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What Is Causal Cognition?
Andrea Bender*

Department of Psychosocial Science, SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen,  
Bergen, Norway

While gaining an understanding of cause-effect relations is the key goal of causal cognition, 
its components are less clearly delineated. Standard approaches in the field focus on 
how individuals detect, learn, and reason from statistical regularities, thereby prioritizing 
cognitive processes over content and context. This article calls for a broadened perspective. 
To gain a more comprehensive understanding of what is going on when humans engage 
in causal cognition—including its application to machine cognition—it is argued, we also 
need to take into account the content that informs the processing, the means and 
mechanisms of knowledge accumulation and transmission, and the cultural context in 
which both accumulation and transmission take place.

Keywords: causal cognition, cognitive processes, content, culture, language, knowledge accumulation, 
knowledge transmission

INTRODUCTION

Causality is the relation between two events, one of which is the consequence (or effect) of 
the other (cause). Gaining an understanding of such cause-effect relations is of prime concern 
for humans, starting in infancy with a drive to explore one’s world and test one’s assumptions 
(Gopnik et  al., 1999; Muentener and Bonawitz, 2017). Indeed, the ability to attain causal 
understanding and harness it for diagnoses, predictions, and interventions is so advantageous 
that it has been considered the main driving force in human evolution (Stuart-Fox, 2015; 
Lombard and Gärdenfors, 2017).

While understanding is arguably the key goal of causal cognition, its components are less 
clearly delineated. So, what exactly is causal cognition? Or rather, how should we  conceptualize 
it from a cognitive science point of view? As will be  detailed in the next section, a great 
deal of approaches in this field focuses on the detection of and reasoning from statistical 
regularities. Taking this rather narrow focus as the starting point, I  will advocate a broader 
perspective on causal cognition, which also factors in its distinctly human characteristics, 
specifically the crucial roles of content, knowledge transmission, and culture. Implications for 
the field—including application to machine cognition—will be discussed prior to the conclusion.
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PERSPECTIVES ON CAUSAL 
COGNITION

The preamble for this research topic outlines causal cognition 
as the ability “to perceive and reason about […] cause-effect 
relations.”1 This outline largely reflects what may be  seen as 
the “standard view” in cognitive and social psychology. In the 
following, this view will be  fleshed out, before addressing the 
dimensions along which it needs to be  extended.

The Standard View
Precise definitions of causal cognition are hard to come by. 
Scholars tend to presume that the term is self-explanatory and 
hence only mention in passing what they are actually focusing 
on. Nevertheless, a reasonably reliable impression can be gleaned 
from the first five publications that pop up when “causal 
cognition” is entered into Google Scholar (with jointly 1,280 
citations in total, as of 12 August 2019, sorted by relevance).

The three publications which come from cognitive and 
comparative psychology cast causal cognition as the 
understanding of causal mechanisms (Zuberbühler, 2000; Penn 
and Povinelli, 2007) and as representations of the causal relation 
between action and outcome (Dickinson and Balleine, 2000). 
That is, concealed by the more generic term “causal cognition,” 
the subject of the respective works is actually confined to just 
a few aspects, each of which has an entire research tradition 
devoted to it: perception (Michotte, 1963; Saxe and Carey, 
2006), learning (Shanks et  al., 1996; Gopnik et  al., 2004), and 
reasoning (Blaisdell et  al., 2006; Waldmann, 2017).

Social psychologists add attribution, as their topic of core 
concern, to this range of cognitive processes (Norenzayan and 
Nisbett, 2000), that is, explanations of social behavior in terms 
of dispositional and/or contextual factors (Kelley, 1973; Choi 
et  al., 1999). The cognitive and the social tradition essentially 
differ in terms of the explanandum—a change as the outcome 
of an event or of one’s actions, versus an account of why 
people behave in a certain way—but they both conceptualize 
causal cognition as consisting of mental processes.

While some scholars emphasize the domain-general nature 
of these processes, others consider domain boundaries to 
be relevant for distinguishing different types of causal cognition 
(Morris and Peng, 1994). And some even argue for the existence 
of domain-specific modules devoted to reasoning distinctly 
about physical, biological, and social/psychological events (Leslie, 
1994; Spelke and Kinzler, 2007). Domains in this sense are 
defined by the distinct properties of their key entities and the 
causal principles accounting for their behavior. Objects in the 
physical domain, for instance, move when propelled by external 
forces in line with mechanistic principles, whereas the inhabitants 
of the biological domain are able to move of their own accord, 
in line with vitalistic principles. These different principles 
motivate a conceptual distinction between the constructs of 
cause (as eliciting a physical effect) versus reason (as motivating 

1 https://www.frontiersin.org/research-topics/9874/
causal-cognition-in-humans-and-machines

behavior), and between cognitive processes devoted to physical 
causation (like perception and reasoning) versus those devoted 
to social agency (like attribution and ascription of responsibility).

Only one of the five above-mentioned publications, a 
multidisciplinary compilation of 20 contributions on causal 
cognition (Sperber et  al., 1995), outlines a broader range of 
perspectives, regarding both the processes and factors involved 
and the domains considered.

A More Comprehensive View
Some core components of causal cognition, like learning based 
on statistical regularities, are firmly rooted in our evolutionary 
past: They are present in non-human animals, they are observable 
in human infants, and they enabled our ancestors to move 
out of their original habitat and spread around the globe 
(Bender, 2019). Even these shared roots, however, do not render 
causal cognition a uniform phenomenon. Relevant abilities in 
infants already transcend those of our closest relatives in several 
ways. Causal cognition in humans is characterized, inter alia, 
by the integration of content information into theory-like 
representations, with serious implications for processing. This 
role of content and the means by which it is incorporated 
will be  outlined in more detail in the following.

The Role of Content for Processing
As noted above, the bulk of research on causal cognition focuses 
on processing while abstracting from content. As one 
consequence, methods prioritize artificial tasks in laboratory 
settings, involving toys and other stimuli designed for the very 
purpose of bearing no similarity to anything with which 
participants may be  familiar (e.g., Gopnik and Sobel, 2000). 
Confronted with a meaningless pattern of statistical regularities, 
the participant’s task is to diagnose the underlying causal 
relations. Oddly enough, the very reason for doing so is that 
content plays such an overwhelming role in human causal 
cognition that, to be able to isolate the “pure” processes underlying 
it, detaching these processes from content appears indispensable.

The most abstract form of content is a structural model 
of the causal relations involved (e.g., whether they constitute 
a simple chain or a more complex network), and even rats 
have been shown to form such deeper causal representations, 
which lead their learning and reasoning (Blaisdell et al., 2006). 
When available, knowledge and beliefs on properties of items, 
on dependencies between them, or even on underlying 
mechanisms of causation inform these representations of 
structure. Pieces of knowledge are themselves embedded in 
mental models of how things work, which in turn guide tool 
use, decision-making, and problem-solving. For instance, rich 
knowledge on a domain affords reasoning strategies based on 
causal mechanisms, rather than category-based induction (Medin 
and Atran, 2004); and beliefs on causal mechanisms affect not 
only what, but also how, people decide (Kempton, 1986; Dörner, 
1996; Güss and Robinson, 2014). On a higher level still, these 
various sorts of representations are organized by framework 
theories. Framework theories are ontological perspectives on 
the world, enriched with cultural values, that motivate 
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interpretations, inferences, and intentions (Bang et  al., 2007). 
They affect, for instance, how information is filed in long-term 
memory, whether reasoning is biased by typicality and diversity 
effects, or on which principles domain boundaries are drawn 
(Medin and Atran, 2004; ojalehto et  al., 2017a,b). This need 
not imply that causal models are uniform or coherent; in fact, 
apparently incompatible accounts can co-exist in an individual’s 
mind and are selectively accessed depending on contextual 
cues (Astuti and Harris, 2008; Legare and Gelman, 2008).

In other words, content impacts on processing. If, however, 
the integration of knowledge and beliefs into theory-like 
representations is indeed so essential and decisive, accounts 
of human causal cognition cannot afford to disregard content.

The Role of Knowledge Transmission for Content
A great deal of knowledge about causation can be  gleaned 
from an individual’s interactions with the world, and observing 
statistical regularities may render a reasonably accurate model 
of causal relations, for instance when trying to diagnose and 
treat a common cold. Still, accounting for the underlying 
mechanisms is replete with interpretation and, often enough, 
pure speculation. The more elaborate such accounts are, the 
more likely they therefore are to encompass large portions 
that we  simply learned from other people (D’Andrade, 1995).

While learning from others is not an exclusively human 
ability, the extent to which our species capitalizes on it is 
indeed unique. Even as young children, humans pay specific 
attention to social cues (Kushnir et al., 2008), and when copying 
problem-solving behavior, they “over-imitate,” by prioritizing 
conventional aspects over mechanistic aspects, whether or not 
the former are causally relevant (Lyons et al., 2007)—a tendency 
that further increases into adulthood (McGuigan et  al., 2011). 
Humans not only actively seek information, but are also willing 
to convey it. This willingness arises from our disposition for 
shared intentionality, for teaching, and for learning from teaching 
(Tomasello et  al., 2005; Csibra and Gergely, 2009).

In contrast to the acquisition of behavioral patterns and 
action-based problem-solving, teaching is indispensable for the 
explicit transmission of knowledge, particularly for knowledge 
on a subject that is as invisible and ephemeral as causality 
(Waldmann et al., 2006). With language, humans have developed 
the most powerful tool in the entire animal kingdom for 
achieving this—a tool that young children already exploit in 
full when they ask for causal explanations, and persist in 
requesting more explanations if they are not satisfied with the 
previous ones (Callanan and Oakes, 1992; Frazier et  al., 2009).

Given its key role for knowledge accumulation, the impact 
of language and its usage on causal cognition should not 
be  underestimated. Sometimes, a linguistic label may 
be  sufficient to serve as a cue for causal assumptions (as is 
the case with the common cold, which, according to popular 
belief, is caused by exposure to cold weather). But language 
use can also affect cognition more subtly, through the ways 
in which information about causal relations and events is 
encoded, or in how event descriptions are linguistically 
prepacked or split into their components (Wolff et  al., 2009; 
Bohnemeyer et  al., 2010). For instance, while “the climate is 

changing” and “humans are changing the climate” both describe 
the same event, the two linguistic constructions still suggest 
slightly diverging causal perspectives, one focusing on the 
event, and the other on the agent. Such modifications of the 
linguistic framing are able to redirect people’s attention to, 
in this case, event or agent (Fausey et  al., 2010); to alter 
their inferences on causal efficacy (Kuhnmünch and Beller, 
2005); to sway their memories of something they themselves 
observed (Loftus and Palmer, 1974; Fausey et  al., 2010); or 
to affect their assignment of agency, responsibility, and blame 
(Fausey and Boroditsky, 2010; Bender and Beller, 2017).

In other words, content consists of knowledge that is socially 
accumulated and transmitted, frequently through explicit teaching 
using language. If, however, transmission is so crucial for 
content generation, with the means of transmission affecting 
causal representations and processing, accounts of human causal 
cognition cannot afford to disregard the role and the 
characteristics of the mechanisms involved.

The Role of Culture for Knowledge Transmission
Transmission of knowledge typically takes place within a social 
context. Social orientations and cultural practices therefore 
impact on every step of it: the bits and pieces of knowledge 
transmitted, the means of transmission, and the specific details 
of the transmission process itself.

As noted above, the bulk of people’s knowledge and beliefs 
is learned from others and hence bears the stamp of the cultural 
setting in which it emerged and is transmitted. Cultural shaping 
is amplified insofar as knowledge and beliefs are accumulated 
over time and integrated into larger models and framework 
theories (Bang et  al., 2007). Cultural framework theories not 
only provide distinct ontological perspectives, and hence endow 
meaning to the causal accounts of the very same event in 
notably different ways, but even entail different ways of 
partitioning the world into domains. The ontological perspective 
implicit in most Western framework theories, for instance, 
suggests partitioning into a physical, a biological, and a social-
psychological domain, largely based on properties of their key 
entities and on corresponding principles for agency ascription 
(Carey, 1996, 2009; Spelke and Kinzler, 2007). The ontological 
perspective implicit in Amerindian framework theories, by 
contrast, emphasizes interconnectedness between entities, and 
hence suggests principles for agency ascription that are grounded 
in relations rather than properties, and that give rise to domains 
based on communication and exchange (ojalehto et al., 2017a,b).

As a consequence, causal cognition is infused with culture. 
People therefore differ in whether they engage in causal 
considerations on a regular basis (Beer and Bender, 2015), 
and in how they weigh consequences versus causes (Choi et al., 
2003; Maddux and Yuki, 2006). They also differ in the principles 
in which category and domain boundaries are grounded (ojalehto 
et al., 2017a,b), and in the concepts that inform their explanations 
(Beller et al., 2009). Even the biases that affect inferences differ 
across cultures (Medin and Atran, 2004; Bender and Beller, 2011). 
Factors contributing to these differences include, among others, 
the cultural shaping of the settings in which causal cognition 
occurs; the extent to which socialization patterns and teaching 
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strategies encourage or discourage exploration and requests 
for explanation; the culture-specific organization of causally 
relevant knowledge, concepts, and categories; and the language-
specific encoding of causal relations in grammatical structure 
(for reviews, see Bender et  al., 2017; Bender and Beller, 2019).

In other words, knowledge transmission is ingrained in 
culture. If, however, the accumulation and propagation of 
information is so dependent on cultural practices and institutions, 
accounts of human causal cognition cannot afford to disregard 
its cultural fabric.

IMPLICATIONS FOR STUDYING  
CAUSAL COGNITION IN HUMANS  
AND MACHINES

While causality might be  objective, and our interest in it 
phylogenetically old, neither of the two is set in stone. As 
demonstrated by Iliev and colleagues (Iliev and ojalehto, 2015; 
Iliev and Axelrod, 2016), the extent of our concern with causality 
has changed over time—even over the course of just one 
century—and so too has the usage of the corresponding 
vocabulary and concepts. Here, I argue that our scientific notions 
of causal cognition can, and in fact must, change as well.

Research on causal cognition has typically focused on how 
humans gain explanations for what is going on in the world. 
In so doing, it often reduces causal cognition to a few cognitive 
processes involved in perception, learning, reasoning, and 
attribution, which are investigated devoid of content or context. 
Yet, to achieve a more comprehensive understanding of what 
is going on when humans engage in causal cognition, we  also 
need to take into account the content that informs the cognitive 
processing, the means and mechanisms of knowledge 
accumulation and transmission, and the cultural context in 
which both accumulation and transmission take place. All of 
these aspects are unique to, and constitutive of, human causal 
cognition, and have serious implications for how we  study 
causal cognition in humans and machines.

As a first consequence, we  may wish to acknowledge more 
phenomena as components of causal cognition than just the 
inferences drawn from patterns of statistical regularities. Included 
should be, inter alia, verbal accounts, principles for categorization, 
tool use in daily life, problem-solving in complex situations, 
or judgments of blameworthiness and punishment. Concurrently, 
the segregation between the physical and the social domain—
and hence between causation and agency—should be abolished 
as arguably culture-specific categorizations.

As a second consequence, we  may wish to reconsider the 
methods we  apply for investigating causal cognition. The 
repertoire of research strategies should be  extended beyond 
philosophical reflections and sterile lab experiments, to also 
include statistical analyses of linguistic data, in-depth within-
culture analyses of cognitive concepts, processes, and changes 
over time, ethnographic observations, or cross-cultural and 
cross-linguistic studies (Bender and Beller, 2016). Moreover, 
stronger efforts should be undertaken to increase the ecological 
validity afforded by our tools and settings.

A third consequence arises for attempts to model human 
causal cognition in machines. The recent exceptional progress 
in the area of artificial intelligence is largely thanks to the 
harnessing of deep learning for pattern recognition. Basically 
reflecting the “standard view” of causal cognition, this focus 
remains on the lowest rung of Pearl’s Ladder of Causation (Pearl 
and Mackenzie, 2018) and falls short of resembling human 
competences. Two of the core ingredients proposed by Lake 
et  al. (2017) for making machines “learn and think like people” 
include an ability to build causal models and the grounding of 
learning in intuitive theories of physics and psychology (a kind 
of developmental “start-up software”). This emphasis on structure 
and content echoes insights from research on causal cognition 
in humans and non-human species (Pearl, 2000; Waldmann 
et al., 2006) and would ensure that most of the shared components 
of causal cognition are accounted for. Still, for modeling (uniquely) 
human characteristics, a further step needs to be  taken: the 
implementation of social learning and cultural accumulation of 
knowledge, possibly enriched by language use (Dennett and 
Lambert, 2017; Tessler et  al., 2017). Learning from others not 
only requires fewer data and occurs at a higher speed, but is 
also a key mechanism in diversification. As Clegg and Corriveau 
(2017) put it: even if the developmental “start-up software” is 
assumed to be universal, the “software updates” are likely shaped 
by culture and may over time generate distinct operating systems.

CONCLUSION

To sum up, gaining an understanding of cause-effect relations 
is an ability in which humans clearly and strikingly outperform 
any other species. To a great extent, this is due to the fact 
that in our species, individuals are just not reliant on drawing 
inferences from observed statistical regularities, each on their 
own, but are willing and able to share their observations, 
inferences, and interpretations, to accumulate them over time, 
and to transmit them to the next generation. The content, 
which is so crucial in human causal cognition, is a product 
of culture from the very beginning, rendered possible and 
profoundly shaped by the fact that humans are a cultural 
species (Bender and Beller, 2019). While these characteristics 
of human causal cognition may not be  considered relevant 
when transferring models from humans to machines—or not 
even desirable in some applications (Livesey et  al., 2017)—it 
would at least be  instructive to be  aware of them.
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Real causal systems are complicated. Despite this, causal learning research has

traditionally emphasized how causal relations can be induced on the basis of idealized

events, i.e., those that have been mapped to binary variables and abstracted from time.

For example, participants may be asked to assess the efficacy of a headache-relief pill

on the basis of multiple patients who take the pill (or not) and find their headache relieved

(or not). In contrast, the current study examines learning via interactions with continuous

dynamic systems, systems that include continuous variables that interact over time (and

that can be continuously observed in real time by the learner). To explore such systems,

we develop a new framework that represents a causal system as a network of stationary

Gauss–Markov (“Ornstein–Uhlenbeck”) processes and show how such OU networks

can express complex dynamic phenomena, such as feedback loops and oscillations.

To assess adult’s abilities to learn such systems, we conducted an experiment in which

participants were asked to identify the causal relationships of a number of OU networks,

potentially carrying out multiple, temporally-extended interventions. We compared their

judgments to a normative model for learning OU networks as well as a range of alternative

and heuristic learning models from the literature. We found that, although participants

exhibited substantial learning of such systems, they committed certain systematic errors.

These successes and failures were best accounted for by a model that describes people

as focusing on pairs of variables, rather than evaluating the evidence with respect to

the full space of possible structural models. We argue that our approach provides both

a principled framework for exploring the space of dynamic learning environments as

well as new algorithmic insights into how people interact successfully with a continuous

causal world.

Keywords: causal learning, dynamic systems, computational modeling, intervention, cognitive modeling, resource

limitations

INTRODUCTION

We live and act in a messy world. Scientists’ best models of real-world causal processes
typically involve not just stochasticity, but real-valued variables, complex functional forms,
delays, dose-dependence, and feedback leading to rich and often non-linear emergent dynamics
(Cartwright, 2004; Strevens, 2013; Sloman and Lagnado, 2015). It follows that learning successfully
in natural settings depends on accommodating these factors. Cognitive psychologists have explored
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many of these dimensions of complexity in isolation (e.g.,
stochasticity: Waldmann and Holyoak, 1992; Bramley et al.,
2017a; Rothe et al., 2018; interventions: Sloman and Lagnado,
2005; Waldmann and Hagmayer, 2005; Bramley et al., 2015;
Coenen et al., 2015; time: Buehner and May, 2003; Lagnado and
Sloman, 2006; Rottman and Keil, 2012; Bramley et al., 2018;
and continuous variables: Pacer and Griffiths, 2011). However,
we argue these components generally can not be isolated in
realistic learning settings, meaning a deeper understanding
of human causal cognition will require a new framework
that naturally accommodates inference from interventions in
continuous dynamic settings.

As an everyday example of a time-sensitive, dose-dependent
causal relationship, consider the complexities involved in
consuming alcohol. It is common for drinkers to adjust their
consumption based on their recognition that higher doses
affect inhibition or mental clarity, that will in turn have other
downstream effects on quality of conversation or willingness to
sing karaoke. The effects of alcohol consumption differ widely
in quality and quantity depending on dosage and time delays.
A small glass of wine with dinner will likely have little effect
on mental clarity whereas a few shots will have a stronger
effect. Further complicating the learning problem, these effects
of alcohol do not come instantaneously but are rather delayed
and distributed in time. Worse still, there can be complex
temporal dynamics, such as the feedback loop between lowered
inhibition and increased alcohol consumption, and innumerable
contributing factors, such as diet or amount of sleep, that
modulate alcohol’s effect. Thus, in settings like this, the learning
problem is non-discrete (how much alcohol did I drink) and
extended in time (when did I drink it), produces evidence that
is naturally time ordered (how you feel over the preceding
and subsequent hours), and involves complicated dynamics
(e.g., feedback loops). In the current paper, we study human
learning through real-time interactions with causal systems
made up of continuous valued variables. We see this setting
as capturing the richness of real world causal learning, while
remaining simple and principled enough to allow for a novel
formal analysis.

The structure of the paper is as follows. First, we
summarize relevant past work on causal structure inference
from interventions, temporal information, and different
representations of functional form. Next, we lay out our
new formalism for inference of causal structure between
continuous variables. We then report on an experiment, in
which participants interact with causal systems represented
by sliders on the computer screen. We provide an exploratory
analysis of the interventional strategies we observed in the
experiment before analyzing structure learning through the
lens of a normative Bayesian inference model and a range of
heuristic and approximate alternatives, finding evidence that
people focus sequentially on individual connections rather than
attempting to learn across the full space of possible causal models
at once. Finally, we discuss new opportunities provided by the
formalism introduced in this paper, including future questions
in causal cognition as well as applications to other areas, such as
dynamic control.

Past Research
Probabilistic Causation Over Discrete Events
Research in causal cognition has generally aligned itself with the
philosophical tradition of probabilistic causation, which defines a
causal relationship as one where a cause changes the probability
of its effect (Hitchcock, 2018). This definition implicitly operates
over particular representations: discrete states, such as events
or facts that have some probability of occurring or being
true. Because of this, experimental work in causal cognition
has primarily focused on causal relationships between discrete
valued (often binary) variables (e.g., Sloman, 2005; Krynski and
Tenenbaum, 2007; Ali et al., 2011; Fernbach and Erb, 2013;
Hayes et al., 2014; Rehder, 2014; Rothe et al., 2018). These are
typically presented in contexts in which temporal information
is either unavailable or abstracted away so that cases can be
summarized in a contingency table. See Figure 1 for a simple
example in which (A) continuous data is (B) snapshotted in time,
in order to (C) dichotomize and create counts of contingencies
and ultimately abstracted into a probabilistic causal relationship.
This approach is very common in part because there is a well-
established mathematical framework—Bayesian networks—for
efficiently encoding joint distributions of sets of variables in the
form of networks of probabilistic contingencies (Pearl, 2009;
Barber, 2012).

While the probabilistic contingencies paradigm has been
fruitful for exploring many aspects of causal cognition, we are
interested in other settings. As mentioned, we believe that many
real life systems may not lend themselves to discretization, nor
involve much independent and identically distributed data with
no temporal information. Instead, people are often have access to
autocorrelated, time-dependent, continuous information and we
are interested in they how represent and draw inferences on the
basis of this information.

Learning
A prominent question in causal cognition is how people
learn causal relationships from contingency data, such as that
presented in Figure 1C. Although the literature shows that
humans are often quite adept causal learners (Cheng, 1997;
Griffiths and Tenenbaum, 2005; Lu et al., 2008) there are a
number of important exceptions. One is that updates to beliefs
about causal structure on the basis of new information are
often made narrowly rather than globally. That is, in ways
that do not compare the evidential fit across all variables taken
together. Tomodel this, Fernbach and Sloman introduced a Local
Computations (LC) model, which posits that people focus on
“evidence for individual causal relations rather than evidence for
fully specified causal structures” (Fernbach and Sloman, 2009,
p. 680). By ignoring the possible influences of other causes, their
model captures a strong empirical tendency for human learners
to exhibit order effects and overconnect their causal hypotheses
(also see Taylor and Ahn, 2012). Bramley et al. (2017a) extended
this finding, finding evidence suggesting that people consider
local changes that modify their previously favored hypothesis.
Together, these studies suggest that people use a local updating
strategy, testing and evaluating individual causal links rather than
updating a posterior distribution over the global model space.We
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FIGURE 1 | Illustration of abstraction from full timeseries data to probabilistic contingency. (A) is a full time course of the health of 40 simulated patients throughout

the course of a classic randomized controlled trial. (B) demonstrates the type of information available when only evaluating the health of patients at the end of the trial.

(C) demonstrates the type of information available when categorizing patients into “sick” and “healthy” groups, rather than maintaining full continuous information.

ask whether this tendency toward local learning extends to the
continuous dynamic systems that are under study here.

Learning via Interventions
As well as capturing probabilistic relationships, Bayesian
networks can be used to reason about, and from, idealized
manipulations of causal systems, or “interventions” (Pearl, 2009).
Bayesian networks, at their core, deal with independence, not
dependence, relations. Because of this, if a cognizer passively
observes some variables but cannot observe the temporal
direction of their influences (i.e., perhaps they influence one
another too quickly to see) they can be equally consistent with
multiple causal hypotheses. For example, the common cause
X ← Y → Z and chain X → Y → Z are “Markov equivalent”
because, in both networks, X and Z are independent conditional
on Y . However, crucially, Markov equivalent networks do not
have identical data distributions under intervention. In the
example of Markov equivalent networks given above, intervening
to set Y to some value y as denoted with Pearl’s (2009) “Do()”
operator, would change the distribution for X under the common
cause—i.e., P(X) 6= P(X|Do[Y = y]) for at least some y—
but would not affect the distribution for X for the chain—i.e.,
P(X) = P(X|Do[Y = y]) for any y.

It has been shown that people are able to learn successfully
from interventions, and are often moderately efficient in their
intervention selection according to information–optimal norms
(Steyvers et al., 2003; Sloman and Lagnado, 2005; Waldmann
and Hagmayer, 2005; Coenen et al., 2015; Bramley et al., 2017a).
However, participants in these studies also typically exhibited
biases indicative of the influence of cognitive constraints. For
example, Coenen et al. (2015) found that, when deciding between
two potential causal networks, people appeared to follow a
heuristic of intervening on the node with the most downstream
causal links (averaged across the candidate networks) rather
than intervening to maximally distinguish between the two. Use
of this heuristic was more common when intervening under

time pressure. Bramley et al. (2017a) tested people’s learning
in a broader hypothesis space encompassing all possible 3 and
4 variable network structures. They found that people made
interventions that appeared to target uncertainty about a specific
individual link, node or confirm a single hypothesis, rather than
those effective at reducing their uncertainty “globally” over all
possible causal networks. Here we assess the efficacy of learners’
interventions on continuous dynamic systems for which variables
are potentially manipulated through a range of magnitudes over
an extended period of time.

Time
Time has long been seen as a powerful cue for causation
(Hume, 1959), especially with regards to identifying causal
direction. People rule out backwards causation, assuming that
effects cannot precede causes (Burns and McCormack, 2009;
Greville and Buehner, 2010; Bramley et al., 2014). Work in the
cognitive sciences on the use of time in causal judgments has
focused on point events separated by delays—that is, events
like explosions and collisions that occur at particular times
but with negligible duration (Shanks et al., 1989; Griffiths,
2004; Lagnado and Sloman, 2006; Pacer and Griffiths, 2012;
McCormack et al., 2015). From this line of work, we have
learned more than just that temporal order is relevant for
causal direction. The actual temporal dynamics of causal systems
affect judgments, for example shorter and more reliable delays
between cause and effect are more readily seen as causal
(Greville and Buehner, 2010).

In a systematic study of people’s use of temporal dynamics
to learn causal structure, Bramley et al. (2017b, 2018) combined
interventions and time to investigate people’s learning of
causal structure between components that exhibited occasional
(punctate) events that could also be brought about by
interventions. They found that people are sensitive to expected
delays, especially when they also expect the true delays to
be reliable, and are judicious and systematic in their use
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of interventions. While these studies have been valuable
in demonstrating that people are sensitive to the temporal
characteristics of causal systems, many everyday systems—
such as economies, ecosystems, or social groups—are more
naturally described as extended shifting influences than point
events. We thus see the current study as extending the analysis
of time’s role in causal cognition to explore these inherently
continuous settings.

Continuous Variables
As discussed above, many natural scenarios involve continuous
valued variables and causal influences that are typically extended
in time rather than punctate. Given the ubiquity of such systems,
continuous variables have received surprisingly little attention in
the study of causal cognition. In a reanalysis of data from Marsh
and Ahn (2009) and a novel experiment, Pacer and Griffiths
(2011) showed that people are capable of learning individual
cause-effect relationships between continuous variables. Soo and
Rottman (2018) investigated causal relations in non-stationary
time series, i.e., those where long term trends affect the average
values of the variables in ways that obscure and complicate the
causal relations between those variables. They proposed three
ways that the variables could be represented before assessing
their relationships: (1) state values, (2) difference scores, and
(3) trinarized difference scores (positive, negative, or zero). In
their task, causal strength judgments were best explained by the
correlation between the direction of changes in variables’ values
from one time point to the next, rather than direct correlation
between the variables.

Complex Problem Solving
This project connects to the literature on complex problem
solving (Berry and Broadbent, 1984)—also sometimes called
complex dynamic control (Osman, 2010). This line of work
explores goal-directed behavior in dynamic environments,
typically with a structure that is hidden and initially unknown
to participants. In particular, we follow Funke (2001) in studying
minimal complex systems (MICS) that change dynamically in
response to participants’ actions and their hidden structure, but
are not so complex as to prohibit formal analysis.MICS have been
used as psychometric measurement tools, having been shown to
provide individually stable and reliable predictors of real-world
achievement (Greiff et al., 2013). This suggests thatMICS tap into
fairly foundational cognitive abilities.

Research on complex problem solving has begun to
unpack the key features of such MICS, and of the cognitive
strategies recruited by participants that determine performance.
For example, when participants have narrow goals in a
new environment, they learn less about its overall structure
(Vollmeyer et al., 1996), a finding consistent with proposals that
monitoring goals induces cognitive demands (Sweller, 1988).
They are also less likely to engage in systematic strategies that
can aid learning, such as the Vary One Thing At a Time
(VOTAT, see Kuhn and Brannock, 1977; Tschirgi, 1980) or
PULSE strategy (Schoppek and Fischer, 2017). Other work has
identified a number of high level behavioral features, such as time
on task, number of interventions made, or strategies, that predict

likelihood of success (Greiff et al., 2016; Schoppek and Fischer,
2017; Stadler et al., 2019).

We build on previous work in the CPS literature in a number
of ways. For one, whereas tasks in the CPS literature are typically
self-paced, we are unusual (but not unique, see Brehmer and
Allard, 1991; Schoppek and Fischer, 2017) in studying time-
continuous systems. We take the task of reacting to dynamics
as they unfold in real time to be reflective of real world
dynamic control scenarios. More fundamentally, the research
area’s focus on predicting success in control has left a gap in
our understanding of what exactly participants are learning as
they interact with dynamic systems. The current work extends
on this line of enquiry by providing a close model-based analysis
of participants’ actions and learning.

In sum, our approach here is novel in two key respects.
First, we study a setting that, like reality, is continuous
in terms of both time and state space. This allows us
to study learning in the context of causal systems that
give rise to non-linear emergent dynamics through the
lens of a sophisticated normative and heuristic model
comparison. Second, we explore an interactive setting in
which participants intervene on the system of interest
in complex, extended ways, rather than merely passively
observing its behavior or setting states across discrete
trials, again mapping more onto real world actions than
the idealized interventions studied in much of the existing causal
learning literature.

THE TASK

We chose a simple and intuitive structure learning task interface
that allows for learners to use their mouse to interact with the
variables in a system represented by a set of moving sliders
on the computer screen. A depiction of how the sliders were
presented is shown in Figure 4. Participants could observe the
evolving sequence of variable values but also move and hold
the variables (one at a time) at positions of their choice by
using the mouse. As mentioned, this environment allows us to
test learning of causal systems with continuous valued variables
and feedback dynamics. It also allows us to assess learning
via interventions that are both extended over time (learners
choose how long to intervene) and non-stationary (learners
might “hold” the variable in a particular position or “wiggle” it
up and down).

CONTINUOUS CAUSALITY IN TIME

This section presents a formalism for modeling causal systems
that relate continuous variables in time. To define a generative
model for such systems, we first introduce the notion of
an Ornstein–Uhlenbeck (OU) process and then define how
multiple OU processes can be interrelated so as to form an
interacting causal system. We then describe normative inference
within this model class on the basis of both observational and
interventional data.
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FIGURE 2 | Visualization of the impact of a single cause (slider X ) on a single effect (slider Y ) in an OU network with different causal strengths. Slider X is held to a

value of 40 for 20 timepoints, leading slider Y to unfold over time to different values depending on the causal strength. Probability distributions are smoothed averages

of 100 runs of the network given different causal “strengths” θXY (colored shading) where ω = 0.1 and σ = 5.

Generative Model
The Ornstein–Uhlenbeck Process
An Ornstein–Uhlenbeck (OU) process is a stationary Gauss-
Markov process that reverts to a stable mean (Uhlenbeck
and Ornstein, 1930). It can be conceptualized as Brownian
motion with the addition of a corrective force that biases the
process’s expected value toward the mean of the distribution. The
magnitude of that force increases as a function of the distance
been that mean and the process’s current state. Formally, 1vti—
the change in variable i from time t to t + 1—is defined as

P(1vti |ω,µi, v
t
i , σ ) = ω[µi − vti ]+ N(0, σ ) (1)

where vti is the value of i at time t, µi is the mean of the process
for variable i, σ is its variance, and ω is a parameter > 0 that
determines how sharply the process reverts to the mean1. µi

is also referred to as the process’s attractor state because it is
the value to which the process will revert to at asymptote. See
Figure 3A for an example of an OU process with an attractor
state of 0.

OU Processes and Causality
This definition can be generalized to accommodate OU processes
with non-stationary means. In particular, we take the step of
assuming that the attractor state µ for a variable is determined
by some function of the most recent values of its cause(s). When
a variable has no causes we model its attractor state as being 0.

1Throughout this work we use subscripts to denote variables and superscripts to

denote time. Note that whereas vti is the value of i at time t, vi is the value of i at all

timesteps, vt is the value of all variables at time t, and v is the value of all variables

at all times.

The single cause case
For a variable i with a single cause j this function is simply,

µt+1
i = f (vtj ) (2)

where vtj is the value of j at time t. As j changes over time, so too

does the output of f (vtj ), which serves as the new attractor state of

variable i at the next timepoint. For simplicity, here we assume
that f (vtj ) is linear. Thus, the change in i at the next timestep

(1vti ) is

P(1vti |v
t
i , v

t
j ,ω, σ , θji) = ω[θji · v

t
j − vti ]+ N(0, σ ) (3)

where θji ∈ (−∞,∞) is a multiplier (or “strength”) mapping
the value of the cause j to the attractor state of effect i. Figure 2
presents how a variable Y changes as a function of its cause X for
a number of different values of θXY . We assume1t of 100ms (i.e.,
between t and t+ 1) and that ω and σ remain constant, although
these assumptions can be loosened (see Lacko, 2012).

The multiple cause case
In general, a variable may have more than one cause. Although
there are a variety of ways in which multiple causal influences
might combine (cf. Griffiths and Tenenbaum, 2009; Pacer and
Griffiths, 2011), here we simply assume that causes have an
additive influence on an effects’ attractor state, such that

P(1vti |v
t ,ω, σ ,2) = ω

[

[

∑

j

θji · v
t
j

]

− vti

]

+ N(0, σ ) (4)

where j now ranges over all causes of variable i and 2 is a
square matrix such that θji ∈ 2 is the strength of the causal
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relationship from j to i2. Simply put, the mean that variable i
reverts to is assumed to be a sum of the values of its causes, each
first multiplied by their respective θs.

A collection of connected OU processes, which we call
an OU network, defines causal relationships for all directed
relations between variables and unrolls these effects over time.
For example, for a system consisting of variables X, Y , and Z,
2 specifies the strengths of the six potential inter-variable causal
relationships: X → Y , Y → X, X → Z, Z → X, Y → Z, and
Z → Y . Note that non-relationships are specified in this scheme
by setting θji to zero. At each timestep, Equation (4) is used to

determine vt+1X , vt+1Y , and vt+1Z as function of their previous values
vtX , v

t
Y , and vtZ . For display purposes, it is sometimes necessary to

constrain v to be between some range. This is done by setting
all vt+1 that fall outside of the range to their nearest value in the
range. The clock then moves forward and the process repeats.

OU networks have some intuitively appealing features of
continuously varying causal relationships. Figure 3 demonstrates
some of the dynamics that emerge from causal systems simply
by varying the θs. Whereas, a positive θXY results in the
value of Y following some positive multiple of the value of X
(Figure 3B), a negative θXY means that a decrease in X drives
up the value of Y (e.g., decreasing interest rates is generally
thought to increase inflation, Figure 3C). Feedback loops are
naturally represented with non-zero values of θXY and θYX . A
positive feedback loop results if the θs are of the same sign and
have an average magnitude >1 (Figure 3D) whereas a negative
feedback loop results if they are <1 (Figure 3E). Oscillations
can be implemented with θs of mismatched signs (such as 5
and −5, Figure 3F). Such feedback loops can be implemented
between pairs of variables or as part of a cyclic causal structure
with potentially many variables. Combining feedback loops and
cycles and including asymmetrical forms can lead to even more
complex dynamics (e.g., Figure 3H). We invite the reader to
build their own network and observe the dynamics at https://
zach-davis.github.io/html/ctcv/demo_ctcv.html. Note that while
the discussed examples cover two or three variables, the OU
networks framework generalizes to any number of variables.

Inference
We follow Griffiths and Tenenbaum (2005) in modeling people’s
learning of causal graphs as inverting the generative model.
What must be inferred is the causal structure most likely
responsible for producing all variable values at all timepoints—
v—under interventions.

Note that to accommodate interventions, we adopt Pearl’s
(2009) notion of graph surgery. If variable i is manipulated at
time t, the likelihood that vti has its observed value is 1 (i.e.,
is independent of i’s previous value or the value of its causes).
We define ιti as an indicator variable that is true if variable i is
intervened on at t and false otherwise.

2Although the OU formalism allows it, throughout this work we ignore the

possibility of self-cycles, that is, instances in which variables is a cause of itself.

That is, we assume, 2ii = 0.

The Single Cause Case
Consider the inference problem in which the goal is to determine
whether variable j causes variable i, and if so, the sign of that
causal relationship. That is, assume a hypothesis space L with
three hypotheses. One is that θji is >0, a causal relationship we
refer to as a regular connection. A second is that θji is <0, referred
to as an inverse connection. Finally, θji = 0 denotes that j has no
impact on i. Assume that i has no other potential causes.

Computing the posterior probability of a causal hypothesis
lk ∈ L involves computing, for each timepoint t, the likelihood of
the observed change in i (1vti ) given the previous values of i and
j (vti and vtj ), a value of θji corresponding to the hypothesis, the

endogenous system parameters ω and σ , and any intervention
that may have occurred on i (ιti). If the learner did not intervene
on i at t, this likelihood is given by Equation (3). If they have,
it is 1. The product of these likelihoods over all timepoints is
proportional to the posterior probability of lk.

P(lk|vi, vj; ιi) ∝
∏

t

∫

ω

∫

θji

∫

σ

P(1vti |v
t
i , v

t
j ,ω, σ , θji; ι

t
i)

P(θji|li)P(lk)P(ω)P(σ )dσdθjidω (5)

P(ω) and P(σ ) represents the learner’s prior beliefs about ω

and σ . P(θji|lk) represents the priors over θji corresponding
to hypothesis lk. For example, if lk corresponds to a regular
connection, P(θji|lk) would be 0 for non-positive values of θji.
For positive values, it would reflect learner’s priors over θji for
regular connections (later we describe how these priors can be
estimated in our experiment on the basis of an instructional phase
that precedes the causal learning task). Applying Equation (5) to
each causal hypothesis and then normalizing yields the posterior
over the three hypotheses in L.

A complication arises if variable values v are truncated
between some range of values (in our task v ∈ [–100, 100]). In the
case where vti equals themaximum truncated value, the likelihood
is the mass of the likelihood distribution above the range of
values. For the minimum truncated value the likelihood is the
mass of the likelihood distribution below the range of values.

The Multiple Cause Case
This procedure for evaluating a single potential causal
relationship generalizes to determining the structure of an
entire OU network. Consider a hypothesis space G as consisting
of graphs where each graph defines, for every potential causal
relationship, whether it is positive, inverse, or zero. For a system
with n variables G would contain 32n distinct causal hypotheses;
for our example system with variables X, Y , and Z, G contains
729 graphs. The posterior probability of a graph gk ∈ G involves
computing for each variable i and timepoint t, the likelihood
of the observed 1vti given the θs defined by gk and the state of
the system’s variables at t (Equation 4), taking into account the
possibility of an intervention on i at t (ιti):

P(gk|v; ι) ∝

N
∏

i=1

∏

t

∫

ω

∫

θ

∫

σ

P(1vti |v
t ,ω, σ , θ; ιti)

P(θ |gk)P(gk)P(ω)P(σ )dσdθdω (6)
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FIGURE 3 | Examples of the dynamical phenomena resultant from varying θ weights. Solid red, dotted blue, and dashed green lines depict the values of variables X,

Y , and Z, respectively. (A) A system with a single variable Y whose distribution mean is stationary at 0 (i.e., µ = 0). (B) A system with variables X and Y and a θ weight

from X and Y of 1 (i.e., θXY = 1). µX = 0 for first 30 timepoints and then µX = 100 for next 70. The value of Y tracks the value of X. (C) The same as (B) except that X

and Y are negatively related (θXY = −1). The value of Y tracks but has the opposite sign of X. (D) A system in which X and Y are reciprocally related via θ weights that

are >1 (i.e., θXY = θYX = 2). Because the values of X and Y grow so large they are indistinguishable in the plot. (E) The same as (D) except that X and Y , which have

an initial value of 100, are reciprocally related via θ weights that are <1 (θXY = θYX = 0.5). The values of X and Y eventually fluctuate around 0. (F) The same as (D)

except that the reciprocal θs are large and of opposite sign (i.e., θXY = 5, θYX = −5). The values of X and Y oscillate. (G) A system with three variables whose θ

weights form a causal chain, θXY = θYZ = 1. µX= 0 for 10 timepoints but then is set to 100 via an intervention. Note that changes in Y precede changes in Z. (H)

Timeseries of actual data observed by participant 10 on trial 10, generated by a complex system with three variables and four non-zero θs. All variables were initialized

at 0 and there were no interventions.

EXPERIMENT: CAUSAL STRUCTURE
LEARNING

To test people’s ability to learn causal structure between
continuous variables in continuous time, we conducted an
experiment in which participants freely interact with sliders
governed by an OU network with hidden causal structure. Their
goal was to intervene on the system in order to discover the
hidden causal structure.

Method
Participants
Thirty participants (13 female, age M = 37.5, SD = 10.6) were
recruited from Amazon Mechanical Turk using psiTurk (Crump
et al., 2013; Gureckis et al., 2016). They were paid $4 for ∼30
min. In a post-test questionnaire, on a ten point scale participants
found the task engaging (M = 7.9, SD = 2.2) and not particularly
difficult (M = 3.9, SD = 2.6). All procedures were approved
by the Institutional Review Board of New York University
(IRB-FY2016-231).

Materials
Each of the three variables was represented by a vertical slider
that moved by itself according to the underlying OU network

FIGURE 4 | Sliders used by participants. (A) Shows that the sliders all jitter if

no interventions are made. (B) Shows that the sliders do not jitter if

intervened on.

but which could also be manipulated by clicking and dragging
anywhere on the slider, overriding the state it would otherwise
have taken (see Figure 4)3. A timer was presented at the top of
the screen. Participants responded using six additional sliders
presented beneath the trial window, one for each potential causal

3See https://zach-davis.github.io/publication/cvct/ for a demo.
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FIGURE 5 | All 23 structures participants were tasked with learning. Black arrowheads signify “regular” connections (θ = 1), white arrowheads signify “inverse”

connections (θ = −1).

relations. Responses were constrained to be one of three options:
“Inverted,” “None,” or “Regular,” corresponding to θ < 0, no
relationship (θ = 0), and θ > 0, respectively. Participants were
pre-trained on these terms in the instructions. The sliders were
constrained to be between−100 and 100, and the buttons on the
slider presented a rounded integer value in addition to moving
up and down.

Stimuli and Design
The 23 causal graphs shown in Figure 5 were selected for testing
on the basis of a number of criteria. They were roughly balanced
in the number of positive and negative links and the number of
links between each of the variables. More qualitatively, we tried to
select networks that would be interesting a priori. This includes
many of the classic causal graphs, such as chain networks,
common causes, and common effects, but also less-studied
graphs, such as those with feedback loops. The experiment
always began with two practice trials that were excluded from
all analyses. These were always the two Single cause networks
(Figure 5, top left). This was followed by 23 test trials, one for
each of the networks in Figure 5 presented in random order. The
OU parameters used during training and the test were ω = 0.1
and σ = 5. The true θs were either 1 (for regular connections), 0
(no connection), or−1 (for inverse connections).

Procedure
To familiarize them with the interface, participants were
required to first watch four videos of an agent interacting with
example causal networks. These videos informed participants
of the underlying causal structure and demonstrated an agent
interacting with the system. To minimize biasing participants
toward any particular intervention strategy, the videos displayed

a variety of basic movements, including wobbling the intervened
on variable, holding a variable at a constant level, and holding a
variable at a limit value (e.g., 100) by moving its slider to one end
of the scale. The four example causal networks included (1) no
causal connections, (2) a single regular (θ = 1) connection, (3)
a single inverse (θ = −1) connection, and (4) two connections
forming a causal chain in which one link was regular and one
was inverse. To ensure that they understood the task, participants
were required to pass a five question comprehension check before
starting. If a participant responded incorrectly to any of the
five questions they were permitted to retake the quiz until they
responded correctly to all five questions. This was designed to
ensure that they learned: the duration of each trial, the difference
between a regular and inverted connection, that there can be
more than one connection per network, and that they must
provide a response for all six possible connections.

In themain task that followed, participants completed 25 trials
lasting 45 s each. The first two of these involved a single regular
and single inverse connection that, unknown to participants, we
considered practice trials to familiarize them with the interface
and excluded from all analyses. A trial was initiated by pressing
the “Start” button, whereupon the sliders started moving with
values updating every 100 ms. Perceptually, they would appear
to “jitter” according to the noise associated with the underlying
OU network plus move systematically according to the unknown
causal relationships. At any time, participants were free to
intervene on any variable by clicking, holding, or dragging the
requisite slider. While it was pressed down, the position of the
mouse determined the value of the variable. Once it was released
the variable would continue from that point according to the
OU network. Participants were free to make (and revise) their
judgments at any point after initiating a trial but were required
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FIGURE 6 | Judgment options for participants. Participants were presented with a ternary choice between “inverted,” “none,” and “regular”.

to enter a judgement for all six causal relations by the end of
the trial (see Figure 6). No feedback was provided at any point.
After completing the 25 trials, participants completed a brief
post-test questionnaire reporting their age, gender, engagement
and subjective difficulty as well as any comments.

Results
Participants were substantially above chance (0.33) in correctly
classifying causal links into one of the three response categories
(M = 0.82, SD = 0.22), t(29) = 17.48, p < 0.001. They were
slightly more successful in identifying regular causal links (M =
0.92, SD = 0.12) than inverse causal links (M = 0.90, SD = 0.13),
t(29) = 2.12, p = 0.04. Participants also correctly classified a
higher proportion of causal relationships as the trials progressed,
as demonstrated by a simple linear regression of accuracy on trial
number, t(21) = 2.91, p = 0.008, although this relationship was
modest with participants being 0.25% more likely to correctly
identify a link for each new trial.

In identifying overall causal networks (correctly identifying all
six of the possible directional causal relationships), participants
were also well above chance (3−6 = 0.0014), (M = 0.44, SD =
0.22), t(29) = 10.81, p < 0.001. The probability of selecting the
correct network was 0.79, 0.60, 25, and 0.07 for networks with
1, 2, 3, and 4 causal links, respectively. Accuracy varied sharply
with the complexity of model as shown by a repeated measures
ANOVA, F(3,84) = 74.0, p < 0.001. Note that participants’
responses did not reflect a preference toward simpler models, as
they marked slightly over half of the possible connections (M =
0.52, SD = 0.13), which was greater than the true proportion of
connections in the test networks (0.39), t(29) = 5.62, p < 0.001.
See the SupplementaryMaterial for results for all tested networks.

Errors
While participants were generally well above chance in
identifying causal relationships, there was some systematicity
to their errors. In particular, these errors closely followed the

qualitative predictions of Fernbach and Sloman (2009) local
computations (LC) model. The first qualitative prediction is an
over-abundance of causal links. Eighty-two percent (SD = 0.17)
of the errors that participants made involved adding causal links
that didn’t exist, significantly greater than chance4 (0.59); t(29) =
7.33, p < 0.001. The second qualitative prediction of the LC
model as defined in this paper is an inability to distinguish
between direct and indirect causes (e.g., in the network X →
Y → Z, incorrectly also judging X → Z). While in general
participants correctly classified 82% of the causal links, they were
far more likely to erroneously add a direct link between two
variables when in fact the relationship between those variables
was mediated by a third variable, with below chance (0.33)
accuracy on those potential links (M = 0.16, SD = 0.21); t(29) =
−4.48, p < 0.001.

Figure 7 shows participant judgments for three classic causal
structures in causal cognition: common cause, common effect,
and chain networks. It shows that participants were quite good
at detecting any causal relationship in a network that existed
between two variables. In the figure, these results correspond
to the blue bars, which indicate that they correctly classified a
regular connection as regular (as mentioned, participants were
also good as classifying inverse connections as inverse). Figure 7
also shows that participants were often good at classifying
absent connections as absent (the gray bars) with one important
exception: in the chain network Y → Z → X the relationship
between Y and X was judged to be nearly as causal as Y →
Z and Z → X. That is, they failed to appreciate that the
(apparent) relationship between Y and X was in fact mediated
by Z. These patterns held for the other instances of the common
cause, common effect, and chain networks defined in Figure 7.
Moreover, we found that, for any of the more complex networks

4For the structures used in this experiment, a hypothetical participant who

responded “inverse,” “none,” and “positive” with equal probability would

erroneously add a causal link 59% of the time.
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in Figure 7, participants had a strong tendency to infer a
direct causal relationship between two variables whenever those
variables were in fact mediated by the third variable. Figure S1
presents how causal links were classified for all 23 networks.

Interventions
To achieve this level of performance, participants made heavy use
of interventions. We define a single intervention as beginning
when a participant clicked on a variable’s slider and ending when
the mouse was released. The average number of interventions
made on a single trial was 4.94 (SD = 2.46). However, because
a few participants made a large number of interventions on most
trials, this distribution was modestly skewed with a median of 4
and mode of 3. One participant made no interventions at all.

Interventions lasted an average of 3.46 s (SD= 3.00) and had a
range (themaximum value of the variable during the intervention
subtracted from its minimum value) of 138.3 (SD = 58.89).
This latter measure was strongly bimodal with modes around
100 and 200, indicating that interventions typically consisted of
participants dragging a variable from about 0 to one end of the
scale (−100 or 100) or then in addition dragging it to the opposite
end of the scale. Apart from these large swings, participants
typically held the variable steady at a constant value during an
intervention. This conclusion is supported by the fact that, within
an intervention, the percentage of 100 ms time windows in which
the variable had the same value as during the previous window
was 71.2%. Four participants had some tendency to “wiggle” the
variable through a small range during an intervention but they
were the exception.

The interventions were spread about evenly over the three
variables. Indeed, all three network variables were manipulated
at least once on more than 99% of the trials. Interventions varied
modestly as a function of whether the manipulated variable was
a cause of other variables in the network. When it was, the
intervention was both shorter (3.21 s) and had a narrower range
(132.9) than when it wasn’t (3.99 s and 149.5), t(28) = 3.19
and t(28) = 6.39, respectively, both ps < 0.0055. Apparently,
it was easier for participants to identify causes, which involves
observing a state change in other network variables, than non-
causes, which involves the absence of such changes. Interventions
on causes did not vary substantially, in length of time or range
of values, as a function of whether they had one or two effects.
Interventions also did not vary as a function of whether or not
the variable was affected by other variables in the network. In
summary, participants recognized that interventions help causal
learning, that manipulating all variables is necessary to identify
the correct causal structure, and that large interventions are more
useful than small ones.

Results Summary
Participants exhibited considerable ability to intervene effectively
and learn causal structure in our task. Despite these abilities,
they also made systematic errors consistent with the predictions
of the LC model. It is not clear whether the data considered as

5There were 28◦ of freedom for these analyses, rather than 29, because one of the

30 participants did not intervene.

a whole is more consistent with normativity or a more locally
focused model. Indeed, it is not even clear that participants are
using the OU functional form to infer connections, rather than
a more general model, such as one that assumes linearity. For a
more granular analysis of people’s causal structure learning, we
now turn to a number of theoretical accounts of how people learn
causal structure.

MODELING

In this task we compare a total of nine models corresponding
to different accounts of how people learn causal structure.
These accounts can be roughly categorized as modeling people
as normative, local, linear, or random in their causal learning
behavior. We compare the ability of these models’ to predict
participants’ causal structure judgments.

OU Models
Normative Model
Normative inference for the current task requires that a learner
maintain a distributional belief over all possible causal structures
and update it according to the data they experience. Equation (6)
above defines normative inference in this task. There has been
much work suggesting that adults and children are capable
learners of causal structures and act roughly in accordance with
the normative model, at least in sufficiently simple scenarios
(Gopnik et al., 2004; Griffiths and Tenenbaum, 2009). We ask
whether these conclusions generalize to the sort of causal systems
under investigation here.

Recall that Equation (6) assumes that learners have priors
over ω, σ , and the θs. We assume for simplicity that learners
acquire a rough approximation of the true values of these
parameters [i.e., ω = 0.1, σ = 5, and θ ∈ (−1, 0, 1)] while
watching the four instructional videos, but assume some spread
to accommodate uncertainty. The distributions we assumed over
parameters were thus6

θ ∼ Ŵ(shape = 5× θtrue, rate = 5)

ω ∼ Ŵ(shape = 100× ωtrue, rate = 100)

σ ∼ Ŵ(shape = 100× σtrue, rate = 100)

Note that θ values are defined by the graph. For regular
connections, θ is distributed as above. For inverse connections,
the sampled values are negated. For non-connections θ is 0.

Local Computations Model
We compare the normative model to a “local computations” (LC)
model that has been advocated as a general-purpose account of
causal learning behavior (Fernbach and Sloman, 2009; Bramley

6The 5 and 95% quantiles associated with these distributions are 0.39 and 1.83 for

θ , 0.054 and 0.157 for ω, and 4.64 and 5.37 for σ . These variances were chosen

to accommodate a moderate amount of uncertainty in beliefs about each of the

higher-level parameters, while still being consistent with the qualitative behavior

of the system under the true parameters.
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FIGURE 7 | Participant judgments of causal relationships for three tested networks. Bar colors correspond to the true causal structure, namely, blue for regular

connections and gray for no connection. Bar heights represent mean θ reported by participants (regular = 1 and none = 0). Because these networks included only

regular causal relationships, no instances of inverse relationships are shown. Error bars Denote 95% confidence intervals.

et al., 2017a). Applied to an OU network, the LC model entails
deciding, for each potential causal relationship considered in
isolation, whether the observed values of those two variables
implies a regular, inverted, or zero causal relation. It thus involves
applying Equation (5) above to each potential causal relationship.
The LC model assumes the same priors over ω, σ , and the θs as
the normative model.

A key distinction between the normative and LC models of
course is their ability to detect whether a relationship between
two variables is mediated by a third. For example, in the network
X → Y → Z, X and Z have many of the hallmarks of a
direct causal relationship: They are correlated, changes in X
precede changes in Z, and intervening on X later affects Z (but
not vice versa). Whereas, the normative model would take into
account the mediated relationship between X and Z (by noting
the absence of an X/Z correlation when controlling for Y), LC,
which evaluates individual causal links without consideration of
the entire graph, would not recognize the mediating role of Y and
so infer X → Z in addition to X → Y and Y → Z. Of course,
we have already seen partial evidence that participants may be
poor at detecting mediated relationships (Figure 7). Modeling
will reveal whether the LCmodel is a good account of all the data,
or if it only accounts for participants’ errors.

Alternative Models
We compare the two OU-based models to alternatives that
assume linear relationships between cause and effect. In
particular, we compare two approaches to modeling timeseries
information from the literature: time-lagged correlation and
Granger causality. Each of these approaches is applied to
three candidate representations for learning causal structure
between continuous variables, as introduced by Soo and Rottman
(2018); state representations, difference scores, and trinarized
difference scores.

In these linear models, the value of variable i at time t is
modeled as

P(vti |v
t−1, σ ,β) =

∑

j

[

βji · v
t−1
j

]

+ N(0, σ ) (7)

where j denotes all causes of variable i (including i itself) and
βji denotes the partial slope coefficient or strength of that cause
on the effect. Analogously to our treatment of θ values in the
OU models, for the linear models we assume some uncertainty
about the strength parameter p(β) but that these differ in sign
for regular and inverse connections, and also model people as
having uncertainty over standard deviation p(σ ). The marginal
likelihood of vi for a graph thus involves computing, for each
timepoint, the likelihood of that variable’s value given the β

predictors defined by the graph and the value(s) of its cause(s),
and marginalizing over p(β) and p(σ ). We treat interventions in
the same manner as the OU models. As before, we compute the
total likelihood as the product of the marginal likelihoods of all
variables at all timepoints under each graph, assume an initially
uniform prior over graphs and compute the resulting posterior.
The unnormalized posterior probability of a causal graph given
all values of all variables at all timepoints is thus

P(gk|v; ι) ∝
∏

t

∏

i

∫

β

∫

σ

P(vti |v
t−1, σ ,β; ιi)P(β|gk)

P(gk)P(σ ) dσdβ (8)

This general procedure can be applied to each of the linear
models by modifying the state representation v or prior over β .
For the three candidate representations introduced by Soo and
Rottman (2018): State representations involves inference over the
actual variable values; difference scores involves inference over
variable values after computing vt − vt−1; trinarized difference
scores involves inference over difference scores that have been
converted to−1 when negative and 1 when positive.
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The difference between time-lagged correlation and Granger
causality is just whether βii is included as a predictor, that is,
whether vti is influenced by vt−1i as well as its causes. Granger
causality includes this term while Time-lagged correlation
does not.

Unlike the OU models, there is no natural ground truth
parametrization for the linear models on which to center
reasonable distributional parameter beliefs. Thus, we must find
another way to choose reasonable settings for p(β) and p(σ ).
We chose the mean of our distributions by fitting the β̂ii, β̂ji,
and σ̂ values that maximized the posterior probability of the
true causal graphs across all subject data (including βii for the
Granger models). We then made analogous assumptions about
the spread around these means as we did for θ and σ in the
OU models—namely,

β ∼ Ŵ(shape = 5× β̂ , rate = 5)

σ ∼ Ŵ(shape = 100× σ̂ , rate = 100).

β values are treated the same as in the OU models. Regular
connections are distributed as above, inverse connections
are negated.

Comparing the Models
We compare participants’ structure judgments to the predictions
of thesemodels across all the test trials in our experiment. In total,
we consider nine models. These are eight described above: (1)
normative, (2) local computations (LC), and three variants of both
(3–5)Granger causality and (6–8) Time lagged correlation varying
whether they were based directly on states, difference scores, or
trinarized difference scores. Finally, we compare these against
(9) a Baseline model that assumes each judgment is a random
selection from the space of possible graphs. We marginalized
over θ , ω, σ by drawing 1,000 samples from their respective
distributions and averaging the likelihood within each causal
model. To account for decision noise in selecting causal graphs
from their posterior distributions, for each model apart from the
baseline we fit (by maximum likelihood using R’s optim function)
a single softmax parameter τ that maximized the posterior
probability of participant selections.

Results and Discussion
Table 1 details the results of our comparison. For each inference
model we report the overall proportion of the true connections
identified across all trials assuming the most probable graph
is selected at the end of each trial (Accuracy column), the
proportion of participant’s edge judgments that correspond with
the most probable graph under the model (Judge column), the
Bayesian Information Criterion of all participant’s judgments
according to that model (BIC column); and the number of
participants best fit by each model7.

Unsurprisingly, the normative model was the most successful
at recovering the underlying structure, but many other models

7A post-hoc power test was computed for the null hypothesis that the number of

participants best fit by each of the nine models would be equally distributed. For a

chi-squared test with 30 participants, 8◦ of freedom, and the observed effect size of

1.91, the probability of observing an α < 0.05 is 0.999.

were also successful. The only models that struggled were those
that used trinarized difference scores as their representation,
showing that the magnitude of changes in the variables is
important to capturing the structure of the data.

Next, we compared the maximum a posteriori estimates of
causal structure of the models to participant judgments. In this
coarse measure, the OUmodels were roughly equal to each other
in matching participant judgments, and were also similar to some
of the linear models.

The results of the more sensitive posterior probability
analysis were clearer in distinguishing between models. Over all
participants, the LC model had the highest log-likelihood. On a
per participant basis, of the 30 participants 21 were best fit by
the LC model, with the normative model being the best account
of four participants. The remaining five participants were split
among the linear models or were at baseline.

GENERAL DISCUSSION

In this paper, we introduced a generative model of causal
influence relating continuous variables over time. We showed
how such systems can exhibit emergent behaviors, such as
excitatory or inhibitory feedback and oscillations, depending on
specific settings of relative causal strengths between variables.
When learning from this rich data, people were best described
as considering individual pairs of variables, rather than updating
their beliefs over entire structures. This finding accords with
an intuitive description of how people handle continuous
information flowing in real time: they focus their attention on
smaller, more manageable problems rather than attempting to
tackle the full torrent of information.

Local Inference
A key result in our task was that most participants evaluated
pairwise relationships between variables rather than updating
their beliefs over all possible causal structures. This conclusion
was drawn from the superior fit of the locally focused LC model,
and corroborated by qualitative results, such as the finding that
participants often inferred direct causal relationships between
variables that were in fact only indirectly related (through a
third mediating variable). These results are consistent with
previous findings suggesting that, rather than representing a full
hypothesis space, people tend to consider a single hypothesis to
which they make small alterations (Quine, 1960; Fernbach and
Sloman, 2009; Bramley et al., 2017a). Here we show that this
principle of causal learning extends to much richer scenarios.
Indeed, it may be the case that real time continuous information
places stronger demands on attention and memory than the
original settings that provided evidence for the LC model. If this
were true, it would be especially reasonable to use the resource-
efficient local strategy in these more demanding environments.

A potential alternative conceptualization of the LC model is
that it instantiates the idea that distal causes are still considered as
causal. For example, most people would not find it inappropriate
to say that the reintroduction of wolves to Yellowstone National
Park caused changes to the ecosystem, even if many of these
changes came indirectly through other variables, such as changes
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TABLE 1 | Summary of model accuracy and performance.

Model State representation Accuracy Judge BIC Px

1 OU local computations 0.89 0.82 6,163 21

2 OU normative 1.00 0.82 6,475 4

3 Granger causality States 0.91 0.78 7,079 1

4 Difference scores 0.82 0.69 8,415 1

5 Trinarized diff scores 0.49 0.42 9,859 0

6 Time-lagged correlation States 0.89 0.74 7,901 1

7 Difference scores 0.82 0.69 8,407 0

8 Trinarized diff scores 0.63 0.50 9,793 0

9 Baseline 0.17 0.17 9,888 2

Accuracy, proportion of links drawn that match ground truth; Judge, proportion of links drawn that match participant judgments; BIC, Bayesian Information Criterion; Px, number of

participants best fit by that model.

in the movement of elk (Fortin et al., 2005). While this is a
reasonable conceptualization, we believe that it is not as good
an account of our data as the LC model. For one, we explicitly
provided participants with an example in the instructions that
showed the movement of a chain network without the additional
indirect connection. This should have reduced the possibility that
participants were unclear about whether they should consider
distal causes as causal. This accords with findings in the literature
that people exhibit locality despite feedback, incentives, and
explicit instruction with examples that encourage people to not
draw the additional causal link (Fernbach and Sloman, 2009;
Bramley et al., 2015, 2017a). More fundamentally, this “distal”
account makes assumptions about how people are approaching
the task that we consider unlikely. It models them as doing
full normative inference, and then having a response bias
to draw indirect connections. Figure S1 shows that indirect
connections were less likely to be responded to as causal than
the direct connections, which would imply a response bias
where participants have the full causal model but would only
on occasion draw the additional indirect connection. The LC
model, in contrast, naturally considers indirect connections as
less causal due to the underlying dynamics of OU networks.
While indirect causal relationships do have many hallmarks
of direct causal relationships (correlation, temporal asymmetry,
asymmetric results of interventions), they are not identical. In
X →Y →Z, changes to Z in response to X are more temporally
removed and noisier than would be predicted if there were a
direct X → Z connection, and therefore the LC model assigns
a lower (but still reliably non-zero) probability to these potential
connections. Because the LC model accounts for the patterns
of errors as naturally arising from the interaction of system
dynamics and cognitive limitations, rather than as a response bias
over normative inference, we consider it a better account of the
behavior of participants in our task.

Interventions
One contribution of the OU network framework is the
introduction of a qualitatively different type of intervention.
In a typical study of causal cognition learners are able to, on
a particular trial, turn a variable on or off and observe the
values of other variables. In contrast, interventions in our task
are extended through time and can encompass a wide range of

variable values. Participants generally recognized that the most
informative actions involved large swings in variable values and
systematic manipulation of each variable in the system8.

Nevertheless, note that while their interventions were
informative they were less than optimal. In fact, the most
efficient interventions in this task involve rapid swings between
the ends of the variable’s range. But whereas participants used
the full range, they tended to hold a variable at one value for
longer than necessary. Doing so yields useful but somewhat
redundant information. Of course, perhaps this strategy reflected
participants’ need for redundant information imposed by
cognitive processing limits. It may also reflect their inability or
unwillingness to engage in the rapid motor movements required
by the optimal strategy.

Although participants could intervene on any variable at any
time to set it to any value, they were constrained to manipulating
one variable at a time. Future studies could expand the action
space by, for example, allowing participants to “freeze” one
variable at a value while manipulating others. Of course, an
ability to “control for” one variable while investigating the
relationship between two others might help learns identify
mediating relationships. For example, freezing Y and then
manipulating X in X → Y → Z would result in to no change in
Z, perhaps reducing the chance that the learner would conclude
X → Z. This approach could be considered an application
of learning strategies from the CPS literature to environments
without sharp distinctions between input and output nodes
(Kuhn and Brannock, 1977; Schoppek and Fischer, 2017), with
the additional information generated by the “Do()” operator’s
graph surgery.

Future Directions
The proposed OU network framework can be extended across
a variety of dimensions in future research. For example, in this
paper’s instantiation of OU networks, a cause impacts an effect
on the next timepoint. The impact of a cause on effect could be
distributed over multiple timepoints, or at some stochastically
selected timepoint. Such studies could contribute to debates

8The observed systematic strategy of manipulating a single variable, holding it at

a value, and observing the downstream effects closely corresponds to successful

learning strategies from the CPS literature, such as VOTAT and PULSE.
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about the influence of time on causal learning, such as that
judgments of causality are strengthened by temporal contiguity
(Shanks et al., 1989) or the reliability of delays (Buehner and
May, 2003; Bramley et al., 2018). Varying the gap between
timepoints (in this task t to t+1was 100ms)may result in different
approaches by participants. Use of continuous variables naturally
allows consideration of a greater number functional forms
relating causes and effects (Griffiths and Tenenbaum, 2009).
Latent causes can be introduced to model implicit inference of
mechanisms relating cause and effect. Complex, non-linear data
can be generated to study people’s learning from time series
data (Soo and Rottman, 2018; Caddick and Rottman, 2019). The
outcomes of experiments using these richer causal systems will
help to evaluate the generalizability of models of causal cognition
that have heretofore been tested mostly on Bayes nets applied to
discrete events.

The formalism developed in this paper also has potential
application to the domain of control. Many aspects of everyday
life, as well as interesting domains in AI and machine learning,
can be can be classed as control problems in which there is initial
or ongoing uncertainty about the structure of the control domain.
As discussed in the introduction, there is an extensive literature
known as Complex Problem Solving that has participants
manipulate environments that are reactive to their decisions to
maximize gain (for review, see Osman, 2010). One limitation
of extant work is that they do not include learning models that
can help distinguish between learning and control performance.
In parallel, much recent attention in machine learning has been
given to demonstrations of successful control in small worlds,
such as atari and board games. However, generalization to new
goals or related environments continues to be poor (Lake et al.,
2017). In recent work, we propose OU networks as a systematic
class of control environments. This approach allows research into
human control to ask new questions, such as what structures are
inherently easy or hard to identify or control and under what
circumstances does successful control depend on an accurate
model of a system’s structure (Davis et al., 2018).

Functional Form
Given people’s well-known bias toward assuming linear
functional forms (Brehmer, 1974; Byun, 1996; DeLosh et al.,
1997; Kalish et al., 2004, 2007; Kwantes and Neal, 2006), it
may be a surprising result that the alternative models assuming
linearity did not match people’s judgments as well as those
using the Ornstein–Uhlenbeck functional form. This result
has a number of possible explanations. For one, as discussed
before, Ornstein–Uhlenbeck processes appear to be relatively
common across a range of domains, and people may have
a developed representation of the functional form that they
brought to the task. It is also possible that participants do not
have a direct representation of Ornstein–Uhlenbeck processes,
but were able to recognize higher-order movement statistics
that are not present in linear models (e.g., OU processes, unlike
linear relationships, exhibit acceleration toward their attractor
basin). For example, people may have applied a general function
approximator, such as a Gaussian Process to the relationship

between cause and effect and abstracted a function closer to
OU processes than linearity. Future work could explore settings
where learning the functional form between cause and effect is
not possible (such as one-shot learning) or settings where the
impact a cause has on its effect is linear.

Limitations
There are a number of limitations to the current project that
could be addressed with further experiments. For one, while we
did account for uncertainty over parameters of our models, we
did not account for other sources of noise, such as the likelihood
that people cannot attend to all three variables simultaneously9.
This issue will likely compound as more variables are added.
Additionally, the presented analyses in this paper discuss but do
not model intervention decision-making, a critical component
of the active learning of causal structure. Future analyses would
naturally involve, as a benchmark to compare against humans,
models for selecting actions that maximize expected information
gain. This information maximizing strategy could be compared
to other strategies from the Complex Problem Solving literature
that involve changing a single variable at a time (Kuhn and
Brannock, 1977; Schoppek and Fischer, 2017).

Conclusions
Wehave no doubt that the canonical causal relationships between
discrete events (e.g., take a pill→ headache relieved) that have
been the main focus of causal cognition often serve as highly
useful and approximately correct parts of human’s semantic
representation of the world. But sometimes details matter.
Causal influences emerge over time, may reflect functional
relationships that are as complex as the underlying mechanisms
that produce them, and afford interventions that vary in
their duration and intensity. Complex patterns of feedback
may be the rule rather than the exception (Cartwright, 2004;
Strevens, 2013; Sloman and Lagnado, 2015). Apprehending
these properties may even be a precondition to forming the
(highly summarized and approximate) causal relations between
discrete events that are so simple to represent and easy
to communicate.

We instantiated a learning task in which people were
confronted with some of these challenges, including
continuously-observed continuous variables, feedback cycles,
and the ability to carry out extended interventions. We found
that they exhibited considerable success identifying the correct
causal structure but also committed systematic errors, errors
consistent with a model that describes people as narrowly
investigating individual causal relationships rather than
updating their beliefs wholesale. We hope that the formalism
presented in this paper will be help spur greater study of the
mechanisms for learning and action in this important class
of problems.

9Although Vul et al.’s (2009) finding that people optimally allocate attention to

particles moving according to an OU process may ameliorate the latter concern.
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The aim of the article is to present a model of causal relations that is based on what
is known about human causal reasoning and that forms guidelines for implementations
in robots. I argue for two theses concerning human cognition. The first is that human
causal cognition, in contrast to that of other animals, is based on the understanding of
the forces that are involved. The second thesis is that humans think about causality in
terms of events. I present a two-vector model of events, developed by Gärdenfors and
Warglien, which states that an event is represented in terms of two main components –
the force of an action that drives the event, and the result of its application. Apart from
the causal mapping, the event model contains representations of a patient, an agent,
and possibly some other roles. Agents and patients are objects (animate or inanimate)
that have different properties. Following my theory of conceptual spaces, they can be
described as vectors of property values. At least two spaces are needed to describe
an event, an action space and a result space. The result of an event is modeled
as a vector representing the change of properties of the patient before and after the
event. In robotics the focus has been on describing results. The proposed model also
includes the causal part of events, typically described as an action. A central part of
an event category is the mapping from actions to results. This mapping contains the
central information about causal relations. In applications of the two-vector model, the
central problem is how the event mapping can be learned in a way that is amenable
to implementations in robots. Three processes are central for event cognition: causal
thinking, control of action and learning by generalization. Although it is not yet clear
which is the best way to model how the mappings can be learned, they should be
constrained by three corresponding mathematical properties: monotonicity (related to
qualitative causal thinking); continuity (plays a key role in activities of action control);
and convexity (facilitates generalization and the categorization of events). I argue that
Bayesian models are not suitable for these purposes, but some more geometrically
oriented approach to event mappings should be used.

Keywords: causation, robotics, events, action, conceptual space

INTRODUCTION

Causal reasoning is a central cognitive competency, allowing us to reliably, albeit not perfectly,
predict the future and to understand the causes of events that we observe. This form of
reasoning has been studied extensively in psychology and philosophy (see e.g., Waldmann and
Hagmayer (2013) for an overview). In this article, my focus will be on aspects of human causal
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reasoning that should be considered when developing robotic
systems that are capable of similar forms of reasoning.

If we want to develop efficient systems for human-robot
interaction, the best way is to have robots reason about causes
in the same way as humans do. Therefore, we need a model of
human causal cognition that allows implementation. Pearl (2018)
writes that we recognize human reasoning “through words such
as ‘preventing,’ ‘cause,’ ‘attributed to,’ ‘discrimination,’ and ‘should
I.’ Such words are common in everyday language, and our society
constantly demands answers to such questions. Yet, until very
recently science gave us no means even to articulate them, let
alone answer them. Unlike the rules of geometry, mechanics,
optics or probabilities, the rules of cause and effect have been
denied the benefits of mathematical analysis.”

This article will argue for two theses concerning human
cognition. The first is that causal cognition is based on the
understanding of the forces that are involved. In the section
Causal Reasoning with Forces, I present some data concerning
the differences between human causal reasoning and that of
other animals. I propose that the best way to understand these
differences is that humans have evolved mental representations
of the forces behind an action or a physical process that
lead to an effect.

The second thesis is that humans think about causality in
terms of events1. However, unlike other models in philosophy
and psychology where causality is seen as a relation between
events, the model presented here moves causality inside events
in the sense that an event is modeled as containing two
vectors representing a cause as well as a result. In Section 3,
I present a model that is based on a mapping from actions
to results. The purpose of such a mapping is to represent
causal relations. Actions are modeled in terms of forces, while
effects are modelled as different kinds of changes, for example,
a change in the physical location or a change of some property
of the agent. Apart from the causal mapping, the event model
contains representations of an agent, a patient and possibly
some other roles.

Three cognitive processes crucially depend on event
cognition: causal thinking, control of action and learning by
generalization. All three processes are important for robot
applications. The central problem is to model the event
mapping and how it is learned in a way that is amenable
to implementation.

The mapping from forces to results may have a complicated
structure due to context dependent or unknown counterforces.
However, the mapping is constrained by three properties that
correspond to the three cognitive processes respectively: (1)
Larger forces lead to larger results (related to qualitative causal
thinking); (2) small changes in the force lead to small changes
in the result (plays a key role in action control); and (3)
intermediate results are caused by intermediate forces (facilitates
generalization and the categorization of events). These properties
will be presented and analyzed in the section Three Constraints
on the Causal Mapping.

1Davidson (1967, p. 179) writes that “events have a unique position in the
framework of causal relations.”

On the basis of the event model and the constraints on
the causal mapping, I will discuss some ideas about how such
mappings can be handled in a robot. This will be the topic of
in the section Implementing the Event Model and the Causal
Mapping in Robots. The main problem to be solved is how the
event mapping from causes to effects can be learned. Here the
three constraints turn out to be central. I also argue that Bayesian
models are not appropriate since they cannot account for the
three constraints on the causal mapping in a natural way.

CAUSAL REASONING WITH FORCES

Human Reasoning About Forces
The sensory influx to the human brain is extremely rich –
a “blooming buzzing confusion” according to James (1890,
p. 42). It is something of a wonder that the brain can sort
up the information received by our senses. In particular, it
has a capacity to discover causal relations between complex
phenomena. It is, however, still largely an open question how this
mechanism works.

There are several proposals for how to analyze causal
cognition. Gärdenfors (2003, Section 2.8) distinguishes between
four kinds of causal reasoning: (a) Being able to foresee the
physical effects of one’s own actions (the first type to develop
in infants); (b) being able to foresee the effects of others’
actions; (c) understanding the causes of others’ actions; and (d)
understanding the causes of physical events. Along similar lines,
Woodward (2011) distinguishes between egocentric learning,
which is the ability to learn that one’s own physical actions can
cause certain outcomes. The second kind is agent causal learning,
when one also learns about cause from the actions of others.
The third kind is observation/action causal learning, when one is
able to integrate a natural signs or patterns with the other two
types of learning2.

The models indicate that being able to categorize actions
is a necessary prerequisite for understanding causal relations.
Psychological studies have established that the brain processes
lead to a considerable information reduction when actions
are classified. For example, Johansson (1973) showed that the
kinematics of a movement contain is sufficient to categorize an
action. He attached light bulbs to the joints of actors who were
dressed in black and moved against a black background. The
actors were then filmed while performing bodily actions such as
walking, running and dancing. When subjects saw the movies,
in which only the dots of light could be perceived, they correctly
categorized the actions within a few hundred milliseconds.

The upshot of these experiments is that the kinematics
of a movement contains information that is sufficient for
the identification of the underlying dynamic force patterns,
that is velocities and accelerations (Runesson, 1994). Further
psychological evidence [Wolff (2007, 2008), Wolff and Shepard
(2013), Wolff and Thorstad (2017)] supports that people can
directly perceive the forces that control different kinds of motion.

2A more detailed classification is presented by Lombard and Gärdenfors (2017)
and Gärdenfors et al. (2018).
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In other words, the sensory input generated by the movements of
an individual (or an object) is sufficient for the brain to calculate
the forces that lead to the movements. The process is automatic:
people cannot help but seeing the forces.

In the philosophical literature, a cause has mainly been
viewed as something that makes a difference with respect to
some effect. The differences are typically analyzed in terms
of co-variations (see Waldmann and Hagmayer, 2013 for a
presentation). However, nothing is said about how it makes
a difference. Theories of causation that are based on forces
provide an explanation (Wolff, 2007). Forces also open up
for new empirical methods to study casual relations that go
beyond covariations.

The capacity to understand the role of physical forces, not
just forces involved in animal actions, develops early in human
infants. Michotte (1963) showed that if one object moving on
a screen collided with another object and the other object
started moving in the same direction, then adults perceived the
launching of the second object as caused by the movement of
the first. In contrast, if the second object only started moving
half a second after the collision, then the delay destroyed the
impression of causality. Leslie and Keeble (1987) performed
Michotte’s experiments with six-month-old infants and showed
that they reacted differently to the two types of events. Leslie
(1995) concludes that infants have a special system in their brains
for mapping the ‘forces’ of objects.

Animal Reasoning About Forces
It seems that non-human primate reasoning about forces is
less developed compared to that of humans. For example, in
his early experiments on chimpanzee planning, Köhler (1917)
observed that apes had great difficulties in stacking boxes on top
of each other. He notes about Sultan, the best problem solver
among the chimpanzees, that when he tried to put a second box
on top of a first, “instead of placing it on top of the first, as
might seem obvious, began to gesticulate with it, . . . he put it
beside the first, then in the air diagonally above, and so forth.”
After similar observations on other apes, Köhler (1917, p. 149)
concludes that “there is practically no statics to be noted in
the chimpanzee.” For more experiments in the same direction
see Tomonaga et al. (2007) and Cacchione et al. (2009). These
observations indicate that apes in general do not have a well-
developed understanding of the role of gravitation on other
objects than their own bodies.

Povinelli (2000) also performed a series of experiments
indicating that chimpanzees and other primates are very limited
in their capacities to reason about gravitation. These experiments
have been followed by a series of others (e.g., Call, 2010; Hanus
and Call, 2008; Martin-Ordas et al., 2008; Penn and Povinelli,
2007), and they have generated an extended debate (see Seed
and Call, 2009; Seed et al., 2011). Povinelli and Penn (2011,
p. 77) conclude that “only humans are capable of second-
order relational reasoning, and only humans, therefore, have the
cognitive machinery that can support higher-order, theory-like,
causal relations.” In line with this, Johnson-Frey (2003: 201)
writes: “Comparative studies of chimpanzee tool use indicate that
critical differences are likely to be found in mechanisms involved

in causal reasoning rather than those implementing sensorimotor
transformations.”

