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Editorial on the Research Topic

Neuro-cognitive Architecture of Numerical Cognition and Its Development

Living in our modern societies requires being numerically literate not only in everyday life
(e.g., reading the clock, dealing with money, etc.) but also in educational (e.g., mathematics and
science classes) and professional contexts (e.g., accounting but also crafts). Hence, numerical
and mathematical skills were repeatedly observed to predict not only occupational success (e.g.,
Ritchie and Bates, 2013) but also more general life prospects (Parsons and Bynner, 2005). However,
insufficient numerical and mathematical skills still affect a considerable share of students—even in
developed Western societies as reflected in international comparison studies such as PISA (OECD,
2016).

In recent years, numerical cognition research made considerable progress in describing and
understanding cognitive processes and succeeded in specifying the neural architecture underlying
numerical cognition. On the basis of these developments, we invited empirical and theoretical
contributions for a Research Topic on theNeuro-cognitive Architecture of Numerical Cognition and
Its Development. We are grateful to all authors for their high-quality contributions, the reviewers
for their constructive feedback and helpful suggestions during the interactive peer-review, and the
publisher’s editorial team for their excellent support.

The 15 contributions to our Research Topic from internationally leading groups cover different
aspects of numerical cognition in children, adolescents and adults, as well as its theoretical
background. The applied methods run the gamut from behavioral to neuroimaging studies, from
cross-sectional to longitudinal and intervention studies. The different contributions nicely illustrate
that numerical cognition is not a unitary and closely circumscribed construct, comprehensively
accounting for the evidence observed. Instead, the empirical and theoretical contributions indicate,
that there are domain-specific aspects of numerical cognition (e.g., number sense, arithmetic,
spatial-numerical associations, etc.) that are influenced by domain-general abilities or traits (e.g.,
visuospatial abilities, self-regulation, and math anxiety).

A first set of studies investigated domain-specific and domain-general predictors of later
numerical or mathematical skills. In a longitudinal behavioral study, Finke et al. observed that
early non-symbolic numerical skills predicted later arithmetic skills by facilitating the acquisition
of symbolic number processing. The authors concluded that non-symbolic numerical skills
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are foundational skills to mathematical development. Braeuning
et al. proposed a multifactorial structure of early numeracy,
which they tested using a confirmatory factor analysis approach
on longitudinal large-scale assessment data. The authors
identified four specific basic numerical skills (i.e., number sense,
arithmetic, patterning/geometry, and data analysis/statistics) that
remained stable from 5 to 6 years of age and thus seem to serve
as building blocks for further numerical development. Schild
et al. evaluated the causal influence of finger-based numerical
training on initial arithmetic skills in 5 year-old children. They
did not observe an advantage for the finger-based training, which
they attributed to domain-general processes such as sequencing
that were also required in the control training. In a cross-
cultural behavioral study, Nemati et al. found an association
between domain-general personality traits such as self-regulation
and mathematical performance that was similar for German
and Iranian students. Finally, in a commentary on the idea
of a mental number line in human newborns as proposed by
Di Giorgio et al. (2019), Felisatti et al. postulated the Brain’s
Asymmetric Frequency Tuning (BAFT) hypothesis. The BAFT
hypothesis emphasizes the relevance of spatial frequencies (SFs)
for spatial numerical associations and embodied numerical
representations in humans. The authors posited that spatial-
numerical associations in newborns (1) may be driven by
absolute and relative spatial frequency processing, (2) generalize
across cultures and species, and (3) may be different in newborns
predisposed to atypical numerical development.

The relationship between brain structure and numerical
processing abilities was investigated by two contributions:
McCaskey et al. used voxel-based morphometry in a
longitudinal study comparing children with developmental
dyscalculia with typically developing children. The authors
observed that dyscalculic children between 8 and 11 years
of age had persistently reduced gray and white matter
densities in brain areas associated with number processing.
Heidekum et al. employed surface-based morphometry in a
large sample of adults. They found associations of cortical
surface properties such as sulcal depth with numerical
intelligence, complex arithmetic ability, and higher-order
mathematical knowledge.

Two studies investigated more applied aspects of (numerical)
learning using tablet-based applications. Kohn et al. evaluated
their adaptive training program Calcularis 2.0, which can be
used to support dyscalculic children. The training yielded
improved arithmetic and spatial number processing skills
after only 12 weeks, which were still observable 3 months
post-training. Jung, Meinhardt et al. evaluated a tablet-
based assessment of early visuospatial abilities (VSA) using
the application (app) MaGrid R©. Their results substantiated
the hypothesized factor structure of VSA proposed in the
taxonomy of Newcombe and Shipley (2015) and provide
evidence for a hierarchical development of VSA as assessed
using MaGrid R©.

A comparatively larger set of contributions investigated the
foundations of mental arithmetic. The first three studies
addressed the distinction between number magnitude
manipulation (e.g., involved in calculation or number magnitude

comparison) and arithmetic fact retrieval (e.g., as in simple
multiplication). In a brain stimulation study employing rTMS,
Fresnoza et al. investigated the role of the horizontal intraparietal
sulcus (assumed to be involved in magnitude processing) and
the left angular gyrus (assumed to be involved in arithmetic
fact retrieval). The authors found that the involvement of these
brain areas seemed to be modulated by the solution strategy
employed (i.e., retrieval vs. calculation) rather than by the
arithmetic operation per se (i.e., subtraction vs. multiplication).
This means that solving less well-established multiplication
problems was rather associated with the magnitude network,
while solving highly overlearned subtraction problems was
associated with the retrieval network. This interpretation fits
well with the behavioral results of Jung, Moeller et al. Using
a hemifield paradigm, the authors investigated a possible left
lateralization of the representation of arithmetic facts in a
number bisection task. The authors did not observe such a
lateralization. They hypothesized that this might be due to the
complexity of the task, so that participants might not have relied
solely on arithmetic fact retrieval. However, the third study in
this collection, by Suárez-Pellicioni et al. seems to contradict
the notion that simple subtraction problems are solved by
retrieval. The authors found in a longitudinal study using
functional magnetic resonance imaging (fMRI) that children
do not switch to retrieval when subtractions become more and
more overlearned. Instead, it seemed that procedures became
more automatic with skill development.

Another subset of studies investigated the neuro-cognitive
correlates of arithmetic learning. Mosbacher et al. employed
frontal and parietal anodal transcranial direct current
stimulation (tDCS). While stimulation did not lead to an
overall improvement of arithmetic performance, the authors
observed that only frontal stimulation accelerated training gains.
Additionally, Belkacem et al. compared abacus experts and non-
experts with regard to their arithmetic performance and EEG
activity. While the groups shared some neural signatures, they
found differences indicating that abacus experts developed a new
computational pathway by assigning number representations
onto an imaginative abacus representation, which involved
parallel activation of calculation-related areas.

Finally, in a theoretical contribution, Testolin elaborated
on how computer simulation at cross-disciplinary intersections
can help understand how numerical concepts are learned by
the human brain. Although deep learning models are not yet
designed to simulate higher-level mathematical thinking, they
have the potential to grasp the acquisition of numerical concepts
in its full complexity.

The broad range of studies presented in this collection
documents the significant progress made in understanding
different aspects of numerical cognition and development. The
various methods used are state of the art and testify to the
expertise of the researchers involved. The current Research
Topic brought together expertise of researchers from different
backgrounds which clearly advanced our understanding of
numerical cognition and development and has the potential to
contribute to processes of learning and teaching numerical and
mathematical skills.
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Arithmetic abilities are among the most important school-taught skills and form the

basis for higher mathematical competencies. At the same time, their acquisition and

application can be challenging. Hence, there is broad interest in methods to improve

arithmetic abilities. One promising method is transcranial direct current stimulation

(tDCS). In the present study, we compared two anodal tDCS protocols in their efficacy

to improve arithmetic performance and working memory. In addition, we investigated

stimulation-related electrophysiological changes. Three groups of participants solved

arithmetic problems (additions and subtractions) and an n-back task before, during, and

after receiving either frontal or parietal anodal tDCS (25min; 1mA) or sham stimulation.

EEG was simultaneously recorded to assess stimulation effects on event-related

(de-) synchronisation (ERS/ERD) in theta and alpha bands. Persons receiving frontal

stimulation showed an acceleration of calculation speed in large subtractions from before

to during and after stimulation. However, a comparable, but delayed (apparent only after

stimulation) increase was also found in the sham stimulation group, while it was absent in

the group receiving parietal stimulation. In additions and small subtractions as well as the

working memory task, analyses showed no effects of stimulation. Results of ERS/ERD

during large subtractions indicate changes in ERS/ERD patterns over time. In the left

hemisphere there was a change from theta band ERD to ERS in all three groups, whereas

a similar change in the right hemisphere was restricted to the sham group. Taken together,

tDCS did not lead to a general improvement of arithmetic performance. However, results

indicate that frontal stimulation accelerated training gains, while parietal stimulation halted

them. The absence of general performance improvements, but acceleration of training

effects might be a further indicator of the advantages of using tDCS as training or learning

support over tDCS as a sole performance enhancer.

Keywords: arithmetic, fact retrieval, procedural calculation, EEG, transcranial direct current stimulation
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INTRODUCTION

Basic arithmetic skills belong to the most important skills for
educational achievement and for everyday life in general (Neisser
et al., 1996; Parsons and Bynner, 1997, 2005). Not only do they
allow performing simple calculations, but they also form the
basis for higher mathematical competencies and understanding
(e.g., Geary, 2011; Price et al., 2013). However, learning and
application of arithmetic and mathematical abilities can be
challenging. This is especially true for people suffering from
developmental dyscalculia, with prevalence rates of 3–6% being
one of the most common learning disorders (Shalev et al., 2000).
But even in the general population, 22.7% perform at proficiency
level 1 or below (being only able to carry out simple mathematical
processes) according to an OECD survey of adult skills (OECD.,
2016). As deficits in arithmetic and mathematical skills place a
large burden on the individual, the interest in means to support
and improve these abilities is constantly growing (e.g., Parsons
and Bynner, 2005). In this study, we investigated the effects of
anodal transcranial direct current stimulation (a-tDCS), a non-
invasive brain stimulation method, on arithmetic abilities and
related oscillatory brain activity. Performance was assessed prior,
during, and after stimulation to investigate stimulation-induced
improvements, EEG was recorded concomitantly in order to
investigate oscillatory correlates of arithmetic performance and
stimulation-induced changes.

On the behavioral level, processing of arithmetic problems

relies largely on the application of two sets of knowledge:
declarative knowledge about arithmetic facts and procedural
knowledge about arithmetic operations (Campbell and Xue,
2001; Grabner and De Smedt, 2011). Small, easy problems (e.g.,
additions with sums ≤10) are mostly solved by fact retrieval
(direct recall of the solution, an arithmetic fact, from memory),
reflecting a fast and largely effortless process. Large, more
complex problems (e.g., two-digit/two-digit subtractions), in
contrast, are primarily solved by the application of procedural
strategies (based on knowledge of arithmetic operations), which
is slower and more effortful (Campbell and Xue, 2001; Destefano
and LeFevre, 2004). For instance, solving a two-digit/two-digit
subtraction might involve the breakdown of the problem into
smaller steps (56–27→ 56–20= 36→ 36–6= 30→ 30–1= 29).
These procedural calculation processes incorporate additional,
domain-general functions like working memory (WM) more
strongly than fact retrieval processes (Destefano and LeFevre,
2004).

On a neurophysiological level, mental arithmetic requires
the interplay of a wide network of brain sites (see Menon,
2015), whereby fact retrieval is accompanied by higher activation
in the angular gyrus (AG), while procedural calculation
is associated with stronger activation of a broad network,
including the dorsolateral prefrontal cortex (DLPFC) and the
intraparietal sulcus (IPS; Grabner et al., 2009). Previous EEG
research demonstrated a clear distinction between fact retrieval
and procedural calculation in oscillatory event-related (de-
)synchronization (ERS/ERD) patterns. Already in an early study,
higher theta band power in the left hemisphere has been
associated with fact retrieval during arithmetic problem solving
(Earle et al., 1996). This has later been corroborated by studies

showing that the processing of small (fact retrieval) problems
was accompanied by stronger left hemispheric theta band ERS,
while the processing of larger (procedural) problems led to less
theta band ERS, but stronger alpha band ERD, especially over
bilateral parieto-occipital areas (De Smedt et al., 2009; Grabner
and De Smedt, 2011). Further support for this distinction comes
from a training study, showing an increase in theta band
ERS and a decrease in lower alpha band ERD with increasing
use of fact retrieval over procedural calculation in complex
arithmetic problems (Grabner and De Smedt, 2012). Against
this background, these regions discussed above have been the
targets of most transcranial electrical stimulation (tES) studies on
arithmetic performance (for a review, see Schroeder et al., 2017),
and theta and alpha band ERS/ERD patterns have been used to
investigate physiological stimulation effects (Rütsche et al., 2015).

TES comprises different approaches of non-invasive brain
stimulation by weak electric currents (generally 1–2mA), with
tDCS being the most commonly used version. In tDCS, a
constant direct current is applied via two or more electrodes
(anodes and cathodes). It is assumed that the applied current
has mainly excitatory effects on the cortical regions beneath the
anode, but primarily inhibitory effects on the regions beneath
the cathode on the macroscopic level, if stimulation is conducted
within a specific conventional range of stimulation intensity and
duration (Nitsche et al., 2008; Paulus, 2011). The first studies
on the effects of tDCS on arithmetic performance stimulated
parietal sites, either unilaterally or bilaterally (Clemens et al.,
2013; Hauser et al., 2013; Kasahara et al., 2013; Klein et al.,
2013). Clemens et al. (2013) investigated effects of anodal tDCS
(a-tDCS) over the right parietal cortex but could not find
any effects on multiplication verification tasks. However, an
additional fMRI analysis indicated a stronger activation in the
AG after stimulation when processing problems which were
rehearsed during tDCS. Using a different approach, Klein et al.
(2013) found a reduced distractor distance effect in an addition
verification task during bilateral parietal a-tDCS, while cathodal
stimulation showed no effects. Hauser et al. (2013) applied a-
tDCS between two task sessions and found that stimulation
over left parietal regions reduced calculation times in large
subtractions, while stimulation over right parietal regions as well
as bilateral stimulation showed no effects. Interestingly, these
effects do not seem to be limited to subtractions, as left anodal
/ right cathodal parietal tDCS also improved calculation times in
complex multiplications (Kasahara et al., 2013). Hence, the left
parietal region seems to be a worthwhile target for a-tDCS in the
context of arithmetic processing.

The second promising target for tDCS is the left DLPFC.
Anodal stimulation of this region has been found to improve
arithmetic verification in a group with high math anxiety
(Sarkar et al., 2014) and performance in a serial subtraction
task (Pope et al., 2015). However, regarding frontal stimulation
it is unclear whether the effects of stimulation are domain-
specific or if tDCS affects more domain-general functions
like working memory (WM) and only indirectly improves
arithmetic performance. TDCS, especially over frontal regions,
has been found to boost working memory performance (Zaehle
et al., 2011; Brunoni and Vanderhasselt, 2014), and Pope et al.
(2015) ascribed the positive effects of left frontal a-tDCS on
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a serial subtraction task to stimulation-induced improvements
of working memory. This would also be in line with one
study finding beneficial effects of left frontal a-tDCS on a
serial addition task only when the stimulation conducted
before the task was accompanied by a difficult WM task
(Gill et al., 2015). Disentangling the effects of a-tDCS on
working memory and arithmetic abilities is complicated, because
working memory is an integral part of arithmetic processes,
especially procedural calculation (Destefano and LeFevre, 2004;
Kasahara et al., 2013). Additionally, like most treatments tDCS
does not only have beneficial effects. In a more recent study
expanding on the findings of Hauser and colleagues, Rütsche
et al. (2015) found that parietal stimulation might indeed
enhance performance in large, complex arithmetic problems,
but at the same time, this stimulation protocol impaired
performance in small, easy problems. This dissociation of
effects was accompanied by differential changes in ERS/ERD
patterns. While parietal a-tDCS increased lower-alpha ERD
during large, complex problems, it decreased theta band ERS
during small problems. Hence, theremight be a trade-off between
beneficial and detrimental stimulation effects, which could prove
problematic for the use of a-tDCS as a means to improve
arithmetic performance.

This study was performed to expand on prior work by

comparing effects of frontal and parietal a-tDCS on arithmetic

performance and assessing changes in WM and concomitant
EEG. To this end, participants were asked to solve arithmetic

problems similar to those used in prior studies (Hauser et al.,
2013; Rütsche et al., 2015; small and large additions and
subtractions) before, during, and after receiving a-tDCS to
either left frontal (targeting the dorsolateral prefrontal cortex;
DLPFC) or left parietal regions (targeting the posterior parietal
cortex; PPC), or sham stimulation. Additionally, high-density
EEG was recorded concomitantly to investigate stimulation-
induced changes in ERS/ERD patterns. A short WM task was
administered in each phase to investigate stimulation-induced
changes in WM performance and to examine task-specificity
of stimulation. Based on prior results, we expected that both
active stimulations (left frontal and left parietal a-tDCS) improve
procedural calculation, with especially frontal stimulation also
boosting WM performance (Zaehle et al., 2011; Hauser et al.,
2013; Rütsche et al., 2015). This should be accompanied by
changes in ERS/ERD patterns in theta and alpha bands, whereby
we expected improvements in procedural calculation to be
linked to a reduced ERD in alpha bands. Finally, we were

eager to investigate, whether the adverse effects of a-tDCS on
fact retrieval processes (Rütsche et al., 2015) would replicate in
this study.

METHODS

Sample
In total, 72 persons, recruited at the University of Graz
and via e-mail and social media, participated in this study.
All participants were right handed, without prior or current
neurologic or psychiatric disorders, drug use, and anymedication
potentially influencing the state of their central nervous system.
Five participants had to be excluded from analyses because
of insufficient performance in at least one block of arithmetic
problems (no or only one correct trial). Another two participants
had to be excluded because they did not conduct the WM
task correctly (no correct trials in at least one block). Finally,
three participants had to be excluded from the final analysis
because the EEG recorded during the stimulation phase could
not be analyzed due to of bad data quality. Hence, the final
sample consisted of 62 participants, with 21 receiving left
frontal a-tDCS, 20 left parietal a-tDCS and 21 sham stimulation
(demographic data listed in Table 1). Groups did not differ
in arithmetic ability or male/female ratio. However, the group
receiving frontal stimulation was significantly younger than the
groups receiving parietal or sham stimulation [F(2,59) = 7.376; p
= 0.001]. All participants were thoroughly informed about the
study protocol, stimulations and procedures, and gave written
informed consent. For participation, they received either 20 e
or a study-participation certificate for course credits of 3.5 h. The
study was approved by the ethics commission of the University
of Graz (No: 60–2015/16).

Arithmetic Tasks
Participants were asked to solve three sets of 64 additions and
three sets of 64 subtractions. One of each before, another one
of each during, and the final sets after stimulation. Each set
consisted of 32 small, easy problems, assumed to be solved
by fact retrieval, and 32 large problems, assumed to be solved
by procedural calculation. The order of the single items was
pseudorandomized. Small additions were one-digit/one-digit
problems with a maximum sum of 10. The range of possible
operands was 2–8. Small subtractions were constructed by
mirroring the small additions (3 + 6 = 9 → 9–6 = 3). As these
rules result in only 24 possible problems, small problems were

TABLE 1 | Demographic data and basic arithmetic ability.

Total (N = 62) Stimulation groups

Frontal (N = 21) Parietal (N = 20) Sham (N = 21)

M SD M SD M SD M SD

Age (years) 25.9 5.1 22.8 3.4 27.5 5.4 27.6 5.0

Arithmetic ability 14.4 3.6 13.7 3.5 14.8 3.4 14.7 4.0

Sex 38 female; 24 male 14 female; 7 male 12 female; 8 male 12 female; 9 male
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FIGURE 1 | This figure shows the time course of an arithmetic trial. A fixation cross was presented at the beginning, lasting for 1 s. Following the fixation cross, the

arithmetic problem was presented on the screen until a button was pressed, indicating that the problem was solved, or time ran out. Maximum time available was 3 s

for small and 5 s for large problems. When the button was pressed or time ran out, three options were presented and participants had 3 s to select one of these by

pressing the corresponding button. In between the single trials there were inter-trial intervals of variable length, whereby the duration was set to cover the unused time

of problem presentation and solution selection, keeping the total trial duration (fixation cross to fixation cross) constant.

the same in all three sets, and in each set eight problems were
presented twice. Thereby, the eight repeated problems where
different in every set, so that no problem was presented more
than four times in total. Large additions were two-digit/two-digit
additions with carry, addends between 12 and 59, and sums below
100. Again, the subtractions were constructed by mirroring the
additions. Excluding problems with round numbers (e.g., 30) and
tie problems, there was a set of 143 large additions/subtractions
and 32 of each were randomly selected for each set, without any
repetitions. A typical trial is depicted in Figure 1. Every trial
started with a fixation cross for 1 s, immediately followed by the
arithmetic problem. Problems were presented on screen until the
participant pressed a button, indicating she/he had solved the
problem. The maximum presentation time (time-out) was three
(small problems) or five (large problems) seconds, respectively.
After the button was pressed or time ran out, participants had 3 s
to choose the correct solution from three options by pressing the
corresponding button. To keep trial and set durations constant, a
blank screen was presented for the time left from the maximal
calculation time and maximal solution selection time before
the next trial started. After each set, participants could indicate
if they used fact retrieval or procedural strategies more often

when processing small, easy problems and separately for large,
complex problems. To this end, participants were asked to locate
a cursor on a bar ranging from “retrieved” (indicating a 100%
retrieval rate) to “calculated” (indicating a 100% procedural
calculation rate).

The markers for arithmetic performance were accuracy and

calculation times. Accuracy was defined as the percentage of

trials solved correctly and in time (before the 3 or 5 s time
out) in relation to the total number of trials of this type
per set. Calculation time was assessed from start of the problem
presentation until the button press, indicating that the participant
had solved the problem. Mean calculation times per set (block
1–3 and addition vs. subtraction), and difficulty (small vs.
large) were calculated, whereby all incorrect trials or problems
not solved in time (i.e., no button press before time out)
were excluded.

Working Memory
Working memory was assessed by a letter 2-Back task. Task
duration was 180 s with a presentation duration of 500ms for
every letter and 1,500ms of blank screen between to letters (see
Figure 2 for a depiction of the 2-back task). Hence, a single trial
was 2,000ms long, and each run of the 2-back task consisted
of 90 trials. The letters used were “A,” “B,” “C,” “D,” and “E,”
which appeared in pseudorandomized order to achieve 60 non-
target and 30 target trials. Target trials were defined as trials in
which the presented letter matched the letter from two trials
ago. Participants were instructed to indicate target trials by
pressing a button and could do so during the whole trial duration
from presentation of one letter to the presentation of the next
(500ms presentation time plus 1,500ms blank screen). They had
to refrain from pressing any button during non-target trials. A
correct reaction (CR) consisted of a button press during a target
trial, a correct rejection (CRJ) of refraining from a button press
during non-target trials. A false alarm (FA) occurred when the
button was pressed during a non-target trial and a miss (M) was
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defined as the absence of a button press during a target trial.
Working memory performance was assessed by reaction time
(WM-RT) over all correct trials and by accuracy (WM-ACC),
calculated by WM-ACC= [1–((FA+M) / 90)) ∗ 100].

Basic Arithmetic Ability
The subtest “Rechenzeichen” (arithmetic operators) of the IST-
2000R (Liepmann et al., 2007) was used as a short assessment of
participants’ basic arithmetic ability. In this subtest, participants
are presented with 20 items consisting of an arithmetic problem
and its solution but without the operators (e.g., A ? B ? C = D).
They have 10min to identify the correct operators for the 20
problems. The number of correctly solved problems represents
the raw score in this subtest.

Transcranial Direct Current Stimulation
Stimulation was applied utilizing a NeuroConn DC-Stimulator
Plus (NeuroConn, Ilmenau, Germany). Electrodes were
rectangular rubber electrodes sized 3 by 3 cm for the anode
and 5 by 7 cm for the cathode. The anode was placed over EEG
position F3 for frontal stimulation, targeting the left DLPFC,
and over P3 for parietal stimulation, targeting the left PPC. The
cathode was placed over the contralateral supraorbital site. For
half of the participants receiving sham stimulation the electrodes
were mounted as for frontal stimulation and for the other half
as for parietal stimulation. Electrodes were applied directly to
the scalp with an about 1–2mm thick layer of Ten20 paste
(Weaver and Company, Aurora, USA) and held in place by
the EEG cap mounted above the stimulation electrodes. In the
active stimulation groups, tDCS was applied for 25min with an
intensity of 1mA and fade in/out phases of 30 s in which the
current was slowly ramped up/down. Current density under
the electrode was 0.11mA/cm2 for the anode and 0.03mA/cm2

under the cathode. Sham stimulation consisted of a 30 s fade
in phase followed by 50 s of applied current (1mA) and 30 s of
fade out, in order to induce the same sensory perception as the
active stimulations. Impedances were comparable between the
three groups [frontal: M = 3.41 k� (SD = 2.32); parietal: M =

3.68 k� (SD = 2.11); sham M = 4.39 k� (SD = 2.19); F(2,59)
= 1.208; p = 0.306; η

2
p = 0.039]. Furthermore, the stimulation

was applied in a double-blind way by using the study mode of
the DC-Stimulator Plus. Here, a code list was prepared with one
code for each subject, and entering the respective code either
started active or sham stimulation.

Electroencephalography
Recording
The EEG recording was conducted while the participants
processed the arithmetic and working memory tasks in a
separate, normally lit and quiet room, using a 64-channel
BioSemi ActiveTwo EEG system (BioSemi, Amsterdam,
Netherlands). Electrodes were mounted according to the 10:20
system (Jasper, 1958) using BioSemi head caps and Signagel
(Parker Laboratories, Fairfield, USA) to ensure appropriate
contact. As the tDCS electrodes were mounted at the positions
F3, P3, Fp2, and AF8 these EEG electrodes were not mounted.

Preprocessing
Data was analyzed using MNE (Gramfort et al., 2013, 2014) and
additional, custom-built Python code. For the EEG recordings
before and after stimulation, pre-processing was done semi-
automatically using an average reference, a 1Hz high-pass filter
and visual inspection regarding prominent artifacts and bad
channels before applying an independent component analysis
(ICA) to remove ocular artifacts. This was followed by applying a
notch (48–52Hz) and a low-pass filter (60Hz) before a second
visual inspection to detect any remaining artifacts. For the
EEG data recorded during the stimulation phase, an additional
principal component analysis (PCA) step to remove artifacts
induced by the stimulator during sham stimulation (repeated
impedance checks) was applied before the ICA was performed.
Finally, data was prepared separately for each frequency band
of interest (theta 3–6Hz; low alpha 8–10Hz, and high alpha
10–13Hz) by applying adequate band-pass filters. The chosen
frequency ranges were based on prior studies (Grabner and
De Smedt, 2011, 2012). Afterwards, the mean power during
the reference interval (R; fixation cross; 1,000ms) and during
activation (A; calculation time from problem onset until button
press) in all correct trials consisting of more than 50% artifact-
free data was assessed for each frequency band. In each
block (before, during, and after stimulation) and arithmetic
task (small/large additions/subtractions) on average, M = 0.53;
SD= 1.12 had to be excluded because of artifacts andM = 28.56;
SD = 3.96 trials were used for analysis. The mean power during
reference and activation intervals was averaged over all used
trials (separately for additions and subtractions as well as for
small and large problems), and ERS/ERD values for the four
types of arithmetic problems and the three phases were calculated
by ERS/ERD = ((A–R) / R) ∗ 100. Hence, positive values
indicate ERS (an increase of power from the reference interval to
activation) and negative values indicate ERD (a decrease of power
from reference interval to activation). Finally, the single channels
were grouped into clusters, and single-channel ERS/ERD values
were averaged to result in a single ERS/ERD value for each
cluster, problem type, and time point (before, during, and after
stimulation). The clusters used were left frontal (Fp1, AF3, AF7,
F7, FC5, FC3, and FC1), right frontal (AF4, F6, F4, F2, FC6,
FC4, FC2), left parietal (CP5, CP3, CP1, P7, PO7), and right
parietal (CP2, CP4, CP6, P8, P6, P4, P2, PO8, PO4). In addition
to the channels not mounted because of the tDCS electrodes,
the channels F1, F5, F8, P1, P5, and PO3 were excluded for all
participants, as these channels were closest to the stimulation
electrodes and did not yield processable EEG in most of the
participants receiving active stimulation. Figure 3 depicts the
procedure of EEG data processing.

Procedure
The experimental session consisted of three parts (see Figure 4).
In the beginning, participants were asked to answer a
demographic questionnaire, followed by a short test to ascertain
right hand dominance (HDT; Steingrüber and Lienert, 1971), a
verbal fluency test (RWT; Aschenbrenner et al., 2000) and the
Comprehensive-Trial-Making- Test (CTMT; Reynolds, 2002).
The latter two tests were not used in this study, but were
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FIGURE 2 | This figure shows some typical trials of the 2-back task. Every letter was presented for 500ms and followed by a blank screen for 1,500ms. Target trials

were the letters which were identical to the letter presented two trials before. Participants had to press a button if the current trial was a target trial and could do so

while the letter was presented to them and during the following blank screen phase.

FIGURE 3 | This figure displays the procedure of EEG data pre-processing and ERS/ERD calculation. After data collection, the EEG data was re-referenced and

high-pass filtered. This was followed by a principal component analysis for the data recorded during stimulation and by the first visual inspection and rejection of

artifacts. The independent component analysis was applied after this first inspection and after bad components were excluded the EEG data was notch and low-pass

filtered. The final step was the second visual inspection and artifact rejection. ERS/ERD calculation started with band-pass filtering of the EEG to only include data in

the frequency band of interest. Based on this data, the band power in the reference and active intervals was assessed and ERS/ERD values were calculated. The final

step was the clustering, by averaging ERS/ERD values over the channels included in the different clusters.

part of another project. The last test conducted before the
EEG and tES electrodes were mounted was the “Rechenzeichen”
(operators)-part of the Intelligenz-Struktur-Test 2000R (IST-
2000R; Liepmann et al., 2007) as a short assessment of basic
arithmetic abilities. Following this, the EEG and tDCS electrodes
were mounted and the main test session with EEG recording
and stimulation took place. This main test session was the

second part of the study and consisted of three blocks, with
two sets of arithmetic problems (one containing additions and
one subtractions) and one WM task (N-Back task) each. The
running order of the arithmetic sets and the WM task was
pseudorandomized in order to be balanced over subjects and
groups, but was constant for all three blocks (before, during, and
after stimulation) within each person (e.g., if for a participant the

Frontiers in Human Neuroscience | www.frontiersin.org 6 February 2020 | Volume 14 | Article 1713

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Mosbacher et al. tDCS Effects on Arithmetic Performance

FIGURE 4 | This figure depicts an experimental session. After getting informed about the experiment and signing the consent form the first part of the study started,

consisting of a demographic questionnaire, the HDT, RWT, and CTMT, as well as the “Rechenzeichen” (operators) scale of the IST serving as a measure of basic

arithmetic ability. This part was followed by the specific instructions for the arithmetic and working memory tasks and the mounting of the EEG and tDCS electrodes.

Part 2 consisted of the three blocks of arithmetic and working memory tasks. The order of the three tasks varied between the subjects in a pseudorandomized

manner. Stimulation was applied for 25min during block 2, and EEG was recorded during all three blocks. After part 2 was finished, the EEG and tDCS electrodes

were demounted and participants could wash their hair. Finally, in part 3, participants were asked to complete a stimulation self-report, the NEO-FFI, and the

dynamic-mindset questionnaire.

order was working memory, additions, subtractions in block 1
the tasks would be in the same order in blocks 2 and 3 for this
person). The arithmetic sets and the WM task were separated
by breaks of 50 s, with longer breaks between the three blocks
in order to start and stop stimulation. Before the start of an
arithmetic set or the WM task, participants were informed by a
sound signal and a message on screen that the tasks will resume,
and another message informing them about which task will be
next. After the main part was finished, EEG and tDCS electrodes
were demounted and participants were asked whether they think
they received active or sham stimulation. In the final part, they
were asked to answer a stimulation self-report as well as the
German version of the NEO-Five-Factor-Inventory (NEO-FFI;
Borkenau and Ostendorf, 2008), and a questionnaire regarding
their dynamic mind-set, both being part of another project.

Statistical Analysis
All analyses were conducted using SPSS 25 (IBM, Armonk, USA).
Stimulation-induced changes in arithmetic and working memory
performance were analyzed using mixed design ANCOVAs with
within-subjects factor time (before, during, and after stimulation)
and the between-subjects factor treatment (frontal a-tDCS,
parietal a-tDCS, and sham stimulation). Analyses were calculated
separately for accuracy and calculation time of each arithmetic
type (small additions, large additions, small subtractions, large
subtractions), and for overall accuracy and reaction time of
the WM task. Changes in ERS/ERD values were analyzed by
calculating mixed design ANCOVAs with the within-subjects
factors time (before, during, and after stimulation), and location
(frontal, parietal), and the between-subjects factor treatment
(frontal a-tDCS, parietal a-tDCS, and sham stimulation). These
analyses were carried out separately for each frequency band
and hemisphere, but only for these types of arithmetic problems
in which stimulation changed performance, as the main

research question regarding the EEG was whether stimulation-
induced behavioral changes are reflected in ERS/ERD patterns.
Participants’ age, sex, and basic arithmetic abilities were used
as covariates in all analyses concerning arithmetic performance
and related EEG. For analysis of working memory performance,
only age and sex were used as covariates. Greenhouse-Geisser
correction was used if sphericity could not be assumed as
indicated by a significant Mauchly’s test of sphericity. Efficacy of
blinding was analyzed using a chi-square test on the stimulation
self-report data.

RESULTS

Behavioral
Small Additions
For accuracy in small additions (overallM = 98.00%; SD= 1.70),
the ANCOVA showed no significant main effects of time [F(2,112)
= 1.927; p= 0.150; η2

p = 0.033] or treatment [F(2,56) = 0.157; p=

0.855; η2
p = 0.006] nor a significant interaction time ∗ treatment

[F(4,112) = 0.146; p= 0.965; η2
p = 0.005].

For calculation times (M = 0.75 s; SD = 0.13), the ANCOVA
showed a significant main effect of time [F(2,112) = 5.792, p =

0.004; η2
p = 0.094] but no significant effect of treatment [F(2,56)

= 2.583; p = 0.085; η2
p = 0.084] or interaction time ∗ treatment

[F(4,112) = 0.471; p = 0.757; η2
p = 0.017]. Pairwise comparisons

showed, that calculation times before treatment (M = 0.77 s, SD
= 0.17) were slower than during treatment (M = 0.74; SD =

0.14; p = 0.009) and after treatment (M = 0.73; SD = 0.14; p
= 0.006). Calculation times during and after treatment did not
differ (p= 0.552).

Large Additions
For accuracy in large additions (M = 80.63%; SD = 8.62), the
ANCOVA showed neither significantmain effects of time [F(2,112)
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= 0.215; p = 0.807; η2
p = 0.004] and treatment [F(2,56) = 0.226;

p = 0.798; η
2
p = 0.008] nor a significant interaction time ∗

treatment [F(4,112) = 1.633; p= 0.171; η2
p = 0.055].

Similarly, for calculation times (M = 2.52 s; SD = 0.66),
the ANCOVA showed neither significant main effects of time
[F(1.74,97.60) = 0.419; p= 0.631; η2

p = 0.007] and treatment [F(2,56)

= 0.662; p= 0.520; η2
p = 0.023] nor a significant interaction time

∗ treatment [F(3.49,97.60) = 1.129; p= 0.345; η2
p = 0.039].

Small Subtractions
For accuracy in small subtractions (M = 96.76%; SD = 2.89),
the ANCOVA showed neither significant main effects of time
[F(2,112) = 0.217; p = 0.805; η

2
p = 0.004] and treatment [F(256)

= 1.089; p= 0.344; η2
p = 0.037] nor a significant interaction time

∗ treatment [F(4,112) = 0.464; p= 0.762; η2
p = 0.016].

Similarly as for small additions, the ANCOVA for calculation
times in small subtractions (M = 0.84 s; SD = 0.20) also showed
a significant main effect of time [F(2,112) = 5.837, p = 0.004; η2

p

= 0.094] but no significant effect of treatment [F(2,56) = 1.958;
p = 0.151; η2

p = 0.065] or time ∗ treatment interaction [F(4,112)

= 0.694; p = 0.597; η2
p = 0.024]. Pairwise comparisons showed,

that calculation times before stimulation (M = 0.87 s, SD= 0.21)
were slower than during stimulation (M = 0.84; SD = 0.22;
p = 0.036) and after stimulation (M = 0.82; SD = 0.22; p =

0.003). Calculation times during and after stimulation did not
differ (p=0.167).

Large Subtractions
The ANCOVA showed a significant main effect of time for
accuracy (M= 74.83%; SD= 12.29) in large subtractions [F(2,112)
= 12.749; p < 0. 001; η2

p = 0.185] but no main effect of treatment

[F(2,56) = 0.144; p = 0.866; η
2
p = 0.005] or interaction between

time and treatment [F(4,112) = 1.406; p = 0.237; η
2
p = 0.048].

Pairwise comparisons showed that accuracy before treatment (M
= 71.47; SD = 15.30) was lower than during treatment (M =

76.31; SD = 10.77; p < 0.001) and after treatment (M = 76.71;
SD = 13.74; p < 0.001), while there was no difference between
during and after treatment (p= 0.708).

For calculation times in large subtractions (M = 2.83 s; SD
= 0.65), the ANCOVA showed a significant main effect of
time [F(2,112) = 5.786; p = 0.004; η

2
p = 0.094) but not for

treatment [F(2,56) = 0.096; p = 0.909; η
2
p = 0.003]. However,

there was a significant interaction of time ∗ treatment [F(4,112)
= 2.787; p = 0.030; η2

p = 0.091]. Pairwise comparisons showed
that the interaction was driven by differences in calculation
time reductions over time between the treatment groups. The
group receiving frontal a-tDCS showed a significant reduction
of calculation times from before treatment (M = 2.99; SD =

0.75) to during treatment (M = 2.81; SD = 0.72; p = 0.013)
and after treatment (M = 2.76; SD = 0.79; p = 0.013) while
there was no difference in calculation times between the blocks
during and after treatment (p = 0.891). The group receiving
sham stimulation, on the other hand, showed no reduction of
calculation time from before treatment (M = 2.93; SD = 0.50)
to during treatment (M = 2.91; SD = 0.55; p = 0.997), but

FIGURE 5 | This figure depicts the change of calculation time in large

subtractions from before to after treatment. The error bars represent the

standard error of the mean and * indicates significant differences (unbroken

lines depict differences in the frontal stimulation group and dashed lines in the

sham group).

in the block after treatment (M = 2.74; SD = 0.56) they were
significantly faster than before (p = 0.008) and during treatment
(p = 0.002). Finally, the group receiving parietal a-tDCS showed
no differences in calculation times over time (before; M = 2.78;
SD = 0.86; during; M = 2.75; SD = 0.72; after: M = 2.81;
SD = 0.62; all p > 0.05). Results are depicted in Figure 5, and
calculation time changes on a single person level are given as
additional information in Figure SM1.

Working Memory
Regarding WM accuracy, the ANCOVA showed a significant
main effect of time [F(2,114) = 5.929; p = 0.004; η2

p = 0.094] but

no effect of treatment (F(2,57) = 0.320; p = 0.727; η2
p = 0.011)

or time ∗ treatment interaction [F(4,114) = 1.678; p = 0.160; η
2
p

= 0.056]. Pairwise comparisons showed that the accuracy before
treatment (M = 89.23; SD = 5.85) was lower than the accuracy
during (M = 90.79; SD= 6.99; p= 0.035) and after treatment (M
= 91.69; SD= 7.02; p= 0.004) but did not differ between during
and after treatment (p= 0.155).

Similarly, for WM reaction times, the ANCOVA showed a
significant main effect of time [F(1.767,100.698) = 3.353; p = 0.045;
η
2
p = 0.056], but no effect of treatment [F(2,57) = 0.828; p= 0.442;

η
2
p = 0.028] or time ∗ treatment interaction [F(3.533;100.698) =

0.299; p= 0.857; η2
p = 0.010]. Pairwise comparisons showed that

the reaction times after treatment (M = 0.57; SD = 0.13) were
faster than during treatment (M = 0.60; SD = 0.13; p = 0.002).
However, reaction times before treatment (M = 0.59; SD= 0.13)
lay in between the times achieved during and after treatment and
did not significantly differ from either (both p > 0.05).

ERS/ERD
Theta Band ERS/ERD During Large Subtractions
Main results are depicted in Figure 6; additional topographic
information containing single channel information is displayed
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FIGURE 6 | (A) Depicts the mean theta band ERS/ERD values in the left frontal and parietal regions over all time points. (B) Depicts the overall change of theta band

ERS/ERD in the left hemisphere from before to after stimulation. (C) Depicts the change of theta band ERS/ERD values in right frontal and right parietal regions in the

different treatment groups from before to after stimulation. Error bars represent the standard error of the mean and * indicates significant differences.

in Figure 7. For the left hemisphere, the ANCOVA showed a
significant main effect of time [F(1.437,80.492) = 4.185; p = 0.030;
η
2
p = 0.070] and location [F(1,56) = 36.514; p < 0.001; η

2
p =

0.395] but no effect of treatment [F(2,56) = 0.655; p = 0.524; η2
p

= 0.023] or time ∗ location [F(1.603,89.782) = 2.924; p = 0.070; η2
p

= 0.050], time ∗ treatment [F(2.875,80.492) = 0.506; p = 0.671; η2
p

= 0.018], location ∗ treatment [F(2,56) = 1.127; p = 0.331; η2
p =

0.039], and time ∗ location ∗ treatment interactions [F(1.603,89.782)
= 1.771; p = 0.140; η

2
p = 0.059]. Overall, participants showed

a theta band ERS over frontal regions (M = 5.26; SD = 20.26),
but an ERD over parietal regions (M = −4.74; SD = 17.50) with
a decrease of ERD / increase of ERS over time (Figures 5A,B).
Thereby, before treatment, participants showed a theta band ERD

(M = −3.69; SD = 16.56) which was significantly different from
the values during (M = 1.16; SD = 19.23; p = 0.042) and after
treatment (M = 3.31; SD = 26.14; p < 0.001) where participants
showed ERS patterns. ERS values during and after treatment did
not differ (p= 0.494).

For the right hemisphere, the ANCOVA showed significant
main effect of time [F(1.574,88.162) = 7.070; p = 0.003; η

2
p =

0.112] and a significant time ∗ location ∗ treatment interaction
[F(3.918,109.692) = 3.293; p= 0.014; η2

p = 0.105]. Effects of location

[F(1,56) = 0.017; p = 0.898; η
2
p = 0.000] and treatment [F(2,56)

= 0.752; p = 0.476; η
2
p = 0.026] and the interaction time ∗

location [F(1.959,109.692) = 0.668; p = 0.515; η
2
p = 0.012], time

∗ treatment [F(3.148,88.162)= 0.901; p = 0.448; η
2
p = 0.031], and
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FIGURE 7 | This figure displays the topographic information of average ERS/ERD values in the three groups (frontal stimulation parietal stimulation, sham stimulation)

before, during, and after stimulation (A), the difference between frontal and sham groups as well as the difference between parietal and sham groups at the three time

points (B), and the change from before to during stimulation and from before to after stimulation in the three groups (C). Changes were calculated by subtracting

ERS/ERD values in the sham group from those in the actively stimulated groups for the between group changes displayed in (B) and by subtracting the ERS/ERD

values before stimulation from those during or after stimulation for the within group changes displayed in (C).

location ∗ treatment [F(2,56) = 0.272; p = 0.763; η
2
p = 0.010]

were not significant. Pairwise comparisons showed, that the
interaction time ∗ location ∗ treatment was driven by the sham
stimulated group. In this group, there was a significant difference
in ERS/ERD values over frontal regions between before (M =

−0.84; SD = 36.54), and after treatment (M = 7.53; SD = 42.68;
p = 0.033) while the ERS/ERD values in the active stimulation
conditions did not differ between the timepoints (both p > 0.05).
Over parietal regions, the sham group also showed a significant
change in ERS/ERD values from before (M = −4.46; SD =

31.59) to after treatment (M = 14.80; SD = 49.39; p < 0.001),
and additional differences between the ERS/ERD values during
treatment (M = −5.35; SD = 31.79) and after treatment (p =

0.001) but no difference between ERS/ERD values before and
during treatment (p = 0.829). All other pairwise comparisons
were non-significant (p > 0.05).

Low Alpha Band ERS/ERD During Large Subtractions
For the left hemisphere, the ANCOVA showed a significant effect
of locations [F(1,56) = 36.806; p < 0.001; η

2
p = 0.397] with a

stronger ERD in parietal regions (M =−31.63; SD= 21.26) than
in frontal regions (M = −13.68; SD = 35.23). No other main
effects or interactions were significant (all p > 0.05).

Similarly, for the right hemisphere, the ANCOVA also only
showed a significant effect of location [F(1,56) = 10.729; p= 0.002;
η
2
p = 0.161], with stronger ERD in parietal regions (M=−26.49;

SD = 29.27) than in frontal regions (M = −21.26; SD = 27.66).
All other main effects and interactions were non-significant
(all p > 0.05).

High Alpha Band ERS/ERD During Large

Subtractions
For high alpha, the ANCOVA also showed a significant
main effect of location in the left hemisphere [F(1,56) =

16.414; p < 0.001; η
2
p = 0.227], with a stronger ERD in

parietal regions (M = −26.16; SD = 17.77) as compared
to frontal regions (M = −17.89; SD = 22.28). Again,
all other main effects and interactions were non-significant
(all p > 0.05).

This also holds true for the right hemisphere, were,
again, only the main effect of location proved significant
[F(1,56) = 18.199; p < 0.001; η

2
p = 0.245], with a stronger

ERD in parietal regions (M = −24.48; SD = 19.71)
than in frontal regions (M = −18.37; SD = 21.13). All
other main effects and interactions were non-significant
(all p > 0.05).
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Blinding
A chi-square test showed no relation between the subjective
perception and actually applied stimulation [active vs. sham;
χ2(2, N = 62) = 2.357; p = 0.308]. In the frontally stimulated
group, there were 13 participants assuming to have received
active stimulation and 8 assuming to have received sham
stimulation. In the parietally stimulated group this ratio was 8–12
and in the sham group 9–12.

DISCUSSION

The aim of the present study was to extend prior research
by directly comparing the effects of a-tDCS over left frontal
(targeting the DLPFC) and left parietal (targeting the PPC)
regions on arithmetic performance in small and large problems
of different operations and on EEG activity. In order to be able
to conduct a more fine-grained analysis, performance and EEG
were assessed before, during, and after stimulation, allowing for
a separation of online and after-effects of stimulation on both,
the behavioral and the neurophysiological level. Additionally,
WM performance was assessed to investigate whether the effects
of a-tDCS on arithmetic performance are task specific. Overall,
we found no general tDCS related improvements in arithmetic
or working memory performance, but there is some evidence
for an acceleration of training gains in participants receiving
frontal stimulation. These participants showed a significant
improvement in calculation times in large subtractions from
before to during and after stimulation, while participants
receiving sham stimulation showed a similar change only in the
last block. However, this admittedly small effect was not reflected
in ERS/ERD patterns.

Behavioral Effects
Contrary to the expectations and results in prior literature
(Hauser et al., 2013; Pope et al., 2015; Rütsche et al.,
2015), neither left frontal, nor left parietal a-tDCS induced
a general improvement in arithmetic performance. While
participants did show some performance improvements over
time in all but one type of arithmetic problems (in large
additions no improvements emerged), these were mostly general
improvements in accuracy (large subtractions) or calculation
times (small additions) that can be attributed to practice effects.
However, in large subtractions, left frontal a-tDCS led to
an accelerated improvement in calculation times from before
to during stimulation, as compared to the group receiving
sham stimulation. The group receiving sham stimulation also
improved, but later on, and the group receiving a-tDCS over
parietal regions showed no improvement in calculation times
over time. The earlier reduction of calculation times in the
frontally stimulated group might indicate accelerated training
gains. Although large problems were not repeated, the procedural
strategies used to solve them have been trained over the course
of the three arithmetic blocks, as can be seen from the general
improvement in accuracy and the gains in calculation times in
the frontally and sham stimulated groups. Stimulation effects
might have not been strong enough for an overall performance
improvement, but sufficient to support training gains. This is
in line with a recent meta-analysis showing that tDCS effects

on training or learning gains are generally larger than those on
performance (Simonsmeier et al., 2018).

The absence of any improvement in the group receiving
left parietal a-tDCS is startling, as it was parietal a-tDCS that
showed promising effects on calculation times in large arithmetic
problems (Rütsche et al., 2015) and specifically large subtractions
(Hauser et al., 2013) in earlier studies. On the other hand,
the detrimental effects of parietal a-tDCS on the accuracy in
small arithmetic problems reported by Rütsche et al. (2015) also
could not be replicated. All groups showed very fast calculation
times and high accuracies in small additions as well as small
subtractions and performance improved over time without any
stimulation induced differences. One possible explanation for
these diverging results could be found in the difference of the
timing of tDCS between this study and prior studies finding
positive effects (Hauser et al., 2013; Pope et al., 2015; Rütsche
et al., 2015). In these prior studies, stimulation was applied
before or in between two sets of the arithmetic tasks, while in
the present study stimulation was applied concomitant to the
task. There is some evidence for differences in stimulation effects
depending on preexisting activity, indicating a neuronal state
dependency of non-invasive brain stimulation effects in general
(Silvanto et al., 2008; Romei et al., 2016). Additionally, there
are other slight differences to prior studies like electrode size
(smaller in the present study), positioning of the anode (P3 in the
present study but P5/CP5 in Rütsche et al., 2015), or stimulation
intensity (1mA in the present study but 2mA in Pope et al.,
2015), which might have contributed to the differences in results.
Furthermore, calculation times were faster in the present study
as compared to prior ones (Hauser et al., 2013; Rütsche et al.,
2015). This might have been brought about by the time limits
for calculations (3 sec. for small; 5 sec. for large problems) which
were, together with the inter-trial intervals, implemented to keep
the set durations constant. These limits could have induced some
time pressure leading to a faster processing of the tasks and hence,
less scope for further improvements by stimulation, especially in
large problems. Finally, the question regarding the task specificity
of tDCS, whether arithmetic processes are improved directly or
indirectly by beneficial effects of tDCS on working memory,
remains ambiguous. Not only were tDCS effects on arithmetic
performance limited to one task and rather small, but, contrary
to prior results (Brunoni and Vanderhasselt, 2014), results show
no tDCS related effects on working memory.

Electrophysiological Effects
Since on a behavioral level there only was a small stimulation
effect on training gains in large subtractions, the focus regarding
neurophysiological changes was set to ERS/ERD patterns
emerging during this type of problem. However, results showed
no clear stimulation related effects. Interestingly, there was
no change in low and high alpha ERD patterns in general,
although there was a general improvement in performance in
large subtractions.

There were, however, some interesting changes in theta
band ERS/ERD patterns accompanying the processing of large
subtractions over time. In the left hemisphere, there was a general
change from an ERD pattern during block 1 to an ERS pattern
during block 3. As in the area of mental arithmetic theta band

Frontiers in Human Neuroscience | www.frontiersin.org 11 February 2020 | Volume 14 | Article 1718

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Mosbacher et al. tDCS Effects on Arithmetic Performance

ERS has been associated with the cognitive less demanding fact
retrieval process (De Smedt et al., 2009; Grabner and De Smedt,
2011) and fact training led to an increase in theta band ERS
(Soltanlou et al., 2019), this general increase in theta band ERS
could reflect the training effect. However, as in this study, the
procedural problems were never repeated and hence, no fact
training existed, it could only reflect a decrease in cognitive
demand of the increasingly trained procedural calculation
process. Another probably more plausible explanation could be
that this change reflects an increasing demand on attentional
processes and cognitive control. Several studies found that frontal
theta ERS is also associated with these processes (Missonnier
et al., 2006; Cavanagh and Frank, 2014; Ishii et al., 2014). All
three blocks consisted of a WM part and two sets of arithmetic
problems, which were only separated by short breaks. As the
duration increases, the demand on attentional and control
processes to carry out the tasks could have increased and hence,
led to an increase in associated theta band ERS. The stronger
ERS in frontal regions as compared to parietal regions supports
this notion.

A similar pattern was also found in the right hemisphere,
but only in the group receiving sham stimulation. While this
could be a fortuitous effect, it also could indicate an effect of
stimulation. Anodal tDCS has been shown to induce wide spread
effects and modulate activity in broad networks and different
sites of the brain (Polanía et al., 2011; Pena-Gomez et al., 2012).
In this case, anodal stimulation of left hemispheric sites of the
brain could have modulated activity in right hemispheric regions
via mechanisms of interhemispheric inhibition and hence, might
have hindered a similar theta band ERS increase as seen in
the sham group. However, this explanation can so far only be

speculative, and further research is needed to investigate such
effects, especially as there were no effects in the stimulated

sites themselves.
Another possible explanation could be that the absence of

theta band ERS changes in the right hemisphere of the stimulated

groups is caused by the cathodal return electrode. This is also
one of the limitations of this study. The cathode was mounted
at the contralateral supraorbital site. Although a larger electrode
(5 × 7 cm) was used, rendering the applied current density
beneath it rather low (0.03mA/cm2), an inhibitory effect of
this electrode on right frontal areas, especially the frontopolar
area, cannot be ruled out completely. This could have disturbed
the theta band ERS change in the right hemisphere, at least
in frontal regions. However, both explanations come short in
explaining why both stimulated groups (left frontally and left
parietally) show an absence of theta band ERS increase in
right frontal and right parietal sites as compared to the sham
group. Another possible issue brought about by the cathode
is its potential impact on behavioral effects. As frontopolar
regions have been thought of as a metacognitive hub-region
(Burgess and Wu, 2013), important for cognitive processes
in general, inhibitory effects induced by the cathode might
have prevented stronger effects of the anodal tDCS over left
frontal and parietal sites. Other studies used a larger cathodal
electrode (Rütsche et al., 2015; e.g., 10 × 10 cm in Hauser
et al., 2013), or used an extracephalic return electrode (Pope

et al., 2015), which might have mitigated or prevented similar
disadvantageous effects.

A second limitation is that in this study a forced choice format
(participants chose their answer from three options) was used.
While this was similar to the work of Hauser et al. (2013) other
groups like Rütsche et al. (2015) required the production of
answers. This might be a reason why Rütsche and colleagues
found detrimental effects of stimulation on the accuracy in easy
problems, while this study did not. The task format used in the
current study might have allowed the participants to reconsider
their answer in light of the displayed options. However, the
comparably high accuracy in small problems in this study
(additions M = 98.00%; subtractions M = 96.76%) and in the
study of Rütsche et al. (2015); stimulated M = 97.82%; sham M
= 98.78%) speaks against this notion.

In conclusion, neither left frontal, nor left parietal stimulation
led to a general improvement of arithmetic or working memory
performance. However, there was a significant stimulation effect
indicating an acceleration of training gains in large subtractions
by left frontal stimulation. As stimulation effects on training
and learning seem to be stronger than on performance per
se (Simonsmeier et al., 2018), the effects might have been
too small to enhance performance but still strong enough to
improve procedural training. Hence, tDCS might be suited best
to improve later performance when applied during learning or
training while its potential to improve skills or their application
in the sense of a sole performance enhancer remains ambiguous.
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As a full-blown research topic, numerical cognition is investigated by a variety of
disciplines including cognitive science, developmental and educational psychology,
linguistics, anthropology and, more recently, biology and neuroscience. However, despite
the great progress achieved by such a broad and diversified scientific inquiry, we are
still lacking a comprehensive theory that could explain how numerical concepts are
learned by the human brain. In this perspective, I argue that computer simulation should
have a primary role in filling this gap because it allows identifying the finer-grained
computational mechanisms underlying complex behavior and cognition. Modeling efforts
will be most effective if carried out at cross-disciplinary intersections, as attested by
the recent success in simulating human cognition using techniques developed in the
fields of artificial intelligence and machine learning. In this respect, deep learning models
have provided valuable insights into our most basic quantification abilities, showing how
numerosity perception could emerge in multi-layered neural networks that learn the
statistical structure of their visual environment. Nevertheless, this modeling approach
has not yet scaled to more sophisticated cognitive skills that are foundational to higher-
level mathematical thinking, such as those involving the use of symbolic numbers and
arithmetic principles. I will discuss promising directions to push deep learning into this
uncharted territory. If successful, such endeavor would allow simulating the acquisition
of numerical concepts in its full complexity, guiding empirical investigation on the richest
soil and possibly offering far-reaching implications for educational practice.

Keywords: computational modeling, artificial neural networks, deep learning, number sense, symbol grounding,
mathematical learning, embodied cognition, material culture

INTRODUCTION

Despite the importance of mathematics in modern societies, the cognitive foundations of
mathematical learning are still mysterious and hotly debated. At the one end of the bridge, the
idealistic view conceives mathematical concepts as purely abstract entities that humans discover
using logical reasoning; at the other end, empiricists argue that mathematics is the product of
our sensory experiences, and therefore it is essentially an activity of construction (Brown, 2012).
A somehow intermediate position is taken by modern neurocognitive theories, which identify a set
of ‘‘core’’ brain systems specifically evolved to support basic intuitions about quantity (Butterworth,
1999; Feigenson et al., 2004; Piazza, 2010; Dehaene, 2011) but also acknowledge that higher-level
numerical knowledge has materialized only recently, via cultural practices supported by language
and symbolic reference (Núñez, 2017).
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In recent years, the finding that measures of basic
quantification skills correlate to later mathematical achievement
(e.g., Halberda et al., 2008; Libertus et al., 2011; Starr et al.,
2013) has led to the hypothesis that our ‘‘number sense’’ might
indeed constitute the starting point to learn more complex
mathematical concepts. However, the relationship between
numerosity perception and symbolic math remains controversial
(Negen and Sarnecka, 2015; Schneider et al., 2017; Wilkey and
Ansari, 2019), calling for a deeper theoretical investigation that
should be carried out with the support of formal models.

Here I will argue that the quest for artificial intelligence
provides an extremely rich soil for the development of a
computational theory of mathematical learning. Indeed,
although computers largely outperform humans on numerical
tasks requiring the mere application of syntactic manipulations
(e.g., performing algebraic operations on large numbers,
or iteratively computing the value of a function), they are
completely blind about the meaning of such operations because
they lack a conceptual semantics of number. Grounding
abstract symbols into some form of intrinsic meaning is
a longstanding issue in artificial intelligence (Searle, 1980;
Harnad, 1990), and mathematics likely constitutes the most
challenging domain for investigating how high-level knowledge
could be linked to bottom-up, sensorimotor primitives
(Leibovich and Ansari, 2016).

By framing a theory in computational terms, scientists are
forced to adopt a precise, formal language, because all the details
of the theory should be explicitly stated to simulate it on a
computer. Modeling also requires to carefully think about the
tasks that are being simulated and the possible ways in which
a computational device can (or cannot) solve them. In this
perspective article, I will focus in particular on connectionist
models, where cognition is conceived as an emergent property
of networks of units that self-organize according to physical
principles (Rumelhart and McClelland, 1986; Elman et al., 1996;
McClelland et al., 2010). According to this view, knowledge is
implicitly stored in the connections among neurons, and learning
processes adaptively change the strength of these connections
according to experience. Notably, the recent breakthroughs in
deep learning (LeCun et al., 2015) have revealed the true potential
of this approach, by showing how machines endowed with
domain-general learning mechanisms can simulate a variety of
high-level cognitive skills, ranging from visual object recognition
(He et al., 2016) to natural language understanding (Devlin et al.,
2018) and strategic planning (Silver et al., 2017).

Computational Models of Basic
Quantification Skills
According to the ‘‘number sense’’ view, numerical cognition
is grounded in basic quantification skills, such as the ability
to rapidly estimate the number of items in a visual display
(Dehaene, 2011). Numerosity is thus conceived as a primary
perceptual attribute (Anobile et al., 2016) processed by a
specialized (and possibly innate) system yielding an approximate
representation of numerical quantity (Feigenson et al., 2004).
The seminal neural network model by Dehaene and Changeux
(1993) incorporated these principles: numerosity perception

was hardwired in the model, reflecting the assumption that
this ability is present at birth. Successive models revisited this
nativist stance, by showing that numerosity representations
can emerge as a result of learning and sensory experience
(Verguts and Fias, 2004). In particular, recent work based on
unsupervised deep learning has demonstrated that human-like
numerosity perception can emerge in multi-layer neural
networks that learn a hierarchical generative model of the
sensory data (Stoianov and Zorzi, 2012; Zorzi and Testolin, 2018;
see Figure 1A).

Deep learning models account for a wide range of empirical
phenomena in the number sense literature. They can accurately
simulate Weber-like responses in numerosity comparison tasks
(Stoianov and Zorzi, 2012), also accounting for congruency
effects (Zorzi and Testolin, 2018) and for the fine-grained
contribution of non-numerical magnitudes in biasing behavioral
responses (Testolin et al., 2019). Notably, the number acuity
of randomly initialized deep networks rivals that of newborns,
and its gradual development follows trajectories similar to those
observed in human longitudinal studies (Testolin et al., 2020).
Deep networks have also been successfully tested in subitizing
(Wever and Runia, 2019) and numerosity estimation tasks
(Chen et al., 2018). Last, but not least, artificial neurons often
reproduce neurophysiological properties observed in single-cell
recording studies, for example by exhibiting number-sensitive
tuning functions (Zorzi and Testolin, 2018; Nasr et al., 2019).

Several questions remain under investigation: Is it possible
to fully disentangle numerosity from continuous magnitudes
by only relying on unsupervised learning (Zanetti et al., 2019)?
Can generative models generalize to unseen numerosities (Zhao
et al., 2018)? Are there computational limitations in tracking
multiple objects in dynamic scenes (Cenzato et al., 2019)?
What is the contribution of explicit feedback and multi-
sensory integration in shaping numerosity representations? How
do deep learning models map into the cortical processing
hierarchy? Nevertheless, despite these open questions, we can
safely argue that deep learning has paved the way toward a
computational theory about the origin of our number sense,
confirming the appeal of deep networks as models of human
sensory processing (Testolin and Zorzi, 2016; Yamins and
DiCarlo, 2016; Testolin et al., 2017). Unfortunately, simulating
the transition from approximate to symbolic numbers turns
out to be much more challenging, as we discuss in the
next section.

Modeling the Acquisition of Higher-Level
Mathematical Concepts
One of the most ambitious questions to be addressed is whether
deep learning models could develop even more sophisticated
numerical abilities, such as those involving arithmetic and
symbolic math. Symbolic reasoning is notoriously difficult
for connectionist models (Marcus, 2003), and despite recent
progress, deep neural networks still struggle with tasks
requiring procedural and compositional knowledge (Garnelo
and Shanahan, 2019).

Only a fewmodeling studies have investigated how arithmetic
could be learned by artificial neural networks. Since early

Frontiers in Human Neuroscience | www.frontiersin.org 2 March 2020 | Volume 14 | Article 10023

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Testolin Computational Models of Mathematical Learning

FIGURE 1 | Deep learning models. (A) Schematic representation of an unsupervised deep learning model that simulates human numerosity perception. Adapted
from Zorzi and Testolin (2018). (B) Sketch of the proposed modeling framework, which extends the basic numerosity perception model (entirely confined within the
agent’s brain) by introducing the ability to interact with the external environment to create and manipulate material representations.

attempts, associative memories have been used to simulate
mental calculation as a process of storage and retrieval of
arithmetic facts (McCloskey and Lindemann, 1992): during
the learning phase, the two arguments and the result of a
simple operation (e.g., single-digit multiplication) are given
as input to an associative memory, whose learning goal is
to accurately store them as a global, stable state. During the
testing phase, only the operands are given, and the network
must recover the missing information (i.e., the result) by
gradually settling into the correct configuration. Building on this
approach, successive simulations have shown that numerosity-
based (‘‘semantic’’) representations can facilitate the learning of
arithmetic facts (Zorzi et al., 2005) and equivalence problems
(Mickey and McClelland, 2014). Others have shown that
multi-digit addition and subtraction (but not multiplication)
can be acquired through end-to-end supervised learning from
pixel-level images (Hoshen and Peleg, 2015). One critical
limitation of these approaches, however, is that they conceive
arithmetic learning as a mere process of storing and recall,
which gradually develops through the massive reiteration of all
possible arithmetic facts that need to be learned. Besides being
psychologically implausible and computationally unfeasible, this
approach does not guarantee that the system will be able to
generalize the acquired knowledge to unseen numbers and, even
less, to exploit the acquired knowledge to more effectively learn
new mathematical concepts.

The challenge of developing learning models that can exhibit
algebraic generalization with the robustness and flexibility
exhibited by humans is so fundamental thatmajor players in deep
learning research are intensively investigating these issues. For

example, Google’s DeepMind company has recently evaluated
several deep learning models on a set of benchmark problems
taken from UK national school mathematics curriculums,
covering arithmetic, algebra, elementary calculus, et cetera
(Saxton et al., 2019). DeepMind’s best model correctly solved
only 14 out of 40 problems, which would be equivalent to an
‘‘E’’ grade. Although such difficulties have led some researchers
to argue that neural networks are incapable of exhibiting
compositional abilities (Marcus, 2018), others argue for the
opposite (Baroni, 2020; Martin and Baggio, 2020).

Even the acquisition of the concept of exact number is
still out of reach for deep networks, which often cannot
generalize outside of the range of numerical values encountered
during training (Trask et al., 2018). Integer numbers are one
of the pillars of arithmetic, so they constitute the perfect
testbed for developing and testing computational models of
mathematical learning. Developmental studies show that integers
are gradually acquired by children during formal education
through the acquisition of number words and counting skills:
Indeed, although sequential (item-by-item) enumeration skills
are present in animal species (Platt and Johnson, 1971; Beran
and Beran, 2004; Dacke and Srinivasan, 2008), even in humans
counting is not culturally universal (Gordon, 2004) and there is
evidence that young children and people from cultures lacking
number words have an incomplete understanding of what it
means for two sets of items to have exactly the same number of
items (Izard et al., 2008, 2014).

Some authors have sought to characterize the acquisition
of exact numbers as the semantic induction of a ‘‘cardinality
principle’’ (Sarnecka and Carey, 2008). This hypothesis has
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been exemplified in a computational model based on Bayesian
inference, which simulated the stage-like development of
counting abilities by relying on a pre-determined set of ‘‘core’’
cognitive operations (Piantadosi et al., 2012). The repertoire
of innate abilities included the capacity to exactly identify
cardinalities up to 3, perform basic operations on sets (e.g.,
difference, union, intersection), retrieve the next or previous
word from an ordered counting list, and to operate these
functions recursively. Although such modeling approach offers
a rational interpretation of the process that might underly the
acquisition of an abstract cardinality principle, it assumes a
certain amount of a priori symbolic knowledge and procedural
skills, which is in contrast to empirical data suggesting, for
example, that a complete understanding of the successor
principle arises only after considerable interaction with the
teaching environment (Davidson et al., 2012).

TOWARD A COMPREHENSIVE
NEUROCOMPUTATIONAL FRAMEWORK

The Downplayed Role of External
Representations
A central tenet of connectionist models is that semantics
intrinsically emerges in a system interacting with its surrounding
environment. However, this idea is usually superficially
implemented in deep learning models, because the interaction is
often limited to passive observation of statistical properties of the
world (Zorzi et al., 2013). Taking inspiration from constructivist
theories in developmental psychology, here I argue that a step
forward will require to build computational models that learn
by actively manipulating the environment, that is, by causally
interacting with objects in their perceptual space. Crucially, the
notion of ‘‘environment’’ should include embodiment (Lakoff
and Núñez, 2000) and—most importantly—the social, cultural
and educational environment (Vygotsky, 1980; Clark, 2011).
Indeed, according to the Vygotskyan perspective, students
actively construct abstract knowledge through interactions with
teachers and peers, gradually moving their dependency on
explicit forms of mediation to more implicit (internalized) forms
(Walshaw, 2017).

The possibility to manipulate the environment greatly
increases the complexity of the learning agent but also
enables the functional use of external entities to create
powerful representational systems, which can be manipulated
in simple ways to get answers to difficult problems. The
underlying assumption is that cultural evolution and history
are foundational forces for the emergence of superior cognitive
functions and that great intellectual achievements (such as
the invention of mathematics) have been triggered by our
ability to create artifacts serving as physical representations of
abstract concepts. Some investigators have recently emphasized
the role of material culture in numerical cognition (Menary,
2015; Overmann, 2016, 2018), for example by highlighting
that our mental organization of numbers into an ordered
‘‘number line’’ might be related to the linearity of the material
forms used to represent and manipulate them (Núñez, 2011).

Primitive devices used for representing numbers date back
to notched bones in the Paleolithic period (d’Errico et al.,
2018) and clay tokens in the Neolithic period (Schmandt-
Besserat, 1992), which predated the subsequent diffusion of
abaci, positional systems and increasingly more sophisticated
numerical notations (Menninger, 1992). However, despite
the concept of external representations was foreseen in
early connectionist theories1, it has been seldomly explored
in practice.

Learning to Create and Manipulate
Symbolic Representations
We can now sketch a concrete proposal for building
more realistic simulations of mathematical learning. The
computational framework should incorporate the following key
components, summarized in Figure 1B.

• Perceptual system. This is where computational modeling has
been mostly focused (and successful) up to now (see Section
‘‘Computational Models of Basic Quantification Skills’’). The
challenge will be to scale-up the existing models to more
realistic sensory input (e.g., naturalistic visual scenes) and to
incorporate a larger repertoire of pattern recognition abilities,
which should not only allow to approximately represent visual
quantities but also to recognize structured configurations
of object arrays (e.g., sequences of tally marks, geometric
displacements of items, patterns encoded in an abacus, etc.)
and symbolic notations (e.g., written digits and operands).

• Embodiment. Of particular interest to the development
of exact numbers is finger counting (Butterworth, 1999;
Andres et al., 2007; Domahs et al., 2012), which not
only helps children to keep track and coordinate the
production of number words (Alibali and DiRusso, 1999)
but may also allow to organize numbers spatially (Fischer,
2008). Hand-based representations are ubiquitous across
cultures (Bender and Beller, 2012) and play a key role in
the subsequent acquisition of number words (Gunderson
et al., 2015; Gibson et al., 2019), possibly influencing
symbolic number processing even in adulthood (Domahs
et al., 2010). It has been recently shown that neural
networks can learn to count the number of items in
visual displays and that the ability to sequentially point to
individual objects helps in speeding up counting acquisition
(Fang et al., 2018). A further step is taken by cognitive
developmental robotics, which explores the instantiation
of these principles in physically embodied agents (Di
Nuovo and Jay, 2019). Interestingly, pointing gestures
significantly improved counting accuracy in a humanoid
robot, and learning was more effective when both fingers
and words were provided as input (Rucinski et al., 2012;
De La Cruz et al., 2014).

• Material representations. The ability to manipulate
external objects might be the key missing piece for
simulating the acquisition of exact numbers. Indeed,
although hand gestures might serve as placeholders to

1See for example, the section ‘‘External Representations and Formal Reasoning’’ in
Rumelhart et al. (1986).
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learn more efficient arithmetic strategies (Siegler and
Jenkins, 1989; for a computational account see Hansen
et al., 2014), material representations allow for a much
more precise encoding of numerical information. For
example, the agent can learn to establish the cardinality
of a set by organizing items in regular configurations
that promote ‘‘groupitizing’’ (Starkey and McCandliss,
2014), or to exactly compare the cardinality of two sets by
disposing of items in one-to-one correspondence. More
sophisticated devices such as abaci and Cuisenaire rods
further extend our ability to represent exact numbers, for
example by exploiting inter-exponential relations to precisely
(but compactly) encode large numbers, or to explicitly
represent compositionality to promote generalization
(Overmann, 2018).

• Diversified learning signals. In addition to unsupervised
learning, the agent should exploit reinforcement learning
(Sutton and Barto, 1998) to predict the outcome of its
actions. This learning modality would also play a key role in
simulating curiosity-driven behavior and active engagement
with material representations. Notably, deep reinforcement
learning has recently achieved impressive performance in
difficult cognitive tasks, for example by discovering complex
strategies in board games (Silver et al., 2017). However,
learning through reinforcement can be challenging in the
presence of very large action spaces (i.e., the correct action
has to be chosen from a wide range of possible actions)
and sparse rewards (i.e., feedback is given only once the
whole task has been carried out). Taking inspiration from
the notions of transfer learning and curriculum learning used
in machine learning (Bengio et al., 2009) and from shaping
procedures used in animal conditioning (Skinner, 1953),
these issues can be mitigated by decomposing the task into
simpler sub-tasks. For example, rather than rewarding only
the trials where the agent has correctly counted all items
in a display, rewards can be initially given every time the
agent touches an object, to first promote the acquisition of
sequential pointing skills. Similarly, the agent could first be
rewarded simply for being able to accurately reproduce the
abacus configuration corresponding to a specific number,
rather than for being able to correctly manipulate the
abacus to solve an addition problem. This idea of ‘‘gradually
walking the agent through the word’’ also implies the
exploitation of supervised learning, because explicit teaching
signals must be used to stimulate learning by imitation and
adult guidance.

• Linguistic input. Despite language might not be crucial for
the acquisition of elementary numerical concepts (Gelman
and Butterworth, 2005; Butterworth et al., 2008), it provides
useful cues during the development of basic algebraic
notions: for example, morphological cues allow single/plural
distinction, number words can act as stable placeholders
during counting acquisition, and learning natural language
quantifiers seems a key step for mastering the ordering
principle (Le Corre, 2014). A recent deep learning model
has shown that learning quantifiers allows to more easily
carry out approximate numerosity judgments (Pezzelle et al.,

2018); however, the role of linguistic input for simulating
the acquisition of exact numbers has yet to be explored.
Furthermore, later in development language becomes the
primary medium to acquire higher-level mathematical
knowledge, hence it will need to be taken into account
to design computational models approaching that level
of complexity.

DISCUSSION

Symbolic numbers are a hallmark of human intelligence,
but we are still lacking a comprehensive theory explaining
how the brain learns to master them. Here I argued that
computational modeling should have a primary role in this
enterprise. Taking the acquisition of natural numbers as a
case study, I emphasized the role of material representations
in supporting the transition from approximate to symbolic
numerical concepts. According to this view, exact numbers do
not emerge from the mere association between number words
and perceptual magnitudes: such mapping is strongly mediated
by the acquisition of procedural skills (e.g., finger counting)
and the ability to effectively manipulate representational
devices (Leibovich and Ansari, 2016; Overmann, 2018;
Carey and Barner, 2019).

In line with the idea that improved problem representation
is a key mechanism for the joint development of conceptual
and procedural knowledge (Rittle-Johnson et al., 2001), cognitive
development in artificial agents must thus be supported by an
adequate learning environment, which should provide feedback,
teaching signals, and representational media commensurate with
the current level of development. Notably, once a procedural
skill has been mastered it might become internalized: the agent
can simply ‘‘imagine’’ carrying out operations on the material
device, without the need to physically operate over it. Some
representations might thus serve just as intermediate steps
for the acquisition of more abstract and efficient notations:
as finger counting allows us to gradually grasp the meaning
of number words, manipulating an abacus allows to ground
numerical symbols into concrete visuospatial representations.
A historical case that illustrates this perspective is the
famous dispute between ‘‘abacists’’ and ‘‘algorists’’, which
was undoubtedly won by the latter, who demonstrated the
superiority of symbolic notation for carrying out arithmetic
operations (see Figure 2). However, one might wonder whether
Boethius could have mastered arithmetic algorithms without
first grounding his numerical concepts into a set of more
concrete representations.

In addition to providing a useful framework to interpret
empirical findings, the proposed approach can raise important
questions that would stimulate further theoretical and
experimental work. For example, a critical aspect of our
school system is to teach how to effectively discover useful
strategies and representational schemes for solving difficult
problems. In computational simulations, the necessity for
appropriate teacher guidance stems from the fact that it is
very difficult to invent new representations for problems
we might wish to solve: it may even be that the process of
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FIGURE 2 | Allegory of Arithmetic. Engraving from the encyclopedic book Margarita Philosophica by Gregor Reisch (1503) depicting the “abacists vs. algorists”
debate. Arithmetica (female figure) is supervising a calculation contest between Pythagoras (right), represented as using a counting board, and Boethius (left), who
embraces algorithmic calculation with Arabic numbers. The struggle of Pythagoras suggests who is going to be the winner. Reproduced from Wikipedia.

inventing such representations is one of our highest intellectual
abilities (Rumelhart et al., 1986). Computational frameworks
that allow simulating a more complex interaction between
artificial agents and their learning environment might thus
eventually provide insights also about the teaching practices
that could be most effective to guide numerical development in
our children.
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A Finger-Based Numerical Training
Failed to Improve Arithmetic Skills in
Kindergarten Children Beyond
Effects of an Active Non-numerical
Control Training
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Department of Psychology, University of Tübingen, Tübingen, Germany

It is widely accepted that finger and number representations are associated:
many correlations (including longitudinal ones) between finger gnosis/counting and
numerical/arithmetical abilities have been reported. However, such correlations do not
necessarily imply causal influence of early finger-number training; even in longitudinal
designs, mediating variables may be underlying such correlations. Therefore, we
investigated whether there may be a causal relation by means of an extensive
experimental intervention in which the impact of finger-number training on initial
arithmetic skills was tested in kindergarteners to see whether they benefit from the
intervention even before they start formal schooling. The experimental group received
50 training sessions altogether for 10 weeks on a daily basis. A control group received
phonology training of a similar duration and intensity. All children improved in the
arithmetic tasks. To our surprise and contrary to most accounts in the literature, the
improvement shown by the experimental training group was not superior to that of
the active control group. We discuss conceptual and methodological reasons why the
finger-number training employed in this study did not increase the initial arithmetic skills
beyond the unspecific effects of the control intervention.

Keywords: finger-number associations, initial arithmetic skills, embodiment, intervention, children

INTRODUCTION

Being able to competently deal with numbers is a fundamental skill in our society. Recently,
the interest of researchers has turned to precursor abilities of mathematical achievement like
approximate number processing (for a review see De Smedt et al., 2013; Libertus et al., 2016),
spatial skills (e.g., Cipora et al., 2015), spatial number associations (e.g., Cipora et al., 2015),
verbal number skills (e.g., Libertus et al., 2016), counting (e.g., Nguyen et al., 2016), mathematical
language (Purpura et al., 2017) or base-10-knowledge (Moeller et al., 2011). Another of these
potential precursors might be finger representation or finger gnosis (see Moeller and Nuerk, 2012
for a discussion). In turn, finger gnosis may serve to build up associations between fingers and
numbers. It has been argued that finger representations might be another important precursor
for initial arithmetic skills as they provide the child with an embodied representation of numbers
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developmentally located at the transition between early non-
verbal representations and cultural symbolic representations.
Such arguments rest on theoretical considerations (e.g., Moeller
et al., 2011; Moeller and Nuerk, 2012) and observed correlations;
however, whether earlier finger-number relations really have
effects on later arithmetic skills has rarely been investigated.
Therefore, the core purpose of this study was to examine
intervention effects of finger-number associations on early
arithmetic skills.

