built 18 traditional MLM models 
incorporating as random effects kinship matrices estimated 
with the Loiselle, VanRaden, and EMMA algorithms and as 
fixed effects estimates from TESS3 and PC (molecular PCA) 
algorithms across all 23,373 SNP markers. The three kinship 
algorithms were congruent among them and with the inferred 
population structure, revealing the typical Mesoamerican–
Andean gene pool split (Figure S3). None of these 18 traditional 
MLMs recovered associated markers at a Bonferroni threshold of 
−log10 P-value = 5.67 (Figures 2–4A, B, S4, S5A–L, and S6A–F).  
Three loci systematically crossed the lax threshold of −log10 
P-value = 4. They were on chromosomes Pv01 (S1_42870591) 
and Pv11 (S1_466464831 and S1_471851336) in all 18 traditional 
MLM models (Figures 2A, B, 3A, B, 4A, B, S4A–L, S5A–L, and 
S6A–F). Three of the models built with the EMMA algorithm 
(HITMLM-PC-EMMA, HSIMLM-PC-EMMA, and PCA1MLM-PC-EMMA) further 
identified three other alleles that crossed the lax threshold with 
greater significance (Figures 2–4A, B). Thus, the EMMA-based 
kinship matrix was defined as the random effect for the 30 
improved traditional mixed and last-generation GWAS models.

A Total of 120 Loci in 15 Models Were 
Associated With the Three HS  
Bioclimatic Indices
We generated a total of 30 GEA models by implementing the 
algorithms CMLM (six models), SUPER (12 models), FarmCPU 
(six models), and BLINK (six models) using three HS indices 
as response variables, two methods of population stratification 
(PC and TESS3) as a fixed effect, and kinship reconstruction 
using the EMMA algorithm as a random effect. None of the six 
CMLM (Figures 2–4C, D and S6G–L) models yielded associated 
markers at a Bonferroni threshold of −log10 P-value  = 5.67. 
However, at a lax threshold of −log10 P-value = 4, these CMLM 
models captured the same three associated loci identified by 
the 18 traditional MLMs. Three CMLM models that used the 
PCA1 as a covariable (HITCMLM-PC-EMMA, HSICMLM-PC-EMMA, and 

PCA1CMLM-PC-EMMA) captured, at a lax threshold, one additional 
associated locus each (Figures 2–4C, D).

We implemented a GLM model in the first step of the 
SUPER algorithm as suggested by Wang et al. (2014b) due 
to its computational efficiency, same as MLM and CMLM 
models. MLM and CMLM models were implemented for the 
last step of the SUPER algorithm with each of the three HS 
indices. From all these 12 SUPER models, the only ones that 
reported associated markers at a Bonferroni threshold of −log10 
P-value = 5.67 were HSISUPER(CMLM)-PC-EMMA (Figures 2E, F), 
HITSUPER(CMLM)-PC-EMMA (Figures 3E, F), and PCA1SUPER(CMLM)-PC-

EMMA (Figures 4E, F), from now on named as HITSUPER-PC-EMMA, 
HSISUPER-PC-EMMA, and PCA1SUPER-PC-EMMA, respectively, for better 
reading. The remaining nine SUPER models [HITSUPER(CMLM)-

TESS3-EMMA, HSISUPER(CMLM)-TESS3-EMMA, PCA1SUPER(CMLM)-TESS3-EMMA, 
HITSUPER(MLM)-PC-EMMA, HSISUPER(MLM)-PC-EMMA, PCA1SUPER(MLM)-

PC-EMMA, HITSUPER(MLM)-TESS3-EMMA, HSISUPER(MLM)-TESS3-EMMA, and 
PCA1SUPER(MLM)-TESS3-EMMA], abbreviated as “failed” SUPER 
models, only identified between 17 and 12 SNP markers that 
crossed the lax threshold of −log10 P-value = 4 (Figures S7A–P).  
On the other hand, all 12 FarmCPU (Figures 2–4G, H and 
5A–F) and BLINK (Figures 2–4I, J and 5G–L) models reported 
associated markers at a Bonferroni threshold of −log10 P-value = 
5.23. Regardless what population stratification method was used 
(PC or TESS3) as a fixed effect, the 15 last-generation models 
SUPER (three), FarmCPU (six), and BLINK (six) identified a 
total of 120 associated loci at a Bonferroni threshold (Table 1). 
A total of 61 from the 120 SNP markers were captured by a 
single GEA model, and the remaining 59 SNP markers were 
associated with more than one of these GEA models; thus, we 
obtained a total of 270 GWAS redundant outputs (Table S3). 
The 120 significantly associated SNP markers were distributed 
in 105 regions across the common bean genome (Figure 6). 
Chromosomes Pv03, Pv01, Pv11, and Pv07 harbored the highest 
number of markers with 18, 15, 14, and 14 SNPs in 16, 12, 11, and 
12 regions, respectively. Chromosomes Pv06, Pv08, Pv04, Pv02, 
and Pv10 had 10, 10, 10, 9, and 9 associated markers grouped in 
10, 9, 10, 9, and 6 regions, respectively. Pv09 and Pv05 were the 
chromosomes with the fewest associated markers with seven and 
four SNPs, grouped in six and four regions (Table S4). On the 
other hand, PCA1 was the HS index with the highest number 
of markers with 96 SNPs in 83 regions through the entire 
genome. The HS indices HSI and HIT had 57 and 37 associated 
markers grouped in 54 and 33  regions, respectively, across all 
chromosomes (Table  S4). Also, the last-generation GWAS 
algorithm with the highest number of associated markers was 
BLINK with 91 SNPs in 80 regions through the entire genome. 

FIGURE 1 | (A) Spatial population clustering and ancestry coefficients estimated with TESS3 using the number of gene pools (K = 2), the number of subpopulations 
suggested by other studies (K = 5), and the best number of subpopulations suggested by cross-entropy validation test (K = 6). The genotypes are sorted by latitude 
from northern Argentina to Mesoamerica. The subpopulations are MW1 (Mesoamerican Wild 1), MW2 (Mesoamerican Wild 2), MW3 (Mesoamerican Wild 3), PhI 
(Northern Peru-Ecuador Wild), AW (Andean Wild), and CW (Colombian Wild), colored in blue, purple, pink, green, red, and yellow, respectively. (B) Cross-entropy 
plot when the number of cluster (K) ranges between 1 and 10. The snmf algorithm was executed with 1,000 repetitions and a fluctuating K value from 2 to 10. 
The cross-entropy inference was further improved by exploring the percentage of masked genotypes at thresholds of 5% and 20%. (C, D) Population structure 
revealed by a molecular principal component analysis based on 23,373 SNP markers, using number of subpopulations K = 5 (C) and K = 6 (D). Subpopulations are 
colored as in (A). The percentage of explained variation by each axis is shown within parenthesis in the label of the corresponding axis. (E, F) Spatial interpolation of 
population ancestry coefficients across the geographic distribution of the genotypes analyzed. Subpopulations are colored as in (A).
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FIGURE 2 | Manhattan and Q–Q plots of the optimum genome–environment association (GEA) analysis for heat tolerance in 78 common bean accessions based 
on 23,373 SNP markers, using the HSI index (equation 4). The Manhattan and Q–Q plots are generated according to traditional MLM algorithms, compressed 
MLM algorithms, and last-generation GWAS algorithms (SUPER, FarmCPU, and BLINK) using kinship matrix as a random effect by the EMMA algorithm and the 
first six principal components (Figure 1D) as a fixed effect. These models are HSIMLM-PC-EMMA (A, B), HSICMLM-PC-EMMA (C, D), HSISUPER-PC-EMMA (E, F), HSIFARMCPU-PC-EMMA 
(G, H), and HSIBLINK-PC-EMMA (I, J). The red dashed horizontal line marks the P-value threshold after Bonferroni correction for multiple comparisons. The blue dashed 
horizontal line marks the lax P-value threshold. Black and blue colors highlight different common bean (Pv) chromosomes.
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FIGURE 3 | Manhattan and Q–Q plots of the optimum genome–environment association (GEA) analysis for heat tolerance in 78 common bean accessions based 
on 23,373 SNP markers, using the HIT index (equation 5). The Manhattan and Q–Q plots are generated according to traditional MLM algorithms, compressed 
MLM algorithms, and last-generation GWAS algorithms (SUPER, FarmCPU, and BLINK) using kinship matrix as a random effect by the EMMA algorithm and the 
first six principal components (Figure 1D) as a fixed effect. These models are HITMLM-PC-EMMA (A, B), HITCMLM-PC-EMMA (C, D), HITSUPER-PC-EMMA (E, F), HITFARMCPU-PC-EMMA 
(G, H), and HITBLINK-PC-EMMA (I, J). The red dashed horizontal line marks the P-value threshold after Bonferroni correction for multiple comparisons. The blue dashed 
horizontal line marks the lax P-value threshold. Black and blue colors highlight different common bean (Pv) chromosomes.
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FIGURE 4 | Manhattan and Q–Q plots of the optimum genome–environment association (GEA) analysis for heat tolerance in 78 common bean accessions based on 
23,373 SNP markers, using the PCA1 index. The Manhattan and Q–Q plots are generated according to traditional MLM algorithms, compressed MLM algorithms, 
and last-generation GWAS algorithms (SUPER, FarmCPU, and BLINK) using kinship matrix as a random effect by the EMMA algorithm and the first six principal 
components (Figure 1D) as a fixed effect. These models are PCA1MLM-PC-EMMA (A, B), PCA1CMLM-PC-EMMA (C, D), PCA1SUPER-PC-EMMA (E, F), PCA1FARMCPU-PC-EMMA (G, H), 
and PCA1BLINK-PC-EMMA (I, J). The red dashed horizontal line marks the P-value threshold after Bonferroni correction for multiple comparisons. The blue dashed 
horizontal line marks the lax P-value threshold. Black and blue colors highlight different common bean (Pv) chromosomes.
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FIGURE 5 | Manhattan and Q–Q plots of the optimum genome–environment association (GEA) analysis for heat tolerance in 78 common bean accessions based on 
23,373 SNP markers according to last-generation GWAS algorithms FarmCPU and BLINK. The covariates used in these six models provided are kinship matrix as 
a random effect using EMMA algorithm and the population structure as fixed effect using TESS3 (Figure 1F). These last-generation GWAS models are HSIFARMCPU-

TESS3-EMMA (A, B), HITFARMCPU-TESS3-EMMA (C, D), PCA1FARMCPU-TESS3-EMMA (E, F), HSIBLINK-TESS3-EMMA (G, H), HITBLINK-TESS3-EMMA (I, J), and PCA1BLINK-TESS3-EMMA (K, L). The red 
dashed horizontal line marks the P-value threshold after Bonferroni correction for multiple comparisons. Black and blue colors highlight different common bean (Pv) 
chromosomes.
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The FarmCPU and SUPER algorithms had 46 and 24 associated 
markers grouped in 44 and 21 regions, respectively, across all 
chromosomes (Table S4).

From 15 significant-GEA models, PCA1BLINK-PC-EMMA, HSIBLINK-

PC-EMMA, PCA1FARMCPU-PC-EMMA, and HITBLINK-PC-EMMA were the 
models with the highest number of markers with 73, 39, 27, and 
21 SNPs in 62, 36, 26, and 20 regions, respectively, through the 
entire genome. The models HITBLINK-TESS3-EMMA, HITSUPER(CMLM)-PC-

EMMA, HSIFARMCPU-PC-EMMA, HITFARMCPU-PC-EMMA, HSISUPER(CMLM)-PC-

EMMA, PCA1BLINK-TESS3-EMMA, and HSIFARMCPU-TESS3-EMMA had 12, 12, 
12, 11, 11, 11, and 10 SNPs in 11, 9, 12, 10, 11, 10, and 10 regions, 
respectively, across all chromosomes. PCA1FARMCPU-TESS3-EMMA, 
PCA1SUPER(CMLM)-PC-EMMA, HITFARMCPU-TESS3-EMMA, and HSIBLINK-TESS3-

EMMA were the models with the fewest associated markers with nine, 
nine, eight, and five SNPs, grouped in nine, nine, seven, and four 
regions, respectively (Table 1).

Also, the models PCA1BLINK-PC-EMMA, HITSUPER(CMLM)-PC-

EMMA, PCA1BLINK-TESS3-EMMA, and HSIFARMCPU-TESS3-EMMA had 
the highest number of exclusive markers that no other 
model captured, with 30, 9, 5, and 5 SNPs, respectively. 
The models HSISUPER(CMLM)-PC-EMMA, PCA1FARMCPU-TESS3-EMMA, 
PCA1SUPER(CMLM)-PC-EMMA, HSIBLINK-PC-EMMA, HITBLINK-TESS3-EMMA, 
and HSIBLINK-TESS3-EMMA had the fewest exclusive markers with 
three, three, three, one, one, and one SNPs, respectively. The 
remaining models from the 15 significant-GEA models did not 
have exclusive SNP markers (Table 1). On the other hand, the 
120 significantly associated SNP markers explained 54.28%, 
52.73%, and 51.73% of the variation (effects) for PCA1, his, and 
HIT, respectively (Table S4). Furthermore, we averaged the R2 
of all associated SNPs by each of the significant 15 models 
throughout the genome of common bean, getting a range 
of average effects between 68.71% (HITFARMCPU-PC-EMMA) and 
26.10% (HSISUPER(CMLM)-PC-EMMA) (Table 1). In summary, from 
the entire set of 30 GEA models implemented with improved 
traditional MLMs and last-generation GWAS algorithms, only 
15 reported associations at a Bonferroni threshold, for a total 
of 120 associated markers.

Associated Markers Flanked 22 Genes 
Related With the HS Response, Such 
as Activation of HSPs and Abiotic 
Stress Signaling
We identified 120 associated loci across 15 of the 30 run GEA 
models at a Bonferroni-corrected significance threshold of −
log10 P-value = 5.23 for 12 FarmCPU and BLINK models and 
at a Bonferroni-corrected threshold of −log10 P-value = 5.67 for 
three SUPER models. Among the 15 GEA models that captured 
significantly associated markers, only one (HITBLINK-TESS3-
EMMA) did not identify any flanking gene. The other 14 models 
captured 36 flanking genes (Table S3). An ontology analysis 
revealed that 22 of these genes, flanking 24 associated markers, 
related with biological processes of the response to heat tolerance 
in plants (Figure 6, Table 2).

The chromosomes with the highest number of genes related 
to heat tolerance were Pv02, Pv06, Pv03, Pv01, Pv08, and Pv11, 
with five, four, three, three, three, and two genes, respectively TA

B
LE

 1
 | 

S
um

m
ar

y 
st

at
is

tic
s 

of
 th

e 
15

 g
en

e–
en

vi
ro

nm
en

t a
ss

oc
ia

tio
n 

(G
E

A
) m

od
el

s 
fo

r 
th

e 
12

0 
si

ng
le

-n
uc

le
ot

id
e 

po
ly

m
or

ph
is

m
 (S

N
P

) m
ar

ke
rs

 a
ss

oc
ia

te
d 

w
ith

 th
e 

th
re

e 
he

at
 s

tr
es

s 
(H

S
) i

nd
ic

es
 (H

S
I, 

H
IT

, a
nd

 P
C

A
1)

 
in

 7
8 

co
m

m
on

 b
ea

n 
ac

ce
ss

io
ns

 b
as

ed
 o

n 
th

e 
op

tim
um

 a
ss

oc
ia

tio
n 

an
al

ys
is

 (F
ig

ur
es

 2
–5

).

M
o

d
el

P
v

N
um

b
er

 o
f 

as
so

ci
at

ed
 

S
N

P
s

A
ve

ra
g

e 
−

lo
g

10
 

(P
-v

al
ue

)
A

ve
ra

g
e 

R
2  

(%
)

N
um

b
er

 o
f 

ex
cl

us
iv

e 
as

so
ci

at
ed

 
S

N
P

s

N
um

b
er

 o
f 

as
so

ci
at

ed
 

re
g

io
ns

N
um

b
er

 o
f 

as
so

ci
at

ed
 

re
g

io
ns

 c
o

nt
ai

ni
ng

 
g

en
es

N
um

b
er

 o
f 

g
en

es
N

um
b

er
 o

f 
g

en
es

 r
el

at
ed

 
to

 H
S

H
IT

B
LI

N
K

-P
C

-E
M

M
A

1,
 2

, 3
, 4

, 6
, 7

, 8
, 1

1
21

8.
0 

±
 1

.1
64

.6
2 

±
 0

.1
0

0
20

6
6

3
H

IT
B

LI
N

K
-T

E
S

S
3-

E
M

M
A

1,
 3

, 4
, 6

, 7
, 8

, 9
, 1

1
12

7.
9 

±
 0

.8
60

.8
6 

±
 0

.0
7

1
11

3
3

3
H

IT
FA

R
M

C
P

U
-P

C
-E

M
M

A
2,

 3
, 4

, 6
, 7

11
6.

8 
±

 0
.5

68
.7

1 
±

 0
.1

0
0

10
4

4
2

H
IT

FA
R

M
C

P
U

-T
E

S
S

3-
E

M
M

A
3,

 4
, 6

, 7
, 9

8
7.

5 
±

 0
.2

57
.0

9 
±

 0
.0

9
0

7
2

2
2

H
IT

S
U

P
E

R
(C

M
LM

)-
P

C
-E

M
M

A
3,

 4
, 5

, 7
, 8

, 1
0

12
7.

0 
±

 0
.3

26
.7

1 
±

 0
.0

2
9

9
5

5
5

H
S

I B
LI

N
K

-P
C

-E
M

M
A

1,
 2

, 3
, 4

, 6
, 7

, 8
, 9

, 1
0,

 1
1

39
8.

2 
±

 0
.8

59
.9

1 
±

 0
.1

0
1

36
9

9
4

H
S

I B
LI

N
K

-T
E

S
S

3-
E

M
M

A
3,

 7
, 1

1
5

7.
3 

±
 0

.6
63

.3
6 

±
 0

.0
6

1
4

0
0

0
H

S
I FA

R
M

C
P

U
-P

C
-E

M
M

A
1,

 2
, 3

, 6
, 7

12
6.

5 
±

 0
.5

67
.8

3 
±

 0
.1

0
0

12
6

6
4

H
S

I FA
R

M
C

P
U

-T
E

S
S

3-
E

M
M

A
2,

 3
, 4

, 6
, 7

, 9
10

7.
4 

±
 0

.9
52

.5
8 

±
 0

.1
8

5
10

5
5

5
H

S
I S

U
P

E
R

(C
M

LM
)-

P
C

-E
M

M
A

1,
 3

, 5
, 6

, 8
, 9

, 1
0,

 1
1

11
6.

8 
±

 0
.6

26
.1

0 
±

 0
.0

5
3

11
4

4
3

P
C

A
1 B

LI
N

K
-P

C
-E

M
M

A
1,

 2
, 3

, 4
, 5

, 6
, 7

, 8
, 9

, 1
0,

 1
1

73
7.

8 
±

 0
.8

56
.4

4 
±

 0
.0

8
30

62
16

18
8

P
C

A
1 B

LI
N

K
-T

E
S

S
3-

E
M

M
A

1,
 3

, 4
, 5

, 8
, 9

11
7.

0 
±

 0
.7

48
.5

9 
±

 0
.1

6
5

10
5

5
2

P
C

A
1 F

A
R

M
C

P
U

-P
C

-E
M

M
A

1,
 2

, 3
, 4

, 5
, 6

, 7
, 8

, 1
0,

 1
1

27
6.

6 
±

 0
.4

61
.1

9 
±

 0
.0

9
0

26
14

14
9

P
C

A
1 F

A
R

M
C

P
U

-T
E

S
S

3-
E

M
M

A
3,

 4
, 6

, 7
, 8

, 9
, 1

1
9

6.
6 

±
 0

.9
47

.8
2 

±
 0

.1
3

3
9

2
2

2
P

C
A

1 S
U

P
E

R
(C

M
LM

)-
P

C
-E

M
M

A
1,

 3
, 6

, 8
, 1

0,
 1

1
9

6.
8 

±
 0

.6
42

.8
6 

±
 0

.0
2

3
9

2
4

3

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 95448

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Last-Generation GEA in BeansLópez-Hernández and Cortés

13

FI
G

U
R

E
 6

 | 
P

hy
si

ca
l m

ap
 o

f t
he

 2
3,

37
3 

S
N

P
 m

ar
ke

rs
 fo

r 
al

l 1
1 

co
m

m
on

 b
ea

n 
(P

v)
 c

hr
om

os
om

es
. P

hy
si

ca
l p

os
iti

on
 is

 s
ho

w
n 

in
 m

illi
on

s 
of

 b
as

e 
pa

irs
 (M

b)
. E

ac
h 

bl
ac

k 
hy

ph
en

 c
or

re
sp

on
ds

 to
 a

 S
N

P
 m

ar
ke

r. 
Th

e 
co

lu
m

ns
 o

f y
el

lo
w

 p
lo

tt
in

g 
sy

m
bo

ls
 in

di
ca

te
 m

ar
ke

rs
 a

ss
oc

ia
te

d 
by

 th
e 

S
U

P
E

R
 a

lg
or

ith
m

 w
ith

 H
IT

 (c
irc

le
), 

H
S

I (
fil

le
d 

ci
rc

le
), 

an
d 

P
C

A
1 

(c
ro

ss
) i

nd
ic

es
, u

si
ng

 E
M

M
A

 a
s 

a 
ra

nd
om

 e
ffe

ct
 a

nd
 P

C
 a

s 
a 

fix
ed

 e
ffe

ct
 

(F
ig

ur
es

 2
E

, F
, 3

E
, F

, a
nd

 4
E

, F
). 

Th
e 

co
lu

m
ns

 o
f g

re
en

 p
lo

tt
in

g 
sy

m
bo

ls
 in

di
ca

te
 m

ar
ke

rs
 a

ss
oc

ia
te

d 
by

 th
e 

Fa
rm

C
P

U
 a

lg
or

ith
m

 w
ith

 H
IT

 (c
irc

le
), 

H
S

I (
fil

le
d 

ci
rc

le
), 

an
d 

P
C

A
1 

(c
ro

ss
) i

nd
ic

es
, u

si
ng

 E
M

M
A

 a
s 

a 
ra

nd
om

 e
ffe

ct
 a

nd
 P

C
 a

s 
a 

fix
ed

 e
ffe

ct
 (F

ig
ur

es
 2

G
, H

, 3
G

, H
, a

nd
 4

G
, H

). 
Th

e 
co

lu
m

ns
 o

f b
lu

e 
pl

ot
tin

g 
sy

m
bo

ls
 in

di
ca

te
 m

ar
ke

rs
 a

ss
oc

ia
te

d 
by

 th
e 

B
LI

N
K

 a
lg

or
ith

m
 w

ith
 H

IT
 (c

irc
le

), 
H

S
I (

fil
le

d 
ci

rc
le

), 
an

d 
P

C
A

1 
(c

ro
ss

) i
nd

ic
es

, u
si

ng
 E

M
M

A
 a

s 
a 

ra
nd

om
 e

ffe
ct

 a
nd

 P
C

 a
s 

a 
fix

ed
 e

ffe
ct

 (F
ig

ur
es

 2
I, 

J,
 3

I, 
J,

 a
nd

 4
I, 

J)
. T

he
 c

ol
um

ns
 o

f p
ur

pl
e 

pl
ot

tin
g 

sy
m

bo
ls

 in
di

ca
te

 m
ar

ke
rs

 a
ss

oc
ia

te
d 

by
 th

e 
Fa

rm
C

P
U

 a
lg

or
ith

m
 w

ith
 H

IT
 

(tr
ia

ng
le

 p
oi

nt
 u

p)
, H

S
I (

fil
le

d 
tr

ia
ng

le
 p

oi
nt

-u
p 

bl
ue

), 
an

d 
P

C
A

1 
(tr

ia
ng

le
 p

oi
nt

 d
ow

n)
 in

di
ce

s,
 u

si
ng

 E
M

M
A

 a
s 

a 
ra

nd
om

 e
ffe

ct
 a

nd
 T

E
S

S
3 

as
 a

 fi
xe

d 
ef

fe
ct

 (F
ig

ur
e 

5A
, F

). 
Th

e 
co

lu
m

ns
 o

f p
in

k 
pl

ot
tin

g 
sy

m
bo

ls
 

in
di

ca
te

 m
ar

ke
rs

 a
ss

oc
ia

te
d 

by
 B

LI
N

K
 a

lg
or

ith
m

 w
ith

 H
IT

 (t
ria

ng
le

 p
oi

nt
 u

p)
, H

S
I (

fil
le

d 
tr

ia
ng

le
 p

oi
nt

-u
p 

bl
ue

), 
an

d 
P

C
A

1 
(tr

ia
ng

le
 p

oi
nt

 d
ow

n)
 in

di
ce

s,
 u

si
ng

 E
M

M
A

 a
s 

a 
ra

nd
om

 e
ffe

ct
 a

nd
 T

E
S

S
3 

as
 a

 fi
xe

d 
ef

fe
ct

 
(F

ig
ur

e 
5G

, L
). 

Th
e 

co
lu

m
ns

 o
f r

ed
 s

ta
rs

 in
di

ca
te

 m
ar

ke
rs

 a
ss

oc
ia

te
d 

w
ith

 g
en

es
 re

la
te

d 
w

ith
 th

e 
H

S
 re

sp
on

se
, s

uc
h 

as
 a

ct
iv

at
io

n 
of

 h
ea

t s
ho

ck
 p

ro
te

in
s 

(H
S

P
s)

 a
nd

 a
bi

ot
ic

 s
tr

es
s 

si
gn

al
in

g.
 R

eg
io

ns
 a

re
 d

efi
ne

d 
he

re
 a

s 
ov

er
la

pp
in

g 
1,

00
0-

bp
 s

ec
tio

ns
 th

at
 fl

an
ke

d 
as

so
ci

at
ed

 m
ar

ke
rs

 (T
ab

le
 2

).

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 95449

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Last-Generation GEA in BeansLópez-Hernández and Cortés

14

(Table S4). The chromosomes with only one gene related to 
heat tolerance were Pv04, Pv05, Pv09, and Pv10. Pv07 was 
the only chromosome that did not report gene related to heat 
tolerance. On the other hand, the PCA1 was the HS index with 
the highest number of genes related to heat tolerance with 14 
genes. Furthermore, the HS indices HSI and HIT had 12 and 9 
genes related to heat tolerance, respectively (Table S4). Also, 
the last-generation GWAS algorithm with the highest number 
of genes related to heat tolerance was FarmCPU with 18 genes. 
The BLINK and SUPER algorithms had 14 and 8 genes related 
to heat tolerance, respectively (Table S4).

From 15 significant-GEA models, PCA1FARMCPU-PC-EMMA, 
PCA1BLINK-PC-EMMA, HITSUPER(CMLM)-PC-EMMA, HSIFARMCPU-TESS3-

EMMA, HSIBLINK-PC-EMMA, and HSIFARMCPU-PC-EMMA were the 
models with the highest number of genes related to heat 
tolerance with nine, eight, five, five, four, and four genes, 
respectively. On the other hand, HSISUPER(CMLM)-PC-EMMA, 

PCA1SUPER(CMLM)-PC-EMMA, HITBLINK-TESS3-EMMA, HITBLINK-PC-EMMA, 
PCA1FARMCPU-TESS3-EMMA, PCA1BLINK-TESS3-EMMA, HITFARMCPU-

TESS3-EMMA, and HITFARMCPU-PC-EMMA were the models with the 
fewest number of genes related to heat tolerance with three, 
three, three, three, two, two, two, and two genes, respectively. 
HSIBLINK-TESS3-EMMA was the only GEA model that had no 
associated genes (Table 1).

A total of 22 genes flanked 24 loci because three different copies 
of the HSP40 (Wang et al., 2004) gene were reported on three 
different chromosomes (Pv02, Pv03, and Pv06) using eight GEA 
models that incorporated HIT and HSI as response environmental 
variables. Four other genes from the set of 22 were also related to 
pathways of response to HS, such as activation of HSPs [MED23 
(Kim et al., 2004), MED25 (Mathur et al., 2011), and HSFB1 (Ikeda 
et al., 2011) in Pv02; and HSP20 (Lopes-Caitar et al., 2013) in Pv08]. 
This set of five genes (HSP20, HSP40, MED23, MED25, and HSFB1) 
was recovered by 11 redundant GEA models [HITBLINK-PC-EMMA, 

TABLE 2 | List of 24 single-nucleotide polymorphism (SNP) markers associated and flanked (genomic window of 1 kb) to 22 genes related with the heat stress (HS) response 
such as activation of heat shock proteins (22.73%), abiotic stress signaling (18.18%), germination and seedling development (18.18%), flowering time (9.09%), protein domain 
thermostability (9.09%), molecular chaperones (9.09%), and stability of the cell wall (4.55%) using PhytoMine B and reference genome of common bean v2.1.

Gene Name GEA Model Associated SNPs Gen

Activation of heat shock proteins—five genes (22.73%)

Phvul.003G021100 HITSUPER(CMLM)-PC-EMMA S1_103273611 MED23
Phvul.003G028300 HITSUPER(CMLM)-PC-EMMA S1_104075622 MED25
Phvul.003G038600 HITSUPER(CMLM)-PC-EMMA, HSISUPER(CMLM)-PC-EMMA, HITBLINK-PC-EMMA S1_105404421 Hsp40—Pv03
Phvul.002G136100 HSIFARMCPU-PC-EMMA, HITFARMCPU-PC-EMMA, HSIBLINK-PC-EMMA, HIT BLINK-PC-EMMA S1_80309359 Hsp40—Pv02
Phvul.006G182100 HITFARMCPU-TESS3-EMMA, HITBLINK-TESS3-EMMA S1_268677251 Hsp40—Pv06
Phvul.002G019100 HSIFARMCPU-TESS3-EMMA S1_54254560 HSFB1 (HSF4)
Phvul.008G227900 PCA1FARMCPU-TESS3-EMMA, PCA1BLINK-TESS3-EMMA S1_381855152 HSP20

Abiotic stress signaling—four genes (18.18%)

Phvul.008G204500 PCA1SUPER(CMLM)-PC-EMMA S1_379270378 NFY
Phvul.002G142500 PCA1FARMCPU-PC-EMMA, PCA1BLINK-PC-EMMA S1_81263655 AUX_IAA
Phvul.006G014100 HSIFARMCPU-TESS3-EMMA S1_246823134 Phospholipase C PLC
Phvul.001G202000 HSIFARMCPU-PC-EMMA, PCA1FARMCPU-PC-EMMA, HSIBLINK-PC-EMMA, PCA1BLINK-PC-EMMA, 

HITBLINK-TESS3-EMMA

S1_46052073 Auxin response factor

Germination and seedling development–four genes (18.18%)

Phvul.005G175800 HSISUPER(CMLM)-PC-EMMA, HITSUPER(CMLM)-PC-EMMA S1_239620265 Glycoside hydrolases family 28
Phvul.002G016700 HSIFARMCPU-TESS3-EMMA S1_53999562 Family AP2/ERF
Phvul.001G171600 HSISUPER(CMLM)-PC-EMMA, PCA1SUPER(CMLM)-PC-EMMA S1_42870591 Ankyrin-B (Ankyrin-2)
Phvul.011G054400 PCA1FARMCPU-PC-EMMA, PCA1BLINK-PC-EMMA S1_469234219 Pkinase_Tyr

Flowering time—two genes (9.09%)

Phvul.006G119900 PCA1SUPER(CMLM)-PC-EMMA S1_263134744 Poly(A) polymerase PAP
Phvul.004G017600 HITSUPER(CMLM)-PC-EMMA, PCA1FARMCPU-TESS3-EMMA, HSIFARMCPU-TESS3-EMMA, 

PCA1BLINK-TESS3-EMMA

S1_155643598 MBD9

Protein domain thermostability—two genes (9.09%)

Phvul.011G058100 PCA1FARMCPU-PC-EMMA, PCA1BLINK-PC-EMMA S1_469639214 Zinc finger A20 and AN1
Phvul.002G287600 PCA1FARMCPU-PC-EMMA, HSIFARMCPU-PC-EMMA, HSIBLINK-PC-EMMA, PCA1BLINK-PC-EMMA S1_97861798 S1

Molecular chaperones—two genes (9. 09%)

Phvul.009G032500 HSIFARMCPU-TESS3-EMMA S1_391075082 14-3-3 proteins family
Phvul.010G024400 PCA1FARMCPU-PC-EMMA, PCA1BLINK-PC-EMMA S1_424636676 FKBP

DNA transcription—two genes (9. 09%)

Phvul.008G022950 PCA1FARMCPU-PC-EMMA, PCA1BLINK-PC-EMMA S1_325947871 BRIX
Phvul.006G130200 HSIFARMCPU-PC-EMMA, HITFARMCPU-PC-EMMA, PCA1FARMCPU-PC-EMMA, HSIBLINK-PC-EMMA, HITBLINK-

PC-EMMA, HITFARMCPU-TESS3-EMMA, HITBLINK-TESS3-EMMA

S1_264118438 YTH protein domain

Stability of the cell wall—one gene (4.55%)

Phvul.001G267000 PCA1FARMCPU-PC-EMMA, PCA1BLINK-PC-EMMA S1_51236796 GAE6

B https://phytozome.jgi.doe.gov/pz/portal.html
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HITBLINK-TESS3-EMMA, HITFARMCPU-PC-EMMA, HITFARMCPU-TESS3-EMMA, 
HITSUPER(CMLM)-PC-EMMA, HSISUPER(CMLM)-PC-EMMA, HSIBLINK-PC-EMMA, 
HSIFARMCPU-PC-EMMA, HSIFARMCPU-TESS3-EMMA, PCA1BLINK-TESS3-EMMA, 
and PCA1FARMCPU-TESS3-EMMA] (Table  2). These precursor genes 
of HSPs can play a crucial role in protecting plants against stress 
by reestablishing normal protein conformation and thus cellular 
homeostasis (Wang et al., 2004). Four significant SNP markers 
were found within the coding sequencing of the duplicated HSP40 
genes (Pv02 and Pv06), MED23 and MED25. We also found two 
genes associated with protein domains related to thermostability 
in plants such as S1 in Pv02 and Zinc finger A20 and AN1 (Dixit 
and Dhankher, 2011) in Pv11 (Table 2).

We also recovered nine genes associated with biological processes 
likely correlated with plant tolerance to high temperatures, such 
as flowering time (MBD9 in Pv04 and PAP in Pv06) (Peng et al., 
2006; Trost et al., 2014), regulation of molecular chaperones (FKBP 
in PV10 and 14-3-3 proteins in Pv09) (Wang et al., 2004; Gollan 
et al., 2012), germination and seedling development [Pkinase_Tyr 
family in Pv11, Ankyrin-B in Pv01 (Hanks and Quinn, 1991; Bae et 
al., 2008), glycoside hydrolase GH family (González-Carranza et al., 
2002) in Pv05, and transcription factors family AP2/ERF (Jofuku et 
al., 1994; Büttner and Singh, 1997) in Pv02], and cell wall stability 
(GAE6 in Pv01) (Usadel et al., 2004). Additionally, four genes were 
involved in the signaling pathways of abiotic stress via abscisic acid 
[histone-like transcription factors NFYB (Warpeha et al., 2007) in 
Pv08 and phospholipase C PLC (Peters et al., 2010) in Pv06] and 
auxin (auxin response factor in Pv01 and AUX_IAA in Pv02) 
(Hagen and Guilfoyle, 2002; Ellis et al., 2005) (Table 2). On the other 
hand, since HS compromises molecular processes inherent to DNA 
transcription, it is not unexpected that we found two transcription 
factors [BRIX (Weis et al., 2015) in Pv08 and protein domains 
YTH (Wang et al., 2014a) in Pv06] involved in plant development 
and response to abiotic stress such as drought and heat. Overall, 
the biological processes related to HS over-represented among the 
associated genes were thermal shock protein activation (22.73%), 
abiotic stress signaling (18.18%), and germination and seedling 
development (18.18%) (Table 2).

Additionally, we explored a genomic window of 81 kb (40.5 kb 
upstream to 40.5 kb downstream of the associated SNP using the 
common bean v2.1, Table S5) based on LD criterion, finding 
541 new genes for a total of 578 genes. Among the 578 genes, we 
found eight genes related to HSPs (three HSP40, two HSP20, one 
HSFA5, and two HSP17.6) in addition to the five genes found 
in the window of 1 kb (three HSP40, one HSP20, one HSFB1, 
one MED23, and one MED25) for a total of thirteen genes. The 
eight new genes related to HSP were distributed like this: three 
HSP40 in chromosomes Pv01, Pv06, and Pv07; two HSP20 in 
chromosomes Pv05 and Pv08; one HSFA5 in chromosome in 
Pv01; and two HSP17.6 in chromosome Pv08.

Last-Generation GWAS Models 
Complemented Each Other Despite 
Some Redundancy
Based on the previous gene recovery and classification, 11 GEA 
models were the best at explaining the activation of HSPs as the 

genetic basis of heat tolerance, by reporting seven loci across five 
chromosomes (Tables 2 and S3) as potential candidates to be 
integrated into breeding programs. These seven loci were related 
to genes belonging to the HSPs’ activation signaling pathway. 
From these 11 GEA models, the ones that best explained the HS 
indices were HITFARMCPU-PC-EMMA (68.71%), HSIFARMCPU-PC-EMMA 
(67.83%), and PCA1FARMCPU-PC-EMMA (61.19%). In other words, 
the last-generation GWAS model families that best explained 
the HS indices were FarmCPU and BLINK. Meanwhile, SUPER 
models reported the weakest effects (42.86%) (Table 1).

Among the 11 most-explanatory GEA models, 10 models, 
distributed in four main clusters, were redundant. HSIFARMCPU-

TESS3-EMMA was the unique non-redundant model that captured a 
gene related to heat tolerance (HSFB1) (Table 2). The clustering 
criterion was that models within the same cluster captured 
the same gene. The first cluster had three models (HITSUPER-PC-

EMMA, HSISUPER-PC-EMMA, and HITBLINK-PC-EMMA) that reported a 
paralogous copy of the HSP40 gene in chromosome Pv03. The 
second cluster had four models (HITBLINK-PC-EMMA, HSIFARMCPU-

PC-EMMA, HITFARMCPU-PC-EMMA, and HSIBLINK-PC-EMMA) that reported 
a paralogous of the same gene in chromosome Pv02. The third 
cluster had two models (HITFARMCPU-TESS3-EMMA and HITBLINK-

TESS3-EMMA) that identified the other paralogues of HSP40 in 
chromosome Pv06. The fourth cluster was made of two models 
(PCA1FARMCPU-TESS3-EMMA and PCA1BLINK-TESS3-EMMA) that captured 
the same HSP20 gene in chromosome Pv08. On the other hand, 
the genes that were captured by non-redundant models were 
MED23 and MED25 (both with HITSUPER-PC-EMMA) and HSFB1 
(with HSIFARMCPU-TESS3-EMMA). The HITSUPER-PC-EMMA model was 
not redundant with other models when capturing these two 
genes, but this model was redundant with the first cluster when 
capturing the Pv02 HSP40 paralogues.

The HITBLINK-PC-EMMA model simultaneously reported the 
paralogous HSP40 gene in chromosomes Pv02 (SNP marker 
S1_80309359, effect = 56.22%) and Pv03 (SNP marker 
S1_105404421, effect = 56.74%), from the first and second clusters, 
respectively. The LD between both SNP markers reported by 
HITBLINK-PC-EMMA had an R2 of 6.2% (P-value = 0.045). In other 
words, both SNP markers were recovered by the same model 
(HITBLINK-PC-EMMA) and accounted for different effects of paralogous 
copies of the HSP40 gene in different chromosomes. So we selected 
the HITBLINK-PC-EMMA model as the representative model of the 
first and second clusters. On the other hand, we selected the most 
explanatory models (highest effects) as representative models for 
the third and fourth clusters. Thus, we chose the HITBLINK-TESS3-

EMMA model (effect = 60.86%) as the representative model of the 
third cluster (Table 1). This model identified the HSP40 gene 
in chromosome Pv06. Finally, we selected the PCA1BLINK-TESS3-

EMMA model (effect = 48.59%) as the representative model of the 
fourth cluster (Table 1). This model captured the HSP20 gene in 
chromosome Pv08. Therefore, the 11 models that best explained 
the activation of HSPs can be condensed into five non-redundant 
models, which are HITBLINK-PC-EMMA, HITSUPER-PC-EMMA, HSIFARMCPU-

TESS3-EMMA, HITBLINK-TESS3-EMMA, and PCA1BLINK-TESS3-EMMA. Each of 
these five non-redundant GEA models captured a unique gene 
of the HSPs’ activation signaling pathway, including regulators 
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of mediators, activators, and expression genes (HITBLINK-PC-EMMA 
captured HSP40 in Pv03 and Pv02, HITSUPER-PC-EMMA captured 
MED23 and MED25, HSIFARMCPU-TESS3-EMMA captured HSFB1, 
HITBLINK-TESS3-EMMA captured HSP40 in Pv06, and PCA1BLINK-TESS3-

EMMA captured HSP20) (Table 2).

DISCUSSION

The discriminatory power provided by kinship covariates used 
as random effects has been of great interest in the development 
of promising GWAS algorithms (CMLM, SUPER, FarmCPU, 
and BLINK). However, last-generation GWAS algorithms have 
given greater importance to the selection of SNP markers for 
the kinship reconstruction than to the reconstruction method 
itself. The three HS indices (HIT, HSI, and PCA1) and 15 
last-generation GWAS models that generated significant 
results captured complementary components of the genetic 
architecture of heat tolerance. We found a total of 24 loci 
associated to 22  genes related to biological processes of the 
HS response in plants. Also, among the 24 loci, we captured 
seven loci as potential candidates to be integrated into breeding 
programs, since they were flanking five genes belonging to the 
signaling pathway that activates HSPs.

Bioclimatic Indices Capture 
Complementary Genetic Effects 
Conferring Heat Tolerance
Each HS index captures a different facet of the HS event. The HIT 
index uses accumulated information of maximum temperatures 
during the reproductive phase of common bean and therefore 
is more informative over time in capturing extreme values 
related to HS. Because of this dynamic nature of HIT, models 
that integrated HIT were more successful at capturing genes 
related to the activation of HSPs. In addition, the HITSUPER-

PC-EMMA model, which integrates the HIT index as a response 
variable, captured unique results that no other model recovered, 
by reporting key genes in the activation of HSPs such as MED23 
and MED25 activators, which are key genes in the reconstruction 
of the genetic basis of heat tolerance.

On the other hand, the HIS index is built on thresholds of 
maximum temperature during the reproductive phase reported 
by some authors for plants in the tropics (Gonçalves et al., 1997; 
Caramori et al., 2001; Silva et al., 2007; Rainey and Griffiths, 
2019). Thus, this index could be more informative phenologically 
in capturing extreme values related to HS events. This is based on 
the fact that models constructed with HIS tended to capture more 
unique genes than any other index. Furthermore, HSIFARMCPU-

TESS3-EMMA was the only model that captured the HS gene heat 
shock factor HSFB1 (HSF4). Among the set of genes captured 
by 11 GEA models, HSF4, a regulatory gene in the expression 
of HSPs in Arabidopsis thaliana (Ikeda et al., 2011), is the gene 
that has greater regulatory importance both in the activation of 
HSPs and other molecular mechanisms of response to abiotic 
stress. Then, although the HIS index fails to capture the amount 
of genes that the HIT index did, perhaps because of its stationary 
nature, it manages to identify unique results that are essential 

to reconstruct the complexity of the genetic effects that confer 
heat tolerance.

Finally, the index based on PCA1 exhibits variability that the 
first two indices did not offer. PCA1 integrates other bioclimatic 
variables besides Tj, yet still related to abiotic stress events. The wide 
variability offered by PCA1 is evident in the large coverage of the 
GEA models that relied on this index. These models capture more 
candidate genes than the previous ones (14 from 22 genes). They also 
capture more biological processes related to HS (e.g. abiotic stress 
signaling, germination and development of seedlings and flowering 
time). However, they recover few genes related with the activation of 
HSPs proteins. The models PCA1FARMCPU-TESS3-EMMA and PCA1BLINK-

TESS3-EMMA capture unique genes such as HSP20, reported in soybean 
as activator of HSPs (Lopes-Caitar et al., 2013), and reported in 
common bean as one of the three most over-expressed genes under 
HS using RNA-sequencing (Soltani et al., 2019).

Each index captures unique genes associated with the activation 
of HSPs, but each of them also identifies different paralogous copies 
of the same gene. The models that used the HSI and HIT indices, 
recover genes upstream to HSPs genes in the pathway of activation 
of HSPs (i.e. HSFB1, MED23, and MED25). On the other hand, 
genes of the family of low molecular weight sHSPs (small HSPs), 
such as HSP40, are found in Pv02 and Pv03 chromosomes using 
the HIT and HSI indices, and in Pv06 chromosome using the HIT. 
Also, other low molecular weight HSPs such as HSP20 are captured 
by the PCA1 index. Thus, models that integrate different indices 
manage to identify mediating, activating and expression genes 
(sHSPs), providing a more comprehensive understanding of the 
genetic architecture of heat tolerance. Although the three indices 
fail to capture all the conserved families of HSPs such as Hsp70, 
Hsp60, Hsp90 and Hsp100, they detect associations flanking several 
genes of the family sHSPs, such as HSP20 and HSP40, this is possibly 
because sHSP family is the most prevalent in plants (Vierling, 1991). 
In addition, gene diversification and subspecialization may reflect 
molecular adaptation to stress conditions that are unique to specific 
populations (Wang et al., 2004). On the other hand, high abundance 
of sHSPs in multiple cellular compartments suggests that they may 
have an important role in acquisition of stress tolerance in plants 
(Wang et al., 2004). In this sense, the expression of sHSPs genes, as 
those detected in this study by means of the three different indices, 
despite not being the proteins that have higher folding potential 
(as Hsp70 and Hsp90), can be key regulatory steps of the molecular 
response to HS (by modulating genes such as HSFB1, MED23, and 
MED25, that we also managed to detect).

An Assortment of Various Last-Generation 
GWAS Models Offer Better Alternatives for 
GEA Studies
Each last-generation GWAS algorithm implemented in this study 
differs in the internal strategy that uses to reconstruct the random 
Kinship covariable. While the kinship method is consistent 
across algorithms, the implementation of Pseudo QTNs differs. 
On the other hand, a prerequisite for GWAS models is the use 
of fixed covariables for population structure, being the principal 
components analysis (PC) the most traditional method. However, 
the generation of alternative strategies such as the one implemented 
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in TESS3, which is more powerful to reconstruct the stratification 
of the population as evidenced by the works of Caye et al. (2016), 
Ariani et al. (2018) and Varshney et al. (2017), led us to consider 
TESS3 as a promising method to be integrated into the GEA 
models. The results obtained by models that use TESS3 as a fixed 
covariate, demonstrate its importance to capture candidate genes 
not recovered by any other GEA model, such as an activator of HSP 
proteins (HSFB1) and two HSPs of low molecular weight (HSP20, 
and HSP40 in Pv06). On the other hand, the implementation of 
the PC method as a fixed covariate in GEA models is also useful, 
because the models that integrate this method capture unique 
genes such as HSPs of low molecular weight (HSP40 genes in Pv02 
and Pv03) and activators of HSP proteins (MED23 and MED25).

In summary, 30 GEA models were built with TESS3 and PC as 
fixed covariables, from an improved traditional MLM algorithm 
(CMLM) and three last-generation GWAS models (SUPER, 
FarmCPU, and BLINK). Of the 30 GEA models, 14 used last 
GWAS algorithms and reported genes linked to biological 
processes related to HS. A total of 11 of these 14 models captured 
genes related to molecular mechanism of activation of HSPs 
proteins. This molecular process was given greater focus due to 
its importance for heat tolerance and its relationship with other 
stresses. The 11 GEA models that identified HSP activation 
genes can be condensed into five non-redundant GEA models, 
conserving the same number of associated genes.

We did not find the ‘holy grail’ for GWAS models, which is 
a unique model that would summarize all 14 GEA models. The 
majority of the 14 GEA models that used FarmCPU and BLINK 
algorithms are redundant in the results related to activation of 
HSPs, regardless whether these considered TESS3 or PC as fixed 
covariables. The coincidence between the results obtained by 
FarmCPU and BLINK had already been reported by the authors of 
the BLINK algorithm for flowering time in corn (Huang et al., 2019), 
and was attributed to the way both strategies are conceived. They 
operate by separating the mixed model into a fixed sub-model and 
a random sub-model, differing only in the parameter-estimation 
method (Huang et al., 2019). This is why both methodologies 
converge to the same results for heat tolerance in common beans 
and flowering time in corn. However, in our study an exception to 
the redundancy between HITBLINK-PC-EMMA and HITFARMCPU-PC-EMMA 
algorithms was that the exact identity of the associated markers 
within the candidate genes differed. Besides, despite that the authors 
of BLINK reported that this method captures more associated genes 
to flowering time than FarmCPU, we found the opposite pattern 
when it comes to heat tolerance in common bean. This suggests 
that the algorithms could be sensible to the use of different response 
variables (e.g. environmental vs. phenotypic).

The Q–Q plot can provide information on two main aspects of 
GWAS data: whether the statistical testing is well controlled for 
challenges such as population stratification and whether there is 
any association. In the last aspect, we could see some associations 
at the end of the Q–Q plot crossing the Bonferroni threshold. 
The population structure control is still a challenge in GWAS 
and our Q–Q plots show signs of inflation. This inflation could 
partially be produced by causal SNPs (or SNPs in LD with causal 
variants), that at the same time are strongly differentiated among 
gene pools. This scenario is possible because both gene pools 

come from contrasting environments in terms of exposure to HS 
events. Mesoamerican genotypes generally experience more heat 
events than Andean genotypes (Figure S8).

In conclusion, the five non-redundant GEA models that best 
explain the activation of HSPs as the genetic basis of heat tolerance 
are HITBLINK-PC-EMMA, HITSUPER-PC-EMMA, HSIFARMCPU-TESS3-EMMA, 
HITBLINK-TESS3-EMMA and PCA1BLINK-TESS3-EMMA. Each of these models 
captures a key gene in the pathway of activation of sHSPs, including 
genes involved in the regulation, activation and expression of 
the signal (Vierling, 1991). Therefore, using an assortment of 
last-generation GWAS methods, various environmental indices 
and different methods to account for fixed covariates, is much 
more informative than trying to select a single optimum GWAS 
model. Our work presents for the first time a powerful strategy to 
explore GEAs throughout a wide range of different last-generation 
GWAS models. This opens the door for new ways to couple 
environmental information in the study of complex characters, such 
as heat tolerance.

Modern GEA Is Capable of Revealing the 
Genetic Basis of a Complex Adaptive Trait 
Despite Limited Sampling
HS affects several physiological, cellular and molecular processes in 
plant cells, affecting fluidity of the cell membrane (Savchenko et al., 
2002), protein (Ahmad et al., 2009) and cytoskeletal stability (Bita 
and Gerats, 2013), chromatin structure (Khraiwesh et al., 2012), the 
production of reactive oxygen species (ROS) (Camejo et al., 2006) 
as well as metabolic coupling (Bita and Gerats, 2013). Consequently, 
HS generates responses in plant cells at molecular and cellular levels, 
such as activation of HSPs (Wang et al., 2004), calcium signaling 
(Larkindale and Huang, 2004), phosphorylation, changes in the 
transcription (Bita and Gerats, 2013) and hormonal responses via 
Abscisic Acid (Larkindale and Knight, 2002), Ethylene or Auxin 
(Evrard et al., 2013; Larkindale and Huang, 2004). Yet, HS also affects 
processes such as flowering time, germination and abscission of floral 
organs (Bita and Gerats, 2013). The genes reported in this work may 
be causal or in LD with causal genes, involved in the majority of these 
processes. Although, we captured at least one gene in each of these 
biological processes, the highest number of associated genes were 
involved in the activation of HSPs. This could be attributed to the 
ability of the sHSPs family (e.g. HSP20 and HSP40) and HSF genes 
(HSFB1) to activate HSPs as well as other physiological, cellular, and 
molecular mechanisms of heat tolerance in plants, such as hormonal 
signaling routes (Wang et  al., 2004), photosystem II protection 
(Kotak et al., 2007, Soltani et al., 2019), DNA translation control 
(Malik et al., 1999) and elimination of reactive oxygen species (ROS) 
(Bita and Gerats, 2013). In addition, if we focused in genes related to 
HSPs, the resolution to detect these proteins decreases with a wider 
window of 81 kb. Among the 578 genes, we found eight genes related 
to HSPs (three HSP40, two HSP20, one HSFA5, and two HSP17.6) 
in addition to the five genes found in the windows of 1 kb (three 
HSP40, one HSP20, one HSFB1, one MED23, and one MED25) for 
a total of thirteen genes. However, these thirteen genes are the 2,25 
% of the 578 genes found in a genomic window of 81 kb, while in a 
narrower genomic window of 1 kb, the five genes related to HSP are 
the 13.5% of the 37 genes.
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Although we were unable to reconstruct the entire pathways 
of HSP protein activation, hormonal responses, time to flowering 
and seedling development, we found key genes in these biological 
processes, by only using environmental information from the 
accession’s sampling sites. This strategy is valuable in optimizing 
time and costs for association studies using wild material.

We have demonstrated that combining diverse and contrasting 
samples with cautiously synthesized environmental variables, 
through a range of diverse last-generation models, offers an 
unprecedented power for GEA studies in the absence of phenotyping 
and with moderate sample sizes. By doing this, we identified a broad 
genetic basis for heat tolerance in common bean, and captured 
adaptive loci related to the activation of HSPs (HSFB1, MED23, 
and MED25) as well as HSPs of low molecular weight (HSP20 and 
HSP40). Small HSP family genes were actually identified as relevant 
in the recent work by Soltani et al. (2019), where authors detected 
HSP21 as one of the three most over-expressed genes in common 
bean under HS using RNA-sequencing.

On the other hand, the use of traditional GWAS models and 
raw environmental information should be avoided since they lack 
statistical power to detect associated markers. Several authors had 
already pointed this limitation (Cortés and Blair, 2018; Frank et al., 
2016; Lasky et al., 2015). Therefore, we suggest coupling synthesized 
environmental variables with diverse last-generation models, in 
order to reveal more accurately the adaptive genetic variation to 
different types of stress in collections of wild germplasm.

PERSPECTIVES

This study demonstrates that the implementation of last-
generation GWAS models under a GEA framework with carefully 
chosen environmental indices improves the reconstruction of the 
genetic basis of adaptation to HS. New studies across a variety 
of species and populations subjected to different stresses will 
benefit by using last-generation GWAS models within a well 
thought GEA design in order to capture better sources of genetic 
adaptation. We are looking forward to seeing more studies that 
follow these lines within the oncoming years.

On the other hand, the genes identified in this study as 
candidates for heat tolerance have the potential to be used in plant 
breeding programs after validation by means of strategies such 
as gene expression studies and Whole Genome re-Sequencing 
(WGS) (Barbulescu et al., 2018). The latter will make available 
all the genetic variability present in each accession. Additionally, 
it would be ideal that the indices explored in this work were 
contrasted with measurements of heat tolerance in greenhouse 
and at field conditions under controlled treatments (Zuiderveen 
et al., 2016). It would also be appropriate to consider for these 
experiments the same group of accessions used in the present 
work as well as accessions of related species that are well-known 
for their heat tolerance (i.e. Phaseolus acutifolius). Ultimately, 
validated candidate genes could be integrated into molecular 
editing strategies (Lang-Mladek et al., 2010; Pecinka et al., 2010; 
LeBlanc et al., 2018).

As part of a larger project, promissory accessions identified 
in this work will be evaluated together with advanced lines and 

related species under HS conditions at Coastal Colombia. These 
materials are currently undergoing seed multiplication at the 
greenhouses so that field establishment can take place in 2020.

Finally, by exploring the genetic basis of heat tolerance using 
indices constructed from phenotypic information, it will be possible 
to couple GBS and WGS data with last-generation GWAS models 
and genomic selection approaches (Crossa et al., 2011). In parallel, 
there have been recent GWAS developments relying on Artificial 
Intelligence (AI) (i.e. deep learning) and Machine Learning (ML) 
strategies that deserve further exploration under a GEA framework.
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full#supplementary-material

TABLE S1 | Identity of the 78 common bean accessions used in this study. The G 
identification number (from the Genetic Resources Unit at the International Center for 
Tropical Agriculture), country of origin and georeferences. The raw bioclimatic variables 
used are BIO1 = annual mean temperature, BIO5 = maximum temperature of warmer 
months, BIO8 = mean temperature of the wettest quarter, BIO9 = mean temperature 
of the driest quarter, BIO10 = mean temperature of the warmest 4-month period, and 
Tj = average of absolute maximum temperature during the reproductive phase. The 
bioclimatic-based heat indices are the HSI, HIT, and PCA1. The membership value of 
78 common bean accessions using TESS3 algorithm (K = 6).

TABLE S2 | List of notations of GEA models generated by last-generation GWAS 
(SUPER, FarmCPU, and BLINK) and improvement traditional MLM algorithms 
(CMLM). These notations show, for each model, the family of GWAS models 
used and algorithms implemented for random and fixed effects. The models 
were abbreviated as follows: IM-Fc-Rc, where “I” refers to the HS index, “M” is the 
GWAS model family, and “Fc” and “Rc” are the algorithms used to reconstruct 
the fixed and random covariates, respectively.

TABLE S3 | Genome–environment association (GEA) analyses for heat tolerance 
according to last-generation GWAS algorithms (SUPER, FarmCPU, and BLINK) for 
each 270 SNP markers associated with HIT, HSI, and PCA1 indices in 78 common 
bean accessions based on the optimum association GEA analysis (Figures 2–5).

TABLE S4 | Summary statistics of last-generation GWAS algorithms (SUPER, 
FarmCPU, and BLINK). The HS indices and chromosomes (Pv) are presented 
for each SNP marker associated in 78 common bean accessions based on the 
optimum association analysis (Figures 2–5).

TABLE S5 | List of 578 genes flanking 120 associated SNP markers in an 
expanded genomic window of 81 kb using PhytoMine (see note B) and the 
reference genome of common bean v2.1

FIGURE S1 | Boxplot, histogram, skewness, kurtosis, and Shapiro–Wilk statistics of 
the six bioclimatic variables [BIO1 = annual mean temperature (A), BIO5 = maximum 
temperature of warmer months (B), BIO8 = mean temperature of the wettest quarter 
(C), BIO9 = mean temperature of the driest quarter (D), BIO10 = mean temperature 
of the warmest 4-month period (E), and Tj = average of absolute maximum 
temperature during the reproductive phase (F)] and the three HS indices [HSI (G), HIT 
(H), and PCA1 (I)] for the 86 common bean accessions used in this study.

FIGURE S2 | Dispersion diagrams generate by means of Pearson (A) and 
Spearman (B) correlations for all bioclimatic variables and between each HS index.

FIGURE S3 | Heat maps of kinship matrices estimated with the VanRaden 
(A), Loiselle (B), and EMMA (C) algorithms across all 23,373 SNP markers.

FIGURE S4 | Manhattan and Q–Q plots of the exploratory phase of genome–
environment association (GEA) analysis, for heat tolerance in 78 common bean 
accessions based on 23,373 SNP markers according to traditional MLM algorithm 

with the population structure as a fixed effect using the first six principal components 
(Figure 1D). Also, these MLM models use kinship matrix as a random effect by 
means of Loiselle and VanRaden algorithms. These MLM models are HSIMLM-PC-

LOISELLE (A, B), HITMLM-PC-LOISELLE (C, D), PCA1MLM-PC-LOISELLE (E, F), HSIMLM-PC- VANRADEN 
(G, H), HITMLM-PC-VANRADEN (I, J), and PCA1MLM-PC-VANRADEN (K, L). The blue dashed 
horizontal line marks the lax P-value threshold. The red dots are SNP markers that 
systematically crossed the lax threshold in the exploratory phase from all 18 MLM 
models (S1_42870591 in Pv01 and S1_466464831 and S1_471851336 in Pv11). 
Black and green colors highlight different common bean (Pv) chromosomes.

FIGURE S5 | Manhattan and Q–Q plots of the exploratory phase of genome–
environment association (GEA) analysis, for heat tolerance in 78 common bean 
accessions based on 23,373 SNP markers according to a traditional MLM algorithm 
with the population structure using TESS3 (Figure 1F) as a fixed effect. Also, these 
MLM models use kinship matrix as a random effect by means of EMMA and Loiselle 
algorithms. These MLM models are HSIMLM-TESS3-EMMA (A, B),  
HITMLM-TESS3-EMMA (C, D), PCA1MLM-TESS3-EMMA (E, F), HSIMLM-TESS3-LOISELLE (G, H), HITMLM-

TESS3-LOISELLE (I, J), and PCA1MLM-TESS3-LOISELLE (K, L). The blue dashed horizontal line 
marks the lax P-value threshold. The red dots are SNP markers that systematically 
crossed the lax threshold in the exploratory phase from all 18 MLM models 
(S1_42870591 in Pv01 and S1_466464831 and S1_471851336 in Pv11). Black and 
green colors highlight different common bean (Pv) chromosomes.