Furthermore, in a comparative study of on nut-cracking in
humans and chimpanzees (Boesch et al., 2017), it was found that
humans understood how to apply force to extract numerous nut
species through using hammerstones. Yet, the chimpanzees only
ever applied such force to Panda nuts, even though they regularly
eat hard Irvingia nuts using their teeth. This is a good example
of how humans, compared to chimpanzees, have a more abstract
causal understanding of tool-assisted force application, allowing
us to apply similar solutions to a wider range of subsistence
problems. By adding the ability to mentally represent detached
forces – and not just actions – as causes, the human mind evolved
to extend its capacities to reason and to plan beyond that of other
primate species. Gärdenfors and Lombard (submitted) argue that
this development was driven (at least in part) by more advanced
tool use and manufacturing.

A Cognitive Approach to Causation
This comparison between the causal reasoning of humans and
other animals provides a reason for focusing on models that are
based on forces also in developing causal reasoning in robots.
In the following section I present a model that can function as
a framework for computational implementations.

The basic ontological position of my approach to causal
reasoning is that causes are cognitive constructions and not
relations in the real world. In other words, my account is
cognitivist rather than realist. For an argument for this position
see Wolff (2007, p 7).

Another central aspect is that the forces of an agent are not
the only elements involved in human causal judgements, but
counterforces of various kinds (forces exerted by a patient or
contextual forces such as gravitation) are also taken into account.
This aspect is included in Talmy’s (1988) ‘force dynamics’ and is
further developed in Wolff’s (2007, 2008, 2012) ‘dynamics model’.
Wolff (2007) has shown that adults can combine different kinds
of forces in their reasoning. For example, they can estimate the
combined forces of a boat motor and the wind and their effects on
how the boat crosses a lake. Depending on how the ‘affector’ force
vector (produced by an agent) combines with a ‘patient’ force
vector to generate a ‘result’ vector, subjects judge that the affector
force either causes, enables or prevents an effect. These results
indicate that subjects cognitively distinguish between different
kinds of causal relations. Talmy’s force dynamics is grounded in
physical events, but it is also used to understand psychological or
social interactions.

Göksun et al. (2013) extended Wolff ’s experiments to a study
of 3- to 5-year-olds who, in addition to one-force events, were
asked to predict the path of a ball that was influenced by two
forces that were combined to represent force dynamics patterns
of ‘cause’, ‘enable’ and ‘prevent’. The study showed that while the
children were successful in their causal reasoning about the one-
force events, they attended less to a second force, incorporating
it only in the case both forces acted in the same direction. The
older they were, the more successful the children became in
reasoning about the effects of the second force (George et al.,
2019). These experiments indicate that human abstraction and
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reasoning about physical forces develop with experience over age,
even though the general system for perceiving forces as causes is
present already at an early age.

A COGNITIVE MODEL OF EVENTS

A Two-Vector Model of Events
The second thesis of this paper is that human causal cognition
is structured in terms of events. This section argues that mental
representations of events exploited in language, physical thinking
and planning can be modeled in geometric terms. Several
authors (e.g., Talmy, 1988; Croft, 2012; Wolff, 2007, 2008, 2012;
Gärdenfors and Warglien, 2012; Gärdenfors et al., 2018) have
adopted such a geometric perspective on events. Following earlier
work on conceptual spaces (Gärdenfors, 2000, 2014, Gärdenfors
and Warglien, 2012; Warglien et al., 2012), I model events as
complex structures that involve an action space based on forces
and other spaces representing the results of actions.

The two-vector model states that an event is represented in
terms of two components – the force of an action that generates
the event, and the result of its application. Both components are
represented as vectors in spaces. (In the special case when there
is no change, that is, when the result vector is the zero vector, the
event is a state). The result of an event is modelled as a vector
representing the change of properties of the patient before and
after the event.

As a simple example of the model, consider the event of Oscar
pushing a table. The force vector is generated by the agent Oscar.
The result vector is a change in the location of the patient –
the table – and thus a change in the properties of the table.
The exact result vector depends on the properties of the table,
for example its weight as well as other forces in the context, for
example, friction. Although typical event representations contain
an agent, some need not involve any: for example, events of
falling, drowning, dying, growing and raining. The force and
result vectors are central, but more vectors and objects may be
involved in representations of events as I show below. Following
Gärdenfors and Warglien (2012), I put forward the following
requirement on the cognitive representation of an event:

The two-vector condition: An event must contain at least
two vectors and one object; these vectors are a result vector
representing a change in properties of the object and a force
vector that causes the change.

The central object of an event will be called the patient.
If there is an entity generating the force vector, it will be
called the agent (Wolff, 2007 calls them force recipient and
force generator, respectively). Agents and patients are objects
(animate or inanimate) that have different properties. Following
my theory of conceptual spaces (Gärdenfors, 2000, 2014), they
can be described as vectors of values from property dimensions.

At least two spaces are needed to describe an event, an action
space and a result space. The action space can be conceived as a
space of forces (or, more generally, force patterns) acting upon
some patient, the properties of which are described in the result
space. The spaces represent different types of vectors: forces have
a different nature than changes in properties.

As the result component of the event represents changes in the
properties of the patient, the result space can also be modeled as
a vector space. The result vectors typically stand for changes of
location or changes of object properties. For example, when Lucy
opens the door, the agent Lucy exerts a force vector (action) on
the door that leads to a change of the position of the door (result).
Or in the event of the storm felling a tree, the force of the wind
(action) leads to a change of the direction of the tree (result).

Events are represented not only as single instances, but more
generally as event categories, for example, throwing a ball. The
description of change vectors can be generalized to that of
change vector fields by associating to each action force vector a
result vector, taking into account the (counter-)forces exerted by
the patient and other contextual forces. Mathematically, such a
mapping from actions to results can be seen as a function from
a force vector that is the resulting combination of the action
vector and other contextually given forces to a result vector (see
Gärdenfors and Warglien (2012) for a more detailed description
of the mapping). This mapping is part of the representation of
an event category and it contains the central information about
causal relations.

The events need not only involve physical forces, but also
mental ‘forces’ can be causal variables (Talmy, 1988; Leslie, 1994).
Humans interpret many mental factors (for example commands,
threats, insults and persuasive arguments) as forces that can
create a change in the physical, cognitive or emotional state of
the addressee. For example, Wolff (2007, pp. 19– 22) presents
two experiments where a woman intends to cross a street to
meet (or to avoid) a man and the directions of a police man in
the street crossing acts as an additional ‘force’ that enables or
prevents the woman from reaching her goal. The results show
that the subjects interpret the woman’s intention as a force and
they describe the various scenarios in the same terms as they
would use for a situation where only physical forces are involved.
In other examples, such as a case of threatening, the resulting
change is not physical, but it can still be represented in terms of
changes in a conceptual space (assuming that the concept ‘person’
has a space of emotional states). Wolpert et al. (2003) present an
analysis of how this kind of reasoning can be modeled in terms
of control theory.

The forces can also be medical, economic or social (Talmy,
1988). For example, in “The aspirin caused his headache to go
away,” the medicine acts as ca force causing a change in his
physical state. And in “The high price offered enabled her to sell
her mother’s wedding ring,” the price acts as a force. A social
example is “The pressure from the villagers caused him to mow
his lawn, even though he wanted to keep it as a meadow.”

I next turn to a more detailed description of the two main
components of the model.

Representing Actions
Following Gärdenfors (2007a) [see also Warglien et al. (2012)
and Gärdenfors (2014)], I proposed in the previous section that
the human cognitive processes extract the forces that generate
different kinds of actions. This leads me to the following thesis:

Representation of actions: An action is represented by the
pattern of forces that generates it.
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The thesis speaks of a pattern of forces since, for most bodily
actions, more than one body part is moving. Therefore, multiple
force vectors are acting in parallel [this is analogous to Marr
and Vaina’s (1982) differential equations]. The patterns of forces
can be described in the same way as the modeling of shapes
in Gärdenfors (2014, Section 6.3). Like shapes, force patterns
also exhibit meronomic relations. For example, a bird with short
wings flies in a different way than a bird with a large wing span.

In order to investigate the action space, judgements of
similarities between actions can be used. The methods for
estimating similarities between objects are essentially the same
as for objects. The dynamic properties of actions are in focus
for such judgments: for example, throwing is more similar to
waving than to crawling. A large set of such similarity ratings can
serve as data for one of several related statistical techniques, such
as multidimensional scaling or principal component analysis
that turn similarities into spatial structures. The geometric
structure of the action space is largely unknown, except for
a few recent studies that are presented below. In line with
other domains, it is assumed that the notion of betweenness is
meaningful in the action space. This allows me to formulate the
following thesis [which is parallel to the thesis about properties in
Gärdenfors (2000, 2014)]:

Thesis about action concepts: An action concept is represented
as a convex region in the action space.

It is natural to interpret convexity as the assumption that,
for any two actions that fall under an action concept, any linear
morph between the actions will also belong to the same concept.

Empirical support for the thesis about action concepts
involving body movements is presented by Giese and Lappe
(2002). Starting from Johansson’s (1973) patch-light methods,
they edited videos of bodily actions such as walking, running,
limping, and marching. Linear combinations of the positions
of the joints of the body were created and they then created
videos exhibiting morphs of the recorded actions. Subjects who
watched the morphed videos were asked to categorize the actions.
Giese and Lappe did not explicitly investigate whether the action
categories that the subjects created correspond to convex regions.
The data they present clearly support convexity.

Another example is Slobin et al. (2014), who investigated how
subjects categorized actions shown in 34 video clips of motion
events such as walking, running and jumping, The subjects, who
were native speakers of English, Polish, Spanish, and Basque,
were asked to put a label, as precise as possible, on the action
they saw in the clips. Based on the answers a two-dimensional
multidimensional scaling solution was calculated. The result
indicates that four separated convex regions emerge for each
of the languages studied. These regions correspond to walking,
running, crawling, and to some non-canonical actions (such as
leaping or galloping). Together with similar results from Malt
et al. (2014), these results provide support for the thesis about
action concepts. However, for human-robot applications, more
research concerning the structure of action space is required.

In robotics, the work has mainly dealt with how the results
of actions can be modelled [e.g., Cangelosi et al. (2008), Lallee
et al. (2010), and Demiris and Khadhouri (2006)]. In human-
robot interaction, however, it is more important that the robot

can categorize human and other actions by the manner they
are performed. This is called recognition of biological motion
(Hemeren, 2008; Gharaee et al., 2017a,b). Categorizing actions is
particularly important if the goal of the robot is to understand the
intentions behind the actions.

The Causal Mapping
The main reason for introducing the event model is that it
is a natural way of capturing how we think about causation:
the action causes the result. In the literature, most authors
analyze the causal relation between the action and the effect as
holding between two events (see e.g., Zacks and Tversky, 2001;
Casati and Varzi, 2008). In contrast, the model presented here
describes causation as a relation within an event. Furthermore,
the distinction between forces and changes of states also means
that the cause and the result, in contrast to traditional theories,
are modelled as two different entities.

There are many similarities between the event model
presented here and Wolff’s (2007, 2008, 2012) dynamics model.
His affector vector corresponds to the force vector, his patient
vector to the counterforces, and he also includes a result vector.
The two models have been developed for slightly different
purposes: the two-vector model is presented as a general model
of events while the focus of Wolff ’s model is on causal reasoning.
Another difference is that his result vector is of the same kind
as the force vectors. In contrast, in the model presented here
causes and effects modeled as entities of the different types: they
belong to different spaces – causes to the force space and results
to change in location space (in the case of movements) or in some
property space (color, size, shape, weight, temperature, etc.).

The two-vector model of events has testable consequences.
Wolff (2007) presents a study which shows that individuals can
perform intuitive addition of force vectors when observing two
force simultaneously affect the trajectory of a patient). Michotte’s
(1963) ‘launching’ experiments show that how subjects attribute
causality in a simulated event involving an object A that hits an
object B A depends on the angle of the trajectories of A and B.
This shows that subjects judge whether an animation represents
one or two events depending on how forces are mapped onto
movements. The perception of such a mapping has been shown
to be remarkably precise, and to predict the ‘causal impression’ on
the subjects (White, 2012). In these cases, the two-vector model
of events predicts well how individuals perceive causal events.

The event model, can handle what-if questions, that is,
counterfactual reasoning concerning what would have happened
if an action would have been different. For example: “If
I had dropped the glass on the ceramic floor instead of
on the mat, then it would have broken.” Such reasoning
can be computationally modeled by simulations of various
changes in the force and counterforce vectors and using the
mapping function and assumed counterforces to predict a
result. Simulations use similarity measures and operations for
projecting forwards and backwards to understand the causes
and consequences. For example, Johnston’s (2009) COMIRIT
system can be used to integrate commonsense reasoning and the
geometric inference of conceptual spaces. COMIRIT establishes
a mechanism for assigning ‘semantic attachments’ to symbols
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in knowledge representations systems that can be used to
automatically construct simulations and utilize machine learning
methods. In contrast, probabilistic models of causation, which
will be discussed in the subsection Why Probabilistic Models
Are Not Suitable, have deep-going problems in handling what-if
reasoning (Pearl, 2018).

Similar to counterfactual reasoning, humans often reason in
terms of omissive causation, that concerns events that do not
occur. For example, the fact that a person did not fill in his tax
forms, caused that he was fined by the tax authorities. This is
a problem for many other models of causation, but the two-
vector model can also explain omissive causation [for related
solutions see Talmy (1988); Wolff et al. (2010), and Wolff and
Thorstad (2017)]. To illustrate how the two-vector model applies
in such cases, consider the famous gag in the movie A Night in
Casablanca where Harpo Marx is leaning against the wall of a
house. A policeman comes up to him and says “What do you
think you are doing? Holding up the building?” Harpo nods
energetically with his typical smile but the policeman chases
him away. In the background one sees how the building crashes
into the ground. Here, the crash is caused by Harpo’s omission
of supporting the wall. In the terms of the two-vector model,
the force vector from Harpo towards the wall generates a stable
state where the wall is in balance despite its counterforces.
When Harpo’s supporting force is eliminated, the counterforces
generate the crash of the house.

THREE CONSTRAINTS ON THE CAUSAL
MAPPING

Given our ignorance of the counterforces in a situation and the
limited knowledge about the relevant causal relations, it is often
very hard to precisely predict the outcome of an action. Still, the
qualitative effect of actions can be understood.

When it comes to computational implementations of the two-
vector model in a robotic system, the mapping between the force
space and the result space is the most central part of the event
model. A problem is that externalities, such as friction and other
counterforces, make it difficult to determine the result vector,
given the force vector. For example, pushing a coffin may result in
the coffin moving, other times not; taking a medicine sometimes
cures a patient, other times not.

The formal nature of event mappings has been little
investigated. Although other theories of events (Talmy, 1988;
Croft, 2012, Wolff, 2007, 2008) also build on such a mapping,
they do not analyze it. Gärdenfors et al. (2018), however, present
an analysis of three general principles for event mappings, that
constrain the relation between the force vector and the result
vector. All three principles are of a qualitative form, which reflects
the qualitative nature of event cognition. They function as ceteris
paribus constraints.

As a background for the principles, note that there are
three central cognitive processes that depend on mental
representations of events: causal thinking, control of action, and
learning. These are characterized respectively by three qualitative
properties that are central for the corresponding processes: (1)

larger forces lead to larger results (this relates to qualitative
causal thinking); (2) small changes in forces lead to small
changes of the result (this is important for action control);
and (3) intermediary results are caused by intermediary forces
(this facilitates generalization and categorization of events).
Mathematically, these properties correspond respectively to the
monotonicity, continuity and convexity preservation of the
mapping from actions to results. The motivation for investigating
them is that human causal thinking typically satisfies these
properties. The three properties thus impose constraints on the
mapping from actions to events, something which is crucial when
such a mapping is to be learned by a robot.

Larger Forces Lead to Larger Results
A general constraint for qualitative causal thinking is that
whenever counterforces and other external factors are kept
constant in a given situation, then increasing the force involved in
the action will also lead to a larger result (or at least not decrease
it). For example, if I push the gas pedal harder in my car, it
will run faster.

This constraint captures an important part of our reasoning
about how a change of an outcome depends on a change of
an action. The constraint makes possible qualitative predictions
about the effects of actions. It is a central component in
interpreting causality (Hume, 1748/2000; Wolff, 2007, 2008) and
in making causal inferences.

The constraint enables qualitative causal inferences. First of
all, it makes it possible to draw basic inferences about how
changes in causes will lead to changes in effects. For example,
since different individuals may react with different intensity to
a medicine, it is difficult to predict the size of the effect. One may,
however, still make the prediction that increasing the dose of the
medicine will increase the effects. Mill (1843) dubbed this form of
inference ‘the method of concomitant variations’.

Mathematically, this constraint corresponds to the
monotonicity of the mapping function. A function is said
to be monotonous when f(x) ≤ f(y), whenever x ≤ y. This
property thus depends on an ordering relation on the forces.
As long as all forces act in the same direction such an ordering
exist. However, in higher dimensional spaces such an ordering
function may not exist.

The constraint that larger forces lead to larger results can
also support reverse inference processes. When wanting to
identify the relevant causal factors among multiple potential
ones, the constraint can provide a powerful selection criterion.
For example, the tides have been observed as long as humans
have existed, but it was only when the correlations to the
moon’s position and distance was discovered, taken together with
Newton’s law of gravitation, that we understood the force vectors
causing the tides.

Small Changes in the Force Lead to
Small Changes in the Result
When the aim is to change the effect of an action only by a small
amount, it can be achieved by applying a correspondingly small
change of force. For example, when turning the control for a
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heater on a stove a little more to the right, one expects the heat
also to increase just a little, and not lead to a drastic change that
would destroy the food. And when a tennis ball is hit a little
harder, it will fly a little faster and further, but not move wide
out of the court.

Mathematically, this constraint corresponds to the continuity
of the mapping function. This can be defined in terms of a
nearness relation on the space, which is easily defined for the
force space3.

Central both to human and robotic actions is motor control,
which in general requires the fine-tuning of an agent’s forces
(Wolpert and Flanagan, 2001; Stolt et al., 2012). For example,
balancing a stick on a finger requires very small adjustments in
the neighborhood of the equilibrium position (see e.g., Shiriaev
et al., 2007).

While the constraint captures a very general principle of causal
thinking, it is not always true that small changes in the force lead
to small changes in the result. Sometimes small changes lead to
phase transitions. For example, if you are gradually increasing
your arm force when bending a wooden stick, there is a point
where the stick breaks. At the transition point, a very small
change of effort produces a large effect. In more general terms,
a discontinuous phase transition occurs when an obstructing
counterforce is suddenly overcome, and a drastically different
result is achieved.

Intermediate Results Are Caused by
Intermediate Forces
Imagine that you are throwing a ball at a basket. You can control
the forces of your arms in the throw. If you have tried force x and
observed that the ball was short of the basket and tried force y and
observed that the ball went too far, then you presume that a force
of a strength between x and y will lead to an intermediary result.

The third constraint can be formulated as that the causal
mapping f is convexity preserving: if the force vector z is
between force vectors x and y, then the result f(z) is between
the results f(x) and f(y). In other words, intermediate forces lead
to intermediate results. Therefore, this constraint depends on the
fact that betweenness is defined for the force and result spaces4.

This constraint applies to many situations involving bodily
movement. A clear example comes from Runesson and Frykholm
(1981) who showed subjects patch light movies of a person
lifting objects that weighed between two and twenty kilos. The
objects themselves were not visible in the movies but only
the movement patterns of the person lifting them. In spite
of this limited information, the subjects could very accurately
predict the weights of the object. The upshot is that the
movement patterns were sufficient for the subject to infer
the forces that the person lifting the box was applying. The
subjects then inferred that intermediary forces corresponded
to intermediate weights of the boxes. I am not claiming that

3The precise definition is: A mapping f: X→Y between topological spaces is called
continuous if the pre-image under f of any open subset of Y [denoted f−1(Y)] is an
open subset of X. I should be noted that any metric induces a nearness relation.
4Again, a metric induces a betweenness relation. If S is a space with a metric d, then
z in S lies between x, y in S if d(x,y) = d(x,z) + d(z,y).

the inference is conscious, only that our causal reasoning
obeys the constraint.

I have argued that the process of learning new concepts
requires regions that represent concepts to be convex in order
for the process to be efficient (see Gärdenfors, 2000, Ch.
3 and Gärdenfors, 2001). Furthermore, convexity also makes
generalization efficient since, by interpolation, inferences over
whole regions can be made given only a limited number of
observations. Finally, feedback control mechanisms also require
that the mapping from actions to results preserves convexity (e.g.,
Shiriaev et al., 2007).

It should be noted that generalization in psychology has
focused on generalizing from a particular data point (for example
Shepard, 1987). However, generalizing by interpolation between
data points is at least as important. Given that convexity
is satisfied, it is sufficient to know the mappings from two
force vectors to two result vectors to know what lies between
them. Thus, convexity helps to predict unspecified properties of
the event5.

To sum up this section, the three qualitative constraints do
not uniquely determine the mapping from causes to results, but
they add rich structure to it. The constraints make it possible
to draw robust inferences even if counter-forces and other
contextual factors are unknown. In this way, the constraints
considerably strengthen human causal thinking. It is therefore
recommendable that robotic systems for causal reasoning also
obey these constrains.

The three constraints have been presented here as part of the
two-vector event model presented in Section 3. Because of their
general nature, however, they can also be applied to other models
such as the force dynamics of Talmy (1988), the dynamic model of
Wolff (2007, 2008) and the event representations in Croft (2012).

IMPLEMENTING THE EVENT MODEL
AND THE CAUSAL MAPPING IN ROBOTS

The core of the two-vector model of events consists of the
mapping between the force space and the result space. In this
section, I present some considerations on how the mapping – and
how it is learned – may be implemented in a robotic system.

Learning the Event Mapping:
Computational Aspects
As a simple but illustrative case, I will take Wolff’s (2007,
2008) studies of how people evaluate causes and effects of how
controlling the speed and direction of the motor of a boat
will affect its trajectory. A complicating factor is that, apart
from the resistance of the water, there is an unpredictable wind
that acts as a counterforce. In this causal web, the physics of
the situation allows a system to learn the unknown variables.
Firstly, in situations without wind the effects of the speed and
direction of the force vector of the motor can be learned (and
it will be a linear mapping as long as friction is constant), since

5Gärdenfors et al. (2018) argue that these constraints are central for the ‘working
model’ of an event (Zacks et al., 2007; Radvansky and Zacks, 2014).
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the friction vector is always in the opposite direction of the
force vector. Secondly, once this mapping is learned, one can
simulate situations where there is a wind, and by adding the
friction and wind counterforce vectors, the system can learn
to identify a motor force vector that will result in the desired
effect. There are several ways of computationally implementing
such a learning system by using traditional physical modeling
or by using some form of neural network. I will not go
into details here.

Other situations will not admit such a principled learning
procedure. In many cases there may be unknown counterforces
and other factors that make the mapping non-linear and
dependent on several external variables. However, by letting
the system experience a number of varied data points,
approximations of a mapping function can be calculated. When
a so far unobserved result vector is desired, interpolations of
force vectors resulting in similar effects can be used to generate
a new force vector that, because of the three constraints of
the mapping function, result in an approximate result vector.
For the implementation of learning situations of this kind,
many methods from control theory can be employed (see
e.g., Ardakani et al., 2019).

Even in situations where the forces are non-physical,
similar methods can be used to learn the event mapping.
For example, Wolpert et al. (2003) explore the computational
parallels between motor control, on the one hand, and action
observation, imitation, and social interaction, on the other (see
also Gärdenfors, 2007b). They argue that motor commands that
generate bodily actions can be extended to social actions directed
towards other people. In this extension, the changes in the
state of my body correspond to changes of the state of mind
of another person.

Another field of learning that is required for robotic reasoning
about causation and for communicating, for example in a
planning situation, is action categorization. Representations of
actions in terms of conceptual spaces, such as those proposed
by, for example, Chella et al. (2001), Gärdenfors (2014), and
Gharaee et al. (2017a,b), provide a potentially fruitful method for
implementations. Simulating an action and then using the event
mapping that has been learned to predict a result vector, can then
be used to generate plans and to reason about complex situations.
In this way, simulations can provide the robotic system the power
to imagine events that is needed to understand the physical, social
and, eventually, the emotional world we live in.

The event structure has not yet been implemented in any
concrete system. However, a cognitively motivated architecture
for holistic AI systems, including robotic ones, that integrates
machine learning and knowledge representation has been
proposed in Gärdenfors et al. (2019). The central idea of the
proposal is to use ‘event boards’ representing components of
events as an analogy to blackboards that formed the backbone
in some earlier AI systems. The event components that are
placed on the board are represented by vectors in conceptual
spaces rather than in symbolic structures that has been used
in previous systems. A control level that is added to the event
board includes an attention mechanism that decides which
processes are run.

Why Probabilistic Models Are Not
Suitable
Within computer science, Bayesian models or Bayesian
nets are popular statistical tools since they require minimal
prior knowledge (see Waldmann and Hagmayer, 2013 for
a presentation). For example, ‘constraint-based algorithms’
allow the derivation of causal structures on the basis
of the pattern of statistical dependencies of a set of
variables (see e.g., Pearl, 2000). Another way of learning
causal structure is to formulate the problem in terms of
Bayesian inferences. For such a learning mechanism, the
learning system (for example, a robot) must determine
the probability of a causal structure given the available
data. There also exist proposals for hybrid systems
combining Bayesian models with more traditional models
(Waldmann and Mayrhofer, 2016).

There are, however, some problems connected with
probabilistic models (Wolff, 2007; Waldmann and Hagmayer,
2013), in particular when it comes to implementations on
robotic systems. In experimental studies, subjects have had
difficulties in extracting causal relations based on covariation
data even though these experiments typically present a small
number of variables (Steyvers et al., 2003). For humans, a
single instance of a causal connection is sufficient to pick
up a causal relation and it would be desirable that a robotic
system has a similar capacity. Such a rapid process is difficult
to capture in a probabilistic model. According to the model
presented here, the forces that generate an action are essential
for causal inferences and such forces are, in general, inaccessible
to probabilistic approaches. In brief, Bayesian processes
are computationally not suitable for implementations in
robotic systems.

The implausibility of domain-general algorithms of structure
induction has led Waldmann (1996) to propose the view that
people generally use prior hypothetical knowledge about the
structure of causal models to guide learning in a top down
fashion, so called knowledge-based causal induction. In line
with this, also Waldmann and Hagmayer (2013) argue that
causal cognition of people cannot be encompassed by the
Bayesian formalism. For these reasons, I do not consider
the Bayesian approach to be a viable alternative for robotic
systems6. Furthermore, the use of the general principles of
monotonicity, continuity and convexity makes much of Bayesian
reasoning unnecessary.

CONCLUSION

In this article, I have argued for two theses. The first thesis is
that human causal cognition (in contrast to that of non-human
animals) build on understanding the forces that are involved in
an action that leads to a result. The second thesis is that humans
think about causality in terms of events. I have presented the

6Pearl’s (2000) model requires that the causal structure of the variables is provided
in advance.
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two-vector model of events that is based on conceptual spaces and
shown that it captures several aspects of human causal reasoning.

I have argued that Bayesian models are not suitable for
representing causal structures, in particular not the event
structures that have been presented here. The two-vector
model of events generate new types of problems that must
be solved in order to create robotic systems capable of causal
reasoning. The main problem is to devise methods for learning

appropriate mappings from actions to results, that is, from
causes to effects.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

REFERENCES
Ardakani, M. M. G., Olofsson, B., Robertsson, A., and Johansson, R. (2019).

Model predictive control for real-time point-to-point trajectory generation.
IEEE Trans. Autom. Sci. Eng. 16, 972–983. doi: 10.1109/tase.2018.2882764

Boesch, C., Bombjaková, D., Boyette, A., and Meier, A. (2017). Technical
intelligence and culture: nut cracking in humans and chimpanzees. Am. J. Phys.
Anthropol. 163, 339–355. doi: 10.1002/ajpa.23211

Cacchione, T., Call, J., and Zingg, R. (2009). Gravity and solidity in four great ape
species (Gorilla gorilla, Pongo pygmaeus, Pan troglodytes, Pan paniscus): vertical
and horizontal variations of the table task. J. Comp. Psychol. 123, 168–180.
doi: 10.1037/a0013580

Call, J. (2010). “Trapping the minds of apes: causal knowledge and inferential
reasoning about object-object interactions,” in The Mind of the Chimpanzee:
Ecological and Experimental Perspectives, eds E. V. Lonsdorf, S. R. Ross,
T. Matsuzawa, and J. Goodall (Chicago, IL: Chicago University Press),
75–86.

Cangelosi, A., Metta, G., Sagerer, G., Nofi, S., Nehaniv, C., Fischer, K., et al. (2008).
“The iTalk project: Integration and transfer of action and language knowledge in
robots,” in Proceedings of Third ACM/IEEE International Conference on Human
Robot Interaction, Vol. 2, Amsterdam, 167–179. doi: 10.1111/tops.12099

Casati, R., and Varzi, A. (2008). “Event concepts,” in Understanding Events: From
Perception to Action New, eds T. F. Shipley and J. Zacks (New York, NY: Oxford
University Press), 31–54.

Chella, A., Gaglio, S., and Pirrone, R. (2001). Conceptual representations of actions
for autonomous robots. Rob. Auton. Syst. 899, 1–13.

Croft, W. (2012). Verbs: Aspect and Causal Structure. Oxford: Oxford University
Press.

Davidson, D. (1967). “The logical form of action sentences,” in The Logic of Decision
and Action, ed. N. Rescher (Pittsburgh, PA: University of Pittsburgh Press),
81–95.

Demiris, Y., and Khadhouri, B. (2006). Hierarchical attentive multiple models
for execution and recognition of actions. Rob. Auton. Syst. 54, 361–369. doi:
10.1016/j.robot.2006.02.003

Gärdenfors, P. (2000). Conceptual Spaces: The Geometry of Thought. Cambridge,
MA: MIT Press.

Gärdenfors, P. (2001). Concept learning: a geometric model. Proc. Aristotelian Soc.
101, 163–183. doi: 10.1111/j.0066-7372.2003.00026.x

Gärdenfors, P. (2003). How Homo Became Sapiens: On the Evolution of Thinking.
Oxford: Oxford University Press.

Gärdenfors, P. (2007a). “Evolutionary and developmental aspects of
intersubjectivity,” in Consciousness Transitions: Phylogenetic, Ontogenetic
and Physiological Aspects, eds H. Liljenström and P. Århem (Amsterdam:
Elsevier), 281–305. doi: 10.1016/b978-044452977-0/50013-9

Gärdenfors, P. (2007b). Mindreading and control theory. Eur. Rev. 15, 223–240.
doi: 10.1017/S1062798707000233

Gärdenfors, P. (2014). Geometry of Meaning: Semantics Based on Conceptual
Spaces. Cambridge, MA: MIT Press.

Gärdenfors, P., Jost, J., and Warglien, M. (2018). From actions to events: three
constraints on event mappings. Front. Psychol. 9:1391. doi: 10.3389/fpsyg.2018.
01391

Gärdenfors, P., and Lombard, M. (submitted). Technology made us understand
abstract causality.

Gärdenfors, P., and Lombard, M. (2018). Causal cognition, force dynamics and
early hunting technologies. Front. Psychol. 9:87. doi: 10.3389/fpsyg.2018.00087

Gärdenfors, P., and Warglien, M. (2012). Using conceptual spaces to model actions
and events. J. Semant. 29, 487–519. doi: 10.1093/jos/ffs007

Gärdenfors, P., Williams, M.-A., Johnston, B., Billingsley, R., Vitale, J., Peppas,
P., et al. (2019). “Event boards as tools for holistic AI,” in Proceedings of
the 6th International Workshop on Artificial Intelligence and Cognition, CEUR
Workshop Proceedings, Vol. 2418, eds A. Chella, I. Infantino, and A. Lieto
(Palermo: University of Technology Sydney), 1–10.

George, N. R., Göksun, T., Hirsh-Pasek, K., and Golinkoff, R. M. (2019). Any way
the wind blows: children’s inferences about force and motion events. J. Exp.
Child Psychol. 177, 119–131. doi: 10.1016/j.jecp.2018.08.002

Gharaee, Z., Gärdenfors, P., and Johnsson, M. (2017b). Online recognition of
actions involving objects. Biol. Inspired Cogn. Arch. 22, 10–19. doi: 10.1016/j.
bica.2017.09.007

Gharaee, Z., Gärdenfors, P., and Johnsson, M. (2017a). First and second order
dynamics in a hierarchical SOM system for action recognition. Appl. Soft Comp.
59, 574–585. doi: 10.1016/j.asoc.2017.06.007

Giese, M., Thornton, I., and Edelman, S. (2008). Metrics of the perception of body
movement. J. Vis. 8, 1–18. doi: 10.1167/8.9.13

Giese, M. A., and Lappe, M. (2002). Measurement of generalization fields for the
recognition of biological motion. Vis. Res. 42, 1847–1858. doi: 10.1016/s0042-
6989(02)00093-7

Göksun, T., George, N. R., Hirsh−Pasek, K., and Golinkoff, R. M. (2013). Forces
and motion: how young children understand causal events. Child Dev. 84,
1285–1295. doi: 10.1111/cdev.12035

Hanus, D., and Call, J. (2008). Chimpanzees infer the location of a reward on the
basis of the effect of its weight. Curr. Biol. 18, R370–R372.

Hemeren, P. (2008). Mind in Action. Lund: Lund University Cognitive Studies, 140.
Hume, D. (1748/2000). An Enquiry Concerning Human Understanding. Oxford:

Clarendon Press.
James, W. (1890). The Principles of Psychology, Vol. 1. London: Macmillan.
Johansson, G. (1973). Visual perception of biological motion and a model for its

analysis. Percept. Psychophys. 14, 201–211. doi: 10.3758/bf03212378
Johnson-Frey, S. H. (2003). What’s so special about human tool use? Neuron 39,

201–204. doi: 10.1016/s0896-6273(03)00424-0
Johnston, B. (2009). Practical Artificial Commonsense. Ph.D. thesis, University of

Technology, Sydney.
Köhler, W. (1917). The Mentality of Apes. Mitchan: Penguin Books.
Lallee, S., Madden, C., Hoen, M., and Dominey, P. F. (2010). Linking language with

embodied and teleological representations of action for humanoid cognition.
Front. Neurorob. 4:8. doi: 10.3389/fnbot.2010.00008

Leslie, A. M. (1994). “ToMM, ToBy, and agency: core architecture and domain
specificity,” in Mapping the Mind: Domain Specificity in Cognition and Culture,
eds L. A. Hirschfeld and S. A. Gelman (New York, NY: Cambridge University
Press), 139–148.

Leslie, A. M. (1995). “A theory of agency,” in Causal Cognition: A Multidisciplinary
Debate, eds D. Sperber, D. Premack, and A. J. Premack (Oxford: Oxford
University Press), 121–141.

Leslie, A. M., and Keeble, S. (1987). Do six-month-old infants perceive causality?
Cognition 25, 265–288. doi: 10.1016/s0010-0277(87)80006-9

Lombard, M., and Gärdenfors, P. (2017). Tracking the evolution of causal
cognition in humans. J. Anthropol. Sci. 95, 1–16. doi: 10.4436/JASS.
95006

Malt, B., Ameel, E., Imai, M., Gennari, S., Saji, N. M., and Majid, A. (2014). Human
locomotion in languages: constraints on moving and meaning. Mem. Lang. 74,
107–123. doi: 10.1016/j.jml.2013.08.003

Frontiers in Psychology | www.frontiersin.org 9 April 2020 | Volume 11 | Article 63034

https://doi.org/10.1109/tase.2018.2882764
https://doi.org/10.1002/ajpa.23211
https://doi.org/10.1037/a0013580
https://doi.org/10.1111/tops.12099
https://doi.org/10.1016/j.robot.2006.02.003
https://doi.org/10.1016/j.robot.2006.02.003
https://doi.org/10.1111/j.0066-7372.2003.00026.x
https://doi.org/10.1016/b978-044452977-0/50013-9
https://doi.org/10.1017/S1062798707000233
https://doi.org/10.3389/fpsyg.2018.01391
https://doi.org/10.3389/fpsyg.2018.01391
https://doi.org/10.3389/fpsyg.2018.00087
https://doi.org/10.1093/jos/ffs007
https://doi.org/10.1016/j.jecp.2018.08.002
https://doi.org/10.1016/j.bica.2017.09.007
https://doi.org/10.1016/j.bica.2017.09.007
https://doi.org/10.1016/j.asoc.2017.06.007
https://doi.org/10.1167/8.9.13
https://doi.org/10.1016/s0042-6989(02)00093-7
https://doi.org/10.1016/s0042-6989(02)00093-7
https://doi.org/10.1111/cdev.12035
https://doi.org/10.3758/bf03212378
https://doi.org/10.1016/s0896-6273(03)00424-0
https://doi.org/10.3389/fnbot.2010.00008
https://doi.org/10.1016/s0010-0277(87)80006-9
https://doi.org/10.4436/JASS.95006
https://doi.org/10.4436/JASS.95006
https://doi.org/10.1016/j.jml.2013.08.003
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00630 April 4, 2020 Time: 10:22 # 10

Gärdenfors Causal Mappings in Conceptual Spaces

Marr, D., and Vaina, L. (1982). Representation and recognition of the movements
of shapes. Proc. R. Soc. Lond. B 214, 501–524.

Martin-Ordas, G., Call, J., and Colmenares, F. (2008). Tubes, tables and traps:
great apes solve two functionally equivalent trap tasks but show no evidence
of transfer across tasks. Anim. Cogn. 11, 423–430. doi: 10.1007/s10071-007-
0132-1

Michotte, A. (1963). The Perception of Causality. New York, NY: Methuen.
Mill, J. S. (1843). A System of Logic. London: John W. Parker.
Pearl, J. (2000). Causality: Models, Reasoning and Inference. Cambridge, MA: MIT

Press.
Pearl, J. (2018). Theoretical impediments to machine learning: with seven sparks

from the causal revolution. arXiv [Preprint]. arXiv:1801.04016vi.
Penn, D. C., and Povinelli, D. J. (2007). Causal cognition in human and nonhuman

animals: a comparative, critical review. Annu. Rev. Psychol. 58, 97–118. doi:
10.1146/annurev.psych.58.110405.085555

Povinelli, D. (2000). Folk Physics for Apes: The Chimpanzee’s Theory of How the
World Works. Oxford: Oxford University Press.

Povinelli, D., and Penn, D. C. (2011). “Through a floppy tool darkly: toward a
conceptual overthrow of animal alchemy,” in Tool Use and Causal Cognition, eds
T. McCormack, C. Hoerl, and S. Butterfill (Oxford: Oxford University Press),
69–97.

Radvansky, G. A., and Zacks, J. M. (2014). Event Cognition. Oxford: Oxford
University Press.

Runesson, S. (1994). “Perception of biological motion: the ksd-principle and the
implications of a distal versus proximal approach,” in Perceiving Events and
Objects, eds G. Jansson, S. S. Bergström, and W. Epstein (Hillsdale, NJ: Lewrence
Erlbaum associates), 383–405.

Runesson, S., and Frykholm, G. (1981). Visual perception of lifted weights.
J. Exp. Psychol. Hum. Percept. Perform. 7, 733–740. doi: 10.1037/0096-1523.7.
4.733

Seed, A., and Call, J. (2009). “Causal knowledge for events and objects
in animals,” in Rational Animals, Irrational Humans, eds S. Watanabe,
A. P. Blaisdell, L. Huber, and A. Young (Minato: Keio University Press),
173–188.

Seed, A., Hanus, D., and Call, J. (2011). “Causal knowledge in corvids, primates
and children: more than meets the eye?,” in Tool Use and Causal Cognition, eds
T. McCormack, C. Hoerl, and S. Butterfill (Oxford: Oxford University Press),
89–110. doi: 10.1093/acprof:oso/9780199571154.003.0005

Shepard, R. N. (1987). Toward a universal law of generalization for psychological
science. Science 237, 1317–1323. doi: 10.1126/science.3629243

Shiriaev, A. S., Freidovich, L. B., Robertsson, A., Johansson, R., and Sandberg,
A. (2007). Virtual-holonomic-constraints-based design of stable oscillations of
Furuta pendulum: Theory and experiments. IEEE Trans. Rob. 23, 827–832.
doi: 10.1109/tro.2007.900597

Slobin, D. I., Ibarretxe-Antuñano, I., Kopecka, A., and Majid, A. (2014). Manners of
human gait: a crosslinguistic event-naming study. Cogn. Linguist. 25, 701–741.

Steyvers, M., Tenenbaum, J. B., Wagenmakers, E.-J., and Blum, B. (2003). Inferring
causal networks from observations and interventions. Cogn. Sci. 27, 453–489.
doi: 10.1016/S0364-0213(03)00010-7

Stolt, A., Linderoth, M., Robertsson, A., and Johansson, R. (2012). Adaptation
of force control parameters in robotic assembly. IFAC Proc. Vol. 45, 561–566.
doi: 10.3182/20120905-3-hr-2030.00033

Talmy, L. (1988). Force dynamics in language and cognition. Cogn. Sci. 12, 49–100.
doi: 10.1523/JNEUROSCI.0447-17.2017

Tomonaga, M., Imura, T., Mizuno, Y., and Tanaka, M. (2007). Gravity bias
in young and adult chimpanzees (Pan troglodytes): tests with a modified
opaque−tubes task. Dev. Sci. 10, 411–421. doi: 10.1111/j.1467-7687.2007.
00594.x

Waldmann, M. R. (1996). “Knowledge-based causal induction,” in The Psychology
of Learning and Motivation, Vol. 34: Causal Learning, eds D. R. Shanks, K. J.
Holyoak, and D. L. Medin (San Diego, CA: Academic Press), 47–88.

Waldmann, M. R., and Hagmayer, Y. (2013). “Causal reasoning. To appear,” in
Oxford Handbook of Cognitive Psychology, ed. D. Reisberg (New York, NY:
Oxford University Press).

Waldmann, M. R., and Mayrhofer, R. (2016). “Hybrid causal representations,” in
The Psychology of Learning and Motivation, Vol. 65, ed. B. Ross (New York, NY:
Academic Press).85-127

Wang, W., Crompton, R. H., Carey, T. S., Günther, M. M., Li, Y., Savage, R.,
et al. (2004). Comparison of inverse-dynamics musculo-skeletal models of al
288-1 australopithecus afarensis and knm-wt 15000 homo ergaster to modern
humans, with implications for the evolution of bipedalism. J. Hum. Evol. 47,
453–478.

Warglien, M., Gärdenfors, P., and Westera, M. (2012). Event structure, conceptual
spaces and the semantics of verbs. Theor. Linguist. 38, 159–193.

White, P. A. (2012). Visual impressions of causality: effects of manipulating the
direction of the target object’s motion in a collision event. Vis. Cogn. 20,
121–142.

Wolff, P. (2007). Representing causation. J. Exp. Psychol. Gen. 13, 82–111.
Wolff, P. (2008). “Dynamics and the perception of causal events,” in Understanding

Events: How Humans See, Represent, and Act on Events, eds S. Thomas and J.
Zacks (Oxford: Oxford University Press), 555–587.

Wolff, P. (2012). Representing verbs with force vectors. Theor. Linguist. 38,
237–248.

Wolff, P., Barbey, A. K., and Hausknecht, M. (2010). For want of a nail: how
absences cause events. J. Exp. Psychol. Gen. 139, 191–221. doi: 10.1037/
a0018129

Wolff, P., and Shepard, J. (2013). “Causation, touch, and the perception of force,” in
The Psychology of Learning and Motivation, Vol. 58, ed. B. H. Ross (New York,
NY: Academic Press), 167–202.

Wolff, P., and Thorstad, R. (2017). “Force dynamics,” in The Oxford Handbook
of Causal Reasoning, ed. M. R. Waldmann (New York, NY: Oxford University
Press), 147–167.

Wolpert, D. M., Doya, K., and Kawato, M. (2003). A unifying computational
framework for motor control and social interaction. Philos. Trans. R. Soc. Lond.
B Biol. Sci. 358, 593–602.

Wolpert, D. M., and Flanagan, J. R. (2001). Motor prediction. Curr. Biol. 11,
R729–R732.

Woodward, J. (2011). “A philosopher looks at tool use and causal understanding,”
in Tool Use and Causal Cognition, eds T. McCormack, C. Hoerl, and S. Butterfill
(Oxford: Oxford University Press), 18–50.

Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., and Reynolds,
J. R. (2007). Event perception: a mind-brain perspective. Psychol. Bull. 133,
273–293.

Zacks, J. M., and Tversky, B. (2001). Event structures in perception and conception.
Psychol. Bull. 127, 3–21.

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Gärdenfors. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 10 April 2020 | Volume 11 | Article 63035

https://doi.org/10.1007/s10071-007-0132-1
https://doi.org/10.1007/s10071-007-0132-1
https://doi.org/10.1146/annurev.psych.58.110405.085555
https://doi.org/10.1146/annurev.psych.58.110405.085555
https://doi.org/10.1037/0096-1523.7.4.733
https://doi.org/10.1037/0096-1523.7.4.733
https://doi.org/10.1093/acprof:oso/9780199571154.003.0005
https://doi.org/10.1126/science.3629243
https://doi.org/10.1109/tro.2007.900597
https://doi.org/10.1016/S0364-0213(03)00010-7
https://doi.org/10.3182/20120905-3-hr-2030.00033
https://doi.org/10.1523/JNEUROSCI.0447-17.2017
https://doi.org/10.1111/j.1467-7687.2007.00594.x
https://doi.org/10.1111/j.1467-7687.2007.00594.x
https://doi.org/10.1037/a0018129
https://doi.org/10.1037/a0018129
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00872 May 4, 2020 Time: 17:26 # 1

ORIGINAL RESEARCH
published: 06 May 2020

doi: 10.3389/fpsyg.2020.00872

Edited by:
Andrea Bender,

University of Bergen, Norway

Reviewed by:
Alex Taylor,

The University of Auckland,
New Zealand
Katja Liebal,

Freie Universität Berlin, Germany
Selma Dündar-Coecke,

University College London,
United Kingdom

*Correspondence:
Zeynep Civelek

zc8@st-andrews.ac.uk

Specialty section:
This article was submitted to

Cognitive Science,
a section of the journal
Frontiers in Psychology

Received: 12 November 2019
Accepted: 07 April 2020
Published: 06 May 2020

Citation:
Civelek Z, Call J and Seed AM

(2020) Inferring Unseen Causes:
Developmental and Evolutionary
Origins. Front. Psychol. 11:872.
doi: 10.3389/fpsyg.2020.00872

Inferring Unseen Causes:
Developmental and Evolutionary
Origins
Zeynep Civelek* , Josep Call and Amanda M. Seed

School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom

Human adults can infer unseen causes because they represent the events around
them in terms of their underlying causal mechanisms. It has been argued that young
preschoolers can also make causal inferences from an early age, but whether or
not non-human apes can go beyond associative learning when exploiting causality is
controversial. However, much of the developmental research to date has focused on
fully-perceivable causal relations or highlighted the existence of a causal relationship
verbally and these were found to scaffold young children’s abilities. We examined
inferences about unseen causes in children and chimpanzees in the absence of linguistic
cues. Children (N = 129, aged 3–6 years) and zoo-living chimpanzees (N = 11, aged 7–
41 years) were presented with an event in which a reward was dropped through an
opaque forked-tube into one of two cups. An auditory cue signaled which of the cups
contained the reward. In the causal condition, the cue followed the dropping event,
making it plausible that the sound was caused by the reward falling into the cup; and
in the arbitrary condition, the cue preceded the dropping event, making the relation
arbitrary. By 4-years of age, children performed better in the causal condition than the
arbitrary one, suggesting that they engaged in reasoning. A follow-up experiment ruled
out a simpler associative learning explanation. Chimpanzees and 3-year-olds performed
at chance in both conditions. These groups’ performance did not improve in a simplified
version of the task involving shaken boxes; however, the use of causal language helped
3-year-olds. The failure of chimpanzees could reflect limitations in reasoning about
unseen causes or a more general difficulty with auditory discrimination learning.

Keywords: causal reasoning, hidden causes, temporal order, pre-schoolers, chimpanzees

INTRODUCTION

In life and also in science, much of the evidence we get for causal relations is indirect. We can
infer the existence and nature of a cause for an event despite not witnessing it directly: if it is
hidden from our perspective, or if it is not perceivable by the senses. Our inferences can range
from identifying the cause of a crashing sound coming from the kitchen (the wooden cutting board
or the metal pot falling on the floor) to the causes of global warming (anthropogenic impact on the
greenhouse effect). But how do we do this? Bullock et al. (1982) suggest that we use the principles of
determinism, priority and mechanism: We assume that there is a causal structure to the world (i.e.,
that events typically have causes); that these structures are unidirectional (i.e., causes come before
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their effects) and that events are underpinned by a causal
mechanism of some kind. Using these principles, and our prior
knowledge with regards to specific relations, we can work our way
from effects to detect likely causes. This is an extraordinary ability
that frees us from relying on what can be directly perceived,
allows us to make predictions about the future, and intervene to
bring about desirable outcomes.

However, we can also learn regular covariations in
spatiotemporal contiguity, which allow us to exploit a causal
pattern even if we do not theorize about the generative
mechanism (Shanks and Dickinson, 1987). If two events occur
repeatedly under close spatiotemporal proximity, we form
associative links between them. Later when one of the cues occur,
the other can be predicted without any reference to the causal
mechanism involved, indeed, without any explicit awareness
of the relationship at all (Reber, 1989). Conversely, we can
learn a great deal about unseen causal relations without any
direct experience: from others’ explicit testimony or implicit
linguistic cues to causality (Harris and Koenig, 2006; Gelman,
2009). We may even learn about causal relations we may not
have learnt otherwise (e.g., “The gravitational attraction of the
moon causes tides”). These three alternative routes to exploiting
causal relations in the world (association, theory-building and
testimony) are not mutually exclusive, as adults we make us of all
of them, and they interact in important ways.

What are the origins of these abilities in human development
and over human evolution? There is good evidence that statistical
or associative learning is present early in infancy (Aslin et al.,
1998; Kirkham et al., 2002), and that this ability is shared
with a great many other species. It is similarly uncontroversial
that learning from testimony is a route available to children
once they learn language, and unique to our species. However,
when it comes to going beyond the data to reason about causal
mechanisms there is more controversy both in developmental
and comparative psychology (Penn and Povinelli, 2007; Bonawitz
et al., 2010; Seed et al., 2011). Some researchers have suggested
that humans have a natural tendency to explain the events they
observe in terms of causal theories from very early in life (Bullock
et al., 1982; Gopnik and Wellman, 2012). If this is the case, it
is plausible that we share this ability with our closest primate
relatives, and possibly other species (Seed et al., 2011; Völter and
Call, 2017). Alternatively, others contend that causal thinking in
early childhood might not be well-characterized by the notion of
“theories all the way down” (Carey and Spelke, 1996). Instead
children’s thinking about causation may only approximate
scientific thinking later in development, due in part to input from
others with the development of language. If this is the case, we
may not expect to find causal reasoning in non-human primates.
Penn and Povinelli (2007) have argued that there is no evidence
non-human animals represent causality as such.

While tackling these questions empirically, one issue common
to the comparative and developmental literature concerns
distinguishing causal reasoning (based on representations
of causal mechanism) from associative learning (making
predictions in the absence of these representations), since events
that are causally linked tend to co-occur. From a developmental
perspective alone, a second issue concerns teasing apart the

role of causal language and reasoning since children can use
both to solve causal problems. We have two aims in this
paper: (1) to further explore children’s inferences about unseen
causes in the absence of linguistic cues to causality, and (2)
to use the same paradigm to explore this ability in our closest
relatives, chimpanzees.

There is substantial research suggesting that preschool
children take unseen causal relations into account when
explaining natural phenomena such as light (Bullock et al., 1982),
wind (Shultz, 1982), electricity (Buchanan and Sobel, 2011), and
contamination by germs (Legare et al., 2009). However, it is
difficult to isolate the route to causal knowledge in cases that
involve familiar events such as these. Children may have extensive
prior experience with lights and blowing candles which may lead
to forming associative links or may have been explicitly taught
by adults about how “germs cause disease.” Indeed, younger
preschoolers who supposedly did not have extensive experience
with wires and electricity, failed to reason about these relations
and made decisions based on covariation information instead
(Buchanan and Sobel, 2011). They were only able to solve the
problem when it involved more familiar batteries. Although it
is possible that experience leads to extracting abstract causal
information, it may also lead to learning arbitrary associations
(e.g., when there are batteries inside, the toy works).

A way to address this issue has been to present preschoolers
with novel and arbitrary causal structures. As adults and
scientists, when the evidence we get does not fit with our
prior knowledge or expectations, we infer unseen causes or
confounding variables. In order to test if children reasoned in
the same way, children were first trained on a novel causal
structure (e.g., puppets moving in a certain way), and then saw
evidence that was inconsistent with their training (Gopnik et al.,
2004; Schulz and Sommerville, 2006; Schulz et al., 2008). When
children were asked to make predictions about the cause of
this inconsistent event, they were more likely to say that an
unseen cause (i.e., “something else”) was responsible. Children
also displayed an ability to imagine the effect of a hidden cause in
a series of experiments by Siegel et al. (2014). They were able to
select boxes to shake that would yield unambiguous data (e.g.,
if their task was to locate a hard object, they chose to pair it
with a soft object rather than another hard object). However, in
these studies the existence of a cause and the possibility that it
might be unseen was provided in the framing of the task by the
experimenter so the children did not have to infer it from the
evidence alone. For instance, the experimenter asked “Why are
the puppets moving together? Is it X, Y or something else?”

Overall, the evidence suggests that by 4 years of age children
can successfully detect the presence of an unseen cause and make
inferences about their nature; but the potential impact of others’
verbal testimony on their abilities has not been explored to date.
Gelman (2009) argued that children are not “lone scientists”:
they get much needed input from adults around them. Linguistic
framing can help children to specify a causal relation by testifying
that the covariations they see are indeed causal; and the use
of same wording can point to the commonalities between an
observed action and agent’s action (as in intervention studies:
“The block makes it go. Can you make it go?”). Indeed, there is
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accumulating evidence that the use of causal framing can impact
children’s propensity to make causal inferences from directly
perceived and indirect evidence (Sobel and Sommerville, 2009;
Bonawitz et al., 2010; Butler and Markman, 2012; Lane and
Shafto, 2017).

One possibility is that verbal framing merely highlights the
problem for children: making the task more sensitive to their
theory construction ability by reducing peripheral demands such
as the need to focus attention (Sobel and Sommerville, 2009).
Another possibility is that without the verbal framing younger
children are yet to develop some of the fundamental cognitive
components needed to construct a causal explanation from
evidence alone. The difficulty with using never-seen-before causal
relationships is that some training or explanation is necessary
for children to have the required background information to
make inferences. While the nature of the instructions have
been varied, they are rarely excluded. The verbal framing may
simplify the task for older children, equally, it may make the test
unsuitable for younger children such as 2–3 year-olds if they lack
sufficient verbal ability to follow the instructions. We therefore
designed a paradigm with minimal language requirements to
explore this issue. We also intended to use this paradigm to make
comparisons between children and non-human primates. This
line of evidence could be very informative in establishing the
degree to which human scientific thinking is grounded in skills
we share with our closest relatives, or is rather a skill that requires
cultural input over development to emerge, and verbal input to
elicit in younger children.

Whether or not our closest relatives, chimpanzees, engage
in causal reasoning is a controversial issue in comparative
psychology. Some authors propose that causal reasoning is
a uniquely human ability; and chimpanzees either learn
associatively or they rely on generalizations based on the
surface appearance of objects alone to solve problems (Penn
and Povinelli, 2007; Penn et al., 2008; Bonawitz et al., 2010).
Limitations in performance in some tasks designed to probe the
causal reasoning abilities of great apes would seem to support this
interpretation (Köhler, 1925; Limongelli et al., 1995; Povinelli,
2000; Call, 2007). In contrast to Penn and Povinelli (2007), Seed
et al. (2011) proposed that non-human great apes can make use
of causal information from events happening around them if the
testing situation does not overload other cognitive resources. It
could be shown that they did not rely solely on the available
sensory information to learn associations. However, it has been
a challenge to decisively distinguish associative learning from
causal reasoning.

One of the most promising ways to resolve this issue has been
to compare how non-human primates (and other animals, such
as corvids and dogs) make inferences about the location of food in
two contexts, either: (a) the evidence is caused by the food or (b)
the evidence co-varies with the presence of food but the relation
is arbitrary (reviewed in Seed and Mayer, 2017; Völter and Call,
2017). Great apes successfully used indirect evidence to locate
food in a number of studies: in the form of auditory cues coming
from shaken cups (Call, 2004), the visible effect of weight (Hanus
and Call, 2008); and visible traces or trails (Völter and Call, 2014).
In the critical comparison conditions, in which the relationship

between a similar cue and the food location was arbitrary rather
than causal, apes did not find the food (for example, if the
experimenter played the recording of the rattling sound over the
baited cup, Call, 2004). Taken together these studies imply that
apes are capable of causal reasoning about unseen causes.

However, the comparability of the arbitrary conditions to the
causal ones were criticized. For example, Penn and Povinelli
(2007) point out that the “recorded sound” control of the shaken
cups study was not identical to the sound the shaken cup made.
They further argued that the results could still be explained
by associative learning if subjects had used the combination of
shaking motion and rattling sound as a discriminative cue for
locating food. Overall, the comparability of the experimental
and control conditions in terms of different feedback (e.g.,
auditory) poses a challenge for distinguishing causal reasoning
from associative learning.

The task presented in this study was designed to address
some of the empirical challenges raised above by reducing verbal
requirements and implementing robust controls for associative
learning. In the “causal condition,” a ball containing a reward
was dropped into a forked tube, and could be found in one of
two cups at the bottom. After the ball was dropped, participants
heard either a ding or a clack sound. After a few trials, subjects
were expected to learn that when they heard a ding, the ball
would be in one cup and when it was a clack, the ball would
be in the other one. If subjects succeed in this condition, it
might mean that they reasoned about the underlying causal
structure (the ball hitting the different boxes caused different
sounds) or that they simply associated the sound with the
side (if ding, choose right). In order to distinguish between
these two possibilities, in the “arbitrary condition” the order
of events was reversed: participants first heard a ding or a
clack sound, and then the ball was dropped into the forked
tube. Although the sounds were still predictive of the location
of the ball (if ding, choose right), the relationship was now
arbitrary. Critically, the two conditions were equivalent from
an associative learning perspective since the stimuli involved in
both conditions were exactly the same and the only difference
was the order of events. However, if participants reason about
unseen causes, they are expected to do better in the “causal
condition” where there is a plausible causal structure than in the
“arbitrary condition.”

In previous studies, we have found such differences between
causal and arbitrary conditions in children between the ages
of 3 and 5, when dealing with directly perceivable events such
as choosing an appropriate tool or an unobstructed path for
extracting a reward (Mayer et al., 2014; Seed and Call, 2014).
However, such performance differences are not apparent in older
children, probably because 6-year olds are capable of interpreting
arbitrary cues as symbolic communication to solve a problem
(DeLoache, 2004; Seed et al., 2011; Mayer et al., 2014). We
therefore focused on the 3–6-year-olds in this study. By 3-years
of age children expect causes to precede their effects (Bullock and
Gelman, 1979; Rankin and McCormack, 2013) so we predicted
that by this age children should perform at above chance levels in
the causal condition if they reasoned causally, and by 6-years they
should be above chance in both conditions.
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EXPERIMENT 1: CHILDREN

Methods
Participants
Three-to-six-year-old children (N = 129) were tested in different
locations in Scotland. There were 65 children in the causal
condition and 64 in the arbitrary condition. Age and sex were
split roughly equally in the two conditions (Table 1). Twenty-
three additional children that were tested were excluded from
the study due to experimenter or apparatus error (7), parental
interference (3), discovery of the trick about the box (4) and
refusal to complete the task (9). All the children studies reported
in this paper were ethically approved by University of St Andrews
Teaching and Research Ethics Committee and informed consent
were taken from parents/guardians.

Materials
Transparent training box
The training apparatus was a forked chute made from clear
acrylic (Figure 1). The middle singular channel (30× 6.5× 5cm)
was forked into two channels. Directly at the bottom of the
channels there were two white acrylic boxes (2.5 cm apart).
The channels were mounted on a white acrylic back panel
(30 × 49 cm); and a base panel (25 × 30 cm) to stand. They

TABLE 1 | Age, sex, and mean/median performances of children in
Experiments 1, 2, 4, and 5.

N (females) Mean age Mean/Median
performance

SD

Experiment 1

3-year-olds

Causal 16 (8) 3.6 0.45 0.50

Arbitrary 16 (8) 3.4 0.50 0.50

4-year-olds

Causal 16 (8) 4.5 0.62 0.48

Arbitrary 16 (7) 4.4 0.50 0.50

5-year-olds

Causal 16 (8) 5.4 0.55 0.49

Arbitrary 16 (8) 5.4 0.48 0.50

6-year-olds

Causal 17 (8) 6.4 0.60 0.49

Arbitrary 16 (8) 6.3 0.60 0.49

Experiment 2

4–5-year-olds

Causal 20 (9) 4.7 0.61 0.49

Arbitrary 20 (10) 4.6 0.62 0.49

Experiment 4

3-year-olds 16 (8) 3.5 0.54 0.50

4-year-olds 16 (9) 4.5 0.69 0.46

5-year-olds 16 (8) 5.4 0.83 0.38

Experiment 5

3-year-olds 28 (14) 3.7 0.67 0.47

Numbers in bold represent means that are significantly different from chance
(p < 0.05) according to a Wilcoxon signed rank test (Experiment 1) and one sample
t-tests (Experiments 2, 4, and 5).

FIGURE 1 | Transparent training box (A), opaque testing box (B), and the
back of the opaque testing box (C) used in Experiments 1 and 3.

contained pegs that were 7.5 cm apart from each other on both
sides. The pegs were designed to slow down the fall of the ball
and to make sounds so that subjects could easily follow the ball’s
trajectory. A peg positioned right above the fork could be moved
to the either side from behind the back panel. It enabled the
experimenter to control which side the ball would fall in a trial.

Opaque testing box
The testing apparatus had the same measurements as the training
box but the channels were opaque. The boxes at the bottom
of the channels were spray-painted, one yellow and one gray,
using Plastikote stone-textured paint (Figure 1). In the testing
apparatus, the back panel concealed two additional elements
which, unbeknownst to the participant, controlled the falling
of the ball through the apparatus and the production of the
sound cues.

First, there was a middle singular channel (30 × 10 cm) into
which the dropped ball would fall, hitting pegs along the way,
and land noiselessly on a piece of foam. Below this channel was
a shorter one (6.5 cm) in which a second ball was held and
could be released onto a noise-making block (wooden or metal).
This block could be exchanged by the experimenter depending
on the trial. These two components were combined through
the action of two small motors which controlled the rotation
of small plastic supports that held the two balls in place. When
the motors were switched on by a remote, the plastic supports
would rotate, releasing the two balls according to a precise timing.
The two buttons on the remote controlled the order in which
the motors would activate. In the causal condition, the motor
at the top would operate first and let the ball dropped into
the apparatus by the experimenter, go down the channel hitting
the pegs, and then the motor at the bottom would release the
second ball to fall onto the metal/wooden piece positioned by the
experimenter. The intended illusion was that the ball had fallen
down the channel into one of the two boxes and made a distinct
sound. In the arbitrary condition, the activation of the motors was
reversed. The second support moved first to release the ball on the
metal/wooden piece, and then the experimenter dropped the ball
in time for the first support to rotate and let the ball fall down the
channel with the pegs. The time interval between the activation
of the two motors copied the actual time it would take the ball to
fall in reality and was the same in both conditions. In the causal
condition it appeared as a single event sequence. The electronic

Frontiers in Psychology | www.frontiersin.org 4 May 2020 | Volume 11 | Article 87239

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00872 May 4, 2020 Time: 17:26 # 5

Civelek et al. Inferring Unseen Causes

card that controlled the motors was concealed in a box behind the
apparatus (Figure 1). The reason for creating the illusion rather
than using a real event sequence was that: (1) no local sound cues
were given to locate the ball; and (2) the order of the cues could
be reversed in the arbitrary condition while keeping everything
else about the stimuli exactly the same.

The balls were made of thermoplastic (1.60 cm in diameter)
and contained a hole in the middle where the reward could be put.

Procedure
Training phase
The experiment started with the transparent training box. The
experimenter introduced the task saying; “In this game, I will
put a sticker in the ball and then I will drop the ball from
here (the top opening). It will roll down to one of these boxes
(points to the boxes at the bottom). If you find the ball, you
will win the sticker. Ready?” The experimenter then dropped
the ball and the child could watch the entire trajectory of
the ball until it came to rest, hidden, in one of the boxes.
The child then pointed to or opened the box that she/he
thought the ball was in. Once the child made a choice, the
other box was also opened to show the content. Transparent
training ended after five consecutive successes or ten trials
in total.

Test phase
After the training, the experimenter said “This game was too easy
for you! Shall we make it more fun?” and brought out the opaque
testing box. Then introduced the task to the children; “The game
is the same. I will put a sticker in the ball and drop the ball from
here. If you can find the ball, you will win the sticker. You cannot
see inside the box anymore, but there is still a way to find the
ball in the correct box! Do you want to try?” Before each trial, the
experimenter prepared the apparatus behind a barrier by putting
a ball with a sticker inside into one of the boxes at the bottom,
placing another ball on the support attached to the motor just
above the metal/wood piece and holding another in her hand for
the child to see. The metal and wood pieces were interchanged
in between trials and the remote that controlled the events rested
behind the apparatus.

In the causal condition, the experimenter pressed the causal-
order button on the remote while dropping the ball. From the
participant’s perspective, they would see the experimenter drop
a ball into the apparatus, follow the trajectory of the fall due
to the pegs inside the middle channel and then hear a metallic
or wooden sound.

In the arbitrary condition, the experimenter pressed the
arbitrary-order button on the remote. The participant would first
hear a metallic/wooden sound and then see the experimenter
drop the ball into the apparatus and follow the trajectory of the
fall due to the pegs.

If the child found the ball, the experimenter said “Well done!
You won a sticker!” removed the other box to show that it
was empty and prepared for the next trial. If the child did
not find the ball, the experimenter said “Oh no! It was here
(opening the other box). Let’s do it again!” In total children
got 20 testing trials which lasted about 15 min. For a given
participant the position of the yellow and gray boxes at the

end of the channels stayed the same over the 20 trials (e.g.,
the yellow box on the left was associated with a ding, and the
gray box in the right was associated with a clack), but between
subjects the pairing of the color of the box and the sound
were randomized. The ball was placed in each box 10 times
in a random fashion but never in the same box more than
twice in succession.

Open ended question
At the end of the task, the experimenter asked children; “How
did you decide which box to choose?” If children did not
reply, the experimenter elaborated “Sometimes the ball was in
the gray one and sometimes in the yellow one. How did you
know where the ball was?” Other than 15 missing explanations
(first 10 participants were not asked because it was not initially
planned in the study design and 5 other participants had to leave
immediately after testing), all children responded to the question.

Scoring and Analysis
The first choice of the subjects was scored as their response in all
of the experiments. All trials were scored live by the experimenter
as correct or incorrect and were also videotaped. A second
examiner coded 20% of the videos for reliability, Kappa = 0.97
(95% CI [0.95, 0.99], p < 0.001. The mistakes that were found by
the second coder were corrected and all the videos were recoded
from the video once again to check for other potential mistakes
(none were found). The data for this study can be found at
Supplementary Table S2.

We specified generalized linear mixed models (GLMM;
Baayen, 2008) with binomial error structure and logit link
function using the function glmer of the R-package lme4 (Bates
et al., 2015) for all of our analyses in this paper. In Experiment 1,
our full model comprised of condition (causal/arbitrary), age, and
their interaction; trial number, and sex as fixed effects. Subject
ID and the side of the boxes were included as random effects. In
order to keep type-1 error rates at the nominal level of 5%, we
included random slopes of trial number within subject ID, but
left out the correlation parameters between random intercepts
and random slopes terms (Schielzeth and Forstmeier, 2009; Barr
et al., 2013). We compared the full model to a null model which
included only the random effects using a likelihood ratio test.

The model stability was assessed by excluding individual cases
one at a time and comparing the estimates with those derived
from a model with the full data set. The model was stable with
regards to the fixed effects. We checked whether the variability
was greater than expected (overdispersion) and found that it
was not an issue with regards to the final model (dispersion
parameter: 0.95). Finally, variance inflation factors (VIF) were
calculated using the function vif of the R-package car and it did
not indicate collinearity to be an issue.

The data was not normally distributed so non-parametric
Wilcoxon signed-rank tests were used to examine whether
children’s performance was significantly different from chance
level (p = 0.05) in different conditions and age groups. Children
who chose one side 16 or more times were counted as side biased
according to a two-tailed binomial test (p = 0.004). Chi-square
tests were used to explore the relationship between side bias,
condition and age.
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Children’s responses to the open-ended questions were
categorized into five types of explanations (N = 114) using
the relevant categories from Legare et al. (2010). The first
category, “No explanation,” consisted of children who could/did
not provide a verbal strategy (e.g., pointed to the boxes, said
“yellow/gray one”). The second category was “Don’t know,”
which consisted of children who said they did not know how to
find the ball and they were just guessing. The third category was
“Non-causal strategies” that referred to a solution based on a non-
causal feature or pattern (e.g., the ball alternated right-left-right-
left, “because of the colors”). The fourth category was “Causal
explanations that were wrong” (e.g., “I followed the noises into
the boxes,” “The box wiggled a bit when the ball fell into it”). And
the last category was “Referring to different sounds/materials”
which showed an understanding of the true causal structure
(e.g., “They made two different sounds”). A second examiner
categorized children’s answers into these five different types of
explanations. There was a high agreement between the two
coders, Kappa = 0.86 [95% CI, 0.80, 0.93], p < 0.001 and it rose
to Kappa = 0.96 [95% CI, 0.92, 0.99], p < 0.001 after further
discussions. The disagreements were due to some responses that
could be categorized either as category one or two (e.g., “Don’t
know” and points to the boxes). We decided to include them in
“no explanation” category as they were mostly pointing gestures.
Only when children explicitly stated that they were just guessing,
we included them in “Don’t know” category. The relationship
between verbal explanations, age and condition was explored
using chi-square tests.

Results
Training
All children except for one 5 and three 3-year-olds passed the
transparent training within 5 consecutive trials. Two of these
children needed 6 and the other two needed 8 trials to complete
the transparent training.

Test
The full model comprising of the interaction of age and
condition, sex and trial number as fixed effects fit the data
better than the null model which lacked these fixed effects
[χ2(9) = 30.91, p < 0.001]. We found that there was a significant
condition and age interaction [χ2(3) = 8.71, p < 0.05] and
a significant effect of trial number [χ2(1) = 6.99, p < 0.01].
There was no effect of sex [χ2(1) = 3.17, p = 0.075]
(Supplementary Table S1).

Comparisons of children’s performance in different conditions
across age groups showed that there was no significant difference
between performance in the causal and arbitrary conditions
for 3- and 6-year olds (Mann–Whitney U-Test for 3-year-olds:
U = 93, Ncausal = 16, Narbitrary = 16, p = 0.348; 6-year-olds:
U = 133, Ncausal = 17, Narbitrary = 16, p = 0.921). Three-year-
olds performed at chance level in both causal (Median: 0.45,
Wilcoxon signed-ranks test: T+ = 72, N = 15, p = 0.513) and
arbitrary conditions (Median: 0.5, T+ = 40, N = 11, p = 0.562);
6-year-olds were above chance in both causal (Median: 0.6,
T+ = 127, N = 17, p < 0.05) and arbitrary conditions (Median:
0.6, T+ = 92.5, N = 14, p < 0.01). Four-year-olds performed

FIGURE 2 | Performance of children in the causal and arbitrary conditions in
Experiment 1 (N = 129, see Table 1 for age group information and means).
Dotted line shows chance level performance (p = 0.05), error bars represent
SE.

significantly better (U = 64.5, Ncausal = 16, Narbitrary = 16,
p < 0.05) and above chance levels in causal condition (Median:
0.62, T+ = 98.5, N = 14, p < 0.01) as opposed to chance
level performance in arbitrary condition (Median: 0.5, T+ = 39,
N = 12, p = 1). Five-year-olds showed a similar trend for
better performance compared to chance in the causal condition
(Median: 0.55, T+ = 61, N = 12, p = 0.08) than in the arbitrary
condition (Median: 0.48, T+ = 66, N = 15, p = 0.751); however this
difference was not significant (U = 93, Ncausal = 16, Narbitrary = 16,
p = 0.191). Figure 2 shows the average performance of each
age group in causal and arbitrary conditions. An effect of
learning as evidenced by the significant effect of trial number on
performance was found. This was expected given that subjects
had no way of solving the task in their first trial.

There was no significant relationship between condition
and side-bias [χ2(1) = 0.73, p = 0.39], however, there was a
significant relationship between age and side bias [χ2(3) = 16.77,
p < 0.001]. Three-year-olds were more likely to be side biased
than other age groups.

Open Ended Question
Table 2 summarizes the percentages of children’s responses to
the question “How did you decide which box to choose?” in
each age group across two conditions. For a more robust analysis
using chi-square, “no explanation” and “don’t know” categories;
and “non-causal strategies” and “wrong causal explanations”

TABLE 2 | Percentage of children who gave the following explanations in
response to the question "How did you know where the ball was?" in Experiment
1 (N = 114).

Causal condition Arbitrary condition

Explanations 3 yo 4 yo 5 yo 6 yo 3 yo 4 yo 5 yo 6 yo

No idea 90% 58.3% 43% 31% 81% 67% 33% 34%

Wrong idea 10% 8.3% 21% 25% 19% 33% 60% 41%

Correct explanation 0% 33.3% 36% 44% 0% 0% 7% 25%
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categories were lumped to result in three explanation categories
in total: “no idea,” “wrong idea,” and “correct explanation.”
According to the chi-square analysis there was not a significant
relationship between 3-year-old children’s explanations and the
condition they were in [χ2(1) = 0.36, p = 0.55]. In both
conditions, a high percentage of 3-year-olds had “no idea” about
how to find the ball, a minority gave a wrong explanation
and there were no children who could provide the correct
explanation. There was a significant relationship between 4-
year-olds’ explanations and condition [χ2(2) = 6.95, p < 0.05].
Although the majority of 4-year-olds were in the “no idea”
category in both conditions, 33.3% could provide the correct
explanation in the causal condition whereas none did in the
arbitrary condition. Interestingly, there was a higher percentage
of children in the arbitrary condition who gave a “wrong idea”
explanation compared to those in the causal condition. The
relationship between explanations and condition were marginally
significant for 5-year-olds [χ2(2) = 5.73, p = 0.057]. “No idea”
responses were comparable in both conditions, however, there
were more 5-year-olds in the arbitrary condition who referred
to wrong explanations than in causal condition and there
were more children in causal condition that referred to the
“correct explanation” than in the arbitrary condition. There was
a significant relationship between 6-year-olds’ explanations and
the condition they were in [χ2(2) = 6.51, p < 0.05]. The pattern
was similar to 5-year-olds. More children referred to wrong
explanations in the arbitrary condition compared to the causal
condition and more 6-year-olds in the causal condition came
up with an explanation based on different sounds than in the
arbitrary condition.

Finally we explored whether children’s reports matched
with their performance. The performance of the 16 children
who referred to different sounds/materials in the causal
condition was compared with the performance of an age-
matched group in the causal condition who gave other
explanations. The model comprising of the fixed effects of
explanations (correct/incorrect), trial number and sex fit the
data better than the null model without the fixed effects
[χ2(3) = 29.47, p < 0.001] (Supplementary Table S2). There
was a significant effect of explanation type on children’s
performance [χ2(1) = 24.90, p < 0.001]. Children who gave the
correct explanations performed better than their peers who gave
incorrect explanations [Mean difference = 0.25, 95% CI [0.15,
0.36], t(15) = 5.24, p < 0.001]. Moreover, children who gave
correct explanations performed above chance levels [M = 0.77,
95% CI [0.69, 0.85], t(15) = 7.17, p < 0.001], whereas those who
gave incorrect explanations were at chance [M = 0.52, 95% CI
[0.47, 0.56], t(15) = 0.76, p = 0.46].

Discussion
When the sound cues were consistent with a causal structure,
by 4-years of age children used the discriminatory sound cue to
locate the ball, whereas 3-year-olds failed. When the cues were
not consistent with a causal structure, 4–5-year-olds did not use
these same sounds to find the ball; and performed worse than they
did in the causal condition. This difference was significant for
4-year-olds but not for 5-year-olds. These results suggested that

children went beyond the immediately available cues to imagine
their likely unseen causes. The explanations children provided
about how they found the ball matched the results of the main
task. More children referred to different sounds/materials when
there was a plausible causal structure than when the relation
was arbitrary. In addition, the children who referred to different
sounds outperformed their peers who gave different explanations
for their choice.

However, one could argue that the temporal proximity
between the distinct sound cue (metal/wood) and the outcome
(choice of one box) was smaller in the causal condition: when
the order of events was “falling” (filler) sound, metal/wood
sound, choice, than in the arbitrary condition, when the order
was metal/wood sound, filler sound, and then choice. And
since associations are more easily formed between temporally
proximate events (Barnet et al., 1991; Miller and Barnet, 1993),
and even brief delays have been shown to result in a reduction of
causality judgments (Michotte, 1963; Shanks et al., 1989), these
could explain the better performance in the causal condition
compared to the arbitrary condition. In Experiment 2 we tested
this alternative explanation.

Six-year-olds performed equally well in both conditions. Their
successful performance in the arbitrary condition might have
resulted from the ability to treat arbitrary cues as symbols to solve
a problem (DeLoache, 2004; Seed et al., 2011; Mayer et al., 2014).
On the other hand, 3-year-olds did not pass either condition in
this study, they were unable to provide a verbal explanation about
how they found the ball and were more likely to be side-biased.

One possibility for the failure of 3-year-olds could be that
unlike older children, they cannot, or do not spontaneously,
imagine unseen causes. However, other explanations are possible
too, such as the necessity to remember the cues which, being
auditory, are transitory, and map them to one of the two boxes
which do not look to be made of the materials evoked by the
sounds. In Experiment 4 we simplified the task by using boxes
that were visibly made of metal and wood, to examine whether
or not this task would be easier. In Experiment 3, we tested
chimpanzees, and planned to titrate the level of difficulty based
on our initial results with the task described above.

EXPERIMENT 2: FOLLOW-UP WITH
ARBITRARY SOUNDS

In this experiment, we tested whether better performance in
the causal condition as opposed to the arbitrary condition
in Experiment 1 could be due to temporal proximity of the
sound cues and the outcome. Children were asked to locate
a sticker in one of the two boxes based on recorded sounds
which were similar either to the causal (filler, wood/metal) or
the arbitrary order (wood/metal, filler) of the Experiment 1.
Would children perform better when the discriminatory cue
was more proximate to the choice, than when it was followed
by a filler sound? If this was the case, then it would raise
concerns that the differences between the causal and arbitrary
conditions in Experiment 1 could be due to temporal proximity
rather than causal plausibility. However, if children detected the
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causal structure, we did not expect to find differences between
conditions when all cues, regardless of the order, were arbitrarily
related to the outcome.

Methods
Participants
A new group of 40 4–5-year-old children were tested. Half of
them participated in the filler discriminatory condition and the
other half participated in the discriminatory, filler condition. Age
and sex were split roughly equally in the two conditions (Table 1).
Two additional children that were tested were excluded from the
study due to refusal to complete the task.

Materials
The yellow and gray boxes at the bottom of the channels in
Experiment 1 were used. The boxes were covered with lids so that
children could not see inside. A barrier (52 × 31 cm) concealed
the hiding event. Two sounds that lasted about 1 second were
recorded and played back to the children from the experimenter’s
phone. The sounds were amplified with a speaker.

Procedure
Test
The experimenter introduced the task saying; “In this game, I will
hide a sticker in one of these boxes. You won’t see where it goes
but there is a way to find the sticker in the correct box. I will
give you the clue using my phone! If you point to the correct
box, you will win the sticker. Ready?” The experimenter then hid
the sticker behind the barrier. Upon removing the barrier, she
said “Now, pay attention!” and played the recorded sound from
her phone. In the filler, discriminatory condition, the children
heard the filler sound followed by a metal/wood sound at the
end and in the discriminatory, filler condition, they heard the
metal/wood sound followed by the filler sound. The experimenter
asked “Where do you think is the sticker?” and the child pointed
to or opened the box that she/he thought the sticker was in. Once
the child made a choice, the other box was also opened to show
the content.

In total children got 20 trials which lasted about 10 min. The
side of the boxes was randomized across subjects. The sticker was
placed in each box ten times in a random fashion but never in the
same box more than twice in succession.

Open ended question
At the end of the task, the experimenter asked; “How did you
decide which box to choose?” If children did not reply, the
experimenter elaborated “Sometimes the ball was in the gray one
and sometimes in the yellow one. How did you know where the
ball was?” A second examiner categorized children’s answers into
these five different types of explanations, Kappa = 0.92 [95% CI,
0.85, 0.96], p < 0.001.

Scoring and Analysis
A second examiner coded 20% of the videos for reliability,
Kappa = 0.98 [95% CI, 0.97, 0.98], p < 0.001. The full model
consisted of condition, trial number and sex as fixed effects; ID
and the side of the boxes as random effects. We also included

random slopes of trial number within ID, but left out the
correlation parameters between random intercepts and random
slopes terms (Schielzeth and Forstmeier, 2009; Barr et al., 2013).
This full model was compared to a null model which included
only the random effects using a likelihood ratio test.

The model was stable, overdispersion was not an issue with
regards to the full model (dispersion parameter: 0.86) and there
was no multicollinearity. We used one-sample t-tests to examine
performance different from chance level (p = 0.05) in the two
conditions. Finally, the relationship between verbal explanations
and condition was explored using chi-square tests.

