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Machine Learning From Molecular 
Dynamics Trajectories to Predict 
Caspase-8 Inhibitors Against 
Alzheimer’s Disease
Salma Jamal 1, Abhinav Grover 2 and Sonam Grover 1*

1 JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India, 2 School of Biotechnology, Jawaharlal Nehru 
University, New Delhi, India

Alzheimer’s disease (AD) is a neurodegenerative disorder in which the death of brain cells 
takes place leading to loss of memory and decreased cognitive ability. AD is a leading 
cause of death worldwide and is progressive in nature with symptoms worsening over 
time. Machine learning–based computational predictive models based on 2D and 3D 
descriptors have been effective in identifying potential active compounds. However, 
the use of data from molecular dynamics (MD) trajectories for training machine learning 
models still needs to be explored. In the present study, descriptors have been extracted 
from the MD trajectories of caspase-8 ligand complexes to train models using artificial 
neural networks and random forest algorithms. Caspase-8 plays a key role in causing AD 
by cleaving amyloid precursor proteins during apoptosis leading to increased formation 
of the amyloid-beta peptide. A total of 43 ligands were docked using the glide module 
of Schrodinger software, and short MD simulations of 10 ns were performed for the 
calculation of MD descriptors. The MD descriptors were also combined with the 2D 
and 3D descriptors of chemical compounds, and individual descriptor based as well 
as combination models were generated. This study demonstrated that MD descriptors 
could be effectively used for the characterization of bioactive compounds along with lead 
prioritization and optimization.

Keywords: Alzheimer’s, caspase-8, machine learning, molecular dynamics trajectories, descriptors 

INTRODUCTION

Neurological disorders affect millions of people globally with Alzheimer’s disease being the most 
common type of disease. Alzheimer’s disease (AD) is the sixth prominent cause of death in the United 
States and, as per the data from the National Center for Health Statistics of the center for disease control 
(CDC), AD was responsible for approximately 110,561 deaths in 2015 (Alzheimer’s Association, 
2018). AD is the only disease among the top 10 causes of death with no means of prevention, 
treatment, or delay in progression. The disease is pathologically defined by protein aggregation and 
its impact on the function of neurons; therefore, studies have been primarily focusing on reducing 
protein aggregation and promoting clearance from the brain (Small et al., 2001). However, these 
therapies have been unsuccessful in clinical trials, which suggests targeting protein aggregation and 
clearance alone may not be sufficient to treat AD. Among the many factors responsible for AD 
such as amyloid hypothesis, cholinergic hypothesis, tau hypothesis, environmental risks, and genetic 
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factors, it has been well established that approximately 70% of 
risk for the disease is attributable to genetics (Ballard et al., 2011). 
The previously discovered genes presenilin 1 (PSEN1), presenilin 
1 (PSEN2), and amyloid precursor protein (APP) are accountable 
for the pathogenesis of AD in only about 5% of patients (Van 
Cauwenberghe et al., 2016). Considering the complex physiology 
of AD and multiple causes responsible for the disease, drug 
development against AD must consider all events related to the 
pathophysiology for more effective treatment strategies, which 
cannot be accomplished concentrating on one cause alone. The 
development of effective treatment options for AD has been of 
great interest considering the global burden of the disease, and 
thus, identification of more potent and selective inhibitors from 
the large pool of chemical compounds is imperative. Caspases 
have been reported to play an important role in AD due to 
the increase in β-amyloid levels by the cleavage of APP during 
apoptosis (Rohn et al., 2001). Multiple evidences are there which 
suggest that APP is a substrate for caspase-lead cleavage which is 
a crucial step in the AD process that may result in amyloid-beta 
formation, loss of synaptic activity, and behavior changes related 
with AD (Gervais et al., 1999; Cotman et al., 2005; Galvan et al., 
2006). Recent studies have reported that activation of caspases 
leads to the formation of neurofibrillary tangles (NFT) (Gamblin 
et al., 2003; Rissman et al., 2004). Another study has confirmed 
the cleavage of tau by caspases in the early state of AD (Guillozet-
Bongaarts et al., 2005). It has also been put forward that caspase-
mediated truncation of tau is interrelated with the development of 
NFTs and beta-amyloids in AD (Dickson, 2004). In addition, all 
the caspases -1, -2, -3, -5, -6, -7, -8, and -9 have been identified to 
be transcriptionally elevated in AD (Castro et al., 2010). Caspase-8 
has been labeled an originator caspase that further activates 
other downstream caspases, making this enzyme an attractive 
target for the identification and development of inhibitors. 
This could prevent unwanted cell death related to various 
neurodegenerative disorders (Watt et al., 1999). Caspase-8 has 
also been associated with synaptic plasticity as well as associated 
neurotoxicity through its downstream effector caspase-3, which 
points toward other supplementary mechanisms that might lead 
to AD (Rehker et al., 2017). Caspases play an important role in 
disease mechanisms associated with AD that include formation 
of beta-amyloids as well as NFTs and thus inhibiting caspases 
may lead to prevention of formation of plaques and tangles and 
also reducing disease progression. Computational predictive 
models have been of great use to researchers doing studies on 
drug discovery. Machine learning approaches have been used 
extensively for the identification of potential active compounds 
based on 2D and 3D molecular descriptors (Jamal et al., 2015; 
Wahi et al., 2015; Jamal et al., 2017). Although the previously 
developed models were successful for screening lakhs to millions 
of compounds, a high degree of reliability is required for 
prioritizing the top five or 10 compounds from a set of hundreds 
of possibilities. This necessitates the generation of more accurate 
hyper-predictive target-specific models utilizing the descriptors 
extracted from molecular dynamics (MD) trajectories and 
consideration of  protein-ligand interactions (Ash and Fourches, 
2017). Various quantitative structure activity relationship studies 
for the development of caspase-3 inhibitors have already been 

reported in the literature (Legewie et al., 2006; Wang et al., 2009; 
Firoozpour et al., 2012; Sharma et al., 2013). The present study 
was carried out to utilize the potential of MD-derived descriptors 
in predictive modeling of potent caspase inhibitors. Thus, the 
present study is based on the hypothesis that MD-based machine 
learning models could be extremely useful for lead optimization 
and chemical compound prioritization. Potential inhibitors of 
caspase-8 have been used for the calculation of 2D, 3D, and MD 
descriptors. The ligands were docked into caspase-8 protein, and 
the protein-ligand complexes were subjected to MD simulations 
to generate descriptors from MD trajectories. Further, artificial 
neural network and random forest machine learning algorithms 
were used to generate the models using an individual set 
of descriptors with two and three level combinations. The 
conformational dynamics of caspase-8 upon binding with the 
compound predicted to be active against the protein using 100 
ns MD simulation was also explored. Moreover, pharmacophore 
model was developed using the ligands associated with caspase-8 
which was further used for virtual screening to identify the new 
potential caspase inhibitors.

METHODOLOGY

Caspase-8 Data Set
In the present study, we used the caspase-8 data set comprised of 
ligands associated with caspase-8 retrieved from the ChEMBL 
(Gaulton et al., 2012) database (ChEMBL46860, ChEMBL46862, 
ChEMBL399983, ChEMBL304686, ChEMBL430105, ChEMBL 
46849, and ChEMBL741342). A total of 81 compounds were 
obtained and preprocessed (Fourches et al., 2010), during which 
duplicates and compounds with approximate IC50 values were 
removed. Post-processing the data resulted in 43 compounds 
with pIC50 values ranging from 4.3 to 8.1, among which 
compounds with a pIC50 value above 6.5, were considered 
as active compounds while those with a pIC50 below 6.5 were 
considered as inactive compounds. The final data set including 
the molecule identifiers, SMILES, and pIC50 values has been 
provided in the Supporting Information. 

Molecular Docking
The X-ray crystal structure of human caspase-8 (PDB ID: 1qtn) 
in complex with acetyl-ile-glu-thr-asp-aldehyde peptide at a 
resolution of 1.2 Å was obtained from the protein data bank 
(PDB) (Parasuraman, 2012). The protein-ligand complex was 
preprocessed using Accelrys ViewerLite (Accelrys Inc., San 
Diego, CA, USA) during which ligands, water molecules, and 
heteroatoms were removed. Further, the protein was prepared 
with Preparation Wizard available from Schrodinger Suite 
(http://www.schrodinger.com/). Hydrogen bonds were added, 
and bond orders were assigned during protein preparation. The 
protonation states of residues were predicted using the PROPKA 
(Olsson et al., 2011) program at pH 7 followed by minimization 
of the protein using the OPLS3 force field (Sastry et al., 2013). 
The ligands associated with the caspase-8 protein were prepared 
using the LigPrep (Schrödinger, Inc., www.schrodinger.com) 
module of Schrodinger before molecular docking. The ligands 
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were also minimized using the OPLS3 force field, and the possible 
ionization states were created at pH 7.0 ± 2.0. The tautomers were 
generated, specific chiralities of the ligands were retained, and 
32 conformations per ligand were generated in case of indefinite 
chiralities. Next, using the Receptor Grid Generation section 
of the Glide (Halgren et al., 2004) module of Schrodinger, the 
binding site in protein was defined using the centroid of selected 
residues option in which the catalytic triad Cys360, His317, and 
Arg258 were chosen. A scaling factor of 1.0 was used to scale 
the van der Waals radii of receptor atoms having a partial atomic 
charge less than the specified cut-off, which was equal to 0.25. All 
other parameters were default. The prepared ligands were then 
docked into the active site of the receptor using an extra precision 
algorithm of Glide. The top-ranked pose for each ligand was 
selected and subjected to MD simulation studies.

Molecular Dynamics Simulation Details
The top scoring protein-ligand complexes were subjected to 10-ns 
MD simulations to evaluate their structural and thermodynamic 
stability in the presence of explicit salt and solvents. All the 
MD simulation studies were performed using the GROMACS 
(Abraham et al., 2015) software version 5.0 and GROMOS96 force 
field. Prior to the MD simulation, each protein-ligand complex 
was prepared by the removal of the water molecules, addition of 
hydrogen atoms, capping of termini, treating disulphides, and 
finding overlaps. After the initial preparation, the model was 
solvated with a simple point charge (SPC) water model and Na+ 
and Cl- ions were added to maintain the neutrality of the system. 
The solvated system was then subjected to energy minimization 
for 50,000 steps using the steepest descent method until a 
maximum force of 10.0 kJ/mol was attained. An equilibration 
run was performed in two sequential steps, NVT (number of 
particles, volume, and temperature) equilibration, and NPT 
(number of particles, pressure, and temperature) equilibration 
during which pressure and temperature were kept to 1 bar and 
300°C, respectively, for a maximum of 50,000 steps in both the 
types of equilibration. Further, a 10-ns MD simulation run was 
carried out to obtain a stable structure and time versus RMSD 
(root-mean square deviation) plot to ensure the stability of the 
system for the entire simulation run. 

Descriptors Computation
Molecular descriptors represent the chemical information of 
the ligands using numeric values. Three types of descriptors 
were used for modeling in the present study, 2D, 3D, and MD 
descriptors. The 2D descriptors included atom count, bond 
count, carbon types, hydrogen bond donor and acceptor count, 
Lipinski’s rule of five, rotatable bonds count, topological surface 
area, van der Waals volume, and many more. The 3D descriptors 
included gravitational index descriptor, charged partial surface 
area, and length over breadth and moment of inertia descriptors, 
among others. The 3D-WHIM descriptors involved descriptors 
weighted by unit weights, van der Waals volumes, atomic masses, 
atomic polarizabilities, and Mulliken atomic electronegativites. A 
total of 770 2D descriptors and 115 3D descriptors were generated 
for each ligand conformation using PaDEL (Yap, 2011) software. 

For MD descriptors, the trajectory of each protein-ligand 
complex was analyzed for three properties, radius of gyration 
(Rg), potential energy and total energy, and solvent accessible 
surface area (SASA). Each of the three MD descriptors was 
represented using the mean and standard deviation as described 
in other studies (Ash and Fourches, 2017; Riniker, 2017), 
resulting in a total of eight descriptors. 

Model Building 
Machine learning (ML)–based modeling is learning from 
known properties and using the learned model systems to make 
predictions for unseen data. Using an in-house Perl script, the 
molecular descriptor files were split with 70% for a training set and 
30% for a testing data set. The training set was used for generation 
of the models, and the test set was used for the assessment 
of model performance. An internal validation of the models 
generated using the training set was performed using k-fold cross 
validation, with k equal to 10 in the present work. Cross validation 
is a technique in which the data is divided into k subsets, with 
k-1 subsets used for model generation and the remaining subset 
used for testing purposes. This process is repeated until all the 
k folds have been used as a testing set at least once. The models 
were generated using individual 2D, 3D, and MD descriptors and 
their two level 2D+3D, 2D+MD, and 3D+MD and three level 
2D+3D+MD combinations. The 2D, 3D, MD, 2D+3D, 2D+MD, 
3D+MD, and 2D+3D+MD artificial neural network (ANN) 
and random forest (RF) models were generated using different 
parameters and finding the best combination of parameters. 

Machine Learning Algorithms
In the present study, two ML algorithms, ANN and RF, were used 
for building the models using Weka which is an ML software. 
ANN is a computational model that attempts to mimic the 
structure and function of neural networks in the human brain. 
It comprises a group of connected artificial neurons that process 
information and generate output. The ANN model used in 
the present study is multilayer perceptron (MLP), which is a 
feedforward ANN model using three or more layers including 
input and output layers along with hidden layers, to map input 
data and produce the correct output (Cheng et al., 2008). 

RF is a decision tree based classifier that creates an assembly 
of decision trees and outputs the class that is the mode of the 
output of all the individual decision trees. The decision tree for 
each attribute is created by sampling the attributes, then using 
random selection. Next, the information gain criterion is used to 
select the best feature from the data which is used as the origin 
node of the tree. The origin node is then divided into sub-nodes, 
and the process is repeated until the sub-node becomes an output 
class. The final prediction is the class chosen by the majority of 
the trees (Breiman, 2001).

Feature Selection
Feature, attribute, or descriptor selection is the procedure of 
identifying a subgroup of features that are relevant to the modeling 
and prediction task. Feature selection is performed to decrease 
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the dimensionality of the data by eliminating insignificant 
features and thus reducing training time, removing redundant 
descriptors, simplifying models, and lessening overfitting of the 
models. Feature selection was performed at two levels, initially 
using the Remove Useless filter of the Weka (Bouckaert et al., 
2010) ML tool followed by the selection of significant features. 
The Weka Remove Useless filter removed the descriptors having 
the same value for all compounds, as those descriptors did not 
contribute toward classification.

Two feature selection techniques were used, correlation-
based feature selection (CFS) and relief attribute evaluation. CFS 
ranks features using a correlation based heuristic function which 
outputs a subset of features having a high correlation with the 
class but uncorrelated with each other (Hall, 1999). The following 
correlation based heuristic function is used for calculating the 
merits of a feature subset:

 
Ms krcf

k k k rff
=

+ −( )1

 
where Ms is the merit of feature subset S consisting of k 

features, rff is the mean of feature-feature correlation, and rcf is 
the mean of feature-class correlation. 

The relief-based attribute selection algorithm calculates a 
feature score, ranks the features, and chooses the top ranked. The 
feature score is calculated using the Euclidean distances between 
features and their nearest neighboring instances. The training 
data set was used for feature selection, and the test set used to rid 
the data of any biasness (Kira and Rendell, 1992).

Model Performance Evaluation
A total of 14 ML models were generated using ANN and RF 
algorithms, which were evaluated using accuracy, balanced 
accuracy, training error, generalization error, and a receiver-
operating characteristic (ROC) plot. Accuracy ([{TP+TN/
(TP+TN+FP+FN}]) is the proportion of correctly classified 
active and inactive compounds by the classification models. 
An ROC plot is a graph plotted as true positive rate (TPR) vs 

false positive rate (FPR, 1-specificity). TPR ([TP/{TP+FN}]) is 
the percentage of correctly classified actives while FPR (1-[TN/
{TN+FP}]) is the proportion of correctly identified negatives.

Pharmacophore Search and Virtual 
Screening 
The 43 compounds used for the generation of ML models were used 
for ligand-based pharmacophore modeling using PharmaGist 
tool (Schneidman-Duhovny et al., 2008). A pharmacophore 
is a theoretical representation of features of ligand necessary 
for the recognition of ligand by the macromolecule and can be 
used to identify ligands that can bind to a common receptor 
through virtual screening. PharmaGist tools search for probable 
pharmacophores by multiple flexible alignment of input ligands 
and report the top scoring ones. The pharmacophore model 
developed in the present study was used for virtual screening to 
search through a total of 1,798 and 16 natural compounds from 
ZINCPharmer (Koes and Camacho, 2012) to get the similar hits 
from ZINC database. The top 10 most similar hits were subjected 
to Glide’s XP docking with the caspase-8 protein used for the 
docking study with 43 ligands used in the present study.

RESULTS 

Glide-Docking Analysis
A total of 43 active and inactive caspase-8-associated ligands were 
docked in the active site of the receptor protein, human caspase-8, 
using the extra precision (XP) docking approach. The XP docking 
scores of ligands ranged from −12.70 to −4.22 kcal/mol. The 
compounds having a pIC50 value above 6.5 categorized as actives 
corresponding to compound IDs 50267423, 50215849, 50215847, 
50215835, 50297218, 50267430, and 50215896 had docking 
scores of −9.1 kcal/mol, −6.22 kcal/mol, −12.06 kcal/mol, −5.34 
kcal/mol, −12.38 kcal/mol, −8.53 kcal/mol, and −7.16 kcal/mol, 
respectively. Additionally, we have generated the correlation plot 
between docking scores and pIC50. As is evident from the plot, 
the compounds having high pIC50 values had higher docking 
scores and vice versa (Figure 1).

FIGURE 1 | The correlation plot between docking scores and pIC50.
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Feature Analysis
In the present study, feature analysis was performed using the 
Remove Useless filter, CFS, and relief-based attribute selection 
using Weka. The number of 2D descriptors was reduced from 770 
to 387 after the Remove Useless filter was applied. The numbers of 
3D and MD descriptors remained the same, 115 and 8, respectively. 

E-state indices represent the electronic and topological 
character of an atom where the electronic state of an atom is 
encoded as perturbed by the electronic impact of other atoms in the 
molecule in context of the topological character of the molecule. 
The top ranked 2D features selected using CFS and relief-based 
selection included nwHBd, SwHBd, SHCHnX, minHCHnX, 
minwHBd, maxwHBd, maxHCHnX, and nHCHnX. The selected 
2D features included count, sum, and minimum and maximum 
of E-states for weak hydrogen bond (H-bond) donors and atom 
type, H (estate: CHnX where nX corresponds to a halogen atom). 
Various studies have explained the importance of weak H-bonds 
in chemical and biological systems (Steiner, 1999). 

The top ranked 3D features included FPSA-3, WK.unity, Wnu2.
unity, WK.mass, Wnu2.mass, Weta3.volume, Wlambda3.mass, and 
TPSA. The selected 3D descriptors included WHIM  descriptors 
which capture significant molecular 3D information that include 
shape, molecular size, atom distribution, and symmetry. These 
indices are computed using x, y, and z coordinates of a molecule 
using different weighing schemes like atomic mass, van der Waals 
volume, electronegativity, and atomic polarizabilities and have 
been used for QSAR modeling (Gramatica, 1997). 

In the case of MD descriptors, all the eight descriptors that 
included mean and standard deviation of potential and total energy, 
Rg, and SASA were used for model generation. The MD descriptors 
included total and potential energy, Rg, and SASA where total and 
potential energy are mathematical forms of representations of 
protein-ligand interactions; Rg indicates the compactness of the 

protein, and that is how the secondary structures are compactly 
folded in to 3D structure of the protein. SASA is a measure of 
accessible surface of a molecule which further helps in secondary 
structure prediction. The number and description of features used 
in the present study have been provided in Table 1. 

In addition to this, we also calculated importance of MD 
descriptors. This was carried out by computing average merit 
and average rank using CFS, relief-based attribute selection, 
and classifier attribute evaluation using ANN and RF classifiers. 
Average merit indicates the average accuracy loss when a particular 
feature is removed whereas average rank denotes the rank of the 
feature determined using 10-fold cross validation. The results 
indicated that potential energy of the protein-ligand complex was 
the most significant contributor toward classification followed by 
Rg, SASA, and total energy (Table 2).

Model Predictions and Performances
A total of 14 ML models were generated in the present study using 
ANN and RF ML algorithms. These ANN and RF models (2D, 3D, 
MD, 2D+3D, 2D+MD, 3D+MD, and 2D+3D+MD) were generated 
using best combination of different parameters. Initially, we tried to 
the models using default parameters for ANN and RF algorithms. 
However, these did not perform well in terms of the statistical 
parameters used for model performance evaluation (Table 3). 
The training set consisted of 29 compounds, and the test data set 
consisted of 14 compounds. Table 4 provides the performance 
metrics of all the generated ANN and RF models using the best 
combination of parameters. Figure 2 illustrates the ROC plots 
generated for ANN and RF models using 2D, 3D, MD, 2D+3D, 
2D+MD, 3D+MD, and 2D+3D+MD descriptors. The training and 
testing sets used for generating the models and the models build in 
the present study have been provided as Supplementary Material.

TABLE 1 | The number and description of features used in the present study.

Type of 
descriptor

Initial number 
of descripted

Remove 
useless filter

Relief-based 
selection

Selected descriptors Description as provided by PaDEL

2D 770 387 8 nwHBd, 
SwHBd, 
SHCHnX, 
minHCHnX
minwHBd, 
maxwHBd, 
maxHCHnX 
nHCHnX

Atom type electrotopological state
Count of E-state for weak H-bond donors
Sum of E-state for weak H-bond donors
Sum of atom type H E-state: CHnX
Minimum atom type H E-state: CHnX
Minimum of E-state for weak H-bond donors
Maximum of E-state for weak H-bond donors
Maximum atom type H E-state: CHnX
Count of atom type H E-state: CHnX

3D 115 115 8 FPSA-3,
WK.unity, 
Wnu2.unity, 
WK.mass, 
Wnu2.mass, 
Weta3.volume, 
Wlambda3.mass 
TPSA

Charged partial surface area 
Non-directional WHIM weighted by unit weights 
Directional WHIM weighted by unit weights
Non-directional WHIM weighted by atomic masses 
Directional WHIM weighted by atomic masses
Directional WHIM weighted by van der Waals volumes
Directional WHIM weighted by atomic masses
Topological polar surface area

MD 8 8 8 Potential energy
Total energy
Radius of gyration
Solvent accessible surface area
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TABLE 2 | Importance of molecular dynamics (MD) descriptors using correlation-based feature selection (CFS), relief-based attribute selection, and classifier attribute 
evaluation using artificial neural network (ANN) and random forest (RF) classifiers.

MD descriptor CFS Relief-based Classifier attribute evaluator 
(ANN)

Classifier attribute 
evaluator (RF)

Average 
merit

Average 
rank

Average 
merit

Average 
rank

Average  
merit

Average 
rank

Average  
merit

Average 
rank

Total energy  0.062 ± 0.032 2.6 ± 0.92 0.021 ± 0.028 3.3 ± 0.64 −0.015 ± 0.023 2.2 ± 1.47 −0.133 ± 0.032 3.8 ± 0.4
Potential energy 0.062 ± 0.032 1.8 ± 0.75 0.021 ± 0.028 2.3 ± 0.64 −0.015 ± 0.023 2.4 ± 0.49 −0.068 ± 0.046 2.5 ± 0.81
Gyration 0.048 ± 0.033 2.9 ± 1.14  0.014 ± 0.011 3.2 ± 0.98 0 ± 0 2.6 ± 0.49  −0.036 ± 0.024 1.8 ± 0.75
SASA  0.057 ± 0.041 2.7 ± 1.27 0.092 ± 0.013 1.2 ± 0.6 0 ± 0 2.8 ± 1.47 −0.028 ± 0.036 1.9 ± 1.04

TABLE 3 | The performance metrics of all the generated machine learning (ML) models using ANN and RF algorithms using default parameters.

Machine 
learning 
algorithm

Descriptor 
type

Cross-
validation 
accuracy 

(%)

Accuracy 
(%)

AUC Balanced 
accuracy 

(%)

Training 
error

Generalization 
error

Training 
error

Generalization 
error

MSE RMSE MSE RMSE
Artificial 
neural 
network

2D 86.20 85.71 0.50 50.00 0.21 0.35 0.20 0.35
3D 82.75 85.71 0.91 70.50 0.16 0.37 0.16 0.37
MD 82.75 85.71 0.66 50.00 0.27 0.39 0.22 0.34
2D+3D 89.65 85.71 0.91 70.50 0.10 0.28 0.16 0.38
2D+MD 75.86 85.71 0.58 50.00 0.29 0.46 0.20 0.35
3D+MD 89.65 78.57 0.87 66.50 0.10 0.25 0.20 0.42
2D+3D+MD 89.65 78.57 0.87 66.50 0.13 0.32 0.20 0.42

Random 
forest

2D 86.20 85.71 0.50 50.00 0.21 0.35 0.21 0.35
3D 89.65 85.71 0.50 62.00 0.15 0.26 0.18 0.34
MD 82.75 85.71 0.68 50.00 0.26 0.38 0.19 0.34
2D+3D 86.20 85.71 0.52 50.00 0.15 0.27 0.18 0.33
2D+MD 82.75 85.71 0.62 50.00 0.26 0.40 0.19 0.35
3D+MD 86.20 85.71 0.89 50.00 0.16 0.26 0.17 0.31
2D+3D+MD 86.20 85.71 0.87 50.00 0.17 0.28 0.16 0.30

TABLE 4 | The performance metrics of all the generated ANN and RF models using the best combination of parameters.

Machine 
learning 
algorithm

Descriptor 
type

Cross-
validation 
accuracy 

(%)

Accuracy 
(%)

AUC Balanced 
accuracy 

(%)

Training 
error

Generalization 
error

Training 
error

Generalization 
error

MSE RMSE MSE RMSE
Artificial 
neural 
network

2D 86.20 85.71 0.50 50.00 0.21 0.25 0.2 0.35
3D 44.82 64.28 0.91 79.15 0.52 0.38 0.44 0.51
MD 82.75 85.71 0.70 50.00 0.25 0.4 0.21 0.34
2D+3D 13.79 85.71 0.37 50.00 0.63 0.64 0.47 0.47
2D+MD 51.72 85.71 0.75 70.85 0.52 0.59 0.42 0.43
3D+MD 75.86 78.57 0.83 87.50 0.35 0.47 0.33 0.47
2D+3D+MD 62.06 78.57 0.91 87.50 0.48 0.55 0.39 0.47

Random 
forest

2D 86.20 85.71 0.50 50.00 0.47 0.47 0.47 0.47
3D 82.75 78.57 0.79 66.65 0.24 0.35 0.32 0.37
MD 55.17 71.42 1.00 83.35 0.44 0.53 0.32 0.38
2D+3D 65.51 57.14 0.77 54.15 0.37 0.43 0.43 0.47
2D+MD 86.20 85.71 0.75 50.00 0.21 0.38 0.17 0.35
3D+MD 89.65 92.85 0.79 75.00 0.17 0.26 0.19 0.31
2D+3D+MD 72.41 85.71 0.91 91.50 0.38 0.42 0.36 0.39
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Modeling Using 2D Descriptors 
The 2D ANN and RF models had an accuracy of 85.71%, 
balanced accuracy of 50.0%, and an AUC value of 0.50. The AUC 
value indicated these models were random predictors and thus 
were not considered for further predictions. 

Modeling Using 3D Descriptors 
The 3D descriptor models had an accuracy, balanced accuracy, 
and AUC value of 64.28%, 79.15%, and 0.91, respectively, for 
the ANN model. In case of RF model, the accuracy, balanced 
accuracy, and AUC values corresponded to 78.57%, 66.65%, and 
0.79. These results indicated that 3D compound descriptors play 
a vital role in the classification of compounds. The ANN model 
correctly predicted the two active compounds 50267423 and 
50215896 and the other inactive compounds predicted as active 
by ANN had compound IDs 50215590, 50215632, 50215692, 

50215782, and 50215859. The RF model gave the correct 
prediction for only one active compound, 50267423. The other 
inactive compounds predicted as active included 50215590 and 
50215632.

Modeling Using MD Descriptors 
The models generated using MD descriptors had an accuracy 
of 85.71% and 71.42%, balanced accuracy of 50.0% and 83.35%, 
and an AUC value of 0.70 and 1.00 for ANN and RF models, 
respectively. The MD models had the most balanced accuracies 
and AUC values compared to the 2D and 3D descriptor models, in 
which either the accuracy was high and AUC value was low or vice 
versa. This clearly indicates the descriptors extracted from MD 
trajectories play a significant role in lead prioritization, resulting 
in most active compounds. The reduction in generalization error 
as compared to training error indicated that MD descriptors can 

FIGURE 2 | The receiver-operating characteristic (ROC) plots generated for artificial neural network (ANN) and random forest (RF) models using 2D, 3D, MD, 
2D+3D, 2D+MD, 3D+MD, and 2D+3D+MD descriptors.
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perform well on new data. The ANN model correctly predicted the 
inactive compounds, but misclassified the compounds categorized 
as active. However, the RF model predicted the active compounds, 
50267423 and 50215896, as active. The other compounds 
predicted as active included compounds corresponding to IDs 
50215632, 50215720, 50215782, and 50267428.

Modeling Using the Two Level 
Combination of 1D, 2D, and MD 
Descriptors 
The models were generated by combining 1D, 2D, and 3D 
descriptors as 2D, 2D+MD, and 3D+MD. The 2D+3D descriptor 
models had an accuracy of 85.71% and 57.14%, balanced 
accuracy of 50.0% and 54.15%, and an AUC value of 0.37 and 
0.77 for ANN and RF models, respectively. The 2D+3D RF model 
predicted one active compound, 50267423, accurately. In the case 
of RF models, the accuracy and balanced accuracy of the models 
remained the same when 2D descriptors were combined with MD 
descriptors. Although the accuracy was same (85.71%) in case of 
ANN models (2D and 3D), there was a significant increase in the 
balanced accuracy (from 50% to 70.85%) and AUC (from 0.37 to 
0.75) upon addition of MD descriptors.

When the 3D descriptors were combined with MD 
descriptors, an increase in accuracy (from 64.28% to 78.57%) 
and balanced accuracy (from 79.15% to 87.50%) was observed in 
case of ANN models; however, there was a slight reduction (from 
0.91 to 0.83) in the AUC value. In the case of models generated 
using the RF algorithm, the accuracy (from 78.57% to 92.85%) 
and balanced accuracy (from 66.65 to 75%) values improved 
while AUC (0.79) value remained the same in case of addition of 
MD+3D descriptors. The results clearly indicate the combination 
of models resulted in greater accuracy with the 3D+MD 
combination models being the most informative. As the 3D+MD 
combination models had the best performance, the compounds 
predicted as active by these models were corresponding to IDs 
50267423, 50215590, and 50215720. 

It was also observed that the models generated using 2D and 
3D descriptors in combination with MD descriptors had low 
mean absolute error (MSE) and root mean squared error (RMSE) 
in comparison to models generated using 2D, 3D, and 2D+3D.

Modeling Using the Combined 1D, 2D, 
and MD Descriptors
The models generated using the combination of all the three 
descriptors—2D, 3D, and MD—had high accuracy (ANN 
78.57%; RF 92.85%) values, balanced accuracies (ANN 87.50%; 
RF 91.50%), and AUC (ANN 0.91; RF 0.87) values. The 
compounds predicted as active by both the models included 
50267423, 50215590, and 50215720. The MD descriptors alone 
and in combination with 2D and 3D descriptors performed 
better in terms of generalization performance.

We also calculated the accuracy of ANN/RF model vis-a-vis 
the accuracy due to the different input. The accuracy obtained 
using different input dataset was higher in comparison to the 
ANN/RF model accuracies, indicating that the ML models 

generated in the present study would be able to predict outcomes 
for new unseen data.

Molecular Dynamics Simulation Analysis 
of the Most Active Compound
Since most of the ANN and RF models were able to accurately 
predict this compound 50267423 as active among all the other 
predicted active compounds, the same was chosen for carrying 
out long MD simulations. The compound, 50267423, having a 
docking score of −9.10 kcal/mol was subjected to a 100ns MD 
simulation for an in depth study of its structural characteristics. 
As apparent from Figure 3A, the unbound caspase-8 protein 
was unstable, but became stable upon binding with compound 
50267423. In both cases, the simulation reached convergence 
between 10–30ns with RMSD around 0.45 and 0.35 nm for 
the unbound caspase-8 and caspase-8_50267423 complex, 
respectively. Next, Rg was calculated to demonstrate the impact 
of compound 50267423 on the compactness of the protein. The 
protein had a compact packing in both unbound and bound 
forms (Figure 3B). Root mean square fluctuation (RMSF) 
analysis was performed to study the fluctuation on residues in 
the presence of the ligand. Figure 3C illustrates the RMSF in 
free caspase-8 and caspase-8_50267423 complex. The residues 
had enormous fluctuations in unbound caspase-8 while RMSF 
values were reasonably low, and the protein was very much stable 
in the presence of the 50267423 compound. Further, SASA was 
calculated, which was higher in the case of unbound caspase-8 
protein in comparison to the SASA in the ligand-bound protein 
(Figure 3D). Thus, it is evident from the aforementioned results 
that the caspase-8 protein was highly stable upon binding with 
compound 50267423. The hydrogen bonding and hydrophobic 
interaction analyses were carried out for the caspase8-50267423 
complex. The ligand formed five hydrogen bonds, which included 
two bonds with Trp420, two hydrogen bonds with Gln423, and 
one bond with Ser424, as demonstrated in Figure 4. The residues 
having hydrophobic interactions included Asp266, Leu315, 
Gln358, Ala404, Thr405, Ser411, Glu417, Gly418, Thr419, 
Tyr421, and Ile422 (Figure 5). The residues having hydrophobic 
interactions Gln358 and Ser411 have been shown to line the 
binding pocket in caspase-8 whereas the aromatic group of 
Ty420 which in the present study is forming two hydrogen bonds 
with the inhibitor has been shown to help to form the part of the 
pocket (Watt et al., 1999).