FIGURE S6 | The Manhattan and Q–Q plots of the exploratory phase of genome–
environment association (GEA) analysis, for heat tolerance in 78 common bean 
accessions based on 23,373 SNP markers according to traditional MLM algorithm 
with population structure as a fixed effect using TESS3 (Figure 1F) and kinship 
matrix as a random effect using the VanRaden algorithm. These MLM models 
are HSIMLM-TESS3-VANRADEN (A, B), HITMLM-TESS3-VANRADEN (C, D), PCA1MLM-TESS3-VANRADEN 
(E, F). The red dots are SNP markers that systematically crossed the lax threshold 
in the exploratory phase from all 18 MLM models (S1_42870591 in Pv01 and 
S1_466464831 and S1_471851336 in Pv11). The Manhattan and Q–Q plots of 
genome–environment association (GEA) analysis, for heat tolerance in 78 common 
bean accessions based on 23,373 SNP markers according to compressed MLM 
algorithms with the population structure using TESS3 (Figure 1F) as fixed effect and 
kinship matrix as a random effect using EMMA algorithm. These CMLM models are 
HSICMLM-TESS3-EMMA (G, H), HITCMLM-TESS3-EMMA (I, J), and PCA1CMLM-TESS3-EMMA (K, L). 
The blue dashed horizontal line marks the lax P-value threshold. Black and green 
colors highlight different common bean (Pv) chromosomes.

FIGURE S7 | Manhattan and Q–Q plots of genome–environment association 
(GEA) analysis by means of SUPER algorithm, for heat tolerance in 78 common 
bean accessions based on 23,373 SNP. GLM model is used in the first step of 
these nine “failed” SUPER models, and the last step used CMLM (A–F) and MLM 
(G–P) algorithms. The nine “failed” SUPER are HSISUPER(CMLM)- TESS3-EMMA 
(A, B), HITSUPER(CMLM)-TESS3-EMMA (C, D), PCA1SUPER(CMLM)-TESS3-
EMMA (E, F), HSISUPER(MLM)-PC-EMMA (G, H), HITSUPER(MLM)-PC-EMMA (I, 
J), PCA1SUPER(MLM)-PC-EMMA (K, L), HSISUPER(MLM)-TESS3-EMMA (M, N), 
HITSUPER(MLM)-TESS3-EMMA (O, P), and PCA1SUPER(MLM)-TESS3-EMMA 
(Q, R). Black and green colors highlight different common bean (Pv) chromosomes.

FIGURE S8 | Historical maximum temperature values obtained from the monthly 
averages from years 1970 to 2000. Extraction of information from WorldClim (see 
note B). Map construction was done through a customized R-Script using the 
raster package of R v. 3.6.1 (R Core Team).
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GWAS-Assisted Genomic Prediction 
to Predict Resistance to Septoria 
Tritici Blotch in Nordic Winter Wheat 
at Seedling Stage
Firuz Odilbekov 1, Rita Armoniené 1,2, Alexander Koc 1, Jan Svensson 3 
and Aakash Chawade 1*

1 Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2 Institute of Agriculture, 
Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Akademija, Lithuania, 3 Nordic Genetic Resource Centre, 
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Septoria tritici blotch (STB) disease caused by Zymoseptoria tritici is one of the most 
damaging diseases of wheat causing significant yield losses worldwide. Identification and 
employment of resistant germplasm is the most cost-effective method to control STB. 
In this study, we characterized seedling stage resistance to STB in 175 winter wheat 
landraces and old cultivars of Nordic origin. The study revealed significant (p < 0.05) 
phenotypic differences in STB severity in the germplasm. Genome-wide association 
analysis (GWAS) using five different algorithms identified ten significant markers on five 
chromosomes. Six markers were localized within a region of 2 cM that contained seven 
candidate genes on chromosome 1B. Genomic prediction (GP) analysis resulted in a 
model with an accuracy of 0.47. To further improve the prediction efficiency, significant 
markers identified by GWAS were included as fixed effects in the GP model. Depending on 
the number of fixed effect markers, the prediction accuracy improved from 0.47 (without 
fixed effects) to 0.62 (all non-redundant GWAS markers as fixed effects), respectively. 
The resistant genotypes and single-nucleotide polymorphism (SNP) markers identified in 
the present study will serve as a valuable resource for future breeding for STB resistance 
in wheat. The results also highlight the benefits of integrating GWAS with GP to further 
improve the accuracy of GP.

Keywords: GWAS - genome-wide association study, genomic prediction (GP), genomic selection (GS), wheat, 
Septoria tritici blotch (STB), Quantitative trait loci (QTL)

INTRODUCTION
Septoria tritici blotch (STB) disease caused by fungal pathogen Zymoseptoria tritici is one of the 
devastating foliar diseases of wheat in the temperate regions worldwide. STB causes significant 
yield losses and additional fungicide expenses (Fones and Gurr, 2015; Torriani et al., 2015). The 
annual harvest losses reach 5% to 10% in the biggest EU wheat producing countries (Fones and 
Gurr, 2015). Cultivation of resistant cultivars in combination with fungicide application is the main 
strategy to control the disease. Besides, a major problem of the intensive use of fungicides is that 
many populations of Z. tritici have rapidly evolved resistance to its active agents (Torriani et al., 
2009; Wieczorek et al., 2015; Cheval et al., 2017). Therefore, novel sources of resistance to STB 
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and their introgression into wheat breeding programs is the most 
economical and environmentally friendly strategy for effective 
management of the disease.

So far, 21 genes are mapped for resistance to STB in wheat 
(Brown et al., 2015). The expression pattern and effect of these 
genes on resistance to STB differ in seedling and adult plant 
stages. For example, Stb16 is expressed and effective at the 
seedling and adult stages of plants while Stb17 is expressed only 
at the adult stage (Tabib Ghaffary et al., 2011). Stb18 is an isolate-
specific resistance gene that shows variable resistance to Z. tritici 
at seedling and adult stages depending on the isolate (Tabib 
Ghaffary et al., 2011). Stb6 and Stb15 are the two most common 
STB resistance genes in the current European germplasm 
(Arraiano and Brown, 2006). Stb15 was found in about 60% of 
cultivars tested but, unlike Stb6, Stb15 is not known to show 
resistance under field conditions (Arraiano et al., 2009; Brown 
et al., 2015). The only qualitative gene for STB resistance Stb6 
(Saintenac et al., 2018) and recently identified avirulence gene 
AvrStb6 of Z. tritici (Zhong et al., 2017) have been shown to be 
in a gene-for-gene relationship. Stb6 is among the most frequent 
STB genes in European wheat germplasm and suggested as the 
most widespread STB gene in the contemporary wheat breeding 
programs (Arraiano and Brown, 2017). However, this gene alone 
is not sufficient to provide adequate resistance to STB, and there 
are no other known resistance genes contributing significantly to 
the reduction of Z. tritici populations in Europe (Arraiano et al., 
2009). The majority of variation in field resistance to STB is 
controlled by quantitative resistance, and the progress in breeding 
for STB resistance over the last 30 years presumably happened by 
the gradual accumulation of minor genes. Recently, it was shown 
that the STB disease symptoms chlorosis, necrosis, and pycnidia 
are under varying genetic control (Odilbekov et al., 2019). 
Therefore, there is a need to search for new sources of durable 
disease resistance to STB for marker-assisted introgression into 
elite wheat cultivars (Fones and Gurr, 2015; McDonald and 
Mundt, 2016).

Wheat landraces are a valuable source of genetic diversity. 
They are adapted to the environmental conditions of their 
place of origin and thus can provide novel sources of disease 
resistance for developing new cultivars adapted to the changing 
climate (de Carvalho et al., 2012; Lopes et al., 2015). Several 
useful agronomic and resistance traits have been introgressed 
from landraces to commercial wheat cultivars including the 
dwarfing gene Rht from the Japanese landrace Shiro Daruma 
(Dreisigacker et al., 2005) and the high grain protein content 
gene NAM-B1 in Fennoscandian wheat (Hagenblad et al., 2012). 
Valuable landraces and old cultivars of winter wheat consisting 
of more than 300 genotypes from Scandinavian countries is 
preserved at the Nordic Genetic Resource Centre (NordGen, 
Alnarp, Sweden), and part of this material was evaluated earlier 
for several agronomic traits and showed high diversity in 
morphological traits (Diederichsen et al., 2012), resistance to 
rust (Randhawa et al., 2016) and powdery mildew (Hysing et al., 
2007). These studies prove that the material stored at NordGen is 
unique and a genetically diverse resource, which can be utilized 
for the improvement of wheat cultivars for Nordic and Baltic Sea 
Region countries (Chawade et al., 2018).

Genome-wide association studies (GWAS) and genomic 
selection (GS), both performed with genome-wide markers 
are important and effective tools for plant breeding. GWAS 
estimates marker effects across the whole genome on the target 
population based on prediction models (Desta and Ortiz, 
2014). Based on linkage disequilibrium (LD), GWAS can 
identify new functional alleles (identify novel genes and QTLs) 
for many agriculturally important traits in diverse germplasm. 
Few GWAS studies were performed for STB resistance in 
European winter wheat accessions (Kollers et al., 2013; 
Miedaner et al., 2013; Vagndorf et al., 2017). Many regions 
associated with resistance to STB in the wheat genome were 
identified in these studies. In a study of 1,055 elite hybrids and 
their corresponding 87 parental lines, Miedaner et al. (2013) 
identified four significant single-nucleotide polymorphisms 
(SNP) associated with STB resistance located on chromosomes 
1B, 2B, 5B, and 6A. Kollers et al. (2013) detected 39 SSR on 2A, 
2D, 3A, 5B, 7A, 7D significantly associated with adult plant 
resistance in a panel of 372 European wheat lines. Four QTL, 
on chromosomes 1B, 2A, 5D, and 7A were highly associated 
with STB resistance in 164 North European cultivars and 
breeding lines (Vagndorf et al., 2017).

GS, on the other hand, enables the selection of superior 
genotypes based on genomic estimated breeding values (GEBV) to 
create models for the prediction of phenotypes in uncharacterized 
populations (Meuwissen et al., 2001). Previous studies have 
shown the feasibility of GS for predicting STB resistance in wheat. 
Juliana et al. (2017) achieved a mean genomic prediction (GP) 
accuracy of 0.45 for adult plant resistance to STB in a population 
of 333 and 314 advanced lines from Centro Internacional de 
Mejoramiento de Maíz y Trigo‘s (CIMMYT) wheat breeding 
program. Muqaddasi et al. (2019) investigated the potential 
of GP of adult stage STB infection in a European winter wheat 
panel of 371 elite varieties, resulting in both additive and non-
additive prediction models centered around a mean GP accuracy 
of approximately 0.43. Spindel et al. (2016) described the new 
combined GS + GWAS model based only on the results of GWAS 
run using GS training population data. GS + GWAS has some 
benefits as the method does not require additional data as the same 
phenotype and genotype data set is used, prediction accuracy can 
be enhanced, and it can be more accessible to breeders as it does 
not require extensive knowledge on the underlying genetics of a 
trait of interest (Spindel et al., 2016).

Previous studies were primarily focused on resistance to 
STB in the adult stage of winter wheat germplasm. One of the 
main goals of this project was to characterize seedling stage 
resistance to STB in winter wheat landraces and old cultivars 
of Nordic origin which are well adapted to the Nordic climate. 
The current study relies on a collection of 175 winter wheat 
accessions, released between 1900 and 2012. In this work, this 
material was evaluated for seedling-stage resistance to STB 
disease. The objectives of this study were (i) to detect novel STB 
disease resistance loci at the seedling stage by performing GWAS 
analysis; (ii) to identify candidate genes to STB resistance in 
wheat; (iii) to evaluate GP (GP) for selection for STB resistance; 
and (iv) to employ GP+GWAS to further improve the accuracy 
of GP.
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MATeRIALS AND MeThODS

Plant Material
The material in this study comprised of 175 winter wheat cultivars 
and landraces (hereafter genotypes) mainly from Scandinavian 
countries (Supplementary Table 1). The collected genotypes were 
released between 1900 and 2012 and representing a century of winter 
wheat breeding history of the region. Four genotypes originating 
from Germany were also included as they have been widely grown 
in the Scandinavian area. The seeds were obtained from Nordic 
Genetic Resources Centre, Alnarp, Sweden (NordGen).

Growth Conditions
The seeds were placed on a moist filter paper in Petri dishes and 
kept for 4 days at +4°C in dark. Afterwards, they were transferred 
to room temperature conditions for two days for germination. 
Thereafter, the germinated seeds were sown in plastic pots (8 × 
8 × 8 cm) filled with peat substrate. Two seeds of each genotype 
were sown per pot. Plants were grown in the Biotron greenhouse 
chamber at 24°C with a 16-h photoperiod and 60% humidity. 
The light intensity was set and controlled at 250 µmol m−2∙s−1. 
The samples were arranged in an augmented design with eight 
blocks designed with the R package Agricolae (Mendiburu, 
2017). Four genotypes were used as checks in each block to 
control block effect, namely, Nimbus (susceptible), Nelson and 
Target (moderately resistant), and Kranich (resistant). The entire 
experiment was performed twice with 1-month interval, and two 
replications were done at each occasion.

Inoculation and Disease Assessment
The Z. tritici strain was isolated from typical STB lesions on leaves 
of winter wheat collected in southern part of Sweden during 2015, 
and the inoculum was prepared as described previously (Odilbekov 
et al., 2018). Second and third leaves of the seedlings were marked 
close to the stem with a permanent marker before inoculation. 
The twentyone day old wheat seedlings were inoculated with Z. 
tritici inoculum using a hand sprayer with a spore concentration 
of 107 spores ml–1. The inoculum was applied on the leaves three 
times, and leaves were allowed to dry for 1 h each time. The 
inoculated seedlings were transferred to fully controlled daylight 
chamber and kept 72 h under close to 100% relative humidity 
at 24°C with a 16-h photoperiod and a light intensity of 250 
μmol m−2∙s−1. Relative humidity was reduced to 65% 72 h post-
inoculation. Percentage of the necrotic area on the inoculated 
leaf surface (from 0% to 100%) was visually scored at 13, 16, and 
19 days post-inoculation (dpi). The lesion development over the 
assessment period was summarized through the computation of 
the relative area under the disease progress curve (rAUDPC). The 
entire experiment was repeated twice.

Genotypic Data and Population Structure
The samples for DNA extraction were collected from 6-week-old 
seedling and the DNA extraction and genotyping of the samples 
was performed by TraitGenetics GmbH, Germany (http://www.

traitgenetics.com/en/). The samples were genotyped with a 
20K SNP wheat marker array. A total of 6,097 SNPs were used 
for GWAS after removing SNPs with more than 20% missing 
data as well as a minor allele frequency less than 5%. Principal 
component analysis (PCA) was done with the software Simca 14 
(Umetrics, Sweden).

GWAS and GP
GWAS analysis was done with the GAPIT package (v3.0) in R 
(Tang et al., 2016). The primary model was constructed with the 
GLM algorithm (Lipka et al., 2012) with 10 principal components 
as covariates and MAF threshold of 0.05. A QTL was considered 
significant at the threshold of adjusted false discovery rate (FDR) < 
0.05. New GWAS models were developed using MLM, MLMM, 
FarmCPU, and Super algorithm in GAPIT for verification of the 
QTL obtained with GLM. GP modeling was done using the R 
package rrBLUP (v4.6) (Endelman, 2011) for ridge-regression-
based genome-wide regression. The rrBLUP model for genome-
wide regression assumes the form y = Xb + Zu, where X and Z 
are the design matrices for fixed and random effects, respectively, 
b and u are vectors of fixed and random effects, and y is a vector 
of phenotypic values. Similar to the method proposed by Spindel 
et al. (2016), significant markers identified by GWAS results were 
included as fixed effects in the GS model and removed from the 
design matrix of random effects. To identify the best subset of 
GWAS-selected markers to include as fixed effects, all possible 
permutations of available GWAS-selected markers, were evaluated 
with respect to average model accuracy. Number of markers in the 
marker sets ranged from one (a single marker added as fixed effect) 
to five (all available markers). The GP models were validated on a 
set of 500 random 80/20 train/test set splits. Model accuracy was 
assessed by calculating Pearson’s correlation coefficient between 
the predicted and observed STB resistance for each of the train/
test sets and estimating the average of all correlation values for 
each run. The best performing model was selected on the basis of 
the highest average model accuracy. The GP models with markers 
fitted as fixed effects were compared to a GP model which did 
not use GWAS-selected markers as fixed effects, instead fitting all 
available markers as random effects, and was also compared to 
models that mimicked the model configuration of the fixed effect 
models described above, but which instead sampled random 
markers (as opposed to selecting markers based on highest 
significance in a GWAS). The subset sizes used for the models 
using the randomly selected markers ranged from one to five. 
Each subset size was evaluated five times, with a new random draw 
of markers. The initially described model which fit all markers as 
random effects, and the models fitting randomly selected markers 
as fixed effects, were all validated against the same 500 train/test 
splits as the GWAS-selected marker models.

Identification of Candidate Genes
The physical positions of the significant markers from the GLM 
model were identified by BLASTing their sequences against 
the IWGSC RefSeq v1.0 genome. The physical location of 
flanking markers BobWhite_c42716_71 and BS00110231_51 
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fell into range of 623,712,765 to 623,989,423 bp in the region 
of chromosome 1B. The candidate genes physically located 
within this range were identified, and their gene annotation was 
extracted from IWGSC RefSeq v1.0 genome.

ReSULTS

Phenotypic Diversity
The Z. tritici isolate was evaluated on a differential set of wheat 
cultivars with known Stb resistance genes (Supplementary 
Figure 1). The evaluation of 175 genotypes showed that the 
phenotypic distribution of STB severity followed approximately 
a normal distribution (Figure 1). Highly significant (p < 0.05) 
phenotypic differences in STB severity were observed in the 
germplasm (Table S1). The mean of the rAUDPC values ranged 
from 0.33 for the most resistant and 2.07 for most susceptible 
genotypes, respectively. Tukey multiple comparison test showed 
that the genotypes Kranich, Starke, Galicia, and Cymbal 
exhibited a higher level of resistance to STB while the lower level 

of resistance was found in genotypes such as Penta, Sejet, Svea I, 
and Gluten.

Population Structure
To identify underlying genetic differences, PCA and Kinship 
analyses were performed on the genotypes based on 6,097 
SNPs. The first and second principal components accounted for 
12.3% and 10.03% of the variance, respectively. The genotypes 
were clustered into three major groups, and the clustering was 
mainly based on their geographic origin (Figure 2A). The 
genotypes with origin from Denmark and Finland formed two 
very distinct clusters, whereas the Swedish genotypes could be 
considered intermediate between these two clusters. The result 
from PCA revealed that most of the genotypes with a higher 
level of resistance belong to the modern wheat cultivars while 
most of the susceptible genotypes belonged to older released 
ones (Figures 2B, C). A similar result to PCA was also observed 
by using Kinship analysis where three different clusters were 
identified (Figure 3).

Genome-Wide Association Analysis
The GWAS was performed using the GLM model, and both 
population structure and kinship (K) were taken into account 
to control pseudo associations (Figure 4). As is shown by the 
Manhattan plot and quantile-quantile plot (QQ plot) (Figures 
4A, D), six significant (FDR < 0.05) SNP markers for rAUDPC 
of STB were detected on chromosome 1B. The identified QTL 
was verified using four additional GWAS models, namely, MLM, 
MLMM, FarmCPU, and Super and the QTL was found to be 
statistically significant (FDR < 0.05) in MLMM, FarmCPU, and 
Super results (Supplementary Figure 2). All six markers are 
located within a 2 cM distance on chromosome 1B (97–99 cM), 
thus, suggesting that it could potentially be a single QTL (Table 1, 
Figure 5). Additional QTL were also identified on chromosome 
1A, 2B, 3A, and 5A in at least two GWAS models each (Table 1).

Candidate Genes Located in the QTL on 
Chromosome 1B
In total, seven candidate genes were identified that were localized  
within the GWAS identified loci on chromosome 1B (Figure 5).  

FIGURe 1 | Frequency distribution of adjusted rAUDPC mean of STB score 
of two greenhouse experiments.

FIGURe 2 | Principal component analysis (PCA) of 175 winter wheat cultivars/landraces coloured and labelled by (A) country of origin, (B) released year and 
(C) resistance/susceptibility. PCA was based on the allele frequencies of 6097 SNP markers. R, resistant; MR, moderate resistant; S, susceptible.
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Among these genes, two genes code for F-box protein (Traes 
CS1B01G390100, TraesCS1B01G390500) and two genes for ATP-
dependent dethiobiotin synthetase BioD (TraesCS1B01G390200, 
TraesCS1B01G390300). The other three genes code for B3 domain-
containing protein (TraesCS1B01G390400), Rotundifolia-like 
protein (TraesCS1B01G390600), and Hexosyltransferase (Traes 
CS1B01G390000).

Genomic Prediction
GP method was applied based on all SNPs, and the prediction 
of the genomic breeding value for each line was evaluated using 
500 randomly generated train/test sets. The average correlation 
between observed tolerance to STB and predicted STB by GP 
was 0.47 in a model with no significant markers included as 
fixed effects. The GWAS results were used to select markers to 
fit as fixed effects. Significant markers were pooled from the 
GLM, MLM, MLMM, FarmCPU, and Super models. The six 
significant SNP markers identified in proximity to each other 
on chromosome 1B were reduced to the marker BobWhite_
c42716_71 on the basis of the lowest FDR-adjusted p-value. 
In total, five significant markers were used as candidates for 
modeling with fixed effects (Table 1).

All possible combinations of the five GWAS-selected SNP 
markers were evaluated, in subset sizes from one marker to all 
five used as fixed effects (Table 2). The highest average prediction 
accuracy (0.62) was obtained from a model that included all five 
markers as fixed effects. Among the models with reduced number 
of markers (1–3 markers) set as fixed effects, the models using 
three GWAS-selected markers performed better compared to the 
models using one or two markers. The prediction accuracy thus 
increased on average from 0.48 for one marker added as fixed 
effect to 0.54 for three markers. Out of the three marker models, 
the best performing model was a model that included the following 
three markers BobWhite_c1361_1187, BobWhite_c42716_71, 
and Excalibur_c17553_84 with a prediction accuracy of 0.59 
(Supplementary Table 2). In comparison, the model that did not 
use GWAS-selected markers as fixed effects, and the models that 
used randomly selected markers (regardless of GWAS significance), 
performed on average worse than both the GWAS-assisted models 
and the model with all markers set as random effects (Table 2).

haplotype Analysis
Haplotype analysis was performed to identify haplotype variants 
for the QTL identified on chromosome 1B with six significant 

FIGURe 3 | Heatmap and dendrogram of a kinship matrix among 175 winter wheat cultivars/landraces estimated using the SNP data.
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markers. Haplotype variants were detected with the software 
DNAsp (Rozas et al., 2017). In total, 19 haplotype variants were 
detected with number of genotypes ranging from 1 to 71 in each 
variant. Of these, 3 haplotype variants were selected with at 
least five or more genotypic counts/genotypes (Supplementary 
Table  1). Thereafter, haplotype network was constructed with 
the TCS algorithm in the software PopART (Leigh et al., 2015) 
(Figure 6). The analysis revealed that Hap_2 had the lowest mean 
disease score of 0.77 compared to Hap_1 (0.96) and Hap_3 (0.95). 
Hap_2 had 11 genotypes of which 8 originated from Denmark, 
2 from Sweden, and 1 from Germany. Most of the genotypes from 

Denmark had high resistance while one of the two genotypes from 
Sweden had high resistance.

DISCUSSION
STB is one of the most important winter wheat diseases in Northern 
Europe, and cultivars with higher levels of resistance which is 
stable and effective across environments are needed. Whereas 
individual Stb genes are not currently effective against Z. tritici 
populations in Europe (Arraiano et al., 2009), the identification of 

FIGURe 4 | Single nucleotide polymorphism (SNP) significantly associated with STB resistance in winter wheat identified by genome-wide association study (GWAS) 
with GLM model. (A) Manhattan plot; (B) Linkage map of Chromosome 1B; (C) Linkage disequilibrium plot; (D) Quantile-quantile plot.

TABLe 1 | Summary of the significant SNPs marker identified with different models which are associated with Septoria tritici blotch (STB) resistance in GWAS analysis 
with 175 winter wheat genotypes.

SNP marker name Chr Model Position 
(cM)

MAF Alleles R2 Allelic 
effecvt

Physical 
location

BobWhite_c1361_1187 1A FarmCPU**** Super**** 13.73 0.14 A/G – 0.16 1525253
BobWhite_c42716_71 1B FarmCPU**** GLM*** 

MLM* MLMM*** 
Super****

97.71 0.46 A/G 0.11 0.02 623712765

wsnp_Ex_rep_c66255_64400455 1B GLM** 97.71 0.47 A/G 0.09 −0.01 623729791
RFL_Contig5937_1677 1B GLM** 99.07 0.45 A/G 0.08 −0.01 623730512
RAC875_c47427_75 1B GLM*** MLM* 99.07 0.47 A/G 0.10 −0.01 623731255
Excalibur_rep_c72368_68 1B GLM*** MLM* 97.71 0.46 T/C 0.09 −0.003 623770763
BS00110231_51 1B GLM** 97.36 0.43 T/G 0.09 0.01 623989423
wsnp_Ex_c22423_31615798 2B FarmCPU*** Super*** 96.99 0.37 A/C – 0.08 215593752
wsnp_Ex_c5929_10402147 3A FarmCPU**** Super**** 86.16 0.31 T/C – −0.09 481018206
Excalibur_c17553_84 5A FarmCPU*** Super*** 43.27 0.35 C/T – 0.09 375375809

Chr, chromosome; MAF, minor allele frequency, physical location – start positions (in bp) of the markers on the chromosomes in the assembly IWGSC Refseq v1. FDR-adjusted p value 
*0.05, **0.01, ***0.001, ****0.0001. The percentage of variation (R2) explained by the GLM model was calculated as the difference between the R2 of the GAPIT model with and without 
the associated SNP. Allelic effect estimates the additive contribution of the tested marker and were obtained primarily from the GLM model when available else from FarmCPU model.
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new QTL for STB resistance and incorporation of resistance into 
elite winter wheat cultivars is crucial. To this end, the current study 
analyzed 175 winter wheat genotypes of Nordic origin for STB 
resistance under controlled conditions at the seedling stage. Our 
results revealed that the NordGen genebank has a highly valuable 
and genetically diverse collection of germplasm comprising 
resistance to STB. This germplasm mainly originates from Sweden, 
Denmark, Finland, and Norway composing 56.2%, 25.5%, 9.6%, 
and 3.4% of all analyzed germplasm, respectively, and released 
approximately between 1900 and 2000. Population structure 
analysis revealed three clusters associated with geographical 
origin. Finish and Norwegian genotypes formed one cluster, the 
second cluster contains mainly Swedish genotypes while genotypes 
from Denmark and Germany segregated into the third cluster 
(Figure 2A). In addition, the result from the PCA data showed that 
the modern wheat cultivars exhibited a higher level of resistance in 
comparison to older released cultivars (Figures 2B C). This result 
indicated that the breeding progress for STB resistance over the last 
decades probably occurred by the gradual accumulation of genes 
with a minor effect, as is the case also in the American germplasm 
(Jlibene et al., 1994; Camacho-Casas et al., 1995). Similarly, the 

FIGURe 5 | Wheat chromosome 1B representing the physical position (in bp) of the flanking markers and genes localized within these markers. SP, start position 
(BobWhite_c42716_71); ED end position (BS00110231).

TABLe 2 | Summary of rrBLUP-based GWAS-assisted genomic prediction 
models of STB resistance scored in 175 winter wheat genotypes.

Number of 
markers 
set as 
fixed 
effects

Type of marker selection for fixed effects

Markers selected by 
significance in GWAS

Completely random 
selection of markers

Average 
model 

accuracy

95% 
confidence 
interval of 
the mean

Average 
model 

accuracy

95% 
confidence 
interval of 
the mean

0 0.47 N/A N/A N/A
1 0.48 [0.44, 0.51] 0.44 [0.43, 0.44]
2 0.51 [0.49, 0.53] 0.44 [0.43, 0.45]
3 0.54 [0.52, 0.56] 0.45 [0.42, 0.48]
4 0.58 [0.55, 0.61] 0.43 [0.41, 0.45]
5 0.62 N/A 0.44 [0.41, 0.47]

The models utilized permutations of 1 to 5 markers in significant association with STB 
resistance identified in the same population. The models were compared against a 
model containing no fixed effects and a series of models that sampled equally sized 
subsets of random markers, where each subset of random markers was repeated 
five times. All models were validated against the same set of 80/20 training/test sets 
(N = 500). The zero and five GWAS-selected marker models were only repeated 
once, and thus have no confidence interval data.

FIGURe 6 | Haplotype variants identified from the QTL on chromosome 1B. (A) Haplotype network with nodes denoted as pie charts and (B) range of distribution 
of STB resistance of genotypes in each variant.
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characterization of old Tunisian durum wheat accessions for 
resistance to STB identified resistant germplasm and four new 
resistant genes (Ferjaoui et al., 2015). The authors, therefore, 
suggested that the old Tunisian durum wheat accessions harbor 
novel resistance genes that can be introgressed into the modern 
cultivars. The results from our work highlight the potential of old 
germplasm as novel sources of resistance to STB for winter wheat 
breeding programs in Northern Europe.

A QTL associated with STB resistance identified by GWAS 
in this study was mapped on chromosome 1B. Previous studies 
have mapped Stb11 on the short arm of chromosome 1B in 
TE9111 (Chartrain et al., 2005) and remapped Stb2 was also 
located close to or at Stb11 locus in Vernopolis (Liu et al., 2013). 
StbWW identified in three DH populations, was also mapped on 
chromosome 1BS at or near Stb11. Raman et al. (2009) identified 
eight SNPs associated with STB resistance and one was mapped 
on chromosome 1B in European winter wheat collection. 
Goudemand et al. (2013) mapped two QTL on 1B (one 1BS and 
one 1BL) chromosome in bi-parental crosses. Recently, Vagndorf 
et al. (2017) identified QTL QStb.NS-1B located on the long arm 
of chromosome 1B by GWAS of Danish cultivars and breeding 
lines that were characterized over three years in three locations 
in Denmark for STB. In this study, one QTL was mapped on the 
long arm of chromosome 1B which is in close physical proximity 
to the QTL QStb.NS-1B. Thus, it can be postulated that it is the 
same QTL as identified previously. However, our study identified 
this QTL for quantitative resistance at the seedling stage under 
controlled conditions while the study by Vagndorf et al. (2017) 
identified the same QTL in field trials for adult plant resistance.

The other QTL associated with STB resistance identified in this 
study were located on chromosomes 1A, 2B, 3A, and 5A. QTL 
1A, 2B, and 5A were mapped on the short arm of the respective 
chromosomes and QTL on 3A was mapped on the long arm. 
Goudemand et al. (2013) mapped two Meta-QTL (MQTL1 and 
MQTL6) on chromosomes 1A and 2B and another QTL (QTL8) 
on chromosome 5A for STB resistance which were in close physical 
proximity to the QTL mapped (1A, 2B, and 5A) in this study. The 
MQTL1 was associated with STB resistance both in adult and 
seedling stages whereas QTL8 was only associated with adult and 
MQTL6 was only associated with seedling stage resistance.

The QTL on chromosome 3A in our study was found in 
close physical proximity to the previously reported QTL (QStb.
risø-3A.2) which was associated with STB resistance both in 
adult and seedling stages (Brown et al., 2015). Thus, our study 
further confirms the role of the identified QTL at the seedling 
stage. Introgression of these QTL in winter wheat cultivars will 
provide both seedling and adult plant stage resistance to STB.

In the present work, we identified seven candidate genes with 
putative roles in resistance to STB in wheat (Figure 5). Two of the 
identified genes (TraesCS1B01G390100 and TraesCS1B01G390500) 
were associated with F-box proteins which plays a key role in plant 
immune responses through the involvement in hormone pathways 
(Yu et al., 2007). Two F-box proteins, COI1 (Xie et al., 1998) and 
SON1 (Kim and Delaney, 2002), have been demonstrated to have 
a role in plant defense in Arabidopsis plants. In our previous work, 
we identified candidate genes associated with STB resistance by 

integrating QTL mapping and transcriptome profiling, wherein, the 
F- box proteins were among the most represented in all identified 
QTL regions (Odilbekov et al., 2019). The other two genes identified 
in this work were related to ATP-dependent dethiobiotin synthetase 
BioD (TraesCS1B01G390200 and TraesCS1B01G390300). ATP-
dependent dethiobiotin synthetase BioD is involved in the first step of 
the sub-pathway that synthesizes biotin from 7,8-diaminononanoate. 
Li et al. (2012) demonstrated that biotin deficiency results in 
light-dependent spontaneous cell death and modulates defense 
gene expression in Arabidopsis plants. The other putative genes 
identified in the present work were B3 domain-containing protein 
(TraesCS1B01G390400). The B3 domain has been found in several 
transcription factors specific to higher plant species (Waltner et 
al., 2005). Wang et al. (2015) found that the B3 domain of BPH29 
gene was associated with insect brown planthopper resistance in 
rice. Also, they have shown that during the infestation, the RBPH54 
triggers the salicylic acid signaling pathway and suppresses the 
jasmonic acid pathway, which is similar to biotrophic pathogens.

In the previous studies, prediction accuracy of GS models 
was found to be improved for example by increasing the training 
population size, testing the models on test populations genetically 
closely related to the training population, implementing a different 
GS algorithm, increasing the marker density or combining 
significantly associated markers as fixed effects (Solberg et al., 2008; 
Norman et al., 2018). In this work, we evaluated the prediction 
accuracy of GP models when GWAS markers were included 
as fixed effects. When GWAS markers obtained from different 
GWAS models were included as fixed effects, the accuracy of GP 
was significantly improved (Table 2). The results also suggest that 
including two or more GWAS markers as fixed effects significantly 
increases the accuracy of the GP models. Our results corroborate 
the trends in accuracy improvements seen in the previous studies 
integrating GWAS and GP in winter wheat (Herter et al., 2019) 
maize (Bian and Holland, 2017), and rice (Spindel et al., 2016).

Finally, this and the previous studies (Daetwyler et al., 2014; 
Crossa et al., 2016) have shown that GP can be used to obtain GEBVs 
for economically important traits in landraces by training models 
on a subset of landraces that are phenotyped. There are several 
hundred thousand landraces stored in genebanks worldwide, and 
thus, advanced methods, such as GP will enable high-throughput 
evaluation of landraces to identify those with superior resistance 
traits. The identified landraces can then be included in the wheat 
breeding programs to perform GP-based progeny selection.

CONCLUSIONS
This study leads to the conclusion that the wheat genotypes stored 
at NordGen are a genetically diverse resource. The highly resistant 
genotypes serve as potential donors for improving commercial 
cultivars in the Nordic and Baltic Sea Region countries. The 
significant SNP markers can be used for marker-assisted selection 
of STB resistance at the seedling stage in wheat breeding. The genes 
identified by GWAS approach can serve as candidate genes for 
improving STB resistance in wheat through functional studies. In 
addition, the results indicate that integrating GWAS with GP could 
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facilitate further improvement of GP accuracy thereby improving 
the selection efficiency of the breeding program.
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Deep learning (DL) is a promising method for genomic-enabled prediction. However, 
the implementation of DL is difficult because many hyperparameters (number of hidden 
layers, number of neurons, learning rate, number of epochs, batch size, etc.) need to 
be tuned. For this reason, deep kernel methods, which only require defining the number 
of layers, may be an attractive alternative. Deep kernel methods emulate DL models 
with a large number of neurons, but are defined by relatively easily computed covariance 
matrices. In this research, we compared the genome-based prediction of DL to a deep 
kernel (arc-cosine kernel, AK), to the commonly used non-additive Gaussian kernel (GK), 
as well as to the conventional additive genomic best linear unbiased predictor (GBLUP/
GB). We used two real wheat data sets for benchmarking these methods. On average, 
AK and GK outperformed DL and GB. The gain in terms of prediction performance of 
AK and GK over DL and GB was not large, but AK and GK have the advantage that 
only one parameter, the number of layers (AK) or the bandwidth parameter (GK), has to 
be tuned in each method. Furthermore, although AK and GK had similar performance, 
deep kernel AK is easier to implement than GK, since the parameter “number of layers” 
is more easily determined than the bandwidth parameter of GK. Comparing AK and DL 
for the data set of year 2015–2016, the difference in performance of the two methods 
was bigger, with AK predicting much better than DL. On this data, the optimization of 
the hyperparameters for DL was difficult and the finally used parameters may have been 
suboptimal. Our results suggest that AK is a good alternative to DL with the advantage 
that practically no tuning process is required.

Keywords: deep learning, deep kernel, genomic selection, kernel methods, artificial neural networks,  
genomic × environment interaction
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inTrODUcTiOn
Using dense molecular markers, Meuwissen et al. (2001) were the 
first to propose genome-enabled prediction for implementing 
genomic-assisted breeding. Subsequently, an enormous number 
of research articles published in animal and plant breeding 
journals explored and studied genomic selection (GS) and 
genome-based prediction (GP) outcomes in a large variety 
of animal and plant species for different traits and measured 
in different environments (Crossa et al., 2017). GS combines 
molecular and phenotypic data in a training population to predict 
genomic breeding values (or genetic values) of individuals that 
have been genotyped but not phenotyped. The predictions can be 
used in a breeding program to reduce cycle length or to increase 
the selection precision, thus enhancing the response to selection.

GS and prediction approaches have focused on two different 
cases. One is predicting additive effects in early generations of a 
breeding program to achieve rapid selection with a short interval 
cycle (Beyene et al., 2015; Zhang et al., 2017). Here, breeders focus 
on GP of breeding values (additive values) of an infinitesimal 
model that assumes a linear function of allelic effects for an infinite 
number of loci; therefore, additive linear models that summarize 
the effects of the markers are sufficient. The most commonly 
used additive method is genomic best linear unbiased predictor 
(GBLUP/GB) (Van Raden, 2007). The other case considers the 
complete genetic values of individuals including both additive and 
nonadditive (dominance and epistasis) effects, thereby estimating 
the genetic performance of the cultivars (Crossa et al., 2017).

As pointed out by Harfouche et al. (2019), despite the fact that 
GS programs have provided extensive amounts of new data in 
crops, legumes, and tree species, the lack of predictive accuracy 
for many complex traits is underpinned by the complexity of 
modeling all of the important factors inherent to targets such 
as grain yield. Harfouche et al. (2019) mentioned that linking 
phenotypes with genotypes using high-throughput phenomics 
and genomics will continue to be the main challenge for plant 
breeding in the next decades.

The complexity of applying GS and GP in breeding is influenced 
by various factors acting at different levels. An important 
difficulty arises when predicting unobserved individuals in 
specific environments (site-year combinations) by incorporating 
genotype (genomic) × environment (G×E) interaction into 
statistical models. An additional layer of complexity is the G×E 
interactions for multitraits. Here statistical-genetic models exploit 
multitrait, multienvironment variance-covariance structures and 
correlations between traits and environments simultaneously. 
Understanding the complexity of traits requires a theoretical 
framework that accounts for often cryptic interactions.

Some of the statistical complexities can be addressed by 
using semiparametric genomic regression methods to account 
for nonadditive variation (Gianola et al., 2006; Gianola et al., 
2011; Morota and Gianola, 2014; Morota et al., 2014). These 
methods have been used to predict complex traits in wheat with 
promising practical results (González-Camacho et al., 2012; 
Pérez-Rodríguez et al., 2012). Semiparametric models often use 
kernel methods (a kernel utilizes functions that represent the 
inner product of many basic functions) for addressing complex 

gene actions (e.g., gene×gene epistatic interactions), thus 
capturing nonlinear relations between phenotype and genotype. 
Kernel-based methods for genomic regression have been used 
extensively in animal and plant breeding due to their capacity to 
produce reasonably accurate predictions (Gianola et al., 2014).

A commonly used kernel is the Gaussian kernel (GK) defined 
as exp( / )'−hd qii

2 , where h is a bandwidth parameter which controls 
the rate of decay of the covariance between genotypes, and q is the 

median of the square of the Euclidean distance, d x xii ik i k
k

' '( )2
2

= −∑  

which is a measure of the genetic distance between individuals (i,i’) 
based on molecular markers. The parameter q could also be included 
in the bandwidth parameter h, but standardizing the Euclidean 
distances by q makes it easier to apply a standardized grid search 
when looking for the optimal h. The GK appears as a reproducing 
kernel in the semiparametric reproducing kernel Hilbert spaces 
(RKHS) (Gianola and van Kaam, 2008; González-Camacho et al., 
2012). Pérez-Elizalde et  al. (2015) proposed an empirical Bayes 
method for estimating the bandwidth parameter h. An alternative 
approach to using a kernel with specific bandwidth parameters is 
the multikernel fitting proposed by de los Campos et al. (2010). 
Cuevas et al. (2016; 2017; 2018) and Souza et al. (2017) showed that 
using the GK within the multienvironment genomic G×E model 
of Jarquín et al. (2014) led to higher prediction accuracy than the 
same method with the linear kernel GB. Parametric alternatives for 
modeling epistasis have also been broadly discussed in literature 
(Jiang and Reif, 2015; Martini et al., 2016).

Deep learning (DL) methods are very flexible and have the 
potential to adapt to complex potentially cryptic data structures. In 
general, DL architectures are composed of three types of layers: (1) an 
input layer corresponding to the input information (predictors, 
that is, markers); (2) hidden layers, that is, the number of internal 
transformations performed on the original input information, 
which can be at least one but also a larger number; however, the 
number of neurons in each hidden layer needs to be tuned or 
specified; and (3) the output layer that produces the final predictions 
of the response variables we are interested in. Montesinos-López 
et al. (2018a; 2018b; 2019a; 2019b) recently performed extensive 
studies using DL methods for assessing GP for different types of 
traits (continuous, ordinal, and binary) accounting (or not) for G×E 
and comparing their prediction accuracies with those obtained by 
GB for single environments and multiple environments (with G×E). 
The authors used data from extensive maize and wheat multitrait, 
multienvironment trials. DL produced similar or slightly better 
prediction accuracies than GBLUP when G×E was not considered, 
but it was less accurate when G×E was included in the model. The 
authors hypothesized that DL may already account for G×E, so that 
its inclusion in the model was not required. Overall, the current 
drawback of applying DL for GP is the lack of a formal method 
for defining hyperparameters (e.g., number of neurons, number of 
layers, batch size) and, therefore, the time required for parameter 
tuning. Moreover, there may be an increased tendency towards 
overfitting the training data, and when important data features such 
as G×E interaction are known, direct modeling may lead to better 
predictions than modeling the structures implicitly in DL.

Recently, Cuevas et al. (2019) introduced the positive-definite 
arc-cosine kernel (AK) function for genome-enabled prediction. 
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The AK was initially proposed by Cho and Saul (2009) for exploring 
the option of DL in kernel machines. The nonlinear AK is defined 
by a covariance matrix that emulates a DL model with one hidden 
layer and a large number of neurons. Moreover, a recursive formula 
allows altering the covariance matrix stepwise, thus adding more 
hidden layers to the emulated deep neural network. The AK kernel 
method has been used in genomic single-environment models, as 
well as for genomic multienvironment models including genomic × 
environment interaction (G×E) (Cuevas et al., 2019). AK has the 
advantage over GK that it is computationally much simpler, since 
no bandwidth parameter is required, while performing similarly 
or slightly better than GK. The tuning parameter “number of 
layers” which is required for AK can be determined by a maximum 
marginal likelihood procedure (Cuevas et al., 2019).

Although AK has already been compared with GK (Cuevas 
et al., 2019), AK has not been formally compared with DL methods. 
Therefore, the main objective of this study was to compare the 
genome-based prediction accuracy of the GB, GK, AK, and 
DL methods using single-environment and multienvironment 
G×E models on two data sets from the CIMMYT Global Wheat 
Program. The data sets comprised two years (2015–2016 and 
2016–2017) of Elite Yield Trial data, each consisting of 1052 and 
1040 elite wheat lines, respectively. Lines of both Elite Yield Trials 
were evaluated in four environments using two irrigation levels [5 
irrigations, 5IR, and 2 irrigations, 2IR] and two planting systems 
(flat, F, and bed, B) reflecting mega-environments defined by 
breeders in South Asia and Mexico.

MaTeriaL anD MeThODS

Genome-Based Prediction Models
The statistical methods used in this study have been described 
in several articles (Cuevas et al., 2016; Cuevas et al., 2017; Souza 
et  al., 2017; Cuevas et al., 2018) for the single-environment model 
and the multienvironment G×E models using the GB and the 
GK. In addition, AK has recently been described in Cuevas et al. 
(2019). A brief description of the models (single-environment and 
G×E models) and methods (GB, GK, AK, and DL) is given below.

Single-Environment and Multiple-Environment G×E 
Models
For a single environment and only one kernel, the model can be 
expressed as:

 y u= + +µ1 εε  (1)

where µ is the overall mean, 1 is the vector of ones, and y is 
the vector of observations of size n. Moreover, u is the vector 
of genomic effects u N K~ ( , )0 σ u

2 , where σ u
2 is the genomic 

variance estimated from the data, and matrix K is constructed as 
K Z GZ= g g

' , with matrix Zg a matrix of 0s and 1s with exactly one 
1 in each row, and which relates the genotypes to the observations. 
The covariance matrix G models the genomic similarities 
between genotypes and varies between models: GB (G=XX’/p) 
(where X is the scaled marker matrix and p denotes the number 
of markers); GK (G hd qii ii' 'exp( / )= 2  where d x xii ik i k

k
' '( )2 2= −∑ ); 

and AK (see the description below). The random residuals are 
assumed independent with normal distribution εε ~ ( , )N I0 σ ε

2 , 
where σ ε

2 is the error variance.
In the G×E multienvironment model of Jarquín et al. (2014), 

Lopez-Cruz et al. (2015), and Cuevas et al. (2016), Eq. (1) takes 
the form

 y Z u u= + + + +µ ε1 E Eββ 1 2  (2)

where y=[y1, ,ynm]’ are the observations collected in each of the 
m sites (or environments) with n lines in each site. The fixed 
effects of the environment are modeled with the incidence matrix 
of environments ZE, where the parameters to be estimated are 
the intercept for each environment βE (other fixed effects can be 
incorporated into the model). In this model, u N K1

2
11

~ ,0 σ u( ) 
represents the genomic main effects, σ ui

2  is the genomic variance 
component estimated from the data, and K Z GZ1 = g g

' , where 
Zg relates the genotypes to the phenotypic observations. The 
random effect u2 represents the interaction between the genomic 
effects and their interaction with environments and is modeled 
as u N K2

2
22

~ ,0 σ u( ), where K Z GZ Z Z2 = ( )°g g E E
' '( ), where ° is the 

Hadamard product.

AK Method
DL architectures are generally difficult to tune. The tuning 
process involves, for instance, selecting the activation function, 
determining the number of hidden layers and the number 
of neurons in each hidden layer, and selecting the type of 
regularization. For this reason, Neal (1996) proposed a Bayesian 
method for deep artificial neural networks (ANN with more 
than one hidden layer), also called simple DL models, and, in 
conjunction with the results of Williams (1998) and Cho and 
Saul (2009), established the relationship between the AK and 
the deep neural networks with one hidden layer. These authors 
proposed a family of kernels that emulate DL models.

For AK, an important component is the angle between two 
vectors computed from marker genotypes xi xi, as

 
   cos

|| |||| ||,θi i
i i

i i
′

′

′

−=






⋅1 x x
x x  

where ˙ denotes the inner product and ||xi|| is the norm of line 
i. The following kernel is positive semidefinite and related to an 
ANN with a single hidden layer and the ramp activation function 
(Cho and Saul, 2009)

 AK1 1( , ) || |||| || ( )' ' , 'x x x xi i i i i iJ=
π

θ  (3)

where π is the pi constant and J(θi,i’)=[sin(θi,i’)+(π-θi,i’)cos(θi,’i)]. 
Equation (3) gives a symmetric positive semidefinite matrix 
(AK1) preserving the norm of the entries such that AK(xi, 
xi)=||xi||2, and AK(xi, - xi)=0 and models nonlinear relationships.

Note that the diagonal elements of the AK matrix are not 
identical and express heterogeneous variances of the genetic 
values u. This is different from the GK matrix, with a diagonal that 
expresses homogeneous variances. This property could represent 
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a theoretical advantage of AK when modeling interrelationships 
between individuals.

In order to emulate the performance of an ANN with more 
than one hidden layer (l), Cho and Saul (2009) proposed a 
recursive relationship of repeating l times the interior product

 AK AK AKl
i i

l
i i

l
i i

( ) ( )( ) ( ), [ , , ]+ ( )
′ ′ ′= ( )1

11x x x x x x
π

22   ( ), '
( )J i i
lθ  (4)

where θi i
l l

i i
l

i i
lAK AK AK, '

( ) ( ) ( ) ( )cos { , [ ,( ) ( ) (= −
′

1 x x x x xx x′ ′
−

i i, ] })
1
2 . Thus, 

computing AK(l+1) at level (layer) l+1 is done from the previous 
layer AK(l). Computing a bandwidth is not necessary, and the only 
computational effort required is to compute the number of discrete 
layers. Cuevas et al. (2019) described a maximum marginal likelihood 
method used to select the number of hidden layers (l) for the AK kernel.

DL Neural Network
The DL for a single trait, including the multienvironment 
G×E situation employed in this study, follows the approach 
delineated by Montesinos-López et al. (2018a). In DL, the 
input to the model is a vector space that is subject to several 
complex geometric transformations that decompose into simple 
geometric transformations. The main objective of these geometric 
transformations is to map the input space to the target output 
space where the transformations are parameterized by the weight 
of the input at each neuron in each layer. A brief description of 
the process for tuning DL and for model selection is provided.

The implemented DL has a feedforward topology in which 
the information moves in only one direction (i.e., forward) from 
the input nodes (representing prediction variables), through 
the hidden nodes (located in hidden layers), and to the output 
nodes (representing target variables). There are no cycles or loops 
in this network. The three groups of nodes in this DL model are 
called layers. When the DL model has only one hidden layer, 
it reduces to a conventional artificial neural network. The lines 
connecting the input layer neurons, hidden layer neurons, and 
output layer neurons represent the network weights which need 
to be learned. From all input connections, the hidden neuron 
sums up the corresponding weight so the weighted summation is 
then transformed through an activation function to produce the 
output of each neuron. The activation functions play an important 
role in transforming the input and output of hidden layers so they 
come out in a more useful form (Chollet and Allaire, 2017).

We used the rectified linear unit (RELU) as the activation 
function for all neurons in the hidden and output layers because 
our response variables are continuous. In addition, we used 
a batch size of 56 for implementing the DL model with 1,000 
epochs. One epoch means one pass (forward and backward) of 
the full training set through the neural network, and to complete 
an epoch, we required a certain number of iterations calculated 
as the size of the training set divided by 56 (batch size). We used 
the R statistical software (R Core Team, 2019) for implementing 
all the models, and the DL model was implemented in the keras 
library (Chollet and Allaire, 2017). In keras we used the root-
mean-square propagation (RMSprop) method with its default 
values as an optimizer. Also, to avoid overfitting we used dropout 

regularization, which consists of temporarily removing a random 
subset (%) of neurons with their connections during training.

For selecting the number of hidden layers, the number of units 
(neurons) in each hidden layer and the % dropout that needs to 
be defined, we used a grid search method. In grid search, each 
hyperparameter of interest is discretized into a desired set of 
values to be studied, and models are trained and assessed for all 
combinations of the values across all hyperparameters (that is, a 
“grid”). The grid search looked for the optimal combination of 
these three hyperparameters; the values used in the grid were 1, 
2, 3, and 4 hidden layers. With regard to the number of units, we 
tried 80, 160, 240, 320, and 400 units, while for the % dropout (% 
neurons removed from the DL network), we tried 0%, 5%, 10%, 
20%, 25%, and 35%. To select the optimal combination of these 
three hyperparameters, we implemented a fivefold cross-validation. 
After obtaining the optimal combination of hyperparameters, the 
model was refitted using the complete training data.

random cross-Validations for assessing 
Model Prediction accuracy
The cross-validation strategy used in this study was a fivefold random 
cross-validation where 20% of the wheat lines were predicted by 
80% of the other lines. This is the random cross-validation CV2 
(Burgueño et al., 2012) that mimics a prediction problem faced by 
breeders in incomplete field trials where lines are evaluated in some, 
but not all, target environments (usually called sparse testing, when 
not all breeding lines are included for testing in all the environments). 
In this case, 20% of the lines are not observed in some environments 
and thus predicted in those environments, but are observed in other 
environments. When the main purpose of the model is prediction, 
a reasonable criterion of model quality is the mean squared error 
of prediction (MSEP) that measures the mean squared distance 
between the prediction value and the observed value.

Predictions were made for each environment for both the single-
environment model (G) and the G×E multienvironment model, 
using GB, GK, and AK constructed with molecular markers. To 
make the models comparable in their prediction accuracy as well 
as their computing time, exactly the same random cross-validations 
were used for the four methods: GB, GK, AK, and DL.

experimental Data
We used data from CIMMYT’s Global Wheat Program 
(GWP) consisting of a set of elite wheat lines evaluated under 
differently managed environmental conditions at CIMMYT’s 
main wheat breeding experiment station in Cd. Obregon, 
Mexico. These environmental conditions simulated target areas 
of megaenvironments for the CIMMYT GWP. The wheat lines 
included in this study were later included in screening nurseries 
that were distributed worldwide.

Phenotypic Data
The phenotypic data consist of grain yield (ton/ha) records 
collected during two evaluation years (year 2015–2016 including 
1,052 elite wheat lines, and year 2016–2017 including 1,040 elite 
wheat lines). All trials were established using an alpha-lattice 
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design with three replicates per line and environment. Each 
environment was defined by a combination of a planting 
system (BED = bed planting; FLAT = planting on the flat) and 
an irrigation intensity (2IR = two irrigations giving moderate 
drought stress; 5IR = five irrigations representing an optimally 
irrigated crop). In the 2IR and 5IR regimes, irrigation was applied 
without measuring soil moisture, and each irrigation added 
100 mm of water. Thus, for each of the years (2015–2016 and 
2016–2017), four environments BED5IR, FLAT5IR, BED2IR, 
and FLAT2IR were established. The phenotype used in the 
analysis was the best linear unbiased estimate (BLUE) of grain 
yield obtained from a linear model applied to the alpha-lattice 
design of each year-environment combination. The data included 
in the present study represent two years of field trials under the 
same environmental conditions and using similar experimental 
designs. However, the wheat lines included in both data sets 
are different and the environmental conditions of the two years 
were relatively different during the growing season. We therefore 
decided not to consider a joint analysis of the two data sets.

Genotypic Data
Genotypes were derived using genotyping-by-sequencing 
technology (GBS; Poland et al., 2012). GBS markers with a minor 
allele frequency lower than 0.05 were removed. As is typical of 
GBS genotypes, all markers had a high uncalling rate. In our 

quality control pipeline, we applied thresholds for the incidence 
of missing values aimed at maintaining relatively large and similar 
numbers of markers per data set. We removed markers with more 
than 60% missing values; this left 15,744 GBS markers available 
for analysis. Finally, only lines with more than 2,000 called GBS 
markers were used in the data analysis; this left 515 and 505 wheat 
lines in years 2015–2016 and 2016–2017, respectively.

Data repository
The phenotypic and genotypic data for both data sets, year 2015–
2016 and year 2016–2017, are available at the following link: 
http://hdl.handle.net/11529/10548273. Furthermore, basic codes 
for running the DL and AK kernel methods can be found in the 
Appendix.

reSULTS

Phenotypic Data
A box plot of the grain yield of the four environments in each of the 
years (2015–2016 and 2016–2017) is displayed in Figures 1A, B. The 
two irrigated environments (BED5IR and FLAT5IR) in year 2015–
2016 had similar productivity as in year 2016–2017, but the two 
drought environments (BED2IR and FLAT2IR) produced less grain 
yield in year 2015–2016 than in year 2016–2017, reflecting the year 

FiGUre 1 | Box plot of grain yield (ton/ha) for four environments (BED5IR, FLAT5IR, BED2IR, and FLAT2IR) for (a) year 2016–2017 and (B) year 2015–2016.
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effect in the drought environments. The narrow-sense heritabilities 
based on the full model in Eq. (2) for grain yield of environments 
in year 2015–2016 were BED5IR=0.595, FLAT5IR=0.446, 
BED2IR=0.590, and FLAT2IR=0.744, and for environments in 
year 2016–2017 the narrow-sense heritability were BED5IR=0.547, 
FLAT5IR=0.603, BED2IR=0.565, and FLAT2IR=0.500.

In general, the phenotypic correlations between the four 
environments in each year were low except for the two drought 
environments BED2IR and FLAT2IR (0.609 in year 2015–2016 
and 0.585 in year 2016–2017) (Table 1). The phenotypes of 
environment FLAT5IR were correlated with those obtained in 
environments BED2IR and FLAT2IR in year 2016–2017 at ~0.44. 
The narrow-sense heritability of grain yield in all environment 
and year combinations was relatively high. Note that these 
heritability estimates were obtained using genomic markers for 
the single-environment and the multienvironment models. The 
heritability of grain yield for years 2016–2017 and 2015–2016 
across all four environments were 0.72 and 0.82, respectively. 
The heritability for year 2016–2017 for the four environments 
ranged from 0.50 (FLAT2IR) to 0.60 (FLAT5IR), whereas for 
year 2015–2016, the heritability was 0.45 for FLAT5IR and 0.59 
for BED5IR.

Genome-Based Prediction of the Single-
environment and Multienvironment Models
The results for year 2016–2017 for single-environment and 
multienvironment accuracies are shown in Table 2 and 
Figure 2, whereas results for year 2015–2016 for single-
environment and multienvironment accuracies are shown in 
Table 3 and Figure 3.

Year 2016–2017 Single-Environment Accuracy
The range of MSEP for the single-environment model (G) was 
between 0.0718 (AK for FLAT2IR) and 0.3883 (DL for FLAT2IR) 
(Table 2 and Figure 2). Of the four methods implemented 
(GB, GK, AK, and DL), and the four environments, we found 
that the lowest MSEPs were obtained with the AK method in 
three environments, BED5IR, BED2IR, and FLAT2IR and the 
worst predictions were obtained with DL (except for FLAT5IR, 
where the best model was DL). The second best model was 
GK, which performed very similarly to AK (Table 2) for all 
the environments. Environments FLAT5IR and BED2IR had 
the same MSEP for both GK and AK (0.2297 and 0.0914, 
respectively).

The average MSEP for method GB was higher than for 
methods GK and AK, and the average MSEP of DL was also 
higher than that of any of the other three methods for all 
environments, except for environment FLAT5IR, where DL had 
the best prediction accuracy with an MSEP of 0.1589 (Table 2 
and Figure 2B). In addition, it is clear from Figure 2C that 
for environment BED2IR, the four methods had very similar 
prediction accuracies for the single-environment model (G) 
(GB=0.0977, GK=0.0914 AK=0.0914, and DL=0.1110).

Year 2016–2017 Multienvironment Accuracy
The best method in terms of MSEP was GK for all the environments 
under the G×E genomic model, while the lowest MSEP of 0.0624 
was for environment FLAT2IR. The environment with the highest 
average MSEP was FLAT5IR for the DL method (0.2797) (Table 2 
and Figure 2). The AK kernel closely followed GK in terms of MSEP 
accuracy, ranging from 0.0625 (FLAT2IR) to 0.2048 (FLAT5IR). 
Methods GB and DL were the worst in terms of MSEP accuracy. 
Interestingly, except for GB, GK, and AK for environment BED5IR, 
and DL for environment FLAT5IR, the MSEP for model E+G+GE 
were smaller than the MSEP for model G for all four methods. 
The models including G×E are more precise than those including 
only the genomic effect (G), regardless of the method used. The 
differences between MSEP of method DL versus the MSEP of 
the other methods were much less for the E+G+GE model than 
those found for the single-environment model and especially for 
environments BED5IR and FLAT2IR, where the DL methods had 
high values for MSEP (see Figures 2A, D).

TaBLe 2 | Average mean-squared-error prediction (MSEP) for year 2016–2017 of single environment (G) and multienvironment G×E models (E+G+GE) for predicting 
each environment comprising a combination of irrigation level (five irrigation, 5IR; two irrigations, 2IR) under two planting systems (FLAT and BED) for methods GBLUP 
(GB), Gaussian kernel (GK), arc-cosine (AK), (l is the number of layers of the deep kernel), and deep learning (DL).