There is solid evidence now that finger and number
representation are associated. First evidence was provided
by Gerstmann (1940) who described neurological syndromes
like finger agnosia, agraphia, acalculia and a disorientation
for right and left that occurred together. This combination of
deficits suggests that the same brain regions are responsible
for the underlying processes. Over the last decades, studies
using brain imaging techniques supported this close connection.
Overlapping brain regions were found for finger representations
and brain areas involved in number counting (e.g., Tschentscher
et al., 2012) or arithmetic calculations (e.g., Berteletti and
Booth, 2015). Many behavioral studies in adults also support
an association of, for example, finger representation and
counting [but see Brozzoli et al. (2008) for a dominance
of a mental-number line representation when directly
contrasted with finger-number representations], of finger
representation and cardinality, and of finger representation
and arithmetic (for a short overview see Di Luca and
Pesenti, 2011). However for behavioral, as well as for brain
imaging studies, most evidence so far is correlational –
a truly causal relation between finger representation and
numerical/arithmetic skills by manipulating finger knowledge
and built-up representations has rarely been shown. Whether
children refine their finger representations in parallel or
in mutual interaction with the acquisition of their initial
numerical skills or whether a good finger representation
is beneficial or even necessary for developing numerical
representations and/or numerical competencies is an open and
controversial question in numerical development and education
(Moeller and Nuerk, 2012).

A growing number of studies showed that finger
representation (or finger gnosis) is associated with basic
numerical skills (Costa et al., 2011) and that finger gnosis can
predict later numerical skills (Fayol et al., 1998; Noël, 2005).
However, the explained variance tends to be small. This was
particularly the case when possible third variables like general
cognitive ability were taken into account, and a sufficient
number of participants was tested (Penner-Wilger et al., 2007,
2009; Kohn et al., 2015; Poltz et al., 2015; Wyschkon et al.,
2015; Long et al., 2016; Wasner et al., 2016). Nonetheless,
finger representations do seem to affect numerical processing
in both children and adults as shown, for example, in the
finger-based sub-base five effects (e.g., Domahs et al., 2008,
2010). To additionally investigate the role of finger gnosis
as a precursor for later arithmetic skills, a sub-purpose
of our study was to look at the predictive value of finger
gnosis at pre-intervention for initial mathematical skills
at post-intervention.

However, it is important to distinguish between finger gnosis
or finger representations, finger-number associations and direct
finger use in finger counting and arithmetic tasks.

Concerning finger use in number tasks, when children start
to communicate about numbers or when they learn to count,
they often use their fingers (e.g., showing their age with their
fingers). This is even true for blind children (Crollen et al.,
2011a; but see Crollen et al., 2014 for the role of visual
experience in finger-number associations) or for children without
hands who use their phantom fingers to count (Poeck, 1964).
Even later when starting to acquire addition and subtraction
skills many children use their fingers (e.g., Butterworth, 1999).
Furthermore, when prevented from using their fingers by
interfering hand movements arithmetic performance seems
to drop (Crollen and Noël, 2015). This shows that fingers
are used in a numerical and arithmetic context but does
not imply that this finger-number association leads to better
arithmetic performance.

Children who use their fingers directly might have ‘good’
finger representations and finger-number associations. In
contrast, children who do not use their fingers directly, might
have either ‘poor’ finger representation and in turn ‘poor’
finger-number associations, which prevents them from using
their fingers. Or they might have ‘very good and stable’ finger
representations and finger-number associations, but are no
longer in need of using their fingers directly, because they
have already built up good abstract numerical representations.
Thus, conclusions about the relation between direct finger use
and underlying (finger or numerical) representations should
be drawn with caution. This would also be in line with the
results of Lafay et al. (2013) who showed that with 4–7 year-
olds finger gnosis was related to an enumeration task, but
not to direct finger use in counting. In this context, Reeve
and Humberstone (2011) have identified four subgroups of
5–7 year-old children based on their performance on an addition
task and spontaneous finger use. In this classification, high
performers rarely used their fingers directly, whereas moderate
performers belonged to one of two groups: either to a group
with high, or to a group with low, direct finger use. Finally,
their fourth group contained low performance children and
low finger use. In addition, Wasner et al. (2015) have shown
for adults that the use of specific fingers can vary according to
the demanded underlying principle of the task (e.g., requiring
either ordinality or cardinality or 1-1 relations). This indicates
that finger use is highly flexible and also depends on the task
itself. Yet, training of finger gnosis and direct finger use in
numerical tasks might have a double advantage for children.
First, it may improve finger gnosis and finger representation
itself. Second, it may help children to grasp the abstract
format of numbers by using an embodied format of numbers
(Moeller et al., 2012).

If numerical skills were rooted in finger representations, one
would assume a universally applicable sequential development
from using numerical gestures first to using abstract verbal
numbers second. Piaget (1954) claimed that abstract concepts
emerge from senso-motoric experiences. A study by Nicoladis
et al. (2010) calls such a sequential development into question.
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They showed that preschoolers were actually better at processing
number words than at processing number gestures. Thus, at least
for counting, they did not find number gestures to precede the
use of symbolic number words. In a similar vein, Crollen et al.
(2011a) have shown that blind and sighted 7–13 year-old children
performed similarly in enumeration tasks despite less finger
counting and more inconsistent finger-number associations on
the part of the blind children (Crollen et al., 2011b). While both
groups had equal finger discrimination abilities, blind children
showed better working memory performance than sighted
children. Thus, if finger counting facilitates the development
of numerical skills in sighted children, then blind children
might compensate for this effect with their superior working
memory skills. This does not mean that finger counting cannot
be useful (e.g., Lafay et al., 2013), especially for more complex
and difficult tasks where finger counting could, for example,
help to reduce working memory load (see also Crollen et al.,
2011b). These studies suggest that although finger counting
can be beneficial, it may not be necessary for developing
counting abilities.

Intervention studies seem to be a promising tool to investigate
whether there is a causal relation between finger gnosis, finger-
number associations and arithmetic skills. Even though an
increasing number of intervention studies have compared the
contributions of potential precursor abilities for mathematic
proficiency over the last years, only very few studies looked
at the role of finger gnosis or finger-number association. To
date, only a small number of studies have carried out finger-
number trainings with school-aged children. For example,
Gracia-Bafalluy and Noël (2008) provided a 30-min finger gnosis
training session once a week, for an 8-week period, to first
graders. The training was a ‘pure’ finger gnosis intervention
designed to improve sensitivity and mobility of the fingers
(e.g., labyrinth game or piano game). They observed that
children with an initial poor finger gnosis benefited from
the training and scored higher not only in finger gnosis,
but also in numerical skills after the training. Unfortunately,
their methodological procedure was rightfully criticized, because
the authors did not consider the regression to the mean,
which alternatively could explain the results (Fischer, 2010).
In a recent study, Jay and Betenson (2017) trained 137 first
graders in eight 30-min sessions during 4 weeks. The group
playing finger gnosis games improved merely in the finger
gnosis task. This is surprising, because in contrast to Gracia-
Bafalluy and Noël (2008) their finger gnosis training involved
not only ‘pure’ finger gnosis interventions, but also training
in the cardinal and ordinal properties of numbers: Children
actively verbalized numbers in games like finger counting,
showing fingers-to-numbers or showing calculations with fingers.
The group playing number games (e.g., domino, snake and
ladders, playing with cards and dice) improved only in a
non-symbolic magnitude comparison task. Finally, the third
group, which had received a combination of both trainings,
improved in their quantitative skills. The authors concluded
that in the combined training children built up connections
between different representations of numbers (e.g., finger-
number, symbolic and non-symbolic representations), which

might have led to the increased performance in quantitative skills
compared to both single training groups.

Going beyond these two intervention studies Frey et al.
(unpublished) trained 119 first graders not only in finger
gnosis and finger counting, but also in using their fingers
in arithmetic tasks in 18 sessions of approximately 25 min.
Frey et al. (unpublished) trained the following skills: Finger
gnosis was trained in the beginning of the intervention by
differentiation and naming of the fingers, finger-thumb tapping
and by tracing ways through labyrinths where children used
each finger separately for finding different ways through various
labyrinths. Further, children traced Arabic digits from 1 to 10
with their respective fingers or thumbs. Ordinal number-finger
association was trained by a task asking children to count their
fingers forward and backward thereby relating numbers to the
respective finger. Cardinal finger-number association was trained,
for example, by detecting numbers in a story. Here children
had to indicate the numbers by showing their fingers. Further,
they also played a memory card game with symbolic cards
(digits), non-symbolic cards (points) and finger pattern cards
featuring the numbers 1-9. Finally, most of the intervention
games (nine tasks) trained number relations through the practice
of addition and subtraction tasks while using the fingers (for
a more detailed description of tasks see Frey, 2017). The
results showed that trained children outperformed children of
a control group in tasks including addition and subtraction up
to a number range of 20, but not in number line estimation
on a 0-to-50 and a 0-to-100 scale. Furthermore, these effects
were still observed after 9 months. This study supports the
view that training finger use in and beyond arithmetic tasks
facilitates the learning of specific arithmetic skills. This does
not necessarily mean that direct finger use while calculating
increases the performance, but rather that the strengthening of
the association between finger and number representations may
lead to this improvement.

In sum, former studies have shown that primary school
children improve in their arithmetic skills by finger-number
training. However, some correlational studies suggest that finger-
number relations might be predictors of later numerical skills
and arithmetic already in preschoolers (Fischer et al., 2017;
Suggate et al., 2017).

The aim of the present study is to investigate whether
kindergarten children can profit from finger-number training,
even before they receive formal math education in addition
and subtraction. Training of other potential precursors has
already been done (e.g., with non-symbolic approximate number
training, Park et al., 2016; but see Szücs and Myers, 2017
for a critical review), but not with finger-number associations,
to our knowledge. We are interested as to whether training
finger-number associations in kindergarteners may pave the
way for better future arithmetic skills as the training of
phonological awareness paves the way for better future reading
skills (e.g., Schneider et al., 1997; Bus and van Uzendoorn, 1999;
Lundberg, 2009). To infer such a causal relation, it is important
to train children before they receive formal instruction. For
reading acquisition, this has been a debate for years: In school,
literacy acquisition interacts with the acquisition of phonological

Frontiers in Psychology | www.frontiersin.org 3 March 2020 | Volume 11 | Article 52933

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00529 March 20, 2020 Time: 19:24 # 4

Schild et al. Finger-Based Numerical Training in Kindergarteners

awareness. Therefore, no clear conclusions about a causal relation
can be drawn from children that already attend school (Castles
and Coltheart, 2004). The same may also apply for the finger-
number-arithmetic-relation examined here. The development of
finger-number associations might interact with the acquisition of
arithmetic proficiency.

To investigate whether finger-number associations can be
trained in kindergarteners and whether this training affects
arithmetic skills, we adapted the training of Frey et al.
(unpublished) for kindergarten children aged five to six. An
advantage in training younger children might be that for them
finger representations might not be as mature as in older
children. The same is true for finger-number associations,
which may be less stable compared to older children. For
that reason, both – finger representations and finger-number
associations – might be even more susceptible to external training
in younger compared to older children. That younger children
might benefit more from interventions than older children has
also been shown in other training studies with preschoolers
(e.g., Park et al., 2016). In sum, we hypothesized that finger-
number associations are causally related to numerical skills. If
this is the case, then training of finger-number associations,
especially in kindergarteners, may directly impact upon initial
arithmetic performance – even before the beginning of formal
arithmetic instruction and this impact should be larger than in
a control group.

Although evidence for an influence on finger gnosis on
later arithmetical performance seems rather small – if it exists
at all – we incorporated some tasks of finger gnosis in the
training, because finger gnosis seems to be necessary (but not
sufficient) to associate fingers and numbers. In other words, if
a child is not able to select or move a certain finger at all,
they will also not be able to select this finger in associations
with certain ordinal, cardinal or 1-1-finger-number relations.
Thus, most tasks involving the assessment of active finger-
number relation require some knowledge (i.e., here gnosis),
of which fingers are to be involved in the task. Therefore, as
a sub-hypothesis, we also wished to examine the question of
whether finger gnosis at pre-test predicts initial mathematical
skills at post-test.

However, it was not the aim of our study to show that
training finger gnosis alone and unrelated to any finger-number
relations has an effect on later arithmetic performance. We
know that relations between finger gnosis and numerical skills
are small to non-existent and have repeatedly argued (e.g.,
Domahs et al., 2010; Moeller et al., 2012) that the embodied
representation of numbers with fingers, and not just finger gnosis
alone, is essential.

Therefore, the core training feature concentrates on the finger-
number associations as a precursor skill that might affect later
arithmetic skills. However, we also include some early number
relation tasks (completion to 5 and to 10) that may be on
the border between finger-number associations and arithmetic
skills (see section “Materials and Methods” for further details).
Arithmetic knowledge of addition and subtraction were not
directly trained, but they were accessed after the intervention.
On purpose we decided to avoid training to the task because we

wanted to investigate how the precursor skills of finger-number
associations affect arithmetic skills without training arithmetical
tasks by themselves.

In sum, the aim of this study was to investigate whether
training finger-number associations in kindergarten improves
initial arithmetic skills in elementary school. To the best of our
knowledge, this is the first study that tries to show this causal
relation by applying an intervention at kindergarten age with an
active control group.

Here we wished to examine – as a first step – whether
finger-number relations constitute a precursor of arithmetic
skills, after taking into account an established predictor of early
mathematical skills namely children’s non-verbal intelligence
(e.g., Aragón et al., 2016). In addition, we included gender
as it is a debated popular predictor. In several studies gender
differences have been observed in some spatial representations
of number (e.g., Bull et al., 2013; Reinert et al., 2017), in
children’s early arithmetic skill (Krinzinger et al., 2012; Hornburg
et al., 2017; see also Brunner et al., 2011), and even in adults’
arithmetic and numerical skills (Pletzer et al., 2013, 2016).
However, many recent studies have not found that females and
males differ, for example, in a meta-analysis of math performance
(Hyde, 2016), in several studies on children at various stages of
their development (Morsanyi et al., 2018; Bakker et al., 2019;
Hutchison et al., 2019); and in an adult online study testing the
SNARC effect with over 1000 participants (see supplementary
materials of Cipora et al., 2019). Because of these diverging results
in the literature, which may differ depending on task, sample,
culture and paradigm, we included gender as a predictor to
examine whether it has any effect on embodied learning of basic
numerical skills.

In sum, finger-number relations that were systematically
targeting different constructs (finger gnosis, 1-1 finger-number
mapping, ordinality, cardinality, base-10, place-value knowledge)
were trained to increase salience of the training. If such a training
in kindergarten were successful, future studies could investigate –
in a second step – which components of finger-number relations
might contribute the most to this training effect As a third step,
further research can then compare or combine such a finger-
number training with other effective interventions that train
other components of numerical knowledge to unravel differential
effects of the various potential trainings.

MATERIALS AND METHODS

Procedure
Preschool children received either finger-number training or
one of two phonological control trainings. These phonological
trainings belong to a training study on its own, but served
as control training in the present study. The trainings were
pseudorandomly assigned to local kindergartens to ensure that
each training group comprised a similar number of children. For
economical reasons, all children within the same kindergarten
received the same training (but we tested whether there
were pre-training differences between the kindergartens in the
different experimental groups, which was not the case; see
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below). We allowed bilingual children to take part in the
training, but only monolingual children were included in the
study. Because our children were younger than the children
in the study by Frey et al. (unpublished), we adapted the
training’s extent and content to suit kindergarteners. Each
training session was only approximately 10 min, but the
training took place every day, for a period of 10 weeks
(from February/March to May/June during the children’s final
kindergarten year). Thus, the overall time of the training was
nearly equal between our training study and that of Frey et al.
(unpublished). In sum, we trained 18 groups of varying size
(with a minimum of 4 children and a maximum of 10 children
in the finger-number training). The training was conducted by
instructed undergraduate students and doctorate members of the
department of psychology of the University of Tübingen and
took place in the kindergartens. Before and after the training
we assessed each child’s arithmetic and language skills in one
or two test sessions lasting between 30 and 60 min. Tests that
were important for the actual study included measures of finger
gnosis, addition, subtraction and completion to 5/10. We also
administered tests that were language specific to evaluate the
phonological training. The results of the language study will be
reported elsewhere.

Participants
In total 102 children took part in the training, and contributed
data to both pre- and post-tests. The experimental group
consisted of 35 children who received the finger-number training.
The control group consisted of 67 children who received either
the phonological training (N = 37, 23 male) or the phonological-
orthographic training (N = 30, 17 male) as control trainings (see
Table 1 for demographic data)1. Participants received a present
for each test session. Both children and their parents gave their
informed consent. All children who took part in the tests were
monolingual native speakers of German.

Materials and Tests
Training Material
The training material was adapted from Frey et al. (unpublished),
and consisted of 18 different short games in total. We trained
the following skills: Finger gnosis contained tasks like finger
tapping and tracing a way through a labyrinth with specific

1As suggested by a reviewer we ran all ANOVA and ANCOVA analyses including
Bayes for each control group, separately (see Supplementary Tables S8–S11 and
Supplementary Figure S1). The results were similar to those when both control
groups were merged into a single control group.

fingers. Note, that these two tasks did not involve numbers. 1-to-
1 mapping of fingers and numbers included naming the fingers
and mapping numbers to single fingers; learning Arabic digits
was covered by tracing a number on a sheet with the respective
fingers. Ordinal finger-number associations were trained by finger
counting in various games (e.g., finger counting, object counting
and counting of claps) and by ordering numbers, for example, by
placing numbers in the right order and ordering a deck of cards
displaying fingers, digits and points. The training of cardinal
finger-number associations included games like naming the
number corresponding to fingers presented, detecting numbers
that were hidden in stories, playing a memory card game with
cards displaying fingers and numbers, playing a bingo game
with cards displaying fingers and sheets displaying numbers
and playing a domino game with cards displaying fingers and
numbers. Finally, number relations in the base-10 and place-value
system and finger-number mapping were trained by completion
of 5/10 tasks (one with fingers and one with a deck of cards
displaying numbers) and by doubling numbers (showing double
the number of fingers shown by the trainer). All games include
the use of the fingers. In each training session up to three
games were played depending on the length of the games (to
see how often each game was played and for further details
please refer to Appendix Table A1). The idea of having so
many different games was not only to train different conceptual
levels with increasing difficulty, but with 50 sessions it is also
essential to vary the games to keep the children interested and
motivated. The control training included phonological games of
similar duration.

Pre- and Post-tests
Handedness
We used the lateralized quotient (LQ) of the Edinburgh inventory
(Oldfield, 1971) to assess handedness, but we left out the item
‘Striking Match.’

Finger gnosis
We used the same finger gnosis assessment as in Wasner et al.
(2016) who adapted a task and procedure previously used by
Noël (2005), Gracia-Bafalluy and Noël (2008), and Reeve and
Humberstone (2011). For the first task, a box was placed over
the hand of the child. The trainer touched a single finger on
the middle phalanges and asked the child to show the tapped
finger. This was done with both hands, respectively (maximum
6 points, 3 points for each hand). Thereafter, two fingers of one
hand were touched consecutively. The child earned one point
for each correct finger and another point for the correct order

TABLE 1 | Demographic data and differences between groups in age, sex, attended days, handedness measured by the Lateralized Quotient (LQ; Oldfield, 1971) and in
the subtest Matrices taken from the Culture Fair Intelligence Test (CFT 1-R; Weiß and Osterland, 2013).

Age to pre-test [years;
month (range)]

Sex (male/female) Attended days [mean
(SE, range)]

Handedness LG
[mean (SE)]

Subtest Matrices
[mean (SE)]

Experimental group 5.10 (53–6.11) 19/16 41.2 (1.15, 23.5–0) 70 (7.06) 5.8 (0.63)

Control group 5.11 (5.2–7) 40/27 40.0 (0.90, 7–49) 56 (6.54) 6.8 (0.42)

Significant differences
between groups

t < 1, ns χ2 < 1, ns t < 1, ns t = 1.3, p = 0.154,
ns

t = 1.3, p = 0.192,
ns
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(maximum 20 points, 10 points for each hand). In the second
task both hands were placed behind the box. Two pictures of
the right and left hand were placed beside the box. The trainer
touched one finger of the child and one finger of the picture at
the same time. The child indicated whether the fingers were the
same or not (4 points). Finally, children solved the same task, but
with two fingers in succession (4 points). The maximum number
of points was 34.

Completion-to-5/10
We introduced the completion-to-5 test with the following
example: “Now I want you to tell me how many gummy bears
we need to reach 5. If I have 4 gummy bears, how many more
gummy bears do I need to reach 5?” A similar instruction served
for the completion-to-10 task. The test stopped after 3 min. At
pre-test, the maximum number of points was 15, and at post-test
the maximum number of points was 30.

Addition
First, we familiarized the children with the concept of addition. At
pretesting, children solved at maximum 25 tasks in the number
range from 1 to 10. During post-testing, a maximum of 35
problems were presented (here the single numbers of the last 10
tasks ranged between 10 and 20). Children had 4 min to solve as
many tasks as possible.

Subtraction
Again, we first familiarized the children with the concept of
subtraction. At pretesting, children solved a maximum of 20
subtraction tasks in the number range of 1–10. At post-testing
there were 30 problems. Thus, the maximum number of points
was 30. Here, the numbers for the last five tasks ranged between
10 and 20. Again, the test stopped after 4 min.

General cognitive abilities
For a measure of general cognitive abilities, we administered
two subtests (Matrices and Continuing Rows) of the Culture Fair
Intelligence Test (CFT 1-R; Weiß and Osterland, 2013) at post-
test. However, as various trainers reported that children had
difficulties with the Continuing Rows subtest, we only entered the
Matrices subtest into analyses.

All of the tasks were presented orally to the children and
required a verbal response except the two tasks measuring general
cognitive abilities where visual material was used in addition.

RESULTS

Each dependent measure (finger gnosis, completion, addition,
subtraction) was subjected to a repeated measures ANOVA
with the within-factor Time (pre-test versus post-test) and
the two between-factors Group (experimental group versus
control group) and Sex (male versus female) together with
the co-variate CFT-matrices. The scores of the CFT-matrices
were centered. Figure 1 displays the mean scores of each
dependent variable separately for each group and pre- and post-
tests, respectively.

Independent t-tests showed that there was no hint of pre-
test differences between experimental and control group for all

tasks, tall ≤ 0.731, p ≥ 0.466. All dependent measures showed that
improvement took place over time implicating that the measures
we used were sensitive to intra-individual changes.

Finger Gnosis
The ANOVA revealed a main effect of Time, F(1,97) = 5.911,
p = 0.017, η2 = 0.056. The co-variate CFT-matrices was also
significant, F(1,97) = 9.357, p = 0.003, η2 = 0.088. No other main
effects or interactions were significant.

In order to quantify the null-effect of the interaction of
interest (Time and Group) we applied Bayesian repeated measures
ANOVA as implemented in JASP-software (JASP Team, 2017,
Version 0.8.2). To get more assurance about the probability
of the null hypothesis, we decided to run a Bayesian analysis.
However, as there is no golden standard available, especially for
repeated measures with within and between factors, we opted
for the most simple and comprehensible way. We excluded
Sex and CFT-matrices from the Bayesian analysis, because
Sex was of no special interest here (and similarly distributed
between groups) and CFT-matrices did not significantly differ
between groups (see Table 1). We treated all main factors
as nuisance factors to find out whether the interaction of
interest (Time and Group) showed a higher probability for
the null model or for the alternative model or whether it lay
in between both models. The Bayes factor B01 indicates how
much better the data predicts the null hypothesis compared
to the alternative model. The detailed results of these analyses
are provided in the Supplementary Table S1. For finger gnosis
we set up a null model by excluding CFT-matrices and Sex
and including each of the main factors (Time and Group)
as nuisance variables. We compared this null model with
an alternative model that included the interaction of interest
(Time and Group). The model comparison revealed a BF01 of
5.06 for the interaction and a probability of p(H0| D) = 0.83
which is substantial/positive evidence (Jarosz and Wiley, 2014)
for the null model (see Supplementary Material for tables
with Bayes Factors).

Each dependent post-measure (Finger gnosis, Completion,
Addition and Subtraction) was additionally submitted to an
ANCOVA with the fixed factors Group and Sex and the co-
variates CFT-matrices and the respective pre-measure. Results of
all ANCOVAs were nearly identical to the results of the ANOVAs
(see Supplementary Table S2 for detailed information).

Similar to the Bayesian repeated measures ANOVA
we also ran Bayesian ANCOVAs. Here, we set up the
null model by excluding CFT-matrices and Sex and by
including the fixed factor Group. The co-variate Pre-
measure was treated as a nuisance variable. We compared
the null model with the alternative model that included the
main effect of interest, namely Group. Results of Bayesian
ANCOVAs were nearly identical to the Bayesian ANOVAs (see
Supplementary Table S3).

Completion-to-5/10
The ANOVA revealed a main effect of Time, F(1,97) = 47.616,
p < 0.001, η2 = 0.316 and an effect of CFT-matrices,
F(1,97) = 23.105, p < 0.001, η2 = 0.190, and an interaction of
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FIGURE 1 | Mean scores for all dependent variables [(A) Finger gnosis, (B) Completion, (C) Addition, and (D) Subtraction] for each group (experimental group
[black] versus control group [white]) and each time (pre- versus post-test). Error bars indicate standard errors. Note, that the figure for subtraction displays results of
the reduced sample (N = 63, for more details refer to the text).

both of these factors, F(1,97) = 5.259, p = 0.024, η2 = 0.035. No
other main effects or interactions were significant. Comparing
the null model (excluding CFT-matrices and Sex and including
the main factors Time and Group as nuisance variables)
with the alternative model (including the interaction of Time
and Group) revealed a BF01 of 3.56 for the interaction and
a probability of 0.78 which is substantial/positive evidence
for the null model.

Addition
The ANOVA revealed a main effect of Time, F(1,97) = 29.748,
p < 0.001, η2 = 0.227. Additionally, the covariate CFT-
matrices was also significant, F(1,97) = 28.983, p < 0.001,
η2 = 0.227. No other main effects or interactions were
significant. Comparing the null model (excluding CFT-matrices
and Sex and including the main factors Time and Group as
nuisance variables) with the alternative model (including the
interaction of Time and Group) revealed a BF01 of 1.52 for
the interaction and a probability of p(H0| D) = 0.60 which is
weak/anecdotal evidence for the null model. Thus, for addition
there is no strong evidence either for the null model or for the
alternative model.

Subtraction
Due to the fact that some children had profound difficulties in
subtraction (some children were unable to solve even a single
subtraction task), we excluded from analysis children who scored
zero in pre- or post-tests. This reduced the original sample to 63
children (N = 16 in the experimental group, 5 female; N = 47
in the control group, 20 female). With this reduced sample,
the ANOVA revealed a main effect of Time, F(1,58) = 13.137,
p < 0.001, η2 = 0.181. Additionally, we found an effect of CFT-
matrices, F(1,58) = 25.373, p < 0.001, η2 = 0.290. No other main
effects or interactions were significant. Comparing the null model
(excluding CFT-matrices and Sex and including the main factors
Time and Group as nuisance variables) with the alternative model
(including the interaction of Time and Group) revealed a BF01 of
1.64 for the interaction and a probability of p(H0| D) = 0.62 which
is weak/anecdotal evidence for the null model. Thus, similarly to
addition, for subtraction there is no strong evidence either for the
null model or for the alternative model.

Correlations
To characterize the relation between finger gnosis and arithmetic
measures in more detail we calculated correlations and partial

Frontiers in Psychology | www.frontiersin.org 7 March 2020 | Volume 11 | Article 52937

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00529 March 20, 2020 Time: 19:24 # 8

Schild et al. Finger-Based Numerical Training in Kindergarteners

correlations (controlling for CFT-matrices scores) between all
dependent measures pre- and post-test (see Supplementary
Tables S4, S5). First, nearly all of our measures showed
significant positive correlations pre- and post-test, respectively,
as well as between pre- and post-test. This was supported
by the Bayes-Factors indicating strong support for nearly all
correlations compared to the null hypothesis (no correlation).
However, correlations between arithmetic tasks (addition,
subtraction and completion to 5/10) were consistently higher
(0.61–0.79) than correlations between finger gnosis and
arithmetic tasks (0.28–0.48) at pre- or post-test, respectively (see
Supplementary Table S4).

Multiple Stepwise Regression
To examine whether finger gnosis at pre-test uniquely predicts
any of the arithmetic skills at post-test beyond those at pre-
test we ran a multiple stepwise regression. All predictors were
taken from the pre-test. For addition at the post-test the
final model included two predictors: addition and subtraction,
R2 = 0.66, F(2,101) = 93.83, p < 0.001. For subtraction the
final model included three predictors: addition, subtraction and
CFT, R2 = 0.54, F(3,101) = 38.39, p < 0.001. For completion
to 5/10 the final model included three predictors: addition,
subtraction and completion to 5/10, R2 = 0.46, F(3,101) = 28.27,
p < 0.001. In sum, finger gnosis at pre-test did not significantly
predict any dependent arithmetic measure at post-test, when
other variables were included (see Supplementary Table S6 for
Beta- and p-values and Supplementary Table S7 for Bayesian
regression results). However, finger gnosis at pre-test did predict
finger gnosis at post-test together with completion to 5/10,
R2 = 0.25, F(2,101) = 16.74, p < 0.001. Despite significance,
the explained variance of the finger gnosis performance
at post-test was lower than that of the other dependent
measures at post-test.

DISCUSSION

This study sought to investigate whether combined finger-
number training improves early arithmetic skills, even before
formal arithmetic instruction has started. To this end, we
provided training to 102 children in their final year of
kindergarten. The training took place every day, for 10 min,
for 10 weeks. An active control group of children received
phonological training for identical duration and intensity. The
results indicated that all children improved in their finger gnosis
and arithmetic performance from pre- to post-test. However, this
was independent of the training they received.

This outcome is surprising as Frey et al. (unpublished) showed
robust effects of a similar finger-based training in first graders on
tasks of addition and subtraction compared to an active control
group. We discuss two possible groups of arguments for these
findings; the first group referring to the possible inefficiency of
the numerical intervention training, and the second referring
to the possible efficiency of the non-numerical active control
training. Specifically, first, we discuss arguments why the training
may not have been successful for this particular age group with

this particular training setting and for these particular evaluation
tasks. Second, we discuss arguments why the control training
contained elements (like implicitly training sequences) that might
have been beneficial for elementary numerical and arithmetic
tasks as well. Finally, we discuss the underlying reasoning of
some of our intervention choices and how they affect the results
and interpretation.

Reasons Why the Training Might Be Less
Successful Than Other Finger-Number
Trainings
Two of the dependent variables trained by Frey et al.
(unpublished) were also directly trained in the present study:
While finger gnosis training games differed from finger gnosis
test items, the completion to 5/10 task was highly similar for
training and tests. Nonetheless, Bayesian-Factor analysis revealed
that the null model incorporating only the main effects seemed
more probable compared to a model including the interaction of
training group and time for both – finger gnosis and completion
to 5/10 – measures. Unfortunately, Frey et al. (unpublished)
tested neither finger gnosis nor completion to 5/10 at post-test,
thus we cannot compare our outcomes in these measures with
their training study in first graders. In contrast to our study,
in the study by Gracia-Bafalluy and Noël (2008) only children
in the ‘pure’ finger gnosis intervention group improved about
3.2 points in finger gnosis, but not children of the control
intervention group. However, note that this effect could be due
to a regression to the mean (Fischer, 2010) and might not
be representative. Similarly, Jay and Betenson (2017) found a
(small, but significant) increase of 1.9 points in finger gnosis
only in groups receiving finger gnosis training. However, this
rather small improvement might have been due to the combined
group, because the authors analyzed both groups receiving
finger gnosis training – single and combined group – together.
It would be interesting to know whether the finger gnosis
group and the combined group differed in their finger gnosis
improvement. Note that in their study ‘finger gnosis training’
refers to activities that linked cardinal and ordinal properties
of numbers to the fingers, i.e., they trained competencies like
finger counting, finger-to-numbers relations or calculations with
fingers. Thus, their training was comparable to ours. Yet, we
found a similar improvement of 1.4 points for all groups,
independently of the specific training. In addition, compared
to the above-mentioned studies our children were on average
1 year younger – therefore, differences in training effects between
those studies might also be attributable to the age and experience
of the children.

Concerning the arithmetic measures, Jay and Betenson (2017)
found that children receiving the combined training of finger
gnosis and number games activities showed the largest gain in
quantitative scores. While children from the other groups also
improved in quantitative scores, their improvement was only
half of that of the combined training group. Their quantitative
score combined different measures. Some of these measures
might be more related to the finger gnosis training (e.g.,
counting, adding dots on dice, splitting and combination of
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symbolic numbers); whereas others might be more related to
the number training (e.g., ordering numbers, completion of
number sequences, splitting and combination of non-symbolic
numbers). It would have been interesting to see whether the
finger gnosis group and the number group scored differently
on subtasks combined in the quantitative score or whether
children improved equally in all kinds of tasks from pre- to
post-test. Indeed, the combined score might have obscured
differential influences of finger gnosis (and number training)
on different numerical skills. In contrast to the combined
quantitative score of Gracia-Bafalluy and Noël (2008) and Jay and
Betenson (2017) measured single numerical skills and children
of the finger gnosis training improved in ‘draw a hand’ as
well as in counting fingers, especially when larger number of
fingers were involved (yet, improvement was only observed in
response times, not in overall score). Finally, children improved
in subitizing and ordinality score (comparing Arabic digits),
but not in counting, magnitude comparison, enumeration and
calculation. Thus, it might be that the influence of finger gnosis
on numerical abilities comprises by far not all, but rather specific
numerical skills.

Another important difference between the studies relates to
the games that were trained. Moreover, these differences in
training are related to the different levels of skills existing in
the different age groups (kindergarteners versus primary school
children). First, in the present study addition and subtraction
were not directly trained and combined with finger use as in
the study with the first graders (Frey et al., unpublished). The
fact that direct training of tasks was successful in the study
by Frey and colleagues is indirectly supported by the result of
the number line accuracy task. Trained children showed no
improvement in number line accuracy (Frey et al., unpublished).
The authors argue this might be because the task is difficult
to solve with the help of the fingers. Alternatively, this result
could have emerged because number line accuracy was not
practiced in the training; whereas addition and subtraction were
directly trained. Now, turning to the level of training, most
of the games trained in Frey’s study on first graders covered
number relations; whereas our training for kindergarten children
included more games tapping into ordinality and cardinality.
The different focuses of the trainings were also due to the
fact that kindergarten children have a less stable quantity-
number concept than first graders. Thus, the kindergarteners
required and received more games involving the learning
and understanding of the finger-number relations and Arabic
numbers; whereas the first graders received more exercises in
using their fingers directly in addition and subtraction tasks.
Thus, kindergarteners received only a few tasks which directly
trained actual arithmetic skills, such as the tasks completion to
5/10 or double numbers. Moreover, none of the tasks in our
study explicitly trained addition or subtraction. In contrast, the
first graders in the study by Frey et al. (unpublished) received
instruction to use their fingers directly in various addition and
subtraction games. Thus, we might have missed training the
critical level or modules (e.g., finger use in arithmetic tasks) as
intensively as in the case of the first graders in the study by
Frey et al. (unpublished). However, as kindergarteners do not

have the same numerical and arithmetic requirements as first
graders, we deliberately concentrated more on preceding stages
of finger-numerical development (e.g., finger counting, finger-
number mapping). This concentration on early stages of finger-
number development might have had less of an effect on actual
arithmetic skills.

However, we made clear that the focus of our study was to
see whether finger-number precursor training in kindergarten
has positive effects on arithmetic skills (in a similar way,
this has claimed for phonological awareness and later reading
performance). The present study establishes that was not the
case. We believe that this is important, because embodied
training of numbers and in particular finger training has
been advocated by ourselves and others (e.g., Moeller et al.,
2012) as a means to improve early mathematic skills. This
does not of course, either preclude that another form of
finger-number training or other forms of precursor training
(e.g., board games, or embodied spatial-numerical training,
cf. Fischer et al., 2011), may have lasting training effects.
A crucial question for the future is which training, which training
setups or maybe which combinations of numerical/arithmetic
intervention in kindergarten are most successful in training
numerical/arithmetic precursor abilities in children.

Note, that we trained all children to use their fingers with
corresponding numbers in the same way. Children were trained
to start with the thumb of their right hand and count up to the
pinkie. For the numbers 6–10 the same order of the fingers of the
left hand was used. One issue raised by one reviewer, was that
we might have “deconstructed” finger-number associations that
may have been already constructed by children. Thus, our results
may be negative due to the children in the experimental group
who counted using a divergent finger pattern at pre-intervention.
For Western adults, Lindemann et al. (2011) observed that 87.5%
started to count with the thumb up to the pinkie and used the
same sequence of fingers for the other hand. Thus, the finger
counting sequence seems to be similar among most people. In
contrast to the finger sequence, the starting hand seems to be
more equally distributed (Lindemann et al., 2011). Moreover,
studies have shown that the task used to collect the finger
counting routines (e.g., questionnaire versus spontaneous use)
influenced the outcome (e.g., Lucidi and Thevenot, 2014). For
example. Wasner et al. (2014) showed that finger counting habits
can change heavily according to situated circumstances. When
the typical Fischer (2008) and Lindemann et al. (2011) finger
counting questionnaire was administered about 54% reported
counting from left-to-right. When participants additionally had a
pencil in their hand, even more, 62% reported counting from left-
to-right. When now the horizontally aligned finger picture used
in the Lindemann questionnaire was removed and participants
had to count spontaneously, the left-to-right advantage not
only disappeared but even reversed. With empty hands and
no picture of hands in front of them, the majority of people
(72%) started from right to left. This shows that people are not
fixed in their counting habits, but very flexible. Moreover, they
also change their finger to number-relationships substantially
depending on whether they refer to cardinal numbers, to ordinal
numbers or to a 1-1 relationship between finger and number
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(Wasner et al., 2015; which is the reason, why we trained all
three of them). What is more, a recent study of Hohol et al.
(2018) assessed the reliability and flexibility of finger counting
habits. While reliability was satisfactory (about 75% reported
using the same hand on both occasions), participants also
reported huge flexibility. Overwhelmingly they said that they
are also comfortable starting counting with the non-preferred
hand, and about 50% even said that if they hold an object in
their preferred starting hand, they do not bother to change
hands or put the object away, but just start counting with the
other hand. These studies point to a substantial flexibility in
counting habits.

Nevertheless, because we tested kindergarten children, one
might argue that they have less flexibility than first graders or
adults tested in above studies (see Sato and Lalain, 2008; Previtali
et al., 2011 for developmental data). Therefore, we reanalyzed all
our data to see if there was any difference between children who
were trained in congruence with their finger counting preference
and those who were not. In the finger gnosis task children were
asked to count to ten with their fingers. We compared two groups:
one group who was trained in congruence with their preference,
and the other group who was not. At pre-intervention, in the
experimental group, 27 children counted in the trained pattern
(in which 6 children switched to a divergent pattern at post-
intervention), 8 children counted in a divergent pattern (in which
6 children switched to the trained counting pattern at post-
intervention). The two groups did not differ in any of the post-
tests (Mann–Whitney), p(finger gnosis, completion, addition) > 0.65.
In the reduced sample for subtraction, 11 children with (pre-
intervention) trained counting pattern and 5 children with (pre-
intervention) divergent counting pattern were included. They
did not differ in subtraction at post-test, p = 0.69. Obviously,
the results have to be interpreted with caution, because of the
different and small sample size, but, for the moment, there was
no indication that the congruency of training direction with
natural habits had an effect in any analysis. These data are
consistent with the flexibility shown in the studies above and
clearly inconsistent with the assumption that this issue affected
training success.

Why the Null Effect Could Be Due to
Improvement of the Control Intervention
One important difference between former finger training
studies and our study is the control intervention. Frey et al.
(unpublished) and Jay and Betenson (2017) had only no-
intervention control groups. Gracia-Bafalluy and Noël (2008)
had a story comprehension control group and a no-intervention
control group. In contrast, we compared our finger-number
training to a group trained in phonological awareness. Thus,
domain-general factors might have improved with both kinds
of trainings as well as domain-specific factors that might have
overlapped in both training groups.

It is known that domain-general variables (e.g., concentration,
attention, executive functions) can modulate performance in
domain-specific skills (e.g., see Aunio and Niemivirta, 2010 how
inattention modulated numerical performance). The influence of
domain-general skills on specific skills might of course depend on

the particular domain-general and/or domain-specific variable.
For example, the causal relation between working memory and
arithmetic skills is heatedly debated (Welsh et al., 2010; Melby-
Lervag and Hulme, 2013; Cragg and Gilmore, 2014; Passolunghi
and Costa, 2016; Honore and Noël, 2017; Ramani et al., 2017).
Moreover, the strength of this relation may also depend on
other factors, for example, whether children come from low-
income families and/or whether children may have a risk for
special impairments. Likewise, specific interventions (such as the
training) provided to children in our study may have general
effects on attention, concentration, motivation, working memory
and other domains. Thus, what might have happened in our study
is that the phonological training group was trained in general-
domain variables and this, in turn, also led to improvement in
their numerical skills (Purpura and Ganley, 2014; but see also
Purpura and Reid, 2016).

Initially, we thought we had constructed our control trainings
in such a way as there was no overlap in the training of specific
skills (finger-number skills versus phonological awareness skills).
However, taking a closer look at the specific exercises in both
trainings may reveal certain similarities of trained domain-specific
factors. Possible candidates are sequencing and ordinality, which
both apply for numbers as well as for words (for example,
one can count and order sounds in a spoken word). Thus,
implicit training of these concepts in the phonological group
might have generalized to the positive outcome in the numerical
tasks. For example, one game in the phonological group involved
counting a phoneme sequence in a word (e.g., M-U-MM-Y),
which might have directly trained both ordinal-numerical as well
as phoneme-skills.

This interpretation is supported by studies showing a relation
between domain-general ordering skills (by using ordering
of months or letters) and arithmetic skills in children (e.g.,
O’Connor et al., 2018) and adults (e.g., Morsanyi et al., 2017;
Sasanguie et al., 2017; Vos et al., 2017).

A recent study of Xu and LeFevre (2016) show that
learning sequential relations is beneficial for later arithmetic and
numerical skills. It is therefore possible that more sequential
finger-number games would have been beneficial for training
success. Again, our non-numerical control training was also
training sequential processes albeit not for numbers. As already
discussed, children improved in both training conditions, the
experimental and the active control training. Relating this to
Xu and LeFevre (2016), one might suggest that in our control
training, we have also trained sequential relations – although
these relations were non-numerical, there might have been
transfer effects to sequential numerical knowledge, which is
an important cornerstone for later arithmetic skills. Note that
in this respect our training lasted 10 weeks (Xu and LeFevre,
2016: 3 weeks), which leaves much time for implicit and explicit
transfer effects.

Finger Gnosis Was Not a Predictor in
This Study
Turning to the sub-question of whether finger gnosis is a
predictor for later arithmetic skills, our regression result did
not support this claim. Although finger gnosis correlated with
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arithmetic performance, it did not uniquely predict any of
our arithmetic measures. These results are in line with studies
that assume that factors other than finger gnosis – namely
numerical knowledge and initial arithmetic abilities – might
be more important in predicting later arithmetic skills (Long
et al., 2016). Still, others have shown that finger gnosis can
predict at least a small variance of later arithmetic performance
(Penner-Wilger et al., 2007, 2009; Kohn et al., 2015; Poltz
et al., 2015; Wyschkon et al., 2015; Wasner et al., 2016).
However, a combination of the young age (leading to more
error variance in the testing) and other control variables may
be responsible for finger gnosis not being a predictor in
the current study.

Active Control Group Rather Than
Waiting List Control Group
We view as strength of our study that we used an active
control group and not just a waiting control group. Note that
in the child literature waiting control groups are viewed from
critically to not acceptable (Fischer et al., 2013) and some authors
do not include intervention studies without active control
groups in their reviews (Slavin et al., 2009). The reason is that
waiting control groups do not allow for the distinguishing of
intervention-specific effects from intervention-unspecific effects
such as attention, motivation or unspecific cognitive factors
(learning how to learn) from intervention-specific effects, such
as learning finger-number relations in our study. A recent meta-
analysis confirmed this concern. Intervention studies without
active control groups had generally larger effect sizes (Fischer
et al., 2013). However, it is impossible to distinguish the
contribution of intervention-unspecific and intervention-specific
effects for such effect sizes. Therefore, we used an active control
design and did not add a waiting control group, because it would
not allow any substantial additional interpretation as regards the
specific effects of our training.

Multiple Component vs.
Single-Component Interventions
When one reviews intervention studies, it is essential to
distinguish between short-term interventions, where one
component in one game or task is trained, and long-term
interventions, where multiple components and tasks are trained
(see Fischer et al., 2013, for an overview). Some of us have
conducted single-component embodied interventions targeting
embodied numerosity in different variations (e.g., Fischer et al.,
2011, 2015; Link et al., 2013; Link et al., 2014; Dackermann et al.,
2016b; for reviews see Moeller et al., 2012, 2015; Dackermann
et al., 2016a, 2017). When one conducts such trainings, it is
inevitable that children get bored after a very short period of
time. For instance, Fischer et al. (2015) could not even include
post-tests after the second training in a cross-over design, because
the decreased motivation of the children caused performance to
drop substantially in the second post-test.

Any long-term intervention in such young children therefore
necessarily cannot rely on one component, because it would
get boring for the children after a few or even one session.

We are not aware of any long-term intervention in numerical
cognition which lasted over 50 sessions in 10 weeks (or more)
and which used only one particular game for any numerical
construct. All comparable interventions we are aware of used
multiple modules and multiple games to improve one or more
particular conceptual representation or process. Therefore, in
any (not only our) long-term intervention with kindergarten
children, it will always be impossible to track down any eventual
changes to one particular game or module. This is only possible in
short-term interventions with very few sessions, where children
do not get bored by multiple repetitions of the same simple
arithmetic game.

We have included finger gnosis in our multi-component
finger-number intervention program, because earlier results (e.g.,
Noël, 2005; Wasner et al., 2016) suggested that finger gnosis
may be weakly related to arithmetic skill. However, of our whole
training modules, only two short training games exclusively
targeted finger gnosis, all other games were explicitly related to
finger-number relations. Thus, training finger gnosis was a very
small part of the multi-component intervention program and
given that the relations between finger gnosis and math are weak,
we do not believe that their inclusion had a large impact on the
results. However, theoretically, we cannot preclude that these two
of the 18 games contributed to the null effects in this study.

Limitations
As the finger gnosis and finger-number training provided in the
current study obviously was not effective beyond the control
group, it might be that the training ought to be provided together
with formal arithmetic instruction. A key difference between
the kindergarten children in our study and the first graders in
the study by Frey et al. (unpublished) was that the latter had
already been formally introduced to the concept of addition
and subtraction at school, which of course was not the case
for our kindergarten children. The lack of formal arithmetic
education did not prevent some of the kindergarten children
from solving quite a few of the addition tasks. On the other hand,
the subtraction tasks were very difficult and often frustrating
for nearly all of the children. The latter was also obvious as
this task showed a high fluctuation in performance. Nearly 20
percent of the children could not solve even one of the subtraction
items at post-test, but the same children had solved an average
of nearly five items at pre-test. This observation might be a
consequence of the fact that kindergarteners are used to counting
forward rather than backward. In line with this, it has been shown
that preschoolers had more difficulties using a task to access
the preceding compared to the next number (e.g., Sella et al.,
2019; Sella and Lucangeli, 2020). In addition, the fact that basic
arithmetic performance varies strongly at this age may be due
to fluctuations in attention and motivation (see, e.g., Aunio and
Niemivirta, 2010 for the influence of inattention on arithmetic
performance). Other studies have also found large individual
differences in numerical abilities in preschoolers (e.g., Weinhold
Zulauf et al., 2003; Dowker, 2008).

Further, as we did not control for external interventions
taking place at the individual kindergarten or at the homes
of the children, it might be that these interventions leveled
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out the effects of the training. However, although often not
mentioned this applies to all of the studies in the field,
since no kindergarten, school and probably almost no parents
would agree to participate in a longitudinal numerical study in
which all numerical/arithmetic activities are forbidden for the
time of the longitudinal study this might create an additional
source of error variance. Additionally, stronger promotion
of numerical skills in the kindergarten and/or in the family
might in turn also boost numerical knowledge. This may be
even reinforced by the fact that in and around the city of
Tübingen, where the training took place, families have an above-
average socioeconomic status, and thus, children may have
been promoted even more. If many of the children in our
study received a great deal of such numerical promotion in
their kindergartens or families anyway in this developmental
period, this could have prevented our training from having
a visible additional benefit. Thus, the training may still
be beneficial for (possibly lower SES) families, in which
numerical skills of children are supported or promoted to
a lesser extent.

It could also be the case when familiarizing kindergarteners
with numbers the increased interest in one domain might
generalize for neighboring domains like sounds and letters and
vice versa, thereby promoting improvement in both fields. The
finding that numerical skills obviously improve dramatically
during the last kindergarten year was also shown by Weinhold
Zulauf et al. (2003) who tested over 300 German-speaking
children in Austria (see also Krajewski et al., 2008). The authors
even speak of a “sensitive period” for the acquisition of numerical
skills. Thus, children at this age gain knowledge in the domain of
numbers very fast through natural interest.

At last, we do not want to omit the possibility that the
training might have had no effect whatsoever. In this case, overall
maturation, which is certainly fast at that age, might have led to
the improvement of all skills in all groups. However, we do not
think maturation plays a sole role, as other studies with waiting
control groups consistently showed differences when compared
to the intervention groups (e.g., Gracia-Bafalluy and Noël, 2008;
Jay and Betenson, 2017; Frey et al., unpublished). Moreover, other
studies focusing on other numerical precursor skills, or including
a broader range of such skills, have shown intervention effects
in kindergarten children (e.g., Kaufmann et al., 2005; Krajewski
et al., 2008; Praet and Desoete, 2014).

CONCLUSION AND PERSPECTIVES

In sum, we suggest that the difference in training and age
was responsible for the different outcomes between the Frey
et al. (unpublished) study and the current study. The first
graders in the study by Frey et al. (unpublished) had received
training in number relations and direct finger use for addition
and subtraction, and the kindergarten children in our study
had received training in a quantity of number concepts.
Both studies trained a variety of different skills occurring at
different developmental stages (finger gnosis, 1-1 finger-number
mapping, ordinality and cardinality of numbers and number

relations in base-10 and place-value system). It may be a rather
complicated but potentially rewarding task for future studies to
try and disentangle these factors and test more directly which
specific components of the training were responsible for the
training effect in Frey et al. (unpublished) first-graders and
which components might be more promising for training in
kindergarteners compared to older children.

Maybe one should also take the developmental stage of the
individual child into account. For example, it might be fruitful
to apply an adaptive finger-based numerical training suited to the
needs of the individual child (similar to, e.g., Praet and Desoete,
2014, for computerized counting), rather than having all children
play the same games. Given the large individual differences
in preschooler’s numerical abilities (Dowker, 2008), a lot of
the games might be boring for some children but overburden
others. Individual interventions carried out in primary school
directly trained weak number skills of individual children (e.g.,
Dowker and Sigley, 2010; Holmes and Dowker, 2013). The
individual arithmetical skills of the children trained in these
studies were highly susceptible to the individual intervention.
Some of the concepts used in the training were similar to ours
(e.g., counting, written symbols, etc.), whereas others tapped
more into conceptual and reasoning domains. Thus, again
by comparing these interventions in primary school with our
kindergarten training it is difficult to uncover the effective (or
ineffective) components of our training. Differences of outcome
could also be due to the different characteristics of the groups
(preschool-aged normally developing children versus school-
aged children with arithmetic difficulties). In sum, different
outcomes could be due to the different trainings, the trained
skills, or the individual adaption of the training. Finally, it could
be due to a combination of all three factors. Thus, it remains
for future research to find out whether, and what components
of, finger-based numerical training can be trained at which
ages (specifically kindergarten versus primary school) and which
training might be best-suited for normally developing or at-risk
children (see Kaufmann et al., 2003; Dowker and Sigley, 2010;
Holmes and Dowker, 2013 for interventions in primary school
children with arithmetic difficulties). Moreover, a comparison
and/or combination of finger-based numerical training with
other components, that have been found to be effective, e.g.
conceptual training (for kindergarten children see Kaufmann
et al., 2005) might be fruitful.

CONCLUSION

All of our kindergarteners showed improved scores in
finger-gnosis, addition, subtraction and completion to 5/10,
independent of the training they received. We argue that these
general improvements could have been due to both domain-
general and domain-specific training effects. As our control
training contained elements (such as sequencing or ordinality)
that might have been beneficial for numerical skills as well a
final evaluation of the training as being effective or ineffective
is preliminary and may require a different active control group.
Further studies investigating how finger-number trainings in
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kindergarten children might affect the development of numerical
skills should incorporate different active intervention control
groups to disentangle general and specific training effects from
maturation effects and environmental factors like institutional or
private promotion. Finally, as a first intervention study where
finger-number associations were trained in normally developing
kindergarteners, our data provide insights about the impact of
finger-number associations for arithmetic development. Even
though we are convinced that appropriate embodied trainings
might help (e.g., Dackermann et al., 2017), it is in our view
important to also publish and acknowledge the limitations of
such training approaches when they were not as successful as we
would have ourselves postulated before we saw the data.
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APPENDIX

TABLE A1 | Trained conceptual level, skills and games/tasks applied in the training.

Conceptual level Skill Game/Task Order of
occurrence in the
training. Games
were applied with
increasing
difficulty.

Occurred N-times
in training

Finger gnosis (not
related to number)

Motoric accuracy “Finger tapping” with each hands separately and together 1 5

Motoric divergence “Labyrinth”: tracing a way through a labyrinth with all
fingers, separately

2 4

1-to-1 mappings of
finger and number

Verbal finger-number
mapping

“Naming the fingers,” i.e., thumb, index finger, middle finger,
ring finger and pinkie and mapping the right numbers (right
hand - 1-5 and left hand 6-10)

3 4

Visual finger-number
mapping in association
with learning visual
Arabic digits

“Tracing numbers” 1-10 on a sheet with the respective
finger of the right (1-thumb, 2 - index finger, 3 - middle
finger, 4 - ring finger, 5 - pinkie) or left (6-thumb, 7 - index
finger, 8 - middle finger, 9 - ring finger, 10 - pinkie) hand

4 3

Ordinal
finger-number
associations

Counting “Finger counting” forwards and backwards and starting
with different numbers

5 3

“Counting objects.” Children should show the counted
objects with their fingers.

12 4

“Clapping”: counting the clapping of the trainer and other
children. Children should show the number of claps with
their fingers.

13 5

Ordering (Ordinality
based on cardinality)

“Train-Game” with groups of 3-5 children. Each child got an
Arabic number. Children had to show their digit with their
fingers and order themselves in the correct numerical
sequence like train carriages without talking. The number
sequences were either continuous with missing “carriages”
in between, e.g., 3, 5, and 9

14 6

“Order card desks” with fingers, digits and points into the
right sequence (from 1 to 10)

15 3

Cardinal
finger-number
associations

Verbal and visual finger
to number and number
to finger mapping of the
respective cardinalities

“Corresponding number” naming the corresponding
number to shown fingers (6) The trainer showed a
finger-number pattern for a few seconds while saying a
rhyme. Children had to recognize the finger-number pattern
and show it with their own fingers and say the
corresponding number. (7) Later, single children were
allowed to show a pattern and appoint another child in
solving the task.

6 and 7 12

“Story-time” detect numbers that were hidden in stories
and show the cardinality of the numbers with their fingers”

8 9

“Memory” with cards displaying fingers and numbers 9 4

“Bingo” with finger cards Children had to mark numbers on
a sheet

10 7

“Domino” with combined finger and number cards 11 6

Number relations:
Base-10 and
place-value system

Completion to 5/10 “Completion-Game” showing how many fingers are needed
to 5 and 10

16 3

“Completion” (to 5 and to 10) with cards displaying fingers 17 4

Double numbers “Double numbers” children should show the double number
(with the fingers) to fingers shown by the trainer

18 3
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A Commentary on

Amental number line in human newborns

by Di Giorgio, E., Lunghi, M., Rugani, R., Regolin, L., Dalla Barba, B., Vallortigara, G., et al. (2019).
Dev. Sci. 22:e12801. doi: 10.1111/desc.12801

Several thousand (Reuters, 2013) studies have investigated why we associate small numbers with
left and large numbers with right space. While humans may learn this association through cultural
techniques (Zebian, 2005; Shaki et al., 2009; Göbel et al., 2015), its presence in human new-borns
(de Hevia et al., 2017) as well as in non-human animals (Rugani et al., 2015; for review Rugani and
de Hevia, 2017; McCrink and de Hevia, 2018) requires a biological explanation. Is there an inborn
Spatial-Numerical Association (SNA)?

Di Giorgio et al. (2019) provided a positive answer after testing hour-old humans with a
habituation paradigm. They exposed neonates to static two-dimensional images depicting 12 black
squares. Once the habituation criterion was reached, bilateral test stimuli were exposed. They
consisted of identical images displaying a numerosity which was for some neonates smaller (“4”)
and for other neonates larger (“36”) than the habituated one. Neonates preferred looking at the left
image when tested on 4-square images and at the right image when tested on 36-square images.

These findings imply the presence of SNAs at birth; but covariations of numerosity with
non-numerical stimulus features prevented clear conclusions. While previously the number of
elements was positively correlated with area, a new experiment implemented a negative correlation
between numerosity and area by controlling perimeter. Again two groups of new-borns were tested
with a single habituation followed by two lateralized test images: Group one after habituating
to a 4-big-square image, preferred looking at the 12-small-square image depicted on their right
side; conversely group two habituated to a 36-small-square image, preferentially looked at the
12-big-square image displayed on their left side. Since both groups were tested with the same
numerosity (“12”), their different looking preferences indicated that they judged the target in
relation to the numerosity and not the area of the habituation pattern. The authors interpreted
these findings as evidence for an inborn tendency to map numbers onto space, independent of
continuous physical variables.

Vallortigara (2018) suggested that few/many elements, triggering withdrawal/approach
behaviors, are associated with negative/positive emotions, preferentially processed by the right/left
hemisphere, respectively (Davidson, 2004). Instead, we believe that hemispheric specialization
for low-level features (Hellige, 1996; Kauffmann et al., 2014) explains the innate SNAs without
directly relying on number concepts. Spatial Frequencies (SFs) are defined as number of dark/light
cycles/degree of visual angle. Different spatial frequency ranges represent different information
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from any visual scene (Goffaux et al., 2005; Flevaris and
Robertson, 2016): Low SFs (few cycles/degree) represent few
coarse elements, while high SFs (many cycles/degree) represent
many detailed elements. Lateralized vertebrates are neuronally
specialized for spatial vision (Vallortigara et al., 2011; Rogers,
2017): Behavioral and neuroscientific studies found that when
viewing any scene, vertebrates preferentially extract coarse visual
features (low SFs) with their right hemisphere and fine details
(high SFs) with their left hemisphere (see Figure 1A). This
was documented with hierarchical (so-called “Navon”) stimuli
(Sergent, 1982; Fink et al., 1996); grating/checkboard patterns
(see Figure 1B; Kitterle and Selig, 1991; Martinez et al., 2001;
Piazza and Silver, 2014); and natural scenes (Peyrin et al., 2003;
Musel et al., 2013). For any visual scene with homogeneous
feature distribution, the cross-over of the optic fibers naturally
enhances relative smaller numerosities in our left visual field and
relative larger numerosities in our right visual field. In human
new-borns, their immature inter-hemispheric communication
further augments this bias (Salamy, 1978; Deruelle and de
Schonen, 1991).

When we modeled this naturally-occurring visual filtering
process on the very stimuli used by Di Giorgio et al.
(2019), their behavioral bias emerged from the hemispheric
lateralization of SF processing: For any visual scene, patterns
with relative few elements preferentially engage the right
hemisphere, thus favoring leftward behavior. Conversely,
patterns with relative many elements preferentially engage
the left hemisphere, thus inducing rightward behavior
(Figure 1C). Therefore, when total perimeter but not SF
content of the stimuli used to test numerosity effects is
experimentally controlled, apparent numerical biases reflect
natural lateralization of SF processing. If our SF explanation

FIGURE 1 | Visual percepts resulting from hemispheric spatial frequency tuning: (A) polar bear scenes, adapted from “Figure 3” Panichello et al. (2013), licensed

under CC-BY, version 4.0; (B) spatial frequency gratings; (C) square-pattern stimuli taken from the target article by Di Giorgio et al. (2019). The anatomy of visual

pathways is redrawn after “Figure 1. Visual pathway in a primate.” by Larsson (2015), used under CC-BY, version 4.0. Figure 1 is licensed under CC-BY, version 4.0 by

Arianna Felisatti.

of Di Giorgio et al. (2019) finding is correct, the resulting
association “few-left” and “many-right” holds to the degree that
numerosity and SF are correlated, e.g., when large numbers
tend to be represented by smaller objects. Although our
analysis holds for the above habituation study, the same
SF filtering principle applies also to viewing stimuli prior
to habituation.

More generally, we suggest that our Brain’s Asymmetric
Frequency Tuning (BAFT) hypothesis accounts for spatial-
numerical associations without further need of cognitive
mechanisms. Indeed, it provides evidence not only for the origin
of horizontal SNAs, but also for their relative nature: Just as
the spatial association of small and large numbers depends on
the numerical range (Dehaene et al., 1993), the discrimination
between low and high SFs depends on the SF range of a given
image (Flevaris et al., 2011; Piazza and Silver, 2017).

The BAFT hypothesis makes predictions for numerical
cognition and beyond. We predict: (1) In new-borns, for a
given numerosity pattern, spatial associations are driven by its
absolute or relative SFs; (2) SNAs driven by SFs generalize across
cultures and species; (3) SF selection and, as a consequence, SNAs
are different in new-borns predisposed to developing autism
(enhanced local processing: Jobs et al., 2018) and dyscalculia
(deficit in number acuity: Piazza et al., 2010). Moreover, our
hypothesis provides a theoretical framework for SNAs across
sensory modalities: Indeed, the new-born’s association of few
syllables with left-space and many syllables with right-space
(de Hevia et al., 2017) might reflect temporal frequency tuning
in the auditory cortex. The hemispheric asymmetry would be
involved in a second stage, after the attentional system has
filtered the relevant frequency (double filtering by frequency;
Robertson and Ivry, 2000) or could be intrinsic to the process
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allowing integration of the signal at different temporal windows
(asymmetric sampling in time; Poeppel, 2003; Flinker et al., 2019)
from early infancy (Telkemeyer et al., 2009).

In conclusion, nature endows us with specialized
brains that impose embodied constraints on how we
represent numbers.
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In the human brain, a (relative) functional asymmetry (i.e., laterality; functional and
performance differences between the two cerebral hemispheres) exists for a variety
of cognitive domains (e.g., language, visual-spatial processing, etc.). For numerical
cognition, both bi-lateral and unilateral processing has been proposed with the retrieval
of arithmetic facts postulated as being lateralized to the left hemisphere. In this study,
we aimed at evaluating this claim by investigating whether processing of multiplicatively
related triplets in a number bisection task (e.g., 12_16_20) in healthy participants
(n = 23) shows a significant advantage when transmitted to the right hemisphere only as
compared to transmission to the left hemisphere. As expected, a control task revealed
that stimulus presentation to the left or both visual hemifields did not increase processing
disadvantages of unit-decade incompatible number pairs in magnitude comparison.
For the number bisection task, we replicated the multiplicativity effect. However, in
contrast to the hypothesis deriving from the triple code model, we did not observe
significant hemispheric processing asymmetries for multiplicative items. We suggest that
participants resorted to keep number triplets in verbal working memory after perceiving
them only very briefly for 150 ms. Rehearsal of the three numbers was probably slow
and time-consuming so allowing for interhemispheric communication in the meantime.
We suggest that an effect of lateralized presentation may only be expected for early
effects when the task is sufficiently easy.

Keywords: interhemispheric communication, number comparison task, number bisection task, two-digit number
processing, hemispheric lateralization

INTRODUCTION

One of the most important postulates of the Triple Code Model (henceforth TCM) of numerical
cognition is the distinction between the representation of number magnitude processing on the
one hand and arithmetic facts and their verbally mediated retrieval from long term memory on the
other hand (Dehaene and Cohen, 1995, 1997; Dehaene et al., 2003). As regards number magnitude
processing, the TCM suggests a bilateral fronto-parietal network around the intraparietal sulcus
(IPS) to be dedicated to the representation and mental manipulation of numerical quantities –
for instance, when calculations need to be performed (e.g., 124–56). In contrast, tasks such as
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multiplication with small numbers (e.g., 3 × 2) are supposed
to be solved by arithmetic fact retrieval subserved by a left-
hemispheric network including perisylvian language areas as
well as the angular gyrus (Dehaene et al., 2003). As such
number magnitude is assumed to be represented redundantly
in both hemispheres of the human brain, whereas the verbal
representation of arithmetic facts is postulated for the left
hemisphere of the human brain only.

The current view is that arithmetic facts are stored and
retrieved in a verbal code (Dehaene et al., 2003). Neuro-
functional evidence on the neural networks underlying verbally
mediated fact retrieval stems primarily from studies that
investigating the acquisition of arithmetic facts by means of drill
trainings of difficult multiplication problems (e.g., 43 × 9 = ___;
Bloechle et al., 2016; Delazer et al., 2003, 2005; Grabner et al.,
2009; Ischebeck et al., 2006). Consistently, stronger activation was
found in left-hemispheric perisylvian language areas as well as
the left angular gyrus (e.g., Delazer et al., 2003, 2005; Ischebeck
et al., 2006; Grabner et al., 2009) and the left hippocampus (e.g.,
Bloechle et al., 2016; Klein et al., 2019) for trained problems
as opposed to untrained problems after the training. These
activation patterns are assumed to reflect automatic verbally
mediated retrieval of arithmetic facts from long-term memory
(Delazer et al., 2003; Ischebeck et al., 2006; Bloechle et al., 2016).

In order to investigate the processing of arithmetic facts
and number magnitude within one task, the number bisection
task (NBT; Nuerk et al., 2002) was proposed. In the NBT,
participants have to evaluate whether the central number of a
triplet (e.g., 11_13_15) corresponds to the arithmetic integer
mean of the interval defined by the two outer numbers. Triplets
which are part of a multiplication table (21_24_27) provided
a processing advantage as compared to non-multiplicative
triplets (19_22_25, cf. Nuerk et al., 2002) by activating
multiplication fact knowledge. Wood et al. (2008) replicated these
findings and observed that processing of multiplicative triplets
was specifically associated with activation in left-hemispheric
perisylvian language areas and the angular gyrus (see also
Klein et al., 2016 for a re-analysis). However, concurrent
articulation led to relative slowing of processing multiplicative
triplets in the NBT, which reduced the multiplicativity effect
(Moeller et al., 2011).

These results support the central postulation of the TCM
that arithmetic facts are processed in the left hemisphere only.
This argument is primarily based on classical neuropsychological
single-case studies on brain-lesioned patients. For instance,
patient BOO (Dehaene and Cohen, 1997), patient WT
(Zaunmuller et al., 2009) or patient VOL (Cohen and Dehaene,
2000), who suffered from left-hemispheric lesions, showed
severe selective impairments in multiplication, which is solved
by arithmetic fact retrieval. However, existing case studies
of brain-lesioned patients do not support the assumption
of the TCM that arithmetic facts are processed in a left-
lateralized manner consistently: for instance, Granà et al. (2006)
reported the case of patient PN who showed circumscribed
deficits in multiplication following a right-hemispheric
lesion. Moreover, Salillas and coworkers (Salillas et al., 2012)
reported an association of multiplication performance and

the right IPS by inducing a virtual lesion using transcranial
magnetic stimulation.

In view of these inconsistent findings, the question
whether the verbal representation of arithmetic facts is indeed
lateralized to the left hemisphere is far from being answered
comprehensively. Also, findings from various fMRI studies
cannot provide sufficient evidence for isolated left-hemispheric
activation for arithmetic fact retrieval as they often observed
bilateral activation of perisylvian language areas (e.g., Dehaene
et al., 1999; Stanescu-Cosson et al., 2000; Grabner et al., 2009;
Klein et al., 2013a,b, 2016; Bloechle et al., 2016).

Therefore, it would be important to obtain converging
evidence from healthy adult participants substantiating the
theoretical claim that verbally mediated arithmetic fact retrieval
is lateralized to the left hemisphere.

To this end, we used a task indicative of arithmetic fact
retrieval in a divided visual field paradigm. In this divided visual
field paradigm, respective stimuli are presented either unilaterally
in the right or the left visual hemifield or bilaterally in both
visual fields. When the stimuli are presented unilaterally into one
visual hemifield only, visual input is initially only transmitted
into the contralateral hemisphere. Evidence for the successful
application of such divided visual field paradigms can be found
in various domains (e.g., language: Geffen et al., 1971; Brysbaert,
1994; numerical cognition: Dimond and Beaumont, 1971; Hatta
et al., 2002; Ratinckx et al., 2006; Hildebrandt et al., 2016).
To give an example for the principle of this paradigm, when
a stimulus is presented in the left visual hemifield, it would
first be transferred to the right hemisphere; left-hemispheric
processing of the respective stimuli would only occur after further
transmission of the processed stimulus to the left hemisphere via
interhemispheric transcallosal fibers. In case arithmetic facts are
indeed processed exclusively in the left hemisphere, unilateral
input into the left visual hemifield and thus initial transmission
to the right hemisphere should lead to a processing disadvantage,
reflected by, for instance, longer response latencies and lower
accuracy compared to unilateral presentation of the stimuli
into the right visual hemifield. Evidence for interhemispheric
processing and its modulation has been provided by several
studies using tDCS on the non-dominant hemisphere for the
task at hand in higher cognitive processing, such as arithmetic
fact retrieval (e.g., Clemens et al., 2013; for anodal stimulation)
and primary perceptual processing (e.g., Bocci et al., 2018;
for vision acuity).

Ratinckx et al. (2006) demonstrated that the divided visual
field paradigm showed differential effects for the case of the
unit-decade compatibility effect in two-digit number magnitude
comparison, which is supposed to be processed in the right
hemisphere (Wood et al., 2006; for a review see Nuerk et al.,
2011). The unit-decade compatibility effect describes the finding
that magnitude comparison in compatible number pairs (i.e.,
when separate comparisons of decade and unit digits lead to the
same decision, e.g., in 42_57, 4 < 5 and 2 < 7) is easier than
in incompatible number pairs (in which separate comparisons of
decade and unit digits lead to opposing decisions, e.g., in 47_62;
4 < 6, but 7 > 2). In the study by Ratinckx et al. (2006), the
disadvantage for the more demanding incompatible items was
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smaller when stimuli were presented unilaterally in the left visual
hemifield or bilaterally to both visual fields and thus allowed
initial right-hemispheric processing.

In the current study, we aimed at realizing a similar setting
for the retrieval of arithmetic facts. To this end, we evaluated
modulations of the multiplicativity effect in the NBT (Nuerk
et al., 2002; Wood et al., 2008) in a divided visual field paradigm.
In the NBT, the multiplicativity effect describes faster response
times and lower error rates for triplets, which are part of a
multiplication table (e.g., 21_24_27) as compared to number
triplets which are not (e.g., 22_25_28, Nuerk et al., 2002;
Moeller et al., 2009). Additionally, the multiplicativity effect was
associated with activation of left-hemispheric language areas and
the angular gyrus (Wood et al., 2008). It has been argued that
multiplicativity of a triplet provides a processing advantage by
activating multiplication fact knowledge (Nuerk et al., 2002).

For our divided visual field paradigm on the NBT, we used
the stimulus set of Moeller et al. (2009). As a control task,
we replicated the experiment by Ratinckx et al. (2006) on the
unit-decade compatibility effect in magnitude comparison. To
ensure that results are not confounded by stimulus specificities
we created magnitude comparison stimuli only using numbers
from the NBT stimulus set. This way, the magnitude comparison
task served two purposes: on the one hand, it was used to verify
that participants indeed could perceive and process the respective
two-digit numbers which were presented only briefly at perifoveal
positions. On the other hand, the task was used as a proof of
concept: by replicating the results of Ratinckx et al. (2006) on
modulation of the compatibility effect by lateralized presentation,
we aimed at verifying that our experimental setting was valid.

In sum, the present study aimed at investigating whether the
verbal representation of arithmetic facts is indeed lateralized
to the left hemisphere of the human brain as put forward
by the TCM (e.g., Dehaene and Cohen, 1995, 1997; Dehaene
et al., 2003). Therefore, we investigated whether the processing
of multiplicative triplets shows a significant advantage when
stimuli are initially transmitted to the right hemisphere only.
In particular, our hypotheses were as follows: as regards the
number magnitude comparison control task, we expected to
replicate the results of Ratinckx et al. (2006) of a modulation of
the compatibility effect by lateralized presentation. In particular,
presentation of number pairs in the left or bilaterally in
both visual hemifields should reduce the disadvantage for
incompatible number pairs in magnitude comparison. With
respect to the NBT, we expected to replicate the multiplicativity
effect. However, multiplicativity should only facilitate bisection
performance when items were presented in the right visual
hemifield or bilaterally in both visual fields because in this case
input is directly transmitted to the left hemisphere of the brain for
which the verbal representation of arithmetic facts is postulated.

MATERIALS AND METHODS

Participants
Prior to data collection, we calculated the necessary sample
size for the used within-participant design comparing effects of

lateralized stimulus presentation for magnitude comparison and
arithmetic fact retrieval in the number bisection task based on
effect sizes reported in prior studies. For the multiplicativity effect
in the NBT, both small (Cohen’s d = 0.2–0.4, Moeller et al., 2011)
and large effect sizes (Cohen’s d = 0.8, Nuerk et al., 2002) were
observed so far. For the effect of lateralization of presentation, a
medium effect size was found the study by Ratinckx et al. (2006).
Expecting a medium effect size of about d = 0.6 for both effects,
a sample size of 21 participants should allow for detecting the
respective effect with enough statistical power. In particular, we
used the following parameters for the a priori sample calculation:
As we used a repeated measure within-participant design, we
considered one group of participants. For the effect size, we
assumed a partial eta square of η2

p = 0.20. We expected an alpha
error probability of p = 0.05 and a power of 0.95. Furthermore,
we compared three different measurements (i.e., bilateral, right
lateralized and left-lateralized item presentation). Among these
repeated measures, we expected a high correlation of 0.85.

In total, 32 right-handed healthy volunteers (7 male, mean
age = 24.5 years; SD = 3.56), who graded ‘4’ or better in
mathematics in their school-leaving certificate (with grades
in Germany ranging from 1 to 6 with 1 being the grade),
were recruited via public announcements. All participants had
normal or corrected to normal vision and reported no history
of neurological or psychiatric disorders. We excluded one
participant from data analysis as she reported to have suffered
from math anxiety during school.

Thus, data from 31 participants (6 male, mean
age = 24.34 years; SD = 3.03), were considered for the
analyses. 30 participants had more than 10 years of formal
education. Eight participants are exposed to mathematics in their
profession. The Edinburgh Handedness Inventory (Oldfield,
1971) was used to determine handedness. Participants were
categorized as right−handed using the cut-off criterion of
LQ > + 50, indicating them to fall in the first decile or higher
of right-handedness. Eye dominance was also recorded for both
distance (right = 21 participants, left = 10 participants) and
proximity (right = 11 participants, left = 3 participants, not
defined = 17 participants).

The study was approved by the local Ethics Committee
(082/2018BO2) and was performed in compliance with the
latest version of the Code of Ethics of the World Medical
Association (Declaration of Helsinki). All participants gave
their written informed consent prior to the study and received
compensatory payment.

Procedure
Data were collected in individual 2-h testing sessions. Within
one session, two experimental tasks had to be completed: a
number magnitude comparison task and a NBT. The order of
both tasks was counterbalanced across participants to minimize
order effects. These two experimental tasks were followed
by a control task assessing multiplication fact retrieval. Task
instructions emphasized both speed and accuracy in all tasks.
Furthermore, the left and right control key on the keyboard
were used as response buttons in all tasks. Stimulus presentation,
response times and accuracy were recorded using Presentation
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software version 20.03 (Neurobehavioral Systems Inc., Albany,
CA, United States).

Task and Stimuli
Both in the experimental and the control task participants were
required to give “Yes” or “No” responses by pressing either
the left (i.e., “No” response: left Ctrl-key press) or the right
response button (i.e., “Yes” response: right Ctrl-key press) with
their left and right index finger, respectively. In all tasks, problems
were presented in pseudo-randomized order, preventing a direct
repetition of the same problem. Additionally, the sequence was
manipulated such that no more than three correct or false trials,
respectively, were presented in a row. This also applied to the
side of presentation (i.e., left, right, bilateral) of items in both
experimental tasks.

Number Bisection Task
In the NBT, 200 two-digit number triplets (100 correctly bisected:
e.g., 18_24_30 and 100 incorrectly bisected: e.g., 17_18_30),
covering the range from 11 to 99 were presented (cf. Moeller
et al., 2009 for the same item set). The same item set was used for
each condition (i.e., right, left, and bilateral), resulting in a total
of 600 trials. At the beginning, twelve randomly chosen triplets
were used as practice trials.

We used a 2 × 3 design for correctly bisected triplets
(requiring “Yes” responses) as well as incorrectly bisected triplets
(requiring “No” responses). For correctly bisected triplets, the
factors multiplicativity (yes: e.g., 21_24_27 vs. no: 22_25_28) and
lateralization (i.e., right vs. left vs. bilateral) were manipulated.
For incorrectly bisected triplets, bisection possibility (bisectable:
e.g., 21_22_27 vs. non-bisectable: e.g., 23_26_30) and again
lateralization (i.e., right vs. left vs. bilateral) was varied.
A comprehensive description of stimulus can be found in Moeller
et al., 2009).

Participants had to decide whether the triplet’s central number
represented the arithmetic mean of the two outer numbers.
They were required to indicate their decision by pressing either
the left (i.e., “No response”) or the right response button (i.e.,
“Yes” response). The experiment allowed participants to take a
self-defined break after 50 trials each.

Number Comparison Task
For the number comparison task, a subset of triplets from the
study by Moeller et al. (2009) was used, whereby only the
two outer numbers were offered as duplets to be compared
(e.g., 22_38). This subset included 75 item pairs,1 25 within-
decade items with two numbers within the same decade (e.g.,
22_28). The remaining 50 items were manipulated for unit-
decade compatibility (i.e., compatible vs. incompatible trials). As
Ratinckx et al. (2006) only observed an effect of lateralized stimuli
presentation on the compatibility of the presented number pairs,
we focused on the manipulation of this factor to reduce the
number of items and thus total testing time. The same item
set was used for each condition (i.e., right, left, and bilateral),

1Out of the 75 item pairs, 74 are taken from the triplets by Moeller et al. (2009) and
one additional item was generated.

resulting in a total of 225 number comparison tasks. All items
were presented in pseudo-randomized order in one run. The
same practice trials were used as in the NBT but without
presentation of the central number of the triplet. Participants
had to decide whether the upper number was larger than the
lower number on the display by pressing either the left (i.e.,
“No” response) or the right response button (i.e., “Yes” response).
Appendix Table A1 provides an overview of the stimulus set for
the number magnitude comparison tasks.

Control Task
In the control task, participants’ multiplication performance was
assessed to consider it in the subsequent analyses. Therefore,
we used the same verification paradigm and experimental
setup as used by Clemens et al. (2013). One hundred and
eighty simple multiplication problems (90 with a correct and
90 with an incorrect solution probe), covering the operand
range from 0 to 10, were presented in Arabic format (e.g.,
7× 5 = 35). Multiplication problems included standard problems
(96), rule problems (72, with 24 problems using 0, 1, and 10 as
multiplicand, respectively), and tie problems (12). In addition,
30 different multiplication problems (15 with a correct and
15 with an incorrect solution probe) were used as practice
trials. Participants had to decide whether the presented solution
probe of the multiplication problem was correct (i.e., “Yes”
response) or incorrect (i.e., “No”- response). Appendix Table A2
in the Appendix provides an overview of the stimulus set for
the control tasks.