Identification of Common Pharmacophore 
and Virtual Screening
Pharmacophore search using PharmaGist provided us a high-
scoring pharmacophore containing compound corresponding 
to IDs 50267423 (most active compound) and other active 
compounds, 50215632, 50215590, 50215720, and 50215896. 
The pharmacophore model had a total of nine features 
which included one aromatic ring, one hydrophobic group, 
two hydrogen-bond donors, and three hydrogen-bond 
acceptors. This model will be of substantial help in design 
and development of novel caspase inhibitors. Figures 6A, 
B shows the pharmacophoric features of the most active 
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ligand, 50267423, and alignment of other active ligands to 
the pharmacophore model. A total of 129 hits were obtained 
which matched the pharmacophoric features of the most active 
compound 50267423. The ZINC IDs of the 129 hits have been 
provided in supporting information. The molecular docking 
analysis of the top five leads revealed that the XP scores of the 
compounds ranged between −10.775 and −9.423 (Table 5).

DISCUSSION

AD is a chronic progressive long-term neurodegenerative 
disorder that affects millions of people worldwide and thus needs 
immediate attention. The current drugs available in the market 
can only temporarily improve upon the symptoms and delay the 
progression of the disease but could not stop it from progressing 

FIGURE 3 | (A) Root mean square deviation, (B) radius of gyration, (C) root mean square fluctuation, and (D) solvent accessible surface area plots for 
caspase8-50267423 complex. 

FIGURE 4 | The hydrogen bonding in caspase8-50267423 complex.

13

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Prediction of Caspase-8 Inhibitors Against Alzheimer’sJamal et al.

10 July 2019 | Volume 10 | Article 780Frontiers in Pharmacology | www.frontiersin.org

and deteriorating the cognitive functions further. This study 
is based on the hypothesis that incorporating protein-ligand 
interactions for lead prioritization could lead to identification 
of compounds with highest binding affinities. In our previous 
studies, we had used molecular descriptors of chemical 
compounds to generate ML models for the classification of 
biologically active compounds (Jamal et al., 2015; Jamal et al., 
2017). The properties extracted from MD trajectories have not 
been yet used for the classification of active compounds. The 
present work involved generation of ML models based on MD 
trajectories for prioritization of chemical compounds and lead 
optimization. Using Glide, we performed molecular docking 
of caspase-8-associated compounds and performed 10-ns 
MD simulations of top scoring conformation of each ligand 
and caspase-8 protein-ligand complex. Several 2D and 3D 
descriptors were generated, and MD descriptors were obtained 
from MD simulation trajectories. Various feature selection, 
Remove Useless filter, CFS, and relief-based attribute selection 
techniques were used to identify a subset of features having 
high contribution toward classification. The predictive models 
were generated using 2D, 3D, and MD descriptors and their 
combinations, 2D+3D, 2D+MD, 3D+MD, and 2D+3D+MD. 

Two ML algorithms, ANN and RF, were used for model 
building. The results obtained indicated that the MD descriptors 
performed better than 2D and 3D descriptors individually as 
well as in combinations. The MD descriptors clearly improved 
the classification performance of the models thus suggesting 
that the longer simulations as well as the MD descriptors in 
combination with 2D and 3D descriptors could lead to accurate 
and efficient lead optimization and prioritization. Another study 
conducted by Ash and Fourches in 2017 also confirmed the 
hypothesis that the descriptors extracted from MD trajectories 
are highly informative descriptors and could be effectively used 
not only for screening chemical libraries but for drug candidate 
design and prioritization (Ash and Fourches, 2017). Additionally, 
we also used a nine-point pharmacophore model consisting of 
three hydrogen-bond acceptor, two hydrogen-bond donors, one 
hydrophobic group, and one aromatic ring. This pharmacophore 
model was used for virtual screening of ZINC library of chemical 
compounds which led to the identification of 129 hits. The five 
lead compounds were subjected to molecular docking analysis 
which resulted in compounds having docking scores between 
−10.775 and −9.423 indicating that these compounds could be 
used as potential caspase-8 inhibitors. 

FIGURE 5 | The hydrophobic interactions in caspase8-50267423 complex.
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CONTRIBUTION TO THE FIELD 
STATEMENT

Dementia is a syndrome, usually chronic or progressive in nature, 
which leads to decline in cognitive function resulting in loss of ability 
of thinking and performing routine activities and majorly effects 
elderly population. Alzheimer’s is a progressive disease during which 
the symptoms of dementia get worse over time. The current treatment 
regimen can only improve upon the systems for short term causing 

FIGURE 6 | (A) and (B) The pharmacophoric features of the most active ligand, 50267423, and alignment of other active ligands to the pharmacophore model. The 
color classification of the features is hydrogen bond acceptor (red), hydrogen bond donor (blue), hydrophobic (green), and aromatic ring (orange).

TABLE 5 | The molecular docking analysis of the top five ZINC compounds 
obtained after virtual screening using pharmacophore.

ZINC 
database ID

Glide XP 
score

Interacting residues (hydrogen bond)

ZINC38200481 −10.775 Arg260 (2), Gln358 (1), Arg413 (3)
ZINC01576107 −10.775 Arg260 (2), Gln358 (1), Arg413 (3)
ZINC02384806 −10.729 Arg260 (1), Gln358 (1), Arg413 (2)
ZINC38570006 −9.702 Arg260 (2), Gln358 (1), Ser411(1), Arg413 (4)
ZINC38569951 −9.423 Arg260 (2), Gln358 (1), Ser411(1), Arg413 (4)

15

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Prediction of Caspase-8 Inhibitors Against Alzheimer’sJamal et al.

12 July 2019 | Volume 10 | Article 780Frontiers in Pharmacology | www.frontiersin.org

a temporary relief though cannot stop the disease from progression. 
Thus, there is a need of better treatment options which can stop the 
development of the disease. The high throughput screening studies 
have resulted in large number of compounds among which many 
compounds are in clinical trials and can be potential drugs against 
AD. However, selection of compounds with huge potential activity 
against Alzheimer’s remains a problem to be addressed. The present 
study involves generation of predictive classification models using 
molecular dynamics descriptors which could lead to the identification 
of bioactive compounds and aid lead optimization and prioritization.
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Ability of Target-Specific Scoring 
Functions Using Deep Learning 
Methods
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Scoring functions play an important role in structure-based virtual screening. It has 
been widely accepted that target-specific scoring functions (TSSFs) may achieve better 
performance compared with universal scoring functions in actual drug research and 
development processes. A method that can effectively construct TSSFs will be of great 
value to drug design and discovery. In this work, we proposed a deep learning–based 
model named DeepScore to achieve this goal. DeepScore adopted the form of PMF 
scoring function to calculate protein–ligand binding affinity. However, different from 
PMF scoring function, in DeepScore, the score for each protein–ligand atom pair was 
calculated using a feedforward neural network. Our model significantly outperformed 
Glide Gscore on validation data set DUD-E. The average ROC-AUC on 102 targets 
was 0.98. We also combined Gscore and DeepScore together using a consensus 
method and put forward a consensus model named DeepScoreCS. The comparison 
results showed that DeepScore outperformed other machine learning–based TSSFs 
building methods. Furthermore, we presented a strategy to visualize the prediction of 
DeepScore. All of these results clearly demonstrated that DeepScore would be a useful 
model in constructing TSSFs and represented a novel way incorporating deep learning 
and drug design.

Keywords: virtual screening, target-specific scoring function, deep learning, drug discovery, DUD-E

INTRODUCTION

Structure-based drug design (SBDD) has been widely used in industry and academia (Andricopulo 
et al., 2009; Morrow et al., 2012). There are three main categories of tasks for SBDD methods: 
virtual screening, de novo drug design, and ligand optimization. Virtual screening generally refers 
to the process of identifying active compounds among molecules selected from a virtual compound 
library. By utilizing the three-dimensional information of proteins, structure-based virtual 
screening is believed to be more efficient than traditional virtual screening methods. The key factor 
for guaranteeing the success of structure-based virtual screening is the quality of scoring functions. 
Theoretically, a scoring function is capable of predicting the binding affinity of a protein–ligand 
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complex structure, and thus can be used for predicting the 
binding pose of a ligand or screening a virtual compound library 
to find potential active compounds.

Classic scoring functions can be divided into three 
categories: force field–based, knowledge-based, and empirical 
(Liu et al., 2017). For a long time, researchers have found that 
machine learning and deep learning methods had an excellent 
performance in helping constructing different kinds of scoring 
functions. Especially recently, convolutional neural network 
(CNN) utilizing the structural information of protein–ligand 
complexes has shown promise in predicting binding affinity 
and virtual screening (Ragoza et al., 2017; Stepniewska-
Dziubinska et al., 2018). A deep learning model constructed 
using CNN by Imrie et al. represented the state-of-the-art 
on several virtual screening benchmarks (Imrie et al., 2018). 
However, the authors also found that fine-tuning a general 
model on subsets of a specific protein family resulted in a 
significant improvement. This reflects the fact that no single 
scoring function is suitable for every target. Moreover, in 
practice, a medicinal chemist is usually concerned about only 
one target at a time and hope that the scoring function he uses 
has the best performance on this target. The most common 
and direct way to address this issue is to build a target-specific 
scoring function (TSSF) for the specific target. TSSFs have 
been widely used in virtual screening campaign and proved to 
be useful in variable kinds of important drug targets including 
kinases (Xu et al., 2017; Berishvili et al., 2018) and GPCRs 
(Kooistra et al., 2016).

Based on the fact mentioned above, it is of great value to 
design a method that can effectively construct TSSFs. Several 
methods have been proposed to address this problem. In 2005, 
Antes et al. presented a model called Parameter Optimization 
using Ensemble Methods (POEM) which applied the design 
of experiments (DOE) approach and ensemble methods to 
the optimization of TSSFs in molecular docking (Antes et al., 
2005). They fitted FlexX and ScreenScore to the kinase and 
ATPase protein classes and got a promising result. In 2010, 
Xue et al. developed a kinase-specific scoring function named 
kinase-PMF in order to score ATP-competitive inhibitors (Xue 
et al., 2010). Their work showed that TSSFs achieved better 
performance compared with general scorings. In 2011, Li et al. 
proposed a scoring function building strategy named SVM-SP 
based on support vector machine (SVM) (Li et al., 2011). They 
tailored SVM-SP to each target in the test set and found that it 
outperformed many other scoring functions including Glide. In 
2015, Wang et al. introduced a strategy named TS-Chemscore 
to build TSSFs based on a known universal scoring function 
by a regression process on energy contributions (Wang et al., 
2015). In 2017, Yan et al. used a residue-based interaction 
decomposition method with SVM to develop a target-
specific discrimination model called protein–ligand empirical 
interaction components-SVM (PLEIC-SVM) (Yan et al., 2017). 
Their results showed that PLEIC-SVM was a useful tool in 
filtering the docking poses.

Here, we introduce a deep learning–based method named 
DeepScore used for constructing TSSFs. The purpose of 
DeepScore is rescoring the docking poses generated from docking 

software like Glide. DeepScore uses the scoring model  of 
PMF scoring function, where the score for a protein–ligand 
complex is derived from the sum of protein–ligand atom pair-
wise interactions within a distance range. The score for a single 
protein–ligand atom pair is calculated using a fully connected 
neural network. Since consensus scoring methods have shown to 
be useful in improving the performance considering the results 
from several different models (Teramoto and Fukunishi, 2008; 
Ericksen et al., 2017), we further proposed DeepScoreCS by 
combining the results of DeepScore and Glide Gscore together. 
The directory of useful decoys–enhanced (DUD-E) was used as 
the benchmark to quantitatively assess the model. 12 metrics 
were calculated and used for making comparison between 
Gscore, DeepScore, DeepScoreCS, and some other TSSF models 
reported by previous studies.

MATERIALS AND METHODS

Data Preparation
The directory of useful decoys–enhanced (DUD-E) benchmarking 
set (Mysinger et al., 2012) was used for training and evaluating 
the model. DUD-E is a data set designed for helping benchmark 
docking software and scoring functions. There are 102 targets 
in DUD-E. Each target is provided with 224 active ligands and 
13,835 decoys on average. DUD-E has been widely used for 
evaluating the virtual screen ability of scoring functions (Chaput 
et al., 2016; Ericksen et al., 2017; Ragoza et al., 2017; Yan et al., 
2017; Imrie et al., 2018). Although it has been reported by some 
literature that there exists noncausal bias in DUD-E (Sieg et al., 
2019), we still use it to evaluate our model since there is no better 
data set so far.

The first step is to generate docking poses for actives and 
decoys. We noticed that, in other similar work, a variety of 
docking methods were used in this step, including Glide (Yan 
et al., 2017), AutoDock Vina (Imrie et al., 2018), DOCK (Pereira 
et al., 2016), PLANTS (Kurkinen et al., 2018), and so on. Even 
using the same docking program, sometimes different docking 
protocols were adopted (Chaput et al., 2016; Yan et al., 2017). It 
should be emphasized that, strictly speaking, only the rescoring 
results from the same docking poses are comparable.

Since the ligands in DUD-E have been assigned appropriate 
protonation states, we followed the approach in (Chaput et al., 
2016) that ligands were used without any modified. Receptors 
were prepared with protein preparation wizard from Schrodinger 
suit (Schrödinger, LLC, New York, NY, 2015-2). Ligands were 
docked using Glide (Friesner et al., 2006) in SP mode with 
default options.

Descriptors and Model
Through data preparation step, the best poses ranked by Gscore 
were selected for actives and decoys. To rescore the docking 
poses from Glide, we utilized the form of the potential of mean-
force (PMF) scoring function (Muegge and Martin, 1999) to 
calculate the score for each protein–ligand complex. In PMF 
scoring function, the score for a complex is defined as the sum 
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of overall protein–ligand atom pair-wise interactions within a 
specific cutoff radius:

PMFScore A i j distance for distcomplex
ji

ij= ( )∑∑     , , aance

cutoff distance

ij  

 <  (1)

where i is the ligand atom, j is the receptor atom, distanceij is the 
distance between atom i and atom j, and A is the function used 
for calculating the PMF between atom i and atom j.

In Pafnucy (Stepniewska-Dziubinska et al., 2018), a structure-
based CNN model, 19 features were used for describing an atom. 
In DeepScore, almost same features but with minor modifications 
were used (see Table 1). The features included the information 
of atom type, hybridization state, heavy valence, hetero valence, 
partial charge, and whether the atom was aromatic/hydrophobic/

hydrogen-bond donor/hydrogen-bond acceptor/in a ring. Heavy 
valence and hetero valence were represented as one-hot vectors 
in DeepScore instead of integers in Pafnucy.

Cutoff distance was changed to an accepted distance range 
in DeepScore. For each complex, atom pairs between 2 and 
8 Å were sorted in the ascending order of length, and only 500 
shortest pairs were taken into consideration. Distance was also 
discretized with bins equally distanced by 0.025 Å between 2 and 
8 Å. The feature for a protein–ligand atom pair was comprised of 
the concatenation of the ligand atom feature vector, the protein 
atom feature vector, and the one-hot-encoded distance, which 
made the length of an atom pair feature 80 bins long (Eq. 2-1). 
The score for an atom pair (i-j) was calculated as Eq. 2-2 using 
a 2-hidden layer fully connected network. The sizes of weight 
matrix W1, W2, and W3 were 80×128,128×64,64×1, respectively. 
b1, b2, and b3 were biases. Rectified linear unit (ReLU) was used 
as activation function. Final score, or DeepScore, for a protein–
ligand complex was calculated as Eq. 2-3. In Eq. 2-3, i and j refer to 
the ligand atom and the receptor atom respectively. All calculated 
scores of selected protein–ligand atom pairs were summed up 
to determine the final score. Overview of the workflow is also 
shown in Figure 1.

 
Feature concatenate Feature Distance Featuij i ij= , ,  rre j( )  (2-1)

 
DeepScore W W ReLU W Feature b bij ij= +( )( ) +( )3 2 1 1 2ReLU(( ) + b3

  
  (2-2)

 
DeepScore DeepScore for selected atcomplex ij

i j
=

−∑     oom pair i j     −
  

  (2-3)

TABLE 1 | Atom features used in DeepScore.

Atom feature name Feature length Features

Type 9 B, C, N, O, P, S, Se, 
halogen, and metal

Hybridization 4 1, 2, 3, other
Heavy valencea 4 1, 2, 3, other
Hetero valenceb 5 0, 1, 2, 3, other
Partial charge 1 Value
Hydrophobic 1 1 (True) or 0 (false)
Aromatic 1 1 (True) or 0 (false)
Hydrogen-bond donor 1 1 (True) or 0 (false)
Hydrogen-bond acceptor 1 1 (True) or 0 (false)
Ring 1 1 (True) or 0 (false)

aThe number of bonds with other heavy atoms.
bThe number of bonds with other heteroatoms.

FIGURE 1 | Workflow of DeepScore model construction.
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Loss Function
In deep learning processes, the usual practice while dealing with 
a two possible classification problem is to put two units in the 
output layer and transform the outputs using softmax function. 
The outputs, which represent the probability of classes 0 and 1, 
respectively, are then used for calculating the loss with cross 
entropy loss or other loss functions. However, in practice, we 
found that the cross entropy loss function did not apply to our 
model very well. We tried some other loss functions and found 
that modified Huber loss (Eq. 3) (Zhang, 2004) was more suitable. 
The formula of modified Huber loss is shown in Eq. 3, where f(x) 
refers to the output of the model and y refers to the label (1 for 
actives and -1 for decoys). It should be noted that, unlike general 
scoring functions, the possible scoring range of DeepScore is the 
entire real number filed. A score greater than zero indicates that 
the model considers the compound to be active, whereas a score 
less than zero is inactive. Another important point is that scores 
between different targets are not comparable.

 

L y  f(x)     ( ), max ,   ( ) ,( ) = −( )  ≥ −

−

0 1 1

4

2
yf x for yf x

yyf x otherwise( )   . 





   
  (3)

Training
Five-fold cross validation test was performed on each target in 
DUD-E. For each target, the whole data set was split into five 
parts at first. Within each fold, three parts were used as training 
set, one part as validation set, and one part as test set. The 
order of [(training set)/validation set/test set], we used during 
cross validation was ([1,2,3]/4/5), ([2,3,4]/5/1), ([3,4,5]/1/2), 
([4,5,1]/2/3), and ([5,1,2]/3/4). Early stopping strategy was used 
for avoiding overfitting. For each training epoch, the area under 
the curve of precision recall curve (PRC-AUC) on validation set 
was calculated. If the performance did not improve within eight 
epochs, training was stopped, and the best model was saved and 
evaluated on test set. Mean value of the metrics of five folds on 
test set was calculated and used as the performance of the model. 
To make it fair, the performance of Gscore was also calculated in 
the same way.

It should be noticed that there existed a dramatic class 
imbalance in our data sets as the number of decoys was almost 
50 times of that of actives. To overcome this problem, we adopted 
the random undersampling strategy. Over an epoch, we did not 
use the whole training set to train the model. Instead, parts of 
decoys were randomly selected out to make sure that the number 
of actives and decoys was the same in an epoch. The reason why 
we chose undersampling was that, compared with other methods 
like oversampling, the training procedure using this strategy was 
significantly faster. 

Our model was implemented using PyTorch 1.0 (https://
pytorch.org/) in python. Each model was trained using Adam 
optimizer with a batch size of 32, a learning rate of 0.001, and a 
weight decay of 0.001.

Evaluation Metrics
The area under the curve of receiver operating characteristic 
curve (ROC-AUC), the PRC-AUC, enrichment factor (EF), and 
ROC Enrichment Factor (ROC-EF) were calculated for each fold 
in order to evaluate the performance of the model. ROC-AUC is a 
traditional metric for assessing the performance of a classification 
model. However, under the circumstance that the number of 
negative samples is obviously larger than the number of positive, 
like our mission, PRC-AUC is usually a more appropriate choice 
to replace ROC-AUC since ROC-AUC may not reflect the early 
enrichment ability of the model (Truchon and Bayly, 2007). EF 
is the fraction of actives within a certain percentage of ranking 
list divided by the fraction in whole data set. Because the way 
of calculating EF simulates actual virtual screening scenarios 
where only a small fraction of ligands are picked out to carry out 
biological test, EF is one of the gold standards used for evaluating 
ranking ability of scoring functions. ROC-EF is another metric 
recommended by Jain et al. (Jain and Nicholls, 2008) to quantify 
early enrichment. It refers to the rate of true-positive rate (TPR) 
to false-positive rate (FPR) at certain FPR. Both EF and ROC-EF 
were calculated at five different levels of percentage: 0.5%, 1%, 
2%, 5%, and 10%. Thus, there were in all 12 metrics for evaluating 
the models.

Consensus Scoring
When the correlation between the statistical errors of multiple 
models is low, combining the predicted values of these models in 
a certain way usually performs better than any single one model. 
This is the basic idea of ensemble learning (Dietterich, 2000). We 
adopted this strategy and used Eq. 4 to calculate DeepScoreCS for 
a complex. In Eq. 4, c is a coefficient that can be adjusted. More 
details will be showed and discussed in Results and Discussion part.

 
DeepScoreCS DeepScore c Gscore c   c= × + × −( ) ≤ ≤1 0 1,  (4)

RESULTS AND DISCUSSION

Model Architecture
Deep learning models are usually regarded as black boxes 
since the information of which features that are important can 
hardly be interpreted from the model. Although CNN based 
scoring functions, like Pafnucy from which the atom features 
of DeepScore were borrowed, have achieved state-of-the-art 
performance in benchmark test, and become the representative 
of deep learning–based scoring functions, treating the whole 
protein–ligand complex as a 3D picture is still counterintuitive. 
Thus, in consideration of interpretation, we chose to reform the 
classic PMF scoring function. The neural network in DeepScore 
is only used to facilitate the learning of atom-pair potentials; 
meanwhile, the overall framework of PMF scoring function is 
preserved. DeepScore is able to directly give the score of each 
atom pair, which makes the model’s output easy to explain. To 
the best of our knowledge, DeepScore is the first model to use 
this framework. 
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Glide Screening
Glide docking results are provided in Table S1. For DUD-E 
data set, the mean value of ROC-AUC gained from Glide 
was 0.82, which showed a significant better screening ability 
compared with other docking software, like AutoDock Vina 
(0.703) (Imrie et al., 2018). To ensure the reliability of docking 
poses, we compared Boltzmann-enhanced discrimination 
ROC (BEDROC, α=80.5) of our results with (Chaput et al., 
2016) on each target, since we used the same docking software 
and similar docking protocol with them. The scatter plotting is 
shown in Figure 2. Our results showed a high correlation with 
(Chaput et al., 2016), which ensured that the docking poses 
are credible.

DeepScore
ROC-AUC, PRC-AUC, EF (0.5%, 1%, 2%, 5%, and 10%), 
ROC-EF (0.5%, 1%, 2%, 5%, and 10%) of Gscore, and DeepScore 
on all 102 targets were calculated (see Figure 3, Table S2 and 
Table S3). Figure 3 shows that DeepScore performs better than 
Gscore significantly. DeepScore had an excellent performance on 
ROC-AUC where all the targets showed an improvement versus 
Gscore. The mean values of 12 metrics were all increased by 
using DeepScore, as shown in Table 2. 

The improvement of performance on some targets was 
obvious. For example, for target FPPS (farnesyl diphosphate 
synthase), the ROC-AUC of Gscore was 0.54, which indicated 
that Gscore just randomly scored actives and decoys on FPPS. 
On the other side, ROC-AUC of DeepScore was 1.00 which 
demonstrated that DeepScore could almost perfectly separate 

actives and decoys. Similar situation also arose in (Ragoza et al., 
2017). In this study, authors found that AutoDock Vina got a 
worse-than-random ROC-AUC of 0.29 on FPPS, while the 

FIGURE 2 | BEDROC scores (α=80.5) on 102 targets of our screening 
results versus the results from benchmark (Chaput et al., 2016). Each dot 
represents a target.

FIGURE 3 | ROC-AUC (upper panel) and PRC-AUC (lower panel) of cross validation performance on each target. Targets are sorted by the performance of Gscore.
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“DUD-E only model” they trained also performed excellently 
with a ROC-AUC of 0.98. The authors supposed that the 
reason why AutoDock Vina performed so poorly was that the 
docking poses of actives were incorrect. However, we found 
that the wrong docking poses may not be the main reason. As is 
shown in Figures 4A, B, more than half of actives were docked 
correctly by Glide, where the bisphosphonate group chelated 
with the magnesium ions, but the performance of Gscore 
was still very poor. Despite this, we agree with (Ragoza et al., 
2017) that the perfect performance of no matter their model or 
DeepScore was because of simply recognizing the biphosphate 
group or polarity of molecules since very few decoys possessed 
phosphorus. It is an extreme example but still highlights two 
facts. First, DUD-E data set exists the problem of obvious 
structure differences between decoys and actives, which may 
result in artificial enrichment during the evaluation of scoring 

functions and virtual screening methods. Second, TSSFs are 
more useful than universal scoring functions in the case where 
the subject is only a single target, because the factors that play a 
leading role in protein–ligand binding modes in different kinds 
of targets are different.

DeepScoreCS
As has been mentioned in Methods part, we further investigated 
if consensus methods could improve the performance of 
the model in our mission. Eq. 4 was used for calculating the 
mixture model consensus scores of Gscore and DeepScore. It 
was important to set an appropriate coefficient c for Eq. 4, and 
obviously, the best c on each target should be different from each 
other. Grid searching was used for settling this problem. For 
each training fold, after the training had stopped, the scores on 

TABLE 2 | Average performance of Gscore, DeepScore, and DeepScoreCS on DUD-E data set.

Gscore DeepScore DeepScoreCS

Value Value Better-1a Value Better-2b

ROC-AUC 0.817 0.979 102 0.978 49
81
51
65
60
40
20
66
47
42
35
28

PRC-AUC 0.317 0.796 100 0.814
EF0.5% 30.625 55.275 94 57.149
EF1% 24.335 52.218 98 53.658
EF2% 17.203 39.716 100 40.075
EF5% 9.122 18.200 102 18.200
EF10% 5.573 9.472 101 9.448
ROC-EF0.5% 51.522 148.948 100 151.986
ROC-EF1% 31.239 81.614 102 82.164
ROC-EF2% 18.689 43.320 102 43.498
ROC-EF5% 9.423 18.417 101 18.365
ROC-EF10% 5.680 9.500 101 9.484

a Better-1 column refers to the number of targets where DeepScore outperforms Gscore.
b Better-2 column refers to the number of targets where DeepScoreCS outperforms DeepScore.

FIGURE 4 | The binding site of FPPS (PDB ID 1zw5). (A) Crystal structure ligand. (B) Superposition of all the docking poses of actives.
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validation set were determined by the best DeepScore model. 
Then, different coefficient c from 0 to 1 with step 0.01 was chosen 
to calculate DeepScoreCS scores on validation set according to 
Eq. 4. The coefficient c with best PRC-AUC on validation set was 
used on test set to evaluate the performance of DeepScoreCS. The 
results are shown in Table 2. It can be seen that the improvement 
of performance by conducting consensus experiment is not 
obvious. The mean values of PRC-AUC, EF0.5%, EF1%, EF2%, 
ROC-EF0.5%, ROC-EF1%, and ROC-EF2% increased slightly, 
while the rest metrics decreased. Most of targets (81/102) got 
higher PRC-AUC. To investigate whether the performance of 
the model may actually benefit from consensus methods, we 
quantitatively examined the improvement of PRC-AUC on each 
target. The results are presented in Figure 5. In Figure 5, each 
point represents a target, X-axis represents the best coefficient c 
(mean value of five folds) on this target, and Y-axis represents the 
improvement on PRC-AUC, which is calculated by the PRC-AUC 
of DeepScoreCS minus that of DeepScore. Targets with higher 
PRC-AUC are painted blue, and targets with lower PRC-AUC 
are painted red. It can be noticed that, although on most targets, 
the impact of consensus strategy was just random perturbation 
(|ΔAUC| < 0.025), no target got a significant decrease on AUC 
(ΔAUC < −0.025). On the other hand, for more than 20 targets, 
ΔAUC was larger than 0.025. Especially for three targets (AMPC, 
MCR, and FABP4), the increase of AUC was significant (ΔAUC > 
0.1). These results demonstrated that the consensus method was 
worthy of trying since it would not weaken the performance 
of the model, and for few targets, the performance would be 
significantly improved. 

Comparing With Previous Studies
We compared our results with two previous similar studies to 
check if our model showed better performance.

First, we compared the performance of DeepScore with 
PLEIC-SVM constructed by Yan et al. (2017). They used 36 

targets to train and test their model, so we selected the scores of 
overlapped targets to make comparison. The results are shown 
in Table 3 and Figure 6. Table 3 clearly indicates that DeepScore 
performed better than PLEIC-SVM. The average ROC-AUC, 
ROC0.5%, ROC%1, ROC2%, and ROC5% (ROC10% of 
PLEIC-SVM was not provided) for all 36 targets increased 
from 0.93, 0.58, 0.64, 0.69, and 0.77 to 0.98, 0.78, 0.85, 0.89, and 
0.94, respectively, by using DeepScore. Among these metrics, 
ROC0.5% is the most important one since the early enrichment 
ability of scoring functions is paid more attention in the context 
of virtual screening. Figure 6 shows that DeepScore outperforms 
on most of the targets on ROC0.5%. On some targets, such as 
FNTA, the improvement was dramatic (for FNTA, ROC0.5% 
increased from 0.31 to 0.92 by using DeepScore). However, for 
GCR, CDK2, BACE1, and PRGR, DeepScore only got a similar 
or slightly worse performance.

The workflow of PLEIC-SVM included a process of tuning 
parameters for SVM model. It should be noticed that, limited by 
the huge number of targets, we did not perform hyperparameter 
optimization for every model. In another word, all models were 
trained under the same set of hyperparameters (learning rate, 
network structure, etc.). Considering the fact that hyperparameters 
may significantly affect the performance of machine learning 
models (also pointed out by (Yan et al., 2017)), it is reasonable to 
infer that the performance of DeepScore will be further improved 
by hyperparameter optimization.

We also compared our model with RF-Score. Wójcikowski et 
al. adopted the same protocol (DUD-E, single target, five-fold 
cross validations) to evaluate the target-specific virtual screening 
ability of RF-Score (WÓjcikowski et al., 2017). Descriptors from 
three versions of RF-Score and ligand binding conformations 
from three docking programs (AutoDock Vina, DOCK 3.6, 
and DOCK 6.6) were used for training the model. In all, nine 
RF-Score models were obtained for testing in their study. The 
comparison results are presented in Table 4. It shows that 
DeepScore outperforms the nine RF-Score models on all of 
the metrics.

Sensitivity to Docking Program
Above results have shown that DeepScore works well with the 
docking poses generated from Glide. To examine whether 

TABLE 3 | Performance comparison between PLEIC-SVM and DeepScore.

PLEIC-SVM DeepScore

ROC-AUC 0.93 0.98
ROC0.5%a 0.58 0.78
ROC1%b 0.64 0.85
ROC2%c 0.69 0.89
ROC5%d 0.77 0.94

Performance values of PLEIC-SVM are collected from (Yan et al., 2017). Better results 
are highlighted in bold. 
a ROC0.5% = ROC-EF0.5% / 200.
b ROC1% = ROC-EF1% / 100.
c ROC2% = ROC-EF2% / 50.
d ROC5% = ROC-EF5% / 20.

FIGURE 5 | The improvement of PRC-AUC on each target using consensus 
method. Each point represents a target. Y-axis represents the value of PRC-
AUC of DeepScoreCS minus that of DeepScore. Blue dot means that the 
improvement is positive while red means negative (the performance became 
worse through consensus method). X-axis represents the mean value of the 
coefficient c DeepScoreCS used.
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DeepScore is sensitive to docking program, we regenerated 
all ligand poses using AutoDock Vina (Trott and Olson, 2010) 
and repeated the above process. ROC-EFs of test results were 
calculated and shown in Tables S4 and S5 to quantitatively 
assess the influence of changing docking program on the 
virtual screening ability of DeepScore. Obvious differences 
can be observed on some targets in Table S5. For example, 
DeepScore-ADV (AutoDock Vina) achieved a ROC-EF0.5% of 
160.65 on HS90A which represented an improvement of 37.01% 
over the ROC-EF0.5% achieved by DeepScore-Glide (117.25). 
But on PLK1, ROC-EF0.5% dropped by 60.61 (DeepScore-
ADV 84.76 vs. DeepScore-Glide 145.37). Generally speaking, 

DeepScore-ADV got a similar performance with DeepScore-
Glide in terms of mean values (see Table S4). It can be concluded 
that the screening ability of DeepScore is robust and insensitive 
to the docking program used, on the premise that the docking 
program can provide reliable docking poses.

Case Study and Visualization
An appropriate visualization method will be beneficial for lead 
optimization. Some deep learning–based scoring functions, like 
DenseFS that uses 3D CNN (Hochuli et al., 2018; Imrie et al., 
2018), are rather cumbersome in explaining the results of the 

FIGURE 6 | The performance of PLEIC-SVM and DeepScore. Targets are sorted by the performance of PLEIC-SVM.

TABLE 4 | Performance comparison between RF-Score and DeepScore.