GB GK aK DL

Model environment MSeP MSeP MSeP l MSeP

E+G+EG BED5IR 0.1719 (0.006) 0.1656 (0.009) 0.1659 (0.009) 1 0.1924 (0.010)
E+G+EG FLAT5IR 0.2144 (0.025) 0.2040 (0.028) 0.2048 (0.028) 1 0.2797 (0.018)
E+G+EG BED2IR 0.0867 (0.009) 0.0807 (0.008) 0.0811 (0.008) 1 0.1066 (0.004)
E+G+EG FLAT2IR 0.0669 (0.007) 0.0624 (0.007) 0.0625 (0.007) 1 0.0977 (0.007)

G BED5IR 0.1627 (0.019) 0.1545 (0.019) 0.1544 (0.019) 5 0.3806 (0.012)
G FLAT5IR 0.2415 (0.033) 0.2297 (0.037) 0.2297 (0.038) 4 0.1589 (0.013)
G BED2IR 0.0977 (0.010) 0.0914 (0.008) 0.0914 (0.008) 5 0.1110 (0.003)
G FLAT2IR 0.0749 (0.012) 0.0723 (0.011) 0.0718 (0.011) 5 0.3883 (0.012)

Average 0.1396 0.1326 0.1327 – 0.2144

TaBLe 1 | Phenotypic correlations among four environments (BED5IR, BED2IR, 
FLAT5IR, and FLAT2IR) based on grain yield for year 2016–2017 (upper triangle) 
and year 2015–2016 (lower triangle).

Lower triangle\ 
upper triangle

BeD5ir FLaT5ir BeD2ir FLaT2ir

BED5IR 1.000 0.098 0.131 0.006
FLAT5IR 0.260 1.000 0.443 0.446
BED2IR 0.214 0.093 1.000 0.585
FLAT2IR 0.094 0.113 0.609 1.000
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FiGUre 2 | Mean squared error of the prediction for year 2016–2017 for single environment (G) and multienvironment (E+G+GE) models with kernels GB, GK, and 
AK and the deep learning (DL) method for environments (a) BED5IR, (B) FLAT5IR, (c) BED2IR, and (D) FLAT2IR.

TaBLe 3 | Average mean-squared-error prediction (MSEP) for year 2015–2016 of single environment (G) and multienvironment G×E models (E+G+GE) for predicting 
each environment comprising a combination of irrigation level (five irrigation, 5IR; two irrigations, 2IR) under two planting system (FLAT and BED) for methods GBLUP 
(GB), Gaussian kernel (GK), arc-cosine (AK), (l is the number of layers of the deep kernel), and deep learning (DL).

GB GK aK DL

Model environment MSeP MSeP MSeP l MSeP

E+G+EG BED5IR 0.1048 (0.009) 0.1007 (0.010) 0.1007 (0.010) 1 0.2403 (0.007)
E+G+EG FLAT5IR 0.1898 (0.032) 0.1719 (0.032) 0.1729 (0.032) 1 0.3749 (0.023)
E+G+EG BED2IR 0.0632 (0.004) 0.0601 (0.004) 0.0601 (0.004) 1 0.1355 (0.011)
E+G+EG FLAT2IR 0.1349 (0.012) 0.1318 (0.012) 0.1321 (0.012) 1 0.2931 (0.009)

G BED5IR 0.1095 (0.011) 0.1031 (0.011) 0.1036 (0.012) 5 0.3307 (0.0124)
G FLAT5IR 0.1901 (0.010) 0.1819 (0.012) 0.1792 (0.013) 4 0.4316 (0.025)
G BED2IR 0.0729 (0.011) 0.0690 (0.010) 0.0693 (0.010) 5 0.1495 (0.008)
G FLAT2IR 0.1415 (0.012) 0.1369 (0.008) 0.1377 (0.007) 5 0.2452 (0.009)

Average 0.1288 0.1194 0.1195 – 0.2751
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Year 2015–2016 Single-Environment Accuracy
Genome-enabled predictive abilities for the single-
environment and multienvironment G×E models are given 
in Table 3 and Figure 3. For the single-environment models 
(G), GK had the lowest MSEP in three environments (0.1031 
for BED5IR, 0.0690 for BED2IR, and 0.1369 for FLAT2IR) 
but not for FLAT5IR, where AK was best (Figure 3B). The 
prediction accuracy of the linear kernel GB was lower than 
that of the nonlinear kernels (GK and AK), ranging from 
0.0729 in BED2IR to 0.1901 in FLAT5IR. The DL accuracies of 
genome-based prediction were the worst, ranging from 0.1495 
in BED2IR to 0.4316 in FLAT5IR.

Figure 3 illustrates that the prediction accuracy of DL was not 
competitive with that of the other methods, which showed a very 
similar MSEP. The values of MSEP in environment BED2IR were 
the lowest across all the environments. The highest MSEP values 
were found in environment FLAT5IR.

Year 2015–2016 Multienvironment Accuracy
The best model in terms of MSEP was GK in all the environments 
under the G×E genomic model, with the lowest MSEP of 0.0601 in 
environment BED2IR. The environment with the highest average 

MSEP was FLAT5IR for the DL method (0.3749) (Figure 3B). 
AK had, together with GK, the two best prediction accuracies, in 
BED5IR (0.1007) and in BED2IR (0.0601) (Table 3). As already 
mentioned, kernel GK was also the best in FLAT5IR and in 
FLAT2IR (0.1318). Similar to previous cases, methods GB and 
DL were the worst in terms of MSEP accuracy. Results show that 
in all four environments except for FLAT2IR and DL, the MSEP 
for model E+G+GE were smaller than the MSEP for model G, for 
all four methods. The models including G×E were more precise 
than those that only included the genomic effect G.

Furthermore, in general, genome-based accuracy for year 
2016–2017 was lower than genomic accuracy computed in year 
2015–2016 (Figure 2 vs. Figure 3). The DL method seemed to 
have more difficulties for learning from the data of year 2015–
2016 than from the data of year 2016–2017. This may be partially 
due to the year effect and to the difficulty of optimizing the 
hyperparameters of the DL method in this year.

DiScUSSiOn
The two data sets included in this study represent two years of data 
with different wheat lines included in each year, but evaluated 

FiGUre 3 | Mean squared error of the Prediction for year 2015–2016 for single environment (G) and multienvironment (E+G+GE) models with kernels GB, GK, and 
AK and the deep learning (DL) method for environments (a) BED5IR, (B) FLAT5IR, (c) BED2IR, and (D) FLAT2IR.
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under the same experimental environments. Results show that 
the prediction accuracy of the same models, for instance DL, 
were very different across years. This may be a result of the 
different lines used in the two data sets, but more likely the year 
effects and differences in the G×E interaction. Using the average 
performance of the lines in each year and performing a two-
year analysis may confound the year effect with the different line 
effects in each year. In order to avoid this possible confounding 
effect, we performed genomic G×E analyses across environments 
within each year.

DL Method
DL is a branch of machine learning inspired by the functioning of 
the human brain. It is helping to automate many tasks that until 
some time ago only humans were able to perform (e.g., artificial 
intelligence and autonomous driving). Applications of DL are 
found in many domains, from social sciences to natural sciences. 
It is used for classifying exoplanets in astrophysics, for selecting 
human resources in enterprises, for detecting frauds in banks, 
and for detecting and classifying many types of cancers, among 
other things (Chollet and Allaire, 2017). In plant breeding, DL has 
been used to predict phenotypes of hybrids or lines for which only 
genomic information is available (Montesinos-López et al., 2018a; 
Montsinos-López, 2018b; Montsinos-López, 2019a; Montsinos-
López, 2019b). However, the training process of DL models is 
challenging because successful implementation requires large data 
sets and a tuning process of many hyperparameters (number of 
hidden layers, number of neurons in each layer, type of activation 
function, number of epochs, batch size, learning rate, optimizer, 
etc.). For this reason, when a data set is not large enough, DL training 
is cumbersome and difficult, because part of the training data must 
be used to select the optimal combination of hyperparameters.

DL algorithms are flexible and generic and have attracted the 
interest of researchers working on genome-based predictions. 
However, the predictive ability of DL versus GBLUP has not 
been very convincing and not well studied, as pointed out by 
a recent review by Pérez-Enciso and Zingaretti (2019). Those 
authors mentioned that initial shallow single-layer neural 
networks are very competitive with penalized linear methods. 
However, what has not been addressed are the main difficulties 
of DL methods when appropriately tuning the hyperparameters 
and finding an optimal combination of them in order to achieve 
good genomic-enabled prediction accuracy without overfitting 
the data. In this study, authors have dedicated important efforts 
to fitting DL to the two data sets; however, the tuning process 
has been very difficult and cumbersome, and the results were 
not completely satisfying. Especially for the data set of the 
wheat lines from 2015–2016, the prediction accuracy was 
much smaller for DL than for any of the other models. We 
can speculate that investing a significant amount of extra time 
would have led to another set of hyperparameters resulting in 
better prediction accuracy.

Optimization of the DL algorithm
The network implemented in this study has no cycles or loops 
but is a feedforward topology where information moves in 

only one direction (forward) from the input nodes (prediction 
variables), through the hidden nodes, and to the output nodes 
(target variables). As previously described (see the Material and 
Methods section), we performed, for each of the 50 random 
partitions of the data, an optimization process for selecting the 
hyperparameters consisting of a grid search method to select 
the “optimal” set of hyperparameters for that specific partition 
of the random cross-validation; therefore, it was not possible 
to give one unique final set of estimated hyperparameters for 
implementing the DL method. Furthermore, the genomic-
enabled prediction accuracy of the DL method will change for 
every random partition of the data due to the different ranges of 
the estimated hyperparameters.

Therefore, since the tuning of the DL algorithm is complex 
and biased for the different range of values of hyperparameters 
obtained in each of the 50 random partitions, it is reasonable to say 
that the optimization process for selecting the hyperparameters 
is suboptimal. This is related to the fact that the optimization 
process does not guarantee finding a global minimum but may 
end at a local minimum. This circumstance makes it difficult to 
tune DL methods.

Deep Kernel Method
Due to the abovementioned difficulties, deep kernel methods 
that imitate DL methods are an appealing alternative 
because deep kernels also capture nonlinearity and complex 
interactions but do not need a complex tuning process, as 
does conventional DL. The kernel function induces nonlinear 
mapping from inputs x to feature vectors Ф(xi) by using the 
kernel trick function: k(xi, xi)=Ф(x)·(xi’) that mimics a single 
hidden layer or ANN model. Therefore, the iterated mapping 
of the following equation:

 k l
i i i

l times
( )

 

( ), ( ( ( ))  x x x′ = …Φ Φ Φ Φ
  

· (( ( ( )))
 

Φ Φ… ′xi

l times
    (5)

emulates the computation of a DL model (ANN with more 
hidden layers) where “·” represents the inner product. However, 
this iterative mapping does not lead to interesting results in 
linear kernels [k(xi,xi’)= xi·xi’], homogeneous polynomial kernels 
[k(xi,xi’)= (xi·xi’)d] and Gaussian kernels [ , ]k ei i

i ix x x x
′

− −( ) = λ ´ 2  
(Cho and Saul, 2009). Applying the exponential function twice 
leads to a kernel which is different from GK, but the qualitative 
behavior will not be changed (Cho and Saul, 2009). However, in the 

AK, the recursion   , ( ( ( ))) ( )( )k l
i i i

l

x x x′ = …Φ Φ Φ
 times

  

·· Φ Φ Φ( ( (  )))… ′xi

l  times
  

,  
also alters the kernel qualitatively and mimics an ANN with 
more than one hidden layer. The results we obtained with 
AK were similar to those obtained with GK, but with the 
main advantage that a complex tuning process for choosing 
the bandwidth  parameter  across a grid is not required. We 
also  found  that GK and AK outperformed the DL method, 
which might be due to the fact that our data sets are not 
large enough for  successful training of DL and that the main 
interaction structures within the data were known (G×E) and 
thus modeled directly.
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It is important to point out that the AK deep kernel method 
is not completely exempt from a tuning process, since one 
needs to define the depth of the kernel (equivalent to the 
number of hidden layers). However, choosing such values 
is straightforward, since we only need to choose integers 1, 
2, 3, 4, 5, etc. (Cho and Saul, 2009). We used the maximum 
marginal likelihood proposed by Cuevas et al. (2019) to select 
this parameter. As has been the case in many other studies, our 
results are not definitive, since we only compared the methods 
with two real data sets. For this reason, we encourage other 
scientists to do this benchmarking process with other types 
of data in order to increase the evidence of the prediction 
performance of these methods. Although our results are not 
conclusive, there is evidence that the AK (deep kernel) method 
competes well with DL and the GK, but with the main advantage 
that the tuning process is considerably less costly. For example, 
for cycle 2016–2017 with a marker matrix of 1040×8311, 
the average time for computing the squared distance for the 
basic GK was 105 s, whereas the computing time (using the 
same server) for the basic deep kernel AK1 (one layer) was 
7 s. Similarly, the average computing time for selecting the 
bandwidth h for GK was, for each partition, 80 s. In contrast, 
the average time for selecting the number of layers for AK was 
10 s. These differences increase (or decrease) exponentially as 
the size of the matrices to be used increases (or decreases). This 
advantage means that the AK method can be implemented in 
many statistical or machine learning software even by users 
with no background in statistics, computer science, or machine 
learning. The deep kernel method can be implemented and 
used more easily than DL models.

On the Marginal Likelihood and the 
number of hidden Layers (Or Levels) of 
the aK Deep Kernel Method
To illustrate how the marginal likelihood changed with the 
number of hidden layers used in the AK deep kernel, we give 
the example of the marginal likelihood of the observations for 
environment BED5IR for year 2016–2017 for layers (l) 1 to 8. 
The corresponding values were -2109.017, -2104.825, -2102.632, 
-2101.585, -2101.228, -2101.305, -2101.669, and -2102.232, 
respectively. The maximum likelihood is reached at l=5 
(-2101.228). Note that for method GB, the marginal likelihood is 

-2116.175, which is even lower than the first level (l=1) of the AK 
deep kernel (-2109.017).

cOncLUSiOnS
We performed a benchmarking study comparing a DL model 
with the AK deep kernel method, with the conventional GBLUP 
and with the nonlinear GK. We found that AK and GK performed 
very similar, but when taking the G×E interaction into account, 
GK constantly predicted best across all four environments and 
with both data sets. In general, AK and GK were better than 
GBLUP and DL. Our findings suggest that AK is an attractive 
alternative to DL and GK, since it offers competitive predictions 
at low costs in the tuning process. AK is a computationally simple 
model that makes it possible to emulate the behavior of DL 
networks with a large number of neurons. In general, the results 
of this study with respect to DL are not conclusive because the 
low performance of DL for year 2015–2016 may be partially a 
result of suboptimal hyperparameters.
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aPPenDiX

Basic codes for aK
######## Equation (3)
### AK1.fun:Build the base kernel (AK1) of AK with level one
AK1.fun<-function(X){
     n<-nrow(X)
     cosalfa<-cor(t(X))
     angulo<-acos(cosalfa)
     mag<-sqrt(apply(X,1,function(x) crossprod(x)))
     sxy<-tcrossprod(mag)
     AK1<-(1/pi)*sxy*(sin(angulo)+(pi*matrix(1,
n,n)-angulo)*cosalfa)
     AK1<-AK1/median(AK1)
     colnames(AK1)<-rownames(X)
     rownames(AK1)<-rownames(X)
     return(AK1)
      }  
#######  ### marg.AK function: Select the optimal recursion 
level 
marg.AK <- function(y,AK1,ml){
            lden.fun<-function(phi,nr,Uh,Sh,d){
            lden  <- -1/2*sum(log((1+phi*Sh)))-(nr-1)/2*log(sum(d^2/
((1+phi*Sh))))
            lden <- -(lden)
            return(lden)
            }
           vero<-function(y,GC) {          
           Kh <- GC
           eigenKh <- eigen(Kh)
           nr<- length(which(eigenKh$val>1e-10))
           Uh <- eigenKh$vec[,1:nr]
           Sh <- eigenKh$val[1:nr]
           d <- t(Uh)%*%scale(y,scale=F)
           sol <-optimize(lden.fun,nr=nr,Uh=Uh,Sh=Sh,d=d,lower=
c(0.0005),upper=c(200))
           phi<-sol[[1]]
           log.vero<--1/2*sum(log((1+phi*Sh)))-(nr-1)/2*log(sum(d^2/
((1+phi*Sh))))
           return(log.vero)
           }
           GC<-AK1
           l<-1
           GC2<-GC
           vero1<-vero(y=y,GC=GC2)
           m<-0
           while( m==0 && (l<ml)){
                l<-l+1
                GC<-AK.fun(AK1=GC2,nl=1)
                GC2<-GC
                vero2<-vero(y=y,GC=GC2)
                if(vero2<vero1) m=1
                vero1<-vero2
                }
          return(l-1)
          }
######### Equation (4)

### Kernel.function: Build the AK kernel, with the base kernel 
(AK1) and the recursion level (nl)
AK.fun<-function(AK1,nl){
    n<-nrow(AK1)
    AK<-AK1
       for ( l in 1:nl){
           Aux<-tcrossprod(diag(AK))
           cosalfa<-AK*(Aux^(-1/2))
           cosa<-as.vector(cosalfa)
           cosa[which(cosalfa>1)]<-1
           angulo<-acos(cosa)
           angulo<-matrix(angulo,n,n)
           AK<-(1/pi)*(Aux^(1/2))*(sin(angulo)+(pi*matrix(1,
n,n)-angulo)*cos(angulo))
       }
    AK<-AK/median(AK)
    rownames(AK)<-rownames(AK1)
    colnames(AK)<-colnames(AK1)
    return(AK)
  }
################################ Fitting the G (single 
enviroment) model
### Inputs: Matrix markers (X), observations  (y)
library (BGGE)
AK1<-AK1.fun(X)
trn<-!is.na(yna)
tst<-is.na(yna)
AKtrn<-AK1[trn,trn]
l<-marg.AK(y=y[trn],AK1=AKtrn,ml=30)
AK<-AK.fun(AK1=AK1,nl=l)
K<-list(list(Kernel=AK,Type="D"))
fit<-BGGE(y=yna,K=K,ne=1,ite=12000,burn=2000,thin=2,verb
ose=T)
cor(fit$yHat[tst],y[tst],use="pairwise.complete.obs")

Basic codes for DL
####Input and response variable
   X_trn=
    X_tst=
    y_trn=
    y_tst=
    Units_O=400
    Epoch_O= 1000
    Drop_O=0.05
    
    ###########specification of the Deep neural network 
#################
    model_Sec<-keras_model_sequential() 
    model_Sec %>% 
      layer_dense(units =Units_O , activation ="relu", input_shape 
= c(dim(X_trn)[2])) %>% 
      layer_dropout(rate =Drop_O) %>% 
      layer_dense(units =Units_O , activation ="relu") %>% 
      layer_dropout(rate =Drop_O) %>% 
      layer_dense(units =Units_O , activation ="relu") %>% 
      layer_dropout(rate =Drop_O) %>% 
      layer_dense(units =Units_O , activation ="relu") %>% 
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      layer_dropout(rate =Drop_O) %>% 
      layer_dense(units =1) 
    ###########Compiling the model #################
    model_Sec %>% compile(
      loss = "mean_squared_error",
      optimizer = optimizer_adam(),
      metrics = c("mean_squared_error"))
    ###########Fitting the model #################

    ModelFited <-model_Sec %>% fit(
      X_trn, y_trn,  
      epochs=Epoch_O, batch_size =56, verbose=0)
    
    ####Prediction of testing set ##########################
    Yhat=model_Sec %>% predict(X_tst)
    y_p=Yhat
    y_p_tst=as.numeric(y_p)
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Genome-wide association studies are powerful tools to elucidate the genome-to-phenome
relationship. In order to explain most of the observed heritability of a phenotypic trait, a
sufficient number of individuals and a large set of genetic variants must be examined. The
development of high-throughput technologies and cost-efficient resequencing of complete
genomes have enabled the genome-wide identification of genetic variation at large scale.
As such, almost all existing genetic variation becomes available, and it is now possible to
identify rare genetic variants in a population sample. Rare genetic variants that were usually
filtered out in most genetic association studies are the most numerous genetic variations
across genomes and hold great potential to explain a significant part of the missing
heritability observed in association studies. Rare genetic variants must be identified with
high confidence, as they can easily be confounded with sequencing errors. In this study,
we used a pre-filtered data set of 1,014 pure Populus trichocarpa entire genomes to
identify rare and common small genetic variants across individual genomes. We compared
variant calls between Platypus and HaplotypeCaller pipelines, and we further applied strict
quality filters for improved genetic variant identification. Finally, we only retained genetic
variants that were identified by both variant callers increasing calling confidence. Based on
these shared variants and after stringent quality filtering, we found high genomic diversity in
P. trichocarpa germplasm, with 7.4 million small genetic variants. Importantly, 377k non-
synonymous variants (5% of the total) were uncovered. We highlight the importance of
genomic diversity and the potential of rare defective genetic variants in explaining a
significant portion of P. trichocarpa's phenotypic variability in association genetics. The
ultimate goal is to associate both rare and common alleles with poplar's wood quality traits
to support selective breeding for an improved bioenergy feedstock.

Keywords: annotation, genes, genetic architecture, missing heritability, rare defective alleles, small genetic
variants, variant calling comparisons
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INTRODUCTION

In tandem, phenotypic and genomic diversity assessments are
key to understand the genetic regulation and architecture of
quantitative traits. Genetic association studies in the form of
genome-wide association studies (GWAS) have been used
extensively to associate genome-wide polymorphisms to
phenotypic variation (Visscher et al., 2017). Typical GWAS are
only including common genetic variations. Most of these studies,
however, failed to explain most of the observed heritability which
is coined the missing heritability problem (Manolio et al., 2009;
Brachi et al., 2011). It has been suggested that the missing
heritability could be found in other forms of hereditary
information such as epigenetic factors, epistasis, and rare
genetic variation (Maher, 2008). For over a decade, human
geneticists have questioned the role of rare genetic variants in
complex diseases (Pritchard, 2001; McCarthy et al., 2008;
Manolio et al., 2009). Consequently, the first association
studies including rare genetic variants and the associated
statistical tests originated in the field of human genetics
(Cohen et al., 2004; Hoffmann et al., 2010; Wu et al., 2011).

Generally, most genetic polymorphisms in natural population
are rare (i.e. found at frequencies lower than 5% in populations).
In addition, deleterious variants tend to exist at low frequency in
populations because of their negative impact on the phenotype.
Non-synonymous genetic variants especially, may have important
effects on phenotypes as they alter the amino acid sequence. For
instance, a genetic variation leading to a stop codon gain can have
drastic impacts on gene products (i.e. RNA and protein). Non-
synonymous variants can either be missense or nonsense variants.
Missense variants result in a codon change that code for a different
amino acid while nonsense variants result in truncated or
incomplete gene products. Including rare genetic variants in
GWAS along with common genetic variants represents a unique
opportunity to explain a significant part of the missing heritability
(McClellan and King, 2010). Prior to genetic association studies,
however, high confidence identification of the genetic
polymorphisms within the studied population is required.

Due to their low frequency, rare genetic variants are
challenging to identify. Genetic information for a substantial
number of individuals is required to find those genetic variants
that are rare in a population. In addition, rare genetic variants
can easily be confounded with sequencing errors as high-
throughput technologies have sequencing error rates between
0.1 to 1% (Fox et al., 2014). Therefore, rare genetic variants must
be identified with high confidence before use in GWAS.

High-throughput sequencing permit the resequencing of
large numbers of individuals at reasonable cost. Thanks to this
technological advancement, genetic data for model species are
now sufficiently large to identify rare genetic variants. Currently,
the lack of computing resources remains one of the most
important challenges to analyze these overwhelming data sets.

To decrease the confusion of low-frequency genetic variants
with sequencing errors, strict quality filters are applied from
processing of raw sequencing reads to variant discovery to
discard bad quality reads and other chimeras. In addition,
Frontiers in Genetics | www.frontiersin.org 283
comparison between variant calling software resulting in a
consensus set of Single Nucleotide Polymorphisms (SNP) lead
to increased variant detection accuracy (Baes et al., 2014;
Fahrenkrog et al., 2017). This approach minimizes the
identification of false genetic variants, even though it will
discard true genetic variants that were not identified by all
variant callers. Using strict quality filtering and variant caller
comparison, it is possible to evaluate both common and rare
genetic diversity with high confidence. Sensitivity (the number of
true positives) and specificity (the number of false positives) of
the data processing and variant calling steps should be optimized
according to the objectives of the genomic diversity evaluation.

Some populations are expected to contain a higher number of
low-frequency genetic variants than others. Natural,
outbreeding, and wide-ranging populations are expected to
possess higher heterozygosity and a larger number of low-
frequency variants (Petit and Hampe, 2006; Evans et al., 2014).
On the contrary, domesticated species typically have reduced
genetic diversity because of repeated cycles of artificial selection
using a few performant breeders with common genetic
backgrounds. Because of this high expected number of low-
frequency genetic variants, natural forest tree species represent
good candidates for rare variant association studies. In forest
trees, rare nonsense variants associated to complex traits have
been successfully identified. So far, these variants were found in
the following genes and species: a CAD (Cinnamyl alcohol
dehydrogenase) in Pinus taeda (MacKay et al., 1997), a CCR
(Cinnamoyl-CoA reductase) in two Eucalyptus species (Thumma
et al., 2005), an HCT1 (Hydroxycinnamoyl transferase) in
Populus nigra (Vanholme et al., 2013), and a KANADI in a P.
trichocarpa x P. deltoides pseudo backcross (Muchero et al.,
2015). Other studies also highlighted the ubiquity of rare genetic
variants and their role in complex trait regulation in poplar
species (Evans et al., 2014; Fahrenkrog et al., 2017).

Populus trichocarpa (Torr. & Gray), is a deciduous forest tree
species with important ecological and economical aspects. This
fast-growing tree mainly ranges along the North American west
coast, from Alaska to Baja California Norte (latitude 31°N to 62°N)
(Figure 1). The tree is used for pulp and oriented strand board
production and represents a good candidate for second-generation
biofuel feedstock (Porth and El-Kassaby, 2015). Additionally,
P. trichocarpa was the first tree species to have its whole genome
sequencedwith a genome size close to 500Mbp (Tuskan et al., 2006).
Since then, hundreds of whole genome resequencing efforts were
conducted (Evans et al., 2014; Muchero et al., 2015; McKown et al.,
2017) and numerous phenotypic traits related to phenology and
wood properties have been measured in common garden
experiments (Porth et al., 2013; Evans et al., 2014; McKown et al.,
2014; Muchero et al., 2015).

Contrary to other better-studied model species, forest trees
have not been subject to extensive genomic evaluation using
whole genome resequencing data. Only a handful of such studies
have been performed on economically important trees. Silva-
Junior and collaborators used pooled resequencing of 240
Eucalyptus tree genome to develop a SNP chip able to identify
60K SNPs (Silva-Junior et al., 2015). P. trichocarpa is by far the
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forest tree species with the most available genetic resources. In
2014, Evans and colleagues evaluate the genomic diversity across
a data set of 544 WGS of P. trichocarpa individuals identifying
17M variants (Evans et al., 2014). A second data set developed by
the US Department Of Energy (DOE) BioEnergy Science Center
(BESC) used 882 WGS of P. trichocarpa to identify 28M genetic
variants genome-wide (https://bioenergycenter.org/besc/gwas/).
To our knowledge, these few studies were the largest genomic
evaluation studies performed to date using WGS. It must be
noted that large number of individuals have been used in conifers
to perform genomic evaluation, but these studies relied on exome
or targeted sequencing constrained by the enormous and
complex nuclear genome of these species. In 2016, Suren and
collaborators used 579 interior spruce samples and 631 lodgepole
pine samples to identify 10M SNPs and insertions/deletions
(INDELs) in each species using exome capture (Suren
et al., 2016).

The goal of the present study was to characterize the genomic
diversity of P. trichocarpa individuals across its geographic range.
The specific objective was to identifying low frequency genetic
variants with high confidence that could be used in GWAS
Frontiers in Genetics | www.frontiersin.org 384
including both common and rare genetic variants. We present
here a detailed evaluation of small genetic variants using strict
quality filtering and comparison between two variant callers. In
addition, we provide functional information obtained from the
annotation of the discovered genetic variants. Finally, we
performed a Gene Ontology (GO) enrichment of genes in
which nonsense variants were found. This is the first study in a
plant species aiming at rare allele discovery using a large
sampling size from whole genome sequencing (over
1,000 individuals).
EXPERIMENTAL PROCEDURES

P. trichocarpa Sequencing Reads
A total of 1,038 unique P. trichocarpa individuals were sequenced
by the US DOE's BESC (Xie et al., 2009; Slavov et al., 2012).
These individuals were sampled across most of P. trichocarpa's
geographic range in California, Oregon, and Washington, USA,
as well as in British Columbia, Canada (Figure 1). These 1,038 P.
trichocarpa accessions were retrieved online in fall 2017 from the
FIGURE 1 | The 1,038 P. trichocarpa individuals retrieved from the JGI Genome Portal are represented by red dots across northwestern America. P. trichocarpa
natural range is defined in dark grey. P. trichocarpa natural range was drawn from Little (1971).
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Joint Genome Institute Genome Portal (https://genome.jgi.doe.
gov/portal/) in the form of raw sequencing read files. Whole
genome sequencing (WGS) were performed using short paired
end reads (100 bp) on an Illumina HiSeq 2000 platform. The
sampled individuals were checked for hybrids status after variant
discovery based on comparison with closely related species in
Principal Component Analysis (PCA; see Results).

Sequencing Reads Quality Filtering
Rare genetic variants and sequencing errors are both found at
low frequencies in raw sequencing reads. To differentiate
between true genetic variants and sequencing errors, we set
stringent quality control on the raw read fi les. All
bioinformatics manipulations were performed on Cedar and
Graham computing servers from Compute Canada and on
Katak and Manitou computing servers at the Institute of
Integrative Biology and Systems, Université Laval (Quebec,
Canada). First, we trimmed low-quality reads and sequencing
adapters using Trimmomatic (Bolger et al., 2014) (Figure 2).
Only bases having a Phred quality score higher than 27 (two
chances out of 1,000 that the base is a sequencing error) were
kept for further analyses. In addition, reads presenting a mean
base quality score below 27 and/or shorter than 50 bases were
discarded. The high quality of the cleaned read files was then
ensured using FastQC (Andrew, 2010) before the alignment and
variant calling steps. The mean number of paired reads per
accession was about 66M (range: 24 to 321M) after
quality filtering.
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Sequence Alignments
After the quality control steps, each individual accession was
align to the reference genome of P. trichocarpa version 3.0 using
the Burrow Wheeler Aligner (BWA; Li and Durbin, 2009)
(Figure 2). We used the BWA-MEM algorithm that uses
seedling alignments with maximal exact matches (MEMs) and
then extending seeds with the affine-gap Smith-Waterman
algorithm. Twenty-one genomes with average coverage lower
than 5X were discarded in order to retain high confidence
alignments. Ultimately, 1,017 alignments corresponding to the
same number of unique individuals were used in the
following analyses.
Variant Calls From Two Different Software
Pipelines
In order to obtain high confidence genetic variants, we used two
types of variant calling software for result comparison (Figure 2):
Platypus version 0.8.1 (Rimmer et al., 2014) and HaplotypeCaller
from the Genome Analysis Tool Kit version 3.8 (GATK; DePristo
et al., 2011; Poplin et al., 2017). These two variant calling
software are widely used for variant discovery therefore
facilitating data reproducibility. They also perform well in
terms of sensitivity and precision of discovered variants while
being computationally efficient thanks to the implementation of
multithreading (Sandmann et al., 2017). Platypus enables the
user to apply numerous quality filters during variant discovery,
while GATK offers a filtering tool for use after variant discovery.

Platypus was used to perform single nucleotide variants
(SNV) and INDEL calling on the 1,017 alignment files. As
suggested by Platypus default parameter, bases with quality
scores below 20 and reads with mapping quality below 20 were
ignored during variant calling. The following custom parameters
have been used to address rare variant calling: 1) only variants
supported by at least 10 reads were considered; 2) reads having
less than 40 bases with a quality lower than 20 were discarded; 3);
variants where the median minimum quality in a window of 20
nucleotides around the variant fell below 20 were labelled as
“bad reads”.

HaplotypeCaller was also used to perform SNV and INDEL
calling on the 1,017 alignment files. The filtering tool
VariantFiltration from GATK (DePristo et al., 2011) allowed
us to apply quality filters to variants discovered by
HaplotypeCaller. Parameters for filtering SNPs were set
according to GATK recommendations for hard filtering.
Variants were filtered out when: 1) their quality divided by
nucleotide site depth was lower than 2; 2) they were located on
a read with an approximate depth lower than 10; 3) their root
mean square mapping quality was lower than 40; 4) their phred-
scaled p-value using Fisher's exact test was greater than 60; their
symmetric odds ratio of 2x2 contingency table to detect strand
bias was greater than 3; their Z-score from Wilcoxon rank sum
test of alternative vs. reference read mapping qualities was lower
than -8; their z-score fromWilcoxon rank sum test of alternative
vs. reference read position bias was lower than -12.5. In addition
to the recommended parameters for hard-filtering, variants were
filtered out if not supported by at least 10 reads.
FIGURE 2 | Methodology followed to obtain annotated filtered genetic
variants from raw sequencing reads. Software used during each step are in
parentheses.
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Using custom python scripts, we filtered out vcf files obtained
by Platypus and HaplotypeCaller. More precisely, variants that
were attributed the “bad reads” flag were discarded from the vcf
files obtained by the two types of software. Retained variants
were therefore validated by each quality criteria settled during
the variant calling phase. Additionally, only INDELs smaller
than four nucleotides were included.

Parallelization
Given the large size of our data set, we took advantage of task
parallelization in order to minimize computation time for the
analyses of the two variant calling software (Figure 3). Both
Platypus version 0.8.1 and GATK's HaplotypeCaller version 3.8
allow task parallelization within the software, using
multiprocessing for Platypus and multithreading for
HaplotypeCaller. In addition, we used task parallelization
outside the software using a scatter-gathering approach. With
this method, large files are divided into smaller regions
(scattering) analyzed in parallel, then, the results are collected
and merged together (gathering). Both approaches are based on
task parallelization, but multiple tasks are run within the
software using multiprocessing and multithreading, whereas
task parallelization is done by the user and happens outside
the software for the scatter-gathering approach. A combination
Frontiers in Genetics | www.frontiersin.org 586
of these two approaches was used in order to minimize both
analysis and queue time on calculation servers. Portions of the
genome were analyzed in parallel (scatter-gathering) while
multiple tasks were also running in parallel on each portion
(multiprocessing, multithreading). Using Platypus, we ran the
analysis on each chromosome separately, while we had to divide
the analyses on smaller chromosomal regions using
HaplotypeCaller. The computing resources used for each
analysis varied considerably according to the studied
chromosomal regions.

Variant Annotations
Filtered variants discovered by the two variant callers were
annotated using SnpEff (Cingolani et al., 2012). To annotate
variants based on the same reference genome used during read
alignment we built a custom SnpEff database of the annotated
genome of P. trichocarpa version 3.0.

GO Enrichment
Based on variants recovered by the two variant calling software,
we performed a gene ontology (GO) enrichment test using
PANTHER version 14.1 (Mi et al., 2019). We retrieved the
names of P. trichocarpa genes in which stop-gained genetic
variants were found. Stop-gained variants can have drastic
FIGURE 3 | Illustration of different task parallelization approaches. (A) Simplest approach with no task parallelization. (B) Scatter-gathering approach, where task
parallelization is done by the user and happens outside the software. (C) Multithreading/multiprocessing approaches, where task parallelization is done by and
happens within the software. (D) Combination of multithreading/multiprocessing and scatter-gathering, where task parallelization happens outside and within the
software. Yellow backgrounds highlight the multithreading and multiprocessing parallelization. Blue backgrounds highlight the scatter-gathering parallelization.
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impact on phenotypes and have been found to affect wood
composition in poplars (Muchero et al., 2015). We tested
whether stop-gained variants are enriched in specific gene
functions with respect to biological processes. PANTHER
version 14.1 does not include P. trichocarpa annotations;
therefore, we retrieved names of the closest Arabidopsis
thaliana genes from P. trichocarpa genes possessing this type
of nonsense variants. The closest Arabidopsis genes were
determined during the annotation of the P. trichocarpa
reference genome v3.1 by aligning A. thaliana TAIR10
proteins to the P. trichocarpa genome (the detailed procedure
is available on the P. trichocarpa v3.1 Phytozome page). The
closest A. thaliana gene can be found in the gene annotation file
of the P. trichocarpa reference genome v3.1 (available on the JGI
Genome Portal). This information is available for 84% of the P.
trichocarpa genes. We used the PANTHER classification system
to perform a statistical overrepresentation test in GO biological
processes, using a Fisher's exact test with the names of A.
thaliana genes most similar to the targeted P. trichocarpa
genes. Fisher's exact test was used rather than the binomial test
because the former assumes a hypergeometric distribution,
which is more accurate for smaller gene lists. Finally, we
applied False Discovery Rate (FDR) correction to the obtained
p-values. FDR correction was designed to control the false
positive rate in the statistical test results and is generally
considered a better choice than Bonferroni correction in
enrichment analysis (Mi et al., 2019).
RESULTS

Variant Calling From Platypus and
HaplotypeCaller
Before filtering, 31,607,230 genetic variants were identified by
Platypus in our data set of 1,017 P. trichocarpa individuals. After
filtering by quality and variant size, this number reduced to
15,734,785 variants, no longer than three consecutive nucleotides
and distributed across 14,539,625 polymorphic sites. The
majority of these variants (64%) showed a frequency in the
population lower than 0.05 (Figure 4), i.e. found in less than
51 individuals.

Before filtering, 35,597,076 genetic variants have been
identified by HaplotypeCaller across the 1,017 P. trichocarpa
individuals. After filtering by quality and variant size, this
number reduced to 19,971,499, no longer than three
consecutive nucleotides and distributed across 19,478,954
polymorphic sites. Most of these variants (66%) had a
frequency lower than 0.05 in the population (Figure 4).

Variant Annotation
We used SnpEff to annotate genetic variants discovered by
Platypus and HaplotypeCaller. Variant annotation uses
information from reference genome annotations to describe
genetic variants, such as the variants' inter- or intra-genic
locations, and for variants located inside gene, the respective
gene name and the effect of the variant on the entire nucleotide
Frontiers in Genetics | www.frontiersin.org 687
or gene coding sequence. We must note that the total number of
variant annotation greatly exceed the total number of genetic
variants. The reason is that some variants belong to more than
one gene (i.e. overlapping genes) and here we report annotations
for the effect of variants on each gene they belong to because the
same variant can have different effects on different genes. On the
contrary, we refer to the total number of genetic variants as the
total number of nucleotide variation in the genome.

After annotation of variants discovered by Platypus, we found
that most of the variants (86%) were located outside of genes,
with nearly 11M variants found in intergenic regions and 8.1M
and 7.8M variants found in upstream and downstream gene
regions, respectively (Table 1). Upstream and downstream
regions correspond to 5-kb-long regions around genes in
SnpEff default parameter. The remaining variants (about 4.3M)
were located in genic regions, with more than 633K non-
synonymous variants (Table 1), accounting for 2% of the total.

For annotation of variants discovered by HaplotypeCaller, we
found that most of the variants were located outside of genes,
with 15M variants found in intergenic regions and 11.4M and
FIGURE 4 | Histograms of variant frequencies after filtering from
HaplotypeCaller (A), Platypus (B) and consensus data set (C) between both
software.
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11M variants found in upstream and downstream gene regions,
respectively (Table 1), accounting for 86.1% of the total. The
remaining variants (about 6.1M) were located in genic regions,
with nearly 901K non-synonymous variants (Table 1),
accounting for 2.1% of the total.

Variant Calling Overlap
In order to add a further quality criterion to the filtering process
of genetic variants, we retained only variants recovered by the
two variant calling software used in this study (i.e. Platypus and
Haplotype Caller). We used the isec command from bcftools to
find common variants between the two vcf files leading to a
consensus variant set (Li, 2011). As a result, 8.5M genetic
variants were recovered by both variant calling software,
distributed across 8.4M polymorphic sites (Figure 5).

Most of the variants were located outside of genes, with 5.7M
variants found in intergenic regions and 4.6M and 4.5M variants
found in downstream and upstream gene regions, respectively
Frontiers in Genetics | www.frontiersin.org 788
(Table 1), accounting for 82.4% of the total. The remaining
variants (3.2M) were located in genic regions, with nearly 473K
non-synonymous variants (Table 1), accounting for 2.6% of the
total. Missense variants (419K) accounted for 2.3% of the total
and nonsense variants (54K) for 0.3% of the total.

We found 45% more non-synonymous variants compared to
synonymous variants. Furthermore, among these non-
synonymous variants, missense variants even exceeded
synonymous variants by 29%. The total number of genetic
variants was only 1.5% higher than the number of
polymorphic sites.

To explore result disparities between genomic evaluation
studies that used different methods and data set sizes, we also
identified the genetic variants commonly found between our
study and two other genomic evaluation studies on P. trichocarpa
(Evans et al., 2014; https://bioenergycenter.org/besc/gwas/).
When comparing our results with the study of Evans and
collaborators that used 544 P. trichocarpa individuals and
TABLE 1 | Annotations obtained from variant calling by Platypus and HaplotypeCaller.

Annotations Current study

1,014 (1,017) individuals

Consensus Platypus HaplotypeCaller

Polymorphic sites 7,313,551 (8,368,838) 14,539,625 19,478,954
Total 7,441,340 (8,497,509) 15,734,785 19,971,499
intergenic varianta 5,254,503 (5,645,996) 10,886,077 15,149,344
downstream gene variantb 3,955,249 (4,607,452) 7,883,178 11,059,573
upstream gene variantb 3,955,094 (4,478,850) 8,086,954 11,413,237
intron variantc 1,341,551 (1,762,003) 2,427,258 3,463,071
missense variantd* 333,036 (418,974) 559,277 787,053
3 prime UTR variante 269,591 (345,432) 484,519 672,092
synonymous variantf 231,894 (324,970) 410,776 554,853
5 prime UTR variante 136,098 (175,634) 245,084 349,285
splice region variantg 54,271 (71,655) 95,479 128,316
5 prime UTR premature start gainh* 19,099 (24,989) 32,639 45,849
frameshift varianti* 9,766 (11,103) 16,937 31,172
stop gainedj* 8,365 (9,226) 12,967 20,146
splice donor variantk* 2,694 (3,208) 4,387 6,237
splice acceptor variantk* 2,284 (2,689) 3,807 5,315
stop lostl* 1,082 (1,335) 1,994 2,612
start lostm* 821 (981) 1,511 2,123
stop retained variantn 535 (695) 925 1,246
initiator codon variant° 115 (142) 215 280
non_coding_transcript_variantp 66 (70) 368 221
intragenic_variantq 2 (5) 13 21
exon loss variantr 2 (3) 3 3
5 prime UTR truncations 2 (2) 2 2
non canonical start codont 1 (1) 2 2
3 prime UTR truncations 0 (1) 1 1
January 2020 | Volume
For the consensus data set, numbers in brackets indicate the number of variants before suspected hybrids removal, while the number outside the brackets indicates the number of variants
after suspected hybrids were already removed.*Non-synonymous variants corresponding to genetic variants inside coding regions altering the amino acid sequence of a protein and
identified in both caller analyses. aIntergenic variant: located in intergenic regions and outside upstream and downstream gene regions. bUpstream and downstream variant: located in 5kb
regions before and after a gene, respectively. cIntron variant: located in non-translated introns of genes. dMissense variant: located inside coding regions and resulting in an amino acid
change. e5 and 3 prime UTR variant: located in 5′ and 3′ untranslated region of a gene, respectively. fSynonymous variant: located inside coding regions and not resulting in an amino acid
change. gSplice region variant: located within the region of the splice site. h5 prime UTR premature start gain: resulting in an initiator codon inside the 5′ untranslated region. iFrameshift
variant: resulting in a reading frame change, because the number of nucleotides inserted or deleted is not a multiple of three. jStop gained: resulting in a premature stop codon in the coding
sequence. kSplice donor and acceptor variant: changing the 2 nucleotide regions at the 5′ and 3′ end of an intron, respectively. lStop lost: resulting in an elongated gene product because of
stop codon loss. mStart lost: resulting in initiator codon loss. nStop retained variant: change in one base in the terminator codon, but the terminator remains. °Initiator codon variant: change
in at least one base of the first codon of a transcript. pNon-coding transcript variant: located in a non-coding RNA gene. qIntragenic variant: occurs within a gene but falls outside of all
transcript features. rExon loss variant: resulting in the loss of an exon from a transcript. s5 and 3 prime UTR truncation: causing the reduction of the 5′ and 3′ untranslated region,
respectively. tNon-canonical start codon: a start codon that is not the usual AUG sequence. The total number of variant annotations does not equal the total number of variants. The reason
is that some variants are part of several overlapping genes and may have different effect on different genes.
10 | Article 1384

https://bioenergycenter.org/besc/gwas/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Piot et al. Populus Germplasm Rare Variants Evaluation
Samtools as a variant caller we found that 81% (6,908,053) of the
variants they identified are also present in our consensus data set.
When comparing our results with the BESC data set that used
882 P. trichocarpa individuals and tools from GATK we found
that 77% (6,538,603) of the variants they identified are also
present in our consensus data set (Figure 5). Interestingly, we
found less variants in common with the study using 882
individuals comparing to the study using only 544 individuals.
Details regarding individual SNP sets from the two variant callers
overlap with the SNPs from Evans et al. and the BESC data set
and a summary indicating which variants occur within each SNP
set are provided in the Supplement (Tables S1 and S2).

Hybrid Identification
In order to identify potential hybrids in our data set, we also
identified the genetic variation across two Populus balsamifera,
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two Populus deltoides, one Populus angustifolia, and one
Populus fremontii individuals for comparison. These species
are closely related to P. trichocarpa and co-occur naturally in
some parts of its natural range (Wang et al., 2019). These four
species therefore hybridize naturally with P. trichocarpa. Raw
WGS reads were downloaded from the JGI Genome Portal for
P. balsamifera and P. deltoides (https://genome.jgi.doe.gov/
portal/) and from the Genome Sequence Archive of the BIG
Data Center for P. angustifolia and P. fremontii (https://bigd.
big.ac.cn/gsa/, accession number CRA001510). Genetic variants
from this six genomes were identified with the same
bioinformatic pipeline used for P. trichocarpa individuals (see
Experimental procedures). We used visual identification from a
PCA to identify potential P. trichcocarpa hybrids. To do so, we
filtrated the genetic variants identified across the genomes of
these four species and the consensus variant set identified in this
study using plink (–geno 0.01 –maf 0.1 –hwe 0.01 –LD 50 10
0.1) (Purcell et al., 2007). This filtration step yielded 12,001
variants with which we performed the PCA using plink (–pca 2)
(Figure 6).

The fractions of the genetic variation explained by the two
PCAs were 22% and 16%, respect ive ly . Graphica l
representation of Principal Components (PC) 1 and 2
(Figure 6) clearly separated P. balsamifera, P. deltoides, P.
angustifolia and P. fremontii from the 1,017 individuals of our
consensus variant set. Every individual from the Tahoe
population was slightly separated from the core of P.
trichocarpa individuals. The Tahoe population is the
southernmost population of our data set, geographically
quite distant from the other P. trichcocarpa populations. This
suggests that individuals from the Tahoe population differ
genetically from other P. trichocarpa populations because of
geographic distance and not because of hybridization with
other Populus species. One individual each, from the Skagit,
Vancouver Island and Willamette populations, respectively,
were located halfway between the core of P. trichocarpa
individuals and other Populus species, strongly suggesting
that these individuals may be hybrids or introgressed. These
three individuals were therefore removed from the consensus
variant set, hence lowering the number of P. trichocarpa
individuals to 1,014.

Biological Pathways Overrepresented
Among Functionally Defective Alleles
Among the consensus variants from Platypus and GATK variant
calling (based on the finalized 1,014 individuals data set), we
found that 8,365 stop-gained variants were distributed in 6,327 P.
trichocarpa genes. These genes corresponded to 3,829
synonymous genes for A. thaliana. Analyses of gene function
classification in PANTHER show that the set of genes containing
stop-gained variants was enriched in 106 GO terms with respect
to biological processes. Interestingly, multiple GO terms related
to wood properties such as cell wall polysaccharide metabolism,
cellulose biosynthesis, phenylpropanoid metabolism and plant-
type cell wall biogenesis are enriched in genes possessing stop-
gained variants (Table 2).
FIGURE 5 | Venn diagram of the number of genetic variants identified in this
study in addition to variants identified by Evans and colleagues (Evans et al.,
2014) and variants in the BESC data set (https://bioenergycenter.org/besc/
gwas/). We used Platypus and GATK's HaplotypeCaller with 1,017 WGS of
P. trichocarpa individuals. Evans et al., 2014 used samtools and bcftools
conjointly and 544 WGS of P. trichocarpa individuals. The BESC data set was
called using multiple tools from GATK and 882 WGS of P. trichocarpa
individuals. The number of variants identified by more than one software are
indicated where circles overlap. We note here that some of the individuals
used in Evans et al. and the BESC data set are the same as the 1,017 used
in the present study.
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DISCUSSION

Tool comparison for genomic variant calling has become the
standard when using Next Generation Sequencing in clinical
diagnostics (Sandmann et al., 2017, e.g.). To our knowledge, this
approach has never been used in plant sciences when performing
a large scale genomic diversity evaluation using WGS. In our
study, we evaluated the genomic diversity across 1,017
individuals of P. trichocarpa in the form of small genetic
variation using an existing set of whole genome sequences.
Our goal was to identify rare and common genetic variation in
the form of SNPs and small INDELs for subsequent use in
GWAS. Using stringent filtering steps and variant calling
comparison between two software we identified a set of high
confidence genetic variants.

Performance Comparison Between
Platypus and HaplotypeCaller
Our data set was computationally heavy with more than one
thousand P. trichocarpa genomes (~450 Mbp). For this reason,
we opted to use variant calling software enabling multithreading
to speed up variant identification analyses. HaplotypeCaller from
GATK version 3.8 was considerably slower at identifying variants
compared to Platypus version 0.8.1. Multithreading for current
versions of GATK (version 4) is still under development and not
safe for production work, therefore, we used a previous version of
GATK (version 3.8). Both software identify variants based on
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haplotype reconstruction while Platypus also integrates a
Bayesian statistical framework for variant discovery. The two
software ran on the same data set, but the number of variants
identified between each software differed substantially.
HaplotypeCaller identified 27% more variants in comparison to
Platypus. This discrepancy in the number of variants identified
by the two variant calling software highlight the importance of
result comparison between variant callers.

Bioinformatic Approaches
We used a scatter-gathering approach coupled to multithreading
to perform variant calling on smaller parts of the data separately.
We either conducted the variant calling on chromosomes or
smaller chromosomal regions separately to reach acceptable
running time and computing resource use. This approach
allowed us to identify variants across more than one thousand
complete genomes of P. trichocarpa within reasonable time. An
approach based on a single thread would not have permitted to
reach our goal with current computing technologies. The
combination of multithreading and scatter-gathering proved
very efficient for variant discovery on a large data set.

Consensus Variant Set
Nearly 8.5M genetic variants were identified by the two software
and represent high confidence genetic variation. The vast
majority of the identified variants had a frequency lower than
0.05 in our data set. Our results are in close agreement with other
FIGURE 6 | Principal component analysis showing the first two principal components of the genetic variation found across 1,017 P. trichocarpa, two P. balsamifera,
two P. deltoides, one P. angustifolia, and one P. fremontii individual genomes retrieved from various databases for comparison. Note Nisqually-1 (Tuskan et al.,
2006) in the upper right corner used as the overall reference.
January 2020 | Volume 10 | Article 1384

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Piot et al. Populus Germplasm Rare Variants Evaluation
genetic diversity evaluation studies of P. trichocarpa or closely
related species (Evans et al., 2014; Fahrenkrog et al., 2017) and is
expected in outcrossing, wide ranging, and undomesticated tree
populations (Petit and Hampe, 2006; Fahrenkrog et al., 2017).
Most genetic variants are located outside the gene space where
nucleotide substitutions are expected to have lower effect on the
phenotype and therefore are less subject to purifying selection.

Non-Synonymous/Synonymous Variant
Ratio
More surprisingly, inside coding regions, non-synonymous
genetic variants were more numerous than synonymous
mutations. This pattern has already been observed in a similar
study on P. trichocarpa (Evans et al., 2014). Given their higher
impact on protein sequence, purifying selection is expected to be
stronger on non-synonymous variants compared to synonymous
ones. A positive ratio of non-synonymous to synonymous
genetic substitutions is associated with positive selection (Yang
and Bielawski, 2000). P. trichocarpa is wide-ranging across the
west coast of North America and across a large latitudinal
gradient from Alaska to southern California. Individuals in our
Frontiers in Genetics | www.frontiersin.org 1091
data set were collected across most of P. trichocarpa's range.
Consequently, individuals in this study adapted to different
environmental conditions and likely exhibit high genetic
diversity in response to local adaptation (Evans et al., 2014).
Populations genomic studies are needed to evaluate selection
pressures and especially adaption acting across P. trichocarpa
geographic range.

Comparison With Other Genomic
Evaluations on Poplars
Previous studies evaluated the genomic diversity in P.
trichocarpa (Evans et al., 2014; BESC SNP data set: https://
bioenergycenter.org/besc/gwas/) and Populus deltoides
(Fahrenkrog et al., 2017). Fahrenkrog and colleagues (2017)
used targeted resequencing and variant calling overlap between
three different software to identified 358K SNPs in 391 unrelated
individuals of P. deltoides, which is much lower than the 8.5M
variants we found. Their final data set included variants found in
a subset of genes, thus reducing the size of the analyzed genome.
Intergenic variants were also excluded while most genetic
variations are usually found in intergenic regions. Moreover,
TABLE 2 | Results from the Gene ontology (GO) enrichment test performed with PANTHER are presented using a list of A. thaliana genes closest to the P. trichocarpa
genes and related to wood formation and in which stop-gained variants where found querying 1,014 black cottonwood individuals.
Results are sorted hierarchically to better understand the hierarchical relations between over-represented functional classes.

GO biological complete List of genes with stop-gained variants

# Expected Enrichment +/− raw P-value FDR

cellulose biosynthetic process 20 6.66 3 + 1.19E-04 8.89E-03
beta-glucan biosynthetic process 22 8.33 2.64 + 2.69E-04 1.82E-02

glucan biosynthetic process 36 15.69 2.29 + 4.52E-05 4.28E-03
cellular polysaccharide biosynthetic process 49 23.6 2.08 + 2.56E-05 2.55E-03

macromolecule metabolic process 1092 792.57 1.38 + 1.15E-26 1.14E-23
organic substance metabolic process 1556 1145.6 1.36 + 1.82E-39 5.41E-36

metabolic process 1798 1334.13 1.35 + 5.28E-47 3.15E-43
organic substance biosynthetic process 452 370.95 1.22 + 6.11E-05 5.13E-03

biosynthetic process 475 393.99 1.21 + 9.41E-05 7.69E-03
cellular biosynthetic process 441 363.73 1.21 + 1.09E-04 8.44E-03

cellular metabolic process 1487 1109.93 1.34 + 3.52E-34 4.20E-31
cellular process 2021 1610.26 1.26 + 8.40E-36 1.67E-32

cellular macromolecule metabolic process 823 606.54 1.36 + 1.10E-17 7.31E-15
cellular polysaccharide metabolic process 73 39.57 1.85 + 9.51E-06 1.07E-03

polysaccharide metabolic process 93 60.67 1.53 + 2.86E-04 1.91E-02
carbohydrate metabolic process 188 138.27 1.36 + 1.38E-04 1.02E-02

primary metabolic process 1430 1049.26 1.36 + 9.69E-36 1.45E-32
cellular carbohydrate metabolic process 92 56.64 1.62 + 5.83E-05 5.04E-03

polysaccharide biosynthetic process 51 28.6 1.78 + 5.06E-04 2.99E-02
cellular carbohydrate biosynthetic process 53 28.74 1.84 + 1.77E-04 1.27E-02

cellular glucan metabolic process 56 29.57 1.89 + 5.06E-05 4.51E-03
glucan metabolic process 56 29.57 1.89 + 5.06E-05 4.44E-03

cell wall polysaccharide metabolic process 39 19.16 2.04 + 1.99E-04 1.38E-02
plant-type cell wall biogenesis 41 20.41 2.01 + 1.89E-04 1.33E-02

cell wall biogenesis 56 31.93 1.75 + 3.56E-04 2.24E-02
cellular component biogenesis 228 171.45 1.33 + 8.33E-05 6.90E-03

cellular component organization or biogenesis 547 426.48 1.28 + 2.54E-08 4.59E-06
phenylpropanoid metabolic process 34 17.08 1.99 + 8.21E-04 4.62E-02

organic cyclic compound metabolic process 548 369.84 1.48 + 1.69E-17 1.01E-14
cellular aromatic compound metabolic process 518 355.81 1.46 + 2.52E-15 1.37E-12
January 2
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Results are sorted hierarchically to better understand the hierarchical relations between over-represented functional classes. We provide for each GO term (up to seven levels): the number
of genes present within the analyzed list (#), the expected number of genes under no GO enrichment (Expected), the enrichment value (Enrichment), the sign of the enrichment (+/−), the P-
value associated with the enrichment test without multiple testing correction (raw P-value) and multiple testing corrected using False Discovery Rate (FDR).
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the variant calling comparison between three different software
further decreased the number of identified variants. This
approach resulted in a set of high confidence rare and
common genetic variants, although less numerous than for
studies based on WGS.Using 544 WGS of P. trichocarpa
individuals, Evans and colleagues (2014) identified 17M SNPs
using one variant caller. This number is more than two times
higher than the 8.5M variants we identified using comparison
between two variant calling software and stringent quality
criteria on two times the number of individuals. Evans and
colleagues performed no variant filtration, however, and found
that stringent filtering had minimal impact on the sensitivity of
known SNP discovery while reducing substantially the number
of known SNPs passing the filtering threshold (i.e. specificity).
For the targeted identification of rare genetic variants and for
sequencing data with low to moderate sequencing depth we
believe that variant filtration is highly beneficial. The DOE's
BESC also released a SNP data set (a description of how the SNPs
were called is available in the method section of the following
study: Weighill et al., 2018). This data set included 28M variants
identified across 882 WGS of P. trichocarpa. Genetic variants
were called using GATK tools. First, variants were called
independently for each individual using HaplotypeCaller and
merged afterward. Biallellic SNPs were then extracted and
filtered using the VariantQualityScoreRecalibration (VQSR)
tool. This latter tool uses machine learning to filter variants
using a set of known genetic variants (see Weighill et al., 2018 for
more information). Similarly, to Evans and colleagues, the BESC
data set identified a lot more genetic variants than our study
using less individuals. The number of identified variants seems to
increase when using only one variant caller. On the contrary,
using variant caller comparison the number of individuals
scanned does not seem to increase the number of identified
variants. Indeed, the number of common variants between our
study and the 882 individual data set is slightly lower than the
number of common variants between our study and the 544
individuals data set (Figure 5). The number of commonly
identified variants can even be greater between two different
variant callers than between the same variant caller, i.e.
HaplotypeCaller. These observations show that the use of a
certain variant caller is not the main factor determining which
variants will be identified, instead parameters used during
variant discovery and for filtering along with the comparison
between variant caller seem to be of considerable importance.

Quality Filtering and Variant Caller
Comparison
Application of stringent filtering criteria before and after variant
discovery and the result overlap between variant calling software
are key factors for genomic diversity evaluation. With current
sequencing technologies and variant calling algorithms, a balance
must be found between sensitivity and specificity of variant
discovery. Increasing severity in quality filters and increasing
the number of variant calling software tend to increase the
quality of the identified variants while decreasing the total
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number of variants. Therefore, the goal of genomic diversity
evaluation studies must be clearly stated to ensure that optimal
parameters for variant identification are used. Common genetic
variants can be identified easily with high confidence without
using strict quality filters or comparison between variant calling
software. On the contrary, rare genetic variants are difficult to
identify with high confidence and require strict quality filtering
and overlap between results from various variant calling
softwares for reliable identification. When identifying both
common and rare genetic variants, as in this study, confidence
in the identified variants should be prioritized.

Predicting Models for Increased
Specificity
When high quality sets of genetic variants are already available as
in model species, one can build models to better detect true and
false genetic variants using sets of known genetic variants to
increase the specificity of variant identification [e.g. VQSR from
GATK (McKenna et al., 2010)]. Although these models are very
useful for human and some other model species, they do not
apply to every study. Large sequence data sets such as WGS and
Whole Exome Sequencing (WES) and high quality sets of known
genetic variants must be used in order to build accurate
predicting models. WGS and WES are now widely used in P.
trichocarpa and high quality sets of known common genetic
variants are available. Known high quality sets of rare genetic
variants, however, are scarce or even non-existent when
considering both genic and intergenic regions. Consequently,
we did not use such models to increase the specificity of our
variant discovery. The consensus set of 8.5M genetic variants,
common and rare, identified in this study will be available as a
high quality set of known variants to build models aiming at
increasing variant specificity in future genomic diversity
evaluations of P. trichocarpa and closely related species.