Results
Test
The full model was not significantly different from the null model
[χ2(3) = 0.38, p = 0.945]. None of the predictors had a significant
influence on performance (Supplementary Table S3). Children
performed above chance in both the causal [M = 0.61, 95% CI
[0.52, 0.71], t(19) = 2.48, p < 0.05] and the arbitrary sound orders
[M = 0.62, 95% CI [0.53, 0.70], t(19) = 2.87, p < 0.01] (Figure 3).

Open Ended Question
There were 2 missing data points so the analysis was conducted
on data from 38 children. There was not a significant relationship
between children’s explanations and the condition they were in
[χ2(2) = 3.03, p = 0.22]. Overall, there were 13 children who were
in the “no idea” group; 14 children in “wrong explanations” and
11 children who gave the correct explanation. Only the children
who were in the correct explanation group performed above
chance level [t(10) = 7.24, p < 0.001].

Discussion
When the sound cues to locate the reward was completely
arbitrary, the order children heard them did not influence

FIGURE 3 | Performance of children in the causal and arbitrary recorded
sound orders in Experiment 2 (N = 40). Dotted line shows chance level
performance (p = 0.05), error bars represent SE.
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their performance and there was no relationship between their
verbal explanations and the condition they were in. Therefore,
better performance in the causal than the arbitrary condition
in Experiment 1 could not simply be explained based on
the temporal proximity of the sound cue and the outcome
as the associative accounts would suggest. Indeed, Buehner
and May (2002, 2003) have also challenged the necessity of
temporal proximity for causal judgments by showing that it
was the knowledge of the causal structure that influenced
participants’ judgments.

Overall, this experiment provided further evidence to support
our interpretation that by 4-years of age children were able to
use indirect evidence to detect unseen causes based on data
alone. In Experiment 3 we explore chimpanzees’ abilities to
detect unseen causes.

EXPERIMENT 3: CHIMPANZEES

The experiment with chimpanzees consisted of two phases. In
the first phase, we planned to test 6 subjects in the causal
condition as described in Experiment 1. If subjects passed the
causal condition, in the second phase, we planned to test a further
6 chimpanzees on the arbitrary condition. However, if they did
not pass the causal condition, in the second phase we planned
to simplify the task by replacing the yellow and gray boxes at
the bottom with metal and wooden boxes (familiar boxes). With
this manipulation the subjects would receive additional visual
feedback with the conspicuously metal and wooden boxes that
could help them match the sounds and materials more easily.

Methods
Participants
Chimpanzees housed at the Wolfgang Köhler Primate Research
Center, Leipzig Zoo (Germany), were selected by convenience
sampling. Six chimpanzees participated in the first phase:
causal condition with unfamiliar boxes. Because none of these
individuals passed the task at above chance levels, in the second
phase, 3 of these experienced chimpanzees and 3 additional naïve
subjects were assigned to the “Familiar boxes, causal condition”
and the other 3 experienced and 3 additional naïve subjects were
assigned to the “Familiar boxes, arbitrary condition.” One subject
in the “familiar boxes arbitrary condition” stopped approaching
the mesh for testing after a few sessions, so she was dropped
from the study, leaving 11 subjects in total who participated in
the second phase (Table 3). Subjects lived in two groups of 6 and
19 individuals and had access to indoor and outdoor enclosures.
They were tested individually in their sleeping rooms and were
not deprived of food or water at any time. Testing days were
consecutive as much as possible. If a subject did not choose to
participate, testing for this individual was canceled for that day.
Research was conducted in accordance with the regulations of the
University of St Andrews’ Animal Welfare and Ethics Committee
(AWEC), Max Planck Institute for Evolutionary Anthropology
and Zoo Leipzig.

TABLE 3 | The name, age, sex, rearing history and information about experiment
participation of chimpanzees (N = 11).

Name Age Sex Rearing history Participation (condition)

Hope 26 f Nursery Unfamiliar (causal), familiar (causal)

Kofi 11 m Mother Unfamiliar (causal), familiar (causal)

Fraukje 41 f Nursery Unfamiliar (causal), familiar (causal)

Bangolo 7 m Mother Familiar (causal)

Sandra 24 f Mother Familiar (causal)

Lobo 13 m Mother Familiar (causal)

Tai 14 f Mother Unfamiliar (causal), familiar (arbitrary)

Dorien 36 f Nursery Unfamiliar (causal), familiar (arbitrary)

Riet 39 f Nursery Unfamiliar (causal), familiar (arbitrary)

Lome 15 m Mother Familiar (Arbitrary)

Frodo 23 m Mother Familiar (arbitrary)

Materials
Transparent training and opaque testing boxes
Exact replicas of the apparatuses described in Experiment 1
were used to test chimpanzees in the unfamiliar boxes causal
condition (Figure 1). The apparatus was placed on a sliding table
(78 × 38 cm) which was fixed to the sides of the mesh panel
(78 × 55 cm). A second opaque screen was placed behind the
mesh panel to block the view of the subject in between trials.

In the second phase with familiar boxes, the yellow and gray
boxes were replaced with boxes of the same size made of wood
and metal (Figure 4).

Sound making training boxes
Chimpanzees in Leipzig Zoo had objects made of different
materials in their outdoor and indoor enclosures (i.e., automatic
metal feeders, tree logs, plastic buckets) and occasionally may
hear the noises they make when they are hit/dropped. However,
in comparison to children we assumed their exposure to
metal and wooden materials would be limited. Therefore, we
prepared two sound-making training boxes: the “metal box”
(6 × 5.5 × 6 cm) made from stainless steel and the “wooden
box” (8 × 7 × 7 cm) made from ply-wood. In both boxes, there
was a thermoplastic ball (1.30 cm in diameter); and there was a
hole (1.25 cm in diameter) on one side of the box. The boxes also

FIGURE 4 | Testing box used in familiar boxes (wooden and metal) conditions
(A) and sound-making training boxes (B) in Experiment 3.
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contained peanuts which could be shaken free, an action which
caused the ball to rattle inside the box and make sounds. The
boxes were passed to the chimpanzees through a movable feeder
that was adjacent to the mesh panel they were tested. A steel
wire passing through each sound-making box secured them to
the steel feeder. Therefore, the subjects could play with the boxes
but could not take them away (Figure 4).

Procedure
Training phase
All subjects completed the transparent training phase before
moving on to the testing. The experimenter placed the
transparent apparatus on the sliding table, put a food reward
(dates, peanuts based on subjects’ preference) in the ball and
when the subject was sitting in front of the mesh, dropped the
ball from the top opening. The subjects were highly motivated
to find the high value food rewards, and were familiar with
the experimental setup where they tried to locate rewards in
cups/boxes/apparatuses. When the experimenter pushed the
sliding table toward the mesh, the subjects could point to one
of the boxes at the bottom. If the subject chose correctly, the
experimenter gave the reward to the subject and took out the
other box to show that it was empty. If the subject pointed to the
wrong box, the experimenter first showed the empty box and then
showed the content of the other box and put the food reward back
into the bucket. If the subject pointed to an irrelevant location or
the choice was ambiguous, the experimenter pulled the sliding
table back, tapped on both boxes at the same time and pushed the
table forward again. When a trial was over, the opaque screen was
put behind the mesh. Chimpanzees received 10 trials per session
and training continued until the subjects selected the correct side
16 out of 20 trials or more (a binomial test was run to calculate
p-value, p = 0.004).

Once a subject passed the transparent training the subjects
also received the sound-making boxes training. The experimenter
put shelled peanuts in full view of the subject into one of the
boxes and passed it to the subject using the steel feeder. When the
subject shook the boxes, the ball hit the walls of the box making
metal/wooden sounds and the peanuts came out through the
hole. Once the subject was done with one box, the experimenter
replaced it with the other box. Half of the subjects got the metal
box first and the wooden second and the other half did the reverse
order. They got sound-making boxes training at the beginning of
each testing session.

Test phase
The unfamiliar boxes causal condition was the same as described
above in Experiment 1. Chimpanzees got 10 trials per session
and testing ended when a subject selected the correct side 16 out
of 20 times or more or until 10 sessions were completed. The
side of the yellow/gray boxes at the end of the channels were
randomized across subjects. The ball was placed in each box 5
times in a random fashion but never in the same box more than
twice in succession.

The procedure for the familiar boxes conditions with wooden
and metal boxes at the bottom were the same as the
unfamiliar boxes.

Scoring and Analysis
A second examiner coded 20% of the videos for reliability,
Kappa = 0.81 [95% CI, 0.75, 0.87], p < 0.001. In the unfamiliar
boxes causal condition the full model comprised of age, sex,
session and trial numbers as fixed effects and ID and the side
of the boxes as random effects. We included random slopes of
trial and session numbers within ID, but left out the correlation
parameters between random intercepts and random slopes terms.
The full and null model comparison was done using a likelihood
ratio test. In order to explore performance in this condition
against chance level (p = 0.05) we used a one-sample t-test. In
the familiar boxes conditions, same analyses methods were used
with the addition of condition (causal/arbitrary) and experience
(experienced/naïve) to fixed effects.

Both models for unfamiliar and familiar boxes were stable and
there were no issues with regards to overdispersion (dispersion
parameter: 1.01 for both), however, multicollinearity was an issue
for the predictors, age and sex. Therefore, sex was removed
from the models.

Results
Unfamiliar Materials
Transparent training
All chimpanzees except for one reached the criterion in
the transparent training within two sessions which was the
minimum amount. This subject needed an extra session to reach
the criterion.

Testing
None of the subjects reached the criterion in the unfamiliar boxes
causal condition; therefore, all subjects received 10 sessions (see
Figure 5). The full model was not significantly different from
the null model [likelihood ratio test: χ2(3) = 1.43, p = 0.698]
(Supplementary Table S4). Furthermore, they were at chance
level overall as a group [M = 0.50, 95% CI [0.45, 0.56], t(5) = 0.15,
p = 0.885]. All individuals except for one were side biased.

Since none of the subjects in unfamiliar boxes condition
passed the task, we moved on to the familiar boxes.

Familiar Materials
Transparent training
Five naïve subjects got the transparent training before moving
on to the testing sessions. They reached the criterion within
two sessions.

Testing
The model including condition, experience level, age, session
and trial numbers was not significantly different from the null
model [χ2(5) = 2.74, p = 0.741]. There was no significant
difference between performances in the causal and arbitrary
conditions nor between the performances of experienced and
naïve individuals (Supplementary Table S5). Subjects in both
conditions performed at chance level; familiar boxes causal
[M = 0.52, 95% CI [0.46, 0.57], t(5) = 0.76, p = 0.480] and
familiar boxes arbitrary [M = 0.53, 95% CI [0.50, 0.56], t(4) = 2.67,
p = 0.06] (Figure 6). One subject reached the criterion in the
causal familiar condition in the last session (M = 0.62, SD = 0.16);
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whereas none of the subjects in the arbitrary condition passed the
task. All individuals except for one in the familiar boxes arbitrary
condition were side biased. There was no significant relationship
between condition and side bias [χ2(1) = 1.32, p = 0.251].

Discussion
Chimpanzees were at chance level in both the causal and arbitrary
conditions and there were no significant differences between
them. Negative results are difficult to interpret, and while the
results, for chimpanzees as for 3-year-olds, could speak to
limitations in spontaneously imagining an unseen cause, there
are other explanations that could account for their failure. For
example, the requirement to integrate knowledge about how
the channels worked (i.e., the ball can land in any one of the
boxes randomly) with the sounds of different materials could
have been challenging. In a recent study, chimpanzees did not

FIGURE 5 | Performance of chimpanzees in the unfamiliar boxes causal
condition across sessions in Experiment 3 Phase 1 (N = 6). Dotted line shows
chance level performance (p = 0.05), error bars represent SE.

FIGURE 6 | Performance of chimpanzees in the familiar boxes causal and
arbitrary conditions in Experiment 3 Phase 2 (N = 11). Dotted line shows
chance level performance (p = 0.05), error bars represent SE.

spontaneously cover the two exits of a similar forked chute,
suggesting that this kind of event might be difficult for them to
anticipate (Suddendorf et al., 2017). Therefore, in Experiment
4, we simplified the task further by removing the channels
completely, and simply requiring subjects to infer where the ball
was based on the sound of one of the boxes being shaken.

EXPERIMENT 4: SHAKEN BOXES

We aimed to see if children and chimpanzees could infer the
location of a food reward in one of two boxes (made of wood
and metal) based on the different sounds made when a ball was
shaken in one of the boxes behind a barrier. We predicted that
4- and 5-year-olds would be able to imagine the cause of the
sound and choose the box made of the corresponding material,
since such an ability would be a pre-requisite for their success in
Experiment 1. Given that 3-year-olds and chimpanzees have been
shown to infer the location of a reward based on the presence or
absence of a sound cue in previous research (Call, 2004; Hill et al.,
2012), we could predict that they would do so here, if they were
able to match the sound made by the different materials to the
appearance of the boxes. We therefore predicted that they would
perform better than they did in Experiments 1 and 3.

Methods
Participants
Eleven chimpanzees (same as in Experiment 3) and a new group
of 48 3–5-year-old children (16 in each age group) participated
in this study (Table 1). Four additional children that were tested
were excluded from the study due to parental interference (2) and
refusal to complete the task (2).

Materials
The metal and wooden boxes from Experiment 3 were used. The
boxes were covered with lids to block subjects’ view. The ball was
made from thermoplastic (1.30 cm in diameter). A barrier was
used to occlude the hiding and shaking events.

Procedure
Children
The experimenter placed the boxes (approximately 15 cm apart
from each other) and the ball on the table and introduced the
task to the children: “In this game I have these two boxes. Now
I will put a sticker in the ball and I will hide the ball in one of
them. If you can find the ball, you will win the sticker!” Then
the experimenter put the barrier in between and hid the ball in a
box and shook it for approximately 5 s; and said “Here is a clue!”
Children could see the arms of the experimenter but not the box
being shaken. Then the experimenter placed the boxes in their
original positions, removed the barrier and asked “Which box do
you want to open?” Children received ten trials. The location of
the boxes were counterbalanced.

At the end of the task, the experimenter asked children how
they found the ball as in Experiment 1.
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Chimpanzees
The procedure was the same for chimpanzees as in children
apart from verbal instructions. Chimpanzees received 10 trials
per session and testing continued until the subjects selected the
correct side 16 out of 20 trials or more or until 10 sessions
were completed.

Scoring and Analysis
A second examiner coded 20% of the videos for reliability,
Kappa = 1.00, p < 0.001 for both children and chimpanzees. The
full model based on the child data comprised of age, sex, and
trial number as fixed effects. The full model of the chimpanzee
data comprised of age, sex, session and trial numbers as fixed
effects. For both models, ID and the side of the box were
the random effects. We included random slopes of trial (and
session numbers for chimpanzees) within ID but left out the
correlation parameters between random intercepts and random
slopes terms. The full and null model comparisons were done
using a likelihood ratio test. In order to explore performance
in this experiment against chance level (p = 0.05) we used one-
sample t-tests.

Both models for children and chimpanzees were stable and
there were no issues with regards to overdispersion (dispersion
parameter for children: 0.71; for chimpanzees: 0.99). There was
no multicollinearity issue for child data; however, age and sex
predictors resulted in collinearity in chimpanzee data. Therefore,
sex was dropped from the model.

Results
Children
The full model was significantly different from the null
model [χ2(4) = 16.62, p < 0.01]. There was a significant
effect of age, [χ2(2) = 15.26, p < 0.001], no effect of sex
[χ2(1) = 0.142, p = 0.706] and no effect of trial number
[χ2(1) = 1.21, p = 0.271] (Supplementary Table S6). The
pairwise comparisons between age groups showed that there was
a significant difference between the performances of 3- and 5-
year-olds (GLMM, user-defined contrasts, z = 3.87, p < 0.001);
no differences between 3- and 4-year-olds (z = 1.89, p = 0.140)
nor between 4 and 5-year-olds (z = 2.17, p = 0.08) (see Table 1
for means). Three-year-olds performed at chance [M = 0.54,
95% CI [0.44, 0.64], t(15) = 0.94, p = 0.362], 4- and 5-year-
olds were significantly above chance; [M = 0.69, 95% CI [0.58,
0.81], t(15) = 3.61, p < 0.01] and [M = 0.83, 95% CI [0.71, 0.95],
t(15) = 5.91, p < 0.001] respectively (Figure 7).

Table 4 summarizes the percentage of children in each age
group based on their responses to the open-ended question.
When the replies were lumped into three explanation categories
as in Experiment 1, there was a significant relationship between
age groups and explanations [χ2(4) = 20.46, p < 0.001]. The
majority of the 3-year-olds were in the “no idea” category (88%)
and only 1 (6%) gave the correct explanation. Among 4-year-
olds, 40% were in the “no idea,” 27% were in the “wrong idea”
categories but 33% of them gave correct explanations. Among 5-
year-olds only 31% were in the no or wrong idea categories and
the majority (60%) were able to provide the correct explanation.

FIGURE 7 | Performance of 3–5-year-olds in shaken boxes in Experiment 4
(N = 48). Dotted line shows chance level performance (p = 0.05), error bars
represent SE.

TABLE 4 | Percentage of children who gave the following explanations in response
to the question "How did you know where the ball was?" in Experiment 4 (N = 48).

Shaken boxes

Explanations 3 yo 4 yo 5 yo

No explanation 88% 40% 13%

Wrong idea 6% 27% 19%

Correct explanation 6% 33% 69%

In order to examine whether children’s reports matched
with their performance, the performance of the 11 children
who referred to different sounds/materials was compared with
the performance of an age-matched group who gave other
explanations. Those who referred to different sounds/materials
performed significantly better (M = 0.93, SE = 0.04) than those
who gave other explanations [M = 0.62, SE = 0.06), t(20) = 4.26,
p < 0.001].

Chimpanzees
The full model for the chimpanzee data did not differ from the
null model [χ2(3) = 2.41, p = 0.492] (Supplementary Table S7).
Chimpanzees performed at chance level [M = 0.50, 95% CI [0.46,
0.53], t(10) = -0.20, p = 0.844] (Figure 8). However, one subject
passed the shaken boxes condition in the 8th session. All but three
individuals were side biased.

Discussion
Three-year-olds and chimpanzees could not infer the location
of the ball based on auditory evidence about the material of a
shaken box. In line with the previous findings from Experiment
1, we found that 4- and 5-year-olds performed significantly above
chance level, corroborating the conclusion that by 4 years of age
children are capable of reasoning about evidence to detect unseen
causes in the absence of linguistic scaffolding.
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FIGURE 8 | Performance of chimpanzees in shaken boxes across sessions in
Experiment 4 (N = 11). Dotted line shows chance level performance
(p = 0.05), error bars represent SE.

In our last experiment we explored whether 3-year-olds’
performance would improve with the addition of causal language
as suggested by previous literature (Bonawitz et al., 2010; Butler
and Markman, 2012; Lane and Shafto, 2017). We used the
shaken boxes paradigm but this time provided cues to the causal
structure of the task verbally.

EXPERIMENT 5: FOLLOW UP WITH
CAUSAL LANGUAGE

Methods
Participants
A new group of 28 3-year-old children participated. There were
equal numbers of boys and girls (Table 1). Three additional
children that were tested were excluded from the study due to
refusal to complete the task (2), and difficulties with language (1).

Materials
Same boxes were used as in Experiment 4.

Procedure
The procedure was the same as in Experiment 4 with the only
exception of the question we asked children to locate the ball.
Instead of “Which box do you want to open?” the experimenter
asked “Which box did I shake?”

A second examiner categorized children’s answers into five
different types of explanations, Kappa = 0.97 [95% CI, 0.94, 0.99],
p < 0.001.

Scoring and Analysis
A second examiner coded 20% of the videos for reliability,
Kappa = 1.00, p < 0.001. In order to see the influence of a
causal question on 3-year-olds’ performance, we merged the data
from Experiment 4 with the current data. Our model consisted
of question type (non-causal as in Experiment 4/causal), trial
number and sex as fixed effects; ID and the side of the boxes as
random effects. We also included random slopes of trial number
within ID, as well as the correlation parameters between random

FIGURE 9 | Performance of 3-year-olds in shaken boxes when they were
asked a non-causal (N = 16, Experiment 4) vs. a causal question (N = 28,
Experiment 5). Dotted line shows chance level performance (p = 0.05), error
bars represent SE.

intercepts and random slopes terms (Schielzeth and Forstmeier,
2009; Barr et al., 2013). The full model was compared to a
null model which included only the random effects using a
likelihood ratio test.

The model was stable with regards to the predictors, there were
no issues with regards to overdispersion (dispersion parameter:
0.85), nor multicollinearity.

We used one-sample t-test to examine whether children’s
performance was significantly different from chance level
(p = 0.05).

Results
The full model was not significantly different from the null model
[χ2(3) = 5.44, p = 0.142] (Supplementary Table S8). However,
we found that 3-year-olds performed significantly above chance
levels in the follow-up [M = 0.67, 95% CI [0.57, 0.76], t(27) = 3.60,
p < 0.01] as opposed to their chance level performance in the
absence of causal language (Figure 9).

The majority of the 3-year-olds were in the “no idea” category
(71%) but 18% gave the correct explanation.

Discussion
Three-year-olds performed significantly above chance levels
when they were asked a question that hinted at the causal
structure of the shaken boxes task as opposed to chance level
performance in Experiment 4. Even though the majority still
could not explain how they found the ball, more children than
in Experiment 1 gave the correct explanation. These findings
showed that 3-year-olds were able to distinguish the auditory
stimuli, and the peripheral demands of remembering what they
heard and matching the sound with the box were not too high.
However, this experiment does not explain how exactly verbal
framing of the task facilitated performance. One possibility is

Frontiers in Psychology | www.frontiersin.org 13 May 2020 | Volume 11 | Article 87248

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00872 May 4, 2020 Time: 17:26 # 14

Civelek et al. Inferring Unseen Causes

that, the causal question boosted their performance through
highlighting the problem; hence, scaffolding their ability to make
inferences. Another possibility is that, by asking a question like
“Which box did I shake?” we simplified the task such that it
reduced the need for children to seek a causal explanation for the
sounds they heard.

GENERAL DISCUSSION

We presented 3–6-year-old children and chimpanzees with a
novel, natural causation task where they needed to use indirect
evidence (auditory cues) to locate a reward in the absence of
either a directly-perceivable causation relationship, or a verbal
instruction to look for the cause of an outcome. By 4-years of age,
children were able to make causal inferences based on evidence
alone. Importantly, they only did so in the causally-plausible
condition in which the falling ball could have caused the different
sounds, rather than when the sound cues preceded the dropping
of the ball and therefore bear an arbitrary relationship to its
final location. In Experiment 2, we corroborated these findings
by eliminating a simpler explanation for better performance
in the causal condition than in the arbitrary one. Six-year-
olds performed equally well and above chance levels in both
causal and arbitrary conditions. This was in line with previous
evidence showing that they are able to use arbitrary cues as
meaningful symbols to solve a problem, in addition to detecting
a causal structure from data. On the other hand, 3-year-olds and
chimpanzees failed the task (Experiment 1 and 3). In Experiment
4, when the task was simplified to inferring the location of a
reward in a metal and a wooden box based on the sounds it
made, the performance of younger children and chimpanzees
did not improve. But when the task was framed using causal
language, 3-year-olds performed above chance levels. We discuss
these findings and their implications in turn.

In the absence of causal instruction, 4- and 5-year-old children
were able to use indirect auditory cues to locate a reward when
there was a plausible causal structure to the task. They performed
worse when the cues were arbitrarily related to the location of
the reward. Children’s explanations corroborated these findings:
they referred to different sounds and materials in the causal
condition more than the arbitrary condition and those who
referred to different sounds outperformed their peers who gave
other explanations.

Similar to the 4- and 5- year-olds, 6-year-olds passed the causal
condition, but in contrast to the younger children they performed
equally well in the arbitrary condition. This was as predicted
based on similar findings with this age group in previous studies
(DeLoache, 2004; Mayer et al., 2014). We suspect that older
children solved the task because they interpreted the arbitrary
cues as symbolic. DeLoache refers to this ability as holding dual
representations: representing the symbol as an object/event by
itself and also as a cue that stands for something else. In the
arbitrary condition of our task, the metal and the wooden sounds
that came before the ball was dropped had no causal relevance to
the task, however, they could be treated as symbols that cued the
child to which box the ball would be in since they were always

predictive of the ball’s location. Holding dual representations is
cognitively challenging since one has to ignore the fact that it
is causally irrelevant given the task but it may point to some
information that is useful in order to solve the problem. For
this reason DeLoache (2004) argued that the use of symbolic
knowledge emerges fairly late in development, especially in the
absence of verbal scaffolding.

Three-year-old children and chimpanzees did not
discriminate between the conditions, did not pass either of
them and were more likely to be side biased. This could reflect
a “true negative”: perhaps 3-year-olds and chimpanzees do
not spontaneously make inferences about unseen causes when
dealing with this kind of indirect evidence. Previous research
has shown causal reasoning abilities in 3-year-olds in the context
of direct causal relations and/or with explicit verbal scaffolding
(Gopnik et al., 2001; Sobel et al., 2004; Bonawitz et al., 2010),
but when they were presented with indirect causal structures
such as a block activating a machine at a distance (Kushnir
and Gopnik, 2007) or a task required them to represent prior
knowledge to solve a problem (Sobel et al., 2004), 3-year-olds
performed at chance level. Although suggestive of inferential
reasoning abilities, the studies conducted with chimpanzees
(Call, 2004; Hanus and Call, 2008) were criticized for not
eliminating simpler associative explanations (Penn and Povinelli,
2007) or simplifying the task largely by using food itself as a
cue (Völter and Call, 2014). We found no evidence to suggest
that chimpanzees imagined or reasoned about the unseen causes
involved in this study based on evidence alone. At face value,
these findings may support a number of past claims in the
literature (Penn and Povinelli, 2007): that non-human primates
do not engage in inferential causal reasoning.

However, as with many negative findings, interpreting these
results is not straightforward. One explanation for the failure of
chimpanzees could be that the initial training we implemented
were not sufficient to build the necessary knowledge for solving
the problem. We used the transparent channels and sound-
making boxes training separately to provide them with the
required information for solving the test. One could argue that,
integrating these two pieces of information might have been
challenging. An alternative would be to incorporate these two
together (i.e., tracking the movement of an object based on
two different sounds in a forked apparatus). However, providing
animals with training that is highly similar to the test phase makes
it difficult to rule out associative explanations for success. In
addition, chimpanzees’ failure in Experiment 4 with shaken boxes
despite the repeated experience with wood and metal sound-
making boxes makes us more confident that the lack of prior
experience was not the limiting factor.

Another explanation for the failure of chimpanzees could
be limitations in executive function, specifically attention and
working memory, which could mask or constrain their ability
to reason. All of our tasks required subjects to integrate prior
knowledge about object-object interactions with evidence to
make inferences, and to keep track of transient auditory cues and
match them with two different boxes. Although there is evidence
that chimpanzees are sensitive to different sounds (Slocombe
et al., 2009), capable of cross-modal matching (Davenport et al.,
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1973; Hashiya and Kojima, 2001), and inferring rewards based on
auditory information (Call, 2004), performing all of these tasks at
once may have overloaded their attention and working memory
capacities. In support of this argument, Call (2007) found that;
great apes failed to integrate information about the quality and
the size of the reward when they were trying to locate a desirable
piece of food under one of the two slanted boards although they
were capable of doing these two tasks separately.

On the other hand, 3-year-olds’ failure to succeed cannot
easily be explained based on limitations in executive functions.
It is true that our first experiment might have been challenging
for young preschoolers, as it relied on integrating knowledge
about channels and the sound of different materials that were not
visible. The cognitive control abilities such as attention shifting
and working memory undergo significant changes between the
ages three and four (Frye et al., 1995; Zelazo and Muller, 2002)
and this may influence 3-year-olds’ performance when dealing
with tasks where they need to keep track of multiple pieces of
information. Previous research has shown how task difficulty
may hamper performance of this age group (Hill et al., 2012).
However, when we reduced the task difficulty largely with the
removal of the channels and use of conspicuously metal and
wooden boxes, it did not help 3-year-olds. On the other hand,
they were able to solve the exact same task when causal language
was involved, showing that the demands on executive functions
were not too high. They were able to distinguish the two sounds,
remember them at the time of choice and match them with the
correct box. This brings us to the function of causal language.

How exactly verbal framing facilitates 3-year-olds’
performance remains unclear. One possibility is that 3-year-olds
fundamentally have the same cognitive machinery as 4- and
5-year-olds. Causal instructions/questions only highlight the
problem among other irrelevant stimuli. In Experiment 5, as
opposed to Experiment 4, children no longer needed to imagine
that the boxes were shaken and this was causing the sounds they
heard. This information was provided by the experimenter and
hence they only needed to focus on the evidence to detect the
true cause without imagining unseen actions or object-object
interactions. Their true capacity was brought out by this verbal
scaffold. The second possibility is that, with such causal questions
the task is no longer measuring causal reasoning. From this point
of view, the children were not required to make spontaneous
inferences about evidence anymore but were asked to match a
sound with the correct box. Which of these interpretations better
explain the difference we find between Experiment 4 and 5 is an
open and an interesting question that requires further research.

Overall, children’s explanations about how they found the ball
were in line with their problem-solving performance. First, there
were more children in the causal condition than in the arbitrary
one who said they found the ball based on different sounds it
made in different boxes. Second, these children’s explanations
aligned with their performance: they performed better than those
who referred to other explanations. Third, most of the 3-year-olds
who performed at chance levels in both conditions either could
not provide a verbal explanation or said they did not know how
to find the ball implying that they found the task challenging.
In addition when 3-year-olds’ performance improved in the

last experiment with causal language, this was reflected in their
verbal explanations too: there were more children who gave
correct explanations compared to Experiment 4. However, the
majority still found it difficult, implying that linguistic expression
is still developing. This association between explanation and
problem-solving measures has been found in previous research.
For example when children were prompted to explain what they
observed (i.e., how a toy worked), they explored inconsistent
outcomes and engaged in hypothesis testing strategies (Legare,
2012); and focused more on causal properties than on perceptual
features of the evidence (Legare and Lombrozo, 2014; Walker
et al., 2014). It has been argued that explaining promotes learning
because it requires one to integrate evidence with prior beliefs
(Lombrozo, 2006) and hence placing observations in the context
of a larger and coherent framework (Wellman and Liu, 2007).
Therefore, if some children were engaging in self-explanation
while trying to solve this task, this could explain why they
performed better than their peers. Further work could test this
notion by prompting children to seek an explanation for the
sounds, to see if this improves performance in 4- and 5- year-olds,
which, while above chance, was not by any means at ceiling level.

To conclude, this work contributed to the developmental
and comparative literature by introducing a novel paradigm
that contrasts learning in a causal and an arbitrary context
without the need for verbal instruction. We argue that our
results are in line with previous suggestions that by 4-years
of age, children are able to use evidence to detect unseen
causes. It is possible that this stems from a tendency to seek
causal explanations even in the absence of instruction to do
so. Studies on exploratory play in young children conducted
by Schulz and colleagues provide similar evidence that 4-year-
old children are actively seeking out causal explanations. For
instance, when provided with ambiguous information about how
a toy worked, they spontaneously explored the toy’s function
rather than playing with a new toy as opposed to when the
function was unambiguous (Schulz and Bonawitz, 2007); and
they also conducted informative interventions (Cook et al., 2011).
However, further work is needed to determine the reasons for the
negative results found with younger children and chimpanzees.
One possible avenue for future research will be the use of visual
cues instead of auditory cues with a similar paradigm. This
might improve performance of preschoolers and chimpanzees
by lowering the cognitive load associated with tracking and
remembering transient auditory cues.
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How do people judge the degree of causal responsibility that an agent has for
the outcomes of her actions? We show that a relatively unexplored factor – the
robustness (or stability) of the causal chain linking the agent’s action and the outcome –
influences judgments of causal responsibility of the agent. In three experiments, we vary
robustness by manipulating the number of background circumstances under which
the action causes the effect, and find that causal responsibility judgments increase
with robustness. In the first experiment, the robustness manipulation also raises the
probability of the effect given the action. Experiments 2 and 3 control for probability-
raising, and show that robustness still affects judgments of causal responsibility.
In particular, Experiment 3 introduces an Ellsberg type of scenario to manipulate
robustness, while keeping the conditional probability and the skill deployed in the action
fixed. Experiment 4, replicates the results of Experiment 3, while contrasting between
judgments of causal strength and of causal responsibility. The results show that in all
cases, the perceived degree of responsibility (but not of causal strength) increases with
the robustness of the action-outcome causal chain.

Keywords: causality and responsibility, attributions of responsibility, robust causation, causal contingency and
stability, epistemic perspective

INTRODUCTION

The causal responsibility an agent has for the effects of her actions is thought to play a major role
in the attribution of the agent’s legal, moral and even criminal responsibility (Hart and Honoré,
1959; Tadros, 2005; Moore, 2009; Lagnado and Gerstenberg, 2017; Usher, 2018). Indeed, causal
responsibility is a necessary condition for the ascription of legal responsibility (Hart and Honoré,
1959; Tadros, 2005). Research in moral psychology has identified general cognitive processes such
as causal and intentional attributions to explain patterns of responsibility judgments in both moral
and non-moral domains (Cushman and Young, 2011; see also Spranca et al., 1991; Royzman and
Baron, 2002; Mikahil, 2007; Waldmann and Dieterich, 2007; Lagnado and Channon, 2008; Baron
and Ritov, 2009; Greene et al., 2009). For example, Cushman and Young (2011) show that action
versus omission and means versus side-effect differences in moral judgments are mediated by their
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effects on non-moral representations of causal and intentional
attributions.1 Similarly, Mikahil (2007) accounts for the means
versus side-effect distinction in terms of action plans which
specify generic rather than morally specific reasoning (see
also Kleiman-Weiner et al., 2015). Furthermore, the reduced
judgments of responsibility people typically make for agents
who were forced to act or were manipulated by others
(Sripada, 2012; Phillips and Shaw, 2015) are best accounted
for by the manipulation “bypassing” the agent’s mental states
(Murray and Lombrozo, 2017). To explain these results, Murray
and Lombrozo (2017) relied on the notion of counterfactual
robustness, which is central to our investigation and on which we
elaborate below.

While causation is basic in all sciences, its proper
understanding has been the subject of intensive recent
development and debate in philosophy (Pearl, 2000; Woodward,
2003; Hitchcock, 2007; Halpern, 2016). A key distinction is
between type and token level causation. The former applies
to laws and generalizations (such as smoking causes cancer),
while the latter applies to particular cases (John’s smoking
caused his cancer). The concept of causal responsibility is
typically grounded in the notion of token (or actual) causation.
This means that to know that an agent is causally responsible
for an effect, we need to know that she actually caused it (in
that particular case). However, while the classical analysis of
actual causation is based on a necessity counterfactual – if C
had not occurred, then E would not have occurred (Hume,
1748; Lewis, 1973) – which is an all-or-none concept (the
counterfactual is either true or false) – judgments of causal and
legal responsibility are graded. For example, an agent generally
bears more responsibility for an effect that is a direct outcome
of her action, than for an effect that results at the end of a long
causal chain (Brickman et al., 1975; Spellman, 1997; McClure
et al., 2007; Lagnado and Channon, 2008; Hilton et al., 2010).
This is aptly illustrated in the Regina v. Faulkner (1877) legal
case, in which a lit match aboard a ship caused a cask of rum to
ignite, causing the ship to burn and resulting in a large financial
loss by Lloyd’s insurance, leading to the suicide of a (financially
ruined) insurance executive.2

Experimental studies of actual causation have also shown that
judgments of causal strength and of causal responsibility vary
with the typicality of the cause and the background conditions
(Hilton and Slugoski, 1986; Kominsky et al., 2015; Samland and
Waldmann, 2016; Icard et al., 2017; Gerstenberg et al., 2018)
and also with the degree of causal redundancy (Gerstenberg
and Lagnado, 2010; Zultan et al., 2012; Lagnado et al., 2013;
Gerstenberg et al., 2015; Koskuba et al., 2018). For example,
Kominsky et al. (2015) show that people are more likely to
endorse an event (Alex’s coin-flip coming up heads) as causally
responsible for another event (Alex wins the game), when the
contingency between the two is high (Alex wins if both the coin

1These two causal responsibility patterns are as follows: (i) Harm brought about by
an action is deemed morally worse than harm brought about by an omission. (ii)
People judge harm used as the necessary means to a goal to be worse than harm
produced as the foreseen side-effect of a goal (Cushman and Young, 2011).
2The executive’s widow sued for compensation, but it was ruled that the negligence
of lighting the match was not a cause of his death.

comes up heads and the sum of two dice being thrown is greater
than 2) than when the contingency between the two events is
low (Alex wins if both the coin comes up heads and the sum
of two dice being thrown is greater than 11). Also, when there is
causal redundancy, for example, when the action of several agents
overdetermines an outcome (e.g., two marksmen are shooting a
person; Lagnado et al., 2013), the responsibility of each agent is
reduced the more overdetermined the outcome is.

The interventionist framework (Pearl, 2000; Woodward,
2003) provides a general framework for understanding causal
claims at both type and token level (we focus on the latter here).
On this approach, X causes Y if some potential manipulation
of X would lead to a change in Y, under suitable background
conditions (for full details see Woodward, 2003). Theoretical
work within this framework has highlighted two ways to extend
the classical analysis of causality to provide room for degrees
of causal responsibility. The first involves a refinement of the
necessity condition (Chockler and Halpern, 2004; Halpern and
Hitchcock, 2015), which suggests that necessity is to be tested not
only on counterfactuals that negate the cause and keep all other
co-factors constant, but also on counterfactuals that can vary
some of these co-factors. For example, in situations of redundant
causation (e.g., two marksmen shooting a person), neither of the
agents’ actions is necessary for the outcome (either shot on its
own was sufficient to kill the victim, so the victim would still
have died, even if one of the marksmen hadn’t shot). However,
if we allow for a more flexible type of counterfactual test, where
one marksman’s action is assessed under the contingency where
the other marksman does not shoot, then both marksmen can be
counted as causes of the victim’s death. Moreover, this extended
counterfactual account fits with empirical data on graded causal
judgments (Zultan et al., 2012; Lagnado et al., 2013).

The second way to introduce gradations of causal judgments
involves a complementary causal condition: robust sufficiency
(Lewis, 1973; Pearl, 1999; Woodward, 2006; Lombrozo, 2010;
Hitchcock, 2012; Kominsky et al., 2015; Icard et al., 2017;
Usher, 2018; Vasilyeva et al., 2018). Focusing on the simplest
case, where we have one putative cause X of an effect Y, and
a set of background circumstances B: X is robustly sufficient
for Y if, given that X occurs, Y would still occur, even under
various changes to the background circumstances. In contrast,
the sufficiency of X for Y is non-robust (or highly sensitive) if,
given X, Y would only occur under a very specific (narrow)
set of background circumstances. Thus, we have a spectrum
of degrees of robustness according to the range of background
circumstances under which X would remain sufficient (i.e., be
pivotal) for Y. This notion of robustness can be generalized to
more complicated situations involving multiple causal factors
(see Gerstenberg et al., 2015; Kominsky et al., 2015), and also
to non-deterministic contexts where causes merely raise the
probability of their effects (Hitchcock, 2017). Applied to the
case of Regina vs. Faulkner, the causal chain from the lit match
to the suicide of the insurance executive seems non-robust
(and highly sensitive): it held only under this very specific set
of background circumstances, and would have failed if only
one of these factors had been different (see also Halpern and
Hitchcock, 2015). Robust actions, on the other hand, are thought
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to involve some degree of stability (low sensitivity) on the impact
of background circumstances that are external to the action itself
(Woodward, 2006).

Robust Sufficiency Versus Probability
Raising
An alternative framework for quantifying causal strength
employs the notion of probability-raising (Suppes, 1970; Cheng
and Novick, 1992; Spellman, 1997; Fitelson and Hitchcock,
2011), where the strength of the relation between cause and
effect corresponds to the degree to which the cause raises the
probability of the effect (holding all else equal). This account
usually focuses on type-level causal relations (Cheng, 1997), but
has been extended to actual causation (Spellman, 1997; Cheng
and Novick, 2005; Stephan and Waldmann, 2018). Although the
framework suffers from notorious difficulties in distinguishing
correlation from causation (Cartwright, 1989; Woodward, 2003;
Pearl, 2009), it can be revamped to give a potential measure of
causal strength (e.g., probability-raising through intervention).

While robust causes will often raise the probability of their
effects more than non-robust causes, robustness and probability-
raising are potentially distinguishable. For example, suppose that
a doctor considers two possible drugs to treat a difficult medical
condition that has a 20% chance of recovery if untreated. Drug X
has a success rate of 60% in two possible background conditions
(B1 and B2, whose presence is difficult to establish), while drug-
Y has a 100% recovery in B1, but only 20% in B2. Overall, if we
assume that B1 and B2 are equally probable, then both drugs yield
the same recovery rate of (60% + 60%)/2 = (80% + 20%)/2 = 60%.3

However, Drug X is more robust, because the relation between
X and recovery holds under a greater number of background
conditions, (B1 and B2 for X versus only B1 for Y). We will exploit
this kind of example to de-confound robustness and probability-
raising in our two latest experiments (3 and 4) that focus on the
causal-responsibility of an agent for the effects of her actions,
using a design similar to one recently employed by Vasilyeva
et al. (2018), in the context of causal generalizations and causal
explanations. Note that defining robust-sufficiency in terms of
the number of background circumstances, rather than in terms
of probability raising, has two important advantages. First, an
agent may know of different background circumstances which
moderate the relationship between the cause and the effect, but
not have information about the probabilities with which those
background circumstances occur (or about the probabilities of
the effect conditional on the cause in those circumstances) and,
hence may not have the information to make reliable judgments
of probability raising. In such cases, the agent may still be guided
by an estimate of the number of different circumstances in which
the cause leads to the effect — that is, the robustness of the
cause/effect relationship. Second, there are theoretical reasons
to prefer causal relations that are invariant in various ways, in
particular invariant to changes in background conditions (Cheng,

3As the baseline recovery probability (without treatment) is fixed, the two
treatments also have the same impact in terms of 1P and causal-power (Cheng,
1997).

1997; Woodward, 2003).4 We will return to the distinction
between robustness and probability raising in the Discussion.

Judgments of Causation vs. Judgments
of Responsibility
Our interest here is in judgments of causal responsibility that
agents have for the outcomes of their actions, which are an
essential component of the type of responsibility that is involved
in judgments of praise and blame. While it is beyond the scope
of our paper to offer (or test) a full theory of praise/blame
(Malle et al., 2014; Halpern and Kleiman-Weiner, 2018), we note
that a common assumption is that there are two components
in credit/blame attribution: (i) an intentional one (the agent
needs to have intended and foreseen the outcome of her action
and the intention must not be the outcome of manipulation
by another agent; Lagnado and Channon, 2008; Sripada, 2012;
Phillips and Shaw, 2015), and (ii) a causal one: the agent must
be causally responsible for the outcome in virtue of an action
she did (or failed to do). In this study, we will only focus on
the second component, by keeping the intention present and
fixed. In that sense, our judgment of interest, causal-responsibility,
is similar to judgments of causal strength (but note that we
focus on judging the responsibility of agents for an outcome of
their actions). Probing causal strength typically asks “to what
extent X caused Y,” while probing causal responsibility asks “how
responsible is X for Y” (Sarin et al., 2017). Indeed, most studies in
the field have probed participants with either of these measures
with parallel effects (Murray and Lombrozo, 2017; Sarin et al.,
2017). Moreover, Sytsma et al. (2012) have proposed that “the
ordinary concept of causation, at least as applied to agents, is an
inherently normative concept: Causal attributions are typically
used to indicate something more akin to who is responsible for
a given outcome than who caused the outcome in the descriptive
sense of the term used by philosophers” (p. 815).

There are reasons, however, to expect that under certain
conditions, causal and responsibility judgments may diverge,
even when the agent’s intention is held constant (Chockler and
Halpern, 2004). Consider, for example, a doctor that administers
drug X (60% recovery in both B1 and B2; robust to background
conditions) or Y (100% recovery in B1 and 20% in B2; sensitive to
background conditions), in the example above, and assume that
the background circumstance B1 takes place (and B2 does not).
In such a case, we believe that there is a good reason to expect
a dissociation. While the causal strength between the doctor’s
action and the patient’s recovery is likely to be higher in the case
of drug Y (which in the actual circumstance, corresponding to
B1, increases the probability of the effect by 80%, compared with
an increase of only 40% for drug X), the causal responsibility

4As discussed in Woodward (2003), there are a variety of invariance conditions,
which a causal claim might satisfy. Robustness in the sense of invariance under
changes in background conditions is just one such requirement. Other invariance
requirements may be found, for example, in the characterization of causal power
(Cheng, 1997), which rests on the assumption that causes will (at least in simple
cases) conform to two invariance requirements — the power of the cause to
produce an effect should be invariant under changes in the frequency with which
the cause occurs and also invariant under changes in the frequency with which
other causes of the effect occur.
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attributed to the agent for the same event, is likely to be higher
for substance X, as X is more robust, and thus the outcome is less
sensitive to external circumstances. This distinction is consistent
with a recent theory of actual causation proposed by Chockler
and Halpern (2004), who distinguish between judgments of
causality, responsibility and blame. For example, they consider
the case of a person being shot by a firing squad of 10 marksmen,
only one of whom has a live bullet. According to Chockler
and Halpern, while only the marksman with the live bullet
caused the death of the person, the blame is divided between
all 10 marksmen, reflecting the epistemic uncertainty of the
marksmen agents. Here, we propose that judgments of causal
responsibility elicit the same epistemic perspective change as
those of blame. While this differs from the distinction made by
Chockler and Halpern, we believe that in the presence of the
intentional component5, the distinction between attributions of
blame/praise and causal responsibility is more subtle and thus
is beyond the scope of the present work. For that reason, we
group these two aspects (causal-responsibility and credit/blame)
together in this study.

There are two recent studies that are relevant, in particular, to
our present work. The former examined judgments of credit and
blame, which were shown to depend on two factors: (i) the degree
of causal redundancy (or pivotality) and (ii) the amount of skill
that people infer the agent to possess (Gerstenberg et al., 2018).
People attribute more credit to an agent when their action has
a higher contingency to the outcome, indicative of skill (rather
than luck), and when their action is pivotal for bringing about the
outcome. In another recent study, Vasilyeva et al. (2018) reported
an effect of stability on judgments of causal generalizations
and causal explanations for causal contingencies. In their study,
participants made judgments under conditions of uncertainty
about the factors that determine the causal contingency. Here, we
aim to contrast judgments of causal responsibility and of causal
strength for agents that bring about an effect in a robust vs. non-
robust manner. Moreover, we will focus on situations in which
the agents, but not the participants, face epistemic uncertainty.
This allows us to test the impact of robustness under situations
with minimum epistemic uncertainty (from the perspective of
the judging participant), as well as tease apart robustness, causal
strength, and causal responsibility (of agents for outcomes of
their actions). We defer a more detailed discussion of the
differences between our study and that of Vasilyeva et al. (2018)
to the General Discussion.

Overview of the Paper
This paper aims to empirically test the impact of robustness on
judgments of causal responsibility in human agency. To do so, in
all our experiments, we probe the extent to which a human agent
is judged to be causally responsible for the intended outcome
that resulted from her action. In Experiment 1 (which probes
both judgments of causal responsibility of causal strength), we

5Variations in this component can explain important differences between blame
and causal responsibility. For example, unlike an adult, a child who pokes at a
gun’s trigger out of curiosity will not be held culpable for resulting injury or death,
given reasonable assumptions about the lack of relevant intentions (Shafer, 2000;
Lagnado and Channon, 2008).

manipulate robustness in terms of the number of background
conditions under which the action would bring about the effect6,
and assess judgments of both causal responsibility and causal
strength. However, as noted, robustness is often correlated with
probability-raising, and Experiment 1 does not discriminate
between these two factors. Thus, Experiments 2–4 probe
causal responsibility and manipulate robustness while holding
probability-raising constant. Experiment 3 teases apart the effects
of robustness and skill on causal responsibility (Gerstenberg
et al., 2018), by holding the agents’ skill level constant, while
varying the robustness of their actions. Finally, in Experiment
4, we replicate Experiment 3 and extend the results to cases
of failure, contrasting judgments of causal responsibility and of
causal strength.

EXPERIMENT 1

In this experiment, we probe robustness by manipulating the
number of background conditions under which an action is likely
to result in a positive outcome. To do so, we designed a game
in which an agent throws a dart at a target to determine how
many dice will be rolled (one, two, or three) by a computer,
with the player winning the game if the sum total on the dice
is six or greater. The number of dice rolled (one, two, or three)
depends on the agent’s dart throw in the following way: if the
dart lands in one of the two inner circles (rings 5–6) three dice
are rolled, if it lands in one of the two middle circles (3–4), two
dice are rolled, and finally, if it lands in one of the two outer
circles (1–2), one die is rolled. While under all three contingencies
a win is possible, the degree of robustness increases with the
number of dice rolled.7 For the single die roll, there is only
one configuration (a six) resulting in a win. When two dice
are rolled, there are several more configurations that result in
a win (e.g., 6,1; 5,1; 4,2; etc.; 26 out of 36 possible outcomes),
and for three dice there are even more possible configurations
(e.g., 2,2,2; 1,4,5; etc.; 206 out of 216 possible outcomes). In
other words, the action (the dart throw) can cause the desired
outcome (winning) under more, or less, background conditions
(dice rolls). Observers in the experiment watched an animation in
which an agent first throws a dart which lands on one of the rings
(1–6) of the dartboard. After that, the corresponding number of
dice were “randomly” rolled, the outcome of the roll revealed,
and winning or losing declared. Half of the participants were
asked to evaluate the degree of responsibility of the agent for the
win/loss. The other half was asked to evaluate the causal strength
between the agent’s throw and the win/loss. In this experiment,
since robustness and probability raising co-vary, while the agent’s

6There are many contexts in which it is unclear how to count the “number of
background conditions” (see Phillips and Cushman, 2017). In such contexts, the
notion of robustness is not uniquely defined. However, in Experiment 1, there is a
very natural way of counting the number of relevant background conditions. The
number of background conditions is also well-defined when one set of background
circumstances is a proper subset of another.
7According to Woodward’s conceptualization, robustness depends on the number
of background conditions (BC) under which the desired outcome takes place,
given the action (Woodward, 2006). In this case, the relevant BCs are the possible
outcomes of the dice that equal or exceed 6.
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epistemic perspective is held constant, we expect attributions of
causal responsibility and causal strength to show similar patterns
(cf. Vasilyeva et al., 2018). In Experiment 4, we identify a context
in which the two measures dissociate.

We anticipated three possible patterns of results: (i) judgments
of responsibility/causal strength will not be affected by the
dart-ring outcome, implying that they are only sensitive to
the outcome (success or failure), (ii) judgments will increase
monotonically depending on which ring (1–6) the dart landed
in, implying that they are mainly determined by the agent’s
perceived skill, (iii) judgments will increase in two steps, from
ring 2 to 3, and from ring 4 to 5, implying that they are
determined by the robustness of the dart throw (action)/game-
win (effect) contingency to background conditions (outcomes of
the dice rolls).

Method
Participants
One hundred and two participants (46 females, 56 males; mean
age = 33.7, SD = 9.7) took part in the experiment. Fifty of
whom rated how much the agent’s throw was a cause for
winning or losing. The other 52 participants rated the agent’s
responsibility for the result. All participants were recruited via
Amazon Mechanical Turk and received 1$ for participating.

Materials
Twenty video clips were created (see Figure 1 for illustration),
which varied in terms of the ring in which the dart lands (1–6),
the associated number of dice rolled (1–3), and the total score of
the dice (2–12). The profiles of each of the 20 clips are shown
in Table 1. Note that a total score of 6 or larger corresponds to
a win, and scores lower than 6 to a loss. Here, we focus on the
responsibility for success, but we included cases of failure in order
to balance success and failures to make the game credible. We also
constructed the set so that the total score of 6 (the critical value
for success) appears for all possible ring numbers and number
of dice thrown. This allows for a straightforward comparison of
the influence of these variables on people’s ratings. When more
than one dice was thrown, we included in addition winning cases
in which the total scores were 9 or 12 (# of dice = 2, and # of
dice = 3, respectively).

Procedure
After having received instructions, each participant watched the
20 clips in randomized order. For each clip, participants watched
a video showing a player throwing a dart toward the board, and
landing on one of the six rings (1–6). Depending on the result of
the dart throw, a number of dice (one, two or three) were rolled,
and the total on the dice was displayed, along with notification of
a win or a loss of a point (see Figure 1). Participants were then
asked to enter their evaluation of responsibility (“to what extent
is the player responsible for wining/losing of this point”) or of
causal strength (“to what extent did the player cause the win/loss
of this point”), by using a slider on a rating scale with endpoints
labeled from ‘0 = not at all responsible (not at all the cause)’ to
‘10 = completely responsible (completely the cause).’

FIGURE 1 | A screen-shot from the animation that participants watched in
Experiment 1. The agent (on the right) throws the dart toward the board. The
board is colored to illustrate the number of dice rolls earned. In this case, the
arrow landed on Ring 3 (counting from the outside in), earning two dice. Each
die landed on a 1, thus no point was won (a sum total for the dice of at least 6
was required to score a point).

Analysis
Our main focus is on the win data, and in particular, when
the total dice-score was equal to six, as this was the only
winning outcome in all dice conditions. We thus carried out
an ANOVA on the impact of the number of dice thrown (1,
2, or 3), of the ring number (odd vs. even), and of the type
of judgment (responsibility vs. causal strength). Note that the
odd/even categorical variable of ring number, contrasts between
ring values (1, 3, 5) vs. (2, 4, 6), and thus tested if ring value
matters once we control for the number of dice thrown. For
completeness, we also ran a linear mixed-effects model on all
success trials (where the total score is equal to or greater than
6), in which we predicted the causation and responsibility ratings
from three variables: number of dice thrown, ring number (odd
vs. even), and total score, as well as a participant dependent
intercept. Finally, we ran exactly the same analyses for the cases
of failures. Here, we replaced cases in which total dice score was 6
with those in which it was 5 in the ANOVA, and we also a linear
mixed-effects model all failure trials with number of dice thrown,
ring number and total score as predictors.

Results
We start with the causal strength and causal responsibility
judgments that are ascribed to the dart-throw agent for wins
(total score ≥ 6). To illustrate the results, we plot in Figure 2 the
mean ratings (for the total-score value of 6, which is the only win-
condition, that appears in combination with all ring-values) for
judgments of causal strength (left panel), and for responsibility
(right panel), as a function of number of dice and ring (odd/even).

To test the impact of number of dice and ring-parity, we
carried out a 3 × 2 × 2 ANOVA with number of dice rolled
(one/two/three) and the ring-parity (odd vs. even) as within-
subject factors, and judgment type (causation vs. responsibility)
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TABLE 1 | Profiles of the 20 clips used in Experiment 1.

Clip 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ring 6 6 6 5 5 5 4 4 4 4 3 3 3 3 2 2 2 1 1 1

N. dice 3 3 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1

Score 5 6 12 6 12 5 2 6 9 5 9 5 2 6 5 2 6 2 6 5

Result L W W W W L L W W L W L L W L L W L W L

Ring = ring that the dart landed in (1 = most outer ring, 6 = center ring), dice = number of dice rolled, score = what sum the dice added up to, result = loss (l) or win (w).
Scores of 6 or higher resulted in a win.

20

30

40

50

60

70

80

90

1 die 2 dice 3 dice

Ra
�n

g

Number of rolled dice

Causa�on (dice sum=6)

20

30

40

50

60

70

80

90

1 die 2 dice 3 dice

Number of rolled dice

Responsibility (dice sum=6)

Odd ring

Even ring

FIGURE 2 | Evaluations of causal strength (left) and of responsibility (right) as a function of the number of dice rolled and of the ring the dart hit: odd (blue) vs. even
(pink). Error bars indicate a within-subject ±1 standard error of the mean (Cousineau, 2005).

as a between-subject factor. The results showed a significant
main effect for the number of dice rolled, F(2,200) = 55.21,
p < 0.001, η2

p = 0.356. Post hoc Bonferroni tests show that ratings
for hitting the inner rings (three dice) were significantly higher
than for the middle rings [two dice; t(100) = 7.57, p < 0.001,
d = 0.750], which were significantly higher than outer rings [one
dice; t(100) = 6.01, p < 0.001, d = 0.596]. No other main effects or
interactions were significant (see Supplementary A for a report
of the non-significant results).

This result was confirmed by a linear mixed effects model
with random intercepts for each participant on all success
outcomes trials, which showed that only the number of dice
thrown was a significant predictor of responsibility judgments
[b = 13.7, t(465) = 4.35, p < 0.001]. The regression coefficients
for the ring [b = 1.2, t(465) = 0.82, p = 0.414] and the
score [b = 0.5, t(465) = 1.41, p = 0.157] variables were not
significant (see Supplementary A for the model predictions).
We obtained similar results for the causation judgments. The
regression coefficient was only significant for the number of
dice [b = 13.8, t(447) = 4.287, p < 0.001]. The coefficients
of the ring [b = 0.5, t(447) = 0.31, p = 0.754] and the total
score [b = −0.2, t(447) = 0.60, p = 0.548] variables were
not significant.

Finally, the results for the cases of failure, reflect those for
the wins (see Supplementary A and Supplementary Figure S1).
We find that the only variable that affects either judgment is the
number of dice rolled – the variable that controls the success rate.
The more dice were rolled (as a result of a better dart-throw), the
lower was the ascription of causal responsibility to the agent for

an eventual failure, and the lower was the extent to which people
thought the agent caused the failure (see Supplementary A for
full report of statistical tests).

Discussion
As in previous studies (Gerstenberg et al., 2018), participants
judged agents whose actions yielded higher success rates to
be more responsible in case of success, but less responsible in
cases of failure. The exact same pattern is shown for judgments
of causal strength. Both the participants’ responsibility and
causation judgments support the robust-causation hypothesis
rather than the skill-only hypothesis. We reasoned that an agent’s
variation in skill would correspond to more localized dart throw
gradients (around the dart-board center, i.e., the 6-ring), and thus
would result in more throws ending in even (2, 4, 6) compared
with the odd (1, 3, 5) rings8. There was no such difference in
either the causal strength nor the causal responsibility judgments.
On the other hand, the robust causation hypothesis correctly
predicts that people’s judgments of causation and responsibility
are a function of the number of dice rolled, and not simply the
closeness of the dart to the center of the board. The total score
(which involves the luck of the dice throw) also did not affect the
judgments either (as long as it was at least 6), when holding the

8One may contend that a perfectly skilled and rational agent should be indifferent
to differences between rings that are equivalent in the number of dice deployed.
Such an agent, however, should always hit rings 5–6, and thus is inconsistent with
most cases shown in the experiment. A more plausible interpretation of skill is to
accept some unavoidable noise in the outcome and thus aim as close to the center
as possible.
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number of dice constant, indicating that judgments were affected
by the agent’s action, rather than by resultant luck (Nagel, 1979;
Gerstenberg et al., 2010).

Nevertheless, one might argue that there is a simpler
framework that can account for this pattern of results, which is
independent of the notion of robustness. The idea is that as we
increase the number of dice being rolled, we also increase the
success probability, and an increased probability of success may
lead to increased judgments of causal responsibility and causal
strength (Suppes, 1970; Cheng and Novick, 1992; Spellman,
1997). Note, however, that probability-raising and robustness are
not independent, and that one very typical way in which one
increases the success probability of an action is by making it
more robust. However, it is possible to tease apart robustness and
probability-raising empirically. In the following experiments, we
test the robustness hypothesis while keeping the probability of
success fixed across conditions. To do so, we will contrast two
types of actions whose success rate is the same, but which vary
in their robustness. In Experiment 2, we use an animated soccer
scenario, while in Experiments 3 and 4, we use a vignette based
on an analog of Ellsberg’s ambiguity paradox.

EXPERIMENT 2

In this experiment, we hold probability-raising constant and
manipulate robustness in a more naturalistic setting – a soccer
set-up based on video animations. Since we obtained in the
previous experiment parallel results with the causal-strength and
the responsibility measures, and since our main interest is the
responsibility that agents have for the effects of their action, we
explicitly probed here the responsibility and praiseworthiness of
the agent. Participants view an animation with soccer players
taking free-kicks, and with three defenders that form a (slightly
moving) defensive wall in front of the goal (see demo link
in the Materials section). The soccer players vary on two
orthogonal factors – the probability of scoring a goal and the
execution strategy (both manipulations were carried out within
participants). In order to establish generality, we carried out two
versions of this experiment, in which we manipulated the success
probability by experience (Experiment 2a) and by description
(Experiments 2b and 2c)9. There were two strategies: (i) The
non-robust strategy of shooting directly into the wall (this may
result in a goal, if the defenders happen to accidentally move
out of the way). (ii) The robust strategy of shooting in a curved
trajectory around the wall (if successful, this strategy is robust
to the location of the defenders). Since a good execution based
on the second strategy might be perceived as more difficult
to achieve, we made it explicit that the probability of scoring
a goal (for the robust and non-robust players) were identical.
Participants evaluated the responsibility of four players (2 × 2

9Experience based manipulations are more similar to real life, but they could
be subject to biases in priors. The description-based manipulation explicitly
states the success probability rather than relying on participants’ inferences from
observation. Experiment 2c is a replication of Experiment 2b, which was carried
out during the review of the manuscript.

design) in scoring a specific goal in a free-kick for their team in
a decisive match.

As predicted by both robustness and the probability-raising
theory, we expected that participants would rate higher the
responsibility of the players who have a higher scoring record,
compared with players with a low scoring record whose goals may
be perceived as “lucky” (cf. Johnson and Rips, 2015; Gerstenberg
et al., 2018). As predicted by the robustness hypothesis, we
also expected that responsibility judgments would be higher for
players who bend their shots around the wall, even when the
success rate is equated. Players who successfully bend their shot
scored their goal in a way that is not dependent on the particular
background circumstances (and thus are less “lucky”).

Method
Participants
Twenty-two participants (4 female, 18 males; mean age = 28.67,
SD = 8.45) were tested in Experiment 2a – the experience-
condition. These participants were either Tel Aviv University
students (16 participants) that received 15 min credits for
participating in the lab, or volunteers (6 participants) who ran the
experiment on remote computers via a link to the same Qualtrics
site. Twenty participants (1 female, 19 males; mean age = 33.8,
SD = 12.8) were tested in Experiment 2b (description-condition
in which the success rate of each player was verbally stated).
These participants were recruited via “Hamidgam project” (the
Israeli equivalent of Amazon Mechanical Turk) and received a
payment that was equivalent to 0.41$ for participating. Three
additional participants were excluded because they reported
internet connectivity problems (2), or because they didn’t watch
or play soccer at least once a year (1). In Experiment 2c
(replication of Experiment 2b), we tested 46 participants (46
males, mean age = 29.09, SD = 4.47) via “i-Panel.”10 These
participants received a payment that was equivalent to 0.27$. All
participants across all three studies reported watching or playing
football at least once a year.

Materials and Procedure
Participants took part in the lab or remotely, using their
computer. After a short instruction, six sample free kicks for each
player (experience condition) or a table with the player’s success
rates and kick-style (description condition; see Supplementary
B) were shown. Video-clips were shown and ratings were made
using the Qualtrics platform. The video clips may be accessed
here: https://github.com/guygrinfeld/Responsibility-and-
Robust-Causation-Experiments/tree/master/videos-sample.

After watching each player (or reading information about each
player), a video-clip of a successful free-kick was shown (see
Figure 3) and subjects were asked to evaluate: “How responsible
and praiseworthy is the player for this goal?” on a scale from
0 (not responsible at all) to 100 (has full responsibility). Four
players were presented and rated sequentially, according to the
same procedure. Each player had a different color shirt to help

10We replicated Experiment 2b with a sample-size of 46 which was based on a
power analysis that resulted in 80% power for the robustness effect of Experiment
2b.
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FIGURE 3 | Illustration of the robust (curved, blue line) and non-robust
(straight to the wall, red line) free kicks. In the animation, the defenders are
moving, such that their locations are difficult to predict (see demo:
https://github.com/guygrinfeld/Responsibility-and-Robust-Causation-
Experiments/tree/master/videos-sample).

differentiate the players. The four players had the following
characteristics:

(1) Robust player (curved trajectory), low success rate: In
Experiment 2a, this player shoots the ball in a curved
trajectory and succeeds in two out of six free-kicks (i.e., 1/3
success rate). Successful free-kicks were second and fourth.
In the description condition, the success rate was stated as
30% in Experiment 2b and as 1/3 in Experiment 2c.

(2) Robust player (curved trajectory), high success rate: This
player scores in four out of six free-kicks (i.e., 2/3 success
rate). Successful free-kicks were first, third, fifth and sixth.
In Experiment 2b, the success rate was stated as 60% and in
Experiment 2c as 2/3.

(3) Non-robust player (straight trajectory), low success rate:
In Experiment 2a, this player shoots the ball straight at
the wall and succeeds in two out of six free-kicks (1/3
success rate). Successful free-kicks were second and fourth.
In Experiment 2b, the success rate was stated as 30% and in
Experiment 2c as 1/3.

(4) Non-robust player (straight trajectory), high success rate:
This player scores four out of six free-kicks (2/3 success rate).
Successful free-kicks were first, third, fifth, and sixth. The
success rate was stated as 60% in Experiment 2b and as 2/3
in Experiment 2c.

The order of four players was randomly assigned to
each participant.

Results
The responsibility judgments are shown in Figure 4. Three 2 × 2
ANOVAs with robustness (robust vs. non-robust) and success-
rate (1/3 vs. 2/3) as within-subject factors were carried out. In
Experiment 2a, we find main effects of robustness and of success
rate. The participants rated the players that took robust shots as
more responsible for the goal than those that took non-robust
shots, F(1,21) = 13.01, p = 0.002, η2

p = 0.408. Participants also
rated players who had a high success rate more responsible for
their goals, compared to players who had a low success rate,
F(1,21) = 14.10, p = 0.001, η2

p = 0.426. There was no significant
interaction between robustness and success rate, F(1,21) = 0.12,
p = 0.733, η 2

p = 0.006.
In Experiment 2b (description), participants also rated the

robust players as more responsible for the goal than those

that took non-robust shots, yet this effect was only marginally
significant, F(1,19) = 3.06, p = 0.095, η2

p = 0.127. As in Experiment
2a there was a main effect for success rate, F(1,19) = 6.38,
p = 0.020, η2

p = 0.233, and no interaction between robustness
and success rate, F(1,19) = 0.26, p = 0.617, η2

p = 0.012. Because
robustness was only marginally significant in the description
condition, we performed a replication study with a larger number
of participants (Experiment 2c; see Footnote 10). We replicated
our findings. Participants rated the robust players as more
responsible for the goal than those that took non-robust shots,
F(1,45) = 4.24, p = 0.045, η2

p = 0.086. Participants also rated
the more successful players as more responsible, F(1,45) = 8.19,
p = 0.006, η2

p = 0.154, with no interaction between these two
factors, F(1,45) = 1.42, p = 0.240, η 2

p = 0.030.

Discussion
The results indicate that both success rate and robustness
(as operationalized by the action-outcome contingency being
dependent on background conditions), independently affect
causal responsibility ratings. Note that while the effect of
robustness appears larger in the experience condition11, it is also
present in the description condition. For the experience-based
condition, one may argue that the participants make inferences
on the success probabilities that are subject to bias in the priors,
resulting in larger success rates for the curved (thus impressive)
compared with the straight strategy kicks. Such biases could
generate a robustness effect due to a success-rate artifact. Such a
memory bias effect, however, is less plausible in the description
condition, in which the success rates are explicitly stated (see
Experiment 4 for an explicit test showing that the participants
showed accurate memory of stated success rates).

The results indicate that the robustness of an action (the
way the player takes the free-kick) affects the attribution of
responsibility for its outcome (the goal), independent of the
success rate. The results also consistent with the probability-
raising principle, and indeed robust actions are typically more
likely to succeed (but see Experiments 3–4 and Vasilyeva et al.,
2018, for situations in which this is not the case). Both of these
results could be understood to result from the negative influence
of luck on the degree of responsibility, and from the idea that
goals by players who shoot through the wall are more likely to
have resulted from luck (cf. Gerstenberg et al., 2018).

There is, however, an alternative interpretation for the
robustness effect. Accordingly, one may argue that the robust
and successful kicks involve more skill, and therefore, it is a skill
and not robustness per se that affected participants’ judgments.
While the skill hypothesis was not supported in Experiment 1,
Experiment 3 will control both probability-raising and skill.

EXPERIMENT 3

In this experiment, we further test for robustness using a design
that controls both probability-raising and skill. Our experimental

11It is possible that the larger effects in Experiment 2a are due to most participants
being tested under more controlled lab conditions rather than online.
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TABLE 2 | An adaptation of the Ellsberg paradox.

Red balls Black balls Yellow balls

Urn 1 30 10 50

Urn 2 30 50 10

The values indicate the number of differently colored balls in two different urns.

set-up is inspired by the Ellsberg paradox (Ellsberg, 1961; see
also Vasilyeva et al., 2018). Consider an agent that is faced with
a lottery in which a ball is randomly selected from one of two
urns (Table 2). In Urn 1 there are 30 red, 10 black, and 50 yellow
balls while in Urn 2 there are 30 red, 50 black, and 10 yellow balls.
The agent has no control over which urn is chosen; the urn is
selected by another person. The agent also does not know the
probability with which this person chooses Urn 1 versus Urn 2
and can bet either on red or on black. Which color should she bet
on? The typical Ellsberg paradox result, is that when faced with
such choices, agents prefer to bet on red (which has a definite 1/3
probability of a win) than on black (whose win probability is not
determined and can be anything between 1/9 and 5/9). Here, we
don’t focus on preferences, but rather on how observers judge
the causal responsibility of agents who achieve a goal by taking a
robust or a non-robust action.

Note, that for this situation, the outcome of the action (bet-red
or bet-black) depends probabilistically on both the ball selected
and on the background condition (the other person selecting
Urn 1 or Urn 2). The bet-red action is thus more robust than
bet-black, because its win probability is stable across background
conditions (Urn 1 vs. Urn 2). By betting on red, one’s probability
of success is rendered independent of the urn selection, whereas
betting on black entails that one’s probability of success depends
on the urn chosen by the other person.

According to the robustness hypothesis, we predicted that
participants would judge that an agent who wins as a result of

a robust bet is more responsible than one who wins as a result
of an unstable bet. Note that here there is no difference in the
skill that the execution of the strategy requires. In addition,
we also manipulated whether the background condition (Urn 1
vs. Urn 2) was decided by another person or by a computer.
We hypothesized that if the background circumstance involves
another agent who acts intentionally, the robustness effect
will be enhanced, compared with a background circumstance
that involves a non-intentional mechanism (Lombrozo, 2010).
One possibility, for example, is that the presence of an
agent (as a background condition) makes this background
condition more salient.

To make the setting more realistic for our student participants,
we framed the task in an exam setting. In particular, participants
were asked to rate a candidate’s responsibility for exam successes,
with relation to his/her preparation for this exam. Participants
read about six candidates, each of whom prepared differently in
the way they allocated study time to the potential exam-topics
(studied both topics or only one of them) and with regards
to the total time they studied (duration of 3 or 5 days). The
exam topic was picked randomly by the computer or by another
agent. In this experiment, we were interested in responsibility
for success in the exam. However, we added two additional
filler candidates who failed the exam, in order to make the
test more ecologically valid (it is unlikely that all candidates
would be successful).

Method
Participants
Twenty Tel Aviv university students (17 females, 3 males; mean
age = 22.9, SD = 2.0) took part in return for 15 min credit points
needed in their BA requirements. Subjects spoke Hebrew as their
mother tongue (17), or had at least advanced Hebrew reading
capabilities (3).
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Materials and Procedure
The experiment was run in lab, and presented via Qualtrics.
First, participants read the following short text that introduced
a hypothetical hiring procedure (exam topics and success rates
were bolded and colored to ease the tracking of details; see
Supplementary C):

“Assume that Google is recruiting new employees who need
to pass a knowledge and ability exam. The exam questions this
year may involve one of two possible topics: Algorithms or
Cryptography (Google informs the candidates about the possible
topics 1 week before the exam). Assume also that a candidate who
is good at programming and did a BA in Computer Science has a
30% chance to pass the exam without any special preparation, no
matter what topic is tested. However, if the candidate studies for
the exam, her/his chance to pass it will increase as follows:

• A candidate who studies for 3 days on both topics (sharing
time between them), will pass the exam with 50% chance if
s/he gets a question about Algorithms, and also a 50% chance
to pass if asked about Cryptography.

• A candidate who studies for 3 days but chooses to learn only
one topic, will pass with 70% chance if tested on this topic, but
remains at 30% if asked about the other topic.

• A candidate who studies for 5 days on both topics, will
pass the exam with 60% chance if s/he gets a question
about Algorithms, and also a 60% chance to pass if asked
about Cryptography.

• A candidate who studies for 5 days but chooses to learn only
for one topic, will pass with 90% chance if tested on this topic,
but remain at a 30% chance if asked about the other topic.

Next, participants were presented with information about a
number of candidates for the latest Google-exam (see Table 3),
all having “very similar intellectual abilities and programming
skills, as reflected by their BA record, but differing in the way they
prepared for the exam, and on the circumstances that determined
the exam topic.” The participants were asked to evaluate the
responsibility of each candidate for passing or failing the exam on
a 1–100 slider scale bar (see Supplementary C). The candidates
(and their evaluations) were presented sequentially (not in table
format), and participants were told that they can take as long as
they need and that they are allowed to look back and compare
previous judgments.

Participants were told that “in the morning of the exam,
the exam-topic of Cryptography was randomly chosen by the
computer software.” After answering all of the eight evaluations,
the participants were asked to make the same (A–H) evaluations
again with one difference, which involved the manner in which
the exam-topic was selected. Instead of having the topic randomly
selected by the computer-software, participants were told that “in
the morning of the exam, the topic of Algorithms was randomly
chosen by computer software, but the head of recruitment
decided not to let the computer determine the exam-topic and
switched it to Cryptography.”

The reason for the second set of evaluations was twofold. First,
we wanted to test if the effects (of success rate and of robustness)
are stable. Second, we wanted to test if the robustness effect is

TABLE 3 | The candidates presented for judgment in Experiment 3.

Candidate Robust

A studied for 3 days on both Algorithms and
Cryptography and passes the exam.

+

B studied for 5 days on both Algorithms and
Cryptography and passes the exam.

+

C studied for 3 days only on Cryptography and
passes the exam.

−

D studied for 5 days only on Cryptography and
passes the exam

−

E studied for 3 days only on Algorithms and
passes the exam.

−

F studied for 5 days only on Algorithms and
passes the exam.

−

G studied for 3 days on both Algorithms and
Cryptography and fails the exam.

+

H studied for 5 days only on Cryptography and
fails the exam.

−

modulated by the presence of another agent, who is involved
in the setting of the background conditions that, together
with the candidate’s action, determine the action’s success (a
type of responsibility dilution). For each exam candidate, the
participants were asked to rate “to what extent is the candidate
responsible for his success/failure in the exam?” (A screenshot of
the materials is presented in the Supplementary C).

Analysis
We focus on a number of contrasts, based on the candidates
who passed the exam. We focus on the candidates that succeed
in their exam, because our theory of robust causation depends
on the agent taking an action that is intended to bring about
an event (Woodward, 2006; Usher, 2018). Thus, robustness
manipulations should be tested on events that match the agent’s
intention (success cases) and not on events that do not match
(failures); but see further discussion for the case of failure
in Experiment 4.

First contrasting robust candidates (A and B) with non-
robust candidates (C and D; see Table 3) provides an estimate
of the robustness effect. Second, contrasting candidates A and
C, who studied for 3 days, with candidates, B and D, who
studied for 5 days, provides an estimate for the effect study-
duration (3 vs. 5 days). Third, comparing candidates C and D,
who passed by studying only the selected topic, with candidates
E and F, who passed by studying the topic that was not
selected, provides an estimate of the effect that the match
between the topic studied and the one selected makes for
non-robust type actions (this match affects the success rate,
conditioned on the background condition that was active).
For example, if one studies the topic that was probed, the
success rate should be inferred to be higher, and we predict
that this will affect the responsibility ratings for success in the
two cases. Fourth, the difference between the robustness effect
in the computer-condition and in the “head of recruitment”
condition reveals whether the robustness effect is modulated by
the presence of an agent.
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FIGURE 5 | Ratings of responsibility (cases A–D, in Table 3) in Experiment 3. Both the study-duration and the robust/stable action received higher ratings. Error bars
indicate within-subject ±1 standard error of the mean.

Results and Discussion
Planned comparisons provided significant differences for all the
variables above. Specifically, there was a significant robustness
effect, where responsibility ratings of robust candidates A and
B (M = 69.82, SD = 17.21) were higher than of non-robust
candidates C and D [M = 52.80, SD = 19.00; F(1,19) = 12.69,
p = 0.002, η2

p = 0.400], and a significant study-duration effect,
where responsibility ratings of the three-learning-days candidates
A and C (M = 55.28, SD = 15.70) were lower than of five-learning-
days candidates B and D [M = 67.34, SD = 14.27; F(1,19) = 69.29,
p < 0.001, η2

p = 0.785; see Figure 5]. This is consistent
with the 2 × 2 × 2 within subjects ANOVA (on the A–D
items), which resulted in three main effects (robustness, success-
rate, and agent-framing) but no significant interactions. The
“head of recruitment” framing reduced responsibility judgments,
F(1,19) = 5.61, p = 0.027, η2

p = 0.228. However, while this effect
was numerically larger for the non-robust (C and D) than for
the robust (A and B) candidates, this difference did not reach
statistical significance, F(1,19) = 0.79, p = 0.384, η 2

p = 0.040.
Finally, we examine the effect that the difference in match

(between the topic studied and the one selected) makes for
non-robust type actions (C and D vs. E and F). Planned
comparisons revealed that participants rated the match cases
higher (studied Cryptography and exam-topic was Cryptography)
than non-match cases [studied Algorithms and exam-topic was
Cryptography F(1,19) = 11.37, p = 0.003, η 2

p = 0.374].
The results of this experiment confirmed most of our

predictions. First, as predicted by both robustness and probability
raising, participants gave higher responsibility ratings for exam
success to candidates who had a higher chance of success as a
result of studying more. However, as predicted by robustness
alone, participants rated robust candidates higher, who studied
both topics, and thus their success was less dependent on
background conditions.

Nevertheless, it is possible to query the type of judgments that
the participants made. While we formulated this in terms of the
“to what extent is the agent responsible for success/failure in the

exam,” one may also wonder whether participants distinguish
between this and mere causal strength evaluation. Indeed, many
experiments (including our Experiment 1) obtain similar results
with causal strength and causal responsibility judgments. Our
final experiment aims to contrast between these two measures
and also to extend the judgments from cases of success to both
success and failure.

EXPERIMENT 4

In Experiment 4, we aimed to replicate the results of Experiment
3 (validating memory of the success rates) and to contrast
judgments of responsibility and judgments of causal strength.
Although often, these two types of judgments have parallel effects,
we expect these judgments to come apart in this specific setup.
Compare, for example, candidates A and C (see Table 3), both
of whom succeeded in the exam after having studied the same
amount, but with A having divided the study among the two
topics, while C having studied, only the topic that was tested.
Following Chockler and Halpern (2004), we proposed that when
judging the extent to which each candidate is responsible for
the exam’s success/failure, participants will take the epistemic
perspective of the candidates at the time they made the action.
On the other hand, when asked to evaluate the causal strength by
which the action caused the effect, we expect participants to take
an objective perspective, which includes the actual background
circumstances. Indeed, in the actual situation in which the exam
topic was chosen for which the non-robust candidate studied, the
non-robust candidate has a greater success contingency than the
robust-candidate.

In addition, we wanted to extend the range of cases to include
cases of failure. For the case of responsibility, we do not make a
specific prediction on how robustness (as expressed by studying
a single or two topics) will affect the responsibility of failure
(This is because failures do not satisfy the intentional-match
requirement in robust action, and the robust action is more
stable in its prediction of both success/failure). However, we
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expect a dissociation between the effects of study-duration on
causal strength and responsibility judgments. Consider the case
of an agent studying for only one topic, which does not come
up in the exam, resulting in exam failure. While judgments
of causal strength should be invariant to how long the agent
studied (as the amount of studying the wrong topic should not
affect the contingency with exam success/failure), judgments
of causal responsibility are expected to decrease with study
duration. Indeed, if judging responsibility depends on adopting
the epistemic perspective of the agent, the actual background
circumstances (topic mismatch) should not be assumed, and
therefore, the more an agent studies for the exam, the more
responsible she is for success (and less for failures), independent
on whether the topic matches or not.

The experiment was identical to Experiment 3, except for a
few modifications. First, we removed the head of recruitment vs.
computer condition (we kept the computer framing only), and
we included four candidates (A–D) that succeeded in the exam,
and four candidates who failed (two who studied both topics, and
two who studied the wrong topic). Second, we manipulated the
type of rating (causal responsibility vs. causal strength) between
participants in order to prevent a carryover between the two types
of judgments. This allowed us to test the predicted dissociation
between causal strength and responsibility judgments in cases of
success, based on adopting the agent’s epistemic perspective in
the latter. Finally, we also included a post-test memory check,
in which we asked participants about the success rates of the
various candidates, in order to ensure that participants based
their judgments on the data we provided.

Method
Participants
Sixty students at Tel Aviv University (30 in each condition12; 23
females, 37 males; mean age = 22.5, SD = 1.6) participated in this
study in return for 15 min credit points.

Materials
The framing of the story was identical to Experiment 3. The eight
candidates presented for evaluation are shown in Table 4.

Procedure
Responsibility judgments were assessed in the same way as in
Experiment 3. In the causal strength condition, participants were
asked: “To what extent did the study of the candidate cause the
outcome in the exam?” As a memory check, after judging the
candidates, participants were asked to fill in a table with success
rates of the various candidates.