Model name ROC-AUC EF1% EF2% EF5% EF10%

DeepScore 0.98 52.22 39.72 18.20 9.47
AV-RF-V1 0.82 29.69 21.07 11.74 7.1
AV-RF-V2 0.84 34.75 24.37 12.99 7.55
AV-RF-V3 0.84 32.72 23.04 12.6 7.47
D3.6-RF-V1 0.84 36.28 25.3 13.3 7.71
D3.6-RF-V2 0.87 43.43 29.72 14.76 8.25
D3.6-RF-V3 0.87 41.1 28.27 14.61 8.2
D6.6-RF-V1 0.77 27.42 18.65 10.37 6.42
D6.6-RF-V2 0.80 34.3 22.07 11.73 6.96
D6.6-RF-V3 0.79 32.05 21.56 11.47 6.88

Performance values of RF-Score are collected from the Supporting Information of (Wójcikowski et al., 2017). Best results are highlighted in bold.
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model. The form of DeepScore makes the interpretation and 
visualization of the model much more intuitive. Here, we used 
four targets, AA2AR, CDK2, ESR1, and DPP4, as examples to 
show how to visually analyze the prediction results of DeepScore. 
These four targets were randomly selected and belong to four 
different protein families: AA2AR (adenosine A2a receptor, 
GPCR), CDK2 (cyclin-dependent kinase 2, kinase), ESR1 
(estrogen receptor alpha, nuclear receptor), and DPP4 (dipeptidyl 
peptidase IV, protease).

We showed the contribution of every ligand (or protein) 
atom to binding by coloring each atom different shades of red. 
Given a protein–ligand complex, the score for each atom pair 
could be calculated through Eq. 2-2 under a certain model. 
The contribution of an atom was equivalent to the sum of the 
scores of all atom pairs involving this atom. All of the ligand 
and protein atoms were initially painted dark gray. Then, atoms 
that contributed positively would be painted different shades of 
red, and the color of atoms with negative contributions would 
not change. The atom with the highest positive score in ligand/
protein would be painted in the deepest red. The shades of 
the red of other atoms indicated the relative magnitude of the 
contribution of the atom to the contribution of the atom colored 
deepest red. We randomly selected a positive ligand for each 
target and analyzed the binding mode of the ligand to the target 
using above coloring strategy.

AA2AR A2A adenosine receptors (AA2ARs) belong to G 
protein–coupled receptors (GPCRs). From the pharmacophore 
model, we have known that for AA2AR antagonists, basic 
structures include a hydrogen-bond donor, an N-containing 
aromatic ring, a large lipophilic region, and a smaller lipophilic 
region (Mantri et al., 2008). In Figure 7, the binding mode of 
an active obeying these pharmacophore rules is presented, and 
different regions are labeled. It can be seen that DeepScore 
highlighted the importance of the N-containing aromatic ring 

and the smaller lipophilic region by painting them red. The 
rest structures were taken as less important.

CDK2 Cyclin-dependent kinases (CDKs) belong to serine/
threonine family protein kinases. CDK2 is an ideal clinical 
target used for the treatment of breast cancer. Previous studies 
have shown that Leu83 residue is involved in the hydrogen 
bond formed with ligand (Wang et al., 2018). DeepScore also 
gave a high score to Leu83 and the nearest aromatic group 
(Figure 8). 

ESR1 Estrogen receptor alpha (ER alpha, ESR1) is a target for 
the treatment of breast cancer. Yan et al. used the information 
extracted by their model (PLEIC-SVM) to statistically analyze the 
average hydrophobic and hydrogen-bond interactions between 
residues of binding pocket and ligands for ESR1 (Yan et  al., 
2017). They found that the hydrogen bonds formed between the 
ligand and three residues, Glu353, Arg394, and His524, were the 
decisive factors in distinguishing between actives and decoy. As 
shown in Figure 9, DeepScore also ranked exact these residues as 
the most important three ones. 

FIGURE 7 | Binding mode analysis of CHEMBL418564 with AA2AR 
receptor (DeepScore =1.875, PDB ID 3eml). A to D refer to the four different 
parts in pharmacophore model of AA2AR antagonists. A, hydrogen-bond 
donor. B, N-containing aromatic ring. C, large lipophilic region. D, smaller 
lipophilic region.

FIGURE 8 | Binding mode analysis of CHEMBL363077 with CDK2 receptor 
(DeepScore = 1.805, PDB ID 1h00).

FIGURE 9 | Binding mode analysis of CHEMBL56306 with ESR1 receptor 
(DeepScore = 7.411, PDB ID 1sj0).
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DPP4 Dipeptidyl peptidase-IV (DPP4) inhibitors are used 
for treating diabetes mellitus. According to a recent review 
about DPP4 inhibitors, Glu205, Glu206, and Tyr662 in DPP4 are 
believed to be the most import anchor points helping inhibitors 
recognize DPP IV. Since we used different protein with (Ojeda-
Montes et al., 2018), for the convenience of comparison, we 
performed sequence alignment and renumbered all residues so 
that the residue number we used could match (Ojeda-Montes 
et al., 2018). In Figure 10, it can be seen that DeepScore also 
favored these three residues and gave them fairly high scores. 

CONCLUSION

In this work, we introduced a novel strategy for training target-
specific protein–ligand scoring functions used for structure-
based virtual screening. The model outperformed Glide Gscore 
significantly and made progress with respect to some metrics 
compared with traditional machine learning–based models. These 
results demonstrate that our model is able to further improve 
the screening effect by rescoring docking poses generated from 
docking software. There still remains more space for improving 
DeepScore. Like PMF scoring function, energy terms were treated 
implicitly in DeepScore, which made the model more difficult to 

capture important protein–ligand interactions. The cutoff distance 
we chose may be too short, causing long-range interactions not to 
be captured. However, on the other side, during the experiment, 
we found that a larger cutoff distance would significantly increase 
the noise and calculation cost. The most valuable aspect of 
DeepScore is that it represents a novel atom-pair-based machine 
learning scoring strategy. With the deeper integration of deep 
learning and chemical informatics, we believe that deep learning–
based scoring functions will further develop in the future.
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Many pharmaceutical companies are avoiding the development of novel antibacterials 
due to a range of rational reasons and the high risk of failure. However, there is an 
urgent need for novel antibiotics especially against resistant bacterial strains. Available in 
silico models suffer from many drawbacks and, therefore, are not applicable for scoring 
novel molecules with high structural diversity by their antibacterial potency. Considering 
this, the overall aim of this study was to develop an efficient in silico model able to find 
compounds that have plenty of chances to exhibit antibacterial activity. Based on a 
proprietary screening campaign, we have accumulated a representative dataset of more 
than 140,000 molecules with antibacterial activity against Escherichia coli assessed in the 
same assay and under the same conditions. This intriguing set has no analogue in the 
scientific literature. We applied six in silico techniques to mine these data. For external 
validation, we used 5,000 compounds with low similarity towards training samples. The 
antibacterial activity of the selected molecules against E. coli was assessed using a 
comprehensive biological study. Kohonen-based nonlinear mapping was used for the first 
time and provided the best predictive power (av. 75.5%). Several compounds showed an 
outstanding antibacterial potency and were identified as translation machinery inhibitors 
in vitro and in vivo. For the best compounds, MIC and CC50 values were determined 
to allow us to estimate a selectivity index (SI). Many active compounds have a robust  
IP position.

Keywords: novel antibacterials, machine learning techniques, translation inhibitors, virtual screening, Kohonen-
based SOM
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INTRODUCTION

To the current date, a huge number of diverse small-molecule 
compounds have been reported as having antibacterial activity 
against different bacterial strains (Kohanski et al., 2010; Mohr, 
2016; Naeem et al., 2016; Kaczor et al., 2017). However, almost all 
of them were discovered more than a half-century ago, and they 
are of natural origin, for example, penicillins (Fleming, 2001), 
cephalosporins (Brotzu, 1948), tetracyclines (Bryer et  al., 1948), 
aminoglycosides (Schatz et al., 1944), and macrolides (McGuire 
et al., 1952). Some trivial structural modifications were introduced 
into their structure to improve pharmacokinetic features, reduce 
off-target side effects, and overcome bacterial resistance, which 
resulted in a broader range of next-in-class analogues, which were 
brought to market as well (Abouelhassan et al., 2019; Guan et al., 
2019). On the contrary, fluoroquinolones [FQs, e.g., ciprofloxacin 
(Bauernfeind and Petermuller, 1983)] and linezolid (Spangler 
et al., 1996) are classified as synthetic antibiotics bearing a structure 
suitable for modification, and it is not surprising that more than 
40 FQs were launched. For instance, lascufloxacin (Kishii et al., 
2017), a broad-spectrum antibacterial drug, by Kyorin, is currently 
undergoing registration procedure in Japan as an oral formulation, 
while tedizolid, a linezolid analogue, developed by Merck & Co., 
was approved in 2014 (USA) against acute bacterial skin and skin 
structure infection (ABSSSI). According to Thomson Integrity 
Database, more than 4,000 molecules have been claimed as 
antibacterials during the past 5 years, including the most recent 
nontrivial 2-oxo-1,3-oxazolidines (2017 US 463908) by Johns 
Hopkins University, 1H-imidazo[4,5-c]quinolines by Pfizer (2018 
US 629152), and 2-oxo-1,2-dihydrospiro-indoles by Shaanxi 
University of Science Technology (2018 CN 10285257). Twenty 
new antibacterial chemotypes have been discussed in the Journal of 
Medicinal Chemistry for the last 2 years (see Supporting Information). 
Many pharmaceutical companies, including big pharma alliances, 
have recently focused on antibacterial vaccines in their pre-
clinical and clinical pipelines, for instance, VLA-1701 (Phase II) 
(Clinialtrialsgov, NIH, 2018c), ETEC (Phase I) (Clinicaltrialsgov, 
NIH, 2019b), GC-3107 (Phase I) (Clinicaltrialsgov, NIH, 2017a), 
PF-06842433 (Phase II) (Clinicaltrialsgov, NIH, 2018a), and 
PF-06886992 (Phase I), Vi-TCV (Phase III) (Clinicaltrialsgov, NIH, 
2018b), rhGM-CSF (Phase II/III) (Clinicaltrialsgov, NIH, 2019d), 
and LEP-F1/GLA-SE (Phase I) (Clinicaltrialsgov, NIH, 2019c). 
Several small-molecule antibacterial compounds are currently 
evaluated in different clinical trials, including N-thiadiazolo-
substituted piperidine (DS-2969; Phase I, Daiichi Sankyo), two 
boron-containing molecules [(GSK-070 (Clinicaltrialsgov, NIH, 
2019a) and VNRX-5133 (Clinicaltrialsgov, NIH, 2017b); Phase I, 
GSK, and Phase I, VenatoRx Pharmaceuticals, respectively], 
benzimidazole-substituted 2H-chromen (tegoprazan; registered in 
2018 for the treatment of gastroesophageal reflux disease in Korea, 
RaQualia), novel monobactam (BOS-228; Phase II, Novartis), 
2-oxo-3,4-dihydro-1,8-naphthyridine (afabicin bis; Phase II, 
GSK), substituted 3-phenyl-1H-pyrrol-olorofim (Phase II, F2G 
Ltd.), original 1,6-diazabicyclo[3.2.1]octane-2-carboxamide 
(nacubactam, a β-lactamase inhibitor; Phase I, Roche), and 
1H-pyrrolo[3,2-b]pyridine (TBA-7371; against tuberculosis, Phase 
I, AstraZeneca). At first glance, there are no principal barriers in 

this field; however, this speculative conclusion is rather illusory. De 
facto, biological evaluation of many molecules was discontinued 
due to the lack of efficiency and resistance barriers. The rate of 
failure outcomes within this sector is close to that observed in 
anticancer indication. Anyhow, a relatively high risk of failure 
makes this area much less attractive for the drug design and 
development in contrast to other easy-to-use therapeutic niches. 
Indeed, in recent years, global pharmaceutical players have shied 
away from this field and have shifted focus to more lucrative long-
term treatments to manage generally chronic conditions (Projan, 
2003). Considering the industry’s reluctance to invest and support 
the development of new small-molecule antibiotics, academia 
and minor pharmaceutical companies are strategically positioned 
to play a key role in the initial stages of lead identification 
and optimization. Therefore, the improvement of primarily 
hit identification programs can dramatically extend a pool of 
promising lead candidates. Under these conditions, machine 
learning techniques can be reasonably regarded as one of the most 
appropriate and effective tools to perform rational selection of 
the most attractive compounds and to achieve significant success 
during initial rounds of HTS, thereby providing many diverse 
starting points for subsequent optimization and development.

Although many QSAR models for describing and predicting 
the antibacterial activity of small-molecule compounds have been 
published to date, they are mostly focused on an individual class 
of compounds or on a pre-defined scaffold (Morjan et al., 2015; 
Leemans et al., 2016). As a rule, such models are not applicable for 
diverse compound libraries at all, because input parameters, for 
example, molecular descriptors, are mainly selected to properly 
describe the chemical space around a chemotype studied. There 
are some examples of generalized in silico models for the prediction 
of antibacterial potency of heterogeneous series of molecules 
(Table 1). Most of them were trained with small- to moderate-
sized training sets (Garcia-Domenech and de Julian-Ortiz, 1998; 
Tomas-Vert et al., 2000; Mishra et al., 2001; Cronin et al., 2002; 
Aptula et al., 2003; Molina et al., 2004; Murcia-Soler et al., 2004; 
Cherkasov, 2005; Gonzalez-Diaz et al., 2005; Marrero-Ponce 
et al., 2005; Yang et al., 2009) collected using three data sources 
of antibiotics (Glasby, 1978; Negwer, 1987; Maynard, 1996). As 
a result, they contain activity values determined in different 
assays and conditions with no information about their effective 
concentration. However, recently published models have utilized 
more comprehensive and qualitative databases (Karakoc et al., 
2006; Yang et al., 2009; Wang et al., 2014; Masalha et al., 2018). For 
instance, in 2006, Karakoc and colleagues used a complete small-
molecule collection that included 4,346 compounds bearing 
“vecchio” scaffolds, particularly 520 antibiotics, 562 bacterial 
metabolites, 958 drugs, 1,220 drug-like compounds, and 1,104 
human metabolites (Karakoc et al., 2006). In 2018, Masalha et al. 
built a predictive model based on 3,500 molecules, but this dataset 
was collected using different sources that could provide a great 
bit of false-positive results (Masalha et al., 2018). Although the 
database contained compounds with high diversity in structure, 
most of them were well-known chemical entities and natural 
products (e.g., caffeine and ricinine), representing the active 
and inactive domains, respectively. In contrast, in this work, we 
utilized our large proprietary dataset of highly diverse molecules 
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(vide infra) with low structural similarity towards the reported 
antibacterial compounds. This set was improved by antibacterial 
compounds obtained from Thomson Integrity Database.

Furthermore, the predictive power of many published models 
was not verified by cross-validation or by using an external 
validation set of fairly diverse compounds (Garcia-Domenech 
and de Julian-Ortiz, 1998; Tomas-Vert et al., 2000; Aptula et 
al., 2003; Murcia-Soler et al., 2004; Gonzalez-Diaz et al., 2005). 
Nevertheless, only a small part of these models was employed 
in a routine virtual screening practice (Marrero-Ponce et al., 
2005; Wang et al., 2014; Castillo-Garit et al., 2015; Masalha et 
al., 2018) and resulted in the discovery of novel hit compounds 
with a remarkable antibacterial activity (Gonzalez-Diaz et al., 
2005; Wang et al., 2014; Masalha et al., 2018). In 2015, Castillo-
Garit and co-workers performed a ligand-based virtual screening 
study of 116 molecules with reported antibacterial activity using 
the developed QSAR model (Castillo-Garit et al., 2015). The 
model demonstrated good predictive ability in differentiation 
between active and inactive molecules. In 2014, an in silico study 
was carried out by Wang et al. using Guangdong Small Molecule 
Tangible Library (7,500 compounds) to search for new anti-MRSA 
agents and led to the identification of 56 primarily hits (Wang 
et al., 2014). Among them, 12 compounds were not reported 
previously as anti-MRSA agents and exhibited good activity 
against three MRSA strains. However, for the best compounds, 
only MIC values against bacterial cell lines were measured with no 
information about, for example, cytotoxicity towards eukaryotic 
cells. Therefore, it is hard to assess the SI of these molecules and 
further perspectives. In contrast, in this study, CC50 values against 
the selected eukaryotic cell lines were determined to estimate this 
index for the most promising compounds.

For a long time, linear discriminant analysis (LDA) 
(Garcia-Domenech and de Julian-Ortiz, 1998; Mishra et al., 
2001; Cronin et al., 2002; Aptula et al., 2003; Molina et al., 2004; 
Murcia-Soler et al., 2004; Gonzalez-Diaz et al., 2005; Marrero-
Ponce et al., 2005; Karakoc et al., 2006; Castillo-Garit et al., 
2015) and ANN (Garcia-Domenech and de Julian-Ortiz, 1998; 
Tomas-Vert et al., 2000; Murcia-Soler et al., 2004; Cherkasov, 
2005; Karakoc et al., 2006) were the most popular machine 
learning methods that were used for prediction of antibacterial 
activity. On the contrary, few studies successfully implemented 
other in silico techniques, for example, binary logistic regression 
(BLR) (Cronin et al., 2002; Aptula et  al., 2003), SVM (Yang 
et al., 2009; Wang et al., 2014), kNN (Karakoc et al., 2006; Yang  
et al., 2009; Wang et al., 2014), and decision tree (DT) (Yang et al., 
2009). Therefore, herein, we placed particular focus on powerful 
and high-performance machine learning techniques that were 
not applied for antibacterials before, including Kohonen-based 
SOMs.

MATERIALS AND METHODS

Biological Evaluation
High-Throughput Screening
Primary antibacterial activity of small-molecule compounds 
was assessed using our unique HTS platform described 
previously (Osterman et al., 2016). This approach allows 
us to estimate the mechanism of action of hit molecules 
based on the specific double-reporter system. Briefly, the red 
fluorescent protein gene rfp was placed under the control of a 
sulA promoter that was induced by SOS response. The gene of 

TABLE 1 | In silico models for the development of novel antibacterial compounds.

No. Ntotal Nantibiotics Number of 
variables

Techniquea) Overall accuracyb) (%) Ref.

1 111 60 7 LDA 93.8/91.5** (Garcia-Domenech and 
de Julian-Ortiz, 1998)ANN 89.0/97.9**

2 664 249 62 ANN 94.8** (Tomas-Vert et al., 2000)
3 59 24 17 LDA 85.0/84.0*** (Mishra et al., 2001)
4 661 249 6 LDA 92.6/93.6* (Cronin et al., 2002)

BLR 94.7/94.3*

5 664 249 3 LDA 90.1** (Aptula et al., 2003)
BLR 92.1**

6 351 213 7 LDA 91.0/89.0*** (Molina et al., 2004)
7 433 217 6 LDA 85.7/87.5** (Murcia-Soler et al., 2004)

62 ANN 98.7/91.4**

8 667 363 7 LDA 92.9/94.0** (Gonzalez-Diaz et al., 2005)
9 657 249 34 ANN 92.9**/100.0*** (Cherkasov, 2005)
10 2,030 1,006 8 LDAc) 90.4/89.3**/93.1*** (Marrero-Ponce et al., 2005)
11 4,346 520 62 kNN 95.0/95.0*/84.4*** (Karakoc et al., 2006)

12
611 230 36 SVC 100.0*/100.0**/98.1*** (Yang et al., 2009)

kNN 97.7**/96.1***

DT 98.6*/92.3**/91.0***

13 7,517 2,066 21 kNNc) 99.2*/81.8**/78.3*** (Wang et al., 2014)
14 2,230 1,051 3 LDAc) 85.6/87.2**/86.2*** (Castillo-Garit et al., 2015)
15 3,500 628 4 ISE 94.6/72.0*** (Masalha et al., 2018)

a)LDA, linear discriminant analysis; ANN, artificial neural network; BLR, binary logistic regression; kNN, k-nearest neighbors; MLR, multiple linear regression; SVC, support vector 
classification; DT, decision tree; ISE, iterative stochastic elimination. b)*Cross-validation; **internal test set; ***external test set. c)Models that demonstrated the highest quality with 
external test set
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the fluorescent protein, katushka2S, was inserted downstream 
of the tryptophan attenuator. Two tryptophan codons were 
replaced by alanine codons, with simultaneous replacement 
of the complementary part of the attenuator to prevent the 
formation of a secondary structure that influences transcription 
termination. Thereby, the expression of katushka2S is observed 
only upon exposure to ribosome-stalling compounds. E. 
coli strains BW25113 or JW5503 were transfected with the 
designed plasmid called pDualrep2. As a result, it was possible 
to differentiate between three mechanisms of antibacterial 
action in “one-pot” format: DNA damage (expression of rfp), 
translation inhibition (expression of katushka2S), and others 
(inhibition of bacterial growth without expression of any 
reporter gene). The described assay was successfully validated 
using well-known antibacterial molecules and antibiotics 
(Supplementary Figure 1). Molecules were purchased from 
vendor collections and dissolved in DMSO at a concentration 
of 17 mg/ml (for the first round of HTS). Then, solutions of 
the compounds were spotted on agar plates with the reporter 
strain by a 96-channel pipetting head of a Janus liquid handling 
station (PerkinElmer) in a volume of 2 μl of each sample. 
Erythromycin (ERY, 1 μl) and levofloxacin (LVX, 1 μl) were 
added in each plate as control samples. After 16 h of incubation 
at 37°C, the Petri plates were scanned by a ChemiDoc system 
(Bio-Rad). Antibacterial activity was preliminary estimated by 
a thorough visual analysis, measurement of growth inhibition 
zone and MIC values: 0–4 mm (“−”), 4–7 mm (“+/−”), 7–11 mm 
(“+”), 11–16 mm (“++”; 25 µg/ml < MIC < 200 µg/ml), 16–20 
mm (“+++”; 6.25 < MIC < 25), and 20–25 mm (“++++”; MIC < 
6.25). Compounds with an insignificant growth inhibition area 
(“−,” “+/−,” and “+”; MIC > 200 µg/ml) were defined as inactive 
because of a relatively high concentration of compounds was 
used during this step. Molecules that caused strong inhibition 
of bacterial growth (“++,” “+++,” and “++++”) were classified 
as active.

In Vitro Translation Inhibition
14C-Test
E. coli ΔtolC strain was used to assess translation inhibition in 
vivo. Bacterial cells were cultivated in M9 medium to OD600 
0.3–0.5. Then, the tested molecule was added at a concentration 
of 10 times higher than the determined MIC value to the 200 
µl of the cells. After 2-min incubation, 1 µl of 14C-labeled 
valine (256 mCi/mmol) was added to the sample. Cells were 
incubated further for 2 min at 37°C. After incubation was 
completed, the sample was centrifuged, culture medium was 
separated, and lysis was performed with 20 µl HU buffer. The 
resulting mixture (5–10 µl) was subjected to polyacrylamide gel 
electrophoresis. The 10% SDS–PAGE gel was run for 60 min 
at 120 V and stained with Coomassie Brilliant Blue dye. The 
detection of 14C-labeled valine was carried out after 48 h by 
means of Typhoon GE Phosphorimager.

In Vitro Luciferase Assay
In vitro transcribed firefly luciferase mRNA was translated in 
a cell-free system based on S30 cellular extract from E. coli. The 

samples were tested at a final concentration of 100 times lower 
than that used in the cell-based assay (vide supra). To investigate 
the effect of the selected molecules on the prokaryotic ribosome, a 
mixture of isolated ribosomes with a compound was kept at 37°C 
for 5 min without mRNA. Then, mRNA (200 ng) was added to the 
reaction mixture, and translation was initiated in a 10-ml reaction 
volume at 37°C for 30 min (Osterman et al., 2017). The translation 
of mRNA encoding luciferase was evaluated by measurement of 
enzyme activity using 0.1 mM d-luciferin and a spectrophotometer 
(PerkinElmer). Two control samples were used: negative (1% 
DMSO as an indicator that no translation inhibition occurred) 
and positive (ERY at a final concentration of 0.01 mg/ml as a 
translation inhibitor). All the measured values were normalized 
using the positive control baseline and expressed as a percentage.

MTT Test
Cytotoxicity was assessed using the MTT (3-(4,5-dimethylthiazol-
2-yl)2,5-diphenyl tetrazolium bromide) assay following the 
standard protocol with some modifications. Four thousand cells 
per well for VA13 cell line and 2,500 cells per well for MCF7, 
HEK293T, and A549 cell lines were plated out in 135 μl of 
DMEM/F12 media in a 96-well plate and incubated at 37°C, 
5% CO2 for 18 h before treatment. Then, the tested compound 
(15 μl, media/DMSO solution, the final DMSO concentration in 
the media was 0.5% or less) was added, and the cell samples were 
incubated for 72 h. The tested molecule in final concentrations 
of 50 nM–100 μM (eight dilutions), in triplicate, was applied. 
Doxorubicin (2 nM–6 μM) was used as a positive control. At the 
end of the incubation, MTT was added into the media (up to 0.5 
mg/ml), and cells were incubated for 2 h followed by removal of 
the media and addition of DMSO (100 μl). The amount of MTT 
reduced by cells to its blue formazan derivative was measured 
spectrophotometrically at 565 nM using a plate reader and 
normalized to the values for cells treated with the media/DMSO 
only. CC50 value was calculated with “GraphPad Prism 5” software 
(GraphPad Software, Inc., San Diego, CA). Cytotoxicity of some 
compounds was also assessed by an independent biological team. 
Compounds were tested at a single concentration of 10 μM, and 
the survival rate was obtained.

Minimum Inhibitory Concentration
MICs in LB and M9 medium were determined using broth 
microdilution assay (Wiegand et al., 2008). The cell concentration 
was adjusted to approximately 5 × 105 cells/ml. The tested 
compound was serially diluted twofold in a 96-well microplate 
(100 μl per well). Microplates were covered and incubated at 
37°C with shaking. The OD600 of each well was measured, and 
the lowest concentration of the tested compound that resulted in 
no growth after 16–20 h was assigned to MIC value.

Reference Database and Pre-Processing
The crude reference database for in silico modeling contained 
a total of 145,000 small-molecule compounds. Most of them 
(132,641 molecules) were outputted from our HTS campaign: 
1,786 active and 130,855 inactive compounds (a hit rate for a 
random HTS was typical, 1.35). It should be especially noted that 
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these compounds were highly dissimilar in structure to known 
antibiotics and antibacterial compounds because the prime 
goal of our previous work was to identify novel antibacterial 
scaffolds. The database was improved by the known antibacterial 
compounds obtained from Thomson Reuters Integrity database 
in order to increase the number of active samples and to cover 
the entire chemical space. In total, 12,347 molecules were 
added. Duplicate structures were removed using ChemoSoft 
software. Antibacterial molecules frequently contain specific 
substructures that are rather unusual in other therapeutic 
indications. Therefore, in this case, several medicinal chemistry 
filters (MCFs) cannot be properly applied to exclude undesired 
molecules. Thus, only “absolutely” nondrug-like molecules (e.g., 
metal-, silicon- and phospho-organic compounds, extensive 
linear aliphatic moieties, and sugars) as well as compounds 
containing highly toxic or unstable/reactive groups (e.g., 
strained heterocycles, isatines, hydroxamic acids, acylated 
imidazoles, and disulfides) were eliminated. Charged items 
were redrawn and presented in their neutral form, salt parts 
were deleted, and errors in structures were manually corrected. 
Then, the database was clustered using ChemoSoft software 
with the following parameters: Tanimoto similarity threshold ≥ 
0.5 and the number of structures per cluster ≥ 5. In order to 
increase the common diversity of the dataset and to decrease the 
number of overrepresented structures, only 30 members with 
upper diversity coefficients per each cluster, as well as singletons, 
were retained. As a result, the final database contained 74,567 
compounds (8,724 active and 65,843 inactive). The main 
parameters of the training dataset are listed in Table 2.

Molecular Descriptors
Molecular descriptors (total of 1,749) were calculated for the 
whole training dataset using Dragon, ChemoSoft, MOE, and 
SmartMining (Pletnev et al., 2009) software tools. The number 
of descriptors was reduced to 1,243 by the omission of constant, 
near-constant, and highly correlated (R > 0.9) descriptors. A 
priori, we excluded a series of ordinary descriptors (e.g., 
number of exact and query substructures as well as fingerprints) 
to overcome overfitting, like in the case of β-lactams, 
fluoroquinolones, linezolid analogues, and other structure-
biased antibacterials, and to objectively describe the input 
chemical space by a comprehensive set of key physicochemical 
molecular properties related with antibacterial potency. Then, 
the t-statistic was calculated for the remaining descriptors. Those 
with the best t-values were selected accounting their theoretical 
impact on the studied phenomenon (Supplementary Table 1) 
followed by PCA analysis (Supporting Information). As a result, 
we selected 40 molecular descriptors to perform the learning 

procedure. These include topological and electrotopological 
descriptors, lipophilicity and polarity indexes, the number 
of potential H-bond donors and H-bond acceptors, number 
of free-rotatable bonds and drug-likeness violation, atomic 
contribution to molar refractivity and autocorrelation, 
partial van der Waals surface area, and symmetry indexes 
(Supplementary Table 2).

In Silico Modeling
SOM
SOM (Kohonen, 1990) is one of the most powerful machine 
learning techniques that map multidimensional data onto 
lower-dimensional subspaces where geometric relationships 
between points indicate their similarity. Considering this fact, 
the output may be easily interpreted. However, this method 
requires a large amount of input data in order to achieve 
an appropriate predictive power. Kohonen-based SOM was 
constructed in SmartMining Software. The map size was 30 
× 30 nodes (2D representation, of total 900 nodes, random 
distribution threshold was 82 samples per neuron), tetragonal 
cell, learning epochs: 2,000, initial learning rate: 0.3 (linear 
decay), initial learning radius: 15 (linear decay), activation 
function: Gaussian, winning neuron was determined using 
the standard Euclidean metrics, initial weight coefficients: 
random distribution, input vector: 40 descriptors (not 
normalized). Three independent randomizations were used 
to assess the reproducibility and stability of the model. After 
the unsupervised training process was completed, neurons 
were prioritized based on the following privileged factor (PF): 
Ni

ab (%)/Ni
nab (%), where Ni

ab is the percent of antibacterials 
located in the ith neuron and while Ni

nab is the percent of 
nonantibacterials located in the same neuron and vice versa. 
PF value greater than 1 was used as a threshold to assign 
neurons to one of these two classes.

kNN
kNN (Zhang, 2016) is one of the simplest machine learning 
algorithms. However, its predictive performance and low 
computational costs make it one of the most used machine learning 
methods. This algorithm is based on feature similarity: the test 
sample is classified according to the nearest neighbors from the 
training dataset. However, the simplicity of kNN is associated with 
its inability to achieve an appropriate classification performance in 
case of complex data. In order to achieve the best predictive power, 
the following parameters of the classifier were varied: a number 
of neighbors (3–9, default 5), weights (“uniform” or “distance”), 
power parameter for the Minkowski metric (p = 1 for Manhattan 
distance and p = 2 for Euclidean distance).

TABLE 2 | Key features of the training dataset.

Number of 
compounds

Active Inactive Diversity* Unique heterocycles Clusters** Av. cluster 
size

Singletons

All Active Inactive

74,567 8,724 65,843 0.86 3,961 1,146 3,370 2,021 15 22,521

*Reverse Tanimoto metrics; **min. cluster size, 5; max. cluster size, 30; similarity threshold, 0.5.
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Training Dataset Segmentation
Considering that the following in silico techniques use a supervised 
learning procedure, the randomized training datasets were 
subdivided into three categories in order to correctly estimate 
their classification accuracy: training set, cross-validation set, and 
internal test set (Balakin et al., 2004). The cross-validation subset 
was used to avoid model overfitting during the learning procedure, 
and the internal testing subset was used for pre-validation of the 
developed models. The learning settings were varied in order to 
reach the best classification accuracy. All the algorithms below 
were realized using scikit-learn library for Python 3.6.

GB
Gradient boosting (Friedman, 2001) is one of the most powerful 
machine learning methods. It is an ensemble technique, in which 
new models (decision trees) are added to correct the errors by 
the existing models. Models are added sequentially until no 
further improvements can be made. GB is relatively resistant to 
an increase in the number of decision trees, so this usually leads 
to greater performance. Increasing the maximum depth does not 
always improve the prediction quality and may lead to overfitting 
and an increase in training time. The learning parameters were 
varied in order to reach the best classification power. The default 
values were the following: The number of trees was 100, and 
maximum tree depth was 3.

RF
In contrast to GB, random forest (Breiman, 2001) is based on 
“fully grown” decision trees that are trained independently using 
a random sample of data. It should be noted that both GB and RF 
may be trained without preparation of the input data (scaling or 
normalization). One of the main advantages of RF compared with 
GB is the simplicity of model tuning. However, it is less resistant 
to an increase in the number of basic classifiers that also leads to a 
dramatic increase in computational costs. The default parameters 
of the model were the following: the number of trees was 10, and 
the maximum depth was not limited (building a tree until all 
leaves were empty or all leaves contained less than two elements).

FFN (Feedforward Neural Network)
Artificial neural networks (Sazli, 2006) usually perform slightly 
better than the classifiers described above. However, overfitting 
is the main problem during the training procedure. Thus, 
different regularization techniques, parameters tuning, and 
accurate feature selection are required to achieve an appropriate 
classification accuracy. Moreover, FFN training procedure 
requires intense computational cost than do the other classifiers. 
One of the main disadvantages of neural networks is their “black 
box” nature. It is hard to understand how the prediction has 
been made. The three-layer neural network was constructed as 
follows: 30 neurons in the input layer, 100–150 neurons in the 
second layer, 30–80 neurons in the third layer, and 1 neuron in 
the output layer. The number of learning epochs varied from 
1000 to 2000; initial learning rate was 0.1 (linear decay coefficient 
0.01); weights were initialized randomly; dropout technique was 
used to prevent overfitting.