GO Enrichment
We used a GO enrichment test to identify biological pathways
overrepresented with genes containing stop-gained genetic
var ian ts . A mul t i tude of b io log ica l proces s were
overrepresented with genes containing stop-gained variants.
Among them, biological processes related to wood properties,
and especially secondary cell-wall polysaccharides are of great
interest. Previous studies already highlighted the role of
functional variants (premature or abolished stop codon, altered
start codon, frameshift variant or alternative splice sites) on
genes involved in lignin biosynthesis (MacKay et al., 1997;
Thumma et al., 2005; Vanholme et al., 2013; Muchero et al.,
2015). The lignin and other secondary cell-wall polymers (i.e.
cellulose and hemicellulose) biosynthesis pathways may be
largely affected by functional variants. Thus, these
overrepresented biopathways will help us select candidate
genes for further analyses. Recent functional mutations are
expected to show greater effects on a phenotype, since such
functional allelic variants have not undergone selection to much
extent. For example, we detected a stop gain mutation at 2.3%
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minor allele frequency and with 4.3% carriers in the population
for the poplar orthologue of the Arabidopsis irx10 gene (aka
PtrGUT2B; Potri.001G068100). Its protein is known to be
implicated in xylan backbone formation, and thus a prime
target for improving cell wall traits (Porth et al., 2018).
Therefore, such variants are important candidates for the
purpose of rare variant association studies and ultimately,
selective breeding with rare defective alleles (Vanholme et al.,
2013; Porth and El-Kassaby, 2015).
CONCLUSION

We identified 8.5M small genetic variants, common and rare,
across more than one thousand P. trichocarpa individuals
sampled throughout the species' range. Use of appropriate
quality filtering and variant comparison between two variant
callers resulted in high-quality sets of genetic variants. With a
data set of 1,017 complete genomes, this is the first time that a
genomic diversity evaluation of this magnitude has been
conducted in P. trichocarpa and, to our knowledge, in any tree
species. The high-quality set of known genetic variants identified
will be directly available to support other genomic diversity
evaluations of P. trichocarpa and other closely related species.
Moreover, GWAS including rare and common genetic variants
will be conducted using those high-quality variants. Thus,
starting out from a wealth of genetic variants uncovered in the
present study, we will be able to further narrow down the set of
important variants for poplar selective breeding.
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Uncovers Novel Genomic Regions
Associated With Coleoptile Length in
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Successful seedling establishment depends on the optimum depth of seed placement
especially in drought-prone conditions, providing an opportunity to exploit subsoil water
and increase winter survival in winter wheat. Coleoptile length is a key determinant for the
appropriate depth at which seed can be sown. Thus, understanding the genetic basis of
coleoptile length is necessary and important for wheat breeding. We conducted a
genome-wide association study (GWAS) using a diverse panel of 298 winter wheat
genotypes to dissect the genetic architecture of coleoptile length. We identified nine
genomic regions associated with the coleoptile length on seven different chromosomes.
Of the nine genomic regions, five have been previously reported in various studies,
including one mapped to previously known Rht-B1 region. Three novel quantitative trait
loci (QTLs), QCL.sdsu-2AS, QCL.sdsu-4BL, and QCL.sdsu-5BL were identified in our
study. QCL.sdsu-5BL has a large substitution effect which is comparable to Rht-B1's
effect and could be used to compensate for the negative effect of Rht-B1 on coleoptile
length. In total, the nine QTLs explained 59% of the total phenotypic variation. Cultivars
‘Agate’ and ‘MT06103’ have the longest coleoptile length and interestingly, have favorable
alleles at nine and eight coleoptile loci, respectively. These lines could be a valuable
germplasm for longer coleoptile breeding. Gene annotations in the candidate regions
revealed several putative proteins of specific interest including cytochrome P450-like,
expansins, and phytochrome A. The QTLs for coleoptile length linked to single-nucleotide
polymorphism (SNP) markers reported in this study could be employed in marker-assisted
breeding for longer coleoptile in wheat. Thus, our study provides valuable insights into the
genetic and molecular regulation of the coleoptile length in winter wheat.

Keywords: Triticum aestivum, coleoptile length, semi-dwarf wheat, genome-wide association study, quantitative
trait loci, SNP (Single-nucleotide polymorphism), marker-assisted selection
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INTRODUCTION

Successful crop stand establishment is the first critical step for
achieving a high yield potential (Rebetzke et al., 2007b; Rebetzke
et al., 2014). Temperature and moisture are two major
environmental factors that determine the success of seedling
emergence out of the soil (Jame and Cutforth, 2004; Hunt et al.,
2018). Therefore, to ensure that ideal temperature and moisture
are available to the seed, optimum planting depth is critical. In
regions with dry soils and higher temperatures, deep seed
placement ensures optimum temperature and moisture (Mahdi
et al., 1998). Deep sowing of seeds also minimizes winter injury
and prevents seed damage caused by animals (Brown et al.,
2003), however, it delays emergence.

The coleoptile is a sheath that facilitates the emergence of the
shoot through the soil crust in monocots. The length of the
coleoptile dictates the maximum depth at which seed can be
sown. Thus, genotypes with longer coleoptile can be sown deeper
to circumvent dry and high-temperature conditions. Whereas
genotypes having shorter coleoptiles may fail to emerge if sown
too deep and thus result in a poor stand and eventually
leading to production losses (Mahdi et al., 1998; Rebetzke
et al., 2005; Rebetzke et al., 2007b). Further, an increase in
temperature affects coleoptile length negatively. Thus, such
genotype*environmental interactions can be devastating on
crop yield (Jame and Cutforth, 2004; Rebetzke et al., 2016).
Extremely dry situations during the fall season (Budak et al.,
1995; Schillinger et al., 1998) and dry spring in the northern
Great Plains lead to a poor establishment of hard winter and hard
spring wheat, respectively. Extreme fluctuations in weather with
changing climate necessitate an adjustment in the breeding
programs towards developing crop varieties having longer
coleoptiles to ensure better plant stands and establishment.

Present-day wheat varieties' genetic potential for coleoptile
length cannot adequately meet the requirements of deep-sowing
farming practices and of changing climate. Two reasons
responsible for the poor genetic makeup for coleoptile length
are; (1) no dedicated breeding effort has been made for
improving coleoptile length of wheat varieties; (2) development
of semi-dwarf wheat varieties using dwarfing genes Rht-B1b and
Rht-D1b which suppresses or have association with a locus which
suppresses coleoptile length (Allan et al., 1962; Allan, 1980; Yu
and Bai, 2010; Li et al., 2011; Rebetzke et al., 2016).

Molecular markers linked to genes or quantitative trait loci
(QTLs) can facilitate simultaneous marker-assisted breeding and
pyramiding for several traits, avoiding laborious and time-
consuming phenotyping. Recently, a few QTL mapping studies
in spring wheat have mapped several QTLs that control
coleoptile length on chromosomes 1A, 1B, 1D, 2B, 2D, 3A, 3B,
3D, 4A, 4BS (Rht-B1b), 4DS (Rht-D1b), 5A, 5B, 5D, 6A, 6B, and
7B (Rebetzke et al., 2007a; Spielmeyer et al., 2007; Yu and Bai,
2010; Rebetzke et al., 2014; Singh et al., 2015; Li et al., 2017)
However, linkage mapping studies have lower power in
identifying QTLs with smaller effect and typically demarcate
the QTLs to large genomic regions of 15-20 cM (Tuberosa et al.,
2002; Korte and Farlow, 2013).
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Nearly all previous studies (Spielmeyer et al., 2007; Yu and
Bai, 2010; Rebetzke et al., 2014; Singh et al., 2015) consistently
mapped QTLs close to Rht-B1b and Rht-D1b, however, the
diverse populations used in those studies led to the
identification of distinct novel loci; on chromosomes 1B, 3D,
4DL, and 5AS using a Chinese wheat variety (Yu and Bai, 2010);
on chromosomes 1D, 3A, 6A, and 7B using a population derived
from Australian cultivars (Spielmeyer et al., 2007; Rebetzke et al.,
2014); on chromosomes 3BS and 3BL using Indian cultivars
(Singh et al., 2015); and on chromosomes 1BS, 2DS, 4BS, and
5BL using diverse 893 accessions collected from around the
world (Li et al., 2017). This suggests that there are a number of
QTLs for coleoptile length and therefore, the potential of
utilizing these distinct loci in the development of varieties
suitable to specific regions.

Genome-wide association (GWAS) is a powerful tool for
dissecting genetic architecture of complex traits with the
availability of high-density SNP arrays (Wang et al., 2014)
and next-generation sequencing technologies (Poland et al.,
2012; Ayana et al., 2018; Ramakrishnan et al., 2019; Sidhu
et al., 2019). Further, GWAS can effectively identify many
natural allelic variations in a large set of unrelated individuals
as compared to the traditional QTL mapping (Huang and
Han, 2014). Li et al. (2017) conducted GWAS using a global
wheat collection of 893 accessions and identified two major
QTLs for coleoptile length. These two QTLs are present on
chromosome 4B and 4D, independent of Rht-B1b and Rht-D1b
respectively, but their physical locations are unknown.
Though a number of QTLs have been mapped in spring
wheat and a few in winter wheat, they may not cover the
entire variation for coleoptile length. Further, most of the
QTLs cover a large genomic region and information on
functional characterization of these QTLs is lacking. The
functions of candidate genes have only been reported in one
study (Singh et al., 2015) where cell wall expansion genes were
found in two QTL regions. The functional characterization of
genes is necessary to use them efficiently at the molecular and
genetic level. Furthermore, understanding the function
of genes will also help in navigating the complexity that
arises due to breeding for longer coleoptiles, but shorter
shoots simultaneously.

Allan et al. (1962) reported the correlation between coleoptile
length and final stand establishment in fall sown winter wheat
varieties. However, no study has been done to explore the genetic
regions controlling coleoptile length in winter wheat varieties of
the USA, even though regions of low-precipitation in the Great
Plains and Pacific Northwest necessitates deep sowing to ensure
moisture for germination (Budak et al., 1995; Schillinger et al.,
1998) and better winter survival. Identification and
characterization of QTLs by exclusively using winter wheat
varieties will shed light on the underlying diversity for
coleoptile length, and provide linked markers to facilitate
marker-assisted selection. Further, annotation of genes
associated with coleoptile length in the candidate regions will
help understand the molecular mechanism of coleoptile length in
wheat and other monocots.
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The objectives of this study were; (i) mapping QTLs that
control the length of coleoptile by conducting genome-wide
association analysis in a hard winter wheat panel of 298 winter
wheat accessions; (ii) identifying SNP markers linked to QTLs
for marker-assisted selection; (iii) identifying candidate genes
located in the QTL regions.
MATERIALS AND METHODS

Plant Materials
In the present study, we used a hard winter wheat association
mapping panel (HWWAMP) of 298 winter wheat accessions
developed under the USDA TCAP project (Guttieri et al., 2015).
The total collection of 298 accessions consists of released
varieties since the 1940s and breeding lines from the US hard
winter wheat growing region including Colorado, Kansas,
Michigan, Montana, Nebraska, North Dakota, Oklahoma,
South Dakota, and Texas. Additional physiological and
agronomic data about the HWWAMP accessions is available
in the T3/Wheat database (https://triticeaetoolbox.org/wheat/
pedigree/pedigree_info.php).

Experimental Setup
Seed for all 298 HWW accessions were harvested from the field
and dried to 11–13% moisture content. The seeds of each line
were then carefully cleaned with a Carter Day dockage tester, and
clean uniform seeds from the #2 middle sieve were collected for
this experiment. Coleoptile lengths of 298 accessions were
evaluated in three independent experiments with two
replications in each experiment. In each experiment, 10
healthy-looking seeds of each genotype were placed and
germinated on a wet paper towel measuring 15 cm x 10 cm
(SGB1924B, Anchor Paper Co., USA). Seeds were placed about 1
cm apart with germ end downwards on wet germination paper
leaving a 1 cm margin at the bottom. Another wet germination
towel of the same size was placed on top. These two germination
papers enclosing the seeds were carefully placed in a plastic bag
and kept at 4°C for 48 h to break the seed dormancy. Later the
plastic bags were hanged vertically in a growth chamber for 14
days at 18°C. After 14 days, coleoptile lengths were measured
using a ruler. Distance between the tip of coleoptile and
scutellum was considered as the length of coleoptile.

Data Analysis
The phenotypic data was analyzed using the linear mixed model
(LMM) approach, considering all factors as random. The
analysis was conducted in R environment (R Core Team,
2016) using R package ‘minque' (Wu, 2014) based on the model:

Yijk = m + Gi + Ej + GEij + Ri jð Þ + eijk (1)

where “µ” stands for population mean, “G” stands for genotypes,
“E” for experiments, “R” for replications nested under
experiments, and “e” for the random error. Broad-sense
heritability (H2) was calculated using equation 2:
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H2 =
s 2
G

s 2
G + s 2

E=n + s 2
G*E=nr

(2)

Where, s2G = genotype, s2E = experiment, s2
G*E = genotype *

experiment, r = number of replications, and n = number
of experiments.

Genotyping
The HWWAMP was genotyped using the wheat Infinium 90K
iSelect array (Illumina Inc. San Diego, CA) under the USDA-
TCAP (Cavanagh et al., 2013) and the genotypic data (21,555
SNPs) was obtained from the T3 Toolbox (https://
triticeaetoolbox.org/wheat/genotyping/display_genotype.php?
trial_code=TCAP90K_HWWAMP). To avoid any spurious
marker-trait associations, the SNP markers with a minimum
allele frequency (MAF) < 0.05 and more than 10% missing SNP
data were excluded from further analyses, leaving 15,590 SNP
markers. The genetic positions of the wheat Infinium 90K iSelect
SNP markers used in the study were obtained from the
consensus genetic map of 46,977 SNPs (Wang et al., 2014).
The SNP flanking sequences were mapped to wheat Chinese
Spring RefSeq v1.1 assembly (IWGSC et al., 2018) using
BLASTN to identify the physical location of the mapped SNPs.

Population Structure And Linkage
Disequilibrium
Population structure among the 298 winter wheat accessions was
studied to determine any relationship between breeding
programs and coleoptile length. We used a set of 15,590 SNP
markers with MAF > 0.05 and less than 10% missing genotypic
data to estimate the population structure using a model-based
Bayesian cluster analysis program, STRUCTURE v2.3.4
(Pritchard et al., 2000). The admixture model was used with 10
independent replicates for each value of genetic groups (K = 1-
10) followed by 10,000 iterations of burn-in and 10,000 Markov
Chain Monte Carlo (MCMC) iterations. Structure Harvester
(Earl and vonHoldt, 2012) was used to extract the output of
the structure analysis. The optimum number of clusters was
inferred using statistic DK (delta K) (Evanno et al., 2005), which
is based on the rate of change in the log probability of given data,
between successive K values. Furthermore, we conducted
principal component analysis (PCA) in TASSEL 5.0 (Bradbury
et al., 2007) using the same set of markers and used the PCA
covariates for GWAS analysis. Linkage disequilibrium (LD)
decay distances for the HWWAMP were calculated using
TASSEL v5.0 (Bradbury et al., 2007) with only 1,842 markers
taking out non-informative markers in our previous study
(Ayana et al., 2018). The estimated r2 values were plotted
against the genetic distance (cM) to elucidate the LD decay for
all as well as individual genomes. The LD (r2 > 0.1) decay
distance of about 4.5 cM was estimated for the whole genome
(Ayana et al., 2018).

Marker Trait Associations
Genome-wide association mapping was conducted using 15,590
SNPs and coleoptile data from 298 HWWAMP accessions using
the mixed linear model (MLM) (Yu et al., 2006) implemented in
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TASSEL (Trait Analysis by association, Evolution, and Linkage)
v 5.0 software (Bradbury et al., 2007). MLM is mathematically
represented as:

y = Xb + Zu + e (3)

where y represents the vector of the phenotypic values, b
represents fixed effects due to the marker and population
structure, u represents the vector of the random effects, e
represents the vector of residuals, and X and Z are the
incidence matrices for b and u, respectively.

MLM was used as it incorporates kinship and population
structure as covariates to minimize the confounding effects,
reducing the probability of type-I error when compared to the
general linear model (GLM). Kinship (K) was estimated using
the Centered IBS (identity by state) method in TASSEL v 5.0
(Endelman and Jannink, 2012). By default, TASSEL v5.0 uses
PCA as covariates to adjust for the population stratification. We
incorporated the first four PCAs as covariates in the MLMmodel
to reduce the confounding effects. As the false discovery rate
(FDR) correction for multiple testing was too stringent, markers
with a −log10(p-value) > 3 were considered as significant
associations. Furthermore, MLM results from TASSEL v5.0
were confirmed using MLM and SUPER in the genome
association and prediction integrated tool (GAPIT) (Lipka
et al., 2012) implemented in the R environment (R Core Team,
2016). Further, the identified QTLs were also subjected to five-
fold validation (Ramakrishnan et al., 2019). Briefly, the
population was randomly divided into five subsets of equal size
and process was repeated five times. Out of each of the five
subsets, four (240 lines) were used for marker-trait association
analysis and the last set (60 lines) was used to cross-validate the
significant markers using t-test among different alleles of each
significant SNP marker.

Identification and Annotation of the
Candidate Genes in the QTL Regions
We used the flanking sequence of significant SNPs to physically
map them on Chinese Spring Refseqv1.1 (IWGSC, 2018) using
BLASTN search with an E-value cut off 1e-50. To demarcate the
candidate QTL regions, the SNP markers with P < 0.005, both
up- and downstream of the most significant marker, were
identified. The coding sequences (CDS) of high confidence
genes (https://urgi.versailles.inra.fr/jbrowseiwgsc) from each of
these QTL regions were extracted in the FASTA format and
Blast2Go software (https://www.blast2go.com) was used for
functional gene annotation. Consequently, we identified the
candidate genes that may be associated with coleoptile length
based on the LD Decay in the region (Ayana et al., 2018) and
their putative functions after a thorough review of the literature.
RESULTS

Phenotypic Variance
Coleoptile length within 298 winter wheat accessions varied
from 49.40 to 111.00 mm with an overall mean of 74.65 mm
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(Supplementary Table S1). LMM analyses revealed that the
three experiments were consistent (Figure 1, Supplementary
Table S2). Average coleoptile length for the three independent
experiments (further referred to as Exp1, Exp2, and Exp3) was
76.10, 73.50, and 74.00 mm, respectively (Figure 1). Overall,
only 1.24% of the variation was contributed by experiments and
replications together. The estimated broad-sense heritability for
coleoptile length was 73.4%. The median coleoptile length was
71.75 mm. About 25% of the genotypes were less than 66.33 mm
and 25% were above 81.17 mm. The majority of the genotypes
in all the experiments reached a coleoptile length of ≥ 65 and ≤
70 mm (Figure 1). An accession from Oklahoma ‘OK05723W’
had the shortest coleoptile (49.40 mm) while the cultivar
‘AGATE’ had the longest coleoptile (111.00 mm). We also
evaluated if the seed source (location) may have an impact on
the coleoptile length by comparing the coleoptile length of two
varieties from four different locations. The genotype and
location effects were found to be significant for two
genotypes. However, genotype*location interaction was non-
significant, with the ranking of two varieties being the same
across four locations. Thus, the growing environment did not
significantly impact the ranking of the genotypes for
coleoptile length.

LD Analysis and Population Structure
The hard winter wheat association-mapping panel was
characterized for LD in our previous study (Ayana et al.,
2018). LD decay was calculated based on the r2 values for the
whole genome and within each genome of the association panel.
The distance where LD value (r2) decreases below 0.1 or half
strength of D' (D' = 0.5) was estimated based on the curve of the
nonlinear logarithmic trend line. LD dropped to 0.5 at about 4.5
cM for whole-genome; whereas, LD extent in A and B and D
genomes was around 3.4 and 3.6 cM, but much larger in D
genome (14.2 cM) owing to fewer markers.

The association-mapping panel used in this study is
comprised of 298 winter wheat cultivars/breeding lines from
different regions of the USA. We investigated the population
structure to reveal if the association-mapping panel is structured,
based on the breeding programs/origin; and figure out any
relationship of structure with the coleoptile length. We
identified four sub-populations in the HWWAMP, namely: P1,
P2, P3, and P4 (Supplementary Figure S1). Populations P1, P2,
P3, and P4 consist of 120, 34, 33, and 111 genotypes, respectively
with a corresponding average coleoptile length of 79.13, 75.18,
69.91, and 72.20 mm. The average coleoptile length of
population P1 was higher than the populations P2, P3, and P4;
however, it was statistically different only from P3 and P4
(Supplementary Table S3).

Marker Trait Associations (MTAs)
In total, GWAS analysis using MLM in TASSEL v5.0 identified
46 significant SNPs (P < 0.001) in nine genomic regions present
on seven different chromosomes (Supplementary Table S4).
Based on the threshold value of –log10 (p-value) > 3, we
identified 14, 1, 1, 2, 18, 6, and 4 significant SNPs on
chromosomes 2A (QCL.sdsu-2AS), 2B (QCL.sdsu-2BS), 2D
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(QCL.sdsu-2DS), 3B (QCL.sdsu-3BS), 4B (QCL.sdsu-4BS and
QCL.sdsu-4BL), 5B (QCL.sdsu-5BL), and 6B (QCL.sdsu-6BL),
respectively (Figure 2). Like previous studies (Rebetzke et al.,
2007a; Rebetzke et al., 2014; Li et al., 2017), we also found Rht-B1,
a Gibberelin (GA) insensitive dwarf allele to be associated with
coleoptile length. Out of 298 genotypes, 201 (67.4%) carried the
dwarf allele (allele 2) and 84 (28.2%) carried the tall allele (allele
1) of Rht-B1. In the current study, Rht-B1 linked SNP was highly
significant with a -log10 (p-value) of 9.69 and explained 16.7% of
the variation. The average coleoptile length of genotypes carrying
allele 1 of Rht-B1 was 13.50 mm longer than genotypes carrying
allele 2. Another dwarfing gene, Rht-D1, was not found to be
associated with coleoptile length in the current study as only 14
(4.7%) of 298 individuals carried the dwarf allele for this gene.

In total, the eight QTLs, in addition to Rht-B1 explained 42.2% of
variation in coleoptile length (Table 1). After Rht-B1, QCL.sdsu-4BS
explained the highest variation (10.6%), followed by QCL.sdsu-5BL
and QCL.sdsu-2AS, explaining 5.26% and 5.00% variation,
respectively. The most significant SNPs linked to QTLs,
QCL.sdsu-2AS, QCL.sdsu-2BS, QCL.sdsu-2DS, QCL.sdsu-3BS,
QCL.sdsu-4BS, QCL.sdsu-4BL, QCL.sdsu-5BL, and QCL.sdsu-6BL,
we r e D_F 1BE JMU0 2 J I L PD_ 5 3 , B S 0 0 0 6 7 2 8 0 _ 5 1 ,
D_contig17313_245, Tdurum_contig43252_1407, IAAV971,
RAC875_rep_c82932_407, Tdurum_contig67535_391, and
BS00065357_51, respectively (Table 1). All eight QTLs identified
using TASSEL v5.0 were validated using MLM (P+K model) and
SUPER algorithms implemented in GAPIT to further ascertain the
significance. However, the QQ plots from different algorithms
revealed that MLM model has the better fit than SUPER (results
not shown).

In addition, five-fold cross-validation was used to ascertain
the significance of the identified SNP markers in each genomic
region. After dividing the HWWAMP into five subsets, we used
four sets for the marker-trait association and the remaining set of
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60 accessions were used for cross-validation of significant
markers. The cross-validation confirmed that six SNPs linked
to QTLs, QCL.sdsu-2AS, QCL.sdsu-2DS, QCL.sdsu-3BS,
QCL. sdsu-4BS , QCL. sdsu-4BL , and QCL. sdsu-5BL,
were significantly associated with coleoptile length (Based
on p-value for T-test, Table 1). Another QTL, QCL.sdsu-2BS
had p-value of 0.06 from the respective t-test; thus, marginally
out at 5% level of significance.

Pairwise comparison among the alleles of the significant SNPs
also verified their association with coleoptile length (Figure 3,
Supplementary Table S5). Positive allele (allele 1) increases the
coleoptile length and its counterpart, negative allele (allele 2)
decreases the coleoptile length. Allele 1 and allele 2 for each of
the most significant SNP on each chromosome is given in
Supplementary Table S5. Individually, coleoptile length
difference between the allele 1 and allele 2 of the SNP on
chromosomes 2A, 2B, 2D, 3B, 4BS, 4BL, 5B, and 6B was 8.62,
3.51, 7.13, 8.25, 10.70, 5.76, 10.94, and 4.56 mm, respectively. All
the differences were significant at a p-value < 0.05. Overall,
QCL.sdsu-5BL has the largest substitution effect (10.94 mm) for
coleoptile length following Rht-B1.

Genotypes With Longer Coleoptiles
We found eight genotypes with coleoptile length longer than 100
mm, namely: ‘CRIMSON’, ‘SCOUT66’, ‘GENOU’, ‘KIRWIN’,
‘KAW61’, ‘LONGHORN’, ‘MT06013’, and ‘AGATE’ (Table 2,
Supplementary Table S6). ‘AGATE’ had the longest coleoptile
length (average 111 mm) followed by ‘MT06103’ (average 110.6
mm). Interestingly, ‘MT06103’ carried positive alleles (allele 1)
for all the SNPs except Rht-B1. ‘AGATE’ was positive for all the
SNPs. Significant SNP data for the other six genotypes are given
in Table 2. From the perspective of most significant SNPs, all of
the eight genotypes with the longest coleoptiles carried positive
alleles for SNPs on chromosomes 2A, 2B, 4B, and 6B. On the
contrary, SNP “Tdurum_cotig67535_391” on chromosome 5B
was only positive in ‘GENOU’, ‘AGATE’, and ‘MT06103’.

Identification of Candidate Genes and
Putative Functions
To facilitate the identification of candidate genes governing
coleoptile length, the chromosome regions were first delimited
based on the consensus genetic map (Wang et al., 2014) and LD
decay distance from our previous study (Ayana et al., 2018).
Subsequently, these demarcated regions were identified by
BLASTN, searching the flanking sequence of significant SNPs
against CS RefSeqv1.1 (IWGSC, 2018). We then delimited the
QTLs region to a 5.3, 5.9, 7, 2, 5.5, and 1.6 Mb region on
chromosomes 2AS, 3BS, 4BS, 4BL, 5BL, and 6BL, respectively.
Contrarily, the significant markers on chromosomes 2BS and
2DS were localized on the terminal regions of respective
chromosomes, with no flanking marker available on the
terminal end in the consensus genetic map (Wang et al., 2014).
Therefore, the terminal regions, 6.9 and 10.3 Mb from 1bp
extending up to the flanking marker on the distal end were
identified as a candidate region on chromosome 2BS and 2DS,
respectively. The putative genes from these regions were further
FIGURE 1 | Boxplots showing the distribution of average coleoptile length of
298 genotypes of hard winter wheat association mapping panel (HWWAMP)
in three experiments.
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narrowed down based on the LD decay distance and proximity to
the most significant SNP. Finally, we annotated the coding
sequences of high confidence (HC) genes in these candidate
regions using the Blast2Go (Conesa et al., 2005).

Overall, 825 high confidence genes from the eight candidate
regions were annotated. Among these genes, we identified
candidate genes with possible involvement in coleoptile length
based on proximity to the most significant SNP and a thorough
review of the literature. Accordingly, we found 28 genes
predicted to encode 10 different putative proteins that can play
a role in governing the coleoptile length (Table 3). In the 5.3 Mb
region spanning QCL.sdsu-2AS, we found five genes that encode
1-aminocyclopropane-1-carboxylate oxidase homolog 1-like
protein, which have possible involvement in coleoptile length.
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Another gene, TraesCS2A02G033900, is predicted to have a
jacalin-like lectin domain, found to be a coleoptile specific
lectin in barley (Grunwald et al., 2007). For QTL QCL.sdsu-
2BS, we identified two genes encoding a cytochrome P450 87A3-
like, and a probable indole-3-pyruvate monooxygenase
YUCCA5- like proteins. Similarly, two different genes were
identified in the region harboring QCL.sdsu-2DS encoding for
the same two protein. The 2DS region also harbors four other
genes predicted to encode cytochrome P450 85A1-like proteins.
In these two regions (2BS and 2DS), genes encoding cytochrome
P450 87A3-like and cytochrome P450 85A1-like proteins are of
specific interest-based on their established role in other species.
Another QTL, QCL.sdsu-3BS in the 5.9 Mb region of
chromosome 3BS harbored 10 genes of specific interest, all
FIGURE 2 | Distribution of marker-trait associations for coleoptile length in hard winter wheat association mapping panel (HWWAMP) based on their –log(10) p-
values. Manhattan plot was developed using a mixed linear model (MLM) in TASSEL v.5. The -log10 (p-values) from a genome-wide scan are plotted against
particular position on each of the 21 wheat chromosomes. Horizontal line indicate genome-wide significance thresholds.
TABLE 1 | Most significant SNP markers linked to the eight QTLs for coleoptile length detected from genome-wide association analysis of 298 winter wheat genotypes.

QTL Marker Chromosome Mb
a

-log10(p-value) R2 (%) T-test
b

QCL.sdsu-2AS D_F1BEJMU02JILPD_53 2A 15.61 3.80 5.00 6.64E-03
QCL.sdsu-2BS BS00067280_51 2B 6.10 3.25 4.10 6.76E-02
QCL.sdsu-2DS D_contig17313_245 2D 93.44 3.18 4.15 1.78E-05
QCL.sdsu-3BS Tdurum_contig43252_1407 3B 23.78 3.79 5.03 2.74E-04
QCL.sdsu-4BS IAAV971 4B 40.75 7.10 10.56 1.15E-06
QCL.sdsu-4BL RAC875_rep_c82932_407 4B 666.04 3.14 3.93 1.45E-03
QCL.sdsu-5BL Tdurum_contig67535_391 5B 536.63 4.00 5.26 5.18E-02
QCL.sdsu-6BS BS00065357_51 6B 705.75 3.31 4.19 1.25E-01
Rht-B1 Rht-B1 4B 30.86 9.69 16.69 –
February 2020
 | Volume 10 | Ar
aThe SNP position (Mb) is based on the CS RefSeq v1.1 (IWGSC, 2018).
bP-value obtained from the 5-fold cross validation.
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predicted to encode an expansin-like protein. The fifth QTL,
QCL.sdsu-4BS was delimited to a 7 Mb region with 65 annotated
genes including two genes of interest viz. TraesCS4B02G052000
and TraesCS4B02G049800 putatively encoding phytochrome A-
like and receptor protein kinase TMK1-like proteins,
respectively. In the region harboring QCL.sdsu-4BL, a gene
annotated as putative 2-oxoglutarate-dependent dioxygenase
seems a likely candidate as it catalyzes several metabolic
pathways in plants such as a gibberellins pathway. Most of the
identified genes from the QCL.sdsu-5BL region were annotated
as “predicted proteins”, with no clear differentiation into protein
families. Thus, only one gene with a likely role in coleoptile
length was discovered in a 5.5 Mb region harboring this novel
QTL (Table 3). Further, we were unable to select any candidate
genes in the region harboring QTL QCL.sdsu-6BS based on the
available literature.
Frontiers in Genetics | www.frontiersin.org 7101
DISCUSSION

Breeding Wheat for Longer Coleoptiles
Winter wheat is grown in a range of harsh environments around
the globe, (Stockton et al., 1996; Bai et al., 2004) and challenges
are further elevated by rising temperatures and unpredictable
droughts. In conditions like hard and dry grounds (drought), and
unpredicted freezing and thawing, early wheat establishment is
challenged, potentially leading to lower yields (Stockton et al.,
1996; Bai et al., 2004). One of the solutions to increase seedling
establishment is deep sowing in order to exploit the leaching
moisture regime. Coleoptile length is the limiting factor for deep
planting since it affects the emergence capacity of seedlings
planted deep, especially in fields with thicker stubble (No-till)
and/or crusted soil surfaces (Rebetzke et al., 2014). Furthermore,
around 90% of the modern semi-dwarf wheat varieties have GA-
FIGURE 3 | Average coleoptile length of hard winter wheat association mapping panel genotypes corresponding to each allele of the most significant marker on the
respective chromosome. Error bars are also shown at top of the bars.
TABLE 2 | Hard winter wheat association mapping panel (HWWAMP) genotypes with coleoptile length longer than 100 mm, along with their genotype for the most
significant markers related to coleoptile length.

SNP on 2A 2B 2D 3B 4BS 4BL 5B 6B Rht-B1 CL* CSE‡

Substitution effect 8.6 3.5 7.1 8.2 10.7 5.8 10.9 4.6 13.5
Allele 1/Allele 2 C/T T/C C/A T/C C/T A/G C/A C/T a/b
CRIMSON 1 1 1 1 1 2 2 1 1 101.00 56.27
SCOUT66 1 1 1 1 1 1 2 1 1 101.50 62.04
GENOU 1 1 N 2 1 1 1 1 1 101.80 57.59
KIRWIN 1 1 1 1 1 1 2 1 1 103.66 62.06
KAW61 1 1 1 2 1 1 2 1 1 105.50 53.78
LONGHORN 1 1 1 1 1 1 2 1 1 106.83 62.04
MT06103 1 1 1 1 1 1 1 1 2 110.66 59.48
AGATE 1 1 1 1 1 1 1 1 1 111.00 72.98
Febru
ary 2020 | Volu
me 10 | Article
*Coleoptile length (mm), ‡Cumulative substitution effect. ‘1' represents positive allele and ‘2' represents the negative allele.
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insensitive dwarfing genes, which are strongly associated with
shorter coleoptiles (Rebetzke et al., 1999; Li et al., 2017; Grover
et al., 2018). One of the easier ways to increase coleoptile length is
pyramiding of larger effect QTLs in modern-day wheat cultivars.
A number of studies have shown that coleoptile length is under
strong additive gene control (Rebetzke et al., 2007a; Spielmeyer
et al., 2007; Yu and Bai, 2010; Li et al., 2011; Rebetzke et al., 2014;
Singh et al., 2015; Li et al., 2017), thus identification of novel
QTLs for increased coleoptile length would be desirable.
Moreover, limited information is available in winter wheat,
compelling winter wheat breeders to rely on spring wheat
resources. Accordingly, we employed GWAS using 298 hard
winter wheat lines in this study to develop resources for longer
coleoptile length in winter wheat.

Phenotypic Evaluation for Coleoptile
Length
Our results for phenotypic evaluation show that sufficient
variation for coleoptile length exists in the hard winter wheat
association panel, with coleoptile length ranging from 49.4 to 111
mm which overlaps with previous studies; 25 to 170 mm
(Rebetzke et al., 2014) and 57 to 202 mm (Li et al., 2017).
Variations among the ranges in different studies can be
attributed to the diversity among the lines used and the
temperature at which seedlings were grown. HWWAMP
constitutes of released winter wheat cultivars and breeding
lines from US winter wheat breeding programs; however, more
diverse germplasm was evaluated in other studies (Rebetzke
Frontiers in Genetics | www.frontiersin.org 8102
et al., 2014; Li et al., 2017). The average coleoptile length of
lines from the South Dakota breeding program was highest,
whereas, lines from the Michigan breeding program had the
shortest coleoptile, but we did not see any significant differences
among any of the breeding programs. This suggests that there is
no specific focus or indirect selection for coleoptile length in any
of the hard winter wheat breeding programs in the US.

Plant height has been known to be correlated with be the
coleoptile length (Allan et al., 1962; Allan, 1980; Yu and Bai,
2010; Li et al., 2011; Rebetzke et al., 2016). Although we did not
collect the plant height data on 298 accessions for this
experiment, the HWWAMP has been evaluated for agronomic
traits including plant height under the USDA-NIFA TCAP grant
at several locations and the data is available in the wheat T3
database. We compared plant height at four locations to the
coleoptile length of 298 accessions in this study. As expected,
plant height and coleoptile length showed correlation (0.28, 0.30,
0.26, and 0.37 for four locations, respectively), but these
correlations were not very high. This suggests that other
factors (genomic regions) in addition to plant height QTLs
identified in this study affect the coleoptile length.

QTLs for Coleoptile Length
In the present study, MLM based genome wide associations
identified eight QTLs associated with coleoptile length on seven
different chromosomes. The identified QTLs were validated
using five-fold cross-validation (Ramakrishnan et al., 2019).
This approach validated six of the eight identified QTLs,
TABLE 3 | Annotation of candidate genes in the demarcated QTL regions identified through GWAS in hard winter wheat association mapping panel (HWWAMP).

Chr QTL Gene ID
a

Start position of the gene (bp)
a

Gene Annotation

2AS QCL.sdsu-2AS TraesCS2A02G025800 12,129,444 1-aminocyclopropane-1-carboxylate oxidase homolog 1-like
TraesCS2A02G025900 12,139,588 1-aminocyclopropane-1-carboxylate oxidase homolog 1-like
TraesCS2A02G026500 12,247,082 1-aminocyclopropane-1-carboxylate oxidase homolog 1-like
TraesCS2A02G036900 15,756,318 1-aminocyclopropane-1-carboxylate oxidase homolog 1-like
TraesCS2A02G037900 15,959,789 1-aminocyclopropane-1-carboxylate oxidase homolog 1-like
TraesCS2A02G033900 15,011,079 mannose/glucose-specific jacalin-like lectin

2BS QCL.sdsu-2BS TraesCS2B02G009100 5,041,094 cytochrome P450 87A3-like
TraesCS2B02G010100 5,628,213 probable indole-3-pyruvate monooxygenase YUCCA5

2DS QCL.sdsu-2DS TraesCS2D02G012100 5,747,458 probable indole-3-pyruvate monooxygenase YUCCA5
TraesCS2D02G012800 6,204,775 cytochrome P450 87A3
TraesCS2D02G014400 7,062,903 cytochrome P450 85A1
TraesCS2D02G014500 7,072,238 cytochrome P450 85A1
TraesCS2D02G014600 7,085,341 cytochrome P450 85A1
TraesCS2D02G014700 7,089,687 cytochrome P450 85A1

3BS QCL.sdsu-3BS TraesCS3B01G051000 25,906,973 expansin
TraesCS3B01G051100 25,921,029 expansin
TraesCS3B01G051200 26,043,431 expansin
TraesCS3B01G051300 26,057,175 expansin
TraesCS3B01G051400 26,191,126 expansin
TraesCS3B01G051500 26,246,150 expansin
TraesCS3B01G051600 26,301,286 expansin
TraesCS3B01G051800 26,385,625 expansin
TraesCS3B01G051900 26,399,446 expansin
TraesCS3B01G052000 26,430,002 expansin

4BS QCL.sdsu-4BS TraesCS4B02G052000 40,780,124 phytochrome A
TraesCS4B02G049800 38,280,457 receptor protein kinase TMK1-like

4BL QCL.sdsu-4BL TraesCS4B02G389500 665,956,360 putative 2-oxoglutarate-dependent dioxygenase
5BL QCL.sdsu-5BL TraesCS5B02G356700 536,321,998 auxin Efflux Carrier family protein isoform X1
aGene ID and physical positions are based on CS RefSeq v1.1 (IWGSC, 2018).
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namely QCL.sdsu-2AS, QCL.sdsu-2DS, QCL.sdsu-3BS, QCL.sdsu-
4BS, QCL.sdsu-4BL, and QCL.sdsu-5BL (Table 1). Another QTL,
QCL.sdsu-2BS and QCL.sdsu-6BL were not validated using the
five-fold approach. These could be potential associations
affecting coleoptile length and need further validation.

We compared the findings of this study by fetching the
physical location of previously reported QTLs from several
coleoptile length mapping studies (Rebetzke et al., 2007a;
Rebetzke et al., 2014; Singh et al., 2015; Li et al., 2017) (Figure
4). As a result, we identified three novel QTLs, namely,
QCL.sdsu-2AS, QCL.sdsu-4BL, and QCL.sdsu-5BL and four
QTLs that are in the proximity to previously mapped QTLs
(Figure 4). Among the novel QTLs, QCL.sdsu-5BL explains
largest variation (R2 = 5.26%) followed by QCL.sdsu-2AS (R2 =
5.00%). Furthermore, the pairwise comparison among the
alleles of the significant SNPs revealed that QCL.sdsu-5BL has
the largest substitution effect after Rht-B1. Therefore, QCL.sdsu-
5BL is a valuable novel QTL which could be used to compensate
for negative effect of Rht-B1 locus on coleoptile length.

Two QTLs namely QCL.sdsu-2DS and QCL.sdsu-3BS,
previously mapped using Simple sequence repeats (SSR) markers
(Rebetzke et al., 2007b; Singh et al., 2015) were also validated using
SNPs in this study. The newer positions of these twoQTLs are likely
more accurate as highly saturated SNP markers were used in the
current study compared to less dense SSR markers used in the
previous studies. Different studies (Rebetzke et al., 2014; Li et al.,
Frontiers in Genetics | www.frontiersin.org 9103
2017) have reported a QTL for coleoptile length on chromosome
4BS. In this study, we identified a QTL (QCL.sdsu-4BS) in the same
region, which is around 10 Mb apart from the Rht-B1 gene
(IWGSC, 2018). Based on the estimated LD (r2 = 0.54) between
the Rht-B1 andQCL.sdsu-4BS, these two could be different regions or
QCL.sdsu-4BS could likely represent Rht-B1. Further investigation is
needed to validate the independence of these regions.

Out of the nine significant associations (including Rht-B1)
found in the current study, seven are mapped to the B genome.
Furthermore, among the total unique QTLs mapped for coleoptile
length so far (including this study), 57% QTLs are mapped on the
B genome, 26% QTLs are mapped on the D genome and 17%
QTLs are mapped on the A genome. Thus, it seems that B genome
comparatively may have more genes controlling the coleoptile
length. It would be interesting to study the variation among the
diploid progenitors of wheat for coleoptile length.

Pyramiding of favorable QTLs can be successfully used for
developing varieties with longer coleoptile (Li et al., 2017). In
agreement with the previous studies (Rebetzke et al., 2014; Li
et al., 2017), we observed an additive effect for coleoptile length
among the identified QTLs in the current study. The stacking of
positive alleles at different loci increased coleoptile length in
additive fashion (Figure 5). A cultivar ‘AGATE’ has all the
positive alleles for associated SNPs and has the longest
coleoptile length. We also compared the allelic composition of
three cultivars having shortest coleoptile length. These three
FIGURE 4 | Chromosomal positions of QTLs associated with coleoptile length identified in the current study and their comparative analysis with the previous
studies. The scale represents physical distance based on Chinese Spring RefSeq 1.1 (IWGSC, 2018).
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cultivars namely ‘GARRISON’, ‘OK5723W’, and ‘OK04505’ have
negative alleles (allele 2) at six, five, and four associated SNPs,
respectively. In addition, all three cultivars have the dwarfing
allele for Rht-B1. Though, it will be desirable to keep the negative
allele of Rht-B1 so that the stature/height of cultivars remains
semi-dwarf. We identified a breeding line ‘MT06103’ which has
the positive alleles at all loci except for the Rht-B1. MT06103 has
coleoptile length very close to ‘AGATE’ (Table 2). While
studying the seedling emergence in fall sown wheat, Allan
et al., 1962 also found a selection (14 X 50-3 B-4), which was
moderately short in plant height but was ranked towards top
with respect to coleoptile length. Thus, it is evident that
coleoptile length can be improved while maintaining short
stature of plant. Thus, such genotypes which already have all
the favorable alleles can directly be exploited in winter wheat
breeding programs to improve the coleoptile length of the
new cultivars.

In silico Gene Annotation of the Candidate
Regions
After a thorough examination of the available literature and
proximity to the most significant SNPs, we identified 27 genes
predicted to have a role that could likely affect coleoptile elongation
(Table 3). We found genes with diverse functions, including
phytohormone biosynthesis-related, cytochrome P450 family
genes, expansins, etc. that are probable candidates. Further, it is
expected that the genes common to many QTL regions are more
likely to play a role in determining the length of coleoptile.

Phytohormones are the signaling molecules, which play a
crucial role in the development and physiological processes in
plants (Rudnicka et al., 2019). Specifically, auxins are a major
group of phytohormones, which affect coleoptile length in grass
species by inducing cell elongation either directly (Vanneste and
Friml, 2009; Paque and Weijers, 2016), or by interacting with
other plant hormones such as ethylene (Woodward and Bartel,
2005). Two genes from different candidate regions on
chromosomes 2BS and 2DS were predicted as indole-3-
pyruvate monooxygenase YUCCA5 protein, which catalyzes
Frontiers in Genetics | www.frontiersin.org 10104
the biosynthesis of indole-acetic acid (IAA), the most
commonly occurring natural auxin, from tryptophan (Won
et al., 2011). We also found a PIN protein (a component of
auxin-efflux carrier family) in the QCL.sdsu-5BL region. The PIN
proteins are known to play role in auxin transport and expressed
in several plant tissues, affecting plant growth (Zhou and Luo,
2018). Whereas, another putative ACO1-like protein was found
in the 2AS candidate region. ACO1-like protein is a part of the
ethylene biosynthetic pathway and is speculated to affect rice
coleoptile elongation in stress conditions (Hsu and Tung, 2017).

Brassinosteroids (BRs) play an important role in cell
elongation and proliferation (Nakaya et al., 2002), and thus in
determining plant height. A BR-deficient (brd) mutant was used
to characterize OsDWARF gene in rice, an orthologue of the
tomato DWARF gene and CYP85A1 or BR6OX1 in Arabidopsis
(Shimada et al., 2001; Shimada et al., 2003) and found to affect
polar elongation of stem cells (Hong et al., 2002). Another
cytochrome P450 superfamily protein CYP87A3 has been
characterized in rice as an auxin-induced gene specifically
expressed in coleoptiles (Chaban et al., 2003). In our study, we
found putative cytochrome P450 85A1-like and cytochrome
P450 87A3 proteins spanning the QTLs, QCL.sdsu-2BS, and
QCL.sdsu-2DS which may affect coleoptile length in wheat.
Additionally we found 10 genes all encoding putative expansin
proteins in the genomic region spanning QCL.sdsu-3BS. Our
finding corroborates with Singh et al. (2015) who also reported
the presence of expansin like genes in this region while mapping
coleoptile length in a biparental mapping population. Expansins
have been reported to affect cell growth and elongation (Marowa
et al., 2016); and express in wheat coleoptiles and correlate with
the coleoptile growth (Gao et al., 2007; Gao et al., 2008). The
cytochrome P450 superfamily genes and expansins are thus
strong candidates for coleoptile length and need further
investigation in wheat.

Further, phytochrome A (PHY A) protein identified in the
QCL.sdsu-4BS candidate region is of specific importance with
respect to coleoptile length. In rice, phytochrome A gene is well
known to affect coleoptile elongation, plant height, and internode
elongation either directly or by affecting jasmonate signaling
genes (Garg et al., 2006; Riemann et al., 2008). Apart from these
genes, we also found jacalin-like lectin, related to Horcolin
protein specifically expressed in barley coleoptiles (Grunwald
et al., 2007) and putative 2-oxoglutarate-dependent dioxygenase
(Table 3), related to a versatile enzyme family catalyzing
biosynthesis and catabolism of auxins and gibberellins (Farrow
and Facchini, 2014).
CONCLUSION

Coleoptile length is regularly evaluated in advanced breeding lines
in several breeding programs. However, due to limited knowledge
about the underlying QTLs and linked molecular markers,
breeding for coleoptile length becomes challenging.
Characterization of eight QTLs associated with coleoptile length
in winter wheat and identification of tightly linked SNPs could be
FIGURE 5 | Average coleoptile length corresponding to each stack of
positive alleles in hard winter wheat association mapping panel (HWWAMP).
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a valuable resource for wheat breeders. The critical SNPs
identified in our study could be used to develop breeder friendly
kompetitive allele-specific PCR (KASP) assays (Supplementary
Table S7) for marker-assisted selection (Rasheed et al., 2016; Gill
et al., 2019). Marker-assisted stacking of these QTLs would result
in the development of wheat varieties with longer coleoptile. Also,
these QTLs can be effectively combined with previously reported
QTLs to breed for desired coleoptile length in wheat. In addition, these
markers could beweighted and incorporated into the genomic selection
strategy. Further functional genomic studies are crucial to validate the
effect of the identified candidate genes on coleoptile length.
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Milan Lstibůrek1*, Silvio Schueler2, Yousry A. El-Kassaby3, Gary R. Hodge4, Jan Stejskal1,
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Sustainable and efficient forestry in a rapidly changing climate is a daunting task. The
sessile nature of trees makes adaptation to climate change challenging; thereby,
ecological services and economic potential are under risk. Current long-term and costly
gene resources management practices have been primarily directed at a few economically
important species and are confined to defined ecological boundaries. Here, we present a
novel in situ gene-resource management approach that conserves forest biodiversity and
improves productivity and adaptation through utilizing basic forest regeneration
installations located across a wide range of environments without reliance on structured
tree breeding/conservation methods. We utilized 4,267 25- to 35-year-old European larch
trees growing in 21 reforestation installations across four distinct climatic regions in
Austria. With the aid of marker-based pedigree reconstruction, we applied multi-trait,
multi-site quantitative genetic analyses that enabled the identification of broadly adapted
and productive individuals. Height and wood density, proxies to fitness and productivity,
yielded in situ heritability estimates of 0.23 ± 0.07 and 0.30 ± 0.07, values similar to those
from traditional “structured” pedigrees methods. In addition, individual trees selected with
this approach are expected to yield genetic response of 1.1 and 0.7 standard deviations
for fitness and productivity attributes, respectively, and be broadly adapted to a range of
climatic conditions. Genetic evaluation across broad climatic gradients permitted the
delineation of suitable reforestation areas under current and future climates. This simple
and resource-efficient management of gene resources is applicable to most tree species.

Keywords: genetic evaluation, pedigree reconstruction, sustainable forestry, European larch, genetic gain, forest
tree breeding
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INTRODUCTION

The composition, function, and service of terrestrial ecosystems are
increasingly threatened by the steady global warming trend
(Walther et al., 2002; Walther, 2010; Hanewinkel et al., 2013).
Plants' immediate response to climate change is manifested in
altered phenology (Wolkovich et al., 2012), increased growth
(Pretzsch et al., 2014), and mortality (Allen et al., 2010). Assisted
gene flow has been considered as a viable option for dealing with
the mismatch between environmental alterations caused by climate
change and the migration pace of plant populations (McLachlan
et al., 2007; Kremer et al., 2012). However, assisted gene flow has
not been thoroughly tested as genotypes are transferred to novel
environments with altered thermal (Vitt et al., 2010), photoperiod
(Saikkonen et al., 2012; Frascaria-Lacoste and Fernández-
Manjarrés, 2012), and edaphic conditions (Kranabetter et al.,
2012). Furthermore, epigenetic after-effects associated with plants
transfer (Holeski et al., 2012; Bräutigam et al., 2013) and
phenotypic plasticity (Alberto et al., 2013) have been discounted.
These factors, collectively, provide sound reasons to explore
alternative forest tree gene management approaches.

Forest tree gene resource management, with concurrent
selective breeding and gene conservation, are long-term
endeavors involving hundreds of parents and thousands of
offspring tested at multiple locations, requiring substantial
resources, elaborate logistics, and sustained organizational
commitment, and more importantly, are predominantly
encapsulated within specific ecological boundaries known as
breeding zones (White et al., 2007). These extensive programs
often follow the recurrent selection scheme with repeated rounds
of breeding, testing, and selection, resulting in cumulative
improvement (genetic response to selection) delivered through
specialized seed production populations known as seed orchards.
In conventional selective breeding programs, controlled
pollinations following specific mating designs produce structured
pedigrees (White et al., 2007), which are evaluated in replicated test
sites within defined ecological boundaries (Hanewinkel et al.,
2013), a prerequisite for effective genetic evaluation and
selection. These considerable efforts are restricted to few
economically important species, thus facilitating widespread
cultivation of few species, with potential adverse effects on tree
species diversity and ecological services provision (Isbell et al.,
2015; Hua et al., 2016). Moreover, reforestation with orchard-
produced seedlings is restricted to their respective ecological
boundaries; thus, these programs can be spatially static and slow
in responding to environmental contingencies or market demands.

European larch, an economically important deciduous conifer,
is distributed in Central Europe. It is native to the Alps and the
Carpathian Mountains, with smaller disjunct populations in
northeastern Europe. This shade-intolerant species is primarily
planted within mixed forests due to its high ecological value and
excellent wood characteristics. Despite its wide planting outside of
its native range, the gene resource management effort for the
species is mainly focused on seed provision and gene
conservation (Pâques et al., 2013). The species occurs naturally
across a discontinuous range in the Alps, Sudetes, and Carpathians,
as well as in Polish lowlands. This shade-intolerant species shows a
Frontiers in Genetics | www.frontiersin.org 2109
subcontinental climate preference and high site tolerance. Due to its
high resistance and durability, larch wood is a traditional material
for building and roof construction in the Alpine area, with
increasing importance in modern architecture and furniture
design. As L. decidua has the finest wood characteristics among
temperate European conifers, it has been widely planted
throughout the continent in artificial plantations, thus facilitating
translocations of genetic materials for more than three centuries
(Jansen and Geburek, 2016). Under climate change conditions, the
species appeared to be highly vulnerable to drought events (Allen
et al., 2010). L. decidua shows high levels of genetic variation
including drought sensitivity across the species range (George et al.,
2017). Thus, the species regional improvement activities are
focused on conserving its genetic diversity and utilizing local
sources for increasing the species adaptation to climate change.

At the northeastern fringe of the Alps, European larch
improvement activities are conducted within a spatially and
climatically heterogeneous landscape. This region reaches from
lowland areas around the river Danube (∼200 m a.s.l.) through the
hilly landscape of the alpine foreland up to mountains of 900 m in
the northern calcareous Alps. Present climate conditions are
represented by four climatic zones: 1) pannonical continental
climate with hot summers and frequent droughts in low
elevations of the East and Northeast, 2) temperate Atlantic
climate with warm temperatures and frequent precipitations in
the western Alpine foreland, 3) temperate climate with continental
influence at low elevations of the Eastern Alps, and 4) harsh
mountain conditions at higher elevation with lower temperatures
and low winter temperatures. Global warming in the Alpine region
has already resulted in a significant 2)∘C temperature increase since
1880, about twice as high as the global average (Allen et al., 2010).

Utilizing the European larch breeding program in Austria, we
investigated a feasible alternative that would efficiently address the
global climate change issues and overcome the major limitations
of assisted gene flow, and deliver substantial production and social
benefits to the human society. We analyzed 25- to 35-year-old
larch progenies originating from open pollination in a common
parental source (a seed orchard) and growing in 21 reforestation
installations (typical forest stands). Utilizing the “Breeding-
without-Breeding” methodology with phenotypic preselection
(El-Kassaby and Lstibůrek, 2009; Lstibůrek et al., 2015), we
reconstructed the parentage of individual progenies and
estimated heritabilities for height and wood density yielding
similar values to those from typical full-sib forest genetic trials.
Genetic evaluation across broad climatic gradients permitted the
delineation of suitable reforestation areas under current and future
climates. Following the evaluation, the second-generation seed
orchard was established from the top-ranking selections.
MATERIALS AND METHODS

Source Population and Climate Data
The seed orchard [Nat. Reg. No. Lä P3 (4.2/sm-tm)] for which
we aimed to conduct accelerated gene-resource management is
located at an altitude of 520 m a.s.l., and its seed material is
February 2020 | Volume 11 | Article 28
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considered to be the most valuable larch seeds for the
mountainous areas of the northern alpine foreland. The
orchard was established in 1954 over 3.15 ha, with 1,666
vegetative propagules of 53 phenotypically selected parent
trees. Since its establishment, the main objective of the
Austrian larch seed orchard program was to secure seed supply
with minimal genetic testing; thus, controlled pollinations and
progeny tests were not conducted.

Next, we identified 21 reforestation installations (sites) within
comparable tree ages (25 to 37 years), sufficient size (at least 200
remaining trees in more or less regular planting designs), low
level of environmental variation within the site, and composition
in which larch is the single or dominant tree species. These 21
reforestation installations all originated from mixed seedlots
harvested from the seed orchard, are located at altitudes
between 250 and 800 m, and span through a geographical
space of about 170 km W-E and 110 km N-S.

Climate data for the 21 reforestation installations with
putative seed deployment areas under the present and future
climate conditions were obtained from the locally downscaled
high-resolution WorldClim models (Hijmans et al., 2005);
WorldClim has a spatial resolution of 30 arc-seconds. For an
unbiased climate comparison, we obtained all monthly climate
parameters (average monthly mean, minimum and maximum
Frontiers in Genetics | www.frontiersin.org 3110
temperatures, average monthly precipitation) as well as various
derived bioclimatic variables (Meier et al., 2012), and the impact
of these climate descriptors, as well as their inter-correlations,
was distilled through principal component analysis (PCA) in
which the climate of the reforestation sites was used as active
cases. Potential/future seed deployment areas in Austria were
identified by including gridded climate data as inactive cases
(Meier et al., 2012). As these deployment areas should cover the
broad range of the four climatic groups, we used the maximum
and minimum of the 21 plantations sites within the first two
principal components to delimit the Austrian landscape. For
prediction of the future climate we used the Max Planck Institute
Earth System model (MPI-ESM-LR) under the Rcp45 scenario
(Giorgetta et al., 2013), for the period 2041–2060 (Figure 1).

Phenotyping and Genotyping
Phenotyping was conducted on the 21 reforestation sites after
excluding individuals with damage and/or bad form. In total,
4,267 trees were measured for height [m] and scored for wood
density using the pilodyn penetration method (Cown, 1978).
Individual tree position was determined by triangulation. First, a
compact block of trees was identified within each reforestation
site (denoted as random selections) (Lstibůrek et al., 2015).
Second, within each site and based on height measurements,
FIGURE 1 | Potential planting area of selected superior larch genotypes under current (top) and expected future (2050) climate conditions (bottom) at the
northwestern fringe of the Alpine area.
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the top-ranking 25% phenotypes were identified as selection
candidates (pre-selection) (Lstibůrek et al., 2015). To account for
common environment effects, the average of eight direct
neighbors was subtracted from the phenotypic observation of a
given selected individual (Zobel and Talbert, 2003), and the
adjusted values were used in the genetic evaluation. The total
number of pre-selection individuals across the 21 reforestation
sites is 1,088 (representing 579 and 509 random and top-
phenotype selections, respectively). This sample size was
optimized to meet three important criteria: 1) achieving
comparable genetic response to selection to that of traditional
recurrent selection with structured control crosses (i.e., progeny
testing) (White et al., 2007), 2) reconstructing pedigree with
sufficient accuracy (Marshall et al., 1998; Kalinowski et al., 2007),
and 3) satisfying the declared effective population size (i.e.,
genetic diversity) in the target seed production population
(Lstibůrek et al., 2011). The above calculation of sample size
also accounted for anticipated pollen contamination, i.e.,
paternal contributions originating from parents outside the
seed orchard (Lstibůrek et al., 2012).

Tissue samples for DNA extraction were collected using a 15-
mm hole-punch to obtain cambium cell layers. Samples were
immediately dried and stored in silica gel. DNA extraction
followed a modified CTAB protocol (Lefort and Douglas, 1999),
using app. 100 mg of frozen cambium tissue after grinding in a
Mixer Mill MM200 (Retsch). Extracted DNA was fingerprinted
using three microsatellite multiplexes accommodating 5 (Ld30,
bcLK189, bcLK228, bcLK263, and Ld56), 4 (Ld31, Ld50,
bcLK211, bcLK253), and 4 (Ld58, Ld42, Ld101, 4 Ld45) (Wagner
et al., 2012). In total, 53 parental and 1,088 offspring trees
were genotyped.