Apparatus, Experimental Paradigms, and
Stimulus Presentation
For all experiments, a 17′′ screen driven at a resolution of
1920 × 1200 pixels and 60 Hz refreshing rate was used.
Participants were seated at a distance of 60 cm from the screen.
Constant viewing distance was ensured by using a head and chin
rest. During the experiment, the experimenter was sitting directly
opposite to the participant to control eye fixation. In case of a loss
of fixation, the experimenter reminded the participant to fixate
the center of the screen, which was only necessary in a few trials in
6 of 23 participants. Participants gave their answers on a standard
QWERTZ keyboard with the keys necessary for the experiments
labeled. In-ear headphones for the examiner were connected to
the laptop so that an acoustic signal, which only the examiner
could hear, could be used to indicate the beginning of each trial.

In the divided visual field paradigm, experimental setup and
stimulus presentation for the experimental tasks (i.e., number
comparison and NBT) was similar to the study of Ratinckx et al.
(2006). Items were presented tachistoscopically in four different
visual hemifield displays, this means, two unilateral conditions
(right and left) and two bilateral conditions. For the bilateral
conditions, the item set was split in half so that numbers in the
first half of items were displayed in the upper left and lower
right corner, respectively (i.e., bilateral A), and numbers in the
second half of items were presented in the lower left and upper
right corner (i.e., bilateral-B). Bilateral condition A and B were
collapsed for subsequent data analysis. In the experimental design
of Ratinckx et al. (2006), however, visual input differed between
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the unilateral and bilateral condition as follows: In the unilateral
condition, target items were presented either to the left or to
the right of a centrally presented fixation cross. In the bilateral
condition, target items were presented to the left and right of the
fixation cross while empty positions were filled “##.”

In the present study, we aimed at balancing perceptual load
across unilateral and bilateral presentation of stimuli. Thefore, we
adapted the experimental paradigm slightly (cf. Figure 1): In the
center of the screen, a fixation cross (i.e., plus [+] sign, font: Arial,
size: 30), which extended 0.5◦ of visual angle horizontally and
vertically, was presented. An imaginary square measuring 5 ◦–5 ◦
(cf. Ratinckx et al., 2006; for the trigonometrical constraints of the
bilateral condition) was centered around the fixation stimulus.
The diagonal projection between fixation location and corners of
the imaginary square followed a 45◦ angle.

Two-digit Arabic numbers ranging from 11 to 99 were
presented (extending 1.7◦ of visual angle horizontally and 1.2◦
vertically) at the corners of the imaginary square centered
around the fixation cross. At corners not occupied by numerical
stimuli, “##” was presented to keep visual input comparable
across conditions (see Figure 2). For example, in the right

FIGURE 1 | Experimental setup for the lateralized stimulus presentation.

unilateral presentation condition, numbers were displayed to
the right of the fixation cross and “##” were displayed left
from the fixation cross. Figure 1 provides an overview of the
experimental setup. Due to this setup, conditions were presented
in a randomized order (cf. Ratinckx et al., 2006, for conditions
presented block-wise).

At the beginning of each trial, the fixation cross was displayed
for 600 ms. Simultaneously, an acoustic signal was presented to
the experimenter through the headphones. This acoustic signal
indicated the beginning of a new trial to the experimenter because
he/she was unable to see the screen from his/her position but had
to monitor eye-movements of the participants. In the case of the
NBT, the central number of the upcoming triplet was presented
at the position of the fixation cross for another 600 ms. Then,
“##” replaced the central number and the triplet’s outer numbers
were tachistoscopically presented for 150 ms at two corners of the
imaginary square. Finally, all positions were covered by “##” for
a maximum of 3650 ms or until a response key was pressed. In
total, one trial lasted up to 5000 ms. Figure 2 illustrates the trial
sequencing. In experimental trials, participants were instructed
to fixate the fixation sign throughout the entire trial and not to
move their eyes.

In the control task, items were not presented in a divided
field paradigm. Instead, we used the same experimental setup as
Clemens et al. (2013). In this setup, the overall presentation time
for each multiplication problem was variable. The multiplication
problem disappeared immediately after the response was
given with a maximum presentation time of 3000 ms. Each
multiplication problem was followed by a mask (“######”)
presented for 500 ms, to keep trials separated from each other.

Data Analysis
Data were analyzed using the open source language and statistical
environment R (Version 3.6.; R Core Team, 2019). All analyses
were done on the rate correct score (RCS; Woltz and Was, 2006),
a combined speed (RT) and accuracy measure of performance.
The RCS was calculated by combining the proportion of
correctly solved trials and average RT for each condition (i.e.,
lateralization, multiplicativity, compatibility, etc.) to make the
measure comparable across conditions (cf. Vandierendonck,
2017) to reflect the number of correct answers per second.
Participants were excluded from data analysis when they scored
less than 60% correct in one of the tasks. Only RTs for correct
responses (both “Yes” and “No” answers) larger than 200 ms
in the number bisection task and 150 ms in the number
comparison task were analyzed. Incorrect or missing responses
were not considered.

In the NBT, effects of multiplicativity, bisection possibility
and lateralization on the RCS were evaluated separately for
correctly bisected and incorrectly bisected triplets. Additionally,
the effect of multiplicativity was controlled for individual
multiplication performance assessed by the control task. In the
number comparison task, we analyzed influences of compatibility
and lateralization on the RCS. Prior to this, we compared
participants’ performance (i.e., mean percentage correct and
mean RT) in our study to participants’ performance in the
study by Ratinckx et al. (2006).

Frontiers in Human Neuroscience | www.frontiersin.org 5 March 2020 | Volume 14 | Article 8856

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00088 March 24, 2020 Time: 12:25 # 6

Jung et al. Lateralized Number Processing

FIGURE 2 | Trial sequence for the NBT (top) and number comparison task (bottom).

RESULTS

In total, complete data sets of 23 participants entered analyses
(6 male, mean age: 24.34, SD = 3.03). Eight participants had
to be excluded for scoring below 60% correct in the NBT.
All of these participants had more than 10 years of formal
education. Mean LQ was 84.53 (SD = 16.01) according to the
Edinburgh handedness inventory. Eye dominance was defined
as predominantly right for the distance (right = 14 participants,
left = 9 participants). Table 1 summarizes the results of the two
experimental tasks and the control task (i.e., percentage correct,
reactions times, and the RCS).

Number Bisection Task
First, correlating reaction times and percentage correct trials
revealed a relatively high correlation (Spearman correlation:
rs = 0.49). This correlation suggests the presence of a speed-
accuracy trade-off in solving the NBT and, thus, may warrant the
use of the RCS in subsequent analyses.

For correctly bisected triplets, we evaluated modulations of
the multiplicativity effect using a 2 (multiplication: multiplicative
triples vs. non-multiplicative triples) × 3 (lateralization: right
vs. left vs. bilateral) analysis of covariance (ANCOVA) with the
RCS as dependent variable. There was a significant main effect
of multiplicativity [F(1,131) = 47.08, p < 0.001, η2

p = 0.23)]
prevailing after controlling for test performance in multiplication
facts [F(1,131) = 29.79, p < 0.001, η2

p = 0.14)]. This indicated that
triplets which are part of multiplication tables were responded to
with more correct responses per second as compared to triplets
not part of multiplication tables (see Figure 3A). The main effect
for lateralization was not significant [F(2,131) = 0.19, p = 0.82,
η2

p = 0.0018], neither was the interaction [F(2,131) = 0.058,
p = 0.94, η2

p < 0.001].
Additionally, we conducted a post hoc analysis in order

to further investigate the null effect of lateralization on

multiplicative items in the NBT. To this end, we included the
problem size in our post hoc analysis by conducting a median
split. We considered large problem sizes to be those where the
smallest of a triplet’s numbers was greater than 46. When our
items were less reflective of fact knowledge and required more
cognitive demand, multiplicativity should play a smaller role in
larger problem sizes. In other words, triplets like 18_27_36 would
be more closely associated with being dividable by 9 than triplets
like 63_72_81. Therefore, we ran a multiple linear regression
predicting RCS based on multiplicativity and problem size of
items to check this hypothesis.

A significant regression equation was found with an R2

of 0.66 [F(3, 260) = 172.2, p < 0.001]. Multiplicativity
significantly increased participant’s RCS. Problem size instead
was not a significant predictor of the RCS. However, the
interaction of multiplicativity and problem size was significant
with p < 0.001, indicating that multiplicativity of triplets was
specifically beneficial when triplets consisted of smaller numbers.
Results are displayed in Table 2.

For incorrectly bisected triplets, we evaluated the
effect of bisection possibility and lateralization using a 2
(bisection possibility: bisectable vs. non-bisectable triples) × 3
(lateralization: right vs. left vs. bilateral) analysis of variance
(ANOVA) with the RCS as the dependent variable. There was no
significant main effect for bisection possibility [F(1,132) = 2.16,
p = 0.14, η2

p = 0.002], indicating that task efficiency did not differ
between bisectable (M = 0.45, SD = 0.02) and non-bisectable
triplets (M = 0.48, SD = 0.11). Moreover, there was no main effect
for lateralization [F(2,132) = 0.87, p = 0.42, η2

p = 0.012] nor a
significant interaction [F(2,132) = 0.36, p < 0.69, η2

p = 0.005].

Number Comparison Task
First, in view of the rather poor performance of participants in the
NBT, we checked whether participants’ performance (i.e., mean
percentage correct and mean RT) in the number comparison task
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TABLE 1 | Overview of the mean test performance in the different tasks providing
mean percentage correct sores, mean reaction times and the mean rate correct
score (RCS) for the different tasks.

Right Left Bilateral

Mean SD Mean SD Mean SD

Number bisection task

Multiplicative triplets

Percentage correct 61.56 13.90 62.00 13.65 64.17 13.33

Reaction time 1666.52 447.04 1668.87 443.43 1758.54 467.15

Rate correct score (RCS) 0.40 0.15 0.41 0.16 0.39 0.15

Non-multiplicative triplets

Percentage correct 37.39 7.22 39.96 7.08 37.13 5.52

Reaction time 1470.50 385.38 1515.72 407.71 1566.29 405.71

Rate correct score (RCS) 0.28 0.10 0.26 0.09 0.24 0.08

Bisectable triplets

Percentage correct 72.87 9.99 66.87 10.82 69.72 11.66

Reaction time 1607.36 420.62 1603.21 381.89 1695.61 374.00

Rate correct score (RCS) 0.48 0.14 0.43 0.12 0.43 0.12

Non-bisectable triplets

Percentage correct 75.72 11.04 72.60 12.68 76.60 11.64

Reaction time 1614.37 392.82 1594.32 396.56 1665.54 354.88

Rate correct score (RCS) 0.49 0.11 0.48 0.14 0.48 0.12

Number bisection task

Compatible pairs

Percentage correct 85.73 5.63 83.82 5.04 84.87 8.44

Reaction time 919.49 170.65 921.00 200.65 919.10 191.94

Rate correct score (RCS) 1.20 0.39 1.00 0.22 0.90 0.17

Incompatible pairs

Percentage correct 77.04 12.42 81.91 12.17 83.82 11.78

Reaction time 908.74 173.48 910.33 204.68 944.12 167.68

Rate correct score (RCS) 0.89 0.21 0.74 0.15 1.04 0.32

Control task

Percentage correct – – – – 90.50 4.65

Reaction time – – – – 1248.09 215.8

Rate correct score (RCS) – – – – 0.75 0.15

in the current study was comparable to participants’ performance
reported by Ratinckx et al. (2006). Figures 4A,B illustrates
participants’ performance in both studies.

Independent-samples t-tests were conducted, one for
each lateralization condition (i.e., right, left, bilateral),
separately for correctness and reaction times. p-Values were
corrected for multiple applying the procedure suggested by
Bonferroni. In terms of correctness, significant differences
were observed between lateralization conditions in the
present study (right: M = 82.31, SD = 6.68, left: M = 83.71,
SD = 6.53, bilateral: M = 83.82, SD = 7.92) and the study by
Ratinckx et al. (2006; right: M = 87, left: M = 88, bilateral:
M = 90), tmin(22) = 3.37, p < 0.001. Despite the significant
differences, performance differed by no more than seven
percentage errors. Interestingly, correctness in both studies
was highest in the bilateral condition and lowest in the right
lateralized condition.

In terms of reaction times, participants in the current study
showed on average longer reaction times (right: M = 896 ms,

SD = 171, left: M = 912 ms, SD = 189, bilateral: M = 924 ms,
SD = 178.46) than did participants reported by Ratinckx and
colleagues (right: M = 658 ms, left: M = 656 ms, bilateral:
M = 637 ms), tmin(22) = 7.73, p < 0.001 – suggesting higher task
demands in the current study.

Second, influences of lateralized presentation of stimuli
on the unit-decade compatibility effect were evaluated by
running 2 (compatibility: compatible vs. incompatible pairs) × 3
(lateralization: right vs. left vs. bilateral) ANOVA on the RCS as
the dependent variable. There was a marginally significant main
effect of compatibility [F(1,132) = 3.51, p = 0.06, η2

p = 0.02],
indicating more correctly solved items per second for compatible
(M = 1.06, SD = 0.28) as compared to incompatible number
pairs (M = 0.93, SD = 0.27). The main effect for lateralization
was not significant [F(2,132) = 0.46, p = 0.66, η2

p = 0.0004].
However, the interaction of compatibility and lateralization
was significant [F(2,132) = 17.78, p < 0.001, η2

p = 0.21,
illustrated in Figure 3B]. The same interaction was found in the
study by Ratinckx et al. (2006).

Post hoc comparisons for lateralization using Tukey HSD
controlling for multiple comparisons showed a significant
[p = 0.002] difference between presentation to the right visual
hemifield (M = 1.20, SD = 0.39) and bilateral presentation
(M = 0.90, SD = 0.17) for compatible number pairs. Differences
between these two conditions and presentation to the left visual
hemifield (M = 1.00, SD = 0.22) were not significant. For
incompatible number pairs, significant differences were observed
between presentation to the right hemifield condition (M = 0.74,
SD = 0.14) and both presentation to the left hemifield (M = 1.04,
SD = 0.23; p = 0.003) and the bilateral presentation condition
(M = 1.07, SD = 0.26, p < 0.001). Furthermore, compatible trials
(M = 1.20, SD = 0.39) differed significantly [p < 0.001] from
incompatible trials (M = 0.74, SD = 0.14) only in the right visual
hemifield field condition.2

DISCUSSION

The present study aimed at evaluating the postulate of the
TCM that the verbal representation of arithmetic facts should
be situated unilaterally in the left hemisphere of the human
brain (Dehaene and Cohen, 1995, 1997). Therefore, we
investigated whether processing of multiplicative triplets in

2“Due to the contradictory findings in the literature on the influence of sex on
hemispheric asymmetry, in particular for numerical processing (cf. Harris et al.,
2018; Pletzer et al., 2019), we have post hoc analyzed the data for a potential
gender effect. For this analysis, we evaluated influences of lateralized presentation
of stimuli on the unit-decade compatibility effect by running a 2 (compatibility:
compatible vs. incompatible pairs) × 3 (lateralization: right vs. left vs. bilateral)
ANCOVA on the RCS with sex as covariate. The influence of the covariate
indicated neither a significant main effect of sex [F(1,126) = 2.05, p = 0.15,
η2

p = 0.02] nor an interaction of sex and laterality [F(2,126) = 0.03, p = 0.96,
η2

p < 0.001] as well as an interaction of sex and unit-decade compatibility,
respectively [F(,1,126) = 0.22, p = 0.64, η2

p = 0.002]. As in the original analysis,
there was a marginally significant main effect of compatibility [F(1,126) = 3.43,
p = 0.06, η2

p = 0.027], indicating more correctly solved items per second for
compatible (M = 1.06, SD = 0.28) as compared to incompatible number pairs
(M = 0.93, SD = 0.27). The main effect for lateralization again was not significant
[F(2,126) = 0.39, p = 0.67, η2

p = 0.0063]. However, the interaction of compatibility
and lateralization was again significant [F(2,126) = 17.41, p < 0.001, η2

p = 0.22].
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FIGURE 3 | (A) Effect of multiplicativity for the mean rate correct score (RCS). (B) Interaction between lateralization conditions and unit-decade compatibility
calculated for the mean rate correct score (RCS).

the NBT shows a significant disadvantage when visual input
is transmitted to the contralateral right hemisphere only using
a divided visual field paradigm. To ensure applicability of the
divided visual field paradigm, participants also completed
a magnitude comparison task for which influences of
lateralized presentation of stimuli was observed previously
(Ratinckx et al., 2006).

As regards the latter, we replicated the results by Ratinckx
et al. (2006), in particular the modulation of the unit-decade
compatibility effect by the lateralization of input presentation
in the divided visual field paradigm: presentation of the
numbers in the right hemifield (and thus transmitted to the
left hemisphere) increased the disadvantage for incompatible
number pairs when comparing their magnitude in contrast
to the presentation of number pairs in the left visual
hemifield or bilaterally.

As regards the NBT, we replicated both standard numerical
effects, this means the multiplicativity effect and the bisection
possibility effect (e.g., Nuerk et al., 2002; Wood et al., 2008;
Moeller et al., 2009, 2011). However, contrary to the hypothesis
deriving from the TCM, we did not observe modulation of the
multiplicativity effect by lateralization of stimulus presentation.
In the following, we will discuss these findings in more detail step
by step.

TABLE 2 | Linear regression to check the influence of problem size.

Variable Estimate SE t-Statistic p-Value

Intercept 8.595e−05 1.767e−05 4.86 <0.001

Multiplicativitya 4.941e−04 2.500e−05 19.78 <0.001

Problem sizea 2.658e−05 2.500e−05 1.06 0.29

Multiplicativity × Problem size −2.513e−04 3.535e−05 −7.11 <0.001

Adjusted R2 = 0.66; aFactors “Multiplicativity” and “Problem size” have been
dummy coded (1 = multiplicative and 1 = large problem size).

Unit-Decade Compatibility Effect in
Number Magnitude Comparison
In line with the results of Ratinckx et al. (2006), no particular
disadvantage of processing the more difficult incompatible
number pairs items was found when stimuli were presented
bilaterally or within the left hemifield. Bilateral presentation in
both visual fields and unilateral presentation in the left visual
hemifield allowed for direct processing of the respective stimuli
in the right hemisphere, where the integration of tens and units
into the place-value structure of the Arabic number system was
argued to take place (Wood et al., 2008). The replication of the
results by Ratinckx et al. (2006) suggests that our experimental
setting was principally valid for detecting differences caused by
the lateralized presentation of stimuli. On a more basic level,
these results indicate that participants were able to perceive, and
process the presented two-digit numbers even though these were
presented only briefly in perifoveal position.

Nevertheless, it has to be noted that participants in our study
committed more errors and took longer for their responses as
compared to the participants in Ratinckx et al. (2006). While
we cannot rule out that this difference might in part be due to
unspecific individual differences or cultural differences between
participant samples tested (e.g., Dutch vs. German undergraduate
students), there were also differences in the experimental setting,
which might have contributed to differences in overall accuracy
and reaction times of results.

First, Ratinckx et al. (2006) realized lateralization condition
block-wise so that within one block all stimuli were presented in
the same visual hemifield only. This way, participants knew where
to expect the perifoveally presented stimuli (i.e., right, left or
bilaterally). By presenting stimuli in different visual hemifields in
randomized order, we aimed at preventing attentional orientation
toward the left or the right side before the actual stimuli were
presented. However, randomized order of stimuli might also
have led to longer reaction times and higher errors rates because
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FIGURE 4 | Comparison of participant’s test performance: (A) mean percentage correct. (B) Mean RT. Error bars depict SEM.

participants might have experienced more difficulties in locating
and perceiving the stimuli.

Second, we presented visual input in all four locations where
a stimulus could potentially be presented (i.e., at each location
either one of the two numbers or “##” as a mask was presented).
Again, this might have increased task difficulty as more visual
input needed to be processed (Poole and Kane, 2009). However,
it has to be noted that this was true for all conditions. Thus, it
might have potentially affected overall accuracy and reaction time
in all conditions to a similar extent, while the differential pattern
between lateralized presentation conditions should not have been
altered. The latter is reflected by the differential results for the
unit-decade compatibility effect depending on lateralization of
input presentation.

In sum, we were able to replicate the differential result pattern
for the unit-decade compatibility effect as reported by Ratinckx
et al. (2006), suggesting that participants were able to perceive
and process the two-digit numbers and, more importantly, that
our experimental setting was, in principal, valid for detecting
differences to due lateralized presentation of numerical stimuli.

Multiplicativity in the Number Bisection
Task
Unexpectedly, we did not observe significant modulation of the
multiplicativity effect by lateralization of stimulus presentation
in the NBT. Generally, this finding allows for two possible
conclusions:

First, the assumption of the TCM is wrong, namely that the
verbal representation, which underlies arithmetic fact retrieval
such as overlearned multiplication facts, is subserved in a
lateralized manner in the left hemisphere of the human brain
only (cf. Dehaene and Cohen, 1995, 1997; Dehaene et al., 2003).
However, before such an interpretation can be considered, other
possible explanations need to be ruled out and this finding should

be replicated in the same task but also in other tasks drawing on
the verbal representation.

Currently, we can only state that multiplicativity as measured
in the NBT was not modulated by the site of lateralized
presentation in the present experiment. There may be the
following reason for this observation: while multiplicativity in
the NBT with two-digit number pairs has been argued to
draw heavily on verbally mediated arithmetic fact retrieval (cf.
Nuerk et al., 2002 for behavioral data; Wood et al., 2008 for
neuroimaging data; Klein et al., 2016 for connectivity data),
the effect probably may not reflect retrieval of overlearned
arithmetic facts only. For instance, whenever participants operate
on two-digit numbers, additional processes such as place-value
integration (Nuerk et al., 2011) or working-memory (Kong
et al., 2005) may be required. In line with this argument,
we observed problem size to interact with multiplicativity
in the NBT. The interaction specifically indicated that the
processing advantage for multiplicative items was smaller for
triplets with larger problem size. In turn, this indicates that
multiplicativity of triplets was specifically beneficial when
triplets consisted of smaller numbers. Such a problem size
effect has been reported previously for both children and
adults in multiplication (Campbell and Graham, 1985; De
Brauwer et al., 2006; but see Domahs et al., 2006). The
effect is also in line with the results of Wood et al. (2008)
who showed increasing retrieval-specific activation of the left
angular gyrus with decreasing problem size of multiplicative
triplets in the same version of the NBT as used in the
current study. This activation has been repeatedly interpreted
to indicate arithmetic fact retrieval (e.g., Dehaene et al.,
2003; Delazer et al., 2003; Ischebeck et al., 2006; Grabner
et al., 2009). However, as outlined above our experimental
setting might have been more difficult than in the study by
Wood et al. (2008) due to the brief lateralized perifoveal
presentation. When we also take into account the observed
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differences in overall behavioral performance in magnitude
comparison between the study by Ratinckx et al. (2006) and
the present study, this possibility can hardly been ruled out.
Our way of presenting the NBT might have led to additional
demands as compared to previous variants of the NBT in
which all numbers were presented simultaneously and in one
line. This leads us to the second possible conclusion drawn
from our results.

Second, it might be the case that the NBT in its present
variant was very and maybe even too difficult for participants.
An indicator for this assumption seems the high error rates
observed for the NBT as well as the high number of exclusions of
participants due to poor performance in the NBT. In particular,
from 31 participants, 8 participants had to be excluded for
overall scoring below 60% correct in the NBT (with 50%
being guessing rate). Additionally, this was combined with a
specific pattern of significant better accuracy with slower reaction
times in multiplicative triplets. Possibly, the two numbers
presented laterally from the fixation cross were perceived and,
due to their short presentation duration of only 150 ms,
repeated in verbal working memory before a decision on the
bisectability of a triplet was made. As multiplicative triplets
have been shown to be processed in a verbal code (Moeller
et al., 2011), decisions on the multiplicativity of these rehearsed
numbers might have been more accurate, as the significant
lower error rate for multiplicative triplets may indicate. This
would be in line with the idea of better performance in
multiplicative triplets in terms of accuracy, while, at the same
time, rehearsing three numbers in verbal working memory,
would be relatively slow. Support for this assumption also
comes from the observation that this specific pattern of higher
accuracy synced with slower reaction times was not observed
for incorrectly bisected triplets. Thus, the observed behavioral
pattern most probably reflects a specific facilitation of the task
for multiplicative items as both the multiplication facts as well
as verbal working memory operate on a phonological code
(Moeller et al., 2011).

While, all these processes are assumed to be subserved by
the left hemisphere (Dehaene et al., 2003), we have to consider
that we assessed healthy participants with intact interhemispheric
connections. Therefore, it will only take a few milliseconds
until stimuli may be processed in both hemispheres due to
interhemispheric connections via transcallosal fiber pathways
(e.g., Chaumillon et al., 2018), so that no temporal processing
advantage due to multiplicativity may be observable any more.
In other words, the longer processing of the respective stimuli
takes, the less likely differences due to lateralized processing
in terms of speed should be observed. Therefore, we would
suggest that an effect of lateralization of presentation may
primarily be expected for early bottom-up effects such as
the unit-decade compatibility effect when the task is easy
enough. In our magnitude comparison task, only two of
the briefly and lateralized presented two-digit numbers were
relevant, while participants had to consider three two-digit
numbers in the NBT.

In addition, and when interpreting these results, there are
two constraints that need to be considered. First, saccadic eye

movements were not controlled by eye-tracking; an examiner
sitting opposite of the participant monitored eye fixation. Since
the center of the lateralized stimuli was located 5 degrees from
central fixation and was thus well beyond the critical distance
of saccade amplitude that can be detected with the naked eye,
we can be very sure that the current procedure has prevented
unwanted loss of fixation. Nevertheless, eye-tracking could have
been more precise in excluding the possibility that hemispheric
asymmetries were only detected when interacting with unit-
decade-incompatibility in the number comparison task but not as
a main effect of lateralized processing. Second, despite our a priori
estimation of the necessary sample size to detect hemispheric
asymmetry (N = 21, a partial eta square of η2

p = 0.20 and a power
of 0.95), the sample size in the present study (N = 23) might have
been too small to reveal a main effect of lateralized processing
in both the NBT and the number comparison task. However,
the observed significant modulation of the compatibility effect by
lateralization of stimulus presentation suggests that hemispheric
differences are present at least in the magnitude comparison task.

Therefore, it would be desirable for future studies addressing
the question of lateralized processing of arithmetic fact retrieval
to recruit a larger sample and use easier stimulus material
(e.g., one-digit numbers). Moreover, a block-wise realization
of lateralized presentation should be applied (e.g., unilateral
presentation in the left-hemifield only) in a task which
specifically addresses the verbal representation and retrieval of
arithmetic facts such as, for instance, one-digit × one-digit
multiplications.”

Finally, future studies might also evaluate possible influences
of lateralized processing in brain areas that cannot be
considered independently from lateralized cognitive processing.
For instance, the cerebellum has been shown to indirectly
regulate activation and inhibition levels of attentional networks
(Mannarelli et al., 2019).

CONCLUSION

The current study aimed at investigating whether the verbal
representation of arithmetic facts is situated unilaterally in the
left hemisphere of the human brain. While we were able to
replicate both the multiplicativity effect and the effect of bisection
possibility, lateralized presentation did not modulate the effect of
multiplicativity.

We suggest that participants might have kept the
three two-digit numbers in verbal working memory after
perceiving them due to short presentation duration. This
would be in line with the observed better performance
in multiplicative triplets in terms of accuracy, while, at
the same time, reaction times were larger. Rehearsal of
the three numbers in the phonological loop was probably
too time-consuming to detect fine-grained hemispheric
processing asymmetries in multiplicative items due to
interhemispheric connectivity. We suggest that an effect of
presentation lateralization can only to be expected for early
effects such as the unit-decade compatibility effect when the
task is easy enough.
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APPENDIX

TABLE A1 | Overview of the 75 stimuli duplets in the number comparison task.

Within decades Compatible trials Incompatible trials

10_16 10_21 17_23

10_14 12_30 16_34

20_29 15_27 22_30

20_24 21_35 24_40

21_27 22_38 25_42

22_26 23_36 27_45

30_39 33_44 34_40

30_36 36_48 38_54

33_39 43_55 39_43

40_45 43_57 39_51

40_49 44_57 44_52

40_46 46_57 45_63

50_56 47_59 48_61

51_57 51_68 52_60

52_58 54_69 58_72

53_57 56_68 59_68

60_65 82_98 64_73

63_69 50_64 68_76

64_69 51_62 72_90

70_76 52_64 74_92

72_78 54_66 76_82

73_79 62_76 77_83

80_88 70_86 87_94

90_99 80_94 63_81

92_98 84_98 69_82

TABLE A2 | Overview of the 180 multiplication problems for the control task.

Correct problems Incorrect problems

0 × 2 = 0 4 × 1 = 4 7 × 9 = 63 0 × 2 = 2 4 × 2 = 6 8 × 0 = 8

0 × 3 = 0 4 × 2 = 8 8 × 0 = 0 0 × 3 = 3 4 × 3 = 16 8 × 1 = 7

0 × 4 = 0 4 × 3 = 12 8 × 1 = 8 0 × 4 = 4 4 × 4 = 12 8 × 2 = 8

0 × 7 = 0 4 × 4 = 16 8 × 2 = 16 0 × 7 = 7 4 × 5 = 15 8 × 3 = 21

0 × 8 = 0 4 × 5 = 20 8 × 3 = 24 0 × 8 = 8 4 × 6 = 18 8 × 4 = 28

0 × 9 = 0 4 × 6 = 24 8 × 4 = 32 0 × 9 = 9 4 × 7 = 32 8 × 6 = 42

1 × 2 = 2 4 × 7 = 28 8 × 6 = 48 1 × 2 = 1 4 × 8 = 36 8 × 7 = 48

1 × 4 = 4 4 × 8 = 32 8 × 7 = 56 1 × 4 = 3 5 × 1 = 6 8 × 8 = 56

1 × 5 = 5 5 × 1 = 5 8 × 8 = 64 1 × 5 = 4 5 × 2 = 15 8 × 9 = 64

1 × 7 = 7 5 × 2 = 10 8 × 9 = 72 1 × 7 = 6 5 × 3 = 20 9 × 0 = 9

1 × 8 = 8 5 × 3 = 15 9 × 0 = 0 1 × 8 = 9 5 × 4 = 24 9 × 1 = 18

1 × 9 = 9 5 × 4 = 20 9 × 1 = 9 1 × 9 = 0 5 × 5 = 20 9 × 2 = 27

2 × 0 = 0 5 × 5 = 25 9 × 2 = 18 2 × 0 = 2 5 × 6 = 36 9 × 3 = 24

2 × 1 = 2 5 × 6 = 30 9 × 3 = 27 2 × 1 = 3 5 × 7 = 30 2 × 4 = 12

2 × 2 = 4 5 × 7 = 35 4 × 10 = 40 2 × 2 = 2 5 × 9 = 40 4 × 10 = 30

2 × 3 = 6 5 × 9 = 45 5 × 10 = 50 2 × 3 = 4 6 × 9 = 45 5 × 10 = 45

2 × 4 = 8 6 × 9 = 54 6 × 10 = 60 2 × 5 = 8 7 × 0 = 7 6 × 10 = 50

2 × 5 = 10 7 × 0 = 0 7 × 10 = 70 2 × 6 = 6 7 × 1 = 8 7 × 10 = 77

2 × 6 = 12 7 × 1 = 7 8 × 10 = 80 3 × 4 = 9 7 × 3 = 24 8 × 10 = 72

3 × 4 = 12 7 × 3 = 21 10 × 3 = 30 3 × 5 = 12 7 × 4 = 21 10 × 3 = 20

3 × 5 = 15 7 × 4 = 28 10 × 4 = 40 3 × 7 = 28 7 × 5 = 42 10 × 4 = 50

3 × 7 = 21 7 × 5 = 35 10 × 5 = 50 3 × 8 = 32 7 × 6 = 48 10 × 5 = 41

3 × 8 = 24 7 × 6 = 42 10 × 6 = 60 3 × 9 = 36 7 × 7 = 42 10 × 6 = 54

3 × 9 = 27 7 × 7 = 49 10 × 7 = 70 4 × 0 = 4 7 × 8 = 64 10 × 7 = 60

4 × 0 = 0 7 × 8 = 56 10 × 8 = 80 4 × 1 = 5 7 × 9 = 72 10 × 8 = 90
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The nature of the relation between non-symbolic and symbolic magnitude processing
in the prediction of arithmetic remains a hotly debated subject. This longitudinal study
examined whether the influence of non-symbolic magnitude processing on arithmetic
is mediated by symbolic processing skills. A sample of 130 children with age-adequate
(N = 73) or below-average (N = 57) achievement in early arithmetic was followed from the
end of Grade 1 (mean age: 86.9 months) through the beginning of Grade 4. Symbolic
comparison of one- and two-digit numbers serially mediated the effect of non-symbolic
comparison on later arithmetic. These results support a developmental model in which
non-symbolic processing provides a scaffold for single-digit processing, which in turn
influences multi-digit processing and arithmetic. In conclusion, both non-symbolic and
symbolic processing play an important role in the development of arithmetic during
primary school and might be valuable long-term indicators for the early identification
of children at risk for low achievement in arithmetic.

Keywords: numerical cognition, non-symbolic, symbolic, longitudinal, mediation

INTRODUCTION

The development of arithmetic skills in primary school is of fundamental importance in modern-
day societies: already at the age of seven, arithmetic abilities predict adult socio-economic status
over and above the effects of intelligence and socio-economic status at birth (Ritchie and Bates,
2013). Severe deficits in arithmetic are relatively stable: almost half of the children diagnosed with
developmental dyscalculia at an age of 11 still meet the diagnostic criteria 6 years later (Shalev
et al., 2005). Therefore, it is important to discover the cognitive mechanisms underlying arithmetic
achievement in order to identify and support children at risk before their problems get persistent.
However, longitudinal studies unraveling the effects of different, interacting predictors of the
development of arithmetic are still scarce (Alcock et al., 2016).

Children’s arithmetic development has often been linked to their “number sense,” meaning the
ability to deal with non-symbolic magnitudes, for example dots or other concrete objects. Typical
tasks involve choosing the numerically larger of two sets of objects (e.g., •• or •••). This ability
has been proposed to reflect the acuity of the supposedly innate approximate number system
(ANS). Using a habituation-dishabituation methodology, it became apparent that 6-month-olds
can differentiate between sets with a ratio of 1:2 (Xu and Spelke, 2000). During child development,
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non-symbolic skills are steadily refined, until young adults can
successfully discriminate between sets with a ratio of 10:11
(Halberda and Feigenson, 2008).

It has been argued that non-symbolic magnitude processing
is directly and causally related to arithmetic performance
(Dehaene, 2002; Halberda et al., 2008). Support for this claim
is mostly derived from correlational studies showing that non-
symbolic processing skills are related to past, concurrent or
future arithmetic performance (Halberda et al., 2008; Gilmore
et al., 2010; Libertus et al., 2011). Additionally, it has been
proposed that developmental dyscalculia is the result of an
inborn “core deficit” of acuity of non-symbolic processing
(Wilson and Dehaene, 2010).

Others have rejected the notion of a causal relation between
non-symbolic magnitude processing and arithmetic, alternatively
proposing that the ability to deal with abstract symbolic numbers
(mainly in the form of digits) is more important for arithmetic
performance. Symbolic magnitude processing is often assessed
with tasks requiring participants to indicate which of two
Arabic digits is numerically larger (e.g., 2 or 3). In this vein,
compared to typical development, children with dyscalculia
showed lower performance in a symbolic magnitude comparison
task, but not when comparing non-symbolic numerosities
(Rousselle and Noël, 2007). Based on a systematic review,
De Smedt et al. (2013) concluded that symbolic processing
is a more robust predictor of arithmetic than non-symbolic
processing, as many studies failed to find a significant correlation
between non-symbolic magnitude comparison and arithmetic.
This assumption was recently confirmed by two meta-analyses
(Fazio et al., 2014; Schneider et al., 2017) reporting a significantly
stronger association with mathematics for symbolic than for
non-symbolic magnitude processing. In studies that assess both,
symbolic and non-symbolic processing, the latter typically does
not contribute additional variance to the prediction of arithmetic
over and above symbolic processing (Lyons and Ansari, 2015)
leading some researchers to the conclusion that non-symbolic
processing skills are “not particularly critical for children’s
development of school-relevant mathematical competencies”
(De Smedt et al., 2013, p. 54).

The fact that non-symbolic processing skills do not explain
additional variance in arithmetic performance when controlling
for differences in symbolic processing does not dismiss a
potentially causal relation between non-symbolic processing and
arithmetic. Only recently, an alternative mediation hypothesis
has proposed that the relation between non-symbolic processing
skills and arithmetic might be mediated by symbolic skills
(Lyons and Beilock, 2011; Fazio et al., 2014; van Marle
et al., 2014; Price and Fuchs, 2016; Peng et al., 2017; Träff
et al., 2018). An evolutionary based ability to discriminate
between sets of objects may provide a starting point for
young children’s mapping of numerical symbols (number words,
Arabic numbers) onto non-symbolic numerosities, which in
turn are the foundation of their arithmetic skills (Dehaene,
2002). Nevertheless, empirical support for the claim that non-
symbolic skills provide a scaffold for symbolic skills, which in
turn predict arithmetic performance, is mostly based on cross-
sectional studies.

For instance, Lyons and Beilock (2011) found that ordering
skills fully mediated the association between non-symbolic
processing skills and arithmetic in a sample of young adults. The
authors argued that the ability to comprehend the relative order
of digits might be grounded in an ANS and act as a stepping
stone for the acquisition of arithmetic skills in a small sample
(N = 53) of fifth graders, Fazio et al. (2014) found that composite
scores of non-symbolic and symbolic processing independently
contributed to the prediction of mathematics. When the authors
tested for a possible indirect effect by examining the reduction of
the direct effect of non-symbolic skills on arithmetic performance
once symbolic processing was added. This reduction of the direct
effect just about missed significance. Thus, there is at least some
evidence for a weak indirect effect which might have well been
significant if the sample size had been larger.

If non-symbolic processing is a foundation of understanding
symbolic numbers, it might be expected that it is of particular
relevance in young children who are still developing their
symbolic number system. Indeed, Peng et al. (2017) reported
for a sample of kindergarten children aged five to six that
a composite “numerical knowledge” variable significantly
mediated the relation between non-symbolic processing
skills and arithmetic, even when controlling for a variety of
covariates, including intelligence, working memory, attention
and inhibition. Numerical knowledge consisted of rapid
automatized naming with digits, identification of one- to
three-digit numbers, and numerical reasoning (completing
a sequence of numbers). Similarly, Price and Fuchs (2016)
found full concurrent mediation of the relation between non-
symbolic processing and arithmetic by symbolic processing
in a sample of 9-year-olds, even when working memory skills
were controlled for. In order to keep task requirements as
similar as possible, non-symbolic and symbolic skills were
both assessed by comparison tasks encompassing numerosities
from 1 to 9. Importantly, non-symbolic processing did not
conversely mediate the effect of symbolic processing on
arithmetic. In a similar age group of third graders, Träff et al.
(2018) also found evidence for an indirect effect of non-
symbolic processing speed on single-digit arithmetic mediated
by symbolic processing speed, over and above the influence
of linguistic skills, as indexed by language comprehension
and rapid automatized naming. Non-symbolic processing
skills were measured with a computerized task comprising
numerosities between 5 and 21 per array (Panamath; Halberda
et al., 2008), whereas the symbolic processing measure consisted
of a composite score of single- and double-digit comparisons.
In another study with 5- to 8-year-olds (Li et al., 2018) non-
symbolic as well as symbolic processing tasks were assessed
in numerosities from 5 to 50. Interestingly, the effect of non-
symbolic processing on mathematical ability was mediated by
symbolic processing skills in children aged 5–6, but not in 7- to
8-year-olds, providing first evidence that the age of assessment
may be critical.

Longitudinal studies are particularly relevant in order to
determine causal mechanisms during development. So far,
only one such study (van Marle et al., 2014) investigated
symbolic skills as a potential mediator of the relation between
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non-symbolic magnitude processing in 3- to 4-year-olds on
entering preschool and mathematic abilities at the end of the
preschool year. The mathematical abilities test encompassed
items involving enumeration, counting, cardinal knowledge
and numeral identification, but critically, calculation skills
or arithmetic fact knowledge could not be assessed in this
young age group, which may well explain why symbolic
magnitude comparison was not found to be a mediator for the
relation between non-symbolic processing and these very basic
mathematical competences.

In summary, several studies investigating the hypothesis
that symbolic processing abilities serve as a mediator of
the relation between non-symbolic processing skills and
arithmetic did indeed report some evidence in favor of
this claim. Conflicting findings might in part be due to the
different measures of symbolic number processing that were
employed (e.g., ordinality judgment, numerical recognition,
and number comparison) and differences in age groups
assessed. Still, the foundational link between non-symbolic and
symbolic processing is not entirely uncontested: while there
is some evidence that non-symbolic processing influences the
development of symbolic processing skills (Toll et al., 2015),
other studies could not corroborate this link and reported
that, on the contrary, symbolic skills predicted growth in
non-symbolic processing (Mussolin et al., 2014; Matejko
and Ansari, 2016; Lyons et al., 2018). Therefore, it appears
crucial that studies testing a mediation model of non-symbolic
processing on arithmetic via symbolic processing should
control for initial symbolic skills, in order to test whether
non-symbolic processing actually predicts growth in symbolic
processing skills.

In addition, it might also be important to differentiate between
distinct subcomponents of symbolic processing, in particular
single- and multi-digit number processing. There is increasing
evidence suggesting that multi-digit number processing differs
from single-digit processing and is acquired later in development
(Brankaer et al., 2017). Moreover, it has been proposed that
single-digit number processing constitutes a necessary first
step, while additional specific processes, such as place-value
knowledge, are required to fully understand multi-digit numbers
(Nuerk et al., 2015). Thus, it seems plausible to assume that
the ability to process multi-digit numbers is scaffolded onto
single-digit number processing, which in turn may rely on non-
symbolic processing.

In the current study we tested a developmental model of
sequential mediation of the effect of non-symbolic processing
on later arithmetic performance via processing of one- and two-
digit numbers. This developmental account was investigated in
a longitudinal study ranging from end of Grade 1 to beginning
of Grade 4. In this important period of arithmetic development,
children are introduced to the complexities of the Arabic place-
value system and are expected to acquire fluent competencies in
mental calculation and to store a large amount of easily accessible
number facts in their long-term memory.

Non-symbolic, single- and multi-digit number processing
were assessed at different, sequential time points, and prior to
arithmetic skills. When testing our developmental framework, we

controlled for general cognitive skills that have been found to
be associated with arithmetic performance and might influence
its relation with non-symbolic processing, i.e., non-verbal IQ
(Göbel et al., 2014b), verbal working memory (Berg, 2008), and
attention/executive functions (Clark et al., 2013). Furthermore,
as the children had already gained substantial experience with
symbolic numbers and arithmetic at the beginning of our
study period, it was important to additionally control for initial
symbolic and arithmetic skills.

Based on the findings of previous studies, we expect that non-
symbolic processing exerts an indirect effect of future arithmetic
performance but may not uniquely contribute to the prediction
of arithmetic performance (i.e., no total effect) when considering
these control variables. Note that this study design puts the
hypothesis that non-symbolic processing is a foundational skill
underlying symbolic processing and arithmetic at a very stringent
test: while non-symbolic processing could be expected to have
its strongest influence early in development, when numbers
are mapped onto analog magnitudes, our longitudinal design
mainly assesses whether differences in non-symbolic processing
contribute to growth of symbolic processing and (in turn)
arithmetic skills during the primary school years, over and above
general cognitive predictors of arithmetic. If any such indirect
long-term effects can be demonstrated, even though small, the
hypothesis that the non-symbolic magnitude processing is a
foundational skill of arithmetic should be further investigated.

MATERIALS AND METHODS

Participants
The study was conducted in accordance with the ethical
principles of the World Medical Association Declaration of
Helsinki. Data collection started in 2007 and at that time the
funding agency (DFG) and local legislation did not request an
explicit vote from an ethics committee for non-medical research.
Legal guardians gave their written informed consent before data
collection. The present sample consisted of 130 children from 19
different elementary schools and a total of 38 classrooms taking
part in a longitudinal study investigating the developmental
trajectories of basic numerical skills in children with typical and
atypical arithmetic development (Landerl, 2013).

The participants were invited to the study based on a
screening of 505 children at the end of first grade. Children
with arithmetic achievement of 1 SD or more below age norm
on a standardized test (Haffner et al., 2005) were all invited for
additional assessments. For each participant with below-average
arithmetic achievement, we selected one child from the same
classroom who displayed typical arithmetic development (i.e.,
arithmetic performance above−1 SD compared to the age norm).
Thus, children with low arithmetic performance in Grade 1
were overselected in our sample. As our focus was on numerical
and arithmetic development, we attempted to exclude more
general deficits in non-verbal IQ, working memory, attention,
and reading as potential causes or confounds of arithmetic
deficits. More specifically, children were not admitted to the study
if they met any of the following exclusion criteria:
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• a native language other than German;
• IQ lower than 85 as assessed by a test of non-verbal

intelligence (Cattell et al., 1997);
• verbal working memory more than 1 SD below age norm

on the German version of the WISC-IV digit span subtest
(Petermann and Petermann, 2008);
• a clinical diagnosis of attention deficit/hyperactivity

disorder or performance more than 1.5 SDs below
age norm on a standardized test of attention/executive
functions (Zimmermann et al., 2002);
• reading abilities more than 2 SDs below age norm, as

measured by a standardized reading test (Mayringer and
Wimmer, 2003). As the deficits of children with co-
occurring dyslexia and dyscalculia appear to be additive
but not qualitatively different from isolated disorders
(Landerl et al., 2009), a conservative cut-off for reading
problems was chosen.

The initial sample consisted of 139 children (68 boys and 71
girls), of whom 131 participated through Grade 4. One child with
low arithmetic performance had to be excluded because of below
chance-level performance on the non-symbolic comparison task
(rendering it unclear whether this child had understood the
instruction). Thus, the final sample comprised 130 children
(60 boys and 70 girls) with an average age of 86.9 months
at the screening (end of Grade 1). At this first assessment
point, 57 children showed low arithmetic performance. At the
last assessment point in Grade 4, only 39 children performed
more than 1 SD below the age norm in arithmetic, while the
majority of the sample (N = 91) showed arithmetic skills within
the typical range.

Design
Children’s development was followed across a 2-year primary
school period from end of Grade 1 (T1) to beginning of Grade
4 (T4). The first assessment point (T1) subsumed measures
that were either given at the end of Grade 1, or right at the
beginning of Grade 2, interspersed only by 6 weeks school
holidays. Non-symbolic processing at T1 was considered as
independent predictor variable. Symbolic single-digit processing
was assessed 6 months later in the middle of Grade 2 (T2)
and symbolic two-digit processing was assessed after another
6 months at the beginning of Grade 3 (T3). The dependent
variable arithmetic performance was assessed at the beginning
of Grade 4 (T4). We additionally considered several covariates:
non-verbal intelligence, attention, verbal working memory, as
well as initial arithmetic performance and symbolic single-digit
processing (all T1, except for attention, which was assessed at T2
because of restricted assessment time at T1). An overview of the
study design is depicted in Figure 1.

Tasks
Numerical Processing
Non-symbolic and symbolic processing were assessed by
standard numerical comparison paradigms programmed with
Presentation software. Children performed the tasks individually
in a quiet room at their school. We obtained a combined measure

of speed and accuracy for children’s non-symbolic and symbolic
processing skills by calculating inverse efficiency scores (median
reaction times divided by the proportion of correct responses).

Non-symbolic comparison
Children were required to indicate which of two gray displays had
the larger number of yellow squares (see Figure 2) by pressing
the corresponding keyboard button as rapidly as possible. The
number of squares per display ranged from 20 to 72 squares
in order to discourage children from explicit counting. The
difference between displays’ set sizes ranged from 8 to 25 squares,
with four trials for each numerical distance, resulting in a total of
72 test items. The total surface area was the same on both displays,
and the same proportion of both displays was covered by yellow
squares. Each display consisted of different square sizes to avoid
that displays with larger numerosities systematically consisted
of smaller squares. The largest and smallest squares appeared
in the same number in both displays; only size and number of
intermediate squares were different. Stimuli were displayed in
a fixed pseudo-random order and remained on screen until the
child made a keypress decision. After an interstimulus-interval of
300 ms, the next item appeared. At the start, three practice items
were presented. Cronbach’s alpha reliability for the non-symbolic
comparison task was 0.95.

Symbolic comparison
Two tasks assessed symbolic processing skills: single digit
comparison (T1 and T2) and comparison of two-digit numbers
(T3). In both tasks, children chose the numerically larger of
two numbers by pressing the corresponding keyboard button as
quickly as possible. The single digit comparison task consisted
of 56 items with numbers from 1 to 9. Numerical distances
ranged from 1 to 8 (distance 1: 16 items, distances 2–3: 10 items,
and distances 4–8: 4 items). Comparison of two-digit numbers
comprised 80 items with numbers between 21 and 98. Numerical
distance ranged from 4 to 37. In 30 items, both decade and unit
digit were larger in one number (e.g., 41 75), in 30 items, the
decade digit was larger in one and the unit digit was larger in
the other number (e.g., 41 26), and in further 20 items, only the
unit digit differed (e.g., 61 68). In both symbolic processing tasks,
stimuli were displayed in a 36-point Times New Roman font in
black color against a white background. Item presentation was
randomized and the number pairs remained on the screen until
children responded by keypress. After each item, there was an
interstimulus-interval of 560 ms. For both symbolic comparison
measures, Cronbach’s alpha ranged between 0.96 and 0.97.

Arithmetic Performance
Arithmetic performance was assessed by the “arithmetic
operations” subscale of a standardized classroom test (Haffner
et al., 2005). At T1, the assessment included lists of addition,
subtraction, fill-in-the-blank (e.g., 10 – 2 = 4 + _) and size
comparison exercises (e.g., 51 – 1 _ 6; fill in “ > ”). At T4,
two additional subtests targeting multiplication and division
were included. Each subtest had a 2 min time limit with items
being presented with increasing difficulty. Within this time
limit, children were required to write down as many correct
answers as possible to a list of calculations gradually increasing
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FIGURE 1 | Overview of the study design. Main study variables are depicted above the timeline and covariates are depicted below the timeline.

FIGURE 2 | Example item of the magnitude comparison task (Landerl, 2013).

in difficulty. Performance in each subtest was assessed as the
number of correct answers. A composite measure “arithmetic
operations” was calculated as the mean of the standardized
T-scores (mean = 50, SD = 10) of all subtests.

Non-verbal Intelligence
Non-verbal intelligence was assessed by the German version of
the Culture Fair Test (Cattell et al., 1997), comprising the subtests
substitutions, mazes, classifications, similarities and matrices.
These five subtests provided a measure of general intellectual
ability, i.e., a child’s ability to recognize regularities and quickly
identify characteristics.

Attention
Children performed a standardized computer-based test battery
encompassing different facets of attention/executive functions
(Zimmermann et al., 2002). Attention was indexed by a
composite score of the subtests distractibility, alertness, sustained
attention, flexibility, and divided attention. In the distractibility
subtest, children were required to selectively press a button upon
seeing a ghost with a sad face. In half of the trials, a distractor

in form of a ghost with a happy face appeared right before the
target stimulus. In the alertness subtest, a witch appeared in the
center of the screen at varying intervals and children had to
press a button as quickly as possible. The sustained attention
subtest measured children’s ability to maintain their attention
over a longer period of time (10 min) by watching the color
of ghosts that appeared on the screen one after the other. They
had to press a button whenever two subsequent ghosts had
the same color. In the flexibility subtest, a green and a blue
dragon appeared simultaneously on the screen, and children had
to indicate the positions of both dragons. In alternating trials,
the position of the green versus the blue dragon had to be
indicated first. During the divided attention subtest, children
were presented with different visual and auditory stimuli. They
had to react to changes in the stimuli, i.e., when an owl closed its
eyes or changed its hooting.

Verbal Working Memory
The Digit Span subtest (forward and backward combined) of
the German version of the Wechsler Intelligence Scale for
Children IV (Petermann and Petermann, 2008) was used to assess
verbal working memory. In the forward condition, children were
required to repeat a string of verbal numbers presented by the
experimenter in the same order. In the backward condition,
they were asked to repeat the number strings in the inverse
order. For each number length, two items were presented and
a discontinuation rule applied if a child was unable to repeat at
least one of these items. Verbal working memory was indexed as
the total score of correctly recalled number strings.

RESULTS

For each of the numerical processing tasks, individual median
response times were calculated after removing reaction times
for incorrect responses, below 200 ms and above 10,000 ms.
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In the non-symbolic comparison task the correlation between
median RTs and response accuracy was only moderate, r = 0.324,
p < 0.001 and response accuracy was close to ceiling in both
symbolic comparison tasks (mean accuracy symbolic comparison
with single-digit numbers at T1 = 95.5% and T2 = 96.6% and
symbolic comparison with two-digit numbers at T3 = 91.3%). In
order to combine response accuracy and speed, inverse efficiency
scores were computed for the non-symbolic and symbolic tasks
by dividing the median reaction time by the proportion of correct
responses. Finally, one extreme outlier score in the non-symbolic
comparison task (more than 6 SDs above the sample mean) was
moved to the tail of the distribution to the second highest score
to avoid overemphasizing its effect on the results.

Descriptive Statistics
Means, standard deviations and intercorrelations of all relevant
study variables are shown in Table 1. Pearson correlation
coefficients were reported to describe the linear relations
between study variables. If a pair of those variables was
not bivariately normally distributed, confidence intervals
obtained by bootstrapping and Spearman coefficients were also
computed to examine statistical significance. In all of these
cases, the three approaches yielded identical results regarding
statistical significance.

Mediation Analyses
Mediation analyses were calculated using the PROCESS macro
for SPSS (Hayes, 2013). In order to evaluate the hypothesis
that the influence of non-symbolic magnitude processing
on later arithmetic performance is sequentially mediated by
symbolic magnitude processing of single- and multi-digit
numbers, we calculated a serial multiple mediation analysis
with bootstrapping. During the bootstrapping procedure, the
current sample was randomly resampled with replacement. An
empirically obtained representation of the sampling distribution
of the indirect effect was used to generate the confidence interval
for the indirect effect. In the current study, we employed a bias-
corrected bootstrap with a 95% confidence intervals based on
10,000 bootstrap samples.

Residualized change scores of arithmetic (arithmetic T4 –
arithmetic T1) were considered as dependent variable, and
symbolic processing of single- and two-digit numbers were
introduced as mediators, so we obtained the following PROCESS
model: non-symbolic processing T1 → symbolic processing
(single-digit numbers) T2 → symbolic processing (two-digit
numbers) T3 → residualized change in arithmetic T4-T1. We
added several general cognitive covariates of both mediators and
the dependent variable, namely verbal working memory, non-
verbal intelligence and attention. We also included a fourth
covariate, symbolic processing of single-digit numbers at T1.
The full PROCESS model including the main standardized
path coefficients is depicted in Figure 3. The only significant
direct effects were from non-symbolic to symbolic single-digit
processing (a1 path) and from single-digit to two-digit processing
(a3 path). Importantly, neither non-symbolic processing skills at
T1 nor symbolic single-digit processing at T2 exerted significant
direct effects on arithmetic growth (c′ and b1 paths). The direct

paths from non-symbolic to two-digit symbolic processing (a2)
and from two-digit symbolic processing to arithmetic growth (b2)
missed significance (ps = 0.061 and 0.054, respectively).

Indirect effects, their standard errors and confidence intervals
are presented in Table 2. Non-symbolic processing did not exert a
significant indirect effect on arithmetic growth through symbolic
processing of single-digit numbers at T2 (a1b1 path) or through
symbolic processing of two-digit numbers at T3 (a2b2 path).
Still, non-symbolic processing did show a significant (though
small) influence on arithmetic growth serially through symbolic
processing of single-digit numbers at T2 and symbolic processing
of two-digit numbers at T3 (a1a3b2 path).

DISCUSSION

Non-symbolic Magnitude Processing
and Arithmetic
The presented sequential mediation analyses indicated that the
effect of non-symbolic processing in Grade 2 on arithmetic
performance 2 years later, in Grade 4, was sequentially
mediated by symbolic magnitude processing of one- and two-
digit numbers. Even though this mediation effect was small,
these results provide an important empirical contribution to
the ongoing debate whether non-symbolic processing skills
make a causal contribution to arithmetic development. Our
developmental perspective on the association of magnitude
processing with arithmetic (see also Verguts and Fias, 2004;
von Aster and Shalev, 2007) is consistent with evidence that
symbolic processing is more strongly associated with arithmetic
than non-symbolic processing (De Smedt et al., 2013; Schneider
et al., 2017). The fact that the contribution of non-symbolic
processing to later arithmetic is indirect via symbolic processing
skills can explain why non-symbolic processing did not account
for variance above and beyond symbolic processing in earlier
studies (Göbel et al., 2014b; Lyons and Ansari, 2015). Our
results support the theoretical view that early non-symbolic
processing skills make a small but significant contribution to later
arithmetic performance. Importantly however, this contribution
is completely indirect by providing a scaffold for symbolic
processing of one- and two-digit numbers.

Regarding the hypothesis that non-symbolic processing
influences arithmetic via symbolic processing, the current
longitudinal evidence provides support for the causal claims
made based on cross-sectional studies (Price and Fuchs, 2016;
Peng et al., 2017; Träff et al., 2018). By covering a relatively
long period of over two critical years of early mathematical
development and considering a variety of possible confounding
factors, we extended the findings by van Marle et al. (2014)
on their kindergarten sample. We found a significant direct
contribution to symbolic processing of single-digit numbers and
an almost significant direct contribution to symbolic processing
of double-digit numbers. Importantly, we found a significant
long-term indirect contribution of non-symbolic processing skills
to arithmetic growth toward the end of the primary school
period. A further distinctive feature of our design was that we
controlled for early differences in non-verbal IQ, verbal working
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TABLE 1 | Descriptive statistics and correlations between all relevant study variables.

Variable Mean SD 1 2 3 4 5 6 7 8 9

(1) Arithmetic T1a 45.50 9.11 –

(2) Non-symbolic T1b 1686.16 353.41 −0.29** –

(3) Non-verbal Intelligence T1c 108.25 11.71 0.49** −0.22* –

(4) Symbolic Single-Digit T1b 1103.76 247.56 −0.41** 0.47** −0.24** –

(5) Verbal Working Memory T1b 11.80 1.82 0.31** −0.06 0.18* −0.06 –

(6) Attention T2a 47.03 4.46 0.46** −0.31** 0.39** −0.45** 0.20* –

(7) Symbolic Single-Digit T2b 985.04 216.75 −0.42** 0.47** −0.36** 0.69** 0.01 −0.38** –

(8) Symbolic Two-Digit T3b 45.50 9.11 −0.43** 0.46** −0.35** 0.62** −0.08 −0.33** 0.62** –

(9) Arithmetic T4a 1686.16 353.41 0.72** −0.27** 0.51** −0.40** 0.22* 0.41** −0.48** −0.50** –

aMean T-Score of all Subtests (M:50/SD:10).b Inverse Efficiency Score. c IQ Score (M:100/SD:15). *p < 0.05; **p < 0.01.

FIGURE 3 | Serial multiple mediation model for the effect of non-symbolic processing on residualized change scores in arithmetic performance T4-T1 with symbolic
processing of single- and two-digit numbers as mediators.

TABLE 2 | Effects, standard errors, and bootstrapped confidence intervals of non-symbolic processing on residualized change scores in arithmetic between T1 and T4
(controlling for non-verbal intelligence, attention, verbal working memory, and symbolic magnitude processing at T1, contributing to the mediators and
arithmetic performance).

Effects Estimate (SE) LCI UCI

Direct: c′ Non-symbolic T1→ Arithmetic Growth T4 – T1 0.082 (0.100) −0.112 0.280

Indirect: a1b1 Non-symbolic T1→ Symbolic Single-Digit T2→ Arithmetic Growth T4 – T1 −0.030 (0.027) −0.113 0.003

a1a3b2 Non-symbolic T1→ Symbolic Single-Digit T2→ Symbolic Two-Digit T3→ Arithmetic Growth T4 – T1 −0.011 (0.011) −0.057 −0.001

a2b2 Non-symbolic T1→ Symbolic Two-Digit T3→ Arithmetic Growth T4 – T1 −0.033 (0.032) −0.135 0.005

Total: Non-symbolic T1 Arithmetic Growth T4 – T1 0.008 (0.099) −0.118 0.205

LCI, lower CI bound; UCI, upper CI bound.

memory and attention. As expected and consistent with earlier
research (Berg, 2008; Clark et al., 2013; Göbel et al., 2014b), these
general cognitive factors were significantly related to growth
in arithmetic skills across the study period. It is particularly
impressive that the mediation pathway from early non-symbolic
magnitude processing to growth in arithmetic was significant

across these critical years of primary school and beyond the
influence of these general cognitive predictors and even after
controlling for interindividual differences in single-digit symbolic
processing at the onset of the study period. Given the design
of our study, it is not particularly surprising that this effect was
numerically small and one could argue that it is irrelevant as its
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ecological validity is low. However, from a theoretical point of
view, such a small but significant long-term effect suggests that
current proposals that non-symbolic processing may be entirely
irrelevant for understanding symbolic representations of number
and arithmetic (De Smedt et al., 2013) are perhaps premature.
On the contrary, our findings encourage further research on the
exact mechanisms underlying the associations of non-symbolic
processing with symbolic numerical processing and arithmetic
skills from a developmental perspective.

Non-symbolic and Symbolic Processing
In contrast to a number of recent studies, we found a significant
contribution of early non-symbolic processing to growth in
symbolic processing skills half a year later even after controlling
for a variety of general cognitive variables. A number of other
longitudinal studies with kindergarten and first grade children
failed to find a similar contribution (Mussolin et al., 2014;
Matejko and Ansari, 2016; Lyons et al., 2018). It is not unlikely
that the special characteristics of the sample investigated here
increased the chance to reveal such a relation. At the onset
of the study, almost half of our participants were selected
because they showed early problems in arithmetic performance.
Therefore, the variance in non-symbolic and symbolic processing
skills was perhaps larger than in randomly selected samples,
which may have helped to reveal a relation that is small and
therefore hard to detect in the normal population. It is also
possible that this association is only evident in individuals with
deficits in arithmetic development. This would be in line with
assumptions that there may be two subtypes of dyscalculia: one
with a core deficit in non-symbolic magnitude processing and
another one with intact magnitude processing but problems
to access magnitude representations from symbolic number
representations (Rousselle and Noël, 2007). Depending of the
profiles of individual participants within a sample, findings
may vary. Unfortunately, our sample was too small to run
separate analyses for children with arithmetic deficits and as a
matter of fact, only a subgroup of those with early problems
turned out to develop persistent deficits in arithmetic. In future
studies, it might be worthwhile to investigate whether the
early relation between non-symbolic processing and growth in
symbolic processing as well as the observed indirect effect of
sequential mediation between non-symbolic processing and later
arithmetic may be specific to dyscalculia.

Arabic Number Processing and
Arithmetic
The sequential mediation model presented here also critically
extends empirical evidence on the pivotal role of understanding
single- and multi-digit Arabic numbers for arithmetic
development. As predicted, the ability to process multi-digit
numbers was scaffolded onto single-digit number processing.
This finding supports the proposed developmental trajectory.

As pinpointed previously (Nuerk et al., 2015), being able
to deal with single-digit numbers is an important prerequisite,
but perhaps not sufficient for multi-digit number processing.
Understanding the relation between decade and unit position

is one of the additional steps required for two-digit number
processing. It is interesting that in the current study the
direct contribution of non-symbolic processing to two-digit
number processing missed significance (p = 0.061). Future
research should test the hypothesis that the ability to represent
non-symbolic magnitudes facilitates the acquisition of place-
value understanding.

The finding that in our model single-digit processing at
T2 (middle of Grade 2) did not show a direct influence on
arithmetic growth from T1 to T4 is probably due to the fact
that we controlled for differences in symbolic processing at
the onset of the study period. This means that the single-
digit processing variable actually only reflects changes in task
performance through a period of about 6 months. Variance in
this variable was predicted by non-symbolic processing skills half
a year earlier and in turn contributed significantly to processing
of two-digit numbers. Its contribution to arithmetic growth from
Grade 2 to Grade 4 was, however, indirect as a mediator of
non-symbolic processing.

Although a strong association between performance in single-
and two-digit comparison tasks was found in the present
study (see also Brankaer et al., 2017), these tasks appear to
measure distinct constructs and contribute differently to the
prediction of arithmetic performance. Future studies on the
development of arithmetic should therefore ideally include both
single- and multi-digit number processing tasks. Only few studies
have so far dealt with the development of multi-digit number
processing (Nuerk et al., 2015). Given the increasing evidence
on the high relevance of understanding place-value and multi-
digit syntax for arithmetic development (Moeller et al., 2009;
Moura et al., 2013; Göbel et al., 2014a), it will be important
to investigate the particular challenges children are facing when
acquiring complex Arabic numbers and their verbal counterparts.
These challenges are mathematical (place-value) as well as
linguistic (e.g., inversion of 10s and units in German and other
languages) and seem to constitute an important milestone in
arithmetic development.

Limitations
There has been an ongoing discussion on how to best assess
non-symbolic magnitude processing skills (Price et al., 2012;
Schneider et al., 2017). In the present design, we prioritized
having similar tasks for non-symbolic and symbolic processing
in order to rule out any confounding effects of differences in
task format. Other measures that have been claimed to be more
sensitive (e.g., Weber fraction), might have produced stronger
effects in our mediation model than the combined measure of
accuracy and speed introduced here (including a potential direct
effect on later arithmetic).

Similarly, it has been claimed that tasks specifically tapping
into cardinal or ordinal number knowledge might be better
mediators between non-symbolic processing and mathematical
skills. We consider it highly plausible that development of
counting plays a crucial role in the mapping of number words
and Arabic digits onto non-symbolic processing skills (van
Marle et al., 2014). However, although we covered a relatively
long developmental period in our longitudinal design, our data
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do not address the very early foundational processes of this
mapping process.

We would also like to remind readers that the current sample
was not randomly selected: at the onset of the study period,
half of the participants were selected based on below-average
performance in arithmetic development. It turned out that
later on the majority of children displayed typical arithmetic
performance. Still, the distribution of numerical processing and
arithmetic skills may not correspond to the general population
and replication with more representative samples is advisable.

CONCLUSION

In summary, the evidence presented in our study reveals a
significant role of non-symbolic magnitude processing in the
development of arithmetic during primary school: we could
demonstrate that non-symbolic processing skills impacted on
growth of arithmetic skills by facilitating the acquisition of
symbolic number processing. This evidence indicates that
non-symbolic processing should be included as one of the
foundational skills in theoretical models of mathematical
development. It will also be important to further specify
developmental trajectories within the domain of symbolic
numerical processing, by, for instance, differentiating between
simple processing of one-digit numbers and more complex
processes involved in multi-digit processing.

As the indirect effect exerted by non-symbolic processing
was small, it seems unlikely that interventions exclusively
targeting non-symbolic processing would show satisfactory
effects on children’s arithmetic development (Szücs and Myers,
2017). However, drill-practicing number knowledge without
providing children with sufficient opportunities to understand

how numbers represent non-symbolic magnitudes may be
equally inefficient. Training programs should thus focus on
understanding and efficiently processing symbolic representation
of number, which entails to map them on their inborn non-
symbolic representational system (e.g., Kuhn and Holling, 2014;
Rauscher et al., 2016). Improving our knowledge of longitudinal
developmental trajectories and neurocognitive mechanisms
of symbolic and arithmetic processing skills is necessary
in order to further advance our understanding of the
components that should be integrated in evidence-based tailored
intervention programs.
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Background: Abacus experts could mentally calculate fast some mathematical
operations using multi-digit numbers. The temporal dynamics of abacus mental
calculation are still unknown although some behavioral and neuroimaging studies
have suggested a visuospatial and visuomotor neural process during abacus mental
calculation. Therefore, this contribution aims to clarify the significant similarities and
the differences between experts and novices by investigating calculation-induced
neuromagnetic responses based on cerebral oscillatory changes.

Methods: Twelve to 13 healthy abacus experts and 17 non-experts participated
in two experimental paradigms using non-invasive neuromagnetic measurements.
In experiments 1 and 2, the spatial distribution of oscillatory changes presented
mental calculations and temporal frequency profiles during addition while examining
multiplication tasks. The MEG data were analyzed using synthetic aperture
magnetometry (SAM) with an adaptive beamformer to calculate the group average of
the spatial distribution of oscillatory changes and their temporal frequency profiles in
source-level analyses.

Results: Using a group average of the spatial distribution of oscillatory changes,
we observed some common brain activities in both right-handed abacus experts
and non-experts. In non-experts, we detected the right dorsolateral prefrontal cortex
(DLPFC) and bilateral Intraparietal sulcus (IPS); whereas in experts, detected the
bilateral parieto-occipital sulcus (POS), right inferior frontal gyrus (IFG), and left
sensorimotor areas mainly. Based on the findings generated, we could propose
calculation processing models for both abacus experts and non- experts conveniently.

Abbreviations: MEG, Magnetoencephalography; AMC, Abacus-based mental calculation; IPS, Intraparietal sulcus; POS,
Parieto-occipital sulcus; IFG, Inferior frontal gyrus; DLPFC, Dorsolateral prefrontal cortex; mPFC, The medial prefrontal
cortex; ERS, Event-related synchronization; ERD, Event-related desynchronization; SAM, Synthetic aperture magnetometry.
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Conclusion: The proposed model of calculation processing in abacus experts and
novices revealed that the novices could calculate logically depending on numerical
processing in the left IPS. In contrast, abacus experts are utilizing spatial processing
using a memorized imaginary abacus, which distributed over the bilateral hemispheres
in the IFG and sensorimotor areas.

Keywords: abacus mental calculation, cerebral oscillatory, brain hemispheres activation, neural mechanism,
magnetoencephalography, synthetic aperture magnetometry

INTRODUCTION

For decades, the abacus-based mental calculation has been a
unique Asian culture for a long time for rapid and precise
calculations. For instance, old Asian people have relied on
physical devices, such as the abacus or Soroban in Japanese, to
perform complex computations. The experts in the abacus can
perform some complex computations mentally with fast speed of
response and high accuracy of the answer. However, these neural
bases of computation processing are still not precisely known;
especially, the neural processing mechanism based on cerebral
oscillations (e.g., oscillatory changes in the frequency bands, as
alpha (8–13 Hz), beta (13–30 Hz) and gamma (>30 Hz) bands).
These oscillatory changes associated with specific functional roles
(i.e., cognitive processes) over given brain areas (Dimitriadis
et al., 2016). The designation of ‘‘Abacus experts’’ refers to those
who have gained an unusual ability to operate an abacus for
mathematical operations, as well as calculating mentally with an
abacus in mind after almost daily training throughout the years.

Training on the abacus-based mental calculation (AMC)
has received much attention in neuroscience communities for
some clinical and non-clinical applications (Tanaka et al., 2002;
Hanakawa et al., 2003; Chen et al., 2006; Hu et al., 2011; Li
et al., 2013; Wang et al., 2013, 2017). Most researchers have been
trying to understand how the brain works when someone uses
an abacus to gain arithmetic skills (Dehaene et al., 1990, 1999,
2003; Dehaene, 1992, 1996, 1997, 2008; Dehaene and Cohen,
1997). There is psychological evidence that abacus experts
utilize a mental image of an abacus to recall and manipulate
large numbers in solving calculation problems; however, the
neural correlates underlying this expertise is still unknown
(Cohen et al., 1997, 2004; Cohen Kadosh et al., 2007, 2008),
and the mathematical language has always been compared to
natural language (Amalric and Dehaene, 2016, 2019). Usually, if
someone asks abacus experts ‘‘how they pull through any mental
calculation, they all say, ‘‘We do the calculation by using an
abacus within my brain.’’

Former scholarly studies have covered some relevant
active brain areas using positron-emission tomography
(PET) and functional magnetic resonance imaging (fMRI)
for detecting brain activities related to mathematical and
calculation processing, while the importance of the parietal lobe
and frontal lobe had always been visible (Dehaene, 1996; Cohen
et al., 2000; Rickard et al., 2000). However, since the information
obtained from PET and fMRI is based mainly on changes in
blood flow, metabolism, and secondary to electrophysiological
activities, the time resolution is not high, and it is difficult to

capture the reaction at the earliest time-based latency. There
are also some prior experimental studies (e.g., Pauli et al., 1994;
Iguchi and Hashimoto, 2000) used electroencephalogram (EEG)
to measure brain electrical activity directly. In contrast, it is still
difficult to capture the mental calculation-based reaction time
by using the EEG technique due to its low spatial resolution and
high-frequency components.

In this research study, we employed
magnetoencephalography (MEG) to measure specific brain
activity during mental calculation, where its signals considered as
cerebral rhythm changes. The aperture synthetic magnetometry
(SAM) method using a nonlinear beamforming approach
analyzed the generated MEG signals to investigate brain
activity during calculation processing (Taniguchi et al., 2000;
Robinson et al., 2004). The SAM method is characterized
by canceling noise using a spatial filter and having a high
spatial resolution. Furthermore, it is possible to obtain the
brain activity region associated with each task by setting the
region of interest in the cranium to a lattice shape (voxel)
and statistically comparing the signal intensities before and
after performing the task in each voxel. Some studies based
on MEG have been focusing on decoding the processing
stage of mental arithmetic calculations at the single-trial
level (Pinheiro-Chagas et al., 2018).

We focused the attention on abacus experts who
have sound skills to numbers, along with general brain
computation processing mechanisms of healthy subjects.
For instance, In Japan, the abacus has been staying in use
as a calculation device for a long time. When training an
abacus for many years, calculation speed would be faster
than the untrained person; so, calculation results could
be derived with a high correct answer rate. Also, several
reports indicate that the ability to manipulate numbers in
memory is excellent, and some prior studies were focusing on
special computing abilities (e.g., high calculation processing
speed) to have concluded that abacus experts are visual-
spatial learners (e.g., Tanaka et al., 2002; Hanakawa et al.,
2002; Chen et al., 2006; Wu et al., 2009). To the best
of our knowledge; however, mental calculation based
on oscillatory changes has not been studied thoroughly
using magnetoencephalography.

Although it is being clarified that calculations are
made to, it has not been thoroughly studied yet using the
magnetoencephalography to the best of our knowledge.
Therefore, in this study, we have been conducting research
aiming to clarify the difference between the computational
processing mechanism of the skilled abacus and non-skilled
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FIGURE 1 | The first experimental paradigm. The participants (17
non-experts and 12 abacus experts) were instructed to perform or confirm at
least a mental addition of 2 digits plus 2 digits’ number, immediately after
numbers were presented (e.g., 61 + 27). Participants (novices and experts in
using a Soroban) were asked to perform three tasks: observation, calculation,
and confirmation.

FIGURE 2 | The second experimental paradigm. The participants (17
non-experts and 13 abacus experts) were instructed to perform, observe, or
confirm some arithmetic operations by multiplying a two-digit number by a
one-digit number (e.g., 72 × 3), immediately after numbers were presented.
Participants (novices and experts in using a Soroban) were asked to perform
three tasks: calculation, observation, and confirmation. “X” means the
execution of mental calculation and “#” means just observation of numbers.

persons using magnetoencephalography. So far, research
has been done on the difference in the calculation process
when mentalizing the addition, and non-experts sequentially
calculate mental arithmetic with numeric morphological
recognition, numerical processing, numeric inner words,
working memory, calculation execution processing. While
processing, abacus experts got the result that they were doing
through several processes, including internal language and
calculation processing, at the same time.

However, the additional task used in this study was very easy
for experts, and the load on the brain might be substantially
different for each subject. Therefore, we used multiplication
tasks too to select additional and multiplication tasks based
on the level of difficulty, which could be calculated within a
particular time by carrying out preliminary experiments and used
them in this study which makes the burden on the brain for
each subject became equal. The primary driver of this research
study is not only clarifying the localization analysis by using the
SAM method but also the time-frequency analysis and clarifying

FIGURE 3 | Schematic diagram of the first experimental paradigm. This
figure shows a schematic diagram of the task presentation, and a time
window of synthetic aperture magnetometry and time-frequency analyses.
First, in control stimuli, we presented “+” or VOICE for 4 s, which means what
the subject should do in active stimuli. Then, in active stimuli, numbers for
calculation were presented for 2 s. In SAM analysis, we compared 1 s before
and after the presentation of numbers. Also, regarding time-frequency
analysis, the baseline was set for 400 ms before the number presentation.

the processing process in the brain during multiplication and
mental arithmetic.

Therefore, we investigated calculation-induced
neuromagnetic responses based on cerebral oscillatory changes.
These oscillatory changes are now widely used for functional
neuroimaging studies. The present study aims to clarify
the spatiotemporal distribution of the cerebral oscillatory
changes during mental calculations using synthetic aperture
magnetometry (Ihara et al., 2003a,b; Hirata et al., 2007, 2010) and
to elucidate the processing mechanism of mental calculation to
elucidate the difference between abacus experts and non-experts
using magnetic source imaging from magnetoencephalography
(MEG) signals. Understanding the neural mechanism of abacus
might lead to enhance the calculation ability for patients with
Acalculia who are unable to perform mathematical calculations,
although some alternative numerical processes are still available
to them. This article presents the first model based on the
temporal frequency profile of oscillatory changes. Two groups
of abacus experts and non-experts were asked to perform some
mental calculations to analyze the similarities and differences
between them by looking to their temporal profiles to design
neural processing models for abacus and non-abacus experts
then we compared our results to previous studies (Cohen et al.,
1997; Dehaene et al., 1999, 2003; Ishii et al., 1999).

MATERIALS AND METHODS

Participants
Healthy volunteers (17 non-experts from 21 to 55 years of age,
and 12–13 abacus experts from 18 to 35) participated in this study
to investigate calculation-induced neuromagnetic responses
based on cerebral oscillatory changes using non-invasive
measurement. For mental addition (+) experiments, the age
of non-expert participants is from 21 to 55 years old
(Average ± Standard deviation: 24.9 ± 7.86) and the age
of experts is from 19 to 24 years old (21.9 ± 2.84). Only
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FIGURE 4 | Schematic diagram of the second experimental paradigm. This
figure shows the schematic diagram of the task presentation and analyses
the time window. First, in control stimuli, we presented X, # or VOICE for 4 s,
which means what the subject should do in active stimuli. Then, in active
stimuli, numbers for calculation were presented for 3 s. In SAM analysis, we
compared 1.5 s before and after the presentation of numbers. Also, regarding
time-frequency analysis, the baseline was set for 400 ms before the number
presentation. Analyzed frequency bands are as shown here.

one non-expert volunteer was middle-aged (55 years old).
For multiplication (×) experiments, the age of non-expert
participants is from 21 to 55 years old (25.7 ± 9.3) and the age
of experts is from 18 to 35 years old (23.5± 3.7). However, there

was no statistically significant age difference between participants
in both mental calculation experiments, which means that there
is no age effects. All participants (experts and non-experts) are
right-handed. Abacus experts were certified by the authority for
their skills, which were ranging from 2 Kyu to 10 Dan according
to the Japanese abacus ranking system (i.e., One Dan is one’s
degree or level of expertise and knowledge). These experts got
abacus training for 6–27 years in their life, and their abacus
ranking varies from one person to another.

All participants who were informed in detail about the
research purpose and possible consequences of the MEG
experiment have signed upon an explicit written consent. The
Ethics Committee at Osaka University Hospital approved the
conduct of this study, and the experimental protocol was
carried out according to the latest version of the Declaration of
Helsinki. The T1 structural MRI scans were performed to obtain
DICOM images of the head and brain structures in slices for
all participants. The acquisition of individual anatomical MRIs
of participants was combined with MEG data for getting more
precise source localization.