SVM
SVM (Cortes and Vapnik, 1995) is a supervised machine 
learning algorithm that can be used for both classification and 
regression tasks. In this algorithm, each data item is plotted as 
a point in n-dimensional space with the value of each feature 
being the value of a particular coordinate. Then, classification is 
performed by finding the best hyperplane that differentiates two 
predefined classes. The main advantage of SVM is the possibility 
of using different kernels. Kernels are functions that transform 
low-dimensional input space to a higher-dimensional space 
where the classes can be separated. However, it is usually hard to 
choose hyperparameters of the SVM for sufficient generalization 
performance. The following parameters of SVM were used: 
penalty parameter (1.0 ≤ C ≤ 10.0) and kernel (linear, RBF, 
polynomial, and sigmoid).

Experimental Validation
All the models described above were used to predict the 
antibacterial activity of novel molecules (5,000) randomly 
selected from the available vendor`s collections. These testing 
samples were selected using a threshold Tanimoto-based 
similarity value < 0.5 towards the training samples. All the 
compounds obtained were investigated for their antibacterial 
potency using the assays listed above. Biological results were then 
used to assess the prediction power of the models.

RESULTS

High-Throughput Screening
We used extensive proprietary data on the antibacterial activity of 
small-molecule compounds obtained during our HTS campaign. 
Screening molecules were selected from the stocks based on 
the following core principles: a) a relatively low structural 
similarity towards the reported antibacterial compounds and 
antibiotics, b) maximum diversity in structure per each cluster, 
c) all the remaining singletons (molecules that were not fitted in 
any cluster) were included as well, and d) maximal covering of 
the common chemical space provided by suppliers. In general, 
we used two collections of commercially available compounds 
by ChemDiv and IBS. While ChemDiv stock mainly contains 
organic compounds of synthetic origin, IBS basically focuses 
on nature-based molecules and their close analogues. To our 
satisfaction, to the current date, these obstacles have been 
overcome, and we have recently initiated a follow-up HTS round 
with EA compounds.

Reference Database and Pre-Processing
To estimate the quality of covering the whole chemical space 
by the pool of the selected compounds, we constructed 
Sammon-based nonlinear map using the descriptors listed 
above (Sammon, 1969). Prior to mapping, we performed 
clustering analysis and rejected molecules with high similarity 
in structure per each cluster. We also applied soft MCFs to 
the final database for the exclusion of marginal nondrug-like 
structures. During Sammon mapping, we observed that about 
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70% of the collections used were normally covered by the 
remaining molecules. Therefore, we can speculate that they 
reflect the key features of the collections used more reliably 
and objectively versus random selection. In other words, we 
were trying to reach maximal covering and diversity with a 
minimal number of compounds. The pre-processed database 
was then used as a training set for in silico modeling.

Molecular Descriptor Feature Selection
It should be especially noted that several of the selected molecular 
descriptors were described previously as important for statistically 
significant separation between antibacterial and nonantibacterial 
compounds (Araya-Cloutier et al., 2018). Distributions for the 
representative descriptors used for learning herein are depicted 
in Figure 1. As shown in Figure 1, Hy (F2 = 0.75) and HBD (F2 
= 0.72) were among the best scored variables with t-coefficient 
higher than 40. Of the total, 25 molecular descriptors were 
classified as core inputs on the basis of t-stat analysis (t > 30). 
Several descriptors were less significant providing lower t-values, 
for instance, S(═N–) (t = 8.7, F4 = 0.48), GVWAI-80 (t = 24, F12 
= 0.62), and M1 (t = 29, F1 = 0.83); however, in contrast to Hy 
and HBD, they were disposed in distinct areas of the common 
PCA plot (Supporting Information) and, therefore, contributed 
well to the exposition of the input chemical space, as well as 
the classification. Indeed, the exclusion of inputs with low-rate 
t-value led to the reduction of classification accuracy. Moreover, 
we performed non-parametric Mann–Whitney U test to prove 
the correctness of the description selection. The results of U test 
correlated with t-stat values (Supplementary Table 6). Based 
on the performed PCA analysis, 18 molecular descriptors were 
found to reflect 90% of the entire variability.

In Silico Modeling
Because the dataset was highly imbalanced (eight times more 
inactive molecules vs. active), the models constructed using the 
remaining algorithms classified the majority of the samples as 
inactive, achieving a relatively high overall accuracy. Manipulations 
with the class weights parameters did not lead to any improvement 
in the classification ability. As a result, we constantly observed 
overfitting passages that are highly undesirable in machine learning. 
In order to balance the numbers of the compounds of both classes, 
the inactive molecules were clustered (Tanimoto similarity > 0.7), 
and the singletons were added to the nearest clusters. Each cluster 
was equally split into four different subsets (Supplementary Table 
3), which resulted in four independent training sets (15,961 inactive 
and 7,724 active molecules in each “echelon”). The remaining 
2,000 inactive and 1,000 active compounds were merged to form 
the internal test set. The antibacterial activity of the molecules was 
predicted using all these models and assigned for each sample based 
on the consensus score value. RF classifier demonstrated a relatively 
low classification accuracy. The best results were obtained using 
100 classification trees (other parameters were kept as default). The 
average accuracy with the internal test set was 79.5% (90.2% for 
inactive and 68.8% for active compounds). GB provided almost 
the same results (average accuracy was 79.9%). More advanced 
algorithms (SVM and FFN) performed slightly better than decision 
tree-based classifiers. It should be noted that data scaling is strongly 
required to achieve better performance for these techniques. Thus, 
each descriptor vector was standardized using the scaling tool of 
scikit-learn library. The best classification results with SVM were 
obtained using the following parameters: penalty parameter of the 
error term (C = 10.0, kernel = rbf because other kernels, such as 
sigmoid, polynomial, and linear, demonstrated worse results). The 

FIGURE 1 | Representative examples of molecular descriptors included in the final set of input variables; HBD, number of potential H-bond donors, Hy, hydrophilic factor, 
RB, number of free-rotatable bonds; LogP_VSA, reflects hydrophobic and hydrophilic effects; TPSA, polar surface area; HBA, number of potential H-bond acceptors.
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average accuracy of the constructed models was 82.7% (91.5% for 
inactive and 73.9% for active compounds). FFN was implemented 
using Keras library for Python 3.6. Three-layer FFN showed the best 
average classification accuracy 81.3% (90.5% for inactive and 73.1% 
for active compounds). Other parameters of the neural network were 
the following: number of training epochs = 1,000; regularization, 
dropout (0.3 for each layer); activation function, sigmoid; and initial 
learning rate = 0.01.

The resulting Kohonen map is presented in Figure 2. As 
shown in Figure 2A, antibacterial compounds are located 
predominantly within a tight area of the whole map distinct from 
the nodes abundantly populated by nonantibacterial molecules 
(Figure  2B). The arrows in Figure 2A denote the location of 
different antibacterial drug classes in the map. At the final iteration, 
learning vector quantization error (LVQE) was relatively low, 
reaching a maximum value of 0.012 (Supplementary Figure 2). 
More than 90% of samples provided LVQE of less than 0.002. 
Therefore, we can conclude that the constructed model has very 
good generalization ability and learning outcome. The stability of 
the model was verified using three independent randomizations. 
Moreover, the addition of a fuzzy input with stochastic 
variables did not strongly affect the quality of classification. 
Upon examination, there were few “dead” neurons within the 
constructed map. The average classification accuracy was 77.5% 
and 69.8% without and with a random threshold, respectively.

The best predictive power with the internal test set was 
obtained using kNN. The most significant parameters that 
affected the classification accuracy were the number of neighbors 
(the best value = 3) and the weight function used in prediction 
(the best one was “distance” that weighted points by the inverse of 
their distance, so closer neighbors of a query point had a greater 
influence than neighbors that were further away). Euclidean 
metric was used for distance calculation. The prediction accuracy 
was 83.2% (88.7% for inactive and 77.7% for active compounds).

In addition, we performed a comprehensive statistical analysis 
of various nonheterocyclic (Figure 3A) as well as heterocyclic 

(Figure 3B) fragments presented in both classes. Among the first 
category, the methoxy (30.5% and 35% for active and inactive 
compounds, respectively) and carbonyl groups (39% and 25%) 
are the most represented. Nonantibacterial compounds contain 
1.56 times greater number of carbonyl fragments in contrast 
to antibacterials, while the methoxy group does not provide a 
statistically significant separation between two classes studied. The 
accuracy of propanoyl moiety among inactive compounds is 3 times 
higher than in active samples. Carboxylic, α,β-unsaturated carbonyl, 
and allyl are the most characteristic moieties for antibacterial 
compounds: respectively 3.75, 6, and 9 times higher rate than the 
inactive class. With respect to heterocycles, indole is the most 
represented (12%) heterocyclic fragment among antibacterials. The 
rate of indole, imidazole, quinoline, and benzimidazole fragments 
is greatly biased towards antibacterial compounds, while furan and 
piperazine (~7%) are 2.3 times more abundant in nonantibacterials. 
In addition, 1,3-benzodioxole fragment is privileged for inactive 
molecules, while isoxazole is equally found in both classes. It should 
be especially noted that several molecular descriptors included in 
the final set for performing learning procedure are closely related 
with the statistical observations below. For instance, the common 
polarity encoded by S(–OH), S(–O–), S(═N–), S(> N–), HB2, a_acc, 
O-057/061, PEOE_VSA_FPOS, and TPSA corresponds to methoxy, 
carbonyl, propanoyl, carboxylic, and α,β-unsaturated carbonyl 
groups and heterocycles, while Hy and SlogP_VSA0 contribute to 
lipophilicity, particularly taking into account linear and branched 
alkyl moieties as well as aromatic fragments. Topology of a structure 
relates, for example, with M1, SPI, EEig07x, Q′, VEA2, and GATS1m.

Experimental Validation
To investigate the prediction power of the constructed models, 
we used an external test set of 5K small-molecule compounds 
with similarity in structure of less than 0.5 to the whole training 
set. These molecules were randomly selected and purchased 
from ChemDiv and IBS collections. Antibacterial activity of the 

FIGURE 2 | A 30 × 30 2D Kohonen SOM for discrimination between antibacterial (A) and nonantibacterial (B) compounds within the same map. Color gradient 
corresponds to the percentage of molecules. Basic contours of the map were smoothed for a convenient visual inspection.
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compounds was predicted using the developed models and then 
evaluated following the biological protocols described above. We 
did not use a consensus score value per each sample and retained 
compounds, which were predicted as inactive to estimate the 
prediction “resolution” of the models towards both classes used. 
This allowed us to get a valuable feedback on a possible overfitting 
or bias during the learning procedures. The first round of HTS has 
resulted in 371 active compounds (hit rate = 7.4%) followed by 
rescreen procedure performed at lower concentration. Rescreen 
confirmed moderate-to-high antibacterial activity for 65% 
of molecules. It should be especially noted that among all the 
active molecules from the initial HTS (molecules included in the 

training set) and from the external test set, only a few compounds 
showed a considerable inhibition activity against E. coliwt. Several 
compounds demonstrated a robust SOS response or inhibition of 
translation machinery. A few compounds showed both signals but 
with a relatively low intensity. A brief summary of the performed 
biological evaluation is presented in Table 3. Due to confidentiality 
reasons, we cannot disclose the structures of the lead compounds. 
As shown in Table 3, among the listed molecules, the highest 
antibacterial potency was revealed for FQ analogue 7 (MIC = 
0.8 µg/ml), 6H-thiazolo[4,5-d]pyrimidinone 9 (MIC < 0.2 µg/
ml), (6-oxo-1H-pyrimidin-2-yl)pyrazole 10 (MIC < 0.2 µg/ml), 
substituted thiadiazoles 11 (MIC = 0.8 µg/ml), hydroxy-pyrazole 

FIGURE 3 | A brief statistical analysis on basic nonheterocyclic (A) and heterocyclic (B) fragments presented in antibacterial and nonantibacterial compounds.
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TABLE 3 | Representative examples of active compounds that were correctly predicted as antibacterials. The detailed biological results are presented in 
Supplementary Figure 3.

ID Structure Activity ID (from 
database)

MIC (µg/ml, 
ΔtolC)

Mechanism 
of action

In vitro 
translation

14C-test SI* IP**

LVX ++++ -
0.016 ± 
0.009

SOS − − H -

ERY ++++ - 2.5 ± 0.5 T + + M -

1 +++ STOCK1S-88700 1.8 ± 0.8 T + + M M

2 +++ STOCK1N-86948 2 ± 0.4 T +  ± M M

3 ++++ STOCK1N-55723 3.9 ± 1.4 S + T + − L H

4 +++ D090-0093 6.25 ± 1.3 T + + H H

(Continued)
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TABLE 3 | Continued

ID Structure Activity ID (from  
database)

MIC (µg/ml, 
ΔtolC)

Mechanism of 
action

In vitro 
translation

14C-test SI* IP**

5 ++ P991-0387 12.5 ± 1.9 T  ± − H H

6 + F333-0013 42 ± 5 T + + H M

7 +++ F418-0205 0.8 SOS − − H M

8 +++ STOCK1N-64226 20.8 SOS − − L H

9 +++ F092-0369  <0.2 O − − H M

10 +++ F269-0279  <0.2 O − − H H

11 +++ Y030-6952 0.8 O − − H H

(Continued)
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12 (MIC = 0.8 µg/ml), and bithiophene 13 (MIC = 1.8 µg/ml). 
Compounds 1 and 2 strongly inhibited translation at 16 µg/
ml and provided good SI. Furthermore, compound 2 showed a 
comparative antibacterial potency against several mutant strains 
(these results will be published shortly). Two compounds 7 and 8 
induced a considerable SOS response, MIC = 0.8 and 20.8 µg/ml, 
respectively; however, compound 8 has lower SI. Among molecules 
acting via other mechanisms, compound 11 can be attributed to 
a wide class of sulfanilamide-based inhibitors (PABA analogues) 
of dihydropteroate synthase. Cytotoxicity against a panel of 
eukaryotic cells is summarized in the Supporting Information 
(Supplementary Table 4). The IP position of the molecules was 
assessed using SciFinder and Integrity Databases.

In order to make the study more informative, two hit 
compounds, 11 (4-bromo-N-{5-[(4-chlorophenyl)methyl]-
1,3,4-thiadiazol-2-yl}benzene-1-sulfonamide) and 13 (5′-(4- 
fluorobenzamido)-[2,3′-bithiophene]-4′-carboxylic acid), were 
studied on antimicrobial activity against selected archival 
strains: E. coli ATCC 25922, Klebsiella pneumoniae 181210171-
2, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus 
ATCC USA 206, and Candida albicans 181210169-1 (Table 4). 
These substances exhibited modest activity against gram-
negative bacteria K. pneumoniae. A similar pattern was observed 

on C. albicans multi-resistant strain. Compound 13 only slightly 
inhibited the growth of E. coli, while compound 11 did not 
demonstrate activity against this strain. No activity against P. 
aeruginosa was detected. The outstanding antimicrobial activity 
of compounds 11 and 13 was revealed in the tests on gram-
positive cocci of S. aureus. The growth inhibition zone during the 
tests exceeded 20 mm.

DISCUSSION

In contrast to numerous focused QSAR studies with recruiting 
small- or medium-sized reference databases of small-molecule 
compounds having a common scaffold or high similarity in 
structure, generalized in silico approaches for solving nontrivial 
classification problems cannot be adequately applied without a 
representative and comprehensive training dataset harmonically 
populated with a sufficient number of appropriate samples. These 
samples should almost ideally cover a whole input space providing 
maximum diversity. Any pattern within this space should contain 
bits of information important for learning procedure to achieve 
theoretically valid and interpreted results. This issue becomes 
one of the most crucial limitations, especially in the area of 

TABLE 3 | Continued

ID Structure Activity ID (from  
database)

MIC (µg/ml, 
ΔtolC)

Mechanism of 
action

In vitro 
translation

14C-test SI* IP**

12 +++ D475-2799 0.8 O − − M H

13 +++ STOCK2S-91453 1.8 ± 0.8 T + + M M

*SI, selectivity index = CC50 (µg/ml or %)/MIC (µg/ml); H, high, SI > 100; M, moderate, 20 < SI < 100; L, low, SI < 20; T, translation inhibition; SOS, SOS response, O, other 
mechanism of action; **IP, intellectual property; L (low), match antibacterial Markush structure; M (moderate), match non-antibacterial Markush structure (but not listed among 
examples); H (high), clear IP status.

TABLE 4 | Antibacterial activity of compounds 11 (4-bromo-N-{5-[(4-chlorophenyl)methyl]-1,3,4-thiadiazol-2-yl}benzene-1-sulfonamide) and 13 (5′-(4-fluorobenzamido)-
[2,3′-bithiophene]-4′-carboxylic acid) against selected archival strains.

Species Strain ID Source Activity

Compound 11 Compound 13

Escherichia coli ATCC 25922 ATCC* − ±
Klebsiella pneumoniae 181210171-2 Clinic of the Bashkir State Medical University ± +
Pseudomonas aeruginosa ATCC 27853 ATCC − −
Staphylococcus aureus ATCC USA 206 Clinic of the Bashkir State Medical University ++++ ++++
Candida albicans 181210169-1 ATCC + ±

*ATCC, American Type Culture Collection.
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computer-aided modeling and the prediction of antibacterial 
activity. Considering a long-term period of a permanent 
stagnation in the field of development of novel antibacterials, 
a revolutionary breakthrough can be achieved using more 
powerful in silico approaches with an improved mining ability 
and prediction quality. These models are likely to achieve success 
in searching for principally new antibacterial chemotypes and to 
possibly overcome an overwhelming bacterial resistance.

In our work, the best results of in silico modeling were 
obtained using more advanced machine learning methods: 
Kohonen SOM, FFN, and SVM (Table 5). As it was expected, the 
predictive power of kNN was insufficient for this task. RF and 
GB performed slightly better. However, they failed to predict 
active molecules correctly in consequence of their tendency to 
overfit. Thus, Kohonen SOM, FFN, and SVM can be used for 
the in silico assessment of antibacterial activity. However, as it 
was discussed earlier, FFN and SVM did not perform well on 
the highly imbalanced dataset, and it was decided to split it in 
a different manner. Despite the achieved predictive power, the 
manipulations with input data may result in loss of information 
and require additional time-consuming data preparation steps. 
Thereby, Kohonen SOM is likely to be a more preferable and 
effective tool due to the following reasons: a) the resulting maps 
are very convenient for visual inspection of patterns occupied 
by compounds from different classes and for the distribution of 
molecular descriptor values within the map; b) in contrast to 
other machine learning techniques described above, overfitting 
was not observed for SOM using the training set of 73,000 
samples, thereby providing more appropriate and reliable 
generalization; and c) in addition to a range of implemented 
settings, there are some advanced modifications of the 
algorithm (e.g., neural gas, convex combination, Grossberg-
layer hybrid SOM, and Duane-Desieno method), which can 
be effectively used for improving the learning procedure and 
discrimination ability.

Experimental in vitro validation of developed models 
during first round of HTS and following rescreen procedure 
demonstrated relatively high hit rate considering the random 
compound selection for the external test set. Most of the most 
active molecules (Table 3) have moderate-to-high selectivity 
index and IP status. Two compounds (11 and 13) demonstrated 
satisfactory activities against several archival strains of 
microorganisms.

In summary, for the first time, we used a very large database of 
our proprietary HTS results to construct a highly discriminative 
and robust in silico model able to score molecules by their 
antibacterial potency against E. coli. The main focus was placed 
on compounds with low similarity in structure to the reported 
antibacterials, as well as maximum diversity. Forty of the most 
reliable molecular descriptors were rationally selected from a 
whole pool of more than 1,700 calculated features. The final set 
of descriptors reflects several key aspects in privileged structures 
presented in antibacterial or nonantibacterial compounds 
and significant patterns hidden in the input chemical space. 
Cumulative in silico modeling with recruiting several machine 
learning techniques showed that, using this dataset, two polar 
categories of compounds could be successfully separated 
providing good classification index. These models were then 
used to predict the antibacterial and nonantibacterial potency 
of novel compounds, which were not included in the parent 
database. Molecules from this external pool bore a relatively low 
structural similarity towards the training samples. Subsequent 
biological evaluation confirmed an attractive predictive 
power of the developed models. In particular, Kohonen-
based SOM has not been used previously for solving the title 
task and demonstrated very promising results. Although 
we cannot disclose the structures of the best hits because of 
confidentiality reasons, the presented active molecules showed 
good antibacterial activity and can be reasonably regarded 
as convenient starting points for further optimization and 
morphing. Some compounds effectively inhibited translation in 
prokaryotes and showed no or weak cytotoxicity against a small 
panel of eukaryotic cell lines, thereby providing a benefit SI. With 
the use of the specific professional databases, the IP position of 
the molecules was preliminary assessed. The developed model 
can be effectively applied especially in academic organizations 
or small- to moderate-sized pharmaceutical companies to 
perform the rational selection of compounds for the primary 
HTS campaigns, thereby reducing the total costs of the entire 
R&D process.

DATA AVAILABILITY

The datasets generated for this study are included in the 
manuscript and/or the Supplementary Files.

TABLE 5 | Overall performance of in silico modeling.

Model Classification accuracy (%)* Prediction 
accuracy 

active/inactive 
(%)**

Set Training Cross-validation Internal test

Subset Active Inactive Average Active Inactive Average Active Inactive Average

SOM 75 80 77.5 – – – – – – 73/78
FFN 83.2 93.4 88.3 74.2 90.5 82.4 73.1 90.5 81.3 72/77
RF 100 100 100 70.7 92.7 81.7 68.8 90.2 79.5 69/80
GB 79.2 95.7 87.5 68.5 91.1 79.3 68 87 77.5 68/81
SVM 84.5 97.6 91.0 73.5 91.7 82.6 73.9 91.5 82.7 73/78
kNN 100 100 100 77.9 87.9 82.9 77.7 88.7 83.2 63/76

*Values for the best randomization; ** external test set.

41

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Novel Antibacterials by Virtual ScreeningIvanenkov et al.

14 August 2019 | Volume 10 | Article 913Frontiers in Pharmacology | www.frontiersin.org

AUTHOR CONTRIBUTIONS

GF and BZ prepared the database. VA, AVA, MV, AAA, DB, and 
EP performed the computational experiments. VT performed 
substructure and data analysis. RY, IO, PS, DS, AC, AB, and 
AS performed the biological experiments. MP performed the 
IP analysis. YI, AZ, VK, and OD conceived and supervised the 
study. AM prepared the manuscript.

FUNDING

The authors would like to kindly acknowledge the Ministry of 
Education and Science of the Russian Federation, government 
grant 20.9907.2017/VU (expert opinion, discussion, manuscript 
preparation, and substructure analysis) and Russian Science 
Foundation No. 17-74-30012, IBG RAS Ufa (biological evaluation, 
compound selection, and purchasing as well as in silico modeling).

ACKNOWLEDGMENTS

This study was performed in the context of the collaboration 
between Lomonosov Moscow State University (Russia), 
Moscow Institute of Physics and Technology (Russia), Institute 
of Biochemistry and Genetics Russian Academy of Science 
(Ufa, Russia), IBS (Russia), Enamine (USA), Information 
Technologies, and Mechanics and Optics (St. Petersburg). 
We kindly acknowledge all the scientists implicated in this 
multidisciplinary study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: 
https://www.frontiersin.org/articles/10.3389/fphar.2019.00913/
full#supplementary-material

REFERENCES

Abouelhassan, Y., Garrison, A. T., Yang, H., Chavez-Riveros, A., Burch, G. M., 
and Huigens, R. W., 3rd (2019). Recent progress in natural-product-inspired 
programs aimed to address antibiotic resistance and tolerance. J. Med. Chem. 
doi: 10.1021/acs.jmedchem.9b00370

Aptula, A. O., Kühne, R., Ebert, R.-U., Cronin, M. T. D., Netzeva, T. I., and 
Schüürmann, G. (2003). Modeling discrimination between antibacterial and 
non-antibacterial activity based on 3D molecular descriptors. QSAR Comb. Sci. 
22 (1), 113–128. doi: 10.1002/qsar.200390001

Araya-Cloutier, C., Vincken, J. P., van de Schans, M. G. M., Hageman, J., 
Schaftenaar, G., den Besten, H. M. W., et al. (2018). QSAR-based molecular 
signatures of prenylated (iso) flavonoids underlying antimicrobial potency 
against and membrane-disruption in Gram positive and Gram negative 
bacteria. Sci. Rep. 8 (1), 9267. doi: 10.1038/s41598-018-27545-4

Balakin, K. V., Ivanenkov, Y. A., Skorenko, A. V., Nikolsky, Y. V., Savchuk, N. P., 
and Ivashchenko, A. A. (2004). In silico estimation of DMSO solubility of 
organic compounds for bioscreening. J. Biomol. Screen. 9 (1), 22–31. doi: 
10.1177/1087057103260006

Bauernfeind, A., and Petermuller, C. (1983). In vitro activity of ciprofloxacin, 
norfloxacin and nalidixic acid. Eur. J. Clin. Microbiol. 2 (2), 111–115. doi: 
10.1007/BF02001575

Breiman, L. (2001). Random forests. Mach. Learn. 45 (1), 5–32. doi: 10.1023/A: 
1010933404324

Brotzu, G. (1948). Ricerche su di un nuovo antibiotico. Cagliari: Lavori dell’Istituto 
d’Igiene di Cagliari. 

Bryer, M. S., Schoenbach, E. B., Chandler, C. A., Bliss, E. A., and Long, P. H. (1948). 
Aureomycin: experimental and clinical investigations. JAMA 138 (2), 117–119. 
doi: 10.1001/jama.1948.02900020013004

Castillo-Garit, J. A., Marrero-Ponce, Y., Barigye, S. J., Medina-Marrero, R., Bernal, 
M. G., de la Vega, J. M. G., et al. (2015). In silico antibacterial activity modeling 
based on the TOMOCOMD-CARDD approach. J. Braz. Chem. Soc. 26 (6), 
1218–1226. doi: 10.5935/0103-5053.20150087

ChemoSoft [Online]. Chemical Diversity Labs, Inc. Available: http://chemosoft.
com/modules/db/ [Accessed 02/14/2019]. 

Cherkasov, A. (2005). Inductive QSAR descriptors. distinguishing compounds 
with antibacterial activity by artificial neural networks. Int. J. Mol. Sci. 6 (1), 
63–86. doi: 10.3390/i6010063

Clinicaltrialsgov, NIH. (2017a). Study to investigate the safety and efficacy of GC3107 
(BCG vaccine) in healthy adults. https://clinicaltrials.gov/show/NCT03363178. 
[Accessed 08/22/2019].

Clinicaltrialsgov, NIH. (2017b). VNRX-5133 SAD/MAD safety and PK in healthy 
adult volunteers. https://clinicaltrials.gov/show/NCT02955459. [Accessed 
08/22/2019].

Clinicaltrialsgov, NIH. (2018a). A trial to evaluate a multivalent pneumococcal 
conjugate vaccine in healthy adults 50-85 years of age. https://clinicaltrials.gov/
show/NCT03313050. [Accessed 08/22/2019].

Clinicaltrialsgov, NIH. (2018b). Clinical efficacy of typhoid conjugate 
vaccine (Vi-TCV) among children age 9 months through 12 years in 
Blantyre, Malawi. https://clinicaltrials.gov/show/NCT03299426. [Accessed 
08/22/2019].

Clinicaltrialsgov, NIH. (2018c). Study confirming a human challenge model and 
investigating the safety of VLA1701. https://clinicaltrials.gov/ct2/show/
NCT03576183. [Accessed 08/22/2019].

Clinicaltrialsgov, NIH. (2019a). An early bactericidal activity, safety and tolerability 
of GSK3036656 in subjects with drug-sensitive pulmonary tuberculosis. 
https://clinicaltrials.gov/show/NCT03557281. [Accessed 08/22/2019].

Clinicaltrialsgov, NIH. (2019b). Dose escalating study of a prototype CS6 
subunit vaccine with a modified heat-labile enterotoxin from enterotoxigenic 
Escherichia coli (ETEC). https://clinicaltrials.gov/ct2/show/NCT03404674. 
[Accessed 08/22/2019].

Clinicaltrialsgov, NIH. (2019c). Phase 1 LEP-F1 + GLA-SE vaccine trial in healthy 
adult volunteers. https://clinicaltrials.gov/show/NCT03302897. [Accessed 
08/22/2019].

Clinicaltrialsgov, NIH. (2019d). Pilot trial of inhaled molgramostim in 
nontuberculous mycobacterial (NTM) infection. https://clinicaltrials.gov/
show/NCT03421743. [Accessed 08/22/2019].

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20 (3), 
273–297. doi: 10.1007/BF00994018

Cronin, M. T., Aptula, A. O., Dearden, J. C., Duffy, J. C., Netzeva, T. I., Patel, H., 
et al. (2002). Structure-based classification of antibacterial activity. J. Chem. Inf. 
Comput. Sci. 42 (4), 869–878. doi: 10.1021/ci025501d

Dragon [Online]. Milan (Italy): Talete s.r.l. Available: http://www.talete.mi.it/
about/about.htm [Accessed 02/14/2019].

Fleming, A. (2001). On the antibacterial action of cultures of a penicillium, with 
special reference to their use in the isolation of B. influenzae. 1929. Bull. World 
Health Organ. 79 (8), 780–790.

Friedman, J. (2001). Greedy function approximation: a gradient boosting machine. 
Ann. Stat. 29 (5), 1189–1232. doi: 10.1214/aos/1013203451

Garcia-Domenech, R., and de Julian-Ortiz, J. V. (1998). Antimicrobial activity 
characterization in a heterogeneous group of compounds. J. Chem. Inf. Comput. 
Sci. 38 (3), 445–449. doi: 10.1021/ci9702454

Glasby, J. S. (1978). Encyclopedia of antibiotics. Manchester: Woodhouse.
Gonzalez-Diaz, H., Torres-Gomez, L. A., Guevara, Y., Almeida, M. S., Molina, R., 

Castanedo, N., et al. (2005). Markovian chemicals “in silico” design (MARCH-
INSIDE), a promising approach for computer-aided molecular design III: 2.5D 
indices for the discovery of antibacterials. J. Mol. Model. 11 (2), 116–123. doi: 
10.1007/s00894-004-0228-3

42

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fphar.2019.00913/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2019.00913/full#supplementary-material
https://doi.org/10.1021/acs.jmedchem.9b00370
https://doi.org/10.1002/qsar.200390001
https://doi.org/10.1038/s41598-018-27545-4
https://doi.org/10.1177/1087057103260006
https://doi.org/10.1007/BF02001575
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1001/jama.1948.02900020013004
https://doi.org/10.5935/0103-5053.20150087
http://chemosoft.com/modules/db/
http://chemosoft.com/modules/db/
https://doi.org/10.3390/i6010063
https://clinicaltrials.gov/show/NCT03363178
https://clinicaltrials.gov/show/NCT02955459
https://clinicaltrials.gov/show/NCT03313050
https://clinicaltrials.gov/show/NCT03313050
https://clinicaltrials.gov/show/NCT03299426
https://clinicaltrials.gov/ct2/show/NCT03576183
https://clinicaltrials.gov/ct2/show/NCT03576183
https://clinicaltrials.gov/show/NCT03557281
https://clinicaltrials.gov/ct2/show/NCT03404674
https://clinicaltrials.gov/show/NCT03302897
https://clinicaltrials.gov/show/NCT03421743
https://clinicaltrials.gov/show/NCT03421743
https://doi.org/10.1007/BF00994018
https://doi.org/10.1021/ci025501d
http://www.talete.mi.it/about/about.htm
http://www.talete.mi.it/about/about.htm
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1021/ci9702454
https://doi.org/10.1007/s00894-004-0228-3


Novel Antibacterials by Virtual ScreeningIvanenkov et al.

15 August 2019 | Volume 10 | Article 913Frontiers in Pharmacology | www.frontiersin.org

Guan, Q., Huang, S., Jin, Y., Campagne, R., Alezra, V., and Wan, Y. (2019). 
Recent advances in the exploration of therapeutic analogues of gramicidin S, 
an old but still potent antimicrobial peptide. J. Med. Chem. doi: 10.1021/acs.
jmedchem.9b00156

Kaczor, A. A., Polski, A., Sobotka-Polska, K., Pachuta-Stec, A., Makarska-
Bialokoz, M., and Pitucha, M. (2017). Novel antibacterial compounds and their 
drug targets—successes and challenges. Curr. Med. Chem. 24 (18), 1948–1982. 
doi: 10.2174/0929867323666161213102127

Karakoc, E., Cherkasov, A., and Sahinalp, S. C. (2006). Distance based algorithms 
for small biomolecule classification and structural similarity search. 
Bioinformatics 22 (14), e243–e251. doi: 10.1093/bioinformatics/btl259

Kishii, R., Yamaguchi, Y., and Takei, M. (2017). In vitro activities and spectrum 
of the novel fluoroquinolone lascufloxacin (KRP-AM1977). Antimicrob. Agents 
Chemother. 61 (6), e00120–17. doi: 10.1128/AAC.00120-17

Kohanski, M. A., Dwyer, D. J., and Collins, J. J. (2010). How antibiotics kill bacteria: from 
targets to networks. Nat. Rev. Microbiol. 8 (6), 423–435. doi: 10.1038/nrmicro2333

Kohonen, T. (1990). The self-organizing map. Proc. IEEE Inst. Electr. Electron. Eng. 
78 (9), 1464–1480. doi: 10.1109/5.58325

Leemans, E., Mahasenan, K. V., Kumarasiri, M., Spink, E., Ding, D., O’Daniel, P. I., 
et al. (2016). Three-dimensional QSAR analysis and design of new 
1,2,4-oxadiazole antibacterials. Bioorg. Med. Chem. Lett. 26 (3), 1011–1015. 
doi: 10.1016/j.bmcl.2015.12.041

Marrero-Ponce, Y., Medina-Marrero, R., Torrens, F., Martinez, Y., Romero-
Zaldivar, V., and Castro, E. A. (2005). Atom, atom-type, and total nonstochastic 
and stochastic quadratic fingerprints: a promising approach for modeling of 
antibacterial activity. Bioorg. Med. Chem. 13 (8), 2881–2899. doi: 10.1016/j.
bmc.2005.02.015

Masalha, M., Rayan, M., Adawi, A., Abdallah, Z., and Rayan, A. (2018). Capturing 
antibacterial natural products with in silico techniques. Mol. Med. Rep. 18 (1), 
763–770. doi: 10.3892/mmr.2018.9027

Maynard, R. L. (1996). The Merck index: 12th edition. New York: Merck.
McGuire, J. M., Bunch, R. L., Anderson, R. C., Boaz, H. E., Flynn, E. H., Powell, H. M., 

et al. (1952). Ilotycin, a new antibiotic. Antibiot. Chemother. (Northfield) 2 (6), 
281–283.