Pedigree Reconstruction
We performed pedigree reconstruction, yielding 1,024 offspring
in 491 full-sib families, representing the largest known forest tree
pedigree assembly. The likelihood-based method Cervus
(Marshall et al., 1998) was used to reconstruct family
relationships (Figure 2). Pedigree analysis parameters were:
unknown sexes, no assumption for putative maternal
contributor, LOD score (natural logarithm of the overall
likelihood ratio), and Delta (the difference in LOD between the
two most likely candidate parents), reflecting inputted
parameters of genotyping errors and incomplete sampling of
the parental population. Initial simulation of parentage analysis
was processed for 10,000 offspring based on 53 unique genotypes
that were considered as candidate parents with six parameter
scenarios, including input parameters such as proportion of
sampled parental population (0.5, 0.6, 0.7, 0.8, 0.9, 1) and
maximal genotyping error rate (0.01, 0.1, 0.01, 0.1, 0.01, 0.1) to
assess the parentage assignment robustness. Additional
parameters include: minimum number of typed loci of 6,
monoecious species with polygamous mating, consideration of
selfing, and parentage assignment 99% confidence were kept
equal. Only consistent outcomes of family assignment across all
scenarios were accepted and used in downstream analysis.
Frontiers in Genetics | www.frontiersin.org 4111
Statistical Analysis
Pedigree-based genetic analyses were used and variance
components, heritabilities, genetic correlations, and individual
tree breeding values were estimated/predicted using the bivariate
animal model (Henderson, 1984), combining genotyped parental
trees and offspring records trees after excluding those with
external male parents as follows:

y = Xb + Za + Yd +Wu + e (1)

where y is the vector of observations for the two traits; X is the
incidence matrix for the fixed effect b (trait means); Z is the
corresponding incidence matrix related to random additive
genetic effects (breeding values,a ∼ N(0,s 2

a )); Y is the
incidence matrix related to random dominance genetic effects d ∼
N(0,s2

d )), whileW is an incidence matrix for random genotype by
environment (or climatic region) interaction u ∼ N(0,s 2

u )), and
the random residual error effects are distributed as e ∼ N(0,s 2

e )).
The covariance matrix for the random additive genetic effects

was modelled using the heterogeneous covariance structure as

s 2
a =

s2
a1 sa1a2

sa2a1 s 2
a2

" #
⊗A (2)

where A is the average numerator relationship matrix, sa1a2 is
the additive covariance between traits 1 and 2, and ⊗ is the
Kronecker product operator. A corresponding structure was
used for the dominance effects with s 2

a being replaced by s 2
d

and A by D, i.e., the dominance genetic relationship matrix. The
covariance matrix for the random site effects (genotype by
FIGURE 2 | Pedigree reconstruction results showing the formation of full-sib
families and their parental combinations and respective family sizes (1-13,
reciprocal crosses were grouped) (N = 1,024 offspring).
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environment interaction) was modelled using a heterogeneous
general correlation matrix (equivalent of an unstructured
covariance matrix, but with different parametrization) suitable
for such a complex correlation structure as

s 2
u =

s 2
a1e r12

r21 s 2
a2e

" #
⊗ I (3)

where I is the identity matrix.
The random residual error effect was modelled using an

unstructured covariance matrix structure as

s 2
e =

s 2
e1 se1e2

se2e1 s 2
e2

" #
⊗ I (4)

where se1e2 is the residual covariance between the two traits.
Random effects were assumed to be independent. The above
genetic evaluation was conducted in ASReml software (Gilmour
et al., 2008).

Future Parental Population Selection
A selection index was calculated with equal economic weighting
on both height and wood density traits. A linear optimum
selection model was constructed to maximize the selection
response, while meeting the prescribed effective population size
in the target seed orchard (Lstibůrek et al., 2015). All selections
were unrelated in order to minimize inbreeding depression in
seed orchard crop, i.e., future forest plantations. The Optimum-
Neighborhood Algorithm was implemented to promote
panmixia within the new orchard (Chaloupková et al., 2016).
RESULTS

The wide climatic gradient was confirmed by PCA of the plantation
site climate, which resulted in four distinct climatic groups
(Figure 3), thus extending the testing beyond the confinement of
a defined ecological testing target. Furthermore, the reforestation
installations were grouped at the “warmer end” of the species
distribution (Figure 4), thus offering stronger environmental
testing conditions (i.e., additional “ecological tension”).

Pedigree reconstruction assembled 491 full-sib families,
representing 35% of the possible 53-parent half diallel (Figure
2). This represents the largest known forest tree pedigree
assembly. There was gametic contribution from the entire
orchard's parental population, resulting in 1,088 offspring
available for the quantitative genetics analyses. It is interesting
to note that the gene flow from outside the orchard accounted for
8.4% and 3.4% of the observed matings in the random and pre-
selection samples, respectively, meeting theoretical expectations
(Lstibůrek et al., 2012). Additionally, offspring resulting from
self-pollination was not detected.

Variance components were estimated from the multi-site
bivariate mixed linear model. The final model with fixed site
and random pedigree effects resulted in heritability (h2) estimates
of 0.25 (SE = 0.065) and 0.30 (SE = 0.072) for height and wood
Frontiers in Genetics | www.frontiersin.org 5112
density, respectively, corresponding to reported estimates from
Larix species “structured” testing trials (Pâques, 2004; Ratcliffe
et al., 2014). Both traits produced non-significant dominance
interaction, thus simplifying the model, and the expected family
performance was estimated by the mean additive genetic value of
the two respective parents. Negative but negligible genetic
correlation between height and wood density was observed
(-0.04 ± 0.20), corresponding to the known general trend in
most conifers (Zobel and Jett, 2012).

No significant genetic variation by environment (site)
interaction was observed across the 21 studied sites, leading us
to conclude that individuals' additive genetic values are indicative
of their general performance across the range of studied sites and
that the studied population consists of generalists that performed
well under wide site and climatic conditions and further
demonstrating that the selected individuals would form
appropriate seed production population for planting over a
wide climate regime range including potential future
conditions (Figure 1). These conclusions are supported by the
fact that respective parents/families have been tested across a
broad range of environments, and selections have been identified
across all sites.

Following the genetic evaluation, we selected 25 unrelated
offspring individuals with which to establish the new seed
production population with improved climate change
adaptability and productivity; thus, the phenotyping and
genotyping effort were sufficient in capturing the target
effective population size. Selected individuals yielded genetic
responses of 1.1 and 0.7 standard deviations for fitness and
productivity attributes, respectively. Scions collected from
selected offspring were grafted onto rootstocks, and the
second-generation seed orchard was established (the advanced
generation seed production population).
DISCUSSION

In this manuscript, we developed and validated a novel large-
scale in situ forest gene resource management scheme to identify
productive and climatically adapted individuals originating from
an Austrian European larch seed production population (seed
orchard), utilizing traditional reforestation installations planted
widely across the landscape and spanning three decades. Our
thesis is based on the expectation that thriving individuals within
these installations have been spatially and temporary challenged
and thus have effectively dealt with the negative impacts of
climate change. In conventional selective breeding programs, a
structured pedigree is produced from controlled pollinations
following specific mating designs (White et al., 2007), and
evaluated in replicated test sites within defined ecological
boundaries (Hanewinkel et al., 2013), a prerequisite for
effective genetic evaluation and selection. Our approach is
anchored on meeting two conditions, namely, the successful
assembly of a “structured pedigree” from seed orchard offspring
produced under natural pollination (El-Kassaby and Lstibůrek,
2009), and whether progeny evaluation can be conducted within
February 2020 | Volume 11 | Article 28
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reforestation installations (Lstibůrek et al., 2015) rather than
progeny test sites. Meeting these two conditions effectively
bypasses the conventional breeding and testing phases used in
recurrent selection strategies, thus accelerating and simplifying
the selection process. Given that reforestation sites are usually
Frontiers in Genetics | www.frontiersin.org 6113
employed across more and a wider range of site and climate
conditions than traditional genetic trials, our approach also
allows predicting potential application regions for the
improved forest seeds. However, for the full Alpine range of
larch and for a climate warmer than observed today, the
FIGURE 3 | Climatic distribution of the 21 European larch reforestation installations grouped following principal component analysis of climatic parameters. The four
climatic groups represented: 1) continental Pannonian climate (black), 2) temperate climate with Atlantic influence (red), 3) a temperate climate with continental
influence (green) and, 4) a mountainous climate (blue). These were used as climatic categories to test the presence or absence of genotype-climate interactions.
FIGURE 4 | Climate (precipitation and temperature) of the European larch reforestation installations in comparison to species natural occurrence demonstrating that
our test sites are close to the warmer border of the species range.
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application might be restricted, as we could expect GxE
interaction outside of the current conditions (Koralewski
et al., 2015).

This is the first proof of the “Breeding without Breeding,
BwB” concept (El-Kassaby and Lstibůrek, 2009) in a large
operational forestry program. Our results are in agreement
with the respective theoretical expectations published earlier.
First, phenotypic preselection provided sufficient distribution of
candidates meeting the prescribed effective population size of the
new seed orchard, which is in agreement to Lstibůrek et al.
(2011). Second, phenotypic preselection was efficient at reducing
the contamination rate among the parents of the genotyped
subset of offspring, which corresponds to both theoretical
expectations (Lstibůrek et al., 2012) as well as the actual
findings in Scots pine (Korecký et al., 2014). As noted earlier,
actual heritabilities, genetic correlations, and respective standard
errors are within the range of conventional breeding programs,
facilitating genetic gains that were also in agreement to computer
simulations and deterministic expectations (Lstibůrek et al.,
2015). Further, we observed the beneficial effect of the
increased size of the candidate population (i.e., an increase in
selection intensity), which further boosted the genetic response
of selection (Lstibůrek et al., 2017) beyond the levels of
conventional breeding programs. We can therefore conclude
that BwB strategies provide an effective and economically
feasible method to breed outcrossing forest tree species. We
therefore forecast the utility of BwB methods in operational
forestry as they facilitate full-scale landscape gene-resource
management of forest trees.

In line with the discussion in Lstibůrek et al. (2017), we
advocate the utility of BwB approaches (such as the current
study) for the following reasons. (1) Absence of full-sib crosses,
as the method relies on natural pollination in breeding
arboretums (seed orchards). (2) Absence of progeny trials.
Genetic testing can be performed within commercial forest
stands. (3) Genetic evaluation thus takes place on a landscape
level, emphasizing adaptive traits and their respective interaction
with environmental conditions. (4) Strategies are open to NGS
platforms. One can replace the BLUP based evaluation (as
implemented here) with the genomic alternative (e.g., GBLUP)
with all the added benefits of extracting additional genetic
parameters (El-Dien et al., 2016). When considering these
alternatives, breeders may compare theoretical gain efficiencies
between BLUP and GBLUP approaches (Stejskal et al., 2018). At
the same time, operational implementation could still remain
identical to the current study.
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In summary, the approach presented here is a flexible and
dynamic gene-resource management scheme that is not
encumbered by the predetermined fixed ecological zonation,
commonly implemented for forest trees. The reforestation
installations permitted effective and rigorous genetic evaluation
over numerous sites with varying ecological diversity (geographic
distribution) and extended the testing timeframe, thus speeding
the selection of adapted individuals and matching them with the
most appropriate planting location. The approach is simple and
cost-efficient, enabling improvement and conservation of
commercial and non-commercial species under rapidly
changing environmental conditions.
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Germination in Rice
Ranjita Thapa1†, Rodante E. Tabien2, Michael J. Thomson1 and Endang M. Septiningsih1*

1 Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States, 2 Texas A&M AgriLife
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Low temperature significantly affects rice growth and yield. Temperatures lower than 15°C
are generally detrimental for germination and uniform seedling stand. To investigate the
genetic architecture underlying cold tolerance during germination in rice, we conducted a
genome-wide association study using a novel diversity panel of 257 rice accessions from
around the world and the 7K SNPmarker array. Phenotyping was conducted in controlled
growth chambers under dark conditions at 13°C. The rice accessions were measured for
low-temperature germinability, germination index, coleoptile length under cold stress,
plumule length at 4-day recovery, and plumule length recovery rate. A total of 51 QTLs
were identified at p < 0.001 and 17 QTLs were identified using an FDR < 0.05 across
the different chilling indices with the whole panel of accessions. At the threshold of p <
0.001, a total of 20 QTLs were identified in the subset of japonica accessions, while 9
QTLs were identified in the subset of indica accessions. Considering the recurring SNPs
and linked SNPs across different chilling indices, we identified 31 distinct QTL regions in
the whole panel, 13 QTL regions in the japonica subset, and 7 distinct QTL regions in the
indica subset. Among these QTL regions, three regions were common between the whole
panel and japonica, three regions were common between the whole panel and indica, and
one region was common between indica and japonica. A subset of QTL regions was
potentially colocalized with previously identified genes and QTLs, including 10 from the
japonica subset, 4 from the indica subset, and 6 from the whole panel. On the other hand,
a total of 21 potentially novel QTL regions from the whole panel, 10 from the japonica
subset, and 1 from the indica subset were identified. The results of our study provide
useful information on the genetic architecture underlying cold tolerance during germination
in rice, which in turn can be used for further molecular study and crop improvement for
low-temperature stressed environments.

Keywords: low temperature stress, cold tolerance, cold recovery, germination, genome-wide association study,
SNP, QTL, rice
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INTRODUCTION

Rice is more susceptible to cold stress than other cereal crops due
to its origin in the tropical and subtropical regions (Zhao et al.,
2017). Low temperature causes major stress for rice growing in
25 countries (Cruz et al., 2013) and to more than 15 million ha of
rice grown worldwide (Bai et al., 2016). One of the major
challenges for rice production under direct-seeded cultivation,
especially in high altitude regions in the tropics or regions with
temperate climates, is low-temperature sensitivity during the
germination stage (Schläppi et al., 2017). Cold stress during
germination causes poor germination and retarded plant growth.
Vigorous germinated seedling is a necessity for good plant
establishment. Breeding of rice cultivars with tolerance of low
temperature, however, has been challenging due to various
factors: response of rice plants to cold varies with growth
stages (Liu et al., 2015); low-temperature tolerance is
controlled by quantitative loci where many genes with small
effects contributing to the phenotype (Ji et al., 2009); and
epistatic interaction among alleles at unlinked loci (Zhang
et al., 2014a). A wide range of variations to cold tolerance
among Oryza sativa has been reported where accessions of the
japonica subspecies were generally being more tolerant than
indica (Baruah et al., 2009). A few studies have been performed
to improve cold tolerance of the indica cultivars using japonica
cultivars; however, due to lack of genetic diversity in japonica
germplasm, further improvement of japonica cultivars has been
quite challenging (Zhang et al., 2014a).

Thus far, only very few genes controlling chilling tolerance
have been identified in different stages of rice growth (Cruz et al.,
2013; Zhang et al., 2014b; Zhang et al., 2014c). The first gene
reported for low-temperature germinability was qLTG3-1, where
the gene encodes for a secreted hybrid glycine-rich protein and a
single nucleotide was the causal polymorphism (Fujino et al.,
2008). It is highly imperative to identify additional chilling
tolerance QTLs and genes to better understand the
mechanisms of chilling tolerance in rice and to assist in
developing high-yielding rice with higher tolerance of cold
during germination. QTL mapping and genome-wide
association study (GWAS) are two widely used tools to
discover the genetic control of complex traits. Most of the
published data on genetic loci controlling chilling tolerance in
rice were obtained by bi-parental mapping populations from O.
sativa ssp indica X O sativa ssp japonica crosses where japonica
subspecies usually used as the donors for cold tolerance (Mackill
and Lei, 1997; Cruz and Milach, 2004; Mao and Chen, 2012; Ma
et al., 2015). The major drawback of bi-parental mapping is the
limitation of genetic background to parental lines. More recently,
GWAS has also been utilized to study cold tolerance in rice, with
the advantage of scanning a large number of accessions for
genetic loci controlling this trait. These studies have led to the
discovery of QTLs associated with low-temperature germination
during seedling stage and plumule growth recovery after chilling
stress in rice. Pan et al. (2015) identified 22 QTLs for cold
tolerance during germination stage using SSR markers in 174
Chinese accessions. Sales et al. (2017) detected 24 SNPs
associated with low-temperature germination and growth rate
Frontiers in Genetics | www.frontiersin.org 2117
at low temperature; while Shakiba et al. (2017) reported 42 QTLs
controlling cold tolerance at seedling stage. Fujino et al. (2015)
conducted GWAS mapping with 117 markers using a Hokkaido
rice core panel, comprising 63 Japanese landraces and breeding
lines and discovered 6 QTLs for cold tolerance at heading stage
and 17 QTLs for low-temperature germinability. Lv et al. (2016)
reported 132 loci associated with 16 traits evaluated under
natural chilling and cold shock stress using a large collection of
529 rice accessions with more than 4.35 million SNP markers.
Schläppi et al. (2017) identified a total of 48 QTLs for chilling
tolerance in 202 O. sativa accessions from the USDA mini-
core collection.

Various methods, traits measured, and temperatures have
been used to identify underlying genes of cold tolerance in rice
during germination stage. Shakiba et al. (2017) evaluated cold
tolerance at germination stage using the “ragdoll method”
exposed at 12°C for 35 days. Sales et al. (2017) germinated rice
seeds for 21 days at 15°C to evaluate the cold tolerance during
germination stage. Schläppi et al. (2017) conducted GWAS
during germination, seedling and recovery stage in 202 O.
sativa accessions. For germination cold tolerance, growth rate
of plumule after 30 days of cold exposure at 10°C was measured 4
days after recovery at 28 ± 1°C. The mean length of 2-week old
seedlings at V2 stage was recorded before cold exposure and
again after 1 week of recovery, the length of the recovered
seedlings was measured. The growth at 28 ± 1°C following a 1-
week chilling stress treatment at 10 ± 1°C was recorded to
estimate leaf recovery growth rate after cold exposure. These
different stress treatments and different indicators used to study
cold tolerance have resulted in variation in the number and
location of the identified QTLs (Zhang et al., 2014c). Cruz and
Milach (2004), however, suggested that variation in coleoptile
growth and percentage of seeds superior to 5-mm coleoptile
length at cold temperatures were sufficient to identify cold-
tolerant genotypes. The differences in seedling vigor among
genotypes may cause difficulty in the identification of cold-
tolerant lines. Because of this, several researchers have
emphasized the evaluation of test entries in both control
(ambient) and cold temperature to enable the separation of
seedling vigor from cold tolerance (Sales et al., 2017).

In this study, we performed GWAS on a novel rice diversity
panel of 257 accessions using a 7K rice SNP array (S. McCouch,
M. Thomson, and K. Morales, personal communication). The
objectives of this study were to evaluate the diversity rice panel
for cold tolerance and cold recovery during the germination
stage and to identify QTLs and the underlying candidate genes.
MATERIALS AND METHODS

Rice Accessions
The 257 rice accessions/lines used in this study were obtained
from the USDA-ARS National Small Grains Collection
(Aberdeen, Idaho), the Genetic Stocks-Oryza (GSOR)
collection located at the USDA-ARS Dale Bumpers National
Rice Research Center (USDA-ARS DBNRRC; Stuttgart, AR), and
February 2020 | Volume 11 | Article 22
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the inbred rice breeding program at the Texas A&M AgriLife
Research Center in Beaumont, Texas (Supplementary Table 1).
This panel represented accessions or breeding lines belonging to
the indica subspecies (indica and aus), the japonica subspecies
(aromatic, tropical japonica, and temperate japonica), O.
glaberrima, and several Nerica lines (derivatives of O. sativa/O.
glaberrima interspecific crosses). This novel diversity panel was
selected to represent geographic diversity, including 62
accessions from South Asia, 50 from Central and Western
Asia, 27 from Southeast Asia, 8 from East Asia, 34 from
Africa, 15 from Europe and Russia, 6 from Latin America, and
55 from North America. Seed multiplication was performed in
the Texas A&M AgriLife Research Center in Beaumont, TX
(summer 2016). Seeds from one panicle of each accession were
direct-seeded in a single row for seed multiplication in summer
2017. All plants were maintained following the Texas production
guidelines. After maturity, per plant harvest was performed and
the seeds were dried in a heated air dryer at 37°C for 5 days and
then stored at 4°C. To break the dormancy, seeds were incubated
at 50°C for 5 days. The germination test of each accession was
performed using the roll paper method (http://www.
knowledgebank.irri.org/step-by-step-production/pre-planting/
seed-quality).

Indices for Evaluating Cold Tolerance
To screen for the cold tolerance variability in the collected
germplasm, different parameters were used, including low-
temperature germinability (LTG), germination index (GI),
coleoptile length under cold stress (CLC), plumule length at 4-
day recovery (PLR), and plumule length recovery rate (PLRR)
that are described in detail below. The experiment was conducted
in a growth chamber in a controlled-dark condition following a
completely randomized design with three replications, and 30–
40 seeds per replication were used. Seeds of all accessions were
rinsed with 5% Tween-20 for 5 min followed by thorough rinsing
with 10% bleach (sodium hypochlorite) for 10 min and washed
with autoclaved distilled water 3 times to prevent contamination.

For control samples, 30–40 sterilized seeds were placed on
water-soaked filter paper placed in the petri dishes. The petri
dishes were then wrapped in aluminum foil and placed for
germination in a growth chamber maintained at 30°C. The
experiment was conducted in a completely randomized design
and the dark condition was provided to mimic the natural dark
condition under the soil during the germination stage. After 7
days of germination, the average germination percentage per
accession was taken from all the three replicates.

Low-Temperature Germinability (LTG)
and Germination Index (GI)
Surface sterilized seeds were incubated in water-soaked filter
paper in petri dishes, 30–40 seeds were placed in each petri dish
and these were then wrapped with aluminum foil. For each entry,
three plates were randomly distributed in the growth chamber
set at 13°C temperature. Another set was grown in the growth
chamber at 30°C temperature as controls. Germinated seeds were
counted in each petri dish obtained after 7 days in the 30°C
growth chamber (control) and after 28 days in the 13°C growth
Frontiers in Genetics | www.frontiersin.org 3118
chamber (cold treatment). Germination was defined as visible
coleoptile emergence (>5 mm) through the hull. The low-
temperature germinability (LTG) was calculated as the percent
of seeds germination at 13°C after 28 days. The mean LTG scores
were recorded from three petri dishes and normalized with the
mean percent germinability of seeds at 30°C (NTG) which was
used to calculate the germination index (GI). GI was determined
as LTG divided by NTG times 100.

Coleoptile Length Under Cold Stress (CLC)
After counting the germinated seeds, all the germinating
seedlings were placed on a sterile black background paper
along with the ruler for photographs. The images of all the
germinating seeds from each replication were then taken with a
Pentax camera. Later, the images were imported to ImageJ
software and the coleoptile length of all the germinated
seeds was measured and averaged to represent the mean
of coleoptile length of each accession after cold exposure.
The arithmetic means of the measurement were used for
GWAS mapping.

Plumule Length At 4-Day Recovery (PLR)
and Plumule Length Recovery Rate (PLRR)
After photographing all germinating seeds, the seedlings were
returned to their corresponding petri dish, covered with foil and
then were moved to a growth chamber maintained at 30°C and
were kept for 4 days. After the recovery period of 4 days, pictures
were taken, and plumule lengths were measured using ImageJ.
The average from three replication was taken as plumule
length after recovery (PLR) for each accession. The mean
plumule growth rate after cold germination was estimated by
subtracting the mean coleoptile length after 28 days at 13°C from
the mean plumule length on day 4 at 30°C after recovery and
dividing the obtained value by 4 to represent plumule length
recovery rate (PLRR). The PLRR value, therefore, indicates the
growth rate of the plumule over a period of 4 days under normal
conditions (30°C).

Genotyping
The young leaves were collected from the field in Beaumont,
Texas in 2017 and sent to a genotyping service lab for DNA
extraction and genotyping (Eurofins BioDiagnostics, Inc.,
River Falls, WI). Genotyping of all the accessions was
performed using a 7K Illumina iSelect custom-designed array
by following the Infinium HD Array Ultra Protocol. The 7K
array, called the C7AIR, was designed by the McCouch Lab
at Cornell University and consists of 7,098 SNPs. The
Cornell_7K_Array_Infinium_Rice (C7AIR) design represents
an improved version of Cornell_6K_Array_Infinium_Rice
(C6AIR) (Thomson et al., 2017). Genotype data used in this
study were called using Genome Studio software (Illumina,
USA). SNPs of call rate <90% and minor allele frequency <5%
were removed from the dataset. The quality of each SNP was
confirmed manually by re-clustering. For our study, a subset of
5,185 high-quality SNP markers obtained after removal of rare
allele markers at 5% or less and heterozygosity of more than 20%
were used to perform the genome-wide association analysis.
February 2020 | Volume 11 | Article 22
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General Statistics, Population Structure,
and Association Mapping
The basic statistics for all traits were analyzed, including
heritability (Singh et al., 1993). Spearman's correlation
coefficients between the chilling indices were also calculated
using R software version 3.5.1 (Lenth, 2016). Additionally, the
mean and standard error for the five selected traits were calculated
for each sub-population generated from the STRUCTURE
program (Pritchard et al., 2000); comparisons were then made
between these distributions to the generally more tolerant
temperate japonica population using a Student's t-test.

The Bayesian model of the Markov Chain Monte Carlo
(MCMC) implemented in the STRUCTURE program
(Pritchard et al., 2000) was used to estimate the population
structure. The burn-in length and number of replications were
both set to be 100,000. For each number of populations (Q), five
iterations were performed for the number of populations 2 to 10.
The Structure Harvester program (Earl, 2012) was used to
perform the analysis. The coefficient of ancestry (Q) threshold
was defined at 70% to refer an individual with its inferred
ancestry from one single group; while the accessions which
were unable to be assigned to only one group were determined
as mixed ancestry. We also used the Bayesian clustering program
fastStructure (Raj et al., 2014) to estimate the different levels of Q
(Q = 1–10).

GWAS of all japonica (temperate japonica, tropical japonica,
aromatic), indica (aus and indica), and the whole panel were
conducted using their corresponding data sets. The Genome
Association and Prediction Integrated Tool (GAPIT) package
(Lipka et al., 2012) with a genotype matrix of 5185 SNPs and a
phenotype matrix of 257 accessions were used to perform the
GWAS analysis. To predict the genomic regions associated with
the traits, we used mixed linear model (MLM) of GAPIT (Zhang
et al., 2010). For MLM, we used both kinship (K) matrix as the
variance-covariance matrix between the individuals and
population structure (Q) matrix to control false positive. The
structure data was obtained from the STRUCTURE software
(Pritchard et al., 2000) and the kinship relationship matrix (K)
was obtained from the TASSEL 4.0 software (Bradbury et al.,
2007). For association mapping in japonica and indica sub-
populations, considering the low sample size, the MLM model
of GAPIT using principal components (PCs) was used to avoid
overcorrection (Hsu and Tung, 2015).

The MLM model used is: Y = bX + gP + Zu + ϵ; where Y is
the vector of the phenotypic data, X is the vector of genotypic
data, b represents the SNP effect, P is the vector of the Q matrix
representing population structure, g is the effect of population
structure, u refers to the random effect from kinship, Z is the
Kinship matrix, and ϵ corresponds to random error. The
expected p-values versus the observed p-values test statistics for
the SNP markers were plotted (QQ plot) to assess the control of
type I errors under multiple run parameters. The markers were
defined to be significantly associated to chilling indices based on
p < 0.001. The extent of LD in rice on average ranges from 100 to
500 kb (Garris et al., 2005; Myles et al., 2009; Tung et al., 2010).
Hence, we defined two or more SNPs positioned within ~250 kb
Frontiers in Genetics | www.frontiersin.org 4119
as a single QTL. The Manhattan plot distribution chart was
obtained by the R software. The percent variance explained by all
significant SNPs discovered for each trait was estimated by
subtracting the R2 of the model without SNP from R2 of the
model with SNP (Zhang et al., 2010). Candidate genes at or near
the QTLs identified in this study (within ~250 kb) were from the
QTARO database (http://qtaro.abr.affrc.go.jp/; Yonemaru et al.,
2010) and other previously published literature.
RESULTS

Phenotypic Performance and Correlation
Among Traits
Most of the rice accessions used in this study have more than 90%
germination rate at 30°C. However, we observed a wide variation
in coleoptile length (Table 1). In most cases, germination and
coleoptile length were significantly decreased when the rice seeds
were germinated at a low temperature of 13°C. Under cold
exposure, LTG ranged from 0% to 100%. Cold temperature
delayed the germination rate of rice seeds and many of the
lines started germinating after 7 days of sowing. The range of the
coleoptile length was found to be 0 cm to 1.69 cm; while the mean
was 0.69 cm. The PLR and the PLRR ranged from 0 cm to 5.33
cm and 0 cm/d to 1.08 cm/d, with the mean values of 2.96 cm
and 0.57 cm/day, respectively. Overall, the broad sense
heritability estimations for all traits were high, ranging from
86.8% to 94.0% (Table 1).

Based on the population structure, the whole panel was
categorized into nine sub-populations, including the
admixtures (Table 2). We observed that among the highest
LTGs were the group of Texas breeding lines and the US
released varieties, followed by NERICA lines and temperate
japonica, with the means of 86.2%, 80.81%, and 80.3%,
respectively; while the lowest was O. glaberrima with the mean
of 41.12%. Among the japonica, aromatic has the lowest LTG
(64.17%), a similar rate to the aus group (53.76%). Interestingly,
the indica lines used in our study (73.67%) had comparable
germination rates under cold stress with several of the japonica
lines. The three groups having the highest LTG are almost the
same as CLC, with temperate japonica having the highest mean
TABLE 1 | Descriptive statistics of each trait measured in the whole diversity
panel.

Trait Description Measurement
unit

Mean Range SE H2

LTG Low-temperature
germinability

% 69.21 0–100 1.69 94.0

GI Germination index NA 72.47 0–107.60 1.76 87.7
CLC Coleoptile length

under cold conditions
cm 0.69 0–1.69 0.02 89.2

PLR Plumule length after
recovery

cm 2.96 0–5.33 0.07 90.8

PLRR Plumule length
recovery rate

cm/d 0.57 0–1.08 0.01 86.8
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for CLC (0.94 cm), followed by Texas and US lines (0.91 cm) and
then the NERICA lines (0.80 cm). Similarly, the smallest length
for CLC was also observed in aus followed by O. glaberrima and
aromatic. CLC of the indica (0.63 cm) was generally shorter
compared to the japonica groups except for the aromatic (0.61
cm). The recovery process from cold stress was also evaluated
using the PLR and PLRR parameters. For PLR, the Texas lines
and temperate japonica had the longest plumule growth with the
mean values of 3.96 cm and 3.68 cm, respectively; whereas the
shortest growth was seen in O. glaberrima with a mean value of
2.07 cm. A similar trend was observed for PLRR (Table 2). The
Frontiers in Genetics | www.frontiersin.org 5120
values of LTG and PLR were significantly lower for O.
glaberrima, aus, and admixtures (Table 2; Figure 1). For CLC
and PLRR, the values were significantly lower for O. glaberrima,
aus, aromatic, indica, and admixtures. We also observed
significantly higher PLRR of Texas lines compared to
temperate japonica (p < 0.05); whereas no significant difference
of CLC was observed between Texas lines and temperate
japonica. Very high significant positive correlations between all
the chilling indices were detected (Table 3), albeit with different
levels of significance ranging from 0.44 (between CLC and
PLRR) to 0.97 (between LTG and GI). The results showed that
FIGURE 1 | The box plots from all sub-populations identified by the STRUCTURE software presented for all the traits measured: low-temperature germinability
(LTG), percentage germination under normal condition (NTG), germination index (GI), coleoptile length under cold (CLC), plumule length recovery (PLR), and plumule
length recovery rate (PLRR).
TABLE 2 | Phenotypic performance of nine sub-populations generated within the whole diversity panel.

Sub-pop
a

# samples LTG
b

(%) NTG
c

(%) GI
d

CLC
e

(cm) PLR
f

(cm) PLRR
g

(cm/d)

Admixture 11 60.73 ± 8.85 94.08 ± 4.60 63.78 ± 9.18* 0.67 ± 0.10* 2.63 ± 0.27** 0.49 ± 0.04**
Aromatic 20 64.17 ± 5.26* 93.59 ± 1 68.43 ± 5.50** 0.61 ± 0.05*** 3.13 ± 0.16* 0.63 ± 0.03
Aus 53 53.76 ± 3.86*** 96.74 ± 0.48*** 55.25 ± 3.93*** 0.48 ± 0.03*** 2.46 ± 0.11*** 0.5 ± 0.02***
Oryza glaberrima 20 41.12 ± 7.85*** 94.74 ± 0.92 42.47 ± 8.07*** 0.54 ± 0.09*** 2.07 ± 0.27*** 0.38 ± 0.05***
Nerica 9 80.81 ± 4.98 92.48 ± 1.45 87.74 ± 5.85 0.8 ± 0.09 2.65 ± 0.15*** 0.46 ± 0.02***
Indica 48 73.67 ± 3.56 96.42 ± 0.64*** 76.34 ± 3.65* 0.63 ± 0.05*** 2.67 ± 0.15*** 0.51 ± 0.03***
Temperate japonica 30 80.3 ± 2.59 92.17 ± 0.94 87.04 ± 2.56 0.94 ± 0.06 3.68 ± 0.14 0.69 ± 0.03
Texas 44 86.2 ± 5.43 95.51 ± 0.67** 90.21 ± 5.60 0.91 ± 0.06 3.96 ± 0.17 0.76 ± 0.04*
Tropical japonica 22 77.16 ± 5.43 97.4 ± 0.67*** 79.24 ± 5.60 0.74 ± 0.06* 2.89 ± 0.16*** 0.54 ± 0.04**
Feb
ruary 2020 | Volume
aThese sub-populations generated by the STRUCTURE software.
bLow-temperature germinability.
cNormal-temperature germinability.
dGermination index.
eColeoptile length after cold exposure.
fPlumule length after recovery.
gPlumule length recovery rate.
*p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.
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rice accessions having good germination under cold stress in
general also having higher coleoptile length under cold stress and
high recovery rate as well.

GWAS for Identification of QTLs
The population structure analysis for the whole accessions
identified nine sub-populations. The results for the japonica
and indica group-specific GWAS, however, showed an
overcorrection for the population structure when both
population structure (Q) and kinship matrix (K) were
considered in the mixed model (japonica MLM and indica
MLM). To avoid this overcorrection and to control the false-
negative results, a GAPIT model considering the principal
Frontiers in Genetics | www.frontiersin.org 6121
components (PCs) were used to individually analyze the indica
and japonica varietal groups. Only two main sub-populations
were observed in the indica group and three sub-populations were
observed in the japonica group as depicted by the PCA plot results
from GAPIT output. In indica group, the first PC and second PC
explained 28% and 5% of the total variance, respectively, whereas
in japonica group, the first PC, second PC, and third PC explained
32%, 5%, and 4% of the total variance, respectively.

GWAS of Chilling Tolerance Indices for
All Accessions
A total of 51 QTLs were identified at p < 0.001, with 11, 15, 9, 9,
and 7 QTLs were discovered to be significantly associated with
LTG, GI, CLC, PLR, and PLRR, respectively (Table 4;
Supplementary Table 2; Figure 2; Supplementary Figure 1).
Out of the 51 QTLs, 17 of them were detected at FDR < 0.05, with
4, 4, 2, 6, and 1 QTLs were found to be associated with LTG, GI,
CS, PLR, and PLRR, respectively (Table 4). The amount of
phenotypic variance explained (R2) ranged from 0.5% to 20.6%
for LTG, 1.3% to 4.8% for GI, 1.8% to 12.9% for CLC, 0.6% to
8.6% for PLR, and 0.8% to 10.0% for PLRR.

Considering the reoccurring SNPs and very closely linked
SNPs in multiple chilling indices of the 51 QTLs, 31 unique QTL
regions were identified to be significantly associated with cold
tolerance indices within well-fitted QQ plots. Out of these 31
regions, 17 of them harbored at least 2 QTLs (QTL clusters) from
the various chilling indices. For example, five QTLs identified
TABLE 3 | Correlation analysis of different cold tolerance traits among all
accessions.

Trait LTG
a

GI
b

CLC
c

PLR
d

PLRR
e

LTG 1 0.97*** 0.64*** 0.58*** 0.47***
GI 0.97*** 1 0.65*** 0.60*** 0.50***
CLC 0.64*** 0.65*** 1 0.67*** 0.44***
PLR 0.58*** 0.60*** 0.67*** 1 0.96***
PLRR 0.47*** 0.50*** 0.44*** 0.96*** 1
aLow-temperature germinability.
bGermination index.
cColeoptile length after cold exposure.
dPlumule length after recovery.
ePlumule length recovery rate.
***p-value < 0.0001.
TABLE 4 | QTLs with FDR < 0.05 detected in the whole panel, japonica and indica subsets, and colocalized genes and QTLs.

QTL ID Trait
a

Colocated QTL in this
study

Group Chr. Position
(bp)

p-value FDR R2 Potentially colocated
QTL/gene

Reference

qPLRR-1 PLRR qLTG-1-1; qGI-1-1; qCLC-
1-2; qPLR-1

Full set 1 2,994,2776 4.39E−29 2.28E−25 10.0

qLTG-1-1 LTG qGI-1-1; qCLC-1-2; qPLR-
1; qPLRR-1

Full set 1 2,9942,776 2.70E−14 1.40E−10 20.1

qCLC-1-2 CLC qLTG-1-1; qGI-1-1; qPLR-
1; qPLRR-1

Full set 1 29,942,776 1.29E−09 6.69E−06 12.9

qPLR-1 PLR qLTG-1-1; qGI-1-1; qCLC-
1-2; qPLRR-1

Full set 1 29,942,776 2.74E−09 1.42E−05 8.4

qGI-1-1 GI qLTG-1-1; qCLC-1-2;
qPLR-1; qPLRR-1

Full set 1 29,942,776 8.02E−06 0.0191873 1.5

qPLR-2 PLR qPLRR-2 Full set 2 26,231,409 5.31E−05 0.0458891 1.4 qSWTPNCT2-2; qnob-5 Shakiba et al., 2017
qGI-5-3 GI Full set 5 28,831,954 1.48E−05 0.0191873 3.1 Os05g0574500 Chen et al., 2011
qLTG-5-1 LTG qGI-5-1 Full set 5 805,425 1.83E−05 0.0237779 3.7
qPLR-5 PLR qLTG-5-2; qGI-5-2; qCLC-

5
Full set 5 7,195,992 2.35E−05 0.0405948 2.2

qGI-9-2 GI Full set 9 15,414,541 1.18E−05 0.0191873 4.8 Os09g0417600 Yokotani et al., 2013
qPLR-9-2 PLR qGI-9-1; qInPLR-9; qPLRR-

9
Full set 9 14,648,157 7.42E−06 0.0192423 3.2 qCTS-9; OsWRKY76;

Os09g0410300
Peng et al., 2010

qCLC-9 CLC qJaCLC-9 Full set 9 9,230,514 1.26E−05 0.0325983 5.1 qLTSS9-1 Schläppi et al., 2017
qPLR-9-3 PLR qGI-9-2 Full set 9 15,399,656 4.05E−05 0.0420114 8.6
qPLR-9-4 PLR qGI-9-3 Full set 9 16,325,535 4.05E−05 0.0420114 8.6 qSWTCT9; qCTS9-8 Wang et al., 2016;

Shakiba et al., 2017
qLTG-10 LTG qGI-10; qPLR-10 Full set 10 13,897,640 6.19E−09 1.60E-05 4.2
qGI-10 GI qLTG-10; qPLR-10 Full set 10 13,897,640 1.21E−06 0.0062886 1.3
qLTG-11-2 LTG Full set 11 87,88,201 4.87E−06 0.0084191 10.6
February 202
aLTG, low-temperature germinability; NTG, normal-temperature germinability; GI, germination index; CLC, coleoptile length after cold exposure; PLR, plumule growth after cold exposure;
PLRR, plumule growth rate after cold exposure.
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from the five cold indices (qLTG-1-1, qGI-1-1, qCLC-1-2, qPLR-
1, and qPLRR-1) shared the same SNP peak marker at position
29.9 Mb on chromosome 1; four QTLs from the four indices
(qLTG-5-2, qCLC5, qGI5-2, and qPLR5) share the same SNP
peak at 7.2 Mb on chromosome 5; four other QTLs also shared
with the same SNP peak at 14.6 Mb, where 3 QTLs were from all
accessions (qGI-9-1, qPLR-9-2, qPLRR-9) and the other one was
from the indica subspecies (qInPLR-9); another four QTLs
shared a very closely linked region between 17.7–117.8 Mb on
chromosome 3, where two of them were from all panel (qLTG-3-
1 and qGI-3-1) and the other two were from the japonica group
(qJaLTG-3 and qJaGI-3); a QTL from the whole set (qPLRR-6-1)
shared a similar region with two other QTLs from japonica
(qJaLTG-6-2 and qJaGI-6-3) at position 17.1–17.8 Mb, three
QTLs (qLTG-10, qGI-10, and qPLR-10) shared the same SNP
peak at 13.9 Mb on chromosome 10; while another three QTLs
also shared the same SNP peak at 24.8 Mb where 2 of them were
from the whole set (qCLC-11-1 and qPLR-11) and the other one
was from the indica group (qInPLR11); the rest of the QTL
clusters consisted of two QTLs located on chromosomes 1, 2, 3,
4, 5, 9, 11, and 12.
Frontiers in Genetics | www.frontiersin.org 7122
GWAS of Chilling Tolerance Indices
for japonica
At cut-off p-value of < 0.001, we identified 20 QTLs associated with
the chilling tolerance indices in japonica subspecies, 2 of the SNPs
were detected at FDR < 0.1 (Supplementary Table 2;
Supplementary Figure 2). Among the 20 QTLs, we identified 9,
8, and 3 QTLs associated with LTG, GI, and CLC, respectively. The
phenotypic variance explained by the QTLs were in the range of
12.91% to 21.07% for LTG, 12.61% to 20.32% for GI, and 15.79% to
20.54% for CLC. Considering the reoccurring SNPs in multiple
chilling indices and linked SNPs, we identified 12 unique QTL
regions. Among these 12 QTL regions, only 3 of them contained a
single QTL; while the rest harbored at least 2 QTLs. For example,
three of the QTL regions were shared by QTLs from the whole
panel, two regions were on chromosomes 3 and 6 as mentioned
above and the other region was at position 9.2 Mb on chromosome
9, which shared by 2 QTLs (qCLC-9 and qJaCLC-9). A QTL from
the japonica group (qJaCLC-2) also shared a similar region at 0.6
Mb to 0.9 Mb on chromosome 2 with a QTL from the indica
(qInPLR-2); the rest of the QTL regions contained two QTLs each
identified on chromosomes 1, 5, 6, 8, and 12.

GWAS of Chilling Tolerance Indices
for indica
At cut-off p-value of < 0.001, we identified 9 QTLs associated with
the chilling tolerance indices in indica subspecies. Among the nine
QTLs, two QTLs each were found to be associated with LTG, GI,
CLC, and three QTLs were with PLR (Supplementary Table 2;
Supplementary Figure 3). Considering the reoccurring SNPs or
closely linked SNPs, we identified seven unique QTL regions in
indica subspecies. Among these regions, 4 of them harbored more
than one QTL: a QTL on chromosome 9 (qInPLR-9) shared the
same SNP peak at position of 14.6 Mb with three other QTLs
detected from all accessions as mentioned above; another QTL on
chromosome 11 (qInPLR-11) shared a SNP peak at position 24.8
Mb with two other QTLs from the whole set (qCLC-11-1 and qPLR-
11); qInCLC-11 shared a SNP peak at 25.6 Mb with qCLC-11-2 on
chromosome 11; and qIn-PLR-2 shared a closely linked SNP peaks
on chromosome 2 as mentioned above; a SNP peak at 1.4 Mb on
chromosome 6 was shared by qInLTG-6 and qInGI-6; another peak
SNP at position 20.8 Mb on chromosome 7 was shared by qInLTG-
7 and qInGI-7. The phenotypic variance explained by the significant
SNPs were in the range of 9.96% to 11.38% for LTG, 9.78% to
12.03% for GI and 12.51% to 16.2% for CLC, and 8.85% to 10.75%
for PLR, respectively.

Candidate Gene and QTL Comparisons
Among the 31 unique QTL regions (p < 0.001) associated with
chilling indices of the whole set of accessions, we identify 10 loci
potentially co-localized with the previously identified genes/
QTLs related to cold stress in rice, including cold tolerance
during germination, seedling and reproductive stage, and cold
recovery (Table 4; Supplementary Table 2).

A QTL associated with GI located on chromosome 5, qGI-5-3,
was identified to be positioned at 127.9 kb away from the OsRAN2
gene (Os05g0574500) previously reported to be responsible for cell
FIGURE 2 | Selected Manhattan and QQ plots of the whole panel for
germination index (GI), shoot length under cold (CLC), and plumule length
recovery (PLR). The solid blue line shows the p-value 0.001 significant
threshold; while the solid green line shows the Bonferroni correction.
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division in cold condition (Chen et al., 2011). Another QTL for GI,
qGI-7 was found to be 141.6 kb away of Omega-3 fatty acid
desaturase (Os07g0693800) and qCTS7-5 which were reported to
be responsible for cold tolerance at seedling stage (Wang et al.,
2016). A few QTLs on chromosome 9 at around significant peak at
14.6 Mb which were significantly associated with GI, PLR (whole
panel and indica), and PLRR, located in the vicinity of WRKY
transcription factor (Os09g0417600) previously reported to cause
increasing tolerance to cold stress in rice (Yokotani et al., 2013)
and qPGCG9-2 which was previously reported as a QTL
controlling plumule growth recovery rate under cold stress
during seedling stage (Schläppi et al., 2017), and 117 kb away
from OsWRKY76, a gene similar to BRI1-KD interacting protein
120 (Os09g0410300) related to cold tolerance and qCTS-9
previously reported related to tolerance during seedling stage
(Peng et al., 2010). A SNP peak at 9.2 Mb on chromosome 9 for
CLC detected by the whole set of accessions and the japonica
panel, qCLC-9 and qJaCLC-9 were positioned at a distance of
169.5 kb away from qLTSS9-1, a QTL responsible for cold
tolerance at seedling stage (Schläppi et al., 2017). A QTL
associated with PLR, qPLR-9-1 found to be 21.39 kb away from
qCTS9-2 discovered to be associated with seedling growth under
cold stress (Wang et al., 2016). A SNP peak at position 24.9 on
chromosome 11 associated with CLC and PLR of the full set and
PLR of the indica was potentially colocalized with qCTS11-9
previously reported to be responsible for cold tolerance during
seedling growth (Wang et al., 2016). Similarly, another SNP peak
at position 25.1Mb on chromosome 11 associated with CLC of the
full set and indica was 159 kb away from qCTS11-10, a QTL
responsible for cold tolerance in seedling stage (Wang et al., 2016).

Several of our reported QTLs are found to be located in close
vicinity of previously reported QTLs controlling for cold tolerance
at reproductive stage in rice. For examples, a SNP peak at position
26.2Mb on chromosome 2 associated with both PLR and PLRRwas
found at a distance of 109.7 kb away from the previously reported
QTLs qSWTPNCT2-2 and qnob-5 (Shakiba et al., 2017); qCLC-7
was identified at 135.7 kb away from qSWTCT7 (Shakiba et al.,
2017); a SNP peak at 16.3 Mb on chromosome 9 associated with GI
and PLR was 214.46 kb away from a QTL for cold tolerance at
reproductive stage qSWTCT9 (Shakiba et al., 2017) and 143.79 kb
away from qCTS9-8, a previously identified QTL for cold tolerance
at seedling stage (Wang et al., 2016).

Among the 13 unique QTL regions in japonica, we found four
GWAS sites potentially colocalized with previously identified QTLs/
genes. A QTL, qJaCLC-1-1 associated with CLC in japonica
subspecies was found to be 140 kb distance away from qCTS1-5,
a QTL previously reported to be responsible for cold stress tolerance
in the seedling stage in rice (Wang et al., 2016) and 242.2 kb away
from qCTGERM1-8, a QTL controlling cold stress tolerance in
germination stage (Shakiba et al., 2017). Another QTL, qJaGI-6-1
was at distance of 196.93 kb away from a QTL, qCTS6-2 previously
reported to be responsible for cold tolerance at seedling stage (Wang
et al., 2016). A QTL for CLC, qJaCLC-9 was found to be potentially
collocated with a QTL, qLTSS9-1 previously reported to be
controlling for cold tolerance during seedling stage in rice
(Schläppi et al., 2017). A QTL on chromosome 9, qJaLTG-11 was
identified to be potentially collocated with a QTL, qCTGERM11-1,
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previously reported to be controlling for cold tolerance during
germination stage (Shakiba et al., 2017).

Among the seven unique QTL regions identified in indica
subspecies, 6 of them were found to be potentially colocalized
with previously identified genes/QTLs. A significant SNP on
chromosome 6 at position 1.4 Mb was associated with LTG and
GI in our study was only 10.51 kb away from OsDREB1C
(Os06g0127100), which was reported to be associated with
cold, drought and stress tolerance in rice (Ito et al., 2006). The
SNP peak at 20.8 Mb on chromosome 7 which shared by
qInLTG-7 and qInGI-7 was potentially collocated with
OsFAD9, FAD8 (Os07g0693800), and qCTS7-5, which were
previously reported to be controlling for cold tolerance in the
seedling stage in rice (Wang et al., 2016). A QTL, qInCLC-8 on
chromosome 8 at position 10.36 Mb was found to be potentially
colocalized with qCTGERM8-1, and qCTS8-2, which were
responsible for cold tolerance during germination and seedling
stage in rice (Wang et al., 2016; Shakiba et al., 2017). The QTL
regions on chromosome 9 and 11 that were also shared with the
cold indices of the whole set have been discussed above.
DISCUSSION

It has been a challenge to map loci associated with abiotic stress
tolerance traits like cold tolerance due to the polygenic nature
of the loci (Shakiba et al., 2017). The separate GWAS analysis of
low-temperature germinability (LTG) and germination index
(GI) helped us to discover whether the chilling tolerance was
due to the inherent cold tolerance ability or due to high seedling
vigor. Moreover, the plumule length traits (PLR and PLRR
assays) helped us to determine if there is a quantitative effect on
subsequent growth and development of seedlings after a
recovery period at normal temperature. These assays are
important to measure, as some accessions with good LTG
indices did not grow well after a temperature shift to 30°C
and vice versa. All of these assays may address a realistic
scenario in direct-seeding method of rice cultivation where
germinating rice seeds or young seedlings may get exposed to
warm-growth promoting temperature after an extended period
of cold exposure.

The inbred lines developed at the Beaumont Research Center
that were used in our study generally had a good level of
tolerance under cold stress during germination, including the
recovery phase. On the other hand, the aus sub-population had
the lowest value of CLC while O. glaberrima species had the
lowest values of GI, PLR, and PLRR demonstrating that these
groups are not good sources of cold-tolerant genes. However, our
sample size representing O. glaberrima might be too small;
therefore, research focusing on this species with a greater
number of samples is needed to have more conclusive results.
Accessions belonging to the NERICA lines are found to have
good GI, CLC, PLR, and PLRR. The aromatic and aus groups
were found to have low tolerance to cold stress indicated by the
low values of different chilling indices which were similar to the
findings of other studies (Schläppi et al., 2017; Shakiba
et al., 2017).
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Interestingly, we didn't find a significant difference in LTG
between highly tolerant temperate japonica and indica groups.
As the LTG values observed were relatively similar between
different sub-populations, there is a chance that both indica
and japonica subspecies may carry the alleles contributing to
superior LTG abilities. This also shows that there are many
accessions of indica species which have good germination under
cold stress. This is in agreement with the recent findings of
Shakiba et al. (2017) where they had identified indica specific
LTG QTL and have reported that both indica and japonica sub-
species are expected to have alleles contributing to superior LTG
abilities. On the contrary, we observed significantly lower values
of CLC, PLR, and PLRR of the indica group than the temperate
japonica. These findings showed that although the indica group
has good germination ability under cold stress conditions, their
growth rapidly gets retarded under cold condition.

The results of our study showed that the Texas breeding lines,
temperate japonica and tropical japonica, were more tolerant of
cold stress whereas aus, aromatic, and indica lines were more
susceptible to cold conditions. The phenotypic measurement of
different chilling indices revealed that japonica subspecies were
generally more tolerant than indica. This finding is consistent
with previous findings (Cui et al., 2002; Morsy et al., 2005; Lv
et al., 2016). This could be because in general indica accessions
are more adapted to higher temperature regions of low latitude
while japonica accessions are more adapted to lower temperature
regions of a higher latitude and higher elevations. This history of
adaptation between indica and japonica accessions is also
reflected by genes having a ratio of nonsynonymous vs
synonymous substitution rates (Ka/Ks ratio) greater than 1.0,
which indicates positive selection, as shown by a study between
the indica rice 9311 and Nipponbare (Sun et al., 2015). A
comparison of the QTLs in our study having FDR < 0.05 with
the list of 3,340 genes with Ks of zero and Ka above zero
(Table S1 from Sun et al., 2015) revealed 5 out of 13 cold-
tolerance loci in our study contain genes under selection between
indica/japonica within 250 kb, including a match within 7 kb of
our QTL cluster at 29.9 Mb on chromosome 1 (data not shown).
Although this may be suggestive that indica/japonica alleles at
some cold tolerance loci may have been under selection, further
analysis would be needed to validate these results. In any case,
the presence of differences in the genetic architecture of cold
tolerance among different subspecies and sub-populations
analyzed in this study provides opportunities for enhancing
cold tolerance through molecular breeding.

Spearman's correlation analysis showed that all the indices
were highly correlated with each other. Likewise, the heritability
values of all the traits were also high. Schlappi et al. (2017) had
reported that low-temperature germination (LTG) and plumule
growth recovery rate (PLRR) were not correlated or weakly
correlated with other indices while PLR was highly correlated
with other indices. In our study, however, we found a high
correlation between LTG with all other measured indices, albeit
with different levels. Partly, this could be attributed to the
differences in tolerance ability of the different accessions used
in both studies. We also observed some significant loci detected
in either japonica or indica were also observed in the whole set.
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This indicates that the significant SNPs detected in the whole set
might come from that particular subspecies.

We observed seven SNP peaks/QTL regions that were
shared between LTG and GI (Table 4; Supplementary
Table 2). This is in agreement with the correlation analysis
where a highly positive correlation was observed between LTG
and GI (0.97), since GI is largely derived from LTG, especially
for lines with similar levels of germination under normal
conditions. This result also shows that the significant
associations discovered from GI are mostly due to the
tolerance of the accessions to cold germination and not due
to the seedling vigor. There were three SNP peaks/QTL
regions associated with both CLC and PLR, this may
indicate that there may be some similar genetic mechanism
or overlapping mechanisms underlying coleoptile length
growth at low temperature and plumule recovery after cold
stress exposure. Three of the significant SNPs associated with
PLR were found to be associated with PLRR. This is in
agreement with the highly positive correlation analysis of
chilling indices PLR and PLRR (0.96). This further suggests
that LTG and GI, PLR and PLRR may share some common
genetic mechanisms. Fine mapping and ultimately cloning of
the responsible genes could be performed to confirm whether
the overlapping QTLs associated with one or more
genetic factors.

Some of the significant SNPs identified from our GWAS study
were located within the LD regions of known cold tolerance genes
or previously reported QTLs, including 10 in the whole panel, 4 in
japonica, and 6 in indica. In addition to validating our GWAS
results, many of the identified QTLs near the previously mapped
chilling tolerance related genes in rice help us to narrow down the
QTL region and provide further support of the location of the
underlying genes. Among the most interesting regions identified
were near those QTLs which were found to be located very close to
the genes involved in cold stress tolerance, including OsDREB1C
(10.51 kb) and OSWRKY76 (117 kb).

In summary, our novel diversity panel has little overlap with
previously studied rice diversity panels, including the RDP1/
RDP2, USDA Rice Mini-Core, and the 3,000 Rice Genomes
panel, which may lead to the discovery of additional novel
genetic loci for cold tolerance in rice. The GWAS QTLs
detected in our study may provide additional information on
the genetic structure of cold tolerance and recovery during
germination in rice. In the future, some selected QTLs can be
targeted for further molecular studies to better understand the
mechanisms underlying cold tolerance and recovery of
germinating rice seeds. Some selected cold tolerance-associated
SNP markers can also potentially be used for MAS in rice
improvement efforts. Further, a set of new highly tolerant rice
accessions can potentially be used as novel donors for further
genetic studies and crop improvement programs.
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Pearl millet is a climate-resilient, drought-tolerant crop capable of growing in marginal
environments of arid and semi-arid regions globally. Pearl millet is a staple food for more
than 90 million people living in poverty and can address the triple burden of malnutrition
substantially. It remained a neglected crop until the turn of the 21st century, and much
emphasis has been placed since then on the development of various genetic and genomic
resources for whole-genome scan studies, such as the genome-wide association studies
(GWAS) and genomic selection (GS). This was facilitated by the advent of sequencing-
based genotyping, such as genotyping-by-sequencing (GBS), RAD-sequencing, and
whole-genome re-sequencing (WGRS) in pearl millet. To carry out GWAS and GS, a world
association mapping panel called the Pearl Millet inbred Germplasm Association Panel
(PMiGAP) was developed at ICRISAT in partnership with Aberystwyth University. This
panel consisted of germplasm lines, landraces, and breeding lines from 27 countries and
was re-sequenced using the WGRS approach. It has a repository of circa 29 million
genome-wide SNPs. PMiGAP has been used to map traits related to drought tolerance,
grain Fe and Zn content, nitrogen use efficiency, components of endosperm starch, grain
yield, etc. Genomic selection in pearl millet was jump-started recently by WGRS, RAD,
and tGBS (tunable genotyping-by-sequencing) approaches for the PMiGAP and hybrid
parental lines. Using multi-environment phenotyping of various training populations, initial
attempts have been made to develop genomic selection models. This mini review
discusses advances and prospects in GWAS and GS for pearl millet.

Keywords: pearl millet, genetic resources, genomic resources, genomic selection, genome-wide association
studies, molecular markers
INTRODUCTION

Pearl millet (Pennisetum glaucum (L) R. Br., syn. Cenchrus americanus (L.) Morrone) is an important
C4 small-grained field crop of traditional smallholder farming systems that belongs to the grass family
Poaceae and subfamily Panicoideae. An archaeological survey indicates that pearl millet was initially
domesticated at the southern edge of the Sahara Desert in West Africa about 2500 BC (Manning
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et al., 2011). Pearl millet is a diploid (2n = 2x = 14), cross-
pollinated warm-season crop with tremendous photosynthetic
potential and high biomass production capacity. It is highly
tillering, polymorphic, has a short life cycle, a large genome size
(1.76 Gb), and an outbreeding nature (Bennett et al., 2000,
Varshney et al., 2017). Climate-adaptive phenotypic,
physiological, and reproductive attributes of pearl millet make
this crop well-suited to grow in marginal conditions, such as poor
soil fertility, limited soil water content, high salinity, extreme soil
pH ranges, high soil Al3+ saturation, high temperatures, and scant
rainfall. Pearl millet can thrive and produce a substantial amount
of grain in drought-prone areas that receiving average annual
precipitation <250 mm, whereas other cereal crops, such as maize,
rice, sorghum, bread wheat, and barley, are likely to fail to give
economic returns (Nambiar et al., 2011). Pearl millet is cultivated
over ~27 million hectares in arid and semi-arid areas of Asia and
Sub-Saharan Africa and is the primary food source for about 90
million resource-poor populations residing in marginal areas
globally. Remarkably, the natural attribute of this crop to
withstand ambient temperatures up to 42°C at the reproductive
phase makes it suited for growth via irrigation in the extremely hot
summers in north-western parts of India (Gupta et al., 2015).

Pearl millet has several nutritional properties compared to other
staple cereal grains, and it is an excellent source of organic as well as
inorganic nutrients and a cost-effective source of energy (Kumar
et al., 2016). Pearl millet grains are rich in fibers (1.2 g/100 g), a-
amylose, amino acids, proteins (8–19%), and low starch, mineral
nutrients including phosphorus, magnesium, iron, and zinc. Owing
to having such nutritional values, pearl millet ensures food and
nutritional security for farmers living in poverty (Nambiar et al.,
2011, Kanatti et al., 2014). Pearl millet is a rich source of several
polyphenols, and other biologically important ingredients make it
suited to play a role in reducing the rate of fat absorption, the
lowering of glycemic indices, as well as in overcoming the risk of
cardiac diseases, diabetes, and other medical problems. Overall,
pearl millet has the capacity to combat micronutrient deficiency
across developing countries (Rai et al., 2012) since it contributes
30–40% of inorganic nutrients and provides affordable staple food
with an adequate level of iron and zinc in its cultivating areas (Rao
et al., 2006).

An alternative approach to the QTL mapping is the genome-
wide association study (GWAS) or association mapping (AM)
approach (Gómez et al., 2011) based on the principle of a linkage
disequilibrium (LD) to detect a substantial association between
DNAmarker and target trait (Gupta et al., 2005). Genetic linkage is
found through extensive genotyping of a panel of germplasm or
breeding populations showing contrasting phenotypes across
variable environments. It has an immense power in identifying
specific genes controlling the expression of the desired traits
(Kraakman et al., 2004). The potential advantage of association
mapping is the likelihood of a superior resolution mapping
utilizing mass recombination events from numerous meiotic
events throughout the germplasm evolutionary history. It has the
power to evaluate and characterize several alleles concurrently in
diploid (Zhao et al., 2007) as well as in polyploid crops (Breseghello
and Sorrells, 2006). Association mapping offers many benefits over
linkage mapping since it provides better mapping resolution due to
Frontiers in Genetics | www.frontiersin.org 2128
historical mutations and recombinations in genetic lineages, which
leads to the identification of markers in the vicinity of governing
genes (Liu et al., 2016). Genetic polymorphisms having strong
linkage with a genomic locus leading to phenotypic differences is
expected to be substantially associated with a target trait across the
panel of germplasm.