Experimental Paradigm and Protocol
We performed the MEG recording and MRI at the Osaka
University Hospital (Japan). Neuromagnetic brain activity
was measured with a 64-channel MEG system equipped

FIGURE 5 | A group average of the spatial distribution of oscillatory changes for the first experiment (mental addition during calculation task). The time window is
between −1,000 and 1,000 ms. The frequency interval (all frequency bands) ranges from 4 Hz to 100 Hz. Magenta color shows ERD and orange color shows ERS.
The circled areas indicate statistically-significant oscillatory changes. The significant differences observed (p < 0.05, corrected) in some brain areas are surrounded
by a white circle.
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FIGURE 6 | A group average of the spatial distribution of oscillatory changes for the second experiment (mental multiplication during calculation task). The time
window is between −1,500 and 1,500 ms. The frequency interval (all frequency bands) ranges from 4 Hz to 100 Hz. Magenta color shows ERD and orange color
shows ERS. The circled areas indicate statistically-significant oscillatory changes. The significant differences observed (p < 0.05, corrected) in some brain areas are
surrounded by a white circle.

with the whole-head array of first-order radial SQUID
gradiometers (NeuroSQUID Model 100, CTF Systems
Inc., Canada).

We performed two experiments under simple and complex
conditions based on the three mental-operation tasks; these were:
(i) numeral or calculation; (ii) observation; and (iii) verbal or
confirmation (Hanakawa et al., 2002). The participant was in a
sitting position, and a projection screen was fixed in front of
the eyes. Visual stimuli were shown on the screen with a visual
stimulus presentation system (Presentation, Neurobehavioral
Systems, Albany, CA, USA) and a projector (12.5 × 16 × 20′′)
outside the shielded room. In both experiments, one of the
mathematical operation types, i.e., addition or multiplication,
was presented on the screen in front of the subject. Then, the
subject tries to answer the right answer in his/her mind as
instructed upon the presentation of the execution cue. Each
trial consisted of the following three phases; these were: (i) the
instruction/preparation phase; (ii) the execution phase; and (iii)
the rest phase.

In the first experimental paradigm, the participants (17
non-experts and 12 abacus experts) were instructed to perform
at least a mental addition of two digits plus two digits’ number,
immediately after numbers were presented. Confirmation task
was prepared to confirm whether the subject performs the task
adequately or not but this task was excluded from analysis in

this study. We prepared two kinds of tasks in the addition
experiment. For the first task, the participants were asked to
perform the mental calculation. A black fixation cross (visual
fixation condition ‘‘+’’) was presented after each trial for the
preparation phase (see Figure 2). This digit stimuli ‘‘+’’ was
presented for 4 s on the center of a screen (Figure 1). The
participant was instructed to mentally add the presented series
of digits without moving their body, especially, fingers. After
the presentation of these digit stimuli ‘‘+,’’ series of digits was
presented for 2 s. For the second task, the participants were
asked to judge whether the addition answer in their mind and
the test digit stimuli were the same or different, by answering
aloud after each trial. The experimental session consisted of
80 trials for calculation and observation tasks and eight trials for
confirmation in a random order.

In the second experimental paradigm, the participants (17
non-experts and 13 abacus experts) were instructed to perform
mental multiplication at least by multiplying a two-digit number
by a one-digit number (e.g., 72× 3). We prepared three kinds of
tasks in the multiplication experiment (calculation, observation,
and confirmation). In the confirmation task, the subjects
were asked to speak the answer loudly to confirm whether
they perform the given task as requested. This experimental
session consisted of 168 trials in total including calculation and
confirmation tasks (see Figure 2).
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FIGURE 7 | A group average of a time-frequency profile of oscillatory changes for non-experts during mental addition experiments. The upper graph shows the
time course of the normalized oscillatory changes in the frequency bands specific to the detected areas and lower graphs show time-frequency spectrograms in
each area. The time window is between −400 and 1,000 ms; the movement onset is at 0 ms, and the frequency interval ranges from 4 Hz to 100 Hz. The red areas
in the time-frequency maps indicate increases in power (ERS), and the blue areas indicate decreases in power (ERD). In the figure legend, “Non.” means non-abacus
experts.

However, we adjusted the task difficulty for both experiments
to equalize the task demand for each subject and we used
full power metal calculation to detect the calculation-related
responses effectively. In each subject, we tested calculation
performance (calculation speed and accuracy) in advance before
MEG measurements, and equalized task difficulty for each
subject. For instance, the subject was instructed to perform
2× 1 digits, 2× 2 digits, 3× 2 digits, 3× 3 digits, and 4× 3 digits.
Each case included 40 calculations. Then, we recorded accuracies
of correct answers and times required for calculation. We found
no significant difference between experts and non-experts.

Data Acquisition and Pre-processing
The neuromagnetic activity was sampled at 1,000 Hz, after which
the temporal extension of the signal space separation method
(tSSS) was used to suppress noise and artifacts generated by the
sensors and sources of interference located very close to theMEG
sensors. A band-pass filter from 0.5 to 100 Hz and a 60-Hz
notch filter was applied to reduce some high-frequency noises
and eliminate AC line noise.

For analyses, we used a beamforming method called synthetic
aperture magnetometry (SAM) with an adaptive beamformer to
obtain high spatial resolution. Besides, we introduced a group
analysis to exclude the inter-individual variance. The following

Figures 3, 4 show the time windows of the tasks and analyses
used in this study. As for SAM analyses, we compared 1 s
before and after number presentation. Moreover, concerning
time-frequency analyses, the baseline was set from −400 ms to
0 s. Frequency bands were divided into these five bands; ranging
from theta to high gamma bands.

We used synthetic aperture magnetometry (SAM) group
analysis; SAM was also applied for MEG analysis using
an adaptive beamformer. SAM has high spatial resolution
using virtual narrow apertures with which we could detect
a high-frequency response because this method does not
include the averaging process that otherwise cancels out
the high-frequency components. SAM group analysis detects
common brain activities from individual SAM images using
statistical non-parametric mapping. For group analysis, we
used statistical non-parametric mapping (SNMP), which is
an option of SPM delivered by the Welcome Department
of University College London (UCL). We calculated the
non-parametric pseudo-t-statistic images based on the variance-
covariances of the voxel-level variances for each frequency
band, Family-Wise Error rate (FWE) for p = 0.001, and
MNI coordinates (X, Y, Z) for Brodmann area and the
anatomical localization (see Supplementary Tables S1–S8). We
also calculated time-frequency analysis using a Morlet wavelet
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FIGURE 8 | A group average of a time-frequency profile of oscillatory changes for Abacus experts during mental addition experiment. The upper graph shows the
time course of the normalized oscillatory changes in the frequency bands specific to the detected areas and lower graphs show time-frequency spectrograms in
each area. The time window is between −400 and 1000 ms; the movement onset is at 0 ms, and the frequency interval ranges from 4 Hz to 100 Hz. The red areas
in the time-frequency maps indicate increases in power (ERS), and the blue areas indicate decreases in power (ERD). In the figure legend, “Non.” means non-abacus
experts and “Ex.” means abacus experts.

transform to elucidate temporal dynamics of the calculation
process using MATLAB 2016a software (Mathworks, Natick,
MA, USA).

RESULTS

Spatial Distribution of Oscillatory Changes
We analyzed the spatiotemporal frequency patterns of oscillatory
changes for experts and non-experts using SAM to understand
better source based-brain activation related to abacus experts
and investigate calculation-induced neuromagnetic responses
based on cerebral oscillatory changes using source level-based
MEG signals. The frequency bands are theta (4–8 Hz), alpha
(8–13 Hz), beta (13–25 Hz), low gamma (25–50 Hz), high
gamma (50–100 Hz). In this study, when subjects performed
mental calculations, the magnitude of neuromagnetic fields and
the frequency power of brain activities were either increased
or decreased in both brain hemispheres; these phenomena are
termed as an event-related magnetic field (ERF) for the magnetic
fields, event-related synchronization (ERS) and event-related
desynchronization (ERD) for the frequency power (Pfurtscheller,

1977, 1992). The spatiotemporal distributions of ERD and ERS
could be obtained precisely using SAM. We used this technique
to investigate language processing based on cerebral oscillatory
changes and have previously reported that cerebral oscillatory
changes during silent reading are localized in language-related
areas (Hirata et al., 2004, 2007, 2010; Ihara et al., 2003a).

In non-experts, we found: (i) power increase (ERS) in
frequency band Theta ‘‘θ’’ in the bilateral frontal pole; (ii) power
decrease (ERD) from frequency band Alpha ‘‘α’’ to Beta ‘‘β’’
in the bilateral intraparietal sulcus and the bilateral inferior
temporal regions also; (iii) power decrease in low gamma (low
γ ERD) in the left inferior and middle frontal gyrus and also
in the right dorsolateral prefrontal cortex (DLPFC); and (iv)
power increase in high gamma band (high γ ERS) in the bilateral
medial occipital regions (for observation and calculation tasks,
see Supplementary Figures S1, S2, S13, S14).

In abacus experts, we found the spatial and frequency
distributions are very similar to those of non-experts, but there
are two different points in spatial distribution; these were: (i) in
non-experts, α ERD was dominant in the temporal region, but in
experts, β ERD was more prominent in the parietal region; and
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FIGURE 9 | A group average of time-frequency analyses in non-experts during the mental multiplication experiment. The time window is between −400 and
1500 ms; the movement onset is at 0 ms, and the frequency interval ranges from 4 Hz to 100 Hz. The red areas in the time-frequency maps indicate increases in the
high gamma power (ERS), and the blue areas indicate decreases in the beta/alpha/low gamma power (ERD).

FIGURE 10 | A group average of time-frequency analyses in Abacus experts during the mental multiplication experiment. The time window is between −400 and
1,500 ms; the movement onset is at 0 ms, and the frequency interval ranges from 4 Hz to 100 Hz. The red areas in the time-frequency maps indicate increases in
the high gamma power (ERS), and the blue areas indicate decreases in the beta/alpha/low gamma power (ERD).
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FIGURE 11 | A neural processing mechanism of mental calculation based on cerebral oscillatory changes for Abacus experts and non-experts.

(ii) low γ ERD in the right DLPFC was specific to non-experts
only. Figure 5 shows the spatial distribution of calculation-
induced oscillatory changes revealed by SAM group analyses
for both abacus experts and novices. The circled areas in these
figures indicate statistically significant oscillatory changes (for
observation and calculation tasks, see Supplementary Figures
S3, S4, S15, S16).

Figure 6 shows more activated areas related to mental
multiplication tasks. The medial prefrontal cortex and occipital
cortex were commonly observed in both experts and non-
experts. Specific areas to non-experts are as follows, left dominant
parietal mainly intraparietal sulcus (IPS), and right DLPFC. On
the other hand, specific areas to abacus experts include bilateral
parieto-occipital sulcus (POS), right inferior frontal gyrus (IFG),
and left sensorimotor cortex. In the discussion section, we are
going to speculate the function of each detected area.

The Temporal Frequency Profile of
Oscillatory Changes
Regarding brain activation, we observed some differences in
temporal profile for experts and novices using sensor level
analysis. We observed, in non-experts, ERDs start serially from
parietal, then inferior frontal, dorsolateral prefrontal and finally
parietal region again. In contrast, in abacus experts, ERDs start
simultaneously in parietal and frontal regions. Figures 7, 8
display group average of temporal profile and time-frequency

profile of oscillatory changes during the first experimental
paradigm while the upper graph shows the time course of the
normalized oscillatory changes in the frequency bands specific
to the detected areas and lower graphs show time-frequency
spectrograms in each area. For observation and calculation tasks,
see the spatiotemporal frequency profile of oscillatory changes in
Supplementary Figures S5–S10, S17–S24.

Figures 9, 10 show group average of time-frequency analyses
in abacus experts and non-experts for mental multiplication
experiment. For non-experts (see Figure 9), the oscillatory
responses in the intraparietal sulcus are bilateral, left dominant,
and frequency power is sustained. Also, the right DLPFC
response was sustained. On the other hand, in experts,
interestingly, the parietal response in the bilateral POS is
transient. Also, both the right IFG and left sensorimotor
responses were sustained (see Figure 10).

DISCUSSION

In the present study, we investigated calculation-related
oscillatory changes using SAM group analysis and
time-frequency analysis. We could elucidate the difference
in calculation process between abacus experts and non-
experts. In our proposed experimental paradigms, we
checked if there may be a drastic difference in the strategy
of calculation between abacus experts and non-experts, and
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TABLE 1 | Similarities and differences of brain activity during mental operation tasks as revealed by conjoint analysis across subjects in each group for the proposed
model of calculation processing.

Regions (most significant Brodmann
area) and their function

Non-experts (time-frequency characteristics) Abacus experts (time-frequency characteristics)

Addition Multiplication Addition Multiplication

Medial Occipital for visual processing X θ ERS ∼50 ms X θ ERS ∼50 ms X θ ERS ∼50 ms X θ ERS ∼50 ms
The medial prefrontal cortex (mPFC) for
concentration (Sasaki et al., 1996; Ishii
et al., 1999)

X θ ERS ∼180 ms X θ ERS ∼180 ms X θ ERS ∼140 ms X θ ERS ∼140 ms

DLPFC for working memory low γ ERD
(Sustained)
∼110 ms

low γ ERD
(Sustained)
∼110 ms

× ×

Right IPS for numerical processing α, β, and low γ ERD
(Sustained)
∼110 ms

ERD (Sustained)
∼110 ms

× ×

Left IPS for numerical processing high γ ERS and α,
β, and low γ ERD
(Sustained)
∼110 ms

high γ ERS and α,
β, and low γ ERD
(Sustained)
∼110 ms

× ×

Sensorimotor for beads manipulation of the
imaginary abacus

× × β ERD (Sustained)
∼130 ms

β ERD (Sustained)
∼130 ms

IFG for special control of moving abacus
beads (Campitelli et al., 2007)

× × low γ ERD
(Sustained)
∼100 ms

low γ ERD
(Sustained)
∼100 ms

Bilateral POS for visual working memory to
transform numbers to abacus beads
(Tuladhar et al., 2007)

× × α, and β ERD
(Transient)
∼110 ms

α, and β ERD
(Transient)
∼110 ms

The symbol “X” means a common brain area for experts and non-experts. The symbol “×” means that the brain area was not activated during mental calculation.

if abacus experts use an imaginary abacus or abacus memory.
Non-experts claim to calculate any visualized numbers using
memorized multiplication or addition tables while abacus
experts claim that abacus is visualized in the front of their
eyes or their mind and the beads move automatically when
they try to solve mathematical operations. This study aims
to elucidate the difference in neural processing mechanism
of mental calculation between experts and non-experts using
magnetic source imaging (Della Puppa et al., 2015). Few
studies tried to clarify the spatiotemporal characteristics
of brain activity during addition and multiplication
calculation tasks (Ishii et al., 2014; Vansteensel et al., 2014;
Ueda et al., 2015).

Taking into account of temporal profiles of oscillatory
changes in the first experimental paradigm, we concluded that
non-experts might use serial processing; in contrast, experts may
utilize parallel processing (see Supplementary Figures S11, S12).
We could propose calculation processing in both abacus expert
and non- experts based on our new findings and some previous
studies (Hanakawa et al., 2002, 2003; Arsalidou and Taylor,
2011; Tanaka et al., 2012; Pinel and Dehaene, 2013; Amalric and
Dehaene, 2017). In non-experts, from 75 ms visual processing of
presented numbers start in the bilateral medial occipital, then
from 150 ms figurative cognition of numbers in the inferior
temporal (Dehaene et al., 1996; Pinel et al., 1999) and numeric
processing in the bilateral IPS (Dehaene et al., 1996; Cohen et al.,
2000; Rickard et al., 2000; Kazui et al., 2000; Bugden et al.,
2019), from 200 ms inner speech in the left IFG (Dehaene et al.,
1996), from 250 ms working memory in the DLPFC (Rickard
et al., 2000), and finally from 400 ms addition with carrying in
the IPS starts. Therefore, the calculation in non-experts is serial

processing. In contrast, abacus experts calculate using parallel
processing, following visual processing from 75 ms, figurative
cognition in the inferior temporal, numeric processing in the IPS,
and inner speech in the IFG start simultaneously from 250 ms.
Table 1 shows the similarities and differences of brain activities
in non-experts and abacus experts duringmental operation tasks.

In both experiments where the participants were asked to
perform mental operations, we observed some common brain
activities in both experts and non-experts. Also, the right DLPFC
and bilateral IPS were explicitly detected in non-experts. Bilateral
IPS is related to numerical processing (Bugden et al., 2019), while
the right DLPFC is most probably related to working memory.
In experts, bilateral POS, right IFG, and left sensorimotor areas
were detected specifically. POS is related to visual working
memory. This response was transient, so probably used merely
to transform numbers to abacus beads rather than numerical
processing. Right IFG activation is reported in a Chess-players’
study (Campitelli et al., 2007). The study suggested IFG plays a
crucial role in working memory of strategic spatial configuration
of chess pieces. So in the present study, the right IFG may play a
vital role in the strategic spatial control of moving abacus beads.
The left sensorimotor area is probably related to the imagery
of beads manipulation. After long time training, these areas
might act as an imaginary abacus or abacus memory, so that
experts do not have to logical numerical processing in left IPS,
instead quickly perform complex calculation just by retrieving
memorized abacus memory as if spatial pattern matching (see
Supplementary Figure S25). Finally, for our proposed model
of calculation processing in normal people and abacus experts,
we do believe that normal people calculate logically depending
on numerical processing in left IPS. In contrast, abacus experts
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utilize spatial processing using memorized imaginary abacus,
which distributed over the bilateral hemispheres (see Figure 11).

As noted above, the present Abacus-based mental calculation
experiments sought to provide a conceptual advancement.
Notably, being able to find a model of calculation processing, the
calculation-related area is an essential step toward understanding
the brain processing mechanism, thereby leading to enhance
the mathematical performance of patients with Acalculia.
Although further studies are required, we would like to
apply these findings (see Table 1) clinically to the less
invasive neurosurgical treatments, considering not only standard
calculation-related areas but also inter-individual variation
including extreme brains.

Another important question still unanswered refers to
the challenges of performing extremely complex calculations
(5 × 5 digits). In this study, the experts have high-level
mental calculation with 5–27 years’ experience, but we did not
include world top-level experts. These top-level experts may
show completely different brain activities, which means different
neural mechanisms during the complex mental calculation.
However, these experts are not likely to be able to stop mental
calculation even during observation tasks because the results will
automatically come to their minds instantly. It means that these
top-level experts may perform mental calculations automatically
independent from their will and this unanswered question should
be addressed in the future.

CONCLUSION

For the abacus experts in performing computations, different
brain areas are involving in beads manipulation, and special
control of imaginary abacus was observed. These unique findings
suggested that, through an effective abacus training, the experts
developed a new computational pathway by assigning number
representations onto an imaginative abacus representation,
through a different brain network.

We concluded that non-experts might use serial processing; in
contrast, experts may utilize parallel processing. Abacus experts
may acquire this processing system after long time training, and
their MEG results demonstrated that calculation-related areas

are simultaneously activated using abacus within the brain, and
these parallel processing processes indeed significantly shorten
the computation time.

DATA AVAILABILITY STATEMENT

The datasets generated and analyzed during the current study
are not publicly available due to Osaka University Hospital
policy but are available from the corresponding author on
reasonable request.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by The Ethics Committee at Osaka University Hospital.
The experimental protocol was carried out according to the latest
version of the Declaration of Helsinki. The patients/participants
provided their written informed consent to participate in
this study.

AUTHOR CONTRIBUTIONS

MH designed the study. KK and EU performed experiments and
analyses. AB performed analyses, literature review, and drafted
the manuscript. MH supervised the research and revised the
manuscript. All authors provided critical feedback, reviewed,
edited and approved the final version of the manuscript.

FUNDING

This work was funded partially by the Endowed Research
Fund of the Endowed Research Department of Clinical
Neuroengineering, and KAKENHI (23590672, 23390347). Grant
funded by the Japan Society for the Promotion of Science (JSPS).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnhum.2020.001
37/full#supplementary-material.

REFERENCES

Amalric, M., and Dehaene, S. (2016). Origins of the brain networks for advanced
mathematics in expert mathematicians. Proc. Natl. Acad. Sci. U S A 113,
4909–4917. doi: 10.1073/pnas.1603205113

Amalric, M., and Dehaene, S. (2017). Cortical circuits for mathematical
knowledge: evidence for a major subdivision within the brain’s semantic
networks. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373:20160515.
doi: 10.1098/rstb.2016.0515

Amalric, M., and Dehaene, S. (2019). A distinct cortical network for mathematical
knowledge in the human brain. NeuroImage 189, 19–31. doi: 10.1016/j.
neuroimage.2019.01.001

Arsalidou, M., and Taylor, M. J. (2011). Is 2+2=4? Meta-analyses of brain
areas needed for numbers and calculations. NeuroImage 54, 2382–2393.
doi: 10.1016/j.neuroimage.2010.10.009

Bugden, S., Woldorff, M. G., and Brannon, E. M. (2019). Shared and distinct
neural circuitry for nonsymbolic and symbolic double-digit addition. Hum.
Brain Mapp. 40, 1328–1343. doi: 10.1002/hbm.24452

Campitelli, G., Gobet, F., Head, K., Buckley, M., and Parker, A. (2007). Brain
localization ofmemory chunks in chessplayers. Int. J. Neurosci. 117, 1641–1659.
doi: 10.1080/00207450601041955

Chen, F., Hu, Z., Zhao, X., Wang, R., Yang, Z., Wang, X., et al. (2006). Neural
correlates of serial abacus mental calculation in children: a functional MRI
study. Neurosci. Lett. 403, 46–51. doi: 10.1016/j.neulet.2006.04.041

Cohen, L., Dehaene, S., Chochon, F., Lehéricy, S., and Naccache, L. (2000).
Language and calculation within the parietal lobe: a combined cognitive,
anatomical and fMRI study. Neuropsychologia 38, 1426–1440. doi: 10.
1016/s0028-3932(00)00038-5

Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., Henrik, A., and Goebel, R.
(2007). Notation-dependent and -independent representations of the number
in the parietal lobes. Neuron 53, 307–314. doi: 10.1016/j.neuron.2006.
12.025

Cohen Kadosh, R., Lammertyn, J., and Izard, V. (2008). Are numbers
special? An overview of chronometric, neuroimaging, developmental and
comparative studies of magnitude representation. Prog. Neurobiol. 84, 132–147.
doi: 10.1016/j.pneurobio.2007.11.001

Frontiers in Human Neuroscience | www.frontiersin.org 11 April 2020 | Volume 14 | Article 13785

https://www.frontiersin.org/articles/10.3389/fnhum.2020.00137/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2020.00137/full#supplementary-material
https://doi.org/10.1073/pnas.1603205113
https://doi.org/10.1098/rstb.2016.0515
https://doi.org/10.1016/j.neuroimage.2019.01.001
https://doi.org/10.1016/j.neuroimage.2019.01.001
https://doi.org/10.1016/j.neuroimage.2010.10.009
https://doi.org/10.1002/hbm.24452
https://doi.org/10.1080/00207450601041955
https://doi.org/10.1016/j.neulet.2006.04.041
https://doi.org/10.1016/s0028-3932(00)00038-5
https://doi.org/10.1016/s0028-3932(00)00038-5
https://doi.org/10.1016/j.neuron.2006.12.025
https://doi.org/10.1016/j.neuron.2006.12.025
https://doi.org/10.1016/j.pneurobio.2007.11.001
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Belkacem et al. Neural Processing Mechanism of Mental Calculation

Cohen, L., Jobert, A., Le Bihan, D., and Dehaene, S. (2004). Distinct unimodal
and multimodal regions for word processing in the left temporal cortex.
NeuroImage 23, 1256–1270. doi: 10.1016/j.neuroimage.2004.07.052

Cohen, J., Perlstein, W., Braver, T., Nystrom, L., Noll, D., Jonides, J., et al. (1997).
Temporal dynamics of brain activation during a working memory task. Nature
386, 604–608. doi: 10.1038/386604a0

Dehaene, S. (1992). Varieties of numerical abilities. Cognition 44, 1–42.
doi: 10.1016/0010-0277(92)90049-n

Dehaene, S., Tzourio, N., Frak, V., Raynaud, L., Cohen, L., Mehler, J., et al.
(1996). Cerebral activations during number multiplication and comparison:
a PET study. Neuropsychologia 34, 1097–1106. doi: 10.1016/0028-3932(96)
00027-9

Dehaene, S. (1996). The organization of brain activity in number comparison:
event-related potentials and the additive-factors methods. J. Cogn. Neurosci. 8,
47–68. doi: 10.1162/jocn.1996.8.1.47

Dehaene, S. (1997). The Number Sense. Oxford: Oxford University Press.
Dehaene, S. (2008). ‘‘Symbols and quantities in parietal cortex: elements of

a mathematical theory of number representation and manipulation,’’ in
Attention and Performance XXII, eds P. Haggard, Y. Rossetti and M. Kawato
(London: Oxford University Press), 527–574.

Dehaene, S., and Cohen, L. (1997). Cerebral pathways for calculation: double
dissociation between rote verbal and quantitative knowledge of arithmetic.
Cortex 33, 219–250. doi: 10.1016/s0010-9452(08)70002-9

Dehaene, S., Dupoux, E., and Mehler, J. (1990). Is numerical comparison
digital? Analogical and symbolic effects in 2-digit number comparison.
J. Exp. Psychol. Hum. Percept. Perform. 16, 626–641. doi: 10.1037/0096-1523.
16.3.626

Dehaene, S., Piazza, M., Pinel, P., and Cohen, L. (2003). Three parietal
circuits for number processing. Cogn. Neuropsychol. 20, 487–506.
doi: 10.1080/02643290244000239

Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., and Tsivkin, S. (1999). Sources of
mathematical thinking: behavioral and brain-imaging evidence. Science 284,
970–974. doi: 10.1126/science.284.5416.970

Della Puppa, A., De Pellegrin, S., Lazzarini, A., Gioffrè, G., Rustemi, O.,
Cagnin, A., et al. (2015). Subcortical mapping of calculation processing in
the right parietal lobe. J. Neurosurg. 122, 1038–1041. doi: 10.3171/2014.10.
jns14261

Dimitriadis, S. I., Sun, Y., Thakor, N. V., and Bezerianos, A. (2016). Causal
interactions between frontalθ—parieto-occipitalα predict performance on a
mental arithmetic Task. Front. Hum. Neurosci. 10:454. doi: 10.3389/fnhum.
2016.00454

Hanakawa, T., Honda, M., Okada, T., Fukuyama, H., and Shibasaki, H.
(2003). Neural correlates underlying mental calculation in abacus experts:
a functional magnetic resonance imaging study. NeuroImage 19, 296–307.
doi: 10.1016/s1053-8119(03)00050-8

Hanakawa, T., Honda, M., Sawamoto, N., Okada, T., Yonekura, Y., Fukuyama, H.,
et al. (2002). The role of rostral Brodmann area6 in mental-operation
tasks: an integrative neuroimaging approach. Cereb. Cortex 12, 1157–1170.
doi: 10.1093/cercor/12.11.1157

Hirata, M., Goto, T., Barnes, G., Umekawa, Y., Yanagisawa, T., Kato, A., et al.
(2010). Language dominance and mapping based on neuromagnetic oscillatory
changes: comparison with invasive procedures. J. Neurosurg. 112, 528–538.
doi: 10.3171/2009.7.jns09239

Hirata, M., Kato, A., Taniguchi, M., Saitoh, Y., Ninomiya, H., Ihara, A.,
et al. (2004). Determination of language dominance with synthetic aperture
magnetometry: comparison with theWada test.NeuroImage 23, 46–53. doi: 10.
1016/j.neuroimage.2004.05.009

Hirata, M., Koreeda, S., Sakihara, K., Kato, A., Yoshimine, T., and Yorifuji, S.
(2007). Effects of the emotional connotations in words on the frontal
areas—a spatially filtered MEGstudy. NeuroImage 35, 420–429. doi: 10.1016/j.
neuroimage.2006.11.025

Hu, Y., Geng, F., Tao, L., Hu, N., Du, F., Fu, K., et al. (2011). Enhanced white
matter tracts integrity in children with abacus training. Hum. Brain Mapp. 32,
10–21. doi: 10.1002/hbm.20996

Iguchi, Y., and Hashimoto, I. (2000). Sequential information processing
during a mental arithmetic is reflected in the time course of event-
related brain potentials. Clin. Neurophysiol. 111, 204–213. doi: 10.1016/s1388-
2457(99)00244-8

Ihara, A., Hirata, M., Sakihara, K., Izumi, H., Takahashi, Y., Kono, K., et al.
(2003a). Gamma-banddesynchro-nation in language areas reflects the syntactic
process of words. Neurosci. Lett. 339, 135–138. doi: 10.1016/s0304-3940(03)
00005-3

Ihara, A., Hirata, M., Yanagihara, K., Ninomiya, H., Imai, K., Ishii, R., et al.
(2003b). Neuromagneticgamma-band activity in the primary and secondary
somatosensory areas. Neuroreport 14, 273–277. doi: 10.1097/00001756-
200302100-00024

Ishii, R., Canuet, L., Ishihara, T., Aoki, Y., Ikeda, S., Hata, M., et al. (2014). Frontal
midline theta rhythm and gamma power changes during focused attention on
the mental calculation: a MEG beamformer analysis. Front. Hum. Neurosci.
8:406. doi: 10.3389/fnhum.2014.00406

Kazui, H., Kitagaki, H., and Mori, E. (2000). Cortical activation during retrieval
of arithmetical facts and actual calculation: a functional magnetic resonance
imaging study. Psychiatry Clin. Neurosci. 54, 479–485. doi: 10.1046/j.1440-
1819.2000.00739.x

Ishii, R., Shinozaki, K., Ukai, S., Inouye, T., Ishihara, T., Yoshimine, T.,
et al. (1999). Medial prefrontal cortex generate frontal midline theta
rhythm. Neuroreport 10, 675–679. doi: 10.1097/00001756-199903170-
00003

Li, Y., Hu, Y., Zhao, M., Wang, Y., Huang, J., and Chen, F. (2013). The neural
pathway underlying a numerical working memory task in abacus-trained
children and associated functional connectivity in the resting brain. Brain Res.
1539, 24–33. doi: 10.1016/j.brainres.2013.09.030

Pauli, P., Lutzenberger, W., Rau, H., Birbaumer, N., Rickard, T. C., Yaroush, R. A.,
et al. (1994). Brain potentials during mental arithmetic: effects of extensive
practice and problem difficulty. Cogn. Brain Res. 2, 21–29. doi: 10.1016/0926-
6410(94)90017-5

Pfurtscheller, G. (1977). Graphical display and statistical evaluation of event-
related desynchronization (ERD). Electroencephalogr. Clin. Neurophysiol. 43,
757–760. doi: 10.1016/0013-4694(77)90092-x

Pfurtscheller, G. (1992). Event-related synchronization (ERS): an
electrophysiological correlate of cortical areas at rest. Electroencephalogr.
Clin. Neurophysiol. 83, 62–69. doi: 10.1016/0013-4694(92)90133-3

Pinel, P., and Dehaene, S. (2013). Genetic and environmental contributions to
brain activation during calculation. NeuroImage 81, 306–316. doi: 10.1016/j.
neuroimage.2013.04.118

Pinheiro-Chagas, P., Piazza, M., and Dehaene, S. (2018). Decoding the processing
stages of mental arithmetic with magnetoencephalography. Cortex 114,
124–139. doi: 10.1016/j.cortex.2018.07.018

Pinel, P., Le Clec’H, G., van de Moortele, P. F., Naccache, L., Le Bihan, D.,
and Dehaene, S. (1999). Event-related fMRI analysis of the cerebral circuit
for number comparison. Neuroreport 10, 1473–1479. doi: 10.1097/00001756-
199905140-00015

Rickard, T. C., Romero, S. G., Basso, G., Wharton, C., Flitman, S., and Grafman, J.
(2000). The calculating brain: an fMRI study. Neuropsychologia 38, 325–335.
doi: 10.1016/s0028-3932(99)00068-8

Robinson, S. E., Nagarajan, S. S., Mantle, M., Gibbons, V., and Kirsch, H. (2004).
Localization of interictal spikes using SAM(g2) and dipole fit. Neurol. Clin.
Neurophysiol. 2004:74.

Sasaki, K., Tsujimoto, T., Nishikawa, S., Nishitani, N., and Ishihara, T.
(1996). Frontal mental theta wave recorded simultaneously with
magnetoencephalography and electroencephalography. Neurosci. Res. 26,
79–81. doi: 10.1016/0168-0102(96)01082-6

Tanaka, S., Michimata, C., Kaminaga, T., Honda, M., and Sadato, N. (2002).
Superior digit memory of abacus experts: an event-related functional
MRI study. Neuroreport 13, 2187–2191. doi: 10.1097/00001756-200212030-
00005

Tanaka, S., Seki, K., Hanakawa, T., Harada, M., Sugawara, S. K., Sadato, N.,
et al. (2012). Abacus in the brain: a longitudinal functional MRI study of
a skilled abacus user with a right hemispheric lesion. Front. Psychol. 3:315.
doi: 10.3389/fpsyg.2012.00315

Taniguchi, M., Kato, A., Fujita, N., Hirata, M., Tanaka, H., Kihara, T., et al.
(2000). Movement-related desynchronization of the cerebral cortex studied
with spatially filtered magnetoencephalography. NeuroImage 12, 298–306.
doi: 10.1006/nimg.2000.0611

Tuladhar, A. M., ter Huurne, N., Schoffelen, J. M., Maris, E., Oostenveld, R., and
Jensen, O. (2007). Parieto-occipital sources account for the increase in alpha

Frontiers in Human Neuroscience | www.frontiersin.org 12 April 2020 | Volume 14 | Article 13786

https://doi.org/10.1016/j.neuroimage.2004.07.052
https://doi.org/10.1038/386604a0
https://doi.org/10.1016/0010-0277(92)90049-n
https://doi.org/10.1016/0028-3932(96)00027-9
https://doi.org/10.1016/0028-3932(96)00027-9
https://doi.org/10.1162/jocn.1996.8.1.47
https://doi.org/10.1016/s0010-9452(08)70002-9
https://doi.org/10.1037/0096-1523.16.3.626
https://doi.org/10.1037/0096-1523.16.3.626
https://doi.org/10.1080/02643290244000239
https://doi.org/10.1126/science.284.5416.970
https://doi.org/10.3171/2014.10.jns14261
https://doi.org/10.3171/2014.10.jns14261
https://doi.org/10.3389/fnhum.2016.00454
https://doi.org/10.3389/fnhum.2016.00454
https://doi.org/10.1016/s1053-8119(03)00050-8
https://doi.org/10.1093/cercor/12.11.1157
https://doi.org/10.3171/2009.7.jns09239
https://doi.org/10.1016/j.neuroimage.2004.05.009
https://doi.org/10.1016/j.neuroimage.2004.05.009
https://doi.org/10.1016/j.neuroimage.2006.11.025
https://doi.org/10.1016/j.neuroimage.2006.11.025
https://doi.org/10.1002/hbm.20996
https://doi.org/10.1016/s1388-2457(99)00244-8
https://doi.org/10.1016/s1388-2457(99)00244-8
https://doi.org/10.1016/s0304-3940(03)00005-3
https://doi.org/10.1016/s0304-3940(03)00005-3
https://doi.org/10.1097/00001756-200302100-00024
https://doi.org/10.1097/00001756-200302100-00024
https://doi.org/10.3389/fnhum.2014.00406
https://doi.org/10.1046/j.1440-1819.2000.00739.x
https://doi.org/10.1046/j.1440-1819.2000.00739.x
https://doi.org/10.1097/00001756-199903170-00003
https://doi.org/10.1097/00001756-199903170-00003
https://doi.org/10.1016/j.brainres.2013.09.030
https://doi.org/10.1016/0926-6410(94)90017-5
https://doi.org/10.1016/0926-6410(94)90017-5
https://doi.org/10.1016/0013-4694(77)90092-x
https://doi.org/10.1016/0013-4694(92)90133-3
https://doi.org/10.1016/j.neuroimage.2013.04.118
https://doi.org/10.1016/j.neuroimage.2013.04.118
https://doi.org/10.1016/j.cortex.2018.07.018
https://doi.org/10.1097/00001756-199905140-00015
https://doi.org/10.1097/00001756-199905140-00015
https://doi.org/10.1016/s0028-3932(99)00068-8
https://doi.org/10.1016/0168-0102(96)01082-6
https://doi.org/10.1097/00001756-200212030-00005
https://doi.org/10.1097/00001756-200212030-00005
https://doi.org/10.3389/fpsyg.2012.00315
https://doi.org/10.1006/nimg.2000.0611
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Belkacem et al. Neural Processing Mechanism of Mental Calculation

activity with working memory load. Hum. Brain Mapp. 28, 785–792. doi: 10.
1002/hbm.20306

Ueda, K., Brown, E. C., Kojima, K., Juhasz, C., and Asano, E. (2015). Mapping
mental calculation systems with electrocorticography. Clin. Neurophysiol. 126,
39–46. doi: 10.1016/j.clinph.2014.04.015

Vansteensel, M. J., Bleichner, M. G., Freudenburg, Z. V., Hermes, D.,
Aarnoutse, E. J., Leijten, F. S., et al. (2014). Spatiotemporal characteristics of
electrocortical brain activity during mental calculation. Hum. Brain Mapp. 35,
5903–5920. doi: 10.1002/hbm.22593

Wang, Y., Geng, F., Hu, Y., Du, F., and Chen, F. (2013). Numerical processing
efficiency improved inexperienced mental abacus children. Cognition 127,
149–158. doi: 10.1016/j.cognition.2012.12.004

Wang, C., Weng, J., Yao, Y., Dong, S., Liu, Y., and Chen, F. (2017). Effect of abacus
training on executive function development and underlying neural correlates
in Chinese children. Hum. Brain Mapp. 38, 5234–5249. doi: 10.1002/hbm.
23728

Wu, T. H., Chen, C. L., Huang, Y. H., Liu, R. S., Hsieh, J. C., and Lee, J. J. (2009).
Effects of long-term practice and task complexity on brain activities when
performing abacus-based mental calculations: a PET study. Eur. J. Nucl. Med.
Mol. Imaging 36, 436–445. doi: 10.1007/s00259-008-0949-0

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Belkacem, Kiso, Uokawa, Goto, Yorifuji and Hirata. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 13 April 2020 | Volume 14 | Article 13787

https://doi.org/10.1002/hbm.20306
https://doi.org/10.1002/hbm.20306
https://doi.org/10.1016/j.clinph.2014.04.015
https://doi.org/10.1002/hbm.22593
https://doi.org/10.1016/j.cognition.2012.12.004
https://doi.org/10.1002/hbm.23728
https://doi.org/10.1002/hbm.23728
https://doi.org/10.1007/s00259-008-0949-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


fpsyg-11-00871 May 19, 2020 Time: 18:10 # 1

ORIGINAL RESEARCH
published: 20 May 2020

doi: 10.3389/fpsyg.2020.00871

Edited by:
David Peebles,

University of Huddersfield,
United Kingdom

Reviewed by:
Corinne Bower,

University of Maryland, College Park,
United States
Ilyse Resnick,

University of Canberra, Australia

*Correspondence:
Stefanie Jung

s.jung@iwm-tuebingen.de

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cognitive Science,
a section of the journal
Frontiers in Psychology

Received: 12 December 2019
Accepted: 07 April 2020
Published: 20 May 2020

Citation:
Jung S, Meinhardt A,

Braeuning D, Roesch S, Cornu V,
Pazouki T, Schiltz C, Lonnemann J
and Moeller K (2020) Hierarchical

Development of Early Visual-Spatial
Abilities – A Taxonomy Based

Assessment Using the MaGrid App.
Front. Psychol. 11:871.

doi: 10.3389/fpsyg.2020.00871

Hierarchical Development of Early
Visual-Spatial Abilities – A Taxonomy
Based Assessment Using the MaGrid
App
Stefanie Jung1,2*†, Anna Meinhardt1,3,4†, David Braeuning1,5,6, Stephanie Roesch1,
Véronique Cornu7, Tahereh Pazouki7, Christine Schiltz8, Jan Lonnemann9 and
Korbinian Moeller1,2,4,5,10

1 Leibniz-Institut für Wissensmedien, Tübingen, Germany, 2 Department of Psychology, Eberhard Karls University Tübingen,
Tübingen, Germany, 3 DIPF Leibniz Institute for Research and Information in Education, Frankfurt, Germany, 4 Center for
Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt, Germany, 5 LEAD Graduate School and
Research Network, University of Tübingen, Tübingen, Germany, 6 Hector Research Institute of Education Sciences and
Psychology, University of Tübingen, Tübingen, Germany, 7 Luxembourg Centre for Educational Testing (LUCET), University of
Luxembourg, Esch-sur-Alzette, Luxembourg, 8 Department of Behavioral and Cognitive Sciences (DBCS), University of
Luxembourg, Esch-sur-Alzette, Luxembourg, 9 Empirical Childhood Research, University of Potsdam, Potsdam, Germany,
10 Centre for Mathematical Cognition, School of Science, Loughborough University, Loughborough, United Kingdom

Visual-spatial abilities (VSA) are considered a building block of early numerical
development. They are intuitively acquired in early childhood and differentiate in further
development. However, when children enter school, there already are considerable
individual differences in children’s visual-spatial and numerical abilities. To better
understand this diversity, it is necessary to empirically evaluate the development as
well as the latent structure of early VSA as proposed by the 2 by 2 taxonomy of
Newcombe and Shipley (2015). In the present study, we report on a tablet-based
assessment of VSA using the digital application (app) MaGrid in kindergarten children
aged 4–6 years. We investigated whether the visual-spatial tasks implemented in
MaGrid are sensitive to replicate previously observed age differences in VSA and
thus a hierarchical development of VSA. Additionally, we evaluated whether the
selected tasks conform to the taxonomy of VSA by Newcombe and Shipley (2015)
applying a confirmatory factor analysis (CFA) approach. Our results indicated that the
hierarchical development of VSA can be measured using MaGrid. Furthermore, the
CFA substantiated the hypothesized factor structure of VSA in line with the dimensions
proposed in the taxonomy of Newcombe and Shipley (2015). Taken together, the
present results advance our knowledge to the (hierarchical) development as well as
the latent structure of early VSA in kindergarten children.

Keywords: visual-spatial abilities, 2 by 2 taxonomy, geometry, tablet-based approach, MaGrid

INTRODUCTION

Early numerical development was suggested to build on both spatial-geometric and numerical-
quantitative concepts and the acquisition of corresponding abilities (Sarama and Clements, 2004;
Jirout and Newcombe, 2015; Newcombe et al., 2015). These skills were argued to be acquired
intuitively in early childhood (e.g., Newcombe et al., 2015), but their close association persists in
adulthood (Dehaene et al., 1999; Hubbard et al., 2005).

Frontiers in Psychology | www.frontiersin.org 1 May 2020 | Volume 11 | Article 87188

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.00871
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2020.00871
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.00871&domain=pdf&date_stamp=2020-05-20
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.00871/full
http://loop.frontiersin.org/people/846543/overview
http://loop.frontiersin.org/people/888201/overview
http://loop.frontiersin.org/people/865855/overview
http://loop.frontiersin.org/people/919613/overview
http://loop.frontiersin.org/people/506663/overview
http://loop.frontiersin.org/people/21451/overview
http://loop.frontiersin.org/people/41231/overview
http://loop.frontiersin.org/people/32662/overview
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00871 May 19, 2020 Time: 18:10 # 2

Jung et al. Taxonomy-Based Assessment of Visual-Spatial Abilities

However, already at the age of kindergarten, there are
large individual differences in children’s spatial and numerical
skills (Krajewski and Schneider, 2009; Newcombe and Frick,
2010), which also have long-term consequences: For example,
longitudinal studies revealed that children’s spatial as well as
basic numerical abilities at the age of kindergarten predict
their mathematical achievement in primary school and beyond
(Duncan et al., 2007; Krajewski and Schneider, 2009; Verdine
et al., 2017). More recent evidence from large-scale factor
analytic studies suggested strong relations among visual-
spatial and mathematic skills in first, third and sixth graders
(Mix et al., 2016, 2017).

Visual-spatial abilities (VSA), in particular, are an important
building block when it comes to acquiring geometric abilities
(Franke and Reinhold, 2007), indicating that their impact goes
beyond typically considered basic numerical abilities such as
counting and magnitude understanding (cf. Clements, 1998).
However, there are multiple abilities summarized under the
broad umbrella of VSA for which it is difficult to specify
theoretical concepts associated with this term (Eliot and Smith,
1983; Carroll, 1993; Newcombe et al., 2015; Mix et al., 2016). Only
recently, Newcombe and Shipley (2015) proposed a top-down
systematic taxonomy of VSA, which considers and integrates
prior distinctions of different dimensions of VSA. This taxonomy
defines VSA along two dimensions: first, VSA being either
intrinsic to vs. extrinsic between objects (following the neural
organization of spatial thinking, e.g., Chatterjee, 2008). Second,
VSA being related to static vs. dynamic aspects of objects
(considering propositions by e.g., Kozhevnikov et al., 2002).
Such a systematic attempt to define the actual nature of VSA
and to understand their latent cognitive components may
provide a promising framework based on which VSA can be
assessed and promoted.

In the present paper, we aimed at validating the 2 by 2
taxonomy of Newcombe and Shipley (2015) using an assessment
procedure for VSA in kindergarten children aged 4 to 6 years
from both a theoretical and a behavioral perspective. From a
theoretical perspective, we investigated how VSA develop with
respect to the intrinsic-extrinsic dimension as well as to the static-
dynamic dimension as proposed in the 2 by 2 taxonomy of VSA.
From a behavioral perspective, we investigated the hierarchical
development of VSA as assessed by the digital application (app)
MaGrid (“Math on Grid”; Cornu et al., 2017; Pazouki et al., 2018).
In the following, we will first report on recent approaches to
theoretically categorize VSA before we consider their hierarchical
development. Subsequently, we introduce the tablet-based app
MaGrid to provide an idea of its functionality and how the app
is currently used to promote VSA.

A Taxonomy of Visual-Spatial Abilities
A comprehensive understanding of VSA, which are generally
referred “to skill[s] in representing, transforming, generating,
and recalling symbolic, non-linguistic information” (Linn and
Petersen, 1985, p. 1,482), is essential to develop valid assessment
and training tools. However, its complexity has long hampered
a coherent definition. Still today, there are inconsistencies and
contradictions in the literature on VSA. Although different

bottom-up factor-analytical approaches have confirmed the
variety of spatial abilities (Newcombe and Shipley, 2015), they did
not lead to a consensus on the definition of this term.

Uttal et al. (2013) were among the first to adopt an opposing
top-down approach: they worked on the development of a two-
dimensional classification system of VSA. This classification
system is referred to by the 2 by 2 taxonomy proposed
by Newcombe and Shipley (2015) and incorporates evidence
from cognitive, linguistic and neural findings (Palmer, 1978;
Talmy, 2000; Chatterjee, 2008). Within this taxonomy, four
different categories of VSA are defined: Intrinsic-static (i.e.,
perceiving objects), intrinsic-dynamic (i.e., assembling small
units into larger ones, mental rotation), extrinsic-static (i.e.,
understanding abstract spatial concepts), and extrinsic-dynamic
(i.e., perspective taking) VSA.

Intrinsic processes require only consideration of the object
at hand, whereas object surroundings in terms of a reference
frame are not considered. A reference frame is understood as a
coordinate system needed to determine the position of an object
in space in relation to others from a certain perspective (Talmy,
2000). Extrinsic processes, in contrast, involve relations between
different objects as well as the spatial configuration of objects
within a reference frame. Static and dynamic aspects of single
or multiple objects concern the immobility or motion of objects.
On the one hand, an object can remain static, which means that
it does not change its position, orientation, and/or dimension.
On the other hand, objects can be manipulated physically or
mentally, which involves changes in position and orientation.
This manipulation defines dynamic VSA. For example, the
picture of a car can be viewed as a 2D-static object. The car itself,
however, can also be viewed as a 3D dynamic object. In 3D, the car
can be rotated or moved. It is also possible to take, for instance,
the perspective of its driver.

Literature on VSA provides considerable support for the 2 by
2 taxonomy of Newcombe and Shipley (2015, e.g., Newcombe,
2018, for a review). It is therefore increasingly used as a
theoretical framework for the classification of VSA. For example,
Hodgkiss et al. (2018) tested VSA of 7- to 11-years-old children
using five different tasks, which the authors assigned to the
four categories of VSA according to the 2 by 2 taxonomy
(i.e., intrinsic-static: visual embedding; intrinsic-dynamic: mental
rotation and mental folding; extrinsic-static: spatial scaling;
extrinsic-dynamic: photo spatial perspective taking). They
observed that task performance differed significantly between
categories. Interestingly, only intrinsic-dynamic and extrinsic-
static VSA were found to predict performance in STEM subjects
(e.g., biology, chemistry, physics). However, while this provides
evidence corroborating the taxonomy of Newcombe and Shipley
(2015) the findings of Hodgkiss et al. (2018) do not yet reflect a
validation of the taxonomy. To do so, it would be necessary to
include more than one task per category of VSA and to evaluate
the relations within vs. between tasks and categories, which the
authors did only for intrinsic-dynamic VSA.

In contrast, Mix et al. (2018) assessed two tasks per category of
the 2 by 2 taxonomy in a post hoc analysis of previously published
data (Mix et al., 2017). However, their findings did not support
the validity of the theoretically assumed 2 by 2 structure of VSA.
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Using a confirmatory factor analysis (CFA) approach on data of
school children (i.e., first, third and sixth grade), the authors did
not observe evidence for an overall 2 by 2 structure. Instead, their
CFA results showed that the static-dynamic 2-factor model did
not provide a better fit than a single factor model. Consequently,
there was no differentiation along the static-dynamic dimension
of VSA. Furthermore, the differentiation between intrinsic and
extrinsic VSA was substantiated by the CFA, but only for first
and third graders. For sixth graders, a single factor model was
found to fit the data best. Based on these findings, Mix et al.
(2018) suggested that the latent structure of VSA may change
over the course of their development. They proposed to further
investigate the developmental trajectories of VSA which was one
aim of the present study.

Hierarchical Development of VSA
Considering the 2 by 2 Taxonomy
Studies on the early development of VSA demonstrated that these
abilities begin to develop already in infancy and further evolve
during childhood (Frick and Wang, 2014). From the literature, it
is reasonable to assume that this hierarchical development of VSA
may also be reflected in the 2 by 2 taxonomy of Newcombe and
Shipley (2015) although the complexity involved in categorizing
VSA and tasks can hardly be captured by such an approach
(Newcombe, 2018).

In the course of development, it is assumed that the
development of intrinsic VSA precedes the development of
extrinsic VSA (Newcombe and Huttenlocher, 2006). Similarly,
the development of static VSA is assumed to precede the
development of dynamic VSA (Okamoto et al., 2015). In
particular and concerning the intrinsic-static category, Clements
(1998), for example, analyzed the characteristics by which 3–
6 years old kindergarten children distinguish between different
shapes (e.g., circles and rectangles). The authors observed that
almost all children were able to recognize and externally verbalize
the object’s characteristics. However, they also found that object
recognition did improve with age.

Similar results were reported by Stiles and Tada (1996) who
assessed how kindergarten children of different age groups (i.e.,
3–3.5, 3.5–4, 4–4.5, and 4.5–5 years) segmented objects (e.g., +,
×, ∗) into parts or integrated parts to objects. The authors found
that younger children segmented forms into more components
than older children, because they perceived lines as discontinuous
due to, for instance, an intersection at the midpoint. Older
children, instead, perceived the lines as continuous across such
an intersection. This indicates that they already seem to have
acquired more elaborate shape recognition skills and thus a more
abstract representation of the respective object.

Based on such an abstract representation of forms and objects
(e.g., length and distance of lines, or angles; Lee et al., 2012),
children may then develop extrinsic-static abilities that involve
an understanding of spatial relations between objects and the
environment as well as the size and scaling of objects. Then again,
processing of extrinsic-static information improves with age and
individual experiences (Newcombe and Huttenlocher, 2006; see
also Okamoto et al., 2015, for an overview).

In contrast to the understanding of intrinsic-static or
extrinsic-static characteristics of objects, dynamic VSA often
involve transforming, (mentally) rotating, or assembling (a
set of) objects as well as perspective taking (Uttal et al.,
2013; Newcombe and Shipley, 2015). With regard to the
intrinsic-dynamic category, Clements et al. (2004) investigated
the development of this VSA in 3–7 years old children
in a composition task of geometric figures. The successful
development of intrinsic-dynamic VSA is seen as a prerequisite
to cope with extrinsic-dynamic visual-spatial processing because
extrinsic-dynamic VSA involve recognition of changing spatial
relations of objects while considering the environment from
different perspectives. Thereby, they involve self-to-object (i.e.,
perspective taking) and object-to-object (i.e., location learning)
navigation (Okamoto et al., 2015), which develop throughout the
early years of childhood.

Despite the consideration of the different dimensions of VSA,
the development of VSA along the intrinsic-extrinsic dimension
cannot be assumed to be distinct from the development of VSA
along the static-dynamic dimension. More likely, a development
across both dimensions can be assumed. To be more specific,
when considering the four categories of VSA as a 2 × 2
matrix (see also Figure 1), developmental trajectories would
be expected both in the horizontal direction along the static-
dynamic dimension as well as in the vertical direction along the
intrinsic-extrinsic dimension. Consequently, intrinsic-static VSA
are assumed to develop earlier than intrinsic-dynamic VSA while
they also develop earlier than extrinsic-static VSA. Accordingly,
within a specific age group, intrinsic-static VSA should be
further developed than intrinsic-dynamic VSA, which should
be more pronounced than extrinsic-static VSA and these again
further developed than extrinsic-dynamic VSA (i.e., intrinsic-
static > intrinsic-dynamic > extrinsic-static > extrinsic-
dynamic). Based on this assumption, the 2 × 2 taxonomy of VSA
by Newcombe and Shipley (2015) provides a framework not only
for the structure of VSA but also for the development of VSA with
age (Uttal et al., 2013; for the malleability of VSA).

Latest developments in digital technologies are influencing
the development of assessment and training tools for VSA at
an incredible speed, providing small and ready to use devices
such as touch-operated smartphones and tablet devices. Tablets,
in particular, are increasingly used in educational settings (e.g.,
Goodwin, 2012; Pazouki et al., 2018). Tablet-based trainings have
been shown to improve VSA – even though these improvements
have been found to differ from improvements gained in paper-
based trainings (e.g., Lowrie et al., 2014, but see Lowrie et al.,
2017), for partly contradictory results).

There is, however, no requirement for scientific validation for
apps marketed as educational (Hirsh-Pasek et al., 2015). This
is problematic for educators and parents alike when they want
to ensure that children are using appropriate and effective apps
for educational purposes (Hirsh-Pasek et al., 2015). In turn, this
emphasizes the need for research and development of validated
educational apps.

From the perspective of an app, tablets already seem to be
attractive to young children as they encourage kindergarten
children to become more closely and effectively involved in
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FIGURE 1 | (A–C) Classification of MaGrid tasks in the taxonomy proposed by Newcombe and Shipley (2015). (A) Depicts an example of an item of the Find forms
task in the top row and an item of the Close form task in the bottom row. For both tasks, the tablet display is shown on the right side and the corresponding booklet
picture on the left side of the panel. (B) Gives an example of an item of the Rotation task in the top row and an item of the Tangram task on the bottom row. For both
tasks, target objects are given in the booklet (left). (C) Shows an item of the Reproduce forms I task for which again a booklet is needed (left). The bottom row depicts
an example of the Reproduce forms II task. Only the tablet is needed for this task. Tasks assessing extrinsic-dynamic VSA are not provided in the MaGrid app.

digital activities (Zaranis and Valla, 2017). And even very young
children seem to be able to use tablets, as recently shown
by Marsh et al. (2015). The authors observed that more than
fifty percent of children between 0 and 5 years of age were
able to drag objects on a tablet and follow shapes with their
fingers on their own.

From an educational and scientific perspective, tablets seem
suitable as they have been found to be effective for training and
assessment of different cognitive abilities (e.g., Lowrie et al., 2014;
Cornu et al., 2017). In this context, it is of particular importance
that these apps consider the limited but developing, cognitive
and motor skills of young children (Vatavu et al., 2015) as well
as educational design principles to ensure learning (e.g., Cayton-
Hodges et al., 2015). Taken together, these findings show the large
potential of tablets used in education, even for young children,
but also the need for the development of validated apps.

MaGrid – A Tablet-Based Early
Visual-Spatial and Mathematical Training
The recently introduced tablet-based training tool MaGrid for
VSA and early numerical abilities (Cornu et al., 2017; Pazouki
et al., 2018) aims at meeting this challenge. MaGrid training tasks
are based on established developmental models of numerical

cognition (Von Aster and Shalev, 2007) as well as further
findings from empirical research on visual-spatial development.
Thus, they line up with the few existing digital programs for
training numerical skills, which are based on generally accepted
theoretical concepts and scientific evidence (e.g., “Math Garden”;
Straatemeier, 2014; “Math Shelf”; Schacter et al., 2016).

MaGrid is a tablet-based app for training building blocks of
early numerical abilities. It provides a wide range of training
tasks (i.e., 32 number specific and simple arithmetic tasks and 16
different visual-spatial tasks). These tasks target different aspects
of visual-spatial (e.g., spatial perception, (mental) rotation, spatial
visualization, and visual-motor integration) and related number-
specific knowledge mostly at the preschool level for children
aged 4–7 years. A novelty of MaGrid is its independence of
any language instructions such as text or voice-overs, which is
unique so far. In addition, MaGrid combines all the advantages
of computer-based training tools. It allows user-friendly easy to
administer individual learning in an interactive way and provides
real-time feedback. The built-in logging- and monitoring-system
allows to keep track of a children’s learning progress and
to observe potential training-related improvements over time
(Pazouki et al., 2018).

The effectiveness of MaGrid was evaluated empirically for
kindergarten children (Cornu et al., 2017). In their intervention

Frontiers in Psychology | www.frontiersin.org 4 May 2020 | Volume 11 | Article 87191

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00871 May 19, 2020 Time: 18:10 # 5

Jung et al. Taxonomy-Based Assessment of Visual-Spatial Abilities

study, Cornu et al. (2017) realized a MaGrid training of VSA
twice a week over a period of 10 weeks. The authors used
various tasks such as Find forms, Copy forms, Tangram, Rotation,
Reproduce forms I and Reproduce forms II (these tasks are
used in the present study related to the 2 by 2 taxonomy
of VSA), as well as Find the pair, Figure completion, Odd-
one out, Row completion, Line bisection, Figure bisection, and
Symmetry among others. Training effects were compared to
a control group of kindergarten children (i.e., business-as-
usual classroom following the Luxemburgish curriculum for
kindergartens) who did not use the app. Results indicated that
children who were trained with MaGrid significantly improved in
some VSA (e.g., spatial orientation and visuo-motor integration)
over the course of training. However, improvements in VSA were
limited to the trained visual-spatial domains. The authors did not
observe generalization to non-trained VSA or numerical skills.
Nevertheless, this study showed the suitability of MaGrid for
training VSA in kindergarten children. However, MaGrid has not
yet been used as a tool for targeted assessment of VSA.

Targeted assessments are essential for the evaluation of
individual abilities. However, assessments are often carried
out in very artificial settings that are far from everyday life
play situations. Using a tablet-based app, which has already
been shown to maintain young children’s interest over a
longer period (Pazouki et al., 2018), may help to reduce
stress in assessment situations. Thus, children’s abilities may be
assessed in a more playful manner (Zaranis and Valla, 2017),
most probably facilitating the assessment process. Furthermore,
features implemented in MaGrid, such as its language neutrality
or built-in logging- and monitoring-system, may be assumed to
be very promising for a fair and simplified data acquisition and
monitoring of developmental processes.

In the present study and based on the above-mentioned
assumptions, we modified the functionality of MaGrid so that
it could be used for the assessment of VSA in kindergarten
children. To this end, we chose six tasks of MaGrid, which
were most closely related to the tasks Newcombe and Shipley
(2015) associated with specific VSA according to their taxonomy:
Two tasks each were assigned to assess intrinsic-static, intrinsic-
dynamic, and extrinsic-static VSA. Please note that extrinsic-
dynamic VSA (i.e., perspective taking) cannot be assessed using
MaGrid because the app does not include respective tasks (see
Frick et al., 2014). Therefore, we did not consider extrinsic-
dynamic VSA in this study.

Using the six tasks, we evaluated whether the selected tasks
conform to the taxonomy of Newcombe and Shipley (2015)
applying a CFA approach (cf. Mix et al., 2018, for a similar
approach). The CFA approach seems to be well suited to evaluate
the structural predictions in the taxonomy of VSA by testing the
fit of theoretically specified models against each other. We further
investigated whether MaGrid can detect age differences in the
development of VSA between three age groups of kindergarten
children (youngest group: 48–58 months, intermediate group:
59–67 months, oldest group: > 68 months).

Our hypotheses were as follows: First, we expected the
assignment of tasks to the categories of VSA according to the
taxonomy of VSA by Newcombe and Shipley (2015) to be

reflected by our empirical data as evaluated in the CFA approach.
Second, provided that the visual-spatial tasks implemented in
MaGrid are sensitive to reflect the hierarchical development of
VSA appropriately, we further expected to observe the following
specific pattern of task performance: Concerning the latent
structure of the VSA according to the 2 × 2 taxonomy, we
assumed to find evidence for a hierarchical development of
the VSA within and across all three categories. Accordingly,
older children should outperform younger children on the
respective tasks within each category. Across VSA categories, task
performance for intrinsic-static VSA should be better than task
performance for intrinsic-dynamic VSA, which should be more
pronounced than task performance in extrinsic-static VSA in all
groups of children.

METHODS

Participants
Eighty-six children from four different kindergartens in the
state of Baden-Wuerttemberg (Germany) participated in the
study. Two children were excluded during data collection due to
insufficient German language skills. Finally, data of 84 children
(39 girls, mean age: M = 63.18 months, SD = 8.26 months
(range 49–78 months) were included. The parents of 78
children reported that their child had German nationality.
Furthermore, 56 children stated that they had experiences with
tablet devices regularly.

Written informed consent was obtained from parents prior
to the study besides children’s verbal assent before the actual
assessment. All children received a small present (e.g., a pencil
and a pixie book) for their participation. The study was approved
by the local ethics committee (LEK 2018/043).

Procedure
Data were collected in at least two individual testing sessions
lasting ∼40 min. Testing sessions took place in a quiet and well-
lit room in the respective kindergartens. Before the testing, all
children were familiarized with the MaGrid app in two different
ways: First, children could try out the handling of the app
by playing around in the “Freeplay” mode (cf. Pazouki et al.,
2018). Second, children were instructed by a tutorial video, which
preceded each task and showed a visual example of solving an
instance of the selected task without verbal instructions. For the
assessment, we used a termination criterion to avoid repeated
experiences of failure and terminated the task when a child made
more than three errors in a row.

Materials
MaGrid Tasks
To assess children’s VSA, we used an adapted version of MaGrid.
Adaption involved several changes to the training version of the
app. For example, children did not receive any feedback on their
provided solutions and could only submit one solution for each
item, regardless of whether they found the correct solution or
not. In addition, the order of items for each task was fixed. In all
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tasks, items increased in task difficulty over the course of testing
in order to induce variability between the tested age groups.

In the present study, we were interested in children’s task
performance as assessed by overall correctness in each task.
To this end, an item was evaluated dichotomously as either
correct or incorrect (i.e., data), resulting in a sum score for
each task assessed.

Intrinsic-Static VSA
To assess children’s intrinsic-static VSA, we used the tasks Find
forms and Close forms of the MaGrid app (Pazouki et al., 2018).
For the task Find forms, children were supposed to select a specific
geometric form (e.g., a triangle or a rectangle), which was given in
a booklet, from different distracting forms (see Figure 1A, in the
top row) by touch-typing. This task included 16 items. In order
to increase task difficulty, the number of distractors continuously
increased during the task. As the number of distractors on the
tablet increases, the size of the forms needed to be decreased in
order to fit all forms on the display. Consequently, the size of
the target form in the booklet and forms on the display varied
for the more difficult trials (i.e., in 6 of 16 items). Therefore, it
was explained to participating children beforehand that the size
of forms in the booklet and on the tablet may differ in some trials.
However, for solving the task, the shape of the form is important
and not its size on the display. As Find forms relies basically
on static pattern recognition, we assumed that the depiction of
forms in different sizes should not significantly affect children’s
performance in intrinsic-static VSA as one would expect for
active scaling processes in intrinsic-dynamic VSA.

For the task Close forms, a booklet was also required. The
booklet showed a target form. The same form but with missing
lines was displayed on the tablet in a grid. Children were asked to
complete the form by drawing the missing line with their index
finger (see Figure 1A, in the bottom row). This task also consisted
of 16 items. The difficulty was increased by eliminating more
lines from the given forms. In addition, the corners of a form
were no longer displayed, requiring the children to create new
corners to complete the forms instead of just connecting two dots
in a straight line.

Intrinsic-Dynamic VSA
To assess children’s intrinsic-dynamic VSA, we used the MaGrid
tasks Rotation and Tangram (cf. Pazouki et al., 2018). For
the Rotation task, children were asked to align the given
form according to the orientation depicted in the booklet (see
Figure 1B, in the top row). To this end, children were supposed to
use two rotary buttons. Sixteen items were assessed. In the more
difficult trials, form configuration was more specific requiring
advanced visual-spatial perception.

The Tangram task required children to assemble various
geometric forms according to a given configuration in the
booklet. The forms to be assembled were presented in a random
position on the tablet (see Figure 1B, in the bottom row).
Children had to use their fingers to select a form and drag it
to the correct position in relation to the other forms. Motor
requirements for Tangram were comparably medium. Tangram
comprises 14 items, with to-be-built configurations becoming

more complex in later trials. An item was only considered to be
solved correctly (and thus awarded 1 point) when all components
of the form were correctly assembled (see Verdine et al., 2017, for
a discussion of different coding strategies and performance on a
similar spatial assembly task).

Extrinsic-Static VSA
To assess children’s extrinsic-static VSA, we used the MaGrid
tasks Reproduce forms I and II (cf. Pazouki et al., 2018). In the
MaGrid task Reproduce forms I children had to reproduce (i.e.,
draw) a given geometric form in the grid of the app according to
the form depicted in the booklet (see Figure 1C, in the top row).
In sum, 25 items were assessed. The number of the given forms
as well as their complexity varied between the easy and the more
difficult trials.

The MaGrid task Reproduce forms II only differed slightly
from the Reproduce form I. Instead of in a booklet, the target
form was shown on the tablet itself in a specific position in the
grid. Children were not only required to copy the given form, but
they also had to reproduce the correct position in the grid (see
Figure 1C, in the bottom row), and thus adhere to the reference
frame. This task comprised 16 items. Again, more difficult tasks
varied from easy tasks by using more complex forms.

The motor component for both tasks was rather high,
compared to the Tangram task, because children had to draw on
the tablet in order to copy the figure. Again, an item was only
considered to be solved correctly (and awarded 1 point) when the
entire form was copied correctly.

Data Analysis
Confirmatory Factor-Analysis – Structure of Early VSA
To evaluate the taxonomy of VSA suggested by Newcombe and
Shipley (2015) on our data, we conducted a CFA. In the CFA,
we opted on an inclusive strategy. That is, we included as many
indicators per factor as possible to compensate for the relatively
small sample (as recommended by e.g., Marsh et al., 1998).
Items of the Find forms and Close forms tasks were considered
to assess intrinsic-static VSA. Items of the tasks Rotation and
Tangram were classified as assessing intrinsic-dynamic VSA.
Items of the two Reproduce forms tasks were considered assessing
extrinsic-static VSA. As all items were coded binary (i.e., correct:
1, incorrect: 0) we used the Weighted Least Squares Means
and Variances (WLSMV) adjusted estimator (e.g., Li, 2016).
We considered Root Mean Square Error of Approximation
(RMSEA), Comparative Fit Index (CFI), and Tucker-Lewis Index
(TLI) to evaluate model fit, with RMSEA < 0.05, CFI > 0.95,
and TLI > 0.95 as cut-off criteria for a well-fitting model
(Hu and Bentler, 1999). All analyses were performed in Mplus
Version 8.0 (Muthén and Muthen, 2017) and SPSS (IBM R©, SPSS
Statistics, Version 25).

Hierarchical Development of VSA
To evaluate whether children’s VSA developed hierarchically, we
formed three different sub-groups according to children’s age
(youngest, intermediate and oldest age-group). The threshold
for the oldest group was chosen because these children were
old enough to enter school according to the education Act
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for Baden-Württemberg {Schulgesetz für Baden-Württemberg
[SchG, 1983, §73 (1)]}. The second threshold was chosen to form
two additional groups of similar sizes (see Table 1). We, therefore,
assigned 27 children to the group of youngest children (i.e., 48–
58 months old), 26 children were assigned to the intermediate
group (i.e., 59–67 months old), and 31 children were assigned to
the group of oldest children (i.e., 68–78 months old). This allowed
us to investigate children’s intrinsic-static, intrinsic-dynamic and
extrinsic-static VSA separately for each age-group.

To test the hierarchical development of VSA in young
children, we conducted both t-tests in order to investigate overall
differences in children’s task performance and a MANOVA
evaluating the influence of age on the different categories. VSA
was measured by the mean scores of correct answers for a
task, with two tasks representing one ability (e.g., the intrinsic-
static ability is measured by the mean score of the correct
answers for Find forms and Close forms). As 56 children had
prior tablet experience, we analyzed whether this experience
moderated performance across tasks using the SPSS-macro
PROCESS (Hayes, 2012).

The significance level was set to p ≤ 0.05 for all analyses.
Effect sizes are reported as η2

p (medium effect ≥ 0.06, large
effect ≥ 0.14, according to the recommendations of Cohen
(1969, see also Richardson, 2011). Bonferroni-corrected pairwise
comparisons followed-up the univariate analyses to specify
significant group differences.

RESULTS

In total, data of 84 children entered the analyses. Table 2 provides
descriptive information regarding the group mean performance
of the six selected MaGrid tasks. As all items were binary coded,
the mean scores of the tasks indicate the percentage of correctly
solved items for each task.

TABLE 1 | Sub-groups according to children’s age.

Age-group Age (months) M (SD) N Gender (m:f)

Youngest 48–58 53.33 (2.96) 27 12:15

Intermediate 59–67 63.19 (2.67) 26 17:9

Oldest >68 71.74 (3.47) 31 16:15

TABLE 2 | Task performance for each age group (mean correct and standard
deviation).

Task Youngest Intermediate Oldest

Mean (SD) Mean (SD) Mean (SD)

Find forms 0.85 (0.15) 0.91 (0.09) 0.90 (0.08)

Close forms 0.73 (0.15) 0.80 (0.19) 0.87 (0.12)

Rotation 0.82 (0.17) 0.89 (0.15) 0.93 (0.09)

Tangram 0.36 (0.27) 0.57 (0.22) 0.71 (0.18)

Reproduce forms I 0.08 (0.14) 0.20 (0.21) 0.32 (0.27)

Reproduce forms II 0.46 (0.38) 0.76 (0.22) 0.82 (0.19)

We also looked at the correlations between tasks and found
significant correlations between all tasks. Table 3 indicated that
most correlations were moderate to high (Cohen, 1988) except
for the correlation between Find forms and Reproduce forms I.

Confirmatory Factor Analysis: Structure
of Early VSA
We first analyzed the relative frequencies of correct and
incorrect solutions in all 103 items. Items with low variance
(i.e., items that were correctly or incorrectly solved by at least
90% of the children) were excluded as they did not entail
sufficient information for model estimation (i.e., 44 items).
Based on the remaining 59 items, we specified a three-factor
model. In this model, intrinsic-static VSA were indicated by
items from the Find forms and Close forms tasks (9 items
in total). Intrinsic-dynamic VSA were indicated by items
from the Rotation and Tangram tasks (18 items in total).
Extrinsic-static VSA were reflected by items from the two
Reproduce forms tasks (32 items in total). The model provided
a good fit to the data, χ2

(1649) = 1771.64, p = 0.020.02,
RMSEA = 0.03, 90% CI: [0.014; 0.041], CFI = 0.98, TLI = 0.98.
One additional item considered to reflect intrinsic-static VSA
was dropped due to non-significant factor loading. However,
model fit did not change substantially, χ2

(1592) = 1717.68,
p = 0.01, RMSEA = 0.03 90% CI: [0.015; 0.041], CFI = 0.98,
TLI = 0.98. Taken together, these results indicate that the
hypothesized three-factor structure according to Newcombe
and Shipley (2015) was substantiated by the current data for
kindergarten children. Item descriptions and factor loadings
are presented in Table 4. Moreover, intrinsic-static VSA
were found to be highly correlated with intrinsic-dynamic
VSA (r = 0.84, p < 0.001). Similar high correlations were
observed for intrinsic-static and extrinsic-static VSA (r = 0.73,
p < 0.001) as well as for intrinsic-dynamic and extrinsic-
static VSA (r = 0.85, p < 0.001). The final model is shown
in Figure 2.

Hierarchical Development of Early VSA
Although not at the heart of the current research question, we
first checked for overall differences in children’s task performance
on the three VSA. As indicated by Bonferroni-corrected t-tests,
task performance was significantly better for intrinsic-static
VSA (M = 0.85, SD = 0.11) than for both intrinsic-dynamic

TABLE 3 | (Pearson) correlations between MaGrid tasks.

CF RO T RI R II

Find forms r = 0.32* r = 0.46* r = 0.39* r = 0.23* r = 0.41*

Close forms r = 0.44* r = 0.63* r = 0.48* r = 0.58*

Rotation r = 0.51* r = 0.38* r = 0.48*

Tangram r = 0.61* r = 0.77*

Reproduce forms I r = 0.54*

All correlations are significant at (p < 0.05), as indicated by the asterisk (*) with CF,
Close Forms; RO, Rotation; T, Tangram; RI, Reproduce Forms I; R II, Reproduce
Forms II.
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TABLE 4 | Descriptive statistics and factor loadings for items from the MaGrid app.

Factor Item % Correct Factor loading Factor Item % Correct Factor loading Factor Item % Correct Factor loading

IS FF12 0.488 0.765 ID RO4 0.774 0.495 ES RI3 0.357 0.854

IS FF15 0.655 0.691 ID RO5 0.679 0.821 ES RI4 0.440 0.777

IS FF16 0.798 0.605 ID RO6 0.750 0.785 ES RI5 0.429 0.869

IS CF12 0.583 0.697 ID RO7 0.798 0.552 ES RI6 0.119 0.646

IS CF13 0.405 0.824 ID RO8 0.631 0.748 ES RI7 0.357 0.854

IS CF14 0.476 0.858 ID T1 0.667 0.464 ES RI8 0.226 0.845

IS CF15 0.381 0.828 ID T2 0.679 0.697 ES RI9 0.238 0.895

IS CF16 0.512 0.977 ID T3 0.726 0.902 ES RI10 0.393 0.843

ID T4 0.798 0.823 ES RI11 0.179 0.716

ID T5 0.857 0.905 ES RI12 0.214 0.874

ID T6 0.238 0.563 ES RI13 0.143 0.701

ID T7 0.345 0.609 ES RI14 0.333 0.940

ID T9 0.631 0.802 ES RI15 0.274 0.959

ID T10 0.655 0.948 ES RI16 0.238 0.935

ID T11 0.345 0.754 ES RI17 0.214 0.898

ID T12 0.702 0.621 ES RI19 0.131 0.840

ID T13 0.464 0.745 ES RII1 0.690 0.775

ID T14 0.548 0.800 ES RII2 0.571 0.553

ES RII3 0.845 0.907

ES RII4 0.571 0.673

ES RII5 0.750 0.902

ES RII6 0.810 0.957

ES RII7 0.702 0.909

ES RII8 0.786 0.878

ES RII9 0.810 0.983

ES RII10 0.524 0.746

ES RII12 0.643 0.797

ES RII13 0.762 0.917

ES RII14 0.667 0.841

ES RII15 0.369 0.668

ES RII16 0.607 0.871

IS, intrinsic-static VSA; ID, intrinsic-dynamic VSA; ES, extrinsic-static VSA.

VSA [M = 0.73, SD = 0.18, t(83) = 8.55, p < 0.001] and
extrinsic-static VSA [M = 0.39, SD = 0.24, t(83) = 22.01,
p < 0.001]. Moreover, the difference between intrinsic-dynamic
and extrinsic-static VSA was also significant [t(83) = 20.10,
p < 0.001].

Due to the unequal distribution of boys and girls in
the intermediate group, preliminary analysis by means of a
MANCOVA considering sex as the covariate were conducted.
There was no significant influence of the covariate sex overall
[Pillai-Trace =0.031, F(3,78) = 0.820, p = 0.487] as well as for
the VSA categories as indicated by univariate follow-up analyses:
intrinsic-static: [F(1,80) = 0.556, p = 0.458; intrinsic-dynamic:
F(1,80) = 0.012, p = 0.914; extrinsic-static: F(1,80) = 0.807,
p = 0.372]. Based on these results, we are confident that the
unequal distribution of boys and girls in the intermediate group
did not drive our results.

To gain a better understanding of the hierarchical
development of VSA, we conducted a MANOVA that indicated a
significant age effect for VSA [Pillai-Trace = 0.30, F(6,160) = 4.78,
p < 0.001, η2

part. = 0.99, see Table 5].

Follow-up univariate analyses indicated that there was a
significant medium sized age effect for intrinsic-static VSA
[F(2,81) = 5.81, p = 0.004, η2

part. = 0.13]. Bonferroni-corrected
pairwise comparisons showed a significant difference between the
youngest and oldest group only (p = 0.003).

For intrinsic-dynamic VSA, univariate analysis revealed a
similar significant age effect with a large effect size [F(2,81) = 14.48,
p < 0.001, η2

part. = 0.26]. Bonferroni-corrected pairwise
comparisons indicated that the task performance of children in
the youngest and oldest group (p < 0.001) differed significantly.
The same applied to children in the youngest and intermediate
group (p = 0.008).

Finally, for extrinsic-static VSA, univariate analysis indicated
a significant age effect with a large effect size [F(2,81) = 14.51,
p < 0.001, η2

part. = 0.26]. Again, Bonferroni-corrected pairwise
comparisons indicated significant age differences between the
youngest and intermediate group (p = 0.003) and the youngest
and oldest group (p < 0.001). Figure 3 depicts children’s task
performance for each category of VSA. The figure visualizes
that group differences exist only between the youngest and the
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FIGURE 2 | Confirmatory factor analysis – latent structure of early VSA. The figure shows all items that were considered in the analysis. The three latent factors (i.e.,
intrinsic-static, intrinsic-dynamic, and extrinsic-static VSA) are derived from the 2 by 2 taxonomy of Newcombe and Shipley (2015). The figure depicts also
correlations (all p < 0.001) among the three latent factors. To increase readability, factor-loadings and error terms of items are not displayed. Intrinsic-static VSA were
measured by items of the Find forms and Close forms tasks (i.e., FF and CF), intrinsic-dynamic VSA by items of the Rotation and Tangram tasks (i.e., RO and T), and
extrinsic-static VSA by items of the Reproduce forms I and II tasks (i.e., RI and RII). See text and Table 5 for more details.

TABLE 5 | Task performance for the different age groups.

Categories Tasks Age group M SD N F p η2
part.

Intrinsic-static Find forms Close forms Youngest 0.79 0.13 27 5.81 0.004 0.13

Intermediate 0.86 0.11 26

Oldest 0.89 0.07 31

Intrinsic-dynamic Rotation Tangram Youngest 0.61 0.19 27 14.48 0.000 0.26

Intermediate 0.74 0.16 26

Oldest 0.82 0.11 31

Extrinsic-static Reproduce forms I Reproduce forms II Youngest 0.23 0.21 27 14.51 0.000 0.26

Intermediate 0.42 0.19 26

Oldest 0.52 0.21 31

The table depicts mean correct (SD) for each age group, the number of children in each group and the test statistics for each ability.

intermediate group for intrinsic-dynamic and extrinsic-static
VSA, or for the youngest and oldest group (all VSA). Crucially,
no differences were observed between the intermediate and
oldest group.