Mishra, R. K., Garcia-Domenech, R., and Galvez, J. (2001). Getting discriminant 
functions of antibacterial activity from physicochemical and topological 
parameters. J. Chem. Inf. Comput. Sci. 41 (2), 387–393. doi: 10.1021/ci000303c

Mohr, K. I. (2016). History of antibiotics research. Curr. Top. Microbiol. Immunol. 
398, 237–272. doi: 10.1007/82_2016_499

Molecular Operating Environment   [Online]. Chemical Computing Group. 
Available: http://www.chemcomp.com/software.html [Accessed 02/14/2019].

Molina, E., Diaz, H. G., Gonzalez, M. P., Rodriguez, E., and Uriarte, E. (2004). Designing 
antibacterial compounds through a topological substructural approach. J. Chem. 
Inf. Comput. Sci. 44 (2), 515–521. doi: 10. 1021/ ci0342019

Morjan, R. Y., Al-Attar, N. H., Abu-Teim, O. S., Ulrich, M., Awadallah, A. M., 
Mkadmh, A. M., et al. (2015). Synthesis, antibacterial and QSAR evaluation of 
5-oxo and 5-thio derivatives of 1,4-disubstituted tetrazoles. Bioorg. Med. Chem. 
Lett. 25 (18), 4024–4028. doi: 10.1016/j.bmcl.2015.04.070

Murcia-Soler, M., Perez-Gimenez, F., Garcia-March, F. J., Salabert-Salvador, M. 
T., Diaz-Villanueva, W., Castro-Bleda, M. J., et al. (2004). Artificial neural 
networks and linear discriminant analysis: a valuable combination in the 
selection of new antibacterial compounds. J. Chem. Inf. Comput. Sci. 44 (3), 
1031–1041. doi: 10.1021/ci030340e

Naeem, A., Badshah, S. L., Muska, M., Ahmad, N., and Khan, K. (2016). The 
current case of quinolones: synthetic approaches and antibacterial activity. 
Molecules 21 (4), 268. doi: 10.3390/molecules21040268

Negwer, M. (1987). Organic–chemical drugs and their synonyms. Berlin: Akademie.
Osterman, I. A., Khabibullina, N. F., Komarova, E. S., Kasatsky, P., Kartsev, V. G., 

Bogdanov, A. A., et al. (2017). Madumycin II inhibits peptide bond formation 
by forcing the peptidyl transferase center into an inactive state. Nucleic Acids 
Res. 45 (12), 7507–7514. doi: 10.1093/nar/gkx413

Osterman, I. A., Komarova, E. S., Shiryaev, D. I., Korniltsev, I. A., Khven, I. M., 
Lukyanov, D. A., et al. (2016). Sorting out antibiotics’ mechanisms of action: a 
double fluorescent protein reporter for high-throughput screening of ribosome 
and DNA biosynthesis inhibitors. Antimicrob. Agents Chemother. 60 (12), 
7481–7489. doi: 10.1128/AAC.02117-16

Pfizer Pipeline [Online]. Pfizer Web Site. Available: https://www.pfizer.com/
sites/default/files/product-pipeline/01302018_PipelineUpdate.pdf [Accessed 
02/14/2019].

Pletnev, I. V., Ivanenkov, Y. A., and Tarasov, A. V., (2009). “Dimensionality 
reduction techniques for pharmaceutical data mining,” in Pharmaceutical data 
mining: approaches and applications for drug discovery. Editor. K. V. Balakin 
(Hoboken, NJ: John Wiley & Sons, Inc), 420–455.

Projan, S. J. (2003). Why is big pharma getting out of antibacterial drug discovery? 
Curr. Opin. Microbiol. 6 (5), 427–430. doi: 10.1016/j.mib.2003.08.003

Sammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE 
Trans. Comput. 18 (5), 401–409. doi: 10.1109/T-C.1969.222678

Sazli, M. H. (2006). A brief review of feed-forward neural networks. Commun. Fac. 
Sci. Univ. Ank. Ser. 50 (1), 11–17. doi: 10.1501/0003168

Schatz, A., Bugie, E., and Waksman, S. A. (1944). Streptomycin, a substance 
exhibiting antibiotic activity against gram-positive and gram-negative bacteria. 
Proc. Soc. Exper. Biol. Med. 55, 66–69. doi: 10.3181/00379727-55-14461

Spangler, S. K., Jacobs, M. R., and Appelbaum, P. C. (1996). Activities of RPR 
106972 (a new oral streptogramin), cefditoren (a new oral cephalosporin), 
two new oxazolidinones (U-100592 and U-100766), and other oral 
and parenteral agents against 203 penicillin-susceptible and -resistant 
pneumococci. Antimicrob. Agents Chemother. 40 (2), 481–484. doi: 10.1128/
AAC.40.2.481

Thomson Integrity Database [Online]. Thomson Integrity. Available: https://
integrity.thomson-pharma.com/integrity/xmlxsl [Accessed 02/14/2019]. 

Tomas-Vert, F., Pérez-Giménez, F., Salabert-Salvador, M. T., García-March, F.  J., 
and Jaén-Oltra, J. (2000). Artificial neural network applied to the discrimination 
of antibacterial activity by topological methods. Theochem 504, 249–259. doi: 
10.1016/S0166-1280(00)00366-3

Wang, L., Le, X., Li, L., Ju, Y., Lin, Z., Gu, Q., et al. (2014). Discovering new 
agents active against methicillin-resistant Staphylococcus aureus with ligand-
based approaches. J. Chem. Inf. Model. 54 (11), 3186–3197. doi: 10.1021 /  
ci500253q

Wiegand, I., Hilpert, K., and Hancock, R. E. (2008). Agar and broth dilution methods 
to determine the minimal inhibitory concentration (MIC) of antimicrobial 
substances. Nat. Protoc. 3 (2), 163–175. doi: 10.1038/nprot.2007.521

Yang, X. G., Chen, D., Wang, M., Xue, Y., and Chen, Y. Z. (2009). Prediction of 
antibacterial compounds by machine learning approaches. J. Comput. Chem. 
30 (8), 1202–1211. doi: 10.1002/jcc.21148

Zhang, Z. (2016). Introduction to machine learning: k-nearest neighbors. Ann. 
Transl. Med. 4 (11), 218–224. doi: 10.21037/atm.2016.03.37

Conflict of Interest Statement: Authors YI, AZ, RY, VA, AA, VT, and MV were 
employed by Insilico Medicine, Inc. Author VK was employed by InterBioScreen 
ltd. The remaining authors declare that the research was conducted in the absence 
of any commercial or financial relationships that could be construed as a potential 
conflict of interest.

Copyright © 2019 Ivanenkov, Zhavoronkov, Yamidanov, Osterman, Sergiev, 
Aladinskiy, Aladinskaya, Terentiev, Veselov, Ayginin, Kartsev, Skvortsov, Chemeris, 
Baimiev, Sofronova, Malyshev, Filkov, Bezrukov, Zagribelnyy, Putin, Puchinina and 
Dontsova. This is an open-access article distributed under the terms of the Creative 
Commons Attribution License (CC BY). The use, distribution or reproduction in 
other forums is permitted, provided the original author(s) and the copyright owner(s) 
are credited and that the original publication in this journal is cited, in accordance 
with accepted academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms.

43

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org
https://doi.org/10.1021/acs.jmedchem.9b00156
https://doi.org/10.1021/acs.jmedchem.9b00156
https://doi.org/10.2174/0929867323666161213102127
https://doi.org/10.1093/bioinformatics/btl259
https://doi.org/10.1128/AAC.00120-17
https://doi.org/10.1038/nrmicro2333
https://doi.org/10.1109/5.58325
https://doi.org/10.1016/j.bmcl.2015.12.041
https://doi.org/10.1016/j.bmc.2005.02.015
https://doi.org/10.1016/j.bmc.2005.02.015
https://doi.org/10.3892/mmr.2018.9027
https://doi.org/10.1021/ci000303c
https://doi.org/10.1007/82_2016_499
http://www.chemcomp.com/software.html
https://doi.org/10.1021/ci0342019
https://doi.org/10.1016/j.bmcl.2015.04.070
https://doi.org/10.1021/ci030340e
https://doi.org/10.3390/molecules21040268
https://doi.org/10.1093/nar/gkx413
https://doi.org/10.1128/AAC.02117-16
https://www.pfizer.com/sites/default/files/product-pipeline/01302018_PipelineUpdate.pdf
https://www.pfizer.com/sites/default/files/product-pipeline/01302018_PipelineUpdate.pdf
https://doi.org/10.1016/j.mib.2003.08.003
https://doi.org/10.1109/T-C.1969.222678
https://doi.org/10.1501/0003168
https://doi.org/10.3181/00379727-55-14461
https://doi.org/10.1128/AAC.40.2.481
https://doi.org/10.1128/AAC.40.2.481
https://integrity.thomson-pharma.com/integrity/xmlxsl
https://integrity.thomson-pharma.com/integrity/xmlxsl
https://doi.org/10.1016/S0166-1280(00)00366-3
https://doi.org/10.1021/ci500253q
https://doi.org/10.1021/ci500253q
https://doi.org/10.1038/nprot.2007.521
https://doi.org/10.1002/jcc.21148
https://doi.org/10.21037/atm.2016.03.37
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 September 2019 | Volume 10 | Article 971

TECHNOLOGY AND CODE

doi: 10.3389/fphar.2019.00971
published: 05 September 2019

Frontiers in Pharmacology | www.frontiersin.org

Edited by: 
Jianfeng Pei,  

Peking University,  
China

Reviewed by: 
Cao Dongsheng,  

Central South University,  
China 

Quan Zou,  
University of Electronic Science and 

Technology of China, China

*Correspondence: 
Yi Xiong 

xiongyi@sjtu.edu.cn 
Dong-Qing Wei 

dqwei@sjtu.edu.cn

†These authors have contributed 
equally to this work

Specialty section: 
This article was submitted to 
Translational Pharmacology,  

a section of the journal  
Frontiers in Pharmacology

Received: 10 June 2019
Accepted: 29 July 2019

Published: 05 September 2019

Citation: 
Wang X, Wang Y, Xu Z, Xiong Y 

and Wei D-Q (2019) ATC-NLSP: 
Prediction of the Classes of 

Anatomical Therapeutic  
Chemicals Using a Network-Based 

Label Space Partition Method.  
Front. Pharmacol. 10:971.  

doi: 10.3389/fphar.2019.00971

ATC-NLSP: Prediction of the 
Classes of Anatomical Therapeutic 
Chemicals Using a Network-Based 
Label Space Partition Method
Xiangeng Wang†, Yanjing Wang†, Zhenyu Xu, Yi Xiong* and Dong-Qing Wei*

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 
Shanghai, China

Anatomical Therapeutic Chemical (ATC) classification system proposed by the World 
Health Organization is a widely accepted drug classification scheme in both academic 
and industrial realm. It is a multilabeling system which categorizes drugs into multiple 
classes according to their therapeutic, pharmacological, and chemical attributes. In this 
study, we adopted a data-driven network-based label space partition (NLSP) method for 
prediction of ATC classes of a given compound within the multilabel learning framework. 
The proposed method ATC-NLSP is trained on the similarity-based features such as 
chemical–chemical interaction and structural and fingerprint similarities of a compound 
to other compounds belonging to the different ATC categories. The NLSP method trains 
predictors for each label cluster (possibly intersecting) detected by community detection 
algorithms and takes the ensemble labels for a compound as final prediction. Experimental 
evaluation based on the jackknife test on the benchmark dataset demonstrated that our 
method has boosted the absolute true rate, which is the most stringent evaluation metrics 
in this study, from 0.6330 to 0.7497, in comparison to the state-of-the-art approaches. 
Moreover, the community structures of the label relation graph were detected through 
the label propagation method. The advantage of multilabel learning over the single-
label models was shown by label-wise analysis. Our study indicated that the proposed 
method ATC-NLSP, which adopts ideas from network research community and captures 
the correlation of labels in a data driven manner, is the top-performing model in the ATC 
prediction task. We believed that the power of NLSP remains to be unleashed for the 
multilabel learning tasks in drug discovery. The source codes are freely available at https://
github.com/dqwei-lab/ATC.

Keywords: drug classification, multilabel classification, label correlation, label space partition, label propagation

INTRODUCTION

The Anatomical Therapeutic Chemical (ATC) Classification System (MacDonald and Potvin, 
2004), maintained by the World Health Organization Collaborating Centre for Drug Statistics 
Methodology, is the most widely accepted and canonical scheme for drug categorization. This system 
assigns different group labels for drugs based on the organ or systems where they take effect and/
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or their therapeutic, pharmacological, and chemical attributes. 
The ATC system is a strict hierarchy, including five levels of 
classification, and for the first level, there are 14 main groups: 
1) alimentary tract and metabolism (coded by A); 2) blood and 
blood-forming organs (coded by B); 3) cardiovascular system 
(coded by C); 4) dermatologicals (coded by D); 5) genitourinary 
system and sex hormones (coded by G); 6) systemic hormonal 
preparations, excluding sex hormones and insulins (coded by H); 
7) anti-infectives for systemic use (coded by J); 8) antineoplastic 
and immunomodulating agents (coded by L); 9) musculoskeletal 
system (coded by M); 10) nervous system (coded by N); 11) 
antiparasitic products, insecticides, and repellents (coded by P); 
12) respiratory system (coded by R); 13) sensory organs (coded 
by S); and 14) various (coded by V). Given a new compound, 
prediction of its ATC classes can provide us with deeper insights 
into its therapeutic indications and side effects, thus accelerating 
both basic research and drug development (Hutchinson et al., 
2004; Dunkel et al., 2008).

Traditionally, identification of ATC classes for a new drug 
using experimental methods is both time- and resource-consuming. 
Therefore, in silico prediction of ATC classes of a compound by 
machine learning techniques is a hot field in drug discovery and 
development. Previous studies (Dunkel et al., 2008; Wu et  al., 
2013) formulate the prediction of ATC classes as a single-label 
learning task, which is suggested to be inappropriate due to the 
multilabel nature of this biological system (Chou, 2013). Within 
the multilabel learning framework, Cheng et al. (2017b) proposed 
a multilabel predictor iATC-mISF, which utilized multilabel 
Gaussian kernel regression and three types of features (chemical–
chemical interaction, structural similarity, and fingerprint 
similarity). The iATC-mISF has been upgraded as iATC-mHyb 
(Cheng et al., 2017a) by further incorporating drug ontological 
information. Besides one-dimensional representation of features, 
inspired by the histograms of oriented gradients (HoG) method 
proposed by the computer vison community (Dalal and Triggs, 
2005), Nanni and Brahnam (2017) reshaped the features into 
two-dimensional matrix and performed slightly better than iATC-
mISF. Continuing in this direction, the same group (Lumini and 
Nanni, 2018) applied pretrained convolutional neural networks 
models on the two-dimensional feature matrix as a featurizer 
and achieved best performance among the previously published 
methods on this task.

Typically, multilabel (ML) classification algorithms are 
classified into three major groups: algorithm adaptation, problem 
transformation, and ensembles of multilabel classifier (EMLC) 
(Wan et al., 2017). Algorithm adaptation methods incorporate 
specific tricks that modify traditional single-label learning 
algorithms into multilabel ones. The representative algorithm of 
this group is ML-kNN (Zhang and Zhou, 2005). For the problem 
transformation method, it converts multilabel learning problem 
into one or more single-label problems. The common strategies 
for such a transformation include binary relevance, classifier 
chains, label ranking, and label powerset (LP) (Read et al., 2011). 
LP trains models on each possible subset of label sets (Gibaja and 
Ventura, 2014). For a dataset with high cardinality in the large 
label set, LP is prone to be overfitting because of the exponentially 
increased number of subsets. To tackle the overfitting nature of 

label powerset, (Tsoumakas et al., 2011) proposed the RAkELd 
method, which divides the label set into k disjoint subsets and 
use label powerset in these subsets. One major drawback of 
RAkELd is that the k is arbitrarily chosen without incorporating 
the label correlations, which can be possibly learnt from the 
training data. The network-based label space partition (NLSP) 
(Szymański et al., 2016) is an EMLC built upon ML. This NLSP 
method divides the label set into k small-sized label sets (possibly 
intersecting) by a community detection method, which can 
incorporate the label correlation structures in the training set, 
such that it finally learns k representative ML classifiers. As a 
result, NLSP tackles much less subsets compared to LP on the 
original label set and selects k in a data-driven manner. For more 
detailed explanation of multilabel learning, refer to (Zhang and 
Zhou, 2014; Moyano et al., 2018). 

In this study, we adopted an NLSP method to explore the 
correlation among labels. Our NLSP method was evaluated 
on a benchmark dataset (Chen et al., 2012) by the jackknife 
test. The proposed method demonstrates its superiority over 
other state-of-the-art approaches by our experimental results. 
The main strength of our method hinges on two aspects. On 
the one hand, the NLSP clusters the label space into subspaces 
and utilizes the correlation among labels. On the other hand, 
the ensemble learning nature of NLSP on the overlapping 
subspace could further improve model performance. 
Interesting patterns on the label relation graph were also 
detected by NLSP. In addition, the label-wise analysis of the 
best NLSP model was performed to provide experimental 
biologists with more insights.

MATERIALS AND METHODS

Benchmark Dataset and Sample 
Formulation
We utilized the same dataset as the previous study (Cheng et al., 
2017b) to facilitate model comparison. This dataset consists of 
3,883 drugs, and each drug is labeled with at least one or more of 
14 main ATC classes. It is a tidy dataset where no missing value 
and contradictory record. The UpSet visualization technique 
(Lex et al., 2014) was used for quantitative analysis of interactions 
of label sets.

Then, we adopted the same method provided by (Cheng et al., 
2017b) to represent the drug samples. The dataset can be 
formulated in set notation as the union of elements in each class: 
   = …1 2 14 

 (1), and a sample D can be represented by 
concatenating the following three types of features.

1. A 14-dimentional vector, DInt = [Φ1Φ2Φ3 … Φ14]T (2), which 
represents its maximum interaction score Φi (Kotera et al., 
2012) with the drugs in each of the 14 i .

2. A 14-dimentional vector, DStrSim = [Ψ1Ψ2Ψ3 … Ψ14]T (3) which 
represents its maximum structural similarity score Ψi (Kotera 
et al., 2012) with the drugs in each of the 14 i .

3. A 14-dimentional vector, DFigSim = [T1T2T3 … T14]T (4), which 
represents its molecular fingerprint similarity score Ti (Xiao 
et al., 2013) with the drugs in each of the 14 i .
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Therefore, a given drug D is formulated by:

 D D D D T= ⊕ ⊕ = …Int StrSim FigSim [@ @ @ @ ]1 2 3 42  (5)

Where ⊕ represents the symbol for orthogonal sum and 
where
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15 28
29 42

 (6)

For more details, refer to Cheng et al. (2017b).

Measuring Label Correlation
In order to evaluate the correlation between two labels, we 
calculated the bias corrected Cramér’s V statistic for all the 
label pairs (Bergsma, 2013). Cramér’s V (sometimes referred 
to as Cramér’s phi and denoted as φc) statistic is a measure of 
association between two nominal variables, ranging from 0 to 
1 (inclusive). The bias corrected Cramér’s V statistic is given 
by (here n denotes sample size and χ2 stands for the chi-square 
statistic without a continuity correction for a contingency table 
with r rows and c columns)
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Network-Based Label Space Partition
The NLSP is a newly proposed multilabel learning method 
and has achieved top performance in some predictive tasks 
(Szymański et al., 2016). In this study, we adopted the data-driven 
NLSP method for prediction of ATC classes of a compound. 
NLSP divides the predictive modeling task into the training and 
classification phase. 

In the training phase, four steps are preformed:

1. Establishing a label co-occurrence graph on the training set. 
The label co-occurrence graph G has the label set L as the 
vertex set and the edge between two vertices (labels) exists if 
at least one sample S in training set Dtrain is assigned by these 

two labels li and lj together (here li, lj denote labels of the set 
Ls, which stands for the assigned label set of a sample S; || || 
stands for the cardinality of a given set):

 E l l S L l L l Li j s train i s j s= ∃ ∈ ∈ ∧ ∈( ){ }{ , } : ( ( , ) D )  (13)

We can also easily assign weights to G by defining a counting 
function w: L → ℕ:

 

w l l Si j,( ) = number of sample that have both labells assigned

D= ∈ ∧ ∈ ∧ ∈{ }S S L l L l Ls train i s j s: ( , )
  

  (14)

2. Detecting community on the label co-occurrence graph. 
There are various community detection algorithms. In this 
study, we utilized the following two methods to identify 
communities because both of the two methods have linear 
time complexity: 

a) Largest modularity using incremental greedy search 
(Louvain method) (Blondel et al., 2008): This method 
is based on greedy aggregation of communities, 
beginning with communities with single convex and 
merging the communities iteratively. In each step, two 
communities are merged when the merging makes the 
highest contribution to modularity. The algorithm halts 
when there is no merge that could increase current 
modularity. This method is frequently referred as 
“Louvain method” in the network research community. 
The detailed explanation of this method is described in 
Supplementary Method S1. 

b) Multiple async label propagation (LPA) (Raghavan 
et al., 2007): This method assigns unique tags to every 
vertex in a graph and then iteratively updates the tags of 
every vertex. This update reassigns the tag of the majority 
of neighbors to the central vertex. The updating order 
of vertices shuffled at each iteration. The algorithm 
is stopped when all vertices have tags identical to the 
dominant tag in proximity. The detailed description of 
LPA is appended in Supplementary Method S2.

3. For each community Ci, corresponding training set Di is 
created by taking the original dataset with label columns 
presented in Li. 

4. For each community, a base predictor bi is learnt on the 
training set Di. In this study, we compared the performance of 
five types of base predictors: 

(a) Extremely randomized trees (ERT) (Geurts et al., 
2006; Li et al., 2019) is an ensemble method that 
adds more randomness compared to random forests 
by the random top–down splitting of trees instead of 
computing the locally optimal cut-point for each feature 
under consideration. This increase in randomness 
allows to reduce the variance of the model a bit, at the 
expense of a slightly greater increase in bias.
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(b) Random forests (RF) (Breiman, 2001) is an ensemble 
method that combines the probabilistic predictions of 
a number of decision tree-based classifiers to improve 
the generalization ability over a single estimator. 

(c) Support vector machine (SVM) (Cortes and Vapnik, 
1995) is a widely used classification algorithm which 
tries to find the maximum margin hyperplane to 
divide samples into different classes. Incorporated by 
kernel trick, this method could handle both linear and 
no-linear decision boundary.

(d) Extreme gradient boosting (XGB) (Chen and 
Guestrin, 2016) is a newly proposed boosting method, 
which has achieved state-of-the-art performance on 
many tasks with tabular training data (Chen et al., 
2018). Traditional gradient boosting machine is a meta 
algorithm to build an ensemble strong learner from 
weak learners such as decision trees, while XGB is an 
efficient and distributed implementation of gradient 
boosting machine. 

(e) Multilayer perceptron (MLP) (Ruck et al., 1990) is 
a supervised learning algorithm which could learn 
nonlinear models. It has one or more nonlinear hidden 
layers between the input and output. For each hidden 
layer, different numbers of hidden neurons can be 
assigned. Each hidden neuron yields a weighted linear 
summation of the values from the previous layer, and 
the nonlinear activation function is followed. The 
weights are learnt through backpropagation algorithm 
or variations upon it.

In the classification phase, we just perform predication on all 
communities detected in the training phase and fetch the union 
of assigned labels:

 b S b Sj
k

i( ) ( )= = 1  (15)

Parameter Tuning
There are two layers of hyperparameters tunable for NLSP:

1. The base learner: we chose five types of base learners.

(a) Extremely randomized trees: we tuned the 
hyperparameter of number of trees at [500, 1000], 
other hyperparameters are at the default values.

(b) Random forests: we tuned hyperparameter of number 
of trees at [500, 1,000], other hyperparameters are at 
the default values.

(c) Support vector machine: we tuned the hyperparameter 
of C (penalty) at [0.01, 0.1, 1, 10, 100], we chose the 

radial basis function with gamma value of 1 1
42N features

= ,  

other hyperparameters are at the default values.
(d) Extreme gradient boosting: we tuned the hyperparameter 

of number of trees at [10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 
other hyperparameters are at the default values.

(e) Multilayer perceptron: We tuned the hyperparameter 
of hidden layer sizes at [50, 100, 200, 500, 1,000], other 
hyperparameters are at the default values.

2. The cluster: for each type of base learner, we try to compare 
two community detection methods.

(a) Largest modularity using incremental greedy search 
(Blondel et al., 2008).

(b) Multiple async label propagation (Raghavan et al., 2007). 

Performance Measures of Multilabel 
Learning
Evaluation of a multilabel learning model is not a trivial task 
(Zhang et al., 2015; Yuan et al., 2016; Zhang et al., 2017; You 
et al., 2018; Xiong et al., 2019; You et al., 2019). Inspired by the 
definition of Chou et al. (Chou, 2013) and practice of Madjarov 
et al. (2012), we utilized the following five metrics to evaluate the 
multilabel learning models throughout this work.
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where N is the total number of samples, M is the total number 
of labels, ⋃ represents union in set theory and ⋂ represents 
intersection in set theory, k  denotes the true label set of k-th 
sample, k

*  means the predicted label vector of k-th sample, ⊝ 
stands for the symmetric difference between two sets, and 
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In order to avoid the zero-divisor problem generated by all 
negative predictions, we add a pseudo-number 1 to 0 divisors in 
the calculation of the aiming metric. These above metrics have 
been used in a series of studies (Cheng et al., 2017a; Cheng et al., 
2017b; Nanni and Brahnam, 2017).

Performance Measures of Single-Label 
Learning
Apart from the metrics in the multilabel framework, we 
also utilized the following metrics to assess the single-label 
classification models. 
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where TP, TN, FN, and TN are true positives, true negatives, 
false positives, and false negatives for the prediction of each 
label, respectively. These metrics have widely been used in a 
large number of bioinformatics applications recently (Feng et al., 
2017; Niu and Zhang, 2017; Sun et al., 2017; Wang et al., 2017; Xu 
et al., 2017; He et al., 2018; Li et al., 2018; Pan et al., 2018; Qiao 
et al., 2018; Xiong et al., 2018; Xu et al., 2018; Zhang et al., 2018; 
Bian et  al., 2019; Wei et al., 2019a; Wei et al., 2019b; Zou et al., 
2019). In addition, we also calculated the area under the receive 
operating characteristic curve (AUC) by the trapezoidal rule.

Model Validation Method
There are mainly three methods to evaluate the generalization 
ability of a classification model, such as the independent testing 
method, k-fold cross validation, and the jackknife method. In order 
to fairly compare our proposed model with previous works on the 
same benchmark dataset, we utilized the jackknife method for the 
model validation in the multilabel learning framework. Jackknife 
is a resampling method for parameter estimation. The jackknife 
estimation of a parameter is constructed by calculating the parameter 
for each subsample omitting the i-th observation and then takes the 
mean value of these parameters as final estimation. 

In the model validation of single-label analysis, we utilized 
10 times repeated 10-fold cross validation (10 × 10-fold CV) 
method. In k-fold cross validation (CV), the sample set is 
randomly partitioned into k subsets with equal size. Of the 
k subsets, one subset is selected as the validation data for 
testing the model, and the remaining k − 1 subsets are used for 
training. The cross-validation process is then repeated k times 
(the folds), with each of the k subsets used exactly once as the 
validation data. The 10-fold cross-validation is proven to be a 
better alternative of jackknife method in terms of bias, variance, 
and computation complexity (Kohavi, 1995). We also repeated 
10-fold CV 10 times in shuffled benchmark dataset to further 
reduce the estimation variance.

RESULTS AND DISCUSSION

Label Correlation Analysis
One major advantage of multilabel learning framework is the 
explicit exploitation of label correlations (Zhang and Zhou, 2014). 
We calculated bias corrected Cramér’s V statistics for all the label 
pairs and depicted them in a heatmap manner (Figure  1A), 
and the UpSet visualization of label intersections is depicted in 
Figure 1B. The results indicated that 46 drugs are both labeled 
as ATC category 4 (dermatologicals) and ATC category 12 
(respiratory system), 43 drugs are both labeled as ATC category 13 
(sensory organs) and ATC category 7 (anti-infectives for systemic 
use), which can be explained by the fact that many widely applied 
corticosteroids, such as dexamethasone, betamethasone, and 
fluocortolone, can be used both in dermatology and respirology 
medicine. We also found that several label sets are correlated, 
especially for ATC category 4 (dermatologicals) and ATC 
category 13 (sensory organs), of which the Cramér’s V statistic 

FIGURE 1 | Label correlation landscape. (A) The pair wise visualization of Cramér’s V statistics for all the labels in a heatmap manner. (B) The UpSet visualization of 
label intersections. The horizontal bar shows the number of drugs per ATC category, and the vertical bar shows the number of drugs per ATC category intersection.
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is 0.29. Details about the pairwise intersection numbers of drugs 
and the pairwise Cramér’s V statistics between all the labels are 
shown in Table S1 and Table S2.

Multilabel Performance Comparison
Table 1 shows the prediction performances based on the 
jackknife test among different methods on the benchmark 
dataset. We found the absolute true value of almost all our 
NLSP-based methods performed better than that of other 
methods, which is the most stringent metric for multilabel 
learning. Among all the NLSP-based models, the NLSP-XGB-
LPA performs the best, consistently better than all the other 
methods trained on benchmark dataset, in terms of aiming, 
coverage, accuracy, and absolute true. As for the value of 
absolute true, our NLSP-XGB-LPA has boosted ~11.67% 
compared to the best deep learning model trained on the 
same benchmark dataset (Lumini and Nanni, 2018). As for the 
clusterer, we found that the LPA method performs consistently 
better than the Louvain method in all the NLSP-based models 
(Figure S1), so we append the suffix of “-LPA” to all the NLSP-
based models. We then trained the final NLSP-XGB-LPA 
model on the full benchmark dataset using previous optimized 
hyperparameters. This model can be accessed through https://
github.com/dqwei-lab/ATC. 

Label Community Analysis
One major innovation of NLSP method is the construction 
of label relation graph, which is built on the concept of label 
co-occurrence (Szymanski and Kajdanowicz, 2019). The 
communities detected in the label relation graph will not 
only help to improve the classification performance but also 
provide us with deeper insights of the intrinsic label structure. 

We extracted the community membership information from 
the final model of NLSP-XGB-LPA (shown in Figure 2). We 
found that there are two communities detected, in which ATC 
category 8 (anti-infectives for systemic use) lies in a unique 
community. In terms of medicinal chemistry and clinical 
pharmacotherapeutics, anti-infectives for systemic use are 
structure variant and usage limited compared to other 16 
types of drugs. For example, daptomycin (DB00080) is one 
of the anti-infectives for systemic use, which is composed of 
an unusual molecular structure of lipopeptide with limited 
indications for skin and skin structure infections caused by 
Gram-positive infections, S. aureus bacteremia, and right-sided 
S. aureus endocarditis (Henken et al., 2010). The community 
membership learnt from benchmark dataset is surprising but 
intuitive. This result suggests the potential pattern extraction 
power of network-based machine learning models in terms  
of pharmacology.

Single-Label Analysis 
Apart from multilabel learning metrics, it is often useful to 
evaluate multilabel learning models in a label-wise manner 
(Michielan et al., 2009; Mayr et al., 2016). We utilized the 
parameters of the best-performing model of NLSP-XGB-LPA 
and conducted 10 times repeated 10-fold cross-validation 
(10 × 10-fold CV) because the jackknife test is rather time 
consuming. The details are listed in Table 2. We found that our 
NLSP-XGB-LPA performs well in all the single-label subtasks 
of ATC prediction, especially for the label of “anti-infectives 
for systemic use,” reaching an AUC at 0.9946. Compared to a 
dedicated single-label classification system for cardiovascular 
system (Gurulingappa et al., 2009), our best-performing 
multilabel model boosted the value of accuracy from 0.8947 
into 0.9490.

TABLE 1 | Comparison with other state-of-the-art multilabel predictors.