The analysis of QTL effects for minor QTLs using linkage
mapping and genome-wide association mapping is often biased.
Therefore, scientific groups have for years been trying to solve
the issue of how to tackle these complex traits and outcomes in
terms of genomic selection (GS). Genomic selection is a breeding
approach exploiting high-density DNA markers distributed
across the genome to facilitate the rapid selection of the best
candidates and offers opportunities to enhance genetic gains
(Meuwissen et al., 2001). GS uses different prediction models by
combining the genotyping and phenotyping datasets of the
training population (TP), which is subsequently used to
determine genomic-estimated breeding values (GEBVs) for
every genotype of breeding population (BP) from their
genotyping scores. These GEBVs permit breeders to envisage
superior genotypes that would be suitable either as a parent in
hybridization or for next-generation advancement of the
breeding program. The basic principle is that the information
derived from several markers widely distributed over the
genome, having the potential to reveal genetic variations in the
genome, can evaluate breeding values without prior information
of where the selected genes are located (Crossa et al., 2017).

In this paper, we review the advances made in the
development of genetic and genomic resources for their use in
genome-wide association studies (GWAS) and genomic selection
(GS) in pearl millet.
DEVELOPMENT OF GENETIC
RESOURCES

Genetic resources are the fundamental materials that play a pivotal
role in plant genomic and phenomic studies to boost major
scientific discoveries in advanced agriculture systems. Fortunately,
genetic recourses have been collected and preserved by many
national and international gene banks around the world. Pearl
millet accessions have been collected and conserved by 97 gene
banks (66,682 accessions) globally, in which ICRISAT has the
largest collection (~21,594 pearl millet accessions from
51countries) (Singh and Upadhyaya, 2016). More importantly,
core and mini core collections have been developed at ICRISAT
and serve as essential resources for allele mining studies for the
identification of agronomic studies, and they are also used for the
development of tolerant lines for both abiotic and biotic stresses.
Likewise, one more genotype-based reference set has been
developed, and it comprises 300 pearl millet accessions
(Upadhyaya et al., 2011). At ICRISAT, most of the accessions
were evaluated for several agronomical traits, and these show the
extent of genetic diversity and phenotypic variance for most of the
qualitative and quantitative traits (Singh and Upadhyaya 2016). It is
evident that vast genetic variability is the determining factor for the
February 2020 | Volume 10 | Article 1389
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identification of promising germplasm for the desired trait
(Upadhyaya et al., 2007). In addition to ICRISAT, major
germplasm are preserved at the Institute of Research for
Development (IRD, France), in which 3,968 accessions are
maintained from 16 countries, and 3,821 accessions of cultivated
P. glaucum and related species maintained at the Canadian Genetic
Resources (Saskatoon, Canada). Additionally, there are 1,283 active
collections of pearl millet accessions collected and preserved at the
US Germplasm Resource Information Network (GRIN) (Yadav
et al., 2007). For conducting AM studies, diverse genetic resources
are the essential inputs, and pearl millet genetic resources are found
to have enormous genetic diversity. For this reason, performing AM
studies for desired traits in pearl millet crops is imperative and will
provide immense genomic resources for future studies. Over the last
five years, significant work has been carried out on pearl millet
related AM studies, and this gives information about genetic
diversity and linkage disequilibrium (LD). To get over this
problem, ICRISAT, in association with AU, developed a world
association mapping panel called the Pearl Millet inbred
Germplasm Association Panel (PMiGAP). This panel comprises
346 lines consisting of germplasm lines, landraces, and breeding
lines representing global pearl millet diversity. These lines were
generated by repeated rounds of selfing (S0 through S11) from 1,000
accessions representing diverse cultivars, landraces, and mapping
population parents of 27 countries. Thus, PMiGAP may be
considered an excellent genetic resource for GWAS studies into
pearl millet crop. By the year 2015, out of 346 PMiGAP lines, Sehgal
used 250 lines for AM studies and evaluated these for drought-
related traits under field conditions. Similarly, during another study
on AM, in which 500 pearl millet lines included 252 global
accessions and 248 Senegalese landraces, they found extant
genetic diversity between global and Senegalese accessions
(Hu et al., 2015). In addition to the above studies, several RIL
(recombinant inbred line) populations were also developed for
biotic and abiotic stresses, quality, as well as yield and yield-
related traits. Rajaram et al. (2013) constructed pearl millet
consensus maps by using four RIL populations (ICMB 841-P3 ×
863B-P2 (RIP A), H 77/833-2 × PRLT 2/89-33 (RIP B), 81B-P6 ×
ICMP 451-P8 (RIP C), and PT 732B-P2 × P1449-2-P1 (RIP D). In
other studies, iron- and zinc-related QTLs were identified in ICMB
841-P3 × 863B-P2 (144 progenies) and ICMS 8511-S1-17-2-1-1-B-
P03 × AIMP 92901-S1-183-2-2-B-08 (317 progenies) RIL
populations, respectively (Kumar et al., 2016; Kumar et al., 2018).
In a recent study, Chelpuri et al. (2019) identified QTLs with
resistance to major pathotype isolates of the downy mildew
pathogen in the pearl millet RIL population, ICMB 89111-P6 ×
ICMB 90111-P6 (187 progenies). Therefore, there is a good
opportunity for pearl millet researchers who can access these
useful genetic resources to meet their research needs.
DEVELOPMENT OF GENOMIC
RESOURCES AND TRAIT MAPPING

Molecular or DNA-based markers, genetic linkage maps, and
genomic sequence data are important genomic resources to
Frontiers in Genetics | www.frontiersin.org 3129
perform a genetic evaluation and marker-assisted breeding in
any plant species. Over the last decade, several types of molecular
markers, genomic tools, and genetic linkage maps have been
developed and deployed in millets (Serba and Yadav, 2016).
Several DNA-based molecular markers, including restriction
fragment length polymorphism [RFLP; (Liu et al., 1994)],
amplified fragment length polymorphism [AFLP; (Devos et al.,
1995)], random amplified polymorphic DNA (RAPD), expressed
sequence tags-derived simple sequence repeats [EST-SSRs;
(Senthilvel et al., 2008; Rajaram et al., 2013)] markers,
sequence-tagged sites [STSs; (Allouis et al., 2001)], genomic
simple sequence repeat [gSSRs; (Qi et al., 2004)], DArT array
Technology [DArTs; (Senthilvel et al., 2010; Supriya et al.,
2011)], conserved intron specific primers [CISP; (Sehgal et al.,
2012)], single-stranded conformation polymorphism-SNP
[SSCP-SNP; (Bertin et al., 2005)], and single nucleotide
polymorphisms [SNPs; (Sehgal et al., 2012)] have been
developed and exploited in genetic diversity, QTLs/genes
identification, and marker-aided breeding for faster pearl millet
breeding (Table 1). Molecular markers facilitate in analyzing
genetic variations existed within the germplasm collections for
precise selection of breeding parents in crossing programs,
estimating population structure, and identification of QTLs for
stress tolerance. Pearl millet has a wide range of DNA
polymorphisms even in elite inbred parental lines of popular
hybrids (Vadez et al., 2012).

Initially, RFLP-derived DNA markers were devised and used
to map about 180 loci ranged approximately 350 cM under seven
linkage groups in pearl millet (Liu et al., 1992; Liu et al., 1994).
Later, these markers were exploited in QTL mapping for downy
mildew resistance in pearl millet (Jones et al., 1995). A subset of
21 polymorphic EST-SSRs and 6 genomic SSR markers were
developed using sequence information from 3,520 expressed
sequence tags (ESTs) and used in genome mapping of different
pearl millet mapping populations (Senthilvel et al., 2008).
Subsequently, these potentially developed EST-SSRs were
deployed in marker-aided breeding for yield and drought stress
resistance in pearl millet at the International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT). The
development of a panel of 277 polymorphic DArT markers
was reported from 6,900 DNA array-dart technology (DArT)
clones using a PstI/BanII complexity reduction in a pearl millet
RIL population (Senthilvel et al., 2010). Separately, 574 potential
DArT markers were detected from 7,000 DArT clones obtained
from 95 diverse genotypes using a PstI/BanII complexity
reduction in genetically diverse inbred lines of pearl millet
(Supriya et al., 2011). The mapping of 208 DArT markers
along with 305 SSRs detected seven linkage groups covering
1,749 cM with an average intermarker distance of 5.73 cM and
two co-localized QTLs for iron and zinc content on LG 3 were
identified in pearl millet (Kumar et al., 2016). Using DArT
markers, comparative mapping and genome organization
analysis may easily be performed, and the price of marker-
aided backcrossing (MABC) is also cheap relative to other
markers systems.

Pearl millet EST resources were used to develop quality SNPs
and CISP markers, and they were deployed to identify candidate
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genes related to a major QTL for drought tolerance using diverse
(H 77/833-2, PRLT 2/89-33, ICMR 01029, and ICMR 01004)
genotypes that represented mapping populations parents (Sehgal
et al. (2012). Later, 83,875 SNP markers were identified using
genotyping-by-sequencing (GBS) of PstI-MspI reduced
representation libraries in pearl millet lines, represented by 252
world germplasm accessions and 248 landraces from Senegal,
which revealed wide genetic variability in comparison to other
germplasm collection in Africa and Asia (Hu et al., 2015).
Moreover, ISSR-based sequence characterized amplified region
(SCAR) markers were devised to examine genetic variations
between two (ICMR 01007 and ICMR 01004) genotypes of
pearl millet and a contrast mapping population for downy
mildew resistance. A polymorphic locus (1.4 kb size) was
found in the ICMR 01004 genotype, and further PCR
amplification of these polymorphic loci was produced to be
closely associated with downy mildew resistant LG with a
genetic distance of 0.72 cM. An identified SCAR marker was
eventually validated using diverse pearl millet genotypes
belonging to Asia and Africa, and the outcomes demonstrate
that the marker was linked to downy mildew disease-resistant
genotypes only (Jogaiah et al., 2014). The development of a
linkage map was reported to integrate 256 DArT markers and 70
SSR markers and used to identify QTLs on LG1 with LOD score
of 27 for rust resistance in 168 F7 pearl millet RILs derived from
cross 81B-P6 × ICMP 451-P8 (Ambawat et al., 2016). Using a
total of 106 pearl millet RILs (F6) derived from ICMB 841-P3 ×
863B-P2 cross and 305 (96 SSRs and 208 DArT) markers, a
linkage map was generated to map QTLs for grain iron and zinc
content (Kumar et al., 2016). Recently, Kumar et al. (2018)
reported a large-effect Fe and Zn content quantitative trait loci
(QTLs) linked with DArT and SSR markers to construct a
genetic linkage map using 317 RIL population derived from
the (ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 92901-S1-183-2-2-
B-08) cross (Table 1).
CASE STUDIES FOR GWAS IN
PEARL MILLET

The advent of the recently decoded pearl millet genome has
opened prodigious possibilities to discern several QTLs and the
functions of its associated candidate genes governing diverse
traits (Varshney et al., 2017). The genome size of pearl millet
~1.79 Gb, representing 38,579 genes, 88,256 SSRs, and 4,50,000
SNPs, will certainly be a valuable resource for constructing
precision genetic maps (Varshney et al., 2017). Genetic
mapping can be constructed in two different ways; one way is
through QTL-mapping/interval mapping (IM) and the other is
by using the association mapping (AM)/LD-mapping approach.
The major difference in these two mapping strategies is based on
the presumed idea over recombination events causative for the
phenotypic variations (Myles et al., 2009). In general, QTL-
mapping/IM can be done by developing various mapping
populations viz., F2, and recombinant inbred line (RIL), near-
TABLE 1 | Details of mapped traits and genomic resources developed in pearl
millet, related to grain quality, yield, fodder, biomass, and biotic and abiotic
stresses.

Sl.
No.

Mapped traits Reference

1. Reported large-effect Fe and Zn content QTLs using
DArT and SSRs markers to construct a genetic
linkage map with 317 RIL population developed from
ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 92901-S1-
183-2-2-B-08 cross.

Kumar et al., 2018

2. Pearl millet genome sequencing data was used to
establish marker trait associations for genomic
selection, to define heterotic pools, and to predict
hybrid performance.

Varshney et al.,
2017

4. A set of 305 loci were used to construct a linkage
map to map two QTLs for grain Fe content on LG3
and LG5 and two QTLs for grain Zn content on LG3
and LG7 using replicated samples of 106 pearl millet
RILs (F6) derived from ICMB 841-P3 × 863B-P2
cross.

Kumar et al., 2016

5. Identified 83,875 SNPs within 500 pearl millet
accessions, consisting of 252 accessions and 248
Senegalese landraces, with genotyping by
sequencing (GBS) of PstI-MspI reduced
representation libraries.

Hu et al., 2015

6. Thirty-seven SSRs and CSIP markers have been
developed, spanning 7 LGs evaluated in irrigated and
drought stress conditions,22 SNPs, and 3 InDels for
abiotic stresses

Sehgal et al., 2015

7. ISSR-based SCAR marker has been devised for
downy mildew (DM) resistance in pearl millet and
associated to DM resistance LG with genetic linkage
distance of 0.72 cM

Jogaiah et al., 2014

8. Seventy-five SNPs and CISP were developed from
EST sequences using parents of two mapping
populations for 18 genes

Sehgal et al., 2012

9. Hundreds of polymorphic EST-derived SSRs were
developed and deployed in mapping of RIL
populations in pearl millet

Rajaram et al.,
2010; Rajaram
et al., 2013

10. About 300 DArT markers have been used for the
polymorphic in different pearl millet RIL populations

Senthilvel et al.,
2010

11. Cross-transferability of the 31-finger millet EST-SSRs
were evaluated and found to be polymorphic in pearl
millet

Arya et al., 2009

12. Four EST-derived SSRs and 9 CISPs were used in
linkage mapping using biparental mapping
populations of pearl millet

Yadav et al., 2008

A panel of 21 functionally informative EST-based
SSRs and 6 gSSRs were developed in pearl millet

Senthilvel et al.,
2008

13. Nineteen EST-SSRs, among them 11 amplified and 4
were an appeared polymorphism on agarose gels

Yadav et al., 2007

14. Sixteen EST-based polymorphic SSR markers Mariac et al., 2006
14. SSCP-SNP primes were developed through a

comparison of rice and pearl millet EST collections
Bertin et al., 2005

15. Thirty-six genomic SSRs were developed from
genomic clones

Qi et al., 2004

16. Genetic maps developed in four different crosses
were integrated to generate a consensus map of 353
RFLP and 65 SSR markers.

Qi et al., 2004

17. Eighteen potential SSR markers were developed from
genomic sequences in pearl millet

Budak et al., 2003;
Allouis et al., 2001

18. RFLP probes were used to assess genetic diversity
within and between 504 landraces of core collection
using a subset comprising 10 accessions of Indian
origin

Bhattacharjee et al.,
2002
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isogenic line (NIL), back cross (BC), and doubled haploid (DH)-
derived populations in which one can assume a clear cut degree
of relatedness for the recombination events between the two
contrasting parents for the trait of interest (Abdurakhmonov and
Abdukarimov, 2008). Genetic mapping in this type of controlled
population size results in the limited attainability of meiotic
events and the products in the form of QTLs will be localized
with lower resolution (10 to 20 cM intervals), and it is also an
expensive approach to maintain a large number of populations
(Jannink and Walsh, 2002; Flint-Garcia et al., 2003;
Holland, 2007).

On the other hand, in AM there is no requirement for
developing hybridization-based mapping populations; rather, it
needs diverse germplasm accessions, including collections of
different land-races, varieties, and a breeding material termed
as a ‘panel’ where relatedness for the recombination events are
not under control because of numerous meiotic recombinations
across the diverse germplasm (Verdeprado et al., 2018). The
principle of AM relies on the linkage disequilibrium (LD), a non-
random association between two genes/markers/QTLs at
different loci; however, a non-random association between
these components in the same loci results in increased linkage
disequilibrium levels (Flint-Garcia et al., 2003; Álvarez et al.,
2014). Taking the advantage of multiple historic recombination
events within the diverse accessions since their domestication,
the AM approach can be best suited for the identification of
genes or QTLs with high resolution (100–1000 Kb), and these are
tightly linked to a broad range of phenotypic traits (Mackay et al.,
2009). The potential of identifying promising QTLs, and also in
detecting causal polymorphisms at the gene level, has made
association mapping a powerful approach to develop marker-
trait associations (MTAs) with great precision (Meuwissen and
Goddard, 2000; Palaisa et al., 2003).

However, due to the high level of heterogeneity and
heterozygosity in most of the germplasm accessions of pearl
millet, very few association mapping strategies were delivered
(Kannan et al., 2014); herein they are discussed and these
detailed approaches may expand the scope of AM studies of
pearl millet in future. A generalized workflow for the pearl millet
genome-wide association studies (GWAS) pipeline is presented
in Figures 1A, B. Pearl millet crop adaptation to various agro-
climatic conditions is an important subject of study to explore
the underlying genetics associated with this important nutri-
cereal. Association studies made by Saïdou et al. (2009) on this
aspect reveals the genetic factors responsible for the variations in
flowering time at the phytochrome C (PHYC) (866 bp) locus,
which is one of the key trait involved in crop adaptation. A total
of 90 inbred and 598 pearl millet varieties from India, East, and
West Africa were used for generating phenotypic data; followed
by genotyping with 27 SSR and 6 AFLP markers. An LMM
(linear mixed model) was used to identify a significant
association between the phenotypic trait and genetic variations.
With an aim to identify the best candidate gene loci associated
with the flowering time, Saïdou et al. (2014) further explored an
extra 100bp region surrounding the PHYC gene and performed
an association study, MCMC method (Markov chain Monte
Frontiers in Genetics | www.frontiersin.org 5131
Carlo method), to identify the tightly linked markers (75 SNPs
and INDELS) surrounding the PHYC (6 Kb) genomic region and
also to show the extent of LD to confer PHYC gene as the best
candidate gene. By integrating the genome scan approach with
association mapping, Mariac et al. (2011) identified the
PgMADS11 gene, a MADS-box gene family member which
plays a key role during somatic and reproductive phase
development respective of different climatic conditions.
Phenotyping data for the targeted traits from the 90 inbred
lines viz., flowering time (FT), stem diameter (SD), plant height
(PH), spikelet length (SpL), and spikelet density (SpD) are used
for the association analysis; and the significant identified
association of PgMADS11 alleles with a varied flowering time
that deciphers the role of PgMADS11 in the plant adaptation
process towards climatic change. Association studies of the
selective SSR markers with the flowering time, plant height,
panicle length, stover and grain yield were deciphered by
Kannan et al. (2014).

A set of 250 full-sib progenies and 34 SSR markers were used
for GWAS analysis, and results revealed the strong association of
the Xpsmp2248_162 marker allele at linkage group 6 (LG6) with
earlier flowering time and reduced plant height. Marker allele,
Xpsmp2224_157 on LG7 was strongly associated with the plant
height. For panicle length, Xpsmp2077_136, Xpsmp2233_260,
and Xpsmp2224_157 were strongly associated with LG2, LG5,
and LG7, respectively, whereas the Xpsmp2237_230 marker allele
showed strong positive association on LG7 with grain yield. For
stover dry matter yield, the Xicmp3058 193 marker allele showed
strong positive correlation on LG6. There is a pressing need for
information on genes associated with low phosphorus tolerance,
especially in the regions of West Africa. Gemenet et al. (2015)
made the first-ever reported association analysis of the available
285 DArT markers with the phenotypic data generated from 151
PMiGAP lines from West Africa across six environs under high
and low P conditions. Results showed that the PgPb11603 DArT
marker showed stable association with the flowering time, and
the PgPb12954 marker showed a significant association with the
grain yield.

Association studies reveal that Xibmsp11/AP6.1, an SNP
marker on an acetyl CoA carboxylase gene, is strongly
associated with GY, GHI (grain harvest index), and PY
(panicle yield) under both treatments; whereas InDel markers
viz., Xibmcp09/AP10.1 & Xibmcp09/AP10.2 of a chlorophyll a/b
binding protein gene are associated with GY and stay-green
traits. Using association mapping, key alleles for grain iron and
zinc were demonstrated by Anuradha et al. (2017). Developing
MTAs (Marker Trait Associations) between 250 SSR and 17
genic markers with grain iron and zinc content for 130
diversified lines across different environs revealed that the
Xicmp3092 marker had a strong association with grain iron
content on LG 7, and markers Xpsmp2086 & Xpsmp2213 and
Xipes0224 showed association with grain zinc content on LG 4
and LG 6, respectively; conserved association for grain iron and
zinc, however, was exhibited by Xipes0180, Xpsmp2261, and
Xipes0096 on LG 3, LG 5, and LG 7, respectively. Another
association study by Varshney et al. (2017) delivered key findings
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FIGURE 1 | (A) Depiction of traits for which genome-wide association studies (GWAS) and genomic selection (GS) is being attempted at ICRISAT, Patancheru.
(B) Workflow for genome-wide association studies (GWAS) pipeline. (C) Workflow for genomic selection pipeline.
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while establishing MTAs. Using whole-genome SNP data, a total
of 3,117,056 SNPs were selected for GWAS analysis, and the
phenotypic data for 20 agro-morphological traits was generated
from 288 TCH (testcross hybrids) under two-stage (early & late)
drought stress conditions along with respective controls. A
significant association of the markers with the desired trait
GNP (grain number per panicle) was exhibited on
pseudomolecules Pg1 and Pg5. Genetic and genomic sequence
information is now readily available for pearl millet. As AM will
purvey a high-resolution power with the species exhibiting
genotypic diversity across the germplasm (Álvarez et al., 2014),
expanding AM studies in pearl millet will be increasingly fruitful
for further crop improvement programs.
CASE STUDIES FOR GENOMIC
SELECTION (GS) IN PEARL MILLET

Genomic (or genome-wide) selection (GS) is a promising
strategy that has huge potential to explore and increase the
genetic gain per selection in a breeding scheme per unit timeline
and, thus, speed and efficacy in breeding programs (Spindel et al.,
2015). GS has proven to be an economical and viable alternative
to marker-assisted selection (MAS) and phenotypic selection
(PS) for quantitative traits and accelerated crop improvement
programs in cereals and several other crops (Heffner et al., 2009;
Zhong et al., 2009; Crossa et al., 2010; Ornella et al., 2012; Poland
et al., 2012; Spindel et al., 2015; Muleta et al., 2019). By
developing efficient training population (having both genotypic
and phenotypic data) designs, it predicts the genomic estimated
breeding values (GEBV) of the testing population (having only
genotypic data) by utilizing genome-wide high throughput DNA
markers that are in linkage disequilibrium (LD) with QTL, and
predicted GEBVs are used for selection (Meuwissen et al., 2001).
One of the key advantages of GS is that decisions on selections
can be taken during the off-season, leading to improvements in
genetic gain on an annual basis (Heffner et al., 2009).
Advancement and application of GS in pearl millet breeding
programs facilitate precise prediction of hybrid performance
along with ideal resource allocation. In ICRISAT, efforts are
being made to exploit the available whole-genome resequencing
(WGRS) data of PMiGAP lines along with phenotyping data for
different traits for GWAS and GS. Building on the various target
traits using GWAS (Figures 1A, B), various whole-genome
prediction/genomic selection models are being developed and
optimized in pearl millet. A generalized workflow for the pearl
millet genomic selection pipeline is presented in Figure 1C.

Varshney and his group (Varshney et al., 2017) applied
WGRS data for genomic selection by ridge regression best
linear unbiased prediction (RR-BLUP) to predict grain yield
for test crosses in four scenarios viz., the performance of grain
yield in control, early stress, late stress, and across environments
and observed high prediction accuracies for the performance of
across environments. It was also reported that by using GS
strategy (additive and dominance effects) the hybrid
performance was also predicted by analyzing grain yield data
Frontiers in Genetics | www.frontiersin.org 7133
with 302,110 SNPs, and 170 promising hybrid combinations
were found, of which 11 hybrid combinations were already
utilized for hybrid production with better performance and the
remaining 159 hybrid combinations could be potential
candidates for developing high yielding hybrids. A hierarchical
clustering analysis of possible single cross combinations
(167910) revealed two sets of lines with a higher hybrid
performance by 8% by crossing each other. These hybrids
could be a potential nucleus for establishing high-yielding
heterotic gene pools for developing pearl millet hybrids with
higher yield potential (Varshney et al., 2017). In a recent study,
Liang et al. (2018) assessed two potential genotyping strategies
viz., RAD-seq and tGBS, to characterize a set of ICRISAT-
developed inbred pearl millet lines and evaluated the utility of
genomic selection/prediction. By utilizing the projected hybrids
from both (RADseq and tGBS) techniques and four genomic
prediction schemes in pearl millet and assessed for each
phenotype, 20 random rounds of five-fold cross-validation
were performed for a tested SNP set. It was reported that, by
utilizing hybrid data, the genomic prediction scheme (RR-BLUP)
generated median prediction ranges (in parentheses) for different
traits viz., 1,000 grain weight (0.73–0.74); days to flowering
(0.87–0.89); grain yield (0.48–0.51); and plant height (0.72–
0.73), respectively. Other traits with less/no heterosis, only
hybrid, and hybrid/inbred schemes were also performed
equivalently. It was also reported that hybrid GEBVs can be
moderately improved by incorporating inbred phenotypic data
sets, once inbred, and hybrid trait values relative to the mean trait
values of that population. It was also well demonstrated that
guileless integration of historical inbred phenotypic data into
hybrid breeding programs could reduce the prediction accuracy
of traits exhibiting heterosis. However, controlling the heterosis
effects within the inbred genotype and trait data could improve
the accuracy of GEBVs for hybrids, which, in turn, strengthens
pearl millet hybrid breeding programs.
CHALLENGES IN USING GWAS AND GS
FOR PEARL MILLET

Being a poor man’s crop, pearl millet has attracted relatively less
attention from various governments and policymakers in terms
of support for the development of upstream science. This is
particularly noted in areas such as GWAS and GS. The funding
issues for carrying out this basic work in genomics has always
remained an issue in pearl millet.

On the crop side, the high outcrossing rates, heterozygous
nature, presence of inbreeding depression, and residual
heterozygosity pose bottlenecks in inbred line development
programs for the development of association mapping panels
and for parental line/cultivar development were used in the
training sets for GS. The presence of rapid linkage
disequilibrium decay (LDD) warrants a relatively high number
of markers for carrying out GWAS and GS. High rates of
segregation distortions in specific populations may also pose
serious challenges in GWAS and for getting high prediction
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accuracies for robust GS model development. Single-cross
hybrids occupy a major market share in India, while top-cross
and three-way hybrids are important for Africa. The
development of GS models for hybrid parental lines resulting
in heterotic combinations is quite challenging. These warrant
precise estimation of the general combining ability (GCA) and
specific combining ability (SCA) for specific agro-ecologies and
their precise genotype-by-environment (G × E) interactions.
CONCLUSIONS AND WAY FORWARD

Pearl millet is a nutritious, climate change ready crop capable of
yielding economic return in marginal conditions where other
cereals may fail. In recent years, pearl millet has seen an
enormous increase in terms of various genetic and genomic
tools at the disposal of pearl millet workers worldwide. Whole-
genome sequencing of the pearl millet genome and resequencing
efforts resulting in the generation of millions of genome-wide
SNPs have facilitated efforts to map various yield and yield-
related, key biotic and abiotic stress tolerance, and nutritionally
important traits globally. These genomic resources have also
facilitated taking up of the whole-genome prediction model
development and validation efforts. There is a need to further
validate the loci linked to various traits of interest and move from
Frontiers in Genetics | www.frontiersin.org 8134
“loci” to “genes.” There is an enormous opportunity to apply
these learnings in the development of robust whole-genome
prediction models with special emphasis on combining ability
and heterotic gene pool studies for the development of
heterotic hybrids.
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Seed traits of bread wheat, including the seed size that is considered to be associated
with early vigor of the crop and end-use quality, are valuable to farmers and breeders.
In this study, a collection of 789 bread wheat landraces, held in-trust at the genebank
of the International Center for Agricultural Research in the Dry Areas (ICARDA) were
scanned for seed morphometric traits using GrainScan. Diversity analysis using the 12k
DartSeq SNP markers revealed that these accessions can be grouped into five distinct
clusters. To evaluate the performance for early selection from genebank accessions,
we examined the accuracy of genomic selection models with genomic relationship
that these landraces accounted for. Based on cross-validations, prediction accuracies
for seed traits ranged from 0.64 for seed perimeter to 0.74 for seed width. The
variability of prediction accuracies across random validations averaged at 0.14, with a
range from 0.12 to 0.18, suggesting stable predictability and reproducible results even
with a collection of much greater genetic diversity from genebank accessions. Adding
the climatic relationship matrix between accessions based on passport information
improved the predictive ability by 8%. Our results on seed traits demonstrated the
capacity for estimating important agronomic phenotypes for genebank accessions
directly based on genomic information, further advocating the advance in genomic
technologies for identifying parental germplasm as potential donors of beneficial alleles
for introgression.

Keywords: wheat, genomic selection, seed characteristics, landraces, genebank

INTRODUCTION

Wheat is one of the most important cultivated food crops, and its cultivation goes back some
11,000–10,000 years ago (Nesbitt, 2002; Zohary et al., 2012). Wheat has been the fundamental staple
food for the majority of human civilizations in Europe, West Asia, and North Africa (Curtis et al.,
2002) because of its crucial nutritional value and its significant contribution to daily energy intake.
Wheat is very diverse and widely adaptable (Levandi et al., 2014), and its gene pool is rich in genes
that can be used to improve resistance/tolerance to biotic and abiotic stresses and micronutrient
availability. However, to secure an efficient continuum between the conservation and the use of
genetic resources, wheat accessions need to be well-characterized and evaluated for a range of traits.
The study of this phenotypic diversity will result in better use in breeding programs.
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The major obstacle to enhance the use of genebank material
is the lack of adequate characterization and evaluation data, and
thus, the inability to adequately respond to inquiries for these
accessions that directly meet the needs of the users. Several
methods of linking traits to a genebank accession have been
reviewed (Anglin et al., 2018) including phenotyping of large
or random samples, core and mini core collections, the focused
identification of the germplasm strategy (FIGS) and Generation
Challenge Program subsets and use of molecular techniques
and genome wide association studies (GWAS). FIGS is a useful
approach developed at the International Center for Agricultural
Research in the Dry Area (ICARDA) to identify subset of
accessions with a high probability of containing specific target
traits based on the ecogeographical information of the sites
where the populations were collected (Mackay and Street, 2004).
Success in FIGS has been seen in the identification for sources
of resistance to Sunn pest in wheat in Syria (El Bouhssini et al.,
2009), and for Russian wheat aphid in bread wheat (El Bouhssini
et al., 2011) and further in the identification of the traits related
to abiotic stresses, such as drought adaptation in Vicia faba L.
(Khazaei et al., 2013). FIGS, however, has not been used to study
quantitative traits such as phenology and morphology.

Grain weight is one of the main wheat yield components, and
grain size and shape have a direct impact on wheat market value.
While flour is extracted from the endosperm, the inner part of the
grain, and therefore spherical grains tend to produce more flour
per kilogram of grain milled due to the lower surface/volume
ratio (Evers et al., 1990). Also, the grain size was found to be
associated with various characteristics of flour, such as protein
quality and hydrolytic enzyme activity, which in turn determine
baking quality and end-use suitability (Evers, 2000). Grain size in
wheat is associated with seedling emergence and development,
primarily through the influence on the rates of expansion of
the first two leaves (Aparicio et al., 2002). Furthermore, grain
weight has been associated with grain yield in a number of diverse
environments of contemporaneous varietal panels (Lopes et al.,
2012). In addition, research has found higher grain weight plays
an important role in the robust establishment of bread wheat
seedlings subjected to salinity stress (Grieve and Francois, 1992).

Previous studies have found larger grain size and shape
variation in bread wheat landraces and old hexaploid species
as compared to the tetraploid Triticum species (Gegas et al.,
2010). This large variation has, however, decreased in modern
germplasm, suggesting a breeding-related bottleneck on grain
shape variability (Gegas et al., 2010). This bottleneck can be
one of the reasons of the low (Austin et al., 1989; Brancourt-
Hulmel et al., 2003; Sanchez-Garcia et al., 2013) or even negative
(Siddique et al., 1989; Royo et al., 2007) contribution of grain size
to wheat genetic gains in several countries. There is an urgent
need to overcome this bottleneck by bringing novel diversity from
genebanks to breeding programs.

Recent and rapid advancements in high throughput
genotyping have greatly aided plant science through
characterizing genetic diversity, genome-wide association
studies, and genomic selection (GS). GS, as predictive analytics,
uses genome-wide markers to predict genomic breeding values.
GS has been widely applied to elite wheat germplasm (de

los Campos et al., 2009, 2010; Crossa et al., 2010; González-
Camacho et al., 2012; Heslot et al., 2012; Pérez-Rodríguez et al.,
2012; López-Cruz et al., 2015; Hu et al., 2019). However, very few
studies that evaluated the performance of GS with the inclusion
of new diversity from genebanks can be found in the literature
including Thinopyrum intermedium (Zhang et al., 2016), wheat
landraces for rust resistance (Daetwyler et al., 2014; Pasam et al.,
2017), mineral contents (Manickavelu et al., 2017), and heat and
drought stress adaptation (Crossa et al., 2016).

Following the above, the objectives of this study were:
(1) to examine the genomic prediction accuracy within a
set of ICARDA bread wheat genebank collection for seed
morphometric traits, (2) to study the effect of including a non-
additive similarity matrix based on passport data, and (3) to
study the effect of accounting for population structure in genomic
prediction models.

MATERIALS AND METHODS

Landraces, Grain Color, and Morphology
Seven hundred eighty-nine (789) bread wheat landraces were
randomly selected from the 4000 landraces grown at the ICARDA
Marchouch station (33◦36′ N 6◦42′ W, 390 m a.s.l.) located
in central Morocco during the cropping season 2016–2017 for
the purpose of regeneration and characterization of accessions
of genebank. Landraces are planted in a non-designed trial
with two rows plot of 2 m long each. Best practices for the
regeneration of wheat genetic resources were applied including
supplemental irrigations and applying pesticides to control major
diseases and pests to allow for good growing conditions and full
expression of seed traits. Most accessions originated from North
Africa, Middle East, and southeast Asia with a majority from
Pakistan, Turkey and Morocco (Complete list can be found in
Supplementary Data Sheet 1).

Random samples of 250–400 grains were obtained from
the harvest of every plot and were scanned using a flatbed
scanner (CanoScan LiDE 220; Canon). The images collected
were analyzed using Grainscan software (Whan et al., 2014)
and the morphological characteristics of every grain in every
image obtained. Grain characteristics include the grain area
(mm2), perimeter (mm), grain length (mm), and width (mm).
Additionally, Grainscan software produce for every grain
analyzed an output of color channel intensity analogous to
the standardized CIELAB colourspace (Whan et al., 2014).
The color channels from GrainScan (ColCha1, ColCha2,
and ColCha3) are considered therefore to be proxies for
L∗, which represents the lightness of the color; a∗, which
represent green or magenta; and b∗, representing blue or
yellow, respectively.

Genotypic Characterization and Diversity
of Wheat Landraces
A high-throughput genotyping method using DArTseqTM
technology was employed to generate genomic profile of the
germplasm at the Genetic Analysis Service for Agriculture
(SAGA) facility at the International Center for Maize and
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Wheat Improvement (CIMMYT) in Mexico. DArTseq raw
data were filtered according to markers criterion; minor allele
frequency > 5% and missing data ≤ 20%. This resulted in a total
of 12,472 Dartseq markers that were used in this study. Diversity
analysis was performed using a discriminate analysis of principal
component (DAPC) as described by Jombart et al. (2010) and
principal component analysis (PCA) using R Core Team (2016).

Environmental Similarity Between Wheat
Landraces
To characterize the environmental diversity and make an
environmental similarity matrix based on passport data between
bread wheat landraces, we collected datasets for a total of 36
potential drivers of crop diversity, including 35 climate variables
and altitude (Supplementary Table 1). The climatic variables
include the 19 bioclimatic variables from the WorldClim version
2 database (Fick and Hijmans, 2017), freely available at http:
//www.worldclim.org, and downloadable at 2.5 arc-min spatial
resolution. Additional 16 climate variables were downloaded at
the same spatial resolution from the Environmental Rasters for
Ecological Modeling (ENVIREM) database (Title and Bemmels,
2018). These 35 variables (19 from WorldClim and 16 from
ENVIREM) allow for a robust characterization of the climate
signature of landraces and wild relatives (Braunisch et al.,
2013; Title and Bemmels, 2018). The variables were scaled,
and an Euclidian distance was computed, resulting into an
environmental similarity matrix between landraces based on
passport information.

Statistical Analysis
Genomic best linear unbiased prediction (G-BLUP) was used
to perform genome wide predictions. We used a genomic
relationship matrix between landraces using marker information
defining covariance based on observed similarity at the genomic
level as described by VanRaden (2007). This model captures
a large additive genetic variance by accounting for genomic
information and increases the heritability and prediction
accuracy. Genomic heritability (h2) was computed as the ratio
between the genetic variance due to markers over the sum of
the genetic variance plus the error variance. We have used for
all models, as a more appropriate way, the complete dataset to
estimate variance components (additive and residuals) and hence
the genomic heritability.

Population structure might affect the estimation of heritability
and the prediction accuracy in a genome wide prediction
framework (Gou et al., 2014). To evaluate the impact of
population structure in the performance of genomic prediction,
we evaluated the following models:

(1) null model where no population structure was accounted
for;

(2) accounting for population structure using discrete
population resulting from DAPC with K number of
subpopulations equal to 2 which is the first level of genetic
separation (grp2);

(3) accounting for population structure using discrete
population resulting from DAPC with K optimal number
of subpopulations;

(4) accounting for population structure using 5 eigen vectors
PC1 to PC5 resulting from PCA analysis. We have
removed the population structure effect due to stratified
populations using the population proxies (two discrete
groups resulting from DAPC and PC1–PC5) as fixed effects
in our models (Daetwyler et al., 2015). In addition, and to
reduce the effect of population structure on the genomic
prediction accuracy, we have also run predictions for
separate subpopulations using groups resulted from DAPC
analysis for K number of populations equal to 2.

Genomic predictions only consider the additive effects using
the observed relationship between individuals using markers. It
has been suggested that the estimation of non-additive effect
can improve prediction accuracy (Varona et al., 2018). In
this study, resemblance between landraces using environmental
data from the site of the landrace’s origin was used as a
non-additive term, alone or in combination with the additive
matrix, in the G-BLUP mixed model to account for the non-
genetic effect.

To evaluate prediction model performance, cross-validation
(CV30) where 30% of landraces were included in the validation
set while the remaining 70% of landraces formed the training set,
was employed. The process was repeated randomly 50 times. The
prediction accuracy of a model was assessed using the Pearson
correlation between genomic predictions and BLUP from the
model using the full dataset.

All the above analyses were performed using a single stage
analysis, where raw data from a single seed was used directly in
the prediction models. Outliers were identified as data points with
studentized residuals superior to 3.5 and removed from the final
analysis. Models were fitted in ASReml v3.0-1 (Butler et al., 2009)
for R v3.3.1 (R Core Team, 2016).

RESULTS

In this study, seven (7) seed traits were captured to determine
grain shape, size and color for wheat landraces. The genomic
heritability (Table 1) of the traits under this study ranged
from moderate 0.47 for grain area and perimeter to high 0.78
for one of the color channels (ColCha1). As expected, large
variation was found within the landraces used in this study
(Table 1); the grain width showed less variability (range of
1 mm) than grain length with a range of 2 mm; and, grain
area and perimeter ranged from 12 to 19.2 mm2 and 17 to
22.3 mm, respectively.

For diversity analysis, PCA showed that the first five (5)
eigen values explained 80% of the genetic variance. The set
of landraces used in this study exhibited population structure
as shown by plotting first versus second principal component
(Figure 1). This structure was mainly due to the country
of origin as landraces from the same country were clustered
together. DAPC proposed K = 5 as the optimal number of
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TABLE 1 | Summary statistics and genomic heritability for grain characteristics for the entire set collection and per subpopulation when K = 2 (grp1 and grp2) of the
bread wheat landraces.

Area Perimeter Length Width ColCha1 ColCha2 ColCha3

h (Heritability) 0.47 0.47 0.52 0.54 0.77 0.78 0.68

Mean 15.0 19.7 6.5 2.9 158.6 130.6 102.6

Maximum 19.2 22.3 7.5 3.5 180.4 151.4 118.5

Minimum 12.0 16.9 5.5 2.5 133.5 110.7 87.6

SD 1.4 0.9 0.3 0.2 9.2 9.1 6.1

grp1 Mean 15.3 19.7 6.5 3.0 158.0 130.0 102.4

Maximum 19.2 22.3 7.5 3.5 178.2 150.1 118.5

Minimum 12.0 16.9 5.5 2.6 133.5 110.7 89.5

SD 1.5 1.1 0.4 0.2 7.3 7.3 5.4

grp2 Mean 14.8 19.7 6.6 2.9 159.0 130.9 102.6

Maximum 18.3 21.9 7.4 3.3 180.4 151.4 118.0

Minimum 12.0 17.3 5.7 2.5 138.0 111.8 87.6

SD 1.2 0.8 0.3 0.2 10.0 9.9 6.5

subpopulations as it presented the lowest Bayesian Criterion
index value. Increasing K to more than five did not identify
any further clear genetic group. The first level of separation
K = 2 has clearly distinguished between landraces from Pakistan
and Turkey and landraces from the other countries. However,
when K was set to 5, the landraces were correctly classified into
their agro-ecologies (Figure 2). The first subpopulation (red) is
composed of landraces collected from hot environments, mainly
from Pakistan, Egypt, and Oman. The second subpopulation
(green) comprised of landraces collected in winter areas from
Turkey. The third subpopulation (light blue) mostly made of
landraces from Mediterranean environments and the spring
type, whereas the fourth subpopulation (dark blue) composed
of landraces collected in favorable Mediterranean environments.
Finally, the last and fifth subpopulation (black) is the smallest
one with 37 landraces originated mainly from North Africa and
most probably are genetically similar to the beard wheat landraces
from Southern Europe. The assignment of the wheat landraces
to subpopulations for K = 2, 3, 4, and 5 can be found in the
Supplementary Table: list of accessions.csv.

The grain characteristics have shown the same range of
variation between the two subpopulations resulting from DAPC
for K = 2 (Table 1 and Supplementary Figure 1). Nevertheless,
using the optimal number of subpopulations K = 5 revealed that
some subpopulations (1 and 4) do not present as much variability
as the other subpopulations (Supplementary Figure 2).

The prediction models showed medium to high accuracies
for all grain traits (Figure 3 and Table 2). The Perimeter
showed the lowest prediction accuracy with an average of
0.64, followed by Length and ColCha3, ColCha1, Area and
ColCha2 with an average accuracy of 0.66, 0.69, 0.7, and 0.74
respectively. The prediction accuracy reach its greatest value
for grain width with 0.74 in average. Overall, the variability in
accuracy between the 50 random cross-validations had similar
trend as average accuracies, where the highest variation was
identified in perimeter, length and the ColCha1 and ColCha2,
and the lowest variation shown by grain area and grain
width (Figure 3).

Prediction models using the climatic similarity matrix
showed low values for prediction accuracy compared to the
prediction model based on markers. On average for all traits,
a maximum of 0.1 prediction accuracy was reached for the
grain width (Table 2). The maximum prediction accuracy
for the 50 random replicates reached more than 0.2 for all
grain traits. Adding the climatic similarity to the genetic
similarity in the prediction model has shown a slight increase
in the prediction accuracy for all traits with a maximum
increase of 0.06 (8%) achieved for the grain perimeter and
ColCha1 and ColCha3.

Figure 4 displays genomic prediction accuracies comparing
the null model with the ones that incorporated different
population structure covariates. When accounting for population
structure in the genomic prediction models, the change in
the prediction accuracies showed different patterns depending
on the variables used to correct for stratified populations
and/or the trait under evaluation. Generally, when accounting
for population structure using grp2, the accuracies were
similar to the null models without accounting for population
structure for all grain traits. However, when accounting for
population structure using grp = 5, compared to the null
model, there was a significant reduction of prediction accuracy
at ∼0.06 (8%, p-value ∼ 0) found for all the traits; the
lowest decrease was observed for the grain width (0.04).
The most significant reduction in prediction accuracy was
found when accounting for population structure using PC1–
PC5. This decrease ranged from 0.33 for ColCh2 to as low
as 0.11 and 0.14 for grain perimeter and area, respectively.
Making genomic predicitions for grain characteristics for each
subpopulation when K number of populations was equal
to 2 has given contrasting results (Table 2). For the first
subpopulation, increased prediction accuracy was obtained
for the grain area, perimeter, and length, whereas prediction
accuracies were found lower for the second subpopulation.
A completely opposite pattern was observed for the width
and the three color channels where subpopulation two showed
a decreasing prediction accuracy for the area, length, and

Frontiers in Ecology and Evolution | www.frontiersin.org 4 March 2020 | Volume 8 | Article 32140

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-08-00032 March 14, 2020 Time: 17:26 # 5

Kehel et al. Genomic Selection for Genebanks

FIGURE 1 | PC plot of a set of bread wheat landraces from PCA using DarTseq markers. Colorsed by country of origin. Dot shape gives the assignment to
subpopulations when K = 5.

perimeter and an increasing prediction accuracy for the
three color channels.

DISCUSSION

Variation and Prediction Accuracies for
Wheat Landrace’s Grain Traits and
Building on FIGS
Variability among bread wheat landraces was assessed for grain
traits using image analysis. The seven grain traits exhibited
medium to high heritability with considerable variation, at a
similar order of heritability and scale of variabilities found

in other studies (Gegas et al., 2010). Grain traits, especially
grain shape and size, have a direct influence on yield and
quality, and consequently, the market value of the wheat
product. Ample evidence has also suggested that, compared to
landraces and primitive wheat species, the significant reduction
in grain shape and size of modern varieties is a result of
domestication and breeding (Gegas et al., 2010). Landraces
held in genebanks can have a crucial role in wheat breeding
for grain traits because of their wide variability in terms of
grain size and shape.

However, sending genebank’s requesters the appropriate
material to meet their demands is not a straightforward task. This
means the genebank manager would have a complete description
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FIGURE 2 | Geographic distribution of the five subpopulations of bread wheat landraces found using Discriminant Analysis of Principal Component.

of all the genebank holdings. As a result, characterizing
agronomically important grain traits has become an important
activity within a genebank as it is essential to identify accessions
with the desirable traits to be used as parental material in
a breeding program. Characterization at the genebank level
as well as at the breeding level is mainly based on 1000
kernel weight and hectoliter weight. However, characterization
of large number of accessions held in the global collections
is resources consuming. Several solutions have been developed
and tested to address this issue, including core collections,
FIGS, and GWAS (Anglin et al., 2018). The performance of
core collection and GWAS to link a trait of interest to a
genebank accession has been evaluated (Anglin et al., 2018);
however, the application of FIGS has yet not been examined
for quantitative morphological traits such as grain traits. In this
research, we reported the efficiency of genome-wide prediction
to predict the ICARDA genebank wheat landraces using high-
density DartSeqTM markers. This is done by characterizing
a portion of the wheat collection for grain traits, including
grain area, perimeter, length, and width and using DartSeqTM

and GS to predict the unevaluated genebank accessions. Our
results suggest that genomic prediction is a useful tool for
predictive characterization of genebank accessions, allowing
phenotyping to be restricted to a portion of the collection
in order to predict trait genomic estimated breeding value
(GEBV) for the entire collection (Crossa et al., 2016; de
Azevedo Peixoto et al., 2017; Thorwarth et al., 2017). We used

GBLUP as a method of genomic predictions because of its
performance stability and flexibility of applications regarding
the genetic architecture (Meuwissen et al., 2001). Our study
has shown that GS can be implemented within a genebank
to predict important traits such as grain characteristics with
accuracies of more than 0.7, more specifically for the trait
with moderate to high heritability. Further work is needed to
validate if those predictions are stable from year to year, knowing
that our regeneration/characterization trials are done in the
same experimental station and applying the same optimal field
management practices.

We have shown that reasonable prediction accuracies for
genomic predictions can be achieved using a randomly chosen
subset from genebank wheat collection representing a wide
genetic variability. These findings should encourage genebank
managers to identify novel variation for potential use in
breeding programs and facilitate broad, detailed phenotypic
characterization of the entire genebank collection. Further,
genotyping the entire ex situ collection is then needed to take full
advantage of such technology.

Genomic Predictions in Stratified
Populations
Genebank collections generally exhibit a wide array of genetic
diversity, as well as the population structure due to the
domestication process, including natural and farmer selection,
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FIGURE 3 | Densities for prediction accuracy using validation set for grain
traits of bread wheat genebank accessions.

genetic drift, and local adaptation. The knowledge of this
diversity and structure is essential to genebanks when optimizing
the collection’s conservation policy to secure a continuum
between the conservation and the use of the germplasm. As
expected, a significant population structure in the collection
of wheat landraces was identified in this study, with the
first five principal components accounting for 80% of genetic
variation. The strong population structure also showed a
negative impact on performance in association studies and
genomic prediction models, which was also found in other
studies (Gou et al., 2014; Daetwyler et al., 2015). This degree
of decrease was, however, dependent on way we accounted
for the population structure in this study. For example, our

study has noted that using a continuous axis from PCA
analysis or discrete population assignment from structure or
DAPC gave very contrasting results from almost no change
in prediction accuracy to a significant reduction in prediction
accuracy. Also, running genomic prediction for each of the
subpopulation may or may not improve the accuracy depending
on the subpopulation and the trait under study. Previous
studies have shown that accounting for stratified populations
is not an easy task in a genomic prediction models and
this is generally done using the first five eigen values as
covariates in a the GS model (Patterson et al., 2006; Daetwyler
et al., 2014; Crossa et al., 2016; Norman et al., 2018).
Further work and simulations should be undertaken to study
the population structure effect carefully in the framework of
genomic predictions.

Building on FIGS: FIGS +

FIGS has shown its relevance on delivering sources of resistance
to diseases and sources of variation for important desirable
trait to breeders worldwide for wheat and other ICARDA
mandate crops (El Bouhssini et al., 2009, 2011; Khazaei et al.,
2013). In recent years, FIGS is used by ICARDA to make
predictive characterization for the genebank characterization
traits for its collection (Azough et al., 2019). This is done
by quantifying a relationship between collection site agro-
climatic conditions and the presence of specific traits using
machine learning algorithms. Moreover, the application FIGS
has been successful for categorical traits such as growth
stages, class of maturity, and tillering capacity. Other
unpublished results have shown that the performance
of these machine learning algorithms for quantitative
traits was limited.

With rapid advances in genomics techniques, genetic
resources users should be able to mine quickly genetic diversity
as part of pre-breeding programs to achieve better and faster
breeding outcomes and gains. More specifically, GS, which uses

TABLE 2 | Prediction accuracies for grain traits using only markers (All), passport information (Env) and combining both (All + Env), and for separate subpopulations grp1
and grp2 of bread wheat landraces.

Area Perimeter Length Width ColCha1 ColCha2 ColCha3

All Mean 0.70 0.64 0.66 0.74 0.69 0.71 0.66

Maximum 0.76 0.73 0.74 0.80 0.78 0.80 0.73

Minimum 0.64 0.55 0.57 0.67 0.60 0.62 0.59

All-Env Mean 0.75 0.70 0.70 0.78 0.75 0.76 0.72

Maximum 0.78 0.75 0.77 0.81 0.79 0.80 0.75

Minimum 0.66 0.59 0.59 0.69 0.61 0.63 0.60

Env Mean 0.06 0.04 0.03 0.10 0.03 0.05 0.04

Maximum 0.20 0.19 0.22 0.29 0.20 0.25 0.24

Minimum −0.12 −0.19 −0.16 −0.07 −0.16 −0.13 −0.13

grp1 Mean 0.73 0.76 0.79 0.65 0.58 0.63 0.58

Maximum 0.82 0.86 0.88 0.75 0.78 0.80 0.71

Minimum 0.64 0.67 0.69 0.49 0.42 0.47 0.40

grp2 Mean 0.67 0.54 0.51 0.73 0.73 0.74 0.69

Maximum 0.74 0.67 0.65 0.80 0.79 0.79 0.75

Minimum 0.58 0.46 0.40 0.65 0.63 0.64 0.61
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FIGURE 4 | Comparison between densities for prediction accuracy using validation set using different population structure covariates for grain area, perimeter,
length, and width of bread wheat landraces.

a genomic relationship matrix to predict the performance of
germplasm based on GEBVs, could be more reliable and useful
to harness genetic gain from genetic resources (Bernardo, 2016).
Since it has been shown that the environment of landrace’s
origin strongly influences gene flow and natural selection (Lin
et al., 1975; Epperson, 1990), we have incorporated in this
study an environmental similarity matrix based on landrace’s
passport data in addition to the genomic relationship matrix
in the framework of GS. The increase in the prediction
accuracy was noticeable but not significant. End-use and
quality traits are the important factors that influence the
market values, as well as the maintenance of landraces and
then genetic diversity by the farmers (Negri, 2003; Seboka
and van Hintum, 2006; Shewayrga and Sopade, 2011). Thus,
we suspect that the grain traits used in this study were
not only resulting from a natural selection but also affected
by farmer selection and preferences. To summarize, genomic

predictions for genebank accessions could benefit from using
other characterization data such as phenology, morphology, and
yield components.

Genebank Conservation and Use in the
Era of Genomic Predictions
To safeguard future food, fiber and fuel resource, global
germplasm conservation will increasingly rely on genomic
technologies. Beyond the conservation aspects where identifying
duplicates and redundancies between collections can be assessed
by using genomics (Singh et al., 2019), there is an opportunity
of using high-density markers to mine more efficiently genetic
resources for better use of genebank accessions in pre-breeding
programs (Rasheed et al., 2018). GS, for example, was identified
as an optimal mining tool to identify genetic resources for
quantitative traits, as also shown in the current study. Moving
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forward, several challenges might limit the broad and routine
use of GS, which include (1) the cost-effectiveness of genotyping,
as the entire collection should be genotyped to take full
advantage of GS; (2) aligning the genotyped and field-
evaluated grains from the genebank; and finally, (3) dealing
with population structure and forming the optimal training
subset. The results in this study have shown that the
use of passport information can be of a good start, but
extra attention might be required for several collections that
contain limited information on coordinates, especially for the
old collections.

CONCLUSION

Evaluating the entire collection held by a genebank for all
traits needed by breeding programs is resources consuming.
Genebanks should stay innovative in the way where technologies
could aid the identification of accessions that possess traits
for new desirable variation. Our study demonstrated that
genomic prediction has the potential of matching these
outputs alone or augmented by passport information. This
result will help breeders make better use of untapped
genetic diversity.
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Durum wheat is an important crop for the human diet and its consumption is gaining
popularity. In order to ensure that durum wheat production maintains the pace with the
increase in demand, it is necessary to raise productivity by approximately 1.5% per year.
To deliver this level of annual genetic gain the incorporation of molecular strategies has
been proposed as a key solution. Here, four RILs populations were used to conduct QTL
discovery for grain yield (GY) and 1,000 kernel weight (TKW). A total of 576 individuals
were sown at three locations in Morocco and one in Lebanon. These individuals were
genotyped by sequencing with 3,202 high-confidence polymorphic markers, to derive
a consensus genetic map of 2,705.7 cM, which was used to impute any missing
data. Six QTLs were found to be associated with GY and independent from flowering
time on chromosomes 2B, 4A, 5B, 7A and 7B, explaining a phenotypic variation (PV)
ranging from 4.3 to 13.4%. The same populations were used to train genomic prediction
models incorporating the relationship matrix, the genotype by environment interaction,
and marker by environment interaction, to reveal significant advantages for models
incorporating the marker effect. Using training populations (TP) in full sibs relationships
with the validation population (VP) was shown to be the only effective strategy, with
accuracies reaching 0.35–0.47 for GY. Reducing the number of markers to 10% of the
whole set, and the TP size to 20% resulted in non-significant changes in accuracies. The
QTLs identified were also incorporated in the models as fixed effects, showing significant
accuracy gain for all four populations. Our results confirm that the prediction accuracy
depends considerably on the relatedness between TP and VP, but not on the number
of markers and size of TP used. Furthermore, feeding the model with information on
markers associated with QTLs increased the overall accuracy.

Keywords: genomic selection, consensus map, drought, imputation, QTL analysis, fixed effect, consensus map,
genotyping by sequencing (GBS)
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INTRODUCTION

Durum wheat (Triticum durum Desf., 2n = 4x = 28, AABB)
is grown annually on over 17 million hectares worldwide, and
it represents one of the bases of the Mediterranean diet. This
region is the largest consumer of durum wheat products and
the most significant durum import market (Soriano et al., 2017).
The Mediterranean basin is subject to frequent droughts and
their occurrence is expected to raise in the near future, with a
significant negative effect on crop development and production
(Xiao et al., 2018). Breeding for durum genotypes that have
an improved yield and tolerance to drought remains one of
the most strategic methods to protect the harvest of this crop
(Habash et al., 2009; Tadesse et al., 2016; Kuzmanoviæ et al.,
2018). The use of genomic models to analyze the main drought
adaptation traits can be deployed to significantly accelerate the
breeding effort. Genetic linkage map and QTL mapping are
useful tools for discovering genomic regions associated with
traits of interest (Zhang et al., 2018). However, the significance
of the identified QTLs is often linked to the specific parents
used and it rarely proved useful for deployment in large scale
breeding. One method to control for this error is to perform
QTL discovery in multiple populations at the same time. The
first step to achieve this is the development of genetic consensus
maps that allow to bridge the discovery across populations. In
fact, the development of consensus maps has already been shown
to not only bridge the information between populations, but also
to increase marker density, improve genome coverage, provide a
validation of the marker ordering, and reduce markers gaps due
to the absence of polymorphism between two parents (Marone
et al., 2012; Maccaferri et al., 2014). Multiple genetic linkage maps
have already been developed for wheat, and consensus genetic
maps have been constructed for hexaploid wheat (Somers et al.,
2004; Wang et al., 2014) and durum wheat (Maccaferri et al.,
2014, 2015). Furthermore, high-throughput DNA sequencing
technologies have now enabled the deployment of reliable and
affordable marker coverage via genotype-by-sequencing (GBS),
a methodology that relies on restriction enzymes to reduce
the amount of genome to be sequenced (Poland et al., 2012;
Edae et al., 2017). Numerous recent studies have used this
marker system to identify quantitative trait loci (QTL) associated
with yield, agronomic traits, and physiologic traits in drought
and heat-stressed environments (Acuña-Galindo et al., 2015;
Sukumaran et al., 2016; Edae et al., 2017; Hussain et al., 2017;
Mwadzingeni et al., 2017; Asif et al., 2018; Bhatta et al., 2018;
Roselló et al., 2019), in order to pyramid these QTLs via marker-
assisted breeding (Edae et al., 2014).

Genomic selection (GS) builds on the concept of QTL analysis,
but it explores the whole genome seeking large and small allelic
effects (Bassi et al., 2016). Because of its capacity to better handle
complex traits with several small effect alleles such as grain
yield (GY), GS is now becoming the methodology of choice for
incorporation into breeding strategies (Dekkers and Hospital,
2002; Crosbie et al., 2003; Bassi et al., 2016). GS analyzes jointly
all markers to explain the total phenotypic variance through
the sum of the markers effects (Meuwissen et al., 2001). Once
a model is trained, an effect is assigned to each marker-allele,

and the ‘genomic estimated breeding value’ (GEBVs; Meuwissen
et al., 2001) can then be calculated for each individual as the
sum of its allelic marker effects. The set of individuals used to
train the model has both phenotypic and genotypic available
and it is defined as the ‘training population’ (TP). The set of
individuals from which the selection is made is defined as the
‘breeding population’ (BP), and only genotypic data are collected
for it. The ‘accuracy’ of the predicted GEBV is determined
by the correlation between GEBV and the true breeding value
(TBV) calculated phenotypically for a ‘validation population’
(VP), which is genotyped and phenotyped, but not used to train
the model. The value for accuracy is used to determine the
overall success of the GS approach. Therefore, it is important
to maintain a high degree of accuracy, and hence to use a TP
that best fits the BP. The degree of relatedness between the two
populations is often a good predictor of the accuracy that will
be achieved. Cross-validation is used to train and develop the
prediction models using different sampling techniques in the TP
data sets ahead of estimating the GEBVs in the VP. The idea
behind this approach is that breeders can derive predictions of
the breeding value of an experimental line even before the line
has been tested in the field. In turn, this would allow to make
decisions on the use of the lines for yield testing or crossing
already during the earlier generations (Crossa et al., 2010; Heffner
et al., 2011; Bassi et al., 2016).

However, the integration of QTL analysis and GS remains
severely understudied. In the present study, four recombinant
inbreed lines (RILs) of durum wheat with different level of
relatedness were field tested across environments. QTL analysis
was performed for GY and TKW and the same populations were
then used to assess different GS models for the two traits. The two
methods were then combined by fixing the effect of the marker
underlying the QTLs into GS models, to reveal a steep increase in
the overall accuracy.