Results of a moderation analysis further indicated that
children’s prior experience with tablets did not moderate
performance in intrinsic-static VSA, β = –0.04, p = 0.137),
intrinsic-dynamic VSA (β = –0.04, p = 0.318), nor extrinsic-static
VSA (β = 0.003, p = 0.956). These findings indicate that children’s
prior experience with tablets did not moderate the relationship
between age and performance on the assessed VSA significantly.

DISCUSSION

The present study aimed at evaluating the hierarchical
development of VSA from both a theoretical and a behavioral

perspective. For this aim, we selected six different visual-spatial
tasks of the tablet-based app MaGrid (Cornu et al., 2017; Pazouki
et al., 2018): two tasks each reflecting the three categories
intrinsic-static, intrinsic-dynamic, and extrinsic-static VSA of
the 2 by 2 taxonomy of Newcombe and Shipley (2015).

Additionally, we adapted the functionality of MaGrid to
use it for assessment purposes. Uttal et al. (2013) claimed
VSA to be malleable at an early age. Therefore, accurate and
reliable assessment tools are essential to both measure training
success and to understand the latent structure underlying the
development of VSA.

Results of the CFA indicated that the selected visual-spatial
tasks reflected the respective VSA according to the taxonomy of
Newcombe and Shipley (2015). Behavioral results showed that
MaGrid is sensitive to detect expected age-related differences in
performance between younger and older kindergarten children.
In the following, we will discuss these findings in more detail
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FIGURE 3 | Task performance for each age group. M (Mean Correct) for all
three sub-groups for the tested abilities (black, intrinsic-static VSA; light-gray,
intrinsic-dynamic VSA; gray, extrinsic-static VSA). Error bars reflect 1 SE.
Significant differences with p < 0.05, as indicated by the asterisk (*).

beginning with the latent structure of VSA before turning
to the discussion of MaGrid as an assessment tool for the
development of VSA.

Latent Structure of VSA According to the
2 by 2 Taxonomy
Our CFA evaluating the structure of VSA according to the 2
by 2 taxonomy of Newcombe and Shipley (2015) indicated a
good model fit for the three-factor solution reflecting the three
categories of VSA of interest, this means, (i) intrinsic-static, (ii)
intrinsic-dynamic, and (iii) extrinsic-static VSA. Factor loadings
of all items were at an acceptable level (≥ ∼0.5) alongside with a
good overall fit of the model to the empirical data. CFA results
suggest that the selected MaGrid tasks can be conceptualized
in terms of the three (out of four) VSA as proposed by the
taxonomy of Newcombe and Shipley (2015).

As regards theoretical considerations, it is important to note
that we needed to exclude some items for the CFA due to
insufficient variance in these items: This affected the first items
of the tasks assessing the intrinsic-static (i.e., Find forms and
Close forms) and the intrinsic-dynamic VSA (i.e., Rotation and
Tangram). Exclusion of the first (i.e., easy) item suggests that
these items may have been too easy for most children of our
sample. This is in line with the observed near ceiling effects which
we found for intrinsic-static VSA. Interestingly, the exclusion
also affected the last items of the tasks assessing extrinsic-static
VSA (i.e., Reproduce forms I and Reproduce forms II). Here, item
exclusion suggests that these items may have been rather difficult
for the children of our sample. Crucially, item exclusion should
not negatively affect our interpretation of results. Even for the
reduced number of items representing intrinsic-static VSA the
statistical requirements for a just-identified factor were fulfilled,
because factor loadings can be estimated independent of any
particular item score (Brown, 2014).

However, analysis of response times may help to solve this
issue in future studies. For instance, response times have been
found to reflect specific effects of numerical processing related
to visual-spatial concepts (i.e., the SNARC effect Dehaene et al.,
1993). Moreover, response times and accuracy can be combined,
for instance as a rate correct score (Woltz and Was, 2006), which
then reflects the number of correct answers per second. It would
be desirable to further pursue these avenues in future studies.

Furthermore, CFA results provided further evidence with
respect to the assumptions of a hierarchical structure of the 2
by 2 taxonomy of Newcombe and Shipley (2015). CFA showed
similarly high correlations between the three different factors
(> 0.73). These correlations suggest that despite the division into
different categories, the three VSA assessed in the current study
(i.e., intrinsic-static, intrinsic-dynamic and extrinsic-static) can
hardly be considered to reflect distinct constructs. Instead, they
seem to represent most probably hierarchically developing VSA,
and thus, help to specify the hierarchical structure of VSA, for
which literature is still lacking a common definition (Eliot and
Smith, 1983; Carroll, 1993; Newcombe and Shipley, 2015; Mix
et al., 2016). Providing evidence of a hierarchical development
and/or latent structure of VSA in the taxonomy by Newcombe
and Shipley (2015) seems a major challenge for at least two main
reasons: first, it may be the case that children at the age of 3
cannot solve a visual-spatial task in an assessment while they are
able to solve the task during playing, in which they can master
the necessary perception and action steps (Newcombe, 2018).
Second, it may be that the same task requires more than one
VSA to be solved (Mix et al., 2018). According to the findings
of Verdine et al. (2017), spatial assembly tasks, such as the
Tangram task are complex activities involving more than one
visual-spatial ability. In the Tangram task, the presented form and
its components need to be encoded first (i.e., requiring intrinsic-
static VSA) before components need to be moved to the right
position to assemble the entire form (i.e., requiring intrinsic-
dynamic VSA). Both issues illustrate that theoretical assumptions
of an ability and actual behavior when applying this ability do not
always correspond perfectly.

MaGrid as an Age-Sensitive Assessment
Tool
On the behavioral level, we observed significant age effects for
all three categories (i.e., intrinsic-static, intrinsic-dynamic and
extrinsic static), which was in line with our hypothesis. In all
categories, we found significant differences in task performance
between 4-years old (i.e., youngest group) and 6-years old (i.e.,
oldest group) children. Additionally, we observed significant
differences between 4- and 5-years old (i.e., intermediate group)
children in intrinsic-dynamic and extrinsic-static VSA. The
performance of the 5- and 6-years old children did not differ
significantly in any category. These results suggest MaGrid to be
sensitive enough to differentiate between VSA of 4- and 6-years
old children. Furthermore, the tasks assessing intrinsic-static
VSA might have been too easy for children of all age groups.
This might explain why only intrinsic-dynamic and extrinsic-
static VSA tasks differentiated successfully between 4- and 5-years

Frontiers in Psychology | www.frontiersin.org 10 May 2020 | Volume 11 | Article 87197

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00871 May 19, 2020 Time: 18:10 # 11

Jung et al. Taxonomy-Based Assessment of Visual-Spatial Abilities

old children. However, for the latter two categories, we did not
observe significant differences between the performance of 5-
and 6-years old children which was contrary to our expectations.
This finding might be explained by the fact that MaGrid might
either not be sensitive enough to differentiate between the two
age groups or the development level of the two age groups may
have been too similar.

In addition to these observations, performance was higher for
intrinsic-static tasks than for extrinsic-static tasks substantiating
the hierarchical order of the development of these categories.
This finding is particularly evident from the ceiling effects
for the group of 6-years-old children for the task Find forms.
This task requires elaborate shape recognition and abstract
representation of the respective forms (i.e., intrinsic-static VSA).
The task Close forms, which requires additional visual motor
integration (Pazouki et al., 2018), demands the coordination
between perceived visual input and motor output to complete the
unfinished objects according to the booklet (Cornu et al., 2017).

In this context, Beery et al. (2010) observed that the
development of visual motor integration was closely associated
with the development of motor skills in general. In their study,
they investigated this development from the ability to copy
vertical lines (at the age around 2 years) and circles (at the age
around 3 years) to the ability to trace horizontal lines (at the age
of 3.5 years) and to connect two dots by a horizontal line (at
the age of 4.5 years; Beery et al., 2010). As the youngest children
in our study were 4 years and older, it is not surprising that
the task Close forms was mastered differently well by children of
different age groups.

Tasks involving intrinsic-dynamic VSA were observed to be
more difficult for younger children resulting in performance
differences between age groups. As dynamic VSA involve
transforming and manipulating objects, such as the tasks
Tangram and Rotation, they may pose higher cognitive demands.
Even though it was observed in 2-year-old children that they are
able to solve tasks assessing intrinsic-dynamic VSA sufficiently
through perception-action skills (e.g., inserting 3D forms into
appropriate slots of a box, Örnkloo and von Hofsten, 2007), this
may not necessarily imply generalizability to the tasks as used in
the present study (Newcombe, 2018).

Among all tasks we selected from MaGrid to assess intrinsic
VSA, the Tangram task was the most demanding task as it
requires solving visual-spatial problems by categorizing and
comparing objects in relation to each other (Lin et al., 2011).
Several studies indicated that tangrams inspire shape analysis,
integration, and composition of objects as well as logical
thinking (e.g., Olkun et al., 2005; Lin et al., 2011), and thus
might be considered one of the best methods to enhance
geometrical spatial thinking (Verdine et al., 2017). With its
medium task difficulty and its potential involvement of other
VSA (i.e., considering spatial relations of objects during visual
assembly), Tangram seemed very suitable for assessing VSA in
kindergarten children.

Finally, the most complex and difficult tasks were those
assessing extrinsic-static VSA (i.e., Reproduce forms I and II),
for which children of all age groups performed most poorly.
The higher task demands manifested in higher variance in

performance on the individual items of the tasks. Even 6-
years old children in our study did not perform perfectly on
these tasks and may thus not have acquired this category of
VSA fully yet. This is in line with current findings showing
that the understanding of spatial relations between objects and
the environment as well as the size and scaling of objects
improves with age and individual experiences (Newcombe and
Huttenlocher, 2006; Okamoto et al., 2015).

Taken together, behavioral results indicate that basic VSA
are acquired early (see Clements, 1998) and improve steadily
with increasing age (Uttal et al., 2013; Newcombe et al., 2015;
Cornu et al., 2017). The present results reflect that the age-related
development of VSA can be measured using MaGrid. Moreover,
exclusion of too easy or too difficult items (solved by almost all
or no children, respectively) representing intrinsic or extrinsic
VSA in the CFA only reflected the results on the behavioral level.
Together, both behavioral and factor-analytical results indicated
that the theoretically assumed development of VSA can be found
both in the taxonomy of Newcombe and Shipley (2015) and
empirically in the current data. This corroborates our theoretical
understanding of the structure of VSA and their development.
Although some tasks turned out to be more sensitive than others,
the overall pattern of results with significant age differences for all
VSA assessed corroborates the claim that kindergarten age seems
central for the development of VSA (Newcombe and Frick, 2010;
Cornu et al., 2017).

Limitations
When interpreting the results of the current study, some limiting
aspects need to be considered. First, even though CFA models
converged, our sample size is smaller than the commonly
suggested lower bounds for conducting CFA of at least N = 100
(e.g., Anderson and Gerbing, 1988). However, there is also
evidence that models can be meaningfully estimated with smaller
samples. In particular, it seems that a large number of indicators
per latent factor, high factor loadings, and high intercorrelations
among factors may substantially decrease the required sample
size (e.g., Marsh et al., 1998; Wolf et al., 2013). Given that all these
aspects applied to the present data, it seems rather unlikely that
sample size is a source of bias in the analyses.

Moreover, it has to be noted that several items had little to
no variance and needed to be excluded from the CFA. Lack of
variance was primarily caused by items that were solved correctly
by almost all or no children. For future studies, it would be
desirable to use additional items of medium difficulty as well as
items that can differentiate also in a lower and upper ability range.

Finally, it needs to be considered that the study was cross-
sectional observing VSA in children of different age levels. As
such, we did not monitor the intra-individual development of
children longitudinally, which means that the interpretation of
developmental aspects needs to be done cautiously. Nevertheless,
we think that interpretations of the development of VSA seem
warranted as the present results correspond closely to previous
findings (e.g., Uttal et al., 2013; Okamoto et al., 2015). Yet,
future longitudinal studies would be desirable to investigate the
development of (the latent structure of) VSA in more detail.
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CONCLUSION

In the current study, we investigated the development and
structure of VSA in kindergarten children (i.e., aged 4–
6 years) using a theoretical and a behavioral approach. On the
theoretical level, and based on the CFA, we found evidence
to assume the latent structure of VSA as proposed in the
2 by 2 taxonomy of Newcombe and Shipley as valid (2015;
but see Mix et al., 2018 for contradicting findings), and
may indicated hierarchical development. On the behavioral
level, we found that the development of VSA was captured
by MaGrid as reflected by age differences. Moreover, we
observed that the selected visual-spatial tasks fit well with
the differentiation of intrinsic-static, intrinsic-dynamic, and
extrinsic-static categories as proposed by this taxonomy.
Thereby, these results help specify the theoretical concept of
early VSA.

To conclude, the present study contributes to the literature
by evaluating and validating a tablet-based assessment of early
VSA. On a more theoretical level, the current study indicates
that MaGrid assesses VSA on the sound theoretical basis
of the taxonomy of Newcombe and Shipley (2015). On the
behavioral level, the MaGrid app was found to successfully
reflect individual differences in VSA in kindergarten children. In
this sense, tablet-based assessments included in this educational
app seem to be suitable not only for training but also for
assessing VSA.
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There is debate in the literature regarding how single-digit arithmetic fluency is achieved
over development. While the Fact-retrieval hypothesis suggests that with practice,
children shift from quantity-based procedures to verbally retrieving arithmetic problems
from long-term memory, the Schema-based hypothesis claims that problems are
solved through quantity-based procedures and that practice leads to these procedures
becoming more automatic. To test these hypotheses, a sample of 46 typically
developing children underwent functional magnetic resonance imaging (fMRI) when
they were 11 years old (time 1), and 2 years later (time 2). We independently defined
regions of interest (ROIs) involved in verbal and quantity processing using rhyming and
numerosity judgment localizer tasks, respectively. The verbal ROIs consisted of left
middle/superior temporal gyri (MTG/STG) and left inferior frontal gyrus (IFG), whereas
the quantity ROIs consisted of bilateral inferior/superior parietal lobules (IPL/SPL) and
bilateral middle frontal gyri (MFG)/right IFG. Participants also solved a single-digit
subtraction task in the scanner. We defined the extent to which children relied on verbal
vs. quantity mechanisms by selecting the 100 voxels showing maximal activation at
time 1 from each ROI, separately for small and large subtractions. We studied the
brain mechanisms at time 1 that predicted gains in subtraction fluency and how these
mechanisms changed over time with improvement. When looking at brain activation at
time 1, we found that improvers showed a larger neural problem size effect in bilateral
parietal cortex, whereas no effects were found in verbal regions. Results also revealed
that children who showed improvement in behavioral fluency for large subtraction
problems showed decreased activation over time for large subtractions in both
parietal and frontal regions implicated in quantity, whereas non-improvers maintained
similar levels of activation. All children, regardless of improvement, showed decreased
activation over time for large subtraction problems in verbal regions. The greater parietal
problem size effect at time 1 and the reduction in activation over time for the improvers
in parietal and frontal regions implicated in quantity processing is consistent with the
Schema-based hypothesis arguing for more automatic procedures with increasing skill.
The lack of a problem size effect at time 1 and the overall decrease in verbal regions,
regardless of improvement, is inconsistent with the Fact-retrieval hypothesis.
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INTRODUCTION

Failing math in sixth grade is a significant predictor of not
graduating from high school (Belfanz et al., 2007) and math
ability at age 7 predicts socioeconomic status at age 42
(Ritchie and Bates, 2013). Gaining fluency in solving single-
digit arithmetic facts is an important milestone in mathematical
development, freeing up working memory (Geary, 1994) and
scaffolding higher-level math skills (Price et al., 2013). Despite
the importance of math fluency, the neurocognitive mechanisms
predicting its successful development are poorly understood.

Two hypotheses have been formulated to explain fluency
development of subtraction problems. According to the Fact-
retrieval hypothesis, children initially rely on slow procedures,
such as counting, to solve single-digit subtractions, but with
the repeated use of procedures, the problem (i.e., 5−2) and its
solution (i.e., 3) are stored in long-term memory, so children shift
toward retrieval (Ashcraft, 1982; Siegler, 1987). Some behavioral
studies interpret the response times patterns shown by children
as young as 5 years old as evidence in favor of the retrieval
strategy for solving the majority of subtraction problems (Siegler,
1987). Others, relying on self-report, found that 5th graders use
more retrieval and less counting to solve subtraction problems as
compared to 3rd graders, who reported using more procedures
(Caviola et al., 2018). According to this hypothesis, educated
adults have had enough experience with arithmetic to be able to
retrieve single-digit subtractions directly from memory (Siegler,
1989; Geary et al., 1993).

On the other hand, Baroody (1983) claimed that Ashcraft
(1982)’s classification of retrieval as being fast and procedures
as being slow was a biased assumption, and that faster
response times (RTs) over development could also be explained
by procedures becoming more automatic, which is the core
assumption of the Schema-based hypothesis. According to
Baroody (1983), children move from initial reliance on less
efficient procedures such as counting to more efficient procedures
including principles, heuristics or rules (e.g., N + 0 = N;
N × 0 = 0; N – N = 0; N−1 or N + 1 = number before or
after N, respectively, in the counting sequence). Studies have
suggested that procedures are solved more efficiently throughout
elementary school (Woods et al., 1975) but the application
of procedures seems to depend on problem type. Barrouillet
et al. (2008) showed that 3rd graders reported using retrieval
less frequently to solve subtractions (i.e., 19%) as compared
to additions (65%; Barrouillet and Lépine, 2005) and that the
retrieval of subtractions was limited to problems having a
remainder of 1. Studies with adults have shown that university
students retrieved only 71% (Geary et al., 1993) and 57%
(Campbell and Xue, 2001) of subtractions. Procedures that adults
rely on include addition reference (i.e., referring to 4 + 5 = 9 to
solve 9−4 = 5; Peters et al., 2012; Chang et al., 2015), counting
down (i.e., 9−2 = eight, seven) and reconstruction (i.e., for
9−4, do 10−4 = 6; 6−1 = 5) (Kirk and Ashcraft, 2001; Seyler
et al., 2003; LeFevre et al., 2006). Studies have shown that the
efficiency with which complex subtractions are solved improve
even in adulthood, with older adults (i.e., 61−80 years old) being
faster in applying borrowing as compared to younger adults (i.e.,

18−38 years old) (Geary et al., 1993). Núñez-Peña et al. (2015)
compared low and high skilled participants in a subtraction
verification task in which participants reported the strategy they
used to solve the problem. They found that while the two groups
did not differ in the frequency of procedures vs. retrieval use,
the high skilled individuals were faster and less error-prone than
the less skilled ones when solving the trials for which they had
reported procedural use, suggesting greater efficiency in carrying
out those procedures.

Our knowledge of how subtraction problems are solved comes
from behavioral studies using RTs and self-reported measures
(Siegler, 1989). However, evidence has suggested that inferring
mental processes from RTs can provide misleading information
(Siegler, 1989) and that introspection of performance might be
limited when a participant is asked to describe the strategy
used when the process is fast and automatic (Ericsson and
Simon, 1993; Lefevre et al., 1996). As suggested by Fayol and
Thevenot (2012), participants may report using retrieval because
procedures were implemented so automatically that they were
not even aware of having used them. Others have claimed that
the simple fact of asking about the strategies being used may alter
the cognitive process, biasing participants to use those strategies
that they think might be expected by the examiner (Kirk and
Ashcraft, 2001). Functional magnetic resonance imaging (fMRI)
can help to overcome the limitations of response times and
self-reported measures by providing evidence of the underlying
neurocognitive mechanisms associated with the development of
subtraction fluency. Finding verbal regions of the brain to be
associated with subtraction fluency gains would be compatible
with the Fact-retrieval hypothesis, whereas finding quantity
regions to be associated with subtraction fluency gains would
be supportive of the Schema-based hypothesis. Rivera et al.
(2005) found age-related increases in temporo-parietal regions,
including left middle temporal gyrus (MTG) and supramarginal
gyrus extending to the left intraparietal sulcus (IPS) and
decreases in frontal regions such as inferior/middle frontal gyri
(IFG/MFG), when 8- to 19-year-old participants solved a single-
digit addition and subtraction task. Price et al. (2013) found
that high school students with higher scores on a math test
relied on brain regions associated with retrieval to solve single-
digit additions and subtractions, whereas students with lower
scores relied on brain regions associated with procedures in
right IPS. Looking at the problem size effect in the brain, De
Smedt et al. (2011) found that 10−12-year-old children with
typical fluency relied less on quantity mechanisms in right
IPS to solve small additions and subtractions, whereas children
with low fluency relied on this region to solve all problems
regardless of size. Polspoel et al. (2017) found that single-digit
multiplications and subtractions that were reported to be solved
by retrieval by 4th graders activated temporal cortex regions
associated with retrieval. However, these studies have investigated
brain activation by averaging across different operation types (i.e.,
addition and subtraction, usually). Neuroimaging evidence has
shown that different operations recruit distinct neural networks
(Arsalidou and Taylor, 2011; Rosenberg-Lee et al., 2011), so
examining brain activation across different operations may have
washed away subtraction-specific effects in the brain.
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Other fMRI studies have compared subtraction processing
with addition or multiplication. They have found that
while additions (Rosenberg-Lee et al., 2015; Evans et al.,
2016) and multiplications (Prado et al., 2011) activated
verbal regions associated with retrieval, solving subtractions
activated the parietal cortex, associated with procedures.
Rosenberg-Lee et al. (2011) compared brain activations
between single-digit addition vs. subtractions and found
greater IPS activation for the latter. Prado et al. (2014)
reported that children showed greater activation in the
right parietal cortex when solving single-digit subtractions
compared to multiplications, and this difference increased
with more years of math instruction. While Prado’s study
can be interpreted as evidence supporting the Schema-
based hypothesis, they studied maturation-related effects
in the brain in a cross-sectional design that showed only
a modest behavioral improvement. Concerns have been
raised with the use of cross-sectional data to answer
developmental questions, due to the large variability
introduced by studying children from different ages, which
might fail to detect or falsely suggest changes over time
(Casey et al., 2005). Longitudinal studies overcome these
limitations by studying the same cohort of individuals at two
different time points, and constitute the recommended design
(Karmiloff-Smith, 2010).

Using a longitudinal design, Artemenko et al. (2018) found
that children showed reductions in frontal cortex, including
MFG, from 6th to 7th grade when solving two-digit subtractions,
which was accompanied by an improvement in accuracy. The
reduction in frontal cortex was interpreted as less reliance on
cognitive control. However, this result does not clarify whether
it is fact retrieval or the use of procedures that become more
efficient over time. Similar inconclusive results were found in
studies showing age-related increases in both bilateral IPS and left
MTG, areas associated with the use of procedures and retrieval,
respectively (Rivera et al., 2005; Chang et al., 2016).

To the best of our knowledge, neuroimaging studies have
not yet provided a clear picture of the underlying mechanisms
responsible for fluency development in subtraction. The objective
of this study was to fill this gap in the literature by
answering the questions: Can reliance on verbal vs. quantity
mechanisms at time 1 predict longitudinal gains in subtraction
fluency, and how do these mechanisms change over time
with improvement in subtraction fluency? In order to have
stronger evidence for the involvement of verbal vs. quantity
mechanisms, regions of interest (ROIs) were independently
localized for each participant using rhyming and numerosity
judgment localizer tasks, respectively. We identified ROIs
implicated in the storage of phonological representations in
the left MTG/STG (e.g., Prado et al., 2011), and in the access
to those representations in the left IFG (e.g., Prado et al.,
2011). We also localized ROIs in bilateral IPL/SPL implicated
in quantity representations (e.g., Dehaene et al., 2003), and in
the access of those representations in the bilateral MFG/right
IFG (e.g., Arsalidou and Taylor, 2011). We then defined the
extent to which children relied on verbal vs. quantity mechanisms
to solve subtractions by selecting the 100 voxels showing

maximal activation from each ROI, separately for small and
large subtractions.

We aimed to study whether brain activation at time 1 predicts
subtraction fluency gains as well as whether these neurocognitive
mechanisms changed over time with fluency gains. Finding that
brain activation in bilateral parietal cortex predicts the fluency
gains would be compatible with both hypotheses, given that
children may continue to rely on procedures that become more
automatic with experience (i.e., Schema-based hypothesis), or
may later shift toward retrieval (i.e., Fact-retrieval hypothesis).
According to the Schema-based hypothesis, we expected to see
increases in parietal cortex activation over time, suggesting that
children continue to rely on procedures. However, we also
expected to see decreases in bilateral MFG/right IFG over time,
suggesting that procedures become more automatic (see arrow
A in Figure 5; Schema-based). According to the Fact-retrieval
hypothesis, we expected to see decreases in parietal cortex and
increases in temporal cortex over time. It is possible that this
process is accompanied by increases in left IFG activation over
time, given that the implementation of retrieval strategy might
be effortful in its early stages (Geary et al., 1996a; i.e., see arrow
B in Figure 5; Fact-retrieval). Finally, there is a third possibility.
Considering evidence suggesting that by age 10 retrieval may be
the dominant strategy to solve single-digit arithmetic problems
(Ashcraft and Fierman, 1982), it might be the case that children
have already shifted toward retrieval at time 1, in which case we
expect to see activation in temporal cortex early on to predict
fluency gains. In this scenario, we expect children to show
increases in temporal cortex activation over time, suggesting
that they build their storage of subtraction facts in long-term
memory. This might be accompanied by decreases in left IFG
over time, suggesting that the retrieval becomes less effortful as
the representations become more robust (Prado et al., 2014; see
arrow C in Figure 5; Fact retrieval).

MATERIALS AND METHODS

Participants
Whole Sample
Sixty-five 3rd to 8th graders were recruited from schools
in the Chicago metropolitan area to participate in the
study. This dataset has been deposited in OpenNeuro
(10.18112/openneuro.ds001486.v1.1.0) and a detailed description
of the dataset is provided in Suárez-Pellicioni et al. (2019b).
Timepoint 1 of this dataset is the basis of other publications by
our research group, including (Berteletti et al., 2014; Demir-Lira
et al., 2014, 2015; Prado et al., 2014; Berteletti and Booth, 2015a,b;
Demir-Lira et al., 2016). The longitudinal data of this dataset is
the basis of other publications including Suárez-Pellicioni and
Booth (2018), Suárez-Pellicioni et al. (2018), Suárez-Pellicioni
et al. (2019a). None of them have looked at longitudinal gains in
subtraction fluency, which constitutes the objective of this study.

All participants were native English speakers, right-handed,
were free of past and present psychiatric disorders including
Attention Deficit Hyperactivity Disorder (ADHD), neurological
disease or epilepsy. According to parental report, no participant
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had hearing impairments, uncorrected visual impairment, was
born prematurely (less than 36 weeks), was taking medication
affecting the central nervous system or had any contraindication
for being scanned, such as having braces. Participants had no
history of intellectual deficits, all of them scoring above 85
standard score (hereinafter, SS) on the Full IQ scale of the
Wechsler Abbreviated Scale of Intelligence – WASI (Weschler,
1999). All participants scored above 71 SS on the Math Fluency
subtest from the Woodcock-Johnson III Test of Achievement
(WJ-III; Woodcock et al., 2001) and above 85 SS on the average
of Word Attack and Word Identification tests of the WJ-III.
Children and their parents or guardians provided written consent
to participate in the study. Parents were compensated $20 per
hour for their time. All experimental procedures were approved
by the Institutional Review Board at Northwestern University.

Data from six participants had to be excluded because of
having excessive movement in the scanner. Excessive movement
was defined as more than 10% of the total volumes replaced
or more than five consecutive volumes replaced in a given run
(for more details, see Section “fMRI Data Analysis”). There was
no correlation between number of volumes replaced and age
(r =−0.12, p = 0.43) or improvement (r = 0.09, p = 0.51).

Data from another six participants were excluded for showing
accuracy below 50% in the small condition of the subtraction task
solved inside the scanner either at time 1 or time 2 (for more
specific information see section “Subtraction Task Behavioral
Results”). Six additional participants had to be excluded for
showing accuracy below 33% for the control condition (i.e., blue
square). One participant was excluded for being left-handed.

The final sample consisted of 46 participants1 who were tested
longitudinally, with sessions being approximately 2 years apart.
More detailed information about the sample is given in Table 1.

Improvement Groups
Two groups were created based on improvement on the
subtraction task solved inside the scanner: improvers and
non-improvers (see section “Experimental Task: Single Digit
Subtraction” for a description of the subtraction task and its
conditions). To form the groups, we first calculated the difference
in means of response times between time points (i.e., Time 2-
Time 1) for large subtractions. In order to account for initial
differences in performance, we regressed time 1’s response times
out from the difference score, saving the residuals. These residuals
represented the difference in response times after initial levels
have been accounted for. Then, we created two groups based
on the median-split of these residuals: improvers (n = 23) and
non-improvers (n = 23). The decision of using large subtractions
was made given the simplicity of the small subtractions in our
study, with half of the problems having a remainder of 1 (e.g.,
3 – 2 = 1), the largest remainder being 3 (e.g., 5 – 2 = 3), and
that 40% of the problems included minuends smaller or equal
5. More detailed information about these two groups is shown
in Table 1. The two groups did not differ in age at time 1, age
at time 2, time between sessions, sex distribution, reading skill,

1The following participants were included in this study: 2, 5, 6, 7, 8, 9, 10, 11, 12,
13, 16, 20, 22, 27, 34, 35, 36, 40, 44, 45, 48, 49, 50, 53, 54, 56, 57, 59, 60, 65, 67, 69,
70, 71, 75, 76, 77, 83, 86, 89, 90, 93, 95, 96, 103, and 106.

verbal WM, visuo-spatial WM, verbal IQ, or performance IQ
(all p-Values above.22; all measured using age-adjusted norms).
For more information on differences in performance between
these groups see section “Improvement Groups’ Performance”
and Figure 6.

Standardized Measures
Reading skill was measured as the average of standard scores on
the Word Attack and the Word Identification subtest from the
Woodcock-Johnson III Test of Achievement (WJ-III; Woodcock
et al., 2001) at time 1. The Word Attack requires oral reading of
pseudo-words, while the Word Identification test requires oral
reading of isolated letters and real words.

Verbal working memory (WM) was measured by the Listening
Recall subtests of the Automated Working Memory Assessment
(AWMA; Alloway et al., 2007). This subtest requires children to
decide whether a sentence is true or false and also to remember
the final word of the sentence. Thus, children are asked to store
the final word of the sentence, as they process an increasing
number of new sentences. The item is scored as correct if children
recall the correct word or words in the correct order.

Visuo-spatial WM was measured with the Spatial Recall
subtest of the AWMA (Alloway et al., 2007). In this test, children
view pictures of two shapes where the shape on the right has a
red dot near it and they need to identify whether the shape on
the right is the same as the shape on the left when rotated in
two dimensions, or whether it is the mirror image. At the end
of the trial, individuals are asked to remember the position of
the red dot and to answer by pointing to a picture with three
possible positions marked. The number of shape pairs to be
compared increases as children proceed through the test, and
participants must recall the correct position of all the red dots
in the correct temporal order.

Intelligence was measured using both the Verbal and
Performance subscales of the Wechsler Abbreviated Scale of
Intelligence (WASI; Weschler, 1999). Verbal IQ was measured
with the Vocabulary subtest, in which the participants have
to define words, and with the Similarities subtest, in which
the participants are presented with two words that represent
common objects or concepts and they have to describe how they
are similar. Performance IQ was measured with Block Design
and Matrix Reasoning subtests of the WASI. The Block Design
requires the participants to use red-and-white blocks to re-create,
within a specified time limit, a model design. In the Matrix
Reasoning subtest, participants view an incomplete series or
matrix and select the response option that completes it logically.

Scanner Tasks
Rhyming Judgment Localizer Task to Identify Verbal
Regions in the Brain
In the rhyming judgment task, two written monosyllabic English
words were sequentially presented and participants had to decide
whether the words rhymed or not. To ensure that participants
relied on phonology to solve the task, and not orthography,
we created four conditions in which pairs of words had: (1)
similar orthography and similar phonology (i.e., O + P +;
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TABLE 1 | Demographic characteristics and standardized scores.

Whole sample (n = 46) Improvers (n = 23) Non-improvers (n = 23) Group differences

Age at T1 session (years) 11.2 (1.5) 11.1 (1.6) 11.3 (1.5) t(44) = −0.56, p = 0.58

Age at T2 session (years) 13.4 (1.6) 13.3 (1.8) 13.6 (1.6) t(44) = −0.60, p = 0.55

Time between sessions (years) 2.1 (0.2) 2.1 (0.2) 2.2 (0.2) t(44) = −0.63, p = 0.54

Female/male ratio 25/21 15/8 10/13 X2 = 2.20, p = 0.14

Reading at T1 (SS) 107.0 (10.3) 107.7 (10.6) 106.3 (10.3) t(44) = 0.45, p = 0.65

Verbal WM at T1 (SS) 103.0 (13.4) 103.8 (15.6) 102.3 (11.1) t(44) = 0.39, p = 0.70

Visuo-spatial WM at T1 (SS) 106.0 (13.0) 106.9 (15.0) 104.9 (10.8) t(44) = 0.52, p = 0.60

Verbal IQ at T1 (SS) 114.0 (16.0) 115.7 (16.3) 111.3 (15.3) t(44) = 0.94, p = 0.35

Performance IQ at T1 (SS) 110.2 (15.2) 113.0 (16.1) 107.5 (14.1) t(44) = 1.23, p = 0.22

Participant’s age at each time point, time between sessions, number of females and standard scores (i.e., adjusted for age norms) in reading skill, working memory (WM)
and intelligence (IQ) at time 1 for the whole sample (n = 46), for the improvers (n = 23), and non-improvers (n = 23). The last column indicates statistical values for the
comparison between improvers and non-improvers. SS, Standard score; T1, Time 1; T2, Time 2. See section “Standardized Measures” for a description of the tests used
to measures reading skill, verbal WM, visuo-spatial WM, verbal IQ, and performance IQ.

e.g., dime–lime; 12 trials); (2) similar orthography but different
phonology (i.e., O + P-; e.g., pint–mint; 10 trials); (3) different
orthography but similar phonology (i.e., O−P +; e.g., jazz–
has; 10 trials); (4) different orthography and different phonology
(i.e., O−P−; e.g., press–list; 14 trials). The O + P + and
O−P− constituted the non-conflicting conditions, given that
orthographic information was consistent with the right answer,
whereas the O-P + and O + P− conditions constituted the
conflicting conditions because orthographic information was
inconsistent with the right answer. Figure 1A shows an example
of an O+ P- condition of the rhyming judgment task. The control
condition consisted of a blue square that was presented for the
same duration as the experimental conditions and children were
asked to press a button when the square turned red (Figure 1E).
Stimuli were presented in a single run, lasting approximately
7 min. All participants received trials in the same order.

Numerosity Judgment Localizer Task to Identify
Quantity Regions in the Brain
Participants were sequentially presented with two dot arrays and
their task was to decide which of them had more dots. The task
comprised 24 easy (i.e., compare 12 vs. 36 dots), 24 medium (i.e.,
18 vs. 36), and 24 hard (i.e., 24 vs. 36 dots) trials. The first dot
array was composed of the larger number of dots in half of the
trials, while it was composed of the smaller number of dots in the
other half. To ensure that participants’ judgments were based on
differences in quantity rather than cumulative surface area, the
distribution of dot sizes was biased toward smaller dots in large
arrays and bigger dots in small arrays. However, totally equating
the cumulative surface area between small and large arrays by
entirely biasing the distribution of single dot sizes (100% bias)
may have led participants to use single dot sizes as a cue for their
judgments. Therefore, we found a trade-off (50% bias) between
equating as much as possible the cumulative surface areas and
the distributions of single dot sizes in each pair. Figure 1B shows
an example of an easy condition of the numerosity judgment
task. The control condition consisted of a blue square that was
presented for the same duration as the experimental conditions
and children were asked to press a button when the square turned
red (Figure 1E). Stimuli were divided into two runs, lasting

approximately 4 min each. All participants received trials in the
same order within each run.

Experimental Task: Single-Digit Subtraction
Participants were presented with a single-digit subtraction
problem followed by a proposed solution and were asked to
decide whether the proposed solution was true or false. Problems
were broken down into small (Figure 1C) and large (Figure 1D)
single-digit problems. Small subtractions (12 problems) were
characterized by having a small difference (i.e., 1, 2, or 3) between
the first and second term of the subtraction (e.g., 3 - 2), regardless
of the first term size. In large subtractions (12 problems), the
first term was relatively large (i.e., 6, 7, 8, or 9), as was the
difference between the first and second terms (i.e., 3, 4, 5, or
6; e.g., 9 - 4). Each problem was repeated twice with a true
solution and once with a false solution, yielding a total of 72
trials. False solutions were constructed by adding 1 or 2 to the
correct solution (e.g., 8 – 2 = 7), or by subtracting 1 from
the correct solution (e.g., 8 – 5 = 2). Problems involving 0
(e.g., 3 – 3; 3 – 0) or 1 as the second operand (e.g., 3 - 1)
and ties (e.g., 6 - 3) were only used in the practice session.
The control condition consisted of a blue square that was
presented for the same duration as the experimental conditions
and children were asked to press a button when the square turned
red (Figure 1E). Stimuli were divided into two runs, lasting
approximately 4 min each. All participants received trials in the
same order within each run.

Experimental Protocol
First, informed consent was obtained from the children and
their parents or guardians, and then standardized tests were
administered. Children then had a practice session in which they
practiced all trial types and learned to minimize head movement
in a mock fMRI scanner. For the rhyming and numerosity
localizer tasks, the practice session consisted of twelve trials of
each condition. For the subtraction task, twenty-four problems
with a correct proposed solution and 24 problems with a false
proposed solution were included in the practice session. For all
the tasks, the items used for the practice session were different
from the ones used for the scanning session.
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FIGURE 1 | Experimental tasks and their timing. Localizer task: (A) The rhyming judgment task was used to identify verbal regions of the brain in which participants
had to respond whether pairs of words rhymed or not. (B) The numerosity judgment task was used to identify quantity regions of the brain in which participants had
to indicate which of the two sets of dots had a greater number. Subtraction task: Single-digit verification task, including (C) small and (D) large subtractions.
(E) Control condition common to all tasks, in which participants had to press a button when the blue square turned red.

The actual scanning session took place within a week of the
practice session. In the fMRI scanner, participants performed one
run of the rhyming judgment task, two runs of the numerosity
judgment task and two runs of the subtraction verification task.
The order of the tasks and the runs was counterbalanced across
participants. The timing and order of trial presentation were
optimized for estimation efficiency using optseq22. Behavioral
responses were recorded using an MR-compatible keypad and
participants responded with their right hand. Participants
responded with their index finger if the two words rhymed, if
the first array of dots had more dots, if the proposed solution
for the subtraction problem was correct, or when the blue
square from the control condition turned red. Participants
used their middle finger if the two words did not rhyme, if
the second array of dots had more dots, or if the proposed
solution for the subtraction problem was incorrect. Stimuli were
generated using E-prime software (Psychology Software Tools,
Pittsburgh, PA, United States) and projected onto a screen that
was viewed by the participants through a mirror attached to the
head-coil.

Stimulus Timing
Stimulus timing was identical for all tasks. A trial started with the
presentation of a first stimulus (i.e., first word, first array of dots,

2http://surfer.nmr.mgh.harvard.edu/optseq/

or subtraction operation) for 800 ms followed by a blank screen
for 200 ms. A second stimulus (i.e., second word, second array
of dots, or proposed solution for the subtraction operation) was
presented for 800 ms, and followed by a red fixation square for
200 ms. Variable periods of fixation, ranging from 2200 to 3000,
were added after each trial in order to help with convolution,
during which a red square was presented. Participants could
respond as soon as the second word was presented until the
beginning of the next trial. As for the control condition, the blue
square was presented for 800 ms followed by a red fixation square
lasting 2200-3000 ms. The run ended with 22 s of passive visual
fixation in order to aid in deconvolution of the final trials.

fMRI Data Acquisition
Images were collected using a Siemens 3T TIM Trio MRI scanner
(Siemens Healthcare, Erlangen, Germany) at Northwestern
University’s Center for Advanced MRI. The fMRI blood
oxygenation level dependent (BOLD) signal was measured with
a susceptibility weighted single-shot echo planar imaging (EPI)
sequence. The following parameters were used: TE = 20 ms,
flip angle = 80◦, voxel size: 1.7 × 1.7 × 3 mm, matrix
size = 128 × 120 × 37, field of view = 220 × 206.25 × 111 mm,
slice thickness = 3 mm (0.48 mm gap), number of slices = 32,
TR = 2000 ms. Before functional image acquisition, a high
resolution T1 weighted 3D structural image was acquired for
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each subject, with the following parameters: TR = 2300 ms,
TE = 3.36 ms, matrix size = 256 × 256, field of view = 240 mm,
slice thickness = 1 mm, number of slices = 160.

fMRI Data Analysis
Preprocessing
Data analysis was performed using SPM83. The first six images of
the run were discarded to allow for T1 equilibration effects. The
remaining functional images were corrected for slice acquisition
delays, realigned to the first image of the run to correct for
head movements, and spatially smoothed with a Gaussian filter
equal to twice the voxel size (4 × 4 × 8 mm3 full width at
half maximum). Prior to normalizing images, we used ArtRepair
(4Mazaika et al., 2009) to identify outlier volumes with more than
1.5 mm in volume-to-volume movement in any direction, or with
more than 4% deviation from the mean global signal. The outlier
volumes were repaired by interpolation between the nearest non-
outlier volumes. All participants had less than 10% of the total
number of volumes replaced and less than 5 volumes replaced
in a row. Interpolated volumes were then partially de-weighted
when first-level models were calculated on the repaired images
(Mazaika et al., 2007). Functional volumes were co-registered
with the segmented anatomical image and normalized to the
standard T1 Montreal Neurological Institute (MNI) template
volume (normalized voxel size, 2× 2× 4 mm3).

fMRI Processing
Event-related statistical analysis was performed according to the
general linear model. Activation was modeled as epochs with
onsets time-locked to the presentation of the first stimulus in each
trial. All epochs were convolved with a canonical hemodynamic
response function. The time series data were high-pass filtered
(1/128 Hz), and serial correlations were corrected using an
autoregressive AR model. Considering that improvement groups
did not significantly differ in accuracy at either time point (see
section “Improvement Groups’ Performance” for more details)
and in order to equate for power in the analysis, all children’s
responses (i.e., correct and incorrect) were included in the model.

Regions of Interest Definition
Regions of interests were defined base on a sample of 40
participants. Six participants5 had to be excluded for ROI
definition because of having low accuracy in the rhyming
judgment task (n = 1) and due to excessive movement in
both localizer tasks (n = 5). Five combined ROIs were created,
combining functional and anatomical ROIs. These combined
ROIs were created by identifying the regions showing activation
for the rhyming and numerosity judgment localizer tasks
within fronto-temporal and fronto-parietal anatomical regions,
respectively. The rationale for using combined ROIs, instead of
only anatomical ones, was to be more confident of the underlying
cognitive mechanisms (i.e., verbal vs. quantity) engaged during
subtraction solving.

3www.fil.ion.ucl.ac.uk/spm
4https://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html
5Participants 50, 56, 65, 71, 83, and 96 were excluded from the ROI definition.

To localize quantity regions in the brain we identified, for
each participant, the voxels that showed greater activation for
all dot pairs of the numerosity judgment task as compared to
the control condition, at time 1. In a second-level analysis, these
individual contrasts were submitted to a one-sample t-test across
all participants. Given extensive evidence suggesting that the
bilateral intraparietal sulci (IPS) is the crucial neural substrate
for numerical magnitude processing (Pinel et al., 2001; Dehaene
et al., 2003; Sokolowski et al., 2017), we used the bilateral
IPL/SPL anatomical regions to ensure coverage of the IPS. We
then constrained the brain activation elicited by the numerosity
judgment localizer task within the anatomical bilateral IPL/SPL
and took this combined ROI as the region responsible for
quantity representations in left (Figure 2A) and right (Figure 2B)
parietal cortices. All anatomical regions were defined using the
anatomical automatic labeling (aal) template, which is part of
the WFU pickatlas tool (Maldjian et al., 2003). Given previous
evidence suggesting that the left IPL/SPL plays a crucial role in
calculation (Simon et al., 2002; Rivera et al., 2005; Price et al.,
2016), we considered left and right IPL/SPL as separate ROIs, in
order to explore hemispheric differences.

To localize verbal regions in the brain we identified, for each
participant, the voxels that showed greater activation for all
word pairs of the rhyming judgment task as compared to the
control condition, at time 1. In a second-level analysis, these
individual contrasts were submitted to a one-sample t-test across
all participants. Based on extensive literature suggesting that left
lateral temporal cortex is implicated in housing phonological
representations (Booth et al., 2002, 2003, 2004; Prado et al., 2011,
2014), we constrained the brain activation elicited by this contrast
within the anatomical left middle and superior temporal gyri
(MTG/STG) and considered this combined ROI to represent the
storage of verbal representations (Figure 2D).

While different anatomical regions were used to identify
the storage of verbal vs. quantity representations, the previous
literature on the brain regions involved in accessing those
representations, especially quantity representations, is less robust.
For this reason, we decided to use the same anatomical
region, the bilateral frontal cortex (i.e., inferior, middle and
superior frontal gyri), to identify the regions involved in
accessing verbal and quantity representations. When comparing
the brain activation of all dot pairs of the quantity task vs.
the control condition within the bilateral frontal cortex, we
found three clusters that reached significance: one in the left
middle frontal gyrus (MFG; Figure 2C, left), one in right
IFG (Figure 2C, middle), and one in right MFG (Figure 2C,
right), which were taken as the ROIs involved in accessing
quantity representations. This goes in line with Arsalidou’s
meta-analyses suggesting that these regions are active for
calculation in adults (Arsalidou and Taylor, 2011) and in
children (Arsalidou et al., 2018), and for non-symbolic quantity
processing (Sokolowski et al., 2017). These regions have also
been found to be more active for subtraction as compared to
additions (De Smedt et al., 2011; Rosenberg-Lee et al., 2015),
for subtractions as compared to a control condition (Kawashima
et al., 2004; Evans et al., 2016) and for arithmetic problems
reported to be solved by procedures as compared to those
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FIGURE 2 | Visualization of regions of interest. Regions of the brain implicated in: quantity representations in (A) left and (B) right IPL/SPL; access to quantity
representations in (C) bilateral MFG/right IFG (including left MFG, right IFG, and right MFG); (D) storage of verbal representations in left MTG/STG; and (E) access to
verbal representations in left IFG.

reported to be retrieved (Grabner et al., 2009; Polspoel et al.,
2017). Given that the role of these three regions in arithmetic
processing is not yet clear and that we did not have specific
predictions for each area, we treated the three clusters as a
single ROI (hereinafter, bilateral MFG/right IFG). To the best
of our knowledge, this is the first study that identifies frontal
regions involved in quantity processing by means of a localizer
task and uses brain activation from these regions to predict
subtraction fluency gains.

When constraining the brain activation of all word pairs of
the rhyming judgment task vs. the control condition within the
bilateral frontal cortex, we found that a cluster in the left inferior
frontal gyrus (IFG) was the only one that reached significance
(Figure 2E). This finding goes in line with extensive previous
evidence suggesting that left IFG is responsible for accessing
verbal representations (Poldrack et al., 1999; Rickard et al., 2000;
Bookheimer, 2002; Booth et al., 2003, 2004; Prado et al., 2011,
2014; Fedorenko et al., 2012; Andin et al., 2015; Pollack and
Ashby, 2017). As shown in Figure 2, the ROIs involved in
accessing quantity (2C) and verbal (2E) representations showed
no overlap. More information about these combined ROIs is
given in Table 2.

Statistical significance for creating these combined ROIs was
defined using Monte Carlo simulations in AFNI’s 3dClustSim
program (December, 20156; with SPM’s data smoothness
parameters, autocorrelation function [ACF] = 0.45, 4.14, 11.02).
3dClustSim carries out a user-specified number of Monte Carlo
simulations of random noise activations at a particular voxel-
wise alpha level within a masked brain volume. Following
the suggestions made by Eklund et al. (2016) regarding the

6http://afni.nimh.nih.gov/

inflated statistical significance achieved using some packages
(i.e., SPM, FSL, and AFNI), we used 3dClustSim’s most recent
version (December, 2015). We used 3dFWHMx to calculate
the smoothness of the data for every participant, using a
spatial ACF, and then averaged those smoothness values across
all participants. This averaged smoothness value was then
entered into 3dClustSim to calculate the cluster size needed for
significance for a given anatomical mask. Cluster sizes of 92, 53,
and 53 were needed to reach significance for the bilateral frontal
cortex, left MTG/STG and bilateral IPL/SPL anatomical regions,
respectively. Clusters exceeding these size thresholds, at a cluster-
wise threshold of p = 0.05 and voxel-wise threshold of p = 0.005,
were deemed significant.

ROI Analysis
The 100 voxels showing maximal activation for the contrast
“small subtractions vs. control” and “large subtractions vs.
control” at time 1 were extracted for every participant from
each of the five ROIs described above (i.e., left IPL/SPL,
right IPL/SPL, bilateral MFG/right IFG, left MTG/STG, and
left IFG).7 The selection of brain voxels showing maximum
activation at the individual level has been suggested to provide
higher sensitivity and selectivity, being better able to detect
effects and distinguish between conditions (Fedorenko et al.,

7Note that the variable of interest in this study is the extent to which participants
relied on quantity representation mechanisms, indicating the use of calculation-
based strategies, so we extracted brain activation during the subtraction task (i.e.,
top 100 voxels) from ROIs in parietal cortex that were identified during the
numerosity judgment task using the contrast “all dots vs. control”. In contrast, in
Suárez-Pellicioni and Booth (2018), we explored the role of quantity representation
at time 1 in predicting math fluency gains, with parietal activation during the
Numerosity judgment task (i.e., contrast “hard vs. easy”) being our covariate of
interest.
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TABLE 2 | Information for regions of interest.

Localizer contrast Anatomical constraint K aal ∼BA MNI coordinate Z-value Cluster in Figure 2

X Y Z

Dot pairs > control Left IPL/SPL 580 Left IPL/SPL 7/40 −34 −37 38 5.0

−40 −41 42 5.0

−42 −27 42 4.9

Right IPL/SPL 286 Right IPL/SPL 7/40 46 −37 54 5.5

24 −63 50 5.3

30 −53 46 5.1

BilateralIFG/MFG/SFG 202 Left MFG 6 −30 −7 66 5.9

−28 −1 58 4.5

−26 7 62 3.7

130 Right IFG oper 44 54 7 26 5.6

58 11 18 5.1

133 Right MFG 6 32 −1 58 5.5

Word pairs > control Left MTG/STG 495 Left MTG/STG 21/22 −56 −35 2 5.3

−42 −61 −2 5.0

−50 −67 −2 4.4

Bilateral IFG/MFG/SFG 1546 Left IFG 44/45/47 −48 13 26 7.4

−38 29 6 6.6

−46 27 18 6.3

Localizer contrast and anatomical constraint used to create the combined ROIs. Detailed information of the combined ROIs including cluster size (k), corresponding
region based on anatomical automatic labeling (aal), approximate Brodmann areas (∼BA), MNI coordinates of the peaks, Z-values, and corresponding cluster in
Figure 2. MTG/STG, middle and superior temporal gyri; IFG, inferior frontal gyrus; IPL/SPL, inferior and superior parietal lobules; MFG, middle frontal gyrus; SFG,
superior frontal gyrus.

2010; Nieto-Castañón and Fedorenko, 2012), as compared to
traditional group-based analyses that tend to overestimate
overlap across participants and underestimate functional
specificity (Fedorenko and Kanwisher, 2009). Figure 3 shows
the cluster overlap in the five ROIs across participants at time 1,
separately for small and large subtractions. Brain activation at
time 2 was also extracted from these clusters identified at time 1
in order to study changes in brain activation over time.

Parameter estimates (or β weights) associated with the two
contrasts were extracted at the individual level using MarsBars.
Subsequently, the extracted data were submitted to SPSS 22
(IBM, SPSS Statistics, IBM Corporation, NY, United States) for
statistical testing.

Statistical Analyses on Brain Activations During
Subtraction Task Solving
Brain activations elicited at time 1 while solving small and
large subtractions were separately extracted from the five ROIs
(i.e., left IPL/SPL, right IPL/SPL, bilateral MFG/right IFG, left
MTG/STG, and left IFG), resulting in 10 variables (i.e., neural
problem size effect).

In analysis 1, we studied the role of brain activation at time 1
while solving small and large subtraction problems in predicting
math fluency gains. To this aim, we ran a mixed ANOVA
including Improvement groups (i.e., improvers; non-improvers)
as the between-subjects factor and Problem size (i.e., small,
large) × ROI (i.e., L IPL/SPL, R IPL/SPL, bilateral MFG/right
IFG, left MTG/STG, and left IFG) at time 1 (i.e., the neural

problem size effect) as the within-subjects factors. Participants’
age at time 1 and large subtractions’ accuracy at time 1 were
included as covariates. Figure 4A shows an illustration of the
between-subjects factor, within-subjects factors, and covariates
included in this analysis.

In analysis 2, we explored the changes over time in brain
activation associated with subtraction fluency improvement.
We ran a mixed ANOVA including Improvement groups (i.e.,
improvers; non-improvers) as the between-subjects factor and
Problem size (i.e., small, large)× ROI (i.e., L IPL/SPL, R IPL/SPL,
bilateral MFG/right IFG, left MTG/STG, and left IFG) × Time
(time 1, time 2) as the within-subjects factors. Participants’ age at
time 1 and large subtractions’ accuracy at time 1 were included
as covariates. Figure 4B shows an illustration of the between-
subjects factor, within-subjects factors, and covariates included
in this analysis.

Figure 5 shows an illustration of the findings supporting
each hypothesis tested in this study, expected at time 1 and
expected for the changes in brain activation (time 2 vs. time
1). Finding that brain activation in bilateral IPL/SPL predicts
fluency gains would be compatible with both hypotheses given
that children may initially rely on parietal-based procedures
and continue to do so over time. However, these procedures
may become more automatic (i.e., Schema-based hypothesis),
or children may initially rely on procedures but later shift
toward retrieval (i.e., Fact-retrieval hypothesis). In the first
case, illustrated in arrow A in Figure 5, we expected to see
increases in bilateral IPL/SPL activation over time, suggesting
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FIGURE 3 | Cluster overlap across participants for activation during subtraction problem-solving. Cluster overlap across participants for the 100 voxels showing
maximal activation separately for small and large subtractions in quantity representation ROIs in (A) left and (B) right IPL/SPL; (C) access to quantity representation
ROIs in bilateral MFG/right IFG; (D) verbal representation ROI in left MTG/STG; and (E) access to verbal representation ROI in left IFG. Color bar shows the number
of participants showing overlap, from 2 participants shown in purple/blue colors to 10 participants shown in yellow/red colors for all the regions except right IPL/SPL,
in which case yellow/red colors indicate 20 participants.

that children continue to rely on procedures. Critically, we
expected to see decreases in bilateral MFG/right IFG over
time, suggesting that procedures become more automatic, a
central claim of the Schema-based hypothesis. In the second
case, illustrated in arrow B in Figure 5, we expected to see
decreases in bilateral IPL/SPL and increases in left MTG/STG
over time. It is possible that this pattern is accompanied
by increases in left IFG activation over time, given that the
implementation of retrieval strategies might be effortful in the
early stages (Geary et al., 1996a; i.e., Fact-retrieval hypothesis).
Finally, there is a third possibility, illustrated in arrow C in
Figure 5. Evidence suggests that by 10 years of age retrieval is
the dominant strategy to solve single-digit arithmetic problems
(Ashcraft and Fierman, 1982), so it is possible that children
may have already shifted toward retrieval by the time they were
scanned at time 1. In this case, we expected left MTG/STG
activation at time 1 to predict subtraction fluency gains and
children to show increases in temporal cortex activation over
time. These findings would suggest that children continue to

build their storage of subtraction facts in long-term memory.
This pattern might be accompanied by decreases in left IFG
over time, indicating that retrieval becomes less effortful as
the representations in long-term memory become more robust
(Prado et al., 2014).

Whole Brain Analysis
In order to investigate the effects outside our ROIs, we ran a
two-sample t-test comparing brain activity between improvers
and non-improvers at the whole brain (i.e., after excluding
ROIs). Following the ROI analysis logic, we focused on (a) brain
activation at time 1 by looking at the contrast “large subtractions
vs. control at time 1” and (b) changes in brain activation over
time by looking at the contrast “large subtractions vs. control
time 2 – time 1”. Statistical significance for the whole brain was
defined using 3dClustSim. A cluster size of 175 voxels was needed
for whole brain significance (ACF values = 0.45, 4.57, 11.14) at
a cluster-wise threshold of p = 0.05 and a voxel-wise threshold
of p = 0.005.
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FIGURE 4 | Illustration of the factors included in the statistical analyses. (A) Illustration of the between-subjects factors, within-subjects factors, and covariates
included in the mixed ANOVAs calculated to study whether improvement groups differed in the brain regions they engaged to solve subtraction problems at time 1.
(B) Illustration of the between-subjects factors, within-subjects factors, and covariates included in the mixed ANOVAs performed to study the changes in brain
activation associated with longitudinal gains in subtraction fluency.

RESULTS

Localizer Tasks Behavioral Results
We calculated accuracy and RTs (for correctly solved trials) for
the rhyming and numerosity judgment localizer tasks, for the
participants whose data were used to define ROIs (i.e., n = 40; see
section “Regions of Interest Definition” for more information).
Repeated-measures ANOVAs were performed separately for
accuracy and response times, and separately for each localizer
task. For the numerosity task, we entered Difficulty as the
within-subjects factor, which referred to the distance between the
number of dots to be compared: easy (12 vs. 36), medium (18
vs.36), and hard (24 vs. 36). As for the rhyming judgment task,
we included Conflict, which referred to whether orthography was
consistent (i.e., non-conflicting) or inconsistent (i.e., conflicting)
with the correct answer and Rhyming, referring to whether the
pair of words rhymed or not, as the within-subject factors. Post
hoc tests, using Bonferroni correction, were calculated when an
effect was found significant.

As for the numerosity judgment task, we found a main
effect of Difficulty for accuracy [F(2,78) = 6.07, p = 0.004,

partial η2 = 0.14], showing that accuracy was highest for the
easy condition (mean = 90.92, SEM = 1.41), lowest for the
hard condition (mean = 86.05, SEM = 1.77), and intermediate
for the medium condition (mean = 88.55, SEM = 1.78). The
Difficulty effect was also significant for the response time analysis
[F(2,78) = 14.37, p < 0.001, partial η2 = 0.27], and showed
fastest response times for the easy condition (mean = 976 ms,
SEM = 237), slowest response times for the hard condition
(mean = 1061 ms, SEM = 258), and intermediate response times
for the medium condition (mean = 1018 ms, SEM = 245).

Regarding the rhyming judgment task, the accuracy analysis
showed a main effect of Rhyming [F(1,39) = 28.58, p < 0.001,
partial η2 = 0.42]. Children were more accurate for pairs
that rhymed (mean = 90.77, SEM = 1.38) as compared to
pairs that did not rhyme (mean = 70.83, SEM = 3.73). The
same effect was shown in response times [F(1,36)8 = 39.95,
p < 0.001, partial η2 = 0.53], with children being faster on

8The difference in degrees of freedom is due to 3 participants having no correct
responses for one of the four conditions, so response times could not be calculated,
resulting in missing data.
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FIGURE 5 | Illustration of the predictions for each hypothesis. (A) Arrow indicating the predictions for the Schema-based hypothesis: Initial activation of bilateral
IPL/SPL at time 1 followed by increases in brain activation in this region over time, suggesting that children continue to rely on procedures to become more fluent in
subtractions. In addition, decreases in bilateral MFG/right IFG would indicate that the implementation of these procedures become more automatic over time, a
central claim of the Schema-based hypothesis. (B) Arrow indicating a main prediction that would support the Fact-retrieval hypothesis: Initial activation of bilateral
IPL/SPL at time 1 is followed by decreases in brain activation in this region and by increases in left MTG/STG activation over time, suggesting that children shift from
procedures to retrieval of the solution from long-term memory, a core claim of the Fact-retrieval hypothesis. These changes in brain activation might be accompanied
by increases in left IFG over time, considering that the implementation of the retrieval strategy might be effortful in its early stages (Geary et al., 1996a). (C) Arrow
indicating an alternative prediction that would support the Fact-retrieval hypothesis. Given children 10 years of age use the dominant strategy of retrieval to solve
single-digit arithmetic problems (Ashcraft and Fierman, 1982), it may be the case that children have already shifted toward retrieval by the time they were scanned at
time 1, which would be consistent with the finding that brain activation in left MTG/STG at time 1 predicts subtraction fluency gains over time. This alternative
hypothesis also predicts that brain activation in temporal cortex would increase over time, suggesting that children continue to build their long-term storage of
subtraction facts. It is also possible that this change is accompanied by decreases in left IFG activation over time, indicating that retrieval becomes less effortful as
the representations in long-term memory become more robust (Prado et al., 2014).

rhyming pairs (mean = 1185 ms, SEM = 42) than non-rhyming
ones (mean = 1364 ms, SEM = 48). We also found a main
effect of Conflict for accuracy [F(1,39) = 64.65, p < 0.001,
partial η2 = 0.62], with children being more accurate for non-
conflicting (mean = 89.23, SEM = 11.67) than for conflicting
pairs (mean = 72.37, SEM = 17.50). The same main effect
of Conflict was found for response times [F(1,36) = 18.86,
p < 0.001, partial η2 = 0.34], with children taking longer
to respond to conflicting (mean = 1315 ms, SEM = 293)
than to non-conflicting pairs (mean = 1223 ms, SEM = 246).
The Rhyming × Conflict interaction was also significant for
accuracy [F(1,39) = 24.17, p < 0.001, partial η2 = 0.38].
While the comparisons across all conditions were significant
(all p-Values below.005), the interaction showed that the non-
rhyming condition with conflicting orthography (O + P−)
was the hardest. The Rhyming × Conflict interaction was
also significant for response times [F(1,36) = 8.23, p = 0.007,
partial η2 = 0.19]. The interaction was due to a significant
difference between the conflicting and non-conflicting conditions
among the non-rhyming pairs (p < 0.001; O + P− and O-P-),
but a non-significant difference between conflicting and non-
conflicting conditions among the rhyming pairs (p = 0.22;
O+ P+, and O−P+).

Subtraction Task Behavioral Results
Whole Sample Performance
We calculated accuracy and means of RTs (for correctly
solved trials) separately for small and large subtractions, for
every participant.

We calculated a repeated measures ANOVA for accuracy
including Time (i.e., time 1, time 2) and Problem size
(i.e., small, large) as within-subjects factors. Post hoc tests,
using Bonferroni correction, were calculated when an effect
was found significant. We found a main effect of Time
[F(1,45) = 23.15, p < 0.001, partialη2 = 0.34] and a
main effect of Problem size [F(1,45) = 25.67, p < 0.001,
partialη2 = 0.36], but no Time × Problem size interaction
[F(1,45) = 0.49, p = 0.49, partialη2 = 0.01]. The Time
effect showed that, across problem sizes, children were more
accurate at time 2 (mean = 89.53, SEM = 1.24) as compared
to time 1 (mean = 80.50, SEM = 2.08; p < 0.001).
The Problem size effect showed that, across time points,
children were more accurate solving small (mean = 87.70,
SEM = 1.28; p < 0.001) as compared to large (mean = 82.33,
SEM = 1.74) subtractions.

We then calculated a repeated measures ANOVA for means
of RTs including Time (i.e., time 1, time 2) and Problem size
(i.e., small, large) as within-subjects factors. We found a main
effect of Time [F(1,45) = 49.33, p < 0.001, partialη2 = 0.52],
and a main effect of Problem size [F(1,45) = 44.46, p < 0.001,
partialη2 = 0.50], but no Time × Problem size interaction
[F(1,45) = 0.005, p = 0.94, partialη2 = 0.00]. The Time effect
showed that, across problem sizes, children were faster at time
2 (mean = 1049 ms, SEM = 52) as compared to time 1
(mean = 1313 ms, SEM = 54; p < 0.001). The Problem size effect
showed that, across time points, children were faster to solve
small (mean = 1113 ms, SEM = 48; p < 0.001) as compared to
large (mean = 1250 ms, SEM = 52) subtractions.
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Improvement Groups’ Performance
We then explored children’s performance in large subtractions
depending on improvement groups (see section “Improvement
Groups” for a description of how groups were formed). This
confirmatory analysis was carried out to test whether groups
showed the expected pattern of behavioral changes over time.

We calculated a repeated-measures ANOVA for accuracy
entering Time (Time 1; Time 2) as the within-subjects factor
and Improvement groups (improvers, non-improvers)
as the between-subjects factor. The same ANOVA was
calculated for RTs.

As for accuracy, we found a significant main effect of
Time [F(1,44) = 16.72, p < 0.001, partialη2 = 0.28], but
no Time × Improvement group interaction [F(1,44) = 0.62,
p = 0.44, partialη2 = 0.01]. The main effect of Time showed
that, regardless of improvement group, all children became more
accurate [t(45) = 5.66, p < 0.001]. More detailed information
about groups’ performance is given in Table 3. The main effect
of Time did not reach significance when age at time 1 was
entered as a covariate in the ANOVA [F(1,43) = 1.71, p = 0.20,
partialη2 = 0.04].

Regarding RTs, the main effect of Time [F(1,44) = 73.97,
p < 0.001, partialη2 = 0.63] was significant. As expected,
based on the definition of the improvement groups, the
Time × Improvement group interaction was also significant
[F(1,44) = 59.74, p < 0.001, partialη2 = 0.58]. The interaction
showed that the improvers had a significant decrease in RTs over
time [t(22) = 11.17, p < 0.001], whereas the non-improvers did
not [t(22) = 0.64, p = 0.53]. Groups differed in RTs at time 2
[t(44) = −4.60, p < 0.001], but not at time 1 [t(44) = 0.33,
p = 0.75]. More detailed information about groups’ performance
is given in Table 3. Figure 6 shows the changes over time in
RTs for improvers and non-improvers. Results were consistent
if age at time 1 was entered as a covariate in the ANOVA
(i.e., Time × Improvement group interaction: F(1,43) = 61.06,
p < 0.001, partialη2 = 0.59).

fMRI Results
Improvers Showed a Larger Neural Problem Size
Effect in Bilateral Parietal Cortex at Time 1
The analysis of brain activation at time 1 showed a significant
ROI × Problem size × Improvement groups interaction
[F(3,138) = 2.66, p = 0.04, partialη2 = 0.06, Greenhouse-Geisser
ε = 0.82]9. We explored the three-way interaction with pairwise
comparisons using Bonferroni correction to control for multiple
comparisons. This analysis showed differences in the left IPL/SPL
[t(22) = −4.41, p = 0.001] and right IPL/SPL [t(22) = −3.57,
p = 0.01] between small and large subtractions only for improvers.
Figure 7 shows the differences in brain activation in the left (A)
and right (B) IPL/SPL between small and large subtractions for
the improvers and non-improvers groups. The two group did not
differ in bilateral MFG/R IFG (p = 0.47), left MTG (p = 0.26), or

9Results remained significant if the top 50 [F(3,136) = 3.00, p = 0.03,
partialη2 = 0.07, Greenhouse-Geisser ε = 0.81] or top 200 [F(3,137) = 3.60, p = 0.01,
partialη2 = 0.08, Greenhouse-Geisser ε = 0.82] voxels were selected instead of the
top 100.

TABLE 3 | Performance on large subtractions solved inside the scanner.

Whole
(n = 46)

Improvers
large (n = 23)

Non-improvers large
(n = 23)

Accuracy T1 77.5 (17.1) 79.1 (15.7) 75.9 (18.6)

Accuracy T2 87.2 (10.7) 86.9 (11.5) 87.4 (10.0)

Accuracy change 9.7 (16.0) 7.8 (13.7) 11.5 (18.1)

RTs T1 1382 (387) 1401 (441) 1363 (333)

RTs T2 1117 (389) 898 (350) 1336 (294)

RTs change −265 (317) −503 (216) −27 (202)

Means of response times (RTs; in milliseconds), and accuracy (standard deviation
in parentheses) at time 1 (T1) and time 2 (T2) and change (time 2 − time 1) for the
whole sample (n = 46), for improvers (n = 23), and for non-improvers (n = 23).

left IFG (p = 0.17) at time 1. The non-improvers showed no neural
problem size effect in any of the ROIs (all p-Values above 0.25).

Improvers Decreased Activation for Large
Subtractions in Both Parietal and Frontal ROIs Over
Time
The ANOVA showed a Time × ROI × Problem
size × Improvement groups interaction [F(3,126) = 2.76,
p = 0.04, partialη2 = 0.06, Greenhouse-Geisser ε = 0.75].10

Pairwise comparisons using Bonferroni correction showed

10Results remained significant if the top 50 [F(3,125) = 3.10, p = 0.03,
partialη2 = 0.07, Greenhouse-Geisser ε = 0.75] or the top 200 [F(3,125) = 2.75,
p = 0.046, partialη2 = 0.06, Greenhouse-Geisser ε = 0.75] voxels were selected
instead of the top 100.

FIGURE 6 | Improvement groups changes in response times (RTs) over time.
Changes in RTs (in milliseconds) over time to solve large subtractions
separately for improvers and non-improvers. Error bars show standard error of
the mean. Asterisks indicate significant differences between groups at time 1
and between time points for improvers.
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FIGURE 7 | Neural problem size effect in bilateral parietal cortex at time 1 for improvement groups. Bar chart show brain activation in (A) left IPL/SPL and (B) right
IPL/SPL for small (i.e., lighter colors) and large (i.e., darker colors) subtractions, for improvers and non-improvers. Error bars show standard error of the mean.
Asterisks indicate significant differences between problem sizes in left and right IPS for improvers.

a different pattern of changes in brain activation over time
depending on problem size. For small subtractions, both groups
showed significant decreases in brain activation over time in all
ROIs (all p-Values below.02). As for large subtraction problems,
improvers showed a significant decrease over time in all ROIs
(all p-Values equal or below.001), whereas non-improvers
showed significant decreases over time only for left MTG/STG
(p = 0.005), but not for left IPL/SPL (p = 0.40), right IPL/SPL
(p = 0.13), bilateral MFG/right IFG (p = 0.07) or left IFG
(p = 0.054). Figure 8 illustrates changes over time in brain
activation for large subtraction problems for improvers (i.e.,
plain bars) and non-improvers (i.e., patterned bars).

Evidence for the Efficiency of Numerical Procedures:
A Exploratory Analysis of the Improvers
We aimed to further explore the idea of efficiency of numerical
procedures by more closely looking at the improvers group.
Considering our finding, showing decreased bilateral MFG/right
IFG activation over time for improvers, it would be reasonable to
expect greater decreases in these regions for children becoming
faster over time, even among the improvers (n = 23), providing
further evidence for the automaticity in the implementation of
procedures. To this aim, participants in the improvers group
were split into two subgroups: slower improvers (n = 11) and
faster improvers (n = 12), based on the same procedure used
to define the improvers vs. non-improvers and described in
section “Improvement Groups”. As shown in Figure 9A, the
slower improvers group [t(10) = 7.50, p < 0.001] and the faster
improvers group [t(11) = 10.77, p < 0.001] significantly decreased
in response times over time, but they differed in how fast they
solve problems at time 2 [t(21) = 2.66, p = 0.01].

We also ran a student t-test comparing bilateral MFG/right
IFG brain activation between slower and faster improvers at
each time point. As shown in Figure 9B, results showed that
groups differed in brain activation at time 2 [t(21) = −2.27,

p = 0.03], but not at time 1 [t(21) = −1.16, p = 0.26],
with the faster subgroup showing less bilateral MFG/right IFG
activation than their slower counterparts at time 2. Both the
slower [t(10) = 3.98, p = 0.003] and the faster [t(11) = 5.32,
p < 0.001] improvers subgroups significantly decreased brain
activation in this area over time.

Whole Brain Results
Three clusters (shown in Supplementary Figure 1) reached
significance for the contrast “large subtractions vs. control time
2 – time 1”, showing greater activation for non-improvers as
compared to improvers. More specific information about these
clusters is provided in Table 4. No cluster reached significance
for the contrast “large subtractions vs. control time 1”.

DISCUSSION

Despite the crucial role that mathematics plays in our society
for personal and professional development, and the importance
that developing math fluency has in the acquisition of more
advanced mathematics (Geary, 1994; Price et al., 2013),
the neurocognitive mechanisms associated with improvement
in behavioral fluency are poorly understood. While there
is consensus in the literature that children show a shift
toward retrieval for operations such as multiplication (Ashcraft,
1982; Dehaene and Cohen, 1995), it is not yet clear how
fluency is achieved in subtraction. Two hypotheses have
been formulated to explain subtraction fluency development.
According to the Fact-retrieval hypothesis, children become
fluent in single-digit subtractions by shifting from procedures
to the retrieval of the solutions from declarative long-
term memory (Ashcraft, 1982; Siegler, 1987). The Schema-
based hypothesis, on the other hand, claims that children
achieve subtraction fluency by means of procedures that
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FIGURE 8 | Changes in brain activation over time for large subtractions for improvers and non-improvers. Changes in brain activation in (A) left IPL/SPL, (B) right
IPL/SPL, (C) bilateral MFG/right IFG, (D) left MTG/STG, and (E) left IFG for children showing improvement (i.e., plain bars) and non-improvement (i.e., patterned
bars). Error bars show standard error of the mean. Asterisks indicate significant differences between time points in all ROIs for improvers and in left MTG/STG for
non-improvers.

become automatic over development (Baroody, 1983; Fayol
and Thevenot, 2012). Given that both hypotheses make
the same predictions regarding changes in RTs but differ
in the mechanisms considered to be responsible for that
change, and given that automatic processes seem to be
easily confounded with and reported as retrieval (Fayol and
Thevenot, 2012), neither RTs nor self-reported measures have
been able to adjudicate between these two hypotheses. Within
this context, fMRI can help by investigating (a) whether
engagement of verbal or quantity brain areas early on (i.e.,
time 1) predict longitudinal gains in subtraction fluency;
(b) whether longitudinal fluency gains are associated with
changes in verbal or quantity brain activation. Importantly,
the aim of this study was to assess differences in the
neurocognitive mechanisms recruited by children differing

in fluency but showing similar levels of accuracy on the
experimental task.

Modulation of Parietal Cortex by Problem
Size at Time 1 Predicts Longitudinal
Subtraction Fluency Improvement
When examining the role of brain activation at time 1 in
predicting longitudinal gains in subtraction fluency we found
that improvers showed a larger neural problem size effect
in bilateral IPS at time 1, with greater activation for large
subtractions as compared to small ones. These results are
consistent with Prado et al. (2014)’s cross-sectional evidence
showing grade-related increases in parietal cortex for solving
subtractions with more years of math instruction. Prado
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FIGURE 9 | Changes in RTs and changes in bilateral MFG/right IFG activation for the subgroup of improvers that ended up being faster (i.e., faster improvers) or
slower (i.e., slower improvers) at time 2. (A) Changes over time in response times for the subgroup of faster and slower improvers. Error bars show standard error of
the mean. Asterisks confirm significant differences between time points for both subgroups and significant differences in response times between subgroups at time
2. (B) Changes over time in bilateral MFG/right IFG activation for the subgroups of faster and slower improvers. Error bars show standard error of the mean.
Asterisks indicate significant differences between time points for both subgroups and significant differences in brain activation between subgroups at time 2.

et al. (2014)’s and our results both support the involvement
of quantity but not verbal regions for subtraction learning.
However, there were some differences between studies. First,
the covariate of interest in our study was how much children
improved from time 1 (i.e., sample in Prado’s papers) to
time 2, with age being controlled for. In contrast, Prado
et al. (2014) study included grade (i.e., second through
eighth), which is highly correlated with age, as the predictor
of interest. Second, while Prado et al. (2014) found the
effects only for small subtractions, we found them for
large subtractions. Third, while Prado et al. (2014) found
the effects in the right posterior superior parietal lobule
(PSPL), we found them in bilateral IPS. While the IPS plays
a role in representing quantities (Dehaene et al., 2003;
Piazza et al., 2004), the PSPL has been associated with
visuo-spatial attentional processes in children (Krinzinger,
2011) and adults (Simon et al., 2002). Previous results
have suggested overlapping patterns of activity in PSPL for
addition and subtractions and shifts of visuo-spatial attention
(Knops et al., 2009), like the ones needed to estimate the
position along a mental number line (Berteletti et al., 2014).
Prado et al. (2014) concluded that these visuo-spatial shifts
seemed to be sufficient for solving small subtractions, while
solving large ones would require more involvement of
quantity mechanisms in IPS. Our results confirm Prado’s
predictions by showing that engaging these quantity

mechanisms in IPS, early on, explained longitudinal gains
in subtraction fluency.

Interpretation of the Decreases in
Parietal Activation Over Time as
Supporting the Schema-Based
Hypothesis
The fact that parietal cortex at time 1 was the only ROI that
predicted subtraction fluency improvement does not distinguish
between the Schema-based and Retrieval-based hypotheses. It
could be the case that this early parietal engagement, suggesting
procedural use, is replaced by the retrieval of the solution from
memory, in which case we should see a shift in brain activation
from parietal to temporal regions. We hypothesized that this
could be accompanied by increases in left IFG, given that the
implementation of retrieval strategy might be effortful in young
children (Geary et al., 1996a). Alternatively, it might be the
case that the use of procedures is not replaced, but becomes
more efficient over time, in which case we would see increases
in parietal cortex over time, suggesting that children continue
to rely on procedures to develop their fluency. This should be
accompanied by decreases in bilateral MFG/right IFG over time,
suggesting that procedures become more automatic, a core claim
of the Schema-based hypothesis.
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TABLE 4 | Whole brain results.

K MNI coordinate Z-score ∼BA Anatomical region

X Y Z

176 −2 −81 22 3.93 17 left cuneus and left calcarine

−2 −91 18 3.48

2 −83 6 2.78

194 32 −33 38 3.70 2, 3, 40 right postcentral and right
supramarginal gyrus

40 −35 46 3.49

44 −23 42 3.08

215 −38 −53 6 3.93 37 left middle occipital cortex

−36 −65 2 3.63

−36 −67 22 3.50

Clusters showing significant activation at the whole brain level for large subtraction
problems as compared to the control condition at time 2 as compared to time 1
for the non-improvers as compared to the improvers.

The analysis of longitudinal changes in brain activation
showed that children who improved in subtraction fluency
decreased activation in bilateral IPL/SPL over time. Previous
evidence has suggested that less activation for a given level of
proficiency represents more efficient use of certain brain regions
(Prat et al., 2007; Prat and Just, 2011). Several fMRI studies have
found that more skilled or highly trained individuals show less
brain activation as compared to controls (Rypma and D’Esposito,
1999; Krings et al., 2000; Welcome and Joanisse, 2012). In
addition, decreased activation in different brain regions has been
found after practice with visuomotor association tasks (Büchel
et al., 1999), visuospatial WM (Garavan et al., 2000), verbal
WM (Hempel et al., 2004), Tower of London (Beauchamp et al.,
2003), or counting Stroop tasks (Bush et al., 1998) in which
participants became faster with training. In the field of math
cognition, previous work has shown decreased brain activation
for perfect performers (i.e., 100% accuracy) as compared to
imperfect performance (i.e., 78%-96% accuracy; Menon et al.,
2000), suggesting that after a certain level of expertise is achieved,
the brain can achieve the same results with fewer resources.
Within this context, and considering that the reductions in
parietal cortex activation were unique to the improvers group,
we interpret our findings as showing that gains in subtraction
fluency is associated with a more efficient recruitment of parietal
cortex by calculation procedures. The fact that non-improvers
continue to engage parietal cortex over time is consistent with
previous evidence showing greater bilateral parietal activation
for children with developmental dyscalculia solving a subtraction
task as compared to an addition task (Rosenberg-Lee et al., 2015).
This finding is also consistent with evidence showing that 8 weeks
of one-to-one math tutoring resulted in significant reductions in
overactivation of bilateral IPS (among other regions) in children
with math learning disabilities (Iuculano et al., 2015).