Method DLa Aiming Coverage Accuracy Absolute true Hamming loss

EnsANet_LR ⊕ DOc (τ = 0.25)
(Lumini and Nanni, 2018)

Yes 0.7957 0.8335 0.7778 0.7090 Not available

EnsANet_LR ⊕DOc (τ = 0.5)
(Lumini and Nanni, 2018)

Yes 0.9011 0.7162 0.7232 0.6871

EnsLIFT
(Nanni and Brahnam, 2017)

No 0.7818 0.7577 0.7121 0.6330

iATC-mHybc

(Cheng et al., 2017a)
No 0.7191 0.7146 0.7132 0.6675

Chen et al.
(Chen et al., 2012)

No 0.5076 0.7579 0.4938 0.1383

iATC-mISF
(Cheng et al., 2017b)

No 0.6783 0.6710 0.6641 0.6098

NLSP-ERT-LPA No 0.7948 0.7691 0.7578 0.7213 0.03817
NLSP-RF-LPA No 0.8072 0.7889 0.7778 0.7489 0.03427
NLSP-SVM-LPA No 0.7844 0.7529 0.7370 0.6925 0.04322
NLSP-XGB-LPA No 0.8135 b 0.7950 0.7828 0.7497 0.03429
NLSP-MLP-LPA No 0.7958 0.7858 0.7591 0.7090 0.04032

a DL denotes whether this model is a deep learning-based method. 
b The bold value stands for the best value of specific metrics.
c These models are trained on a modified benchmark dataset, whose metrics are not comparable to our model.
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FIGURE 2 | Label relation graph. Different colors stand for different communities. The line width represents the weight between two labels. Communities are 
detected by multiple async label propagation method, while the weight represents the frequency of label co-occurrence.

TABLE 2 | Label-wise analysis of best-performing multilabel learning model.

Predictive label Accuracy Specificity Recall F1 score AUC Evaluation method 

Alimentary tract and metabolism 0.9269 0.7312 0.7549 0.7406 0.9550 10 × 10-fold CV
Blood and blood forming organs 0.9793 0.7754 0.5644 0.6430 0.9493 10 × 10-fold CV
Cardiovascular system 0.9490 0.8371 0.8274 0.8306 0.9752 10 × 10-fold CV
Dermatologicals 0.9403 0.7966 0.6038 0.6845 0.9472 10 × 10-fold CV
Genitourinary system and sex hormones 0.9691 0.8148 0.6682 0.7294 0.9539 10 × 10-fold CV
Systemic hormonal preparations, excluding sex
hormones and insulins

0.9867a 0.8227 0.7605 0.7816 0.9940 10 × 10-fold CV

Anti-infectives for systemic use 0.9793 0.9276 0.9170 0.9215 0.9946 10 × 10-fold CV
Antineoplastic and immunomodulating agents 0.9792 0.8683 0.7724 0.8126 0.9804 10 × 10-fold CV
Musculoskeletal system 0.9820 0.8707 0.7836 0.8209 0.9842 10 × 10-fold CV
Nervous system 0.9511 0.8581 0.8913 0.8733 0.9825 10 × 10-fold CV
Antiparasitic products, insecticides and repellents 0.9863 0.8312 0.7358 0.7714 0.9803 10 × 10-fold CV
Respiratory system 0.9573 0.8432 0.7516 0.7923 0.9720 10 × 10-fold CV
Sensory organs 0.9492 0.8206 0.6367 0.7140 0.9487 10 × 10-fold CV
Various 0.9717 0.7681 0.6997 0.7241 0.9703 10 × 10-fold CV

Cardiovascular system 
(Gurulingappa et al., 2009)

0.8947 Not available 100 × bootstrapping

Cardiovascular system
(Gurulingappa et al., 2009)

0.7712 Test set

SuperPred (Dunkel et al., 2008) 0.676b Jackknife

a The bold value stands for the best value of specific metrics.
b The mean accuracy of flattened 850 ATC classes.
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CONCLUSION

Based upon the NLSP method, we have achieved the state-of-the-
art performance on the benchmark dataset using the similarity-
based features such as chemical–chemical interaction and 
structural and fingerprint similarities of a compound to other 
compounds belonging to the different ATC categories. Label 
community and single-label analysis were also performed on 
the benchmark dataset. There are three major conclusions can 
be reached. First, compared to dedicated single-label models 
(Dunkel et al., 2008; Gurulingappa et al., 2009), multilabel 
learning framework could improve the performance on single-
label metrics by incorporating label correlation information. 
Second, compared to feature engineering tricks (Nanni and 
Brahnam, 2017; Lumini and Nanni, 2018), the introduction of 
new method such as NLSP could generate more performance 
improvement. Third, at least in the ATC prediction task, the 
NLSP method, which adopts ideas from network research 
community and captures the correlation of labels in a data-
driven manner, can perform better than the models based on 
deep learning techniques, especially in the absolute true rate 
metric. The idea behind NLSP method is fascinating, and the 
power of NLSP remains to be unleashed for the multilabel 
learning tasks in drug discovery.

Although the NLSP method was the first time to be applied 
to the multilabel classification task in pharmacology and 
achieved good performance in the preliminary results, there are 
shortcomings in several aspects in this study. First, the similarity-
based features are not recalculated for the specific communities 
detected by the NLSP methods. Second, the rigidity of the model 
validation can be improved by the independent external dataset. 
Last but not the least, the number of communities detected by 
NLSP on this drug classification problem is too low, which may 
be not an ideal dataset for proving the predictive power of the 

NLSP-based method. These problems can be addressed in the 
further studies.
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In recent years, the development of high-throughput screening (HTS) technologies and 
their establishment in an industrialized environment have given scientists the possibility 
to test millions of molecules and profile them against a multitude of biological targets in 
a short period of time, generating data in a much faster pace and with a higher quality 
than before. Besides the structure activity data from traditional bioassays, more complex 
assays such as transcriptomics profiling or imaging have also been established as 
routine profiling experiments thanks to the advancement of Next Generation Sequencing 
or automated microscopy technologies. In industrial pharmaceutical research, these 
technologies are typically established in conjunction with automated platforms in order to 
enable efficient handling of screening collections of thousands to millions of compounds. 
To exploit the ever-growing amount of data that are generated by these approaches, 
computational techniques are constantly evolving. In this regard, artificial intelligence 
technologies such as deep learning and machine learning methods play a key role in 
cheminformatics and bio-image analytics fields to address activity prediction, scaffold 
hopping, de novo molecule design, reaction/retrosynthesis predictions, or high content 
screening analysis. Herein we summarize the current state of analyzing large-scale 
compound data in industrial pharmaceutical research and describe the impact it has had 
on the drug discovery process over the last two decades, with a specific focus on deep-
learning technologies.

Keywords: Artificial intelligence, deep learning, Chemogenomics, Large-scale data, pharmaceutical industry

INTRODUCTION
Digital data, in all shapes and sizes, are growing exponentially. According to the National Security 
Agency of the United States, the Internet is processing around 1.8 billion GB of data per day 
(Macarron et al., 2011). In 2011, digital information has grown nine times in volume in just 5 
years (Mayr and Bojanic, 2009) and by 2020, its amount in the world is expected to reach 35 
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trillion GB (Borman, 1999). The recent development of deep 
learning and other artificial intelligence methods is fuelled by 
the desire to seek greater insight among the ever-increasing 
amount of data in several key industries and powered by 
technological advancements as in, for example, computer 
vision, natural language processing, internet of things (IoT), or 
computer hardware.

Over the past decade, there has been a remarkable increase 
in the amount of available compound activity, biomedical 
(Borman, 1999; Mayr and Bojanic, 2009; Schamberger et al., 
2011), and genomics data (Guyer and Collins, 1995; Human 
Genome Project Results; Wilson and Nicholls, 2015) thanks 
to the rapid development of high-throughput screening (HTS) 
and gene sequencing technologies. Typically, databases in 
pharma companies contain around 1–4 million compounds with 
biological data for several thousands of biological end-points 
such as targets or activities in cellular assays. Furthermore, 
due to the increasing level of automation and standardization, 
larger data sets of consistent conditions have become available. 
All chemical compounds synthesized and/or extracted from 
publications represent around 96 million compounds (Kim et al., 
2019). Even though only a small fraction of them have associated 
biological information (Wang et al., 2014; Kim, 2016), these 
chemogenomics data sets alone already represent a formidable 
task for predictive modelling work.

The usage of new automation technologies resulted in a large 
volume of data, which has promoted the usage of machine learning 
(ML) methods. ML methods such as support vector machine 
(SVM), random forest (RF), or neural networks (NNs) have been 
used for data modelling in cheminformatics and bioinformatics 
for a long time. Only recently, various deep learning methods 
have become more popular due to the availability of large-scale 
training sets and high-performance computer hardware. An 
important difference between deep learning and previous ML 
methods is the flexibility of NN architectures and input/output 
data structures in deep learning methods and the automated 
extraction of features from raw data representations. This 
flexibility allows to design models that fit to the characteristics 
of the prediction problem (Wu et al., 2018; Xiong et al., 2019; 
Yang et al., 2019). Some of the popular NN architectures include 
convolutional NNs, recurrent NNs, autoencoders, and fully 
connected deep NNs. These deep learning methods have been 
applied (Ramsundar et al., 2017; Chen et al., 2018) on aspects 
of compound activity prediction (Dahl et al., 2014; Ma et al., 
2015; Koutsoukas et al., 2017), de novo molecular design (Brown 
et al., 2019), protein–ligand interaction prediction (Lenselink 
et al., 2017; Feinberg et al., 2018), predictive toxicity (Mayr et al., 
2016), and reaction prediction (Segler and Waller, 2017b). In this 
review, we will provide an overview on various types of large-
scale data sets that are available in pharmaceutical industry. Such 
data sets offer a wealth of information that are unavailable in 
the public domain and give rise to a broad range of applications. 
Furthermore, we will exemplify the applications of artificial 
intelligence, in particular deep-learning technologies, that are 
powered through these large data sets on various problems in 
drug discovery.

LARGE-SCALE COMPOUND DATA IN 
PHARMACEUTICAL INDUSTRY
The past two decades have seen an acceleration of compound data 
generation in pharmaceutical industry driven by the technical 
advancement of HTS (Mayr and Bojanic, 2009; Macarron 
et  al., 2011), parallel chemical synthesis (Borman, 1999), as 
well as the by the introduction of automation in sequencing 
and imaging. The various types of large-scale compound data 
in pharmaceutical research are illustrated in Figure 1. A small 
molecule database belongs to the core infrastructure of industrial 
pharma R&D in order to store the results of lead identification 
and optimization campaigns, which are used for, e.g., structure–
activity–relationship (SAR) analyses. The typical size of a 
compound collection at major pharma companies ranges from 
1 to 4 million compounds (Schamberger et al., 2011; Kogej 
et al., 2013). Compound activity data (including Administration 
Distribution Metabolism Excretion Toxicology (ADMET) end 
points) are the major part of the “Compound Data Estate” in 
pharmaceutical industry. Most of the SAR data come from the 
HTS campaigns carried out during the drug discovery projects, 
which typically comprise crude readouts generated from in vitro 
assays at single compound concentration—so called single-shot-
potency—in the primary screening stage, and more accurate 
concentration response data (IC50s, EC50s, etc.) derived from 
multiple compound concentration experiments. Pharmaceutical 
databases allow for in-depth studies that may not be achievable 
with public data. Indeed, structuration and curation of private 
databases are done with the inclusion of concepts such as screening 
campaigns or lead optimization programs, which make possible 
a faster and easier analysis of high-quality data. Occasionally, the 
overall number of SAR data points in pharmaceutical companies 
was disclosed in the past; some numbers reported in literature 
are listed in Table 1. Although this information is not up-to-date, 
it can still give a sense of the scale of experimental compound 
data in pharmaceutical industry.

Comparing with conventional HTS screening with a 
limited number of data readouts per compound, high-content 
screening (HCS) (Bickle, 2010) using automated microscopy 
generates images with multi-parameter readouts that provide 
an information-rich characterization of cellular phenotypic 
responses to small molecules. It has become an important tool 
for compound profiling and has led to a substantial increase in 
the amount of compound profiling data. For example, 460,800 
images were produced through a screen comprising 100 384-
well plates imaged with three fluorescent channels at four 
independent sites per well (Boutros et al., 2015). Hundreds 
of parameters can be extracted from each cell in the image 
quantifying information of morphological, geometric, intensity, 
and texture-based features. Recently Janssen reported (Simm 
et al., 2018) an image dataset for 524,371 compounds originally 
used for the detection of glucocorticoid receptor (GCR) nuclear 
translocation. For each cell in the image, 842 features were 
extracted, corresponding to roughly 440 million data points. The 
usage of image-based compound profiling data will be discussed 
in a subsequent section.
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High throughput mRNA expression profiling can be used to 
characterize the response of cell culture models to perturbations 
such as small molecules acting as pharmacologic modulators 
(Lamb et al., 2006; Iorio et al., 2013). These compounds induce 
transcriptional effects that can be used as gene signatures to 
discover new connections among compounds, pathways, and 
diseases. With one of these technologies, known as L1000™ 

Expression Profiling (profiling for 978 gene expressions) (De 
Wolf et al., 2016; Genometry), thousands of compounds can be 
screened per day at lower costs than conventional microarray 
techniques (Subramanian et al., 2017). Merck reported the 
screening of a set of 3,699 compounds using the Genometry 
L1000 platform to unveil a new target for compounds (Filzen 
et al., 2017). Janssen announced (How library-scale gene-
expression profiling is changing drug discovery; Pascale, 2015) 
that they will use Genometry’s L1000 platform to generate 
gene-expression profiles for 250,000 compounds from Janssen’s 
small-molecule screening library. It is expected that more 
pharmaceutical companies will adopt similar technologies and 
approaches to generate large-scale transcriptomics data for 
compound profiling.

With the continuous increase in the amount and heterogeneity 
of data that are generated and stored in large repositories, the 
question of how to ensure and sustain data integrity gained more 
and more attention. The generation and storage of large amounts 
of data require significant investments in IT infrastructure. These 
investments are justified not only by efficiency gains for ongoing 
projects through elimination of manual steps to compile and 
analyze project-relevant data that ultimately lead to decisions 

FIGURE 1 | Different categories of large-scale compound data in industrial pharmaceutical research.

TABLE 1 | Number of SAR data point in large pharmaceutical companies 
reported in literatures.

Company # of SAR point Date Reference

AstraZeneca 150 million single-shot 
SAR points, 14 milliona 
CR SAR points

Up to 2008 (Proffitt, 2008; 
Muresan et al., 
2011)

Boehringer 
Ingelheim

260 million single-shot 
SAR points, 7 million 
CR SAR points

Up to 2011 (Beck, 2012)

Pfizer 0.6 million CR SAR 
points

Up to 2005 (Paolini et al., 2006)

Johnson & 
Johnson

30 million SAR points Up to 2006 (Agrafiotis et al., 
2007)

a) This number includes external sources, up to 2012.
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on whether or not to pursue a certain molecule or compound 
class, but also perhaps even more so by the prospect to discover 
knowledge across projects as described for example in recent 
publications by Novartis (Wassermann et al., 2015a) or Boehringer 
Ingelheim (BI) (Beck, 2012). All this is only possible if the data 
context is provided alongside the data itself, and when there is 
a profound understanding of the data quality. One important 
aspect for consideration is the assay technology that is applied 
for compound testing. The direct interference of compounds 
with an assay technology is a source for systematic errors, which 
should be considered when analyzing the respective data sets. 
In a recent example at BI (Beck et al., 2015), the screening deck 
was assayed against an ion channel target for neuroprotection 
by means of a fluorometric imaging plate reader (FLIPR) assay 
(Sullivan et al., 1999). The screen yielded a high hit rate, and 
using a systematic overlap analysis with results from previous 
FLIPR campaigns, a large number of compounds most likely to 
be false positives were excluded from labor-intensive follow-up 
activities. Other important aspects regarding data quality are, for 
instance, compound purity, autofluorescence, or physicochemical 
properties such as aggregation propensity (Jadhav et al., 2010), 
which can have a significant influence on assay results and need 
therefore to be taken into account as decision-relevant context. 
This can be accomplished by computational surrogate parameters 
or auxiliary experiments such as high-throughput solubility 
determination via nephelometry (Fligge and Schuler, 2006).

Typically, data repositories within pharmaceutical companies 
evolve over years, and the best practices as to which data to store 
in such systems do so as well. This leads to situations in which 
legacy data are hardly comparable with present results, thereby 
limiting the chances to add value from mining data, which were 
generated at significantly different points in time. Efforts to set up 
data governance structures and to employ modern technologies 
around meta data management and central nomenclatures 
aim to address this issue and are currently underway in many 
companies (Proffitt, 2008).

BIOLOGICAL PROFILING DESCRIPTORS 
FOR HIT EXPANSION
Traditionally, cheminformatic approaches focused on the use 
of molecular descriptors that are related to structure in order to 
describe the biological activities of compounds. Among them, 
structural fingerprints have been intensively used in similarity 
search, clustering, as well as in building SAR models (Willett, 
2011). This is largely based on the hypothesis that structurally 
similar molecules are likely to bind to the same group of protein 
and then—as a consequence—share similar biological profiles 
(Martin et al., 2002; Keiser et al., 2007; Willett, 2011). In the 
late 1980s, NCI pioneered the implementation of a biological 
fingerprint to access the similarity of compounds (Paul et al., 
1989). In contrast to structural fingerprints, biological activity 
data are utilized to describe a compound, neglecting structural 
features. Furthermore, with the recent advent of phenotypic 
screening, we observe an increasing awareness that the cellular 
effects of a compound can be described by its interaction 

with the proteome, without requiring the knowledge of the 
molecular structure.

Efforts have been devoted to transpose various types of 
biological responses into fingerprint format that could be used 
to access biological similarity of ligands (Kauvar et al., 1995; Fliri 
et  al., 2005a; Fliri et al., 2005b; Plouffe et al., 2008; Dixon and 
Villar, 2010). Recently, researchers of Novartis reported the use of 
the huge amount of in-house HTS data for this purpose (Petrone 
et al., 2012). The aggregated data from 195 biochemical and cell-
based assays for around 1.5 million of compounds have been 
employed to generate biological fingerprints, so called HTS-FP. 
They stressed the usefulness in mixing biochemical and cell-based 
data in detecting molecules that can produce similar phenotype 
without necessarily presenting the same mode of action (Petrone 
et al., 2012). They demonstrated the complementarity between 
the HTS-FP and a state-of-the-art molecular fingerprint [e.g., 
ECFP4 (Rogers and Hahn, 2010)] in similarity searches, 
especially in relation to the scaffold hopping potential of HTS-FP 
to identify structurally diverse hits. On the other hand, biological 
fingerprints were found to be more efficient in a study related 
to screening plate selection and hit expansion (Petrone et al., 
2012). Additionally, it was observed that biological fingerprint-
based clusters contain compounds that interact with targets 
that operate jointly in the cell. In further work, the combination 
of HTS-FP with structural fingerprints via the use of various 
machine-learning approaches has showed promising results in 
HTS hit expansion (Riniker et al., 2014). Other studies showed the 
usefulness of HTS-FP for iterative screening purpose (Paricharak 
et al., 2016). HTS-FP has one major drawback though, which is 
that predictions cannot be made for compounds that have not 
been previously tested in any HTS assays. In addition, HTS 
predominantly produces much more inactive than active, which 
consequently leads to quite sparse HTS-FP. To tackle these issues, 
Laufkötter et al. (2019) have developed a method where missing 
bioactivity data were compensated by considering structural data 
in a so-called combined fingerprint (CESFP) (Figure 2). They 
reported a significant improvement when using CESFP compared 
to the use of HTS-FP and Extended Circular Fingerprints (ECFP) 
alone in random-forest based activity prediction models. This 
indicates a clear synergistic effect between structural and biological 
fingerprints. HTS-FP have also been employed for multitask ML. 
In a recent study, it was observed that HTS-FP and ECFP based 
activity predictions, while comparable in performance, could 
return hits containing different chemotypes, suggesting that 
combining these approaches can be an efficient way to explore the 
bioactive chemical space (Sturm et al., 2019).

Leveraging the transcriptional data such as gene expression 
profile (gene signature) in a cell could be another way to 
construct a biological profile descriptor. The publicly funded 
CMap database (Connectivity Map; Lamb et al., 2006) initially 
contained profiles of 164 drugs and later expanded to 1,309 
FDA-approved small molecules. These small molecules 
were tested in five human cell lines, generating over 7,000 
gene expression profiles in the database (Lamb et al., 2006). 
Compound induced gene signature profiles have been used for 
finding diverse hits (Lamb et al., 2006) and drug repositioning 
(Ishimatsu-Tsuji et al., 2010; Sirota et al., 2011). Although 
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generating this kind of compound related cell perturbation 
data is still quite expensive, several pharmaceutical companies, 
as mentioned earlier, are moving in the direction of 
generating such data in a large scale. It can be expected that 
transcriptomics-based biological descriptors will be explored 
for hit identification in the future. Other biological descriptors 
derived from multiplexed image data have been reported and 
successfully used for several tasks, which will be discussed in 
the subsequent imaging section.

ANALYSIS OF IMAGE-BASED PROFILING 
DATA wITH MACHINE LEARNING
In the drug discovery process, biological imaging and image 
analysis are widely used at various stages ranging from 
preclinical research to clinical trials. Imaging techniques enable 
the visualization of phenotype and behavior at multiple levels, 
including full body of humans or animals, organs, tissues, cells, 
subcellular compartments, and single molecules. A wide range of 
available imaging techniques can help to reveal the distribution 
of a drug in the body, organ, and cell as well as its mechanism 
of action. Such techniques rely on image datasets obtained 
through automated microscopy. An example of a large-scale 
image dataset is given by The Cell Image Library (Bray et al., 
2017), which contains 919,265 five-channel fields of view related 
to 30,616 compounds. The most common imaging techniques 
are automated microscopy using several fluorescent markers 
as well as label free microscopy such as brightfield and digital 
phase contrast. These imaging techniques and the downstream 
data analysis produce a large amount of data and associated 
extracted features. For several decades, automatic analysis 
methods (Boutros et al., 2015) have been successfully applied to 
identify objects such as organs, tissue types, cells, and subcellular 
compartments. Effects of diseases and drugs could be quantified 

by applying statistics and ML methods on the features that were 
extracted from the images in post-processing efforts. However, 
recent developments in deep NNs and specifically convolutional 
NNs (CNNs) are revolutionizing the field and setting new gold 
standards for key tasks such as segmentation and classification 
(Kraus et al., 2016; Chen et al., 2016; Dürr and Sick, 2016; Kraus 
et al., 2017). These new methods not only achieve better results 
but also avoid the time-consuming manual work of designing 
features and searching analysis methods for specific tasks. To 
achieve this, relatively large annotated data sets and substantial 
computational resources as provided in modern GPU clusters are 
required for training.

Deep neural nets (typically CNNs) have now been successfully 
applied for most tasks occurring in automated cell and tissue 
microscopy image analysis, including denoising (Su et al., 
2015), super resolution (Nehme et al., 2018; Ouyang et al., 2018; 
Rivenson et al., 2018; Wang et al., 2019), stain normalization 
(Janowczyk et al., 2017), hit identification (Simm et al., 2018), 
protein localization (Pärnamaa and Parts, 2017), cell cycle phase 
classification (Eulenberg et al., 2017), mechanism of action 
classification (Kensert et al., 2019), focus quality check (Yang 
et al., 2018), segmentation both in 2D and 3D (often using some 
version of a U-net architecture (Ronneberger et al., 2015)), and 
modality estimation (Christiansen et al., 2018). Many tasks fall in 
the area of classification, including tasks such as quality control 
(Yang et al., 2018), object detection (Ren et al., 2017; Hung 
et al., 2018), or outcome classification (Cireşan et al., 2013). 
Classification can be performed either on the image level or on 
the object level. In the latter case, it is linked to a localization or 
detection task to identify objects in a given image. One common 
two-step approach used is to first select candidate regions and 
then classify them. Alternatively, the network output consists 
of a probability map, which is analyzed in a postprocessing step 
to identify the objects. A typical architecture for classification is 
shown in Figure 3.

FIGURE 2 | Illustration of applying HTS-FP for building multi-task learning models. A chemogenomic matrix represents the interactions between the compound 
collection and a panel of biological target. Such a matrix is very often sparsely filled activities and missing cells represent unknown activity for the compound/target 
pair. Employing machine learning and HTSFP is an example of how unknown activities can be predicted.
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Since large amounts of annotated data are often not available 
for a specific task, strategies such as transfer learning are often 
applied, e.g., for classification tasks (Kensert et al., 2019; Zhang 
et al.). This starts with a pretrained neural net from a different 
task where a large data set is available. The model is then used as 
an initialization for the new task and fine-tuned for the task at 
hand. The last output layers of the original network are often not 
reused but trained for the new task from scratch.

As mentioned above, HCS where cells are exposed to different 
compounds followed by automated multichannel microscopy 
and subsequent automatic feature extraction is producing much 
richer data for screening than traditional HTS. More advanced 
analysis of cells exposed to chemical perturbations allows to 
identify related spatial and temporal information. Different 
biological descriptors derived from multiplexed image data 

have been reported (Loo et al., 2007; Young et al., 2008; Feng 
et al., 2009; Caicedo et al., 2017). Reisen et al. (2015) derived a 
biological fingerprint from HCS. Their HCS fingerprints are 
based on an automatic analysis of a panel of imaging assays that 
recorded morphological changes within six different cellular 
compartments upon testing of 2,725 compounds with well-
characterized mode of actions. These fingerprints were then 
used in classifying the compounds into clusters, which were 
subsequently annotated with target activities from bioactive 
molecules from different databases such as ChEMBL, Gostar 
(Gostardb), Drug bank (Knox et al., 2011), Integrity (Thomson 
Reuters), or Metabase (Thomson Reuters). Phenotypic responses 
were successfully classified for 52% of the tested compounds, 
and different phenotypes were identified that could be linked 
to the modulation of individual targets, cellular pathways, or 

FIGURE 3 | Typical neural network architecture for image classification. Alternating convolutional and max pool layers are followed by a number of fully connected 
layers, and finally an output layer with either sigmoid or softmax functions, depending on the task (Gawehn et al., 2016).

FIGURE 4 | Process of reaction prediction on an exemplary target molecule [lidocaine (Reilly, 2009)]. Machine-learning methods are applied to, first, predict the 
synthetic feasibility of the molecule and, second, predict the chemical context leading to the best yield possible for the reaction.
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disease genes (Reisen et al., 2015). Later, Simm et al. (2018) built 
a supervised machine-learning model based on fingerprints 
obtained from morphological features extracted from high-
throughput (cell) imaging (HTI) screening data. Their method 
enabled the identification of additional hits that were diverse 
from those obtained in a primary screen. More recently, end-
to-end convolutional NNs (Hofmarcher et al., 2019) were used 
on cell-painting images to predict assay activity as a multitask 
prediction problem. A number of common architectures 
were compared to each other as well as to the baseline model 
constructed with CellProfiler (Carpenter et al., 2006) extracted 
features. End-to-end models were shown to be able to deliver 
better results without first extracting features from the images.

PREDICTING COMPOUND ACTIvITY 
USING LARGE CHEMOGENOMICS 
MODELS
One of the main purposes of chemogenomics (Caron et al., 2001) 
is to obtain a matrix containing all the possible and impossible 
interactions between compounds covering the entire chemical 
space and biological proteins. Despite the advances in HTS 
(Hertzberg and Pope, 2000) techniques, which made it possible 
to test hundreds of thousands of compounds against a biological 
target in very little time, it seems quite unlikely that we will ever 
obtain a full chemogenomic matrix due to the complexity of the 
chemical space (Reymond, 2015) and the cost and time such a 
task would require due to the sheer size of the chemical space. 
It is, however, possible to computationally predict interactions 
between chemical compounds and panels of biological targets. 
The generation of such chemogenomic models is enabled by large 
databases that contain compounds with annotated biological 
activities. An applied example of activity predictions relying 
on chemogenomic models is shown in Figure 2. As previously 
mentioned, a large amount of SAR datapoints from assays with 
constant conditions and well-characterized quality can be found 
in private pharmaceutical companies’ databases. In the public 
domain, the most known databases are ChEMBL (Davies et al., 
2015; Gaulton et al., 2016), PubChem (Kim et al., 2019), and 
BindingDB (Gilson et al., 2015). ChEMBL is a manually curated 
database of bioactive molecules with drug-like properties. 
PubChem is a repository for screening data and BindingDB 
contains affinity measurements data. ChEMBL and BindingDB 
data were manually extracted from peer-reviewed journal 
articles. Furthermore, large amounts data from publications and 
patents are available in commercial databases such as Reaxys 
(Reaxys Database) and SciFinder.

A major topic that has been briefly addressed previously is the 
necessity of data standardization and curation prior to building 
a predictive model. Chemical structures can be represented by 
different types of notations (SMILES, InChI, etc.) (InChI and 
InChIKeys for chemical structures; Weininger, 1988; Weininger 
et al., 1989; Heller et al., 2015), and bioactivity data typically 
originate from different assay formats and are reported in a 
variety of units. One recent example of such a standardization 
exercise was reported by Sun et al. (2017) and resulted in the 

creation of a unified dataset, ExCAPE-DB, covering over 70 
million SAR data points coming from PubChem and ChEMBL. 
In another study, Mervin et al. (2015) mined ChEMBL active 
compounds and PubChem inactive compounds to construct a 
dataset of 195 million bioactivity data points and investigated the 
impact of inactive data on the performance of a predictive model.

Several models (Wang et al., 2013; Sushko et al., 2014; 
Hughes et al., 2016) employing various ML methods or virtual 
screening are available for target predictions and compound 
reactivity prediction, but only a few were derived from larger 
datasets. Studies on small-scale datasets (i.e., on very few assays 
or targets) can lead to misinterpretation of results or incorrect 
generalization as their applicability domain is limited. When 
using small dataset, there is a risk of investigating compounds 
that do not cover a wide range of the chemical space. In such a 
scenario, predictive models would show excellent performance 
when applied on structurally similar compounds but would fail 
to predict the activity of compounds pertaining to other series. 
Most compound-target profiles are sparsely filled. One method 
to compensate missing data is to combine bioactivity data with 
structural data as we have discussed in the previous section. 
Applying ML methods on large chemogenomic datasets has been 
reported in literature. Mervin et al. (2015) constructed a dataset 
of over 195 million bioactive data points and demonstrated 
that the inclusion of inactivity data improves the accuracy of 
predictive models. Another example for modelling large-scale 
chemogenomic data was reported by Martin et al. (2019) and 
produced activity predictions as accurate as an experimental 
4-concentration IC50s. A profile-QSAR (pQSAR) model based 
on 11,805 Novartis assays was applied on 5.5 million Novartis 
compounds, leading to a total of 50 billion predictions. This 
model is updated monthly. Recently, deep learning methods 
were also applied to build multi-task models. A study by Mayr 
et al. (2018) applied a variety of ML methods on a dataset 
of 45,000 compounds contained in more than 1,000 assays 
extracted from ChEMBL. It was shown that deep-learning 
outperforms all the other tested methods [i.e., RF (Breiman, 
2001), SVM (Cortes and Vapnik, 1995), K-Nearest-Neighbors 
(Silverman and Jones, 1989), Similarity Ensemble Approach 
(Keiser et al., 2007), Naïve Bayes (Zhang, 2004) statistics] for 
target predictions. The strength of this analysis relies on the 
fact that it was not biased by specific chemical structures or a 
particular structure representation of the compounds, as the 
dataset covered a wide range of target families, and various types 
of fingerprints were employed. This analysis showed that the 
performance of the predictive model increases with the training 
set size, confirming that effort should be put into creating large 
dataset for ML methods. Efforts for estimating prediction 
uncertainty of ML models have also been reported, for example, 
conformal prediction framework-based methods (Bosc et al., 
2019; Cortés-Ciriano and Bender, 2019) and Bayesian-based 
approaches (Zhang and Lee, 2019). A study (Tsubaki et al., 
2019) employed GNN and CNN to infer protein–compound 
interaction predictions and determine the importance of each 
subsequences of the proteins in the interaction. In Table 2, we 
summarized some studies in which DNN has been shown to 
outperform traditional ML approaches.
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Although it is crucial to have a sufficient amount of training 
data to infer target predictions, having high-quality data is also 
necessary. Indeed, available activity data can be erroneous due 
to the problematic nature of the compounds (Dahlin et al., 
2015) (e.g., reactivity, impurity, aggregation, technology hitters, 
etc.) or the experimental conditions in which they were tested 
(concentration, assay technology, plate type, etc.). The integration 
of such erroneous and heterogenous data can have an impact 
on predictive models. Various methods have been developed to 
detect such problematic compound behaviors, the most popular 
one being the Pan-Assay Interference Substructure (PAINS) 
filters (Baell and Holloway, 2010). A significant number of 
compounds that were initially considered as potential leads were 
found to be false positives. PAINS filters are substructures that 
were frequently observed among these compounds. It has now 
become usual to apply these filters when selecting compounds 
for follow-up studies. However, the PAINS filters were derived 
from compounds tested in only one specific HTS technology 
(namely, AlphaScreen) and do not cover the entire chemical 
space. Thus, these filters should be applied with care (Baell 
and Nissink, 2018). Stork et al. (2018, 2019) developed the Hit 
Dexter model to predict frequent-hitter, aggregator, PAINS, dark 
chemical matter (Wassermann et al., 2015b), and other potential 
nuisance compounds. The Hit Dexter model is based on a set 
of extensively tested compounds from PubChem represented 
by their 2D molecular fingerprints.  The  Badapple model (Yang 
et al., 2016) was developed to filter out promiscuous compounds 
based on a scaffold promiscuity analysis. Such predictive models 

and substructure filters are crucial for compounds triaging and 
data accuracy; however, the characteristics of the data under 
investigation and the aim of the screening project have to be taken 
into consideration when applying those filters. Promiscuous 
compounds, while giving rise to possible negative side effects 
due to their potential interactions with multiple targets, can 
still be of great interest because of their polypharmacology. In a 
similar manner, compounds interfering with an assay technology 
should not be discarded from a drug discovery process but should, 
however, be tested in a different technology based on dissimilar 
mechanisms. Sample impurity is another factor to consider 
regarding promiscuity. If the purity of each sample tested is known, 
it is easy to filter out everything that did not match the requested 
quality criterion. If this is not the case, one can use in-house data 
to detect promiscuous samples in the screening deck (Beck, 2012).