MATERIALS AND METHODS

Mapping Populations
Four F9-derived RILs mapping populations were obtained by
random selection of 200 individual durum spikes from each
population at the F4 generation, followed by single seed descent
to F9. At this generation, the individual plants were sampled
for DNA extraction, and the seeds of each individual plant
bulked. A different number of individuals for each population
was then multiplied and used for yield trial to resemble the typical
unbalanced dataset used by breeders. The four durum wheat
crosses combining ICARDA’s elite lines were: Icamor/Gidara2
(IC; 115 RILs) developed by combining the Hessian fly resistance
of Icamor (F413J.S/3/Arthur71/Lahn//Blk2/Lahn/4/Quarmal)
with the high yield potential of Gidara2 (Stojocri/Omrabi3)
(see Bassi et al., 2019 for more details); the second population
was Jennah Khetifa/Cham1//T.dicoccoides600545/2∗Omrabi5
(DRO; 197 RILs) designed for pyramiding the drought tolerance
of the Tunisian landrace Jennah Khetifa, wild emmer, and
the ICARDA most successful variety Omrabi; the third
population was SW Algia//Gidara1/Cham1 (SW; 93 RILs)
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aimed at incorporating the Septoria tritici resistance of the
Tunisian landrace SW Algia with Gidara1; the fourth population
was Omrabi3/Omsnima1//Gidara2 (YG; 145 RILs) aimed at
combining drought tolerance and yield potential. As indicated,
these populations all have sibling relationships with Omrabi,
Cham 1, and Gidara used as parental lines. Additional details are
reported in Table 1.

Field Trials
Field trials were conducted during the 2014–2015 growing
season. The experimental design used at all stations was an
augmented complete block design with four common repeated
checks, and a block size of 24 entries. The trials were conducted
at three drought prone stations in Morocco (Supplementary
Figure S1): Jemaat Shaim (JSH; 32◦21′0′′ N and 8◦51′0′′ W),
Marchouch (MCH; 33◦34′3.1′′ N and 6◦38′0.1′′ W) and Sidi
el Aidi (SAD; 33◦9′36′′ N and 7◦24′0′′ W); and one irrigated
station in Lebanon: Terbol (TER; 33◦48′29′′ N and 35◦59′22′′W)
(Table 2 and Supplementary Figure S1). All RILs and their
parents were planted in plots of 4.2 m2 at a seeding rate of
280 plants per m2. The YG population was planted in MCH,
JSH, SAD and TER; the DRO population was also planted in all
stations except TER; the IC population was sown in two stations
MCH and TER; the SW population in just MCH. Agronomic
practices were done following standard procedures, with 80 units
of nitrogen provided in 2 equal splits, and 40 units of potassium
and phosphorous before planting. Weeds were control by tank
mixtures of Derby and Pallas. Days to heading (DTH), days to
maturity (DTM), plant height (PLH), and spike density per m2

(SPK) were recorded in MCH and TER. At maturity, 3 m2 of
the plot were combine harvested and the weight was converted to
grain yield as Kg ha−1. At all stations except SAD, 1,000 kernels
were weighted on a precision balance to derive 1,000-kernels
weight (TKW) and express it in grams (g).

DNA Extraction and Genotyping
Leaf samples obtained from F9 plants were freeze-dried and used
for C-TAB DNA extraction. DNA quality was assessed on agarose
gel and it was then equilibrated to 100 ng. The DNA was shipped
to the Poland lab at Kansas State University for genotyping by
sequencing following the protocol of Poland et al. (2012). Briefly,
two restriction enzymes (PstI and MspI) were used for genome
complexity reduction, followed by 96-multiplex sequencing by
bar coding. Low-quality data filtering was carried out according
to the following rules: heterozygous calls not superior to 2%,
maximum of 30% missing data, and a minor allele frequency
superior to 10%.

Consensus Map Procedure
Individual linkage maps for each population were constructed
using the statistical software Carthagene v. 1.2.3 (De Givry et al.,
2005) and QTL IciMapping V4.1 (Meng et al., 2015). First, all
marker sequences were aligned to the available bread wheat
genome assembly (Winfield et al., 2016; The International Wheat
Genome Sequencing Consortium [IWGSC], 2018) by BLAST
with an identity cut-off of 98% (1 SNP variant) and E-value of
5e−25. The squeeze function of Carthagene was used to eliminate
markers that were wrongly ordered at LOD of 5 based on the
genome alignment, followed by flip with window size of seven,
LOD of 3, and zero iterations to determine the most plausible
order of markers within each window. This framework map
contained correctly aligned markers along the map and several
unassigned markers. In QTL IciMapping, the framework markers
were anchored while the unassigned markers were not. The by
anchor order algorithm was used to assign to the different linkage
groups the unassigned markers at a set LOD of 5, and then
order them based on the position of the framework markers.
This operation was then repeated using the newly developed
framework map and reducing the LOD to 3. This methodology
defined four individual genetic maps for each population.

The construction of the consensus map was performed
chromosome by chromosome using the consensus map from
multiple linkage maps sharing common markers (CMP) function
of QTL IciMapping. First, by re-grouping markers at a distance
of less than 20 cM to obtain one group for each chromosome,
followed by the by anchor order option to measure the genetic
distances between markers along the consensus map based on
their relative positions on each individual map. Markers were
then ordered based on their consensus map position in an Excel
file. In several cases, a marker polymorphic in one population
might be monomorphic in another. To avoid linkage distortions,
the monomorphic scores were set to missing. At this point,
imputation was done using AlphaIMpute option HMM (Hickey
et al., 2012; Antolin et al., 2017) and confirmed with the BIP
function of QTL IciMapping (Zhang et al., 2010).

Data Analysis and QTL Mapping
Statistical analysis of the phenotypic data was performed using
the R software version 3.4.3 and Genstat program version 18.
Best linear unbiased estimates (BLUEs) were estimated across
all environments, assuming fixed effects for the genotype from
a linear mixed-effects model using R package lme4 (Bates et al.,
2015; R Core Team, 2017).

The discriminant analysis of principal components (DAPC),
was performed using the ‘adegenet’ package 1.4-1 (Jombart et al.,

TABLE 1 | Cluster analysis of the genetic diversity among four mapping populations using discriminant analysis of principal components (DAPC) with k = 4, their
pedigrees, and maps features.

Pedigree Individuals Markers Total length (cM) Marker density (cM/Marker)

IC: Icamor/Gidara2 115 646 1720.1 5.3

DRO: Jennah Khetifa/Cham1// T.dicoccoides600545/2*Omrabi5 197 2291 1922.5 1.2

SW: SW Algia//Gidara1/Cham1 93 1212 1795.3 1.8

YG: Omrabi3/Omsnima1//Gidara2 145 521 1683.8 6.1
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2010) in R studio V 3.4.3 (R Core Team, 2017). With DAPC,
the hierarchical clustering among populations was determined by
applying the R based package “hclust.”

QTLs were searched for each individual population in each
individual environment via composite interval mapping (CIM)
analysis using R/qtl (Broman et al., 2003). The cim function
was set to five markers covariates and a window size of 10 cM.
LOD thresholds were calculated from QTL IciMapping by BIP
functionality using 1,000 permutations with a maximum type 1
error probability of 0.05. Only QTLs that appeared at least in two
environments and two populations were considered as valid. The
distribution of QTLs and the marker density of the consensus and
individual population maps were graphically presented on the
fourteen chromosomes of durum wheat by a “Circos plot” using
R/shiny application (Yu et al., 2018).

Genomic Prediction Modeling
A total of four genomic models were tested as a first step in
this study:

(i) a baseline additive model without interactions of genotypic
effect (G), environmental (E) effect, and error (ε) (G+E + ε).

(ii) a baseline multi-environment model (G+E + GxE + ε),
which assumed interactions between the G and the E.

In both these models, all the effects were assumed to be
random with a normal distribution N(0, σ) where σ is the
term variance

(iii) the third model was a marker (M) effect model
(G+E + GxE + M + ε), where the genotype effect is
substituted by an approximation of the genotype’s genomic
value expressed as a regression on marker covariates.

In this case the model assumes that the genotype’s genomic
value follows a normal distribution N(0, G σg) where σg is
the genetic variance and G is genomic relationship matrix.

(iv) the last model is the marker × environment model
(G+E + GxE + M + MxE + ε) where the marker effect is
composed by an effect common to all environment (main
effect) plus a random deviation specific to a particular
environment (Lopez-Cruz et al., 2015).

Testing of the different models’ accuracies was done using
DRO, IG and YG populations independently, and setting as
cross-validation 80% of the individuals as TP and 20% as
VP. The accuracies within and across environments were then
calculated as a measure of good fit. The BGLR package (Pérez
and de Los Campos, 2014) was used to run all models above
from (i) to (vii) by Bayesian ridge regression (BRR) using
10,000 iterations and 5,000 burn in, and 50 replications (de los
Campos et al., 2009, 2013). This model induces homogeneous
shrinkage of all marker effects toward zero and yields a Gaussian
distribution of marker effects. The 50 replications were used to
define statistical differences between model accuracies following
a one factor ANOVA.
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The GxE + MxE model (iv) was selected and used to test
additional hypothesis:

(v) the effect of markers number was investigated by
comparing predictions using 100, 80, 60, 40, 20, and 10%
of the total marker set in combination with reducing
the TP population size to 20, 50, and 75% for GY and
TKW. The TP individuals were selected randomly in
50 replications, and one factor ANOVA was used to
determine significant differences.

(vi) the prediction accuracy of using half sibs vs. full sibs as
TP was compared. Each population was set as TP for all
others and itself using the whole population as TP and
the whole other population as VP.

(vii) to compare the value of MAS and GS, the prediction
accuracy was calculated using 50% as TP and 50% as
VP for all markers, only markers associated with major
effect QTLs, with 44 and 27 markers for GY and TKW,
respectively, and by removing these markers linked to
QTLs from the set. The TP individuals were selected
randomly in 50 replications, and one factor ANOVA was
used to determine significant differences.

(viii) the rr-BLUP package v4.6 (Endelman, 2011) was used to
run a mixed model estimating the accuracy gain when
using markers underlying the QTLs as fixed effects,
and the remaining markers as random effects. For this
analysis ten random subsets of 50% TP and 50% VP
were selected in each population separately (DRO, IG,
SW, and YG). QTL analysis was conducted again for
each TP subset following the method described above.
Those markers that resulted as underlying QTLs in each
TP subset were fixed in the model. One factor ANOVA
was run for the ten replicates of each population to
determine significant differences.

RESULTS

Phenotypic Evaluation
Analysis of variance (ANOVA) showed significant differences
for genetic (G) effect (p < 0.05) for all the traits across
environments, indicating good levels of phenotypic within each
population (Table 3 and Figure 1). The genotype by environment
interaction (GxE) effect was also significant (p < 0.05). The

combined BLUE of TKW and GY differed greatly between the
two parental lines of the four populations, displaying a normal
distribution within RILs populations (Figure 1). Gidara 2 and
Jk/Ch1 parents in populations IC, DRO and YG had smaller
values of TKW than the average, whereas the Icamor parent
in population IC had the maximum value (44 g). Similarly,
for GY, Gidara 2 had a smaller value than the average GY,
same for the parents Icamor and Younes. Cham1 parent of
population DRO and SW had the highest recorded GY of this
experiment. The population YG had the highest average TKW
and GY. Among the four RILs populations, 50.2 g was the highest
value recorded for TKW found in IC, and 3,304 kg ha−1 the
highest GY for YG.

Individual and Consensus Linkage Maps
The GBS process resulted in 22,117 marker calls. Among these,
4,909 matched the curation criteria and were tentatively ordered
via genetic mapping. The individual genetic maps contained 646
polymorphic markers covering 1,720.1 cM for the IC population,
2,291 markers spanned 1,922.5 cM for DRO, 1,212 markers
were mapped along 1,795.2 cM in SW, and 521 markers over
1,683.7 cM for YG (Table 4 and Supplementary Table S1).
The final consensus map incorporated 3,202 markers assigned
to 14 linkage groups corresponding to 1,883 unique loci, and
spanned a total genetic distance of 2,705.7 cM, with a density of
one marker each 0.85 cM (Table 4). The A genome, harbored
1,104 markers, covering a linkage distance of 1,133.8 cM, and
the B genome 2,098 markers spanning a linkage distance of
1,572 cM. The largest chromosome was 2B, consisting of 540
markers and covering a genetic length of 243.5 cM, while the
smallest chromosome in the map was 4A, covering a genetic
length of 101.7 cM and consisting of 209 markers. The average
size of markers gaps in the consensus map was 22.1 cM. The
consensus map across four populations includes 550 RILS lines.
Genetic diversity analysis revealed close kinship between IC
and DRO, a lower relatedness with SW, and limited kinship to
YG (Table 1).

QTL Analysis
The identified genetic and phenotypic variations were combined
via QTL analysis across the 550 RILs for all measured traits.
Significant QTLs were detected for all traits as summarized in
Figure 2 (Supplementary Tables S2, S3). A total of 31 QTLs

TABLE 3 | Rate of genetic effect across environments of four populations (IC, DRO, SW, and YG) for DTH, DTM, PLH, SPK, TKW, and GY and genotype by environment
interactions (GxE) effects.

Pop GY across env. DTH DTM PLH SPK TKW

GxE G MCH SAD TER MCH SAD TER MCH SAD TER MCH MCH TER JSH

IC – 0.93* 0.44* – 0.74* 0.94* – 0.85 0.93* – 0.89* 0.95 0.85* 0.99* –

DRO 0.45* 0.53* 0.90* 1.00* – 1.00* 0.86* – 0.99* 0.98* – 0.97* 0.95* – 0.97*

SW – 0.81* 0.94* – – 0.74 – – 0.96* – – 0.89 0.97* – –

YG 0.63* 0.36* 0.90* – 0.93* 0.92* – 0.76* 1.00* – 0.89* 0.99* 0.95* 0.93* 0.98*

*Significant at 0.05 probability level; −, not available data, GxE, genotype by environment interaction effect; G genetic effect; DTH, days to heading; DTM, days to maturity;
PLH, plant height; SPK, spike density; TKW, 1000 kernel weight; MCH, Marchouch; SAD, Sidi el Aidi; TER, Terbol; JSH, JemaatShaim.
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FIGURE 1 | Frequency distribution of 1,000 kernel weight (TKW) and grain yield (GY) in the parents and the four RIL populations. (A) IC, (B) DRO, (C) SW,
and (D) YG.

were detected across the four populations, explaining from 3.9
to 81.3% of the PV and LOD diverging from 3.7 to 43.5. Six
QTLs were found to be associated with GY and independent

from the flowering time. In particular, on chromosomes 2B, 4A,
and 5B the four independent populations identified consistently
the same GY QTL. Six QTLs were detected for TKW on
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TABLE 4 | Characteristics of the consensus map.

Chr. Markers Loci Length
(cM)

Marker
density

(cM/Marker)

Size of
largest

gap (cM)

1A 118 72 138.8 1.2 26.7

1B 257 106 228.5 0.9 24.9

2A 220 164 135.6 0.6 17.9

2B 540 361 243.5 0.5 16.6

3A 146 74 199.5 1.4 21.1

3B 302 189 238.1 0.8 32.6

4A 209 130 101.7 0.5 6.3

4B 197 125 208.3 1.1 29.9

5A 105 38 217.5 2.1 29.7

5B 302 162 245.0 0.8 16.6

6A 162 75 171.8 1.1 17.5

6B 246 155 181.9 0.7 16.6

7A 144 80 168.9 1.2 20.8

7B 254 152 226.6 0.9 31.7

A genome 1104 633 1133.8 1.0 29.7

B genome 2098 1250 1572.0 0.7 32.6

chromosomes 1B, 4B, 6A, 6B, and 7A, explaining 4.7–15.9 of PV
and with maximum LOD of 6.1. Interestingly, loci controlling
TKW were found to be also associated to GY on chromosome
2B, explaining 8.6 and 4.8% of PV, and LOD of 4.7 and
4.3 respectively.

Genomic Prediction: Identification of the
Best Fitting Model (i, ii, iii, iv)
Four statistical models (i, ii, iii, iv) were tested to determine
the best model to be used for each population (Figure 3). Non-
significant differences could be identified for the IG population
with average accuracies that ranged from 0.42 to 0.41. For DRO,
the incorporation of the M effect resulted in a significant increase
in accuracy from 0.47 to 0.49. The YG population was the most
sensitive to the change of model ranging from 0.27 for models
without M (i and ii), to 0.30 for model iii, to 0.33 for model iv
incorporating GxE + MxE. Following these results, the model
incorporating GxE + MxE was chosen to be the best suited for
all three populations. For the SW population phenotypic data
were available only for one environment, therefore a model using
only markers effect (iii) was used to run genomic predictions for
this population.

Genomic Prediction: Effect of Reducing
TP and Marker Size (v)
The effect of marker number and TP size on prediction accuracies
was tested for GY and TKW (v). Figure 4 shows that when
decreasing the number of markers from 3,202 to 320, a slight
decrease in prediction accuracies was observed for the different
set of TP. For GY, the reduction of markers caused a shift from
0.44 to 0.41 accuracy using 20% of TP, from 0.47 to 0.43 and
from 0.49 to 0.44 for 50 and 75% of TP, respectively. For TKW,
it dropped from 0.75 to 0.73 and from 0.76 to 0.74 for 20 and
50% of the TP, respectively, while no difference was observed

for the 75% of TP between the total number of marker and 10%
of it. Statistical analysis revealed no significant differences could
be observed when reducing marker number and TP size for any
of the two traits.

Genomic Prediction: Importance of
Relatedness Between TP and VP (vi)
The four populations share common parents and have hence
kinship relationships (Table 1). It was therefore evaluated if it
would be possible to use one population as TP for the others
(VP) which have half-sibs relationships. Using TP that were full
sibs to the VP resulted in good accuracy values that ranged from
0.35 to 0.47, and from 0.92 to 0.30 for GY and TKW, respectively
(Table 5). When the TP was not derived from the same cross of
the BP (half sibs), the accuracies drop to values close to zero or
even negative (Table 5). The only acceptable case for GY with
an accuracy of 0.29 was obtained when SW was used as TP
for IG, but this was not true when IG was used as TP for SW
(accuracy of 0.08). The same was observed for TKW, with SW
as TP ensuring an accuracy of 0.22, while YG as TP dropped
to 0.09 accuracy. Interestingly, the two most genetically related
populations, IG and DRO (Table 1) also resulted in very poor
prediction accuracies when used as TP for each other.

Genomic Prediction: Effect of QTL
Analysis on Model Accuracy (vi, viii)
Since QTL analysis and GS have been rarely combined, the last
objective of this study was to determine if a step of QTL analysis
could help improve the GS model’s accuracy. A total of 44 and
27 markers were associated via QTL analysis to GY and TKW,
respectively (Figure 2). To test their value alone, these were
used as the only marker to perform genomic predictions and
resulted in non-significant accuracies for GY for DRO (0.18),
and IG (−0.02), while significant accuracies could be identified
for YG (0.29), while an increased was observed for SW (0.54).
Similarly, for TKW there was a loss significance for DRO (0.20),
IG (0.11) and YG (0.09), while it again increased for SW (0.54)
(Figure 5). The opposite attempt was also conducted by removing
from the whole set all the markers associated with QTLs. In this
case the GY and TKW accuracies became non-significant for
all populations, except for SW for which it matched what was
obtained when using the full marker dataset (Figure 5). With the
exception of SW, for which the use of only markers associated
to QTLs had a positive effect on the prediction accuracies,
in all other populations the use of all markers combined was
significantly superior.

As it can be expected, the sum of the accuracies of using
markers associated to large and small effects does not equal to
the accuracy of these combined. It then becomes interesting to
assess a model that better incorporates these two by fixing the
effect of markers associated to QTLs, while including the random
effect of the small impact alleles (viii). To test the suitability
to do so in a context that better resembles an actual breeding
pipeline, QTL discovery was re-run for each random group of
entries composing the TP, and only QTL that could be identified
by the specific TP where fixed in the model. Supplementary
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FIGURE 2 | Circos representation of the consensus map with aligned the marker density within each population, and the identified QTL for all traits. From outer to
inner layer: (1) the consensus map with 14 chromosomes of durum wheat; (2–5) the genetic maps of the four populations: IC, DRO, SW and YG; (6–11) distribution
of significant markers identified via QTL analysis for DTH, DTM, PLH, SPK, TKW, and GY. In the center, labels for QTLs of PLH, SPK, TKW, and GY independent from
flowering time.

Table S4 reports how frequently the QTL associated with GY
could be re-identified for each TP sub-set. The results of fixing the
marker underlying the QTLs in the model is reported in Figure 6.
For all four populations the accuracies increased significantly
(p < 0.05) when the QTL-underlying markers were fixed in the
model. The average accuracies shifted from 0.35 to 0.47, 0.38 to
0.44, 0.29 to 0.35, and 0.35 to 0.41, for the YG, DRO, IG, and
SW populations, respectively. This represents a clear gain of 0.06–
0.12 points of accuracy, superior than the 0.01–0.03 obtained by
testing different statistical models (i, ii, iii, iv).

DISCUSSION

Rapid genetic gain for complex traits via traditional breeding
selection is hampered by the difficulty of effectively controlling
GxE in the field. Diverting the selection to the use of molecular
markers promises to overcome this issue, if adequate models
can be defined. Therefore, in our study we deployed four
RILs populations that represented well a typical durum wheat

breeding program to test the feasibility of replacing phenotypic
selection with molecular selection. The four populations showed
transgressive segregation when phenotyped for GY and TKW,
indicating additive effect loci are present from both parents as it
would be expected from a well-designed breeding cross.

A Reliable Consensus Map
To construct a high-density consensus genetic map, a
combination of four genetic backgrounds was used by anchoring
common markers, followed by imputation of the missing
haplotypes. The consensus map of IC, DRO, SW, YG included 14
linkage groups and spanned 2,705 cM, similar to what defined in
the four way cross NCCR population map (2,664 cM) of Milner
et al. (2016), and the six elite × elite populations durum wheat
consensus map (2,631 cM) presented by Maccaferri et al. (2015)
and in agreement with other reports ranging from 1,352 cM to
3,598 cM (Blanco et al., 1998; Nachit et al., 2001; Elouafi and
Nachit, 2004; Mantovani et al., 2008; Peleg et al., 2008; Patil
et al., 2013). The consensus map length was higher by 34% of the
average length of the four individual maps. In agreement with
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previous studies (Nachit et al., 2001; Elouafi and Nachit, 2004;
Peleg et al., 2008; Patil et al., 2013) and contrary to Maccaferri
et al. (2015), the A and B genomes had different map lengths,
with the B genome (1,572 cM) being longer than A genome
(1,133.8 cM). However, similarly to Maccaferri et al. (2015), a
smaller number of markers was mapped to the A genome (1,104)
compared to the B genome (2,098). The marker density in the
consensus map differed along the chromosomes. According to
previous studies (Erayman et al., 2004; Saintenac et al., 2011;
Maccaferri et al., 2015), this is probably due to the variation
of recombination frequency and the potential to accumulate
genetic diversity. Markers gaps of 10–33 cM were identified in
all chromosomes, except chromosome 4A. Chromosome regions
with reduced marker density in 1A, 2A, 3A, and 7A have also
been reported in the consensus map of Maccaferri et al. (2014).
Overall, the consensus map developed was well in line with
previous reported examples and it was hence deemed adequate
to perform the targeted study.

Identification of Major Effect Alleles by
QTL Analysis
A total of 31 QTLs were identified for DTH, DTM, PLH, TKW,
SPK, and GY, with most of them showing co-localization or
pleiotropic effect. Consistent QTLs for GY were detected on
chromosomes 2B (Qicd.TKW.DTH.GY.001, Qicd.GY.001,
Qicd.GY.002, and Qicd.TKW.GY.001), 4A (Qicd.PLH.GY.001
and Qicd.PLH.GY.002), 4B (Qicd.PLH.GY.003), 5B
(Qicd.GY.003 and Qicd.PLH.GY.004), 7A (Qicd.GY.004)
and 7B (Qicd.GY.005). Chromosome 2B carries 10 individual
QTLs, eight of which were found associated with GY, TKW, and
SPK, explaining up to 33.4% of the phenotypic variance. This
is in agreement with previous reports on QTLs identified on
chromosome 2B associated with GY and its components (Huang
et al., 2003; McCartney et al., 2005; Quarrie et al., 2005; Suenaga
et al., 2005; Huang et al., 2006; Marza et al., 2006; Maccaferri
et al., 2008; Golabadi et al., 2011). Six individual QTLs for TKW
were found on chromosomes 1B, 4B, 6A, 6B, and 7A. Except for
Qicd.TKW.006 on 7A, which we deem to have been reported
here for the first time, the five remaining QTLs have been
reported in previous studies by Blanco et al. (2011) and Patil et al.
(2013). As indicated by Soriano et al. (2017), QTL influencing
SPK were located on chromosomes 2B, 3B, and 5B. Assanga et al.
(2017) have also found in winter wheat regions in 1A and 6B that
are associated with the same trait.

Major genes associated with phenology were found to have a
pleiotropic influence on trait measurement and QTL detection
(Acuña-Galindo et al., 2015). Flowering time is a major trait in
plant breeding and it provides the basis for plant adaptation.
Chromosomes 2A, 2B, 4B, 5B, 6B, and 7B harbored QTLs
linked to phenology traits. On 2A and 2B, two clusters of QTLs
(Qicd.DTM.PL H.TKW.DTH.001 and Qicd.TKW.DTH.GY.001)
were found in approximately the same position corresponding
with Ppd-A1 and Ppd-B1 genes defined by several authors
(Laurie, 1997; Maccaferri et al., 2008; Wilhelm et al., 2009;
Maccaferri et al., 2011; Arjona et al., 2018). In our study, GY
was associated to PLH in four QTLs located on chromosomes

FIGURE 3 | Prediction accuracy for grain yield (GY) in YG, IG, and DRO
populations using four different statistical models. G+E,
genotype + environment effect; GxE, genotype by environment interaction;
GxE + M, genotype by environment interaction + markers effect; GxE + MxE,
genotype by environment interaction + markers by environment interaction.
The horizontal line represents the average, the square indicates the 2nd and
3rd quartiles, the whiskers represent the 1st and 4th quartiles, the cross the
median, and the dots are outliers. The letters indicated classes determined via
LSD.

4A, 4B, and 5B. Previous studies have also found that PLH genes
are strongly associated with QTL for GY and its components
(Quarrie et al., 2005; Crossa et al., 2007; Rebetzke et al., 2008;
Acuña-Galindo et al., 2015). Borner et al. (2002), Huang et al.
(2003, 2006), Blanco et al. (2012), and Patil et al. (2013) found
that the short arm of chromosome 2A and its homologous
harbor QTL influencing TKW, that was the case for clusters
Qicd.DTM.PLH.TKW.DTH.001 and Qicd.TKW.DTH.GY.001.
The cluster Qicd.DTM.PLH.TKW.DTH.001 for DTM, DTH,
PLH (Soriano et al., 2017) and TKW on chromosome 2A
confirms its agronomically important traits contribution as
reported in Maccaferri et al. (2011) and Patil et al. (2013). On the
homologous region on 2B, the cluster Qicd.TKW.DTH.GY.001
influences DTH, TKW and GY. On chromosome 5B cluster
Qicd.DTH.PLH.001 could be related to Vrn-B1 as reported
by Hanocq et al. (2004). On the long arm of chromosomes
2B, 4B, 6B, and 7B, the identified QTLs suggest important
new regions controlling earliness. Soriano et al. (2017) have
also identified a novel QTL on chr. 4B and 7B. In summary,
the QTL analysis of these four populations has identified and
validated several previously known loci and supports their use for
molecular selection.

Selection of the Best Fitting Statistical
Models for Genomic Predictions
(i, ii, iii, iv)
The prediction analysis was conducted on the RILs population
using models that account for the relationship matrix (G),
environment effect (E), genotype by environment interaction
(GxE), markers (M), and marker by environment interaction
(MxE). The accuracy of breeding selection using only phenotypic
data was computed (Figure 3) as G+E and GxE models (i and
ii), to confirm that accuracies of 0.47-0.28 could be obtained via
traditional breeding selection for GY. These results confirm what
was reported by Crossa et al. (2014): that pedigree (population
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FIGURE 4 | Prediction accuracy for grain yield (A) and 1,000 kernel weight (B) using different randomly selected sub-sets of markers in decreasing order: 320
(10%), 640 (20%), 1,281 (40%), 921 (60%), 2,562 (80%), and 3,202 (100%) tested on DRO population using 20, 50, and 75% of the whole population as training set
(TP) to predict the rest of the population (VP). The whiskers represent the standard errors.

TABLE 5 | Comparison of the prediction accuracies using full sibs and half sibs as training populations for grain yield and 1,000 kernel weight.

DRO IG YG SW DRO IG YG SW

Grain yield 1,000-kernels weight

DRO 0.47 −0.08 −0.11 0.07 0.76 −0.1 0.03 −0.26

IG −0.09 0.41 0 0.08 −0.08 0.92 −0.02 0.09

YG −0.07 −0.02 0.35 −0.08 0.12 0 0.83 0.14

SW 0.06 0.29 −0.13 0.37 −0.26 0.22 0.11 0.3

The columns represent the TP and the rows are the BP, the diagonal represents the full sibs relationships.

structure) accounts for a sizeable proportion of the prediction
accuracy. These values were set as competitors to determine
the success of replacing phenotypic selection with molecular
selection. Interestingly, the GS models that incorporated marker
effect (iii, iv) generated non-significantly different or superior
accuracies than traditional breeding selection, indicating a strong
role for GS in future breeding (Figure 3).

Size and Relatedness of the Training
Population (v, vi)
Beside academical studies, breeders often have limited resources
and tend to reduce costs whenever possible. A decrease in the
size of the TP that needs to be both genotyped and phenotyped,
and in the number of markers to be used for genotyping can
represent important savings (Heffner et al., 2011; Crossa et al.,
2014; Bassi et al., 2016). This possibility was tested by varying
the proportion of individuals included in TP and VP from
75% TP and 25% VP, which is a very conservative and costly
approach, to 50% TP and 50% VP, and even 25% TP and 75%
VP. Interestingly, non-significant differences in accuracies could

be observed for any of the reductions, for both high and low
heritability traits (GY and TKW).

The relatedness between the TP and VP has been identified
as a key consideration for predicting complex trait with
low heritability. In an ideal scenario, breeders would like to
accumulate information for a TP over time, using their normal
yield trials as the source for this activity. By logic, the relatedness
between such a TP and a BP under selection should be that
of half-sibs. To test the feasibility of this approach, the four
RIL populations that share half sib relationships were used to
predict each other (Table 5). This resulted in severe losses
of accuracy, reaching values close to zero for both high and
low heritable traits (GY and TKW). This is in agreement with
Windhausen et al. (2012), who also encountered accuracies
close to zero when predicting far-related populations. The
relatedness of a TP to the population to be predicted is
hence one of the most critical aspect of GS in durum wheat.
Therefore, small TP can be effectively deployed to accurately
select BP only if these have full sibs relationships with the
population to be selected. This is in good agreement with
Bassi et al. (2016), who described several breeding schemes
to deploy GS in a manner that would allow the TP to
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FIGURE 5 | Prediction accuracy for grain yield (A) and 1,000 kernel weight (B)
using all markers, only markers linked to QTLs, and all markers except those
identified as linked to QTLs. Whiskers represents the experiment wise LSD.

be full-sib of the BP under selection, without excessive loss
of genetic gain.

Does Markers Number Affect the
Predictions? (v)
The possibility of deploying GS in breeding is still heavily
hindered by the cost associated with genotyping huge
populations. A way to reduce the cost of genotyping would
be to reduce the number of markers used for the analysis. Here
we tested the effect of the markers number to reveal that there
was no significant difference in the prediction accuracies between
using 3,202 or 320 SNPs as far as the TP and VP are full sibs
(Figure 4). Hickey et al. (2014) also reported that when using
information from related maize bi-parental populations high
accuracies can be achieved using a small number of markers.
Similarly, Haile et al. (2018) indicated that among advanced
durum wheat breeding lines, the reduction from 9,000 to 500
markers did not cause a significant reduction in accuracies.
However, it has to be noted that combining a decrease of TP
size to 20% of the BP, and 10% of markers number caused the
accuracy for GY to drop from 0.48 to 0.41 and for TKW from
0.77 to 0.74. This is a significant reduction of 0.07 and 0.03 points.
Still, in the optic of practical application, the values of accuracies
remain very close to what achieved using only phenotypic models
(G+E and GxE) and hence it could be advisable to deploy small
TP and small markers set in breeding if this makes GS a more
affordable approach.

Is There an Advantage to Conduct QTL
Analysis Before Genomic Predictions?
(vii, viii)
QTL analysis and GS models rely on the same type of
dataset. Therefore, it is of interest to define if there is additive

FIGURE 6 | Comparison of the prediction accuracies of grain yield (GY) for
the four population YG, DRO, IG, and SW, using a model with all markers
considered as random effect against a models that fixed markers underlying
QTLs. The horizontal line represents the average, the square indicates the 2nd
and 3rd quartiles, the whiskers represent the 1st and 4th quartiles, the cross
the median, and the dots are outliers. The letters indicated classes
determined via LSD.

contribution in combining both type of studies. Initially it was
tested the effect of using only markers underlying QTLs to make
prediction, as a way to simulate a MAS approach (Figure 5). The
obtained accuracies reached between −0.02 and 0.54, depending
on traits and populations. This would suggest that running
prediction models using only few markers linked to known genes
(44 and 27 for GY and TKW, respectively) could provide some
degree of success. For confirmation, the opposite situation was
also tested by removing any markers associated to QTL from the
whole dataset. Once again, the accuracies dropped significantly
for all traits and populations, except for SW. This result suggests
that the marker number is not the only factor to ensure high
accuracies, but that the ability to define the haplotype of major
effect loci is also of critical importance.

The final test was designed to combine the extra information
obtained via the definition of major allele effects by QTL analysis
with the minor allele effects assessed via GS. Since the initial QTL
discovery was conducted using the whole population, while GS
models would instead use only sub-set of each population as TP
and VP, QTL discovery was re-conducted for each TP subset.
All initially identified QTLs were re-identified in 10–50% of the
TP subsets (Supplementary Table S4) depending on the levels
of allelic and phenotypic variation of each random subset. The
marker underlying the re-identified QTLs were fixed for each TP
subset and used to improve the prediction model. The results are
extremely promising, since for all populations the combination
of minor allele effects as GS random factor and major allele
effects as QTL fixed factor resulted in a significant increase in
prediction accuracies. Furthermore, the accuracies value were
increased by 0.06–0.12 points, a major increase compared to the
0.02 points of reducing the TP size or changing statistical models.
Our results are in partial agreement with Sarinelli et al. (2019)
who demonstrated that major genes added as fixed effects always
improved model predictive ability, with the greatest gains coming
from combinations of multiple genes for days to heading and
plant height in a winter wheat panel. Bian and Holland (2017)
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also concluded that adding SNPs associated with a given trait as
fixed effects resulted in higher predictive abilities when compared
to models that only treated SNPs as random effects. Bernardo
(2014) pointed out that the prediction accuracy of GS models
can be increased by adding major genes as fixed effects when
they represent a large proportion of the total variance associated
with the trait under consideration (≥10%). Considering that
GY remains often the main targeted trait, and also one of
the most complex to predict, overall our results support the
principle of incorporating fixed effect alleles into a prediction
model, especially for markers accounting for a large part of
the phenotypic variation. The idea of combining MAS using
marker associated to known loci as fixed effects, and all other
loci as random effect, becomes interesting for practical breeding
applications. Furthermore, there appears to be an additive value
in conducting a discovery step via QTL analysis before running
genomic predictions, since the additional information can be
strategically exploited to increase accuracies.

CONCLUSION

The results of this study provide a framework for better
understanding and deploying molecular selection in durum
wheat. The use of four populations to define a consensus linkage
map allowed the precise identification of significant QTL for
agronomic traits. Furthermore, these were incorporated into
prediction models to reveal significant gains of accuracy for GY
when integrated as fixed effects. Several critical considerations
were also tested for their deployment in durum wheat breeding.
The results presented here are in good agreement with previous
literature and what suggested previously by us for breeding
application of GS in wheat (Bassi et al., 2016). In practice, the
use of half sibs or distantly related TP does not appear to be
an exploitable methodology for GS in durum wheat. Instead,
small size full sibs TP needs to be deployed and genotyping costs
can be reduced by using just 200–300 SNPs. In addition, known
loci linked to traits of interest should be also included in the
marker set and used as fixed effects to increase prediction. Most
importantly, all genomic prediction models were compared to the
accuracy attainable by classical phenotypic selection to confirm
that the same results could be achieved via molecular approaches.
Altogether, our result provides strong support for the deployment
of genomic prediction in durum wheat breeding.
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High-throughput genotyping boosts genome-wide association studies (GWAS) in
crop species, leading to the identification of single-nucleotide polymorphisms (SNPs)
associated with economically important traits. Choosing a cost-effective genotyping
method for crop GWAS requires careful examination of several aspects, namely, the
purpose and the scale of the study, crop-specific genomic features, and technical
and economic matters associated with each genotyping option. Once genotypic data
have been obtained, quality control (QC) procedures must be applied to avoid bias
and false signals in genotype–phenotype association tests. QC for human GWAS has
been extensively reviewed; however, QC for crop GWAS may require different actions,
depending on the GWAS population type. Here, we review most popular genotyping
methods based on next-generation sequencing (NGS) and array hybridization, and
report observations that should guide the investigator in the choice of the genotyping
method for crop GWAS. We provide recommendations to perform QC in crop species,
and deliver an overview of bioinformatics tools that can be used to accomplish
all needed tasks. Overall, this work aims to provide guidelines to harmonize those
procedures leading to SNP datasets ready for crop GWAS.

Keywords: crops, GWAS, genotyping, quality control, bioinformatics tools

INTRODUCTION

High-throughput genotyping, which leads to the identification of a large number of single-
nucleotide polymorphisms (SNPs) is boosting the implementation of genome-wide association
studies (GWAS), linking DNA variants to phenotypes of interest (Taranto et al., 2018). In crop
species, GWAS enabled the mapping of genomic loci associated with economically important traits,
including yield, resistance to biotic and abiotic stresses, and quality (Boyles et al., 2016; Pavan et al.,
2017; Hou et al., 2018; Liu et al., 2018; He et al., 2019). This information has been further used
to perform marker-assisted selection (MAS) in breeding programs and discover genes underlying
phenotypic variation (Liu and Yan, 2019).
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Several genotyping methods are available (reviewed by
Scheben et al., 2017), which are usually performed by
commercial parties upon the receipt of DNA samples. For
application in GWAS, widely adopted genotyping options fall
into three categories: whole genome resequencing (WGR),
reduced representation sequencing (RRS), and SNP arrays.
WGR and RRS are based on next-generation sequencing (NGS)
technologies and bioinformatics pipelines that align reads
to a reference genome and call both SNPs and genotypes
(Nielsen et al., 2011). SNP arrays rely on allele-specific
oligonucleotide (ASO) probes (including target SNP loci plus
their flanking regions) fixed on a solid support, which are used
to interrogate complementary fragments from DNA samples and
infer genotypes based on the interpretation of the hybridization
signal. Choosing the most appropriate (cost-effective) genotyping
method for crop GWAS requires careful examination of several
aspects, namely, the purpose and the scale of the study, crop-
specific genomic features, and technical and economic matters
associated with each genotyping method.

Raw SNP datasets resulting from genotyping experiments
are typically inaccurate and incomplete. In addition, genes
associated with phenotypes can have a small effect on genetic
variance. In this scenario, quality control (QC) procedures
are of pivotal importance to minimize false-positive or false-
negative associations, referred to as type I and type II errors,
respectively. QC includes filtering out poor-quality or suspected
artifactual SNP loci, filtering out individuals in relation to missing
data, anomalous genotype call and genetic synonymies, and the
characterization of ancestral relationships among individuals of
the GWAS population. Excellent reviews focused on QC of
human SNP data (Turner et al., 2011; Marees et al., 2018);
however, the QC procedure may be quite different for crop
species. In this case, variables that need to be considered include
the crop prevailing mating system (self- or open-pollinating) and
the breeding history of the specific GWAS population.

This review aims to provide recommendations on how to plan
genotyping experiments and best practices on how to perform
QC in crop species.

CHOOSING THE CORRECT
GENOTYPING METHOD

Genotyping methods differ with respect to the number of
identifiable SNPs and the cost of the analysis per sample,
and these two parameters are directly proportional. Given
this premise, choosing the correct option for GWAS requires
to have a clear idea on two key aspects, i.e., the number
of SNPs that is sufficient/desirable to fulfill the GWAS goals
and the cost associated with each genotyping alternative. In
addition, genotyping methods come with different technical
specifications that should be evaluated in relation to the particular
GWAS experiment.

Whole Genome Resequencing
WGR allows the highest number of SNP calls, up to several
millions as reported in peach (Cao et al., 2016) and cotton
(Du et al., 2018). This is a clear advantage when, rather than

MAS, gene isolation is the main aim of the GWAS project (Wang
et al., 2016; Happ et al., 2019). Indeed, in high-resolution GWAS,
SNP loci showing the highest evidence of association are usually
in tight linkage, or may even coincide, with loci underlying
phenotypic variation (e.g., Shang et al., 2014; Yano et al., 2016).
However, it should be pointed out that, even with a very high
marker density, the identification of causal polymorphisms can
be difficult in the case of GWAS populations displaying slow
decay of linkage disequilibrium (LD) (i.e., populations in which
the allelic state at two loci on the same chromosome tends to
be correlated even at high physical distance) (Korte and Farlow,
2013). As shown in Table 1, in populations of self-pollinating
crops, such as wheat or soybean, the average square correlation
coefficient (r2) between pairs of loci may take several Mb to decay
to values indicating substantial linkage equilibrium (0.2 or 0.1)
(Vos et al., 2017).

WGR is especially desirable for GWAS populations displaying
rapid LD decay. Indeed, in this case, low marker density may
result in missing genomic regions associated with phenotypic
traits. Extremely rapid LD decay (in the range of a few base
pairs) has been reported for highly heterozygous populations
of open-pollinating species (e.g., maize, carrot, olive), in which
recombination is effective in breaking up haplotypes (Table 1).
In this situation, even in the ideal case of equally spaced
SNPs, millions of markers would be required to have a SNP
distance lower than the LD decay distance. This is exactly
the condition that enables one to detect associations for most
genomic regions (Table 1).

WGR genotyping has been so far generally performed using
paired-end Illumina technology (e.g., Zhou et al., 2015; Cao et al.,
2016; Liang et al., 2019), which, according to our survey, roughly
costs $400 per sample for a genome of 1 Gb and 10× average
sequencing depth (this term indicating the number of times a
base is sequenced on average). This implies that WGR-based
GWAS, typically involving a few hundred individuals, may cost
several hundred thousand dollars for crops with large genomes,
as shown in Table 1. Decreasing the average sequencing depth
can lower the cost of WGR; however, this may result in an
unacceptable number of genotyping errors. This is especially the
case of heterozygous loci, which are associated with a larger
number of genotypic combinations (Kishikawa et al., 2019).
In practice, WGR in crops has been usually performed with
average sequencing depth ranging from ∼5×, as for cotton
(Du et al., 2018), tomato (Lin et al., 2014), and peach (Cao
et al., 2019), to ∼15×, as for watermelon (Guo et al., 2019)
and grapevine (Liang et al., 2019). A notable exception is
represented by strict self-pollinating species, such as rice and
soybean, for which very low average sequencing depth (1×
or lower) has been successfully applied (Wang et al., 2016;
Happ et al., 2019). Indeed, homozygous populations of pure
lines are effectively haploid, thus allowing easy reconstruction
of haplotypes and, consequently, accurate imputation of missing
data (Wang et al., 2016).

Reduced Representation Sequencing
RRS consists in sequencing only a small fraction of the
genome, thus reducing the cost of the analysis with respect
to WGR (Hirsch et al., 2014). Genotyping by sequencing
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TABLE 1 | List of some genomic and economic aspects that should be taken into consideration when planning GWAS in crops.

Species Genome
size (Gb)

References LD decay References Minimum number
of SNPs for a
distance < LD

decay ∗

Estimated WGR
cost on 100

individuals ($) ∗∗

SNP array

Name Technology Size References

Brassicaceae
Brassica napus 0.49 Chalhoub et al.,

2014
800 Kb (r2 = 0.2, A
subgenome); 4.8 Mb
(r2 = 0.2, B subgenome)

Zhao et al.,
2016

980 (subgenome A)
143 (subgenome B)

19.4 K International
Brassica SNP
Consortium

Illumina Infinium
BeadChip

52K Clarke et al.,
2016

Solanaceae
Solanum lycopersicum 0.90 Sato et al.,

2012
665 Kb (r2 = 0.2) Ruggieri et al.,

2014
1353 36K SolCAP Tomato

2013
Illumina Infinium
BeadChip

9K Sim et al., 2012

Axiom Tomato
Genotyping Array

Affymetrix Axiom 52K Unpublished

Solanum tuberosum 0.84 Xu et al., 2011 1.5–0.6 Mb (r2 = 0.1) Vos et al., 2017 560–14,000 33.6K SOLCAP Potato
2013

Illumina Infinium
BeadChip

10K Hamilton et al.,
2011

SolSTW array Affymetrix Axiom 20K Vos et al., 2015
Capsicum annuum 3.30 Kim et al.,

2014; Qin
et al., 2014

100 Kb (r2 = 0.2) Taranto et al.,
2016

33,000 132K UCD
TraitGenetics
Pepper
(Capsicum)
Consortium

Illumina Infinium
BeadChip

19K Ashrafi et al.,
2012

Pepper
(Capsicum) SNP
Genotyping Array

Affymetrix Axiom 640K Unpublished

Cucurbitaceae
Cucumis sativus 0.35 Huang et al.,

2009
24 Kb (r2 = 0.09) Wang et al.,

2018
14,583 14K – Fluidigm 35K Rubinstein

et al., 2015
55–140.5 Kb (r2 = 0.2) Qi et al., 2013 6364–2491

Cucumis melo 0.45 Garcia-Mas
et al., 2012

100 Kb (r2 = 0.2) Gur et al., 2017 4500 18K

72–774 Kb (r2 = 0.2) Pavan et al.,
2017

6250–581

Fabaceae
Phaseolus vulgaris 0.59 Schmutz et al.,

2014
1 Mb (r2 = 0.1) Diniz et al.,

2019
587 23.48K BARCBean6K_1 Illumina Infinium

BeadChip
5K Song et al.,

2015
Glycine max 1.12 Schmutz et al.,

2010
8.5–15.5 Mb (r2 = 0.1) Liu Z. et al.,

2017
131–72 44.6K SoySNP50K Illumina Infinium

BeadChip
6K Song et al.,

2013
5.9–7 Mb (r2 = 0.1) Mamidi et al.,

2011
189–159 SoyaSNP180K

Axiom
Affymetrix Axiom 180K Lee et al., 2015

Apiaceae
Daucus carota 0.47 Iorizzo et al.,

2016
100–400 bp (r2 = 0.2) Ellison et al.,

2018
4,730,000–
1,182,500

18.92K

Poaceae
Oryza sativa 0.39 Sasaki, 2005 150 Kb (r2 = 0.2) Liu et al., 2020 2593 15.56K RiceSNP50 Illumina Infinium

BeadChip
50K Chen et al.,

2014
RICE6K Illumina Infinium

BeadChip
6K Yu et al., 2014

(Continued)
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TABLE 1 | Continued

Species Genome
size (Gb)

References LD decay References Minimum number
of SNPs for a
distance < LD

decay ∗

Estimated WGR
cost on 100

individuals ($) ∗∗

SNP array

Name Technology Size References

Axiom Rice
Genotyping Array

Affymetrix Axiom 50K Singh et al.,
2015

Triticum aestivum 16.00 International
Wheat Genome
Sequencing
and
Consortium,
2014

8 Mb (r2 = 0.08) Liu J. et al.,
2017

2000 640K US/Australia 9K
Wheat Consortium

Illumina Infinium
BeadChip

9K Cavanagh
et al., 2013

Wheat 90K iSelect Illumina Infinium
BeadChip

90K Wang et al.,
2014

Axiom Wheat
Breeders
Genotyping Array

Affymetrix Axiom 35K Allen et al.,
2017

Axiom Wheat HD
Genotyping Arrays

Affymetrix Axiom 817K Winfield et al.,
2016

Zea mays 2.50 Schnable et al.,
2009

6.34 Kb (r2 = 0.2) Dinesh et al.,
2016

394,322 100K MaizeSNP50
BeadChip

Illumina Infinium
BeadChip

50K Ganal et al.,
2011

500 bp (r2 = 0.2) Yan et al., 2009 5,000,000 Subset of
MaizeSNP50

Illumina Infinium
BeadChip

3K Rousselle et al.,
2015

1.5 Kb (r2 = 0.1) Remington
et al., 2001

1,666,667 Axiom Maize
Genotyping Array

Affymetrix Axiom 600K Unterseer et al.,
2014

Maize 55K Axiom Affymetrix Axiom 55K Xu et al., 2017
Rosaceae
Malus domestica 0.74 Velasco et al.,

2010
200 bp (r2 = 0.2) Larsen et al.,

2019
7,420,000 29.68K RosBREED Apple Illumina Infinium

BeadChip
8K Chagné et al.,

2012
Fruitbreedomics
Apple20k

Illumina Infinium
BeadChip

20K Bianco et al.,
2014

Axiom Apple
Genotyping Array

Affymetrix Axiom 480K Bianco et al.,
2016

Prunus persica 0.27 Verde et al.,
2013

1.2–3.2 Mb
(r2 = 0.1)

Li et al., 2013 221–83 10.6K RosBREEDPeach Illumina Infinium
BeadChip

9K Verde et al.,
2012

Vitaceae
Vitis vinifera 0.48 Jaillon et al.,

2007
43 Kb (r2 = 0.2) Nicolas et al.,

2016
11047 19K GrapeReSeq

Consortium
Illumina Infinium
BeadChip

20K Le Paslier et al.,
2013

GeneChip Vitis
vinifera (Grape)
Genome Array

Applied
Biosystems

15K Unpublished

Oleaceae
Olea europaea 1.46 Unver et al.,

2017
25 bp (r2 = 0.05) D’Agostino

et al., 2018
58,400,000 58.4K

Malvaceae
Gossypium hirsutum 2.43 Li et al., 2015 3.2–3.3 Mb

(r2 = 0.1)
Yuan et al.,
2018

759–736 97.2K International Cotton
SNP Consortium

Illumina Infinium
BeadChip

70K Hulse-Kemp
et al., 2015

900 Kb (r2 = 0.1) Wen et al.,
2019

2700 Axiom Cotton
Genotyping Array

Affymetrix Axiom 35K Unpublished

For several main crop species belonging to different botanical families, the following information is reported: estimated haploid genome size; linkage disequilibrium (LD) decay; the minimum number of equally distributed
SNPs providing a distance lower than the LD decay; estimated WGR cost on a panel of 100 individuals; the list of available SNP array(s).
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(GBS) (Elshire et al., 2011), restriction site-associated DNA
sequencing (RADseq) (Davey and Blaxter, 2011), and double
digest RAD sequencing (ddRAD-seq) (Truong et al., 2012),
which use restriction enzymes (REs) for the reduction of
genome complexity, are currently the most popular RRS
methods used to perform GWAS in crops, mainly due to their
moderate cost. At a minimum, this is approximately $35 per
sample independently from the genome size and including the
application of bioinformatics pipelines for SNP and genotype
calling (You et al., 2018). Another advantage of these RRS
methods is their scalability, meaning that different combinations
of restriction enzymes may be used to customize the percentage
of the genome captured.

The number of SNPs identified by RRS genotyping typically
varies from a few to several thousands (Pavan et al., 2018, 2019;
Colonna et al., 2019), depending on the amount of genome
sequenced and population diversity. As discussed above, this
output can be largely sufficient in GWAS experiments whose
main aim is to implement marker-assisted selection, and for crops
displaying slow LD decay (Table 1).

A major technical limitation of RSS is that the genomic
distribution of SNPs depends on the specific combination of REs
used (D’Agostino and Tripodi, 2017). In addition, sequencing
depth at individual SNP loci identified by RRS is typically
uneven, leading to under-calling of heterozygous loci and many
missing data. The latter issue can be mitigated by genotype
imputation strategies; however, we highlight that the success
of genotype imputation depends on the genetic makeup of the
GWAS population, which influences, among other things, the
occurrence of long homozygous segments useful to reconstruct
haplotypes (Glaubitz et al., 2014).

SNP Arrays
SNP arrays for agrigenomics have been developed for over
a decade to meet the needs for single research groups or
consortia and are still widely used for GWAS in crops despite
the decreasing cost of NGS-based technologies (LaFramboise,
2009; Rasheed et al., 2017; Table 1). In 2017, the two leader
manufacturers Affymetrix and Illumina had developed 46 SNP
array platforms for 25 crop species, associated with a number of
markers ranging from 3K to 820K (Rasheed et al., 2017). Pricing
of array genotyping is widely considered to exceed that of RRS;
however, this is subject to fluctuations over time and is volume-
dependent, as it varies with the number of samples and the array
SNP density. Indeed, Darrier et al. (2019), considering a set of
1000 barley accessions, found that genotyping with the Illumina
50K iSelect SNP array was cheaper than GBS, with respect to
both the cost per sample (£40 vs. £60.50) and the cost per marker
(£0.001 vs. £0.003).

From a technical standpoint, SNP array genotyping has a
series of advantages. First, genotype calls are generally accurate,
even for highly heterozygous species (Bourke et al., 2018). In
addition, polyploid crops represent an advantageous field of
application of SNP genotyping arrays, as: for allopolyploids,
NGS genotyping is complicated by sequence similarity among
subgenomes, which hinders the alignment of reads to the
reference genome; for autopolyploids, NGS genotyping requires

very high sequencing depth and specific polyploid haplotyping
algorithms, which make use of the sequence reads to determine
the sequence of alleles along the same chromosomes (Motazedi
et al., 2018). To date, array providers developed platforms
for nine polyploid species ranging from the tetraploid potato
to the dodecaploid sugarcane (reviewed by You et al., 2018),
together with software solutions suitable to genotype polyploid
datasets [i.e., Affymetrix’s Power Tools (APT) and the Polyploid
Genotyping Module within Illumina’s GenomeStudio]. We
highlight that while GWAS are commonly performed in
allopolyploids, GWAS in autopolyploids are complicated by
difficulties in the assessment of population structure and allele
dosage (Rosyara et al., 2016).

A main disadvantage of SNP arrays is that they suffer from
ascertainment bias (Lachance and Tishkoff, 2013), i.e., they
cannot identify marker-trait associations in the case of SNPs that
were not present in the population used for the development
of the array. In addition, a typical drawback in the use of SNP
arrays is the possibility that information (e.g., SNP chromosomal
location) used for the design of the array is outdated and that
there is no consistency in the use of SNPs among different
genotyping array formats.

RECOMMENDATIONS FOR QUALITY
CONTROL

Genotyping companies apply QC procedures depending on the
method used. For NGS genotyping, these consist in removing
loci with low sequencing depth (i.e., loci only supported by
a few reads) and loci with low PHRED-like quality score
(Q) (where Q indicates the probability that the base call is
incorrect). As for array genotyping, these mainly consist in
applying a clustering algorithm on fluorescence measurement
data of ASO probes to distinguish samples into genotype clusters
(allelic discrimination plot), and in assessing a set of QC
scores on the goodness of cluster separation and signal-to-
background ratio.

It should be clear that, in order to avoid bias and false
signals in genotype-trait association tests, the QC procedures
above mentioned are not enough and need to be complemented
by others performed by the investigator, which are the focus
of this paragraph. These include filtering procedures that are
either common to any GWAS experiment or depend on the
specific GWAS population type, as well as the characterization
of the GWAS population for duplicated samples and ancestral
relationships (Figure 1).

Application of Common Filters
A high rate of missing data at a SNP locus is considered an
indication of inaccurate genotype calls (Turner et al., 2011).
Therefore, filtering SNPs for call rate is typically the first step in
QC. A standard rule is filtering for SNPs with call rates ≥95 or
99% (Anderson et al., 2010); however, a lower threshold might
be chosen, especially in the case of NGS genotyping with low
sequencing depth. For example, GBS-derived SNP data in crops
have been filtered using call rate thresholds of 90% or lower
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FIGURE 1 | Overview of quality control procedures for crop GWAS. These include: filtering steps that are common to any GWAS experiment; filtering steps
depending on the GWAS population structure (homozygous or heterozygous); the removal of duplicated samples; the characterization of ancestral relationships,
starting from a SNP dataset pruned for markers in linkage disequilibrium.

(e.g., Nimmakayala et al., 2014; Pavan et al., 2016, 2017). The
overall distribution of call rates may be examined in order to
set up a threshold value that eliminates classes occurring at
suspiciously low frequency (Figure 2A).

SNP loci displaying rare variants may arise from genotyping
errors and, in addition, have low statistical power to reveal
association with phenotypic traits, thus they are commonly
excluded by QC procedures. In this sense, a widely adopted

Frontiers in Genetics | www.frontiersin.org 6 June 2020 | Volume 11 | Article 447168

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00447 June 5, 2020 Time: 18:26 # 7

Pavan et al. Genotyping/Quality Control for Crop GWAS

FIGURE 2 | Frequency distribution analysis to define filtering solutions for (A) SNP call rate; (B) genotype call rate; (C) SNP inbreeding coefficient (F IT); (D) SNP
proportion of heterozygosity. Dashed lines indicate possible filtering thresholds, based on classes occurring at suspiciously low (A,B) or high (D) frequency, and
distribution gaps (C). Genotypic data used to build histograms are all relative to published genotyping-by-sequencing experiments, carried out in the self-pollinated
crops Cicer arietinum L. (Pavan et al., 2017, A,C) and Lens culinaris Medik (Pavan et al., 2019, B), and the open-pollinated crop Cynara cardunculus L. (Pavan et al.,
2018, D).

solution is filtering for minor allele frequency (MAF). Filtering
for MAF ≥1–5% has been commonly applied for crop GWAS
involving populations of a few hundred individuals (Pavan et al.,
2017; Yu et al., 2018), however the same thresholds might be too
stringent for larger GWAS populations. Filtering for minor allele
count (MAC) allows to set-up thresholds independent from the
GWAS population size, commonly ranging from 5 to 10 (e.g.,
Taranto et al., 2016; Thomson et al., 2017).

As for loci, the presence of individuals with high rates of
missing data is also suggestive of technical issues, often related
with poor quality and/or quantity of DNA samples. This can
generate inaccuracies and bias in downstream analyses. We
emphasize that filtering for SNP missingness should normally
precede filtering for individual missingness, as the opposite
procedure may result in unnecessary removal of individuals.
In literature, very different cutoff thresholds for individual
missingness have been reported (Begum et al., 2015; Pavan et al.,
2018). Our suggestion is to inspect the distribution of missing
data across individuals and select a threshold that allows the
elimination of classes occurring at suspiciously low frequency
(Figure 2B). In addition, for binary traits (e.g., the response
to a pathogen, for which individuals of the GWAS population

can be classified in either resistant or susceptible), it is of main
importance that there are no systematic differences of call rate
between the two groups, in order to avoid bias in association tests.

Application of Filters Depending on the
GWAS Population Type
SNP loci characterized by excessive heterozygosity should be
filtered out, as they are indicative of technical artifacts or
paralogous/repetitive regions that could not be distinguished
through the genotyping procedure (Glaubitz et al., 2014).
Therefore, specific SNP filters are applied based on the extent
of heterozygosity expected in the GWAS population. For crops,
this depends on the natural mating system, which may favor
self-pollination or open-pollination, and anthropic interventions,
such as artificial inbreeding.

Natural populations of self-pollinating crops, as well as
populations of inbred lines, are highly homozygous. Therefore,
in these cases, even loci with modest heterozygosity rates are
suspicious. Glaubitz et al. (2014) suggested the use of the FIT
inbreeding coefficient (given by 1-Ho/HE, with Ho and HE being
the observed heterozygosity and the expected heterozygosity
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at Hardy–Weinberg equilibrium, respectively) to filter SNPs in
homozygous populations, and applied a minimal FIT threshold
of 0.8 in case of a large population of maize inbred lines. The
identification of gaps in the distribution of FIT across all loci
may help to set up a threshold that allows the elimination of
most of the genotyping errors while retaining the highest possible
number of loci (Figure 2C).

For natural populations of open-pollinating crops, filtering
SNPs that significantly deviate from the Hardy–Weinberg
equilibrium (HWE) (e.g., through chi-square or exact tests)
can be performed to remove excessively heterozygous loci. In
accordance with GWAS on human genotypic data, the HWE
filter in open-pollinating crops has been generally applied using a
threshold p-value of 10−4, e.g., in, cassava, olive and watermelon
(Anderson et al., 2010; Nimmakayala et al., 2014; D’Agostino
et al., 2018; Zhang et al., 2018). We stress here that, in crops,
the HWE filter should be used with care, as there is the risk of a
significant and unnecessary loss of the GWAS resolution power.
Indeed, it should be firstly noticed that the HWE assumption
of random mating is not respected when the population has
strong genetic structure (see next paragraph) and contains some
inbred individuals. Secondly, loci under selection violate by
definition the HWE, thus the HWE filter might exclude loci
associated with important traits under investigation. All of this
considered, solutions might be to (i) adopt a relaxed threshold
to eliminate markers, e.g., p < 10−6, as previously performed
on apple and globe artichoke (Bianco et al., 2016; Pavan et al.,
2018); (ii) apply the HWE filter separately to each sub-population
identified by the analysis of genetic structure; (iii) apply the HWE
filter only to individuals not showing the phenotype supposedly
under selection, in case of GWAS on binary traits. In other
circumstances, including that of partially outbreeding crops, it
might be advisable to avoid the HWE filter and, as a possible
alternative, to eliminate SNPs with unexpected high levels of
heterozygosity (Figure 2D).