Analysis
Based on the predictions we outlined, we carried out 2 × 2
ANOVAs for passing candidates with factors of robustness and
study-duration, separately for each judgment type (responsibility
vs. causation). While cases of failure do not satisfy the intentional
match criterion above, we also report the responsibility for these

12Based on the effect size in Experiment 3, this sample should allow a 95% power
for replication of the robustness effect.

TABLE 4 | The job-candidates presented for judgment in Experiment 4.

Candidate Robust

A studied for 3 days on both Algorithms and
Cryptography and passes the exam.

+

B studied for 5 days on both Algorithms and
Cryptography and passes the exam.

+

C studied for 3 days only on Cryptography and
passes the exam.

−

D studied for 5 days only on Cryptography and
passes the exam

−

E studied for 3 days on both Algorithms and
Cryptography and fails the exam.

+

F studied for 5 days on both Algorithms and
Cryptography and fails the exam.

+

G studied for 3 days only on Algorithms and
fails the exam.

−

H studied for 5 days only on Algorithms and
fails the exam.

−

judgments, and we carry out a similar 2 × 2 × 2 ANOVA for the
cases of failure.

Results and Discussion
The post-experimental memory test showed that the participants
remembered well the success rates of the eight candidates that
they were required to rate, as indicated by the post-experimental
memory test (see Supplementary Figure S2 and Supplementary
C). We now turn to the ratings of causal responsibility and of
causal strength.

Causal Responsibility
For successful candidates (A–D in Table 4), we replicated the
results of Experiment 3. There were two main effects, for
robustness [F(1,29) = 8.50, p = 0.007, η2

p = 0.227] and for study-
duration [F(1,29) = 34.62, p < 0.001, η2

p = 0.544], respectively.
As shown in the upper-left panel of Figure 6, participants
gave higher ratings to the robust study candidates and also to
candidates who studied longer. There was also an interaction
between these two factors [F(1,29) = 5.46, p = 0.027, η2

p = 0.158].
However, the simple effects of robustness were significant at both
study-duration conditions [for 3 days, F(1,29) = 7.09, p = 0.012;
for 5 days F(1,29) = 8.94, p = 0.006].

For the failed candidates (E–H in Table 4; upper-right
panel in Figure 6), we obtained a main effect of robustness.
Participants rated the candidates who studied in a robust way
(both topics) as less responsible for their failure (M = 46.89,
SD = 25.97) than the ones who studied in a non-robust way
[on the topic that was not chosen, M = 67.23, SD = 23.52;
F(1,29) = 18.70, p < 0.001, η2

p = 0.392]. We also found a
main effect of study-duration [F(1,29) = 14.36, p = 0.001,
η2

p = 0.331] and an interaction between robustness and study-
duration [F(1,29) = 17.00, p < 0.001, η2

p = 0.370]. The duration
of study reduced the responsibility for failing in the exam only
for the candidates that studied both topics [F(1,29) = 22.13,
p < 0.001, η 2

p = 0.433].

Frontiers in Psychology | www.frontiersin.org 12 May 2020 | Volume 11 | Article 106964

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01069 May 25, 2020 Time: 12:37 # 13

Grinfeld et al. Causal Responsibility and Robust Causation

20
30
40
50
60
70
80
90

3 days 5 days

Studying Days

Failed Candidates
(n=30) Robust

Non-robust

20
30
40
50
60
70
80
90

3 days 5 days

Re
sp

on
sib

ili
ty

 R
a�

ng

Study-Dura�on

Successful Candidates
(n=30)

20
30
40
50
60
70
80
90

3 days 5 days

Ca
us

al
ity

 R
a�

ng

Study-Dura�on

Successful Candidates
(n=30)

20
30
40
50
60
70
80
90

3 days 5 days

Studying Days

Failed Candidates
(n=30)

FIGURE 6 | Responsibility ratings (upper panels) and causal strength ratings (lower panels) for passed (left) and failed (right) candidates in Experiment 4. Error bars
indicate within-subject ±1 standard error of the mean.

Causal Strength
For successful candidates, judgments of causal strength showed
main effects of robustness and study-duration. As in the
responsibility condition, the duration of study increased the
ratings [F(1,29) = 153.72, p < 0.001, η2

p = 0.841; lower-right
panel]. However, oppositely to the responsibility condition,
here robustness strongly decreased causal strength ratings
[F(1,29) = 11.55, p = 0.002, η2

p = 0.285]. Indeed, participants
judged that a candidate who spent her time studying only
the topic that was selected, caused the success in the exam
to a higher degree (M = 76.36, SD = 21.05) than one
who spent the same amount of time studying both topics
(M = 63.61, SD = 19.94). Thus, judgments of causal-strength,
but not of causal responsibility, appear to track the extent
to which the action increased the probability of the outcome
(conditional on the actual background conditions).13 There
was no interaction between study-duration and robustness
[F(1,29) = 1.62, p = 0.213, η 2

p = 0.053].
Finally, for failed candidates there was a main effect of

robustness. Participants saw non-robust candidates who studied
the wrong topic to have caused their failure to a higher

13See Endnote 4 in Vasilyeva et al. (2018), for results showing that judgments of
causal strength track the extent to which the action increased the probability of the
outcome (conditional on the actual background condition).

degree (M = 67.20, SD = 29.44) than robust candidates who
studied both topics [M = 36.58, SD = 19.39; F(1,29) = 24.74,
p < 0.001, η2

p = 0.460]. Also, like for casual responsibility,
the amount of study reduced casual strength [F(1,29) = 4.75,
p = 0.037, η2

p = 0.141]. This reduction seems to be stronger
in candidates who studied both topics, but this interaction
(between robustness and study-duration) was not significant
[F(1,29) = 2.50, p = 0.125, η 2

p = 0.079].

GENERAL DISCUSSION

In four experiments, we tested if the extent to which agents are
held causally responsible for the outcomes of their actions is
affected by the robustness with which the action brought about
the outcome (Woodward, 2006; Icard et al., 2017; Vasilyeva et al.,
2018). In the first experiment, we manipulated robustness by
explicitly increasing the number of background circumstances
(possible dice outcomes) in which the action (dart throw) results
in a win. We did this by contrasting actions (dart throws)
that result in one, two or three dice rolls, depending on the
ring number of the dart on the board (where success requires
a sum of 6 on the dice). We found that agents whose dart
throws result in more dice are seen as more responsible for
success (and less responsible for failures). We observed the same
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pattern of results for judgments of causal strength. The parallel
effects of robustness on judgments of causal strength and causal
responsibility are consistent with the responsibility-view, which
sees causal attributions as mediated by normative attributions
about what an agent should have done in a given situation
(Sytsma et al., 2012). To achieve more dice rolls, one needs more
skill. However, by comparing even vs. odd ring-numbers, we
found that participants’ judgments of causal responsibility and
causal strength tracked robustness and were not merely affected
by the skill of the player. These results are also consistent with
probability-raising accounts according to which responsibility
and causal strength judgments track the extent to which an action
increased the probability of the observed outcome (Suppes, 1970;
Cheng and Novick, 1992; Spellman, 1997; see also Kominsky
et al., 2015; Icard et al., 2017, for recent studies showing that
judgments of causal strength vary with the typicality of the cause
and the background conditions).

Experiments 2–4 tested for effects of robustness while
controlling for probability raising. Experiment 2 examined a
soccer scenario in which strikers had two different ways of taking
free-kicks. The non-robust action is to shoot the ball directly
through the defensive wall. Such an action may result in a goal,
depending on background circumstances that the agent does not
control (the position and movement of the defending players).
The robust action is to bend the ball around the wall; if well-
executed, this action results in a goal in a way that depends less on
background conditions (the exact location of the defenders do not
matter). Because taking a well-executed curved kick is difficult,
players may have similar success rates when employing the
two strategies. We thus presented participants with animations
of such hypothetical players, and independently manipulated
success probability and robustness. To ensure that participants
are not biased in their success probability assessment by the
type of kick (due to prior expectations), we included a condition
that stated the success probability, rather than leaving it for
participants to estimate. For both description and experience
conditions, we found that ratings of responsibility increased
with robustness, even when the probability of success was kept
constant. While these results support the robustness hypothesis,
they are subject to an alternative explanation. In particular,
it is possible that the ratings don’t reflect considerations of
robustness, but rather the inferred skill of the agent (cf.
Gerstenberg et al., 2018). Experiments 3–4 addressed this issue
using a scenario based on an Ellsberg-type design and using
an exam-success setting (see also Vasilyeva et al., 2018, for a
similar design).

In Experiment 3, the action (the way to prepare for the exam)
did not vary in skill between the robust (split study time between
both topics) and non-robust (study only one topic) action. Also,
the overall success rate of the robust action was equated with that
of the non-robust one, but the outcome of the non-robust action
was more variable, depending on an external factor (selected
exam topic). Hence, an account based on probability raising
would not predict any differences in judgments. Note, moreover,
that after a particular exam topic was selected the probability
of success is now in favor of the non-robust case if the topic
selected matches the one that the candidate prepared for. Like

in Experiment 2, the results showed effects of both success
rate and robustness. In particular, participants judged candidates
who prepared for both topics more responsible for their exam
success than those who only prepared for a single one, and were
lucky in that this topic was chosen. Note also that judgments of
responsibility tracked robustness even though, as stated above,
the non-robust candidates actually had a higher probability of
success given the lucky background.

Finally, in Experiment 4, we replicated the results of
Experiment 3 under two important modifications. First, in
addition to assessing causal responsibility, we also assessed
judgments of causal strength. We predicted that the role
of robustness would be different in judgments of causal
responsibility versus causal strength, because the agent’s
epistemic perspective is more important for judgments
of causal responsibility (in this case, we predicted that
participants would adopt the agent’s epistemic perspective).
The results fully replicated the results of Experiment 3 in the
responsibility/success case. Second, we examined how study-
duration and study-type affect the responsibility and the causal
strength judgments in cases of failures. Consistent with previous
findings (Gerstenberg et al., 2018), participants judged agents
who took robust actions that yielded more stable success rate,
to be more responsible in case of success, but less responsible
in cases of failure. Note that while this result is easy to motivate
for study-duration (because it is positively correlated with
success-rate and negatively correlated with failure-rate), it is
less straightforward for study-type. Here the robust action, of
studying both topics, is more stable with regards to both the
success/failure events. In other words, while a robust action
that resulted in success is more stable to changes in background
conditions, so is a robust action that resulted in failure. These
results are consistent with the idea that the effect of robustness
(studying one vs. both topics in Experiments 3–4) is evaluated
based on the stability of the contingency between the action and
the successful outcome (the action’s goal). We propose that for
cases of failure, the robustness is derived from a negation of the
goal-achievement: because the agent is more responsible (when
doing A compared with B) if she succeeded in achieving her
goal, she is less responsible (when doing A compared with B),
in case the goal was not achieved. Finally, we find that for cases
of failure, neither causal responsibility nor causal strength are
affected by the study duration, for candidates who study only the
wrong topic. This shows that study duration alone affects causal
judgments only when it plays a role in the causal chain of events
from action to outcome.

While we attribute the robustness boost of the responsibility
judgments in Experiments 2–4 to the lack of causal dependency
on background conditions (external to the agent), such as other
players (Experiment 2) or the exam selection (Experiments 3–
4), it is still possible to suggest that some of the participants
are nevertheless responsive to some inferred agential trait, such
as skill (Experiment 2), or study efficiency (Experiments 3–4).
We ruled out skill as a mediator, in our analysis of Experiment
1, and our instructions attempted to eliminate it as a factor in
Experiments 2–4. For example, we explained that the success rate
of robust/non-robust players is the same (Experiment 2), and
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that all candidates are equal in their computer science knowledge
and abilities (Experiment 3–4). Nevertheless, it is still possible
that some participants may have inferred that a robust candidate
(who studied both topics and succeeded) is more effective than a
non-robust one (who studied the one topic that happened to be
assessed in the exam). Accordingly, as suggested by Gerstenberg
et al. (2018) an inferred agent trait (skill) could potentially
mediate the effect that robustness has on judgments of causal
responsibility. While future studies will be needed to test the
possibility of further dissociating robustness from skill, we believe
that this should not be viewed as a confound. Rather skill is
probably a necessary feature of agents who exercise robust control
(Usher, 2018).

The most novel result of this experiment, however, was
the difference between the patterns observed in the causal
responsibility and the causal strength condition (see Figure 6,
left panels). While the causal responsibility of the agent increased
with robustness (as the participants took the agent epistemic
perspective), the causal-strength decreased with robustness, as
the participants took a more objective perspective, assuming
knowledge of the actual background circumstance. We believe
that this dissociation (and deviation from the responsibility view;
Sytsma et al., 2012), which is a rare one in the literature, was made
possible by the specific Ellsberg-type design, which allowed us to
dissociate between the objective contingency and the agent-based
epistemic one. While future studies will be needed to test the
possibility of further dissociating robustness from inferred skill
in this type of design, we believe that in ecological conditions
(e.g., Experiment 2) skill and robustness are associated, as skill
is typically a feature agents need to deploy in order to exercise
robust control (Usher, 2018). In the following, we discuss the
implications of our results for normativity and their relation with
other related studies.

Normativity
The results of Experiment 1 are readily understood from a
normative perspective: rational agents should aspire to increase
the likelihood of their desired outcomes. As discussed by
Woodward (2006) robust actions (shooting a person in the
heart) are more likely to achieve a goal (like the death of the
victim), compared to non-robust actions (shooting the victim
in the leg, which may or may not result in death), as the
outcomes of such non-robust actions are likely to depend on
background circumstances. Similarly, Woodward (2006) has
argued that robustness is a critical difference that distinguishes
between cases of causation by action and causation by omission
or by double prevention (see Lombrozo, 2010 and Cushman and
Young, 2011, for experimental studies showing that participants
are sensitive to these differences in their causal judgments).
Furthermore, Lombrozo (2010) has argued that moral judgments
are affected by the stability of the causal relation to variations
in background circumstances. More recently, Usher (2018) has
argued that in order to achieve robust causation of actions
over desired outcomes, agents deploy a teleological guidance
control that is based on a means-ends strategies (cf. Heider,
1958). As agents do not have access to all information on
background circumstances, they should attempt to act so as to

make the outcome less dependent on such circumstances. In our
Experiment 1, achieving a 3 dice roll, grants the agent with more
opportunities to succeed, making her less dependent on chance.
A similar situation obtains in Experiment 2, by attempting a
curved-style free-kick, the agent takes an action whose outcome
is less dependent on circumstances beyond her control.

In Experiments 2–4, we clarified to our participants that the
probability of success of the robust and non-robust action is the
same. In Experiment 2, robustness to background circumstances
was balanced by the difficulty of executing such an action. In
Experiments 3–4, were inspired by Ellsberg scenario (Ellsberg,
1961) that let us keep the probability of success fixed but to vary
the robustness. Still, we find that people evaluate the agent as
more responsible for the outcome of her action, in the case of
robust action. The normativity of this judgment, thus, requires a
special discussion.

Our conceptualization of robustness, via a count of
background circumstances that enable an intended event
was proposed by Woodward based on a number of conceptual
considerations, such as invariance (Woodward, 2003, 2006). This
conceptualization also has the advantage that it does not require
access to probabilities of the background circumstances (which
are often difficult to access). Usually, robustness as measured by
this count definition, correlates with the success probability as in
our Experiment 1, however, robustness and probability raising
can also stand in opposition. For example, one may contrast an
action that produces an effect in 10 background conditions with
a small probability (say, 5% in each) with another that produces
the effect in a single background condition (but with a higher
probability, of say, 90%). It is beyond our aim to make either
normative or empirical claims about what is expected in such
special situations. Our Experiments 2–4, kept the total success
probability fixed while varying the count-type robustness.
Thus, we believe they support the more modest conclusion,
that once the success probability is fixed, the count-measure of
robustness affects the judgments of causal responsibility. Future
investigations will be required to examine tradeoffs between
success probability and count-measures of robustness.

What our Experiments 3–4 show is that the preference for the
stable alternatives (those whose success rate does not depend on
factors that are not known, also labeled as ambiguity-aversion;
Ellsberg, 1961), is also reflected when we judge agents who
take robust actions (in the sense above) as higher in causal
responsibility. We believe that the reason for this is the fact
that the success of the non-robust action appears lucky (see also
Gerstenberg et al., 2018), as it depends more on other agents or
circumstances. In Gerstenberg et al. (2018), the contrast between
agent-bearing responsibility actions (for which the agent gets
high credit) and lucky ones (for which she gets less credit)
was made via the contingency between the action and the
outcome. Here, we kept this contingency constant (or even
reduced it in the case of robust actions compared to non-robust
matched actions, Experiments 3–4), but we manipulated the
presence of non-agent background conditions. Thus, consistent
with Woodward’s theory of robust causation (2006), lucky actions
are those in which the background conditions contributed
significantly to the outcome, and thus, non-robust actions receive
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lower responsibility, reflecting a type of diffusion of responsibility
among multiple causes (Lagnado et al., 2013). Indeed, in previous
studies, Lagnado et al. (2013) showed that when the number of
agents that disjunctively contributed to an event increases, the
judged responsibility of each agent is reduced. Since our non-
robust actions allow other agents (or factors) to contribute to
the production of the intended event (note that this may involve
a contribution by non-acting, as for the defenders who miss
blocking the ball shot through the wall), we can think of their
effect on judgments of responsibility as a type of responsibility
diffusion. The robust actions, on the other hand, are such that
they screen-off the intended event from the impact of other
agents or background circumstances and thus, they satisfy a
robust sufficiency criterion.

Finally, another advantage of robustness is that robust causal
setups have the advantage that the causal Markov condition14

is preserved on the level of overall categories. In contrast, in
setups with subcategories with the same causal structure but
different causal strength, the Markov condition does not hold
globally, resulting in distorted judgments of correlations and
causal relationships (von Sydow et al., 2016; Hebbelmann and
von Sydow, 2017; cf. Hagmayer et al., 2011).

Relation to Other Work and Alternative
Theories
In a recent paper, Vasilyeva et al. (2018) reported that people’s
judgments about causal generalizations and causal explanations
are sensitive to the stability of these relations, even when
probability-raising is controlled. In their studies, participants
were presented with descriptions or contingency tables for a
potential causal relation, and were then asked to indicate the
degree to which they endorse a causal explanation (or causal
generalization) for the situation described. For example, in
studies 1 and 2, participants were presented with contingency
tables for fictional lizard-like species (Zelmos), which either
did or did not eat yona-plants (the action) and either did or
did not get sore antennas (the effect). These tables included a
moderating variable (drinking salty/fresh water) that varied or
did not vary the relationship between the action and the effect.
The presence of the moderating variable that affected the action-
effect relationship reduced the degree of causal endorsement,
even though the average causal strength across the moderating
variable was the same. In their study 3, a similar result was
obtained for the endorsement of a causal relation between people
taking a vitamin and the effects on bone density, with gene-type
as a moderating variable.

While these findings parallel our results from Experiment
3, there are a number of important differences, and thus we
believe that the two approaches complement each other. The
central difference is that while our experiment was designed to
assess people’s judgments of the extent to which an agent’s action

14The causal Markov condition is a critical assumption of the Causal Bayesian
framework (Pearl, 2000; Woodward, 2003)– whereby any variable in a causal
model is conditionally independent of its non-descendants given its direct causes.
While there is controversy about whether people uphold this condition in their
intuitive inferences (see Sloman and Lagnado, 2015, for summary), it is a desirable
property for normative inference.

was causally responsible for bringing about an outcome they
intended, Vasilyeva et al. (2018) assessed people’s endorsement
of causal relations and of causal explanations between (type
or token) events.

For example, in one of their experimental conditions, which is
most similar to ours, after being presented with the background
and the contingency tables, participants were told: “Your
assistants select one of the zelmos with sore antennas from
your second experiment. They call him Timmy. During the
experiment, Timmy has eaten yonas. You do not know whether
Timmy drank fresh water or salty water during the experiment.
How much do you agree with the following statement about
what caused Timmy’s sore antennas? Eating yonas caused Timmy’s
antennas to become sore” (Vasilyeva et al., 2018, Table 2, p. 8).

Compare this with our scenario in Experiments 3 and 4,
where participants evaluated the causal responsibility that the
agent’s action (type of study) has for the outcome (success/failure
in exam), under conditions that differ in sensitivity to an
external circumstance (question chosen by the computer or by
another agent). There are two important differences. First, as we
formulate this at the level of agents taking an action toward a
goal, we can probe the causal responsibility of the agent for the
outcome of the action and contrast it with the causal-strength
(it would make little sense to ask “how responsible is the Zelmo
for getting sore antennas” in this context); agent-responsibility
requires a set of minimum epistemic conditions, such as the agent
foreseeing the potential consequences of her actions (or being in
a state where she is expected to do so), which are in place in our
case. While one may ask instead about the causal responsibility
between the events (‘eating yonas’ and ‘having sore antennas’),
we point below to an important difference.

Second, there is an important epistemic difference. In the
‘zelmos sore-antenna’ case the reduced causal endorsement of
the causal relation in the non-stable condition is conditioned
on lack of knowledge: participants did not know about the state
of the moderating variable (“You do not know whether Timmy
drank fresh water or salty water during the experiment”). In
our Experiment 3–4, on the other hand, participants knew the
state of the background variable (the exam topic selected). In
contrast to Vasilyeva et al. (2018), we obtained an increased
degree of causal strength (in the non-robust condition), showing
that when such information becomes available, the participants
rely on it in their causal strength judgments, and they do
not adopt the agent’s epistemic perspective [see Endnote 4,
in Vasilyeva et al. (2018), for a similar result]. Both of these
results are normatively reasonable, as it makes sense to attribute
increased causal strength to a causal relation that has a stronger
contingency (our Experiment 4, and results reported in Vasilyeva
et al., 2018, Endnote 4), and also to feel uncertain of the causal
relation (Vasilyeva et al., 2018) given lack of knowledge on
whether the sample belongs to a case that does or does not involve
causal relation.

More importantly, we find that, even in a condition in which
the causal contingency favors the non-robust action, causal
responsibility judgments show a robustness effect: higher ratings
for the robust actions. This provides a strong demonstration
that robust actions confer more responsibility on an agent, even
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if the actual state of the environment happens to be such that
the actual probability of success is lower. We have argued that
the difference between opposed effects of robustness on causal
responsibility and causal strength (Figure 6), stem from the
fact than in responsibility attributions, participants consider the
epistemic state of the agent. We believe that, taken together, our
studies and those of Vasilyeva et al. (2018), provide compelling
and complementary evidence for the importance of robustness in
the endorsement of causal responsibility relations between events
and of causal explanation, and in judging the causal responsibility
an agent has for the outcome of her action.

Further Implications and Future
Research
We have focused here on judgments of causal responsibility.
Future research is needed to clarify the normative aspect of
stability in responsibility judgments, as well as its derivation
from theoretical principles (e.g., Halpern and Hitchcock, 2015).
Moreover, it has been argued that causal responsibility is a
central component of legal and moral responsibility (Tadros,
2005; Moore, 2009; Lagnado and Gerstenberg, 2017; Usher,
2018). For example, it has been proposed that the degree of
responsibility an agent has toward outcomes of her action
depends on the teleological control that she deploys to achieve
that effect (Lombrozo, 2010; Usher, 2018) and that differences
in robust causation are the source of our feelings of a reduced
responsibility toward manipulated agents (Deery and Nahmias,
2017; Murray and Lombrozo, 2017; Usher, 2018). Future research
needs to test potential dissociations between robustness and skill
and also examine how the attributions of responsibility change
for teleological continual actions, in which the agent acts so
as to carry out compensatory corrections needed to preserve a
goal in the face of perturbations or interventions (Heider, 1958;
Usher, 2018). Future research is also needed to examine potential
distinctions between the causal responsibility of agents for the
outcome of their intended actions (of the types we have examined
here) and judgments of praise or blame.

In sum, robustness is an important but relatively under-
explored causal concept (Woodward, 2006). Convergent
evidence from our current studies, and also from Vasilyeva
et al. (2018) using different experimental paradigms, show that
robustness is itself a robust phenomenon in shaping people’s
causal judgments.
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US intelligence analysts must weigh up relevant evidence to assess the probability of their

conclusions, and express this reasoning clearly in written reports for decision-makers.

Typically, they work alone with no special analytic tools, and sometimes succumb to

common probabilistic and causal reasoning errors. So, the US government funded

a major research program (CREATE) for four large academic teams to develop new

structured, collaborative, software-based methods that might achieve better results.

Our team’s method (BARD) is the first to combine two key techniques: constructing

causal Bayesian network models (BNs) to represent analyst knowledge, and small-group

collaboration via the Delphi technique. BARD also incorporates compressed, high-quality

online training allowing novices to use it, and checklist-inspired report templates with

a rudimentary AI tool for generating text explanations from analysts’ BNs. In two prior

experiments, our team showed BARD’s BN-building assists probabilistic reasoning when

used by individuals, with a large effect (Glass’ 1 0.8) (Cruz et al., 2020), and even minimal

Delphi-style interactions improve the BN structures individuals produce, with medium to

very large effects (Glass’ 1 0.5–1.3) (Bolger et al., 2020). This experiment is the critical

test of BARD as an integrated system and possible alternative to business-as-usual

for intelligence analysis. Participants were asked to solve three probabilistic reasoning

problems spread over 5 weeks, developed by our team to test both quantitative accuracy

and susceptibility to tempting qualitative fallacies. Our 256 participants were randomly

assigned to form 25 teams of 6–9 using BARD and 58 individuals using Google Suite and

(if desired) the best pen-and-paper techniques. For each problem, BARD outperformed

this control with very large to huge effects (Glass’1 1.4–2.2), greatly exceeding CREATE’s

initial target. We conclude that, for suitable problems, BARD already offers significant

advantages over both business-as-usual and existing BN software. Our effect sizes also

suggest BARD’s BN-building and collaboration combined beneficially and cumulatively,

although implementation differences decreased performances compared to Cruz et al.

(2020), so interaction may have contributed. BARD has enormous potential for further

development and testing of specific components and on more complex problems, and

many potential applications beyond intelligence analysis.

Keywords: Bayesian networks, Delphi, CREATE, BARD, reasoning, decision-making, probability, uncertainty
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1. INTRODUCTION

1.1. IARPA, CREATE, and BARD
Intelligence analysts are prone to the same reasoning mistakes
as everyone else: groupthink, confirmation bias, overconfidence,
etc. But when they produce bad assessments it can have
disastrous results, such as the Weapons of Mass Destruction
(WMD) reports used to justify the 2003 invasion of Iraq,
which were later condemned by both sides of politics as
analytically inadequate (United States Select Senate Committee
on Intelligence, 2004; Silberman and Robb, 2005). So, the US
intelligence community’s research body, IARPA (Intelligence
Advanced Research Projects Activity)1 has sought “structured
analytic techniques” that would methodically produce better
reasoned intelligence reports. Their latest, multi-million-
dollar program was CREATE (CRowdsourcing Evidence,
Argumentation, Thinking, and Evaluation)2, which specifically
sought software-based approaches to enable crowdsourced
structured techniques, and funded four large academic teams to
pursue contrasting approaches to this end.

Our BARD team (Bayesian ARgumentation via Delphi)3

included computer scientists at Monash (led by Kevin Korb,
Ann Nicholson, Erik Nyberg, and Ingrid Zukerman) and
psychologists at UCL and Birkbeck (led by David Lagnado and
Ulrike Hahn) who are experts in encoding people’s knowledge
of the world in maps of probabilistic causal influence: causal
Bayesian Networks (BNs). A good map can provide the logical
skeleton of a good intelligence report, including the probabilities
of competing hypotheses, the impact of supporting evidence,
relevant lines of argument, and key uncertainties. Two well-
known difficulties here are eliciting sufficient analyst knowledge
and amalgamating diverse opinions. So, our team also included
psychologists from Strathclyde (led by Fergus Bolger, Gene Rowe,
and George Wright) who are experts in the Delphi method,
in which a facilitator methodically leads an anonymous group
discussion toward a reasoned consensus.

The outcome of our research is the BARD system: an
application and methodology whose two defining features are
the construction of causal BNs and a Delphi-style collaborative
process, with the aim of producing better reasoning under
uncertainty and expressing it clearly in written reports. In
addition, we incorporated several other features likely to improve
performance, most notably: an anytime audiovisual training
package, a guided incremental and iterative workflow, report
templates to encourage analysts to include items often neglected,
and the auto-generation of natural language text expressing some
of the BN’s key features.We provide a brief sketch of the system in
section 3; for a more detailed picture see Nicholson et al. (2020)4.

1IARPA is an organization within the Office of the Director of National Intelligence

responsible for leading research to overcome difficult challenges relevant to the

United States Intelligence Community. For more details see https://www.iarpa.

gov/.
2CREATE webpage: https://www.iarpa.gov/index.php/research-programs/create.
3BARD webpage: http://bard.monash.edu/.
4To view and interact with BARD (including solved demonstration problems),

to view the BARD training e-course, or to use BARD for academic research

purposes (including refereeing and replications), please email Prof. AnnNicholson

at ann.nicholson@monash.edu.

1.2. CREATE Experiments on BARD
A key feature of IARPA’s approach is the use of external testing,
so their independent testing team designed amajor experiment to
test the effectiveness of the four CREATE approaches, including
BARD. We developed, tested, and contributed some new
reasoning problems that captured key elements of intelligence
analysis in a simpler form, which were reviewed and included in
the IARPA suite of test problems. IARPA deemed the appropriate
control condition to be individuals using the Google Office Suite,
since this mirrored “business as usual” for intelligence analysis.
Unfortunately, IARPA’s testing team relied upon retaining a large
number of volunteer participants who were not significantly
compensated, and attrition was so high (regardless of which
of the four systems participants used) that the experiment was
terminated early without obtaining any statistically useful data.

Anticipating this outcome, we designed and carried out the
present study, relying on a smaller number of participants who
received significant compensation. To date, it constitutes the
only significant and critical experimental test of the entire BARD
system used end-to-end on reasoning problems developed for
CREATE. The study methodology is described in section 4, with
results and discussion presented in sections 5 and 6.

Since BARD is multifaceted, and our small study is necessarily
limited in the variables manipulated, it does not show how
much each facet contributed to the total result. None of them
are statistical confounds for this experiment, since the aim
always was to test BARD as a whole. However, the contribution
of each facet—and how to polish them further so they shine
better together—are further research questions of great interest.
In section 2, we briefly review the most relevant theory and
previous experimental results, including two experiments our
team performed to separate BARD’s BN construction from its
Delphi collaboration. This review supports the view that each of
BARD’s facets most likely contributes positively and cumulatively
to total BARD performance. We hope that future research will
improve, validate, and measure each contribution.

2. BACKGROUND

2.1. Intelligence Analysis Problems
Intelligence analysis typically requires assessing the probability
of some conclusion based on available pieces of evidence, and
writing reports for decision-makers to explain that assessment.
To express those probabilities, US analysts are expected to
use a standard verbal terminology corresponding to defined
numerical ranges (e.g., “very likely” means 80–95%) as specified
in ICD-203, which “establishes the Intelligence Community (IC)
Analytic Standards that govern the production and evaluation of
analytic products” [Office of the Director of National Intelligence
(ODNI), 2015]. The same conclusions are often reassessed
periodically as new evidence arises. This sort of intelligence
analysis requires a type of reasoning under uncertainty that is not
unusual: similar reasoning is required in many other domains,
and we hope that BARD’s success with our test problems will
ultimately be transferable to many real-world problems.

To test the BARD system, our team needed to develop new
reasoning problems that captured the key elements of intelligence
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analysis in a simpler form. Basic scenarios and evidence are
presented in written form, and answers must ultimately be given
in written form, but participants can use other means (e.g., BNs,
pen-and-paper calculations) in between. In each of our short
reasoning problems, we incorporated amajor reasoning difficulty
likely to lead to some qualitatively incorrect conclusions and
explanations, and we also tested the accuracy of quantitative
estimates. Our reasoning problems were developed and tested by
our London-based cognitive psychologists.

We used two of these problems in this experiment. The
Kernel Error problem involves the cognitive difficulty known as
“explaining away.” For example, if my wet lawn must be caused
by either a sprinkler or rain (or both), and these two causes are
each sufficient and otherwise independent, then seeing the wet
lawn raises the probability of both possible causes. However, if I
discover that it rained, this entirely “explains away” the wet lawn,
and the probability of the sprinkler should be lowered to its initial
value. Our team’s psychology experiments with Kernel Error
formally confirmed what computer scientists have informally
observed: people have difficulty readjusting their probabilities
appropriately (Liefgreen et al., 2018).

The Cyberattack problem involves the cognitive difficulty
known as dependent evidence. For example, how much
additional weight should we give to a second medical test result
if we know that the second test was of the same type as the
first? This depends on how the results are correlated, e.g., how
often errors in the first test will be caused by factors that
will also cause errors in the second test. Even if people have
precise figures for this, our team’s psychology experiments with
Cyberattack formally confirmed that people find it difficult to
combine dependent evidence accurately (Pilditch et al., 2018).

2.2. Probabilistic and Causal Reasoning
Errors
Psychological research has revealed many difficulties people have
with both probabilistic and causal reasoning (Kahneman et al.,
1982; Hahn and Harris, 2014; Newell et al., 2015). To summarize
a very large literature:

• One general factor that increases the probability of such
errors is simply complexity. Facing a mass of interconnecting
evidence and long lines of argument, it is easier to make an
error somewhere along the line in assessing the impact of
evidence on a conclusion.

• Another general factor is specific dependence patterns that
people find surprisingly difficult. Besides explaining away
and dependent evidence, these include “screening off,” i.e.,
when knowledge of the state of a common cause renders two
dependent effects independent of each other, and mistaking
correlation for direct causation when a hidden common cause
is far more likely (Gopnik et al., 2001; Lagnado and Sloman,
2004; Kushnir et al., 2010; Pearl and Mackenzie, 2018).

• A third general factor is the common biases in the way
people express and update their probabilities, such as
overconfidence, i.e., exaggerating the probability of likely
events and the improbability of unlikely events (Moore
and Healy, 2008); conservative updating, i.e., inadequately

weighting new evidence when revising beliefs (Kahneman
et al., 1982; Matsumori et al., 2018); base-rate neglect, i.e.,
inadequately weighting the priors (Welsh and Navarro, 2012);
and anchoring, i.e., depending too much on an initial piece of
information (the anchor) (Kahneman et al., 1982).

2.3. BNs to Reduce Reasoning Errors
A key reason for IARPA’s interest in structured representations
is to reduce such cognitive difficulties when analyzing problems
(Heuer, 1999). Causal BNs are particularly well-suited for the
task, since they explicitly represent and accurately combine both
probabilistic and causal information.

Formally, a BN is a directed, acyclic graph whose nodes
represent random variables, and whose arrows represent direct
probabilistic dependencies, often quantified by conditional
probability tables (CPTs) associated with each node. In causal
BNs, each of these arrows also represents direct causal
influence—hence, they can also predict the effects of decisions
to intervene. Users can enter exact or uncertain evidence about
any variables, which is then efficiently propagated, updating
the probability distributions for all variables. Thus, causal BNs
can support and perform predictive, diagnostic (retrodictive),
explanatory, and decision-oriented probabilistic reasoning. For
more technical details, see Pearl (1998), Spirtes et al. (2000),
and Korb and Nicholson (2011).

But how does constructing a BN help people avoid reasoning
errors, rather than merely reproducing them? Reasoning errors
aren’t bad beliefs; they are bad ways to develop or combine
beliefs. So, BN assistance doesn’t depend on all the analysts’
beliefs being true, it just enables analysts to accurately draw the
conclusions that are implied by their own beliefs. It’s analogous
to using a calculator to help avoid arithmetical errors: provided
that people enter the numbers and operations they believe are
correct, the calculator can be relied upon to combine them
accurately. In constructing BNs, analysts must explicitly think
about and identify the causal structure (rather thanmake implicit
assumptions about it). The model then requires all the relevant
probabilities to be entered (so none of these can be neglected).
The BN calculations then automatically avoid almost all the
errors discussed above. The way modeling with BNs helps
avoid errors has been explained and/or empirically verified for
multiple specific reasoning difficulties: base-rate neglect (Korb
and Nyberg, 2016); confusion of the inverse, i.e., interpreting the
likelihood as a posterior (Villejoubert and Mandel, 2002); the
conjunction fallacy, i.e., assigning a lower probability to a more
general outcome than to one of the specific outcomes it includes
(Jarvstad and Hahn, 2011); the jury observation fallacy, i.e.,
automatically losing confidence in a “not guilty” verdict when a
previous similar conviction by the defendant is revealed (Fenton
and Neil, 2000); and most recently, the zero-sum fallacy, i.e., not
recognizing when a piece of evidence increases the probability of
both a hypothesis and its most salient rival (Pilditch et al., 2019).
Exceptions to this rule might be reasoning errors that arise from
mistaken ways to express individual beliefs, e.g., ambiguities in
variable definitions, or overconfidence in the initial probabilities
assigned. For such issues, the critical discussion engendered by
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structured social processes may be more useful, per sections 2.4
and 2.5.

More generally, given their ability to embody normatively
correct reasoning, causal BNs have been used to analyze common
fallacies in informal logic (Korb, 2004), analyze and assess a
variety of arguments in criminal law—where they have exposed
some common errors in evidential reasoning (e.g., Fenton et al.,
2013; Lagnado et al., 2013), analyze human difficulties with
reasoning under uncertainty (e.g., Hahn and Oaksford, 2006;
Hahn, 2014), model human knowledge acquisition while solving
complex problems (e.g., Holt and Osman, 2017), and as a
proposed method for argument analysis (Korb and Nyberg,
2016). In practical contexts, they have been deployed to support
human reasoning and decision making under uncertainty in
such diverse domains as medicine (e.g., Flores et al., 2011; Sesen
et al., 2013), education (e.g., Stacey et al., 2003), engineering
(e.g., Choi et al., 2007; Bayraktar and Hastak, 2009; Misirli and
Bener, 2014), surveillance (e.g., Mascaro et al., 2014), the law
(e.g., Fenton et al., 2013; Lagnado and Gerstenberg, 2017), and
the environment (e.g., Chee et al., 2016; Ropero et al., 2018).

Many BN software tools have been developed to assist
in building, editing, evaluating, and deploying BNs. These
includeHugin5, GeNie6, Netica,7 AgenaRisk8, BayesiaLab9, and a
plethora of research software tools, e.g., Elvira10, R BN libraries11,
BNT12, SamIam13, and BayesPy14. However, all of these tools
assume that the user understands BN technology (or they offer
only rudimentary help), and they assume the user knows how
to translate their knowledge of a causal process or argument
into a Bayesian network. In the BARD system, we improved on
this first generation of BN tools by providing far better training
and guidance (see section 3.2), and by providing a structured
workflow that draws on new BN “knowledge engineering”
concepts and best practices (see section 3.3).

2.4. Delphi Groups to Improve Reasoning
There is considerable evidence that decision making by groups,
either by reaching consensus or by amalgamation, can produce
better outcomes than decision making by individuals (e.g.,
Salerno et al., 2017; Kugler et al., 2012; Charness and Sutter, 2012;
Straus et al., 2011). However, there are also well-known problems
that arise with group interactions, e.g., anchoring, groupthink,
and psycho-social influences (for more details, see Kahneman
et al., 1982; Mumford et al., 2006; Packer, 2009; Stettinger et al.,
2015). Groups also have potential logistical advantages in that
subtasks can be divided among members and/or performed by
the most competent.

5Hugin website: https://www.hugin.com/.
6GeNie website: https://www.bayesfusion.com/.
7Netica website: https://www.norsys.com/index.html.
8Agena Risk website: https://www.agenarisk.com/.
9BayesiaLab website: http://www.bayesia.com/.
10 Elvira website: http://leo.ugr.es/elvira/.
11R BN website: http://www.bnlearn.com/.
12BNT website: https://github.com/bayesnet/bnt.
13SamIam website: http://reasoning.cs.ucla.edu/samiam/.
14BayesPy website: https://pypi.org/project/bayespy/.

A number of methods have been developed over the years
that attempt to harness the positives of groups while pre-
empting or ameliorating the negatives. One of the best-known
is the Delphi technique (e.g., Linstone and Turoff, 1975), an
example of a “nominal group” technique: the group members
never actually meet, but rather, interact “remotely.” The defining
characteristics of a Delphi process (e.g., Rowe et al., 1991)
are: anonymity to reduce the influence that powerful or
dogmatic individuals can have on group judgments; iteration
with feedback, which allows participants the chance to reconsider
and improve their responses in the light of information from
other group members; and aggregation (or collation, if responses
are qualitative in nature) of group responses, often done by
a facilitator—who can also assist by reducing unproductive
exchanges and encouraging task completion (but avoids making
original contributions). At least for short-term forecasting
problems and tasks involving judgements of quantities, Delphi
has generally shown improved performance compared to freely
interacting groups or a statistically aggregated response based on
the first-round responses of individual participants (Rowe et al.,
1991).

2.5. Delphi for Constructing BNs
Recently, one study used a form of Delphi for point-estimate
CPT elicitation (Etminani et al., 2013), while for BN structure
elicitation Serwylo (2015) pioneered online crowdsourcing and
automated aggregation (albeit non-Delphi). Some of the present
authors proposed a Delphi-style elicitation of BN structure in
an epidemiological case study (Nicholson et al., 2016). However,
BARD is the first system to use Delphi for developing and
exploring an entire BN model, including variables, structure and
parameters, and also for more complex reasoning problems.

The major difficulty in using Delphi here is that both the
workflow and the output are complex: the workflow necessarily
involves multiple, logically dependent steps, and users should
be encouraged to improve their complex answers iteratively by
repeating steps. One approach would be for each participant
to complete the entire process before discussing their work
with others, but this means they would learn nothing from
others during the process and have complicated outputs to
assess and discuss at the end. Another approach would be to
use a traditional Delphi process at each step and make the
workflow strictly linear, but this loses all the advantages of
iterative development, and requires synchronized participation.
BARD resolved this dilemma by using a compromise: “Real-
Time Delphi” (see section 3.3). One crucial achievement of this
experiment is to demonstrate the feasibility of combining Delphi
with BN construction in this way.

In real-world applications, the relevant probabilities may
come from either data, such as available studies on the false
positive and false negative rates for a medical test, or expert
opinion, such as the relative risks of new medical treatments
where there is little data available. In either case, there may
be disagreement and uncertainty. Instead of a single point
probability, the available information is then better summarized
as some sort of probability distribution or interval, which may
be interpreted as meta-uncertainty about the appropriate point
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probability, and called a “vague” probability. There have been
various protocols proposed for eliciting and combining such
probabilities from multiple experts, such as 3-point methods
(e.g., Malcolm et al., 1959; Soll and Klayman, 2004), a 4-point
method (Speirs-Bridge et al., 2010), and the IDEA protocol
(Hemming et al., 2018a); however, these have not been integrated
into any of the commercial or research BN software tools. Instead,
these protocols are applied externally to the BN software and
then incorporated by the BNmodel builder (e.g., Nicholson et al.,
2011; van der Gaag et al., 2012; Pollino et al., 2007; Hemming
et al., 2018b). Uniquely, BARD integrates elicitation tools of
this kind with BN construction. However, the test problems
in this experiment specify appropriate point probabilities in
the problem statements, in order to simplify the task and
yield uncontroversial, normatively correct solutions. So, assessing
the effectiveness of BARD for vague probabilities must await
future research.

2.6. Checklists for Improving Reasoning
One of the simplest structured techniques is the checklist—
yet, it has proven highly effective in reducing errors in such
challenging expert tasks as piloting aircraft and, more recently,
in performing medical surgery (Russ et al., 2013). Effective
checklists are carefully designed to provide timely and concise
reminders of those important items that are most often forgotten.
For CREATE, IARPA had already identified important general
elements of good reasoning that are frequently omitted, e.g.,
articulating competing hypotheses, and noting key assumptions
(Intelligence Advanced Research Projects Activity, 2016). This
suggested that something like a reasoning checklist could be
useful, if added to the BARD system.

For BN-building, the functions of a checklist are implicitly
fulfilled by our stepwise workflow with step-specific tips,
and associated automated reminders. For report-writing, we
implemented the checklist idea more explicitly in the form
of a report template with section-specific tips, and associated
automatic text generation (see section 3.4).

2.7. Experiments Separating BN
Construction From Delphi Collaboration
The BARD team performed two other critical experiments on
the BARD system, reported in detail in the references below,
which provide some evidence that its two principal features—BN
construction and Delphi groups—both contribute positively and
cumulatively to BARD’s total performance.

In the SoloBARD experiment (Cruz et al., 2020), individual
participants used a version of BARD without any social
interaction to solve three of the reasoning problems our team
developed, including the Kernel Error and Cyberattack problems
used in this experiment. The control condition consisted of
individuals provided only with Microsoft Word and IARPA’s
generic critical thinking advice. The results showed much
better performance from the individuals using SoloBARD. This
provides some evidence for the feasibility and effectiveness of
BN construction (supported by BARD’s other non-social features,
such as templates) to analyze probabilistic reasoning problems
and produce written reports.

In the Structure Delphi experiment (Bolger et al., 2020),
individual participants who had previously used BARD were
asked to analyze some of our other reasoning problems they
had not previously seen, but only for the critical and most
distinctive subtask in BN construction: selecting the right
variables and causal structure. All other subtasks in solving our
reasoning problems are similar to tasks for which Delphi has
already been shown to be effective in prior literature. Individual
participants were shown the structures purportedly proposed
by other members of their Delphi group (although, in fact,
generated earlier by similar participants and curated prior to the
experiment) and invited to rate these structures and revise their
own. The results showed they made substantial improvements
over their initial responses, both in the top-rated structures
and in the revised structures. This provides some evidence that
BARD’s Real-Time Delphi social process is an additional positive
contributor to performance in analyzing probabilistic problems.

We did not perform any experiment directly comparing
groups using BARD to groups using Google Docs. This was
partly due to our resource limitations, and also to its lower
prioritization by IARPA. Given our combined experimental
results, we think it highly unlikely that groups with Google
Docs could have outperformed groups with BARD on these
particular probabilistic reasoning problems. Nevertheless, sorting
out the exact independent and combined contributions of
BARD’s BN-building and structured social processes vs. unaided,
unstructured group processes remains an interesting research
task for the future.

3. THE BARD APPLICATION

3.1. Overview
BARD (Nicholson et al., 2020) supports the collaborative
construction and validation of BN-based analyses in a web
application, in a Delphi-style workflow. Analysts in small
groups, optionally assisted by a facilitator, are guided through
a structured Delphi-like elicitation protocol to consider and
represent their relevant knowledge in a causal BN augmented
by descriptive annotations. BARD provides tools to assist the
elicitation of a causal BN structure and its parameters, review and
build consensus within the group and explore the BN’s reasoning
in specific scenarios. BARD encourages analysts to incrementally
and iteratively build their individual BNs and seek regular
feedback through communication with other group members
and the facilitator. The group may decide to adopt the highest-
rated individual BN or a facilitator can assist in the production of
a consensusmodel. From an individual or group BN, BARD auto-
generates an outline of a structured verbal report explaining the
analysis and identifying key factors (including the diagnosticity of
evidence and critical uncertainties). Analysts and the facilitator
can revise this into an intuitive narrative explanation of
the solution, using a structured template prompting users to
incorporate elements of good reasoning.

3.2. Better Training for Building BNs
Our experience is that substantial training is required to model
effectively with BNs. For example, the standard BayesiaLab
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training is conducted in a 3-day course15, while Bayesian
Intelligence Pty Ltd offers 2-day training as standard16. However,
the requirements of testing and evaluation in the IARPA
CREATE program limited upfront training to 4 h of online,
individual, self-paced training, without any input or assistance
from a human instructor.

BARD upfront training developed for CREATE is delivered
as condensed but high-quality audiovisual e-courses, with
corresponding practical exercises, example solutions, and
context-sensitive help and tips embedded in the software. They
cover the fundamentals of Bayesian network modeling, how
teams function in BARD, the differences in the responsibilities
of facilitators and analysts, and details on how to use the BARD
software itself17.

3.3. Better Workflow for Building BNs
The BARD workflow decomposes the task into a logical series of
six smaller steps (see Figure 1). Step 1 focuses on understanding
the problem for analysis, particularly identifying hypotheses as
well as the most relevant factors and evidence. In Steps 2 to 5,
participants build a BN model of the analytic problem, broken
down into variable selection (Step 2), adding arrows to define
the structure (Step 3), parameterizing the model to specify the
probabilities (Step 4), and then exploring and validating the BN’s
reasoning on specific scenarios (Step 5). Finally, the participants
individually and collectively construct a written report (Step 6).

At each of the steps, analysts are required to first work on
their solution in isolation (blinded to other responses) and then
“Publish” their work (which makes it available to other analysts),
before they can view other analysts’ work or the current group
solution (produced by the facilitator), and discuss them via the
step-specific discussion forum (see Figure 2). Publishing also
allows analysts to move forward to the next step. When present, a
facilitator’s role is to: support the team’s progression through the
steps in terms of timeliness and focus; optionally synthesize the
team’s work in the “group” solution (both BN and report) with
minimal original contributions of their own; encourage review,
feedback, and discussion; and submit the final analytic report.

Thus, apart from the initial response requirement, at each
step group members are free to progress to subsequent steps at
their own pace and can move flexibly backwards and forwards
between steps. This BARD workflow is based on a “roundless”
Delphi variant called “Real-Time Delphi” (Gordon and Pease,
2006), where the sub-steps of providing individual responses,
viewing information from other participants, and improving
responses are not controlled by the facilitator, but rather, where
the transitions occur immediately, i.e., in “real time.” This allows
far more flexibility about when the participants can make their
contributions and speeds up the Delphi process, since analysts
do not have to wait for the facilitator to amalgamate or collate
responses, as well as reducing the need for facilitation. It also
allows users to return to earlier steps to expand on their answers,

15BayesiaLab website: http://www.bayesia.com/events.
16Bayesian Intelligence website: https://bayesian-intelligence.com/training/.
17For a glimpse of this upfront training, see “BARD Screenshots” at https://tinyurl.

com/bard-publications.

since BNs are best built iteratively and incrementally (Laskey and
Mahoney, 1997, 2000; Boneh, 2010; Korb and Nyberg, 2016).
The trade-off is that, since the participants can see each other’s
responses directly, rather than after amalgamation or collation,
some of the biases deriving from direct interaction that Delphi is
designed to eliminate may re-emerge.

At Step 6, analysts can also rate their own and other analysts’
reports on a 10-point scale; after rating a report, they can see
their own rating and the current average rating. This feature was
introduced as a quantitative high-level assessment to help focus
discussion, as well as providing guidance to the facilitator on
which report(s) to use as the basis for the team solution. However,
in the absence of a facilitator, these ratings can also be used as
input to an algorithm to automatically select an individual report
as the team solution (see section 4.3.2).

Using this workflow, a team can methodically produce an
analytic report explaining the members’ collective answer to the
problem and their reasoning behind it.

3.4. Report Templates and Automated BN
Explanations
BARD pre-populates the written report workspace with a few
generic headings, along with explanatory tips for each heading.
These function as checklist-style reminders and placeholders
for these general elements, e.g., the relevant hypotheses and
their prior probabilities, and they also clarify the presentation
for the reader. Participants are encouraged to include tables or
figures, such as an image of the BN structure, if these enhance
clarity further. We note that TRACE, one of the other four
CREATE projects, also experimented successfully with flexible
report templates (Stromer-Galley et al., 2018), which supports the
view that they make some positive contribution.

In conjunction, we developed a rudimentary AI tool for
generating text explanations of the relevant BN features, and
organized this text under the same template headings so that
it could readily be copied or imitated in the written reports.
The reason for providing such assistance is that, especially when
BNs become more complex, it can be difficult to understand the
interaction between evidence items and their ultimate impacts
on the conclusion. Although the BN will have calculated this
accurately, well-reasoned reports demand that the impact be
explained verbally, and it helps if the BN can explain itself18.

4. METHODOLOGY

This study was approved by the Monash University Human
Research Ethics Committee, with the plan19 lodged with the

18 This “explainable AI” (XAI) feature is now undergoing further development

as part of a spinoff project involving several BARD researchers. “Improving

human reasoning with causal Bayes networks: a multimodal approach”is a major

3-year project at Monash University and the University of London funded by

the Australian Research Council. See https://dataportal.arc.gov.au/NCGP/Web/

Grant/Grant/DP200100040.
19 “Experiment Design” available at: https://bit.ly/2OBVBCc.
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FIGURE 1 | BARD’s workflow consists of six steps. Analysts and the facilitator can move flexibly backwards and forwards between steps.

FIGURE 2 | High level representation of the BARD workflow within a step for analysts and the facilitator.

Open Science Framework (OSF)20 and approved by them and by
the IARPA CREATE program.

4.1. Participants
Power Analyses: We conducted separate power analyses for
our t-tests and repeated measures ANOVAs, both assessed for

20 The Open Science Framework is an open source software project that facilitates

open collaboration in science research. See for more information: https://osf.io/.

a statistical power of 0.8. We chose large effect sizes to reflect
that only substantial improvements over the control would be
sufficient to justify adopting the BARD system. For the t-test of
the difference between two independent means at the 5% level of
significance (one-sided), with equal sample sizes and a very large
effect size (Cohen’s d = 1.33, equivalent to a 20% improvement
of BARD over a control mean score of µk = 20 with equal σ = 3
across conditions), we calculated an indicative sample size of 16
score observations split evenly between BARD and the control.
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Assuming 8 individuals were recruited into each BARD team to
form a single test score, this would require 72 individuals in total.
Assuming a larger standard deviation (σ = 5), a large effect
size (d = 0.8) and retaining other assumptions, we calculated
21 observations per condition requiring 189 individuals in total.
For a repeated measures within-factors ANOVA at the 5% level
of significance (one-sided), with equal sample sizes, across two
periods, with two factors and a very large effect size (partial
η2 = 0.735, equivalent to Cohen’s d = 1.33), we calculated an
indicative sample size of 4 observations per condition requiring
36 individuals in total. For a large effect size (partial η2 = 0.39,
equivalent to Cohen’s d = 0.8) we calculated 8 observations per
condition or 72 individuals in total. To cater for the worst case
among these analyses, we set a minimum recruitment target of
189 individuals.
Recruitment Methods: We recruited participants via social
media (using Monash University’s Facebook, LinkedIn, and
Twitter pages to advertise for volunteers), Monash University
student organizations, and the Monash Psychology department’s
SONA system. All participation was voluntary, and participants
could withdraw at any time prior to completion of the study
while retaining any compensation earned. All responses were
fully anonymized (including all IP address information). A
short quiz21 including probabilistic reasoning questions and
personality questions was completed by all participants when
registering for the experiment. This was not used to select
applicants for the experiment or assign their condition, but was
used later to help allocate the facilitator role within BARD teams.
Sample Size, Conditions, and Demographics: We attempted
to over-recruit since the rate of attrition could not be known
in advance, and we succeeded in obtaining 295 registrations.
These potential participants were 18–57 years old with a mean
of 29.7 and a standard deviation of 7.2 years. By optional
self-identification, there were 139 females, 141 males, and 15
others. The target population was English-speaking adults with
some undergraduate experience, so individuals who had not
yet completed high school education or were younger than 18
were excluded.

Following the randomized control trial (RCT) standard,
these potential participants were selected randomly into two
conditions for between-condition comparisons. After asking
them to confirm their availability for the respective time
commitments required, we began the experiment with 256
participants. 58 control (K) participants were asked to work
individually at any time to produce reports, using the Google
Suite tools and (if desired) some pen-and-paper techniques (see
section 4.3.3). The remaining 198 experimental (X) participants
were asked to work collaboratively and synchronously in teams
of 6–9 using the BARD tool. By self-identification, K contained
20 females, 37 males, and 1 other, while X contained 98 females,
86 males, and 14 others.

Participants were kept blind of their condition in the sense that
they were not informed about the nature of any other conditions.
However, blinding was necessarily imperfect, in that many
participants would have heard of the IARPA CREATE program

21 “Short Quiz” available at: https://bit.ly/2K6Nj6N.

and/or BARD independently of the experiment itself, and may
have been aware that the BARD project utilizes BN technology.
In particular, some K participants may have been aware that
they were not using the technology under development and
performing as controls. Of course, every participant was trained
explicitly only in the tools actually required for their condition.
Compensation: Participants were compensated for adequate
participation in each session in the form of a GiftPay22 voucher,
and those who participated in all sessions received a bonus. All
participants (X and K) were required to complete the upfront
training to receive compensation. In each of the 5 problem-
solving weeks, X participants were required to attend joint
problem solving sessions and actively work on their reports to
receive compensation, while K participants were only required to
complete their report. For the optional webinars (see section 4.3),
attendance was sufficient.

4.2. Materials
Three analytic problems were selected for the study; all were
probabilistic in nature and ideally suited to being solved using
Bayesian networks: (A) Smoking and Cancer23; (B) Kernel Error
(Liefgreen et al., 2018); and (C) Cyberattack (Pilditch et al., 2018).

All problems had corresponding marking rubrics, with those
for B and C developed previously by our team’s cognitive
psychologists, and a similar format used here for A24. Participants
were explicitly asked to provide some specified probabilities, but
also asked to justify those answers. In the rubrics, assessors were
provided with both the correct answers and a short list of specific
observations which ought to feature in any sound and thorough
justification, e.g., that one evidence source is more reliable than
another. Assessors awarded one point for each answer and each
observation that participants fully included, and a half point for
each observation that was only partially included. The final rubric
score was simply the sum of these points.

The nature of these rubrics entails that there are a large
number of available points (13, 38, and 34 respectively), but
the mean proportion of these points obtained by participants
tends to be low. It is less clear to participants which items
to include in their justifications than in their answers, and in
ordinary life people frequently give shorter, partial justifications
that leave some relevant facts unstated. Hence, even participants
with correct answers obtained by correct reasoning are likely to
omit some point-scoring observations from their justifications.
Conversely, even participants who give incorrect answers or
use incorrect reasoning are likely to score some points in their
justifications. To avoid this “random noise” inherent to scoring
justifications, the SoloBARD experiment (Cruz et al., 2020) also
compared points scored only from the answers to the explicit
questions, and found a much greater effect size (Glass’ 1 = 1.4)
in favor of SoloBARD—but we did not propose or perform this
analysis for our BARD experiment.

Unlike the SoloBARD experiment, we split Problems B and C
into two parts. Part 1 introduced a new scenario with relevant

22 GiftPay website: https://www.giftpay.com/.
23 “Smoking and Cancer - Problem Statement” available at: https://bit.ly/2V2rwl4.
24 “Smoking and Cancer - Rubric” available at: https://bit.ly/2v92emU.
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TABLE 1 | Experiment schedule by week: for webinars, training, and

problem-solving.

Week Webinar Task

0 Welcome Training

1 Q&A on Training (A) Smoking and Cancer

2 Solution and Q&A for (A) (B) Kernel Error, Part 1

3 – (B) Kernel Error, Part 2

4 Solution and Q&A for (B) (C) Cyberattack, Part 1

5 – (C) Cyberattack, Part 2

evidence and questions that needed to be answered. Part 2 of
each problem was presented in the following week, building on
the first by adding new evidence to the problem descriptions and
then asking additional questions about its impact. BN models
readily allow for such “phased” problems, and BARD takes
advantage of that in allowing “scenarios” to be built incrementally
along with the models used to analyze them. So, both K
individuals and X teams were able to build on their analyses for
Part 1, even though those questions were not repeated and their
rubric scores did not carry over to Part 2.

In Part 2 of both problems, participants must cope with
more variables and more dependencies between them—which
makes the problems computationally more difficult than in
Part 1. Furthermore, these additional elements introduce the
major cognitive difficulties designed into these problems. For
both reasons, the Part 2 questions should be more difficult
for participants, and we expected them to achieve a lower
proportion of the available marks. Furthermore, we expected
the advantage of using BARD to become more pronounced.
To test this secondary hypothesis, we used a separate ANOVA
for each of these problems to detect any significant interaction,
despite the small loss of statistical power in detecting the
main effect.

In the SoloBARD experiment, Problems B and C (not
divided into parts) seemed to present roughly the same
difficulty for participants: controls obtained roughly
the same proportion of the available points in both
problems, and so did participants using SoloBARD. Our
Problem A was structurally comparable to the first part
of the other two problems, and hence not particularly
difficult nor divided into parts. It is similar to example
BN problems common in introductory undergraduate
Artificial Intelligence courses, and partly intended
to provide additional training for both X and K in
conjunction with the associated webinar on how it can
be accurately solved, before they proceeded to the more
difficult problems.

The problem-solving was conducted over 5 consecutive weeks,
with the webinars, training, and problems being presented in the
sequence shown in Table 1.

4.3. Design and Procedure
4.3.1. The Variables
The variable under manipulation was the tool and associated
training used for analyzing problems and writing solutions;

the dependent variable assessed was performance in producing
these solutions. X and K membership was assigned uniformly
randomly, using random.org to select a sufficient number
of participants for K. This implicitly controlled for other
independent variables; those measured, via the registration quiz
and BARD’s usage monitoring, were: Education level (high
school, some college, BA, MS, PhD); Probability/Stats education;
Sex; Nationality; Age (≥ 18); Total login time.

Very high attrition rates were observed in all preliminary
studies by CREATE teams, including pilot studies for this
experiment in both X and K: up to 50% per week, which would
have been unsustainable over the course of the experiment. We
made several adjustments to minimize and cater for attrition,
most notably by encouraging frequent social engagement. X team
members were required to work synchronously; and for both X
and K we introduced “webinars” (i.e., online seminars) presented
by a member of the experimental team that provided additional
training and Q&A; these were voluntary, but (apart from the
initial Welcome) participants received additional compensation
for attendance.

4.3.2. Experimental Condition (X)
Training: For this study, compulsory upfront X training

consisted of only 2 h of the BARD e-courses for analysts,
delivered individually using a Learning Management System
(Moodle). Participants were then asked if they were willing
to take on the facilitator role. Those who answered “yes”
and completed the short, optional facilitator e-course were
subsequently considered as prospective facilitators. All e-
courses remained accessible via the BARD platform throughout
the experiment.

The four different webinars were held according to the
week-by-week schedule in Table 1, and within each week, the
scheduled X webinar was presented four times on weekday
evenings to cater for participant availability and keep the
numbers in each session manageable. Their respective aims were:
to welcome and introduce participants to the experiment and
encourage them to do the training; to answer any questions
that arose from the training; to review the BARD gold-
standard solution for Problem A and answer any questions;
and to conduct a similar review for Problem B. These “gold-
standard solutions"” were simply plausible example solutions
we constructed, including the associated BNs, that would have
achieved the maximum possible rubric score. PowerPoint slides
and BARDwalkthroughs were used to explain these solutions and
how to use BARD to develop them25. No webinar was conducted
after Problem C, as there were no subsequent problems where
participant performance could benefit from further retention
or training; however, participants were sent the gold-standard
solution via email.
Assignment to teams and roles: X participants were

permanently assigned to one of six timeslots spread over
three weekday evenings, consistent with their stated availability
and our capacity, and asked to keep this timeslot free for
participation throughout the experiment. They were then

25 “Training Presentation - Group X” available at: https://bit.ly/2VnjW1d.
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randomly assigned to BARD teams within this timeslot before
each problem cycle. Reassignment was another modification
to cope with attrition, by maintaining participant numbers
within each team. Initially, there were 25 teams made up from
198 people selected for the X condition, but attrition reduced
the number of teams across the experiment (see section 5.1).
Teams were assigned 6–9 members (except for one team of 5
during the final problem) with an average of 7.3 members for
the experiment. We expected some attrition within teams during
each problem, i.e., that not all assigned members would actively
participate, so the numbers assigned were slightly generous.

As described in section 3, each BARD team had one facilitator
and the remainder were analysts. The prospective facilitators
were assigned to teams first and distributed as evenly as possible,
since BARD includes functionality for facilitators to be replaced.
Within each team, the participant with the highest score on the
quiz done at registration was selected as the facilitator.
Workflow: BARD’s workflow was designed to allow

asynchronous problem solving, i.e., with no real-time
communication. However, to increase social engagement,
team members in this experiment were required to work
synchronously online during their allocated 2-h sessions, which
was feasible because almost all participants were within the local
AEST timezone. While lab-based experimentation would have
been even better for combating attrition, as used in Cruz et al.
(2020), here our resources were insufficient. Once a problem
was “opened” at the start of the team’s scheduled session, the
participants still had access to BARD and the problem for the
remainder of the week until it was “closed” at midnight on
Sundays, and so could continue to work on it after the scheduled
session time, albeit without additional compensation. In practice,
while some participants continued to work on the solution the
same night, no participants came back on subsequent days.
Report submission:When the problem was closed, the rules for
report submission were:

1. If the facilitator has already submitted a final report, that
report will be assessed. The facilitator was trained and
instructed to produce the report by either:

(a) incorporating elements from any or all of the individual
reports, or

(b) choosing what appears to be the best analyst report,
based on team consensus via the discussion forum
and/or ratings26.

2. If the facilitator does not submit a report, then among those
reports given a rating by at least two analysts, BARD auto-
submits the one with the highest mean rating.

3. If there is no report rated by at least two analysts, then BARD
auto-submits the longest non-blank analyst report27.

26 Admittedly, there was no activemonitoring or intervention in this experiment to

prevent facilitators from flouting this training by industriously building their own

independent BN solution and writing a report based solely on it—but we received

no complaints from analysts that such dictatorial behavior occurred.
27 For the IARPA experiment, we defined a similar set of rules to classify and

submit a report as “non-deficient,” and slightly stricter rules requiring participation

4.3.3. Control Condition (K)
Training: K individuals received webinars and upfront training
for their own tools that were as similar to X as practical28.
Nevertheless, the content between the X and K webinars differed
significantly. K used Google Suite, and their upfront training
consisted of an e-course developed by IARPA called the “Guide
to Good Reasoning”29, which provided generic training on how
to reason and solve problems, including avoiding the common
analytic errors IARPA had already identified.

Webinars followed the same week-by week schedule described

in Table 1 and had similar aims. Each webinar was presented
three times within each week, and individuals nominated the

timeslot they preferred at the beginning of the experiment.

In the webinars following Problems A and B, we presented
versions of the gold-standard solutions with almost identical
text to those for X, but stripped of any allusion to the
BARD tool. We used PowerPoint slides30 to introduce and
explain how “frequency formats” and “chain event graphs”
could be used to accurately calculate the answers (see
Gigerenzer and Hoffrage, 1995), and also how the elementary

probability calculus could be used as a supplement or alternative
method, albeit more mathematical and less intuitive. These

are the best available pen-and-paper techniques for probability
calculation, and were sufficient, in principle, for solving all our
problems precisely.

The main motivation for presenting these techniques was to

encourage continued participation. As discussed in section 2,

the more “ecologically valid” and favorable comparator would
have been individual analysts working on problems without

any special training in probability calculation, as used in Cruz
et al. (2020). For intelligence analysis, these pen-and-paper
techniques aren’t part of business as usual, and moreover,

are not a viable alternative to BNs: although a feasible
low-tech alternative for these simplified test problems that

require computing a few explicit and precise probabilities,
they rapidly become too unwieldy and difficult as problems

become more complex or vague. Nevertheless, although we
expected this training to improve the performance of K,
we reasoned that if X could still outperform K here, then
it would outperform an untrained K by at least as great
a margin.
Workflow: For ecological validity, K participants worked on
each problem individually. A welcome side effect was that it
allowed us to maintain the study’s statistical power despite
limited funding for participant compensation. Analysts in K
were provided with individual Google Drive folders containing
the Good Reasoning Guide, and for each week the relevant
problem statement and blank “Answer Document.” K had 58
participants initially, with 51 completing training, and further

from several analysts (per the intended social process) to classify it as “Ready-to-

Rate.” The latter would have been a better basis for assessment if the sample sizes

had been sufficient. “BARD Report Flags” available at: https://bit.ly/2CTk3u7.
28 “Control Group Plan” available at: https://bit.ly/2YOkEXo.
29 “Guide to Good Reasoning” available at: https://bit.ly/2WJtpQJ.
30 “Training Presentation - Group K” available at: https://bit.ly/2IduCMo.
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attrition leading to smaller numbers for problem-solving (see
section 5.1).

Report submission: For K, problems were “opened” on
Monday simply by releasing the problem description, and
participants had the entire week to work on their report at their
convenience. They were free to enter their solution in the Google
Drive anytime between the opening and the close on Sunday at
midnight, and any non-blank Answer Document was assessed.

4.3.4. Marking
Six markers were engaged with provenmarking ability: fluency in
English and a background in academic marking. Marker training
included a review and discussion of an Assessment Guide31, as
well as a joint session marking example reports. Markers were
trained to adhere as closely as possible to a literal interpretation of
the problem rubrics and ignore redundant information. Markers
were obliged to work independently of each other and BARD
project members. Reports were anonymized and marking done
blind; in particular, markers were not informed whether they
were marking an X or K report.

Markers could not be kept completely blind, however, since
only the BARD reports were generated using a structured
template, with encouragement to include BARD graphics. As
discussed in section 3.4, these are beneficial features of BARD,
both because they remind users to provide some oft-neglected
content and because they help to present that content more
clearly. The potential problem here is not that markers might give
legitimate rubric points for providing such content, but rather,
that they might become biased in their interpretation of which
reports are providing it, and hence illegitimately award points
to X or not award points to K. Fortunately, the items awarded
rubric points are all very specific pieces of information and it
is difficult to misinterpret whether these are provided. However,
we endeavored to minimize any such bias by explicitly urging
markers to avoid it, and informing them that their performance
would be tested for it: some fully anonymized K reports would be
camouflaged to appear as X reports and vice versa.

4.4. Statistical Design
The design was pre-registered with The Open Science
Framework (OSF)32, and in accordance with our IARPA
contract, stated that inferences about our main hypothesis would
be primarily based on 80% and 95% confidence intervals (CIs)
for condition means, and standardized effect sizes. We proposed
to show that X had the higher mean rubric scores overall (across
all three problems), with favorable non-overlapping CIs taken as
confirmation of the hypothesis. We also present below the results
of some more usual null hypothesis significance tests.

We did not explicitly set a precise target effect size. CREATE,
however, had specified at the outset its own performance
goals for “Quality of Reasoning” to be achieved by the
end of each of its three Phases: Cohen’s d (pooled) of at
least 0.25 (small), 0.5 (medium), and 1.0 (large) respectively.
d ≥ 1.0 was an ambitious final target, since for structured

31 “Assessment Guide” available at: https://bit.ly/2G1YUjD.
32 “Experiment Design” available at: https://bit.ly/2OBVBCc.

analytic techniques, this is a major effect that has rarely been
robustly achieved. For example, “Argument Mapping” (AM) is
a well-known software-supported structured technique where
an analyst makes a non-causal, non-parameterized tree diagram
to illustrate the logical structure of an argument. A meta-
analysis by Alvarez Ortiz (2007) showed that, at best, a one-
semester university course using AM improved student critical
thinking scores by approximately 0.6 Cohen’s d compared to
other courses. If d ≥ 1.0 could be achieved (e.g., in Phase
3), it would undoubtedly be of practical importance. At this
stage of BARD’s development (Phase 1), IARPA considered
d ≥ 0.25 substantial enough to warrant further funding and
development (Phase 2).

There is no natural scale for measuring reasoning
performance, so the use of standardized effect size measures that
are relative to observed variability is appropriate. But IARPA’s
blanket specification of Cohen’s d as the standardized effect size
measure was not optimal, and we pointed out some beneficial
refinements. Cohen’s d measures effect size in units of observed
standard deviation (SD), and calculates this by pooling the SD
of K and X. Better is Hedges’ g, which also pools the SDs of K
and X but corrects for a bias in Cohen’s d where group sizes are
small and unequal. For CREATE’s purposes, better still is Glass’
1, which uses only the SD of K. That’s because, (i) “business
as usual” is the relevant norm, and (ii) each new structured
method is quite likely to have a different SD, and (iii) “business as
usual” is therefore the only common standard of comparison for
the four diverse methods. As Glass argued (Hedges and Olkin,
1985), if several treatments are compared to the control group,
it’s better just to use the control SD, so that effect sizes won’t
differ under equal means and different variances. Preserving the
validity of the comparison in this way outweighs the slightly
reduced accuracy of the estimation. An additional consideration
is that for ANOVA-based analyses, it is usual to use a proportion
of variance explained, e.g., by using partial eta-squared (η2)
rather than Cohen’s d. Accordingly, we report our effect sizes via
two alternative measures below, but our preferred measure is
Glass’ 1.

For the analysis of Problem A, an independent samples t-
test was selected to assess the mean difference in rubric scores
between K individuals and X teams, along with CIs for the two
condition means. Effect size was reported using both Hedges’ g
and Glass’ 1.

For the analysis of the repeated measures data in Problems B
and C, mixed-model ANOVA tests were selected to determine
whether any difference in rubric scores is the result of the
interaction between the “type of treatment” (i.e., membership
of K or X) and “experience” (i.e., solving Part 1 or Part 2)
alongside individual main effects for treatment and experience.
Where the interaction term was not significant, rubric score
differences between K and X were assessed through main effects
for the type of treatment, and where the interaction term was
significant, through the statistical significance of the simple main
effects. Differences were computed using 80 and 95% two-sided
Cousineau-Morey confidence intervals for condition means, and
the 95% intervals were illustrated graphically. Effect size was
reported using both partial η2 and Glass’ 1.
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TABLE 2 | Attendance by week: task completions and both week-on-week and end-to-end attrition, for K individuals, X individuals, all individuals, and X teams (along

with the mean attendance per team).

Condition Attendance Registration Training W1 W2 W3 W4 W5 Weekly End-to-end

K Completed 58 51 44 34 31 28 28 – –

K Attrition % – 12% 14% 23% 9% 10% 0% 11% 52%

X Completed 198 140 130 122 112 114 105 – –

X Attrition % – 29% 7% 6% 8% −2% 8% 9% 47%

K+X Completed 256 191 174 156 143 142 133 – –

K+X Attrition % – 25% 9% 10% 8% 1% 6% 10% 48%

X Teams Completed 25 25 25 23 23 22 21 – –

X Teams Attrition % – 0% 0% 8% 0% 4% 5% 3% 16%

per X Team Completed – 5.6 5.2 5.3 4.9 5.2 5.0 5.2 –

To explore potential marker bias due to report formatting, in
each of the 5 problem-solving weeks we took three X and three
K reports from participants and camouflaged them as reports
from the opposing condition. We then randomly presented
some blinded markers with the originals and others with the
camouflaged versions. To analyze these 30 matched pairs of
rubric scores, we used a mixed effects model with fixed effects
(for condition and camouflage) and participant level random
intercepts to test for any major bias.

5. RESULTS

5.1. Attrition, Missing Values, and Bias
Attendance statistics for individual participants are shown in
Table 2. To measure end-to-end attrition, the initial numbers
are all participants who completed registration and confirmed
their availability, and the final numbers are all participants who
completed the task in Week 5. End-to-end attrition was about
50% in both conditions, although it was slightly lower (i.e.,
attendance was slightly better) in X than in K.

Intermediate attendance numbers reveal that week-on-week
attrition averaged about 10% in both conditions, although slightly
lower in X than K, and tended to reduce as the experiment
progressed. A notable difference between conditions is that in K
the attrition during training was similar to subsequent problem-
solving weeks, whereas in X the attrition during their more
substantial training was much higher than K (more than double),
but in subsequent weeks was almost always lower than K. Since all
trained participants were allowed to resume participation even if
they missed a week of problem-solving, it was possible for week-
on-week attrition to be negative, which did occur when more X
participants completed their task in Week 4 than Week 3.

In terms of teams, the number of X individuals available at
each randomized allocation was sufficient to form 25 teams after
registration, 23 before Problem B, and 22 before Problem C,
with a mean size of 7.3 members for the experiment. Individual
attrition resulted in a mean size of 5.2 members actively
participating each week, which we expected would be sufficient
for the BARD social process to confer significant benefits. Every
team completed all of their weekly problem-solving tasks, except
for one team in the final week, so 25, 23, and 21 X teams

TABLE 3 | X report submission method by week.

Submitted by W1 W2 W3 W4 W5 All

Facilitator 25 16 15 18 17 91

Automation 0 7 8 4 4 23

Total 25 23 23 22 21 114

TABLE 4 | Individual attendance at optional feedback sessions.

Condition W1 W2 W4 All

K 32 29 31 92

X 129 115 106 350

Total 161 144 137 442

completed Problems A, B, and C, respectively. This equates to an
end-to-end attrition for teams of only 16%, and a mean week-on-
week attrition rate of only 3%. These are one third of the rates for
X individuals, because the rest of the individual attrition occurred
within teams33.

Since reports from Weeks 2 and 3 were analyzed collectively
as part of the phased Problem B, only matched pairs were
included: any report from either of these weeks was regarded as
an incomplete datum and discarded if the K individual or X team
did not also produce a report for the other week. Reports from
Weeks 4 and 5 were treated similarly. Fortunately, in K individual
attrition was noticeably reduced in the second week of a phased
problem. This was not true for individuals in X, but as noted, only
one such incomplete datum was produced by X teams. Missing
data fromX teamswas also reduced via our automatic submission
contingency: 20% of the X reports assessed were auto-submitted
by the BARD system after the facilitator failed to submit, as
shown in Table 3.

Attendance at the optional, compensated webinars was very
good for K and excellent for X, as shown in Table 4. Relative to
attendance the previous week for the associated upfront training
or problem, webinar attendance was 73% in K and 92% in X.

33 “Attrition Rates” available at: https://bit.ly/2K7wFnG.
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FIGURE 3 | Boxplot of score quartiles for each condition in each problem-solving week. Medians are represented by the thicker horizontal bars. Outliers are

represented by circles, and defined as further than 1.5 times the interquartile range from their condition median.

TABLE 5 | Mean scores with their 80% and 95% CIs for each condition in

Problem A.

Cond. Week N Mean SD SE 95% CI 80% CI Max

K 1 44 3.545 2.283 0.344 [2.851–4.240] [3.097–3.993] 13

X 1 25 7.370 2.775 0.555 [6.225–8.516] [6.639–8.101] 13

Comparing the 30 camouflaged reports to their original
counterparts, we did not detect any effect of the report format
on the rubric scores awarded by markers [χ2(1) = 0.143,
p = 0.706].

5.2. Test Assumptions
For each problem set, assumptions of normality and
homogeneity of variances were assessed using Shapiro-Wilk
and Levene tests respectively, applied across repeat-condition
subgroups and assessed at 95% confidence.

The Shapiro-Wilk test rejected the null of normality only for
K in Part 2 of Problem B (p < 0.001) and K in Part 1 of
Problem C (p = 0.049), so these were further assessed using
normal quantile-quantile (QQ) plots34. The QQ plot for K scores
in Part 2 of Problem B was approximately normal, but revealed
a single outlier individual performing well above the rest of K,
and its temporary removal resulted in an acceptable Shapiro-
Wilks outcome (p = 0.099). Anecdotal evidence from marked
reports suggested that, contrary to the experimental guidelines,
some of the highest performers in K used Bayesian analysis

34 “Quantile Quantile Plots” available at: https://bit.ly/2YMHYot.

methods or tools (other than BARD) to produce their solutions.
Such individuals will have increased the mean scores in K.
However, we are averse to permanently removing this particular
outlier and other unanticipated observations, especially given
that these observations favor K. Also, it is well-known that
ANOVA can tolerate data that is non-normal, and simulation
studies using a variety of non-normal distributions have shown
that the false positive rate is not affected substantially by violation
of this assumption under an approximately normal distribution
(Glass et al., 1972; Harwell et al., 1992; Lix et al., 1996). Visual
inspections of QQ plots for K scores in Part 1 of Problem C
indicate that, again, the distribution is sufficiently normal to allay
concerns about inflated false positive rates.

Levene’s test for homogeneity of variances was not significant
for week–condition sub-groups in Problem A [F(1, 69) = 1.319,
p = 0.255] or Problem B [F(3, 100) = 1.112, p = 0.348], but
was significant for Problem C [F(3, 84) = 5.406, p = 0.002].
Kim and Cribbie (2018) show that the impact of departures from
homogeneity on false positive error rates are limited when sample
sizes are close to equal. The sample sizes in Problem C were 23
for K and 21 for X, so we anticipate this departure from the
homogeneity assumption will also have limited impact on false
positive rates in final outcomes.

5.3. Analysis
Figure 3 is a set of box plots summarizing and exploring the
quartile distribution of rubric scores, after balancing data for
attrition by dropping observation pairs with missing values.
Median scores indicate that the “middle” team in X always
outperformed the “middle” individual in K in all weeks, providing
some initial support for our main hypothesis. While the higher
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FIGURE 4 | Mean scores with their 95% CIs for each condition in each problem-solving week.

quartiles of K predominantly overlap with the lower quartiles of
X, as noted, there are a few outliers in K that perform as well as
their high performing X counterparts. Median scores in K vary
little across weeks. The superiority of the medians in X is most
striking for Problems A and B, and somewhat less for Problem C.

5.3.1. Problem A: Smoking and Cancer
For Problem A, the difference in mean scores between X and K
was statistically significant [t(91.223) = 7.799, p < 0.001] using an
independent samples (Welsch) t-test. 80% and 95% confidence
intervals were calculated around each condition’s mean score
(see Table 5 and Figure 4) and do not overlap, further indicating
significantly higher mean scores in favor of BARD.

Given the unequal sample size (K= 44, X= 25), we computed
the adjusted Hedges’ g effect size of 1.44, while Glass’1= 1.6. On
either measure, this is considered a very large effect.

5.3.2. Problem B: Kernel Error
For Problem B, inspecting the Week × Condition mean rubric
scores for Weeks 2 and 3 depicted in Figure 4, we can see that
the difference between the control and experimental conditions
increases, which suggests a Week × Condition interaction.
Indeed, our 2×2mixed ANOVA showed a statistically significant
interaction between experimental condition and problem week
[F(1, 50) = 8.93, p < 0.001]. The main effect of experimental
condition was significant [F(1, 50) = 86.46, p < 0.05], while the
mean effect of exposure week was not [F(1, 50) = 0.06, p = 0.81].