Other criterion to consider in HTS the druglikeness 
of a compound, which is determined by the compound’s 
physicochemical (PC) and toxicological properties. Various 
quality control pipelines created to filter out compounds employ 
straightforward filtering rules (Hsieh et al., 2015; Zhai et al., 
2016), while some other employ ML techniques such as deep-
learning (Liu et al., 2019) methods. In pharmaceutical companies 
and academic institutes, PC filters are tuned depending on the 
type of compounds found in the chemical libraries (Brenk et al., 
2008; Pearce et al., 2006; Cumming et al., 2013). PC properties-
based rules ensure that compounds have similar properties to 
other drugs based on historical data and have a good probability 
to be synthesizable and non-toxic. Furthermore, structural alerts 
have been created (Sushko et al., 2012) to flag potential toxic 
compounds in terms, for example, of mutagenicity (Tennant and 
Ashby, 1991) or skin sensitization (Barratt et al., 1994).

Very recently, a new consortium of pharmaceutical, 
technology, and academic partners has launched the 
“MELLODDY” (Machine Learning Ledger Orchestration for 
Drug Discovery) project (MELLODDY Consortium| Twitter; 
Pharma Companies Join Forces to Train AI for Drug Discovery 
Collectively). The project involves 17 partners from across 
Europe and receives funding from the EU Innovative Medicines 
Initiative (IMI) as a public–private partnership. MELLODDY 
aims to train chemogenomics models across multi-partner (10 
pharma companies) datasets while ensuring privacy preservation 
of both the data and the models by developing a platform using 
federated learning. It will be interesting to see their efforts 
regarding data standardization and generation of a large high-
quality data set and the results of such an approach.

MODELLING CHEMICAL REACTIONS 
FROM LARGE-SCALE SYNTHESIS DATA
It is of crucial importance in drug discovery to be able to predict 
the feasibility of chemical reactions (Engkvist et al., 2018). It ranges 
from predicting synthetic feasibility for compounds identified 
in virtual screening in early drug discovery as well as for hit 
expansion in the lead generation phase to late stage modifications 
during lead optimization and to predict possible synthetic routes 
for upscaling of the synthesis of clinical candidates (Figure 4). 

TABLE 2 | Performances comparison of traditional ML and DL in Drug Discovery.

Ref. Performance 
traditional ML

Performance 
deep-learning

(Koutsoukas et al., 
2017) (1)

RF: MCC = 0.89 DNN: MCC = 0.91

(Dahl et al., 2014) (2) RF: AUC = 0.78 MT NN: AUC = 0.82
(Lenselink et al., 2017) SVM: MCC = 0.50, 

BEDROC = 0.88
DNN_MC: MCC = 0.57, 
BEDROC = 0.92

RF: MCC = 0.56, 
BEDROC = 0.82

(Mayr et al., 2016) SVM: AUC = 0.71 ST: AUC = 0.72
MT: AUC = 0.75

(Feinberg et al., 2018) RF: Pearson = 0.783 GNN: Pearson = 0.822
(Segler and Waller, 
2017b)

LR: Acc = 0.86 
(reaction prediction)

NN: Acc = 0.92 (reaction 
prediction)

LR: Acc = 0.64 
(retrosynthesis)

NN: Acc = 0.78 
(retrosynthesis)

(Wu et al., 2018) (3) SVM: AUC = 0.822 GC: AUC = 0.829
(Xiong et al., 2019) (4) SVM: AUC = 0.792 Attentive FP: AUC = 0.832
(Yang et al., 2019) (5) RF: AUC = 0.619 FFN: AUC = 0.788
(Ma et al., 2015) (6) RF: R2 = 0.42 DNN: R2 = 0.49
(Ramsundar et al., 
2017) (7)

RF: R2 = 0.428 ST: R2 = 0.448

MT: R2 = 0.468

LR, ST, MT, GC, GNN, and FFN refer to Linear Regression, Single- and Multi-
Task, Graph Convolution, Graph, and Feedforward Neural Network, respectively. 
(1) Averaged performance on validation sets over 7 datasets. (2) Averaged 
performance on test sets over 19 datasets. (3) Performance on a test subset of the 
Tox21 dataset. (4) Performance on the HIV dataset. (5) Performance on the Tox21 
dataset. (6) Averaged performance over 15 datasets. (7) Model performance on a 
test set.
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Synthetic predictions have a long history dating back to rule-
based programs in the 1960s (Corey and Todd Wipke, 1969). 
Several aspects have made reaction informatics a field for active 
research during recent years. Besides established commercial 
products with reactions extracted from literature, reaction data 
have been extracted from electronic laboratory notebooks (ELNs) 
(Christ et al., 2012) and patents. Schneider et al. (2016) used text-
mining to extract 1.15 million unique whole reaction schemes, 
including reaction roles and yields, from pharmaceutical patents. 
The reactions were assigned to well-known reaction types such 
as Wittig olefination or Buchwald–Hartwig amination using an 
expert system. Also, large-scale reaction data can be generated 
from high-throughput experimentation. Schematically reaction 
informatics can be divided into two subfields, retrosynthetic 
analysis, where a molecule is analyzed and a set of reactions 
and building blocks are proposed to synthesize the molecule, 
and forward reaction prediction, where it is predicted if a set 
of building blocks will react or not and at which conditions a 
reaction will occur. In recent years, there has been a paradigm 
shift on how retrosynthesis routes can be predicted. While 
historically rule-based systems were the most popular method, 
more recently several studies using ML have shown superior 
results. One advantage of ML algorithms is that they are 
generalized methods and not dependent on rigid predefined 
rules for describing the exact reaction.

In the following, we will focus on recent examples of 
predicting how to synthesize molecules by mining large corpora 
of experimental synthesis data. For more general reviews, we 
refer to recent publications (Warr, 2014; Coley et al., 2018). 
Segler and Waller (2017b) used reaction fingerprint descriptors 
to classify reactions. Both hand-coded and automatically 
extracted reaction rules were used to classify reactions from 
literature. Three million reactions were classified with the hand-
coded rules, while almost 5 million reactions were classified with 
the automatically extracted reaction rules. Reaction classification 
models were built with artificial NNs (ANNs). ANNs were found 
to be superior in predicting reactions than a rule-based system. In 
another article, they showed that reaction graphs with reactions 
extracted from literature can be used to predict novel reactions 
(Segler and Waller, 2017a). A knowledge graph consisting of 14 
million molecules was generated, and 8 million reactions and 
probable novel reactions could be inferenced from. Studies were 
also published for predicting the reactivity of protecting groups 
(Lin et al., 2016); 142,000 catalytic hydrogenation reactions 
were extracted from literature. The reactions were described 
with condensed graphs of reaction fingerprints. The models 
showed high accuracy (90%) for predicting optimal conditions 
for deprotection of protecting groups. The models were also used 
to identify contradictions in reactivity charts created manually 
by experts. Coley et al. (2017) developed predictive ML models 
using 15,000 reactions extracted from US patents. They created 
a set of candidate reactions based on enumeration of a set of 
reactants and reaction templates. In a second step, the candidate 
reactions were described by a set of reaction descriptors, and a 
NN model was trained to prioritize the candidate reactions. The 
model predicted the correct reaction in 72% of the cases, the 

correct reaction was found in 87% of the cases among the top 
three predicted reactions, and it was found to be among the top 
five predicted reactions in 91% of the cases. A recent example of 
predicting reaction conditions with a large data set was published 
by Gao et al. (2018). They developed a NN model to predict the 
chemical context [catalyst(s), solvent(s), reagent(s)] and the 
most suitable temperature for any particular organic reaction. 
Reactions were extracted from Reaxys and filtered according 
to various criteria, resulting in ~10 million example reactions. 
The models were trained on these reactions and were able to 
propose conditions where a close match to the recorded catalyst, 
solvent, and reagent was found within the top 10 predictions 
in 69.6% of the cases. Another noteworthy development in the 
reaction prediction field is the construction development of a 
retrosynthesis system using deep learning technologies. Segler 
et al. (2018b) reported such a system, in which the system 
reaction DNN models derived from literature reaction data were 
combined with Monte Carlo Tree Search (MCTS) to identify a set 
of reactions and building blocks that could be used to synthesize 
the desired molecule. While most studies have used a reaction 
template to describe the reaction, it has been shown recently 
that a template free seq-2-seq approach (i.e., directly translate 
product SMILES to the predicted reactants in reaction SMILES 
format) also can give promising results for synthesis prediction 
(Schwaller et al., 2018a; 2018b). An alternative way of predicting 
the synthetic pathway exploiting through learned policies has 
just been published (Schreck et al., 2019).

DATA DRIvEN DE NOVO MOLECULE 
DESIGN THROUGH GENERATIvE 
MODELS AND DATA AUGMENTATION
Even though industrial compound-bioactivity datasets have 
millions of data points, many assay results for specific compound 
series (typical for the lead optimization stage of a drug discovery 
project) have much less SAR data. However, these datasets 
can still be augmented and be further exploited with deep 
learning approaches, such as QSAR and generative modelling. 
Data augmentation is the process of adding noise or artificial 
perturbation to the samples in the dataset before training 
the model in order to make the final models more robust to 
overfitting (Arús-Pous et al., 2019b). Moreover, in some cases, 
data augmentation can give additional information to the model. 
A simple analogy can be found in building image classification 
models. For instance, a single image with a “dog” will still be 
recognizable even if it is rotated, cropped slightly, changed in 
terms of contrast or lightness, etc. Therefore, a single labelled 
image can be multiplied into multiple training set entries, thus 
expanding the dataset.

Similar approaches have also been used in areas relevant 
to pharmaceutical research such as predicting concentrations 
of chemical compounds from spectroscopy data (Bjerrum 
et al., 2017) and building QSAR models from chemical images 
(Goh et al., 2017). In molecular deep learning models, many 
architectures use the SMILES as molecular representation 
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(Bjerrum, 2017), which is obtained by assigning a unique 
number to each atom in the molecule and then traversing the 
molecular graph using that order. Commonly, a canonical 
SMILES representation of each molecule is used, which is 
obtained by calculating a unique numbering for molecules 
(Weininger et al., 1989). This representation is served as a 
way of uniquely identifying molecules. Nevertheless, most 
molecules can have more than one SMILES representation 
obtained by only changing the numbering of the atoms, 
meaning that different SMILES start in different atoms of 

the molecule and traverse it in different ways (Figure 5). 
Randomized SMILES for the same compound can thus be used 
for data augmentation.

A great surge of interest in cheminformatics applications 
of deep learning has happened in recent years when NNs were 
used to generate molecules represented by SMILES strings 
(Olivecrona et al., 2017; Gómez-Bombarelli et al., 2018; Segler 
et al., 2018a). Recurrent NN (RNN) trained with a set of SMILES 
strings can generate molecules that are not present in the training 
set but that have similar properties as the training samples. These 

FIGURE 5 | Canonical (A) and randomized (B) SMILES representations of Aspirin. Numbers represent the atom numberings assigned by the canonicalization 
algorithm (A) or randomized (B). Green arrows indicate how the molecular graph is traversed. Both SMILES strings represent the same molecule but, as the atom 
numbering changes, the generated SMILES strings do too. Figure extracted with permission from Arús-Pous et al. (2019b).

FIGURE 6 | Sampling process of a pre-trained recurrent neural network. The generation process starts with a GO token, and at each step, the model computes a 
probability distribution of all possible characters. Then, the next character is sampled from it and fed back to predict the next character. The internal memory in the 
long short-term memory (LSTM) cells enables the predictions to take previous characters into account when generating the next character.
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deep learning-based generative models are entirely data driven 
and do not rely on any predefined reaction/transformation rules, 
in contrast to the traditional library enumeration methods for 
generating chemical structures (Schneider and Fechner, 2005). 
Molecules are generated character by character as SMILES 
strings by randomly sampling the probability distribution of the 
next character to sample (Figure 6). This process generates a very 
high ratio of valid SMILES, especially thanks to the use of Long 
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 
1997) or Gated Recurrent Unit (GRU) (Cho et al., 2014) cells 
that capture long-range relationships such as ring closures and 
branches. Additionally, pre-training on a large set of chemical 
structures [such as ChEMBL, ZINC (Sterling and Irwin, 2015), 
etc.] and the subsequent application of transfer learning to 
smaller datasets can be used to generate focused datasets with 
an enrichment of active compounds (Segler et al., 2018a). The 
pre-trained RNNs can also be used to directly optimize toward 
desirable properties (Olivecrona et al., 2017). This triggered the 
development of a plethora of novel architectures and techniques in 
the last years, such as Variational AutoEncoders (VAEs) (Kingma 
and Welling, 2013; Polykovskiy et al., 2018b; Zhavoronkov et al., 
2019), Differentiable Neural Computers (DNCs) (Putin et al., 
2018), Generative Adversarial Networks (GANs) (Guimaraes 
et al., 2017; Prykhodko et al., 2019), and Bayesian optimization 
method for structure optimization (Pyzer-Knapp, 2018). Besides 
the SMILES string based de novo structure generation methods, 
algorithms of generating molecules based on molecular graphs 
have also been proposed and, by using them, methods molecules 
can be directly generated step-by-step as molecular graphs (Jin 
et al., 2018; You et al., 2018; Elton et al., 2019; Xu et al., 2019).

Data augmentation techniques have also been applied in 
molecular generative models. For example, they have shown to 
improve the quality of the chemical space generated in VAEs 
(Bjerrum and Sattarov, 2018) and RNNs (Arús-Pous et al., 
2019b) in terms of performance of latent vector-based QSAR 
models (Bjerrum and Sattarov, 2018) and coverage of targeted 
chemical space (Arús-Pous et al., 2019b). However, there is no 
consensus on how to measure and compare the performances 
of generative models. Some approaches have been published, 
such as MOSES (Polykovskiy et al., 2018a) and Guacamol 
(Brown et al., 2019), but they are not able to fully characterize 
the complete chemical space generated. To solve this problem, an 
approach using the negative log-likelihood (NLL) of generated 
molecules was recently described (Arús-Pous et al., 2019a). 
It is able to characterize the models by their completeness, 
i.e., how many molecules from the target chemical space are 
sampled, uniformity, i.e., how uniform are those being sampled, 
and closedness, i.e., how many molecules outside of the target 
chemical space are being sampled. More specifically, it was found 
that models trained with 1 million molecules sampled randomly 
from GDB-13 (Blum and Reymond, 2009), an enumerated 
database containing 970 million drug-like compounds with up 
to 13 heavy atoms, are able to generate up to 68% of the entire 
database when the canonical SMILES representation is used for 
model training, while the coverage increases to 83%, when non-
canonical randomized SMILES are used. It indicates that data 
augmentation based on randomized SMILES generation has an 

impact on what models can learn. Moreover, models trained with 
randomized SMILES generate a much more uniform and closed 
chemical space than those trained with canonical SMILES.

Deep-learning-based generative model has been applied 
successfully for prospective design of new druglike molecules 
with desired activities (Merk et al., 2018). Compounds were 
generated using a recurrent NN trained on a large set of bioactive 
compounds. By transfer learning, this general model was fine-
tuned on recognizing retinoid X and peroxisome proliferator-
activated receptor agonists. The five top-ranking compounds 
were synthesized and investigated in cell-based assays. Four of 
these compounds showed a strong affinity toward the targets, 
with nanomolar to low-micromolar receptor modulatory 
activity. Generative modelling can also be applied to other 
chemical entities, such as peptides (Grisoni et al., 2018; Müller 
et al., 2018), but no method for data augmentation has been 
described up to now. A potential challenge might be that it is 
not possible to simply permute the amino acid sequence of 
peptides as it is done with the arbitrary atom order in SMILES 
strings, although it may be possible to integrate data from larger 
unlabelled datasets. PSI-BLAST similarity searching has been 
used to expand the prior dataset of known active compounds 
before generation and selection in iterative optimization 
rounds (Yoshida et al., 2018). This suggests that bioinformatics 
approaches area a viable way to find the natural variation for the 
amino acid substitutions and thus enable data set expansion. 
The drug-like chemical space is estimated to have at least 1024 
molecules (Bohacek et  al., 2010), and  it is not feasible to fully 
enumerate. Nevertheless, deep-learning-based generative 
models combined with data augmentation techniques have the 
potential to provide a way to sample large regions of the drug-like 
chemical space. In combination with synthesis routes prediction, 
this would deliver a tremendous boost for compound design in 
pharmaceutical research.

CONCLUSION
Over the past years, large amounts of heterogeneous data 
characterizing the biological action of small molecules have 
been accumulated in pharmaceutical R&D, stored in both 
proprietary and publicly available data bases. The origin of these 
data ranges from biochemical or cellular assays to experiments 
that investigate the impact of compounds on transcriptomics 
signatures and assays with imaging readouts. These fast-growing 
data have fuelled the application of data-savvy ML methods, 
and in particular deep learning, in order to detect patterns that 
allow to derive hypotheses for compound-mediated effects on 
biological (model) systems or to generate predictive models 
that can be employed at various stages during identification 
and optimization of new drug candidates. Together with deep-
learning-based approaches to sample the drug-like chemical 
space that—depending on the use case—can be applied with 
or without predictions of synthetic accessibility, a plethora of 
potential high-impact applications is emerging. It offers the 
opportunity to accelerate early drug discovery and to enable a 
much more comprehensive exploration of the chemical space 
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and the biological effects of its members than traditional wet lab 
and virtual screening approaches.
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HeteroDualNet: A Dual Convolutional 
Neural Network With Heterogeneous 
Layers for Drug-Disease Association 
Prediction via Chou’s Five-Step Rule
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1 School of Computer Science and Technology, Heilongjiang University, Harbin, China, 2 Department of Computer Science 
and Information Technology, La Trobe University, Bundoora, VIC, Australia, 3 School of Mathematical Science, Heilongjiang 
University, Harbin, China

Identifying new treatments for existing drugs can help reduce drug development costs 
and explore novel indications of drugs. The prediction of associations between drugs 
and diseases is challenging because their similarities and relations are complicated and 
non-linear. We propose a HeteroDualNet model to address this issue. Firstly, three types 
of matrices are extracted to represent intra-drug similarities, intra-disease similarity and 
drug-disease associations. The intra-drug similarities consider three drug features and a 
newly introduced drug-related disease correlation. Secondly, an embedding mechanism 
is proposed to integrate these matrices in a heterogenous drug-disease association layer 
(hetero-layer). Further, a neighbouring heterogeneous layer (hetero-layer-N) is constructed 
to incorporate the biological premise that similar drugs can often treat related diseases. 
Finally, a dual convolutional neural network is built with hetero-layer and hetero-layer-N 
as two branches to learn from characteristics of drug-disease and the relations of their 
neighbours simultaneously. HeteroDualNet outperformed the other four methods in 
comparison over a public dataset of 763 drugs and 681 diseases in terms of Areas Under 
the Curves of Receiver Operating Characteristics and Precision-Recall, and recall rate at 
top k. Case study of five drugs further proved the capacity of HeteroDualNet in finding 
reliable disease candidates of drugs as validated by database records or literature. Our 
findings show that the embedded heterogenous layers of original and neighbouring drug-
disease representations in a dual neural network improved the association prediction 
performance.

Keywords: drug-disease association prediction, multiple kinds of similarities, neighbouring heterogeneous layer, 
deep learning, dual convolutional neural network

INTRODUCTION
The research and development (R&D) processes of new drugs are time-consuming and expensive. 
Stringent drug testing and approvals are required for an invented new drug to make it to market. 
For instance, it takes an average of 15 years from preliminary examination of compounds to clinical 
trials of drug candidates, and finally to drug marketing, while the estimated investment cost is 
about 800 million dollars (Adams and Brantner, 2006; Tamimi and Ellis, 2009; Pushpakom et al., 
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2018). However, even in the case of a significant amount of time 
and capital investment, the R&D of new drugs still faces high 
failure risks (Li et al., 2016). Meanwhile, the number of new 
drugs approved by major drug regulatory agencies around the 
world is decreasing year by year (Grabowski, 2004; Nosengo, 
2016). According to the statistics of the US Food and Drug 
Administration (FDA), the average success rate of new drugs 
approved from 2003 to 2011 was less than 10% (Padhy and 
Gupta, 2011; Hay et al., 2014; Pritchard et al., 2017). Therefore, 
the conventional R&D productivity of new drugs has been 
stagnant in the last few decades (Paul et al., 2010).

Given the challenges faced by conventional drug R&D 
techniques, there are significant needs of innovative drug 
development strategies to increase R&D productivity, which is 
one of the essential priorities in the pharmaceutical industry. 
Drug repositioning techniques, or the so-called reuse of existing 
drugs, have been proved of its advantages over the conventional 
drug R&D strategies. (Hurle et al., 2013) Drug repositioning is 
the process to identify new indications for existing drugs and 
is playing an essential role in the state-of-the-art drug R&D 
process. Drug repositioning can be applied to drugs which have 
been approved to market. Because those drugs have passed the 
procedures of laboratory, pharmacokinetics, toxicology and 
safety testing, drug developers can use these drugs in clinical 
trials directly. In this way, drug repositioning skips those 
procedures and will significantly reduce the time and financial 
costs in drug development. At the same time, it also reduces 
the risks of drug development failure. Thus, drug repositioning 
has attracted great interests in the pharmaceutical industry and 
research community (Hurle et al., 2013).

Drug repositioning aims to find potential indications 
for existing drugs (Shim and Liu, 2014; Chen et al., 2016). 
Computational methods in biology are playing increasingly 
important roles in the stimulation, development and finding 
of new drugs (Chou, 2015). To develop useful predictors for 
biological systems via computing models, Chou’s 5-steps (Chou, 
2011; Chou, 2019b) are used by recent publications (Chou, 
2019a; Awais et al., 2019; Ehsan et al., 2019; Hussain et al., 2019). 
These steps provide guidance in the development and validation 
of computerized methods, which include selection of a valid 
benchmark dataset for training and testing, representation of 
samples by effective formulation to reflect intrinsic correlations 
with the target, development of algorithms for prediction, 
objective performance evaluation by cross-validation, and 
consideration of public accessibility by web-server.

Several methods have been proposed to predict drug-
disease associations. For example, Chiang and Butte proposed a 
technique based on the internal correlation of networks to predict 
the potential drug-disease associations (Chiang and Butte, 2009). 
Sirota et al. developed a prediction method by integrating the 
common gene expressions of drugs and diseases (Sirota et al., 
2011). Besides, Yang and Agarwal et al. proposed to infer the new 
drug-disease associations by using the phenotypic information 
on drug side effects (Yang and Agarwal, 2011). Most of these 
methods are designed for early-stage drugs which have multiple 
uses and treatment plans. They cannot be used for association 

prediction when there are no common gene expressions and side 
effects information between drugs and diseases.

With the increasing amount and variety of drug-related 
data, recent research has been focusing on integrating 
multimodality information to investigate the potential uses of 
drugs. Gottlieb et al. proposed a classification model which 
used various associations of drug and disease as distinguish 
signatures. A logistical regression model was then used to 
predict the indications of drugs (Gottlieb et al., 2011). A 
kernel-based strategy was proposed to integrate molecular 
structure, molecular activity, and phenotypic information for 
drug repositioning (Wang et al., 2013). Heterogenous networks 
have also been investigated to predict drug indications. 
Heterogeneous networks are constructed by associating drugs, 
diseases, targets and genes. The prediction can be achieved by 
approaches such as network clustering (Wu et al., 2013), priority 
ranking (Martinez et al., 2015), network topology measurement 
(Chen et al., 2015), or iteration (Wang et al., 2014b). Given these 
heterogeneous networks, some other models integrated multiple 
chemical features such as chemical phenotype of drugs and 
molecular characteristics of diseases. Then the prediction of new 
drug indications can be achieved by proteochemometric models 
(Dakshanamurthy et al., 2012; Yu et al., 2015), statistical (Iwata 
et al., 2015) or sparse subspace learning (Liang et al., 2017; Xuan 
et al., 2019) models.

Most of the above existing methods for drug-disease 
association predictions are shallow models. The associations 
between drugs and diseases, however, are non-linear and 
complicated. It is challenging for these shallow models to dig 
out advanced level while hidden drug-disease relations. Thus, 
there are great necessities to develop models to learn the deep 
representations of drug-disease associations for improved drug 
indication prediction.

In this work, we propose a novel convolutional network 
with heterogeneous layers and dual branches, referred to as 
HeteroDualNet, for drug-disease association prediction. 
Our first unique contribution is the extraction of three types 
of matrices for the representation and indexing of intra-
drug similarity, drug-disease similarity and drug-disease 
associations. When constructing intra-drug similarity 
matrices, we consider both regular drug features, including 
chemical substructures, domains and annotations of target 
proteins, and a newly introduced feature calculated by drug-
related disease correlations. The second contribution is that 
we construct a new heterogenous drug-disease association 
layer (hetero-layer) to associate three types of matrices by a 
proposed embedding mechanism. Further, a drug-disease 
association layer with neighbouring information (hetero-
layer-N) is constructed by the embedding mechanism to reflect 
the biological premise that similar drugs can often treat related 
diseases. Finally, HeteroDualNet is built to predict drug-
disease associations with hetero-layer and hetero-layer-N as 
two branches to learn from both original and neighbouring 
characteristics of drugs and diseases simultaneously. We also 
investigate the prediction capacity of the proposed model in 
therapeutic drug indications by case studies of five drugs.
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MATeRIALS AND MeTHODS

Dataset
We obtained the data of drugs and diseases from a published 
work (Wang et al., 2014a). There are 763 drugs, 681 diseases 
and 3051 known drug-disease associations. The characteristics 
of each drug include 881 chemical substructures which were 
initially derived from the chemical fingerprints extracted from 
the PubChem database (Wang et al., 2009); 1,426 target protein 
domains from the InterPro database (Mitchell et al., 2015); and 
4,447 target protein annotations obtained from the UniProt 
database (Uniprot, 2010). The similarities among diseases were 
calculated by (Wang et al., 2010) and provided in the dataset.

Hypothesis and Framework
We hypothesize that a dual neural network which integrates 
features of drugs, drug-related disease correlations, and the 
biological premise of drugs and diseases will improve the 
performance of drug-disease association predictions. The 
overview of the proposed method is shown in Figure 1. Given 
the input dataset, the drugs and diseases information is firstly 
extracted and indexed by three types of similarity matrices in 
terms of intra-drug, intra-disease and drug-disease. Then, a 
heterogenous drug-disease association layer, referred by hetero-
layer, is constructed by a proposed embedding mechanism to 
associate those matrices among drugs and diseases. Another 
heterogeneous layer with neighbouring information, denoted 
by hetero-layer-N, is built to represent the biological premise 
that similar drugs can often treat related diseases. Lastly, the 
dual convolutional neural network is constructed by integrating 
hetero-layer and hetero-layer-N using a fully connected layer.

Drug and Disease Similarity and 
Association Representation
We define three types of matrices to represent and index the 
information of drugs and diseases in terms of intra-drug 
similarity, intra-disease similarity and drug-disease associations.

Intra-Disease Similarity Matrix
Intra-disease similarities were calculated and provided by (Wang 
et al., 2010) based on semantic information of diseases (Wang 
et al., 2010). This information was also used in published work 
such as Liang et al. (2017) and Zhang et al. (2018). The similarity 
between disease di and the disease dj is denoted by D(i,j) ∈[0,1]. 
where  is the intra-disease similarity matrix and NDI is the number 
of diseases. The greater D(i,j) is, the higher similarity between 
diseases di and dj.

Intra-Drug Similarity Matrix
Four intra-drug similarity matrices are obtained by calculating the 
similarities between drugs from four perspectives, including the 
chemical substructures, target protein domain information, target 
protein annotations and the related disease information of drugs.

The first three intra-drug similarity matrices of chemical 
substructure, domain and annotation information of target 
proteins represent that if two drugs have more common 
chemical substructures, target protein domains or gene ontology 
information, the more similar they are. Thus, we calculate 
these three intra-drug similarity matrices by cosine similarity 
measurement (Liang et al., 2017).

To calculate the first three intra-drug similarity matrices, we 
firstly obtain matrices of features and drugs. The feature matrix 
of chemical feature and all the drugs is denoted by F1

1∈ ×


N NF DR
 

where N F
1  is the number of chemical substructure features, 

and NDR is the number of drugs. Similarly, the feature matrix of 
protein domain and drugs is F2

2∈ ×


N NF DR  and that of protein 
annotation and drugs is F3

3∈ ×


N NF DR , where N F
2  is the number 

of target protein domain feature and N F
3  is the number of target 

protein annotation. Each element of the vectors is 1 or 0 according 
to whether the drug has such a feature. Given the dataset used in 
this paper, N F

1 = 881 , N F
2 =1426  and N F

3 = 4 447‚ . Let ft,i be the 
feature vector of i-th drug ri in the t-th feature matrix Ft (1 ≤ t ≤ 
3), the similarity Rt(i,j) between drugs ri and rj in terms of feature 
t is calculated by cosine similarity measurement as

 
Rt || || || ||

i j
f f

f f
t i t j

t i t j
, ., ,

, ,
( ) =

⋅

 (1)

FIgURe 1 | Overview of the proposed HeteroDualNet model for drug-disease association prediction. Given input data, (A) similarity and association representations 
are extracted including (B) intra-disease similarity, (C) intra-drug similarity, and (D) drug-disease association. Then (e) an embedding mechanism is proposed to embed 
these matrices. The final drug-disease association score is obtained by (H) HeteroDualNet with (F) heterogeneous and biological premise enhanced (g) neighboring 
heterogeneous drug-disease association layers. 
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where Rt(i,j)∈[0,1] and higher values indicate higher similarity 
between a pair of drugs.

The fourth intra-drug similarities matrix R4 ∈ ×


N NDR DR
 is 

obtained based on the idea that if two drugs are associated with 
similar diseases, the drugs are more likely to be correlated. 
Given the dataset of diseases DI={dk|k∈[1,NDI]} and intra-
disease similarity matrix D if i-th drug ri is associated with 
a subset of diseases DIm ⊂ DI, and drug rj is related to a 
disease subset DIn, the similarity R4(i,j) between i-th and j-th 
drugs  can be obtained by calculating the similarity between 
DIm and DIn as proposed in our previous work (Xuan et al., 
2019) by

 
R4

1i j
D d d D d di k j j k i

k

n

,
max , max ,, , , ,( ) =

( )( ) + ( )( )∗ ∗
=

uum DI

k

num DI

m n

nm

num DI num DI

( )
=

( ) ∑∑
( ) + ( )

1

 (2)

where num(DIm) denotes the number of elements in DIm. di,k 
represents the kth disease related with drug ri, dj,* denotes 
all the related diseases of drug rj, and max(D(di,k,dj,*)) is the 
maximum similarity between drug r sj

'  kth related disease and 
all the related diseases of rj. Similarly, max(D(di,k,dj,*)) denotes 
the maximum similarity between drug r sj

'  kth related disease 
and all the associated diseases of ri. The final similarity 
between ri and rj is obtained by the average maximum 
similarities between diseases in their relevant disease subsets 
DIm and DIn.

Drug-Disease Association Matrix
The drug-disease association matrix is denoted by A ∈ ×



N NDR DI
 

where an element can be 0 or 1. 1 indicates that a drug and a disease 
are related, and the association is available; while 0 represents that 
the relation between a drug and a disease is unknown. Among all 
the 763 drugs and 681 diseases in the dataset, 3051 drug-disease 
associations are available. The remaining unknown associations 
are to be predicted.

HeteroDualNet Architecture
The sparsity of drug-disease associations makes it challenging 
to dig out the hidden characteristics and relations between 
drugs and diseases. We construct HeteroDualNet, a dual 
convolutional neural network with heterogeneous layers, to 
predict drug-disease associations. One branch integrates 
the three matrices of drugs and diseases by a heterogeneous 
association layer (hetero-layer); the other branch incorporates 
the neighbouring information in a neighbouring heterogenous 
layer (hetero-layer-N). The two heterogeneous layers are 
learnt by passing through convolutional and pooling layers 
and joint by a connection module. The final association score 
is obtained by weighted voting of association scores from 
two branches.

Embedding Mechanism for Heterogeneous  
Drug-Disease Association Matrix
The heterogenous drug-disease association layer is built upon 
an embedded matrix of afore-extracted matrices. An embedding 

mechanism is proposed based on the idea that if two drugs are more 
similar, the more likely they are associated with related diseases, 
whereas two similar diseases tend to be associated with similar 
drugs. Given intra-drug matrices Rt, drug-disease association 
matrix A and intra-disease matrix D, the heterogeneous matrix 
XL of drug ri(i∈[1,NDR]) and disease dk(k∈[1,NDI]) is obtained by 
the following embedding procedures.

Firstly, row vectors Rt(i,*) are combined sequentially as 
XL,11=[R1(i,*); R2(i,*); R3(i,*); R4(i,*)] where Rt(i,*) denotes the 
i-th row in an intra-drug similarity matrix Rt which records 
the t-th type of similarities between ri and all drugs, t = 1,2,3,4 
denotes chemical substructures, target protein domains, 
target protein annotations and related disease information 
respectively. Secondly, the transposed column vector AT(*,k) 
is concatenated under R4(i,*) as XL,21 where A(*,k) is the kth 
column of A which contains the associations between dk and 
all the drugs. Thirdly, A(i,*) is repeated four times and spliced 
to the right of each row in XL,11 as XL,12=[A(i,*); A(i,*); A(i,*); 
A(i,*)] where A(i,*) denotes the ith row of A which includes 
the associations between ri and all the diseases. Lastly, 
D(k,*) is spliced under XL,12 where D(k,*) is the kth row of D 
containing the similarities between dk and all the diseases. The 
final embedded matrix X L

N Nr d∈ × +( )


5  of drug ri and disease 
dk is formed as

 

X
X X
X X
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Given such a heterogeneous matrix XL, the unknown drug-
disease relations can be inferred via the correlations between 
diseases. In the meanwhile, the unavailable associations can 
be derived upon the similarities between drugs. In Figure 2, 
we illustrate the embedding procedure and use drug r2 and 
disease d1 whose association is unknown as an example. If r2 
is very similar to r3 and r4 (as shown in Figure 2A),r3 and r4 
are closely associated with d1(Figure 2B), it can be inferred 
that r2 is more likely to be associated with d1. Alternatively, if 
d1 is similar to d4 (shown in Figure 2C), and d4 is related with 
r2 (Figure 2B), a high possibility that r2 is associated with d1 
can be derived.