Checking for Sample Duplication and
Ancestral Relationships
In the case of crops, GWAS populations might contain several
genetically identical samples. This is often caused by the
occurrence, in germplasm collections, of unintended duplication
of anonymous accessions and/or the occurrence of synonymous
accessions. For example, genotyping with the 9K SNP array of
the USDA grapevine collection revealed that 568 out of 950
accessions (58%) were genetically identical to at least another
accession (Myles et al., 2011).

The identification and removal of duplicated samples is
usually performed on the basis of pairwise identity-by-state
(IBS) or identity-by-descent (IBD). Pairwise IBS refers to the
proportion of alleles shared by two individuals, whereas pairwise
IBD refers to the proportion of two individuals’ genome tracing
back to the same recent common ancestor (Purcell et al., 2007;
Manichaikul et al., 2010). The latter is commonly estimated
from pairwise IBS and allele frequency using a method-of-
moment algorithm (Purcell et al., 2007). Many studies have used
IBS/IBD thresholds of 95 or 99% to declare samples as identical

(Myles et al., 2011). The examination of the IBS/IBD distribution
associated with a few known identical samples, included on
purpose in the GWAS population, might also be used to set up
a threshold to estimate identity (Pavan et al., 2019).

Ancestral relationships generate LD between unlinked loci,
so they are considered in the GWAS model to limit spurious
associations (Astle and Balding, 2009). Therefore, a crucial step
in the QC procedure is the characterization of ancestry within
the GWAS population. Genetic structure (i.e., the occurrence of
sub-populations with different allele frequencies) reflects remote
differences in ancestry; in crops, it often originates from physical
barriers to random mating and anthropic selection for specific
traits, such as seed/fruit size and phenological features (Pavan
et al., 2017, 2019; Siol et al., 2017). Instead, kinship reflects recent
ancestry, often related to pedigree connections among modern
cultivars (Taranto et al., 2020).

Starting from genotypic data, the analysis of population
structure can be carried out through different approaches.
Parametric methods, such as those implemented in the
popular software STRUCTURE (Pritchard et al., 2000) and
ADMIXTURE (Alexander et al., 2009), typically estimate
the allele frequency of each sub-population jointly with the
membership of individuals to each sub-population, using
maximum-likelihood or Bayesian statistics. The resulting matrix
(known as Q-matrix), which indicates, for each individual, the
proportion of the genome referable to various sub-populations,
can be conveniently incorporated in GWAS models. However, it
should be noticed that parametric methods are based on several
genetic assumptions, including those of linkage equilibrium (LE)
among markers and HWE within sub-populations. Approximate
LE from the original SNP dataset can be obtained by removing
markers through LD pruning algorithms (Joiret et al., 2019); on
the other hand, HWE may not be met even in populations of
open-pollinating crops, due to displacements, breeding activities,
and clonal propagation (Campoy et al., 2016).

Non-parametric methods such as principal component
analysis (PCA) and multidimensional scaling (MDS) can be
used to account for population structure, using coordinates of
each individual along the main PCA/MDS axes as covariates in
association models (Wang et al., 2009). While non-parametric
methods have the advantage of being independent on genetic
assumptions, they also come with a number of issues that need
to be considered. Importantly, the top PCA/MDS axes may
not adequately capture variation due to population structure
in the presence of other strong sources of variation, such as
outlier sub-populations/individuals or family groups (Price et al.,
2010; Liu et al., 2013). These latter may be frequent when
the GWAS population contains many cultivars with similar
pedigrees. Finally, as for parametric models, it is advisable to
perform LD pruning prior to non-parametric analysis, in order
to avoid noise from correlated marker data (Liu et al., 2013).

Kinship ultimately depends on the proportion of the genome
that is identical-by-descent. Therefore, in order to account for
kinship, the GWAS model can use IBD estimates from pedigree
notes. However, it is clear that pedigrees of crop species might be
in several cases unknown or inaccurate. As mentioned above in
this paragraph, methods to estimate pairwise IBD from genotypic
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data have been also developed. These yield a kinship matrix, also
referred to as K-matrix, which has been widely used together
with the Q-matrix or PCA/MDS covariates to implement the
so-called Q + K and P + K GWAS models (Yu et al., 2006;
Zhao et al., 2007).

We finally highlight that several works showed that a simple
pairwise IBS matrix could efficiently capture both remote and
recent ancestry (Zhao et al., 2007). Therefore, many GWAS
models today accommodate the IBS matrix in the framework
of linear mixed models, under the assumption that phenotypic
variation is positively correlated with genetic distance (e.g.,
Kang et al., 2008, 2010).

BIOINFORMATICS TOOLS TO
PERFORM QC

QC can be carried out using several bioinformatics tools, which
may differ with respect to the specific action(s) performed and the
file requested as input. Therefore, the investigator is often called
to the conversion of genotypic data among different formats,
the most common being variant call format (VCF), haplotype
map (hapmap), pedigree/map (ped/map), binary (bed/bim/fam),
Affymetrix chip (chp), Illumina sample map and final report, and
structure. PGDSpider1 (Lischer and Excoffier, 2012) is a dedicated
tool for the conversion of genotypic data among a wide range of
formats. Among other powerful conversion tools, we mention the
one implemented in the software suite TASSEL (Bradbury et al.,
2007), which deals with the most common formats associated
with NGS genotyping, and the gene_converter function within the
R package radiator (Gosselin, 2017), accepting and delivering 13
and 29 file formats, respectively.

Several open-source software suites are available for QC.
Among the most widely used, PLINK (Purcell et al., 2007),
starting from common genotypic data file formats (ped/map,
bed/bim/fam and VCF), enables the application of all the
SNP and individual filters presented in Sections “Application
of Common Filters” and “Application of Filters Depending
on the GWAS Population Type,” with the exception of the
FIT filter. In relation to the study of genetic ancestry, it has
options for LD pruning and MDS, and for the estimation of
pairwise IBS and IBD.

Compared with PLINK, the abovementioned TASSEL
(Bradbury et al., 2007) accepts a wider range of file formats
(also including hapmap) and does not perform filtering for
HWE departure. On the other hand, having been developed for
GWAS on maize inbred lines, TASSEL provides the possibility
to perform the FIT filter. As for the genetic ancestry options, it
can perform PCA/MDS and estimate pairwise IBS. While PLINK
is based on command lines, thus requiring specific training by
the user, TASSEL also implements a graphical user interface.
Another important feature of TASSEL is the possibility to easily
build histograms for SNP and individual missingness and SNP
heterozygosity, which, as discussed above, are useful to set up
cutoff thresholds specific for each GWAS experiment.

1http://www.cmpg.unibe.ch/software/PGDSpider/

Investigators with some bioinformatics skills may be
interested in QC tools also enabling filtering procedures
depending on the genotyping method, which, as stated above,
are commonly performed through external services. For NGS
genotyping, we cite VCFtools (Danecek et al., 2011), a command
line software suite developed for the VCF format, which allows,
among other options, filtering SNP sites and individuals based
on sequencing depth and PHRED-quality score. For array
genotyping, we cite the following: (i) the proprietary packages
GenomeStudio and Axiom Analysis Suite, for data generated
on Illumina or Affymetrix SNP array platforms, respectively;
(ii) freeware tools that directly accept raw data in the original
format generated by array genotyping platforms, including
fluorescence intensity data necessary for QC of genotype calls.
Among the many available options, we cite here the R packages
argyle (Morgan, 2016) and SNPQC (Gondro et al., 2014), and
the Python package ASSIsT (Di Guardo et al., 2015), for data
generated on Illumina SNP array platforms, and AffyPipe
(Nicolazzi et al., 2014), for data generated on Affymetrix SNP
array platforms.

Finally, concerning the study of genetic structure, besides
the above mentioned STRUCTURE (Pritchard et al., 2000)
and ADMIXTURE (Alexander et al., 2009), the EIGENSOFT
utilities SMARTPCA and SMARTEIGENSTRAT are popular
bioinformatics tools for, respectively, detecting and analyzing
population structure via PCA, and correcting for population
stratification in association studies (Price et al., 2006).

CONCLUSION

This work is thought to provide researchers, who mainly focus
on the biology and breeding of crop species, with essential
technical and economic aspects required to plan and carry out
cost-effective and accurate GWAS. To the best of our knowledge,
this is the first work specifically addressing the issue of QC in
crop species, so we expect that it may contribute to the future
harmonization of the procedures leading to the obtainment of
high-quality SNP datasets ready for GWAS.
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Multivariate analysis using mixed models allows for the exploration of genetic correlations

between traits. Additionally, the transition to a genomic based approach is simplified by

substituting classic pedigrees with a marker-based relationship matrix. It also enables

the investigation of correlated responses to selection, trait integration and modularity in

different kinds of populations. This study investigated a strategy for the construction of

a marker-based relationship matrix that prioritized markers using Partial Least Squares.

The efficiency of this strategy was found to depend on the correlation structure between

investigated traits. In terms of accuracy, we found no benefit of this strategy compared

with the all-marker-based multivariate model for the primary trait of diameter at breast

height (DBH) in a radiata pine (Pinus radiata) population, possibly due to the presence

of strong and well-estimated correlation with other highly heritable traits. Conversely, we

did see benefit in a shining gum (Eucalyptus nitens) population, where the primary trait

had low or only moderate genetic correlation with other low/moderately heritable traits.

Marker selection in multivariate analysis can therefore be an efficient strategy to improve

prediction accuracy for low heritability traits due to improved precision in poorly estimated

low/moderate genetic correlations. Additionally, our study identified the genetic diversity

as a factor contributing to the efficiency of marker selection in multivariate approaches

due to higher precision of genetic correlation estimates.

Keywords:multivariatemixedmodel, genomic prediction, variable selection, PLS, Pinus radiata,Eucalyptus nitens

1. INTRODUCTION

Heritability is one of the most important genetic parameters to consider for breeding, defined as the
proportion of phenotypic variance explained by underlying genetic factors (Falconer and Mackay,
1996). Trait heritability is affected by changes in allelic frequencies due to selection or inbreeding,
introduction of new alleles through mutation or migration (Latta, 2010), or due to changes in
genetic effect due to altered genetic backgrounds or environmental conditions (Chandler et al.,
2017). Quantitative traits normally present low to moderate heritability, as a result of their genetic
control and the high degree of environmental influence on the expression of these traits. In tree
breeding, important quantitative traits, such as height, diameter at breast height and stem volume
generally have relatively low to moderate heritability estimates, ranging from 0.09 to 0.3 (Ukrainetz
et al., 2008; Chen et al., 2018; Hayatgheibi et al., 2019). Furthermore, the magnitude and precision
of these heritability estimates vary with the testing effort (such as sample size, experimental, and
mating design) and the ontogenetic stage of individuals in the population being tested (Bouvet
et al., 2003; Mihai and Mirancea, 2016). Reports of low heritability for productivity traits is not
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surprising, as they are assumed to be essential for individual tree
survival and thus likely close to fixation (King, 1990; Merilä and
Sheldon, 2000; Blows and Hoffmann, 2005). Unfortunately, both
low heritability and less accurate estimates of breeding values
makes selection decisions challenging for such traits and slows
progress in genetic improvement.

The current rapid development of genomic resources in
forest tree species (Neale and Kremer, 2011; Nystedt et al.,
2013; Myburg et al., 2014; Neale et al., 2014) has improved
forest tree breeding practices through the implementation of
genomic prediction (Meuwissen et al., 2001; Grattapaglia and
Resende, 2011; Isik, 2014; Grattapaglia et al., 2018). Genomic
best linear unbiased prediction (GBLUP) is the most popular
method for genomic prediction, due to the simple substitution of
the average numerator relationship matrix (Wright, 1922) with
a marker-based relationship matrix (Nejati-Javaremi et al., 1997;
VanRaden, 2008; Hayes et al., 2009). Such a relationship matrix
allows tracking of both recent and historical relatedness (Powell
et al., 2010), as well as Mendelian segregation (Visscher et al.,
2006) and linkage disequilibrium (LD) between markers and
quantitative trait loci (QTLs) (Habier et al., 2013). The ultimate
goal of genomic prediction is the development of model using
mainly LD between markers and QTLs which would support
predictive ability stable across generations. Sun et al. (2016)
found that the accuracy of such model across generations is
high only when the historical LD between markers and QTLs
is high. Alternatively, the capture of co-segregation improves
accuracy of the prediction when effective population is relatively
small. Additionally, the accuracy of genomic prediction critically
depends on the level of relatedness between the training and
validation populations (Scutari et al., 2016).

While genetic correlations often represent evolutionary
constraints (Clark, 1987), they are also a means to improve the
accuracy of genetic parameters (Calus and Veerkamp, 2011) and
reduce bias of estimated breeding values caused by selection
on correlated trait through use of a multivariate instead of
univariate approach (Pollak et al., 1984). The use of multivariate
linear mixed models in genetic evaluations provides a basis for
inference about traits’ integration (Armbruster et al., 2014) as
well as evolutionary response to selection (Sedlacek et al., 2016).
Additionally, these types of models could deliver improvements
in the accuracy of genetic parameters, especially where traits
with low heritability can be analyzed together with traits of
high heritability, and genetic covariances can be taken into
consideration (Jia and Jannink, 2012; Marchal et al., 2016). Guo
et al. (2014) reported an advantage to using multi-trait genomic
predictions over single-trait alternatives when traits had low
heritability or if phenotypic records were lacking. The traits with
low heritability (Stejskal et al., 2018) benefited the most from the
implementation of genomic information in the genetic analysis
(Meuwissen et al., 2001). Therefore, a combination of both
approaches in a genomic-based multivariate mixed linear model
might provide the best results. However, both approaches have
their drawbacks. Multivariate analysis can provide benefits to low
heritability traits only in cases where there are strong genetic
correlations with other traits, while no benefit or even reductions
in breeding values accuracy can result when genetic correlations

are weak (Jia and Jannink, 2012). Furthermore, optimization of
the population sample size, effective population size and the
level of genetic diversity captured is required to reach statistically
significant genetic correlations (Bijma and Bastiaansen, 2014).

The majority of complex quantitative traits follows Fisher’s
infinitesimal model (Fisher, 1918) where each QTL contributes
by only small fraction of total genetic variance. Such traits require
genomic predictionmodels using large amount of genetic marker
densely populating whole genome (Meuwissen et al., 2001; Guo
et al., 2010). However, some traits show a positive response in
prediction accuracy as a result of marker selection (Resende et al.,
2012), depending on the structure of the training population and
the genetic complexity of the investigated trait (Berger et al.,
2015). Bayesian models have proven an efficient way to consider
different variances for the distribution of marker effects which
might result in an improvement in genomic predictions over
classical GBLUP, especially in cases where the underlying genetic
architecture of a trait involves large-effect QTLs (Cole et al.,
2009).

Alternatively, construction of a trait-specific relationship
matrix, considering marker-specific weights, provides a viable
alternative (Zhang et al., 2010; Su et al., 2014). Lippert et al. (2013)
investigated the ratio of causal and non-causal variants present in
genomic data, and found that the most precise genetic parameter
estimates are obtained when only causal variants are included in
the prediction model. de los Campos et al. (2015) argued that a
large number of markers in imperfect LD with QTLs can produce
false inferences about heritability due to instability in likelihood
estimates, especially when LD decays rapidly. Additionally, using
an exhaustive amount of genomic information in genetic analyses
can potentially reduce the precision of genetic parameters and
the accuracy of genomic estimated breeding values (Habier et al.,
2007, 2013).

Similar to single-trait genomic prediction models, several
marker selection strategies have been developed within multi-
trait genomic prediction models. Classical multiple regression
models assign effects to every marker, which is not necessarily
biologically true. Cheng et al. (2018), therefore, developed a
Bayesian multi-trait model which allows for the assumption that
each marker affects only one or a few traits, and has no effect
on other traits. Karaman et al. (2018) applied an alternative
approach using posterior estimates of marker effect covariances
to weight their contribution to the marker-based relationship
matrix, implemented in the GBLUP model. They found a further
advantage to this weighted marker-based relationship matrix
when weights were assigned to blocks of 100 SNPs, rather than
to each marker separately.

The aim of this study is the improvement of genomic
prediction for traits with relatively low heritability and poor
prediction accuracy, such as those related to forest tree
productivity (Gamal El-Dien et al., 2015; Ratcliffe et al., 2015),
through the implementation of multi-trait models using a
relationship matrix based only on prioritized markers. Our
primary trait under investigation was diameter at breast height
(DBH) for radiata pine (Pinus radiata D.Don) and shining
gum [Eucalyptus nitens (H. Deane & Maiden) Maiden], a proxy
for productivity in forest trees and thus considered the most
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economically important trait for those species. Non-target traits
involved in the multivariate analysis represent operationally
measured attributes related to stem form and wood quality.

2. MATERIALS AND METHODS

2.1. Plant Material
2.1.1. Radiata Pine (Pinus radiata)
The P. radiata population used in this study included 523
vegetatively propagated individuals (four ramets per individual
genotype), structured into 42 full-sib families each represented
by ∼10 individual genotypes, part of The New Zealand Radiata
Pine Breeding Company’s (RPBC) program, selected for growth
and form attributes. The field experiment was established as an
incomplete block design containing nine blocks, each comprising
six families with five replicates per family. All individuals were
evaluated for the following traits: branch cluster frequency
(BR9), visually assessed using a 9-point scale from 1 (uninodal)
to 9 (extremely multinodal) (Carson, 1991); stem straightness
(ST9), visually assessed using a 9-point scale from 1 (crooked)
to 9 (very straight) (Carson, 1986); diameter at breast height
(DBH [cm]) measured with diameter tape; wood density (WD,
[kg/m3]), measured as basic wood density through the maximum
moisture content method (Smith, 1954); and predicted modulus
of elasticity (PME [GPa]), inferred from acoustic wave velocity
using HITMAN (HM200) (Carter et al., 2007).

Genomic data were generated through an exome capture-
based Genotype-By-Sequencing (GBS) platform (Neves et al.,
2013), developed using in-house genomic resources (Telfer
et al., 2018). The captured markers were filtered using a
previously reported bioinformatics pipeline (Telfer et al., 2019).
In brief, markers were removed if heterozygosity in haploid
megagametophyte tissues was higher than 5%, average read depth
was <10 (mean average read depth per marker was ∼60 in
our data) and have more than 1 alternative allele. Individual
datapoints were classified as missing if the ratio between the
reference and alternative allele was lower than 0.1 and the
number of read was <10 (Telfer et al., 2019). In total, 80,160
SNPs passed the criteria, andwere further filtered to remove SNPs
with minor allele frequencies (MAF) <0.05 and a SNP call rate
<0.6. The average proportion of SNPmissing data was 9.9%. The
genotype mean was used to impute missing data and 58,636 SNPs
were used in downstream analysis.

2.1.2. Shining Gum (Eucalyptus nitens)
The E. nitens population used in this study included 691
individuals, part of the third generation of open-pollinated
progeny established within New Zealand’s breeding program.
The experimental design contained 30 replications of
randomized complete blocks of these “sets” with each replication
of the “set” comprising the same families but different individuals
within these families (Klápště et al., 2019). Missing relatedness
information in this population was recovered using sib-ship
reconstruction as genomic information was not available
for all possible parents (Klápště et al., 2017). This sib-ship
reconstruction-based relationship matrix was used in both the
genomic-based and pedigree-based scenarios in this study.

The individuals within the open-pollinated progeny trial were
phenotyped for diameter at breast height at age 6 (DBH [mm])
and for wood quality traits, such as wood density (WD [kg/m3]),
wood stiffness (ST [km/s]), growth strain (GS [mm]), and average
tangential air-dry shrinkage (TS [%]) measured on two different
logs: log 1 from 1.4 to 3 m (index 1) and log 2 from 3 to 6 m
(index 2) at the age of 7 (Klápště et al., 2017). Diameter at breast
height was measured with diameter tape, wood density was
measured as basic wood density through the maximummoisture
content method (Smith, 1954), wood stiffness was measured
indirectly as acoustic wave velocity using HITMAN (HM200)
(Carter et al., 2007), growth strain was assessed by ripping logs
with a chainsaw and measuring the resulting openings at the end
of the log and average tangential air-dry shrinkage was measured
following standard wood quality assessment protocols (Treloar
and Lausberg, 1997).

Genomic data were generated using the EUChip60K SNP chip
(Silva-Junior et al., 2015). SNP genotypes were called using the
Maidenaria section specific cluster files (Silva-Junior et al., 2015)
and filtered using Illumina metrics genTrain score >0.5 and
GenCall>0.15, in addition toMAF>0.01 and call rate>0.6. The
average proportion of SNP missing data was 5.8%. The genotype
mean was used to impute missing data, with 9,697 SNPs used in
downstream analysis.

2.2. Statistical Analysis
A univariate model was used to estimate variance components
and derive narrow-sense heritability for both species using the
following mixed linear model implemented in statistical package
ASReml-R (Butler et al., 2009):

y = Xβ + Zg + Zb+ e

where y is the vector of individual-tree trait measurements, β is
the vector of fixed effects (intercept and replicate, as well as seed
orchard in the case of E.nitens), g is the vector of random additive
genetic values following var(g)∼N(0, Aσ

2
g ), where σ

2
g is the

genotypic variance and A is the average numerator relationship
matrix (Wright, 1922), b is the vector of random block effects
nested within replication effects following var(b)∼N(0, Iσ 2

b
),

where σ
2
b
is block nested within replication variance, e is the

vector of random residual effects following var(e)∼N(0, Iσ 2
e ),

and where σ
2
e is the residual variance.

Additionally, a univariate model was used to estimate best
linear unbiased estimates (BLUEs) for genotype in P. radiata as
well as to correct phenotypes for design effects in the E. nitens
population using the following mixed linear model implemented
in statistical package ASReml-R (Butler et al., 2009):

y = Xβ + e

where y is the vector of individual-tree trait measurements, β is
the vector of fixed effects (intercept, replicates and block nested
within replicates, and genotype in the case of P. radiata), e is
the vector of random residual effects following var(e)∼N(0, Iσ 2

e ),
and where σ

2
e is the residual variance.

The BLUE estimates for genotypes for P. radiata and corrected
phenotypes for E. nitens were used along with the genomic data
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to estimate marker weights prior to construction of the marker-
based relationship matrix. Weights for marker selection were
derived through two blocks of canonical partial least squares
(PLS-CA) (Tenenhaus, 1998) implemented using the “plsca”
function from the R package “plsdepot” (Sanchez and Sanchez,
2012). The algorithm computes sequences of pairs of vectors of
latent scores which are orthogonal by maximization of Cov(Xu,
Yv), where X is the scaled matrix of marker genotypes and Y

is the scaled matrix of clonal values for measured traits, and
u and v are vectors of coefficients maximizing the covariance.
The coefficients in u measure the importance of variables in X

(genetic markers) to latent variables, and were therefore used as
criteria for selection of markers to calculate the marker-based
relationshipmatrix. Since prior knowledge of genetic architecture
in studied traits and complexity of pleiotropy and QTL
collocation is usually lacking, exploration of the whole matrix
of combinations of selection intensity for potentially informative
genetic markers was required. First, marker coefficients in the
vector u associated with each component were truncated by the
90th, 80th, 70th, 60th, and 50th percentiles, and loadings for
selected markers were transformed to either 1 or 0. For each
percentile level, different numbers of components were included
into the marker selection process.

Univariate models using corrected phenotypes and pedigree
(BLUP) or marker information (GBLUP) were used to estimate
narrow-sense heritability (the proportion of additive to total
genetic variance in the case of P. radiata) and prediction
accuracy using the “BGLR” statistical R package (Pérez and
de Los Campos, 2014), as follows:

y = Xβ + Zg + e

where y is the vector of corrected phenotypes/genotypic values,
β is the vector of fixed effects (overall mean), g is the vector of
additive genetic effects following var(g)∼N(0, Aσ

2
g ), where A is

the average numerator relationship matrix (Wright, 1922) in the
BLUP analysis, and is substituted by marker-based relationshipG
(VanRaden, 2008) in the GBLUP analysis, σ 2

g is additive genetic

variance, e is the vector of residuals following var(e)∼N(0, Iσ 2
e ),

where I is the identity matrix and σ
2
e is residual variance.

Since the aim of the algorithm is the maximization
of covariance among genomic and phenotypic data, the
first scenario selects only markers with the highest positive
coefficients, which have an associated positive effect with the
underlying covariance/correlation structure (positive pleiotropy)
(scenario MVGBLUP1). However, the relationship between traits
is not driven only by markers acting in the same direction; some
markers act in the same direction only for certain sets of traits,
and in opposite directions for other traits (negative pleiotropy).
To investigate the impact of such markers, we tested a second
scenario where markers involved in the construction of the
relationship matrix were selected from both positive and negative
tails of the loading distribution (scenario MVGBLUP2). For
example, in the 90th percentile scenario, markers were selected
from both above the 90th percentile and from below the 10th
percentile. The other scenarios continued to select the markers
having loadings closer to the middle of their distribution. Again,

this marker selection strategy was applied across the variable
number of components included in this study. The improved
marker-based estimates of genetic correlation were performed
using marker weights implemented in the construction of a trait-
specific marker-based relationship matrix (Zhang et al., 2010)
as follows:

Gw =
ZWZ′

∑

wi

where Gw is the marker-based relationship matrix, Z = M − P,
where M is the matrix of genotypes coded as 0, 1, and 2 for
reference allele homozygotes, heterozygotes and the alternative
allele homozygotes, respectively, P is the vector of doubled
allelic frequencies for the alternative allele, W is the diagonal
matrix of weights and wi is the weight for the ith marker. The
effect of SNP selection on the precision of genetic parameters
and prediction accuracy of genomic estimated breeding values
was investigated through multivariate mixed linear modeling
using Gibbs sampling, performed in the “MTM” package (de los
Campos and Grüneberg, 2016) implementing algorithms from
the “BGLR” statistical R package (Pérez and de Los Campos,
2014), as follows:

Y = Xβ + Za+ e

where Y is a matrix of phenotypes, a is the vector of random
genomic breeding values following var(a)∼N(0,G1), where G1
is a variance-covariance structure for additive genetic effects

following G1=







σ
2
a1

. . . σ a1an

...
. . .

...
σ ana1 . . . σ

2
an







⊗

G, where σ
2
a1

and σ
2
an

are

additive genetic variances for the 1st and nth trait, respectively,
σ a1an and σ ana1 are additive genetic covariances between the
1st and nth trait,

⊗

is the Kronecker product and G is the
marker-based relationship matrix estimated either as follows:

G =
ZZ′

2
∑

pi(1− pi)

where pi is the frequency of the alternative allele at the ith
loci, or estimated on the basis of weighted markers (Gw) as
defined above, e is the vector of random residual effects following
var(e)∼N(0,R), where R is the residual variance-covariance

structure following R =







σ
2
e1

. . . σ e1en

...
. . .

...
σ ene1 . . . σ

2
en







⊗

I, where σ
2
e1

and

σ
2
en

are residual variances for the 1st and nth trait, and σ e1en

and σ ene1 are residual covariances between the 1st and nth trait.
The number of iterations in BGLR was set to 300,000, with
a burn-in period of 50,000 iterations, thinning to 10. Given
the different percentiles of marker loadings and numbers of
latent variables used in marker selection, the best scenario was
identified on the basis of the deviance information criterion
(DIC). Additionally, single-trait model (scenarios BLUP and
GBLUP) were implemented for each investigated trait to evaluate
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the benefit of the multivariate model over univariate analysis.
Trait heritability was estimated following:

h2 =
σ
2
a

σ
2
a + σ

2
e

where σ
2
a is additive genetic and σ

2
e is residual variance. Genetic

correlations were estimated through Pearson’s product moment
as follows:

rG =
σ axay

√

σ
2
ax

σ
2
ay

where σ axay is the additive genetic covariance between the xth

and yth trait, and σ
2
ax

and σ
2
ay

are the additive genetic variances

for the xth and yth trait, respectively. The multivariate scenarios
using all available markers (MVGBLUP) or pedigree/sib-ship
reconstruction (MVBLUP) were considered as benchmarks in
this study.

Independent evaluation was performed using a 10-fold cross-
validation. Nine-folds formed the training population, where
PLS-CA was performed to obtain marker weights and construct
the marker-based matrix from selected markers. The 10th-
fold was used as the validation population to predict genomic
breeding values (GEBV). The prediction accuracy was estimated
as correlations between EBVs and GEBVs predicted through
cross-validation. The statistical significance of difference in
prediction accuracy between benchmark and the best scenario
using selected markers, non-parametric Wilcoxon rank test was
implemented (Wilcoxon, 1992).

3. RESULTS

3.1. Genetic Parameters
Discriminant analysis of principal components (DAPC) (Jombart
et al., 2010) was performed to investigate population structure.
We found almost no support for population stratification in
E. nitens and scenario with two clusters showed the best fit
of the data (Supplementary Figure 1). This scenario identified
clusters associated to the each seed orchard progeny. The same
approach applied in P. radiata selected seven clusters as the best
scenario considering fit of the data (Supplementary Figure 1).
The exploration of marker-based relationship matrices within
each population through principal component analysis (PCA)
found relatively weak stratification, mostly due to the separation
of families accounting for 1.5–2.04% (E. nitens) and 3.44–3.79%
(P. radiata) of the total variance attributed to the first two
principal components (Supplementary Figure 2, upper plots).
The distribution of relatedness showed that the majority of
matrix elements had no or very weak relatedness. Additionally,
there is a peak around 0.2, representing half-sibs in the E.
nitens population, and two peaks around 0.2 and 0.4 in
the P. radiata population, representing half-sibs and full-sibs
(Supplementary Figure 2, bottom plots) corresponding to the
mating strategy implemented at each population. The mean
sample observed heterozygosity was∼0.29 in E. nitens and∼0.19
in P. radiata. The self-relatedness was distributed around 1 in P.

radiata, but shifted to around 0.75 in E. nitens due to the higher
level of inbreeding (Supplementary Figure 3).

Trait heritabilities were estimated using variance components
inferred from a sib-ship reconstruction-based (BLUP) as well
as marker-based (GBLUP) univariate model in E. nitens, and
from a pedigree-based (BLUP) as well as marker-based (GBLUP)
univariate model in P. radiata. Heritability estimates were
moderate to high, ranging from 0.093 (ST2) to 0.282 (WD) using
sib-ship (BLUP) and from 0.089 (DBH) to 0.559 (WD) using
markers (GBLUP) in E. nitens, and from 0.046 (ST9) to 0.588
(WD) using pedigree (BLUP) and from 0.126 (ST9) to 0.529
(WD) using markers (GBLUP) in P. radiata (Table 1). In general,
marker-based analysis (GBLUP) resulted in higher heritability
estimates than pedigree/sib-ship based (BLUP) analysis.

In E. nitens, genetic correlations ranged from−0.459 (between
WD and GS2) to 0.859 (between GS1 and GS2) using sib-
ship (MVBLUP) (Figure 1—left plot below diagonals), and from
−0.113 (between WD and GS2) to 0.929 (between GS1 and
GS2) using markers (MVGBLUP) (Figure 1—left plot above
diagonals). In P. radiata, genetic correlations ranged from
−0.978 (between DBH and WD) to 0.548 (between WD and
PME) using the pedigree (MVBLUP) (Figure 1—right plot
below diagonals), and from −0.987 (between DBH and WD)
to 0.602 (between WD and PME) using markers (MVGBLUP)
(Figure 1—right plot above diagonals). Genetic correlations
showed a more complex pattern in E. nitens compared with
P. radiata (Figure 2).

3.2. Marker Selection
Using PLS-CA resulted in the construction of marker-based
relationship matrices using different numbers of markers. When
only markers with positive loadings (MVGBLUP1) were used,
the number of selected markers ranged from 970 to 9,627 in E.
nitens and from 5,864 to 56,809 in P. radiata. Scenarios which
considered markers with both positive and negative loadings
(MVGBLUP2) resulted in the number of selected markers
ranging from 1,940 to 9,697 in E. nitens and from 9,838 to 58,636
in P. radiata (Table 2).

The most intensive marker selection in the E. nitens
population resulted in the worst model fit in terms of deviance
information criteria (DIC). The model fit continually improved
with more relaxed parameters on marker loadings. This pattern
was observed for both tested strategies (MVGBLUP1 and
MVGBLUP2). The best scenario appeared close to the one using
all markers (MVGBLUP) (using seven components and the 40th
percentile) (Supplementary Table 1). There was no real pattern
to the number of markers selected in the P. radiata population,
with the best model fit found for the scenario that used four latent
components and the 50th percentile (Supplementary Table 1).

Comparison of the marker-based relationship matrix using
all markers with matrices using only selected subsets of markers
showed correlations from 0.73 to 0.99 in E. nitens. Similarly, in
P. radiata, correlations reached values from 0.57 to 0.99. In both
populations, the genetic correlations increased as the number of
components as well as the proportion of markers selected within
components increased (Figure 3).
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TABLE 1 | Heritability estimates and their 95% confidence limits using variance components inferred from the sib-ship reconstruction-based univariate model (BLUP) in E.

nitens and from using the pedigree-based univariate model (BLUP) in P. radiata as well as marker-based univariate models (GBLUP).

E. nitens P. radiata

Trait Pedigree Markers Pedigree Markers

TS 0.242 (0.147–0.338) 0.539 (0.389–0.689) NA NA

WD 0.282 (0.193–0.371) 0.559 (0.420–0.699) 0.588 (0.292–0.884) 0.529 (0.400–0.658)

DBH 0.138 (0.030–0.245) 0.089 (−0.049–0.228) 0.134 (0.024–0.244) 0.131 (0.052–0.210)

ST1 0.210 (0.107–0.313) 0.394 (0.229–0.559) NA NA

ST2 0.093 (−0.001–0.187) 0.199 (0.044–0.354) NA NA

GS1 0.248 (0.139–0.357) 0.309 (0.149–0.469) NA NA

GS2 0.211 (0.103–0.319) 0.318 (0.154–0.481) NA NA

ST9 NA NA 0.046 (−0.010–0.102) 0.126 (0.034–0.218)

BR9 NA NA 0.128 (0.019–0.237) 0.177 (0.073–0.282)

PME NA NA 0.224 (0.055–0.393) 0.397 (0.250–0.544)

NA represents the case where data were not available for a particular species and trait.

FIGURE 1 | Genetic correlations using variance components and covariances inferred from use of a sib-ship reconstruction-based multivariate model (MVBLUP)

(below diagonals) and marker-based relationship matrix (MVGBLUP) (above diagonals) in the E. nitens population (left plot) and using variance components and

covariances inferred from use of a pedigree-based multivariate model (MVBLUP) (below diagonals) and marker-based relationship matrix (MVGBLUP) (above

diagonals) in the P. radiata population (right plot).

3.3. Prediction Accuracy
Prediction accuracy in the pedigree/sib-ship basedmodel (BLUP)
ranged from 0.246 (DBH) to 0.782 (WD) in E. nitens, and
from 0.441 (DBH) to 0.653 (BR9) in P. radiata. In marker-
based models (GBLUP), this ranged from 0.183 (DBH) to 0.764
(WD) in E. nitens, and from 0.388 (DBH) to 0.645 (WD) in P.
radiata. In general, the implementation of single-trait models
(BLUP and GBLUP) resulted in lower prediction accuracies
when the marker-based model (GBLUP) was compared to the
pedigree/sib-ship based model (BLUP) (Tables 3, 4).

The prediction accuracies from the multi-trait model
(MVBLUP and MVGLUP) were higher compared to the single-
trait model (BLUP and GBLUP). Prediction accuracy in the
pedigree/sib-ship based model (MVBLUP) ranged from 0.541
(DBH) to 0.754 (WD) in E. nitens, and from 0.553 (PME)
to 0.679 (BR9) in P. radiata. In the marker-based model

(MVGBLUP), this ranged from 0.529 (DBH) to 0.768 (WD) in
E. nitens, and from 0.435 (ST9) to 0.618 (WD) in P. radiata.
Generally, the implementation of multi-trait models (MVBLUP
and MVGBLUP) followed a similar pattern as the single-trait
model, in that the pedigree/sib-ship based model (MVBLUP)
mostly outperformed the marker-based model (MVGBLUP),
with a few exceptions, such asWD in E. nitens and DBH andWD
in P. radiata (Tables 3, 4).

Prediction accuracy of the models with markers selected using
only positive loadings (MVGBLUP1) ranged from 0.434 (ST2)
to 0.759 (WD) in E. nitens and from 0.446 (ST9) to 0.627
(WD) in P. radiata. For models with markers selected using
both positive and negative loadings (MVGBLUP2), prediction
accuracies ranged from 0.414 (ST2) to 0.766 (WD) in E.
nitens, and from 0.436 (ST9) to 0.631 (WD) in P. radiata. The
marker-based models using marker selection (MVGBUP1 and
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FIGURE 2 | Correlation networks between traits investigated in the E. nitens (left) and P. radiata (right) populations based on genetic correlations estimated in

multivariate model using marker-based relationship matrix. Solid lines represent positive correlations and dashed lines represent negative genetic correlations; the

thickness of the lines represents magnitude of correlations.

TABLE 2 | Number of markers selected in different scenarios using only positive (upper part) or both positive and negative (bottom part) marker loadings obtained from

PLS-CA procedure.

Species E. nitens P. radiata

Scen Prop P10 P20 P30 P40 P50 P10 P20 P30 P40 P50

C1 970 1,940 2,909 3,879 4,849 5,864 11,728 17,591 23,455 29,318

C2 1,824 3,513 4,999 6,292 7,348 11,364 21,448 30,668 38,650 45,014

C3 2,574 4,704 6,371 7,634 8,510 15,856 28,529 38,725 46,448 51,793

Pos C4 3,318 5,776 7,456 8,555 9,180 20,773 35,762 45,963 52,179 55,740

C5 3,898 6,492 8,049 8,992 9,419 24,128 39,697 49,288 54,523 57,198

C6 4,515 7,188 8,631 9,312 9,567 NA NA NA NA NA

C7 4,997 7,632 8,896 9,452 9,627 NA NA NA NA NA

C1 1,904 3,840 5,825 7,792 9,659 10,574 22,848 35,438 47,511 58,636

C2 3,377 6,131 8,103 9,282 9,697 19,871 37,712 49,848 56,706 58,636

Pos C3 4,578 7,502 9,048 9,612 9,697 2,8337 46,493 55,238 58,271 58,636

+ C4 5,558 8,314 9,418 9,680 9,697 34,662 51,277 57,188 58,542 58,636

Neg C5 6,303 8,801 9,562 9,694 9,697 40,064 54,329 58,047 58,618 58,636

C6 6,946 9,108 9,639 9,696 9,697 NA NA NA NA NA

C7 7,425 9,300 9,665 9,697 9,697 NA NA NA NA NA

NA represents the case not applicable for a particular species.

MVGBLUP2) resulted in increased prediction accuracy of the
primary trait while maintaining similar accuracies for other
traits in E. nitens. No impact of marker-selection on prediction
accuracy of the primary trait was observed in P. radiata (Tables 3,
4, Figure 4). The highest prediction accuracy for each trait was
obtained using different marker selection scenarios, with no
one scenario allowing for the highest prediction accuracy in all
investigated traits simultaneously (Supplementary Tables 2–5).

The significance of the improvement in prediction accuracy
through marker selection was tested with the Wilcoxon non-
parametric test, and a significant improvement was found
only for DBH in E. nitens when the MVGBLUP2 model was
implemented (Table 3).

The prediction accuracies estimated for each trait and marker
selection scenario were correlated with DIC and number of
selected markers. The correlations between prediction accuracy

Frontiers in Genetics | www.frontiersin.org 7 October 2020 | Volume 11 | Article 499094182

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Klápště et al. Marker Selection in MVGBLUP

FIGURE 3 | Correlations between marker-based relationship matrices using markers selected on the basis of positive loadings only and marker-based relationship

matrix using all markers in E. nitens (upper left) and in P. radiata (bottom left) populations and correlations between marker-based relationship matrices using markers

selected on the basis of both positive and negative loadings and marker-based relationship matrix using all markers in E. nitens (upper right) and in P. radiata (bottom

right) populations. Each line represent scenario for different number of latent variables considered in marker selection (e.g., C1—only the first latent variable is

considered, C2—only the first two latent variables are considered, etc.).

and DIC were strong for E. nitens, reaching values from
−0.952 (TS) to −0.559 (DBH) in scenarios where marker
selection was based on positive marker loadings, and from
−0.951 (TS) to −0.332 (WD) in scenarios where marker
selection was based on both positive and negative marker
loadings. The correlations between prediction accuracy and
DIC were relatively weak in P. radiata reaching values
from −0.721 (WD) to 0.115 (BR9) in scenarios where
marker selection was based on positive marker loadings,
and from −0.583 (DBH) to 0.623 (BR9) in scenarios where
marker selection was based on both positive and negative
marker loadings.

The correlations between prediction accuracy and number
of selected markers were strong in E. nitens, reaching values

from 0.467 (DBH) to 0.910 (ST1) in scenarios where marker
selection was based on positive marker loadings and from
0.274 (WD) to 0.923 (TS) in scenarios where marker selection
was based on both positive and negative marker loadings.
Conversely, the correlations between prediction accuracy and
number of selected markers were rather weak in P. radiata
reaching values from −0.235 (BR9) to 0.841 (DBH) where
marker selection was based on positive marker loadings and
from −0.613 (BR9) to 0.439 (DBH) where marker selection
was based on both positive and negative marker loadings.
For our primary trait (DBH), in both species the opposite
pattern was found between prediction accuracy and number
of selected markers compared with prediction accuracy and
DIC (Table 5).
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TABLE 3 | Prediction accuracies and their standard deviations (in parenthesis) obtained from multivariate mixed models in the E. nitens population when using, a

relationship matrix derived from sib-ship reconstruction (MVBLUP), a marker-based relationship matrix using all markers (MVGBLUP), a marker-based relationship matrix

using selected SNPs having only positive loadings (MVGBLUP1), or a marker-based relationship matrix using selected SNPs having both positive and negative loadings

(MVGBLUP2).

Trait BLUP GBLUP MVBLUP MVGBLUP MVGBLUP1 MVGBLUP2

TS 0.737 (0.039) 0.656 (0.069) 0.754 (0.034) 0.665 (0.071) 0.650NS (0.047) 0.642NS (0.059)

WD 0.782 (0.060) 0.764 (0.054) 0.658 (0.068) 0.768 (0.049) 0.759NS (0.053) 0.766NS (0.035)

DBH 0.246 (0.132) 0.183 (0.117) 0.541 (0.251) 0.529 (0.336) 0.576NS (0.241) 0.595** (0.353)

ST1 0.613 (0.056) 0.523 (0.098) 0.621 (0.072) 0.545 (0.085) 0.525NS (0.074) 0.523NS (0.078)

ST2 0.571 (0.140) 0.448 (0.131) 0.582 (0.137) 0.442 (0.134) 0.434NS (0.137) 0.414NS (0.107)

GS1 0.683 (0.045) 0.558 (0.071) 0.720 (0.062) 0.609 (0.082) 0.604NS (0.072) 0.604NS (0.085)

GS2 0.603 (0.068) 0.547 (0.076) 0.737 (0.068) 0.651 (0.081) 0.650NS (0.065) 0.660NS (0.073)

Predicted EBV/GEBVs were correlated with EBVs estimated when using the multivariate mixed model using either documented pedigree or relationships inferred from sib-ship

reconstruction.

**represents a statistically significant while NS represents a statistically non-significant test at α level 0.05.

TABLE 4 | Prediction accuracies and their standard deviations (in parenthesis) obtained from multivariate mixed model in P. radiata population when using the

documented pedigree (MVBLUP), a marker-based relationship matrix using all markers (MVGBLUP), a marker-based relationship matrix using selected SNPs having only

positive loadings (MVGBLUP1), or a marker-based relationship matrix using selected SNPs having both positive and negative loadings (MVGBLUP2).

Trait BLUP GBLUP MVBLUP MVGBLUP MVGBLUP1 MVGBLUP2

BR9 0.653 (0.088) 0.550 (0.121) 0.679 (0.095) 0.570 (0.136) 0.586NS (0.134) 0.589NS (0.123)

DBH 0.441 (0.103) 0.388 (0.133) 0.573 (0.069) 0.611 (0.062) 0.616NS (0.058) 0.626NS (0.048)

ST9 0.638 (0.147) 0.415 (0.148) 0.646 (0.126) 0.435 (0.135) 0.446NS (0.149) 0.436NS (0.119)

WD 0.642 (0.043) 0.645 (0.056) 0.610 (0.045) 0.618 (0.064) 0.627NS (0.064) 0.631NS (0.044)

PME 0.565 (0.118) 0.554 (0.119) 0.553 (0.109) 0.530 (0.116) 0.542NS (0.113) 0.543NS (0.108)

**represents a statistically significant while NS represents a statistically non-significant test at α level 0.05.

FIGURE 4 | Boxplot of prediction accuracies for each tested scenario in E. nitens (left plot) and in P. radiata (right plot) populations, red line represents prediction

accuracy for primary trait (DBH).

4. DISCUSSION

4.1. Effect of Phenotypic Integration
Any complex trait is the end-product of many pathways, with
many of the genes involved contributing to multiple pathways

(i.e., pleiotropy). The efficient coordination of the pathways

responsible for each particular attribute requires a certain level

of organization in space and time, developed through modularity
in the biological processes (Wagner et al., 2007). Therefore,
pathways to achieving certain phenotypic characteristics can
be structured into different modules comprising a number of
different levels of shared pathways. The characteristics within
each module show a high level of phenotypic integration while
the characteristics from different modules show a low level of
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TABLE 5 | Correlations between prediction accuracy and Deviance Information Criterion (DIC) and between prediction accuracy and number of selected markers.

E. nitens P. radiata

Trait Pos Pos + Neg Pos Pos + Neg

DIC NMarkers DIC NMarkers DIC NMarkers DIC NMarkers

TS −0.952 0.849 −0.951 0.923 NA NA NA NA

WD −0.702 0.544 −0.332 0.274 −0.650 0.551 −0.557 0.364

DBH −0.559 0.467 −0.409 0.358 −0.664 0.841 −0.583 0.439

ST1 −0.955 0.910 −0.902 0.855 NA NA NA NA

ST2 −0.582 0.657 −0.455 0.504 NA NA NA NA

GS1 −0.906 0.777 −0.756 0.701 NA NA NA NA

GS2 −0.905 0.816 −0.635 0.600 NA NA NA NA

ST9 NA NA NA NA −0.223 0.029 0.147 0.246

BR9 NA NA NA NA 0.115 −0.235 0.623 −0.613

PME NA NA NA NA −0.721 0.251 −0.194 0.082

NA represents the case where no data were available for particular species and trait.

integration (Wagner et al., 2007; Armbruster et al., 2014). Such
stratification allows for effective independent evolution between
modules, while the genetic correlations within the modules
represent evolutionary constraints (Clark, 1987).

We proposed searching for markers that represent genomic
regions involved in the shared pathways underlying the traits of
interest. Our strategy for identifying such markers was through
the alignment of the covariance structure within traits with the
covariance structure within genetic markers, using a PLS-CA
approach. This creates latent variables that collectively represent
the studied attributes at each block (phenotypes on one side and
genetic markers on the other side) through their shared variances
(i.e., covariances). Since the method maximizes covariance
between the latent variables from each block (phenotypes vs.
genetic markers) through the coefficients in vectors u and v, it
is possible to emphasize the shared variance caused by genetics
(i.e., the part of the phenotypic covariance associated with genetic
markers). Markers with strong associations to this alignment
(large loadings) are likely positioned within the genomic regions
showing pleiotropy or an accumulation of QTLs responsible for
studied traits. Due to evolutionary trade-offs of gene functions
on overall fitness, pleiotropy can act in opposite directions for
affected traits (Guillaume and Otto, 2012). As a result, markers
with negative association with the alignment (large negative
loadings) are also likely to be involved in the underlying genetic
architecture of covariances between traits. Watanabe et al. (2019)
found that 90% of genes identified in human genome-wide
association studies (GWAS) were associated with multiple traits,
emphasizing how commonly pleiotropy plays a part in the genetic
architecture of complex traits. However, where the complexity of
genetic covariances between studied traits is unknown, a range of
selection intensity in genetic markers is needed. We thus adopted
a marker selection strategy based on quantiles derived from the
distribution of their loadings.

Our analysis found there was a benefit to using marker
selection (MVGBLUP1 and MVGBLUP2) in the multivariate
analysis in the E. nitens population. Including more traits
with no strong relationships (Figure 1—left plot) increased the

prediction accuracy for DBH beyond that observed for the
model using all available markers. On the other hand, using
a multivariate model with marker selection (MVGBLUP1 and
MVGBLUP2) in the P. radiata population did not improve
prediction accuracy of low heritability DBH beyond that
observed for the model using all available markers, possibly
due to strong genetic correlation between DBH and WD
(Figure 1—right plot). Since the precision of genetic correlations
estimates depends on the strength and both size and structure
of the sampled population (Bijma and Bastiaansen, 2014), the
prediction accuracy of a low heritability trait with strong and
well-estimated genetic correlations, as is the case of DBH
and WD in P. radiata does not benefit from any additional
marker selection. In contrast, the prediction accuracy of a low
heritability trait with only moderate/lower and less precisely
estimated genetic correlations, as in the E. nitens population, can
benefit from the marker selection strategy proposed in this study
(MVGBLUP2). Finding markers associated with the underlying
genetic correlation structure can therefore potentially further
improve the precision of genetic correlation estimates and thus
the prediction accuracy of involved traits. However, it is worth
noting that the scenarios showing the highest prediction accuracy
for low heritability DBH were not supported by the model fit
patterns (DIC) in either the E. nitens or P. radiata populations
tested. Therefore, model fit is not a good indicator for selecting
the best model in this case.

These findings indicate that the traits used in multivariate
genomic analyses should, ideally, belong to the same variational
module (set of traits that vary together and are independent
of other traits) and show low to moderate genetic correlations
in order to benefit from this approach. On the other hand,
there is no further benefit of the proposed method when the
estimated genetic correlation between the traits is high, such
as the genetic correlation between WD and DBH in P. radiata.
Traits in the same biological module usually show a high level
of phenotypic integration, with pleiotropy likely contributing to
this (Armbruster et al., 2014). Wagner et al. (2008) showed that
most pleiotropic QTLs only affect a small number of traits and
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their effect increases with the number of traits affected. Including
a large number of traits that show different genetic correlations
and precision levels to their estimates can increase the efficiency
of this method (PLS-CA); pleiotropic QTLs are detected through
weak or negative relationships between modules which increase
the precision of genetic correlation estimates and thus accuracy in
the prediction of low heritability traits as shown for E. nitens. It is
worthmentioning, however, that pleiotropic QTLs can be present
even when no marker-based genetic correlations are detected
between traits (Gianola et al., 2015).

The efficient implementation of genomic selection in forestry
requires the consideration of at least three groups of factors: (1)
the genetic architecture of measured traits, (2) the structure of the
training population, and (3) the quality of the phenotypic and
marker data. A trait’s genetic architecture is measured through
factors, such as heritability, mode of inheritance (following
Fisher’s infinitesimal model vs. a mixed type of inheritance with
a few large effect QTLs and many small effect ones) and the
effective number of chromosomal fragments (Hayes et al., 2009),
which depends on the distribution of QTLs across the genome
and the intensity of LD decay.

The structure of the training population [the level of
shared genealogy (relatedness), co-segregation and linkage
disequilibrium between markers and QTLs (Habier et al.,
2013)], will determine its suitability for genomic selection. The
relative contribution of each of these to success depends on
the composition of the training population itself. In our study,
we tested two populations with different structures. While the
E. nitens population shows two clusters due to contributions
from two seed orchards with different selection strategies
(Suontama et al., 2019), P. radiata shows no population structure
but does show family clusters (Supplementary Figure 1).
Additionally, while E. nitens included open-pollinated progenies
with recovered full-sibs and self-sibs (Klápště et al., 2017),
the P. radiata population contained full-sib families from 24
parents (Supplementary Figure 1). Genetic connectedness is
vital, and good connections among parents, families or clones
are important, as is the case in any quantitative analysis (Li et al.,
2018). The production and testing of large full-sib families also
gives the ability to dissect additive from non-additive genetic
components and examine Mendelian segregation, something
which is often confounded in pedigree-based analyses (Visscher
et al., 2006). The size and decay rates of linkage disequilibrium
between markers and QTLs, however, plays the most important
role in training when mostly unrelated or only weakly related
individuals are included (Meuwissen, 2009). Since the precise
estimate of genetic correlations, the most critical genetic
parameter considered for this approach, requires broad genetic
diversity as well as familial structure in the training population
(Bijma and Bastiaansen, 2014), the optimization of structure in
training populations should be carefully considered.

Additionally, both populations represent advanced
generations of breeding populations which underwent several
generations of selection. Such conditions might introduce
decreases in the accuracy of breeding values (in terms of
correlation between true breeding values and estimated breeding
values), depending on selection intensity and reduction in
additive genetic variance (Bijma, 2012). The reduction is

more pronounced in pedigree-based analyses compared to the
marker-based counterpart due to the fact that the pedigree-based
scenario can predict only parental averages (which explains only
a small fraction of genetic variation and true breeding values of
the offspring due to selection) compared to the marker-based
equivalent; predicting both parental averages and Mendelian
sampling (Gorjanc et al., 2015). However, the impact of selection
on accuracy of breeding values depends on the data used in the
analysis. While old data from previous generations pronounces
the reduction in accuracy of breeding values, new data from the
current selected population minimizes the impact of selection on
the accuracy of breeding values (Bijma, 2012).

4.2. Genomic Data Quality, Quantity, and
Selection
The quality of marker data impacts directly on the ability of
these markers to capture and adequately describe the genetic
control and architecture of quantitative traits. The usefulness of
a genomic resource is therefore a function of the number of
markers, their distribution across the genome and the accuracy of
the genotype calls. The platforms available for genotyping forest
tree species are often driven by the nature of their genomes. In
this study, the relatively small genome length of many Eucalyptus
species (∼0.56 Gb) has allowed the rapid and cost-effective
development of the multi-species Eucalyptus SNP chip, based on
SNP discovery fromwhole genome sequencing data (Silva-Junior
et al., 2015). In contrast, the extensive size of the Pinus radiata
genome (∼25 Gb) and large amount of repetitive sequences
required a different SNP discovery and genotyping approach
based on reduced representation sequencing of the genome
(Elshire et al., 2011; Neves et al., 2013; Telfer et al., 2018).
Such approaches, or other similar techniques, such as exome
capture have already been successfully implemented in other
conifer species (Gamal El-Dien et al., 2015; Ratcliffe et al., 2015;
Bartholomé et al., 2016; Isik et al., 2016; Lenz et al., 2017; Chen
et al., 2018).

The large amount of genomic data obtained in genomic
selection studies can contain some level of redundancy, which
can negatively affect the accuracy of breeding values (Habier
et al., 2013) and might necessitate variable selection approaches.
Ballesta et al. (2018) found an advantage to dimensionality
reduction and variable selection, improving prediction accuracy
of low-to-moderate heritability traits in a single-trait evaluation
in a Eucalyptus globulus population. Our strategy resulted in the
highest prediction accuracy for the primary trait when ∼ 66%
(considering only positive loadings) and ∼ 35% (considering
both positive and negative loadings) of markers were included in
the marker-based relationship matrix in E. nitens, and∼94% and
99% markers in P. radiata (Table 4, Supplementary Tables 1, 4).
Lippert et al. (2013) found that the pre-selection of QTL-related
markers, or at least increasing the proportion of such markers
over uninformative ones was an advantage and increased the
accuracy of predicted genomic breeding values. Several other
approaches have been examined, usingmarker weights developed
using either Bayesian inference (Kemper et al., 2018) or results
from previous QTL mapping or association studies (Fragomeni
et al., 2017). The proportion of markers selected reflects the
genetic complexity of the trait under study. For example, Müller
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et al. (2017) found that 5,000–10,000 markers (representing
∼40–60% of full marker data) were sufficient to capture themajor
proportion of trait heritability and reach the same prediction
accuracy compared to using the all marker dataset. Similarly,
Resende et al. (2012) found an advantage to using reduced
numbers of markers in traits, such as wood specific gravity (∼5%
of total marker data) and resistance to Fusiform rust [gall volume
(∼2% of total marker data) and presence or absence of rust
(∼7% of the total marker data)]. Additionally, Chen et al. (2018)
found that the structure of the training population (full-sib vs.
half-sib families) defines the number of selected markers needed
to reach prediction accuracies equivalent to using full marker
data. While for a full-sib structure 4,000–8,000 markers was
found to be sufficient, a half-sib structure required all 100,000
markers to reach the maximum achievable prediction accuracy.
However, the selection of informative markers was performed
using only single trait approaches and different standards of
genomic resources.

Similar to our approach, several proposed strategies have been
developed within a Bayesian multivariate framework (Cheng
et al., 2018; Karaman et al., 2018). Karaman et al. (2018)
found there was benefit to assigning specific weight to blocks
of fixed numbers of markers rather than to each marker
individually. Our approach allows for the selection of markers
associated with genomic regions related to shared underlying
genetic components across investigated traits, without any prior
definition of the block length. Since our approach associates the
markers with underlying structure rather than with each trait
involved in the study, it shows benefits even in the case of sparse
marker arrays as used in this study. However, the presence of full
phenotypic data is required to perform marker selection through
PLS-CA, and thus the investigated traits have to be screened at an
operational scale.

The strategy proposed in this study does not attempt to
improve the accuracy of all traits involved in the analysis
but only those with low heritabilities, taking advantage of the
genetic covariances common across all investigated traits. The
latent variables created through PLS-CA analysis (Tenenhaus,
1998; Sanchez and Sanchez, 2012) tend to extract the common
part of variances in both the trait and marker data by
maximization of covariance between latent variables. Ideally,
the algorithm searches for bridges between variational modules
(group of traits that vary together) and functional modules
(group of genes/proteins that are coordinated to perform
semi-autonomous functions) (Kliebenstein, 2011). However,
the efficiency of finding such bridges depends on adequate
representation of the genome through marker data. The
investigation of marker loadings associated with the latent
variables can identify those markers important for explaining
the variance captured by each latent variable. Additionally, this
investigation will also indirectly identify the markers which
most likely explain variance explaining the behavior of the
corresponding latent variable derived from phenotypic data.
As mentioned above, the efficiency of the proposed strategy
depends on the level of integration and modularity between the
traits under study. Therefore, the selection of traits included
in the analysis should take into consideration their biological
connection and their heritabilities.

In general, the magnitude of genetic correlations between
traits has an impact on the accuracy of breeding values
(Jia and Jannink, 2012). However, the method proposed in
this study benefited from improvement in the precision of
genetic correlation structure through marker selection only
when pairwise correlations were low or moderate. In contrast,
no additional benefit beyond the commonly used model
(MVGBLUP) was found in a population with well-estimated
strong genetic correlation between primary (DBH) and other
(WD) traits. Pleiotropic QTLs, however, can be included in
the underlying genetic structures used in the analysis, even
where no genetic correlations between traits are detected using
genetic markers. Therefore, marker-based genetic correlations
can be misleading to provide inference about their causes when
knowledge about LD between markers and QTLs is poor or
non-existing (Gianola et al., 2015).

5. CONCLUSIONS

The approach proposed in this study selects markers aligned to
the underlying dimensions extracted from a trait’s covariance
structure rather than investigating associations between markers
with each trait, which allows for improvements even with
sparse marker arrays. This method is suitable for improving
the accuracy of low heritability traits where genetic correlations
between traits are low/moderate in magnitude and low accuracy.
In contrast, when the population shows a strong genetic
correlation between the primary trait (DBH in this study) and
other moderately heritable traits, this approach does not show
benefit beyond that observed with the multivariate model using
all genetic markers. One drawback is that this approach requires
all individuals in the training population to be phenotyped for
all traits included in the analysis to perform the marker selection
procedure (PLS-CA).
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urek, M., Klápště, J., Čepl, J., and El-Kassaby, Y. (2018). Effect of

genomic prediction on response to selection in forest tree breeding. Tree Genet.

Genomes 14:74. doi: 10.1007/s11295-018-1283-8

Su, G., Christensen, O. F., Janss, L., and Lund, M. S. (2014). Comparison of

genomic predictions using genomic relationship matrices built with different

weighting factors to account for locus-specific variances. J. Dairy Sci. 97,

6547–6559. doi: 10.3168/jds.2014-8210

Sun, X., Fernando, R., and Dekkers, J. (2016). Contributions of linkage

disequilibrium and co-segregation information to the accuracy of

genomic prediction. Genet. Sel. Evol. 48:77. doi: 10.1186/s12711-016-

0255-4
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