Adjusted confidence intervals as described by Morey (2008)
were calculated around each Week× Condition mean score (see
Table 6 and Figure 4), and do not overlap for K and X in either

Week 2 or Week 3, further indicating significantly higher mean
scores in favor of BARD.

The size of the main effect of condition as measured by the
generalized η2 is 0.53, which is considered very large (Bakeman,
2005), while Glass’ 1 = 2.2, which is considered huge. The
generalized η2 effect size for the Week × Condition interaction,
0.06, is considered small35.

5.3.3. Problem C: Cyberattack
For Problem C, inspecting the Week × Condition mean
rubric scores for Weeks 4 and 5 depicted in Figure 4, we can
see that the difference between the control and experimental
conditions is similar, which suggests no Week × Condition
interaction. Indeed, our 2 × 2 mixed ANOVA showed there
was no statistically significant interaction between experimental
condition and problem week [F(1, 42) = 0.35, p < 0.56]. The
main effect of experimental condition was significant [F(1, 42) =
17.68, p < 0.05], while the main effect of exposure week was not
[F(1, 42) = 2.58, p = 0.12].

Again, adjusted confidence intervals were calculated around
each Week × Condition mean score (see Table 7 and Figure 4),
and do not overlap for K and X in either Week 4 or Week 5,
further indicating significantly higher mean scores in favor
of BARD.

The size of the main effect of condition as measured by the
generalized η2 is 0.24, which is considered large (Bakeman, 2005),
while Glass’ 1 = 1.4, which is considered very large.

35 “ANOVA Tables and Main Effects” available at: https://bit.ly/2YPRDec.
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TABLE 6 | Mean scores with their 80% and 95% CIs for each condition in

Problem B.

Cond. Week N Mean SD SE 95% CI 80% CI Max

K 2 29 4.069 2.437 0.320 [3.428–4.710] [3.654–4.484] 18

X 2 23 8.402 3.575 0.527 [7.341–9.464] [7.717–9.088] 18

K 3 29 2.845 2.721 0.357 [2.129–3.560] [2.382–3.308] 16

X 3 23 9.848 3.591 0.529 [8.781–10.914] [9.159–10.536] 16

TABLE 7 | Mean scores with their 80% and 95% CIs for each condition in

Problem C.

Cond. Week N Mean SD SE 95% CI 80% CI Max

K 4 23 2.208 1.751 0.253 [1.700–2.717] [1.880–2.537] 22

X 4 21 5.012 3.070 0.474 [4.055–5.968] [4.395–5.629] 22

K 5 23 3.022 1.972 0.291 [2.436–3.607] [2.643–3.400] 16

X 5 21 5.369 3.009 0.464 [4.431–6.307] [4.764–5.974] 16

6. DISCUSSION

6.1. Likely Causes and Effects of Attrition
For Delphi studies, which necessarily require participants to
respond for two or more rounds on the same test problem,
attrition rates per round can be high, accumulate to extremely
high levels, and threaten to bias the results (Toma and
Picioreanu, 2016). Some typical initial attrition rates (i.e., at the
second round) reported in the literature are approximately 15%
(Elwyn et al., 2006), 30% (Bradley and Stewart, 2002), and 50%
(Moreno-Casbas et al., 2001; Goluchowicz and Blind, 2011). In
comparison, the 10% weekly attrition rates we achieved were
very low, and our end-to-end rate of 50% after six rounds
was, although high, about equal to the attrition rate seen after
one round in the latter studies and our piloting. Consequently,
unlike the larger IARPA study, we managed to cater for and
reduce individual attrition sufficiently to obtain statistically
significant results, assisted by our participant compensation,
social engagement, team sizes, and auto-submission.

In the aborted IARPA study, in which four contrasting systems
were being tested along with a control condition similar to our
own, the length of upfront training varied between systems, and
attrition rates during this training were roughly proportional to
its duration. Since upfront training was at least twice as long in
X as in K, the doubled attrition in X compared to K is consistent
with the IARPA study, and does not imply that our training was
particularly difficult.

In the problem-solving weeks, two possible causes for the
slightly lower individual attrition in X compared to K are benefits
of working as a group: the mean task burden per individual can
be reduced by distributing it (often not evenly!) amongst team
members, and the social interactions involved in the task can
make it more attractive. Another possible cause is a benefit of
using BNs: the tool may have seemed better suited to the task,
encouraging participants to persist with it.

We expect the main introduced bias due to attrition was that
participants who felt more competent at the task were more likely

to show up for subsequent rounds, potentially improving average
performance in the condition. Performance in both K and X
may have progressively benefited from this, but the principal
concern here is that they may not have benefited equally, thus
contributing to our effect sizes one way or the other. Both K
and X involved using techniques (mathematical and modeling
respectively) that some individuals would have been able to
use better than others, so in this respect it isn’t clear which
condition’s individuals would have benefited more. There are,
however, two social factors that clearly should have reduced the
benefit to X teams. First, participants who felt less competent
should already have had less impact than their team members
on the team report, so their absence probably didn’t improve the
team responses as much per report as attrition in K. Second, in
a group social process like Delphi, less capable participants may
still make a positive net contribution to a group report, so it is
possible that their absence actually made X reports worse. Finally,
although it may have been obscured by the variation in problem-
solving tasks, there was no observable trend of increasing effect
sizes over the 5 weeks as the level of attrition increased. For all
these reasons, it seems very unlikely that attrition made a major
positive contribution to our headline result: that X consistently
outperformed K.

There is one other, important reason why IARPA, at least, was
sanguine about possible attrition bias. The intended use of any
CREATE system was not to make it a compulsory tool, replacing
business as usual for all analysts. Rather, it was tomake it available
as an optional alternative for any analysts who are attracted to
it and voluntarily persist with it. This was, similarly, expected
to select those who feel more competent using the system, and
create a self-selection and attrition bias far greater than any in our
experiment. Hence, although we strived to minimize attrition,
any attrition bias there may have been in our experiment will
only have made our results a more accurate indicator of likely
performance for IARPA’s intended use.

6.2. Effects of Problem Difficulty
We know that much more complex problems of a similar kind
can be solved accurately by BN experts using the tools in X, and
aren’t tractable for anyone using the tools in K. So, we expected
that the increase in complexity in the second phase of Problems
B and C would translate into a bigger advantage for X over K.
However, the advantage detected in B was small, and not detected
at all in C. It may be that the increases in complexity and/or the
ability of our participants to use BN models to overcome it was
not as great as we supposed.

Since the second phase of Problem B involves the “explaining
away” cognitive difficulty, whereas the second phase of
Problem C involves the “dependent evidence” cognitive
difficulty, this may suggest that explaining away is more
difficult to understand than dependent evidence. However,
this interpretation would be unwarranted. We used only one
example of each difficulty, so there are numerous confounds;
and this effect-size ordering was not observed in the SoloBARD
experiment. Measuring the relative difficulty of various
cognitive difficulties would require many further, more
careful comparisons.
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6.3. Robustness and Size of Effect
The superior performance of X over K was a robust effect across
our three problems, since it was confirmed independently for
each. On our preferred measure, the effect sizes were all very
large to huge (Glass’ 1 1.4–2.2), and their 95% CIs are shown
graphically by week in Figure 5. On any standard measure, they
greatly exceeded CREATE’s initial target of a small effect size, and
indeed, achieved in Phase 1 for simple problems the large effect
size desired in Phase 3 for more complex Problems.

It is interesting to compare the performance of our
participants to those in the SoloBARD experiment, which used
a similar set of three problems (a different problem instead
of our Problem A, but exactly the same Problems B and C).
Unexpectedly, SoloBARD participants performed better than
ours. However, this was mainly in the control condition—
so, as expected, our BARD users beat our controls by a
greater margin than the SoloBARD users beat their controls.
Specifically, SoloBARD control individuals performed much
better (obtaining 32% of the available points) than our control
individuals (obtaining only 17%), while SoloBARD experimental
individuals performed only slightly better (obtaining 48%) than
our BARD experimental teams (obtaining 41%). Consequently,
BARD achieved double the mean effect size (Glass’ 1 = 1.7) of
SoloBARD (Glass’ 1 = 0.8).

There were multiple differences between the two experiments
that may have affected performances, so we must be cautious in
attributing specific causes to the differences in results. However,
we see no factor likely to have benefited only the SoloBARD
controls compared to our K. On the contrary, while in both
experiments control individuals received IARPA’s Guide to Good
Reasoning, our K individuals also received some training in
pen-and-paper probability calculation techniques, which should
have improved their relative performance—yet this effect is not
evident, perhaps because it is swamped by other factors. In
contrast, there are several plausible causes for better performance
in both the control and experimental conditions of SoloBARD
compared to our K and X: (i) superior ability of participants,
who were drawn solely from the University College London
experimental participant pool rather than recruited on the more
ad-hoc basis described in section 4, (ii) in-lab testing rather
than online, which tends to improve motivation and compliance,
and (iii) offering substantial and extensive financial bonuses for
good performance (to supplement a modest hourly rate), rather
than just offering a generous hourly rate. It is possible that
these factors made more difference to the relative performance
of the control conditions than to the experimental conditions.
However, there is a more obvious explanation for the greater
outperformance of the experimental over the control condition
in our BARD experiment: our X participants benefited from
working in small groups. This is consistent with the general
prior literature on Delphi and our specific prior experiment
with Delphi in BARD, as summarized in sections 2.4, 2.5,
and 2.7.

In summary, there were clearly significant factors driving
down performance in our experiment compared to the
SoloBARD experiment, and there may have been an interaction
effect that contributed one way or the other to our effect sizes.

Nevertheless, with that caveat, the doubled effect size achieved
by BARD in comparison to SoloBARD suggests, and provides
some cumulative evidence, that our social processes make a
substantial positive contribution in addition to the substantial
positive contribution made by BN construction.

6.4. Quality of Reports, Causal Models, and
Training
As expected, the mean proportions of the available rubric points
obtained by participants were low, even when assisted by BARD.
As discussed in section 4.2, participants are unlikely to provide
a high proportion of the specific items the rubric rewards. Our
rudimentary AI tool was designed to suggest possible text to
include in justifications, but at this early stage of development
it was not able to suggest all the relevant points, and apparently it
had limited effect.

Given that our X participants were supposed to achieve better
written reports than K by constructing BN models, it is natural
to ask how accurate their models turned out to be, and how
well-correlated this was to the quality of their written reports.
In Bolger et al. (2020), our BARD team members assessed the
quality of BN structures by measuring the difference between
these and normatively correct “gold-standard” structures using
“edit distance,” which is the most well-known structural measure
in the literature (e.g., Spirtes et al., 2000). However, this approach
was facilitated by requiring participants to choose variables out
of a set provided, and not requiring probabilities to be entered in
the models, thus avoiding both sources of variation in participant
answers. Furthermore, the aim was to compare the relative
quality of structures produced by individuals before and after
peer feedback, not their absolute quality. Here, even if we used
a broader measure of the overall quality of the BNs produced
by our X teams, there would be no meaningful comparison
to evaluate how well our X teams performed. The only way
to compare X to K performance is to measure the quality of
their written reports, which they both produce, and are designed
to implicitly test the accuracy of the BNs constructed by X
teams via the accuracy of their answers. The same inherent
limitation applied to the SoloBARD experiment. However, we
will make all the BNs produced by our X teams available for
subsequent research.

For similar reasons, it is difficult to assess the skill level
in BN construction achieved by our X teams. There is, as
yet, no standard test for BN-modeling difficulty or ability, so
we can’t quantify more precisely the difficulty of building our
problem BNs or the ability achieved through our minimal
training. However, it is notable that, as in our two previous
experiments, our BARD users received very little BN training by
industry standards, and yet they were able to construct BNs well
enough to outperform control participants on our probabilistic
reasoning problems. This provides some welcome evidence that
intelligence analysts, for example, can be quickly trained to use
BNs using our online resources. We are also confident that with
further training and experience, X teams would substantially
improve their BN building skills and consequently their
written reports.
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FIGURE 5 | Effect sizes measured by Glass’ 1 with their 95% CIs for each week.

7. CONCLUSION

Our results show that BARD is an extremely promising
tool for intelligence analysis that warrants further research.
Compared to business as usual, it already performs much

better on simple test problems. Compared to existing BN
software, it offers a unique integration of BN construction

with a Delphi-style collaborative workflow, high-quality online
training and help, and a structured template for written
reports with complementary text explanations automatically
generated from the BN. Furthermore, there is enormous

potential for further research and improvement: in developing
more complex problems, in developing BARD’s features,
and in testing their individual and combined efficacy
on those problems. There are also numerous potential

applications for BARD outside intelligence analysis, since
many areas—including those to which BNs have already
been introduced—require reasoning and decision making
under uncertainty.

More generally, our results provide some
cumulative evidence (in addition to prior theory
and experiments) for the utility of BARD’s
key components:

• Good online training allows people who are not BN experts to
construct BNs, minimizing the need for a facilitator who is a
BN expert.

• Where time permits, BN construction can be used
effectively for probabilistic reasoning problems.
This helps to avoid numerous types of causal
and probabilistic reasoning difficulties, and
adds precision.

• Small group collaboration, via RT Delphi in particular,
can be used successfully for BN construction. This allows

multiple viewpoints to be debated and combined to produce
a better result.

Three issues for further research deserve
particular emphasis:

1. We must test the efficacy of probability estimation. Our
team showed that it is possible and necessary to develop
a new type of test problem for probabilistic reasoning:
sufficiently challenging, yet simple enough to assess (with
many normatively correct elements in the solution). More
complex problems of this sort must be developed that include
the estimation of probabilities by experiment participants,
rather than relying entirely on precise parameters specified
in the problem statement. BARD’s built-in capacities for
eliciting and combining probability estimations can then be
rigorously tested.

2. Our social processes, in addition to RT Delphi, include
components such as discussion boards and the rating of other
team members’ work. These components can be evaluated
and optimized individually and in combination. If such
components work sufficiently well, then in many applications
BARD could dispense with the human facilitator altogether
without much loss.

3. Our automated verbal explanations were novel and promising,
but we have not yet measured their contribution. Moreover,
we now believe this XAI tool would be better implemented
as a combination of visual and verbal features that are more
interactive. Our spin-off project, mentioned in section 3.4, will
investigate this in detail36.

36 “Improving human reasoning with causal Bayes networks: a multimodal

approach.” See https://dataportal.arc.gov.au/NCGP/Web/Grant/Grant/

DP200100040.

Frontiers in Psychology | www.frontiersin.org 17 June 2020 | Volume 11 | Article 105488

https://dataportal.arc.gov.au/NCGP/Web/Grant/Grant/DP200100040
https://dataportal.arc.gov.au/NCGP/Web/Grant/Grant/DP200100040
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Korb et al. Individuals vs. BARD

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on OSF or on
request to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Human Research Ethics Committee, Monash
University. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

All of the authors were involved in the design, construction
and testing of the BARD application to greater or lesser extents,
exceptingMO and YL. The latter two as well as AOwere involved
in data analysis, with MO (from Statistics, Monash) doing much
of the heavy lifting. RP was involved in the organization and
day-to-day oversight of the experiments, while ST and AO
organized participants, ran the BARD webinars and were online
during the synchronous BARD sessions for technical support as
required. KK and EN conducted the control group webinars.
KK led the design and oversaw the running of the experiment,
as well as leading the BARD project as a whole and wrote
much of this paper. AO drafted the manuscript. AN made
significant rewrites. In response to referee feedback, ENmanaged

supplementary data analysis and reporting, and made extensive
revisions and additions to the manuscript. All authors reviewed
drafts, providing feedback, and suggesting edits.

FUNDING

Funding for the BARD project, and specifically for running
the experiment and analyses reported in this paper, was
provided by the Office of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects Activity
(IARPA), through their CREATE program under Contract
[2017-16122000003]37.

ACKNOWLEDGMENTS

The authors thank Belinda Lewis (BARD Project Officer)
for assisting with participant recruitment; Abhi Neog,
Maryam Anjiri, Michelle Yu, Abida Shahzad, and Somaiyeh
MahmoudZadeh for assisting us by marking the reports; and
the three reviewers for their numerous helpful comments on
the manuscript.

37 The views and conclusions contained herein are those of the authors and should

not be interpreted as necessarily representing the official policies, either expressed

or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government

is authorized to reproduce and distribute reprints for governmental purposes

notwithstanding any copyright annotation therein.

REFERENCES

Office of the Director of National Intelligence (ODNI) (2015). Intelligence

Community Directive 203 (ICD-203): Analytic Standards. Washington, DC:

United States Government. Available online at: https://www.dni.gov/files/

documents/ICD/ICD%20203%20Analytic%20Standards.pdf

Alvarez Ortiz, C. M. (2007). Does philosophy improve critical thinking skills?

Master’s thesis. University of Melbourne, Melbourne, VIC, Australia.

Bakeman, R. (2005). Recommended effect size statistics for repeated measures

designs. Behavior Research Methods 37, 379–384. doi: 10.3758/BF03192707

Bayraktar, M. E., and Hastak, M. (2009). Bayesian belief network model for

decision making in highway maintenance: case studies. J. Constr. Eng. Manage.

135, 1357–1369. doi: 10.1061/(ASCE)CO.1943-7862.0000111

Bolger, F., Nyberg, E. P., Belton, I., Crawford, M. M., Hamlin, I., Nicholson, A.,

et al. (2020). Improving the production and evaluation of structural models

using a Delphi process. OSF Preprints. doi: 10.31219/osf.io/v6qsp. [Epub ahead

of print].

Boneh, T. (2010). Ontology and Bayesian decision networks for supporting the

meteorological forecasting process Ph.D. thesis. Monash University, Melbourne,

VIC, Australia.

Bradley, L., and Stewart, K. (2002). A Delphi study of the drivers and

inhibitors of internet banking. Int. J. Bank Market. 20, 250–260.

doi: 10.1108/02652320210446715

Charness, G., and Sutter, M. (2012). Groups make better self-interested decisions.

J. Econ. Perspect. 26, 157–76. doi: 10.1257/jep.26.3.157

Chee, Y. E., Wilkinson, L., Nicholson, A. E., Quintana-Ascencio, P. F., Fauth, J. E.,

Hall, D., et al. (2016). Modelling spatial and temporal changes with GIS and

spatial and dynamic Bayesian networks. Environ. Model. Softw. 82, 108–120.

doi: 10.1016/j.envsoft.2016.04.012

Choi, K.-H., Joo, S., Cho, S. I., and Park, J.-H. (2007). Locating intersections

for autonomous vehicles: a Bayesian network approach. ETRI J. 29, 249–251.

doi: 10.4218/etrij.07.0206.0178

Cruz, N., Desai, S. C., Dewitt, S., Hahn, U., Lagnado, D., Liefgreen, A., et al.

(2020). Widening access to Bayesian problem solving. Front. Psychol. 11: 660.

doi: 10.3389/fpsyg.2020.00660

Elwyn, G., O’Connor, A., Stacey, D., Volk, R., Edwards, A., Coulter, A., et al.

(2006). Developing a quality criteria framework for patient decision

aids: online international Delphi consensus process. BMJ 333:417.

doi: 10.1136/bmj.38926.629329.AE

Etminani, K., Naghibzadeh, M., and Peña, J. M. (2013). DemocraticOP:

a Democratic way of aggregating Bayesian network parameters.

Int. J. Approx. Reason. 54, 602–614. doi: 10.1016/j.ijar.2012.1

2.002

Fenton, N., and Neil, M. (2000). The “Jury Fallacy” and the use of Bayesian

networks to present probabilistic legal arguments.Math Today 37, 61–102.

Fenton, N., Neil, M., and Lagnado, D. A. (2013). A general structure for legal

arguments about evidence using Bayesian networks. Cogn. Sci. 37, 61–102.

doi: 10.1111/cogs.12004

Flores, M. J., Nicholson, A. E., Brunskill, A., Korb, K. B., and Mascaro,

S. (2011). Incorporating expert knowledge when learning Bayesian

network structure: a medical case study. Artif. Intell. Med. 53, 181–204.

doi: 10.1016/j.artmed.2011.08.004

Gigerenzer, G., and Hoffrage, U. (1995). How to improve Bayesian

reasoning without instruction: frequency formats. Psychol. Rev. 102:684.

doi: 10.1037/0033-295X.102.4.684

Glass, G. V., Peckham, P. D., and Sanders, J. R. (1972). Consequences of failure

to meet assumptions underlying the fixed effects analyses of variance and

covariance. Rev. Educ. Res. 42, 237–288. doi: 10.3102/00346543042003237

Goluchowicz, K., and Blind, K. (2011). Identification of future

fields of standardisation: an explorative application of the Delphi

methodology. Technol. Forecast. Soc. Change 78, 1526–1541.

doi: 10.1016/j.techfore.2011.04.014

Gopnik, A., Sobel, D. M., Schulz, L. E., and Glymour, C. (2001). Causal learning

mechanisms in very young children: two-, three-, and four-year-olds infer

Frontiers in Psychology | www.frontiersin.org 18 June 2020 | Volume 11 | Article 105489

https://www.dni.gov/files/documents/ICD/ICD%20203%20Analytic%20Standards.pdf
https://www.dni.gov/files/documents/ICD/ICD%20203%20Analytic%20Standards.pdf
https://doi.org/10.3758/BF03192707
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000111
https://doi.org/10.31219/osf.io/v6qsp
https://doi.org/10.1108/02652320210446715
https://doi.org/10.1257/jep.26.3.157
https://doi.org/10.1016/j.envsoft.2016.04.012
https://doi.org/10.4218/etrij.07.0206.0178
https://doi.org/10.3389/fpsyg.2020.00660
https://doi.org/10.1136/bmj.38926.629329.AE
https://doi.org/10.1016/j.ijar.2012.12.002
https://doi.org/10.1111/cogs.12004
https://doi.org/10.1016/j.artmed.2011.08.004
https://doi.org/10.1037/0033-295X.102.4.684
https://doi.org/10.3102/00346543042003237
https://doi.org/10.1016/j.techfore.2011.04.014
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Korb et al. Individuals vs. BARD

causal relations from patterns of variation and covariation.Dev. Psychol. 37:620.

doi: 10.1037/0012-1649.37.5.620

Gordon, T., and Pease, A. (2006). RT Delphi: an efficient,“round-less” almost

real time Delphi method. Technol. Forecast. Soc. Change 73, 321–333.

doi: 10.1016/j.techfore.2005.09.005

Hahn, U. (2014). The Bayesian boom: good thing or bad? Front. Psychol. 5:765.

doi: 10.3389/fpsyg.2014.00765

Hahn, U., and Harris, A. J. (2014). What does it mean to be biased:

motivated reasoning and rationality. Psychol. Learn. Motivat. 61, 41–102.

doi: 10.1016/B978-0-12-800283-4.00002-2

Hahn, U., and Oaksford, M. (2006). A Bayesian approach to informal argument

fallacies. Synthese 152, 207–236. doi: 10.1007/s11229-005-5233-2

Harwell, M. R., Rubinstein, E. N., Hayes, W. S., and Olds, C. C. (1992).

Summarizing Monte Carlo results in methodological research: the one-

and two-factor fixed effects ANOVA cases. J. Educ. Stat. 17, 315–339.

doi: 10.3102/10769986017004315

Hedges, L. V., and Olkin, I. (1985). Statistical Methods for Meta-Analysis. Orlando,

FL: Academic Press.

Hemming, V., Burgman, M., Hanea, A., McBride, M., and Wintle, B. (2018a). A

practical guide to structured expert elicitation using the idea protocol.Methods

Ecol. Evol. 9, 169–180. doi: 10.1111/2041-210X.12857

Hemming, V., Walshe, T., Hanea, A., Fidler, F., and Burgman, M. (2018b).

Eliciting improved quantitative judgements using the idea protocol: a

case study in natural resource management. PLoS ONE 13:e0198468.

doi: 10.1371/journal.pone.0198468

Heuer, R. J. (1999). Psychology of Intelligence Analysis. Washington, DC: Centre

for the Study of Intelligence, Central Intelligence Agency. Available online

at: https://www.cia.gov/library

Holt, D. V., and Osman, M. (2017). Approaches to cognitive modeling in dynamic

systems control. Front. Psychol. 8:2032. doi: 10.3389/fpsyg.2017.02032

Intelligence Advanced Research Projects Activity (2016). Broad Agency

Announcement (IARPA-BAA-15-11): Crowdsourcing Evidence, Argumentation,

Thinking and Evaluation (CREATE). Washington, DC: United States

Government. Available online at: https://beta.sam.gov/api/prod/opps/v3/

opportunities/resources/files/8cc3355752ec4965851bcff7770bb241/download?

api_key=null&status=archived&token=

Jarvstad, A., and Hahn, U. (2011). Source reliability and the conjunction fallacy.

Cogn. Sci. 35, 682–711. doi: 10.1111/j.1551-6709.2011.01170.x

Kahneman, D., Slovic, P., and Tversky, A. (1982). Judgment Under Uncertainty:

Heuristics and Biases. New York, NY: Cambridge University Press.

Kim, Y. J., and Cribbie, R. A. (2018). ANOVA and the variance homogeneity

assumption: exploring a better gatekeeper. Br. J. Math. Stat. Psychol. 71, 1–12.

doi: 10.1111/bmsp.12103

Korb, K. (2004). Bayesian informal logic and fallacy. Informal Logic 24, 41–70.

doi: 10.22329/il.v24i1.2132

Korb, K., and Nicholson, A. (2011). Bayesian Artificial Intelligence, 2nd Edn. Boca

Raton, FL: Chapman & Hall/CRC Computer Science & Data Analysis; CRC

Press.

Korb, K. B., and Nyberg, E. P. (2016). Analysing arguments using causal

Bayesian networks. Bayesian Watch. Available online at: https://bayesianwatch.

wordpress.com/2016/03/30/aaucbn/

Kugler, T., Kausel, E. E., and Kocher, M. G. (2012). Are groups more rational

than individuals? A review of interactive decision making in groups. Wiley

Interdiscipl. Rev. Cogn. Sci. 3, 471–482. doi: 10.1002/wcs.1184

Kushnir, T., Gopnik, A., Lucas, C., and Schulz, L. (2010). Inferring hidden causal

structure. Cogn. Sci. 34, 148–160. doi: 10.1111/j.1551-6709.2009.01072.x

Lagnado, D. A., Fenton, N., and Neil, M. (2013). Legal idioms: a

framework for evidential reasoning. Argument Comput. 4, 46–63.

doi: 10.1080/19462166.2012.682656

Lagnado, D. A., and Gerstenberg, T. (2017). “Causation in legal and

moral reasoning,” in Oxford Handbook of Causal Reasoning, ed

M. R. Waldmann (Oxford: Oxford University Press), 565–602.

doi: 10.1093/oxfordhb/9780199399550.013.30

Lagnado, D. A., and Sloman, S. (2004). The advantage of timely intervention. J.

Exp. Psychol. Learn. Mem. Cogn. 30:856. doi: 10.1037/0278-7393.30.4.856

Laskey, K. B., and Mahoney, S. M. (1997). “Network fragments: representing

knowledge for constructing probabilistic models,” in Proceedings of the

Thirteenth Conference on Uncertainty in Artificial Intelligence (San Francisco,

CA: Morgan Kaufmann Publishers Inc.), 334–341.

Laskey, K. B., and Mahoney, S. M. (2000). Network engineering for agile

belief network models. IEEE Trans. Knowl. Data Eng. 12, 487–498.

doi: 10.1109/69.868902

Liefgreen, A., Tešic, M., and Lagnado, D. (2018). “Explaining away: significance of

priors, diagnostic reasoning, and structural complexity,” in Proceedings of the

40th Annual Conference of the Cognitive Science Society, eds T. Roger, M. Rau,

X. Zhu, and W. Kalish (Austin, TX: Cognitive Science Society), 2044–2049.

Linstone, H., and Turoff, M. (1975). The Delphi Method: Techniques and

Applications. London: Addison-Wesley.

Lix, L. M., Keselman, J. C., and Keselman, H. (1996). Consequences of assumption

violations revisited: a quantitative review of alternatives to the one-way analysis

of variance f test. Rev. Educ. Res. 66, 579–619. doi: 10.3102/00346543066004579

Malcolm, D. G., Roseboom, C. E., Clark, C. E., and Fazar, W. (1959). Application

of a technique for research and development program evaluation. Operat. Res.

7, 646–649. doi: 10.1287/opre.7.5.646

Mascaro, S., Nicholso, A. E., and Korb, K. B. (2014). Anomaly detection in vessel

tracks using Bayesian networks. Int. J. Approx. Reason. 55(1 Pt 1), 84–98.

doi: 10.1016/j.ijar.2013.03.012

Matsumori, K., Koike, Y., and Matsumoto, K. (2018). A biased Bayesian

inference for decision-making and cognitive control. Front. Neurosci. 12:734.

doi: 10.3389/fnins.2018.00734

Misirli, A. T., and Bener, A. B. (2014). Bayesian networks for evidence-based

decision-making in software engineering. IEEE Trans. Softw. Eng. 40, 533–554.

doi: 10.1109/TSE.2014.2321179

Moore, D. A., and Healy, P. J. (2008). The trouble with overconfidence. Psychol.

Rev. 115, 502–517. doi: 10.1037/0033-295X.115.2.502

Moreno-Casbas, T., Martín-Arribas, C., Orts-Cortés, I., Comet-Cortés, P., and

Investén-isciii Co-ordination and Development of Nursing Research Centre

(2001). Identification of priorities for nursing research in Spain: a Delphi study.

J. Adv. Nurs. 35, 857–863. doi: 10.1046/j.1365-2648.2001.01923.x

Morey, R. D. (2008). Confidence intervals from normalized data: a

correction to Cousineau (2005). Tutor. Quant. Methods Psychol. 4, 61–64.

doi: 10.20982/tqmp.04.2.p061

Mumford, M. D., Blair, C., Dailey, L., Leritz, L. E., and Osburn, H. K. (2006). Errors

in creative thought? cognitive biases in a complex processing activity. J. Creat.

Behav. 40, 75–109. doi: 10.1002/j.2162-6057.2006.tb01267.x

Newell, B. R., Lagnado, D. A., and Shanks, D. R. (2015). Straight Choices: The

Psychology of Decision Making, 2nd Edn. Hove: Psychology Press.

Nicholson, A., Korb, K., Nyberg, E., Wybrow, M., Zukerman, I., Mascaro, S.,

et al. (2020). BARD: a structured technique for group elicitation of Bayesian

networks to support analytic reasoning. arXiv 2003.01207.

Nicholson, A., Woodberry, O., Mascaro, S., Korb, K., Moorrees, A., and Lucas,

A. (2011). “ABC-BN: a tool for building, maintaining and using Bayesian

networks in an environmental management application,” in Proceedings of the

8th Bayesian Modelling Applications Workshop, Vol. 818 (Barcelona), 331–335.

Available online at: http://ceur-ws.org/Vol-818/

Nicholson, A. E., Mascaro, S., Thakur, S., Korb, K. B., and Ashman, R. (2016).

Delphi Elicitation for Strategic Risk Assessment. Technical Report TR-2016,

Bayesian Intelligence Pty Ltd. Available online at: https://bayesian-intelligence.

com/publications/TR2016_1_Delphi_Elicitation.pdf

Packer, D. J. (2009). Avoiding groupthink: whereas weakly identified members

remain silent, strongly identified members dissent about collective problems.

Psychol. Sci. 20, 546–548. doi: 10.1111/j.1467-9280.2009.02333.x

Pearl, J. (1998). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. San Mateo, CA: Morgan Kaufmann.

Pearl, J., and Mackenzie, D. (2018). The Book of Why: The New Science of Cause

and Effect, 1st Edn. New York, NY: Basic Books, Inc.

Pilditch, T., Hahn, U., and Lagnado, D. (2018). “Integrating dependent evidence:

naïve reasoning in the face of complexity,” in Proceedings of the 40th Annual

Conference of the Cognitive Science Society, eds T. Roger, M. Rau, X. Zhu, and

W. Kalish (Austin, TX: Cognitive Science Society), 884–889.

Pilditch, T. D., Fenton, N., and Lagnado, D. (2019). The zero-sum fallacy in

evidence evaluation. Psychol. Sci. 30, 250–260. doi: 10.1177/0956797618818484

Pollino, C., Woodberry, O., Nicholson, A., Korb, K., and Hart, B. T.

(2007). Parameterisation of a Bayesian network for use in an ecological

Frontiers in Psychology | www.frontiersin.org 19 June 2020 | Volume 11 | Article 105490

https://doi.org/10.1037/0012-1649.37.5.620
https://doi.org/10.1016/j.techfore.2005.09.005
https://doi.org/10.3389/fpsyg.2014.00765
https://doi.org/10.1016/B978-0-12-800283-4.00002-2
https://doi.org/10.1007/s11229-005-5233-2
https://doi.org/10.3102/10769986017004315
https://doi.org/10.1111/2041-210X.12857
https://doi.org/10.1371/journal.pone.0198468
https://www.cia.gov/library
https://doi.org/10.3389/fpsyg.2017.02032
https://beta.sam.gov/api/prod/opps/v3/opportunities/resources/files/8cc3355752ec4965851bcff7770bb241/download?api_key=null&status=archived&token=
https://beta.sam.gov/api/prod/opps/v3/opportunities/resources/files/8cc3355752ec4965851bcff7770bb241/download?api_key=null&status=archived&token=
https://beta.sam.gov/api/prod/opps/v3/opportunities/resources/files/8cc3355752ec4965851bcff7770bb241/download?api_key=null&status=archived&token=
https://doi.org/10.1111/j.1551-6709.2011.01170.x
https://doi.org/10.1111/bmsp.12103
https://doi.org/10.22329/il.v24i1.2132
https://bayesianwatch.wordpress.com/2016/03/30/aaucbn/
https://bayesianwatch.wordpress.com/2016/03/30/aaucbn/
https://doi.org/10.1002/wcs.1184
https://doi.org/10.1111/j.1551-6709.2009.01072.x
https://doi.org/10.1080/19462166.2012.682656
https://doi.org/10.1093/oxfordhb/9780199399550.013.30
https://doi.org/10.1037/0278-7393.30.4.856
https://doi.org/10.1109/69.868902
https://doi.org/10.3102/00346543066004579
https://doi.org/10.1287/opre.7.5.646
https://doi.org/10.1016/j.ijar.2013.03.012
https://doi.org/10.3389/fnins.2018.00734
https://doi.org/10.1109/TSE.2014.2321179
https://doi.org/10.1037/0033-295X.115.2.502
https://doi.org/10.1046/j.1365-2648.2001.01923.x
https://doi.org/10.20982/tqmp.04.2.p061
https://doi.org/10.1002/j.2162-6057.2006.tb01267.x
http://ceur-ws.org/Vol-818/
https://bayesian-intelligence.com/publications/TR2016_1_Delphi_Elicitation.pdf
https://bayesian-intelligence.com/publications/TR2016_1_Delphi_Elicitation.pdf
https://doi.org/10.1111/j.1467-9280.2009.02333.x
https://doi.org/10.1177/0956797618818484
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Korb et al. Individuals vs. BARD

risk management case study. Environ. Model. Softw. 22, 1140–1152.

doi: 10.1016/j.envsoft.2006.03.006

Ropero, R. F., Nicholson, A. E., Aguilera, P. A., and Rumí, R. (2018).

Learning and inference methodologies for hybrid dynamic bayesian

networks: a case study for a water reservoir system in andalusia, spain.

Stochast. Environ. Res. Risk Assess. 32, 3117–3135. doi: 10.1007/s00477-018-

1566-5

Rowe, G., Wright, G., and Bolger, F. (1991). Delphi: a reevaluation of

research and theory. Technol. Forecast. Soc. Change 39, 235–251.

doi: 10.1016/0040-1625(91)90039-I

Russ, S., Rout, S., Sevdalis, N., Moorthy, K., Darzi, A., and Vincent, C.

(2013). Do safety checklists improve teamwork and communication in

the operating room? A systematic review. Ann. Surg. 258, 856–871.

doi: 10.1097/SLA.0000000000000206

Salerno, J. M., Bottoms, B. L., and Peter-Hagene, L. C. (2017). Individual

versus group decision making: Jurors’ reliance on central and peripheral

information to evaluate expert testimony. PLoS ONE 12:e0183580.

doi: 10.1371/journal.pone.0183580

Serwylo, P. (2015). Intelligently generating possible scenarios for emergency

management during mass gatherings Ph.D. thesis. Monash University,

Melbourne, VIC, Australia.

Sesen, M. B., Nicholson, A. E., Banares-Alcantara, R., Kadir, T., and Brady, M.

(2013). Bayesian networks for clinical decision support in lung cancer care.

PLoS ONE 8:e82349. doi: 10.1371/journal.pone.0082349

Silberman, L. H., and Robb, C. S. (2005). Unclassified Version of the Report of

the Commission on the Intelligence Capabilities of the United States Regarding

Weapons of Mass Destruction. Washington, DC: United States Government.

Available online at: https://www.govinfo.gov/app/details/GPO-WMD

Soll, J., and Klayman, J. (2004). Overconfidence in interval estimates. J.

Exp. Psychol. Learn. Mem. Cogn. 30, 299–314. doi: 10.1037/0278-7393.30.

2.299

Speirs-Bridge, A., Fidler, F., McBride, M., Flander, L., Cumming, G., and Burgman,

M. (2010). Reducing overconfidence in the interval judgments of experts. Risk

Anal. 30, 512–523. doi: 10.1111/j.1539-6924.2009.01337.x

Spirtes, P., Glymour, C. N., and Scheines, R. (2000). Causation, Prediction, and

Search, 2nd Edn. Cambridge, MA: MIT Press.

Stacey, K., Sonenberg, E., Nicholson, A., Boneh, T., and Steinle, V. (2003). “A

teaching model exploiting cognitive conflict driven by a Bayesian network,” in

User Modeling 2003, eds P. Brusilovsky, A. Corbett, and F. de Rosis (Berlin;

Heidelberg: Springer), 352–362.

Stettinger, M., Felfernig, A., Leitner, G., and Reiterer, S. (2015). “Counteracting

anchoring effects in group decision making,” in International Conference on

User Modeling, Adaptation, and Personalization (Cham: Springer), 118–130.

Straus, S. G., Parker, A. M., and Bruce, J. B. (2011). The group matters: a review of

processes and outcomes in intelligence analysis. Group Dyn. Theor. Res. Pract.

15:128. doi: 10.1037/a0022734

Stromer-Galley, J., Rossini, P., Kenski, K., Folkestad, J., McKernan, B., Martey, R.,

et al. (2018). User-centered design and experimentation to develop effective

software for evidence-based reasoning in the intelligence community: the

trackable reasoning and analysis for crowdsourcing and evaluation (TRACE)

project. Comput. Sci. Eng. 20, 35–42. doi: 10.1109/mcse.2018.2873859

Toma, C., and Picioreanu, I. (2016). The Delphi technique: methodological

considerations and the need for reporting guidelines in medical journals. Int.

J. Public Health Res. 4, 47–59.

United States Select Senate Committee on Intelligence (2004). Report on the U.S.

Intelligence Community’s Prewar Intelligence Assessments on Iraq. Washington,

DC: United States Government. Available online at: https://www.intelligence.

senate.gov/sites/default/files/publications/108301.pdf

van der Gaag, L. C., Renooij, S., Schijf, H. J., Elbers, A. R., and Loeffen,W. L. (2012).

“Experiences with eliciting probabilities frommultiple experts,” in International

Conference on Information Processing and Management of Uncertainty in

Knowledge-Based Systems (Cham: Springer), 151–160.

Villejoubert, G., and Mandel, D. R. (2002). The inverse fallacy: an account of

deviations from Bayes’s theorem and the additivity principle. Mem. Cogn. 30,

171–178. doi: 10.3758/BF03195278

Welsh, M. B., and Navarro, D. J. (2012). Seeing is believing: priors, trust,

and base rate neglect. Org. Behav. Hum. Decis. Process. 119, 1–14.

doi: 10.1016/j.obhdp.2012.04.001

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Korb, Nyberg, Oshni Alvandi, Thakur, Ozmen, Li, Pearson and

Nicholson. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 20 June 2020 | Volume 11 | Article 105491

https://doi.org/10.1016/j.envsoft.2006.03.006
https://doi.org/10.1007/s00477-018-1566-5
https://doi.org/10.1016/0040-1625(91)90039-I
https://doi.org/10.1097/SLA.0000000000000206
https://doi.org/10.1371/journal.pone.0183580
https://doi.org/10.1371/journal.pone.0082349
https://www.govinfo.gov/app/details/GPO-WMD
https://doi.org/10.1037/0278-7393.30.2.299
https://doi.org/10.1111/j.1539-6924.2009.01337.x
https://doi.org/10.1037/a002
https://doi.org/10.1109/mcse.2018.2873859
https://www.intelligence.senate.gov/sites/default/files/publications/108301.pdf
https://www.intelligence.senate.gov/sites/default/files/publications/108301.pdf
https://doi.org/10.3758/BF03195278
https://doi.org/10.1016/j.obhdp.2012.04.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-503233 October 14, 2020 Time: 17:9 # 1

ORIGINAL RESEARCH
published: 20 October 2020

doi: 10.3389/fpsyg.2020.503233

Edited by:
York Hagmayer,

University of Göttingen, Germany

Reviewed by:
Annelie Rothe-Wulf,

University of Freiburg, Germany
José C. Perales,

University of Granada, Spain

*Correspondence:
Stephen H. Dewitt

dewitt.s.h@gmail.com

Specialty section:
This article was submitted to

Cognitive Science,
a section of the journal
Frontiers in Psychology

Received: 07 October 2019
Accepted: 16 September 2020

Published: 20 October 2020

Citation:
Dewitt SH, Fenton NE,

Liefgreen A and Lagnado DA (2020)
Propensities and Second Order

Uncertainty: A Modified Taxi Cab
Problem. Front. Psychol. 11:503233.

doi: 10.3389/fpsyg.2020.503233

Propensities and Second Order
Uncertainty: A Modified Taxi Cab
Problem
Stephen H. Dewitt1* , Norman E. Fenton2, Alice Liefgreen1 and David A. Lagnado1

1 Department of Experimental Psychology, University College London, London, United Kingdom, 2 School of Electronic
Engineering and Computer Science, Queen Mary University of London, London, United Kingdom

The study of people’s ability to engage in causal probabilistic reasoning has typically
used fixed-point estimates for key figures. For example, in the classic taxi-cab problem,
where a witness provides evidence on which of two cab companies (the more common
‘green’/less common ‘blue’) were responsible for a hit and run incident, solvers are
told the witness’s ability to judge cab color is 80%. In reality, there is likely to be some
uncertainty around this estimate (perhaps we tested the witness and they were correct
4/5 times), known as second-order uncertainty, producing a distribution rather than a
fixed probability. While generally more closely matching real world reasoning, a further
important ramification of this is that our best estimate of the witness’ accuracy can and
should change when the witness makes the claim that the cab was blue. We present
a Bayesian Network model of this problem, and show that, while the witness’s report
does increase our probability of the cab being blue, it simultaneously decreases our
estimate of their future accuracy (because blue cabs are less common). We presented
this version of the problem to 131 participants, requiring them to update their estimates
of both the probability the cab involved was blue, as well as the witness’s accuracy,
after they claim it was blue. We also required participants to explain their reasoning
process and provided follow up questions to probe various aspects of their reasoning.
While some participants responded normatively, the majority self-reported ‘assuming’
one of the probabilities was a certainty. Around a quarter assumed the cab was green,
and thus the witness was wrong, decreasing their estimate of their accuracy. Another
quarter assumed the witness was correct and actually increased their estimate of their
accuracy, showing a circular logic similar to that seen in the confirmation bias/belief
polarization literature. Around half of participants refused to make any change, with
convergent evidence suggesting that these participants do not see the relevance of the
witness’s report to their accuracy before we know for certain whether they are correct
or incorrect.
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INTRODUCTION

While causal Bayesian reasoning, and reasoning under
uncertainty in general are major research programs within
the judgment and decision-making literature, problems
presented to participants have typically only studied this under
first order uncertainty (also known as ‘risk’ in the economics
literature). For example, the participant might be given a betting
choice between a sure win of £25 or a 33% chance of £100 (e.g.,
Kahneman and Tversky, 1979). Here, while in the latter option
it is uncertain whether we will get the £100, we can quantify
this uncertainty precisely, and the problem thus yields simply to
an expected utility calculation. But what if we did not know for
certain what the chance of getting the £100 was? For example,
suppose the probability was based on the outcome of some exotic
asymmetrical die. Suppose also that we don’t understand the
mechanics of the die, but we have observed 3 rolls, with only 1
leading to a win. While 33% might still be our best guess, with
such a small sample size to estimate this, a substantial range
of other probabilities are possible. How would this affect our
decision over which bet to take? This uncertainty about our first
order uncertainty is known as second order uncertainty (e.g.,
Kleiter, 2018), and we currently know little about how classic
findings in the judgment and decision-making literature apply
under such conditions.

Kahneman and Varey (1990) divided uncertainty along
another dimension: internal uncertainty and external uncertainty
(see also Juanchich et al., 2017). While internal uncertainty comes
from our own ignorance about the world (e.g., the mechanics of
the above die), external uncertainty comes from the propensity
for an external causal system (such as the exotic die) to produce
various outcomes or effects (e.g., a ‘win’). However, much we
reduce our internal uncertainty about the mechanics of the die,
we will only ever be able to predict what face will land up
according to those propensities and never be able to guarantee
a given outcome. This example illustrates an interaction between
these two types of uncertainty which was not discussed in that
paper. In this situation we have internal uncertainty about the
propensity (external uncertainty) of the die to produce a ‘win.’
This is an extremely common situation – in fact, outside of
contrived situations such as (standard) die rolls and coin flips,
our estimates of the propensities for external causal systems to
produce a given effect often comes with some internal (second
order) uncertainty. Consider the propensity for a prisoner to
reoffend or a patient to relapse or suffer complications. In
each case the individual presumably has some true propensity
(although this may fluctuate in a complex manner over time
and context) but we only have limited information from which
to estimate it. We are principally interested here in individuals’
ability to update propensity estimates in light of new information,
i.e., update first order uncertainty estimates under conditions of
second order uncertainty.

Approaches used to solve first order probability problems
typically cannot be applied to second order problems. Knight
(1921) gave the example of a picnic as a situation where first
order techniques (e.g., expected utility calculations) were not
workable. However, a true investment scenario, as opposed to

the example we began the paper with is also insightful. When
deciding whether to invest, one may use current and historical
stock market figures, one’s feelings about and trust in the CEO
and other bits of information such as a tip from an insider
and other known markers of health. Under such conditions the
probability of a positive return on investment cannot be reduced
to a first order point estimate with no variance. Indeed, Mousavi
and Gigerenzer (2014, 2017) have lamented the fact that while the
vast majority of the experimental economics literature has aimed
to study a higher order uncertainty problem (reasoning about
business and economics), it has used experimental materials
featuring only first order uncertainty. If we want to understand
real world human reasoning outside of casino gambling, we
must incorporate higher order uncertainty into the problems we
use to study this.

Similarly, while second order uncertainty has been written
about in the context of causal Bayesian reasoning within
the judgment and decision-making literature (e.g., Gigerenzer
and Hoffrage, 1995; Welsh and Navarro, 2012; Kleiter, 2018),
reasoning under these conditions has rarely been studied,
and experiments aiming to study real world reasoning have
also typically done this using problems with only first order
uncertainty. For example, in the classic taxi cab problem (Tversky
and Kahneman, 1974; Bar-Hillel, 1980), solvers are asked to
reason about whether a cab involved in a hit and run accident
was from the ‘blue’ company (as opposed to the ‘green’) in light
of a population base rate (which suggests green cabs are more
common) and an eye witness report (which claims a blue cab was
involved). Solvers are told that the witness was tested for their
ability to judge cab color, and that their ability was found to be
80%. A version of this can be seen below:

A cab was involved in a hit-and-run accident at night. Two cab
companies, the Green and the Blue, operate in the city.
You are given the following data: 90% of the cabs in the city are
Green and 10% are Blue.

A witness identified the cab as Blue. The court tested the reliability
of the witness under the circumstances that existed on the night
of the accident and concluded that the witness correctly identified
each of the two colors 80% of the time and failed 20% of the time.

What is the probability that the cab involved in the accident was
Blue rather than Green?

In order to solve the problem, participants have to integrate
the figure regarding the proportion of blue cabs in the city (not
many: 10%) with the contradictory evidence of the witness’s claim
that the cab was blue and their accuracy (quite good: 80%) to
arrive at a final probability that the cab involved in the incident
was blue. A major finding of the original paper was that many
participants neglected the population base rate data entirely in
their final estimate, simply giving the witness’s accuracy (80%) as
their answer. Subsequent work has found that base rates more
specific to the incident [e.g., in the area of the incident rather
than in the city as a whole (Bar-Hillel, 1980)] and more causally
related [e.g., where green cab drivers are known to get into more
accidents, rather than just being more prevalent (e.g., Ajzen,
1977)] reduce base rate neglect.
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In the similar medical diagnosis problem (e.g., Casscells et al.,
1978; Gigerenzer and Hoffrage, 1995), solvers are asked to reason
about whether a patient has cancer, given a population base rate
(suggesting cancer is unlikely) combined with a positive test
result. The solver is told that the false positive error rate of the
mammogram test is 5%. In reality of course, there is likely to be
some uncertainty around the probability estimates of both the
witness’s accuracy in the taxi cab problem and the false positive
rate of the medical test. Our estimates therefore should look
more like a distribution than a single point. While 80%/5% might
provide the mean, or our best guess, there will also be some
variance around this, due to our ignorance (internal uncertainty).
The degree of variance depends upon the quality and amount
of information we have available. These two examples prove
useful in demonstrating this. While it may seem plausible that
the mammogram machine has been tested a great many times,
perhaps thousands of times, and thus, variance in our estimate
might be very small, this seems less plausible for the single witness
in the taxi cab problem, where time and resources would heavily
limit the number of tests possible. Furthermore, it seems unlikely
that the exact circumstances of the crash could be replicated
for testing purposes, further increasing our uncertainty in the
estimate. While we may therefore be justified in approximating
the 5% false positive rate as a fixed-point estimate with no
variance to simplify the problem, this is unlikely to be reasonable
for the taxi-cab problem.

For example, suppose the witness has been tested 5 times,
getting 4 correct. This produces a distribution with a classical
statistical mean of 80% and a standard deviation of 16.3%.
We created such a distribution in the ‘AgenaRisk’ Bayesian
network program, which can be seen in Figure 1. We use a beta
distribution (Kleiter, 2018) based upon the two nodes above it:

FIGURE 1 | A beta distribution with mean 80.0% and standard deviation
16.3% created using the Agenarisk software.

No. trials (5) on the left, and No. correct (4) on the right. The
mean and other statistics associated with the distribution can be
seen in the yellow summary box.

Now that we know the initial distribution of our estimate
of the witness’s accuracy, in order to model the full problem,
we need to be able to update this distribution depending on
whether the witness gets future reports correct or incorrect. We
model this by expanding Figure 1 into a larger Bayesian network
(BN: Figure 2). A BN is a directed graph whose nodes represent
uncertain variables, and where an arc (or arrow) between two
nodes depicts a causal or influential relationship [see Fenton
and Neil (2018) for full details of BN’s]. In addition to the
graph structure, each node has an associated probability table
which defines the prior probability distribution for the associated
variable, conditioned (where a node has parents) on its parent
variables. When the state of a node is observed (e.g., the witness
reports that the cab is blue) the known value is entered into the
BN via an ‘observation’ and a propagation algorithm updates the
probability distributions for all unobserved nodes. The ‘Bayesian’
in BN’s is due to the use of Bayes’ theorem in the underlying
propagation algorithm.

In this diagram, our estimate for the witness’s accuracy has
been connected to a node (‘Witness says cab is blue’) depicting
whether the witness reports that the current cab is blue. The
‘b_trick’ node is simply a pragmatic software requirement to
convert the witness’s accuracy distribution into a binary variable.
The probability that the witness says the cab is blue is causally
dependent upon both their accuracy, and the base rate, depicted
in the above node ‘Cab really is blue.’ The current diagram
depicts the situation before the witness makes their report. The
best estimate that the cab is really blue at this point is just the
base rate, 10%. Combining this and the witness’s accuracy, the
model predicts a 74.0% chance that the witness will report that
the cab is green.

To demonstrate the workings of the model, in Figure 3 we add
two observations to the model. Firstly, in the lower right, we set
an ‘observation’ on the ‘Witness says cab is blue’ node that the
witness has said the cab is blue (note that this now has a yellow
label saying ‘True’). We have also set an observation on the ‘Cab
really is blue’ node to make this ‘False’ i.e., as if we knew the cab
really was green (and therefore the witness was incorrect). As
would be expected in this scenario, our estimate of the witness’s
accuracy goes down to 66.7% (see yellow summary box mean),
as we would expect given that they now have 4 correct out of 6
(4/6 = 0.666. . ..). Similarly, if the witness reports that the cab is
blue, and we model that the cab really was blue (i.e., the witness
is correct) by setting ‘Cab really is blue’ to ‘True’ (not depicted),
the model provides an estimate of the witness’s accuracy of 83.3%,
equivalent to getting 5 out of 6 correct (5/6 = 0.833). Of present
interest however, is how the witness’s accuracy should change
outside of these ‘certain’ bounds: when the witness reports that
the cab is blue, but we don’t know for certain if they are correct
or not (Figure 4).

In Figure 4 we have modeled the problem to include the
witness’s report that the cab was blue, but without knowing the
truth for certain (no ‘observation’ on the ‘Cab really is blue’
node). Not only, as expected, has the probability that the cab is
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FIGURE 2 | A Bayesian network depicting the modified taxi cab problem prior to the witness reporting the cab is blue.

FIGURE 3 | A Bayesian network model depicting the situation where the witness is incorrect about the cab being blue.
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FIGURE 4 | A Bayesian network model depicting the situation where the witness has reported the cab is blue but we are uncertain if they are correct or incorrect.

blue increased (to 30.7% from 10.0%), but simultaneously, our
estimate of the witness’s accuracy has reduced, to 71.9%, below
the initial estimate (80.0%, i.e., 4/5) but not as low as the estimate
if we knew for certain the witness was incorrect (66.7%, i.e., 4/6).
The reason for this reduction is that the witness has made a claim
which goes against the only other evidence we have (the base rate,
which suggests that the cab is green with considerable strength).
If the witness had instead claimed that the cab was green, our
estimate of their accuracy would increase (to 82.9%), again less
than if we knew for certain they were correct (83.3%).

This addition of second order uncertainty therefore gives the
problem a more dynamic character than the original problem.
Furthermore, it cannot be solved with a simple application
of Bayes’ theorem, unlike the original taxi cab problem. It
also has a potentially unintuitive dynamic: while we have
enough trust in the witness to ‘use’ the information they
provide as evidence that the cab was blue, we simultaneously
reduce our trust in the witness’s ability to make this very
judgment in future. To keep things initially simple, as
can be seen, we do not model the prior for the cab
being blue as having second-order uncertainty. As will be
discussed later, the version of the problem we use justifies
a fixed estimate for this (we have complete knowledge),
however, versions with second order uncertainty here may
also be interesting.

Our primary aim is to examine participant responses to
this novel problem and their ability to reason about causal

relationships under second order uncertainty, and particularly
through that unintuitive dynamic which is typical of such
problems. Lacking the assistance of software like the above,
the precise normative answer will not be achievable by our
participants. For this reason, and because we believe such
numerical precision is unlikely to characterize real world
reasoning, we are not interested in participants’ ability to do
the mathematics, or the magnitude of their adjustments when
they find out the witness reports the cab was blue. Instead we
are interested only in the direction of their adjustments for
the two main estimates (the witness’ true accuracy level and
the probability the cab is blue) and particularly whether they
recognize that the witness’s accuracy should be reduced. We
will also request participants to explain their reason for their
responses and provide several follow up questions to probe
their representation and processing of the problem, in line with
recent calls for more process-oriented work within this literature
(Johnson and Tubau, 2015; McNair, 2015).

MATERIALS AND METHODS

Participants
One hundred and thirty-one participants (43.5% female),
recruited from Prolific Academic (paid £9 per hour), took part in
the study, with an average age of 27.8 (SD = 9.8). No participants
were removed from the statistical analyses.
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Design
All 131 participants saw the same version of the study.
Participants were sub-divided in the analysis based upon their
response to the key question of interest, and we used a range of
numerical, and open and closed qualitative data to uncover the
cognitive processes behind these different response types.

Materials and Procedure
All materials and data can be found in a public repository
at https://osf.io/q68cu/. Participants were firstly presented with
the information sheet and once clicking ‘Next’ to indicate
their consent, were presented with the hit and run scenario.
Participants were only able to move forward in the experiment,
and could not go back and check previous pages. They were
first told that a CCTV camera had made a ‘partial read’
on a taxi cab’s license plate fleeing the scene, and that only
10 cabs matched: 1 belonging to the blue company, 9 to
the green company (giving a first order probability with no
second order uncertainty, assuming it is trusted). They were
then asked to give a percentage estimate using a slider that
the cab was blue based only on this information. On a new
page, they were then told a witness had come forward, and
were given information on the witness’s accuracy. Participants
were told the police had tested the witness five times, and
the witness was correct four times. They were then asked to
estimate the witness’s true accuracy from this. To encourage
participants not to see the initial accuracy value as fixed (i.e.,
overly subscribe to the law of small numbers), we included the
following text to emphasize that we have only a limited estimate
of their true accuracy.

However, we only have 5 trials to estimate this. It’s possible they
got lucky once or twice during the test. If we ran 100 trials we would
have a more reliable estimate. Perhaps they would get 70 correct, or
even 90.

Participants were then asked to use two sliders to give an
estimate of the witness’s ‘true’ accuracy (0–100%), and separately,
provide a (0–100%) confidence that that estimate “would be the
witness’s true accuracy level if we ran a lot more trials.” Only after
providing these two prior estimates, participants were told on a
new page that the witness had claimed the cab was blue.

Following this, participants were first asked to update their
estimate that the cab was blue and then on a separate page,
update their estimate of the witness’s accuracy. In both cases
key information was re-summarized. Instead of being asked to
give a numerical value at this point, participants indicated on
a sliding scale (Figure 5) whether they wanted to stick with
their original value or increase their estimate. Participants were
forced to answer all questions in the survey and were not able
to proceed with the experiment if they simply left the slider in
place. If they wished to make no change and keep their original
estimate they first had to move the slider to activate it, then move
it back to the center.

The degree to which participants moved the slider was not
of importance, and was only included to allow participants to
express themselves and to reduce the chance of participants
who wanted to make a very small change choosing to make no

change. This approach was used to discourage participants from
attempting a mathematical treatment of the problem, which we
strongly believe cannot be the way people solve real life problems
of this type. Instead, we wanted to capture intuitive feelings of
whether the two variables both go up, both go down, stay the
same, or (as predicted by the normative model) the probability of
the cab being blue goes up, while the accuracy of the witness goes
down. It is at this coarser level at which participants responses
were judged. For both estimates, on the same page, participants
were asked to explain their reasoning in an open text box.

After making posterior estimates, participants were asked in
a multiple-choice format whether, when reasoning through the
problem they had (A) Assumed the cab was green, (B) Assumed
the witness was correct or (C) Neither/Other. The order of these
options was randomized.

Participants were finally told on a separate page that after
the investigation had concluded it turned out the cab really
was green and so we now know the witness was incorrect this
time. Participants were then asked again whether they wished to
adjust the witness’s accuracy using the same slider and were again
provided with an open text box to explain their reasoning.

RESULTS

Manipulation Checks/Priors
After being provided with the prior for the cab being blue,
participants were asked to indicate on a sliding scale the
probability the cab was blue and 82.4% chose 9, 10, or 11%,
suggesting a high level of ‘acceptance’ of the prior figure
(Mean = 15.6%, SD = 16.2%). Participants were also asked to do
the same for the witness’s accuracy, after being given the figures
on the court’s testing of them and 45.8% chose 79, 80, or 81%
(Mean = 73.5%, SD = 15.5%). The distribution of responses for
both can be seen in Figure 6. Participants were also asked to
express their confidence that this figure represented the witness’s
true accuracy, which produced a mean of 68.6% (SD = 20.7%).

Posteriors
Once the witness reports that the cab was blue, participants
were firstly asked to adjust their estimate that the cab was blue,
and then the witness’s accuracy. Out of all participants, 64.9%
increased the probability that the cab was blue. Our primary
interest, however, was what change they made to their estimate
of the witness’s accuracy. Only 21.4% reduced this, while 55.7%
made no change, and 22.9% increased it. In the following we
analyze these three sub-groups according to their responses to
a range of questions to attempt to understand their cognitive
processes. Figures to support these analyses can be seen in Table 1
and will be referred to throughout.

Statistical Comparisons
We proceed in the following from top to bottom. In the second
row of Table 1 [(Mean) Cab blue %] we can see the average
estimate that the cab was blue made by each of the three response
types before the witness’s report. A univariate analysis was run
to test the effect of ‘Response type’ on ‘(Mean) Cab blue %’

Frontiers in Psychology | www.frontiersin.org 6 October 2020 | Volume 11 | Article 50323397

https://osf.io/q68cu/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-503233 October 14, 2020 Time: 17:9 # 7

Dewitt et al. Second Order Taxi Cab

FIGURE 5 | Image of the slider mechanism used for participants to adjust their estimate for the witness.

FIGURE 6 | A histogram representing participant prior estimates of the probability the cab is blue (blue) and witness accuracy (orange).

[F(2,128) = 2.6, p = 0.08]. Pairwise comparisons compared ‘No
Change’ to ‘Reduce’ (p = 0.04) and ‘No Change’ to ‘Increase’
(p = 0.70) and ‘Reduce’ to ‘Increase’ (p = 0.04). Univariate analyses
were also run to test the effect of ‘Response type’ on the third
row, their estimate of the witness’s accuracy before the witness’s
report [(Mean) Witness accuracy] [F(2,128) = 0.6, p = 0.55] and
separately on row four, their confidence that this estimate was
equal to the witness’s true accuracy, [(Mean) Witness confidence]
[F(2,128) = 0.13, p = 0.88].

Moving to row five, only a single individual reduced their
estimate of the cab being blue after the witness’ report. The
remainder either made no change, or increased their estimate.
A binary logistic regression was run to test the effect of
‘Response type’ on the proportion of individuals increasing their
estimate of the cab being blue [Wald X2 (2) = 6.6, p = 0.04].
Pairwise comparisons were then run to compare ‘No Change’ and
‘Increase’ [Wald X2 (1) = 6.3, p = 0.01], ‘No Change’ and ‘Reduce’

[Wald X2 (1) = 1.1, p = 0.29], and ‘Reduce’ and ‘Increase’ [Wald
X2 (1) = 1.8, p = 0.18].

We now move to rows six, seven, and eight, representing the
proportion of each response type who chose either ‘Assumed
the witness was correct,’ ‘Assumed the cab was green,’ or
‘Neither/other’ when faced with this question. Binary logistic
regressions were run to test the effect of ‘Response type’
on assuming the witness was correct [Wald X2 (2) = 16.2,
p < 0.001], on assuming the cab was green [Wald X2 (2) = 14.9,
p < 0.001] and on ‘Neither/other’ [Wald X2 (2) = 1.2, p = 0.55].
Examining the assumption that the witness was correct, pairwise
comparisons were run to compare ‘No Change’ to ‘Increase’
[Wald X2 (1) = 3.5, p = 0.06], ‘No Change’ to ‘Reduce’ [Wald
X2 (1) = 9.3, p = 0.002], and ‘Reduce’ to ‘Increase’ [Wald X2

(1) = 15.5, p < 0.001]. Examining the assumption that the cab was
green, pairwise comparisons were run to compare ‘No Change’ to
‘Increase’ [Wald X2 (1) = 2.4, p = 0.13], ‘No Change’ to ‘Reduce’
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TABLE 1 | Participant responses to a range of questions sub-divided by their initial
response to altering the witness’s accuracy.

Reduce No change Increase

Total N 28 (21.4%) 73 (55.7%) 30 (22.9%)

Cab/witness statistics provided

(Mean) Cab blue estimate 9.5% (0.3%) 16.8% (2.0%) 18.2% (3.6%)

(Mean) Witness accuracy
estimate

76.0% (1.9%) 73.3% (2.1%) 71.6% (2.6%)

(Mean) Confidence 67.1% (2.9%) 68.8% (2.7%) 69.9% (3.3%)

Witness reports cab is blue

(Proportion) Increasing estimate
cab blue

67.9% (9.0%) 56.2% (5.8%) 83.3% (6.9%)

(Proportion self-reported assuming):

Witness correct 25.0% (8.3%) 60.3% (5.8%) 80.0% (7.4%)

Cab green 46.4% (9.6%) 15.1% (4.2%) 3.3% (3.3%)

Neither/other 28.6% (8.7%) 24.7% (5.1%) 16.7% (6.9%)

Told cab actually green

(Proportion) Reducing witness
accuracy

78.6% (7.9%) 52.1% (5.9%) 73.3% (8.2%)

In brackets on the left it is indicated whether the figure provides the mean response,
or the proportion providing a particular response (in the case of non-continuous
outcomes). Questions are in chronological order and the delivery of key pieces of
information is indicated. Standard errors for estimates are included in brackets.

[Wald X2 (1) = 10.0, p = 0.002] and ‘Reduce’ and to ‘Increase’
[Wald X2 (1) = 8.8, p = 0.003].

Moving to the final row, where individuals were asked to
update their estimate of the witness’s accuracy again after being
told that subsequent investigations had found the cab really was
green, only seven individuals increased their estimate of the
witness’s accuracy. All others either reduced or made no change
to their estimate. A binary logistic regression was run to test
the effect of ‘Response type’ on the proportion reducing their
estimate [Wald X2 (2) = 7.7, p = 0.02]. Pairwise comparisons were
run to compare ‘No Change’ to ‘Increase’ [Wald X2 (1) = 3.8,
p = 0.05], ‘No Change’ to ‘Reduce’ [Wald X2 (1) = 5.5, p = 0.02]
and ‘Reduce’ to ‘Increase’ [Wald X2 (1) = 0.22, p = 0.64].

Qualitative Data
Participants were asked to explain their reasoning after providing
their posterior change estimate for the Witness’s accuracy. These
were coded blind to response type by the first author. Four
major codes were identified, but around half of all responses
were also coded as ‘Unclassified’ where an understanding of the
participants’ response could not be confidently attained. The first
author gave their codebook containing these five codes (Table 2)
to the third author. The third author then assigned these codes,
blind to both response type and to the first author’s assignments.

Inter-rater agreement was 78.6%, with disagreements generally
being whether a response should be ‘unclassified’ or not. For
the discrepant responses (28 total), if one coder had chosen
‘unclassified’ we assigned this code in order to be conservative –
22/28 of these were therefore classified that way. The remaining
six were resolved through discussion. The proportion of each
response type assigned each code post-agreement can be seen
below in Table 2. Among responses that could be classified,
one modal code stands out for each, however, for ‘No Change,’
a substantial amount were also coded as ‘Witness probably
correct,’ similar to the ‘Increase’ responders. These will be
discussed below.

Increase
The modal code assigned among ‘Increase’ responders was
‘Witness probably correct.’ This was assigned where the
participant indicated that they thought the witness was likely to
be correct or showed confidence in the witness. A selection of
these responses can be seen in Table 3.

No Change
The modal code among ‘No Change’ responders (30.8%) was
‘Irrelevant.’ This was assigned where the participant stated that
the report by the witness has no bearing on their accuracy level.
A selection of these responses can be seen in Table 4.

When told at the end of the experiment that the cab really was
green, and the witness was incorrect, we can see that half of ‘No
change’ participants still made no change to their estimate of the
witness’s accuracy. A selection of these participants’ explanations
of those responses can be seen in Table 5.

Reduce
The most prominent code among ‘Reduce’ responders was
‘Witness probably incorrect.’ This was assigned when the
participants stated that the witness was probably incorrect on this
occasion, or expressed low confidence in them. Some of these also
referenced the low base rate for blue cabs. A selection of these
responses can be seen in Table 6.

DISCUSSION

In this paper we aimed to examine responses to a modified
version of the classic taxi cab problem including second
order uncertainty. Through mixed methods, we aimed to
uncover participants’ approaches to handling the new dynamics
introduced in the modified version. Of principal interest was
how participants altered their estimate of the witness’s accuracy
after the witness reported that the cab was blue. We found
that around half made no change, with around a quarter

TABLE 2 | Percentages of each response type assigned each code type (modal code excluding ‘unclassified’ is highlighted for each response).

Witness probably correct Irrelevant Witness probably Incorrect Requires Certainty Unclassified

Increase 33.3 3.3 6.7 – 56.7

No change 17.8 32.9 8.2 2.7 38.4

Reduce 3.6 – 50.0 – 46.4
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each reducing/increasing their estimate of the witness’ accuracy.
Through convergent evidence, combining quantitative and
qualitative responses we present below a general picture of the
cognitive processes involved in each response type, however,
we do not assume each represents a single coherent population
(multiple cognitive processes may lead to the same response) and
in some cases suggest this might be the case.

Increase
‘Increase’ responders appear to be the most homogeneous of
the three response types, with 80% self-reporting as having
assumed the witness was correct, and, outside of the large
proportion ‘unclassified,’ the majority of their open text data
being coded as ‘Witness probably correct.’ Interestingly, none
of these responders explicitly say they are ignoring the base
rate data, or that they trust the witness more than the base
rate data. They generally just only refer to the witness data in
their responses, expressing confidence in them or belief they are
correct, and typically not mentioning the base rate data at all.
These responders cognitive process may therefore represent a
form of base rate neglect (e.g., Tversky and Kahneman, 1974;
Bar-Hillel, 1980). However, as can be seen in Figure 6 and
Table 1, these participants certainly saw the base rate data as
relevant before the witness made their report, suggesting a simple
disregard for the relevance of that information is not a good
explanation. However, Bar-Hillel (1980) proposed a ‘dominance’
theory of base rate neglect in such problems, where the piece of
information seen as least relevant would be entirely disregarded,
presumably for reasons of computational simplification. It is
possible that our participants, once the witness report is provided,
find the prospect of integrating these two figures too daunting.
From there, finding the witness report more compelling than
the base rate data for whatever reason, they may disregard
the base rate, leading to an 80% estimate that the cab is blue
based solely on the witness’s accuracy. However, this cannot
provide a full explanation of the present results. Even if these
participants do believe there is an 80% chance that the cab is blue,
how does this justify increasing their estimate of the witness’s
accuracy?

A similar response was also detected in other papers by the
authors on reasoning with propensities (Dewitt et al., 2018, 2020).
In the scenario presented in both those papers, two nations
are testing their missile detonation capabilities. Nation X has
so far had only 1 success out of 6 attempts while Y has had 4

TABLE 3 | A selection of ‘Increase’ responders open-text explanations of their
reasoning assigned the code ‘Witness probably correct’.

“Because he got another car right so it is 5/6.”

“. . . Now with 80% accuracy of the witness, stating that it is from the blue one,
I am sure that the cab is from the blue company.”

“The witness has said they saw a blue cab.”

“I believe the witness would have seen correctly even under pressure.”

“They did do the trial 5 times and out of the 5 times they got it correct 4 times,
had this been lower then I would have questioned the accuracy but 4 out of 5 is

quite good.”

TABLE 4 | A selection of ‘No Change’ responders open text explanations of their
reasoning assigned the code ‘Irrelevant’.

“Still 90% because the facts are still the same.”

“I don’t think the probability of what they saw regarding colors will affect the
accuracy of their statement.”

“The report doesn’t change their estimated accuracy.”

“For me nothing changed because we have no new viable information.”

“Because the probability of it being a blue car and then the witness identifying it
as a blue car are separate, so even if it’s a low probability, it wouldn’t affect their

perception unless they were told beforehand that [it was] low probability.”

“The result of the test (blue or green) doesn’t change the level of accuracy of
the witness.”

“They still got 4/5 trials right, so I’m still confident in them.”

TABLE 5 | A selection of ‘No Change’ responders open text explanations of their
reasoning after being told the witness was incorrect and still making no change to
their estimate of the witness’s accuracy.

“The witness managed to get the correct color 4/5 based on the test. 1/5 times
the witness fails and this was one of the situations where they failed.”

“I don’t feel that I can judge their accuracy based on this as this result could
have been in the 20%”

“No remains 80%. The 20% percent would be them getting the color wrong.”

“I believe their accuracy is still not in question, they still had a 1 in 5 chance to
get it wrong.”

“The previous test measured that the witness had a 4/5 chance to get the color
correct. The accuracy still stands.”

“It fits 20% of not getting the right color.”

“There was still 20% chance he was wrong.”

“He has 4/5 so the car could be the 1/5.”

TABLE 6 | A selection of ‘Reduce’ responders open text explanations of their
reasoning assigned the code ‘Witness probably incorrect.’

“Based on the potential cab colors, it’s more likely than not that the cab was
green, so I’m slightly more inclined to doubt the witness.”

“Very unlikely that it was a blue cab, since only one out of 10 plates were blue.”

“Because people can think they saw a thing and can be another completely
different.”

“From a statistical point of view it is likely that the witness was wrong.”

“It was considerably less likely to be blue than green; this coupled with the one
incorrect trial result, makes me less confident that the witness is correct.

However, they still actually could be.”

“If was dark, how he/she can know whether car blue or green?”

“I think the accuracy of the witness became less than 80% because the
probability that was a green cab is higher than her accuracy.”

“It’s hard to identify the color of a moving car at night, besides blue and green
at high speed are easy to mistook for each other.”

successes out of 6. Another missile then successfully detonates
on the border between the two nations but we’re unable to
detect the source. The key question, instead of who launched this
missile (equivalent to whether the cab is blue), is what the new
proficiency estimate for each nation is (equivalent to updating the
witness’s accuracy). In both papers we found a similar approach
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to the present paper, where, when updating proficiencies, 1/3 of
participants increased their estimate of Y ’s proficiency, making
no change to X. Because X and Y represent exhaustive and
exclusive causes of the latest explosion, unlike in the present
scenario, we were able to infer that they have treated Y launching
the latest missile as a certainty (i.e., they have ‘given’ the whole
responsibility for the detonation to Y, and none to X). In Dewitt
et al. (2018) we also saw similar open text reasoning, with the
majority of these participants simply stating that they believed
Y was probably responsible. We labeled these participants as
‘categorical’ responders as we found that while they rated the
probability that Y was responsible as 77.7% on average, they all
treated it as a 100% certainty when updating their estimate. This
treatment of a probabilistic variable (e.g., 80% estimate that the
cab is blue based on the witness’s report) as a certainty may also
be occurring in the present experiment. Evidence for this comes
from the vast majority of ‘Increase’ responders who self-report as
having ‘assumed’ the witness was correct.

Importantly, in both scenarios, this response has a circularity
to its logic. In the missiles experiment, Y is assumed to have
launched the missile based upon their previous success with
missiles. Their success with missiles is then updated based
upon the assumption that Y launched the missile (which, to
reiterate the circularity, is based upon their past success with
missiles). Similarly, in the present scenario, the only evidence
that participants have that the witness might be correct this time
is their previous accuracy. But just like in the missiles scenario,
this is the very thing we want them to update. So, when this
approach is adopted, it appears that once a witness gets to a
certain level of trust, they will not only be assumed to be correct
based only on this historical accuracy, but also, based on that
assumption, they will be seen as even more accurate afterward,
even when the only other evidence available actually strongly
suggests they are incorrect. This has the same circularity as
has been observed in confirmation bias and belief polarization
literature (Lord et al., 1979; Plous, 1991; Nickerson, 1998; Cook,
2016; Fryer et al., 2019).

The treatment of probabilistic variables as categorical variables
has also been previously reported under the names of ‘as if ’
reasoning (Gettys et al., 1973) and ‘digitization’ (Johnson et al.,
2018). Both sets of authors have found that in multi-step
reasoning, where the output of one probabilistic calculation is
used in a second calculation, the first output is often digitized
(or, turned into categorical form) for the second calculation.
For example, if one has to calculate the chance of rain, and
then use that probability to estimate the chance that a party will
be canceled, they will treat the chance of rain in that second
calculation as either 0 or 1. In our missile launching scenario,
this ‘multi step’ explanation for categorization was considered
plausible, as the categorical response involved multiple steps
(one first had to normalize a 66.6:16.6 ratio to get to the 80:20
probability of who launched the missile before using this latter
value to update propensities). However, the present problem
does not involve multiple steps as the participants are directly
provided with the probabilities of, e.g., the cab being green and
the witness being correct. While these are admittedly estimated
from frequencies (9/10 and 4/5) this is not a true ‘first’ calculation

in the sense meant by those authors (e.g., if participants had to
first multiply two figures together to get the witness’s accuracy).
Therefore, despite this problem not fitting the ‘multi-step’ format,
we still saw large numbers of participants taking what appears
to be a similar categorical approach. This may suggest that this
phenomenon of digitization or categorization is a more general
strategy to simplify a difficult problem (with multiple steps being
just one source of difficulty). The current scenario unfortunately
presents a situation (with two diagnostically opposite pieces
of data) where such a strategy is at its most inappropriate
(unlike, e.g., if one of the figures was close to 50:50), and so
it is interesting that we still see such a strategy employed. It
may be valuable to determine in future work if individuals are
sensitive to the ‘appropriateness’ of this strategy when choosing
to employ it, by varying the figures in the problem. It should
also be noted that, even if participants are aware that it is not
an ideal approach to the scenario, they may feel that they lack
an alternative approach. Indeed, in Dewitt et al. (2020) we found
that 1/3 of categorical responders endorsed the statement ‘I
approximated that Y was entirely responsible for the launch in
order to make the problem simpler but know this is not strictly
accurate,’ suggesting some awareness that their approach was not
fully normative.

Reduce
‘Reduce’ responders appear to be more mixed than ‘Increase’
responders in their choices on the ‘assumption’ question. Around
half self-report as assuming the cab is green, but around a
quarter actually report they assumed the witness was correct, and
another quarter report ‘Neither/other.’ However, almost all of
those whose open text responses could be classified were coded as
‘Witness probably incorrect.’ Unlike ‘Increase’ responders, many
of these did cite the base rate as a reason for this belief, saying
either that the cab was very unlikely to be blue, or very likely to
be green. Others stated low confidence or disbelief in the witness’s
ability to make the judgment.

We think it is possible that there are two sub response
types here. First, would be the mirror image of the ‘Increase’
responders, who may be committing ‘base rate conservatism,’
neglecting the relevance or value of the witness’s claim, and
entirely focusing on the base rate and treating that as a certainty.
This would correspond to those 46.4% who self-reported as
assuming the cab was green.

Second would be those who dealt with the problem
normatively/probabilistically, integrating both variables together
(even if not fully mathematically). As the base rate is stronger
than the witness’s report (90% vs. 80%), this leads to the
conclusion that the witness is more likely to be incorrect than
correct. There is no equivalent process to this that would lead to
‘increase,’ which is another reason to suppose a single cognitive
process for that response. This process may correspond to those
28.6% who selected ‘Neither/other’ (i.e., didn’t ‘assume’ either
way). These participants may have, rather than neglecting one
piece of information or the other (either the base rate or the
witness information), have integrated both, concluding that the
witness is more likely to be incorrect but still maintaining
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a probabilistic representation of the problem, rather than
collapsing into assumption-based thinking.

No Change
Participants who made no change are also less obviously
homogenous than the ‘Increase’ responders. Interestingly, quite a
large proportion state that they assumed the witness was correct,
despite not increasing their estimate of the witness’s accuracy.
Similar to ‘Reduce’ responders, around a quarter self-reported
assuming ‘Neither/other.’

While the main qualitative code for ‘No change’ responders
was ‘Irrelevant,’ and only a few were coded as ‘Requires
uncertainty,’ it is still very possible that uncertainty is a major
reason for this response. These participants tended to be quite
unforthcoming in their reason for why they think the new
information is irrelevant, simply stating that they don’t see the
connection. The reason for the new information being irrelevant
could therefore very well be that we don’t yet know whether
the cab really is green or blue – they may consider uncertain
information irrelevant for updating the witness’s accuracy. This
would fit with the ‘missiles’ experiments mentioned above
(Dewitt et al., 2018, 2020) where ‘No change’ was also a dominant
response (about 1/3 both samples). In Dewitt et al. (2020),
when asked to pick from a set of statements as to which most
closely matched their reasoning, around two thirds of these
responders chose ‘The evidence states it’s uncertain who launched
the successful missile so you cannot change the proficiencies
based on uncertainty.’

Another reason to think that uncertainty may be an important
underlying reason for the ‘No change’ response is that half of
these participants, when told that the cab really was green at
the end of the experiment (and therefore that the witness was
incorrect), reduced their estimate of the witness’s accuracy. This
suggests that they do see the connection between the witness’s
report that the cab was blue and their accuracy, but only once they
know for certain that that report really is wrong. Indeed, while
under uncertainty, participants may prefer to err on the side of
avoiding updating incorrectly (Anderson, 2003).

However, a much larger percentage of ‘No change’ responders
than either ‘Reduce’ or ‘Increase’ continue to make no change
even when told that the witness was incorrect. A selection
of responses which may indicate these participants’ thought
processes can be seen in Table 5. There is a strong theme
here of these participants seeing the latest failure of the witness
as ‘fitting within’ the original accuracy estimate of 80%. In
some cases, they seem to suggest that this could be ‘the one’
they got wrong (out of 5), which seems obviously incorrect
given that previous information told them they already got
one wrong during the tests. It is difficult to tell therefore
whether this represents a simple misunderstanding of that, or
whether there is a deeper and more interesting process occurring.
Indeed, another interpretation is that these participants see one
additional data point (even if that data point is now certain) as
not enough to change a propensity based on five data points,
when that propensity allows for some failure (i.e., the 20%). These
participants may be seeing this latest claim as the first data point
in another ‘run’ of 5, and while this first one failed, the next
four may be successes, matching the original ‘80%.’ If true, there

therefore seems here to be an over-sanctification of the original
run of data, and furthermore, a similar tendency to ‘wait for more
data before updating’ as with the single no change response.