Decreases in Bilateral MFG/Right IFG
Supports the Schema-Based Hypothesis
Our finding of a reduction in brain activation in bilateral
MFG/right IFG supports the Schema-based hypothesis and

suggests that processes occurring in these areas become more
automatic over time. Decreases in bilateral parietal and frontal
regions were interpreted as evidence for procedures becoming
more efficient in a training study with adults that found
untrained subtractions engaged bilateral IPS and bilateral
IFG as compared to trained ones (Ischebeck et al., 2006).
Less activation in MFG over development has also been
observed in a cross-sectional study in 8−19-year-old children
solving additions and subtractions (Rivera et al., 2005), in a
longitudinal study of 6th to 7th-grade children solving two-
digit subtractions (Artemenko et al., 2018), and in adults solving
arithmetic problems as compared to children (Kawashima
et al., 2004; Kucian et al., 2008). Our finding adds to this
evidence by showing that frontal regions involved in quantity
processing, as identified with a numerosity judgment localizer
task, decreased activation with improvement in subtraction
fluency and support the hypothesis of increased automaticity in
accessing procedures.

Underlying Mechanisms Explaining the
Automaticity of Procedures
Our findings support previous studies suggesting that, at
least for subtractions, developing fluency involves procedures
becoming more automatic over time (Baroody, 1983; LeFevre
et al., 2006; Fayol and Thevenot, 2012). Using a priming
paradigm, Fayol and Thevenot (2012) tested whether solving
additions, subtractions, and multiplications mobilized a
procedural component or were solved by retrieval. They
tested whether procedures were pre-activated as soon as
individuals see a sign (i.e., +, -, x), presented before the
arithmetic problem indicating the upcoming operation.
They found that solving additions and subtractions was
facilitated when the operation sign was presented 150 ms
before the operands and that this effect was operation-specific.
They inferred that abstract procedures were primed by the
presentation of the sign, subsequently helping with solving
the problems. The presentation of the multiplication sign had
no facilitation effect on solving the problems, confirming the
hypothesis that they did not rely on procedures. Moreover,
subtractions were not solved slower than multiplications,
suggesting that procedures could be as fast as retrieval. In
a similar study, Mathieu’s et al. (2016) presented the first
operand and the operator in the center of the screen, while
the second operand was presented either in the left or the
right of the screen. They found that additions were solved
faster when the second operand appeared to the right of
the screen whereas subtractions were solved faster when the
operand was presented to the left. No effect was found for
multiplication. They interpreted these findings as suggesting
that solving additions and subtractions activated procedures
consisting of rightward and leftward shifts of attention,
respectively, along a mental number line. Furthermore, in a
study of the neural correlates of these effects, Mathieu’s et al.
(2018) found greater activation in brain regions supporting
the orientation of spatial attention, including right posterior
superior parietal lobule (PSPL), when participants were
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presented with the “+” sign as compared to the “x” one. They
interpreted that the operation-priming effect shown by Fayol
and Thevenot (2012) was due to arithmetic symbols evoking
spatial mechanisms that would, in turn, lead to facilitation of
performance for that operation.

While previous studies from our lab have interpreted
grade-related findings in the PSPL for small subtractions as
suggesting visuo-spatial attentional shifts, this interpretation
seems less likely to explain our findings in the IPS, a brain
region well known for its role in quantity representation
(Dehaene et al., 2003; Piazza et al., 2004). We believe that
reliance on quantity-based procedures becomes more automatic
because these representations in parietal cortex are refined over
development (Suárez-Pellicioni and Booth, 2018). Several studies
have shown that with experience to symbolic mathematics,
children develop more precise representation of quantities
(Ansari, 2008; Mussolin et al., 2014; Matejko and Ansari,
2016). If quantity representations are more refined, children
are better able to implement calculation procedures more
efficiently, requiring less parietal activation. More precise
quantity representations would also explain the decreases in
bilateral MFG/right IFG regions over time, suggesting calculation
procedures become less effortful.

The Case of Addition: An Ongoing
Debate
A consensus has not yet been reached regarding whether
the Fact-retrieval or the Schema-based hypotheses better
explain arithmetic fluency development for arithmetic problems
involving addition. As mentioned above, Fayol and Thevenot
(2012), Mathieu’s et al. (2018, 2016) results suggest that solving
both addition and subtraction problems rely on procedures.
Barrouillet and Thevenot (2013), showed that response times
monotonically and linearly increased when addends were
incremented by one, a finding they argued is not consistent
with retrieval use, but rather points to adults relying on fast
procedures to solve additions. Uittenhove et al. (2016) also
argued that it was difficult to interpret the high variability in
response times to addition problems resulting from a one-step
direct retrieval process. Finally, Thevenot et al. (2016) aimed
to challenge previous evidence suggesting that by 10 years
old children already rely on retrieval to solve single-digit
arithmetic problems (Ashcraft and Fierman, 1982). Their analysis
of 10-year-old children’s response time patterns to a single-
digit addition production task was compatible with shifting
from slow to fast counting procedures but not with a shift
toward retrieval.

A very recent study used EEG to try to clarify between the
fact-retrieval and the schema-based hypotheses by administering
adults a single-digit addition and multiplication production
task. Their analyses of theta, lower alpha, and upper alpha
frequencies showed higher evidential strength for similar EEG
activity between very small additions (i.e., operands between 1
and 4) and multiplication problems, suggesting that very small
additions are solved through fact retrieval, and supporting the
Fact-retrieval hypothesis (Grabner et al., 2020). Other studies

investigating subtraction problem solving using fMRI have
reported evidence suggesting that additions are solved through
retrieval, with the hippocampus playing a potentially important
role in memory formation for these facts (Cho et al., 2012). Using
a multivariate analysis, Cho et al. (2011) found differences in
neuronal activity patterns between 7- to 9-year-old children that
were classified as retrievers vs. counters when solving a single-
digit addition task, with the highest classification rates being
observed in the bilateral hippocampus. Greater hippocampal
activation in children was found for additions as compared
to subtractions by De Smedt et al. (2011). Qin et al. (2014)
longitudinal study showed that 7-to 9-years-old children showed
increases in hippocampus activation and decreases in prefrontal-
parietal activation during addition problem solving, suggesting
a transition from counting to retrieval (Qin et al., 2014).
Rosenberg-Lee et al. (2018) found increases in hippocampus
and decreases in fronto-parietal activity when children solved
a single-digit addition verification task after they completed an
8-week number and arithmetic training. In summary, studies
suggest an important role of the hippocampus for addition,
so future studies need to address the role of this brain
area in distinguishing between the Schema-based and Fact-
retrieval hypotheses.

No Evidence Supporting the
Fact-Retrieval Hypothesis in Our Study
The Fact-retrieval hypothesis would have been supported by the
finding of greater activation in left MTG/STG at time 1 predicting
gains in subtraction fluency or brain activation shifting from
parietal to temporal cortex over time. We found no such effects.
Our results showed that all children, regardless of improvement,
showed decreased brain activation in verbal regions over time
for large subtractions. The lack of a problem size effect in verbal
regions at the first time point and the fact that brain activation
in this region decreased over time regardless of improvement
argues against the Fact-retrieval hypothesis, suggesting that a
shift toward retrieval is not the underlying mechanism for
gains in subtraction fluency. Even when looking at the whole
brain, no significant differences between improvement groups
were found in any region at time 1. For the changes in brain
activation over time, greater activation was found for non-
improvers as compared to improvers in a region sometimes
reported in studies looking at retrieval, the supramarginal gyrus
(e.g., Lee, 2000; Rivera et al., 2005). While the exact role of
supramarginal gyrus in arithmetic processing is not yet clear, the
finding suggests that engaging this region is actually associated
with a lack of improvement in fluency. We found no significant
brain activation in regions considered to play a role in memory
formation, such as the hippocampus (e.g., Cho et al., 2011) or
in other regions reported to be activated (or deactivated) when
retrieving, such as the angular gyrus (e.g., De Smedt et al.,
2011). In line with Thevenot et al. (2016), our study argues
against previous evidence suggesting that by the time children
are 10-years-old, they rely on retrieval to solve single-digit
arithmetic problems (Ashcraft and Fierman, 1982), suggesting
instead that different operations recruit distinct neural networks
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(Arsalidou and Taylor, 2011; Rosenberg-Lee et al., 2011), even for
single-digit problems.

Educational Relevance and Conclusion
Our fMRI study has filled a gap in the literature by providing
evidence that early reliance on brain areas implicated in
quantity representation is an important predictor explaining
gains in subtraction fluency in children. This finding supports
the Schema-based hypothesis, and is consistent with previous
behavioral (Baroody, 1983; LeFevre et al., 2006; Fayol and
Thevenot, 2012) and fMRI (Prado et al., 2011, 2014; Evans
et al., 2016) evidence suggesting that children do not rely on
retrieval to solve subtractions, but that procedures become more
automatic with skill development to support this operation
(Fayol and Thevenot, 2012; Barrouillet and Thevenot, 2013). Our
study constitutes an example of the utility of neuroimaging to
provide important information in order to answer educationally
relevant questions.

In our study, we did not give children any instruction in
the kind of strategy they should use to solve the task, so it is
likely that individuals used different strategies. However, it was
the children who relied on quantity mechanisms by engaging
parietal cortex early in development the ones who showed greater
fluency 2 years later. This finding suggests that the engagement
of parietal-based calculation strategies should be encouraged in
the classroom to solve subtraction problems. We argue that
calculation practice over the course of formal math education
will lead to subtractions becoming more automatic. We found
no evidence suggesting that the rote memorization of subtraction
facts should be encouraged in school.

According to Siegler’s adaptive strategy choice model (Siegler
and Shipley, 1995), arithmetic strategies are chosen depending
on their efficiency. One reason why relying on procedures to
solve subtractions might be more efficient than retrieval has to
do with their non-commutative nature. While additions and
multiplications are commutative so, for example, 3 + 6 and
6+ 3 could share common memory nodes (Rickard and Bourne,
1996), subtraction is not. Using retrieval might not be efficient
for solving subtractions because children would have to store in
memory twice the number of subtraction facts (i.e., 6−3 = 3,
but 3−6 = −3). As suggested by Campbell and Xue (2001),
there should be greater retrieval interference for subtraction facts,
making retrieval less efficient for this operation and promoting
the use of procedures.

We cannot rule out the possibility that the effects we found
in the brain are the consequence of the way subtractions are
taught in the United States. Math curriculum in North America
emphasizes conceptual understanding over fact mastery (Geary
et al., 1996b), with subtractions usually being taught by using
counting strategies or inverse addition (Geary et al., 1993;
LeFevre et al., 2006), and engaging brain regions involved in
finger representations (Berteletti and Booth, 2015a). According to
Siegler’s distribution of associations model (Siegler and Jenkins,
1989), with experience, certain problems become associated
with certain strategies, as do problems with answers. If a
problem is consistently associated with a given strategy, then
the association between them can be even stronger than the

problem-solution association, leading to the application of
the most frequently used strategy. Children may also rely
more consistently on procedures for subtractions to avoid
the switching cost associated with mixing strategies (Lemaire
and Lecacheur, 2010). Considering imaging evidence showing
that the method of learning arithmetic has a direct impact
on the brain (Delazer et al., 2005), it is possible that these
teaching differences across countries could play an important role
in supporting the Fact-retrieval vs. Schema-based hypotheses.
Future studies comparing students from countries having a
different emphasis on retrieval should be carried out to test
this hypothesis.
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This study presents the evaluation of a computer-based learning program for
children with developmental dyscalculia and focuses on factors affecting individual
responsiveness. The adaptive training program Calcularis 2.0 has been developed
according to current neuro-cognitive theory of numerical cognition. It aims to automatize
number representations, supports the formation and access to the mental number line
and trains arithmetic operations as well as arithmetic fact knowledge in expanding
number ranges. Sixty-seven children with developmental dyscalculia from second to
fifth grade (mean age 8.96 years) were randomly assigned to one of two groups
(Calcularis group, waiting control group). Training duration comprised a minimum of
42 training sessions à 20 min within a maximum period of 13 weeks. Compared to the
waiting control group, children of the Calcularis group demonstrated a higher benefit in
arithmetic operations and number line estimation. These improvements were shown to
be stable after a 3-months post training interval. In addition, this study examines which
predictors accounted for training improvements. Results indicate that this self-directed
training was especially beneficial for children with low math anxiety scores and without
an additional reading and/or spelling disorder. In conclusion, Calcularis 2.0 supports
children with developmental dyscalculia to improve their arithmetical abilities and their
mental number line representation. However, it is relevant to further adapt the setting to
the individual circumstances.

Keywords: developmental dyscalculia, mathematics instruction, computer-based training, intelligent tutoring
system (ITS), numerical development, evaluative study, primary school

INTRODUCTION

Solid mathematic skills are not only important for a child’s academic career but are also necessary
for numerous situations in every-day life. A weakness in this area cannot only lead to school-related
problems but may also affect occupational routes and emotional well-being (Cohen Kadosh et al.,
2013). Children with developmental dyscalculia (DD) demonstrate highly diverse performance
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profiles (Kaufmann and von Aster, 2012) with deficits regarding
basic numerical processing, transcoding, counting, arithmetic
fact retrieval, basic arithmetic skills, and word problems (e.g.,
Geary et al., 2007; Kaufmann et al., 2013; Kuhn et al., 2013;
Landerl, 2013). Due to different definition and diagnostic criteria,
the prevalence of DD in English and German speaking children
vary between 1.8 and 5% (Lewis et al., 1994; Esser et al., 2008;
Fischbach et al., 2013).

Several studies have demonstrated that targeted interventions
can improve different aspects of numerical cognition in children
with DD (Dowker, 2004; Bryant et al., 2008; Fuchs et al., 2010).
Ise et al. (2012) conducted a meta-analysis concerning the efficacy
of different treatment approaches for children with mathematical
disabilities and reported a moderate mean effect size (Hedges’
g = 0.50) which is comparable to the results of other meta-
analyses (Baker et al., 2002; Kroesbergen and van Luit, 2003;
Chodura et al., 2015).

Based on empirical evidence different characteristics of
effective treatments of children with DD are proposed in the
literature. Treatment approaches are considered to be especially
effective, when they are adaptive to the child’s learning needs
and learning speed (Burns et al., 2010; Moeller et al., 2012).
Children with DD benefit from a structured design, hierarchical
organization and frequent as well as constant repetition and
practice (Fuchs et al., 2008). Reward systems enhance the
children’s motivation to solve arithmetic problems (Fuchs
et al., 2008; Butterworth and Laurillard, 2010). Since children
with DD show diverse deficits, effective training approaches
need to address multiple areas of numerical cognition such
as basic numerical competencies, conceptual and procedural
knowledge and arithmetic fact retrieval (Kaufmann et al., 2003;
Dowker, 2007).

During the last years several computer-assisted training
systems have been developed.

Those training programs do not aim to replace classic learning
therapy interventions conducted by therapists or special need
teachers but aim to support the development and automatization
of specific cognitive components in the numerical domain
(von Aster et al., 2012). In particular, for children with DD
a computerized training to enhance numerical cognition offers
considerable advantages (Räsänen et al., 2015, 2019). It allows
addressing an optimal level of difficulty and learning speed
through an individually customized task selection. So called
intelligent tutoring systems (ITS) are able to build up an
internal image of the learner’s skill and ability profile in
form of a “learner model” by studying the child’s actions
(von Aster and Lipka, 2018).

Furthermore, a computerized training offers the possibility
of immediate feedback about the correctness of a solved
task. Direct chronological proximity is central for knowledge
acquisition (Krajewski and Ennemoser, 2010). To support this,
adaptive computer-based trainings can introduce tasks being
slightly challenging and thus may foster the development of
new skills. Additionally, the computer represents an attractive
learning medium (Kulik and Kulik, 1991; Schoppek and Tullis,
2010) providing intensive training in a stimulating environment
(Kullik, 2004). Particularly for children with DD a computerized

training provides the possibility of a learning environment
detached from competitive performance pressure and peer
comparisons in the classroom context and offers a less stressful
and socially risk-free setting to explore mathematics (Käser and
von Aster, 2013). This is especially important, since the repeated
experience of failure may lead to math anxiety or negative
attitudes toward the subject or the teacher, which in turn may
decrease the achievement potential and learning ability (Ashcraft
and Faust, 1994; Kohn et al., 2013).

An overview of different computer-assisted interventions can
be found in Räsänen et al. (2015, 2019). Interventions can
be differentiated according to their content: training of basic
numerical competencies like magnitude comparison, mental
number line, or subitizing (e.g., Number Race – Wilson et al.,
2006; Räsänen et al., 2009; Rescue Calcularis – Fischer et al.,
2008; Kucian et al., 2011), training of arithmetic fact knowledge
(Fuchs et al., 2006) or training of a combination of basic-
numerical skills, spatial number representation and (simple)
arithmetic facts (Butterworth and Laurillard, 2010; Butterworth
et al., 2011; Calcularis – Käser et al., 2013a; Meister Cody –
Kuhn and Holling, 2014).

Different meta-analyses examined the effects of computer-
based mathematic instruction, revealing positive effects. For
example, Li and Ma (2010) reported an average effect size of
0.28 for computer-based math instruction. They found larger
effects for elementary school than for higher education and
showed that especially children with learning disabilities benefit
from computer-based instruction. Other meta-analyses reported
positive (immediate) effects with effect sizes ranging from 0.13 to
0.80 (Kulik, 1994; Fletcher-Flinn and Gravatt, 1995; Kroesbergen
and van Luit, 2003; Slavin and Lake, 2008; Ise et al., 2012;
Chodura et al., 2015). Only very few studies report additional
results concerning long-term effects of computer-based training
programs (Chodura et al., 2015). According to recent research
(meta-analysis) in secondary schools, training programs with
high adaptivity to the individual needs of the user outperformed
less adaptive types of tutoring systems (Hillmayr et al., 2017).

Additionally, meta-analyses emphasize that the evaluative
studies vary highly with respect to sample size, inclusion criteria
(severity of math disorders) and outcome variables which
influence quality of research and comparability (Seo and Bryant,
2009; Ise et al., 2012; Chodura et al., 2015). A meta-analysis
focusing on interventions for children with math difficulties
(Chodura et al., 2015) indicated that in at least half of the
identified studies a less stringent criterion than recommended by
DSM-5 was used to select the study participants, e.g., a rank below
the 26th percentile in a standardized mathematical test.

One important step to gain knowledge about the efficacy of
training is to understand which circumstances render computer-
based training successful and which factors predict training
induced improvement (Räsänen, 2015).

So far only few studies addressed this question. For example,
Nemmi et al. (2016) found differentiated effects of a combination
of a computer-based number line training (NLT) and a
computer-based number working memory training (WMT)
for children who differ in working memory capacities as
well as in mathematic skills. The authors used four training
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conditions (NLT/reading, WMT/reading, and NLT/WM and
reading). While overall the combined training was most effective,
they found significant interactions with baseline scores. For
example, children with higher working memory capacity reached
higher gains (mathematical ability) through the working memory
training compared to the number line training. On the other
hand, children with higher math performance at baseline
benefited more from the number line training.

Another potential predictor for training induced
improvement is the coexistence of a reading/spelling disorder.
Powell et al. (2009) analyzed differential effects of tutoring
(partly computer-assisted instruction) for third-grade students
with math difficulties and with or without co-occurring reading
difficulties. The study demonstrated a better responsiveness to
fact retrieval tutoring on fact retrieval skills for children without a
co-occurring reading disorder. In fact, children with a combined
disorder did not benefit from the fact retrieval intervention
compared to a no treatment condition. It is assumed that
children with co-occurring math and reading disabilities show
underlying phonological processing deficits (Hecht et al., 2001;
Robinson et al., 2002). Therefore, these children could have more
severe or various problems performing arithmetic procedures
(e.g., counting strategies) as well as retrieving arithmetic facts
(e.g., von Aster, 1994, 2000; Geary et al., 2000). Furthermore,
results of studies analyzing differences in working memory
indicate that the children with double deficits are outperformed
by children exhibiting a math disorder in verbal and visuospatial
tasks (Meta-analysis, Swanson et al., 2009).

One significant non-cognitive factor influencing math
performance that received much attention during the last
years is math anxiety. Math anxiety is defined as a negative
emotional reaction that is characterized by feelings of
tension, apprehension, or even dread that interferes with
the manipulation of numbers and the solving of mathematical
problems in a wide variety of ordinary life and academic
situations (cf. Richardson and Suinn, 1972, p. 551; Ashcraft and
Faust, 1994, p. 98).

Previous studies have shown that math anxiety can have an
adverse effect on longer-term career choices and professional
success (Hembree, 1990; Meece et al., 1990; Ma, 1999). In
recent years, there are several studies that illustrate a negative
relationship between math anxiety and math performance in
early elementary school (Wu et al., 2012; Kohn et al., 2013;
Ramirez et al., 2013; Vukovic et al., 2013). It is assumed that
math anxious students tend to avoid math-related tasks and
situations (Ashcraft and Faust, 1994; Ashcraft et al., 2007). They
show less confrontation with mathematic tasks, learn less and
as a consequence show reduced achievement scores. In addition,
they probably receive more negative feedback which increases in
turn math anxiety, contributing to a vicious circle (Krinzinger
and Kaufmann, 2006; Dowker et al., 2012; von Aster et al.,
2017). Furthermore, it is postulated that math anxiety works
as a dual task during task processing that reduces working
memory capacity which worsens task performance (Ashcraft
and Kirk, 2001; Ashcraft et al., 2007; Ashcraft and Moore,
2009). These assumptions regarding ways of explaining the
link between math anxiety and mathematics performance are

integrated in the Reciprocal Theory (Carey et al., 2016) that
postulates a bidirectional relationship. Supekar et al. (2015)
found a significant reduction of math anxiety in students
with high math anxiety scores at baseline using a one-to-one
math tutoring approach. Beyond these behavioral performance
effects, they even report that the brain activity levels in the
amygdala of high anxious third-grade children normalizes after
the intervention to the level of their peers without math
anxiety. Concerning math achievement, both groups (high and
low anxious children, grade 3) improved their performance in
an arithmetic problem solving task equally, as there was no
interaction with math anxiety level. Recent work by Kucian
et al. (2018a) has demonstrated that math anxiety is even related
to changes in brain structure. Particularly, the volume of the
amygdala was reduced, which represents the key area in our
brain for negative emotional processing such as fear, stress and
anxiety. This growing knowledge underscores the important role
of emotional factors in mathematical cognition and emphasizes
the far-reaching outcome math anxiety can have.

In summary, there are computer-based programs which have
been shown to be effective in enhancing number processing,
but most of the available programs provide only limited
individual adaptability.

Furthermore, evaluative studies rarely use strict criteria for
identification of dyscalculic children (Chodura et al., 2015) and
lack to investigate long-term effects. In addition, there are only
a few studies that focus on individual differences in response to
computer-based math instruction and to our knowledge there
seems to be none that addresses dyscalculic children.

Based on the need for research for long-term effects of training
effects as well as individual responsiveness in dyscalculic children,
the objective of the present study is to evaluate the efficacy of the
computer-based training program Calcularis 2.0.

Calcularis 2.0 is based on theoretical neurocognitive
foundations of numerical cognition, such as the triple-code
model (Dehaene, 1992), the four-step developmental model (von
Aster and Shalev, 2007) and further theoretical advancements
(see i.e., Kucian and Kaufmann, 2009). In particular, we
postulate the existence of a core cognitive magnitude system,
which enables even different animal species and also human
newborns to discriminate large from small numerosities [that
are represented from the right (large) to the left (small) space;
Kucian et al., 2018b; Di Giorgio et al., 2019], onto which - in the
human neuro-cognitive development – non-symbolic numerical
meanings are successively and hierarchically transformed into
different symbolic number representations (linguistic number
word system, visual Arabic notational system, and spatially
oriented mental number line). These growing domain-specific
cognitive number representations become neuronally built in
different and interconnected areas of the brain and act as tools
for learning and performing mental arithmetic and higher
mathematical reasoning. They are developmentally dependent
on environmentally nurtured sensory-motor and cognitive
experiences in the pre- and primary school years, especially
on increasing capacities of domain-general cognitive abilities
like visual-spatial processing, language, working memory and
attentional span.

Frontiers in Psychology | www.frontiersin.org 3 July 2020 | Volume 11 | Article 1115126

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01115 July 13, 2020 Time: 15:42 # 4

Kohn et al. Computer-Based Learning in Dyscalculic Children

This process of domain-specific representational
transformation, which develops from the early non-symbolic
perceptions of numerical magnitude, across the acquisition of
culturally transmitted symbolization systems (linguistic, visual
Arabic) to a gradually expanding, spatially organized symbolic
mental number line may be framed by concepts of general
cognitive development like the theory of ‘Representational
Redescription (RR)’ postulated by Karmiloff-Smith (1992). RR
defines domain-specific cognitive development as (i) being
initially constrained by innate predispositions, and (ii) being
developmentally formed by the child’s experiences in the physical
and social environment, in which early implicit procedural
representations are successively redescribed into higher order
explicit declarative representations, that are mediated by the
domain-general information processing system. Importantly,
the RR model has been validated empirically in a large number
of studies with typically and atypically developing children,
including those with Williams-Syndrome and autism spectrum
disorder (Karmiloff-Smith, 1998).

From this theoretical point of view the complex development
of number processing and calculation abilities may be disturbed
or interrupted at different levels of development and for
different etiological reasons relating to different dysfunctional
components. Hence, it is not surprising that DD is characterized
by highly variable clinical pictures including various possible
comorbid conditions (Kaufmann et al., 2011). Therefore,
intervention strategies should be highly adaptive to individual
demands. Furthermore, they should focus on establishing and
automatizing the main representational formats of number
magnitudes, including the related transcoding routines, while
gradually learning and automatizing arithmetic procedures
and fact knowledge. Calcularis 2.0 was developed based on
these theoretical assumptions and offers children with DD an
approach to deal with different deficits. Calcularis 2.0 is a highly
adaptive computer-based training program that combines basic
numerical cognition with different number representations and
arithmetic abilities.

The present evaluation includes a large sample size of children
with DD (using strict criteria for identification). Participants were
randomly assigned to the Calcularis group completing a 12-weeks
training or to the (waiting) control group receiving no training.

We hypothesize that the Calcularis group shows immediate
training effects with medium effect sizes, i.e., demonstrate
an increased level of arithmetic performance, basic number
processing and spatial number representation compared to the
(waiting) control group.

We further predict that there is no stronger increase in
performance in domains that were not trained (reading, spelling)
compared to the control group, indicating domain specificity of
the training. Furthermore, we assess the stability of the training
effects after a 3-months interval. We hypothesize that there is an
increase or at least a consistent level of performance within the
Calcularis group. In addition, we examine the impact of different
baseline factors on the individual response to the training.
As potentially influencing factors we postulate math anxiety,
intellectual ability and the coexistence of a reading/spelling
disorder. Specifically, we expect that higher improvement goes

along with lower math anxiety scores because we assume that
math anxiety could work as an impairing factor for deep
engagement with the training content (Ashcraft et al., 2007).
Additionally, we assume that children with DD and higher
intellectual ability have the potential to reach higher gains
(Nemmi et al., 2016) and that children without an additional
reading and/or spelling disorder tend to show higher profits
(Powell et al., 2009).

MATERIALS AND METHODS

Introduction to Calcularis 2.0
Calcularis 2.0 (von Aster et al., 2016) is a highly adaptive
computer-based training program. The program’s theoretical
neurocognitive foundation of numerical cognition and
development consists of the triple-code model (Dehaene,
1992), the four-step developmental model (von Aster
and Shalev, 2007) and further theoretical advancements
(Kucian and Kaufmann, 2009).

The program aims to automatize the different number
representations, to support the formation and access to the
mental number line and to train arithmetic operations as well
as arithmetic fact knowledge in expanding number ranges from
0–10 until 0–1,000.

Calcularis consists of different instructional games, which are
hierarchically structured according to number ranges and can
be further divided into two areas. The first area focuses on
different number representations as well as number processing
in general. Transcoding between alternative representations
(based on triple code model, Dehaene, 1992) is trained and
children learn the three principles of number understanding:
cardinality, ordinality, and relativity. Games in this area are
hierarchically ordered according to the four-step developmental
model (von Aster and Shalev, 2007).

The second area covers cognitive operations and procedures
with numbers. In this area, children learn the concepts of
arithmetic operations and automate them. The difficulty of the
tasks is determined by the complexity of the task, the magnitude
of numbers involved and the visual aids available to solve
the task. In both areas, games can be categorized based on
their complexity. Main games are complex games requiring a
combination of abilities to solve them. Support games train
specific skills and serve as a prerequisite for the main games.

A consistent number notation that accentuates the properties
of numbers is used throughout the training program. The
notation is encoded by color, form and topology.

Calcularis 2.0 features a user model allowing flexible
adaptation based on the internally mapped learning and
knowledge profile of the individual child. The mathematical
knowledge trained in the game is divided into more than 250
different fine-grained skills [e.g., “writing a (verbally) given
number between 0 and 100,” “estimating the quantity of a set
of dots,” and “adding to numbers between 0 and 10”]. The
skills are hierarchically ordered in a directed acyclic graph called
dynamic Bayesian network. Connections between the different
skills indicate their relations, i.e., it is for example assumed that
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being able to add two numbers between 0 and 10 is a prerequisite
for adding two numbers between 0 and 100. Each skill is
associated with a game. When the child plays the associated
game of a skill, the system infers from the correct or wrong
answers of the child, how well the child already knows this skill.
Since the skills are connected, the system at the same time gains
also information about the child’s knowledge of other skills. The
representation of the skills as a graph has another big advantage:
every child can follow its individual learning path through the
network. Some kids will follow the most direct path through
the network, training only a subset of the skills. Other kids will
have to backtrack and extensively cover the skills in the area
they have deficits. Additionally, an error library with typical error
patterns allows to provide targeted games for the remediation of
specific mistakes. The high adaptivity differentiates Calcularis 2.0
from other computer-based intervention programs that mostly
provide only limited adaptability by means of adapting the
task difficulty.

Calcularis 2.0 represents an extended and modified version of
Calcularis (Käser et al., 2012, 2013b). The new version includes
additional games to train number and quantity comparisons,
subitizing (structured and non-structured stimuli), addition and
subtraction based on “concrete” material and multiplication and
division (Figure 1, top). Additionally, the number range 0–20 is

explicitly modeled. The program includes an interactive avatar
guiding the child through the training and explaining the games.
Additionally, a reward system (a virtual zoo) reacting to the
individual child’s learning progress was implemented to increase
the child’s motivation and enhance the enjoyment in learning.
The virtual zoo allows children to buy and feed animals which
can be assigned to various zoo worlds (Figure 1, bottom).
Calcularis, the pre-version of Calcularis 2.0, was evaluated in
children with mathematical difficulties as well as in normally
achieving children (Käser et al., 2013a; Rauscher et al., 2016). The
study results demonstrated that children benefited significantly
from the training regarding spatial number representation
and subtraction.

Study Design and Sample
Participants were classified as having DD based on the Diagnostic
and Statistical Manual of Mental Disorders (5th ed.; DSM-5) of
the American Psychological Association (American Psychiatric
Association, 2013).

Criteria for DD were met if a child’s performance in
a standardized mathematics test (Rechenfertigkeiten- und
Zahlenverarbeitungs-Diagnostikum for the 2nd to 6th grade,
RZD 2–6, Jacobs and Petermann, 2005) was 1.5 standard
deviations (T ≤ 35) below the average in the speed or

FIGURE 1 | Screenshots from the computer-based training program Calcularis 2.0. (Top) Left: magnitude comparison non-structured stimuli, right: subtraction with
balls. (Bottom) Left: reward system – shop to buy and feed animals which can be assigned to various zoo worlds, right: zoo world Savanna.
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power component and the IQ-score was within the normal
range (T ≥ 40) (Basic Diagnostics of specific developmental
disorders in elementary school age children, BUEGA, Esser
et al., 2008). Children were recruited consecutively via three
outpatient clinics as well as via pediatricians in Germany. This
approach addressed children with arithmetic problems with
and without comorbid disorders. To make sure that enough
children fulfill the determined criteria of DD, 107 children
were screened.

Children were randomly assigned to the Calcularis group or
the control group. Children of the Calcularis group completed a
12 weeks training, while the control group received no training.
Children of the control group performed the training between
time 2 (t2) and time 3 (t3). Children of both groups attended
regular schools and visited regular math classes.

Children of the Calcularis group trained with the program 4–
5 times per week with training sessions of 20 min after school.
Children were assessed before and after the 12-weeks period
(t1/t2) to evaluate the immediate training effects. To determine
the stability of the training effects, children of the Calcularis
group were re-assessed after a 3-months-interval (t3).

Initial diagnostic included the assessment of mathematic
competencies (RZD, Jacobs and Petermann, 2005) as well as
intelligence (BUEGA, Esser et al., 2008) and math anxiety (Math
anxiety interview, MAI, Kohn et al., 2013). The pre-/post-
/follow-up test diagnostic (t1/t2/t3) for children of both groups
included the assessment of arithmetic performance (Heidelberger
Rechentest 1–4, HRT, Haffner et al., 2005), reading and spelling
(BUEGA, Esser et al., 2008), spatial representation of numbers
(number line test 0–100) and basic number processing (basic
number processing computer test).

Seventy-two German-speaking children could be included in
the study (Calcularis group: n = 39, control group: n = 33).
Only children with at least 42 sessions (corresponds to 70% of
the maximum of 60 sessions) of Calcularis within a maximum
of 13 weeks of training were included in the analysis. Due
to these training-related inclusion criteria as well as other
reasons such as illness during the training or test sessions, five
children from the Calcularis group were excluded. The final
study sample consisted of 67 children between the ages of 7.0–
10.11 years attending second to the fifth grade of elementary
school. The study population involved more girls (n = 49)
than boys (n = 18), but gender ratio deviated not significantly
over the groups.

Instruments
Basic Diagnostics of Specific Developmental
Disorders in Elementary School Age Children
(BUEGA)
The BUEGA (Esser et al., 2008) served for the assessment of
verbal and non-verbal intelligence as well as the performance
in reading, spelling, and arithmetic. The internal consistency
coefficients determined for each school grade are sufficient to
high (α = 0.81 to α = 0.95). The combined score for the
reading and spelling performance is the mean value of the scores
(standardized T-scores) achieved in reading and spelling.

Rechenfertigkeiten- und
Zahlenverarbeitungs-Diagnostikum for the 2nd to 6th
Grade (RZD 2–6)
The RZD 2–6 (Jacobs and Petermann, 2005) is a
standardized mathematics test for diagnosing DD. The
test assesses basic numerical capacities (e.g., transcoding,
counting, number/quantity comparison, and spatial number
representation) as well as arithmetic skills (addition, subtraction,
multiplication, and division). The test allows for a differentiated
assessment of the task performance of the child (power
component) and the child’s required time to solve the tasks (speed
component). The reliability coefficients of both components
(power component: α = 0.89 to α = 0.90; speed component:
α = 0.89 to α = 0.92) are sufficient to high.

Math Anxiety Interview (MAI)
The MAI (Kohn et al., 2013) served to assess the children’s
math anxiety with the help of an anxiety thermometer. The
children were asked to rate their intensity of math anxiety in
four different situations which were illustrated with pictures. To
rate their intensity, they got a thermometer made of cardboard,
where they could adjust their fear by manually moving the red
column in the thermometer from no anxiety at all or a lot of
anxiety. Internal consistency measured using Cronbach’s Alpha
is sufficient (α = 0.76).

Heidelberger Rechentest 1–4 (HRT)
The scale “arithmetic operations” of the HRT (Haffner et al.,
2005) served to assess the children’s arithmetic performance.
The scale consists of six subtests (addition, subtraction,
multiplication, and division as well as two further subtests with
a slightly more complex format: Complete the task by filling in
the missing number, e.g., 3+ ? = 5 or put the appropriate relation
sign [>, <, =] in the box to show which number [left or right] is
larger or if both are equal, e.g., 5− 1 ? 4).

The HRT is designed as a speed test and specifically addresses
computational fluency. For each subtest a score is determined
based on the number of correctly solved items within the 2-min
time limit This score is converted into a T-Score (based on norm
values), subsequently the six T-Scores are added and in turn
converted into a T-score for the entire scale.

As an index of reliability, retest reliability was calculated over
a 2-week period with medium to high coefficients for the subtests
(rtt = 0.77 to rtt = 0.89) as well as the over-all scale score
(rtt = 0.93).

Number Line Test
As a measure for spatial representation of numbers a number
line test from 0 to 100 was administered. Children indicate the
location of 20 verbally and visually presented numbers on a
number line from 0 to 100. The percent absolute estimation error
(PAE) for the target number and the indicated location (estimated
number) on the number line was calculated (PAE = | estimated
number–target number| /scale of estimates, cf. Siegler and Booth,
2004). In addition, to evaluate the linearity of the spatial
representation we calculated the correlation coefficient of linear
fit (R2

lin) for each child (higher value is associated with better
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performance). Reliability coefficients estimated for PAE were
sufficiently high (α = 0.81 to α = 0.94).

Basic Number Processing Computer Test
The subtests single-digit number comparison, two-digit number
comparison and magnitude comparison of the computerized test
battery of Landerl (2013) served as a measure of basic number
processing. In the number comparison subtests (single-digit and
two-digit numbers), children were presented with pairs of yellow
digits on the computer screen and were asked to select the
numerically larger one by pressing the corresponding keyboard
button. In the single-digit task, 56 trials with numerical distances
from 1 to 8 (36 trials for distance 1–3 and 20 trials for distance
4–8) were presented.

In the 2-digit task 80 trials were presented. To control
for a unit-decade-compatibility effect (Nuerk et al., 2004), the
influence of differences in the magnitude of decade and unit
should be balanced. Therefore, 30 compatible (both decade and
unit of one number are larger than decade and unit of the
other, so decade and unit comparisons lead to the same response,
e.g., 25 36), 30 incompatible (decade and unit comparisons led
to different responses, e.g., 25 19), and 20 neutral items (both
decades are the same, e.g., 25 29) were presented.

In the magnitude comparison task two quantities of randomly
arranged yellow squares (20–72) were presented on the screen
and children were supposed to select the numerically larger
quantity. Out of the 57 trials there were 27 with a small distance
(8–16) and 30 trials with a large distance (17–25).

Reaction times and errors were recorded by the computer.
Reliability coefficients estimated for reaction times at each
assessment point were high (single-digit: α = 0.95 to α = 0.96,
two-digit: α = 0.95 to α = 0.96, magnitude comparison: α = 0.90
to α = 0.94).

The proportions of the correctly solved tasks (accuracy) as
well as the individual median reaction times (for correct answers
within a range of 200 ms to 10,000 ms) were calculated for each
child. According to Landerl (2013) both measures (accuracy and
speed of response) were combined into one measure, the inverse
efficiency (IE), by dividing the median reaction times by the
proportion of correct responses.

Statistical Analyses
Group differences were analyzed using Analyses of Variance
(ANOVA) and Chi-square tests. A series of repeated measures
general linear model (GLM) analyses as well as t-tests for
paired samples were conducted to evaluate training effects
between assessment time points (t1 − t2) as a within-
subject factor and group (Calcularis group/control group) as
a between-subject factor. The group x time interaction was
the primary effect of interest. Effect sizes are expressed as
partial eta squared (η2) coefficients. Cohen (1988) postulates
that η2 values between 0.06 and 0.13 are medium effects
and η2 values greater than 0.14 are large effects. Correlation
analyses and hierarchical regressions were applied to determine
the effects of baseline factors on the individual response
to the training.

RESULTS

The analyzed sample consisted of 67 children with developmental
dyscalculia. The mean age was 8.96 (SD = 0.82) years. Children
of the Calcularis group trained with the program for an average
training duration of 11.47 (SD = 0.93) weeks and completed on
average 53.29 (SD = 5.45, 42–62) training sessions. Statistical
analyses revealed no significant differences between the groups
for gender, age, arithmetic/numerical performance or control
variables (intelligence, spelling, reading, additional reading,
and/or spelling disorder) in the initial diagnostic procedure (t1)
(see Table 1). Criteria for a reading and/or spelling disorder
were met if a child’s performance in reading (composite of
reading speed and accuracy BUEGA) or spelling (grapheme score
BUEGA) was 1.5 standard deviations below the average (T ≤ 35).

Immediate Training Effects
The mean values of the pre- and post-test scores regarding
arithmetic performance, basic numerical processing and reading
and spelling performance are presented in Table 2.

HRT
The repeated-measures GLM for the HRT “arithmetic
operations” demonstrated a significant main effect of time
(η2 = 0.16), but no main effect of group. The group × time
interaction was significant with medium effect size (η2 = 0.10),
indicating that training progress differed between both groups
over time. Children of the Calcularis group demonstrated
stronger improvements [t(33) = −4.32, p < 0.001] than the
control group [t(32) =−0.59, p = 0.559].

Number Line Test
The results of the number line test with regard to PAE revealed
a significant main effect of time (η2 = 0.10). The group × time
interaction was not significant. There was no main effect of group.

TABLE 1 | Demographic and cognitive characteristics [Mean (SD)] of the
Calcularis group (CAL) and the control group (CG) prior to the intervention (t1).

CAL CG Test statistic p

(n = 34) (n = 33)

Gender (f/m) 26/8 23/10 0.39d 0.532

Age (years) 8.94 (0.77) 8.98 (0.88) −0.22e 0.830

Calculation power
componenta (RZD)

34.20 (7.48) 33.70 (6.41) 0.29e 0.770

Calculation speed
componenta (RZD)

29.94b (3.91) 30.76c (4.35) −0.71e 0.478

Mathematical
performancea (BUEGA)

35.79 (7.90) 38.21 (7.61) −1.28e 0.207

Intelligencea (BUEGA) 49.18 (6.90) 48.82 (6.38) 0.22e 0.826

Reading and spellinga

(BUEGA)
40.04 (8.03) 41.00 (8.23) −0.48e 0.632

Reading and/or spelling
disorder

18 (52.9%) 13 (39.4%) 1.24d 0.266

aT-score, RZD speed component not determinable in case of no correct item in
one of the subtests leading to reduced sample sizes, bn = 25, cn = 27, dχ2 Score,
et-score.
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TABLE 2 | Training effects (mean values and standard deviations) of the Calcularis group (CAL) and the control group (CG) in arithmetic performance, spatial number
representation, basic numeric processing and reading and spelling.

Outcome parameter Group n t1 t2 Effects F p η2

M (SD) M (SD)

Arithmetic operationsa (HRT) CAL 34 31.35 (5.07) 34.68 (6.27) Time 12.64 0.001 0.163
CG 33 32.88 (6.75) 33.30 (6.78) Group 0.003 0.958 0.000

Group × Time 7.57 0.008 0.104
Number line test 0–100 (PAE)b CAL 34 7.87 (3.31) 5.74 (2.56) Time 7.12 0.010 0.099

CG 33 8.69 (5.25) 8.30 (4.28) Group 3.99 0.050 0.058
Group × Time 3.38 0.070 0.049

Number line test 0–100 (R2
lin) CAL 34 0.86 (0.11) 0.93 (0.07) Time 7.01 0.010 0.097

CG 33 0.85 (0.15) 0.85 (0.19) Group 2.32 0.133 0.034
Group × Time 5.52 0.022 0.078

1-digit comparison, IES (ms)c CAL 31 954.21 (227.96) 819.22 (171.64) Time 31.70 0.000 0.342
CG 32 959.54 (166.39) 877.56 (202.77) Group 0.50 0.480 0.008

Group × Time 1.89 0.174 0.030
2-digit comparison, IES (ms)c CAL 30 1868.80 (546.17) 1648.90 (461.76) Time 5.45 0.023 0.083

CG 32 1998.53 (599.87) 1891.97 (639.96) Group 2.18 0.145 0.035
Group × Time 0.66 0.421 0.011

Quantity comparison, IES (ms)c CAL 32 1086.83 (265.19) 871.53 (194.31) Time 65.63 0.000 0.514
CG 32 1085.43 (211.27) 976.21 (189.11) Group 1.05 0.310 0.017

Group × Time 7.01 0.010 0.102
Reading and spellinga (BUEGA) CAL 34 40.04 (8.02) 40.51 (7.98) Time 0.33 0.566 0.005

CG 33 41.00 (8.23) 39.86 (8.16) Group 0.01 0.936 0.000
Group × Time 1.94 0.168 0.029

aT-score, bdistance (percentage) from correct position, c inverse efficiency score.

With regard to linearity, the group × time interaction was
significant with moderate effect size (η2 = 0.08), demonstrating
stronger improvements for the Calcularis group [t(33) = −4.33,
p < 0.001] compared to the CG [t(32) =−0.18, p = 0.857]. There
was a significant main effect of time (η2 = 0.10), but no main
effect of group.

Basic Number Processing Computer Test
The analyses for the 1-digit comparison (IES) indicated a
significant main effect of time (η2 = 0.342), but no effect of group.
The group× time interaction was not significant.

The analyses for the 2-digit comparison indicated a significant
main effect of time (η2 = 0.083), but no effect of group. The
group× time interaction was not significant.

Regarding the IES of the quantity comparison task there was a
significant group × time interaction (η2 = 0.10). Children of the
Calcularis group demonstrated stronger gains than the control
group with medium effect size. The significant main effect of time
(η2 = 0.51) shows that both groups improved with regard to IES
but the Calcularis group [t(31) = 8.14, p < 0.001] outperformed
the control group [t(31) = 3.63, p = 0.001]. No significant main
effect of group was found.

Reading and Spelling Performance
As a measure of domain specificity, the reading and spelling
performance was assessed, and the mean of both measures was
used as the dependent variable. The analysis yielded no main
effects of time, nor group. The interaction between group x time
was not significant for the comparison between the Calcularis and
the control group.

To summarize, group × time effects were found for the
arithmetic operations (HRT), linearity of the number line
and quantity comparison tasks, but not for the score PAE
(number line task) and the number comparison tasks, implying
that the Calcularis group improved on arithmetic performance
(including addition and subtraction), spatial number processing
and magnitude comparison.

Stability of the Training Effects
The analysis of the stability of the training effects (t2 − t3) refers
only to the Calcularis group since the control group served as
a waiting control group and received the computerized training
during this interval (t2 − t3). The results concerning the stability
of the training effects demonstrate that the Calcularis group
showed moderate to high correlation coefficients (r = 0.59 to
r = 0.88) for all measures of basic numerical processing and
arithmetic competencies. The paired samples t-tests revealed
no significant results demonstrating stable training effects after
a 3-months-interval (see Table 3), with the exception of the
number line test 0–100 (R2

lin). Children showed reduced scores
in linearity (R2

lin) while the scores were still significantly higher
than at the beginning of the training [t1: M = 0.86, SD = 0.11, t3:
M = 0.90, SD = 0.12, t(31) =−2.14, p = 0.041].

Factors Predicting Training Gain
To investigate whether baseline measures predict individual
differences in training improvement, we examined the relation
between postulated baseline measures and changes in arithmetic
performance as the most curriculum-related criterion (HRT
arithmetic operations t2 minus HRT arithmetic operations t1).
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TABLE 3 | Stability of training effects of the Calcularis group in arithmetic performance, spatial number representation, basic numeric processing and reading and
spelling (mean values and standard deviations for t2 and t3), correlation coefficients r and t-tests.

Outcome parameter n t2 t3 Correlation r t-test

M (SD) M (SD) t p

Arithmetic operationsa (HRT) 32 34.91 (6.39) 35.19 (6.37) 0.77 −0.37 0.716

Number line test 0–100 (PAE)b 32 5.76 (2.64) 6.19 (2.70) 0.66 −1.10 0.281

Number line test 0–100 (R2
lin) 32 0.93 (0.07) 0.90 (0.12) 0.64 2.43 0.021

1-digit comparison, IES (ms)c 30 815.18 (176.44) 791.01 (192.08) 0.68 0.90 0.377

2-digit comparison, IES (ms)c 28 1634.47 (474.35) 1558.51 (430.32) 0.78 1.31 0.200

Quantity comparison, IES (ms)c 31 868.76 (197.10) 886.93 (229.07) 0.59 −0.52 0.606

Reading and spellinga (BUEGA) 32 40.67 (8.08) 41.05 (9.31) 0.88 −0.48 0.635

aT-score, bdistance (percentage) from correct position, c inverse efficiency score.

Results are presented in Table 4, showing significant negative
correlation coefficients between arithmetic improvement and
math anxiety (r = −0.35, p = 0.020) and an additional
reading/spelling disorder (r = −0.43, p = 0.005). Additionally,
there was a small correlation coefficient between arithmetic
improvement and general intelligence (t1) r = 0.25, p = 0.074, but
no significant correlations between arithmetic improvement and
number of sessions or Arithmetic operations (t1).

To examine which of the baseline measures predicted unique
variance in mathematics achievement scores (gain) a hierarchical
regression analysis was conducted. Independent variables were
added in a stepwise procedure. This method allowed to control
for general intelligence (t1) (step 1), before investigating the
unique contribution of the potential predictors in step 2
(additional reading/spelling disorder, t1) and step 3 (math
anxiety, t1) to the variance in arithmetic improvement. Results
from this model (see Table 5) demonstrated that an additional
reading/spelling disorder explained a significant amount of
unique variance in arithmetic improvement [1R2 = 0.17,
F(1,31) = 7.05, p = 0.012]. The negative standardized beta-
coefficient as well as the negative correlation coefficient indicated
that children with an additional reading/spelling disorder
show smaller improvements. Additionally, math anxiety also
explains a significant amount of unique variance in arithmetic
improvement [1R2 = 0.12, F(1,30) = 5.48, p = 0.026]. The

TABLE 4 | Correlations among predictor measures (t1) and gain (t2 − t1) (n = 34).

1 2 3 4 5 6

(1) Gain (arithmetic
operations, HRT)

– −0.074 0.254+ −0.354* −0.433** −0.097

(2) Arithmetic
operations (HRT)a (t1)

– 0.064 −0.236+ −0.151 −0.222

(3) Intelligence
(BUEGA)a (t1)

– 0.002 −0.071 0.354*

(4) Math anxiety (MAI)
(t1)

– 0.027 0.142

(5) Reading/spelling
disorder (t1)

– 0.161

(6) Number of sessions –

+p < 0.010, *p < 0.05, **p < 0.01, n = 34, aT-score.

negative beta weight indicated that children with higher math
anxiety show less improvement.

DISCUSSION

The aim of the present study was the evaluation of the adaptive
computer-based training program Calcularis 2.0 in a sample of
dyscalculic children. Furthermore, factors that predict training
improvement were investigated.

Immediate Training Effects
As expected, compared to the (waiting) control group, the
Calcularis group demonstrated larger improvements with
moderate effect sizes in a standardized math achievement test
(HRT) (g = 0.49), in spatial number processing (g = 0.55)
and magnitude comparison (g = 0.44). No training effects were
found for reading and spelling performance, hence the presented
findings can be interpreted as an indicator for domain specificity
of the training.

The HRT is designed as a speed test and specifically addresses
arithmetic fluency. It is assumed that the training leads to a higher
automation of task processing resulting in faster fact retrieval.
Compared to the evaluative studies regarding the previous
version Calcularis 1.0 (Käser et al., 2013a; Rauscher et al., 2016;
Kohn et al., 2017) the observed training effects are stronger,
whereby it has to be considered that Calcularis 2.0 includes
additional tasks and additional motivational components and
that the training interval was prolonged. The medium effect sizes
are comparable to other trainings (Kroesbergen and van Luit,
2003; Ise et al., 2012; Chodura et al., 2015) and are satisfactory for
a sample of children with severe deficits (participants with DD).

Regarding spatial number processing (number line test) the
Calcularis group showed a significant decrease in PAE and a
significant increase in linearity, but only the change in linearity
was significantly higher than in the control group. These findings
are in line with a previous study (Käser et al., 2013a) that analyzed
PAE and showed an improvement for the number range 0–100
after a 3-months training period. These results are promising,
as the mastering of number line tasks constitutes an important
step in the numerical development (von Aster and Shalev, 2007)
and provides a tool for solving basic arithmetic. However, it must
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TABLE 5 | Hierarchical regression analysis for the prediction of gain (arithmetic operations, HRT, t2 − t1, n = 34).

Variable R2 1R2 1F Standardized β t p

Step 1 0.064 (1,32) = 2.21, p = 0.147

Intelligence t1 0.254 1.485 0.147

Step 2 0.238 0.173 (1,31) = 7.05, p = 0.012

Intelligence t1 0.224 1.427 0.163

Reading/spelling disorder t1 −0.417 −2.656 0.012

Step 3 0.355 0.118 (1,30) = 5.48, p = 0.026

Intelligence t1 0.226 1.537 0.135

Reading/spelling disorder t1 −0.408 −2.776 0.009

Math anxiety t1 −0.343 −2.340 0.026

be taken into account that this improvement on the number
line task might not only be due to an improvement of this
underlying mental number line. Recent studies indicate that
the improvement could also reflect an increasing use of helpful
strategies, like using reference points at the number line (Ashcraft
and Moore, 2012; Link et al., 2014; Peeters et al., 2016).

With respect to basic number processing no training
effects were found for number comparison (1-digit/2-
digit), but for magnitude comparison. Compared to the
control group, the Calcularis group demonstrated larger
improvements with moderate effect size. The low baseline
level is one possible explanation of these non-expected results
regarding number comparison. Compared to the findings
of Landerl (2013) who used the same experimental design,
the observed inverse efficiency scores (ms) in our study were
lower (i.e., better), providing less room for improvement.
Furthermore, both groups (CAL and CG) demonstrated
decreased IE-scores that may indicate a test repetition
effect, so the additional improvement through the training
could possibly not be observed (see Table 2 for 1-digit and
2-digit comparison).

Furthermore, the concept of the training program has to be
taken in consideration which balances the training time between
the area of number representations and arithmetic operations.
Additionally, there is a high variety of skills that are trained
in the area of number representations. Therefore, some skills
are only trained for a short amount of time or especially at
the beginning of the training. As mentioned above children are
considered to be already quite proficient in 1-digit comparison
and because of the highly adaptive training program, the training
sequence of this skill was passed rapidly. However, the result
concerning magnitude comparison is promising since faster
reaction times in symbolic as well as non-symbolic comparisons
are related to higher calculation fluency (for detailed review
see De Smedt et al., 2013). Of course, it has to be pointed out
that this relationship should rather be interpreted bidirectionally
and not causally.

Stability of the Training Effects
Children were re-assessed after a 3-months interval to determine
the stability of the training effects. Regarding all measures
of basic numerical processing and arithmetic competencies
results demonstrated stable performance scores with moderate

to high correlation coefficients that indicates that the children
keep their relative position. The performance improvements
of the intervention (t1 − t2) were shown to be stable
after a 3-months-interval (t2 − t3). Only the linearity
results (R2

lin) showed a significant decrease (t2 − t3),
although the scores were still significantly higher than at
the beginning of the training. It has to be mentioned that
a comparison to a group without any intervention from
t1 to t3 is missing because we were unable to include a
waiting control group over 6 months due to ethical reasons.
Therefore, we were not able to control for developmental effects
and the results provide merely indirect evidence for stable
training effects.

The found follow-up effects are comparable to Fischer et al.
(2008) and even better than in a former study evaluating
Calcularis 1.0 (Kohn et al., 2017). Furthermore, the results
support the assumption that a prolonged training duration
(12 weeks in Calcularis 2.0 instead of 6 weeks in Calcularis 1.0)
contributes to more robust effects.

Factors Predicting Training Improvement
A hierarchical regression analysis indicates that dyscalculic
children without an additional reading/spelling disorder as
well as those with low math anxiety scores show higher
improvement scores.

It is assumed that children suffering from math anxiety tend
to avoid math-related tasks (Ashcraft et al., 2007). We therefore
suppose that throughout the training high anxious children
tended to confront themselves less with the offered tasks, tended
to demonstrate less elaborated processing of the content, and
tended to show more off-task behavior.

Therefore, they did not improve their achievement scores
as much as their non-anxious peers. This assumption could
be integrated in the debilitating anxiety model (Carey et al.,
2016). As there were no significant differences between low
anxious (n = 16, M = 31.87, SD = 4.33) and high anxious
children (n = 17, M = 30.29, SD = 3.80) with respect to
arithmetic performance at baseline [t(31) = 1.12, p = 0.273], the
hypothesis that math anxiety inhibits a significant improvement
should be verified in further analyses. A first look at the
number of training sessions indicated that there is no easy
answer to this question. There was no significant difference
[t(31) = −1.16, p = 0.257] between high anxious (n = 16,
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M = 54.13, SD = 5.39) and low anxious children (n = 17,
M = 52.00, SD = 5.17) concerning the number of training
sessions. Accordingly, the assumption of a different training
behavior must be analyzed based on the log data of each
child. Due to the focus of this paper these questions should be
elaborated in detail in a subsequent study. Before doing so, a
theoretical and methodological clarification of the construct “off-
task behavior” is necessary, which affects various aspects of the
training behavior.

In line with previous research by Powell et al. (2009)
we found a better responsiveness to the training for
children without an additional reading/spelling disorder.
It is assumed that children with a comorbid dyslexia show
underlying phonological processing deficits (Hecht et al.,
2001; Robinson et al., 2002) and greater deficits in verbal and
visuospatial working memory (Swanson et al., 2009). Therefore,
children with comorbid dyslexia could have additional
problems that could not be addressed successfully in the
12-weeks-training.

Concerning the predictor of intellectual ability at baseline,
the result was less substantial. There seemed to be a trend
that DD-children with higher intelligence scores showed
higher improvement scores. That would be in line with the
results presented by Nemmi et al. (2016). In contrast to
this study, initial arithmetic performance (t1) did not predict
individual responsiveness. That could be attributed to the
fact that only children with DD were considered in the
present study.

Limitations and Further Research
Indications
When interpreting the findings, some methodological limitations
must be considered.

First, the present study design includes the comparison
to an untrained control group whereas comparisons to
groups receiving alternative trainings are missing. The
implementation of an untrained waiting control group allows
the delineation of specific training effects to developmental
and schooling effects. However, it has to be questioned
whether these severely affected children in the untreated
group actually did not receive additional support during the
waiting period. Factors such as increased parental assistance
in math exercises or a stronger response by teachers, as well
as expectation effects (in the sense of a placebo effect) are
conceivable. An alternative systematic treatment would have
strengthened the findings and is therefore planned in future
intervention studies.

Second, a high external validity of the clinical sample was
required, leading to a high amount of comorbidities such as
dyslexia and probably attention deficit hyperactivity disorders
(Auerbach et al., 2008; Fischbach et al., 2010).

As this study and Rauscher et al. (2017) show that comorbid
dyslexia can influence the results it is absolutely necessary to use a
design with a larger sample that enables to compare children with
single and combined deficits to replicate the promising effects.
Including a larger sample in future training studies would also

offer a higher statistical power and allow for a deeper analysis of
the differential efficacy as well as for essential replications.

Although a training program focusing on a broad range
of mathematical skills and showing a high degree of
individualization seems beneficial, it also poses challenges
for the evaluation. First, training a variety of skills shortens
the training time of each specific skill and thus leads to smaller
training effects as mentioned above.

Second, due to the high adaptability of the program, each
child pursues a different training trajectory. Since it is not
obvious, which aspects of the training lead to which performance
improvement, modular tests or deeper analyses of the individual
pathways could be beneficial.

CONCLUSION

This study demonstrates that the adaptive training program
Calcularis 2.0 can be used effectively to support dyscalculic
children in their numerical achievement. The results showed
that even after a rather short training period of 12 weeks, solid
training effects with regard to arithmetic and spatial number
representation could be achieved. Results indicate that especially
math anxiety and a co-occurring reading and/or spelling disorder
were significant predictors for individual responsiveness to this
training. The training effects were shown to be stable after a
3-months-interval.

In practice, Calcularis 2.0 can be used individually as well
as in a group or class setting as a beneficial enhancement of
learning intervention and math lessons. Based on the results
of this evaluation and former results (Käser et al., 2013a), a
training period of at least 3 months with a training frequency
of 3–4 training sessions per week is recommended. The children
can work on their own, without performance pressure and
frightening peer comparisons. It is important to highlight that
Calcularis 2.0 aims not to be a substitute for teachers, since a
positive learning development is created by educational skills,
methodical knowledge and an encouraging teacher–student
relationship. Especially for children with high math anxiety it
should be considered that a one-to-one tutoring might be more
effective and might address the individual experiences of fear
in the former learning history to help to recode and overcome
these internal representations. However, it also seems possible
to develop and include elements for the detection of emotional
states and for an according cognitive behavioral intervention into
future learning environments (O’Neill and Gillespie, 2014).
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The triple-code model (TCM) of number processing suggests the involvement of distinct
parietal cortex areas in arithmetic operations: the bilateral horizontal segment of the
intraparietal sulcus (hIPS) for arithmetic operations that require the manipulation of
numerical quantities (e.g., subtraction) and the left angular gyrus (AG) for arithmetic
operations that require the retrieval of answers from long-term memory (e.g.,
multiplication). Although neuropsychological, neuroimaging, and brain stimulation studies
suggest the dissociation of these operations into distinct parietal cortex areas, the role of
strategy (online calculation vs. retrieval) is not yet fully established. In the present study,
we further explored the causal involvement of the left AG for multiplication and left hIPS
for subtraction using a neuronavigated repetitive transcranial magnetic stimulation (rTMS)
paradigm. Stimulation sites were determined based on an fMRI experiment using the
same tasks. To account for the effect of strategy, participants were asked whether they
used retrieval or calculation for each individual problem. We predicted that the stimulation
of the left AG would selectively disrupt the retrieval of the solution to multiplication
problems. On the other hand, stimulation of the left hIPS should selectively disrupt
subtraction. Our results revealed that left AG stimulation was detrimental to the retrieval
and online calculation of solutions for multiplication problems, as well as, the retrieval
(but not online calculation) of the solutions to subtraction problems. In contrast, left hIPS
stimulation had no detrimental effect on both operations regardless of strategy.
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INTRODUCTION

The ability to attend to numbers is innate to some degree
in human beings. Discrimination of small numerosities begins
during the first weeks of life (Antell and Keating, 1983). By
about 5 months after birth, children already attend to the
addition or subtraction of one or two items (Wynn, 1992). As,
we become acquainted with exact arithmetic during school, our
strategies in dealing with different arithmetic problems differ.
Direct retrieval of solutions from long-term memory is efficient
when solving simple addition and multiplication problems that
were taught by rote learning. On the other hand, procedural
strategies such as counting (‘‘online calculation’’) are often used
for subtraction, which is often taught by quantity-based counting
or other strategies (e.g., inverse addition; Siegler, 1988; Dehaene
et al., 2003). Strategy selection, however, depends on several
problem-related variables, such as problem size, and individual-
related variables, such as working memory span (Imbo and
Vandierendonck, 2008). Often, easier problems are solved using
retrieval whereas more difficult problems are solved by counting
(Zbrodoff and Logan, 2005). A high working-memory span has
been linked to the frequent use of retrieval strategies (Imbo and
Vandierendonck, 2008).

The triple-code model (TCM) assumes that three different
parietal regions are involved in number processing (Dehaene
et al., 2003). Based on the findings from neuropsychological,
neuroimaging, and brain stimulation studies, themodel proposes
three distinct and task-specific brain areas in the parietal lobe.
The bilateral intraparietal sulcus (IPS) is associated with the
core quantity system, the left angular gyrus (AG) is believed
to be involved in the verbal processing of numbers, and
the posterior superior parietal area in spatial and non-spatial
attention (Dehaene and Cohen, 1997; Dehaene et al., 2003). In
healthy individuals, arithmetic operations that require online
numerical processing such as in simple subtraction and complex
(double-digit) addition or multiplication elicited significant
unilateral or bilateral IPS activation particularly in its horizontal
segment (hIPS; Chochon et al., 1999; Lee, 2000; Menon et al.,
2000; Zago et al., 2001; Simon et al., 2002; Delazer et al.,
2003, 2005; Ischebeck et al., 2006; Prado et al., 2011; Klein
et al., 2013b; De Visscher et al., 2015). The results from
these imaging studies seem to support the proposal of the
TCM that the hIPS subserve the mental manipulation of
numerical quantities (Klein et al., 2013b). This hypothesis was
further supported by neuropsychological data showing that
pathological lesions of the left and right hIPS caused specific
deficits in subtraction with preserved knowledge of rote-learned
arithmetic facts (Dehaene and Cohen, 1997; Cohen et al., 2000).
Furthermore, findings from non-invasive brain stimulation
studies also added evidence that highlighted the importance of
the hIPS for arithmetic operations that require online calculation.
For example, a virtual lesion-induced on either the right or
left hIPS using high frequency repetitive transcranial magnetic
stimulation (rTMS) temporarily impaired the participants’ ability
to solve double-digit addition and subtraction (Göbel et al.,
2006; Andres et al., 2011; Montefinese et al., 2017). Cathodal
transcranial direct current stimulation (tDCS) over the left

posterior parietal cortex also decreased the learning rates for
subtraction, whereas anodal tDCS showed an improvement that
lasted over 24 h after stimulation (Hauser et al., 2013; Grabner
et al., 2015).

Concerning multiplication, the TCM proposes the
involvement of the left AG in the retrieval of arithmetic
facts which are represented verbally in long-term memory
(Dehaene et al., 2003; Klein et al., 2013b). Indeed, significant
left AG activation has been reported when healthy individuals
encounter low-interfering problems (e.g., simple addition
or single-digit multiplication) that are strongly encoded in
long-term memory (Stanescu-Cosson et al., 2000; Grabner et al.,
2009; Jost et al., 2009; Klein et al., 2013b; De Visscher et al.,
2015; Soylu and Newman, 2016). Incorrect or ‘‘confusion’’
equations in which the proposed answer was true for the other
operation (e.g., 9 × 6 = 15) also elicited increased activation
in the left AG because the confusion effect automatically
(automatic mapping of the operands of the problems and
the associated solutions) activates arithmetic facts in memory
(Grabner et al., 2013). Multiplication training also led to
increased activation in the left AG due to the shift from quantity-
based processing to more automatic retrieval (Ischebeck et al.,
2006). Moreover, brain lesions located close to the left AG
were shown to induce acalculia for addition, multiplication,
and division but with spared subtraction (Lampl et al., 1994;
Dehaene and Cohen, 1997; Cohen et al., 2000; Lee, 2000). The
findings from invasive and non-invasive brain stimulation
studies also support a role of left AG in multiplication. Single-
session of anodal tDCS over the right AG elicited bilateral
AG activity detected with fMRI for multiplication problems
rehearsed during stimulation (Clemens et al., 2013). On
the other hand, calculation mapping with 5 Hz rTMS was
able to induce a maximum error rate (ER) of 30% in the
left AG for a single-digit multiplication task (Maurer et al.,
2016). Similarly, direct cortical stimulation (DCS) close to
the left AG in patients with tumors in the left parietal area
disrupted the performance in single-digit addition, subtraction,
and multiplication (Whalen et al., 1997; Duffau et al., 2002;
Kurimoto et al., 2006). In a patient with a low-grade glioma in
the right temporal cortex, DCS of the right AG also disrupted
single-digit subtraction (Yu et al., 2011). Moreover, in some
cases, removal of the tumor improved multiplication ability
(Kurimoto et al., 2006).

Taken together, the mentioned studies support the direct
involvement of the AG in arithmetic operations that need
retrieval from memory like multiplication and of the hIPS
in arithmetic operations that require online calculation like
subtraction. However, findings that challenge this anatomical
and functional dissociation of these operations also exist. For
instance, a PET study failed to show significant activations
on either the left and right AG in the retrieval vs. compute
contrast (Zago et al., 2001). Several fMRI studies also showed
that retrieval and calculation are not exclusive functions of the
left AG and hIPS and a reversal or overlap of function may
occur (Fulbright et al., 2000; Delazer et al., 2003; Andres et al.,
2011; Arsalidou and Taylor, 2011; Rosenberg-Lee et al., 2011; De
Visscher et al., 2015). Common activation patterns distributed
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in frontoparietal and central regions were also reported when
contrasting all arithmetic operations of different complexity. It
was suggested that this common activation pattern reflects a basic
anatomical substrate of working memory, numerical knowledge,
and processing based on finger counting that is derived from
a network originally related to finger movements (Fehr et al.,
2007). Moreover, findings from lesion and brain stimulation
studies added controversial results. Intraoperative DCS during
complex 2-digit integer minus 1-digit integer subtraction and
single-digit multiplication in both the left AG and left hIPS
yielded a similar disruption of processing for both operations in
four tumor patients (Pu et al., 2011). Preserved multiplication
ability was also reported in a patient with damage to the left
AG (van Harskamp et al., 2002). In TMS studies, although
low frequency (5 Hz) stimulation of the left and right AG
induced 30% and 40% errors in simple multiplication and
subtraction, respectively (Maurer et al., 2016), high frequency
(10 Hz) rTMS also significantly impaired the performance
in complex addition when delivered to the left AG (Göbel
et al., 2006). In another study, single-pulse TMS stimulation
of the bilateral hIPS disrupted the performance in single-digit
addition, while only left hIPS stimulation disrupted single-digit
multiplication (Salillas et al., 2012). For tDCS, although bilateral
bi-cephalic stimulation of the IPS affects magnitude processing,
it does not affect double-digit addition and subtraction task
performance (Hauser et al., 2013; Klein et al., 2013a). Moreover,
single-session anodal tDCS of the left AG enhanced the RT
and decrease the solution rates for large and small addition
and subtraction problems, respectively (Rütsche et al., 2015).
This overview demonstrates that the complete anatomical and
functional dissociation of arithmetic operations in the parietal
cortex is far from being clear.

One of the possible reasons for this contradictory pattern
of results is the disregard for different strategy use in solving
arithmetic problems. Item-by-item strategy use was not fully
and correctly accounted for by previous studies. Instead, the
two operations, subtraction, and multiplication were commonly
used to tap into the brain networks subserving the mental
manipulation of numerical quantities and arithmetic fact
retrieval, respectively. However, this simple distinction might
not be valid for all items. For example, ties (e.g., 3 × 3,
3 + 3) are often solved faster than other problems, which
has been attributed to direct memory retrieval (Imbo et al.,
2007). It has also been assumed that, in the case of single-
digit addition problems, retrieval of arithmetic fact knowledge
is used only for rather small problems (e.g., 2 + 3) but not
for relatively larger problems (e.g., 8 + 9; Stanescu-Cosson
et al., 2000; Klein et al., 2013b). Additionally, retrieval might
again be the strategy of choice for multi-digit problems such
as 12 + 12 or 20 + 30. This also applies to single-digit
multiplication problems because multiplication with zero and
small problems are assumed to be solved by rule application
and fact retrieval, respectively, and problems with large operands
sometimes involve backup strategies when direct retrieval is
not sufficient (Jost et al., 2009). Therefore, the majority of
the previous studies underestimated the impact of strategy
use on an item-by-item basis. Averaging of response latencies

across trials that involved different strategies might result
in misleading conclusions about how adults solve arithmetic
problems (Thevenot et al., 2007). The same critique applies to
recent neuroimaging studies. Currently, only one fMRI study
(Grabner et al., 2009) has utilized trial-by-trial self-reports to
assess strategy usage. So far, no noninvasive brain stimulation
study has used this approach to systematically explore the impact
of strategy use in subtraction and multiplication. Elucidating
the anatomical and functional dissociation of subtraction and
multiplication to distinct areas of the parietal cortex will extend
our knowledge about the neuronal circuits involved in arithmetic
operations. This is useful in understanding the course of
disorders like developmental dyscalculia which affects 5–6% of
school children, as well as, in formulating interventions for an
acquired numerical disability such as in the elderly (Shalev, 2004;
Nouchi and Kawashima, 2014).

The present study addressed this issue by using an item-
by-item questionnaire to investigate the extent to which the
participant’s strategy usage affects the anatomical dissociation of
multiplication and subtraction. First, we used fMRI to identify
the parietal cortex areas recruited during the performance of
subtraction and multiplication for each participant. Second,
the participants underwent rTMS sessions during which an
inhibitory stimulation paradigm (1-Hz rTMS) was applied
over three target areas: the left hIPS, left AG, and the
vertex as a control site. Participants solved subtraction and
multiplication problems before, during, and after stimulation.
Immediately after each experimental session, participants were
asked to indicate which strategy (online calculation or retrieval)
they used to solve each problem using a questionnaire. We
predicted that if the left hIPS is engaged in subtraction, the
rTMS-induced virtual lesion would increase the solution latency
of trials solved by online calculations. On the other hand, if
the left AG is engaged in multiplication, the rTMS-induced
virtual lesion will increase the solution latency of trials solved
by retrieval.

MATERIALS AND METHODS

Participants
The number of participants was determined a priori using
the statistical software G∗Power 3.1.9 (Faul et al., 2007). The
estimation indicated that 12 participants would be sufficient in
a within-subject repeated measure design (power level of 95%
and medium (0.50) effect size). In the study, 16 healthy young
volunteers (seven males) with a mean age of 26.25 ± 7.07 (SD)
years were recruited. They all had a normal or corrected-to-
normal vision andwere right-handed according to the Edinburgh
Handedness Inventory (Oldfield, 1971). Participants neither had
a history of acute or chronic medical or neuropsychiatric diseases
and contraindications to TMS such as metallic or electrical
implants in the body (Rossi et al., 2009). They received monetary
compensation for their participation and gave written informed
consent before the experiment. The study protocols complied
with the guidelines of the Declaration of Helsinki for human
studies and were approved by the ethics committee of the
Medical University Graz.
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Stimuli and Task
In the fMRI and rTMS experiments, we presented 36 subtraction
and 36 multiplication problems. The problems were presented
horizontally in white on a black background using Presentation
software (Neurobehavioral Systems Inc., Berkely, CA, USA)
for the fMRI experiment and Superlab 4.5 software (Cedrus
Corporation, San Pedro, CA, USA) for the rTMS experiment
(Figure 1A). For multiplication problems, one-digit × one-digit
multiplications with the numerals from 2 to 9 were selected,
including ties. Problems with two different numerals (e.g., 2 × 3)
were always presented with the smaller number as the first
operator. For subtraction problems, one-digit numerals were
subtracted from tens, always requiring a carry operation (e.g.,
15–8, but not 15–3).

For the fMRI experiment, the problems were randomized
and presented once in a single block (72 trials). The problems
were presented together with the solution and a distractor. For
multiplication, the distractor was the result of an operant-related
multiplication problem. For subtraction, the distractor was either
one or two units away from the solution. The distractor was
presented on the left side for half of the problems, and on
the right side for the other half. After the presentation of the
problems and two result alternatives, participants had to press
the left or right button to indicate which of the two presented
numbers was the solution. During the rTMS experiment, tasks
and stimuli were the same as in the fMRI experiment. However,
the problems were presented without result alternatives. The
participants were asked to mentally solve the problems and speak
the solution into a head-mounted microphone connected to a
voice-key device. For each rTMS session, the participants solved
the 72 problems five times [once before, during, and after (0 min,
30 min, and 60 min) stimulation]. Therefore, one rTMS session
had a total number of 360 trials.

Functional Magnetic Resonance Imaging
(fMRI)
MRI images were acquired on a 3.0 Tesla whole-body system
Siemens Skyra scanner with an echo-planar capable gradient
system together with a 20-channel birdcage head coil (Siemens
Medical Systems, Erlangen, Germany). For each participant, an
anatomical 3-D scan based on a T1-weighted sequence was
recorded (TR/TE = 1,650 ms/1.82 ms, matrix = 256 × 256,
FOV = 256 mm, 192 sagittal slices, in-plane resolution:
1 mm × 1 mm, slice thickness: 1 mm, 0.5 mm gap). The
anatomical scan was followed by functional measurements. For
the functional images, a T2∗-weighted echo-planar imaging
(EPI) sequence was used (TR = 2,000 ms TE = 25 ms,
matrix = 74 × 74, FOV = 224 mm, 38 axial slices,
in-plane resolution: 3 mm × 3 mm, slice thickness: 3 mm,
0 mm gap) which is sensitive to blood-oxygen-level-dependent
(BOLD) contrasts.

Repetitive TMS (rTMS)
The stimulation was performed using a MagPro X100 stimulator
with MagOption (MagVenture GmbH, Denmark). Single
and repetitive biphasic TMS pulses were delivered using
the MCF-B65 and C-B60 figure-of-eight MagVenture coils,

respectively. Both coils have a 75 mm diameter on one winding.
For stable and precise positioning of the magnetic coil above the
areas of interest, the Localite TMS Navigator (Localite GmbH,
Sankt Augustin, Germany) system tracks the sensors attached
to the coil concerning the adhesive reflectors on the patient’s
forehead using an infrared tracking device (Polaris Spectra,
Northern Digital Inc., Waterloo, ON, Canada). The stimulation
intensity was set at 110% of the individual participant’s
active motor threshold (AMT) determined from the primary
motor cortex representation of the right abductor pollicis
brevis (APB) muscle using single-pulse TMS. Electromyography
(EMG) recordings from the right APB muscle were obtained
using surface electrodes with a belly-tendon montage. AMT
was defined as the minimum stimulus intensity that elicits a
motor-evoked potential (MEP) response of >100 µV (peak-to-
peak) during moderate spontaneous background muscle activity
(∼10% of the maximum voluntary contraction) in at least five
of ten consecutive trials (Rossini et al., 1999). During rTMS
stimulation, magnetic pulses were delivered at a frequency of
1 Hz for 15 min (900 pulses; Houdayer et al., 2008). The
magnetic coil was held perpendicular to the left hIPS and left
AG and was oriented on the central plane at the vertex. All
stimulation parameters conformed to the safety guidelines for
rTMS (Wassermann, 1998; Rossi et al., 2009).

Experimental Procedure
The study was conducted in a single-blinded, randomized
design with an active TMS control condition. Each participant
underwent one fMRI and three randomized rTMS sessions
(Figure 1B). The study always began with the fMRI session.
During fMRI, the participants lay supine in the scanner and their
head was stabilized with foam paddings. They wore earplugs to
protect them from the scanner noise. A computer outside the
scanner room controlled the stimulus presentation and scanner
triggering (Neurobehavioral Systems Inc., Berkely, CA, USA).
The participants viewed the stimulus projected from a monitor
at the head end of the scanner on a mirror mounted on top
of the head coil. In the fMRI session, each trial started with
the presentation of a fixation cross for a jittered duration of
3–11 s (in 500 ms steps, average duration 7 s). Subsequently,
the problems with the solutions and distractors appeared for 5 s
(Figure 1A). Reaction times (RTs) were measured from the onset
of the problem presentation until a button press. All 72 trials
were presented (without pause) in a single block, leading to a
total duration of approximately 13 min. A minimum of 5 days
separated the fMRI and the first rTMS session.

All participants underwent three sessions of rTMS stimulation
separated by an interval of at least 7 days to avoid carry-over
effects. The stimulations were performed in all participants in
the middle of the day between 1:00 and 5:00 pm. The stimulation
targets (left AG, left hIPS, and vertex) were randomized for each
participant. They were not informed about the target locations
for each experimental session and the neuronavigation monitor
was placed out of their sight to ensure efficient blinding. Vertex
stimulation served as the control condition since previous rTMS
studies showed that stimulation of this site did not affect number
processing (Dormal et al., 2008, 2012; Andres et al., 2011).