CONCLUSION

Overall, these findings seem to represent a general unwillingness
or inability by at least 3/4 of our participants to deal with
the problem probabilistically when answering second order
questions, either converting those variables into categorical
form (those ‘Increase’ and ‘Reduce’ responders who ‘assumed’
either way), or withholding judgment until they are certain
(‘No change’ responders). This appears to represent a major
departure from a Bayesian treatment of the problem, where
any information about the state of one variable (i.e., the
witness’s report), even if probabilistic, can be used to update
our estimates for other causally related variables (i.e., the
witness’s accuracy).

Generally therefore, in studying responses to this modified
taxi cab problem, we have corroborated findings in previous
work. The present work and the missiles work probe participants
reasoning in different ways, and the problems have slightly
different dynamics, and yet both point toward a substantial
majority of participants adopting a categorical representation
when updating propensities. Two approaches seem to stem
from this. Some participants refuse to update entirely, until
the state of the event is known. Other participants seem to
convert the event into a certainty one way or the other, and
update propensities based upon that assumption. While the
issue with the former approach is to make no use of valuable
information, the latter may be more damaging. We have already
spoken about the circularity of the ‘assume witness correct’
approach. Before even knowing whether the witness is correct,
the mere fact that the witness has shown themselves to be
fairly reliable in the past, seems to lead these individuals to
increase their trust in them following their claim, as if they
knew the witness was correct this time. This suggests that
once a person or system reaches a certain level of trust, they
may be able to make claims, and even without the truth of
these being determined, are not only trusted in the individual
situation (which may be reasonable), but even have trust in
them increased for the future on the assumption they probably
were correct this time. This is perhaps all the more troubling
given that the previous accuracy estimate in this experiment
was based upon a very small number of tests of the witness.
With such a small number of trials, it is highly possible that
the witness just got lucky on a couple of occasions. With only
two options to guess from, it is quite possible that they are at
chance level for judging cab colors under the given conditions.
Therefore, in combination, this seems to suggest that if an
individual gets lucky with a few accurate claims early on, and
they pass the ‘safe to assume they are correct’ threshold, their
early luck can take on a self-reinforcing dynamic, where trust
in them is further enhanced even without further verification of
their claims. This dynamic was also discussed in Dewitt et al.
(2020) in the context of prejudice toward an individual or group
of producing some negative outcome. Indeed, it may be that
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this ‘assumption’ approach lends any situation where we are
estimating a propensity (whether for a ‘good’ or ‘bad’ outcome)
a positive feedback dynamic similar to that seen in confirmation
bias/belief polarization literature.
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In physics, the analysis of the space representing states of physical systems often

takes the form of a layer-cake of increasingly rich structure. In this paper, we propose

an analogous hierarchy in the cognition of spacetime. Firstly, we explore the interplay

between the objective physical properties of space-time and the subjective compositional

modes of relational representations within the reasoner. Secondly, we discuss the

compositional structure within and between layers. The existing evidence in the available

literature is reviewed to end with some testable consequences of our proposal at the

brain and behavioral level.

Keywords: causal cognition, causal structure, causality, space-time, compositionality

1. INTRODUCTION

This article posits a hierarchy in the cognition of spacetime, analogous to a “layer cake” structure,
where layers correspond to different aspects of causality. The foundations of the layer-cake
structure are derived from physical accounts of causality, supported by a brief mathematical
background. The proposed hierarchy acknowledges that neither space nor time can be accessed
directly; we can only glean their structures by observing and interacting with objects among events.
Therefore, the natural question is how we establish coherent models of spacetime.

Toward an answer, the present paper proposes that cognitive models are hierarchical, where
lower layers encode structurally simpler data than higher ones, and the structure of spacetime
emerges from mutual constraints between layers.

We take the most primitive layers to be topological, which refers to whether objects and
events are “connected.” Topology does not distinguish between the types of the lines (e.g.,
curved or straight); only connectedness—however defined—and its absence, disconnectedness,
need be perceived. In the perception of spatial-temporal entities, connectivity and disconnectivity
compositionally characterize more complex features such as being “before,” “after,” “in front,”
“behind,” “having holes,” “discreteness,” etc.

A more complex, computationally dense and higher up layer might construct metric spaces and
Euclidean structure. An example of a constraint between topology and metrics that may arise in
some setting is “objects are connected if and only if they have zero distance from each other.”

Investigating the cognitive structures of space-time governing causal cognition is central to the
understanding of a general theory of intelligence in humans and in artificial beings. Nevertheless,
in psychology, research lags in providing a concise and systematic review for the correspondences
between empirical causal structures and spatial-temporal cognition.

Beyond that, the layer-cake organization of spatial-temporal structures are preserved among
other fields, such as physics, mathematics and also computer science, leading to a natural
hierarchical organization from topological space (less complex), to metric spaces (more complex).
In the following sections, we explore this toy model in the context of physical causal structures
(section 2), then provide psychological models (section 3) and continue with a discussion of its
implications in a wider context (section 4).
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2. LAYERS OF STRUCTURE IN PHYSICS

In Physics, the analysis of the spaces representing potential
states of physical systems often takes the form of a layer-
cake of increasingly rich structure. The layer-cake is not
merely a mathematical decomposition, but is informed by some
conceptual underpinning: such as how agents interact with the
subject matter, and more specifically, how the subject matter
enables/restricts this interaction, or how the subject matter
interacts with itself.

A first example is the analysis of relativistic space-time
structure as for example in Geroch (2013) and Ehlers et al.
(2012). Here, the levels arise from how agents interact with space-
time. In Geroch (2013), like in many other such approaches,
the first layer is called causal structure (Figure 1A). It arises
from the light-cones that specify which points of space-time
(in the future) the agent can affect, and which points of space-
time (in the past) the agent can be affected by. Mathematically,
these light-cones give rise to a partial order (P,≤), where for
a, b ∈ P we have a ≤ b if space-time point a can affect
space-time point b. Often this partial order is taken as a starting
point for the development of new physics, for example, when
studying quantum causality (Fritz, 2014; Henson et al., 2014),
and even when crafting theories of quantum gravity (Bombelli
et al., 1987; Sorkin, 2003). A second layer arises from the notion
of a clock (Figure 1A), which measures the progress of time and
hence provides a temporal metric structure atop the partial order
of events. Next comes the full space-time metric, followed by
dynamical data, among others.

Moving from relativity to quantum theory (QT), following
John von Neumann (von Neumann, 1932; Birkhoff and von
Neumann, 1936), the first layer is again a partial order,

FIGURE 1 | Layer-cake structure. (A) The layer structure of Relativistic Space-Time. (B) The layer structure of Causal process theories and the hypothesized layer

Causal structure for Cognition.

where ordering encodes entailment with respect to agents
observing properties of quantum systems, that is, a ≤

b if observation of property a guarantees observation of
property b. The following layers include conceptually informed
universal algebraic equational structure (Piron, 1976). Note that
also the entailment relationships can be viewed as a form
of informational/epistemic causal structure, as it involves a
guaranteed observation given a premise. This branch of quantum
theory has mostly vanished from current activity within physics,
but has been adopted within psychology in the field of quantum
cognition (Busemeyer and Bruza, 2012).

Much more recently, in the category-theoretical analysis
of quantum theory (Abramsky and Coecke, 2004; Coecke
and Duncan, 2011; Coecke and Kissinger, 2017), rather than
the interaction of agents with the subject matter, the lower
levels of the layer-cake are informed by how the subject
matter interacts with itself. This lowest level is fundamentally
topological, and more specifically, what topologists call low-
dimensional topology (in fact, as low-dimensional as its gets).
The structure only expresses what is connected and what is
not, without bringing any other geometric notions into play. In
this approach, explicit graphical wiring at once formulates and
represents connectivity, so it suffices to understand the concept
of “wire” to understand this lowest layer of quantum theory
(Figure 1B). This, in fact, leads to an alternative justification
for having this particular layer as the basis: wires are, a priori,
conceptually primitive for human reasoners (Coecke, 2005, for
the indication from the title, namely “Kindergarten quantum
mechanics”). An educational experiment is expected to take place
during 2020 (see Coecke, 2009), aiming to show that quantum
theory presented in topological terms would enable high-school
students not only pass a graduate-level quantum theory exam,
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but even outperform university students who are taught the
conventional presentation.

Within the topological approach, the notion of causality has
been proven to be equivalent to the relativistic notion of causality
(Kissinger et al., 2017). Thus causality can be formulated higher
up in the layer-cake (Coecke and Kissinger, 2017), synthesized
and restrained by more primitive data (Figure 1B). In fact, there
are multiple presentations on the move from lower topological
level to full-blown quantum-theory, cf. Coecke and Kissinger,
2017; Selby et al., 2018, but the topological level is always the
beating heart of this approach. As it turns out, natural language
is governed by exactly the same topological structures, the reason
being that the structure of grammar itself (Lambek, 2008), exactly
matches the topological structures of QT (Coecke, 2013, 2017).
Furthermore, even more general cognitive models appealing to
a wide range of human senses have been shown to be governed
by the same structures (Bolt et al., 2018). The starting point here
were Gärdenfors (2014)’s conceptual spaces, which aim to closely
resemble human senses, and the interaction of these senses is
again governed by basic topological structures.

3. LAYERS OF STRUCTURE IN COGNITION

According to previous considerations, cognition may mirror
the physical structures of spacetime, or the physical structures
suggested by human theories may only reflect a basic cognitive
structure of human thinking1. Independently of these two
options, the layer-cake structures given by physical theories
seem to be present in our developmental understanding of
spatial and spatial-temporal structure (section 3.2). Therefore
in this section, a layer-cake model is discussed as hierarchical
levels of cognitive complexity, inheriting, to some extent, all the
mathematical properties coming from previous developments in
physics DisCoCat/InConcSpec (Coecke et al., 2010; Bolt et al.,
2018), without having to develop a new one.

The layer-cake hypothesis addresses a gap in the ongoing
neurocognitive debate concerning the—as Bellmund et al. (2018)
argue, central—role of spatial-temporal cognition, topology, and
metrics in high-level cognition. Direct correlates of euclidean
space and time have been identified in neural representation
(Moser et al., 2015; Tsao et al., 2018). However, as Buzsáki
and Llinás (2017) and Buzsáki and Tingley (2018) observe,
the reasoner only receives information concerning distance and
duration, reflected in a succession of neuronal events that may
not correlate with any space-time representation. This spurs a
search for model-building and inferential explanations of how
direct neural correlates to space and time arise from sense
data, which the layer-cake hypothesis may potentially provide a
framework for. Bottini and Doeller (2020) suggest that any such
framework goes toward explaining a general propensity of the
mind to create low-dimensional internal models. Promisingly,
Haun and Tononi (2019) have derived mathematical models
demonstrating that brain areas with grid-like connectivity are
sufficient to entertain the topological and causal structures

1That issue together with the possible neural realization will be discussed

elsewhere.

necessary for subjective spatial experience. So the layer-cake
hypothesis, in concord with all parties of the debate, could
serve as a missing link between the mechanical, theoretical, and
phenomenal aspects of spatial-temporal cognition.

3.1. Topological Layers of Cognition
The model presented here is a general framework to develop
specific implementations according to requirement. The main
ingredients are the division/synthesis of causal structure in
terms of more primitive structure, and organizing these
composite structures into layers corresponding to constraints
and affordances of causal relations, and the developmental order.

We propose that the first layer compounds Topological
relations, and consequently, that comprehension of causal
relations across space and time prioritizes topological structures.
It implies that early or primitive forms of causal cognition and
specifically spatial cognition would not be highly conceptual,
only involving simple notions of proximity, separation, order,
enclosure, connectivity, and boundedness. As discussed later,
such conceptualization may be through non-symbolic category
formation where subjects have restricted access to verbal codes:
for example, fundamental ideas about space are developed in
infancy by motor and perceptual mechanisms and rely strongly
upon sensory/perceptual data. Diagrammatically, two objects A
and B, are topologically related if there is an event that connects
them, which is defined by the relation R(A,B). These connections
are usually described by wires and objects by nodes. Under this
notation, wires are relational events and circles are static objects
(Figure 2).

The relation events R(A,B) and S(C,D) connecting the objects
of cognition described by A, B, C, and D correspond to
fundamental and basic notions, that eventually lead to the
understanding of spatial relations. Later, other types of relation
emerge, such as the effects between objects, which correspond
to object interactions across primitive notions of time. These
interactions define processes notated by boxes, such as f.
More specifically, such interactions may correspond to a causal
processes according to a partial order relation (Figure 2A).
In other words, the object A and B become causally related
systems under the partial order, written A ≤ B, meaning in the
abstract that information flows unidirectionally from A to B, thus
defining a second layer of structure upon systems. Notably, causal
relations defined in this way among objects are not necessarily
unique, as exemplified by the case of C and D. Following the
notation from previous works (Coecke and Kissinger, 2017), now
wires become objects/systems and boxes the causal processes
among them (Figure 2A).

Empirically, we abduct events from observations of relational
spatial properties. In contrast, processes may encompass
unobservable intervening dynamical factors (e.g., forces), which
need to be constructed or reconstructed in further levels of
complexity: processes correspond to abstract components of
mechanisms. Therefore, the second layer would correspond
to the representational/relations space associated with causal
interactions, governed by the partial order relations mentioned
above. We hypothesize that the gradual emergence of concepts,
syntax, grammar would be associated with such higher layers, as
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FIGURE 2 | Layer structure for cognition. (A) Topological Structure is relational and increase in complexity as we rise through the layers. In the topological layer, circles

represent objects and wires topological relations between objects. Then, causal structure, in the form of process theories is build on top of topological relations from

the lower layer. In this second pre-order or basic causal layer, objects become represented by wires and causal relations by processes. Finally, the metric layer adds

metric structure, which elaborates causal structure in a suitable, spatial and temporal setting. This condition is given by the black dots in the figure. (B) This layer

division generates a hierarchical structure, where higher layers are structurally constrained by the data of lower layers as well as they can influence part of the

lower configuration.

these permit representation and reasoning with counterfactual
and imaginary phenomena not immediately constrained by past
experience and direct perception.

A consequence of this division is that constraint-satisfying
structure on any layer, in turn, places constraints on how further
layers are defined. Viewing foundational layers as abstract schema
or cognitive resources (and their neural realizations) shapes the
modes of access to that structure, constraining how relations take
place in that schema. For instance, when we take processes in
spacetime to bemutually exclusive, we can begin to fill in complex
narratives. If we know that a battle and a wedding took place
in the same valley, mutual exclusivity of processes and linear
temporal ordering allow us to raise a fruitfully constrained set
of alternative models: either the battle came before the wedding,
or vice versa.

Hence, any layer may be viewed as an abstract space
upon a lower layer, the higher further specifying instances of
structure compatible with those of the lower (Figure 2B). In
Figure 2A, the higher layer carries the particular refinement
of metric structure. The precise nature of cognitive metric
structures is a question for future research, and not our chief
concern here. No matter the metric, according to the layer-cake
model, representation and reasoning in metric spaces is more
computationally intensive than in topological spaces, because
higher layers carry a greater informational capacity than lower
ones, and carrymore constraints and affordances for the reasoner
to navigate.

These emergent hierarchies are subjective to the reasoner,
and not an objective feature of reality: hence, we can speak
distinctly of perceived vs. objective causality. In other words,
while the seemly real characteristics of spacetime affect how
we conceptualize spacetime, our conceptualization in turn
dynamically constrains and directs further conceptualization.

Finally, a word of caution when interpreting the topological
hypothesis as stated above is that different conceptions of
causality and topology exist, as these are not uniquely defined
concepts across disciplines, and not even in pure mathematics,
where a field like topology has several very different branches of
study that are qualitatively different. For example, taking path-
connectedness as the primitive—where one identifies possible
paths that one can take between points in space—will cause one
to identify all points on the surface of a table as “essentially
the same,” whereas homology theory—where one identifies the
characterizing holes of a structure—will cause one to treat
drinking mugs and donuts as “essentially the same.” The layer-
cake model accommodates any and all particular formulations of
topology, as it is synthetic: the fundamental ingredient of defining
higher structures atop lower ones remains in play.

3.2. Supporting Evidence for the
Layer-Cake Structure
Developmental studies are in accord with the layer-cake
hypothesis. Evidence supports the notion that topological
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properties, representing the earliest/primitive forms of distance-
duration relations, are available initially through a nonverbal
category formation, even where young children have restricted
access to verbal codes (Dündar-Coecke et al., 2020). Using
linguistic and non-linguistic tasks (Piaget, 1959) (see also
Piaget and Inhelder, 1971) pioneered the argument that infants’
perceptual space is qualitatively different from that of adults. At
the beginning, fundamental spatial concepts are not Euclidean,
but topological, which involves some concepts such as proximity,
separation, order, enclosure, long before it becomes metric. This
suggests that the infant’s space must be quite fluid, not objective,
nor occupied by rigid shapes or sizes.

Studies of adult cognition also acknowledge this fluency
in cognitive structures. In Biederman and Cooper (1991) and
Biederman and Cooper (1992) study, although participants
were presented with contour-deleted pictures, they completed
perceptual stimuli in the absence of size, location, or orientation
information, highlighting humans’ ability to recognize objects
independent of Euclidian spatial features in a more abstract
fashion. While these results suggest a potential primacy of
topology over more complex data, research establishing cognitive
mechanisms involved in conceptualization of topological and
metric properties also provides consistent evidence that people
cannot act within, or orient themselves to their environments
unless provided spatial and temporal information constituting
their physical reality (Han et al., 1999; Müsseler, 1999; Chen,
2005).

Topology’s fundamental role in understanding space is
supported by theoretical grounds in neuroscience: Marr (1982)
posits a sophisticated motion correspondence process in the
perception of an entity through time, simple topological
transformations also enable observation of apparent motion
(Chen, 1982, 2005; Ogmen and Herzog, 2010). Rock and
Palmer (1990) stress the law of “connectedness” in early
perceptual analysis, and the topological perception hypothesis
suggests that shape-changing transformations experienced in
the phenomenal world rely on topological transformations, for
example, projected in retina with the aid of three kinds of
topological properties: connectivity, the number of holes, and the
inside/outside relationship.

Another strand of work emphasizes the role of selective
attention as a strategy to bias continually registerable spatial-
temporal attributes, and hence increase control in processing
capacities through top-down neural connections (Kastner and
Ungerleider, 2000). In fact, neuroimaging studies have shown
that a number of mechanisms can contribute to attentional
orientation to moving targets (Doherty et al., 2005; Shimi
et al., 2014), with a prevailing view that perceptual organization
(topological) likely to occur before feature analysis (metrics).
Chen (1982) reports a series of experimental findings showing
the precedence of topological feature detection in the visual
system, further supporting the view that topological features
form conceptual foundations. Pomerantz’s configural superiority
effect supports this hypothesis (Pomerantz, 1981; see also Todd,
1998), by adding that features can be observed even in response
to stimuli that are not fully configural, as configural information

is already present at early stages of visual hierarchy (see also Fox
et al., 2017, for neural evidence).

Limited knowledge in furthering these discussions urges us
to swing the pendulum back to the infant studies, which are
highly informative regarding the detection of primitive forms of
spatial-temporal properties. Infants appear to show sensitivity to
moving objects along “continuous” paths, and also pay attention
to interactions only if they are causally in contact (see Leslie,
1984; Leslie and Keeble, 1987; Spelke et al., 1992, 1995a; Spelke,
1994, see also Darcheville et al., 1993, for how infants learn about
space as a function of the temporal intervals). However, they seem
to find it difficult to relate objects based on non-causal qualities,
such as colors, forms, edges, or surfaces (Kellman and Spelke,
1983). Instead, they show a tendency to rely on simple forms
of spatial-temporal information to distinguish different types of
objects and events (see Slater et al., 1994; Spelke et al., 1995b;
Needham et al., 1997; Wilcox and Baillargeon, 1998; see also
Kaufman et al., 2003, for evidence how spatial-temporal stimuli
are processed by different visual streams). These studies propose
consistent evidence for the early sensitivity to topological spatial-
temporal features such as continuity and connectivity in causal
contexts. Although maturation in use of these representations
are accompanied by conceptual development, humans are
multimodal reasoners; most implicit spatial-temporal qualities
are more akin to sensations and do not necessarily have to
be available to communication (Tolmie and Dündar-Coecke,
2020). This may explain the consistency between adult and
infant data.

The early fundamental ideas about space-time develop largely
by embodied motor and sensory activities. Young children
experience the most primitive spatial-temporal properties via
observing, touching, and moving their/others’ bodies. The
development of symbolic cognitive resources, such as memory
and language, enables spatial-temporal properties to become
more representational, allowing children to mentally evoke
objects in their physical absence. Understanding of or paying
attention to metrics and Euclidean structures emerge as a
function of the development of these internal and external
resources and models. For instance, a child learns how to stack
the smaller object into the big ones, or improve projective and
perspective taking skills gradually. Contextual consistency of
spatial models appears to develop later than spatial models of
individual closed objects. For example, at early stages, children
are likely draw a human being bigger than e.g., a house in size,
while the orientation of both human and house may/not respect
gravity, and relative placement of appendages and windows all
correct for both human and house. The primary context in which
size consistency is obtainable is the embodied motor-sensory
paradigm: at the same physical distance from a human and a
house, the human image may have a smaller angle of subtension
in the infant’s field of vision.

Therefore, developmental literature underlines the myriad
ways in which spatial-temporal properties are experienced and
employed in service of causal cognition, in accord with the
layer-cake hypothesis where causal relations are predicated
upon spatial-temporal foundation layers. The most studied
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spatial-temporal attributes in causal cognition literature are
properties high in the layer-cake: distance, duration, velocity,
and spatial-temporal incongruences (Bullock and Gelman, 1979;
Siegler and Richards, 1979; Wilkening, 1981; Bullock et al., 1982;
Wilkening and Cacchione, 2011). These studies sample either
children or adults, and a comparison between these and early
infancy studies implies that the more children/humans are able
to utilize spatial-temporal properties in Euclidian fashion, the
better they can acknowledge causal relations. Although the grasp
of causal relations requires the organization of connections across
space and time in topological sense and this is critical for visual
function at any age, the genuine understanding of cause-effect
relations matures when we define the richer causal geography
of spacetime.

4. CONCLUSIONS AND FUTURE
RESEARCH

The layer-cake hypothesis provides a meta-model of spacetime
cognition. The main argument of this conceptual model is
that spatial and temporal qualities increase in their complexity
across mutually constraining layers of description, ranging from
the topological to metric, temporal, and causal, for models of
physical or virtual/abstract spaces. It is the layer-cake taken as
a whole that can be considered the full model. The hierarchical
organization of layers is a novel form to study this complexity
of the spatial-temporal relations in both physics and psychology,
providing rich enough model to capture not only the interaction
of multiple dimensions of abstractions, but the internal dynamics
of constructing cognitive models from empirical data, fed by the
reciprocal interactions between perception, action, and reasoning
about space, time and causality.

The layer-cake hypothesis is adaptable but crucially for
science, defeasible, as it must always be instantiated to
provide concrete models. These instantiations compatibly
formalize a broad range of current approaches to cognition
of causality across space and time. Previously, Newcombe
and Shipley (2015) and Uttal et al. (2013) studies underlined
how the intrinsic/extrinsic and static/dynamic relations between
entities inform us about the characteristics of spatial elements,
which may be modeled as graphical calculi on suitably
encoded layers of a layer-cake. Developmental origins of
thinking about past, current, future situations (Friedman,
2003; McCormack and Hoerl, 2005), either in segmented,
speeded, or imagined protocols (Dündar-Coecke et al., 2020)
may be formalized in the physicist’s language of logics upon
partial orders on events, again amenable to graphical and
layer-cake methods of representation and reasoning. Layer-
cake models are well-suited to novel developmental studies
in calibration and approximation of spatial-temporal attributes
on virtual displays (Dündar-Coecke, 2019), where the spatial
environment is distanced from the young reasoner by a layer
of abstract representation, as layer-cakes have tunable levels of
abstraction built-in.

On the theoretical side, our perspective aims to generate
a new interdisciplinary semantics for spatio-temporal cognitio

interwoven with theoretical physics. In conjunction with
experimental phases, if the layer-cake structure deduced from
theoretical physics is shared or preserved in the structure of
spatio-temporal cognition, we can shed light on those structures
using recent mathematical tools that deal with physical space-
time and causality. Throughout, we expect to use axiomatic
process-theoretical tools which are currently applied for causal
relationships in physics (Coecke and Kissinger, 2017; Kissinger
and Uijlen, 2017). This approach will allow us to describe the
nature of spatio-temporal experience in the form of interacting
processes, following similar strategies already implemented for
language and cognition (Coecke et al., 2010, 2018; Coecke, 2013;
Bolt et al., 2018).

On the experimental side, one can ask about the neural
and behavioral implications of our axiomatic models. For
example, if we establish the presence of distinct but cohesive
competencies for different aspects of spatial cognition and
experience, a subsequent question is to ask where does the layer-
cake find expression? The question of whether this paradigm
finds implementational reality inside brains (as suggested by
Signorelli, 2018; Signorelli and Meling, 2020) and the discussion
of the feasibility of layer-cake models in terms of neural structure
will form part of further extensions to this program. More
broadly, we may unlock spaces of questions for developmental
and evolutionary biology, to further our understanding of how
agents arise in space-time and vice versa.
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In reasoning about situations in which several causes lead to a common effect, a much
studied and yet still not well-understood inference is that of explaining away. Assuming
that the causes contribute independently to the effect, if we learn that the effect is
present, then this increases the probability that one or more of the causes are present.
But if we then learn that a particular cause is present, this cause “explains” the presence
of the effect, and the probabilities of the other causes decrease again. People tend to
show this explaining away effect in their probability judgments, but to a lesser extent than
predicted by the causal structure of the situation. We investigated further the conditions
under which explaining away is observed. Participants estimated the probability of a
cause, given the presence or the absence of another cause, for situations in which
the effect was either present or absent, and the evidence about the effect was either
certain or uncertain. Responses were compared to predictions obtained using Bayesian
network modeling as well as a sensitivity analysis of the size of normative changes
in probability under different information conditions. One of the conditions investigated:
when there is certainty that the effect is absent, is special because under the assumption
of causal independence, the probabilities of the causes remain invariant, that is, there
is no normative explaining away or augmentation. This condition is therefore especially
diagnostic of people’s reasoning about common-effect structures. The findings suggest
that, alongside earlier explanations brought forward in the literature, explaining away
may occur less often when the causes are assumed to interact in their contribution to
the effect, and when the normative size of the probability change is not large enough
to be subjectively meaningful. Further, people struggled when given evidence against
negative evidence, resembling a double negation effect.

Keywords: intercausal reasoning, explaining away, noisy-or, uncertain evidence, negative evidence

INTRODUCTION

Imagine you are on a tropical island in which there are three types of mosquito (Reb, Mar, and
Murb) that carry a disease, called Ling fever. For each mosquito type, there is a risk of being bitten
by an infected mosquito, and a risk of contracting the disease when bitten. One day during a routine
health check, it turns out that you have Ling fever, prompting you to increase your degree of belief
that you were bitten by an infected mosquito. Further tests show that you were bitten by an infected
mosquito of the Reb type. How does this additional information affect your degree of belief that you
were bitten by an infected mosquito of the Mar type? In this situation, the presence of a bite from
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Reb “explains away” the finding of Ling fever, suggesting
one can reduce one’s degree of belief in a bite from Mar
(Rehder and Waldmann, 2017).

Now imagine the further test showed instead that you were
not bitten by an infected mosquito of the Reb type. How does this
additional piece of information affect your degree of belief that
you were bitten by an infected mosquito of the Mar type? In the
absence of a bite from Reb, the finding of Ling fever is still in need
of an explanation, suggesting one can “augment” one’s degree of
belief in a bite from Mar.

The above reasoning is called intercausal because it involves
inferring the likelihood that one cause is present or absent, based
on knowledge about one or more further causes. People have been
found to show explaining away and augmenting in intercausal
reasoning tasks, though not always reliably. In particular the
size of the effects has sometimes been smaller than predicted
(Morris and Larrick, 1995; Ali et al., 2011; Rottman and Hastie,
2014; Liefgreen et al., 2018; Tešić et al., 2020). The present
paper aims to investigate further the conditions under which
these inferences are drawn. It explores to what extent people
change their intuitions about augmenting and explaining away as
a function of (a) whether the evidence about the effect is positive
or negative, and (b) whether this evidence is certain or uncertain.
But before going into more detail about these two factors, let
us turn briefly to the general framework within which changes
in people’s degrees of belief like those of explaining away and
augmentation can be represented.

Changes in degrees of belief over time as new information
about a situation becomes available can be modeled in a
Bayesian network (BN) (Pearl, 1988, 2000). In a BN, the
relevant events are represented as variables and arrows represent
(non)independence relations connecting the variables, forming
a directed acyclic graph (DAG). Associated with each variable
is a conditional probability table (CPT), which specifies the
probability of each value that the variable can take, as a function
of each of the possible values of the variables on which it directly
depends (i.e., is linked to by arrows). In this way, BNs allow the
graphical representation and variation of complex probabilistic
relations between events, making transparent which variables
are positively or negatively related to one another, and which
are independent, and supporting the computation of dynamic
changes to beliefs as evidence comes in. This probabilistic,
Bayesian approach to causal reasoning provides an alternative
to earlier approaches based on classical logic (Fernbach and
Erb, 2013; Oaksford and Chater, 2017; Over, 2017), possible
worlds semantics (Lewis, 1973; Stalnaker, 1981; Briggs, 2012), and
theories of associative learning (Waldmann and Holyoak, 1992;
Sloman and Lagnado, 2005, 2015; Rehder, 2014).

A BN for our mosquito example has three (marginally
independent) causes (a bite of an infected mosquito of type Reb,
Mar, or Murb), and one common effect (Ling fever). Such a
structure is shown in Figure 1. The CPT for the effect would then
contain the probability of Ling fever for each combination of the
truth or falsity of each of the three causes, yielding eight distinct
entries like those shown. People may not have clear intuitions
about the probability of each of the eight entries, but fewer
parameters need to be specified if one can draw on a more general

FIGURE 1 | Causal structure of the scenario. The upper conditional
probability table (CPT) displays the probability of fever given the presence or
absence of each of the three causes. The lower CPT shows the probability of
a rash given the presence or absence of fever. These CPTs follow from the
priors and causal power values shown in the graph, together with a leakage
parameter of 0 for Fever, and of 0.1 for Rash.

function specifying how the impact of the causes combines to
bring about (or prevent) the effect (c.f. Fenton et al., 2007).

A typical function for common-effect structures like that of
the mosquito example is the noisy-or. The noisy-or specifies
the probability of the effect given a disjunction of independent
causes. It is a generalization of the Boolean OR to reasoning from
uncertain premises. The basic idea is that the probability of a
disjunction is equal to 1 minus the probability of the negation
of the disjunction, so that P(effect| A or B) = 1 – P(effect| not-A
& not-B). Formally, let xi = x1,..,xn be n variables representing
the causes of an effect y. Let vi be a weight factor for each cause,
specifying the conditional probability of the effect given cause i in
the absence of the other causes (i.e., the causal power of cause i,
Cheng, 1997). Finally, let λ be a leakage parameter specifying the
probability that the effect occurs when all the causes included in
the model are absent. The leakage parameter is like a residual
category covering the impact of any causes that have not been
explicitly specified. Then the probability of the effect is given by:(

y = 1|x1, . . . , xn
)
= 1− (1− λ)

n∏
i=1

(1− vi)

where
(
y = 1|x1, . . . , xn

)
stands for the probability of the effect

under the noisy-or,
n∏

i=1
(1− vi) calculates the probability of the

effect given that all causes are absent, (1− λ) specifies that
also all not explicitly represented causes are absent, and finally,
1− takes the complement to arrive at the probability of the
effect given that one or more causes are present, that is the
probability of the noisy-or. When all weight parameters vi are 1
and the leakage parameter λ is 0, then the noisy-or reduces
to the Boolean OR.

The definition of the noisy-or function implies that the causes
are marginally independent (such that in the absence of further
information, the presence or absence of one cause does not affect
the probability that other causes are present or absent) and it
implies that the causes contribute independently to the effect.
This means that the causal power vi of one cause does not change
with the presence or absence of other causes. In the mosquito
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example, one would say that the probability of contracting Ling
fever from a bite of Mar remains the same whether or not we have
also been bitten by Reb.

The noisy-or is the most widely used function for specifying
the CPT entries in common effect structures, and experimental
materials in causal reasoning research are often constructed with
the aim of instantiating its independence assumptions. When
these assumptions are met for a given situation or scenario,
then it is possible to use the noisy-or to define the normative
probability of the effect under different values of the causes.
Sometimes the independence assumptions of the noisy-or have
also been proposed to be descriptive of people’s reasoning with
common effect structures in general (Griffiths and Tenenbaum,
2009; Holyoak and Cheng, 2011), and findings of responses
deviating from these assumptions have been explained as arising
from people adding further information to the scenario that
changes the original common effect structure into a different one
(Mayrhofer et al., 2010; Rehder, 2014). In line with the default
use of the noisy-or to model common effect structures, there is
evidence that people find independent, additive relations between
variables easier to process than interactive relations (Juslin et al.,
2009; Cruz and Oberauer, 2014; Rehder and Waldmann, 2017).
However, the default use of the noisy-or has also recently been
criticized, partly because of concerns that it might not always be
a realistic representation of causal relations in the world (Fenton
et al., 2019; Noguchi et al., 2019). There can be cases in which
the causes do not act independently but instead enhance or
inhibit each other’s contribution to the effect, and people may
sometimes take account of such departures from independence
in their reasoning.

This paper assesses predictions derived from the
independence assumptions of the noisy-or under different
conditions, and compares them to those expected under the
assumption of enhancement. Inhibitory causal interaction was
not considered here, but would also be worth investigating
further. In the mosquito example, independent contributions
of the causes to the effect can be thought of as establishing
a linear relation between the number of bites from infected
mosquitos and the probability of Ling fever. Causes that enhance
each other’s contribution to the effect could be thought of as
establishing an exponential relation between number of bites
and probability of Ling fever, as if once arriving in the hosts’
body, the Ling bacteria coordinated their behavior to make the
disease break out.

Below we discuss the predictions for independence in relation
to the four conditions that result from crossing (a) whether the
evidence for the effect is positive or negative, and (b) whether
this evidence is certain or uncertain – and discuss how these
predictions would change under the assumption of enhancement.

Condition 1: Certain Positive Evidence
Suppose we learn that the effect is present (we have Ling fever),
and so increase our degree of belief in the causes (a bite from
an infected mosquito of any type). If we then go on to learn
that a particular cause A (e.g., a bite from Reb) is present, this
“explains away” the presence of the effect. Under the noisy-or it
is then normative to decrease again our degree of belief in the

other causes (Mar and Murb). In the limit, when P(effect|cause
A) = 1, cause A “explains” the presence of the effect entirely, and
the probability of the other causes decreases all the way back to
its baseline – the value it had before receiving the information
that the effect was present. Suppose we instead go on to learn that
cause A is absent. Then we are still in need of an explanation
for the effect, and it is normative to augment, or increase, the
probability of B. Hence under the independence assumption of
the noisy-or, Condition 1 leads to the prediction of explaining
away of a cause B when another cause A is present, and it leads to
augmentation of a cause B when another cause A is absent.

How can the causes affect one another in this way under the
noisy-or, even though they are marginally independent? When
causes are marginally independent, then in the absence of further
information, knowing that one cause is present or absent does
not change the probability that another cause is present or
absent. But once we learn that the effect has occurred, the causes
become conditionally dependent on the presence of the effect.
The effect establishes an indirect connection between the causes,
making information about the presence or absence of one cause
informative about the presence or absence of another.

Condition 2: Uncertain Positive Evidence
Suppose we do not know for sure that the effect (Ling fever) is
present, but only have some uncertain indirect evidence for the
effect because a consequence of the effect (e.g., a rash) is present.
Then this evidence again renders the causes dependent, and it
is normative under the noisy-or to show the same pattern of
explaining away and augmentation as in Condition 1. The impact
of uncertainty in Condition 2 is merely to decrease the size of the
normative changes in probability.

Condition 3: Certain Negative Evidence
Suppose we come to know for certain that the effect is absent (we
do not have Ling fever). Then it is normative to decrease our
degree of belief in the causes. However, under the noisy-or the
causes remain independent in this case. Additional information
showing that one cause is present or absent does not undo
our certainty about the absence of the effect, and so will not
alter our degree of belief in the presence or absence of the
other causes. Hence there is normatively no explaining away or
augmentation under the noisy-or in Condition 3. It was precisely
this concern about noisy-or that was addressed in Fenton et al.
(2019) and Noguchi et al. (2019).

Condition 4: Uncertain Negative
Evidence
Finally, suppose the effect (Ling fever) is not known for certain
to be absent, but there is only some uncertain indirect evidence
for this because its consequence (rash) is absent. Then the
probability of the causes decreases, albeit by a smaller amount
than when knowing the effect to be absent with certainty.
However, because of the lingering uncertainty about whether
the effect is really absent, the causes become dependent under
the noisy-or. Additional information showing that one of the
causes is present or absent can reduce or increase our uncertainty
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about the absence of the effect, and as a result, becomes
informative about the probability that another cause is present
or absent. Specifically, the presence of a particular cause A
increases the probability of the effect, partly canceling out the
reduction in the probability of the effect brought about by
the absence of its consequence. As a result, the probability
of an alternative cause B increases. Conversely, when A is
absent, this decreases the probability of the effect, adding to
the reduction in the probability of the effect brought about by
the absence of its consequence. As a result, the probability of B
decreases further. This pattern of probability changes goes in the
opposite direction to that of explaining away and augmentation
of Conditions 1 and 2.

What would follow for these four conditions if the causes did
not contribute independently to the effect, but instead enhanced
each other’s impact? The previously described mechanisms of
probability change would still be in place, but they would be
overlaid by additional changes in probabilities resulting from
the positive correlation between the causes. Which changes in
probability prevail will depend on the relative weight of the prior
probabilities and effectiveness of the causes on the one hand, and
the correlation between the causes on the other.

When a positive correlation between causes is small relative
to their prior probabilities and effectiveness to bring about the
effect, then the direction of probability changes will be the same
as for the noisy-or, although augmentation effects will be larger
and explaining away effects smaller. When the prior probabilities
and effectiveness of the causes are small relative to the correlation
between the causes, then the impact of the correlation can
override the effects predicted under independence, potentially
flipping the direction of probability changes. For example, for
the structure of Figure 1, if we know we have Ling fever and
were bitten by a Reb type mosquito, then this decreases the
chances that we were also bitten by a Mar type mosquito under
independence. However, in a situation in which Reb and Mar very
rarely bite, but when they do, they almost always bite together,
then learning we were bitten by Reb might instead increase the
chances that we were also bitten by Mar.

The current study did not explicitly manipulate the correlation
between causes, and instead went a step back to first assess
whether people’s responses followed a pattern consistent with
presence or absence of a correlation when this question was
left open. However, the priors and effectiveness values used
in this study, together with the absence of information about
a potential correlation between causes, suggest it is unlikely
that participants will assume a correlation between causes high
enough to override the impact of priors and effectiveness
information. Therefore, under the assumption of enhancement
we expect explaining away to be lower in Conditions 1 and
2 than it would be under independence, but we do not
expect response patterns in these conditions to flip qualitatively
into augmentation. Similarly, in Condition 4 we expect the
assumption of enhancement to increase the size of augmentation
effects and decrease the size of explaining away effects relative
to their values under independence, but we do not expect
a qualitative flip from explaining away to augmentation or
vice versa.

In contrast, Condition 3 does involve a qualitative difference
in the predicted response patterns under assumptions of
independence and of enhancement. When the effect is known
to be absent with certainty, there is no explaining away
or augmentation under independence. In contrast, under
enhancement we expect a similar pattern of explaining away
and augmentation to that predicted under the noisy-or for
conditions 1 and 2, albeit again attenuated for explaining
away and accentuated for augmentation. Condition 3 therefore
provides a unique opportunity to differentiate whether people are
interpreting causes as independent or correlated.

The above predictions are based on general principles of
probability theory in a Bayesian network framework, as outlined
for example in Wellman and Henrion (1993) or Morris and
Larrick (1995), along with Bayesian network modeling to
obtain more precise quantitative predictions for different model
parameterizations (see discussion section). Table 1 summarizes
the predictions under the noisy-or for the four conditions
described above.

In contrast to the extensive empirical work using noisy-or
structures with positive certain evidence, there has been very little
research about situations involving negative evidence, uncertain
evidence, or common-effect structures that do not conform to the
independence assumption of the noisy-or but instead have causes
that are correlated or interact (Wellman and Henrion, 1993;
Morris and Larrick, 1995; Rehder, 2014; c.f. Rottman and Hastie,
2014). For example, in one group of experiments (Rehder, 2014)
participants were asked to assume that two causes contributed
independently to a common effect, using relatively abstract
scenarios with no information about the marginal probability of
each cause. Participants were asked to compare the probability
of a cause in two situations that differed in terms of whether
the other cause and the effect were present, absent, or their state
was unknown. When the effect was absent, participants tended
to judge a given cause as equally likely regardless of the value of
the other cause, as predicted by the noisy-or (case 3 above). But
they also tended to judge the cause as equally likely in situations
in which one would have predicted explaining away to occur.
The authors explained this pattern, which is not predicted by
any theory, as an aggregate of a group of participants following
the predictions of the noisy-or, and another group establishing
not causal but associative links between the variables involved.
Associative links differ from causal links by being bidirectional
rather than unidirectional. However, further research is needed

TABLE 1 | Predictions under the noisy-or for the direction of probability change of
a cause B after learning that another cause A is present or absent, given four
different types of evidence for the effect.

A present A absent

(1) Certain positive evidence B decreases B increases

(2) Uncertain positive evidence B decreases slightly B increases slightly

(3) Certain negative evidence B remains invariant B remains invariant

(4) Uncertain negative evidence B increases slightly B decreases slightly

See the general discussion for quantitative predictions for different
parameterizations.
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to explore alternative interpretations of these findings (see Tešić
et al., 2020). Earlier studies on people’s sensitivity to the impact
of interactions between causes when these are made explicit
in the instructions (Morris and Larrick, 1995) suggest that
people’s intuitions do capture the direction of the changes in
probability that follow from such interactions. But the extent
of such intuitions, and the contexts in which they arise, are as
yet underexplored.

This paper presents an experiment intended to be a first step
in assessing people’s intuitions for the four conditions outlined
above. To our knowledge, this is the first time that predictions
under causal independence and under causal enhancement are
compared directly in a single experiment, with respect to both
explaining away and augmentation, and for both positive and
negative evidence about the effect. The comparison also takes
into account the differential impact of whether this evidence
is certain or uncertain. We compared these conditions using
the above mosquito scenario, which given its fictional contents
was considered relatively open with respect to how the causes
integrate their impact to bring about the effect. Overall, we
aimed to assess which of the two integration functions accounts
better for people’s responses when the nature of the function is
not prespecified, while taking into account that people may be
uncertain about the information given even when instructed to
assume it to be true or false with certainty (Evans and Over, 2004;
Oaksford and Chater, 2007, 2013; Pfeifer and Kleiter, 2009; Over
and Cruz, 2018).

MATERIALS AND METHODS

Participants
Fifty residents of English speaking countries completed
the online experiment via the platform Prolific Academic,
providing informed consent for participation. After excluding
the data of participants with speeded trial responses, failed
attention checks, and modest reported English language skills,
the final sample consisted of 37 participants. They had a
median age of 39 (range 22–65), and had a diverse formal
educational background.

Materials and Design
At the start of the experiment and then again at the top of
each trial, participants were shown information about a fictional
archipelago in which three types of Mosquito (the Reb, Mar, and
Murb mosquito) could transmit a disease known as Ling fever.
The information about the mosquitos and the disease reflected
the causal structure in Figure 1. Participants were informed that
the prior probability of being bitten by an infected mosquito
was 70% for each type, but that the mosquito types differed in
the effectiveness with which they transmitted the disease when
they bit their hosts. In the absence of bites from the other two
mosquito types, the bite of an infected Reb mosquito led to Ling
fever 90% of the time; the bite of an infected Mar mosquito
led to Ling fever 50% of the time; and the bite of an infected
Murb mosquito led to Ling fever 10% of the time. Ling fever
could not be contracted through any other cause (i.e., the leakage

parameter for the effect was 0). A person with Ling fever had a
90% chance of showing a purple rash. A purple rash due to other
causes occurred only 10% of the time on the archipelago. The
scenario made no statement about the presence or absence of any
relation between causes. The above combination of parameters
was chosen on the basis of a prior exploration of the parameter
space in which the Bayesian network structure of Figure 1 was
queried using parameter values across the probability range, with
the aim of maximizing the size of normative probability changes
across conditions. The sizes of normative changes nonetheless
never exceeded 20% and were sometimes smaller than 10%. We
discuss the implications of this limitation further below.

The design crossed two within participant variables: (1) initial
information about the effect, that is whether the effect was
present (Ling fever), the effect was absent (No Ling fever), the
consequence of effect was present (Rash), or the consequence of
effect was absent (No rash); and (2) additional information about
one of the causes (bite present vs. bite absent). Crossing these two
variables resulted in eight conditions, reflected in the eight panels
of Figure 2 below.

For each of the eight conditions there were two trials, yielding
16 trials in total. On one of the trials, participants were informed
that a protagonist was or was not bitten by an infected Reb
mosquito, and were asked what impact this information had on
the probability that the protagonist was bitten by an infected
Mar mosquito. On the other trial, participants were informed
that a protagonist was or was not bitten by an infected Mar
mosquito, and were asked what impact this information had
on the probability of them being bitten by an infected Reb
mosquito. The difference between these two trials comes from
the difference in effectiveness of disease transmission between
mosquito types. As mentioned above, a bite from an infected
Reb mosquito causes Ling fever 90% of the time, whereas a
bite from an infected Mar mosquito causes Ling fever only
50% of the time. Hence, on one trial information about the
presence/absence of a cause with high effectiveness is used to
draw an inference about the presence/absence of a cause with
medium effectiveness, and vice versa on the other trial. The Murb
mosquito did not feature in the questions asked to participants
because with only 10% effectiveness, this cause was associated
with only very small normative changes in probability across
conditions. The role of the differential effectiveness of the causes
can be related to research on the reliability of testimony (Hahn
et al., 2013). However, this variable goes beyond the scope of the
questions addressed in this paper and its results are not discussed
further here. In the context of this paper, cause effectiveness
is merely a methodological variable whose inclusion makes it
possible to generalize the results on the questions of interest
to more than one effectiveness value. The results presented
were thus averaged across the two trails for each of the eight
cells of the design.

On each trial, participants were given initial information
about the effect, and additional information about one of
the causes. The task was to judge whether after receiving
the additional information, the probability of a second
cause was higher, lower, or the same compared to before
receiving the additional information. The order of trials
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FIGURE 2 | Proportion of times each of the three response options (lower, same, higher) was chosen in each of the eight experimental conditions. The rows show
the data separately for when the cause was present (upper) vs. absent (lower). The columns show the data separately for the conditions in which the effect was
present (Ling fever), its consequence was present (rash), the effect was absent (no Ling fever), or the consequence of the effect was absent (no rash). The dark gray
bar in each panel represents the normative response under independence. The horizontal scale at the bottom of each panel shows the size of the normative change
under independence. Error bars show 95% CIs.

was randomized for each participant. A screenshot of a
sample trial from Condition 1 (certain positive evidence)
is shown below. Each trial referred to a different island
and protagonist.

Initial information for the island of Eik:

• The risk of being bitten by an infected mosquito is the same for the three
mosquito types. Within a given month, a random person from the island
has a 70% chance of being bitten by an infected Reb mosquito, a 70%
chance of being bitten by an infected Mar mosquito, and a 70% chance of
being bitten by an infected Murb mosquito.

• But the species differ in the effectiveness with which they transmit the
disease when they bite their hosts.

• The Reb mosquito transmits the disease 90% of the time that it bites; the
Mar mosquito 50% of the time, and the Murb mosquito 10% of the time.

• A person that has the disease has a 90% chance of showing a
characteristic purple rash. The chances that a person from the island
would show such a rash for other reasons is only 10%.

Michele from the island of Eik is known to have Ling fever. A further
test showed that Michele was bitten by an infected Mar mosquito.
Does this additional information change the chances that Michele was
bitten by an infected Reb mosquito? If so, then in which way?

We asked participants to provide qualitative judgments of
probability changes rather than to make repeated quantitative
probability judgments under different information conditions,
because we wanted to make the task less dependent on
numeracy as well as on working memory limitations that
could have an impact when comparing responses across trials.
However, we did ask for percentage probability judgments
during eight practice trials aimed at allowing participants
to form an impression of the relevant causal structure and
the relations between the probabilities of its elements. Two
of the practice trials asked for P(cause A & cause B) and
P(cause A or cause B). These probabilities allowed us to obtain
an indirect impression of whether participants perceived the
causes to be initially independent, that is, whether P(A &
B) = P(A)P(B), and P(A or B) = P(A) + P(B) − P(A &
B). We computed probabilistic coherence, that is, conformance
with the axioms of probability theory, of people’s responses
to these two questions with and without the assumption
of cause independence. This is an indirect measure because
people’s responses could be incoherent for many reasons
(Tversky and Kahneman, 1983; Bar-Hillel and Neter, 1993). But
it provides one source of information on the question, which can
then be complemented with further information from this and
future experiments.

Frontiers in Psychology | www.frontiersin.org 6 November 2020 | Volume 11 | Article 502751117

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-502751 October 28, 2020 Time: 18:5 # 7

Cruz et al. Explanning Away, Augmentation, and Independence

Procedure
Participants went through the instructions and eight practice
trials, followed by the 16 trials of the main experiment. The
information on the causal structure and parameters for the
scenario remained visible on each trial. At the end of the
experiment, participants provided demographical information
and were asked to rate on a percentage scale how difficult
they found the task. The median rating of experiment
difficulty was 74%. The median duration of the experimental
session was 12.23 min.

RESULTS AND DISCUSSION

Coherence for participants’ responses to the two practice trials
asking for P(cause A & cause B) and P(cause A or cause B) was
computed by first coding whether a given response was coherent
or not – separately under the assumption of independence and
without this assumption – and then subtracting the resulting
variable for observed coherence from the chance rate of obtaining
a coherent response, in order to determine whether responses
were coherent more often than expected by chance (Cruz
et al., 2015; Evans et al., 2015). The chance rate of a coherent
response under independence is constrained to a point value
as given by the equalities P(A & B) = P(A)P(B), and P(A or
B) = P(A) + P(B) − P(A & B). In contrast, the chance rate
of a coherent response without making any assumption about
the relation between the causes is an interval on the probability
range. For the probability of the conjunction of two causes A
and B, this interval is [max(0, P(cause A) + P(cause B) − 1),
min(P(cause A), P(cause B))]. For the probability of the disjuncti
on of two causes it is [max(P(cause A), P(cause B)), min(P(cause
A)+ P(cause B), 1)].

The coherence of participants’ responses to the two practice
questions was found to be at chance level under the assumption
of independence, but above chance when not making any
assumption about how the causes might or might not be
related. Specifically, assuming independence, responses to the
conjunction question were coherent 7% more often than expected
by chance (t(36) = 1.56, p = 00.127, 95% CI [−0.021,0.163]); and
responses to the disjunction question were coherent 2% more
often than expected by chance (t(36) = 0.53, p = 0.533, 95% CI
[−0.038,0.072]). This outcome did not change when the range
of coherent responses was increased by + −5%, and the chance
rate increased accordingly, to account for the possibility that
people are sensitive to the relevant coherence constraints but
have degrees of belief that are coarser than point probabilities.
In contrast, without assuming any specific relation between the
causes, responses to the conjunction question were coherent 54%
more often than expected by chance (t(36) = 8.75, p < 0.001, 95%
CI [0.413,0.662]); and responses to the disjunction question were
coherent 65% more often than expected by chance (t(36) = 17.14,
p < 0.001, 95% CI [0.570,0.722]).

This finding does not in itself suggest that people are not
assuming the causes to be independent, or that they are making
no assumption about the relation between causes. But it provides
an initial indication that people’s probability judgments in

experiments may sometimes become more understandable when
moving beyond the presupposition of independence.

The pattern of responses in the main experiment is displayed
in Figure 2. The x axis shows the three response options, and the
height of the bars represents the proportion of times a response
was chosen within each of the eight conditions. The darker bar
in each panel shows the predicted response under independence.
Each column of the figure corresponds to one of the four
conditions in Table 1: effect present (Ling fever), consequence
of effect present (rash), effect absent (no Ling fever), and
consequence of effect absent (no rash). The first row represents
the conditions in which an alternative cause was present, and
the second row the conditions in which an alternative cause
was absent. The horizontal scale at the bottom of each panel
represents the size of the normative change under independence.
An initial look at the figure tells us that the normative response
under independence was the numerically most frequent in four
of the eight experimental conditions (panels c, e, f, and g). The
normative response under the assumption of a modest positive
correlation between causes, whose impact is not stronger than
that of the causes’ priors and effectiveness values, was numerically
most frequent in three of the eight conditions (panels d, e, and f).

The data were analyzed in two ways. First, a series of
generalized linear models for binomial distributions compared
the proportion of higher vs. same, higher vs. lower, and same
vs. lower responses for each condition. A second analysis
assessed, for each condition, whether the response predicted
under independence was more frequent than expected by chance.
This second analysis was carried out in a series of linear models
following a similar procedure to the coherence analysis above. To
measure whether a response was more frequent than expected by
chance under independence, we first coded whether a response
conformed to the prediction under independence or not, and
then subtracted this variable for observed conformance from the
chance rate of conforming to the predicted response. With three
response options, the chance rate was 1/3 on each trial. The data
were analyzed using the glm and lmer functions for the R software
environment (package lme4, Bates et al. (2015); R Core Team,
2017). Analyses were performed separately for each condition
because the responses predicted under independence and under
enhancement changed between conditions. The general rationale
for model selection aimed to maximize the random structure
justified by the design, as recommended by Barr et al. (2013).
However, in this case it was only possible to include random
intercepts for participants in the lmer models1.

The results show a complex picture that is not straightforward
to group into findings concerning independence vs.
enhancement, or explaining away vs. augmentation. We
instead group the results into three domains that we think
capture some of the most significant insights that can be gained
from the findings, and which may explain some patterns of
differences between experimental conditions.

1For the binomial regression analyses, effect size estimates were provided through
likelihood ratio values. For the linear model analyses, which in this case were
intercept only models, effect sizes were estimated in the same way as for one-
sample t-tests: as the ratio of the fixed effect of the intercept to its standard
deviation.
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The Role of the Size of the Predicted
Change
Consider first the conditions in which there was positive evidence
for the effect (panels a, b, e, and f). Here the predictions
under independence and enhancement coincide, so that any
divergences from these predictions cannot easily be attributed to
a violation of the assumption of causal independence.

Panels (a) and (e) show the results for when the effect (Ling
fever) was certain to be present. Panels (b) and (f) show the results
for when there was uncertain, indirect evidence that the effect was
present because its consequence (rash) was present. Panels (e)
and (f) further refer to the conditions in which one of the causes
was absent. Responses in these latter two conditions showed a
clear augmentation effect, in accordance with the predictions.
That is, the dark bar in these panels tells us that the probability of
a given cause was rated as higher upon learning that an alternative
cause was absent.

Note that in these two cases the size of the predicted
change under independence was larger than 10% (16.06% on
average when the effect was present, and 10.95% on average
when the consequence of the effect was present, as indicated
through the horizontal scales at the bottom of the panels).
Under enhancement, the size of the normative change would be
expected to be even larger, but the extent to which it would be
larger would depend on the strength of the causal interaction.

The augmentation effect was statistically significant. In panel
(e) higher responses were more frequent than same responses
(LR = 2.042, z = 2.865, p = 0.004, 95% CI [1.267,3.382]);
and more frequent than lower responses (LR = 49, z = 3.853,
p < 0.001, 95% CI [10.754,867.505]). The frequency of the
predicted higher responses was above chance in this condition
(EMM = 0.329, F(1,36) = 23.897, p < 0.001, d = 1.007, 95%
CI [0.195,0.462]). In panel (f) higher responses were again more
frequent than same responses (LR = 1.750, z = 2.187, p = 0.029,
95% CI [1.069,2.931]); and more frequent than lower responses
(LR = 5.250, z = 4.299, p < 0.001, 95% CI [2.605,12.067]).
The frequency of the predicted higher responses was also above
chance in this condition (EMM = 0.234, F(1,36) = 11.105,
p = 0.002, d = 0.690, 95% CI [0.095,0.374]).

The pattern of responses was less clear cut in panels (a) and
(b). Here one of the causes is present and this "explains" the
presence of the effect, leading to the prediction of a reduction
in the probability of the other cause. But one can see that the
size of the predicted change under independence is relatively
small (3.86% on average when the effect was present, and 4.62%
on average when the consequence of the effect was present, as
shown in the horizontal scales at the bottom of the panels).
Under enhancement, the normative size of the explaining away
effect would be expected to be even smaller, albeit the extent
of this decrement would again depend on the strength of the
causal interaction. In line with this smaller normative change,
fewer participants chose the normative lower response, and more
participants chose the same response.

This pattern was corroborated statistically. For both panels
(a) and (b), the frequency of the lower response did not differ
significantly from that of same response (for (a): LR = 1.615,

z = 1.992, p = 0.0546, 95% CI [0.997,2.666]). For (b): (LR = 1.429,
z = 1.448, p = 0.148, 95% CI [0.885,2.337]); although the
lower response was more frequent than the opposite higher
response (For (a): LR = 0.231, z = −3.238, p = 0.001, 95% CI
[0.086,0.524]. For (b): LR = 0.214, z = −3.424, p < 0.001, 95%
CI [0.080,0.483]). The frequency of the lower response did not
differ from chance in these two conditions (For (a): EMM = 0.018,
F(1,36) = 0.067, p = 0.797, d = 0.051, 95% CI [−0.120,0.156]. For
(b): EMM = 0.045, F(1,36) = 0.403, p = 0.529, 95%, d = 0.124, CI
[−0.096,0.186]).

The pattern for panels (a) and (b) was similar to that for panel
(h): the condition in which the consequence of the effect (rash)
was absent and one of the causes was absent. Here the prediction
under independence is that the opposite of augmentation occurs:
the information that one of the causes is absent adds to the
evidence for the absence of the effect, and the probability of the
other cause decreases further. However, the size of the predicted
change under independence was again relatively small (3.86% on
average). In line with this, the same response was more frequent
than the lower response (LR = 1.950, z = 2.428, p = 0.015,
95% CI [1.152,3.408]). The lower response was numerically more
frequent than the opposite higher response, but this difference
was not significant (LR = 0.750, z = −0.842, p = 0.400, 95% CI
[0.377,1.458]). The frequency of the lower response was at chance
level in this condition (EMM =−0.063, F(1,36) = 1.233, p = 0.274,
d = 0.322, 95% CI [−0.176,0.050]).

The preceding results suggest people tended to respond
in accordance with the probabilistic constraints given by the
problem structure and in a way broadly consistent with
the assumption of independence, but that differences in the
frequency of relevant response options only reached significance
when the normative size of the change was large enough to
be noticeable (larger than 10% under independence). This was
although participants made judgments only about the direction,
and not about the size, of the change.

If this experiment had only tested the conditions in panels
(a), (b), (e), and (f), involving positive evidence for the
effect, then it would not have been possible to distinguish
the role of the size of the normative change from whether
this normative change was an increase (augmentation) or
decrease (explaining away) of the probability of the cause
asked for. That is, if we had only considered panels (a), (b),
(e), and (f), then an alternative explanation for the difference
in the pattern of results between (e) and (f) on the one
hand, and (a) and (b) on the other, would have been that
people find situations with negative evidence easier to think
through than situations with positive evidence. But such an
alternative explanation does not fit with the results for panel
(h), which concern negative evidence and yet resemble the
responses given to the cases of positive evidence in (a) and
(b) more than those for negative evidence in (e) and (f).
Considering the five panels together, a better, and simpler,
explanation for the differences between conditions seems to be
that they reflect differences in the size of the normative change.
Further experiments varying the size of the normative change
systematically across conditions would be necessary to further
test this interpretation.
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The Probability of a Cause When the
Effect Is Absent
Let us now turn to panels (c) and (g): the conditions in which the
effect (Ling fever) was certain to be absent. Under the assumption
of causal independence, the normative response in these two
conditions is that there is no change. If the causes are instead
positively correlated, then the normative response is explaining
away for (c) and augmentation for (g). Finally, if the causes are
interpreted as contributing independently to the effect but the
absence of the effect is treated as uncertain (Oaksford and Chater,
2013; Over and Cruz, 2018), then the normative response is the
opposite of explaining away and augmentation: an increase in
the probability of a cause when another cause is present (c), and
a decrease in the probability of a cause when another cause is
absent (g). The conditions of panels (c) and (g) offer a unique
opportunity for testing the contrasting predictions of the above
three assumptions.

Consider first the condition in panel (c), where one of
the causes is present. The same response predicted under
independence was numerically more frequent than the lower
response predicted under enhancement, but the difference
was not significant (LR = 1.194, z = 0.727, p = 0.467,
95% CI [0.741,1.934]). The same and the lower response
were both more frequent than the higher response predicted
under the assumption of independence + uncertainty (same
vs. higher: LR = 0.162, z = −4.133, p < 0.001, 95% CI
[0.062,0.356]. Lower vs. higher: LR = 0.194, z = −3.682,
p < 0.001, 95% CI [0.073,0.432]). The same response predicted
under independence was above chance in this condition
(EMM = 0.167, F(1,36) = 4.933, p = 0.033, d = 0.415, 95%
CI [0.018,0.316]). Overall, the responses in this condition
were in accordance with independence and, to a numerically
lesser extent, with enhancement. In contrast, there was
no evidence that participants followed the independence
assumption while treating the information that the effect was
absent as uncertain.

Turning to the condition in panel (g), where one of the
causes is absent, the numerically most frequent response was
again that there is no change, in line with the independence
assumption. But the pattern was less clear cut, and no
response option was significantly more frequent than the others
(same vs. lower: LR = 1.333, z = 1.065, p = 0.287, 95%
CI [0.788,2.286]. Same vs. higher: LR = 0.563, z = −1.953,
p = 0.051, 95% CI [0.310,0.991]. Lower vs. higher: LR = 0.750,
z = −0.923, p = 0.356, 95% CI [0.401,1.376]). The frequency
of the same response was at chance level in this condition
(EMM = 0.099, F(1,36) = 2.151, p = 0.151, 95%, d = 0.334, CI
[−0.035,0.233]). Overall, participants seemed to have no clear
common intuitions for the case in which both the effect and one
of the causes was absent.

Evidence Against Negative Evidence
Finally, consider the pattern in panel (d). Here there is uncertain
evidence that the effect (Ling fever) is absent because its
consequence (rash) is absent, and we then learn that one of
the causes is present. For the parameters of the model, the

predicted response under both independence and enhancement
assumptions is that the opposite of explaining away occurs. This
is because the presence of the cause undermines the uncertain
evidence for the absence of the effect. The probability of the effect
increases again, and with it also the probability of the other cause.
The predicted size of the change under independence was 4.14%
on average, which is not very large. Considering the findings
from panels (a), (b), and (h), we can thus expect a relatively
high frequency of same responses in this condition. The panel
shows that although there was indeed a sizeable number of same
responses, the most frequent response was instead the lower
response, which is opposite to what had been predicted.

Statistically, the predicted higher responses were less frequent
than the same responses (LR = 0.172, z = −3.630, p < 0.001,
95% CI [0.059,0.408]) and less frequent than the lower responses
(LR = 0.125, z = −4.384, p < 0.001, 95% CI [0.043,0.288]).
The frequency of the higher response was below chance in this
condition (EMM =−0.266, F(1,36) = 59.504, p < 0.001, d = 1.728,
95% CI [−0.334,−0.197]).

The finding for this condition was surprising, and is the
only one of the eight investigated in which responses seemed
to deviate systematically from Bayesian predictions under both
independence and enhancement assumptions. One possible
explanation is that it constitutes a double negation effect. This
effect, first described in research on deductive reasoning, refers
to the finding that people make more errors drawing inferences
when this requires negating a negation. That is, when it requires
establishing that not-not-A = A (Evans and Handley, 1999;
Oaksford et al., 2000). In a probabilistic extension of this idea, the
present condition required participants to undermine negative
evidence for an effect, and assess the consequences of this for
the probability of a cause. However, the finding would have to
be replicated and the conditions of its occurrence investigated
further to determine the value of this explanation.

DISCUSSION

This study investigated people’s intercausal judgments
in situations with several alternative causes for a common
effect. We compared the predictions that follow from assuming
that the causes contribute independently to the effect, with
those that follow from assuming that the causes interact to some
extent, enhancing each other’s contribution to the effect. In doing
so, we took into account: (a) whether the information about
the effect was considered certain or uncertain, (b) whether the
evidence for the effect was positive or negative, and (c) whether
one of the causes was present or absent. The resulting eight
conditions were compared in a single experiment using a within
participants design.

The experiment aimed to explore further people’s intuitions
about explaining away and augmentation, and identify
possible factors that could shed light on why previous studies
have often found people’s responses to conform with the
explaining away effects that follow from the independence
assumption of the noisy-or, but to a lesser extent than
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predicted by normative models (Ali et al., 2011; Rehder, 2014;
Rottman and Hastie, 2014).

Extant explanations for under-explaining away have pointed
to possible differences in the interpretation of probability (Tešić
et al., 2020), prior knowledge that changes the causal structure
reasoned about, for instance by adding links between causes or
additional intervening variables that must be active to allow an
effect to occur (Mayrhofer et al., 2010; Rehder, 2014; Rottman
and Hastie, 2014), and by positing that a subset of participants
may represent the relations between variables as associative,
and thus bidirectional, rather than as causal and unidirectional
(Rehder and Waldmann, 2017). The latter has been referred to
as the “rich get richer” principle because it implies that when
one variable is present, this will increase the probability that
variables connected to it will also be present, and vice-versa when
a variable is absent (c.f. parallel constraint satisfaction networks,
Glöckner et al., 2010).

The present results highlight two further possible reasons
for the findings of under-explaining away, which we view as
complementing rather than standing in competition to the
explanations outlined above. The first is that people may not
spontaneously interpret causes as contributing independently
to the effect, as presupposed by the use of the noisy-or, but
may sometimes instead interpret the causes as enhancing each
other’s contribution, even in cases in which the materials are
fictional and no explicit information suggesting any relation
between causes is provided. On the one hand, this underlines
the need to be careful when designing experiments, to make
sure participants are really assuming causal independence before
interpreting deviations from the predictions under independence
as non-normative. On the other hand, it also points to the
option of not trying to create materials for which independence
unambiguously holds in the first place, and instead setting out to
examine in more detail how people reason about causal structures
with interacting causes.

The absence of a manipulation of the size of a correlation
or interaction between causes was a limitation of the current
study, and something worth pursuing in follow-up work. Such
work could also include a dissociation of the two independence
assumptions of the noisy-or separately, exploring separately
people’s intuitions about (a) causes that covary, in the sense that
the marginal probability that one cause is present changes as
a function of the probability of another cause (Rottman and
Hastie, 2014); and (b) causes that interact in their contribution
to the effect, in the sense that whenever two causes happen
to be present at the same time, the probability of the effect
is increased or decreased to a greater extent than would be
predicted by considering the impact of each cause independently
(see also Fenton et al., 2019). An example of covariance would
be a situation in which one cook is preparing soup, and the
smell of the soup compels other cooks to enter the kitchen and
start cooking more soup. An example of interaction would be a
situation in which whenever soup happens to be cooked by more
than one cook, the cooks start to work together; making the soup
turn out better/worse than it would have been if they had been
working independently.

Studies of reasoning about covarying and interacting causes
are made more difficult by the lack of a single function from
which to derive the CPT for the causal structure of interest.
But this difficulty can be met by determining the size of each
interaction effect, and then modifying an initial CPT based
on independence to incorporate the interaction (Wellman and
Henrion, 1993; Lemmer and Gossink, 2004; Fenton et al., 2019).

A second possible reason for the under-explaining away found
in previous studies is that at least in some of these studies, the
size of the normative change itself may have been too small to
be subjectively relevant. Thus, people might be sensible to the
probabilistic constraints posed by the structure of the problem,
but our degrees of belief may be coarser than point probabilities,
so that a larger change is necessary for it to be subjectively
meaningful. The size of the normative change is not available in
studies that do not include precise information about priors and
causal power, and this information is of course often not available
in real world situations (Rehder, 2014; Rottman and Hastie,
2014). However, the present findings suggest that in those cases in
which the size of the normative change is not negligible, people’s
responses do follow normative predictions in a consistent way.

As a further argument for the above interpretation, Figure 3
shows the size of the normative change that occurs under the
assumption of independence for a causal structure like that
of Figure 1. As in Figure 1, the leakage parameter for the
consequence of the effect (rash) was set to 0.1, but unlike
Figure 1, the causes were set to have equal priors and equal causal
power for simplicity.

Figure 3 shows the size of the normative change for three
of the four conditions of Table 1. The fourth condition: when
the effect is absent, was not included in Figure 3 because it is
associated with the prediction that the probabilities of the causes
remain invariant, i.e., there is no normative change in this case.

The left column shows the condition in which the effect is
known to be present – the most commonly studied case for
explaining away in the literature. The middle column shows the
condition in which the consequence of the effect is absent, and
the right column shows the condition in which the consequent
of the effect is present. For each condition, the size of the
normative change is shown on the y axis as a function of the
prior probabilities of the causes (on the x axis), the causal
power of the causes (separate lines) and the leakage parameter
λ (separate rows).

One can see that across the range of values these parameters
can take, the size of the normative change only rarely reaches
values higher than 20%, and it decreases as the value of the
leakage parameter increases. When the effect is present or its
consequence is absent, the size of the change tends to be
larger for lower values of the prior, whereas this is not the
case when the consequence of the effect is present. Overall,
the size of the normative change increases with the power of
the causes. When the effect is present, this effect of causal
power is more or less evenly spread. In contrast, when the
consequence is absent, it takes a causal power over 0.5 to obtain
a non-negligible change at all, with higher values of causal power
having increasing impact.
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FIGURE 3 | Normative changes in the probability of one cause when learning that another cause is present or absent, for a common-effect structure like that of
Figure 1 but with equal priors and causal powers for each cause. Probability changes are shown as a function of the prior probabilities of the causes (x axis), causal
power (separate lines), and the value of the leakage parameter (separate rows). Left column: explaining away and augmentation for the condition in which the effect
is present. Middle column: opposite probability changes to those of explaining away and augmentation for the condition in which the consequence of the effect is
absent. Right column: explaining away and augmentation for the condition in which the consequence of the effect is present. The condition in which the effect is
absent is not shown here because probabilities remain invariant under the noisy-or in this case (c.f. Table 1).

Note that as mentioned above, positive and negative
normative changes arise under opposite conditions when the
effect is present and when the consequence of the effect is
absent. When the effect is present, negative changes correspond
to the size of the explaining away effect, P(cause B| effect
& cause A) - P(cause B| effect) < 0, and positive changes
correspond to the size of the augmentation effect, P(cause B|
effect & not-cause A) - P(cause B| effect) > 0. In contrast, when
the consequence is absent, the normative probability changes
go in the opposite direction: P(cause B| effect & cause A)
- P(cause B| effect) > 0, and P(cause B| effect & not-cause
A) - P(cause B| effect) < 0. This distinction is not visible
in the graphs, which focus instead on illustrating the impact
of causal power.

In the present study it was difficult to find model
parameters for which the size of the predicted change was
substantial across all experimental conditions in which
a change was predicted, which included conditions in
which the evidence for the effect was negative. But further
studies could test this factor more explicitly by varying
the size of the normative change within each condition
and assessing the effect of this variation on participants’
probability judgments.

Future work could also assess the generalizability of
the present findings by asking participants for numeric

probability judgments under different information conditions
in a dynamic reasoning setting, rather than for qualitative
probability changes as was done here. This would also make
it easier to build up the task more gradually for participants,
for instance asking first about P(effect), then about P(effect|
not-cause A), and finally about P(effect| cause B & not-
cause A).

Finally, we found that responses were contrary to predictions
under both independence and enhancement assumptions when
a partial canceling of the effect of negative evidence was
required. This unexpected finding resembles a probabilistic
extension of the double negation effect from the deductive
reasoning literature, and is worth investigating further. If
replicated it may constitute a distinct source of error in
probabilistic reasoning, beyond more frequently discussed
sources such as those based on content effects, associative
reasoning, and the use of heuristic task simplifications (Tversky
and Kahneman, 1983; Oaksford, 2002; Glöckner et al., 2010;
Rehder and Waldmann, 2017).
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Artificial Neural Networks have reached “grandmaster” and even “super-human”

performance across a variety of games, from those involving perfect information, such

as Go, to those involving imperfect information, such as “Starcraft”. Such technological

developments from artificial intelligence (AI) labs have ushered concomitant applications

across the world of business, where an “AI” brand-tag is quickly becoming ubiquitous. A

corollary of such widespread commercial deployment is that when AI gets things wrong—

an autonomous vehicle crashes, a chatbot exhibits “racist” behavior, automated credit-

scoring processes “discriminate” on gender, etc.—there are often significant financial,

legal, and brand consequences, and the incident becomes major news. As Judea Pearl

sees it, the underlying reason for suchmistakes is that “... all the impressive achievements

of deep learning amount to just curve fitting.” The key, as Pearl suggests, is to replace

“reasoning by association” with “causal reasoning” —the ability to infer causes from

observed phenomena. It is a point that was echoed by Gary Marcus and Ernest Davis in

a recent piece for the New York Times: “we need to stop building computer systems that

merely get better and better at detecting statistical patterns in data sets—often using

an approach known as ‘Deep Learning’—and start building computer systems that from

the moment of their assembly innately grasp three basic concepts: time, space, and

causality.” In this paper, foregrounding what in 1949 Gilbert Ryle termed “a category

mistake”, I will offer an alternative explanation for AI errors; it is not so much that AI

machinery cannot “grasp” causality, but that AI machinery (qua computation) cannot

understand anything at all.

Keywords: dancing with pixies, Penrose-Lucas argument, causal cognition, artificial neural networks, artificial

intelligence, cognitive science, Chinese room argument

1. MAKING A MIND

For much of the twentieth century, the dominant cognitive paradigm identified the mind with the
brain; as the Nobel laureate Francis Crick eloquently summarized:

“You, your joys and your sorrows, your memories and your ambitions, your sense of personal identity

and free will, are in fact no more than the behavior of a vast assembly of nerve cells and their associated

molecules. As Lewis Carroll’s Alice might have phrased, ‘You’re nothing but a pack of neurons’.

This hypothesis is so alien to the ideas of most people today that it can truly be called astonishing”

(Crick, 1994).

Motivation for the belief that a computational simulation of the mind is possible stemmed
initially from the work of Turing (1937) and Church (1936) and the “Church-Turing
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hypothesis”; in Turing’s formulation, every “function which
would naturally be regarded as computable” can be computed
by the “Universal Turing Machine.” If computers can adequately
model the brain, then, theory goes, it ought to be possible to
program them to act like minds. As a consequence, in the latter
part of the twentieth century, Crick’s “Astonishing Hypothesis”
helped fuel an explosion of interest in connectionism: both high-
fidelity simulations of the brain (computational neuroscience;
theoretical neurobiology) and looser—merely “neural inspired”
—analoges (cf. Artificial Neural Networks, Multi-Layer
Perceptrons, and “Deep Learning” systems).

But the fundamental question that Crick’s hypothesis raises
is, of course, that if we ever succeed in fully instantiating a
sufficiently accurate simulation of the brain on a digital computer,
will we also have fully instantiated a digital [computational]
mind, with all the human mind’s causal power of teleology,
understanding, and reasoning, and will artificial intelligence (AI)
finally have succeeded in delivering “Strong AI”1.

Of course, if strong AI is possible, accelerating progress in
its underpinning technologies2–entailed both by the use of AI
systems to design ever more sophisticated AIs and the continued
doubling of raw computational power every 2 years3—will
eventually cause a runaway effect whereby the AI will inexorably
come to exceed human performance on all tasks4; the so-called
point of [technological] “singularity” ([in]famously predicted by
Ray Kurzweil to occur as soon as 20455). And, at the point
this “singularity” occurs, so commentators like Kevin Warwick6

and Stephen Hawking7 suggest, humanity will, effectively, have

1Strong AI, a term coined by Searle (1980) in the “Chinese room argument” (CRA),

entails that, “... the computer is not merely a tool in the study of the mind; rather, the

appropriately programmed computer really is a mind, in the sense that computers

given the right programs can be literally said to understand and have other cognitive

states,” which Searle contrasted with “Weak AI” wherein “... the principal value of

the computer in the study of the mind is that it gives us a very powerful tool.” Weak

AI focuses on epistemic issues relating to engineering a simulation of [human]

intelligent behavior, whereas strong AI, in seeking to engineer a computational

system with all the causal power of a mind, focuses on the ontological.
2See “[A]mplifiers for intelligence—devices that supplied with a little intelligence

will emit a lot” (Ashby, 1956).
3See Moore’s law: the observation that the number of transistors in a dense

integrated circuit approximately doubles every 2 years.
4Conversely, as Francois Chollet, a senior engineer at Google and well-known

scptic of the “Intelligence Explosion” scenario; trenchantly observed in 2017: “The

thing with recursive self-improvement in AI, is that if it were going to happen, it

would already be happening. Auto-Machine Learning systems would come up with

increasingly better Auto-Machine Learning systems, Genetic Programming would

discover increasingly refined GP algorithms” and yet, as Chollet insists, “no human,

nor any intelligent entity that we know of, has ever designed anything smarter than

itself.”
5Kurzweil (2005) “set the date for the Singularity—representing a profound and

disruptive transformation in human capability—as 2045.”
6In his 1997 book “March of the Machines”, Warwick (1997) observed that there

were already robots with the “brain power of an insect”; soon, or so he predicted,

there would be robots with the “brain power of a cat,” and soon after that there

would be “machines as intelligent as humans.” When this happens, Warwick

darkly forewarned, the science-fiction nightmare of a “Terminator” machine could

quickly become reality because such robots will rapidly, and inevitably, become

more intelligent and superior in their practical skills than the humans who

designed and constructed them.
7In a television interview with Professor Stephen Hawking on December 2nd

2014, Rory Cellan-Jones asked how far engineers had come along the path toward

been “superseded” on the evolutionary ladder and be obliged
to eke out its autumn days listening to “Industrial Metal”
music and gardening; or, in some of Hollywood’s even more
dystopian dreams, cruelly subjugated (and/or exterminated) by
“Terminator” machines.

In this paper, however, I will offer a few “critical reflections”
on one of the central, albeit awkward, questions of AI: why is it
that, seven decades since Alan Turing first deployed an “effective
method” to play chess in 1948, we have seen enormous strides
in engineering particular machines to do clever things—from
driving a car to beating the best at Go—but almost no progress
in getting machines to genuinely understand; to seamlessly
apply knowledge from one domain into another—the so-called
problem of “Artificial General Intelligence” (AGI); the skills that
both Hollywood and the wider media really think of, and depict,
as AI?

2. NEURAL COMPUTING

The earliest cybernetic work in the burgeoning field of “neural
computing” lay in various attempts to understand, model,
and emulate neurological function and learning in animal
brains, the foundations of which were laid in 1943 by the
neurophysiologist Warren McCulloch and the mathematician
Walter Pitts (McCulloch and Pitts, 1943).

Neural Computing defines a mode of problem solving
based on “learning from experience” as opposed to classical,
syntactically specified, “algorithmic” methods; at its core is “the
study of networks of ’adaptable nodes’ which, through a process
of learning from task examples, store experiential knowledge and
make it available for use” (Aleksander and Morton, 1995). So
construed, an “Artificial Neural Network” (ANN) is constructed
merely by appropriately connecting a group of adaptable nodes
(“artificial neurons”).

• A single layer neural network only has one layer of adaptable
nodes between the input vector, X and the output vector O,
such that the output of each of the adaptable nodes defines one
element of the network output vector O.

• A multi-layer neural network has one or more “hidden layers”
of adaptable nodes between the input vector and the network
output; in each of the network hidden layers, the outputs of
the adaptable nodes connect to one or more inputs of the
nodes in subsequent layers and in the network output layer,
the output of each of the adaptable nodes defines one element
of the network output vector O.

• A recurrent neural network is a network where the output of
one or more nodes is fed-back to the input of other nodes
in the architecture, such that the connections between nodes
form a “directed graph along a temporal sequence,” so enabling
a recurrent network to exhibit “temporal dynamics,” enabling
a recurrent network to be sensitive to particular sequences of
input vectors.

creating Artificial Intelligence, to which Professor Hawking alarmingly replied,

“Once humans develop artificial intelligence it would take off on its own and

redesign itself at an ever increasing rate. Humans, who are limited by slow biological

evolution, couldn’t compete, and would be superseded.”
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FIGURE 1 | The McCulloch–Pitts neuron model.

Since 1943 a variety of frameworks for the adaptable nodes
have been proposed8; however, the most common, as deployed
in many “deep” neural networks, remains grounded on the
McCulloch/Pitts model.

2.1. The McCulloch/Pitts (MCP) Model
In order to describe how the basic processing elements
of the brain might function, McCulloch and Pitts showed
how simple electrical circuits, connecting groups of “linear
threshold functions,” could compute a variety of logical functions
(McCulloch and Pitts, 1943). In their model, McCulloch and Pitts
provided a first (albeit very simplified) mathematical account of
the chemical processes that define neuronal operation and in so
doing realized that the mathematics that describe the neuron
operation exhibited exactly the same type of logic that Shannon
deployed in describing the behavior of switching circuits: namely,
the calculus of propositions.

8 These include “spiking neurons” as widely used in computational neuroscience

(Hodgkin and Huxley, 1952); “kernel functions” as deployed in “Radial Basis

Function” networks (Broomhead and Lowe, 1988) and “Support VectorMachines”

(Boser et al., 1992); “GatedMCPCells,” as deployed in LSTMnetworks (Hochreiter

and Schmidhuber, 1997); “n-tuple” or “RAM” neurons, as used in “Weightless”

neural network architectures (Bledsoe and Browning, 1959; Aleksander and

Stonham, 1979), and “Stochastic Diffusion Processes” (Bishop, 1989) as deployed

in the NESTOR multi-variate connectionist framework (Nasuto et al., 2009).

McCulloch and Pitts (1943) realized (a) that neurons
can receive positive or negative encouragement to fire,
contingent upon the type of their “synaptic connections”
(excitatory or inhibitory) and (b) that in firing the neuron
has effectively performed a “computation”; once the effect of
the excitatory/inhibitory synapses are taken into account, it is
possible to arithmetically determine the net effect of incoming
patterns of “signals” innervating each neuron.

In a simple McCulloch/Pitts (MCP) threshold model,
adaptability comes from representing each synaptic junction by
a variable (usually rational) valued weight Wi, indicating the
degree to which the neuron should react to the ith particular
input (see Figure 1). By convention, positive weights represent
excitatory synapses and negative, inhibitory synapses; the neuron
firing threshold being represented by a variable T. In modern use,
T is usually clamped to zero and a threshold implemented using a
variable “bias” weight, b; typically, a neuron firing9 is represented
by the value+1 and not firing by 0.

Activity at the ith input to an n input neuron is represented by
the symbol Xi and the effect of the ith synapse by a weight Wi,
hence the net effect of the ith input on the ith synapse on the MCP

9“In psychology.. the fundamental relations are those of two valued logic” and

McCulloch and Pitts recognized neuronal firing as equivalent to “representing” a

proposition as TRUE or FALSE (McCulloch and Pitts, 1943).
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cell is thus Xi ×Wi. Thus, the MCP cell is denoted as firing if:

n
∑

i

Xi ×Wi + b ≥ 0 (1)

In a subsequent generalization of the basic MCP neuron, cell
output is defined by a further (typically non-linear) function of
the weighted sum of its input, the neuron’s activation function.

McCulloch and Pitts (1943) proved that if “synapse polarity”
is chosen appropriately, any single pattern of input can be
“recognized” by a suitable network of MCP neurons (i.e., any
finite logical expression can be realized by a suitable network of
McCulloch–Pitts neurons). In other words, the McCulloch–Pitts’
result demonstrated that networks of artificial neurons could be
mathematically specified, which would perform “computations”
of immense complexity and power and in so doing, opened
the door to a form of problem solving based on the design
of appropriate neural network architectures and automatic
(machine) “learning” of appropriate network parameters.

3. EMBEDDINGS IN EUCLIDEAN SPACE

The most commonly used framework for information
representation and processing in artificial neural networks
(via generalized McCulloch/Pitts neurons) is a subspace of
Euclidean space. Supervised learning in this framework is
equivalent to deriving appropriate transformations (learning
appropriate mappings) from training data (problem exemplars;
pairs of Input + “Target Output′′ vectors). The majority of
learning algorithms adjust neuron interconnection weights
according to a specified “learning rule,” the adjustment in a given
time step being a function of a particular training example.

Weight updates are successively aggregated in this manner
until the network reaches an equilibrium, at which point no
further adjustments are made or, alternatively, learning stops
before equilibrium to avoid “overfitting” the training data. On
completion of these computations, knowledge about the training
set is represented across a distribution of final weight values; thus,
a trained network does not possess any internal representation
of the (potentially complex) relationships between particular
training exemplars.

Classical multi-layer neural networks are capable of
discovering non-linear, continuous transformations between
objects or events, but nevertheless they are restricted by
operating on representations embedded in the linear, continuous
structure of Euclidean space. It is, however, doubtful whether
regression constitutes a satisfactory (or the most general) model
of information processing in natural systems.

As Nasuto et al. (1998) observed, the world, and relationships
between objects in it, is fundamentally non-linear; relationships
between real-world objects (or events) are typically far too
messy and complex for representations in Euclidean spaces—
and smooth mappings between them—to be appropriate
embeddings (e.g., entities and objects in the real-world are often
fundamentally discrete or qualitatively vague in nature, in which
case Euclidean space does not offer an appropriate embedding for
their representation).

Furthermore, representing objects in a Euclidean space
imposes a serious additional effect, because Euclidean vectors can
be compared to each other by means of metrics; enabling data to
be compared in spite of any real-life constraints (sensu stricto,
metric rankings may be undefined for objects and relations of the
real world). As Nasuto et al. (1998) highlight, it is not usually
the case that all objects in the world can be equipped with a
“natural ordering relation”; after all, what is the natural ordering
of “banana” and “door”?

It thus follows that classical neural networks are best equipped
only for tasks in which they process numerical data whose
relationships can be reflected by Euclidean distance. In other
words, classical connectionism can be reasonably well-applied
to the same category of problems, which could be dealt with
by various regression methods from statistics; as Francois
Chollet10, in reflecting on the limitations of deep learning,
recently remarked:

“[a] deep learning model is ‘just’ a chain of simple, continuous

geometric transformations mapping one vector space into

another. All it can do is map one data manifold X into another

manifold Y, assuming the existence of a learnable continuous

transform from X to Y, and the availability of a dense sampling

of X: Y to use as training data. So even though a deep learning

model can be interpreted as a kind of program, inversely most

programs cannot be expressed as deep learning models-for most

tasks, either there exists no corresponding practically-sized deep

neural network that solves the task, or even if there exists one, it

may not be learnable . . . most of the programs that one may wish

to learn cannot be expressed as a continuous geometric morphing

of a data manifold” (Chollet, 2018).

Over the last decade, however, ANN technology has developed
beyond performing “simple function approximation” (cf. Multi-
Layer Perceptrons) and deep [discriminative11] classification
(cf. Deep Convolutional Networks), to include new, Generative
architectures12 where—because they can learn to generate any
distribution of data—the variety of potential use cases is huge
(e.g., generative networks can be taught to create novel outputs
similar to real-world exemplars across any modality: images,
music, speech, prose, etc.).

3.1. Autoencoders, Variational
Autoencoders, and Generative Adversarial
Networks
On the right hand side of Figure 2, we see the output of a
neural system, engineered by Terence Broad while studying for
an MSc at Goldsmiths. Broad used a “complex, deep auto-
encoder neural network” to process Blade Runner—a well-
known sci-fi film that riffs on the notion of what is human and

10Chollet is a senior software engineer at Google, who—as the primary author and

maintainer of Keras, the Python open source neural network interface designed

to facilitate fast experimentation with Deep Neural Networks—is familiar with the

problem-solving capabilities of deep learning systems.
11A discriminative architecture—or discriminative classifier without a model—can

be used to “discriminate” the value of the target variable Y , given an observation x.
12A generative architecture can be used to “generate” random instances, either of

an observation and target (x, y), or of an observation x given a target value y.
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FIGURE 2 | Terrence Broad’s Auto-encoding network “dreams” of Bladerunner (from Broad, 2016).

what is machine—building up its own “internal representations”
of that film and then re-rendering these to produce an
output movie that is surprisingly similar to the original
(shown on the left).

In Broad’s dissertation (Broad, 2016), a “Generative
Autoencoder Network” reduced each frame of Ridley Scott’s
Blade Runner to 200 “latent variables” (hidden representations),
then invoked a “decoder network” to reconstruct each frame
just using those numbers. The result is eerily suggestive
of an Android’s dream; the network, working without
human instruction, was able to capture the most important
elements of each frame so well that when its reconstruction
of a clip from the Blade Runner movie was posted to
Vimeo, it triggered a “Copyright Takedown Notice” from
Warner Brothers.

To understand if Generative Architectures are subject to
the Euclidean constraints identified above for classical neural
paradigms, it is necessary to trace their evolution from the
basic Autoencoder Network, through Variational Autoencoders
to Generative Adversarial Networks.

3.1.1. Autoencoder Networks
“Autoencoder Networks” (Kramer, 1991) create a latent (or
hidden), typically much compressed, representation of their
input data. When Autoencoders are paired with a decoder
network, the system can reverse this process and reconstruct
the input data that generates a particular latent representation.
In operation, the Autoencoder Network is given a data input
x, which it maps to a latent representation z, from which
the decoder network reconstructs the data input x′ (typically,
the cost function used to train the network is defined as the
mean squared error between the input x and the reconstruction
x′). Historically, Autoencoders have been used for “feature
learning” and “reducing the dimensionality of data” (Hinton and
Salakhutdinov, 2006), but more recent variants (described below)
have been powerfully deployed to learn “Generative Models”
of data.

3.1.2. Variational Autoencoder Networks
In taking a “variational Bayesian” approach to learning the
hidden representation, “Variational Autoencoder Networks”
(Kingma and Welling, 2013) add an additional constraint,
placing a strict assumption on the distribution of the latent
variables. Variational Autoencoder Networks are capable of both
compressing data instances (like an Autoencoder) and generating
new data instances.

3.1.3. Generative Adversarial Networks
Generative Adversarial Networks (Goodfellow et al.,
2014) deploy two “adversary” neural networks: one, the
Generator, synthesizes new data instances, while the other, the
Discriminator, rates each instance as how likely it is to belong to
the training dataset. Colloquially, the Generator takes the role of
a “counterfeiter” and the Discriminator the role of “the police,”
in a complex and evolving game of cat and mouse, wherein the
counterfeiter is evolving to produce better and better counterfeit
money while the police are getting better and better at detecting
it. This game goes on until, at convergence, both networks have
become very good at their tasks; Yann LeCun, Facebook’s AI
Director of Research, recently claimed them to be “the most
interesting idea in the last ten years in Machine Learning”13.

Nonetheless, as Goodfellow emphasizes (Goodfellow
et al., 2014), the generative modeling framework is most
straightforwardly realized using “multilayer perceptron
models.” Hence, although the functionally of generative
architectures moves beyond the simple function-approximation
and discriminative-classification abilities of classical multi-layer
perceptrons, at heart, in common with all neural networks that
learn, and operate on, functions embedded in Euclidean space14,
they remain subject to the constraints of Euclidean embeddings
highlighted above.

13Quora July 28, 2016 (https://www.quora.com/session/Yann-LeCun/1).
14Including neural networks constructed using alternative “adaptable node”

frameworks (e.g., those highlighted in footnote [8]), where these operate on data

embeddings in Euclidean space.
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FIGURE 3 | The tasks ANNs and ML can perform.

4. PROBLEM SOLVING USING ARTIFICIAL
NEURAL NETWORKS

In analyzing what problems neural networks and machine
learning can solve, Andrew Ng15 suggested that if a task only
takes a few seconds of human judgment and, at its core, merely
involves an association of A with B, then it may well be ripe for
imminent AI automation (see Figure 3).

However, although we can see how we might deploy a
trained neural network in the engineering of solutions to specific,
well-defined problems, such as “Does a given image contain a
representation of a human face?,” it remains unproven if (a) every
human intellectual skill is computable in this way and, if so, (b)
is it possible to engineer an Artificial General Intelligence that
would negate the need to engineer bespoke solutions for each and
every problem.

For example, to master image recognition, an ANN might be
taught using images from ImageNet (a database of more than 14
million photographs of objects that have been categorized and
labeled by humans), but is this how humans learn? In Savage
(2019), Tomaso Poggio, a computational neuroscientist at the
Massachusetts Institute of Technology, observes that, although
a baby may see around a billion images in the first 2 years of life,
only a tiny proportion of objects in the images will be actively
pointed out, named, and labeled.

4.1. On Cats, Classifiers, and
Grandmothers
In 2012, organizers of “The Singularity Summit,” an event
that foregrounds predictions from the like of Kurzweil and

15Adjunct professor at Stanford University and formerly associate professor and

Director of its AI Lab.

Warwick (vis a vis “the forthcoming Technological Singularity”
[sic]), invited Peter Norvig16 to discuss a surprising result from
a Google team that appeared to indicate significant progress
toward the goal of unsupervised category learning in machine
vision; instead of having to engineer a system to recognize
each and every category of interest (e.g., to detect if an image
depicts a human face, a horse, a car, etc.) by training it with
explicitly labeled examples of each class (so-called “supervised
learning”), Le et al. conjectured that it might be possible to
build high-level image classifiers using only un-labeled images,
”... we would like to understand if it is possible to build a face
detector from only un-labeled images. This approach is inspired by
the neuro-scientific conjecture that there exist highly class-specific
neurons in the human brain, generally and informally known as
“grandmother neurons.”

In his address, Norvig (2012) described what happened when
Google’s “Deep Brain” systemwas “let loose” on unlabeled images
obtained from the Internet:

“.. and so this is what we did. We said we’re going to train this,

we’re going to give our system tenmillion YouTube videos, but for

the first experiment, we’ll just pick out one frame from each video.

And, you sorta know what YouTube looks like.. We’re going to

feed in all those images and then we’re going to ask it to represent

the world. So what happened? Well, this is YouTube, so there will

be cats.

And what I have here is a representation of two of the top

level features (see Figures 4, 5). So the images come in, they’re

compressed there, we build up representations of what’s in all

16Peter is Director of Research at Google and, even though also serving an adviser

to “The Singularity University,” clearly has reservations about the notion: “.. this

idea, that intelligence is the one thing that amplifies itself indefinitely, I guess, is what

I’m resistant to ..” [Guardian 23/11/12].
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FIGURE 4 | Reconstructed archetypal cat (extracted from YouTube video of

Peter Norvig’s address to the 2012 Singularity summit).

FIGURE 5 | Reconstructed archetypal face (extracted from YouTube video of

Peter Norvig’s address to the 2012 Singularity summit).

the images. And then at the top level, some representations come

out. These are basis functions—features that are representing the

world—and the one on the left here is sensitive to cats. So these

are the images that most excited that this node in the network;

that ‘best matches’ to that node in the network. And the other one

is a bunch of faces, on the right. And then there’s, you know, tens

of thousands of these nodes and each one picks out a different

subset of the images that it matches best.

So, one way to represent “what is this feature?” is to say this one is

“cats” and this one is "people,” although we never gave it the words

“cats” and “people,” it’s able to pick those out. We can also ask this

feature, this neuron or node in the network, “What would be the

best possible picture that you would be most excited about?” And,

by process of mathematical optimization, we can come up with

that picture (Figure 4). And here they are and maybe it’s a little

bit hard to see here, but, uh, that looks like a cat pretty much.

And Figure 5 definitely looks like a face. So the system, just by

observing the world, without being told anything, has invented

these concepts” (Norvig, 2012).

At first sight, the results from Le et al. appear to confirm this
conjecture. Yet, within a year of publication, another Google
team—this time led by Szegedy et al. (2013)—showed how,
in all the Deep Learning networks they studied, apparently
successfully trained neural network classifiers could be confused
into misclassifying by “adversarial examples17” (see Figure 6).
Even worse, the experiments suggested that the “adversarial
examples are ‘somewhat universal’ and not just the results of
overfitting to a particular model or to the specific selection of the
training set” (Szegedy et al., 2013).

Subsequently, in 2018 Athalye et al. demonstrated randomly
sampled poses of a 3D-printed turtle, adversarially perturbed,
being misclassified as a rifle at every viewpoint; an unperturbed
turtle being classified correctly as a turtle almost 100% of the time
(Athalye et al., 2018) (Figure 7). Most recently, Su et al. (2019)
proved the existence of yet more extreme, “one-pixel” forced
classification errors.

When, in these examples, a neural network incorrectly
categorizes an adversarial example (e.g., a slightly modified toy
turtle, as a rifle; a slightly modified image of a van, as an ostrich),
a human still sees the “turtle as a turtle” and the “van as a
van,” because we understand what turtles and vans are and what
semantic features typically constitute them; this understanding
allows us to “abstract away” from low-level arbitrary or incidental
details. As Yoshua Bengio observed (in Heaven, 2019), “We
know from prior experience which features are the salient ones

. . . And that comes from a deep understanding of the structure
of the world.”

Clearly, whatever engineering feat Le’s neural networks
had achieved in 2013, they had not proved the existence
of “Grandmother cells,” or that Deep Neural Networks
understood—in any human-like way—the images they appeared
to classify.

5. AI DOES NOT UNDERSTAND

Figure 8 shows a screen-shot from an iPhone after Siri, Apple’s AI
“chat-bot,” was asked to add a “liter of books” to a shopping list;
Siri’s response clearly demonstrates that it does not understand
language, and specifically the ontology of books and liquids, in
anything like the same way that my 5-year-old daughter does.
Furthermore, AI agents catastrophically failing to understand
the nuances of everyday language is not a problem restricted
to Apple.

5.1. Microsoft’s XiaoIce Chatbot
With over 660 million active users since 2014, each spending an
average 23 conversation turns per engagement,Microsoft XiaoIce
is the most popular social chatbot in the world (Zhou et al., 2018).

17Mathematically constructed image that appeared [to human eyes] “identical” to

those it correctly classified.
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FIGURE 6 | From Szegedy et al. (2013): Adversarial examples generated for AlexNet. Left: A correctly predicted sample; center: difference between correct image,

and image predicted incorrectly; right: an adversarial example. All images in the right column are predicted to be an ostrich [Struthio Camelus].

FIGURE 7 | From Athalye et al. (2018): A 3D printed toy-turtle, originally classified correctly as a turtle, was “adversarially perturbed” and subsequently misclassified as

a rifle at every viewpoint tested.

In this role, XiaoIce serves as an 18-year old, female-gendered
AI “companion”—always reliable, sympathetic, affectionate,
knowledgeable but self-effacing, with a lively sense of humor—
endeavoring to form “meaningful” emotional connections with
her human “users,” the depth of these connections being revealed
in the conversations between XiaoIce and the users. Indeed,
the ability to establish “long-term” engagement with human
users distinguishes XiaoIce from other, recently developed,
AI-controlled Personal Assistants (AI-PAs), such as Apple Siri,
Amazon Alexa, Google Assistant, and Microsoft Cortana.

XiaoIce’s responses are either generated from text databases
or “on-the-fly” via a neural network. Aware of the potential for
machine learning in XiaoIce to go awry, the designers of XiaoIce
note that they:

“... carefully introduce safeguards along with the machine

learning technology to minimize its potential bad uses and

maximize its good for XiaoIce. Take XiaoIce’s Core Chat as an

example. The databases used by the retrieval-based candidate

generators and for training the neural response generator have
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FIGURE 8 | Siri: On “buying” books.

been carefully cleaned, and a hand-crafted editorial response

is used to avoid any improper or offensive responses. For the

majority of task-specific dialogue skills, we use hand-crafted

policies and response generators to make the system’s behavior

predictable” (Zhou et al., 2018).

XiaoIce was launched on May 29, 2014 and by August 2015 had
successfully engaged in more than 10 billion conversations with
humans across five countries.

5.2. We Need to Talk About Tay
Following the success of XiaoIce in China, Peter Lee (Corporate
Vice President, Microsoft Healthcare) wondered if “an AI
like this be just as captivating in a radically different cultural
environment?” and the company set about re-engineering XiaoIce
into a new chatbot, specifically created for 18- to 24- year-olds in
the U.S. market.

As the product was developed, Microsoft planned and
implemented additional “cautionary” filters and conducted
extensive user studies with diverse user groups: “stress-testing”

the new system under a variety of conditions, specifically
to make interacting with it a positive experience. Then, on
March 23, 2016, the company released “Tay”—“an experiment
in conversational understanding”—onto Twitter, where it needed
less than 24 h exposure to the “twitterverse,” to fundamentally
corrupt their “newborn AI child.” As TOMO news reported18:

“REDMOND, WASHINGTON: Microsoft’s new artificial

intelligence chatbot had an interesting first day of class after

Twitter’s users taught it to say a bunch of racist things. The

verified Twitter account called Tay was launched on Wednesday.

The bot was meant to respond to users’ questions and emulate

casual, comedic speech patterns of a typical millennial. According

to Microsoft, Tay was ‘designed to engage and entertain people

where they connect with each other online through casual and

playful conversation. The more you chat with Tay the smarter

she gets, so the experience can be more personalized for you’.

Tay uses AI to learn from interactions with users, and then

uses text input by a team of staff including comedians. Enter

trolls and Tay quickly turned into a racist dropping n-bombs,

supporting white-supremacists and calling for genocide. After

the enormous backfire, Microsoft took Tay offline for upgrades

and is deleting some of the more offensive tweets. Tay hopped off

Twitter with the message, ‘c u soon humans need sleep now so

many conversations today thx”’ (TOMO News: March 25, 2016).

One week later, on March 30, 2016, the company released a
“patched” version, only to see the same recalcitrant behaviors
surface again; causing TAY to be taken permanently off-line and
resulting in significant reputational damage to Microsoft. How
did the engineers get things so badly wrong19?

The reason, as Liu (2017) suggests, is that Tay is fundamentally
unable to truly understand either the meaning of the words
she processes or the context of the conversation. AI and neural
networks enabled Tay to recognize and associate patterns, but the
algorithms she deployed could not give Tay “an epistemology.”
Tay was able to identify nouns, verbs, adverbs, and adjectives,
but had no idea “who Hitler was” or what “genocide” actually
means (Liu, 2017).

In contrast to Tay, and moving far beyond the reasoning
power of her architecture, Judea Pearl, who pioneered the
application of Bayesian Networks (Pearl, 1985) and who once
believed “they held the key to unlocking AI” (Pearl, 2018, p.
18), now offers causal reasoning as the missing mathematical
mechanism to computationally unlock meaning-grounding, the
Turing test and eventually “human level [Strong] AI” (Pearl,
2018, p. 11).

5.3. Causal Cognition and “Strong AI”
Judea Pearl believes that we will not succeed in realizing strong
AI until we can create an intelligence like that deployed by a

18See https://www.youtube.com/watch?v=IeF5E56lmk0.
19As Leigh Alexander pithily observed, “How could anyone think that creating a

young woman and inviting strangers to interact with her on social media wouldmake

Tay ’smarter’? How can the story of Tay be met with such corporate bafflement, such

late apology? Why did no one at Microsoft know right from the start that this would

happen, when all of us—female journalists, activists, game developers and engineers

who live online every day and—are talking about it all the time?” (Guardian, March

28, 2016).
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3-year-old child and to do this we will need to equip systems
with a “mastery of causation.” As Judea Pearl sees it, AI needs
to move away from neural networks and mere “probabilistic
associations,” such that machines can reason [using appropriate
causal structure modeling] how the world works20, e.g., the
world contains discrete objects and they are related to one
another in various ways on a “ladder of causation” corresponding
to three distinct levels of cognitive ability—seeing, doing, and
imagining (Pearl and Mackenzie, 2018):

• Level one seeing: Association: The first step on the
ladder invokes purely statistical relationships. Relationships
fully encapsulated by raw data (e.g., a customer who
buys toothpaste is more likely to buy floss); for Pearl
“machine learning programs (including those with deep neural
networks) operate almost entirely in an associational mode.”

• Level two doing: Intervention: Questions on level two are not
answered by “passively collected” data alone, as they invoke an
imposed change in customer behavior (e.g., What will happen
to my headache if I take an aspirin?), and hence additionally
require an appropriate “causal model”: if our belief (our
“causal model”) about aspirin is correct, then the “outcome”
will change from “headache” to “no headache.”

• Level three imagining: Counterfactuals: These are at the
top of the ladder because they subsume interventional
and associational questions, necessitating “retrospective
reasoning” (e.g., “My headache is gone now, but why? Was
it the aspirin I took? The coffee I drank? The music being
silenced? . . . ”).

Pearl firmly positions most animals [and machine learning
systems] on the first rung of the ladder, effectivelymerely learning
from association. Assuming they act by planning (and not mere
imitation) more advanced animals (“tool users” that learn the
effect of “interventions”) are found on the second rung. However,
the top rung is reserved for those systems that can reason
with counterfactuals to “imagine” worlds that do not exist and
establish theory for observed phenomena (Pearl and Mackenzie,
2018, p. 31).

Over a number of years Pearl’s causal inference methods have
found ever wider applicability and hence questions of cause-
and-effect have gained concomitant importance in computing.
In 2018, Microsoft Research, as a result of both their “in-
house” experience of causal methods21 and the desire to better
facilitate their more widespread use22, released “DoWhy”—a
Python library implementing Judea Pearl’s “Do calculus for
causal inference23.”

20“Deep learning has instead given us machines with truly impressive abilities but no

intelligence. The difference is profound and lies in the absence of a model of reality”

(Pearl and Mackenzie, 2018, p. 30).
21Cf. Olteanu et al. (2017) and Sharma et al. (2018).
22As Pearl (2018) highlighted, “the major impediment to achieving accelerated

learning speeds as well as human level performance should be overcome by removing

these barriers and equipping learning machines with causal reasoning tools. This

postulate would have been speculative 20 years ago, prior to the mathematization of

counterfactuals. Not so today.”
23https://www.microsoft.com/en-us/research/blog/dowhy-a-library-for-causal-

inference/

5.3.1. A “Mini” Turing Test
All his life Judea Pearl has been centrally concerned with
answering a question he terms the “Mini Turing Test” (MTT):
“How can machines (and people) represent causal knowledge in
a way that would enable them to access the necessary information
swiftly, answer questions correctly, and do it with ease, as a
3-year-old child can?” (Pearl and Mackenzie, 2018, p. 37).

In the MTT, Pearl imagines a machine presented with a
[suitably encoded] story and subsequently being asked questions
about the story pertaining to causal reasoning. In contrast
to Stefan Harnad’s “Total Turing Test” (Harnad, 1991), it
stands as a “mini test” because the domain of questioning is
restricted (i.e., specifically ruling out questions engaging aspects
of cognition such as perception, language, etc.) and because
suitable representations are presumed given (i.e., the machine
does not need to acquire the story from its own experience).

Pearl subsequently considers if the MTT could be trivially
defeated by a large lookup table storing all possible questions and
answers24—there being no way to distinguish such a machine
from one that generates answers in a more “human-like” way—
albeit in the process misrepresenting the American philosopher
John Searle, by claiming that Searle introduced this “cheating
possibility” in the CRA. As will be demonstrated in the following
section, in explicitly targeting any possible AI program25, Searle’s
argument is a good deal more general.

In any event, Pearl discounts the “lookup table” argument—
asserting it to be fundamentally flawed as it “would need
more entries than the number of atoms in the universe”
to implement26—instead suggesting that, to pass the MTT
an efficient representation and answer-extraction algorithm is
required, before concluding “such a representation not only exists
but has childlike simplicity: a causal diagram . . . these models pass
the mini-Turing test; no other model is known to do so” (Pearl and
Mackenzie, 2018, p. 43).

Then in 2019, even though discovering and exploiting “causal
structure” from data had long been a landmark challenge for AI
labs, a team at DeepMind successfully demonstrated “a recurrent
network with model-free reinforcement learning to solve a range
of problems that each contain causal structure” (Dasgupta et al.,
2019).

But do computational “causal cognition” systems really deliver
machines that genuinely understand and able to seamlessly
transfer knowledge from one domain to another? In the
following, I briefly review three a priori arguments that purport
to demonstrate that “computation” alone can never realize

24Cf. Block (1981).
25Many commentators still egregiously assume that, in the CRA, Searle wasmerely

targeting Schank and Abelson’s approach, etc., but Searle (1980) carefully specifies

that “The same arguments would apply to . . . any Turing machine simulation

of human mental phenomena” . . . concluding that “.... whatever purely formal

principles you put into the computer, they will not be sufficient for understanding,

since a human will be able to follow the formal principles without understanding

anything.”
26Albeit partial input-response lookup tables have been successfully embedded [as

large databases] in several conversational “chatbot” systems (e.g., Mitsuku, XiaoIce,

Tay, etc.).
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human-like understanding, and, a fortiori, no computational AI
system will ever fully “grasp” human meaning.

6. THE CHINESE ROOM

In the late 1970s, the AI lab at Yale secured funding for visiting
speakers from the Sloan foundation and invited the American
philosopher John Searle to speak on Cognitive Science. Before the
visit, Searle read Schank and Abelson’s “Scripts, Plans, Goals, and
Understanding: An Inquiry into Human Knowledge Structures”
and, on visiting the lab, met a group of researchers designing AI
systems which, they claimed, actually understood stories on the
basis of this theory. Not such complex works of literature as “War
and Peace,” but slightly simpler tales of the form:

Jack and Jill went up the hill to fetch a pail of water. Jack fell down

and broke his crown and Jill came tumbling after.

And in the AI lab their computer systems were able to respond
appropriately to questions about such stories. Not complex social
questions of “gender studies,” such as:

Q. Why did Jill come “tumbling” after?

but slightly more modest enquiries, along the lines of:

Q. Who went up the hill?

A. Jack went up the hill.

Q. Why did Jack go up the hill?

A. To fetch a pail of water.

Searle was so astonished that anyone might seriously entertain
the idea that computational systems, purely on the basis of the
execution of appropriate software (however complex), might
actually understand the stories that, even prior to arriving at
Yale, he had formulated an ingenious “thought experiment”
which, if correct, fatally undermines the claim that machines can
understand anything, qua computation.

Formally, the thought experiment— subsequently to gain
renown as “The Chinese Room Argument” (CRA), Searle (1980)—
purports to show the truth of the premise “syntax is not sufficient
for semantics,” and forms the foundation to his well-known
argument against computationalism27:

1. Syntax is not sufficient for semantics.
2. Programs are formal.
3. Minds have content.
4. Therefore, programs are not minds and computationalism

must be false.

To demonstrate that “syntax is not sufficient for semantics,”
Searle describes a situation where he is locked in a room in
which there are three stacks of papers covered with “squiggles and
squoggles” (Chinese ideographs) that he does not understand.
Indeed, Searle does not even recognize the marks as being
Chinese ideographs, as distinct from say Japanese or simply
meaningless patterns. In the room, there is also a large book of

27That the essence of “[conscious] thinking” lies in computational processes.

rules (written in English) that describe an effective method (an
“algorithm”) for correlating the symbols in the first pile with
those in the second (e.g., by their form); other rules instruct
him how to correlate the symbols in the third pile with those in
the first two, also specifying how to return symbols of particular
shapes, in response to patterns in the third pile.

Unknown to Searle, people outside the room call the first pile
of Chinese symbols, “the script”; the second pile “the story,” the
third “questions about the story,” and the symbols he returns they
call “answers to the questions about the story.” The set of rules he
is obeying, they call “the program.”

To complicate matters further, the people outside the room
also give Searle stories in English and ask him questions about
these stories in English, to which he can reply in English.

After a while Searle gets so good at following the instructions,
and the AI scientists get so good at engineering the rules that
the responses Searle delivers to the questions in Chinese symbols
become indistinguishable from those a native Chinese speaker
might give. From an external point of view, the answers to the
two sets of questions, one in English and the other in Chinese, are
equally good (effectively Searle, in his Chinese room, has “passed
the [unconstrained] Turing test”). Yet in the Chinese language
case, Searle behaves “like a computer” and does not understand
either the questions he is given or the answers he returns, whereas
in the English case, ex hypothesi, he does.

Searle trenchantly contrasts the claim posed by members of
the AI community—that any machine capable of following such
instructions can genuinely understand the story, the questions,
and answers—with his own continuing inability to understand a
word of Chinese.

In the 39 years since Searle published “Minds, Brains, and
Programs,” a huge volume of literature has developed around the
Chinese room argument (for an introduction, see Preston and
Bishop, 2002); with comment ranging from Selmer Bringsjord,
who asserts the CRA to be “arguably the 20th century’s greatest
philosophical polarizer,” to Georges Rey, who claims that in his
definition of Strong AI, Searle, “burdens the [Computational
Representational Theory of Thought (Strong AI)] project with
extraneous claims which any serious defender of it should reject.”
Although it is beyond the scope of this article to review the merit
of CRA, it has, unquestionably, generated much controversy.

Searle, however, continues to insist that the root of confusion
around the CRA (e.g., as demonstrated in the “systems reply”
from Berkeley28) is simply a fundamental confusion between
epistemic (e.g., how wemight establish the presence of a cognitive
state in a human) and ontological concerns (how we might seek
to actually instantiate that state by machine).

An insight that lends support to Searle’s contention comes
from the putative phenomenology of Berkeley’s Chinese room
systems. Consider the responses of two such systems—
(i) Searle-in-the-room interacting in written Chinese (via the
rule-book/program), and (ii) Searle interacting naturally in written
English—in the context where (a) a joke is made in Chinese, and
(b) the same joke is told in English.

28The systems reply: “While it is true that the individual person who is locked in

the room does not understand the story, the fact is that he is merely part of a whole

system, and the system does understand the story” (Searle, 1980).
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In the former case, although Searle may make appropriate
responses in Chinese (assuming he executes the rule-book
processes correctly), he will never “get the joke” nor “feel the
laughter” because he, John Searle, still does not understand
a single word of Chinese. However, in the latter case,
ceteris paribus, he will “get the joke,” find it funny and
respond appropriately, because he, John Searle, genuinely does
understand English.

There is a clear “ontological distinction” between these
two situations: lacking an essential phenomenal component of
understanding, Searle in the Chinese-room-system can never
“grasp” the meaning of the symbols he responds to, but merely
act out an “as-if ” understanding29 of the stories; as Stefan Harnad
echoes in “Lunch Uncertain”30, [phenomenal] consciousness
must have something very fundamental to do with meaning
and knowing:

“[I]t feels like something to know (ormean, or believe, or perceive,

or do, or choose) something. Without feeling, we would just be

grounded Turing robots, merely acting as if we believed, meant,

knew, perceived, did or chose” (Harnad, 2011).

7. GÖDELIAN ARGUMENTS ON
COMPUTATION AND UNDERSTANDING

Although “understanding” is disguised by its appearance as a
“simple and common-sense quality”, if it is, so the Oxford
polymath Sir Roger Penrose suggests, it has to be something non-
computational; otherwise, it must fall prey to a bare form of the
“Gödelian argument” (Penrose, 1994, p. 150).

Gödel’s first incompleteness theorem famously states that “. . .
any effectively generated theory capable of expressing elementary
arithmetic cannot be both consistent and complete. In particular,
for any consistent, effectively generated formal theory F that proves
certain basic arithmetic truths, there is an arithmetical statement
that is true, but not provable in the theory.” The resulting true,
but unprovable, statement G(ǧ) is often referred to as “the Gödel
sentence” for the theory31.

Arguments foregrounding limitations of mechanism (qua
computation) based on Gödel’s theorem typically endeavor to
show that, for any such formal system F, humans can find the
Gödel sentence G(ǧ), while the computation/machine (being
itself bound by F) cannot.

The Oxford philosopher John Lucas primarily used Gödel’s
theorem to argue that an automaton cannot replicate the
behavior of a human mathematician (Lucas, 1961, 1968), as there

29Well-engineered computational systems exhibit “as-if ” understanding because

they have been designed by humans to be understanding systems. Cf. The “as-

if-ness” of thermostats, carburettors, and computers to “perceive,” “know” [when

to enrich the fuel/air mixture], and “memorize” stems from the fact they were

designed by humans to perceive, know, and memorize; the qualities are merely “as-

if perception,” “as-if knowledge,” “as-if memory” because they are dependent on

human perception, human knowledge, and human memory.
30Cf. Harnad’s review of Luciano Floridi’s “Philosophy of Information” (TLS:

21/10/2011).
31NB. It must be noted that there are infinitely many other statements in the theory

that share with the Gödel sentence the property of being true, but not provable,

from the formal theory.

would be some mathematical formula which it could not prove,
but which the human mathematician could both see, and show,
to be true; essentially refuting computationalism. Subsequently,
Lucas’ argument was critiqued (Benacerraf, 1967), before being
further developed, and popularized, in a series of books and
articles by Penrose (1989, 1994, 1996, 1997, 2002), and gaining
wider renown as “The Penrose–Lucas argument.”

In 1989, and in a strange irony given that he was once a
teacher and then a colleague of Stephen Hawking, Penrose (1989)
published “The Emperor’s New Mind,” in which he argued that
certain cognitive abilities cannot be computational; specifically,
“the mental procedures whereby mathematicians arrive at their
judgments of truth are not simply rooted in the procedures of some
specific formal system” (Penrose, 1989, p. 144); in the follow-up
volume, “Shadows of the Mind” (Penrose, 1994), fundamentally
concluding: “G:Humanmathematicians are not using a knowably
sound argument to ascertain mathematical truth” (Penrose, 1989,
p. 76).

In “Shadows of the Mind” Penrose puts forward two distinct
lines of argument; a broad argument and a more nuanced one:

• The “broad” argument is essentially the “core” Penrose–
Lucas position (in the context of mathematicians’ belief that
they really are “doing what they think they are doing,”
contra blindly following the rules of an unfathomably
complex algorithm), such that “the procedures available to
the mathematicians ought all to be knowable.” This argument
leads Penrose to conclusion G (above).

• More nuanced lines of argument, addressed at those who take
the view that mathematicians are not “really doing what they
think they are doing,” but are merely acting like Searle in the
Chinese room and blindly following the rules of a complex,
unfathomable rule book. In this case, as there is no way to
know what the algorithm is, Penrose instead examines how
it might conceivably have come about, considering (a) the
role of natural selection and (b) some form of engineered
construction (e.g., neural network, evolutionary computing,
machine learning, etc.); a discussion of these lines of argument
is outside the scope of this paper.

7.1. The Basic Penrose’ Argument
(“Shadows of the Mind,” p. 72–77)
Consider a to be a “knowably sound” sound set of rules (an
effective procedure) to determine if C(n)—the computation C on
the natural number n (e.g., “Find an odd number that is the sum of
n even numbers”)—does not stop. Let A be a formalization of all
such effective procedures known to human mathematicians. By
definition, the application of A terminates iff C(n) does not stop.
Now, consider a human mathematician continuously analyzing
C(n) using the effective procedures, A, and only halting analysis
if it is established that C(n) does not stop.

NB: A must be “knowably sound” and cannot be wrong if it
decides that C(n) does not stop because, Penrose claims, if A was
“knowably sound” and if any of the procedures in A were wrong,
the error would eventually be discovered.

Computations of one parameter, n, can be enumerated
(listed): C0(n),C1(n),C2(n) . . .Cp(n), where Cp(n) is the pth
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computation on n (i.e., it defines the pth computation of one
parameter n). Hence A(p, n) is the effective procedure that, when
presented with p and n, attempts to discover if Cp(n) will not halt.
If A(p, n) ever halts, then we know that Cp(n) does not halt.

Given the above, Penrose’ simple Gödelian argument can be
summarized as follows:

1. If A(p, n) halts, then Cp(n) does not halt.
2. Now consider the “Self-Applicability Problem” (SAP), by

letting p = n in statement (7.1) above; thus:
3. If A(n, n) halts, then Cn(n) does not halt.
4. But A(n, n) is a function of one natural number, n and hence

must be found in the enumeration of C. Let us assume it
is found at position k [i.e., it is the kth computation of one
parameter Ck(n)]; thus:

5. A(n, n) = Ck(n).
6. Now, consider the particular computation where n = k, i.e.,

substituting n = k into statement (7.1) above; thus:
7. A(k, k) = Ck(k).
8. And rewriting (7.1) with n = k; thus:
9. If A(k, k) halts, then Ck(k) does not halt.
10. But substituting from (7.1) into (7.1), we get the following;

thus:
11. If Ck(k) halts, then Ck(k) does not halt, which clearly leads to

contradiction if Ck(k) halts.
12. Hence from Equation (7.1) we know that if A is sound (and

there is no contradiction), then Ck(k) cannot halt.
13. However, A cannot itself signal (7.1) [by halting] because

(7.1): A(k, k) = Ck(k). If Ck(k) cannot halt, then A(k, k)
cannot either.

14. Furthermore, if A exists and is sound, then we know Ck(k)
cannot halt; however, A is provably incapable of ascertaining
this, because we also know [from statement (7.1)] that A
halting [to signal that Ck(k) cannot halt] would lead to
contradiction.

15. So, if A exists and is sound, we know [from statement (7.1)]
that Ck(k) cannot halt, and hence we know something [via
statement (7.1)] that A is provably unable to ascertain (7.1).

16. Hence A— the formalization of all procedures known to
mathematicians—cannot encapsulate human mathematical
understanding.

In other words, the human mathematician can “see” that the
Gödel Sentence is true for consistent F, even though the
consistent F cannot prove G(ǧ).

Arguments targeting computationalism on the basis of
Gödelian theory have been vociferously critiqued ever since
they were first made32, however discussion—both negative and
positive—still continues to surface in the literature33 and detailed
review of their absolute merit falls outside the scope of this work.
In this context, it is sufficient simply to note, as the philosopher
John Burgess wryly observed, that the Penrose–Lucas thesis may
be fallacious but “logicians are not unanimously agreed as to
where precisely the fallacy in their argument lies” (Burgess, 2000).

32Lucas maintains a web page http://users.ox.ac.uk/~jrlucas/Godel/referenc.html

listing over 50 such criticisms; see also Psyche (1995) for extended peer

commentary specific to the Penrose version.
33Cf. Bringsjord and Xiao (2000) and Tassinari and D’Ottaviano (2007).

Indeed, Penrose, in response to a volume of peer commentary on
his argument (Psyche, 1995), “was struck by the fact that none of
the present commentators has chosen to dispute my conclusion G:”
Penrose (1996).

Perhaps reflecting this, after a decade of robust international
debate on these ideas, in 2006 Penrose was honored with an
invitation to present the opening public address at “Horizons
of truth,” the Gödel centenary conference at the University of
Vienna; for Penrose, Gödelian arguments continue to suggest
human consciousness cannot be realized by algorithm; there
must be a “noncomputational ingredient in human conscious
thinking” (Penrose, 1996).

8. CONSCIOUSNESS, COMPUTATION,
AND PANPSYCHISM

Figure 9 shows Professor Kevin Warwick’s “Seven Dwarves”
cybernetic learning robots in the act of moving around a small
coral, “learning” not to bump into each other. Given that (i)
in “learning,” the robots developed individual behaviors and (ii)
their neural network controllers used approximately the same
number of “neurons” as found in the brain of a slug, Warwick
has regularly delighted in controversially asserting that the robots
were “as conscious as a slug” and that it is only “human bias”
(human chauvinism) that has stopped people from realizing
and accepting this Warwick (2002). Conversely, even as a
fellow cybernetician and computer scientist, I have always found
such remarks—that the mechanical execution of appropriate
computation [by a robot] will realize consciousness—a little
bizarre, and eventually derived the following, a priori, argument
to highlight the implicit absurdness of such claims.

The Dancing with Pixies (DwP) reductio ad absurdum
(Bishop, 2002b) is my attempt to target any claim that machines
(qua computation) can give rise to raw sensation (phenomenal
experience), unless we buy into a very strange form of panpsychic
mysterianism. Slightly more formally, DwP is a simple reductio
ad absurdum argument to demonstrate that if [(appropriate)
computations realize phenomenal sensation in machine], then
(panpsychism holds). If the DwP is correct, then we must either
accept a vicious form of panpsychism (wherein every open
physical system is phenomenally conscious) or reject the assumed
claim (computational accounts of phenomenal consciousness).
Hence, because panpsychism has come to seem an implausible
world view34, we are obliged to reject any computational account
of phenomenal consciousness.

At its foundation, the core DwP reductio (Bishop, 2002b)
derives from an argument by Hilary Putnam, first presented
in the Appendix to “Representation and Reality” (Putnam,
1988); however, it is also informed by Maudlin (1989) (on
computational counterfactuals), Searle (1990) (on software
isomorphisms) and subsequent criticism from Chrisley (1995),
Chalmers (1996) and Klein (2018)35. Subsequently, the core DwP

34Framed by the context of our immense scientific knowledge of the closed

physical world, and the corresponding widespread desire to explain everything

ultimately in physical terms.
35For early discussion on these themes, see “Minds and Machines,” 4: 4, “What is

Computation?,” November 1994.
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FIGURE 9 | Kevin Warwick’s “Seven Dwarves”: neural network controlled robots.

argument has been refined, and responses to various criticisms
of it presented, across a series of papers (Bishop, 2002a,b, 2009,
2014). For the purpose of this review, however, I merely present
the heart of the reductio.

In the following discussion, instead of seeking to justify the
claim from Putnam (1988) that “every ordinary open system is a
realization of every abstract finite automaton” (and hence that,
“psychological states of the brain cannot be functional states of a
computer”), I will show that, over any finite time period, every
open physical system implements the particular execution trace
[of state transitions] of a computational system Q, operating on
known input I. This result leads to panpsychism that is clear
as equating Q(I) to a specific computational system (that is
claimed to instantiate phenomenal experience as it executes),
and following Putnam’s state-mapping procedure, an identical
execution trace of state transitions (and ex hypothesi phenomenal
experience) can be realized in any open physical system.

8.1. The Dancing With Pixies (DwP)
Reductio ad Absurdum
Perhaps you have seen an automaton at a museum or on
television. “The Writer” is one of three surviving automata from
the 18th century built by Jaquet Droz and was the inspiration for
the movie Hugo; it still writes today (see Figure 10). The complex
clockwork mechanism seemingly brings the automaton to life as
it pens short (“pre-programmed”) phrases. Such machines were
engineered to follow through a complex sequence of operations—
in this case, to write a particular phrase—and to early-eyes
at least, and even though they are insensitive to real-time
interactions, appeared almost sentient; uncannily36 life-like in
their movements.

36Sigmund Freud first introduced the concept of “the uncanny” in his 1919

essay “Das Unheimliche” (Freud, 1919), which explores the eeriness of dolls and

waxworks; subsequently, in aesthetics, “the uncanny” highlights a hypothesized

relationship between the degree of an object’s resemblance to a human being and

the human emotional response to such an object. The notion of the “uncanny”

predicts humanoid objects that imperfectly resemble real humans, may provoke

eery feelings of revulsion, and dread in observers (MacDorman and Ishiguro,

2006). Mori (2012) subsequently explored this concept in robotics through the

notion of “the uncanny valley.” Recently, the notion of the uncanny has been

critically explored through the lens of feminist theory and contemporary art

practice, for example by Alexandra Kokoli who, in focusing on Lorraine O’Grady

In his 1950 paper Computing Machinery and Intelligence,
Turing (1950) described the behavior of a simple physical
automaton—his “Discrete State Machine.” This was a simple
device with one moving arm, like the hour hand of a
clock; with each tick of the clock Turing conceived the
machine cycling through the 12 o’clock, 8 o’clock, and 4
o’clock positions. Turing (1950) showed how we can describe
the state evolution of his machine as a simple Finite State
Automaton (FSA).

Turing assigned the 12 o’clock (noon/midnight) arm position
to FSA state (machine-state) Q1; the 4 o’clock arm position
to FSA state Q2 and the 8 o’clock arm position to FSA state
Q3. Turing’s mapping of the machine’s physical arm position
to a logical FSA (computational) state is arbitrary (e.g., Turing
could have chosen to assign the 4 o’clock arm position to
FSA state Q1)

37. The machine’s behavior can now be described
by a simple state-transition table: if the FSA is in state Q1,
then it goes to FSA state Q2; if in FSA state Q2, then it
goes to Q3; if in FSA state, then Q3 goes to Q1. Hence,
with each clock tick the machine will cycle through FSA
states Q1,Q2,Q3,Q1,Q2,Q3,Q1,Q2,Q3, . . . etc. (as shown in
Figure 11).

To see how Turing’s machine could control Jaquet Droz’
Writer automaton, we simply need to ensure that when the FSA
is in a particular machine state, a given action is caused to occur.
For example, if the FSA is in FSA state Q1 then, say, a light might
be made to come on, or The Writer’s pen be moved. In this way,
complex sequences of actions can be “programmed.”

Now, what is perhaps not so obvious is that, over any given
time-period, we can fully emulate Turing’s machine with a simple
digital counter (e.g., a digital milometer); all we need to do is to
map the digital counter state C to the appropriate FSA state Q. If
the counter is in state C0 = {000000}, then we map to FSA state
Q1; if it is C1 = {000001}, then we map to FSA state Q2, {000002}
→ Q3, {000003}→ Q1, {000004}→ Q2, {000005}→ Q3, etc.

performances as a “black feminist killjoy,” stridently calls out “the whiteness and

sexism of the artworld” (Kokoli, 2016).
37In any electronic digital circuit, it is an engineering decision, contingent on the

type of logic used—TTL, ECL, CMOS, etc.—what voltage range corresponds to a

logical TRUE value and what range to a logical FALSE.
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FIGURE 10 | Photograph of Jaquet Droz’ The Writer [image screenshot from BBC4 Mechanical Marvels Clockwork Dreams: The Writer (2013)].

FIGURE 11 | Turing’s discrete state machine.

Thus, if the counter is initially in state C0 = {000000}, then,
over the time interval [t = 0 . . . t = 5], it will reliably transit
states {000000 → 000001 → 000002 → 000003 → 000004 →

000005} which, by applying the Putnam mapping defined above,

generates the Turing FSA state sequence: {Q1 → Q2 → Q3 →

Q1 → Q2 → Q3} over the interval [t = 0 . . . t = 5]. In this
manner, any input-less FSA can be realized by a [suitably large]
digital counter.
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Furthermore, sensu stricto, all real computers (machines with
finite storage) are Finite StateMachines38 and so a similar process
can be applied to any computation realized by a PC. However,
before looking to replace your desktop machine with a simple
digital counter, keep in mind that a FSA without input is an
extremely trivial device (as is evidenced by the ease in which
it can be emulated by a simple digital counter), merely capable
of generating a single unbranching sequence of states ending in
a cycle, or at best in a finite number of such sequences (e.g.,
{Q1 → Q2 → Q3 → Q1 → Q2 → Q3}, etc.).

However, Turing also described the operation of a discrete
state machine with input in the form of a simple lever-brake
mechanism, which could be made to either lock-on (or lock-
off) at each clock-tick. Now, if the machine is in computational
state {Q1} and the brake is on, then the machine stays in {Q1},
otherwise it moves to computational state {Q2}. If machine is in
{Q2} and brake is on, it stays in {Q2}, otherwise it goes to {Q3}. If
machine is in state {Q3} and brake is on, it stays in {Q3}, otherwise
it cycles back to state {Q1}. In this manner, the addition of input
has transformed the machine from a simple device that could
merely cycle through a simple unchanging list of states to one
that is sensitive to input; as a result, the number of possible state
sequences that it may enter grows combinatorially with time,
rapidly becoming larger than the number of atoms in the known
universe. It is due to this exponential growth in potential state
transition sequences that we cannot, so easily, realize a FSA with
input (or a PC) using a simple digital counter.

Nonetheless, if we have knowledge of the input over a given
time period (say, we know that the brake is initially ON for
the first clock tick and OFF thereafter), then the combinatorial
contingent state structure of an FSA with input, simply collapses
into a simple linear list of state transitions (e.g., {Q1 → Q2 →

Q3 → Q1 → Q2 → Q3}, etc.), and so once again can be simply
realized by a suitably large digital counter using the appropriate
Putnam mapping.

Thus, to realize Turing’s machine, say, with the brake ON for
the first clock tick and OFF thereafter, we simply need to specify
that the initial counter in state {000000} maps to the first FSA
state Q1; state {000001} maps to FSA state Q1; {000002} maps to
Q2; {000003} to Q3; {000004} to Q1; {000005} to Q2, etc.

In this manner, considering the execution of any putative
machine consciousness software that is claimed to be conscious
(e.g., the control program of Kevin Warwick’s robots) if, over
a finite time period, we know the input39, we can generate
precisely the same state transition trace with any (suitably large)
digital counter. Furthermore, as Hilary Putnam demonstrated, in
place of using a digital counter to generate the state sequence
{C}, we could deploy any “open physical system” (such as
a rock40) to generate a suitable non-repeating state sequence

38Even if we usually think about computation in terms of the [more powerful]

Turing Machine model.
39For example, we can obtain the input to a robot (that is claimed to experience

phenomenal consciousness as it interacts with the world) by deploying a “data-

logger” to record the data obtained from all its various sensors, etc.
40The “Principle of Noncyclical Behavior,” Putnam (1988), asserts: a system S is in

different “maximal states” {S1, S2, Sn} at different times. This principle will hold

true of all systems that can “see” (are not shielded from electromagnetic and

gravitational signals from) a clock. Since there are natural clocks from which no

{S1, S2, S3, S4, . . . }, and map FSA states to these (non-repeating)
“rock” states {S} instead of the counter states. Following this
procedure, a rock, alongside a suitable Putnam mapping, can be
made to realize any finite series of state transitions.

Thus, if any AI system is phenomenally conscious41 as it
executes a specific set of state transitions over a finite time
period, then a vicious form of panpsychism must hold, because
the same raw sensation, phenomenal consciousness, could be
realized with a simple digital counter (a rock, or any open physical
system) and the appropriate Putnam mapping. In other words,
unless we are content to “bite the bullet” of panpsychism, then
no machine, however complex, can ever realize phenomenal
consciousness purely in virtue of the execution of a particular
computer program.42

9. CONCLUSION

It is my contention that at the heart of classical cognitive
science—artificial neural networks, causal cognition, and
artificial intelligence—lies a ubiquitous computational
metaphor:

• Explicit computation: Cognition as “computations on
symbols”; GOFAI; [physical] symbol systems; functionalism
(philosophy of mind); cognitivism (psychology); language of
thought (philosophy; linguistics).

• Implicit computation: Cognition as “computations on sub-
symbols”; connectionism (sub-symbolic AI; psychology;
linguistics); the digital connectionist theory of mind
(philosophy of mind).

• Descriptive computation: Neuroscience as “computational
simulation”; Hodgkin–Huxley mathematical models of
neuron action potentials (computational neuroscience;
computational psychology).

In contrast, the three arguments outlined in this paper purport to
demonstrate (i) that computation cannot realize understanding,
(ii) that computation cannot realize mathematical insight, and
(iii) that computation cannot realize raw sensation, and hence
that computational syntax will never fully encapsulate human
semantics. Furthermore, these a priori arguments pertain to
all possible computational systems, whether they be driven
by “Neural Networks43,” “Bayesian Networks,” or a “Causal
Reasoning” approach.

Of course, “deep understanding” is not always required to
engineer a device to do x, but when we do attribute agency to
machines, or engage in unconstrained, unfolding interactions

ordinary open system is shielded, all such systems satisfy this principle. (N.B.: It is

not assumed that this principle has the status of a physical law; it is simply assumed

that it is in fact true of all ordinary macroscopic open systems).
41For example, perhaps it “sees” the ineffable red of a rose; smells its bouquet, etc.
42In Bishop (2017), I consider the further implications of the DwP reductio for

“digital ontology” and the Sci-Fi notion, pace Bostrom (2003), that we are “most

likely” living in a digitally simulated universe.
43Including “Whole Brain Emulation” and, a fortiori, Henry Markram’s “Whole

Brain Simulation,” as underpins both the “Blue Brain Project”—a Swiss research

initiative that aimed to create a digital reconstruction of rodent and eventually

human brains by reverse-engineering mammalian brain circuitry—and the

concomitant, controversial, EUR 1.019 billion flagship European “Human Brain

Project” (Fan and Markram, 2019).
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with them, “deep [human-level] understanding” matters. In this
context, it is perhaps telling that after initial quick gains in
the average length of interactions with her users, XiaoIce has
been consistently performing no better than, on average, 23
conversational turns for a number of years now44. Although
chatbots like XiaoIce and Tay will continue to improve, lacking
genuine understanding of the bits they so adroitly manipulate,
they will ever remain prey to egregious behavior of the sort
that finally brought Tay offline in March 2016, with potentially
disastrous brand consequences45.

Techniques such as “causal cognition”—which focuses on
mapping and understanding the cognitive processes that
are involved in perceiving and reasoning about cause–effect
relations—while undoubtedly constituting a huge advance in the
mathematization of causation will, on its own, move us no nearer
to solving foundational issues in AI pertaining to teleology and
meaning. While causal cognition will undoubtedly be helpful in
engineering specific solutions to particular human specified tasks,
lacking human understanding, the dream of creating an AGI
remains as far away as ever. Without genuine understanding,
the ability to seamlessly transfer relevant knowledge from one
domain to another will remain allusive. Furthermore, lacking
phenomenal sensation (in which to both ground meaning and

44Although it is true to say than many human–human conversations do not even

last this long—a brief exchange with the person at the till in a supermarket—in

principle, with sufficient desire and shared interests, human conversations can be

delightfully open ended.
45Cf. Tay’s association with “racist” tweets or Apple’s association with “allegations

of gender bias” in assessing applications for its credit card, https://www.bbc.co.uk/

news/business-50432634.

desire), even a system with a “complete explanatory model”
(allowing it to accurately predict future states) would still lack
intentional pull, with which to drive genuinely autonomous
teleological behavior46.

No matter how sophisticated the computation is, how fast the
CPU is, or how great the storage of the computing machine is,
there remains an unbridgeable gap (a “humanity gap”) between
the engineered problem solving ability of machine and the
general problem solving ability of man47. As a source close to the
autonomous driving company, Waymo48 recently observed (in
the context of autonomous vehicles):

“There are times when it seems autonomy is around the corner

and the vehicle can go for a day without a human driver

intervening . . . other days reality sets in because the edge cases

are endless . . . ” (The Information: August 28, 2018).
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46Cf. Raymond Tallis,How On Earth CanWe Be Free? https://philosophynow.org/

issues/110/How_On_Earth_Can_We_Be_Free.
47Within cognitive science there is an exciting new direction broadly defined by

the so-called 4Es: the Embodied, Enactive, Ecological, and Embedded approaches

to cognition (cf. Thompson, 2007); together, these offer an alternative approach to

meaning, grounded in the body and environment, but at the cost of fundamentally

moving away from the computationalist’s vision of the multiple realizability

[in silico] of cognitive states.
48An American autonomous driving technology development company; a

subsidiary of Alphabet Inc., the parent company of Google.
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Are Jurors Intuitive Statisticians?
Bayesian Causal Reasoning in Legal
Contexts
Tamara Shengelia1* and David Lagnado2

1 Department of Experimental Psychology, University College London, London, United Kingdom, 2 Department
of Experimental Psychology, University College London, London, United Kingdom

In criminal trials, evidence often involves a degree of uncertainty and decision-making
includes moving from the initial presumption of innocence to inference about guilt
based on that evidence. The jurors’ ability to combine evidence and make accurate
intuitive probabilistic judgments underpins this process. Previous research has shown
that errors in probabilistic reasoning can be explained by a misalignment of the evidence
presented with the intuitive causal models that people construct. This has been explored
in abstract and context-free situations. However, less is known about how people
interpret evidence in context-rich situations such as legal cases. The present study
examined participants’ intuitive probabilistic reasoning in legal contexts and assessed
how people’s causal models underlie the process of belief updating in the light of
new evidence. The study assessed whether participants update beliefs in line with
Bayesian norms and if errors in belief updating can be explained by the causal structures
underpinning the evidence integration process. The study was based on a recent case
in England where a couple was accused of intentionally harming their baby but was
eventually exonerated because the child’s symptoms were found to be caused by a
rare blood disorder. Participants were presented with a range of evidence, one piece
at a time, including physical evidence and reports from experts. Participants made
probability judgments about the abuse and disorder as causes of the child’s symptoms.
Subjective probability judgments were compared against Bayesian norms. The causal
models constructed by participants were also elicited. Results showed that overall
participants revised their beliefs appropriately in the right direction based on evidence.
However, this revision was done without exact Bayesian computation and errors were
observed in estimating the weight of evidence. Errors in probabilistic judgments were
partly accounted for, by differences in the causal models representing the evidence. Our
findings suggest that understanding causal models that guide people’s judgments may
help shed light on errors made in evidence integration and potentially identify ways to
address accuracy in judgment.

Keywords: Bayesian reasoning, causal inferences, intuitive judgment, probabilistic reasoning, jury decision
making, causal Bayes nets, explaining away, zero-sum
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INTRODUCTION

Legal decision making often involves causal reasoning under
uncertainty. Jurors who make decisions in criminal cases are
tasked with dealing not only with inherent uncertainty of a
myriad of facts but also with disentangling the complexity of
causal relations. For example, criminal law draws a distinction
between factual and legal causes (Wilson, 2017). Factual causes
focus on acts or omissions that have contributed to a harmful
outcome while legal causes relate to the accountability and
imputability aspect of the crime in question. Difficulty in
establishing factual causation is compounded by factors such
as intervening causes, self-harm by the victim, intervention by
third parties and medical conditions. Examples of causes in legal
cases include motives, recklessness, negligence and diminished
capacity, mens rea and possible effects may involve evidence and
actus reus. Additionally, assumptions that underpin judgments in
legal contexts are based on causal models that jurors build during
the course of the case hearing as well as their pre-existing beliefs
(Pennington and Hastie, 1986, 1992).

Many of these aspects of legal cases can be represented
using Causal Bayesian Networks (CBN). CBNs (Pearl, 2000;
Fenton et al., 2018) represent structured causal relations and
inferences. They offer a systematic way to capture intuitive
probabilistic judgments and measure their alignment with
normative belief updating standards, including the qualitative
direction of updating as well as numeric computations. CBNs
allow us to capture prior beliefs, uncertainty associated with
legal evidence and complexity of causal structures (Lagnado and
Gerstenberg, 2017). Prior beliefs, causes and effects in a legal case
can be represented with nodes in CBNs and uncertainty can be
summarized in associated probability tables (Fenton et al., 2013).

Causal Bayes Networks and Normative
Causal Judgments
The present study draws on an existing body of literature,
according to which probabilistic learning and reasoning
approximates Bayesian principles (Chater et al., 2006; Chater
and Oaksford, 2008). Rottman (2017) argues that human
reasoning about causality can be appraised in terms of causal
Bayesian Networks and that probabilistic Bayesian models act
as normative standards for judgment. Normative judgments
can be evaluated from a qualitative (updating in the right
direction) and a quantitative (accurate numeric judgments)
perspective. The causal theory of reasoning suggests that people’s
judgments follow the qualitative causal reasoning norms that
approximate Causal Bayesian Networks (Sloman and Lagnado,
2015; Rottman, 2017). However, people’s belief updating does
not fit the exact Bayesian computations.

Peterson and Beach (1967), who coined the term “man as an
intuitive statistician,” argue that statistically accurate reasoning
provides a good approximation of human inference. They
observe that people take into account relevant factors and update
beliefs in the right direction. Rottman and Hastie (2014) show
that people often make causal inferences in the right direction;
that is qualitatively, judgments are aligned with Bayesian norms.

This is supported by previous studies (Waldmann, 2000; Sloman,
2005; Sloman and Lagnado, 2005; Meder et al., 2008; Baetu
and Baker, 2009). Evidence regarding the quantitative aspect of
normative reasoning suggests that quantitative accuracy is not
as close as qualitative correspondence. Many studies observe
deviations from Bayesian quantitative standards, demonstrating
more conservative judgments than warranted by evidence used in
belief updating (Phillips and Edwards, 1966; Rottman and Hastie,
2014). Peterson and Beach (1967) also highlight conservative
tendencies in belief updating and posit that intuitive judgments
observed in real life often deviate from statistically accurate
normative judgments, making reasoning less quantitatively
optimal. One major deviation from Bayesian reasoning is base-
rate neglect (Tversky and Kahneman, 1982). This occurs when
information supplied about the prevalence of a phenomenon
in question is ignored and probabilistic reasoning takes place
without factoring in base rates. Koehler (1996) argues that base
rates are unlikely to be ignored in contexts where information
is represented in the form of frequencies, when base rates are
implicitly learned, directly experienced or more diagnostic than
prior beliefs. In rich real life contexts such as the courtroom, base
rates might be ignored as people’s decisions are informed not only
by information presented at the trial but also by their prior beliefs
and these two might be very different. In cases where a party fails
to substantiate a disputed base rate with supporting evidence, this
might be treated as evidence against the claim. Overall, evidence
suggests that decision making in legal contexts may rely more
on prior beliefs than on base rates. Bayesian models account for
such prior beliefs.

Research by Krynski and Tenenbaum (2007) shows that errors
in probabilistic reasoning can be explained by a misalignment
between the evidence presented and the intuitive causal models
constructed by participants. They were able to reduce judgment
errors such as base rate neglect when participants were presented
with a causal structure and numeric estimates could be clearly
mapped onto this structure. Participants’ computations were
closer to Bayesian estimates. It should be noted that probability
estimates still were not completely accurate and the main
improvement was observed in the qualitative updating. This
suggests that exploring the causal structures that underlie legal
cases may help shed light on the belief updating process in
legal contexts and any potential deviations from quantitative
Bayesian reasoning.

Interpreting Competing Causes:
Explaining Away and Zero-Sum
One area of difficulty in quantitative updating concerns the
interpretation of competing causes. When two independent
causes can explain a common effect, observing that this effect
is present, increases the probability of both causes. However, if
one then receives evidence that one of the causes has occurred,
the probability of the other cause decreases. This pattern of
judgment is known as ‘explaining away’ (Pearl, 1988). It suggests
that a positive association between each of the competing causes
and an effect implies a negative association between the causes
conditional on knowledge of the effect. For example, in a legal

Frontiers in Psychology | www.frontiersin.org 2 February 2021 | Volume 11 | Article 519262144

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-519262 February 1, 2021 Time: 18:11 # 3

Shengelia and Lagnado Are Jurors Intuitive Bayesian Statisticians?

case of intentional harm, if abuse and a disorder are considered
to be causes of a common symptom, when evidence provides
support for the presence of abuse, at the same time perceived
probability of the disorder should be decreased, i.e., the disorder
has been explained away.

In explaining away situations people struggle with both
qualitative and quantitative aspects of judgments (Rehder, 2014;
Rottman and Hastie, 2014, 2016; but also see Liefgreen et al.,
2018; Tesic et al., 2020). From the qualitative point of view,
the direction of inference is sometimes inaccurate and from the
quantitative perspective, updating is too conservative, leading to
the underweighting of evidence.

Research by Rehder and Waldmann (2017) focused on errors
associated with explaining away inferences in causal reasoning.
They showed that people tend to be more accurate when
they experience situations for which they are drawing causal
inferences compared to situations that are simply described.
Results suggest that adherence to normative causal reasoning
depends on how causal models are presented, whether they are
described or experienced directly.

Another bias that people exhibit when reasoning about
competing causes is the zero-sum fallacy. Zero-sum reasoning
broadly represents thinking where gains in one area take place
at the expense of another’s losses. In the context of causal
reasoning, this is represented by treating evidence in support of
a given cause as evidence against an alternative cause. In a recent
study by Pilditch et al. (2019), people displayed a zero-sum bias
when interpreting competing causes. When evidence was equally
predicted by two competing causes, it was treated as irrelevant
and as a result, was disregarded.

A balanced evaluation of evidence in legal cases involves
weighing up evidence against competing hypotheses. These
hypotheses are often about the causes that lead to outcomes
under examination. Making accurate inferences requires not only
correct interpretation of the weight of evidence, but also being
able to correctly identify the hypotheses against which evidence
is tested. Hypotheses can be considered mutually exclusive and
exhaustive only when one (and only one) of the hypotheses
can be true, ruling out any other explanation. For example,
someone either dies from natural or unnatural causes. However,
evidence in reality rarely warrants exclusivity and exhaustiveness
of causes. There are usually many unknown possible causes of
any piece of evidence. Being able to differentiate hypotheses
that are not mutually exclusive and exhaustive is critical to
avoiding the zero-sum fallacy, which occurs when hypotheses
that are not mutually exclusive and exhaustive are erroneously
treated as such.

Diagnostic and Predictive Causal
Reasoning
Inferences from causes to effects represent predictive reasoning
and moving from effects to causes corresponds to diagnostic
reasoning. In a study of diagnostic causal reasoning with verbal
probabilistic expressions, such as “frequently,” “rarely,” “likely”
and “probably, ” Meder and Mayrhofer (2017) found that
inferences based on qualitative verbal terms, which are more

widely used in everyday life to express uncertainty than numerical
expressions, match those that are drawn from numerical
information only. Overall, the study provided support for the
human ability to make accurate probabilistic judgments, closely
aligned with normative standards of Bayesian causal reasoning.

Diagnostic reasoning is underpinned not only by probabilistic
judgments about cause given effect, but also by causal relations
that connect causes to effects (Meder et al., 2014). The plausibility
of causal models, in particular, is seen as one of the key factors
impacting diagnostic judgments. According to this study, errors
in observed diagnostic inferences can often be explained by
variations in underlying causal models.

Hayes et al. (2018) suggested that the role of causal models
in normative judgments merits further study. The authors were
interested in assessing whether representations of causal models
facilitate Bayesian probabilistic judgments in terms of normative
accuracy as well as reduction in error magnitude. Participants
were provided with causal explanations for statistical information
(e.g., false positives) and their judgments for the likelihood
of the corresponding events were compared with normative
standards. The study results suggest that while providing causal
explanations does not result in improved normative judgments,
it can still help alter people’s causal models by drawing attention
to the statistical information which gets incorporated into
causal structures.

Are Jurors Intuitive Bayesian
Statisticians?
While the normative interpretation of the Bayesian formula
implies that beliefs about guilt will be updated based on evidence,
the judgments may not always match the quantitative Bayesian
norms even when the qualitative interpretation is accurate.

Previous research suggests that jurors are competent at
evaluating scientific evidence but tend to show systematic errors
in processing quantitative evidence under certain circumstances
(Hans et al., 2011). The discrepancy between the observed
and quantitative normative updating judgments increases with
the amount of evidence (Schum, 1966). One cause for this
discrepancy may be the increased difficulty of estimating the
diagnosticity of the available evidence when it is expressed in
high numerical values. Dartnall and Goodman-Delahunty (2006)
claimed that people are not sensitive to the probative weight
of the probabilistic evidence. Such empirical evidence prompted
researchers to see jurors as incompetent in intuitive probabilistic
reasoning, prone to errors and systematic violation of rational
belief updating principles (Arkes and Mellers, 2002).

Thompson et al. (2013) criticize the claims that people are
always conservative Bayesian thinkers; instead they provide
evidence that belief updating in relation to the quantitative
evidence in criminal cases is in line with Bayesian norms.
The authors argue that methodological limitations in earlier
studies may have resulted in inferring that deviations from
Bayesian norms in participants’ observed judgments were more
conservative than they actually were. Drawing on measures
that were designed to address methodological shortcomings of
previous studies, Thompson et al. (2013) found that while people
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at times engage in erroneous statistical reasoning, this is not
always the case and people often reason in line with Bayesian
belief updating models.

Present Study
The present study explores how people update beliefs in light
of evidence, examining alignment with Bayesian norms from
a qualitative (direction of updating) as well as a quantitative
(numeric computations) perspective. The study focuses on the
following aspects of causal reasoning: (1) predictive inferences
from effects to causes; (2) diagnostic inferences from causes
to effects; and (3) explaining away inferences with competing
independent causes.

The present study is based on a summary of a real case where
a couple was accused of intentionally harming their baby. In
this case, a young child was brought to hospital by his parents
because they noticed the child had bleeding in his mouth. The
parents had no explanation for the bleeding, and said that the
child had not been involved in an accident. In our experiment
participants are given two possible causes for the bleeding: abuse
and a rare blood disorder.

Participants are provided with information about the hospital
admission rates for children with this symptom for cases of
abuse and rare blood disorder. The story mentioned that figures
from previous hospital admissions suggest that 1 in 100 children
admitted with bleeding to the mouth have been abused by their
parents, and 1 in 1,000 have the rare blood disorder.

After presenting background information, further evidence
was presented one piece at a time. This involved information
about:

(1) Doctors noticing bruising on the child
(2) The hospital radiologist carrying out an X-ray on the child

and reporting that the X-ray showed fractures.
(3) The child being tested for the blood disorder and

testing positive.

(4) An independent expert radiologist employed by the
prosecution re-examining the X-ray results and claiming
there were no fractures.

The causal structure of the case is presented in Figure 1.

EXPERIMENT 1

The main goal of Experiment 1 was to examine whether
participants’ beliefs are updated in line with Bayesian norms
when dealing with competing causes (abuse and blood disorder)
in a sequential inference task. Evidence was presented in stages,
one piece of evidence at a time.

Method
Participants
155 participants were recruited through Amazon Mechanical
Turk to take part in the study. In all experiments, participation
was restricted to respondents who had at least a 95% approval
rating for their previous MTurk work. Participants were English
speakers and based in the United States. Participants who were
unable to correctly answer the comprehension check questions
regarding the underlying causal structure, were excluded from
the analysis, leaving 127 participants (49 female). The mean
age was 33.9 (SD = 11.04, range 73–13 = 55). Out of the 127
participants included in the study, 36.2% had an undergraduate
degree, 10% – Masters or Ph.D. degree, 32.3% completed a college
education and 22% had no qualification.

Design and Procedure
In the present study base rates are presented in a frequency
format as research (Hoffrage et al., 2015; Woike et al., 2017;
Weber et al., 2018) suggests that natural frequencies are preferred
over probabilities in Bayesian reasoning tasks to minimize errors
in inferences. When presented with background information
about the case, participants were told that “Figures from previous

FIGURE 1 | The graph represents the underlying Bayesian Network (BN) causal structure of symptoms and evidence in Experiments 1 and 2.
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TABLE 1 | Task formulation.

In Experiments 1 and 2 Text Responses

Introduction A young child was brought to hospital by his parents because they noticed the child
had bleeding in his mouth. The parents had no explanation for the bleeding, and
said the child had not been involved in an accident. Doctors suggested two
possible causes for the bleeding: abuse and a rare blood disorder.

Statistical information Figures from previous hospital admissions suggest that 1 in 100 children admitted
with bleeding to the mouth have been abused by their parents, and 1 in 1000 have
the rare blood disorder.

When responding to questions
about base rates, this information
remained visible to participants.

Questions after introduction and each
stage of evidence presentation

• What are the chances that the parents abused the child?
• What are the chances that the child has the blood disorder?

• Responses on a scale of 0% to
100%

Conditional probability questions
showing probability of an event given
the occurrence of other event(s)

Questions about the bruises
• If the child has been abused but does NOT have the blood disorder, how likely is

he to have bruises?
• If the child has NOT been abused but does have the blood disorder, how likely

is he to have bruises?
• If the child has been abused and also has the blood disorder, how likely is he to

have bruises?
• If the child has NOT been abused and does NOT have the blood disorder, how

likely is he to have bruises?
Questions about the blood test
• If the child has the blood disorder, how likely is he to test positive?
• If the child does NOT have the blood disorder, how likely is he to test positive?
Questions about the fractures
• If the child has been abused, how likely is he to have fractures?
• If the child has NOT been abused, how likely is he to have fractures?
Questions about the hospital radiologist report
• If the child has fractures, how likely is the hospital radiologist to report that he has

fractures?
• If the child does NOT have fractures, how likely is the hospital radiologist to report

that he has fractures?
Questions about the independent radiologist report
• If the child has fractures, how likely is the expert radiologist to report that he has

fractures?
• If the child does NOT have fractures, how likely is the expert radiologist to report

that he has fractures?

• Responses on a scale of 0 to 100
where “o” = Very unlikely, “100” =
Very likely)

hospital admissions suggest that 1 in 100 children admitted with
bleeding to the mouth have been abused by their parents, and 1
in 1,000 have the rare blood disorder.”

The following evidence was presented in stages: bruises,
a hospital x-ray expert’s report, blood test results and an
independent x-ray expert’s report. To examine the possibility
of zero-sum reasoning when assessing evidence (Pilditch et al.,
2019) we varied the instructions given to participants about
the exclusivity and exhaustiveness of the causes (abuse and
blood disorder).

Participants were divided into three groups according to the
presentation format for the abuse and causes. The experiment
consisted of the following conditions:

Condition 1: Abuse and disorder were presented as non-
exclusive causes of the child’s bruises and bleeding.

Condition 2: Abuse and disorder were presented as non-
exclusive and non-exhaustive causes of the child’s bruises and
bleeding.

Condition 3: Control condition contained no statement about
the relationship between abuse and disorder as causes of the
child’s bruises and bleeding.

The dependent measures included the probabilistic
judgments about the abuse and disorder as causes of the
child’s symptoms. The probability judgments were recorded
after introducing the background information as well as after

exposure to each new element of evidence (bruising, a hospital
radiologist’s report, blood test results and an independent
radiologist’s report).

Information presented to participants specified that bruising
was a common consequence of abuse and also of the blood
disorder. It further stated that fractures were a common
consequence of abuse, but not of the blood disorder.

Conditional probabilities elicited from the participants at the
end of the experiment were used to construct their models of
evidence evaluation based on Bayesian reasoning. Individual
Bayesian network models were constructed for each participant.
Actual probability judgments were compared to those predicted
by these models. The differences between the probabilistic
judgments predicted by the subjective models in line with
Bayesian norms and the actual probabilistic judgments formed
a dependent measure in this experiment. Probability judgments
were compared to the individual causal models inferred from
conditional probabilities. Subjective priors were compared to
base rates supplied in the introduction.

The probability judgments in the experiment were recorded
on a scale of 0 to 100%. Participants used an on-screen slider with
numerical values to indicate their answer. Questions about the
probability judgments used the following format: “What are the
chances of . . .?”. On the slider response scale, 0% was labeled as
“Very unlikely” and 100% as “Very likely”.
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The magnitude of updating from one stage of evidence
to another was calculated as a difference between the
probability estimates at the present and previous evidence
stage, at Stage 2 (Bruises), Stage 3 (Hospital expert report),
Stage 4 (Blood test results), and Stage 5 (Independent
expert report).

The experiment was hosted on Qualtrics1. Participants
were given a legal case (see Table 1). After reading the
background information which contained priors for the
probability of abuse and disorder as possible causes for the
child’s symptoms, participants were presented with four pieces
of evidence in stages, one piece at a time. Starting from
the introduction of the case background, participants were
asked to provide their probability estimates for the abuse
and the disorder as possible causes separately (“What are
the chances that the parents abused the child?,” “What are
the chances that the child has the blood disorder?”). This
process was followed throughout the experiment, eliciting
subjective probabilities for abuse and disorder every time
new evidence was presented. The order of questions was
fixed and followed the sequence of evidence presentation.
Conditional probabilities were also elicited after all pieces
of evidence were presented and included questions such as

1www.qualtrics.com

“If the child has the blood disorder, how likely is he to test
positive?,” “If the child has fractures, how likely is the hospital
radiologist to report that he has fractures?”). The procedure
was adopted to track belief revision alongside the introduction
of new evidence.

Results
The effect of Evidence and Condition on the abuse probability
judgments in the observed data was examined with a mixed
ANOVA with Condition as a between-subject and Evidence
Stage as a within-subject variable. Following a Greenhouse-
Geisser correction, the main effect of evidence was statistically
significant, F(2.545, 315.587) = 85.298, p < 0.001, and partial
eta squared = 0.408. Pairwise comparisons indicated that there
was a statistically significant shift in beliefs about abuse at each
stage of evidence, suggesting that participants integrated evidence
and revised beliefs following the presentation of evidence.
There was no main effect of Condition, F(2, 124) = 1.201,
p= 0.304.

A mixed ANOVA was carried out to explore the effect
of Evidence Stage and Condition on the observed subjective
probability judgments for disorder. Similar to the abuse
probability judgments, a significant main effect of Evidence
was found following a Greenhouse-Geisser correction, F(2.293,
284.339) = 479.268, p < 0.001, partial eta squared = 0.794.

FIGURE 2 | Results from Experiment 1: Observed and predicted (model) probability judgments at each evidence presentation stage, starting with prior beliefs and
capturing belief updating following the evidence about bruises, hospital expert report, blood test results and independent expert report. Priors presented on the
graph for both observed and predicted values represent subjective priors set by the participants.
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There was no effect of Condition, F(2, 124) = 0.127,
p = 0.881. Post hoc comparisons using the Bonferroni test
indicated no difference between prior beliefs (M = 0.269,
SD = 0.021) and revised beliefs after evidence about bruises
(M = 0.282, SD = 0.022). All other stages of belief
updating, including the first expert’s report (M = 0.157,
SD = 0.018), blood test results (M = 0.945, SD = 0.011)
and the second expert’s report (M = 0.867, SD = 0.022)
showed differences in beliefs compared to the previous stage.
Subjective priors were considerably higher (Mabuse = 0.534,
SD = 0.305; Mdisorder = 0.267, SD = 0.238) than the objective
priors (0.01 and 0.001, respectively) supplied as part of
the case scenario.

Individual Bayesian belief updating models were
obtained using the gRain package in R (Højsgaard, 2012).
Differences between the observed and predicted (Bayesian)
probability judgments during the belief updating process are
summarized in Figures 2, 3, which draw on the participants’
own priors.

An example Bayesian belief updating model is presented in
Figure 4.

Discussion
Differences between the observed and predicted judgments
were found to be significant for all pieces of evidence, including
bruising symptoms, hospital radiologist’s report and test results
with regards to the abuse and disorder-related probability
judgments indicating that the participants’ probabilistic
judgments were different from exact Bayes computations.
However, judgments were qualitatively in the right direction.
There was no significant difference between conditions in
belief updating, indicating that making the non-exclusivity
and non-exhaustiveness of causes explicit did not affect
probability judgments.

EXPERIMENT 2

Experiment 2 focused on testing belief updating when
participants were explicitly told, just before each probability
judgment, that the causes in the study were non-exclusive
and non-exhaustive. The purpose of this experiment was to
determine the effect of bringing participants’ attention to

FIGURE 3 | Results from Experiment 1: The graph shows extent of updating at four stages of evidence presentation, calculated as a difference between the
probability estimates at the present and previous evidence stage. For example, for the Bruises stage, this is calculated by subtracting the probability value at the
previous stage (prior elicitation) from the present stage (evidence of bruises).
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FIGURE 4 | Individual Bayesian Network: The graph shows a Causal Bayesian Network and corresponding probability tables for one of the participants from
Experiment 1.

the non-exclusivity and non-exhaustiveness of causes on the
accuracy of judgments. This would allow us to rule out lack of
understanding of the causal structure as a contributing factor
to biased judgments observed in Experiment 1. The following
statement was included at every stage of subjective probability
elicitation: “Note that it is possible that both causes are true:
e.g., that a child has been abused and has the disorder; it is also
possible that neither are true, and that the symptoms arise due
to other causes.” Additionally, participants’ understanding of the
case causal structure was tested.