Frontiers in Human Neuroscience | www.frontiersin.org 4 July 2020 | Volume 14 | Article 271141

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Fresnoza et al. Parietal Cortex and Arithmetic Operations

FIGURE 1 | Experimental procedure. (A) Trial timing schema of the fMRI and rTMS experiment. In the fMRI experiment, a trial started with the presentation of a
fixation cross for an average duration of 7,000 ms. Then the problems (with the solution and distractor) appeared for 5,000 ms. In the rTMS experiments, a trial
started with the presentation of a fixation cross for an average duration of 3,000 ms. Then the problems (without the solution and distractor) appeared until the
triggering of the voice-key. (B) Time course of the experiment. First, anatomical and functional MRI data sets were obtained. Then the participants underwent three
sessions of rTMS stimulation (left AG, left hIPS, and vertex) in randomized order. rTMS was applied at 1 Hz for 15 min (900 pulses). fMRI, functional magnetic
resonance imaging; rTMS, repetitive transcranial magnetic stimulation; AG, angular gyrus; hIPS, horizontal segment of the intraparietal sulcus.

Additionally, vertex stimulation reproduces the somatosensory
effects of parietal stimulations and is considered a better
control than other sham stimulation alternatives (Robertson
et al., 2003; Dormal et al., 2012). Furthermore, to control
for unspecific effects of the stimulation (e.g., motor area),
participants performed a grooved pegboard test (PBT) before
the first rTMS experimental session and immediately after the
last arithmetic task performance (60 min after stimulation) in
the third rTMS experimental session (Koch and Rothwell, 2009;
Koch et al., 2009; Feurra et al., 2011; Rivera-Urbina et al., 2015).

During rTMS sessions, participants were seated in a
comfortable chair with head and armrests. They were informed
about the sensations during TMS stimulations and were assured
that any calculation impairment would be temporary. The
experiment started once all questions were answered. First, we
performed the coregistration of the participant’s head and the
participant’s 3D T1-weighted MRI scan. The high-resolution
T1 MRI data were loaded into the Localite TMS Navigator
System. For the tracking device to locate the individual head
and the position of the TMS coil during stimulation, three
reflective sphere markers were attached to the patient’s forehead
and TMS coil. Subsequently, three anatomical landmarks (the
nasion, left, and right outer canthus) were marked in the 3DMRI
image. Using a digitizing pen that also contained sphere markers,
the same anatomic landmarks were marked on the patient’s
real head. To further improve the co-registration quality, an
additional 200 anatomical landmarks were added on the patient’s

head by tracing the scalp with the digitizing pen. To ensure the
goodness of fit (patient’s real head and structural MRI), we kept
the root mean squared error of the fitting procedure at less than
2.5 mm for all participants. The co-registration created a 3D head
model in which the peeling depth could be individually adjusted
to visualize the cortical surface.

After the coregistration, the ‘‘motor hotspot’’ or the primary
motor cortex representation of the right APB muscle was
located using anatomical landmarks (e.g., hand knob at the
precentral gyrus). The ‘‘motor hotspot’’ was defined as the
cortical location where the lowest stimulator output elicited the
biggest MEP amplitudes. EMG electrodes were attached at the
right APBmuscle in a belly-tendonmontage to monitor theMEP
amplitudes during stimulation using the built-in EMG device in
the stimulator. The participants wore earplugs to shield them
from the noise of the stimulator. To confirm the location of
the motor hotspot, single-pulse TMS stimulation was applied
at a frequency of 0.25 Hz while monitoring MEP amplitudes.
The coil was placed tangentially to the scalp at an angle of 45◦

to the midsagittal plane with the handle pointing laterally and
posteriorly generating an anteroposterior current direction in
the brain. The participants were asked to briefly and voluntarily
contract the APB muscle (∼10% of the maximum voluntary
contraction) while TMS was delivered. The stimulation intensity
was gradually reduced until the AMT was reached. Participants
with an individual AMT beyond 50% of the maximum stimulator
output would have been excluded from the experiment (none).
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Subsequently, the participant’s functional data set was overlaid
on the 3D reconstruction. Cortical areas with significant BOLD
activations [‘‘fMRI hotspots’’ or regions of interest (ROI)] were
identified and marked.

For the rTMS experiment, each trial started with the
presentation of a fixation cross for a variable duration between
2,000 ms and 4,000 ms (in steps of 250 ms, average duration:
3,000 ms). This was followed by the presentation of one of the
72 arithmetic problems (36 subtraction, 36 multiplication). The
participants were asked to mentally solve the problem and speak
the solution aloud into a head-mounted microphone connected
to a voice-key. The problem disappeared on the triggering of
the voice-key. After voice-key triggering, the participant’s answer
was recorded by the experimenter, or a code (‘‘0’’) for voice-key
failure was recorded. The participants solved the arithmetic
problems once before, during, and after (0 min, 30 min, and
60 min) stimulation. RT was measured from the onset of the
problem presentation until the triggering of the voice key. After
each session, participants completed a questionnaire of the
72 arithmetic problems. For each arithmetic problem, they were
instructed to tick a box to indicate whether they retrieved the
answer frommemory or whether they had to calculate. Including
the preparation time (20 min), each rTMS experimental session
lasted for about 120 min.

DATA ANALYSIS

fMRI Data
Data pre-processing and analysis were performed with SPM12
(Wellcome Department of Cognitive Neurology, London, UK).
The first two functional scans of each participant were discarded
to allow for signal stabilization. The functional scans were
motion-corrected and unwrapped. They were normalized using
the MNI functional (EPI) template. Finally, images were spatially
smoothed with a Gaussian kernel of 8 mm FWHM. Statistical
analyses were performed based on the general linear model as
implemented in SPM12. First, a model with two conditions
(subtraction/multiplication) was analyzed. To investigate the
influence of strategy (calculation or retrieval) participants were
asked to complete a questionnaire including all problems before
the first rTMS session. For the fMRI analysis, these data were
then used to estimate a second model with two conditions
(calculation/retrieval). The canonical form of the hemodynamic
response function and its first temporal derivative was used
for modeling. The motion parameters gained from the motion
correction procedure were entered into the model as parameters
of no interest. A high-pass filter (cut-off frequency: 1/120Hz) was
applied to remove low-frequency drifts. No global normalization
was used. A second level or random-effects analysis was
calculated based on the contrast images of the individual subjects
(Friston, 1999). The statistical parameter maps were thresholded
using an initial uncorrected p-value threshold of less than 0.001,
reporting only clusters as significant when they had a corrected
p-value of less than 0.05 on the cluster level. The correction
of the p-level was based on continuous random field theory as
implemented in SPM12 [family-wise error (FWE) corrected].

Behavioral Data (Questionnaire)
Participants had selected either retrieval or calculation as their
strategy in the questionnaire, which contained all 72 problems
and was administered once after every rTMS session. Only
correctly ticked problems were analyzed (3,452 out of 3,456 data
points). The percentages for the retrieval strategy were entered
into a repeated-measures ANOVA with the operation of the
within-subjects factors (subtraction, multiplication) and session
(one, two, or three).

Behavioral Data (Reaction Time and Error
Rate)
Statistical analyses were conducted separately for the raw RTs
and error rates (ERs) during fMRI and rTMS sessions using
SPSS software (SPSS 24, IBM Corp., Armonk, NY., USA). In the
final analysis, only the RTs from correctly answered and ticked
problems were included. Trials for which the RTs were outside
of +2 standard deviations and trials with RTs below 300 ms
or longer than 5,000 ms (outliers) were excluded. Grouping
the RTs according to strategy type produced unbalanced data
sets. Therefore, we decided to analyze the RT from the fMRI
and three rTMS sessions using a linear mixed-effects model
(LMM) because this analysis can accommodate data sets with
different numbers of observations per subject (West, 2009).
In the models, each participant was specified as a random
factor (random intercept model). The RT or ER served as
the dependent variable. For the fMRI data sets, a full model
included the within-subject factor ‘‘operation’’ (multiplication
and subtraction), and ‘‘strategy’’ (calculation and retrieval) as
fixed factors. On the other hand, a full model for the rTMS data
sets included the within-subject factor ‘‘stimulation site’’ (hIPS,
AG, and vertex), ‘‘operation’’ (multiplication and subtraction),
‘‘strategy’’ (calculation and retrieval), and ‘‘time’’ (before, during,
and 0, 30 and 60 min after stimulation) as fixed factors.

Normal data distribution (Shapiro–Wilk test) and
homogeneity of variance tests (Levene’s test) were conducted.
To achieve a parsimonious model for the data, we conducted
a (forward) stepwise approach by incrementally adding the
predictors to a baseline model (Barr et al., 2013). The baseline
models only contained the random factor (intercept) to examine
the individual variation in the dependent variable without
regard to the other predictors (Singer and Willett, 2003).
We then added the within-subject factors including their
respective interactions to the model one at a time and compared
the Akaike Information Criterion (AIC) values that indicate
model adequacy. Model over-fitting, particularly for RTs from
the rTMS experiment, can be minimized using this method
because it penalizes the likelihood function for having too
many parameters. Upon the addition of a factor, a decrease or
increase in AIC value (>2) indicates model fit improvement
or worsening, respectively (Burnham and Anderson, 2002).
A maximum likelihood estimation (Compound Symmetry
models) was used to estimate the parameters of each model.
Additionally, we determined the Akaike weight of each model
because the AIC value only compares one model to the next
and does not indicate the absolute fit of the model to the
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data (Burnham and Anderson, 2002). The Akaike weights
compare all possible models and determine which model fits
the data best for all comparisons. In the final models, we also
excluded non-significant factors except when they were involved
in significantly higher interactions. Additionally, to test for
multicollinearity, we also determined the tolerance and variance
inflation factor of the final models. SPSS does not provide
effect size values for mixed models, we therefore manually
calculated Cohen’s d as a measure of effect size. Significant
findings from the models were explored using paired t-tests for
post hoc comparisons (two-tailed, p< 0.05, Bonferroni corrected
for multiple comparisons). A t-test for dependent measures
was used to compare the grooved PBT performance before
and after the experiment. A p-value of < 0.05 was considered
significant for all statistical analyses. All values are expressed as
mean ± standard error of the mean (SEM).

RESULTS

fMRI Data
For the fMRI data, we first contrasted subtraction with
multiplication. We found significantly stronger activation for
subtraction than for multiplication in the right and left superior
parietal lobule, including the IPS and extrastriate visual areas,
as well as the right middle frontal gyrus (Figure 2A, Table 1).
No brain area was significantly activated in the reverse contrast.
To investigate whether brain activation depended on the strategy
used we then contrasted problems whose solutions were reported
calculated with problems that were retrieved (Figure 2B,
Table 1).We again found activations in the right and left superior
parietal lobule including the IPS, the left precentral gyrus, and left
superior frontal gyrus, as well as in the middle cingulate cortex.
In the reverse contrast, there was significant activation in the
left AG, the right middle temporal gyrus including the AG, the
middle cingulate cortex, as well as in the right and left superior
frontal gyrus.

Behavioral Data (RT and ER) During fMRI
Participants had calculated simplemultiplication and subtraction
problems during fMRI measurement. Their answers were
categorized according to the strategy used for a solution, as given
by the questionnaire administered in the first session of the rTMS
experiment. For the RT analysis, 1,090 out of 1,152 problems
were correctly answered and considered. Additional 16 trials
were considered outliers and excluded from the analysis. One
additional data point was lost due to missing questionnaire data.
Therefore, the final model for the RT contained 1,073 trials or
93.14% of the whole data set. The analysis of the RT revealed
that participants were faster with multiplication problems
(1.91 s, SD = 0.75 s) than with subtraction problems (2.36 s,
SD = 0.85 s), which led to a significant main effect of operation
(F(1,556.74) = 38.94, p ≤ 0.001, d = 0.544). They were also faster
for problems when the solution could be retrieved (1.98 s,
SD = 0.39 s) than when the solution had to be calculated (2.26 s,
SD = 0.39 s), which is reflected in a significant main effect of
strategy (F(1,556.07) = 15.10, p ≤ 0.001, d = 0.717). The interaction

FIGURE 2 | fMRI results for (A) subtraction vs. multiplication (both
strategies) and (B) calculation vs. retrieval (both operations). The activations in
the images were thresholded at p < 0.001 uncorrected, showing only clusters
significant at p < 0.05, family-wise error (FWE)-corrected at the cluster level.
The images were generated with BrainNet Viewer (Xia et al., 2013).

was not significant (F(1,551.95) = 0.007, p = 0.935, d = 0.108). In the
analysis of the ER, no significant effects obtained.

Strategy Questionnaire in the rTMS
Experiment
As skilled adults rely on the multiplication tables, we had
hypothesized that retrieval was the predominant strategy in
multiplication and less so in subtraction. Furthermore, it was
expected that participants more often relied on retrieval the
more familiar they got with the problems from the first to the
third session due to learning. Both expectations were confirmed
by our results. Overall, retrieval was more often used for
multiplication (70.14%, SD = 11.37%) than for subtraction
(27.20%, SD = 11.81%) yielding a main effect of operation
(F(1,15) = 44.31, p < 0.001, η2p = 0.75). Furthermore, participants
used the retrieval strategy more in the later sessions (session 1:
42.97%, SD= 7.91%, session 2: 50.04%, SD= 8.87%, and session 3:
52.60%, SD = 9.11%, main effect session (F(2,30) = 5.70, p = 0.008,
η2p = 0.28). The interaction was not significant. This indicates that
familiarity had a similar effect on strategy use for both operations.

TMS Parameters and Impact on Motor
Function
During the TMS sessions, all participants tolerated the single
and repetitive TMS stimulations well. The mean stimulation
intensities (hIPS: 42.75 ± 1.65% MSO, AG 40.93 ± 1.59% MSO,
vertex: 43.12 ± 1.83% MSO) did not significantly differ between
the sessions. There were no reports of headaches, dizziness,
or nausea. In four participants, we noticed some episodes
of difficulty verbally naming the solution for multiplication
problems during AG stimulation but they were able to finish
the experiments. The results of the grooved PBT indicated that
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TABLE 1 | Brain areas activated for subtraction vs. multiplication (both strategies) and retrieval vs. calculation targets (both operations).

Hemisphere x y z K Z

Subtraction > Multiplication
Left Superior parietal lobule −26 −66 60 4,519 4.95
Right Superior parietal lobule 16 −72 62 1,785 4.45
Right Middle frontal gyrus 24 −2 48 1,082 4.28

Multiplication > Subtraction
ns.
Retrieval > Calculation

Right Middle cingulate cortex 6 −40 36 778 4.71
Right Middle temporal gyrus 62 −46 4 598 4.41
Left Superior frontal gyrus −14 56 38 225 4.05
Right Superior frontal gyrus 16 44 52 160 3.95
Left Angular gyrus −50 −60 32 141 3.60

Calculation > Retrieval
Right Middle cingulate cortex 10 22 40 710 4.39
Left Superior parietal lobule −16 −64 60 1,441 4.26
Right Superior parietal lobule 26 −62 54 310 3.81
Left Precentral gyrus −50 6 26 191 3.81
Left Superior frontal gyrus −28 0 70 170 3.75

Statistical parameter maps were thresholded with an initial threshold of p< 0.001 uncorrected, reporting only clusters that survived an family-wise error (FWE)-corrected p-value< 0.05.
Coordinates are reported as given by SPM12 (MNI space). k = cluster size, Z = Z value for the maximally activated voxel of the cluster.

our stimulation protocol had no significant impact on motor
function (remote effect) of the right (before: 58.25 ± 1.65 s, after:
57.63 ± 1.64 s, t(15) = 0.379, p = 0.710) and left hand (before:
60.31 ± 1.88 s, after: 62.69 ± 2.13 s, t(15) = −1.488, p = 0.158).
PBT performance were also comparable between the participants
who received vertex (n = 6; right hand: 57.66 ± 3.67 s, left hand:
63.16 + 4.96 s), left hIPS (n = 5; right hand: 58.20 + 2.72 s, left
hand: 63.00 + 2.50 s), and left AG (n = 5; right hand: 57.00
+ 2.16 s, left hand: 61.80 + 3.30 s) stimulation on their last
experimental session (all p ≥ 0.05).

Behavioral Data (RT and ER) in the rTMS
Experiment
For the RT, we decided to interpret a full model because all
the main effects were highly significant (Table 2), the addition
of each variable and their interactions improved the model
based on the AIC values, and a model containing the 4-way
interactions did come out best 100% of the time based on the
Akaike weights (Supplementary Table S1). For the three rTMS
sessions, we included 93.32% (16,127 trials out of 17,280) of
the RT data in the final analysis. The raw data entered in the
final model were normally distributed after log transformation
(Shapiro–Wilk test) and the variances were equal (Levene’s test;
all p > 0.05). Multicollinearity was not a concern in the final
model since the tolerance range and variance inflation factors
were 0.863–1.00 and 1.000–1.159, respectively. The RT data from
the three rTMS sessions are presented in Figures 3A,B. These
data are normalized to their respective baseline measures to
remove baseline differences between the sessions. The results
of the analysis (performed on the raw data, not normalized
to baseline data) revealed significant differences in RT before
and after rTMS stimulation of the three target areas (significant
main effect of time: F(4,16111.02) = 5.07, p ≤ 0.001, d = 0.078;
significant main effect of stimulation site: F(2,16111.27) = 23.11,
p ≤ 0.001, d = 0.175; and significant time and stimulation

site interactions: F(8,16111.25) = 4.40, p ≤ 0.001, d = 0.214;
Figures 3A,B). The post hoc comparisons for the factor time
showed that participants were significantly faster in solving
arithmetic problems 60min after stimulation compared to before
(p = 0.001) and during (p = 0.030) stimulation. They were
specifically faster in solving arithmetic problems when the left
hIPS was stimulated compared to the vertex (p ≤ 0.001) and
AG (p ≤ 0.001; pairwise comparisons, Bonferroni corrected;
Figures 3A,B). The analysis also showed that the participants
were slower in solving multiplication than subtraction problems
(significant main effect of operation: F(1,16116.85) = 112.73, p ≤

0.001, d = 0.350) and slower in retrieving the answer compared
to calculating it particularly 60 min after stimulation (significant
main effect of strategy: F(1,16126.54) = 434.45, p ≤ 0.001, d = 0.775;
and significant time and strategy interactions: F(4,16111.01) = 5.25,
p ≤ 0.001, d = 0.159). Concerning the site-specific effect, rTMS
stimulation of the left AG slowed down the online calculation
or retrieval process in both operations (significant operation
and strategy interactions: F(1,16122.48) = 45.40, p ≤ 0.001,
d = 0.350; significant strategy and stimulation site interactions:
F(2,16111.99) = 6.26, p = 0.002, d = 0.185). In contrast, similar to the
vertex stimulation, rTMS of the hIPS did not inhibit the online
calculation and retrieval of answers to both multiplication and
subtraction problems.

Regarding the ERs, the participants exhibited very low ERs
before the stimulation (4.44% in multiplication and 4.46%
in subtraction). The ER further decreased after stimulation
in all conditions as indicated by the significant main effect
of time only (F(4,358.79) = 3.66, p = 0.006, d = 0.420;
Supplementary Table S2).

DISCUSSION

The present study aimed at elucidating the anatomical and
functional dissociation of subtraction and multiplication into
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TABLE 2 | Results of the linear mixed model (LMM) performed on the reaction times from the repetitive transcranial magnetic stimulation (rTMS) experiment.

Numerator df Denominator df F-value p-value Cohen’s D

Time 4 16,111.02 5.07 <0.001* 0.078
Operation 1 16,116.85 112.73 <0.001* 0.350
Strategy 1 16,126.54 434.45 <0.001* 0.775
Stimulation site 2 16,111.27 23.11 <0.001* 0.175
Time × operation 4 16,111.00 0.79 0.534 0.096
Time × strategy 4 16,111.01 5.25 <0.001* 0.159
Time × stimulation site 8 16,111.25 4.40 <0.001* 0.214
Operation × strategy 1 16,122.48 45.40 <0.001* 0.350
Operation × stimulation site 2 16,111.21 1.78 0.164 0.175
Strategy × stimulation site 2 16,111.99 6.26 0.002* 0.185
Time × operation × strategy 4 16,111.00 0.75 0.555 0.229
Time × operation × stimulation site 8 16,111.00 0.22 0.987 0.153
Time × strategy × stimulation site 8 16,111.02 1.71 0.090 0.176
Operation × strategy × stimulation site 2 16,111.82 2.52 0.081 0.189
Time × operation × strategy × stimulation site 8 16,111.00 1.26 0.262 0.184

For the LMM (random intercept model), each participant was treated as a random factor. The within-subjects factor stimulation site (hIPS, AG, and vertex), operation (multiplication
and subtraction), strategy (calculation and retrieval), and time (before, during, and 0, 30 and 60 min after stimulation) were treated as fixed factors. Asterisks indicate significant results
(p < 0.05). df = Degrees of freedom.

distinct parietal cortex areas namely the left hIPS and
left AG, respectively. First, we identified brain areas with
significant activation during the performance of subtraction
and multiplication using fMRI. Second, these brain areas
were stimulated using rTMS. We were particularly interested
in the impact of the participant’s strategy of choice on
the dissociation of these two operations. Therefore, we used
a strategy questionnaire to have first-hand knowledge of
how the participants solved subtraction and multiplication
problems. The strategy questionnaires alone revealed that
multiplication compared to subtraction problems were more
often solved using a retrieval strategy. fMRI data analysis
revealed significant recruitment of the left AG during retrieval
(more than online calculation), even though we did not
observe a significant increase in activity at the left AG
during multiplication (compared to subtraction). Conversely,
we observed stronger activation in the bilateral hIPS during
subtraction (more than in multiplication) and online calculation
(more than for retrieval). Our fMRI findings corroborate the
results of previous imaging studies highlighting the role of
the left AG in multiplication problems that require retrieval
strategy and the bilateral hIPS for subtraction problems that
require online calculation strategy (Delazer et al., 2003, 2005;
Ischebeck et al., 2006; Grabner et al., 2009). Additionally,
our imaging results also showed significant activations of the
prefrontal, frontal, and cingulate cortices during calculation and
retrieval. Activations of these areas indicate their involvement
in the strategy selection network in number processing
that requires working memory, strategic organization during
encoding, decision making, and response selection (Taillan
et al., 2015). In the rTMS sessions, our results showed that
left AG stimulation was detrimental to the retrieval and online
calculation of solutions for multiplication problems, as well
as, the retrieval (but not online calculation) of the solutions
to subtraction problems. In contrast, left hIPS stimulation
had no detrimental effect on both operations regardless
of strategy.

RTMS Stimulation of the Left AG
The stimulation of the left AG resulted in marked RT slowing
in multiplication (more than subtraction) problems which
indicate an impairment in our participants’ ability to perform
this arithmetic operation. Our result provides further support
for the assumption that the left AG is crucial in solving
arithmetic problems that are typically solved by the retrieval
of the solution from verbal long-term memory (Cohen et al.,
2000; Dehaene et al., 2003; Seghier, 2013; Andin et al., 2015).
However, when we analyzed the RT based on strategy, the results
were contrary to our expectations because the impairment was
smaller in magnitude for multiplication problems solved using
retrieval compared to the online calculation. Retrieval was only
impaired during and immediately after the stimulation, while
online calculation was impaired until 30 min after stimulation.
Furthermore, we also observed impairment in the retrieval of
the solutions to subtraction problems, particularly during the
stimulation. Therefore, our results suggest that the left AG plays
a role in the retrieval of the solution from memory for both
multiplication and subtraction problems. Our results further
suggest that the left AG is also responsible for the online
calculation of solutions to multiplication problems.

The impairment in retrieving the solution to multiplication
problems was expected because retrieval of overlearned
multiplication facts (e.g., 2 × 3) is supported by language-
relevant areas that include the left AG (Dehaene et al., 2003).
This is demonstrated among adult individuals with deficits
in phonological processing, such as those with developmental
dyslexia who have prominent difficulties in multiplication
due to poor retrieval of arithmetic facts (De Smedt and Boets,
2010). This is because arithmetic facts are represented verbally
in long-term memory, allowing such problems to be solved
by arithmetic fact retrieval (Klein et al., 2013b). In our study,
the close functional interplay of arithmetic fact retrieval and
language processing was demonstrated in four participants who
exhibited difficulties to verbalize the result for multiplication
problems during left AG stimulation. The interference probably
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FIGURE 3 | Response times for multiplication and subtraction problems,
depending on time and site of stimulation, separated for operation and
strategy. The x-axis displays the time points. The y-axis represents the
reaction times (RTs) normalized concerning the respective RT before the
stimulation (RT during and after stimulation/RT before stimulation). (A)
Multiplication: The stimulation of the AG inhibited the online calculation and
retrieval of solutions for multiplication problems. The stimulation of the hIPS
and vertex did not inhibit online calculation and retrieval. (B) Subtraction:
stimulation of the AG inhibited the retrieval of solutions to subtraction
problems during stimulation. Stimulation of the hIPS had no detrimental effect
on online calculation or retrieval. Error bars represent the standard error of the
mean. hIPS, the horizontal segment of the left intraparietal sulcus; AG,
angular gyrus.

involved a genuine impairment of arithmetic fact retrieval
because the production task (verbal response) put stronger
demands on the retrieval of the correct answer from memory
than the solution selection task used for the fMRI experiment
(Dehaene et al., 1999; Andres et al., 2011). We can rule out
the possibility that the speech interruptions were due to motor
impairment because the effect was specific to the stimulation
of left AG during multiplication. Also, the stimulation had
no impact on grooved PBT performance. The impairment
in the retrieval of the solution to subtraction problems could
be anticipated because some subtraction problems (e.g.,
12–6) may be stored in verbal long-term memory as well.
Indeed, impairment in single-digit addition, subtraction, and
multiplication can be elicited by directly stimulating the cortical
areas close to the left AG during tumor surgery (Whalen
et al., 1997; Duffau et al., 2002; Kurimoto et al., 2006). In
our arithmetic task, even though we did not use single-digit
operands, retrieval might have been the strategy of choice
for some subtraction problems such as in 16–8 because 16 is

double the amount of 8. To conclude, the impairment in
the retrieval of solution for both operations indicates that
the interference in automatic fact retrieval is due to the
rTMS-induced tonic suppression of neuronal activity in the left
AG (Ridding and Ziemann, 2010).

One might ask if arithmetic operations solved by retrieval
involve the left AG (Dehaene et al., 2003), why is the retrieval
not fully disrupted by the stimulation? The AG has strong
functional and anatomical connectivity with the hippocampal
system and the frontal areas mainly via the middle longitudinal
fascicle (ventral pathway). This is different from the IPS,
which is connected by the superior longitudinal fascicle (dorsal
pathway) with frontal areas for magnitude-related processes,
as revealed by probabilistic fiber tracking (Klein et al., 2013b).
Additionally, dorsal fiber tracts like the cortical cingulate route
(via retrosplenial cortex) that provide an indirect pathway
for hippocampal interactions with prefrontal cortex were also
described to subserve arithmetic fact retrieval (Uddin et al.,
2010; Klein et al., 2013b; Bubb et al., 2017). The retrosplenial
cortex was reported to be involved in the recognition of
familiar objects and procedures, as well as autobiographical
memory. This function is related to the retrieval of familiar
arithmetic facts from memory (Vann et al., 2009; Sestieri
et al., 2010, 2013; Klein et al., 2013b). Possibly the left
AG stimulation might not have been sufficient to completely
inhibit the retrieval process since other brain areas (e.g.,
retrosplenial cortex) subserving memory retrieval were less
affected by the inhibitory effect of the stimulation. This is
because the inhibitory effect of 1-Hz rTMS is mainly localized
in the cortex being stimulated which in our case was the
left AG. As shown in in vivo electrophysiological studies in
the human motor cortex, 1-Hz rTMS only suppresses the
late I-waves that depend on the excitability of motor cortico-
cortical circuits (Di Lazzaro et al., 2003, 2010; Cirillo and Perez,
2015). Indeed, anodal tDCS of the AG also failed to affect
multiplication performance despite significant BOLD activation
in the retrosplenial cortex (Clemens et al., 2013). This could
explain the short duration of retrieval impairments (only lasted
immediately after stimulation), as well as, the low ER (5.4%)
we and another rTMS study (30%) observed after left AG
stimulation (Maurer et al., 2016). This reasoning might also
explain why a lesion of the left AG is neither a sufficient nor
a necessary condition to observe a deficit in multiplication
(van Harskamp et al., 2002, 2005).

For the online calculation of the solution, stimulation of
the left AG elicited robust RT slowing that lasted for 30 min
in multiplication, while in subtraction RT slowing was only
observed immediately after the stimulation. The impairment in
the online calculation was also unexpected because arithmetic
problems that require quantity manipulations were thought
to be processed in the hIPS (Dehaene et al., 2003). It is
therefore unclear, why left AG stimulation markedly disrupted
online calculation of solution to multiplication problems.
In theory, the strategy-of-choice for simple multiplication
problems is retrieval. However, when retrieval fails, for instance
when faced with more complex operations such as multi-
digit multiplication or interference due to stimulation, a
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participant may adaptively use another strategy (e.g., online
calculation) to produce a response. For instance, whenever
direct fact retrieval for an arithmetic problem fails, bilateral
intraparietal areas may be involved in semantic re-coding of
the problem, recruiting magnitude information of the numbers
involved (Dehaene, 1995; Klein et al., 2013b). This might
have been the scenario in our participants because retrieval
was impaired during and immediately after the stimulation
of the left AG. However, if online calculation involves the
decomposition of the arithmetic problem into smaller facts
(e.g., 14 − 8 = 14 − 4 = 10 − 4 = 6), impaired retrieval
of these smaller facts from verbal long-term memory will
in turn negatively affect the efficiency of procedural strategy
(De Smedt and Boets, 2010). Therefore, we argue that the
impairment in the online calculation of answers could be
secondary to the impairment in retrieval. As reflected by our
imaging results, the strong activations in the cingulate, motor
and frontal cortices might reflect not only the increased conflict
during the fact-retrieval processes but also higher demands for
controlling and coordinating multiple processing steps when a
problem cannot be solved by direct retrieval (Jost et al., 2009).
Additionally, the use of online calculation would be a costly
strategy because this puts higher demands on verbal working
memory, which might lead to slower performance in solving
multiplication problems (Hecht, 2002; De Smedt and Boets,
2010). This could explain why the performance in double-digit
additions that were probably solved using online calculation
(more than retrieval) was also disrupted by bilateral DCS and
rTMS stimulation of the AG (Roux et al., 2003; Göbel et al.,
2006; Montefinese et al., 2017). On the other hand, subtraction
problems solved by online calculations were not profoundly
affected by the stimulation of the left AG because this strategy
was thought to be carried out by the hIPS (Dehaene et al.,
2003). As shown by our results, the RTs for subtraction problems
solved by online calculations were not markedly prolonged
by the stimulation of the left AG, as well as the vertex. In
contrast, operations (double-digit addition and subtraction) that
require online calculation were significantly impaired by rTMS
stimulation of the left or bilateral hIPS (Göbel et al., 2006;
Montefinese et al., 2017).

RTMS Stimulation of the Left hIPS
The results from the stimulation of the left hIPS were
also unexpected because we initially predicted that left hIPS
stimulation would impair our participants’ ability to solve
arithmetic problems that require genuine quantitymanipulations
such as subtraction (Dehaene et al., 2003). Instead, we did
not observe any detrimental effects such as RTs slowing or
increased ER in subtraction as well as in multiplication problems
during and after left hIPS stimulation. Nevertheless, the effect
of stimulation on RTs was strategy-dependent: retrieval was
not affected whereas online calculation was improved by the
stimulation in both operations. Retrieval was comparable in
both sham and left hIPS stimulation conditions indicating that
the left hIPS had no or only a minimal role in the retrieval
of solutions from memory in subtraction and multiplication
problems. Moreover, our behavioral finding was consistent with

our imaging results because we did not observe significant
hIPS activation during retrieval. Therefore, we argue that
retrieval was not affected by the stimulation of the left hIPS
because this strategy does not entirely depend on it. On the
other hand, RTs for problems solved by online calculation
decreased after left hIPS stimulation indicating an improvement
in our participants’ ability to solve both operations using
this strategy. Our imaging results also showed significant
activations of the bilateral hIPS during the online calculation.
This was consistent with the reported recruitment of brain areas
involved in numerical quantity processing when participants
were solving untrained (calculated) more than trained (mostly
retrieved) subtraction and multiplication problems (Simon et al.,
2002; Ischebeck et al., 2006). In contrast, our behavioral
results did not corroborate the findings of previous rTMS
studies that showed performance disruption in arithmetic
operations (e.g., double-digit addition and subtraction) that
need online calculation (Göbel et al., 2006; Montefinese et al.,
2017). The performance improvement could not be due to
a learning effect because it was specific for problems solved
using an online calculation. Here, we may ask, why would
an inhibitory rTMS stimulation paradigm applied to the left
hIPS improve online calculation? For subtraction, one possible
reason is that we did not stimulate and therefore inhibit
the right hIPS. According to previous studies, subtraction-
related areas are also predominantly localized in the right
hIPS (Cohen et al., 2000; Andres et al., 2011; Maurer et al.,
2016). This argument is in good accordance with the recent
results from Montefinese et al. (2017) that highlighted the
role of the right hIPS, as well as, the right ventral segment
of IPS (vIPS) in solving complex arithmetic operations. In
their study, bilateral hIPS and vIPS high frequency rTMS
stimulation disrupted double-digit addition and subtraction.
They argued that the stimulation disrupted online calculation
because during complex arithmetic problem solving our reliance
on visuospatial strategies, a suggested function of the right IPS,
increases (Montefinese et al., 2017). In theory, the complexity
of our subtraction problems (e.g., the requirement to conduct
a ‘‘carry’’ procedure) may have facilitated the recruitment of
the right IPS and engage visuospatial strategies as shown by
the bilateral hIPS activation during the online calculation.
Therefore, the recruitment of the right hIPS and the use of
visuospatial strategies might have facilitated task performance
because this strategy not only enhances numerosity processing
and length categorization but also the processing of serial
position information on the spatially oriented mental number
line in mental arithmetic (Dormal et al., 2012; Knops and
Willmes, 2014; Montefinese et al., 2017). Indeed, impairment
not only in numerical but also in spatial bisection tasks
was reported in patients with a lesion in the right parietal
cortex (Zorzi et al., 2002; Cappelletti et al., 2007). Our results
also showed that online calculation improvement was more
robust in subtraction than multiplication problems. Here,
we suggest that subtraction was less affected by inhibitory
stimulation because subtraction-related areas of the cortex are
known for being robust toward brain lesions or aphasia, in
contrast to multiplication- or division-related cortical areas
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(Lampl et al., 1994; Pesenti et al., 1994; Maurer et al., 2016).
Lastly, we also suggest the same arguments to explain the
performance improvement in multiplication problems solved
by online calculation. A study highlighted the similar role of
the right IPS in multiplication by showing that single-pulse
rTMS stimulation of IPS in either hemisphere (compared to
control sites) led to increased RTs in addition andmultiplication.
They suggest that computational efficiency is not specifically
dependent on left hemisphere regions and that efficiency
in multiplication is dependent on the right vIPS considered
to be critical for motion representation and automatization
(Salillas et al., 2012).

CONCLUSION

The present findings emphasized the presence of two distinct
cortical networks that are modulated by the strategy and not by
the arithmetic operation per se. For instance, we have shown that
the integrity of the left AG is required in performing retrieval
and online calculation strategy in multiplication, but only for
the retrieval strategy in subtraction. On the other hand, the
results from the stimulation of the left hIPS may indirectly
suggest that the integrity of the right hIPS was sufficient to
perform both operations, particularly when using the online
calculation strategy. However, we would like to emphasize that
great care must be taken in correlating our results with previous
rTMS studies because none of them took into account the
strategy used by the participants. The same principle must be
applied in interpreting the correlation between our results and
the findings from brain imaging studies in healthy participants,
as well as, electrophysiological and neuropsychological studies
in patients. This is because neuroimaging can elucidate brain
areas involved in a certain task but it does not allow any causal
interpretation, that is, it cannot be deduced from neuroimaging
alone which areas are indeed essential for calculation. Studies
done on tumor patients (mostly single-case studies) should
also be interpreted cautiously since slow-growing tumors can
shift the calculation-related areas and affect other parietal
areas that are involved in arithmetic operations. Overall, the
present findings addressed some of the disparities from previous
studies. Most importantly, our findings can be a basis for
developing therapeutic interventions aimed at reducing the
effects of developmental dyscalculia or acquired numerical

disability (Lepage and Théoret, 2010). It was already shown that
increasing the excitability of the right and left parietal cortex
in healthy adult participants using tDCS improved numerical
ability (e.g., greater learning rates for subtraction) that lasted
for 24 h up to 6 months after stimulation (Cohen Kadosh
et al., 2010; Grabner et al., 2015). However, this effect was not
replicated in a pilot study on two adults with developmental
dyscalculia (Iuculano and Cohen Kadosh, 2014). Therefore,
further investigations are warranted particularly those that focus
on the strategy that these individuals are often using when solving
numerical problems.
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Developmental dyscalculia (DD) is a learning disability affecting the acquisition of
numerical-arithmetical skills. Affected people show persistent deficits in number
processing, which are associated with aberrant brain activation and structure. Reduced
gray matter has been reported in DD for the parietal cortex including the intraparietal
sulcus (IPS), but also the frontal and occipito-temporal cortex. Furthermore, dyscalculics
show white matter differences for instance in the inferior (ILF) and superior longitudinal
fasciculus (SLF). However, the longitudinal development of these structural differences
is unknown. Therefore, our goal was to investigate the developmental trajectory of
gray and white matter in children with and without DD. In this longitudinal study,
neuropsychological measures and T1-weighted structural images were collected twice
with an interval of 4 years from 13 children with DD (8.2–10.4 years) and 10 typically
developing (TD) children (8.0–10.4 years). Voxel-wise estimation of gray and white
matter volumes was assessed using voxel-based morphometry for longitudinal data.
The present findings reveal for the first time that DD children show persistently reduced
gray and white matter volumes over development. Reduced gray matter was found in
the bilateral inferior parietal lobes including the IPS, supramarginal gyri, left precuneus,
cuneus, right superior occipital gyrus, bilateral inferior and middle temporal gyri, and
insula. White matter volumes were reduced in the bilateral ILF and SLF, inferior fronto-
occipital fasciculus (IFOF), corticospinal tracts, and right anterior thalamic radiation (ATR).
Behaviorally, children with DD performed significantly worse in various numerical tasks
at baseline and follow-up, corroborating persistent deficits in number processing. The
present results are in line with the literature showing that children with DD have reduced
gray and white matter volumes in the numerical network. Our study further sheds light
on the trajectory of brain development, revealing that these known structural differences
in the long association fibers and the adjacent regions of the temporal- and frontoparietal
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cortex persist in dyscalculic children from childhood into adolescence. In conclusion,
our results underscore that DD is a persistent learning disorder accompanied by deficits
in number processing and reduced gray and white matter volumes in number related
brain areas.

Keywords: developmental dyscalculia, longitudinal, gray matter, white matter, children, development,
voxel-based morphometry

INTRODUCTION

Numbers andmathematics are omnipresent in our daily lives and
their mastery is crucial to function effectively in our society. Poor
numeracy skills, therefore, pose a serious burden for persons
affected. Developmental dyscalculia (DD) is a learning disorder
characterized by significant and persisting difficulties in learning
academic skills related to mathematics or arithmetic. The
difficulties are not due to a disorder of intellectual development,
sensory impairment, mental or neurological disorders, or
inadequate instruction (WHO, 2018). DD affects about 3–7% of
the school children (Wyschkon et al., 2009; Butterworth et al.,
2011) and has been shown to have a persisting character (Shalev
et al., 2005; Geary et al., 2013; McCaskey et al., 2018). Studies in
children with DD reveal impairments in numerical magnitude
processing and difficulties in the retrieval of arithmetical facts
from memory, but also in visuospatial memory or inhibition
(Geary, 1993; Landerl et al., 2004; De Smedt et al., 2013; Szucs
et al., 2013). These deficiencies have been linked to abnormalities
in brain function and structure. When processing numbers
and performing arithmetic, a large neural network is involved
including posterior parietal (intraparietal sulcus (IPS), angular
gyrus, supramarginal gyrus), prefrontal, occipito-temporal and
hippocampal areas. Children with DD show aberrant activation
of the numerical neural network (Price et al., 2007; Davis
et al., 2009; Kucian et al., 2011; Ashkenazi et al., 2012) and
abnormalities in different measures of brain structure (e.g.,
fractional anisotropy, cortical thickness, cortical surface area,
gray and white brain volumes; Rykhlevskaia et al., 2009; Kucian
et al., 2013; Ranpura et al., 2013).

Hitherto, few cross-sectional studies investigated structural
differences in white and gray matter volumes in children with
DD compared to typically developing (TD) peers (Rotzer et al.,
2008; Rykhlevskaia et al., 2009; Ranpura et al., 2013). Generally,
all studies report reduced gray matter volumes in dyscalculics
in the IPS and the inferior and superior parietal lobes (Rotzer
et al., 2008; Rykhlevskaia et al., 2009; Ranpura et al., 2013).
These regions have been linked to number processing and
mathematical problem-solving in several studies (Dehaene et al.,
2003; for ameta-analysis see Arsalidou et al., 2018). Furthermore,
decreased volumes are detected in regions of the frontal lobe
such as the anterior cingulum and the inferior andmiddle frontal
gyrus (Rotzer et al., 2008), known to be involved in working
memory, attention and goal-directed behavior (Arsalidou et al.,
2018), and in occipital regions such as the cuneus/precuneus,
lateral occipital cortex, lingual and fusiform gyrus (Rykhlevskaia
et al., 2009), which process visual numerical information. Finally,
less gray matter volume is also found in the entorhinal cortex,

the parahippocampal gyrus and the hippocampus (Rykhlevskaia
et al., 2009; Ranpura et al., 2013), which is suggested to play
an important role in the formation of long-term memory for
arithmetical facts (Menon, 2016). In contrast to the results in
children, the findings in studies with dyscalculic adults are
less clear. A recent study found no differences in volumetric
or surface characteristics of gray matter in dyscalculic adults
with and without comorbid dyslexia compared to a control
group (Moreau et al., 2019). Likewise, Cappelletti and Price
(2013) did not find differences in gray matter volume in a
whole-brain analysis in adults with DD but could show that
the right parietal area had significantly reduced gray matter
volume in a region of interest (ROI) analysis. However, a
study investigating the structural correlates of mathematical
expertise revealed higher graymatter volume in the right superior
parietal lobe, but lower gray matter volume in the right IPS in
professional mathematicians compared to non-mathematicians
(Popescu et al., 2019).

Differences between children with and without DD are
not only found for gray matter structures since white matter
volume has also been reported to be reduced in children
with DD. Less white matter is observed in temporoparietal
regions (right inferior parietal lobe, temporal pole, transverse
temporal lobe) and the left frontal lobe (Rotzer et al., 2008;
Rykhlevskaia et al., 2009; Ranpura et al., 2013). These regions
are part of prominent white matter tracts. The inferior (ILF)
and superior longitudinal fasciculus (SLF) have been suggested
to be particularly important for numerical processing, as they
may be involved in frontoparietal communication and visual
processing of numerical or mathematical problems (van Eimeren
et al., 2008; Tsang et al., 2009; Matejko and Ansari, 2015). Further
white matter differences are found in regions that correspond
to the inferior fronto-occipital fasciculus (IFOF), forceps major,
corticospinal tract (CST), and the anterior thalamic radiation
(ATR). Interestingly, fractional anisotropy (FA), a measure for
white matter integrity, is reduced in the SFL, ILF, IFOF and
the caudal forceps major in children with DD (Rykhlevskaia
et al., 2009; Kucian et al., 2013; for a review see Matejko
and Ansari, 2015). Note that no studies to date have reported
increased gray or white matter volumes for persons with DD
compared to peers without DD (Rotzer et al., 2008; Rykhlevskaia
et al., 2009; Cappelletti and Price, 2013; Ranpura et al., 2013;
Moreau et al., 2019).

Currently, there is one study that investigated children
between 8 and 14 years and aimed to describe how the differences
between dyscalculic and control children vary during cortical
development (Ranpura et al., 2013). Relative to TD children,
gray matter volume in dyscalculics increases with age in the left
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dorsolateral prefrontal cortex and the right superior occipital
lobe, but decreases slightly in the left primary motor cortex.
White matter development of children with DD showed notable
delays relative to the control group. Whilst TD children showed
an age-related increase in frontal and parietal areas, the white
matter volumes of DD children remained stable over time
(Ranpura et al., 2013).

The gray and white matter regions and their relationship
with numerical or arithmetical skills were also investigated in
TD children. Gray matter volume is positively correlated with
arithmetic scores or performance gains specifically in the left IPS
and angular gyrus (Li et al., 2013; Supekar et al., 2013; Evans
et al., 2015). Price et al. (2016) showed that gray matter volume
in the left IPS measured in first grade predicted the math score
at the end of the second grade. This result is not confined to
the parietal cortex. Increased gray matter volume in the frontal
(dorsal and ventral prefrontal cortices, IFG), occipito-temporal
(cuneus, fusiform gyrus) and in the hippocampus also relates to
better math performance (Li et al., 2013; Supekar et al., 2013;
Evans et al., 2015; Wilkey et al., 2018). Moreover, associations
between brain volume abnormalities andmath performance have
been reported for the gray matter volume of parietal regions in
other populations prone to math difficulties (prematurely born
children, very low birth weight, Turner syndrome; Isaacs et al.,
2001; Starke et al., 2013; Zhao et al., 2013).

To summarize, gray matter volume in various regions of
the frontoparietal network, but specifically in the IPS—which
is known as a key area for number processing—has been
associated with better performance in numerical processing
and arithmetical skills. In line with that, children with DD
show reduced gray matter volumes in parietal, but also frontal,
occipito-temporal and hippocampal areas. Furthermore, white
matter differences have been reported in the main white matter
tracts connecting the parietal with the frontal and the temporal
cortex in subjects with DD. However, to the author’s best
knowledge, there is no study investigating the development
of these structural differences in children with DD using a
longitudinal study design. Therefore, the present work aims to
elucidate the developmental trajectory of gray and white brain
matter volume in children with and without DD from childhood
to adolescence.

Based on previous literature, we expect to replicate the known
group differences. Reduced gray matter volumes in various
regions of the frontoparietal numerical network are expected in
children with DD compared to an age-matched control group
with normal math performance (Rotzer et al., 2008; Rykhlevskaia
et al., 2009; Ranpura et al., 2013). Furthermore, we hypothesize
that less white matter volume will be present in the main tracts
connecting the parietal with the frontal and the temporal lobe
for dyscalculic children (Rotzer et al., 2008; Rykhlevskaia et al.,
2009). Second, we will examine the general developmental effects
of white and gray matter substance. We anticipate an increase
in white matter and possibly a decrease in the gray matter
over the examined time from childhood to early adolescence.
Longitudinal studies focusing on the structural development
from childhood to adulthood showed that gray matter volume
increases in the first 10 years of life followed by a decrease

in the next decades (Mills et al., 2016). However, the peak of
the gray matter volume varies though between studies and also
brain regions (Giedd et al., 1999; Gogtay and Thompson, 2010;
Groeschel et al., 2010;Mills et al., 2016). Findings regarding white
matter volumes revealed a constant increase from childhood
until young adulthood (Giedd et al., 1999; Groeschel et al., 2010;
Mills et al., 2016). Finally, we are interested in the longitudinal
trajectory of the group differences. According to the results
of Ranpura et al. (2013), we expect a relative increase in gray
matter volume and no change in white matter volume over time
in children with DD compared to TD peers. In contrast, the
findings in adults point towards a normalization of the gray
matter structure over time, as no or only little differences were
found in dyscalculic adults. Based on this literature we, therefore,
expect to find divergent developmental trajectories in dyscalculic
compared to controls.

MATERIALS AND METHODS

Participants and Procedure
A total of 35 (23 DD, 12 TD) children between 8 and 11 years
were recruited into this longitudinal study, of which 27 took
part in a previous study (Kucian et al., 2011). This longitudinal
study included structural and functionalMRI data (for the results
of fMRI data please see McCaskey et al., 2018). Children were
evaluated by neuropsychological tests and MRI at baseline and
returned after 4.2 (SD = 0.46) years for a follow-upmeasurement.
We approached the subjects of our study through the school
setting or School psychological Services (DD subjects). The
children visited us twice at the Center for MR-Research of the
University Children’s Hospital Zurich. On both occasions, they
first completed a neuropsychological session and then underwent
the MRI measurement.

Inclusion criteria for all children were no history of
neurological or psychiatric disorders and an IQ ≥ 85, measured
by the third edition of the WISC (Tewes et al., 1999; Similarities,
Block Design, Vocabulary, Picture Arrangement). Furthermore,
DD children had to score below the 10th percentile in the total
score or three subtests of a standardized numerical test battery
(ZAREKI-R) at baseline. These criteria are in line with the
diagnostic criteria for DD of the ICD-11 (6A03.2 Developmental
learning disorder with impairment inmathematics;WHO, 2018).
TD children had to perform above the cut-off of value in the test
batteries for numerical abilities at baseline and follow-up (10th
percentile in the ZAREKI-R and 67 points in the BASIS-MATH
4–8, respectively). Following these criteria, six DD children and
one TD child were excluded from the study. For the MRI
analysis, two children were excluded due to missing imaging
data at baseline or follow-up and three for image quality
reasons, resulting in 13 DD and 10 TD complete data sets
for the whole study. Groups did not differ in age, gender,
handedness, and pubertal status determined by the Edinburgh
Handedness Inventory (Oldfield, 1971) and an adapted version
of the Self-administered Rating Scale for Pubertal Development
(Carskadon and Acebo, 1993).

Parental consent and child assent were obtained at the
beginning of the study. The study was approved by the
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Ethics committee of Zurich, Switzerland based on guidelines
from the World Medical Association’s Declaration of Helsinki
(WMA, 2013).

Neuropsychological Testing
During the neuropsychological assessment, we acquired
numerical abilities, general cognitive abilities as well as measures
for the most common comorbid disorders such as developmental
dyslexia, attention deficit and hyperactivity disorder, and
working memory deficits.

Numerical Abilities
At baseline, numerical abilities were assessed using the revised
version of the Neuropsychological Test Battery for Number
Processing and Calculation in Children (ZAREKI-R; von Aster
et al., 2006). The Zareki-R is a multidimensional test, measuring
basic numerical skills as well as calculation, and widely used
for the diagnosis of DD in the German-speaking area (see
Supplementary Material for detailed information about the
subtests). Based on this test battery children scoring below the
10th percentile in the total score or three subtests were identified
with DD.

Also, the Arithmetic subtest of theWechsler Intelligence Scale
for Children (WISC-III; Tewes et al., 1999) was performed. In
this subtest, children had to solve story problems of increasing
difficulty within a set time limit (reported test values are
IQ scores).

At follow-up, the numerical achievement was assessed with
the test for Basic Diagnosis in Mathematics Education for
Grades 4-8 (BASIS-MATH 4-8; Moser Opitz et al., 2010). The
Basis-Math is a criterion-based test battery measuring various
arithmetical abilities such as counting, decimal system, and
calculation. Criteria for numerical deficiencies are met if the
performance is under a threshold value of 67 points (maximum
score of 83 points). This is interpreted as not reaching mastery of
basic mathematical concepts (see Supplementary Material for
detailed information).

The curriculum-based subtest Quantity Comparison of the
Cognitive Abilities Test (KFT 4-12+R; Heller and Perleth,
2000) was performed to assess the arithmetic performance at
a peer level. In this subtest, subjects had 10 min to solve as
many quantity comparisons as possible of increasing difficulty
(reported test values are T scores).

The spatial representation of numbers was measured using a
computerized number line task adopted fromKucian et al. (2011;
for a detailed description see McCaskey et al., 2018). Children
had to indicate by mouse-click the position of 20 Arabic digits on
a number line with the labeled endpoints 0 and 100. Accuracy was
measured by calculating the percentage distance from themarked
to the correct position of the given number (reported measures
are raw values).

Children also solved 40 basic arithmetic problems
(20 addition and 20 subtraction) in the number range 0–1,000
(for a detailed description see McCaskey et al., 2018). Each
problem was presented visually on the computer screen and
solutions were given via the keyboard. The number of correctly

solved items was quantified (reported test values are raw scores,
maximum value 20).

Domain General Cognitive Abilities
At baseline, intelligence was measured with the third edition
of the WISC (Similarities, Block Design, Vocabulary, Picture
Arrangement; Tewes et al., 1999). At follow-up, the fourth
edition of the WISC was used (Similarities, Block Design, Matrix
Reasoning; Petermann and Petermann, 2007). Table 1 shows the
estimated general IQ.

Working Memory
Visuospatial working memory was measured with the Block-
Suppression-Test (Beblo et al., 2004). The task required subjects
to reproduce every second block of a previously presented
sequence on a board with nine cubes. The sequences had a
length of 3–9 cubes. Three items per sequence were presented.
The longest sequence which was reproduced correctly twice was
quantified (reported test values are raw scores, maximum value
9). Verbal working memory was measured with the subtest Digit
Span of the WISC-IV (Petermann and Petermann, 2007). In this
task, subjects had to repeat an auditorily presented sequence of
numerals forward or backward. The sequences had a length of
2–9 numerals (reported test values are IQ scores).

Attention
Levels of attention and inhibition were measured using the
subtests Alertness and Go-Nogo of the computerized Test battery
for Attentional Performance (TAP; Zimmermann and Fimm,
1993). In the Alertness subtest, subjects had to react as quickly
as possible when the target stimulus ‘‘x’’ appeared (intrinsic
alertness). Half of the trials were preceded by an acoustic cue
stimulus (phasic alertness). The test has four runs and a total
of 80 target items. For each subject, the percentile rank of the
median RT was quantified (reported test values are percentile
ranks). In the Go-Nogo subtest, subjects had to react as quickly
as possible to a target stimulus (‘‘x,’’ go condition), but inhibit
reactions on a second presented stimulus (‘‘+,’’ nogo condition).
The test has a total of 40 items (20 go and 20 nogo items). For
each subject, the percentile rank of the median RT was quantified
(reported test values are percentile ranks).

Reading Abilities
The 1-Minute-Reading-Task from the Salzburg Reading and
Orthography Test (SLRT-II; Moll and Landerl, 2010) assessing
word and pseudoword reading fluency was used to estimate the
reading performance. Two sheets of paper with either 156 words
or 156 pseudowords of increasing length and difficulty were
presented. Subjects had 1 min per sheet to read as many words
as possible. The amount of correctly read items was quantified
(reported test values are percentile ranks). Because of lacking test
norms in grades 7 and 8, we interpolated the norms from the test
manual (grade 6) and Kronschnabel et al. (2013; grade 9).

Behavioral Data Analysis
Behavioral data were statistically analyzed with SPSS (Version
22). To account for the difficulties regarding the performance
of statistical tests of normality in small samples, we performed
nonparametric tests (Mann–Whitney U Test) to assess group
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TABLE 1 | Demographic characteristics and scores on numerical abilities, domain-general cognitive abilities, working memory, attention, and reading.

Behavioral measure DD TD Test-statistic p r

N M (SD) N M (SD)

Baseline assessment
Age 13 9.5 (0.7) 10 9.2 (0.8) 56.0a 0.605 0.13
Gender m/f 13 3/10 10 5/5 1.81b 0.221
Handedness l/a/r 13 1/4/8 10 1/3/6 0.04b 0.999
Numerical abilities
DD diagnosis (ZAREKI-R) 13 6.3 (5.0) 10 75.6 (19.5) 0.00a 0.000∗∗∗ 0.84
Arithmetic (WISC-III) 12 90.4 (9.6) 10 105.5 (12.8) 21.5a 0.008∗∗ 0.55
Domain general cognitive abilities
Estimated IQ (WISC-III) 13 99.8 (5.8) 10 111.6 (6.9) 11.5a 0.000∗∗∗ 0.69
Working memory
Visuo-spatial (BST) 11 2.7 (1.5) 10 3.6 (1.0) 37.5a 0.195 0.31

Follow-up assessment
Age 13 13.5 (0.9) 10 13.6 (0.8) 64.0a 0.976 0.01
Puberty Score 13 2.8 (0.7) 10 2.6 (0.8) 57.0a 0.636 0.10
Numerical abilities
DD diagnosis (BASIS-MATH 4-8) 13 49.8 (9.1) 10 75.3 (4.2) 0.00a 0.000∗∗∗ 0.84
Quantity Comparison (KFT 4-12+R) 11 41.4 (3.7) 10 53.4 (4.5) 1.0a 0.000∗∗∗ 0.83
Number line task (% distance) 13 5.3 (1.9) 10 3.6 (2.2) 18.0a 0.002∗∗ 0.61
Addition (accuracy) 13 15.9 (4.0) 10 18.6 (1.4) 25.5a 0.010∗ 0.52
Subtraction (accuracy) 12 12.5 (4.1) 10 17.6 (2.5) 16.0a 0.002∗∗ 0.62
Domain general cognitive abilities
Estimated IQ (WISC-IV) 13 100.5 (6.9) 10 113.0 (5.7) 9.5a 0.000∗∗∗ 0.72
Working memory
Visuo-spatial (BST) 13 5.8 (1.8) 10 6.8 (2.0) 46.5a 0.243 0.25
Verbal (WISC-IV) 13 98.9 (12.1) 10 107.5 (9.2) 36.5a 0.074 0.37
Attention
Alertness (TAP) 13 47.3 (11.5) 10 46.5 (10.4) 57.5a 0.659 0.10
Go-Nogo (TAP) 12 56.8 (32.9) 10 63.5 (24.1) 54.0a 0.710 0.08
Reading
Words (SLRT-II) 12 19.1 (19.3) 10 12.9 (11.7) 55.5a 0.783 0.06
Pseudowords (SLRT-II) 11 24.5 (18.9) 10 19.3 (13.1) 45.0a 0.498 0.15

ZAREKI-R, Neuropsychological Test Battery for Number Processing and Calculation in Children (PR); BASIS-MATH 4-8, Basic Diagnostic in Mathematics for Grades 4-8 (raw score);
WISC, Wechsler Intelligence Scale for Children (IQ score); KFT 4-12+R, Cognitive Abilities Test (T score); BST, Block-Suppression-Test (raw score); TAP, Testbattery for Attentional
Performance (PR); SLRT-II, Salzburg Reading and Orthography Test (PR). aMann–Whitney U Test, bFisher’s Exact Test. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

differences. Effect sizes are reported as Pearson’s correlation
coefficient r and are interpreted as small (r = 0.10), medium
(r = 0.30) or large (r = 0.50).

Brain Imaging
Image Acquisition
MRI data were acquired on a 3T General Electric
Signa Scanner (GE Medical Systems, USA) using an
8-channel head coil. T1-weighted structural images (voxel
size = 0.94 × 0.94 × 1.00 mm3) were acquired with a fast spoiled
gradient echo sequence (3D FSPGR, slice thickness = 1 mm, no
interslice skip, matrix size = 256 × 256, field of view = 240 mm,
flip angle = 20◦, echo time = 3 ms, repetition time = 10 ms).
Participants were carefully instructed and supplied with hearing
protection before entering the scanner. To minimize head
motion, the head was stabilized with padding.

MRI Data Preprocessing
The data were preprocessed using the Computational Anatomy
Toolbox (CAT12, Structural Brain Mapping Group, University
of Jena, Germany), which is an extension to Statistical Parametric
Mapping (SPM 12, Wellcome Trust Centre for Neuroimaging,

University College London, UK) running on Matlab (Release
2012b, The MathWorks Inc., USA).

In a first step, the longitudinal data pair (baseline and
follow-up image) of each subject was registered to the mean
image for each subject by an inverse-consistent realignment,
which also includes a bias correction between the different
time points. The mean image of each subject is then
segmented and the spatial normalization parameters are
estimated with the help of a Dartel Normalization. These
spatial normalization parameters (Dartel deformations) are
then applied to the gray and the white matter segmentations
of the baseline and follow-up image. The white and gray
matter segmented images were smoothed with a Gaussian
kernel of 8 mm FWHM (full width half maximum). As the
last step, the total intracranial volume (TIV) was estimated
for the baseline and follow-up image of each subject (please
see Supplementary Material for the Matlab scripts of the
preprocessing steps).

Quality Control
The CAT12 Toolbox provides image quality measures describing
the properties of the images before the preprocessing. The image
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quality rating (IQR) is a weighted average of the noise contrast
ratio, the inhomogeneity contrast ratio and the resolution of the
input image. The images all reached ratings above 79 at both
measurement time points (baseline range 79–87, follow-up range
81–87). Note that typical scientific (clinical) data is expected
to get good to satisfactory ratings (70–90; Gaser and Dahnke,
2016, see also www.neuro.uni-jena.de/cat/). The groups did not
differ in their IQR at baseline (DD Mdn = 85.0, TD Mdn = 85.3,
U = 46.5, z = −1.15, p = 0.263) or follow-up (DD Mdn = 85.0,
TDMdn = 85.5,U = 48.0, z =−1.05, p = 0.313), and there was no
significant difference in the quality measures between the time
points (baseline Mdn = 85.1, follow-up Mdn = 85.3, z = −0.69,
p = 0.494).

Also, the segmented and normalized gray and white matter
images were visually inspected and the sample was checked for
homogeneity (mean correlation). Based on the visual inspection
and the Mahalanobis distance, which combines a measure of
image quality before (weighted overall image quality) and after
preprocessing (mean correlation), we excluded two DD and one
TD data sets resulting in the final group size of 13 DD and 10 TD.

Statistical Model
For the statistical analyses of the gray and white matter volumes,
two separate flexible factorial models with the factors subject,
group (DD, TD) and time (baseline, follow-up) including TIV
and puberty score as covariates were defined. Statistical results
are shown with a threshold of p < 0.05 family-wise error (FWE)
correction (see Supplementary Material for the design matrix
and the Matlab scripts of the statistical model as well as the
defined contrasts). Anatomical localization of the gray matter
volume results was attained trough the SPM Anatomy Toolbox
v2.0 (Eickhoff et al., 2005, 2007). White matter regions were
labeled according to the JHU (Johns Hopkins University) white-
matter tractography atlas (Hua et al., 2008).

RESULTS

Behavioral Data
The neuropsychological results and the demographic data for all
subjects are summarized in Table 1. All participants scored in
the normal range of IQ (DD IQ = 93–111, TD IQ = 101–125).
However, groups differed in the estimated general IQ at baseline
(WISC-III p < 0.001, r = 0.69) and follow-up (WISC-IV
p < 0.001, r = 0.72). IQ measures are known not to be fully
independent of measures of math ability, and the present sample,
therefore, reflects the cognitive pattern typically observed in DD.

In the attention, working memory, and reading task no
differences between DD and TD children were found (all
p > 0.05).

Numerical Achievement
As expected, numerical abilities, assessed by the Zareki-R at
baseline, differed significantly between the TD and the DD
groups (p < 0.001, r = 0.84). The groups also differed in the
subtest Arithmetic (WISC-II), with the DD subjects scoring
significantly lower than the TD group (p < 0.01, r = 0.55;
Table 1).

At follow-up, adolescents of the DD group still performed
worse in comparison to their peers (Basis-Math p < 0.001,
r = 0.84). In fact, all the subjects identified with DD at baseline
still fulfilled the diagnostic criteria for DD at the follow-up
measurement. Furthermore, they also scored significantly lower
in the curriculum based test Quantity Comparison (KFT 4-12+R
p < 0.001, r = 0.83), the number line task (p < 0.01, r = 0.61)
and the basic arithmetic operations (addition p < 0.05, r = 0.52,
subtraction p < 0.01, r = 0.62; Table 1).

Pearson’s correlations of the whole brain gray and white
matter volume with behavioral measures were calculated for
baseline and follow-up. At the follow-up, graymatter volume was
positively correlated with the Basis-Math (r = 0.64, p < 0.05)
in TD children. However, we found a negative relationship
in TD adolescents between performance in addition and gray
(r = −0.69, both p < 0.05) and white matter volume (r = −0.60,
p < 0.05), respectively. For DD children, no significant
correlations between numerical abilities and volume of the brain
structure were revealed (see Supplementary Material for a
complete table of correlations).

Structural Results
Gray Matter
For the graymatter volume, the flexible factorial analysis revealed
a significant effect of group (Figure 1A, Table 2). DD children
showed decreased gray matter volumes in the bilateral inferior
parietal lobe assigned to the IPS, the bilateral supramarginal
gyri, the left precuneus, the left postcentral gyrus, and the right
paracentral lobule compared to TD children. In the occipital lobe,
differences were found in the left calcarine gyrus/cuneus, the left
middle occipital gyrus (MOG), and the right superior occipital
gyrus (SOG). Decreased gray matter was found in the bilateral
inferior (ITG) and middle temporal gyri (MTG), the left rolandic
operculum, and the bilateral insula over the examined time of
4 years.

The main effect of time and the interaction group by time
were not significant.

White Matter
For the white matter volume, the flexible factorial analysis
revealed a significant effect of the group (Figure 1B, Table 3). DD
children showed reduced white matter volumes in a widespread
set of brain regions including the bilateral CST, the bilateral
superior and ILF, the bilateral IFOF, and the right ATR.
Compared to TD children the DD children further showed
increased white matter volumes in the right CST.

The main effect of time revealed an increase in the left
SLF adjacent to the precentral gyrus over both groups. The
interaction group by time was not significant.

DISCUSSION

Our study aimed to investigate the neural structural development
of children with DD and TD peers using a longitudinal study.
Until now, there have only been a handful of studies investigating
the structural differences between children with and without DD,
and only one study examining changes of regional differences
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FIGURE 1 | Group differences in gray and white matter. Results are shown on a pediatric template (Fonov et al., 2009) with a significance level of p-cluster < 0.05,
FWE corrected. (A) Decreased gray matter volumes in dyscalculics compared to typically developing children over both time points. (B) Decreased white matter
volumes in dyscalculics compared to typically developing children over both time points. Abbreviations: CST, corticospinal tract; IFOF, inferior fronto-occipital
fasciculus; ILF, inferior longitudinal fasciculus; INS, insula; IPS, intraparietal sulcus; ITG, inferior temporal gyrus; MOG, middle occipital gyrus; PCUN, precuneus; SLF,
superior longitudinal fasciculus; SMG, supramarginal gyrus.

in cortical development (Rotzer et al., 2008; Rykhlevskaia
et al., 2009; Ranpura et al., 2013). However, all of these study
results are based on cross-sectional data. To our knowledge,
this is the first study investigating the neural developmental
trajectory using longitudinal data in children with DD. On

the behavioral level, we found that the children of the DD
group performed significantly worse in all the numerical and
arithmetical tasks. This result remained stable over time. All
children that were identified with DD at the beginning of the
study still fulfilled the diagnostic criteria of DD 4 years later.
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TABLE 2 | Gray matter.

Region Cluster size p-corrected MNI coordinates

Z-value x y z

L middle occipital gyrus 106 <0.001 6.04 −28 −75 27
L inferior temporal gyrus 101 <0.001 6.52 −58 −39 −15
L supramarginal gyrus/inferior parietal lobe 96 <0.001 6.18 −58 −40 24
L intraparietal sulcus/inferior parietal lobe 39 0.002 5.61 −32 −52 45
L precuneus 35 0.006 5.41 2 −58 30
R insula 31 0.008 5.35 36 20 4
L calcarine gyrus, cuneus 30 0.022 5.12 0 −82 9
L middle temporal gyrus/inferior parietal lobe 25 0.002 5.61 −56 −62 8
R paracentral lobe/superior parietal lobe 24 0.008 5.35 9 −36 51
R superior parietal lobe/intraparietal sulcus 23 <0.001 6.02 27 −51 54
R intraparietal sulcus/inferior parietal lobe 18 0.013 5.25 48 −50 40
R supramarginal gyrus/inferior parietal lobe 17 0.007 5.39 58 −45 28
L rolandic operculum 17 0.012 5.26 −56 2 14
R superior occipital gyrus 11 0.019 5.15 26 −63 44
R inferior temporal gyrus 9 0.024 5.10 44 −52 −10
R middle temporal gyrus 7 0.020 5.14 52 −9 −15
L postcentral gyrus 6 0.008 5.34 −32 −32 54
R insula 5 0.018 5.16 36 8 8
R middle temporal gyrus 4 0.039 4.98 42 −63 0
L insula 3 0.035 5.01 −33 −24 15
R insula 2 0.032 5.03 40 8 −3
L supramarginal gyrus/inferior parietal lobe 1 0.044 4.95 −58 −22 21

Peak coordinates and details of clusters from the whole brain voxel-based analyses (p < 0.05, FWE corrected).

TABLE 3 | White matter.

Region Cluster size p-corrected MNI coordinates

Z-value x y z

L corticospinal tract 1661 <0.001 >8.00 −28 −21 32
L superior longitudinal fasciculus <0.001 >8.00 −21 −2 36
L superior longitudinal fasciculus <0.001 7.46 −32 −9 28

R superior longitudinal fasciculus 677 <0.001 >8.00 27 −8 34
R superior longitudinal fasciculus <0.001 >8.00 30 −21 32
N/A <0.001 7.41 22 2 36

R superior longitudinal fasciculus 109 <0.001 7.39 34 −40 27
R anterior thalamic radiation 37 <0.001 6.54 22 −44 33
R superior longitudinal fasciculus 27 0.001 5.70 50 −27 −15
R corticospinal tract 25 0.008 5.23 16 −15 56
L inferior fronto-occipital fasciculus 22 0.005 5.34 −24 −84 −6
R inferior fronto-occipital fasciculus 17 0.009 5.20 26 33 4
R inferior longitudinal fasciculus/inferior fronto-occipital fasciculus 15 0.001 5.74 33 −68 9
N/A 9 0.002 5.48 44 20 15
L superior longitudinal fasciculus 2 0.039 4.84 −20 −46 51
L inferior longitudinal fasciculus 2 0.015 5.08 −46 −14 −21
L superior longitudinal fasciculus 1 0.046 4.80 −44 −28 28
N/A 1 0.045 4.81 34 −78 14
L inferior longitudinal fasciculus 1 0.043 4.82 −32 −80 −4
R inferior longitudinal fasciculus 1 0.040 4.84 46 −40 −8

Peak coordinates and details of clusters from the whole brain voxel-based analyses (p < 0.05, FWE corrected).

On the neural level, children with DD showed reduced gray and
white matter volumes in various regions and prominent tracts of
the frontoparietal numerical network. These differences do not
vanish over time, but persist from childhood into adolescence.

The dyscalculics showed reduced gray matter volumes in the
parietal lobes specifically, but also in the occipital, temporal,
and frontal parts of the brain, consistent with the results of
previous studies. Less gray matter volume in the IPL including
the IPS and the SPL have been reported in all studies with

dyscalculic children (Rotzer et al., 2008; Rykhlevskaia et al.,
2009; Ranpura et al., 2013). These regions are known from
functional studies to be the key areas for number processing
and quantity representation (for a meta-analysis see Sokolowski
et al., 2017; Arsalidou et al., 2018). Furthermore, we also found
reduced gray matter volumes in the bilateral supramarginal
gyri, which are thought to play a crucial role in the retrieval
of arithmetical facts (Menon, 2016). Similar to Rykhlevskaia
et al. (2009), our results revealed lower gray matter volumes in
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the MOG/SOG, the cuneus/precuneus, and the temporal gyrus,
although our results include bilateral MTG/ITG. Unlike the
studies conducted before with DD children (Rotzer et al., 2008;
Rykhlevskaia et al., 2009; Ranpura et al., 2013), we found reduced
gray matter volumes in the insula. However, the insula has a
high likelihood to be activated when children solve number
and calculation tasks and have been proposed to play a role
in intrinsic motivation about learning and training (Arsalidou
et al., 2018). Also, our study did not find any volumetric
differences in the parahippocampal areas, which was reported in
Rykhlevskaia et al. (2009).

In terms of white matter, our study revealed reduced white
matter volume in dyscalculics in the bilateral superior and ILF,
the CST, the IFOF, and the ATR. Reduced white matter volumes
were also reported in the same tracts by Rykhlevskaia et al.
(2009), except that they found additionally reduced volumes in
the forceps major and the splenium of the corpus callosum.
Moreover, the CST, the ILF and SLF, and the corona radiata (of
which the ATR is part) have all been associated with numerical
and mathematical processing by numerous studies (Kucian et al.,
2013; for a review see also Matejko and Ansari, 2015). The SLF
connects frontal and parietal regions of the brain, which are
known to be the main areas activated when solving number
and arithmetic related tasks. It has further been proposed that
the ILF is involved in visual processing related to numerical or
mathematical problem solving (van Eimeren et al., 2008; Matejko
and Ansari, 2015).

Children with DD revealed increased volumes in the right
CST. This tract connects the cortex with the brainstem and is
typically associated with motor functions. Research has further
demonstrated that there is a link between finger and number
representation (Noël, 2005; Matejko and Ansari, 2015). As
children with DD often rely on finger counting strategies to
compensate for the deficits in fact retrieval, the increased volume
in the CST might be related to the frequent finger use during
calculation in DD.

However, it is important to note that these observed
structural differences in gray and white matter are related
to underlying microstructural mechanisms of development
and learning. Among the candidate mechanisms explaining
gray and white matter plasticity are morphometric changes
in the neuron (e.g., axon sprouting, dendritic branching,
synaptogenesis, neurogenesis), in fiber organization (e.g., axon
branching, sprouting, axon diameter or the number of axons)
as well as in the myelination (for detailed information see
Zatorre et al., 2012). But also vascular changes (angiogenesis)
or changes in morphology and number of glia and astrocytes
could explain the increase in gray and white matter volume
(Zatorre et al., 2012). Regarding the structural differences in
DD children, one could speculate that DD children show
reduced white and gray matter volumes as the underlying
microstructural process does not take place to the same extent
as in TD peers. This would also be in line with results of
functional and DTI studies reporting decreased activation and
lower FA values in number related areas and tracks, respectively
(Davis et al., 2009; Kucian et al., 2013; for an overview see
Peters and De Smedt, 2018).

Over development, we did not observe a gray matter decrease
or prominent white matter increases. The lack of a gray matter
decrease can be due to the age of our subjects. We examined
children between the ages of 9 and 14. The developmental
trajectory of the gray matter volume follows an inverted
u-shape and depending on the study the peak of gray matter
volume has been reported at age 8 (Mills et al., 2016), age 12
(Groeschel et al., 2010), or between ages 11–14 (Gogtay and
Thompson, 2010). The time point of the peak further varies
depending on the brain region (Giedd et al., 1999) and the
sex and/or pubertal stage, with females reaching gray matter
peaks 1–2 years earlier than males (Gogtay and Thompson,
2010; Mills and Tamnes, 2014). Therefore, it could be the
case that we did not detect developmental changes in the gray
matter, because the children and adolescents we studied are
around one of the reported gray matter peaks. If we look at the
individual trajectories of our study participants, some children
still show a gray matter increase, whilst other children show a
gray matter decrease or almost no change in the gray matter
volume over the 4 years (Figure 2, upper panel). Moreover,
the fact that we controlled for pubertal status and therefore
indirectly for sex might be an additional reason why we do
not find developmental changes. In the white matter volume,
we found a significant increase during development in the left
SLF (MNI x = −40, y = −20, z = 28), located right next to
the reported developmental changes in the study of Giorgio
et al. (2010; MNI x = −42, y = −22, z = 28). However, our
results do not show the prominent white matter changes as
reported in the literature (Giorgio et al., 2010). A possible
explanation is that our study does not look at the correlations
between white matter volume and age. On the other hand, the
individual trajectories of our subjects show a clear increase in
the total white matter volume (Figure 2, lower panel), which
is in line with previous research (Aubert-Broche et al., 2013;
Mills et al., 2016).

The main focus of our study was to find out more about
the developmental trajectories of gray and white matter volumes
in children with DD. We found no significant interactions,
but the group differences in gray and white matter volumes
remained stable during the examined time window. Although
the differences found between DD and TD children are well
in line with the literature (Rotzer et al., 2008; Rykhlevskaia
et al., 2009), and also reflect the known and persistent behavioral
differences (Nelson and Powell, 2018), the developmental
trajectories differ from the results reported by Ranpura et al.
(2013) in such that we did not find an increase in white
matter volume in frontal and parietal areas in TD children
only. Studies in adults find no or very subtle differences
between the subjects with and without DD (Cappelletti and
Price, 2013; Moreau et al., 2019). Based on these results, one
could argue that the volumetric differences should diminish
over development. However, Moreau et al. (2019) used a rather
lenient criterion for DD, which could also be a reason why
volumetric differences were not found. Also, there is an age gap
of 10–15 years between our results and the adult studies, in
which developmental changes can still take place. Our results,
therefore, point towards stable and persistent differences in the
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FIGURE 2 | Spaghetti plots of whole brain volumes. Gray matter (top panel)
and white matter volumes (lower panel) are plotted against age for children
with dyscalculia (left, in blue) and typically developing children (right, in gray).
The red line depicts the mean of the group.

dyscalculics gray and white matter volumes from childhood
to adolescence. More research, specifically longitudinal studies
over a longer time interval, are urgently needed to enable us
to conclude the developmental trajectory of the brain structure
in DD. However, findings from the present study suggest that
development proceeds in a similar manner between DD and
TD children.

To better understanding the present findings, it is important
that we advance our knowledge about the typical developmental
trajectory of the brain structure and its spontaneous variations
in numerical cognition. Furthermore, the effects of schooling
and specific interventions on brain structure need to be explored
more profoundly. This knowledge should build the basis for the
investigation and a better understanding of the deviant and/or
delayed development as reported in children with DD. In a next
step, it would be interesting to investigate if the abnormalities in
gray and white matter are a result of a developmental delay or
a specific marker of DD. This open question could be tackled
by comparing the structural brain development of DD children
with TD children that perform on a similar numerical level.
Furthermore, the investigation of structural changes caused by

a specific intervention could help clarify the questions about the
neurobiological cause of dyscalculia.

Limitations
Our results are important for the field since this is to our
knowledge the first study investigating the developmental
trajectory of structural white and gray matter volumes using
longitudinal data in DD. However, several limitations should
be considered when interpreting the results of our study.
First of all, due to braces and movement artifacts, the
drop-out rates in longitudinal MRI studies with children and
adolescents are high. Our study includes only small sample
sizes and should for this reason be interpreted with caution.
However, the data included had good data quality ratings,
as assessed by objective criteria (Gaser and Dahnke, 2016).
Moreover, we replicated the main findings of previous studies
examining volumetric gray and white matter differences in
DD children (Rotzer et al., 2008; Rykhlevskaia et al., 2009;
Ranpura et al., 2013), which were also performed with larger
sample sizes (e.g., Rykhlevskaia et al., 2009). Therefore, we
are confident that despite the small sample sizes our results
contribute valuable knowledge towards an understanding of the
developmental trajectory of brain structure in children with and
without DD.

Second, the rather large age range within our sample (at
each time point) may attenuate the developmental effects. For
methodological reasons, a narrower age range would be much
better to examine general developmental effects and detect group
differences over time. A closer look at our data revealed that
the individual developmental trajectories showed similar trends
irrespective of the age at the entry of the study. However, future
longitudinal studies should investigate limited age ranges to
control better for the effect of schooling and the rapid changes
in development.

A third restricting point of our study is the significant
difference in IQ between the TD and the DD group.
Developmental imaging studies have shown that there is a
positive relationship between intellectual abilities and white/gray
matter volume, especially in the dorsolateral prefrontal cortex,
parietal lobe, the anterior cingulate cortex and in temporal
and occipital regions (Wilke et al., 2003; Tamnes et al., 2011;
Brancucci, 2012). For this reason, we ran our analyses with IQ as
an additional covariate showing that the main results remained
unchanged (see Supplementary Material).

Last, it should be noted that some authors argue that
the sensitivity to examine the white matter using voxel-based
morphometry is limited, as white matter areas are characterized
by large homogenous regions with only subtle changes in
intensity (Kurth et al., 2015).