Method
Participants
93 participants were recruited using the same protocol as in
Experiment 1. As in Experiment 1, participation was restricted
to respondents who had at least a 95% approval rating for
their previous MTurk work. Participants were English speakers
and based in the United States. The mean age was 35.08
(SD = 12.64, range 74–19 = 55). Out of the 93 participants
(52 female) included in the study, 44% had an undergraduate
degree, 21.5% – Masters or PhD degree and 23.7% completed a
college education.

Design and Procedure
The procedure, instruction, and materials, including the
questions were identical to those used in Experiment 1 except
there was only one Condition, which corresponded to Condition
2 in Experiment 1. Additionally, at the end of the task we included
questions to elicit participants’ causal models, focusing on the
links included in the case model (Figure 1). Questions followed
the format: “Did A cause B?”

Results
A repeated measures ANOVA with a Greenhouse-Geisser
correction showed that mean probability estimates differed
significantly between the evidence presentation stages [F(2.631,
194.728) = 300.192, p < 0.001, partial eta squared = 0.802],
observed and model judgments based on Bayesian predictions
[F(1, 74) = 45.09, p < 0.001, partial eta squared = 0.379], but
not between the abuse and disorder probability judgments [F(1,
74)= 1.334, p= 0.252].

Subjective priors were higher (Mabuse = 0.467, SD = 0.313;
Mdisorder = 0.441, SD= 0.325) than the objective priors (0.01 and
0.001, respectively) supplied as part of the case scenario.

Belief updating, drawing on the participants’ own subjective
priors, is summarized in Figures 5, 6.

To check for the general accuracy of the underlying causal
models, we tested for the links that were included in the causal
structure of the case model (Figure 1) as well as links that were
incompatible with the model. Results for the links that were
used in Experiment 1 to test comprehension of causal models
as a basis for screening participants who did not answer the
questions correctly, showed that the accuracy of responses was
above the chance level. Participants correctly identified the causal
structure. Specifically, participants were able to correctly identify
that bruising was a common consequence of abuse and also of the
blood disorder and that fractures were a common consequence
of abuse, but not of the blood disorder. In response to questions
whether a certain causal link was present or not, participants were
able to correctly identify that Abuse could cause Bruises above the
chance level, i.e., above 0.5 (0.53), Disorder could cause Bruises
(0.78), and Abuse could cause Fractures (0.52). With regard to a
causal link that was not part of the case causal structure such as
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FIGURE 5 | Results from Experiment 2: The graph presents observed and predicted (model) probability judgments for Abuse and Disorder at each sequential stage
of evidence presentation. Priors presented on the graph for both observed and predicted values represent subjective priors set by the participants.

Disorder causing Fractures, participants’ responses showed that
participants were able to correctly exclude this link from their
individual causal representations (0.27).

Discussion
Participants updated beliefs in the direction predicted by
normative Bayesian judgments on most occasions. However,
as in Experiment 1, we found instances of under- and over-
estimation of evidence in quantitative belief updating. This was
particularly evident when integrating evidence that supported
both Abuse and Disorder as possible causes (e.g., evidence of
bruises), which led to the under-weighting of evidence and
belief updating far lower than mandated by Bayesian normative
judgments. Another instance of inaccurate quantitative judgment
was following the positive blood test results, which showed that
participants attributed excessive weight to evidence.

GENERAL DISCUSSION

The findings from both experiments suggest that in legal
decision making people qualitatively update their beliefs in line
with Bayesian norms. In our experiments, participants’ belief
updating was qualitatively aligned with normative judgments,
i.e., probability judgments increased or decreased in the same
direction as predicted based on Bayesian norms. This was
observed with both predictive inferences (e.g., increases in the

probability of abuse increased the probability of fractures),
diagnostic inferences (e.g., evidence of the hospital radiologist
report raised the subjective probability of fractures) and
explaining away inferences (e.g., evidence of positive test results
raised the probability of the blood disorder and decreased
the probability of abuse by explaining away). While most
judgments fit with qualitative predictions of Bayesian models, an
exception is observed at the final stage of evidence presentation
where the subjective probability of blood disorder was lowered
slightly rather than raised. This can be explained by exposure
to conflicting expert reports, which may have decreased the
perceived reliability of reports, resulting in a greater skepticism
toward the blood test results.

Overall the results indicate that people’s qualitative reasoning
is mostly accurate and follows qualitative predictions of
Bayesian models in predictive, diagnostic and explaining away
inferences. These findings reinforce results from previous studies
where Bayesian probabilistic reasoning was observed (e.g.,
Thompson and Newman, 2015).

Results from both experiments indicate that people tend
to ignore the priors provided as part of the background
case information and set their own subjective priors. The
subjective priors in both experiments were significantly higher
than the objective priors offered in the case summary. Prior
knowledge and expectations, underlying causal models may
have contributed to setting higher priors than suggested by
base rates.
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FIGURE 6 | Results from Experiment 2: The graph shows extent of updating at four stages of evidence presentation, calculated as a difference between the
probability estimates at the present and previous evidence stage. For example, for the Hospital Expert evidence stage, this is calculated by subtracting the
probability value at the previous stage (evidence of bruises) from the present stage (evidence of the hospital expert report).

Previous research about explaining away inferences is not
conclusive (Morris and Larrick, 1995; Oppenheimer and Monin,
2009; Rehder, 2014; Rottman and Hastie, 2014, 2016; Tesic et al.,
2020) and offers different views on challenges associated with
explaining away inferences. Our experiments highlighted that
people are able to navigate the explaining away type of scenarios
and make accurate judgments about competing causes that fit
with qualitative Bayesian predictions.

Prior evidence on people’s ability to make quantitative
probabilistic judgments aligned with Bayesian norms is not
definitive, with studies indicating either under- or over-
estimation of evidence. In the existing body of literature,
a unified mechanism for explaining an excessively low and
high weight attributed to evidence has not been decisively
established. Our findings show both types of departures from
quantitative normative judgments: under-weighting of evidence
when participants update beliefs based on the evidence of
bruises and over-weighting of evidence following the evidence
of the positive test result. Both these findings can be explained
with zero-sum reasoning, which provides insights into how
people integrate evidence when dealing with competing causes
(Pilditch et al., 2019).

Zero-sum reasoning represents thinking whereby the gains
of one person take place at the expense of another’s losses.

A zero-sum model of the world presumes a finite and
fixed amount of resources in the world, which necessitates a
competition for these resources. In the context of competing
causes, when two causes equally predict the same evidence,
zero-sum thinking treats such evidence as neutral because it
tacitly assumes that the causes are exclusive and exhaustive
accounts of the evidence. For example, in our experiments
the evidence of bruises which was predicted by both the
abuse and disorder hypotheses, the evidence was treated as
neutral, resulting in only slight increase in the probability
of both, which was considerably lower than expected by
Bayesian updating.

Zero-sum thinking also accounts for the over-weighting of
evidence which was observed in the case of the excessive
decrease in the probability of disorder following the hospital
radiologist report and an excessive increase in the probability
of disorder given the positive blood test result with a
simultaneous disproportionate lowering of the probability of
abuse. Excessive raising or lowering of probabilities points to
the zero-sum nature of the reasoning involved in this process.
Competing causes were perceived as exclusive, which had a
hydraulic effect on the evidence interpretation: increasing the
probability of one cause excessively decreased the probability of
the other cause.
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These findings are consistent with the results of Pilditch
et al. (2019) who found that when interpreting evidence against
competing causes, people treat evidence evaluation as a zero-
sum game. The biased reasoning persisted even when the
non-exhaustiveness of the hypotheses was made explicit. Our
results also show that zero-sum thinking is observed despite
the participants being made aware the non-exclusive and non-
exhaustive nature of the competing causes.

Zero-sum reasoning in the context of our experiments
suggests that under- and over-estimation of evidence are
observed due to underlying assumptions about causes modeled
on zero-sum principles. This type of reasoning may result in more
accurate judgments when dealing with competing causes that are
exclusive and exhaustive.

CONCLUSION

Our study suggests that people are able to make qualitatively
accurate causal inferences and update beliefs in the
direction predicted by Bayesian norms. However, quantitative
computations are not always accurate and show a gap between
observed and normative judgments. Instances of underweighting
and overweighting of evidence in our experiments can be
explained by a zero-sum fallacy. This offers a useful perspective
for shedding light on evidence integration in legal cases, where
a balanced evaluation of evidence often involves weighing up of
the evidence against competing hypotheses. These hypotheses
are often about the causes that lead to outcomes under
examination. Making accurate inferences requires not only
correct interpretation of the weight of evidence, but also being

able to identify the hypotheses against which evidence is tested.
Being able to differentiate hypotheses that are not mutually
exclusive and exhaustive is critical to avoiding a zero-sum fallacy.
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This paper considers how 5- to 11-year-olds’ verbal reasoning about the causality
underlying extended, dynamic natural processes links to various facets of their statistical
thinking. Such continuous processes typically do not provide perceptually distinct
causes and effect, and previous work suggests that spatial–temporal analysis, the ability
to analyze spatial configurations that change over time, is a crucial predictor of reasoning
about causal mechanism in such situations. Work in the Humean tradition to causality
has long emphasized on the importance of statistical thinking for inferring causal links
between distinct cause and effect events, but here we assess whether this is also viable
for causal thinking about continuous processes. Controlling for verbal and non-verbal
ability, two studies (N = 107; N = 124) administered a battery of covariation, probability,
spatial–temporal, and causal measures. Results indicated that spatial–temporal analysis
was the best predictor of causal thinking across both studies, but statistical thinking
supported and informed spatial–temporal analysis: covariation assessment potentially
assists with the identification of variables, while simple probability judgment potentially
assists with thinking about unseen mechanisms. We conclude that the ability to find
out patterns in data is even more widely important for causal analysis than commonly
assumed, from childhood, having a role to play not just when causally linking already
distinct events but also when analyzing the causal process underlying extended dynamic
events without perceptually distinct components.

Keywords: probability, covariation, spatial–temporal thinking, causation, causal processes, development

INTRODUCTION

Hume (1739/1978) argued that we can only know about causality from the “constant conjunction”
of potential causes and effects. Since then, multiple schools of thought have put some form of
statistical analysis of repeated experience at the core of causal thinking, ranging from the causal
attribution literature in social psychology (Kelley, 1967, 1973) to work on associative causal
learning inspired by animal studies (Shanks and Dickinson, 1988). However, although causes
covary with their effects, inferring causation from correlation has many pitfalls. Kantian reasoning
instead focuses on the underlying causal mechanisms that allow causes to generate their effects,
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and modern approaches attempt to integrate such mechanism-
based thinking with statistical analyses (see Waldmann, 2017).

When given a choice, people tend to seek information about
mechanisms (how a process works) rather than covariation
(inferring joint variability of two random variables) to determine
causality (Ahn et al., 1995). People seem to recognize that
statistical information needs to fit with the mechanism,
because it is the latter that generates the covariation of
cause and effect. However, in many situations, the underlying
generative mechanism is unknown. In such cases, statistical
reasoning, forms of analyses based on information about the
frequency of occurrence or co-occurrence of potential causes
and effects, is crucial for causal thinking (e.g., Cheng, 1997;
Griffiths and Tenenbaum, 2009).

Analyses of statistical regularities between events presuppose
that there are separate events to be linked into cause-and-effect
sequences, for instance, when pushing a button is followed by a
light coming on or when a ball is set in motion by collision with
another ball. Most studies of causal thinking have considered
causal sequences with such distinct components.

We do, however, also reason about causality in naturally
continuous processes, without clear segmentation into potential
cause and effect, as when an object sinks, for instance, or dissolves
in water. The observation here is of continuous change, and while
we may think about what causes this change, or what causes
one of its features, for instance, why one object sinks slow, while
another sinks fast, in our perceptual experience, the process has
no naturally distinct components to serve as candidate cause and
effects. One can nevertheless focus, in thought, on aspects of the
process and think about the underlying causal mechanism, of
course, but it is not so clear anymore whether and how statistical
reasoning contributes to causal reasoning here.

We have recently begun to study children’s causal thinking in
these types of dynamic natural processes, taking an individual
difference approach and finding that measures of what we call
spatial–temporal analysis were important predictors of children’s
thinking about the causal mechanisms involved (Dündar-Coecke
et al., 2019, 2020). Spatial–temporal analysis is the ability to
think about how spatial configurations change over time. It is
separate from children’s verbal and non-verbal IQ and from their
spatial ability, which is not predictive of causal thinking. Spatial–
temporal analysis goes beyond purely spatial analysis in that it
includes the ability to work out the temporal order of a series of
spatial states and the ability to project these state transformations
onto past, present, and future experiences. Spatial–temporal
analysis might thus help children find segmentations for
continuous processes, which in turn would be helpful for causal
reasoning about them.

In the present paper, we use a similar individual difference
approach to return to the more Humean question of whether
aspects of children’s statistical thinking also predict their causal
reasoning about continuous processes, and how such statistical
predictors compare to their spatial–temporal predictors. We
present further data from the project reported in Dündar-Coecke
et al. (2019, 2020), which developed a set of novel tasks to look at
children’s causal thinking about continuous processes (sinking,
absorption, and dissolving). It also involved a large battery of

spatial–temporal, spatial, verbal, and non-verbal reasoning tasks,
as previously reported, and in addition, the set of statistical
reasoning tasks that are the focus of the present paper. In
subsequent sections, we discuss in more detail our statistical
thinking measures and their possible links to causal thinking.

ON THE LINK BETWEEN
PROBABILISTIC THINKING AND
CAUSAL PROCESSES

Probabilistic reasoning enables one to estimate of the likelihood
of an event that may or may not occur (mud suggests rain).
In a world where causal processes are induced by complex
set of factors, it is crucial to analyze the degree of certainty
of causal relationships because in most circumstances there
are unobserved latent factors, which allow exceptions (not
all mud suggests rain, but sometimes flooding). In some
circumstances, probabilistic thinking can be used as a tool to
improve the accuracy of our decisions even in the absence of
mechanism knowledge.

Interest in the role of probability has already led to
psychological investigation. In Piaget and Inhelder (1975)
studies, the development of such thinking was seen as a
formal operational achievement. The emphasis in this approach
was on improvements in children’s ability to quantify the
relative proportions of target and non-target events as they
get older. A more recent approach, in contrast, has focused
on children’s intuitive understanding. Multiple studies have
shown that children’s probability judgments conform to the
structure of normative probability concepts, e.g., taking an
appropriate ratio from kindergarten age (e.g., Anderson and
Schlottmann, 1991; Schlottmann and Anderson, 1994; Acredolo
et al., 1989; Schlottmann, 2001, reviewed in Schlottmann
and Wilkening, 2012). Even younger, pre-school children
already have a basic ability to discriminate predictable from
unpredictable event sequence (Kuzmak and Gelman, 1986), and
there have been multiple demonstrations in recent years that
infants have some sensitivity to different sampling processes
(Xu and Denison, 2009). Thus, early capabilities of engaging
in rudimentary probability calculations co-exist with difficult
tasks that are computationally challenging for young children
and have high demand on memory skills (e.g., White, 2014;
McCormack et al., 2015, 2016).

These demonstrations involve elaborate lengthy experimental
tasks that would not be suitable for a correlational study. Here,
we use the abbreviated versions of the probability tasks and
investigate whether probabilistic thinking is relevant to reasoning
of continuous causal processes. We hypothesize that children’s
ability to judge probability may not just index computational
ability, but also sensitivity to definiteness of outcomes in the
world. To test this hypothesis, we first observe children’s
sensitivity to probability along with their computational abilities.
Further, we investigate whether the development of probability
understanding is linked to children’s reasoning about continuous
causal phenomena (sinking, absorption, and solution). Third,
we compare these competences with children’s performances on
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spatial–temporal measures. The predictive tasks – probability,
covariation, spatial–temporal – were presented to elicit whether
children’s computational ability or sensitivity to probability
mattered for the inference of causal processes. This three-stage
investigation helps us to identify how individual differences in
such probability judgments might link with individual differences
in reasoning about temporally extended processes above/beyond
other reasoning types.

The tasks in which children exhibit these abilities typically
involve non-causal models, displaying all outcome possibilities
simultaneously to minimize memory requirements. For example,
in the first probability task (marbles), the child sees a plate with
seven red winner marbles and three blue loser marbles and judges
how easy it is to win in a blind draw. In tasks where probabilities
are experienced sequentially (e.g., the child draws a number of
times from a population with initially unknown proportion of
winner and loser marbles), children do not do so well when
predicting the next outcome, as has long been known from
work on probability learning (Brainerd, 1981) and child variants
of the Iowa Gambling Task (Huizenga et al., 2007). Children’s
difficulties in sequential tasks may reflect memory capacity and
other processing limitations, though, and in any case indicate
problems with cumulative estimation rather than basic grasp of
probability [these two types of tasks address different aspects
of understanding, as discussed in Schlottmann and Wilkening’s
(2012) review].

The marbles task captures children’s sensitivity to probability
rather than their computational ability. It derives appreciation of
uncertainty and likelihood from rational analysis that multiple
outcomes are possible in a given situation and from enumeration
of these outcomes, prior to experiencing instances of the
outcomes themselves. Probability tasks laying out all outcome
possibilities simultaneously for children (e.g., showing them all
the marbles on a plate) provide opportunity for such analysis.
Children typically do well on these.

Another probability task derived probability from sampling –
a distribution of variable outcomes over time, which ostensibly
requires greater attention to the detail of that distribution, where
frequencies of outcomes needed to be observed over many trials.
Sequential probability tasks are modeled on this, conforming to
the way in which probability is often encountered in everyday
life, where we may not have an a priori idea of the likelihood
of an outcome, or indeed even of the fact that the outcome is
variable, until we begin to experience the situation. Even though
children do not do so well on these tasks, due to higher processing
demands, these skills still link to probability understanding
(Bayless and Schlottmann, 2010).

Probability understanding per se comes prior to the ability
to calculate probabilities, which is largely established in early
years (Acredolo et al., 1989; Bryant and Nunes, 2012). Children’s
understanding of how to quantify it may be restricted to simple
relations like “more” or “larger,” as Bryant and Nunes showed
in their large-scale intervention that more refined proportional
reasoning is highly trainable regardless of children’s initial
ability and that training is effective during the elementary
years, indicating that it too is within children’s competence
in this age range.

A task with lower computational demand -appropriate for
the age range- was needed. Therefore, the ‘randomness’ task was
added to the battery to address the fact that sometimes outcomes
are determined and predictable, while in other situations
they may be unpredictable or potentially random (Reyna and
Brainerd, 1994; Bryant and Nunes, 2012). Children seem to
make this distinction from ages 4 or 5, as shown by Kuzmak
and Gelman (1986), who presented children two devices: one
deterministic (marbles lined up in a clear tube, with the first
coming out on each trial) and one a lottery device (a cage full of
spinning marbles). Children understood that in the first device
each outcome is known, but in the second, it is not. Study 1
here employed a similar task, the distribution of target cards
in shuffled and unshuffled decks, with an anticipation that this
would be sensitive even to the youngest children’s abilities.

Altogether, this study included three probability tasks, with
different levels of processing complexity. These tasks may elicit
variation in performance at different ages and clarify which task
might be related to which aspect of thinking about continuous
causal processes, such as relative “definiteness” of effect (e.g.,
stones are very likely to sink, berries and grapes are less likely to)
or, as noted earlier, unobservable causal mechanisms (i.e., some
other factor affects the relative probability of sinking).

ON THE LINK BETWEEN COVARIATION
INFORMATION AND CAUSAL
PROCESSES

Grasping bivariate distributions may be more demanding than
univariate distributions, because children must track variation
in not just one, but two variables, and recognize whether this
indicates a link between them. In probability tasks, instead,
children need to evaluate the likeness of an event, where the
ratio varies between impossibility and certainty. Detection of
such links would clearly be helpful in identifying potentially
causal variables. For instance, in Schulz et al.’s (2008) study,
preschoolers were shown pairs of gears (B and C) operating
with a causal chain and a common cause structure on the basis
of observing interventions between them. Children as early as
4 years old could discriminate between causal chain and common
cause structures (see also Shultz and Mendelson, 1975; Shultz,
1982; Schulz et al., 2008; Sobel et al., 2009).

Considering the Humean regularity and Kantian generative
mechanism approaches, Schulz (1982) worked with 3- to 13-
year-olds. He reported five experiments, where, for instance,
sound, wind, and light transmissions were presented to children
in different procedures to assess the essential meaning of
causation for children. Children received problems on each
of these apparatuses: transmission from source, temporal
contiguity versus generative transmission, spatial contiguity
versus generative transmission, and covariation. Similar to Ahn
et al.’s (1995) findings, he found that children consistently
prefer generative mechanism rather than covariation information
when they see a conflict between them. For instance, children’s
justifications were mostly based on mechanism, but rarely based
on covariation, even when 3-year-olds’ verbal abilities were
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TABLE 1 | A typical 2 × 2 contingency table, with cause and effect as the two
variables.

Blossomed Dead

Plant received fertilizer AB A not B

Plant did not receive fertilizer Not AB Not A not B

poorer than the elders at the generative aspects of the problem.
However, contrary to Ahn et al.’s (1995) proposal, Schultz’s results
showed that the tendency to analyze causal mechanism is not
restricted to prior knowledge – whether children were familiar
with the objects or with transmission rules (see also Koslowski
et al.’s (1989), for supporting evidence with college students).
These studies showed that children can grasp causal relations in
the absence of probability or covariation information (see also
Perales et al., 2010).

The interest is typically on whether children grasp the
implications of covariation information about distinct events for
causation. These studies mostly compare the simple case of two
potential causes, one regular and one irregular covariate of the
effect. To reduce processing demands, only minimal information
is given, on whether a cause always co-occurs with the effect (AB
cases), or whether in some instances a cause occurs without the
effect (A not B cases). If both frequencies are considered, one can
derive the probability of the effect, given the cause. This, however,
is only part of true covariation assessment, which also requires
consideration of the base rate, the conditional probability of the
effect occurring in the absence of the cause (i.e., not AB versus
not A not B cases) in terms of a 2 × 2 contingency table, as shown
in Table 1.

The literature focused on covariation (or contingency)
judgment therefore considers how humans utilize information
from all four cells. A well-established approach is based on the
delta p statistic (Jenkins and Ward, 1965; Dennis and Ahn, 2001;
Marsh and Ahn, 2009), which is the difference between the two
probabilities discussed above (the probability of the effect given a
cause and the conditional probability of the effect occurring in
the absence of the cause). Adult covariation judgment is often
studied by providing numerical summaries of the instances in
explicit contingency tables, though the instances can, of course,
also be presented sequentially, as in the real world, which adds
memory demands. To avoid this, and also lower the numerical
requirements of such tasks, pictorial formats are typically used
with children (see, e.g., Shaklee and Mims, 1981). Note that,
as in Table 1, these types of studies still illustrate covariation
information in causal contexts, to attempt to make complex
structured data patterns intuitive and meaningful for children.

Even so, however, children commonly fail to use the delta
p strategy appropriately, but instead employ simpler strategies
that do not consider all four cells of the table or do not
weight them evenly. Using this approach, Shaklee and Mims
(1981) demonstrated four strategies used by children across
development, hierarchically increasing – from the least to the
most sophisticated: judgment of the frequency with which the
target events co-occur (AB), comparison of the number of times
target events do and do not co-occur (AB versus A not B),

comparing frequencies of events confirming and disconfirming
the relationship (AB plus not A not B versus A not B plus not AB),
and optimal assessment of the difference between two conditional
probabilities (delta p).

These patterns suggest a shift from less to more accurate
use of covariation data, where frequency judgment based simply
on positive co-occurrence emerges early, while the conditional
probability strategy does not appear until the 10th grade.
Consistent with this, Shaklee and Paszek (1985) found that, in
elementary school, children were most likely to make judgments
about covariation by comparing frequencies of the target event
and the use of the more advanced strategies identified by
Shaklee and Mims (1981) was rare even in fourth grade.
Similarly, Ferguson et al.’s (1984) data showed that older
children’s impressions were influenced more by fuller covariation
information rather than frequency information per se. In this
study, 5- to 13-year-olds were presented with three scenarios
about a boy displaying harmful behavior. In condition 1, the
harm-doing behavior was low in consistency and also low in
frequency. In condition 2, the harm was high in consistency
and also high in frequency. In the third condition, the harm
was low in consistency but high in frequency. Even preschoolers
showed the sensitivity to the frequencies and to the stability of the
boy’s behavior, but the use of covariation information increased
clearly with age.

We hypothesize that primary age children’s apparent tendency
to focus on frequency over covariation may reflect their
difficulties of understanding, but it may also be influenced to
some extent by the tasks used. When computational demands,
such as ratios and percentages, are minimized, even young
children appreciate the difference between variables that co-
vary perfectly with an effect or are unrelated to it. For instance,
Schulz et al.’s (2008) experimental design with four conditions
showed that children can clearly observe a block hitting another
block causing it to emit either a train or siren noise. Assessment
of imperfect correlation poses more problems, though this is
affected too by the way information is presented. For instance, in
simple symmetrical tasks (asking whether green or red chewing
gum causes bad teeth as illustrated over 10 pictures), even 4-year-
olds could evaluate patterns of covariation (Koerber et al., 2005).

To test this hypothesis, we devised a non-causal covariation
task to assess whether individual differences in covariation
assessment predict children’s causal thinking. We kept the task
as simple as possible, using a pictorial approach, consistent with
the literature, and with our other tasks, we investigated children’s
assessment of simple covariation patterns. The task included four
decks, each consisted eight cards, in which a particular surround
shape (a circle or square) contained a particular symbol inside
(a star or a moon). Attention focused throughout the degree of
co-occurrence between stars and circles. As shown in Figure 1,
in the first deck, the co-occurrence between stars and circles was
75%. In the second deck, co-occurrence was 50% (analogical to A
not B cases). In the third, it was 100% (AB cases). For each deck,
children were requested to answer verbally whether a star went
together with a circle. Further, they were asked to evaluate how
likely a star went with a circle. To answer this question, children
were presented with a paper showing a line starting from “never
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FIGURE 1 | One of the four trials of the covariation task employed in Study 2,
displaying the first deck with 75% co-occurrence between stars and circles,
representing imperfect covariation.

go together” to “always go together.” For each deck, children
ticked on this line where they think the likelihood would be best
represented. They were encouraged to answer the question by
thinking with percentages as well. The focus of this task was
on whether children could extract this relation in a number of
problems differing in the relative frequency of co-occurrence.
We elicited simple verbal and non-verbal responses, but did not
ask children to explain their responses, or question them about
more complex data.

Overall, in the present study, we employed five probability and
covariation tasks, aiming to obtain reliable measures of individual
variation in children’s statistical thinking to map onto variation in
causal inference. Children had to assess frequency relationships
per se, not frequency relations between cause and effect.

STUDY 1

Study 1 tested the above hypotheses by working with 5- to
11-year-old children. The study employed three causal tasks in
relation to continuous processes, one spatial–temporal ability
task, one covariation and three probability tasks, and measures
of verbal and non-verbal ability as controls.

Methods
Design
The study utilized a combined cross-sectional and individual
differences design, employing three groups spanning the English
primary (elementary) school age range. We focus here on 10 tasks
that were given to children in fixed order within a single one-
to-one session: measures of verbal and non-verbal ability, three
mini-experiments focusing on causal thinking, and a spatial–
temporal task, plus the three probability and covariation tasks.

One-way ANOVAs were used to test for differences between
age groups on each task. Fitness of the regression models
initially tested by looking at linear, logarithmic, and quadratic

trends. Pearson and partial correlations (controlling for age)
showed the strength of the associations between the measures.
Estimates of the unique variance explained by each predictor
task in causal measures were tested using hierarchical linear
regressions. Adjusted R2 values showed the variances explained
by the final models. Possible confounds in these estimates were
checked with mediation analyses. Combined patterns were tested
using path analysis.

Participants
The sample comprised of 107 children, recruited with parental
consent from schools in London and Oxford: 35 of them from
year 1 (Y1, Mage = 6.1 years, sd = 4.4 months), 33 from year 3
(Y3, Mage = 8.4 years, sd = 5.9 months), and 39 from year 5 (Y5,
Mage = 10.3 years, sd = 5.9 months). The sample encompassed
wide ethnic and linguistic variation but was skewed toward the
upper range in terms of socioeconomic background.

Materials and Procedure
Testing took place out of class in a quiet area within school and,
for the tasks described here, lasted on average 35 min per child.
Responses were recorded manually on score sheets, but children’s
replies during the causal tasks were also audio-recorded.

The causal tasks were developed by the authors for this
particular project and focused in turn on two contrasting
instances of sinking (a stone and a grape sinking), absorption (a
piece of tissue and blotting paper absorbing water), and solution
(rock and table salt dissolving in water). Comparison between
these instances revealed differences, as one item sank slow,
another fast, which may then be linked to concurrent differences
and commonalities between the objects (e.g., the stone is heavier
than the grape, but they are of similar size), which would not be
salient in an individual instance.

The tasks were administered and scored as described in
Dündar-Coecke et al. (2019). Children were asked to predict
outcomes ahead of witnessing simultaneous demonstration of
the two instances, which they were then asked to describe,
and to explain, as a measure of causal inference assessing
the identification of basic factors, operative variables, and
mechanisms. Two types of measure were computed from these
tasks: totals for accurate prediction from prior knowledge and
description for each of the instances considered (maximum = 6)
and for inference (ascending score for level of response for each
task; maximum = 9); and a total score for causal performance
across these indices (alpha = 0.751), which could range from
0 to 21. Interest centers here on the overall causal measure
and the measure of inference as the key component where
sensitivity to probability and covariation might be anticipated to
have an influence.

Appendices 1, 2 provide the full details of task
administration and scoring. To confirm reliability, two
authors subsequently scored all responses independently
from the audio-recordings. Agreement rate was 93%, and
final scores were assigned following discussion and checking
the audios in the small number of instances where there
was a difference. Examples for response levels can be seen in
Supplementary Table 13 in Supplementary Appendix 2.
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FIGURE 2 | Flasks at the start of the flow of liquid task.

Measure of spatial–temporal analysis
The flow of liquid (FOL) task, adapted from Piaget (1969/2006),
examined children’s ability to analyze the FOL from one
container to another at successive time points and to reconstruct
the sequence of change. It consisted of three stages. At the
first, two flasks were presented one on top of the other with
a tap between (Figure 2). The upper flask (I) was filled with
red-colored water, while the lower (II) was empty. Children
were given a pro forma showing both flasks with a space
between them, and they marked the respective levels in the
flasks by drawing horizontal lines on the pro forma. The liquid
was then allowed to flow from I to II in four further steps,
and the child marked the liquid level on a fresh pro forma
each time, being invited to correct any errors. At stage two,
the five proformas were shuffled and the child put them in
order, again being invited to correct any errors. At the third
stage, each pro forma was cut in two, separating drawings
of I from II, shuffled, and the child attempted to put them
in order again. Children were expected to match the upper
and lower bottles correctly and also put them in the right
sequential order. Scores were based on the number of drawings
in the correct position at this stage and could therefore
range from 0 to 10.

Understanding of probability and covariation
The randomness task was used to explore children’s
understanding of the consequences of a chance mechanism.
Participants were shown two identical decks of 30 cards, five of
which had smiley face stickers, with the remainder blank. The
cards with the stickers were placed at the top of each deck, face
up, so that they were visible. One of the decks was then shuffled
so that the cards with smiley faces were now mixed with the blank
cards. The two decks were then put face down, and participants
were asked: “If you want to make sure to pick a smiley face,
which deck would you pick from, and why?” Children’s choices
were marked as 0 or 1 depending on whether they chose the
shuffled or unshuffled deck, and if they made the correct choice,
their explanations were marked as 0 or 1 according to whether
they were able to identify the predictability of the position of
the cards with the smiley faces as key to making a choice. Scores
could range from 0 to 2.

FIGURE 3 | (a) The four trays for the four trials of the Marbles task, in trial
order; (b) the deck shown in the first trial of the cards task – only one smiley
and one frown were dealt face up, the other two cards were shown face
down.

The marbles task was adopted from Piaget and Inhelder (1975)
to evaluate children’s understanding of proportions without
sampling. Children were shown over four trials four trays with
different numbers of colored marbles (see Figure 3). After being
told that blue marbles were the winners, children had to say how
good each tray was for winning if one marble was picked with
eyes closed. They were also asked to estimate how likely they
would be to pick a winner from each and could express their
answer verbally as either fractions/ratios (as some older children
did spontaneously), or by ticking on a line from “never get one”
to “always get one.” Fully correct answers on both parts of the
question were scored as two points for each tray, and partially
correct scored as one. Participants who gave consistent correct
answers for the second and the fourth tray received an extra
two points for confirming verbally that the proportions were
identical. This yielded an overall score ranging from 0 to 10.

The cards task was developed by the authors to assess
children’s understanding of frequencies based on sampling.
Children saw over four trials four decks comprised of different
numbers of cards with smiley versus sad face stickers: (1) two
smiley, two sad (see Figure 3); (2) two smiley, four sad; (3) four
smiley, two sad; and (4) four smiley, four sad, thus utilizing
the same proportions as in the marbles task, to ensure that any
differences in difficulty between marbles and card tasks did not
just reflect differences between samples presented. On each trial,
they saw half of the cards dealt out face up, selected to represent
the overall proportions, with the others remaining face down.
Children had to say how good each deck was for picking a smiley,
and then like the marbles, estimate the chances of doing so. Scores
were similar as to the marbles task and could range from 0 to 10.
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FIGURE 4 | Practice display of the covariation task.

FIGURE 5 | First display of covariation task representing perfect covariation.

The covariation task was developed by the authors. The
task involved three trials on a laptop, each displaying, in
pseudorandom order, a series of eight pictures, half in a square
and half in a circle frame. Children had to detect whether there
was a relation between frame shape and content of the picture.

The task was started with an introduction, displaying a triangle
together with a flower (Figure 4). Children were told “Now, you
are going to see some shapes appear one by one on the screen
filled with different pictures like this following: a flower goes with
a triangle. I will ask you each time look at the screen carefully and
tell me what shape goes with what picture.”

The first display showed perfect covariation: four pictures of
an ice cream in the square and four of a star in the circle (see
Figure 5). Each figure appeared on the screen one by one, and
children were asked: Which shape goes with the ice cream? Do they
always go together? Which shape goes with the star? Do they always
go together?

The second display showed imperfect covariation (75%
contingency): three pictures of a basketball and one of sunglasses
in the squares, and three of a phone and one of a line in the
circle. Participants were asked: Which picture goes with the circle?
Do they always go together? Which picture goes with the square?
Do they always go together? The third display had no pattern
(zero contingency), the circles and squares all contained different
pictures, and participants were again asked the same questions.
Shapes were kept consistent to provide a common anchor across
displays, but pictures were varied, to avoid carry-over. All trials
consisted of eight figures each. Co-occurrence could be expressed
as fractions/ratios, or by ticking on a line, as for marbles, from
“can’t tell at all” to “definitely.” Each correct answer was marked
as 1 point. Children were expected to identify of the dominant
correlate for displays 1 and 2, and they were supposed to say
“none”/“any” for display 3 based on the appropriate estimation
of the strength of association. Scores could range from 0 to 12.

Measures of verbal and non-verbal ability
The expressive vocabulary and block design subtests from the
Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler,
2011) were used to provide standard measures of verbal and
non-verbal ability.

The WASI vocabulary is a measure of expressive language,
word knowledge, and verbal concept formation. Children were
required to define the words when the researcher read aloud.
Administration and scoring followed standard procedures.

The WASI Block Design is a subset to explore children’s non-
verbal cognitive abilities. Children were shown nine red and
white square blocks and a book illustrating different patterns
in each page that could be made with the blocks. Children
were asked to arrange the blocks to match each design shown
in the picture, increasing in difficulty. This task aimed to
measure children’s ability to analyze and synthesize abstract
representations within specific time limits for each display.

Results
Analyses utilized data from the 107 participants who completed
testing, except where noted. Age trends on each measure are
presented below, followed by analyses of relationships between
the causal, spatial–temporal, probability, and covariation
measures. All statistical tests were two-sided where the highest
p value was set to 0.05. Employing the F and t test procedures
based on the general linear model of regression, the observed
power for the regression was 0.95, which was calculated using
G∗Power 3.1.9.2 (Erdfelder et al., 2007).

Developmental Trajectories
There were a significant negative skew on total causal score, FOL,
randomness, marbles, and cards and a positive skew on block
design, due to the youngest and oldest age groups, respectively,
exhibiting a longer tail of scores; inference, covariation, and
vocabulary were normally distributed. Figure 6 demonstrates
the developmental trajectory for each measure using scores
standardized to a scale between 0 and 1 for comparability.
Overall, there was a clear upward trend for all tasks, but with
variation in relative difficulty. Block design was in particular
difficult for most children. Significant negative skew indicated
that most children failed to gain higher scores in this task,
while FOL was easier (hence the difference in direction of skew),
with causal total lying in between. Comparing the trends, the
steepest gradients were seen for blocks and covariation, followed
by randomness, cards, and marbles.

Means and standard deviations on the original scales are
shown in the Table 2 (study 1). In terms of differences between
age groups, marbles, FOL, causal total, and vocabulary tasks
showed a similar pattern: the steepest increase was between Y1
and Y3, with a slow down subsequently. For the rest, the steepest
gradient was between Y3 and Y5, except randomness where
growth was linear. One-way ANOVAs by school year found
highly significant increases with age on all variables, using the
Welch robust statistic, p < 0.001 in each case. The majority of
inference responses on all three causal tasks focused solely on
relevant factors or variables (scores of 1 or 2), though mechanism
responses were more evident among older children: 2.9% of
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FIGURE 6 | Developmental trajectories of all variables computed using standardized measures across the three year groups.

children in Y1 gave one or more mechanism response, 24.2%
in Y3, and 30.8% in Y5 (cf. Dündar-Coecke et al., 2019, for the
response profiles of the causal tasks).

Relationships Between Causal Performance and
Spatial–Temporal Analysis, Probability, and
Covariation
Correlations between variables
The relationship of the predictor variables to the causal measures
was linear, apart from block design, where it was logarithmic (R2

for linear fit = 0.263; while it was 0.368 for logarithmic trend).
Zero-order Pearson correlations between the different measures
showed overall causal performance and inference was strongly
positively associated with all the potential predictors, which were
themselves all positively correlated with each other (Table 3,
study 1 correlations). The high correlations between causal total
and inference were plausible, as causal total contained prediction,
description, and inference scores across the three tasks.

When age in months and verbal (vocabulary) and non-verbal
ability (log block design) were controlled for, only FOL, marbles,
cards, and covariation remained significantly associated with
total causal performance. The same set of variables was also
related to inference, with the exception of cards. FOL was related
to both cards and marbles and to covariation to a lesser extent.
The probability and covariation measures were predominantly
related to each other, though marbles and cards were the most
closely related measures, with covariation – and randomness –
more distinct from these. Randomness had little relation to the
causal measures, possibly because its narrow scoring range made
it less discriminating. It did not affect the beta values of other
variables and remained non-significant in each regression model
and was therefore discounted from further consideration.

Hierarchical regression models
Hierarchical regression was used to examine the unique
variance accounted for by the remaining predictors. Taking
total causal score and inference in turn as the dependent
variable, age in months and vocabulary were entered in the
first stage of the analysis. Marbles, cards, and covariation
were entered after the control variables, but with marbles
first, since it related best to the causal indices; this made it
possible to assess its specific impact before including cards
and covariation. Log block design was entered at the fourth
stage, in order to assess the influence of verbal and non-
verbal ability separately and to examine the predictive power
of the statistical measures before and after non-verbal ability
was controlled for. The spatial–temporal measure, FOL, was
entered at the fifth stage, since it appeared to be the most
robust predictor overall. Analyses for prior knowledge and
description with the same order of entering predictors are
presented in Appendix 5.

For total causal score, the analysis (Table 4, study 1
regressions) produced significant 1R2 at each stage except the
third. Age and vocabulary were significant predictors at the
first stage, but the beta for vocabulary dropped and age was
superseded by marbles when that was entered. Vocabulary and
marbles dropped out when cards and covariation were added,
but neither of the latter was significant, indicating that all four
predictors shared variance. The beta for cards was smaller than
that for covariation, which was marginally the largest remaining
predictor. Log block design was a significant predictor when
added at the fourth stage, and produced further drops in the betas
for all the other variables, with a bigger impact on covariation
than marbles or cards. FOL joined log block design as a further
predictor at the final stage, without substantially affecting the
betas for the other variables, except marbles.
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TABLE 2 | Study 1 mean scores (with standard deviations) on total causal performance (max = 21), inference (max = 9), vocabulary (max = 43), block design (max = 58),
flow of liquid (FOL; max = 10), randomness (max = 2), marbles, cards (max = 10), and covariation (max = 12).

Y1 Y3 Y5 Total

Causal total 10.63 (4.44) 14.42 (2.96) 15.97 (2.44) 13.75 (4.04)

Inference 3.34 (1.89) 5.06 (1.54) 5.54 (1.54) 4.67 (1.90)

Vocabulary 22.89 (5.29) 30.76 (5.86) 35.62 (5.20) 29.95 (7.59)

Blocks 11.91 (6.08) 19.15 (9.52) 34.10 (13.25) 22.23 (13.86)

FOL 7.03 (3.27) 8.61 (2.09) 9.59 (1.31) 8.45 (2.55)

Randomness 1.09 (0.89) 1.42 (0.79) 1.90 (0.38) 1.49 (0.78)

Marbles 4.51 (3.08) 7.45 (2.95) 9.26 (1.82) 7.15 (3.29)

Cards 4.69 (3.56) 7.15 (2.76) 9.10 (1.59) 7.06 (3.27)

Covariation 4.83 (2.18) 6.61 (3.29) 9.82 (2.81) 7.20 (3.48)

Study 2 mean scores (standard deviation) on total causal performance (max = 33), inference (max = 12), flow of liquid (FOL, max = 12), DTV (max = 18), marbles
(max = 10), covariation (max = 8), block design (max = 45), and vocabulary (max = 43).

Causal total 15.33 (4.76) 16.20 (4.47) 18.72 (2.95) 16.82 (4.31)

Inference 5.03 (2.36) 5.69 (2.56) 6.63 (1.75) 5.82 (2.32)

Vocabulary 22.48 (5.39) 29.05 (5.01) 34.01 (4.56) 28.86 (6.77)

Blocks 12.43 (5.62) 16.45 (7.12) 24.01 (8.97) 17.91 (8.78)

FOL 8.33 (4.34) 9.24 (3.79) 11.16 (2.40) 9.65 (3.72)

DTV 12.58 (3.50) 13.33 (3.08) 14.56 (2.77) 13.54 (3.18)

Marbles 3.76 (2.99) 5.39 (3.05) 7.41 (2.95) 5.61 (3.31)

Covariation 4.48 (1.96) 5.34 (2.35) 6.34 (1.96) 5.44 (2.22)

TABLE 3 | Study 1 zero-order and partial correlations between measures (zero-order correlations above diagonal, N = 107; partial correlations below diagonal,
controlling for age in months, verbal and non-verbal ability, N = 106 due to missing date of birth data for one participant; significant values in bold, *p < 0.05, **p < 0.01,
and ***p < 0.001).

Causal total Inference Vocabulary Log blocks FOL Randomness Marbles Cards Covariation

Causal total 1 0.90*** 0.54*** 0.61*** 0.52*** 0.39*** 0.55*** 0.52*** 0.56***

Prior 0.69*** 0.53*** 0.47*** 0.56*** 0.46*** 0.27** 0.42*** 0.42*** 0.47***

Description 0.79*** 0.70*** 0.44*** 0.48*** 0.45*** 0.40*** 0.42*** 0.49*** 0.43***

Inference 0.85*** 1 0.47*** 0.52*** 0.42*** 0.34*** 0.53*** 0.43*** 0.51***

Vocabulary – – 1 0.68*** 0.44*** 0.44*** 0.52*** 0.53*** 0.64***

Log blocks – – – 1 0.43*** 0.41*** 0.56*** 0.54*** 0.62***

FOL 0.30** 0.20* – – 1 0.35*** 0.55*** 0.56*** 0.47***

Randomness 0.13 0.10 – – 0.16 1 0.49*** 0.54*** 0.43***

Marbles 0.25* 0.28** – – 0.38*** 0.28** 1 0.76*** 0.63***

Cards 0.21* 0.13 – – 0.38*** 0.36*** 0.61*** 1 0.60***

Covariation 0.20* 0.21* – – 0.20* 0.15 0.37*** 0.32** 1

Study 2 zero-order and partial correlations between measures (zero-order correlations above diagonal, partial correlations below diagonal, controlling for age in months,
verbal and non-verbal ability, N = 124; significant values in bold, *p < 0.05, **p < 0.01, and ***p < 0.001).

Causal total Inference Vocabulary Log blocks expFOL DTV Marbles Covariation

Causal total 1 0.89*** 0.53*** 0.48*** 0.60*** 0.44*** 0.39*** 0.43***

Inference 0.82*** 1 0.55*** 0.49*** 0.61*** 0.49*** 0.42*** 0.41***

Vocabulary – – 1 0.53*** 0.49*** 0.39*** 0.48*** 0.43***

Log blocks – – 0.53** 1 0.50*** 0.42*** 0.55*** 0.34***

expFOL 0.41*** 0.41*** – – 1 0.54*** 0.52*** 0.43***

DTV 0.23* 0.30** – – 0.38*** 1 0.44*** 0.39***

Marbles 0.10 0.14 – – 0.29** 0.23* 1 0.40***

Covariation 0.24** 0.20* – – 0.25** 0.25** 0.20* 1
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TABLE 4 | Study 1 hierarchical regression analysis with total causal score as dependent variable (significant predictors in bold).

Model M1 M2 M3 M4 M5

Predictor B

Age in months 0.332** 0.207 0.176 0.115 0.109

WASI vocabulary 0.310** 0.231* 0.154 0.059 0.044

Marbles 0.310** 0.172 0.145 0.096

Cards 0.104 0.086 0.033

Covariation 0.184 0.131 0.121

Log blocks 0.284* 0.273*

Flow of liquid 0.203*

AdjR2 = 0.454; 1R2 = 0.347*** for M1; 0.061** for M2; 0.022 for M3; 0.035* for M4; and 0.026* for M5. *p < 0.05.**p < 0.01.***p < 0.001.

Study 2 hierarchical regression analysis with total causal score as dependent variable (significant predictors in bold).

Model M1 M2 M3 M4 M5 M6

Predictor β

Age in months −0.136 −0.171 −0.174 −0.249* −0.230* −0.218*

WASI vocabulary 0.624*** 0.551*** 0.483*** 0.434*** 0.408*** 0.349**

Marbles 0.202* 0.147 0.050 0.017 −0.053

Covariation 0.221** 0.209* 0.176* 0.130

Log blocks 0.284** 0.250* 0.197*

DTV total 0.160 0.062

Expflow of liquid 0.349***

AdjR2 = 0.459; 1R2 = 0.292*** for M1; 0.031* for M2; 0.037** for M3; 0.046** for M4; 0.018 for M5; and 0.066*** for M6. *p < 0.05.**p < 0.01.***p < 0.001.

The analysis for inference produced similar outcomes at
the first two stages (Table 5, study 1 regression), except age
and vocabulary that were both superseded by marbles. In
this case, however, the addition of cards and covariation
had little appreciable impact on marbles. Covariation
had the second largest beta, but was not significant. The
inclusion of log block design had little impact on marbles,
cards, and covariation. The addition of FOL had somewhat
more impact on marbles, but the latter remained the sole
significant predictor.

Overall, the regression analyses revealed clear overlaps
between the influence of all the predictors on causal
performance. However, the relative impact of including
FOL and log block design in the models indicates marbles
and cards were somewhat more closely related to the former
and covariation to the latter. Probability and covariation
therefore appeared to capture somewhat different dimensions,
in line with the partial correlations. In particular, while
spatial–temporal and non-verbal ability were the strongest
predictors of overall causal thinking, for inference, the effects of
probability were stronger.

Nature of shared variances between predictors
Factor analysis with varimax rotation was used to explore
in more depth the nature of the relationship between
FOL, log block design, marbles, cards, and covariation,
given their shared influence on the causal indices. The
Kaiser–Meyer–Olkin (KMO = 0.834) measure of sampling
adequacy was well within acceptable limits. The KMO

identified a four-factor solution that explained 95% of
the shared variance between the five measures, which
confirmed separable components relating to marbles/cards,
covariation, FOL, and log block design (Table 6, study 1 rotated
component matrix).

In view of this, maximum likelihood path analysis was
used to examine whether there were specific directional
relationships between the predictors that would explain the
observed patterns of overlap in their influence on the causal
indices. For both causal measures, the best fit was provided
by an extended mediation model, which was assessed by
the chi-squared and probability values penalized by the
Akaike information criterion (AIC), where the fitness of the
model improved as the AIC value lowered. The best fit was
χ2 = 3.891, p = 0.273 for total causal and χ2 = 3.887,
p = 0.274 for inference, with df = 3 for both. Figure 7
illustrates the model and path coefficients obtained for total
causal score. Black and gray paths were used to distinguish
between subsidiary and major path coefficients. The model
illustrated a stable pattern of effects in which non-verbal
ability, awareness of covariation, and probability (as indexed
by marbles) support spatial–temporal analysis, but with each
also influencing aspects of causal reasoning to different
degrees. For overall causal performance, non-verbal and spatial–
temporal ability have the largest direct effects, with the effects
of probability and covariation smaller by comparison; for
inference, the direct effect of probability, 0.219, is stronger
than non-verbal and spatial–temporal ability, 0.190 and 0.101,
respectively. Age and vocabulary have little or no direct
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TABLE 5 | Study 1 hierarchical regression analysis with inference as dependent variable (significant predictors in bold).

Model M1 M2 M3 M4 M5

Predictor β

Age in months 0.285* 0.144 0.127 0.083 0.080

WASI vocabulary 0.272* 0.182 0.126 0.060 0.050

Marbles 0.351** 0.321* 0.301* 0.273*

Cards −0.068 −0.081 −0.111

Covariation 0.190 0.153 0.147

Log blocks 0.201 0.194

Flow of liquid 0.118

AdjR2 = 0.339; 1R2 = 0.262*** for M1; 0.078** for M2; 0.017 for M3; 0.018 for M4; and 0.009 for M5. *p < 0.05.**p < 0.01.***p < 0.001.

Study 2 hierarchical regression analysis with inference as dependent variable (significant predictors in bold).

Model M1 M2 M3 M4 M5 M6

Predictor β

Age in months −0.174 −0.215* −0.217* −0.291** −0.265** −0.253**

WASI vocabulary 0.667*** 0.583*** 0.531*** 0.482*** 0.445*** 0.392***

Marbles 0.237** 0.195* 0.100 0.053 −0.010

Covariation 0.169* 0.157 0.110 0.069

Block design (log) 0.280** 0.233* 0.184*

DTV total 0.224** 0.135

Expflow of liquid 0.317***

AdjR2 = 0.488; 1R2 = 0.318*** for M1; 0.042** for M2; 0.022* for M3; 0.044** for M4; 0.035** for M5; and 0.054∗∗∗for M6. *p < 0.05.**p < 0.01.***p < 0.001.

TABLE 6 | Study 1 four-factor model for flow of liquid, log blocks, marbles, cards, and covariation (significant predictors in bold).

Factor 1 Factor 2 Factor 3 Factor 4

FOL 0.292 0.927 0.163 0.168

Log blocks 0.281 0.172 0.907 0.264

Marbles 0.821 0.233 0.234 0.298

Cards 0.856 0.257 0.223 0.208

Covariation 0.335 0.189 0.287 0.876

Study 2 three factor solution for exponential flow of liquid, DTV, log block design, marbles, and covariation.

Factor 1 Factor 2 Factor 3

Exp FOL 0.461 0.648 0.252

DTV total 0.191 0.915 0.152

Log blocks 0.857 0.228 0.080

Marbles 0.794 0.233 0.246

Covariation 0.194 0.213 0.951

impact on causal thinking in these models and act as
background variables, influencing the main predictors to
different degrees.

Further moderation analyses confirmed there were no
interaction effects between log block design, marbles, covariation,
or FOL in predicting causal scores.

Discussion
This study confirmed developmental trends in the ability
to analyze probability, covariation, and spatial–temporal
information, with clear increases across the age groups,

though the statistical indices used here showed later growth
than the spatial–temporal indices, with children approaching
ceiling by Y5 on FOL.

Performance on FOL remained discriminating, but the use
of statistical information consistently correlated with both
overall causal thinking and inferential level causal analysis.
Factor analysis confirmed these are distinct competences, though
classical and frequentist probability was found to be closely
related. Probability, covariation, and spatial–temporal analysis
had, in part, independent effects on causal inference, but also,
in part, interrelated influence connected to non-verbal ability.
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FIGURE 7 | Extended mediation model for the effects of log block design, covariation, marbles and flow of liquid on total causal score (subsidiary effects in gray).

Marbles performance was a significant predictor to begin with
in both regression analyses, but for overall causal thinking, it
dropped substantially with the inclusion of cards and covariation,
and then again when FOL was added. For inference, however,
it remained a significant predictor once included, though it
was again affected by FOL. Covariation was never a significant
predictor. This might be partly attributable to the limited
number of steps involved in the task we used affecting its
sensitivity – but it nevertheless had a sizeable beta until log
block design was included, and it interacted with FOL at lower
levels. Although verbal ability had no impact on any aspect of
causal performance, this may have been due to the relatively
narrow social range of the sample; there were nevertheless clear
indications that statistical ability in particular overlapped in part
with verbal ability.

The findings suggested that only spatial–temporal analysis and
non-verbal form of cognitive ability significantly associated with
causal thinking; neither statistical inference nor verbal ability had
significant explanatory power. However, we need to consider the
sample and task characteristics before arriving at conclusions.
Thus, the next study refined the task battery and examined the
replicability of findings among a wide range of population.

STUDY 2

The modified causal tasks followed the structure of a scientific
investigation, the FOL task was extended, an additional
spatial–temporal measure was derived from an adaptation of

Wilkening’s (1981) distance/time/velocity integration tasks, and
a more socially representative sample within the same age
range was employed.

The marbles task remained to assess children’s probability
judgments. Another covariation task, which was a revision of that
used in study 1, utilized physical materials in the form of decks of
cards rather than a computer display, in keeping with most of the
other test materials. The tasks were selected on the basis of their
relative predictive strength in study 1. Therefore, the cards task
was dropped, in view of its overlap with marbles in study 1, and
randomness was dropped because of its lack of predictive power.

Methods
Design
The design, age groups, task order, and administration were all
equivalent to study 1. We focus on nine tasks given in fixed order
within a single one-to-one session: WASI expressive vocabulary
and block design (Wechsler, 2011), three causal experiments, and
two spatial–temporal tasks, plus the probability and covariation
tasks at the end.

Participants
The sample comprised 124 children, recruited with parental
consent from three schools in Oxford: 36 from Y1, mean
age = 5 years, 11 months, sd = 3.8 months; 45 from Y3, mean
age = 7 years, 11 months, sd = 3.6 months; and 43 from Y5, mean
age = 9 years, 9 months, sd = 5.1 months. Children’s ethnic and
linguistic background was similar to study 1 but covered a more
broadly representative range of socioeconomic backgrounds.
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Materials and Procedure
Testing for the tasks took an average of approximately 42 min per
child (min = 29, max = 57). Responses were recorded in the same
way as for study 1.

The scientific method causal tasks were developed by the
authors and administered and scored as described for study
2 in Dündar-Coecke et al. (2020). The tasks followed a more
realistic scientific procedure, with a sequence of observation,
description, prediction, justification, and explanation. Full
details of this protocol can be found in Appendix 3. Briefly,
the tasks again focused in turn on contrasting instances of
sinking, absorption, and solution, but in this case, children
first observed and described two instances before being asked
to predict. They then justified their predictions by judging
the outcomes of further three items. Children then explained
the influences at work across all five instances. Two types
of measure were computed from these tasks: totals of each
task for accurate description (maximum = 3), prediction and
justification (each maximum = 9), and level of explanation
(again, assessing identification of basic factors, operative
variables, relationships between variables, and mechanisms;
maximum = 12). The second measure was the total score for
causal performance across all indices, 0–33, alpha = 0.724.
Interest again centered on the overall score for causal
performance and that for inference.

Appendices 3, 4 provide the details of the scripts and scoring
systems. As in the first study, children’s responses were scored
independently by two authors based on the criteria shown in
Supplemenatry Tables 14, 15 in Supplementary Appendix 4.
The independent scores were compared for interrater reliability.
Any difference in the independent scores was followed by further
checking of the audio records, with a discussion to get a 100%
agreement on the final scores.

The measures of verbal and non-verbal ability and the FOL
were all similar as described for study 1, except that six stages
were employed for FOL rather than five, and scores could
therefore range from 0 to 12. The distance–time–velocity (DTV)
measure required children to make estimates of each of distance,
time, and velocity in turn, by integrating information about
the other two variables. Each task utilized scenarios akin to
those employed by Wilkening (1981), displayed on PowerPoint
slides. For distance, children judged how far three animals
varying in speed (cat, mouse, and turtle) would run in a
fixed time, counted out by the experimenter, to escape from
a barking dog. For time, they had to estimate, by counting
themselves, how long an animal (cat, bunny, and turtle) would
take to run to a fixed point, with the second half of the run
concealed behind a wall. For velocity, they had to judge which
of seven animals (deer, horse, cat, bunny, mouse turtle, and
snail) would make it to a fixed destination in a given period
of time, counted out by the experimenter. Children’s judgments
relied entirely on mental projection based on information
provided, and no actual motion was observed to support the
key elements of these. Each task consisted of three trials, with
responses on each trial scored 0–2 in terms of degree of
accuracy. The total score across the three tasks could therefore
range from 0 to 18.

Measure of probability
The marbles task followed exactly the same procedure for
administration and scoring as in study 1.

Measure of covariation
The covariation task was developed by the authors to provide an
alternative approach to the previous computer-based covariation
task. The task utilized cards showing one of four images: a
circle containing a star, a circle containing a crescent moon,
a square with a star, and a square with a moon. Attention
focused throughout on the degree of co-occurrence between
stars and circles, with the squares as distractors. Children saw
four decks in turn consisting of eight cards. In the first deck
(Figure 1), three of the circles contained stars and one a moon;
co-occurrence between stars and circles was therefore 75%. In the
second deck, co-occurrence was 50%: half of the circles contained
stars and half contained moons. In the third, it was 100%: all
circles contained stars. In the fourth, it was 0%: all the circles
contained moons.

In each case, the cards were laid out face up before the child in
random order, and they were asked to say from what they saw in
front of them how often stars and circles went together. As in the
marbles task, they made a verbal judgment first of all (e.g., “three
times,” “always”), and then provided an estimate of frequency by
ticking on a line, one end marked “never” and the other “always.”
Correct answers on both responses were scored as two points for
each deck, allowing for some lack of exact precision in the tick
responses. Partially correct responses were scored as one. Scores
therefore varied between 0 and 8.

Results
Analyses utilized data from all 124 participants. Age trends are
presented first, followed by analyses of relationships between
causal, spatial–temporal, probability, and covariation measures.
All statistical tests were two-sided. The highest p value was set
to 0.05. Using the G*Power 3.1.9.2 (Erdfelder et al., 2007), the
observed power for the regression was 0.97.

Age Profiles
Mean scores on each measure are shown in Figure 8, using
standardized measures, as in study 1. There were a significant
negative skew on FOL, DTV, and vocabulary and a positive
skew on block design; the remaining variables were normally
distributed. Again, the developmental trend was clear, with tasks
varying in difficulty. Blocks task was in particular difficult for
children, while FOL was easier. The causal task was also more
difficult than in study 1.

Comparing the increase in scores across year groups, the
steepest gradients were apparent for blocks, FOL, and causal
total, with the greatest growth between Y3 and Y5 (see Table 2,
study 2 mean scores). The remaining measures showed a linear
trend with marbles exhibiting the steepest gradient. One-way
ANOVAs by school year found significant increases with age
on all variables, using the Welch robust statistic, p < 0.01 in
each case, except DTV, p < 0.05. For all measures, there were
significant increases in scores from Y1 to Y5. Performance on
FOL was similar to study 1, again approaching ceiling by Y5,
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FIGURE 8 | Developmental trajectories of all variables computed using standardized measures across the three year groups.

despite the extra step in the procedure; the later growth on
this and the causal indices more probably reflected the mixed
sample of study 2 lagging behind the higher socioeconomic
status (SES) sample of study 1. In line with this, these children
exhibited marginally lower mean scores for vocabulary (albeit
with lower variance) and notably lower scores on block design,
marbles, and – even allowing for the change in task – covariation.
Mechanism responses were also less common – 4.6% of responses
in Y1 were at this level, but only 11.1% in Y3, and 17.8% in Y5.

Relationships Between Causal Performance and
Spatial–Temporal Analysis, Probability, and
Covariation
Correlations between variables
The fitness tests assessing the trends between the predictor
and causal variables showed that block design was again
logarithmically related to the causal measures [R2 for linear
fit = 0.194 (F(1, 122) = 29.375, p = 0.000); R2 for logarithmic
fit = 0.232 (F(1, 122) = 36.849, p = 0.000], and FOL was marginally
exponential [R2 for linear fit = 0.342 (F(1, 122) = 63.546,
p = 0.000); R2 for exponential fit = 0.357 (F(1, 122) = 67.810,
p = 0.000]; relationships for the other predictors were linear.
As in study 1, zero-order Pearson correlations showed the
causal indices were strongly positively associated with all the
potential predictors, and the predictors were themselves all
positively correlated with each other, as shown in Table 3,
study 2 correlations.

Controlling for age in months, vocabulary, and log block
design, only FOL, DTV, and covariation remained significantly
associated with total causal score and inference. In contrast
to study 1, marbles was unrelated to either causal measure.

Marbles and covariation were more weakly related than in
study 1, possibly reflecting the revised measure of the latter
and the lower SES sample, and there was a more equivalent
relationship between each and the spatial–temporal measures;
the strongest relationship was between the spatial–temporal
measures, FOL, and DTV.

Hierarchical regression models
The predictors were entered into regression analyses for both
of the causal indices in equivalent order to study 1; the
additional spatial–temporal measure, DTV, was entered in an
extra step ahead of FOL. Analyses for description, prediction,
and justification with the same order of entering predictors are
presented in Appendix 5.

For total causal score, the analysis produced significant 1R2

at each stage except for the fifth (Table 4, study 2 regressions).
Vocabulary was a significant predictor throughout, with a
substantially higher beta than in study 1, although this dropped
at each successive stage. Marbles was a significant predictor when
it was entered at the second stage, but it dropped out when
covariation was added. Covariation was significant and remained
so until the inclusion of exponential FOL. Log block design
was a significant predictor when added at the fourth stage, and
produced a further drop in the beta of marbles. Age became
a significant negative predictor at this stage, possibly due to
influence of residual variance. When DTV was included, this led
to drops in the betas for covariation and log block design, but
it was not significant itself. Exponential FOL joined vocabulary
and log block design as a positive predictor at the final stage, and
the betas for the other predictors dropped further. This suggested
that two cognitive ability measures (vocabulary and block design)
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FIGURE 9 | Further extended mediation model for the effects of log block design, covariation, marbles and flow of liquid on overall causal performance (subsidiary
effects in gray).

and one spatial–temporal measure played a significant role in
predicting total causal score.

The analysis for inference (Table 5, study 2 regression)
produced similar outcomes to that for total causal score, except
that marbles stayed significant when covariation was entered at
the third stage, as in study 1, albeit with a lower beta than there.
Both dropped out with the inclusion of log block design. The
addition of DTV reduced the beta for all three of these variables,
and it was itself significant. FOL was again a significant positive
predictor, and its inclusion reduced the betas for the other
variables, most notably DTV, which became non-significant.

Overall, the regression analyses revealed clear overlaps
between the influence of all the predictors on causal reasoning.
In contrast to study 1, covariation was the strongest of the two
statistical measures for total causal performance, but marbles
nevertheless remained stronger for inference. As in study 1, there
were significant differences in marbles score between children
giving differing levels of inference response for sinking, F = 4.728,
p = 0.001; absorption, F = 2.701, p = 0.034; and solution, F = 5.371,
p = 0.001, with df = 4, 119 for each, with effects again restricted
to differences between those with lower (0, 1, or 2 here) and
higher (3 or 4) inference scores. In this study, however, marbles
appeared to be more related to non-verbal ability than to the
spatial–temporal measures, while covariation was closer to the
latter – as if marbles and covariation had swapped status. Neither
of the statistical measures survived to the final models in study
2, and their impact was more noticeable here for overall causal
performance than for inference.

In contrast to study 1, verbal ability was consistently a
strong predictor, alongside non-verbal and FOL in the final

model. The impact of the other spatial–temporal measure,
DTV, was relatively modest, with FOL substantially reducing
the beta of DTV in both analyses. Further regression analysis
with all variables confirmed that only FOL was a significant
predictor of total causal score (β = 0.356, p = 0.000) when
both cognitive ability measures – vocabulary and block design –
were controlled for.

Nature of shared variances between predictors
Factor analysis with varimax rotation, KMO = 0.827, was run as
before, to clarify the nature of the shared variances between exp
FOL, DTV, log block design, marbles, and covariation. A three-
factor model provided the clearest solution, with the first factor
explaining 33% of variance, the second 28%, and the third 21%
(Table 6, study 2 rotated component matrix). This confirmed log
block design as being most closely related to marbles, and FOL to
DTV, but covariation as being distinct.

Taking exponential FOL as standing for both spatial–temporal
measures, maximum likelihood path analysis was used to
examine whether either the extended mediation model identified
in study 1 or a reversed version of this (i.e., with covariation
and marbles swapping position) provided an adequate fit to the
data. These models were contrasted with a further extension
of this, in which log block design and marbles fed directly
into FOL alongside covariation, reflecting the somewhat more
balanced influence of the two statistical measures. For both causal
indices, the further extended model provided the best fit to the
data: in each case, χ2 = 0.315, p = 0.575, df = 1. Figure 9
illustrates the model plus path coefficients obtained for overall
causal performance.
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Again, there was a stable pattern of effects in which non-verbal
ability, covariation, and probability all support spatial–temporal
analysis, but with each also influencing specific aspects of causal
thinking directly. In this sample, FOL and vocabulary have the
strongest effects for both causal measures: for inference, the
effects of FOL and vocabulary are 0.36 and 0.41, and those of non-
verbal ability, probability, and covariation, 0.20, 0.01, and 0.09.

As in study 1, further moderation analyses indicated no
interaction effect between log block design, marbles, and FOL in
predicting causal performance.

Discussion
Despite differences in the sample, study 2 confirmed the
developmental trends observed in study 1 in the ability to analyze
probability, covariation, and spatial–temporal information, with
if anything clearer increases across the age groups. Once again,
the use of all these kinds of information was consistently
associated with both overall causal performance and inference,
and as before, they appeared to have interrelated influence that
was also connected to non-verbal ability.

Marbles was again a significant predictor to begin with in
both regression analyses, but its influence dropped with the
inclusion of covariation and – in contrast to study 1 – again when
block design was added. Covariation was marginally the stronger
predictor here and more related to spatial–temporal ability –
possibly reflecting the revised measure we used. However, neither
statistical measure was a significant predictor in either of the final
models, being overtaken in both cases by the spatial–temporal
measures, especially FOL. The reduced influence of probability
and covariation here is plausibly a reflection of the less developed
nature of both competences – and causal inference in this sample.
FOL subsumed the influence of DTV, to which it was clearly
related, and was the strongest predictor of causal reasoning,
alongside verbal and non-verbal ability. The clear impact of
verbal ability in this study seems most obviously to be attributable
to the more mixed sample, though it cannot in fact be a function
of a greater spread of ability, since the variance was actually
less than in study 1. Instead, it seems more likely that it reflects
vocabulary being a greater influence at lower levels of ability.

In spite of these variations, study 2 largely replicated the
results of study 1, while extending them to show that the
network of interrelated influences on both spatial–temporal
analysis and causal reasoning is based on at least partially unique
contributions from probability, covariation, and non-verbal
ability. As before, the implication is that statistical and non-verbal
ability support spatial–temporal analysis by allowing the capture
of patterns of relationship. However, that spatial–temporal ability
was a stronger predictor of causal reasoning when statistical
and non-verbal ability were less developed and had less direct
influence themselves suggests that it is not dependent on
these, but rather that each has an independent developmental
trajectory – consistent with the factor analysis results.

In line with the results from study 1, the stronger influence
of probability on inference and its weak association with
covariation suggest that, even in this lower-performing sample,
understanding of probability plays a distinctive role in thinking

about causal mechanisms, beyond sensitivity to statistical
patterns per se.

GENERAL DISCUSSION

This study aimed to develop a battery of statistical reasoning
tasks, suitable to measure individual differences across a range
of developmental levels. It then compared the predictive role
of statistical and spatial–temporal analysis in children’s causal
thinking about continuous natural processes. Across two studies,
in total, five statistical tasks were employed. Taking into account
the literature, four of them were developed by the authors for
this particular project. Table 7 summarizes the similarities and
differences between the two cohorts.

Developmental Trajectories
Children’s responses showed clear progress with age on all tasks.
The sample characteristics were different in both studies. Study
1 employed higher SES children, while study 2 employed a
mixed SES sample and introduced causal tasks with a scientific
method approach alongside a modified covariation task. In study
1, there was greater growth on the causal and spatial–temporal
tasks between Y1 and Y3 than between Y3 and Y5; in study
2, there were gains on both across the three age groups. On
the causal tasks, in both studies, children’s inference responses
were restricted at all ages, and even in Y5, they seemed to find
it difficult to explain the mechanisms mediating cause-effect
relationships, focusing on more observable and salient factors
and variables. In contrast, performance on the liquid flow task in
particular approached ceiling by Y5 in both the five- and six-step
versions, regardless of sample differences.

Although children showed some different patterns in different
tasks, on the present measures, growth in statistical thinking
appeared to be slower than that in spatial–temporal ability, but
faster than that in causal inference. Past research examining
children’s and adult’s covariation and probabilistic thinking in
causation – Bayesian and causal learning literature – has focused
on the identification of the structure of causal relations between
distinct variables (e.g., the relationship between the use of aspirin
and headache), or the strength of these (e.g., the degree to which
aspirin alleviates headaches; see Lagnado et al., 2007) based
on summaries of repeated observations, or compared children’s
understanding of common cause and causal chain structures
(McCormack et al., 2015, 2016). Although we do not have data
on direct comparability with the more detailed tasks used in
the developmental literature, our mini-statistics tasks showed
sensitivity to differences in children’s statistical thinking that are
largely in line with the results from those in the literature.

On the covariation task, children appeared to progress
with age in their ability to assess co-occurrences, but to still
be refining this further by Y5, especially with respect to
numerical quantification. This is in some ways consistent with
Shaklee and Mims’ (1981) finding, using a causal event-based
approach that children’s strategies for addressing covariation
increased in complexity with age. It appeared that in our
tasks, older children performed better on the computation
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TABLE 7 | Characteristics of the two cohorts.

Study 1 (N = 107) Study 2 (N = 124) Significant effects

Study 1 Study 2

Hypothesis Spatial–temporal analysis provides a bridge between observation of continuous processes and their causal analysis

Sample characteristics Middle and high SES Low and middle SES

Implementation of causal
phenomena

A three-stage implementation
(prediction, description,
explanation)

A five-stage implementation
(observation, prediction,
justification, testing,
explanation)

Spatial–temporal tasks Flow of liquid Flow of liquid � �

Distance, time, velocity (DTV) – X

Probability and covariation tasks Randomness – X –

Marbles Marbles X X

Cards – X –

Covariation (computer-based) Covariation (with cards) X X

Verbal task WASI vocabulary WASI vocabulary X �

Non-verbal task WASI block design WASI block design � �

of estimates of associational strength. Moreover, although
our tasks only focused on co-occurrence (i.e., two cells of
the 2 × 2 contingency table), our data also suggest that
progress may be slower where the focus is on frequency
relationships per se, rather than on frequency relations between
cause and effect, perhaps because the former are in some
sense more abstract.

On both versions of the covariation tasks, one item provided
participants with a hundred percent co-occurrence information,
which made the interpretation of stimuli unambiguous;
the remainder presented incomplete information which
increased the ambiguity from 75% in study 2 to 50%, and
to 0%. Children mostly seemed to deal well with hundred
percent co-occurrence (AB cases, perfect covariation), but
less well with the zero correlation, and they had greater
difficulty still interpreting degrees of co-occurrence in
between with any precision, especially in the youngest age
group. This is consistent with Koerber et al.’s (2005) finding
that even older children show difficulties in interpreting
instances of non-covariation between two distinct events.
However, unlike that study, our tasks did not include
a conflict between previous beliefs and causal evidence
requiring children to test their hypotheses, only to interpret
imperfect covariation patterns in a non-causal context. The
consistent difficulty in interpreting non-covariation data in both
approaches suggests a more fundamental problem that requires
further investigation.

In the probability tasks, young children did not show a
clear numerical grasp of probability. They did show some
understanding of possibilities and their thinking on these
tasks seemed to be binary: the majority focused on whether
there was a good chance of winning or losing, rather than
the degree of that chance. This study therefore agrees with
Piaget and Inhelder (1975), White’s (2014), and McCormack
et al.’s (2015, 2016) findings, adding to those that thinking
with numbers and computing probabilities appeared to start
from Y3 onward, consistent with the covariation findings,

but in neither case did children begin to approach ceiling
performance, even by Y5.

There were also departures from past findings. In particular,
many of the younger children in the higher performing study
1 sample did not find it easy to make the distinction between
predictable and random events, contrary to Kuzmak and Gelman
(1986), with our randomness task showing substantial variation
around the mean of 1 (with a high standard deviation, it
indicates that majority of children were scoring zero) in
Y1, and growth coming predominantly between Y3 and Y5.
Conversely, they did not find it harder to deal with frequentist
probability task which required sampling (assessed by cards
task) neither with other probability task (assessed with marbles),
as suggested by work on probability learning (e.g., Brainerd,
1981). The cards task exhibited more or less exactly the
same developmental profile as the marbles task – though
the use of summary presentations may have helped – and
the two were strongly correlated. On both tasks, there was
a general improvement of probabilistic thinking through the
elementary age range from awareness of variation in likelihood
to numerically precise calculation of this. While recent cognitive-
developmental work has focused on tasks sensitive even to the
youngest children’s level of skill (Schlottmann and Wilkening,
2011), our tasks stretched even the oldest children in the
sample, as intended, especially with respect to proportional
calculations – ratios and decimals – as opposed to more
basic judgments.

Relationships Between Causal
Reasoning, Spatial–Temporal,
Covariation, and Probabilistic Thinking
Despite the covariation and probability tasks drawing on related
types of frequency information, a distinction between our key
predictors was confirmed by both correlational and factor
analyses in both studies. In study 1, frequentist cards and other
probability tasks (marbles) were closely related as compared
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with covariation and randomness tasks, and the covariation task
appeared to demand a more distinct competence. In study 2,
both spatial–temporal measures (liquid flow and DTV) loaded
onto the same factor, while marbles and covariation again
remained independent, albeit with marbles being associated
with block design, once more suggesting that the ability to
utilize covariation, probability, and spatial–temporal information
requires different competences.

Most people would agree that forms of statistical reasoning,
as emphasized by Humean approaches to causality, are useful
for causal thinking about discrete events, which lend themselves
easily to frequency-based analyses, but the present study
showed that this form of thinking also relates to causal
thinking about extended processes, which have no perceptually
distinct components. One basic possibility is that the role of
statistical sensitivity and non-verbal ability is primarily one of
enabling forms of pattern detection. Block design assesses the
ability to analyze and reconstruct perceptual patterns, which
facilitates the detection and representation of causal effects;
covariation assesses the ability to track connections, which
facilitates the identification of relationships between variables
and outcomes; and probability assesses the ability to track
the “definiteness” of outcomes, which facilitates awareness of
strength of effect, e.g., the relative impact of a variable, in this
case on speed of effect. The integration of Kantian mechanism-
based and Humean statistical thinking highlighted by our
results echoes recent theoretical debates in the literature on
causal thinking about discrete events (see Waldmann, 2017).
However, our novel contribution is not just the application
to continuous processes, but to the correlational, individual
difference approach. The same approach might also be useful in
the future to study how children’s thinking about discrete causal
events develops.

While the statistical variables were largely not significant
predictors in the regressions, the path analyses, however,
found that probability and covariation formed a network of
interrelated competences influencing causal reasoning, along
with non-verbal and verbal ability. It should be noted
that regression models portray the relations from the raw
data and cannot provide more sensitive statistics as to, for
instance, what is the nature of residuals after each step.
We can observe the effects of each variable by assessing
the change in beta values after each step. Thus, even if
a variable remains non-significant in the final model, the
chance in the beta values shows us whether the variable
contributed to the model one way or another. In both
studies, we captured these widespread interactions with the
path analyses. It is the nature of this network that needs
to be explained.

Naturally, our interpretations are limited to the task
characteristics and statistical methods. We cannot conclude
whether or not the basic understanding of, for instance,
randomness assists causal inference in continuous processes.
Similarly, it is not clear why marbles was a stronger predictor
than covariation in both studies. Although we have an idea
about the possibilities drawing marbles to lose its predictive
power for both causal indices in study 2 (e.g., we had a more

powerful covariation task, and there was an additional spatial–
temporal variable involved, which reduced the variance explained
by both marbles and covariation), these do not analyze the unique
nature of the tasks. Moreover, differences between the samples in
terms of relative developmental level across the various indices
may have played a role. That the spatial–temporal predictors
trumped statistical predictors fits with the notion that temporal
information overrides covariation when a causal structure needs
to be inferred, as in the event literature with adults (see also
Waldmann and Holyoak, 1992; Cheng, 1993; Waldmann et al.,
1995; Cheng et al., 1996) and with children (see Siegler, 1975;
Mendelson and Schulz, 1976; Bullock et al., 1982). Although our
focus is on continuity rather than contiguity, the data from both
studies show similar outcomes: statistical thinking appears to be
promising in terms of supporting reasoning about mechanisms.

Understanding of probability seems to do something more
than is captured by this proposed indirect influence on causal
thinking. The relationship of performance on the marbles task
in both studies to inference of mechanisms and its more distinct
predictive power, especially in the higher performing study 1
sample, both suggest that it promotes some other additional
insight. A cross-check between probability and causal task
performance shows that in both studies children who had perfect
marbles scores were more likely to provide high-level inference
scores and make reference to mechanisms (n = 21 in study 1;
n = 19 in study 2). Probabilistic thinking seems therefore to be
important not only for the identification of the strength of the
effects of variables, but for considering unseen elements of causal
processes. It is plausible that awareness of probability drives a
general heightening of sensitivity to the operation of unseen
factors, as argued in the introduction. This would be consistent
with children exhibiting similar limitations in probability scores
and references to mechanism.

However, construction of a dynamic mental representation
tying spatial–temporal information together to envisage the
operation of specific mechanisms still requires in addition a time-
based analytical and constructive ability, as captured by the
FOL tasks. In other words, non-verbal ability, probability, and
covariation help by enabling children to identify variables and
to sense that there is more to be explained about how these
operate, but as the data suggest, it remains primarily spatial–
temporal ability that takes them beyond this to coordination of
actual information and ideas of mechanism.

Verbal ability also appears to be necessary to get all of this
off the ground, given its influence among the lower-performing
sample in study 2. However, all these competences seem to have
distinct developmental trajectories and converge on support of
causal inference. The nature of the growth of this convergence –
and how far it can and possibly needs to be deliberately
promoted – requires further investigation.

Two lines of inquiry can investigate this convergence between
causal reasoning and distinct competences, one empirical,
e.g., experimental studies aiming to elaborate on the aspects
of statistical and spatial–temporal thinking, and another
methodological, e.g., studies investigating the nature of the causal
tasks in relation to intelligence tests. Regarding the first line
of inquiry, the present study provided the first dataset, using
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intelligence measures as controls. It should be noted that these
measures have high statistical reliability and explanatory power,
and they challenge substantially other tasks present in the same
model. One can expect statistical form of thinking to be more
predictive in different models when intelligence measures are
excluded. In fact, when we did so, the covariation task explained
a unique variance in causal thinking (β = 0.178, p = 0.034) along
with age and FOL. The increase in beta values of flow liquid
was also substantial. This highlights the above interpretation
taking into account the nature of shared variances in models,
i.e., how the strongest predictor subsumes the beta of others in
regression models.

In line with the methodological inquiry, a follow-up study
employed three intelligence measures and investigated their
relevance to the above causal tasks. The data were analyzed based
on the Tucker-Drob (2009) model, which is constructed based on
an integration of Horn–Cattell’s theory of fluid and crystallized
intelligence (Horn and Cattell, 1966). The study found very high
correlations between the measures, where general intelligence
factor explained about 62% of the variance in causal tasks. This
effect was independent of age and the model was able to analyze
the nature of the residuals (Dündar-Coecke, under review). This
result suggests that there may also be a strong link between
spatial–temporal reasoning and intelligence types, which clearly
merits further investigations.

CONCLUSION

An important contributor to causal reasoning about continuous
processes is spatial–temporal analysis. When its influence is
compared with that of statistical reasoning, it remains as the
strongest predictor. However, statistical reasoning made both
direct contributions and exerted an indirect influence via spatial–
temporal analysis. The findings here highlight the multiple and
complex determinants involved in such thinking. This is the first
investigation employing process-based causal tasks to examine
the role of covariation and probability alongside spatial–temporal
ability. Further studies can explore the unique nature of the tasks
and their relations to other forms of reasoning.
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