Conclusion
In conclusion, the present study reveals for the first time the
gray and white matter trajectories of the dyscalculic brain. The
findings confirm the structural differences as reported in earlier
research and support the notion that DD is characterized by
persistent structural and behavioral abnormalities. There is an
urgent need for longitudinal studies examining the typical and
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atypical neural development, but also the effect of interventions
and therapy on numerical and mathematical abilities. Advancing
the knowledge about the developmental course of DD and the
effects of schooling, therapy, and intervention would enable us to
support affected children and adolescents more effectively.
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Self-regulation is a multidimensional construct that is positively related to academic
achievement, such as successful mathematics performance. However, this relation
of self-regulation and mathematics performance has mainly been investigated in
Western countries with similar cultural contexts, although self-regulation is assumed
to be context-sensitive. Therefore, the present study investigated the relation of self-
regulation and mathematics performance across two different countries (Germany
vs. Iran) in college students. The relation of self-regulation and mathematics
performance was expected to be weaker in students of math-related fields, such as
Engineering/Informatics, as they are assumed to need less self-regulation to solve
the mathematics problems than students of less math-related fields, such as Human
Sciences. In total, 122 undergraduate students (German = 60; Iranian = 62) of Human
Sciences or Engineering/Informatics participated in this study. We measured self-
regulation with the Brief Self-Control Scale (Tangney et al., 2004) and mathematics
performance with a complex multiplication test. Results showed that self-regulation
did not predict multiplication performance in German or Iranian students, in general.
However, when the field of study was considered, self-regulation predicted multiplication
performance in the subgroup of German and Iranian students studying Human Sciences
within each country. We conclude that cultural context does not seem to play a dominant
role in moderating the relation between self-regulation and math performance, however,
field of study and more generally familiarity with math may be an important factor to
consider in single or cross-cultural studies.

Keywords: self-regulation, mathematics, cross-culture, field of study, multiplication

INTRODUCTION

Self-regulation is defined as the ability to control one’s thoughts, behaviors, or emotions, and
enables individuals to adapt their behaviors in accordance with the demands of a situation (e.g.,
Baumeister and Vohs, 2007; Blair and Ursache, 2011). It includes abilities such as maintaining
attention and inhibiting irrelevant information in learning situations, which provides an important
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foundation for successful academic outcomes (e.g., McClelland
and Cameron, 2011). A large body of research connects
self-regulation with different academic achievements, such as
successful mathematics performance (e.g., Zimmerman, 1990;
Bull and Scerif, 2001; Camahalan, 2006; Fuchs et al., 2006; Blair
and Razza, 2007; Labuhn et al., 2010; McClelland et al., 2010;
Otts, 2010; von Suchodoletz and Gunzenhauser, 2013; Gawrilow
et al., 2014). For instance, college students with better self-
regulation abilities measured by self-reports have been shown
to respond more rapidly in mathematics tasks, which could be
because of their enhanced ability to ignore distracting thoughts
and concentrate on the task (Nemati et al., 2017). In contrast,
students without adequate self-regulatory skills are more likely to
experience difficulties in mathematics performance. For example,
students who struggle with self-regulation, such as students
with attention deficit/hyperactivity disorder (ADHD) have more
difficulty with mathematics at school (e.g., Frazier et al., 2007;
Zentall, 2007).

Previous studies have indicated that self-regulation
contributes to mathematical performance by suppressing
distracting thoughts or information whilst mathematics
problems are solved (e.g., Gawrilow et al., 2011; Nemati et al.,
2017), and through different cognitive components of self-
regulation such as inhibitory control (e.g., Hofmann et al., 2011;
McClelland and Cameron, 2011). For instance, solving complex
multiplication problems requires ignoring distracting thoughts
to remain focused on the task and selecting the correct solutions
while suppressing alternative ones (e.g., neighboring solutions
in the multiplication table) that can interfere with the retrieval
of a desired solution (e.g., “42” can interfere with retrieving the
answer to “6 × 8”; cf. Domahs et al., 2006, 2007).

However, the relation of self-regulation and mathematics
performance might vary across different contexts. Recent
studies demonstrated that self-regulation is a context-specific
construct (e.g., Keller et al., 2004; von Suchodoletz et al., 2015;
Lamm et al., 2018), suggesting that context can influence self-
regulation displayed in different situations. For instance, the
different parenting styles of European American and Puerto
Rican mothers resulted in different patterns of self-regulation
development during childhood (Carlson and Harwood, 2003):
in the European American context, mothers expected their
children to alter their behavior to match their individual goals,
while Puerto Rican mothers asked their children to adjust their
behavior in accordance to the society.

These findings are in line with the theoretical framework
of Markus and Kitayama (1991), suggesting independent and
interdependent contexts, which can influence self-regulation.
Independent contexts focus on autonomy and individual goals,
whereas interdependent contexts are associated with being in
harmony with the group and the community goals. Accordingly,
self-regulation processes in an independent context are directed
toward influencing the environment and other people in line
with an individual’s goals, while in interdependent contexts
they focus on adjusting one’s behavior to the expectations of
others to maintain fit with the group (Trommsdorff, 2009). For
instance, the results of a recent cross-cultural study (Lamm
et al., 2018) revealed that the development of self-regulation

and self-regulatory strategies used by children can be different
in independent and interdependent contexts. They showed that
while German mothers emphasized autonomy and individual
goals of their children, Cameroonian mothers expected their
children to behave in harmony with society. Thus, German
children’s self-regulation was motivated by a different goal (i.e.,
autonomy in Germany vs. parents’ expectations and group
harmony in Cameroon) and for the same reason, German
children might have used different self-regulatory strategies than
their Cameroonian peers to do the self-regulation task.

Previous studies have showed that independent contexts
are a core characteristic of Central European and North
American countries, while interdependent contexts prevail in
Asian and Latin American countries (e.g., Higgins et al.,
2008; Trommsdorff, 2009). In the same line, individualism and
autonomy are valued in Germany, while collectivism and group
harmony are respected in Iran (Hofstede, 1980). Therefore,
Germany and Iran provide two different contexts with distinct
environmental characteristics that can affect self-regulation
and its correlates.

However, although self-regulation has been frequently shown
to have a context-sensitive nature (Trommsdorff, 2009; see also
the review by Jaramillo et al., 2017), less is known about the
relation of self-regulation and academic achievement, such as
mathematics performance, across different countries and the
existing results in children are rather scarce and heterogeneous.
On the one hand, results of a cross-cultural study in preschool
children demonstrated that the associations between different
components of self-regulation and mathematics performance
were largely similar between Chinese and North American
children (Lan et al., 2011). They discussed that their finding
might be due to the similarities in the associations between
different cognitive components of self-regulation in distinct
contexts. On the other hand, results of a longitudinal study
investigating the application of self-regulatory strategies in
educational settings, showed that many of the self-regulatory
strategies used by Italian students did not predict the academic
achievement as they did in American students (Nota et al., 2004).
Researchers examined the self-regulatory strategies adopted by
Italian students during the final year of high school and their
academic achievement in pursuing further education at the
University and compared their results with previous studies in
American students. In the same vein, but in contrast to previous
studies in Western countries, results of another study on Chinese
students revealed no relationship between self-regulation and
mathematics achievement in Chinese high school students
(Rao et al., 2000). The authors suggested that self-regulatory
strategies motivated by Chinese attitudes toward academic
achievement and parents’ expectations could not predict
mathematics performance in Chinese high school students.
Therefore, self-regulatory strategies adopted by students
might not be equally important in predicting mathematics
achievements across different countries. Altogether, it seems that
independent and interdependent contexts can potentially impact
the relation of self-regulation and mathematics performance.
Furthermore, differences in self-regulatory skills across different
countries can persist in adolescence (e.g., Ellefson et al., 2017),
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suggesting that context may influence self-regulation and its
subsequent relationship with future academic, in particular,
mathematics performance. Therefore, the aim of the present
study was to examine whether the relation of self-regulation and
mathematics performance varies between German and Iranian
college students.

Additionally, field of study was considered as another context
beside the country that could influence the relationship between
self-regulation and mathematics performance in college students.
It has been shown that individuals need more self-regulation
when doing difficult tasks (e.g., Kanfer and Ackerman, 1989;
Steele-Johnson et al., 2000) and solving mathematics problems
might be less difficult for students of math-related fields, as
compared to students of less math-related fields. Accordingly,
context of field of study might affect the relationship between
self-regulation and mathematics performance: the relationship
between self-regulation and mathematics performance was
expected to be weaker in students of math-related fields, such
as Engineering/Informatics, as they are assumed to need less
self-regulation to solve the mathematics problems than students
of less math-related fields, such as Human Sciences. Therefore,
the context-effect of field of study was taken into account in
the present study as it can influence the students’ mathematics
performance and hence alter its relationship with self-regulation.

To sum up, in the present study, we hypothesized that the
relation of self-regulation and mathematics performance differs
in German and Iranian college students as independent and
interdependent contexts can differentially affect self-regulation
and its correlates. Furthermore, as the second hypothesis, we
expected that the relation of self-regulation and mathematics
performance is weaker in students of math-related fields, such
as Engineering/Informatics, than in students of less math-related
fields, such as Human Sciences, because less self-regulation is
needed for doing relatively less difficult tasks.

MATERIALS AND METHODS

Participants
Participants were 60 German1 (41 females, age: M = 21.15 years,
SD = 1.15) and 62 Iranian (28 females, age: M = 20.53 years,
SD = 1.18) undergraduate students. The German participants
were recruited from the University of Tübingen in south
Germany and Iranian participants were from the University
of Tehran, Iran. All participants were native speakers with no
immigration backgrounds. The entire data of the participants
were analyzed anonymized (i.e., using personal codes instead
of names). Detailed characteristics of both German and Iranian
students are depicted in Table 1.

Measures
Background Characteristics
Background characteristics, consisting of field of study, math
score in the University entrance exam, math self-concept,

1This study used part of the data of the German participants that was published by
Nemati et al. (2017).

expectancy of success, and demographics of the participants
(gender, age, nationality, citizenship, mother tongue, language
spoken at home) were collected with a background questionnaire.
The questions of the background questionnaire, except the
questions of math self-concept, were developed by the authors.
Math self-concept was assessed by four questions (e.g., “I am
good at mathematics.”) based on the SDQ (Self Description
Questionnaire) III (Marsh, 1992; German translation:
Schwanzer et al., 2005).

Self-Regulation
Participants’ self-regulation was assessed by using self-reports.
Participants were asked to fill out the Brief Self-Control
Scale (BSCS; Tangney et al., 2004; German translation:
Bertrams and Dickhäuser, 2009). The German translation
of the BSCS (Bertrams and Dickhäuser, 2009) was used in
Germany. The original English version of the BSCS was
translated into Farsi by two bilingual Ph.D. students from
the Psychology field and one bilingual Ph.D. student from
outside the field using a well-established method of forward-
and backward-translations, following the guidelines from the
World Health Organization, 2015).

The BSCS consists of 13 items targeting thought control,
impulsive response control, action persistence, and action
monitoring (e.g., “I wish I had more self-discipline.”). The
response format was a 5-point Likert-type scale ranging from
1 (completely true) to 5 (completely untrue). Nine items were
reverse-coded and the total score was the sum of the responses
of all items, with higher sum scores representing more self-
regulation. In the present study, the questionnaire showed
sufficient internal consistency (in German students: Cronbach’s
α = 0.84; in Iranian students: Cronbach’s α = 0.70).

Mathematics Performance
Mathematics performance was assessed by using the complex
multiplication test, consisting of 48 complex multiplication
problems. The complex multiplication problems entailed one-
digit times two-digit problems with two-digit solutions (e.g.,
4 × 19 = 76; for further details, see Nemati et al., 2017).
The complex multiplication problems and their solutions were
presented in a computerized verification task, programmed with
the PsychoPy software (Peirce, 2009). Half of the presented
solutions were correct, and the other half were incorrect. The
task started with eight practice trials. All trials were presented
in the center of the screen in a fixed order. The problems
and their solutions were presented at the same time after the
500 ms fixation point and remained on the screen until a
response was given by the participant, or 6000 ms had passed.
Participants responded by pressing the green or red keys (L and
A on a German keyboard) for correct and incorrect solutions,
respectively. The response keys were counterbalanced across
participants. Except for practice trials, all trials were presented
without feedback.

Procedure
All German participants were recruited through e-mail to
students and staff of the University of Tübingen and in-person
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TABLE 1 | Descriptive and test statistics of background characteristics and study measurements.

Variable German Iranian Diff

n M (SD) K-Sa n M (SD) K-Sa P

Age (years) 60 21.15 (1.15) <0.001 62 20.53 (1.18) <0.001 0.005b

Gender, female 41 28 0.011c

Field of study

Human Sciences 40 32

Engineering/Informatics 20 30

Math self-concept 60 2.72 (0.80) <0.001 62 2.58 (1.25) <0.001 0.738b

Expectancy of success 60 2.88 (0.64) <0.001 62 3.26 (0.92) <0.001 0.001b

Self-regulation 60 40.92 (8.53) 200 62 42.56 (6.40) 200 0.229d

Multiplication performance

ER 60 0.18 (0.10) 0.077 62 0.19 (0.10) 0.001 <0.001b

RT(s) 60 3.05 (0.54) 200 62 2.59 (0.59) 0.073 <0.001d

aKolmogorov–Smirnov p-values, bMann–Whitney U Test,cFisher’s Exact Test, dt-test. Bold p-values depict p < 0.05.

contact. All Iranian participants were recruited through flyers
and in-person contact in the University of Tehran. The study on
German students of Human Sciences was part of a larger project
consisting of two testing sessions, each lasting about 2 h, aimed at
examining the effects of self-regulatory training on the academic
performance of young adults. For their participation, German
students of Human Sciences received either course credits or 8
Euro per hour. German students of Engineering/Informatics as
well as all the Iranian participants were offered chocolates for
their approximately 10 min participation in the study consisting
of filling out the background and BSCS questionnaires plus
answering the complex multiplication test. First, all participants
received detailed information about the study and later gave
their written informed consent to participate in the study.
The testing session took place in a laboratory in Germany or
in an empty classroom of the University of Tehran in Iran.
For the variables reported here, each participant was tested
individually in a single session. First, all participants were
asked to fill out the computerized version of the questionnaires
consisting of background questionnaire and BSCS items, which
lasted roughly 5 min. Subsequently, they were asked to perform
the computerized complex multiplication task, which lasted
about 5 min. Participants received a detailed written instruction
emphasizing the importance of both speed and accuracy of the
responses in the complex multiplication task.

Analysis
Data Preparation
In the present study, better performance in the complex
multiplication test was indicated by shorter response times
(RTs) and lower error rates (ERs). Multiplication RTs of the
participants were defined by the time intervals between the
presentation of the multiplication problems on the screen and
the responses of the participants, measured by pressing the
keys of the computer keyboard. Only RTs of correct responses
were considered in the analyses. Moreover, RTs shorter than
200 ms were excluded, and subsequently RTs which were
more or less than ± 3 SD around the individual mean

were excluded continually until no more outliers remained
(see: Nuerk et al., 2001, and follow-up papers for the same
method). Accordingly, about 0.1% of the RTs of the German
students and 0.2% of the RTs of the Iranian students were
excluded. Furthermore, in Germany, two multiplication trials,
which were planned to presented with presented with correct
solutions, were mistakenly presented with incorrect solutions.
Therefore, to keep the match of trials with correct and incorrect
solutions, those two trials plus their two equivalent ones
with incorrect solutions were excluded from the data of the
German students.

Multiplication ERs of the participants were defined as the
proportion of incorrect responses. ERs are briefly reported in
the descriptive statistics (Table 1) but not considered for the
further statistical analyses because the performance of German
and Iranian students indicated a ceiling effect, as they made
few errors in the complex multiplication task (see Table 1
and Appendix A). Finding a ceiling effect in multiplication
performance is not surprising as highly educated adults often
perform at above-average levels in mathematics tasks (e.g.,
Siegler and Opfer, 2003; Karolis et al., 2011). Moreover, there
were five missing answers in BSCS of two German participants
that were replaced by the mean of BSCS answers of the
same participants.

Relation of Self-Regulation and Multiplication
Performance in German and Iranian Students
The first hypothesis of the present research was that the
relation of self-regulation and mathematics performance differs
in Germany and Iran. First, to test the effect of self-regulation
on multiplication performance in German and Iranian students,
a separate linear regression analysis was conducted for each
subsample (i.e., German students, Iranian students) with self-
regulation as predictor and mean multiplication RTs as outcome
variable. In the second step, to compare the relation of self-
regulation and mathematics performance between German and
Iranian students, the linear regression analysis was calculated
with self-regulation, country (dummy coded), and the interaction

Frontiers in Psychology | www.frontiersin.org 4 October 2020 | Volume 11 | Article 489371169

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-489371 October 25, 2020 Time: 13:56 # 5

Nemati et al. Self-Regulation and Mathematics Performance

between self-regulation and country as predictors and mean
multiplication RTs as the outcome variable.

Effect of Field of Study on the Relation of
Self-Regulation and Multiplication Performance
The second hypothesis of the present research was that the
relation of self-regulation and mathematics performance is
weaker in students of Engineering/Informatics. In the first step,
four separate linear regression analyses were conducted for each
subsample field of study (i.e., German and Iranian students
of Human Sciences and Engineering/Informatics) with self-
regulation as predictor and mean multiplication RTs as outcome
variable. In the second step, to compare the relation of self-
regulation and mathematics performance in students of Human
Sciences and Engineering/Informatics, the interaction between
self-regulation and field of study was tested in a multiple linear
regression analysis with self-regulation, field of study (dummy
coded), and the interaction between self-regulation and field of
study as predictors and mean multiplication RTs as the outcome
variable. All continuous variables were standardized and the level
of significance was set to α < 0.05 for all analyses.

RESULTS

Descriptive Statistics
Descriptive and test statistics for the background characteristics
and the study measurements of German and Iranian students
are presented in Table 12. In case of non-normally distributed
variables (Kolmogorov–Smirnov test p-values < 0.05), Mann–
Whitney U test, and for normally distributed variables t-test and
Fisher’s Exact Test were used.

German and Iranian students did differ in most of the
background characteristics, such as age, U = 2.40, p = 0.005,
gender, p = 0.011, Fisher’s Exact Test, and expectancy of success,
U = 1.25, p = 0.001. Although German and Iranian students
significantly differed in age and gender (see Table 1), our result
was not explained neither by age nor by gender differences
between the two countries (see Appendix D).

Additionally, German and Iranian students did differ in
their multiplication performance: German students were slower,
t(120) = −4.46, p < 0.001, d = 0.81, and Iranian students made
more errors, U = 2.62, p < 0.001. However, German and Iranian
students did not differ in math self-concept, U = 1.92, p = 0.738,
and self-regulation, t(120) = 1.21, p = 0.229, d = 0.22.

Relation of Self-Regulation and
Multiplication RT in German and Iranian
Students
Regression analysis revealed that self-regulation did not
predict multiplication RT neither in German (b = −0.25,
t = −1.10, p = 0.051; see Table 2) nor in Iranian students

2Descriptive statistics for each subsample field of study (i.e., German and Iranian
students of Human Sciences and Engineering\Informatics) and the correlation
matrix in German and Iranian students are presented in Appendices B, C,
respectively for the interested reader.

(b = −0.09, t = −0.72, p = 0.473; see Table 2). Moreover,
the non-significant interaction indicates that the relation
of self-regulation and mathematics performance did not
significantly differ between German and Iranian students
(b = −0.09, t = −0.53, p = 0.599; see Table 2). The data met the
assumptions of collinearity (self-regulation, tolerance = 0.36,
VIF = 2.75; country, tolerance = 0.99, VIF = 1.01; self-
regulation × country, tolerance = 0.37, VIF = 2.73), independent
errors (Durbin–Watson value = 1.70), and non-zero variances
(self-regulation, variance = 56.80; country, variance = 0.25;
self-regulation × country, variance = 0.63) and contained no
outliers (Std. Residual Min = −2.57, Std. Residual Max = 2.71).

The Effect of Field of Study on the
Relation of Self-Regulation and
Multiplication RT
As shown in Table 3 and Figure 1, there is a significant negative
relationship between self-regulation and multiplication RT in
German [b = −0.35, t = −2.26, p = 0.029; Model 1: R2 = 0.12,
F(1,38) = 5.12, p = 0.029] and Iranian [b = −0.29, t = −2.23,
p = 0.034; Model 3: R2 = 0.14, F(1,30) = 4.96, p = 0.034] students
of Human Sciences, but not in German (b = −0.07, t = −0.34,
p = 0.736) and Iranian (b = 0.12, t = 0.80, p = 0.428) students of
Engineering/Informatics (see Table 3). Similar decreasing trends
in Human Sciences showed in Figure 1, indicating the higher the
self-regulation the better the students of Human Sciences within
each countries performed in the complex multiplication task.

Moreover, the non-significant interaction indicates that the
relation of self-regulation and mathematics performance did not
significantly differ between students of Human Sciences and
Engineering/Informatics (b = 021, t = 131, p = 0.194; Table 3).
The data met the assumptions of collinearity (self-regulation,
tolerance = 0.63, VIF = 1.60; field of study, tolerance = 0.99,
VIF = 1.00; self-regulation × field of study, tolerance = 0.63,
VIF = 1.60), independent errors (Durbin–Watson value = 1.83),
and non-zero variances (self-regulation, variance = 56.80; field
of study, variance = 0.24; self-regulation × field of study,
variance = 0.37) and contained no outliers (Std. Residual
Min = −2.49, Std. Residual Max = 2.35).

TABLE 2 | Regression analysis predicting multiplication RT from self-regulation in
German and Iranian students.

Predictor b SE(B) t p

Model 1

Self-regulation in Germansa
−0.25 0.13 −1.10 0.051

Model 2

Self-regulation in Iraniansb
−0.09 0.13 −0.72 0.473

Model 3

Constant −0.36 0.12 −3.03 0.003

Self-regulation −0.11 0.14 −0.76 0.446

Country 0.72 0.17 4.27 <0.001

Self-regulation × country −0.09 0.17 −0.53 0.599

an = 60, bn = 62. All variables are standardized and country was dummy coded.
Bold p-values depict p < 0.05.
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TABLE 3 | Regression analysis predicting multiplication RT from self-regulation in German and Iranian students of Human Sciences and Engineering/Informatics.

Predictor b SE(B) t p

Model 1

Self-regulation of German students of Human Sciencesa
−0.35 0.15 −2.26 0.029

Model 2

Self-regulation of German students of Engineering/Informaticsb
−0.07 0.22 −0.34 0.736

Model 3

Self-regulation of Iranian students of Human Sciencesc
−0.29 0.13 −2.23 0.034

Model 4

Self-regulation of Iranian students of Engineering/Informaticsd 0.12 0.13 0.80 0.428

Model 5

Constant 0.38 0.10 3.75 <0.001

Self-regulation −0.30 0.10 −3.01 0.003

Field of study −0.93 0.16 −5.79 <0.001

Self-regulation × field of study 0.21 0.16 1.31 0.194

an = 40, bn = 20, cn = 34, dn = 30. All variables are standardized and country was dummy coded. Bold p-values depict p < 0.05.

FIGURE 1 | Linear regression trend lines testing the relation of self-regulation as predictor and multiplication RT as the dependent variable in four different
subsamples: German students of Human Sciences, German students of Engineering/Informatics, Iranian students of Human Sciences, and Iranian students of
Engineering/Informatics.

DISCUSSION

The present study investigated whether the relation of self-
regulation and mathematics performance differs between
students in two different contexts, namely independent and
interdependent cultures (i.e., Germany vs. Iran). As the
second hypothesis, we expected that the relation of self-
regulation and mathematics performance was weaker in
students of Engineering/Informatics as compared to students
of Human Sciences. Contradictory to our first hypothesis,
the relation of self-regulation and mathematics performance
did not differ between German and Iranian college students:
self-regulation did not predict multiplication RT neither in
German nor Iranian students. Moreover, inconsistent with
our second hypothesis, the results showed that the relation of
self-regulation and mathematics performance did not differ
significantly between students studying less math-related fields
(i.e., Human Sciences) and students of math-related fields
(i.e., Engineering/Informatics) in the whole sample. However,

partially in line with our second hypothesis, when the field
of study was considered within the countries, self-regulation
predicted multiplication RT in those students studying Human
Sciences but not in students of Engineering/Informatics within
each country. Thus, although the main effect of field of study was
not observed regardless of country, the relation of self-regulation
and mathematics performance seemed to be descriptively
weaker in students of Engineering/Informatics than Human
Sciences within each country. This might be because the complex
multiplication test within each country seemed to be less difficult
for the students of Engineering/Informatics compared to the
students of Human Sciences, therefore, these students might
need less self-regulation to solve the problems. The complex
multiplication test seemed to be less difficult for the students of
Engineering/Informatics as they performed better (i.e., they had
shorter RT and less ER) than students of Human Sciences in
general (see Appendix B). However, this effect was significantly
different in Iranians but only descriptively different in Germans
(see Appendix B). Moreover, expectancy of success in math was
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higher in students of Engineering/Informatics than students of
Human Sciences (see Appendix B) within each country and
significantly correlated with shorter RTs (see Appendix C),
suggesting that students of Engineering/Informatics believed in
their self-ability to do well in mathematics. Thus, students of
Engineering/Informatics within each country might have used
less self-regulation while doing complex multiplication test as the
test was less difficult for them. This is consistent with previous
studies revealing that individuals need more self-regulation
while solving challenging tasks (e.g., Ackerman, 1989; Kanfer
and Ackerman, 1989; Steele-Johnson et al., 2000). For instance,
it has been shown that task difficulty can moderate the effect
of self-regulation on performance (Steele-Johnson et al., 2000).
The authors found that when the cognitive load of the task is
high, individuals have to decide how to allocate their limited
attentional resources to the task, therefore, they are in need of
more self-regulation.

Taken together, the results showed that the relation of self-
regulation and mathematics performance did not differ between
German and Iranian college students. Furthermore, we observed
this similarity not only in the context of country but also in the
context of field of study, which is further supported by the fact
that when only the students of Human Sciences are compared, the
association between self-regulation and mathematics is similar in
both countries (Appendix E). This finding is in line with a cross-
cultural study by Lan et al. (2011), described earlier, that assessed
the cognitive components of self-regulation, such as inhibition
and attentional control, and examined their associations with
simple and complex mathematics performances in Chinese and
North American children. Their results demonstrated that the
relation of different cognitive aspects of self-regulation and both
simple and complex mathematics performance are similar in
Chinese and North American children. The authors argued
that the neurobiological and genetic factors which determine
the strength of associations between various components of
self-regulation may be similar in distinct contexts, therefore,
their subsequent contribution to academic performance is also
more likely to be consistent across countries. However, Chinese
children outperformed North American children in some of the
self-regulation tasks such as inhibition and attentional control.
The authors ascribed these performance differences in self-
regulation tasks to variances in specific cultural practices in
educational settings during kindergarten and primary school.
For instance, it has been shown that Asian children receive
more intensive practice in controlling their attention and
behavior in kindergarten or the classroom than North American
children (e.g., Chen et al., 1998; Kwon, 2004; Lan et al., 2009).
Therefore, it seems that although different aspects of self-
regulation may be learned and used differently in interdependent
and independent countries, their interrelations with each other
and their association with mathematics performance remains
similar. This interpretation is also in line with the idea that
both independent and interdependent systems exist and are
essential in each country, but there might be differences among
the countries in the strength of their application (e.g., Harwood
et al., 2001; Leyendecker et al., 2002; Jing-Schmidt, 2014). In the
same vein, both independent and interdependent self-regulation

processes may exist in Germany and Iran to different degrees, but
this may not significantly influence their level of contribution to
the mathematics performance.

However, our finding is in contrast with previous studies,
connecting the academic achievement gap between students
from different countries to the effect of cultural context on self-
regulation. For instance, in a longitudinal study by Nota et al.
(2004) which was explained earlier, many of the self-regulatory
strategies that predicted academic achievement in American
students did not directly predict academic achievement in Italian
students. However, compared to the study by Nota et al.
(2004), the effect of various self-regulatory strategies was not
investigated in the present study and contexts as well as measures
of self-regulation and academic achievement differ from their
study. Another important reason why, unlike our study, they
found differences in the relation of self-regulation and academic
achievement across two countries, might be the effect of samples:
Italian students were high achievers who are more likely to self-
regulate than typical populations of students and in this sense
differed from the American students or from German and Iranian
students in our research.

Altogether, cultural context did not seem to play a dominant
role in moderating the relation between self-regulation and math
performance in the present study. However, with regard to the
confounding effect of field of study within each country on
the predictive validity of self-regulation, careful sample selection
considering field of study of students is recommended for
future research examining the relation of self-regulation and
mathematics performance.

Limitations
The current research has some limitations worth noting.
First, there might be structural and cultural variations in
educational systems such as different grading systems or
teachers’ expectations, as well as academic motivation of
students within and between nations that may differentially
influence self-regulation and its relation with academic
performance. Therefore, we view this study only as a
starting point for investigating the impact of independent
and interdependent cultures on the relation of self-regulation
and math performance. Future studies conducted in other
independent or interdependent cultures should clarify whether
the observed results are really due to this cultural difference or
to other educational or cultural differences, which are particular
to the specific countries studied here. Second, German students
of Human Sciences were offered different reimbursement than
other participants since the study in which they participated,
was part of a larger project consisting of 4-h experiment. Hence,
we acknowledge that different incentives in German students
of Human Sciences in comparison to other participants might
generate participation bias and account partially for the findings
of the current study. Third, self-regulation consists of several
components such as cognitive, behavioral, and emotional aspects
that are differentially related to mathematics performance and
their effects should be investigated individually in the future
research. Forth limitation is the small sample size of the present
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study that may preclude a definitive statement for the present
study. The last, but not least, important limitation is construct
validity in the present study, as our research measurement for
assessing self-regulation was designed and validated for Western
countries. The problem is that in self-reports, participants of one
cultural context may interpret the words differently and compare
themselves with different standards than those in another cultural
context (e.g., Heine et al., 2002). In our study, the internal
consistency of the self-regulation self-report in Iranian students
is sufficient for the present study and in line with previously
reported findings in Eastern countries such as China (Cronbach’s
α = 0.75; Unger et al., 2016), however, it should be also noted
that it is relatively low, which can be due to either a reliability
or homogeneity problem. In the future, international researchers
should strive for a transcultural self-regulation scale, which
can be used in Western and non-Western cultures with high
reliability and validity.

CONCLUSION

In conclusion, our findings show that the relation of self-
regulation and mathematics performance is similar in German
and Iranian college students. In addition, the effect of field
of study on the relation of self-regulation and mathematics
performance was highlighted in the present study. Self-regulation
did not predict mathematics performance in German and Iranian
students, however, when the effect of field of study was taken into
account, self-regulation predicted mathematics performance in
students of less math-related fields of study within each country.
It is important to note that while the single analysis produced
differential results, a direct comparison of the different fields
of studies was non-significant – therefore, we have interpreted
these results with great care. Nevertheless, since the relation
between self-regulation and mathematics performance within
each country, was significant only for less math-related fields of
study, we suggest that the possible confounding effect of field

of study should be considered in studies when the relation of
self-regulation and mathematics performance is examined.
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APPENDIX A

Ceiling/Floor Effect for Multiplication ER

Sample n M (SD) K-Sa Skewness Kurtosis

German students 60 0.18 (0.10) 0.077 0.94 1.53

Iranian students 62 0.19 (0.10) 0.001 1.16 1.36

aKolmogorov–Smirnov p-values.

APPENDIX B

Descriptive and Test Statistics of Background Characteristics and Study Measurements in German and Iranian Students of
Human Sciences and Engineering/Informatics

TABLE B1 | Analysis of variance of country and field of study on ER.

Source df MS F p Partial η2

Country 1 0.14 18.64 <0.001 0.14

Field of study 1 0.13 18.52 <0.001 0.14

Country × field of study 1 0.13 17.76 <0.001 0.13

Error 118 0.01

MS, mean squares. Bold p-values depict p < 0.05.

TABLE B2 | Analysis of variance of country and field of study on RT.

Source df MS F p Partial η2

Country 1 5.61 23.01 <0.001 0.16

Field of study 1 6.47 26.60 <0.001 0.18

Country × field of study 1 2.71 11.12 0.001 0.09

Error 118 0.24

MS, mean squares. Bold p-values depict p < 0.05.

TABLE B3 | Descriptive of German students of Human Sciences and Engineering/Informatics.

Variable Human Sciences Engineering/Informatics Diff

M (SD) K-Sa M (SD) K-Sa p

Age (years) 20.95 (1.08) 0.001 21.55 (1.19) <0.001 0.039b

Gender, female (%) 82 40 0.002c

Math self-concept 2.75 (0.84) <0.001 2.65 (0.74) <0.001 0.568b

Expectancy of success 2.78 (0.73) <0.001 3.10 (0.31) <0.001 0.052b

Self-regulation 41.43 (8.74) 0.200 39.90 (8.20) 0.200 0.518d

Multiplication performance

ER 0.19 (0.11) 0.028 0.18 (0.08) 0.200 0.742b

RT(s) 3.10 (0.56) 0.200 2.93 (0.48) 0.200 0.259d

aKolmogorov–Smirnov p-values, bMann–Whitney U test,cFisher’s Exact Test, dt-test. Bold p-values depict p < 0.05.
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TABLE B4 | Descriptive of Iranian students of Human Sciences and Engineering/Informatics.

Variable Human Sciences Engineering/Informatics Diff

M (SD) K-Sa M (SD) K-Sa p

Age (years) 20.09 (1.20) <0.001 21.00 (0.98) 0.004 0.001b

Gender, female (%) 50 40 0.456c

Math self-concept 1.91 (1.28) <0.001 3.03 (0.70) <0.001 <0.001b

Expectancy of success 2.88 (1.01) <0.001 3.67 (0.37) <0.001 <0.001b

Self-regulation 42.69 (6.57) 0.200 42.43 (6.33) 0.200 0.877d

Multiplication performance

ER 0.18 (0.09) 0.151 0.05 (0.04) <0.001 <0.001b

RT(s) 2.97 (0.47) 0.007 2.18 (0.42) 0.200 <0.001b

aKolmogorov–Smirnov p-values, bMann–Whitney U test,CFisher’s Exact Test, dt-test. Bold p-values depict p < 0.05.

APPENDIX C

Correlation Matrix in German and Iranian Students

TABLE C1 | Correlations between background variables, self-regulation, and multiplication RT in German students.

Variable 1 2 3 4 5 6

1. Age –

2. Gender 0.29* –

3. Math self-concept −0.21 0.20 –

4. Expectancy of success −0.21 0.24 0.43* –

5. Self-regulation −0.14 −0.26* −0.05 0.07 –

6. Multiplication RT(s) 0.01 −0.18 −0.11 −0.28* −0.25 –

n = 60. *Correlation is significant at the 0.05 level (2-tailed).

TABLE C2 | Correlations between background variables, self-regulation, and multiplication RT in Iranian students.

Variable 1 2 3 4 5 6

1. Age –

2. Gender 0.22 –

3. Math self-concept 0.29* 0.14 –

4. Expectancy of success 0.13 0.01 0.34* –

5. Self-regulation 0.12 0.10 0.13 −0.17 –

6. Multiplication RT(s) −0.11 −0.03 −0.61* −0.58* −0.09 –

n = 62. *Correlation is significant at the 0.05 level (2-tailed).
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APPENDIX D

Linear Model of Age and Gender as Predictors of Multiplication RT

TABLE D1 | Linear model of predictors of multiplication RT.

Predictor b SE(B) t p

Constant −0.00 0.09 −0.04 0.964

Self-regulation −0.19 0.09 −2.16 0.032

Age 0.04 0.09 0.41 0.684

Self-regulation × age −0.08 0.09 −0.90 0.372

N = 122. All variables are standardized. R2 = 0.05, F(3,118) = 2.05, p = 0.111. Bold p-values depict p < 0.05.

TABLE D2 | Linear model of predictors of multiplication RT.

Predictor b SE(B) t p

Constant −0.40 0.12 −3.23 0.002

Age −0.10 0.12 −0.86 0.389

Country 0.78 0.17 4.43 0.000

Age × country 0.11 0.18 0.63 0.527

N = 122. All variables are standardized and country was dummy coded. R2 = 0.15, F(3,118) = 6.81, p < 0.001. Bold p-values depict p < 0.05.

TABLE D3 | Linear model of predictors of multiplication RT.

Predictor b SE(B) t p

Constant 0.17 0.12 1.48 0.142

Self-regulation −0.28 0.12 −2.39 0.019

Gender −0.39 0.18 −2.18 0.031

Self-regulation × gender 0.14 0.18 0.81 0.419

N = 122. All variables are standardized and Gender was dummy coded. R2 = 0.08, F(3,118) = 3.61, p = 0.015.

APPENDIX E

Linear Model of Self-Regulation as the Predictors of Multiplication RT in Students of Human Sciences

TABLE E1 | Linear model of predictors of multiplication RT in students of Human Sciences.

Predictor b SE(B) t p

Constant 0.29 0.15 2.01 0.048

Self-regulation −0.33 0.17 −1.98 0.051

Country 0.17 0.19 0.87 0.389

Self-regulation × country 0.06 0.20 0.29 0.773

n = 72. All variables are standardized. R2 = 0.14, F(3,68) = 3.75, p = 0.015. Bold p-values depict p < 0.05.
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Early numeracy is a robust predictor of later mathematical abilities. So far, early
numeracy has typically been presented as a unitary or two-factorial construct.
Nevertheless, there is recent evidence suggesting that it may also be reflected by
more basic numerical competences. However, the structure and stability of such a
multifactorial model of early numeracy over time has not been investigated yet. In
the present study, we used data from a large, longitudinal sample (N = 1292) in the
United States with assessments of math ability in prekindergarten and kindergarten
to evaluate both the factorial structure of early numeracy and its stability over time.
Confirmatory factor analysis identified four distinct basic numerical competences
making up early numeracy in prekindergarten: patterning/geometry, number sense,
arithmetic, and data analysis/statistics. Stability as tested by means of measurement
invariance indicated configural invariance of these four factors from prekindergarten to
kindergarten. This reflected that early numeracy in kindergarten was made up by the
same four basic numerical competences as in prekindergarten and thus seemed rather
stable over the course of preschool. These findings may not only have implications
for research on numerical cognition but particularly for diagnostic processes or the
development of interventions in educational practice.

Keywords: early numeracy, basic numerical competences, mathematical abilities, structure, stability, predictor

INTRODUCTION

Basic numerical competences acquired before school-entry are important predictors for later
mathematical and educational achievement (e.g., Parsons and Bynner, 2005; Duncan et al., 2007;
Jordan et al., 2009, 2010). These competences are often summarized under the broad construct
early numeracy (e.g., Lembke and Foegen, 2009; Aunio and Niemivirta, 2010). Although it has
been suggested that the construct of early numeracy is more accurately represented by multiple
distinct basic numerical competences (Dowker, 2008), very few studies have examined the specific
structure of basic numerical competences making up early numeracy prior to school entry.
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Moreover, previous longitudinal studies have typically
investigated whether and—if so—which basic numerical
competences predict later mathematical achievement
operationalized in terms of scores of (standardized) math
tests or sometimes math grades (e.g., Parsons and Bynner,
2005; Jordan et al., 2010). As such, they do not describe the
development of basic numerical competences themselves, but
how they predict other, usually more complex arithmetical and
mathematical abilities. In turn, little is known about the stability
of basic numerical competences that make up early numeracy
and the ways in which they develop over time. Hence, this
study aims to evaluate the specific structure of early numeracy
by specifying its underlying basic numerical competences and
their stability across the transition from preschool (age 5) to
kindergarten (age 6).

In the following, we will first give an overview of uni- and
multi-dimensional conceptualizations of early numeracy and its
dimensionality. We then review previous findings on the stability
of numeracy performance and basic numerical competences.

From a Uni- to a Multi-Dimensional
Perspective on Early Numeracy
Previous research on cognitive development has often considered
early numeracy as a unidimensional skill. Accordingly, it
is subsumed under a single parameter score that reflects
performance over a broad range of tasks, covering primarily
numerical (e.g., counting, number knowledge, basic calculations;
e.g., Jordan et al., 2007, 2009, 2010; Kroesbergen et al.,
2009) but also more visual-spatial processes (e.g., recognition
of shapes or patterns, geometry; e.g., Jordan et al., 2006;
Anders et al., 2012; Polignano and Hojnoski, 2012). However,
such a unidimensional conceptualization of early numeracy
that averages out contributions of specific basic numerical
competences can only provide a rather general measure of
early numeracy but not reflect its underlying structure of
basic numerical competences adequately. Indeed, Dowker (2008)
suggested that children in the preschool years are already
capable of performing numerical tasks that require distinct basic
competences, suggesting numeracy might be multidimensional
even in early childhood prior to formal schooling.

Practically speaking, children develop numerical competences
in distinct domains that often correspond to the way that
mathematics is taught to them. Content analysis of elementary
mathematics textbooks from kindergarten through sixth grade
has documented that since the 1960s, mathematics instruction
has expanded considerably, in particular in the topics covered
(e.g., operations, geometry, patterns, etc.), as well as in the
introduction of advanced topics at increasingly earlier grades
(Baker et al., 2010). In particular, math education usually
differentiates math competences on a conceptual level following
content strands (National Council of Teachers of Mathematics,
1989, 2000). These include children’s understanding of (i)
properties of numbers, as well as arithmetic operations (e.g.,
addition, multiplication) and their application to real-world
situations, (ii) operating with measurement units like money,
time, etc., (iii) geometry from shapes to transformations,

(iv) data analysis and statistics as reflected in collecting,
organizing, reading, and representing data, and (v) recognition
of patterns and functions. These groupings of content areas
within mathematics education suggest variation in the types of
mathematical competences that children acquire and indicate
the potential value of examining variation in distinct domains
of mathematical competences when drawing conclusions about
achievement in elementary grades.

Previous research following a multidimensional perspective
has identified different basic numerical competences to make up
the construct of early numeracy. Mostly, two-factorial models
have been suggested differentiating, for instance, relational
abilities and counting (e.g., Aunio et al., 2004), symbolic and
non-symbolic numerical abilities (e.g., Kolkman et al., 2013), or
procedural and conceptual abilities (e.g., Ribner et al., 2018).
However, these models still reflect rather broad descriptions
of early numeracy and few studies have examined further and
more specific differentiations that might be more aligned with
curricular approaches (e.g., Cirino, 2011). For instance, one
such study on the structure of early numeracy comes from an
analysis of large-scale assessment data from more than 1,700
5- to 6-year-old children in the Netherlands. In this study,
Hirsch et al. (2018) categorized items from an early numeracy
test according to the distinct basic numerical competences
theoretically underlying the ability to solve each item. The
resulting multifactorial models were tested against one-factor
and two-factor models; using confirmatory factor analysis, the
authors provided evidence for a five-factor structure of early
numeracy at the end of kindergarten discerning the factors
patterning, seriation, counting, non-symbolic comparison, and
symbolic number knowledge. Additionally, these factors turned
out to reliably predict later math performance in a curricular test
in grade six. In particular, the authors found a unique association
between non-symbolic comparison, seriation, counting, and
symbolic number knowledge, and later mathematical skills, but no
unique association for patterning.

Hirsch et al. (2018) also discussed that the basic numerical
competences underlying early numeracy may depend on the
content and range of topics addressed in the respective (large-
scale assessment) tests. Consequently, studies considering other
data sets based on different tests proposed different models
to represent the multifactorial structure of early numeracy. In
particular, Purpura and Lonigan (2013) considered data from
a preschool assessment that addressed several basic numerical
(e.g., counting forward/backward, symbolic and non-symbolic
magnitude comparisons, etc.) but not geometric abilities.
They found evidence for three highly correlated, yet distinct
factors of early numeracy which they termed numbering (e.g.,
counting procedures, subitizing, and estimation), relational (e.g.,
ordinality, number comparison), and (arithmetic) operational
(e.g., basic addition/subtraction problems) abilities reflecting the
structure of early numeracy (see also Purpura and Lonigan, 2015).

This three-factor model was recently replicated and expanded
based on data from an assessment of early numeracy that
covered a broader range of tasks. In particular, Milburn
et al. (2019) observed a four-factor model consisting of the
factors measurement, geometry, patterning, and numeracy—with
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the latter conceptualized as a second-order factor that was
further differentiated into numbering, relations, and operations
as proposed by Purpura and Lonigan (2013). Another four-
factor model of early numeracy in kindergarten children was
reported by Hellstrand et al. (2020) who differentiated the factors
of symbolic and non-symbolic number knowledge, understanding
mathematical relations, counting, and basic arithmetic (see also
Aunio and Räsänen, 2016). Thus, universal characteristics of
early numeracy may be most likely derived by integrating results
across different tests and different samples.

Longitudinal Stability of Children’s
Numerical Competences
Related to the question of the structure of early numeracy,
findings regarding the stability of early numeracy or—more
specifically—basic numerical competences underlying early
numeracy in children’s development are also limited. In fact—and
in part due to the rapid development of numerical competences
in early childhood—there is relatively little work in which the
same measures were obtained repeatedly in a longitudinal design.

It is clear from the literature that overall (early) numeracy
seems highly stable throughout early childhood and beyond
(e.g., Bailey et al., 2014; Schmitt et al., 2017). However, in
these studies, (early) numeracy was usually assessed by broad
(standardized) math tests yielding a single-parameter score that
subsumed performance on different numerical tasks. This may
be problematic considering the multi-dimensional structure of
(early) numeracy (e.g., Hirsch et al., 2018). As such, additional
research is needed to better understand the stability of specific
basic numerical competences underlying early numeracy and
their structure over time. Previous longitudinal research on
basic numerical competences has often been limited to very
specific competences (e.g., non-symbolic magnitude comparison
reflecting the approximate number system, ANS, e.g., Purpura
and Simms, 2018) or measures that consist of very few items
to describe a broad competence (e.g., counting and cardinality,
e.g., van Marle et al., 2014; Purpura et al., 2017). However,
the stability of the structure of basic numerical competences
underlying early numeracy has been rarely evaluated so far.
Even though Hellstrand et al. (2020) as well as Purpura and
Lonigan (2013) were able to replicate their models in different age
groups (e.g., in younger and older preschool children, Purpura
and Lonigan, 2013), longitudinal (i.e., within-person) stability
of a multifactorial structure of early numeracy has not yet been
evaluated so far and thus remains unclear.

Generally, broader measures of numeracy of pre- and primary
school children seem to be rather stable over time, as observed
over periods of several months (e.g., Libertus et al., 2013; Chu
et al., 2016; Nuutila et al., 2018) or even years (e.g., Aunola
et al., 2004; Bailey et al., 2014; Schmitt et al., 2017). For instance,
Aunola et al. (2004) obtained numeracy using a curriculum-based
test six times over a period of 3 years and found scores to be
highly interrelated. Moreover, Bailey et al. (2014) demonstrated
that numeracy as assessed by standardized tests was highly stable
across both short- (from first to fourth grade of primary school)
and long-term periods (from first grade up to the age of 15 years).

Using a state-trait model, the authors observed that a high degree
of variance in numerical development over time is attributable to
trait—rather than state—characteristics. Similarly, Jordan et al.
(2007) measured children’s number sense (a composite score of
counting, number knowledge, estimation abilities, etc.) at several
time points between kindergarten and 1st grade and found it
to increase slightly but constantly (see also Jordan et al., 2006).
Moreover, the predictive power of number sense measures for
later mathematical achievement seemed to be stable throughout
primary school (Jordan et al., 2010).

Additionally, previous studies also indicate that the stability
of very specific numerical competences is high even in
preschool children. For non-symbolic magnitude comparison
(as a measure of ANS) some studies reported remarkably
high test-retest correlations (e.g., Libertus et al., 2013; Toll
et al., 2015; Chu et al., 2016; Purpura and Simms, 2018).
For instance, Purpura and Simms (2018) measured ANS twice
within 6 months of preschool and observed rather high stability,
similar to results for symbolic and non-symbolic magnitude
comparison and arithmetic abilities in primary school children
(e.g., Göbel et al., 2014).

The Present Study
In sum, previous research has highlighted that early numeracy
is multifactorial in that it is constituted by distinct basic
numerical competences. However, studies explicitly investigating
the structure of early numeracy are scarce. At the same time,
evidence on the longitudinal (i.e., within-person) stability of
basic numerical competences making up early numeracy mainly
stems from studies which obtained either particularly broad and
general or very specific measures of basic numerical competences
so far. However, we are not aware of any study evaluating the
longitudinal stability of a specific structure of basic numerical
competences reflecting early numeracy within the same sample
of children over time.

This is of particular interest because in early years of education
it is likely that children’s numerical development is dynamic
as the numerical concepts become gradually more complex.
As such, those basic numerical competences which constitute
early numeracy might change. On the other hand, it is also
well possible that early numeracy is a rather stable construct as
its components reflect very basic building blocks of children’s
numerical competences reflected in curricular content strands
(i.e., number sense and operations; measurement; geometry; data
analysis and statistics; and patterning). Therefore, the aims of
the present study were to investigate (i) the structure of early
numeracy and (ii) to evaluate the stability of this structure over
time in preschool children.

To pursue these aims, we relied on data from the
Family Life Project (FLP), a large population-based prospective
longitudinal study of children and families in predominantly
low-income, non-urban communities in the United States. In
addition to numerous aspects of child and family functioning,
the FLP dataset contains data from the standardized math
assessment developed for the Early Childhood Longitudinal
Study-Kindergarten Cohort of 1998 (ECLS-K). Given that prior
research and practice in math education indicated the need
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for a detailed a priori differentiation of numerical-mathematical
competences (e.g., Aunio et al., 2006), we considered a
confirmatory approach as particularly valuable to analyze the
structure of early numeracy. Moreover, we tested whether this
structure is stable across time by evaluating its validity to account
for children’s performance on the same test 1 year later.

MATERIALS AND METHODS

Participants
The original sample that made up the Family Life Project
from which data are drawn was recruited when children were
2 months of age and comprised N = 1,292 children recruited
to be representative of two of the four major geographical
areas of high child rural poverty in the United States. Complex
sampling procedures were used to recruit representative samples
of non-urban areas of Pennsylvania and North Carolina, with
intentional over sampling of low-income families and families
of African American ethnicity. Five years later at PreK, over
70% of children (n = 911) participated in assessment, and in
kindergarten over 80% of children (n = 1056) participated. We
anticipate some of the difference between the two testing sessions
was that not all children were enrolled in center-based care
for PreK and were therefore more difficult to access whereas
in kindergarten almost all children were enrolled in a school.
Seventy percent of families had an average income of less than
200% of the poverty line. Additionally, 40% of mothers had a
high school education (12 years of schooling) or less, while only
16% had at least 4 years of postsecondary education. A little more
than half of the sample is White (57%) with the remainder of
African American descent. Further details are available elsewhere
(Vernon-Feagans et al., 2013).

Procedures
When children were approximately 60 months of age
(M = 60.16 months, SD = 3.29) children were visited at
their preschools by a trained data collector (or at home if they
were not enrolled in center- or school-based care) to obtain
the measure of early numeracy. In the spring of the child’s
kindergarten year (Mage = 71.40 months, SD = 3.36), they were
again visited at their school by a trained data collector to re-assess
early numeracy using the same test.

Measure of Math Ability
The ECLS-K math assessment was used to test children’s early
numeracy. The ECLS-K assessment uses a routing system to
minimize administration time and most accurately assess their
ability, and is a reliable and valid measure whose psychometric
properties have been described elsewhere (Rock and Pollack,
2002). The same assessment was used in both pre-kindergarten
(PreK) and kindergarten. All participants receive a series of
14 routing items. If participants scored 8 or lower on routing
items, they are directed to the “low” block; if higher than 8,
an additional 4 routing items were administered. If participants
correctly respond to between 9 and 11 items, they were routed
to the “medium” block; if 12 or higher, they were routed to the

“high” block. The low block had 18 items plus the 14 routing
items, the medium block had 25 items plus the 18 routing items,
and the high block had 32 items plus the 18 routing items.
Children were routed to high, medium, or low blocks on the basis
of the number of items they got correct on the routing section of
the assessment (all other things being equal). In particular, there
was no adjustment for any child characteristics (e.g., age and sex)
such that any child had equal probability of being routed to any
block. In PreK, 93.2% of participants (N = 849) were routed to
the “low” block, 5.5% of participants (N = 50) were routed to the
“medium” block, and 1.3% of participants (N = 12) were routed to
the “high” block. In kindergarten, 51.8% of participants (N = 537)
were routed to the “low” block in PreK, 30.2% of participants
(N = 319) were routed to the “medium” block, and 18.9% of
participants (N = 200) were routed to the “high” block.

Analytic Strategy
We conducted confirmatory factor analysis (CFA) to analyze
the multifactorial structure of basic numerical competences
underlying early numeracy. In particular, we specified and
evaluated a one-factor model representing early numeracy as
a unitary construct and compared it to a multifactorial (six-
factor) model in which items from the ECLS-K were classified
based on the basic numerical competences necessary to solve
each item. The categories for item coding (six basic numerical
competences) were derived from the psychometric report of
the ECLS-K (Rock and Pollack, 2002). This classification is
mainly based on curriculum standards and reflects the way in
which the ECLS-K was designed. Therefore, it takes the specific
characteristics of this test into account while it also shows
structural and conceptual similarities to previous multifactorial
models of early numeracy. Moreover, it covers distinct basic
numerical competences that have already been investigated in
previous early numeracy research (for an overview see Table 1
in Hirsch et al., 2018). To evaluate how well the data fit the
theorized models, we considered the cutoff criteria presented
by Hu and Bentler (1999): A well-fitting model was expected
to have a Comparative Fit Index (CFI) > 0.95, and Root Mean
Squared Error of Approximation (RMSEA) < 0.08. Models
were estimated in Mplus (Muthén and Muthén, 2017) and used
the Weighted Least Squared Means and Variances (WLSMV)
estimator. Prior research suggested WLSMV is appropriate for
ordinal variables, and is less biased than are other estimators
(Li, 2016). In a second step, measurement invariance was tested
to establish whether the same constructs could be established
1 year later in kindergarten to evaluate the stability of early
numeracy. Adequate model fit was determined by use of a chi-
square difference test and whether CFI changed more than 0.002
(Meade et al., 2008).

Participants were included in analyses if they took part in the
PreK wave of data collection and were routed to the “low” block
(N = 849; 93.2%). Missing data at the re-test in Kindergarten
was accounted for using Full Information Maximum Likelihood
estimation. This approach takes into account the covariance
matrix for all available data on the independent variables to
estimate parameters and standard errors and provides more
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TABLE 1 | Descriptive analyses for items from ECLS-K math assessment.

Pre-K Kindergarten

Item Item type N % correct SD Factor loading N % correct SD Factor loading

17 Arithmetic 846 0.31 0.46 0.57 830 0.51 0.50 0.85

26 Arithmetic 846 0.42 0.49 0.51 440 0.65 0.48 0.36

11 Arithmetic 846 0.16 0.37 0.57 440 0.49 0.50 0.34

25 Arithmetic 846 0.18 0.39 0.47 440 0.20 0.40 0.29

31 Data Analysis/statistics 846 0.57 0.50 0.92 440 0.83 0.37 0.90

30 Data Analysis/statistics 846 0.48 0.50 0.85 440 0.75 0.43 0.93

18 Number sense 846 0.76 0.43 0.89 440 0.96 0.20 0.63

19 Number sense 846 0.63 0.48 0.90 440 0.91 0.29 0.56

5 Number sense 846 0.43 0.50 0.80 830 0.87 0.33 0.76

20 Number sense 846 0.20 0.40 0.80 440 0.51 0.50 0.45

4 Number sense 846 0.28 0.45 0.68 830 0.76 0.43 0.54

6 Number sense 846 0.11 0.32 0.60 830 0.61 0.49 0.78

16 Number sense 846 0.86 0.35 0.63 440 0.96 0.19 0.36

7 Number sense 846 0.11 0.31 0.56 830 0.61 0.49 0.85

15 Number sense 846 0.94 0.23 0.61 440 0.98 0.14 0.27

9 Number sense 846 0.14 0.35 0.47 830 0.62 0.49 0.75

32 Number sense 846 0.37 0.48 0.25 440 0.40 0.49 0.17

29 Patterning 846 0.49 0.50 0.57 440 0.69 0.46 0.32

2 Patterning 846 0.73 0.45 0.51 830 0.91 0.29 0.59

8 Patterning 846 0.58 0.49 0.57 830 0.82 0.39 0.64

1 Patterning 846 0.53 0.50 0.47 830 0.76 0.43 0.61

22 Patterning 846 0.44 0.50 0.41 440 0.61 0.49 0.36

3 Patterning 846 0.41 0.49 0.30 830 0.65 0.48 0.56

24 Patterning 846 0.38 0.48 0.30 440 0.57 0.50 0.24

10 Excluded 846 0.01 0.12 N/A 830 0.17 0.38 N/A

12 Excluded 846 0.15 0.36 N/A 830 0.31 0.46 N/A

13 Excluded 846 0.05 0.23 N/A 830 0.22 0.41 N/A

14 Excluded 846 0.02 0.14 N/A 830 0.14 0.34 N/A

21 Excluded 846 0.90 0.30 N/A 440 0.96 0.20 N/A

23 Excluded 846 0.33 0.47 N/A 440 0.52 0.50 N/A

27 Excluded 846 0.04 0.20 N/A 440 0.07 0.25 N/A

28 Excluded 846 0.11 0.32 N/A 440 0.18 0.39 N/A

accurate estimates of regression coefficients than do listwise
deletion or mean replacement (Enders, 2011).

RESULTS

Descriptive Statistics
Descriptive statistics for items from the ECLS-K math assessment
are shown in Table 1. Correlations between all variables are
shown in Table 2.

Confirmatory Factor Analysis of
Pre-kindergarten Basic Numerical
Competences
In line with theoretical considerations and the psychometric
report from the ECLS-K assessment items were coded as assessing
one of six basic numerical competences: Patterning (6 items),
Number Sense (12 items), Arithmetic (7 items), Geometry (3

items), Measurement (2 items), and Data Analysis/Statistics (2
items). Table 3 provides a more detailed description of the items.
In our first model, we were interested to test whether there
was sufficient distinction of separate constructs to justify the
operationalization of six separate numerical competencies. To do
so, we first tested whether all items loaded onto a single factor.
The resulting model did not fit the data well, χ2 = 1021.04,
p < 0.001; RMSEA = 0.038, 90% CI [0.035, 0.041]; CFI = 0.904.
We then tested a second model in which the data were fit to the
six purported constructs. The resulting model also did not fit the
data at our desired levels, χ2 = 761.62, p < 0.001; RMSEA = 0.029,
90% CI [0.025, 0.032]; CFI = 0.946; however, the model fit was
improved significantly over the single-factor model, χ2 = 261.61,
p < 0.001. The model was further specified: Items that did not
load onto any of the constructs at a level of p = 0.10 or lower, as
well as items without sufficient variance in responses (i.e., items
which were correctly/incorrectly solved by almost all children)
were dropped (8 items in total). Additionally, modification
indices suggested items in the measurement (1 item) and
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TABLE 2 | Correlations among latent variables.

1 2 3 4 5 6 7 8

1 Patterning PreK –

2 Number Sense PreK 0.70*** –

3 Arithmetic PreK 0.89*** 0.66*** –

4 Data Analysis/Statistics PreK 0.65*** 0.57*** 0.71*** –

5 Patterning K 0.86*** 0.57*** 0.70*** 0.58*** –

6 Number Sense K 0.69*** 0.77*** 0.63*** 0.53*** 0.71*** –

7 Arithmetic K 0.71*** 0.54*** 0.84*** 0.57*** 0.82*** 0.74*** –

8 Data Analysis/Statistics K 0.13 0.18** 0.32** 0.25*** 0.42*** 0.39*** 0.48*** –

***p < 0.001, **p < 0.01.

geometry (2 items) categories loaded onto the patterning category,
and one item from the number sense category loaded onto the
arithmetic category. These modifications seemed theoretically
justified. In particular, structural similarities were found in the
geometry and patterning items as both required visuospatial
recognition of shapes and patterns and the measurement item
was presented in a similar way as patterning and geometry items
(i.e., children had to select the correct solution from a set of
four alternatives). The number sense item was conceptualized
as assessing counting, but it required addition of three sets of
objects which indeed seemed related to arithmetic. We therefore
decided to re-specify the model accordingly. The resulting
4-factor model fit the data well, χ2 = 474.26, p < 0.001;
RMSEA = 0.033, 90% CI [0.029, 0.038], CFI = 0.962. Because
the updated model had items missing, model fit could not
be formally compared to the 6-factor model using a log-
likelihood difference test because models were no longer
nested; however, model fit for the 4-factor model was adequate
according to conventional norms whereas it was not for
the 6-factor model. Fit indices for all models are provided in
Table 4.

The 4-factor model included factors for patterning and
geometry, number sense, arithmetic, as well as data analysis
and statistics (see Figure 1 for illustrating example items, see
Table 1 for item properties). Factor loadings for each factor
are presented in Table 1. The variances of latent variables were
significant (patterning, σ2 = 0.23, p < 0.001; number sense,
σ2 = 0.43, p < 0.001; arithmetic, σ2 = 0.26, p < 0.001; data
analysis/statistics, σ2 = 0.71, p < 0.001). The four latent variables
were correlated with one another, and correlations among latent
variables are presented in Table 2. Children showed the highest
levels of understanding patterning and geometry (M = 53.82%
correct) and data analysis/statistics (M = 52.60% correct), then
number sense (M = 46.76% correct), and finally arithmetic
(M = 29.19% correct).

Stability of Basic Numerical
Competences Underlying Early
Numeracy
To test the validity and stability of the numerical competences
established in PreK, a series of models were run to test
longitudinal measurement invariance of numerical competences
in kindergarten. We first tested configural invariance to examine

whether the items that represented the identified constructs
in PreK continued to do so in kindergarten. A confirmatory
model in which the same four factors (i.e., patterning/geometry,
number sense, arithmetic, and data analysis/statistics) were
simultaneously estimated in PreK and kindergarten. The model
fit the data well, χ2 = 1531.184, p < 0.0001; RMSEA = 0.023, 90%
CI [0.021, 0.026], CFI = 0.950, such that configural invariance
could be concluded indicating that the same items represented
the identified constructs in PreK and kindergarten.

Metric invariance was then tested to examine the relative
contribution of the items within factors, in that the coefficients
of items in each factor were set to be equal across administration
(that is, in PreK and kindergarten). Model fit was acceptable,
χ2 = 1935.951, p < 0.0001; RMSEA = 0.031, 90% CI [0.029,
0.033], CFI = 0.910; however, the chi-square test of model
difference was significant (χ2 = 204.604, p < 0.001) and
CFI changed markedly more than 0.002, indicating metric
invariance was not held.

DISCUSSION

Prior empirical work has suggested that early numeracy might
be better represented as a multidimensional construct made up
of distinct basic numerical competences than a single unitary
construct (e.g., Dowker, 2008). However, multidimensional
conceptualizations are rare. Additionally, evidence on the
longitudinal (i.e., within-person) stability of a specific structure
of basic numerical abilities underlying early numeracy over time
is limited. The present study aimed at complementing prior
research by evaluating the longitudinal stability of the structure
of basic numerical competences in a large longitudinal data set of
young children in the United States. Primary aims were (i) to test
the structure of basic numerical competences constituting early
numeracy in 5-year-old children and (ii) to evaluate the stability
of this structure over 1 year from PreK through kindergarten. In
the following, we will discuss these aspects in turn.

Structure of Basic Numerical
Competences Underlying Early
Numeracy
Early numeracy has been typically considered a unitary or two-
factorial construct in previous studies (e.g., Aunio et al., 2004;
Jordan et al., 2010). However, there is evidence also using
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TABLE 3 | Item descriptions.

Item Item type Item description

11 Arithmetic (Object-based) additiona

17 Arithmetic (Object-based) addition

25 Arithmetic (Object-based) addition

26 Arithmetic (Object-based) subtraction

30 Data Analysis/statistics Graph readinga

31 Data Analysis/statistics Graph reading

4 Number sense Counting forward

5 Number sense Identify a number (symbolic number knowledge)

6 Number sense Identify a number (symbolic number knowledge)

7 Number sense Identify the nth object (ordinality)

9 Number sense Complete a number series (seriation/number order)

15 Number sense Count a set

16 Number sense Numeral recognitiona

18 Number sense Identify a written number (symbolic number knowledge)

19 Number sense Identify a written number (symbolic number knowledge)

20 Number sense Identify a written number (symbolic number knowledge)

32 Number sense Estimation (non-symbolic)

1 Patterning Match a pattern of objects/shapes to a different pattern from a seta

2 Patterning Match a pattern of objects/shapes to a different pattern from a set

3 Patterning Match a pattern of objects/shapes to a different pattern from a set

8 Patterning Choose a shorter/larger object from a set (geometry/length concept)

22 Patterning Match a pattern of objects/shapes to a different pattern from a set

24 Patterning Match a geometric shape to a different shape from a set (geometry)

29 Patterning Measure length of an object (measurement)

12 Excluded (arithmetic) (Object-based) subtraction

13 Excluded (arithmetic) (Object-based) addition

27 Excluded (arithmetic) (Object-based) addition

28 Excluded (arithmetic) (Object-based) subtraction

21 Excluded (geometry) Recognize a geometric shape

14 Excluded (measurement) Operate with money (measurement)

10 Excluded (number sense) Complete a number series (seriation/number order)

23 Excluded (patterning) Match a pattern of objects/shapes to a different pattern from a set

asee Figure 1 for a generic example.

large-scale assessment data that early numeracy in preschool
years may be constituted by more than two basic numerical
competences (Purpura and Lonigan, 2013; Hirsch et al., 2018;
Milburn et al., 2019; Hellstrand et al., 2020). In these studies,
items from large-scale assessments of early numeracy were
used to specify and evaluate multifactorial models by means
of confirmatory factor analysis. However, these models differed
in content and structure. In particular, Purpura and Lonigan
(2013) established a three-factor model of early numeracy with
factors for numbering, relation, and operation competences.
Milburn et al. (2019) extended this model by adding another
three distinct factors for measurement, geometry, and patterning
competences. Another four-factor model with symbolic/non-
symbolic number knowledge, numerical relations, basic arithmetic,
and counting competences was recently presented by Hellstrand
et al. (2020), and Hirsch et al. (2018) substantiated a
five-factor model reflecting patterning, seriation, non-symbolic
comparison, counting, and symbolic number knowledge abilities.
In contrast, the present study using the ECLS-K math assessment
identified early numeracy as constituted by four basic numerical

TABLE 4 | Model fit information.

Model χ2 df CFI RMSEA [90%CI]

One factor 1021.04 464 0.904 0.038 [0.035, 0.041]

Six factor 761.62 449 0.946 0.029 [0.025, 0.032]

Four factor 474.3 246 0.962 0.033 [0.029, 0.038]

competences reflected in a confirmatory factor analytic approach.
The one- and six-factor confirmatory models evaluated did not
yield adequate model fit; rather, our results provided evidence
for four basic numerical competences underlying early numeracy
as assessed by the ECLS-K math assessment: (i) patterning and
geometry, (ii) number sense, (iii) arithmetic, as well as (iv) data
analysis and statistics.

Comparing our results with those of previous studies
revealed that the basic numerical competences specified in the
different models were quite similar indeed. Most obviously,
we also found a factor for basic arithmetic operations similar
to Purpura and Lonigan (2013), Milburn et al. (2019), and
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FIGURE 1 | Generic example items for (A) arithmetic, (B) patterning/geometry, (C) number sense, and (D) data analysis/statistics. Instructions were read out by the
investigators while the items were shown to the children on a separate sheet in an open-bound spiral notebook.

Hellstrand et al. (2020), and a factor for patterning (which here
also included geometry and measurement) as did Hirsch et al.
(2018) and Milburn et al. (2019). Although several factors of
models reported in other studies did not directly correspond to
those observed in the present study, a more detailed comparison
of item contents from this and previous studies revealed (Table 3)
that they seem to be in part subsumed in our number sense factor.
In particular, number sense was mainly assessed by symbolic
number knowledge and counting items and therefore largely
overlaps with the numbering factor in Purpura and Lonigan
(2013) and Milburn et al. (2019). Additionally, it comprised a
few items on seriation, ordinality, and estimation which overlaps
with content of the relations factor in the models of Purpura and

Lonigan (2013) and Milburn et al. (2019), or the relations and
symbolic/non-symbolic number knowledge factors in the model
of Hellstrand et al. (2020). Furthermore, our number sense
factor may reflect a conjunction of four factors of the model by
Hirsch et al. (2018), namely counting, seriation, symbolic number
knowledge, and non-symbolic comparison.

Despite these significant commonalities, our model of early
numeracy differed in at least three notable aspects from
previously identified multifactorial models. First, as already
indicated above, number sense described a rather broad factor
compared to more specific numerical competences the other
studies specified. However, this may be due to the fact that the
ECLS-K math assessment was explicitly designed to measure
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number sense broadly, which made it difficult to identify more
specific competences based on the number sense items as too
few items were available. For instance, we might have further
specified a specific factor for seriation, but only one item actually
addressed seriation in the ECLS-K assessment. As such, it was
more appropriate to summarize such (single) items under a more
general number sense factor.

Second, a similar reason may also explain why we did not
find distinct factors for patterning, geometry, and measurement as
did Milburn et al. (2019). In particular, their model comprised
four patterning, seven geometry, and six measurement items,
while we identified only five patterning, two geometry and one
measurement items. Accordingly, limited variance on geometry
and measurement in our data may have been best explained by
patterning. Additionally, geometry and measurement items were
structurally very similar to the patterning items.

Lastly, our model suggests that data analysis and statistics
seemed to represent another distinct basic numerical competence
that may already emerge in preschool years. This competence
describes children’s ability to read and draw inferences of
graphical representations of data. To the best of our knowledge,
data analysis and statistics has not yet been reported in other
multifactorial models of preschoolers’ early numeracy.

At the same time, however, all differences between models
discussed here may not be unexpected as different assessments of
early numeracy with (partially) different mathematical-numerical
content assessed may lead to the identification of different basic
numerical competences that constitute the construct of early
numeracy (cf. Hirsch et al., 2018). This may be particularly so
given that the large-scale assessment tests considered in some
of the studies, including this one, originally intended to reflect
a broad assessment of early numeracy as it was defined in
curricular standards of different educational systems (e.g., the
Netherlands vs. United States). However, they were not designed
to explicitly measure a universal structure of specific basic
numerical competences. Nevertheless, we think that it is these
comparisons across studies on different samples and different
assessments that offer a promising way to gain a comprehensive
multidimensional view on early numeracy.

Stability of Basic Numerical
Competences Constituting Early
Numeracy
After substantiating the four-factor structure of early numeracy
assessed in the ECLS-K math assessment, we evaluated the
stability of this structure by testing measurement invariance
of the factor structure with a subsample of children that were
assessed twice on the same test from PreK to kindergarten. Our
analyses revealed configural but not metric invariance, indicating
that we were able to identify the same four factors (with the
same items) of early numeracy in kindergarten as in PreK,
but within that year the relative contributions of items to the
factors (i.e., factor loadings) changed. In other words, when
children became older some items became stronger (or weaker)
indicators of the respective basic numerical competences. Most
likely, this reflects that children became more proficient in math

and were better able to solve the respective numerical tasks in
kindergarten than in PreK. This is also reflected in the smaller
number of children routed to the low block in the ECLS-K
math assessment. Importantly, however, the four basic numerical
competences constituting early numeracy in PreK remained
stable to kindergarten with all factor loadings of indicators on a
significant and meaningful level. Taken together, these findings
suggest that a structure of early numeracy that consists of four
correlated factors (i.e., patterning and geometry, number sense,
arithmetic, as well as data analysis and statistics) continues to be
refined and improved over time.

However, we cannot conclude whether the factor structure
we established here remains stable beyond the preschool years.
In particular, the curricula to which children were exposed
in PreK and kindergarten were likely more comparable than
those of kindergarten and first or second grade; indeed, prior
investigations have suggested that many kindergarten teachers
spend the majority of their time teaching students what they
already learned in preschool (Engel et al., 2013). As such, it
is possible that after the beginning of formal schooling when
numerical/mathematical content becomes increasingly complex
and math instruction more formal, children alter and restructure
their early numeracy more substantially. The fact that we did not
observe metric invariance of the evidenced four-factor structure
may already indicate substantial changes to take place. However,
some prior evidence suggests stability of early numeracy at least
through the early years of education (e.g., Hellstrand et al., 2020,
established their four-factor model in samples of kindergarten,
first, and second grade children). Nevertheless, it should be
subject to future research to investigate a multifactorial structure
of basic numerical competences and follow its development
longitudinally across a longer period of time than it was done in
the present study. As such, the four basic numerical competences
we established in the present study seem to be an essential
foundation of children’s early numeracy over the course of
preschool. This may have practical and theoretical implications.

Research on intelligence has shown that analyzing the
contributions of specific cognitive abilities to school achievement
is more informative than considering only a general g-factor
of intelligence (e.g., Gustafsson and Balke, 1993; Calvin et al.,
2010). Similar to these results, the present study highlights the
need and value of a more differentiated view on early numeracy
in children (cf. Cowan and Powell, 2014). Information on
specific basic numerical competences that make up children’s
early numeracy as well as their stability during preschool is not
only essential for research on numerical cognition, but also in
broader educational contexts. For instance, when it comes to
diagnose children with mathematical learning difficulties it is
important to identify their problems and deficits as early and
as specific as possible to initiate targeted interventions (e.g.,
Geary et al., 2009). This study provides empirical evidence that
may help to improve both the diagnostic process itself but also
the development of subsequent interventions as it allows for
the specification of basic numerical competences making up
early numeracy. Based on this, it should be possible to develop
diagnostic tools to specifically assess and intervene upon these
basic numerical competences. As the present study is among
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the first of its kind, it must be acknowledged that implications
for education are tentative, and further research is required to
substantiate both the generalizability and longitudinal relevance
of the present findings.

Limitations and Perspectives
The present study was inspired by the multifactorial model of
early numeracy proposed by Hirsch et al. (2018). So far, previous
research identified several basic numerical competences often
using different tests and sometimes different labels but more or
less corresponding to each other when considering underlying
basic numerical competences (for an overview see Table 1 in
Hirsch et al., 2018). As such, it would be desirable to develop a
consensual conceptualization of early numeracy which serves as
a framework in future research on basic numerical competences
and their long-term relevance.

In the present study, early numeracy was found to be
constituted by the four basic numerical competences patterning
and geometry, number sense, arithmetic, as well as data analysis
and statistics. As such, we propose that patterning and geometry
are also important domains of early numeracy. It should be
noted, however, that this goes beyond previous studies that
primarily focused on number-related and operational content
(e.g., counting, cardinality understanding, addition/subtraction,
etc.) when conceptualizing early numeracy (e.g., Purpura et al.,
2011; Purpura and Lonigan, 2013; Nelson and McMaster, 2018).
Nevertheless, consideration of patterning and/or geometry as
important to early numeracy is in line with other studies (e.g.,
Jordan et al., 2006; Clements and Sarama, 2011; Polignano and
Hojnoski, 2012; Rittle-Johnson et al., 2015; Hirsch et al., 2018;
Milburn et al., 2019). Moreover, it is also in line with curricular
strands on early math education which typically incorporate
patterning and early geometry (National Council of Teachers of
Mathematics, 1989, 2000).

Moreover, there are further limitations to be considered when
interpreting the current results, which may – at the same time –
provide interesting avenues for future research. First, we did
neither evaluate within-sample effects (e.g., child gender) as we
expect the stability of constructs should not vary as a result
of demographic characteristics, nor did we consider influences
of other domain-general abilities (e.g., language ability and
executive functions) on the development of basic numerical
competences in our model. Prior research suggested significant
interrelations of these variables and several (general or specific)
measures of math ability (e.g., Blair et al., 2008; Praet et al.,
2013). However, one might expect that they influence specific
basic numerical competences differentially. For instance, Purpura
et al. (2017) investigated how different components of executive
functions (i.e., response inhibition/inhibitory control, cognitive
flexibility, and working memory) predicted performance on
various tasks on early numeracy. Response inhibition and
cognitive flexibility turned out to predict, among others,
measures that would correspond to the number sense factor
in our model (e.g., subitizing, counting, number ordering, and
cardinality). In contrast, working memory primarily predicted
performance in tasks that required to execute multiple steps or

keeping track of intermediate results (e.g., computations). As
such, it may mostly be related to the arithmetic operations factor
of the present model. Similarly, language ability may be most
strongly related to competences, which were assessed using word
problems or other largely text-based items, that is, arithmetic and
data analysis/statistics in the current model. Nevertheless, we can
only speculate about these potential influences so far and it should
be investigated in future studies to which degree variance in
specific basic numerical competences may be actually explained
by domain-general variables. At the same time, however, it should
also be noted that using large-scale assessment data for the
purpose of secondary data analysis may be often constrained
insofar as further potentially interesting variables (e.g., covariates,
further indices of achievement) were not addressed during
data collection.

Second, the results of the present study might not be
generalizable to a wider population. While we leverage quite a
large sample, findings may primarily apply to a certain population
due to the sample characteristics (i.e., children from low-income
families living mainly in non-urban regions in the United States).
In particular, we were able to investigate the stability of the factor
structure of early numeracy only in those children who were
routed to the low-ability block of tasks in the math assessments
in PreK and kindergarten as this was the largest group in the
longitudinal sample. As such, early numeracy might be less
stable in children with higher abilities or steeper learning curves
in math. It is conceivable, for instance, that those children
develop further numerical competences during preschool due
to a differentiation of their number sense abilities (e.g., into
symbolic and non-symbolic numerical abilities). This process
might be delayed in the low-performing children we considered
in the present study.

Finally, as noted earlier, future research may continue
to investigate the multifactorial structure of early numeracy
longitudinally across longer time periods. This would further
allow to evaluate the longitudinal relevance of specific early
numerical and later mathematical competences. In particular,
prior research primarily specified the predictive power of early
basic numerical competences for later general math achievement.
For instance, early symbolic numerical competences (e.g.,
symbolic number knowledge) were shown to predict later math
achievement (see e.g., Schneider et al., 2017 for a review).
Additionally, Hirsch et al. (2018) found all but one of the
competences specified in their 5-factor model of early numeracy
to predict math achievement in grade 6. However, it is
currently not clear how basic numerical competences establishing
a multifactorial structure of early numeracy may relate to
a differentiated multifactorial structure of basic numerical
competences and/or more advanced mathematical competences
(e.g., fraction understanding) established later within the same
individuals (i.e., beyond the period of 1 year we covered in
this study). Investigating this in more depth would provide
more detailed knowledge on the long-term development of
basic numerical competences and of potential variation in
their interrelations as well as their relation to more advanced
mathematical abilities.
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Moreover, most recent studies in basic numerical cognition
research face the issue of rather small sample sizes. In particular,
Kolkman et al. (2013) argued the need for replications of findings
using large-scale data. In this study, we specified the structure
and stability of latent basic numerical competences underlying
a broad curriculum-based assessment and discussed remarkable
overlap with prior studies taking a similar approach. We thus see
a specific advantage of confirmatory analyses considering large-
scale assessment data of early numeracy in general and when it
comes to evaluate basic numerical competences with different
tests in different samples in particular.

CONCLUSION

To the best of our knowledge, this study is the first attempt to
replicate a multifactorial model of early numeracy using large-
scale assessment data across the PreK and kindergarten years.
Importantly, we found further evidence that early numeracy in
preschool children is constituted by different basic numerical
competences. In particular, we found early numeracy to be
reflected by the following four basic numerical competences:
(i) patterning and geometry, (ii) number sense, (iii) arithmetic,
as well as (iv) data analysis and statistics. Although labeled
differently, we were able to replicate most factors proposed in
prior studies on the multifactorial structure of early numeracy.
Moreover, we provided first evidence for the stability of the
structure of basic numerical competences constituting early
numeracy from PreK to kindergarten. This highlights the
role of early numeracy and its underlying basic numerical
competences as an important foundation for later numerical-
mathematical development. The present findings imply, that
preschool education should recognize the multidimensional
nature of early numeracy and specifically foster children’s mastery
of basic numerical competences.
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