Neighbouring Heterogeneous Association Matrix
The neighbouring heterogeneous drug-disease association 
matrix XL–N embeds the neighbours of drug ri and disease dk. 
The embedding is proposed based on the biological premise that 
if the neighbours of a drug are associated with the neighbours 
of a disease, there is a high probability that the drug and the 
disease are associated. The embedding procedures considering 
the neighbours of ri and dk is: Firstly, we find drugs rm, rn, rp, 
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and rq which are the most similar neighbours of drug ri in R1, 
R2, R3 and R4 respectively. We also find dl, the most similar 
neighbour of dk, in D. Similar with XL,11, the m-th row of R1, nth 
row of R2, p-th row of R3, and qth row of R4 are combined from 
top to bottom to form XL–N,11. Secondly, the l-th column of A 
indicating the association between the most similar disease dl 
and all the drugs is transposed and concatenated under XL–N,11 
as XL–N,21. Thirdly, row vectors A(m,*), A(n,*), A(p,*), A(q,*) 
are spliced to the right of each row in XL–N,11, where A(m,*), 
A(n,*), A(p,*), A(q,*) indicate the associations between drugs 
rm,rn,rp and rq and all the diseases. Lastly, the l-th row of D 
containing the similarities between disease dl and all the other 
diseases is concatenated under XL–N,21. In such a way, the final 
embedding of most similar neighbours of ri and dk is formed 
as X L N

N NDR DI

−
× +( )∈

5 :

 

X
X X
X X

R

L
L N L N

L N L N

m

= − −

− −
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In XL–N, the most similar neighbours of drugs and diseases 
serve as the bridge to propagate associations. In Figure 3, we 
use drug r2 and disease d1 whose association is unknown as an 
example to illustrate the embedding procedure and information 

FIgURe 2 | Illustration of the proposed embedding mechanism for heterogenous drug-disease association matrix. Given drug r2 and disease d1 as an example, 
(D) the heterogeneous matrix is obtained by integrating (A) four types of intra-drug similarities, (B) drug-disease associations and (C) intra-disease similarities. 
In (A) and (C), darker colours indicate higher similarities; in (B) darker colour represents the drug-disease association is available.
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propagations. For instance, assume we find that drug r2 likes r3 
the most in R1, r1 in R2,r5 in R3, and r4 in R4(Figure 3A), and d1 
likes d4 the most in D (as shown in Figure 3B). In the embedded 
matrix XL–N, the left part indicates that all r s2

'  most similar 
neighbours (r3, r1, r5, r4) are very similar to r2 and r3. Because d4 
is associated with bridging drugs r2 and r3 based on A (Figure 
3C), it can be inferred that there is a high probability that r2 and 
d1 are associated. The right part shows that the majority of r s2

'  
most similar neighbours are related with d2. As d s1

' most similar 
neighbour d4 is closely related to the bridging disease d2 by D, it 
can be derived that d1 is probably related with r2.

HeteroDualNet for Association Prediction
The architecture of HeterDualNet is given in Figure 4. The hetero-
layer and hetero-layer-N are obtained by zero padding heterogenous 
matrices XL and XL–N. One branch in the dual CNN model alternates 
two convolution and two pooling operations over hetero-layer 
(Figure 4A), the other branch is built where hetero-layer-N is 
convolved and pooled for neighbouring feature representations 
(Figure 4B). These two branches are connected by a fully connected 
network to achieve the final association score between ri and dk 
(Figure 4C). Same network settings are used in the two branches, 
thus we introduce the branch with hetero-layer in detail.

Convolutional module on hetero-layer. The heterogeneous 
matrix XL is firstly padded with zeros to preserve the marginal 
information of matrices. In the first convolutional layer, we set 
N1 filters where each filter is with width and length of nwc1

 and 
nlc1

. The hetero-layer is thus denoted as V1
5 2 2∈ ( )× + +( )



+ l N N pr d  where 
l = nwc1

1 2−( ) /  p = nlc1
1 2−( ) / . The case when N1=3, nwc1

3= , 
and nlc1

5=  is illustrated as an example in Figure 4A. The weight 

parameter matrix of a n-th filter in the first convolutional layer is 
denoted by W1

1 1
,n

n nwc lc∈ ×


, n∈[1,N1]. The step size of a sliding 
window is set to be 1 1× . The output of the first convolutional 
layer is obtained as S1

51∈ × × +( )


N N Nr d  where S1
5

,n
N Nr d∈ × +( )


 is 

the n-th output after V1 is scanned by the n-th filter as
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where Sl,n(i,j) is the element in the i-th row and the j-th column 
of Sl,n as:

 
S V W1 1 1 1, ,

'
, ,n i j n ng b( ) = ⋅ +( )

 (6)

where bl,n is the bias, “g” denotes the dot product, and g is a ReLu 
function. Vl(i,j) is the element in the i-th row and the j-th column 
of V1. When the filter slides to the position where V1(i,j) is the 
center point, V1

1 1
i j

n nwc lc
,

'
( )

×∈  is formed by all the elements in the 
filter window as follow
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FIgURe 3 | Illustration of the embedding procedure for neighbouring heterogeneous matrix. Using drug r2 and disease d1 as an example, (D) the final matrix is 
obtained by finding the most similar neighbours (e.g. r3,r1,r5,r4) of r2 calculated from (A) four intra-drug similarities respectively, the most similar neighbour (e.g. 
d4) of drug d1 by (B) intra-drug similarity matrix, and (C) drug-disease associations. In (A) and (B), darker colours indicate higher similarities; in (C) darker colour 
represents the drug-disease association is available.
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We set the width and length of the sliding window in the first 
pooling layer as nwp1

 and nlp1
 ( nwp1

1=  and nlp1
2=  as an example 

in Figure 4) and the step size as. The output of the first pooling 
S2

5 21∈ × × +( )


N N Nr d / . is obtained by a max-pooling operation where 
the n-th output S2

5 2
,

/
n

N Nr d∈ × +( )


 is

 

S

S S S

S
2

2 1 1 2 1 2 2 1 2

2 2
,

, , , , , , /

, ,
n

n n n N N

n

r d

=

( ) ( ) +( )( )

11 2 2 2 2 2 2

2 5 1 2

( ) ( ) +( )( )

( )

S S

S S

, , , , /

, , ,

n n N N

n

r d


   

nn n N Nr d5 2 2 5 2, , , /( ) +( )( )





















 S

 (8)

where S2, ,n i j( )  is the maximum value between S1 2 1, ,n i j-( )  and 
S1 2, ,n i j( )  defined as

 
S S S2 1 2 1 1 2, , , , , ,,n i j n i j n i j( ) −( ) ( )= ( )max  (9)

By padding S2,n with zeros, V2 is obtained as V2
5 2 2∈ ( )× + +( )



+ l N N pr d  
where l nwc

= −( )2
1 2/  and p nlc= −( )2

1 2/ . The number of filters is 
set as N2 in the second convolution. The output of the second 

convolution is obtained as S3
5 22∈ × × +( )



N N Nr d / . In the second pooling 
layer, we set the width and length of the sliding window as nwp2

 
and nlp2

, and the step size as n nw lp p2 2
× . For instance, the case 

when N2 = 6, nwp2
1=  and nlp2

2=  is illustrated as an example 
in Figure 4. The output of the second pooling is obtained as 
S4

5 42∈ × × +( )


N N Nr d /  which is also the final output. Let SL represent 
the final output of this branch, SL = S4.

Convolutional module on hetero-layer-N. The settings of 
convolution and pooling operations on hetero-layer-N is the 
same as the above branch. Let SR denote the final output given 
XL–N as inputs, SR

N N Nr d∈ × × +( )


2 5 4/ .
Final integration module. The integration of two 

branches is obtained by firstly flattening SL and SR as vectors 
u uL R

N N Nr d, /∈ × × × +( )( )


1 5 42 . uL and uR are then fed into a fully 
connected layer (as shown in Figure 4C).

The association score hL ∈ ×


2 1  between drug ri ri and disease 
dk in one branch is obtained as

 
h W u bL L L L= +( )softmax T  (10)

where WL
N N nr d∈ × × +( ) ×( )



2 5 4 2/  is the weight parameter matrix, 
and bL is a bias vector. hL(1) contains the probability that ri is 

FIgURe 4 | Schematic diagram of HeteroDualNet. (A) One branch over hetero-layer of drug-disease characteristics and (B) one branch over the neighbouring 
heterogeneous layer (hetero-layer-N) are connected by (C) an integration module for final association score prediction. Three 3×5 filters in 1st convolution, six 3×5 
filters in 2nd convolution, a sliding window of 1 × 2 in 1st and 2nd pooling are used for illustration.
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associated with dk and hL(2) is the probability that ri and dk are 
not associated. Similarly, the association score hR of the other 
branch is calculated by

 h W u bR R R R= +( )softmax T  (11)

The final association score h is obtained by a weighted fusion 
of hL and hR as

 h = h hα α αL R s t+ −( ) ≤ ≤1 0 1, . .  (12)

where α is a regulation parameter to balance the contributions of two 
branches. Let lossL and lossR denote the losses of two branches as:

 lossL L F
= −min h y

2

, lossR R F
= −min h y

2

 (13)

where y =












y
y

0

1
 is the probability that drug ri and disease dk are 

associated. If ri and dk are associated, y0=0 and y1=1, otherwise 
y0=1 and y1=0. The final loss loss is obtained by

 loss L F R F
= − + −( ) −min α αh y h y

2 2
1  (14)

where the regulation parameter α is the same as that in Equation 
12. With the network architecture and loss function, the 
parameters are randomly initialized and adjusted in the training 
process until the loss function is minimized. Given three types 
of drug-disease matrices, the final drug-disease association score 
can be predicted by the trained HeteroDualNet model.

In order to reduce the impact of overfitting which is caused by the 
number of parameters in the proposed model based on dual CNN, 
we adopt the widely used dropout strategy to prevent the overfitting 
of HeteroDualNet. During each iteration process for training the 
model, HeteroDualNet randomly ignores some neurons to ensure 
that the trained model will have a good generalization ability.

eXPeRIMeNTAL eVALUATIONS AND 
DISCUSSIONS

experimental Setup
The drug-disease samples with known associations are regarded 
as one class (L1), while those pairs with unknown associations are 
considered as the other class (L2). In total, there are 3051 L1 samples, 
and 763*681-3051 = 516552 L2 samples. Because L1 and L2 samples 
are largely imbalanced, undersampling strategy is used to address 
this issue. We divided the data into two subsets. One subset A is 
composed of 3051 L1 samples and 3051 L2 samples, while the second 
subset B contains the remaining 516552 – 3051 L2 samples.

Five-fold cross-validation is performed to evaluate the 
prediction performance of HeteroDualNet and other compared 
models. The same training and testing data are used for the 
training and testing of the models. In each round of validation, 
the samples in subset A are equally divided into five parts where 

four parts are used as the training dataset, and one part together 
with subset B are used for testing.

As the calculation of the 4-th intra-drug similarities matrix 
R4 involves drug-disease association matrix A and intra-disease 
matrix D to ensure that there is no testing data information in 
the training dataset, R4 is recalculated by removing drug-disease 
samples that appear in training in each round of validation.

Comparison Methods and evaluation 
Metrics
To evaluated the contributions of the proposed HeteroDualNet 
architecture and heterogenous drug-disease similarity 
representations, our model is compared with other four prediction 
methods including TL_HGBI (Wang et al., 2014b), MBiRW (Luo et 
al., 2016), LRSSL (Liang et al., 2017), and SCMFDD (Zhang et al., 
2018). LRSSL is based on three drug features without considering 
neighbouring information and our proposed fourth intra-drug 
similarity from drug-related disease correlations. MBiRW used 
only one type of drug feature. SCMFDD and TL_HGBI used 
matrix decomposition and heterogeneous networks, but they didn’t 
consider neighbouring information and multiple features.

The prediction performance is comprehensively evaluated by 
true positive rate (TPR), false positive rate (FPR), the Receiver 
Operating Characteristic (ROC) area under curve (ROC AUC), 
the Precision-Recall area under curve (PR AUC) and recall rate 
under different top k values. TPR and FPR are calculated as

 
TPR TP

TP FN
FPR FP

TN FP
=

+
=

+
, ,

 (15)

where TP (FN) is the number of positive samples that are 
correctly identified (misidentified), TN (FP) is the number of 
correctly identified (misidentified) negative samples. A sample 
is regarded as a positive sample when its predicted association 
score is greater than a threshold θ. If the testing sample’s score is 
smaller than θ, it is identified as a negative sample. The values of 
FPR and TPR are calculated by setting different values of θ. The 
average ROC AUC value of all the evaluated drugs is used as the 
overall prediction performance of a method.

Since two classes are heavily imbalanced, the evaluation by PR 
AUC is more appropriate than ROC AUC in our study. Thus, PR 
AUC is also compared among different methods. Precision and 
Recall are defined by

 
Precision Recall ==

+ +
TP

TP FP
TP

TP FN
,

 (16)

where Precision represents the ratio between the number of 
correctly identified positive samples and all samples which are 
predicted to be positive samples, and Recall represents the ratio 
of the correctly identified positive samples to all the positive 
samples. Meanwhile, because the top-ranked results are of greater 
interest in real practices, which are often considered by biologists 
for further validation, we also calculate the recall rate in top k 
ranked results. The higher the recall rate for the top k disease, the 
more drug-related diseases can be predicted by the model.
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experimental Results and Discussion
The ROC and PR of all the methods using all the 763 drugs are 
shown in Figure 5. The AUC results are given in Table 1. As 
shown by Figure 5A and Table 1, our model achieved the highest 
AUC of 0.908 among all the methods in comparison, which is 
7.1% greater than the second best MBiRW model, 18.2% higher 
than the SCMFDD method, and 22.6% higher than the TL_HGBI 
method. As shown by Figure 5B and Table 1, HeteroDudalNet 
achieved the best performance where PR AUC reached 0.154, 
which was 3.2%, 10.7%, 14%, and 14.1% better than the that of 
LRSSL, MBiRW, SCMFDD and TL_HGBI models respectively.

As shown by the ROC and PR evaluation results, 
HeteroDudalNet outperformed the second best LRSSL because 
of the integration of neighbouring information on drugs and 
diseases and the intra-drug similarity calculated by correlations 
of drug-related diseases. Compared with LRSSL which 
considered three types of drug features, the third best model 
MBiRW considered only one type of drug feature in an adopted 
a random walk-based model, which resulted in a much  lower 
prediction score. Without considering neighbouring associations 
and multiple features, SCMFDD and TL_HGBI methods failed 
to achieve satisfactory prediction performance although they 
used matrix decomposition and heterogeneous networks.

The average performance over all the 763 drugs in terms of recall 
rate given different top k values is shown in Figure 6. The higher 
the recall rate for the top k diseases, the more drug-related diseases 

can be predicted by a computing model. When increasing the value 
of k from 30 to 240 with a step of 30, the average recall rate of our 
method is the best among all the models in comparison. When 
examining the top 30, 60 and 90 diseases, our model achieved recall 
rates of 69.2%, 77%, and 83.5%, and the second best was obtained 
by LRSSL with recall rates of 63.4%, 71.3%, and 77.7% respectively. 
The third-ranked model MBiRW performed slightly worse than 
LRSSL where the results were 52.9%, 66% and 74.2%. When k was 
increased from 90 to 240, MBiRW started to perform better than 
LRSSL and achieved its highest recall rate of 88.7% when k was 
240, while our model obtained the best rate of 90.9% among all the 
methods. Overall, the top k recall rates of SCMFDD and TL_HGBI 
were significantly lower than the other techniques in comparison.

As shown by the top k recall rate test, our model achieved the 
best performance, which could be useful for biologists to conduct 
clinical experiments because the highest ranked list contains 
more real drug-disease associations. As shown by the results 
when k was smaller than 90, our model and LRSSL outperformed 
the other methods because of the consideration of multiple drug 
features. The comprehensive representation of drugs concerning 
similarities in various perspectives contributes to digging out 

FIgURe 5 | Comparison between the proposed HeteroDudalNet model (H_D_Net) against four other methods by Receiver Operating Characteristic (ROC) (A) and 
Precision-Recall (PR) (B) curves.

TABLe 1 | Receiver Operating Characteristic area under curve (ROC AUC) and 
Precision-Recall area under curve (PR AUC) of all the methods in comparison.

Average performance on 763 drugs

HeteroDualNet TL_HgBI MBiRW LRSSL SCMFDD

ROC AUC 0.908 0.723 0.855 0.845 0.611
PR AUC 0.154 0.031 0.045 0.089 0.006

FIgURe 6 | The recalls across all the tested drugs at different top k cutoffs.
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the potential associations between drugs and diseases. When k > 
90, the number of common features between drug and disease 
may be decreasing when compared with smaller k values. Thus, 
considering only multiple features could not always guarantee a 
good prediction result. MBiRW performed better than LRSSL 
due to the consideration of global information in a random walk 
based network. By incorporating three drug characteristics, the 
calculated correlations between drug-related diseases as intra-
drug similarities, and neighbouring information of similar 
drugs and diseases, our model achieved better results than 
LRSSL and MBiRW.

Case Studies of Five Drugs
To further evaluate and demonstrate the effectiveness of 
the proposed HeteroDualNet in finding reliable disease 
candidates of drugs, we conducted case studies of five drugs, 
including ciprofloxacin, ceftriaxone, ofloxacin, ampicillin and 
cefotaxime. Two public drug disease databases, Comparative 
Toxicogenomics Database (CTD) and DrugBank, were used to 
verify and confirm the predicted drug-disease associations by 
the proposed model. CTD is funded by the National Institute 
of Environmental Health Sciences which contains information 
of drugs and drugs’ effects on diseases extracted from 

TABLe 2 | Top 10 related candidate diseases of ciprofloxacin, ceftriaxone, ofloxacin, ampicillin and cefotaxime.

Drug name Rank Disease name Description Rank Disease Description

ciprofloxacn 1 Pneumonia, Bacterial CTD 6 Gram-Positive Bacterial 
Infections

CTD

2 Salmonella Infections CTD 7 Eye Infections, Bacterial Literature (Marino 
et al., 2013)

3 Bacterial Infections CTD 8 Soft Tissue Infections CTD
4 Streptococcal Infections DrugBank 9 Enterobacteriaceae Infections CTD
5 Gram-Negative Bacterial 

Infections
CTD 10 Helicobacter Infections CTD

ceftriaxone 1 Gram-Negative Bacterial 
Infections

CTD 6 Haemophilus Infections CTD

2 Bacterial Infections CTD,
ClinicalTrials

7 Gram-Positive Bacterial 
Infections

CTD

3 Septicemia DrugBank 8 Skin Diseases, Infectious DrugBank
4 Respiratory Tract 

Infections
CTD 9 Wound Infection ClinicalTrials

5 Pseudomonas 
Infections

DrugBank 10 Eye Infections, Bacterial DrugBank

ofloxacin 1 Eye Infections, Bacterial ClinicalTrials,
DrugBank

6 Pseudomonas Infections CTD

2 Gram-Negative Bacterial 
Infections

DrugBank 7 Bacterial Infections CTD

3 Sinusitis CTD 8 Bacteroides Infections DrugBank
4 Streptococcal Infections CTD 9 Gram-Positive Bacterial 

Infections
CTD

5 Pneumonia, Bacterial CTD 10 Enterobacteriaceae Infections DrugBank
ampicillin 1 Pseudomonas 

Infections
unconfirmed 6 Proteus Infections CTD

2 Bacterial Infections CTD 7 Septicemia DrugBank
3 Gram-Positive Bacterial 

Infections
CTD 8 Streptococcal Infections CTD

4 Gram-Negative Bacterial 
Infections

CTD 9 Wound Infection CTD

5 Pneumonia, Bacterial CTD, ClinicalTrials 10 Enterobacteriaceae Infections DrugBank
cefotaxime 1 Respiratory Tract 

Infections
CTD, ClinicalTrials 6 Enterobacteriaceae Infections DrugBank

2 Pseudomonas 
Infections

DrugBank 7 Gram-Positive Bacterial 
Infections

CTD, DrugBank

3 Gram-Negative Bacterial 
Infections

CTD, DrugBank 8 Wound Infection DrugBank

4 Septicemia DrugBank 9 Skin Diseases, Infectious ClinicalTrials
5 Bacterial Infections CTD, ClinicalTrials 10 Osteomyelitis CTD, ClinicalTrials

(1) CTD refers to the Comparative Toxicogenomics Database (CTD), which contains a manually managed drug-disease association. (2) DrugBank refers to the drug-disease 
association held in the DrugBank database, which collects experimental information of the drug. (3) ClinicalTrials means that the association of drugs with the disease is recorded in 
the online database ClinicalTrials.gov. (4) literature refers to the literature supporting the association of drugs with the disease. (5) unconfirmed means that there is no evidence that 
the drug is associated with the disease.
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published literature. DrugBank is supported by the Health 
Research Institute of Canada, the Alberta Innovation-Health 
Solutions and Metabolic Innovation Center. Drugs’ clinical 
trial information can be found in DrugBank, which includes 
drugs and diseases in experiments.

For each of the five drugs, we ranked the predicted diseases 
according to the relevance scores in descending order. The 
top 10 ranked diseases are used for verification and listed in 
Table 2. Among all the 50 diseases, 31 disease-drug association 
information can be found in CTD, and 17 association 
information can be found in the DrugBank as shown in Table 2. 
The results demonstrated that the predicted candidate diseases 
are indeed associated with the corresponding drugs. Also, in the 
CTD database, the association between Ciprofloxacin and Eye 
Infections, Bacterial can be found in the literature. For the two 
diseases which cannot be found in CTD and DrugBank, one of 
them can be verified by ClinicalTrials.gov (https://clinicaltrials.
gov/) which records a wealth of clinical research information 
on various drugs and related diseases by National Institutes 
of Health (NIH) and the Food and Drug Administration 
(FDA). Therefore, there is only one disease candidate of 
drug ampicillin, which is Pseudomonas Infections, cannot be 
proved by the three databases and is labelled as unconfirmed in 
Table 2. The case studies demonstrated that our model can be 
used as an effective tool to predict the relations between drugs 
and diseases. At the same time, it has the capacity to provide 
computer-aided guidance for biologists in clinical trials.

The future direction for developing userful and powerful 
computerized prediction methods include establishing web-
servers to enable public assessibility (Cheng et al., 2017; Cheng 
et al., 2018; Xiao et al., 2019; Chou, 2019a; Chou, 2019b). Our 
future work include providing a web-server for the proposed 
model to increase the impact of computational model in 
bioinformatics, medical science and medicinal chemistry.

CONCLUSION
We present a novel HeteroDualNet model for drug-disease 
association prediction. Our model incorporates three kinds of 
drug features, a newly introduced intra-drug similarity based 

on correlations of drug-related diseases, and neighbouring 
information of drugs and diseases by constructing embedded 
drug-disease heterogenous matrices and dual branches in a 
deep neural network. The evaluation of public dataset and 
comparison with other four published models demonstrated 
the improved prediction performance in terms of ROC 
AUC, PR AUC, and recall rate at top k. Case studies of 
five drugs further proved the effectiveness of our model in 
finding potential relevant diseases of drugs as validated by 
database records or literature. Our model can be used as an 
effective  tool to predict the associations between drugs and 
diseases and provide computer-aided guidance for biologists 
in clinical trials.
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Antimalarial drugs are becoming less effective due to the emergence of drug resistance.
Resistance has been reported for all available malaria drugs, including artemisinin, thus
creating a perpetual need for alternative drug candidates. The traditional drug discovery
approach of high throughput screening (HTS) of large compound libraries for identification of
new drug leads is time-consuming and resource intensive.While virtual in silico screening is a
solution to this problem, however, the generalization of the models is not ideal. Artificial
intelligence (AI), utilizing either structure-based or ligand-based approaches, has
demonstrated highly accurate performances in the field of chemical property prediction.
Leveraging the existing data, AI would be a suitable alternative to blind-search HTS or
fingerprint-basedvirtual screening.TheAImodelwould learnpatternswithin thedataandhelp
to search for hit compounds efficiently. In this work, we introduce DeepMalaria, a deep-
learning based process capable of predicting the anti-Plasmodium falciparum inhibitory
properties of compounds using their SMILES. A graph-based model is trained on 13,446
publicly available antiplasmodial hit compounds fromGlaxoSmithKline (GSK) dataset that are
currently being used to find novel drug candidates for malaria. We validated this model by
predicting hit compounds fromamacrocyclic compound library and already approved drugs
that are used for repurposing. We have chosen macrocyclic compounds as these ligand-
binding structures are underexplored in malaria drug discovery. The in silico pipeline for this
process also consists of additional validation of an in-house independent dataset consisting
mostlyofnatural product compounds.Transfer learning froma largedatasetwas leveraged to
improve the performance of the deep learningmodel. To validate the DeepMalaria generated
hits, we used a commonly used SYBR Green I fluorescence assay based phenotypic
screening. DeepMalaria was able to detect all the compounds with nanomolar activity and
87.5%of the compounds with greater than 50% inhibition. Further experiments to reveal the
compounds’mechanismof action have shown that not only does one of the hit compounds,
DC-9237, inhibits all asexual stagesofPlasmodiumfalciparum, but isa fast-actingcompound
which makes it a strong candidate for further optimization.
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INTRODUCTION

Malaria is one the deadliest disease afflicting the mankind, with
more than 200 million new cases every year, and over 400,000
reported deaths (WHO, 2018). The causative agent of infection,
Plasmodium spp. parasites have developed resistance to almost
all currently marketed drugs including the current treatment
choice artemisinin-based combination therapy (ACT) (Fairhurst
and Dondorp, 2016). This underscores an urgent need to
discover next generation antimalarials (Cowell and Winzeler,
2019). Traditionally, the discovery of new bioactive chemotypes
relies on cell or target-based screening (Baniecki et al., 2007)
(Swinney, 2013) of natural or synthetic compound libraries.
High Throughput Screening (HTS) using either approach
entails screening of large library of compounds. This process is
often inefficient and not cost effective because of high failure rate
at subsequent stages of drug discovery. The real question is, with
all the modern technological advancements in drug discovery
how can we utilize innovative technologies to find new active
compounds more efficiently, thus reducing the cost?

Screening of large diverse compound libraries is likely to yield
a higher hit rate. The bioactivity of a compound can also be
predicted in silico through virtual screening (Shoichet, 2004). In
this approach, models are created to predict the activity of a
compound based on chemical properties of the compounds. One
of the most common descriptors currently used for virtual
screening is Extended Connectivity Fingerprint (ECFP)
(Rogers and Hahn, 2010). The ECFP uses topological
characteristics of a molecule to describe it. The most prevalent
use of ECFP in Quantitative Structure-Activity Relationship
(QSAR) models involves creating a fingerprint and using a
neural network to perform prediction (Ramsundar et al., 2015;
Gupta et al., 2016). This approach isolates feature extraction and
decision making, thus not allowing the decision-making process
to have an effect on the creation of fingerprints.

With the availability of large datasets, such as whole genome
sequencing, transcript profiling or HTS, artificial intelligence is
expected to have major impacts on various aspects of biomedical
research (Jiang et al., 2017; Wainberg et al., 2018; Reddy et al.,
2019; Zhavoronkov et al., 2019). Application of AI to various
areas of drug discovery would include ligand-based virtual
screening (VS) (Mayr et al., 2016; Chen et al., 2018), target
prediction (Mayr et al., 2018), structure-based virtual screening
(Wallach et al., 2015), de novo molecular design (Kadurin, 2016;
Aspuru-Guzik, 2018), or metabolomics approaches (Pirhaji et al.,
2016). Deep learning approaches enable end-to-end classification
of data via learning feature representation and decision making
simultaneously. Deep learning’s automatic feature extraction has
demonstrated superiority to traditional isolated feature
extraction and has resulted in the popularity of these models
in many fields such as image recognition, signal classification
(Rajpurkar, 2017), and deep processing of natural language
(Devlin, 2019).

Recently, Graph Convolutional Neural Networks (GCNN)
have shown high accuracy in predicting chemical properties of
compounds (Aspuru-Guzik et al., 2015). These models
Frontiers in Pharmacology | www.frontiersin.org 283
transform the compounds into graphs and learn higher-level
abstract representations of the input solely based on the data.
Graph convolutional neural networks combine ECFP’s concept
of creating fingerprints from substructures with deep learning’s
automatic feature extraction. Compared to ECFP, the GCNN’s
features are shorter (encoding only the relevant features), contain
similarity information for different substructures, and facilitate
more accurate predictions (Aspuru-Guzik et al., 2015; Kearnes
et al., 2016; Liu et al., 2018).

In this work, we leverage GCNNs to accelerate the process of
antimalarial drug discovery. The representative abilities of
GCNNs are used to implement a virtual screening pipeline.
These models take compounds as input and predict the P.
falciparum growth inhibition and mammalian HepG2 cell
cytotoxicity of the given compounds, aiding in the intelligent
selection of scaffolds as input for further analysis. The hyper-
parameters of the model are optimized using an external
validation on an independent and imbalanced dataset. To
overcome the difficulty of low training data, transfer learning is
used. The model is initialized with the weights transferred from a
model trained on a large unrelated dataset. The compounds are
further tested using in vitro bioassay for validation of the model.

Another area of drug discovery which increases the
probability of detecting high value scaffolds would be the
selection of compound libraries. Principal component analysis
of about 5 million compounds screened against the malaria
parasite Plasmodium falciparum in last ten years suggests that
not only the libraries used have low diversity but also, they
mostly consist of compounds with low molecular weight
(Spangenberg et al., 2013). Drug discovery efforts in last few
decades using Lipinski “rule of five” compliant synthetic
compound libraries are exhibiting diminishing return.
Furthermore, biological targets of approved drugs are quite
limited. Therefore, for our analysis, we decided to use an
unexplored natural product (NP)-inspired class of molecules.
NP or NP-inspired compounds have made tremendous impacts
in discovery of novel drugs (Butler et al., 2014; Newman and
Cragg, 2016). Among the NPs, macrocycles have successful
record as efficacious compounds with more than 100 approved
drugs in the market (Blanco, 2019). At least 3% of 100,000 NP
secondary metabolites are macrocycles (Driggers et al., 2008).
Macrocycles are scaffolds with a ring containing at least 12 atoms
(Mallinson and Collins, 2012). Macrocycles also contain many
desirable properties such as, less rigidity and flexibility, high
binding capabilities, having affinity to anions and cations, high
bio-availability, and the ability to target protein-protein
interactions (PPI) (Choi and Hamilton, 2003; Dougherty et al.,
2017; Ermert, 2017; Selwood, 2017).

We present here the application of GCNNs for non-targeted
ligand-based virtual screening for antimalarial drug discovery.
Our research described in this article creates a practical pipeline
for training generalizable virtual screening models, and the use of
deep learning techniques such as transfer learning and external
validation to improve the model. Results of the model to discover
antiplasmodial scaffolds were validated in a prospective manner
via comparison to whole cell screening.
January 2020 | Volume 10 | Article 1526
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MATERIALS AND METHODS

Data
Training Data
GlaxoSmithKline group tested around two million compounds
for inhibition of Plasmodium falciparum (Pf) Dd2, a chloroquine
resistant line, intraerythrocytic life cycle and identified 13,533
bioactive compounds that exhibited greater than 80% inhibition
of the in vitro growth of the parasite at 2 µM concentrations. This
published data are publicly available in the supplementary
material 1 of the article (Gamo et al., 2010). DeepMalaria uses
this Pf Dd2 inhibition and selectivity data for training. The
molecules are classified as one if they possess Dd2 growth
inhibitions of 50% and higher and zero if otherwise. The
efficacy of these compounds differs in P. falciparum strains
Dd2 and 3D7 (a Pf line sensitive to chloroquine), with most of
the molecules in the GSK dataset possessing higher 3D7
inhibition and varying Dd2 inhibition. Therefore, the training
data implicitly holds information about the developed resistance,
and if the model is trained on Dd2 inhibition data, it would be
able to predict compounds that are efficacious in drug resistant
strains, a desirable property.

Validation Data
The validation dataset consists of the results from previously
performed HTS in University of Central Florida at the
Chakrabarti Laboratory, consisting of natural-products, kinase
inhibitors from commercial vendors Asinex (Winston-Salem,
NC)and ChemDiv (San Diego, CA) libraries. This dataset
contains 4,497 molecules and their inhibition property. Overall,
the dataset possesses 112molecules that have a Pf inhibition greater
than 50%. Using this external validation dataset, the realistic
capabilities of the model are evaluated in the validation process.
The raw data supporting the conclusions of this manuscript will be
made available by the authors, without any restriction, to any
qualified researcher (Supplementary Material 4).

Compound Library for Test Data
A library of 2,400 macrocyclic compounds was purchased from
the commercial vendor Asinex (Winston-Salem, NC) for
validation. The compounds selected for purchase were not
given any consideration about DeepMalaria prediction to avoid
any bias in results (Supplementary Material 3).

Source Data for Transfer Learning
In order to perform transfer learning, a large dataset is chosen as
the source to transfer from. One of the largest labeled molecule
datasets is publicly available in the PubChem Bioassay (PCBA)
repository. Within this dataset, the “PCBA-686979” assay (Wu
et al., 2018; Pubchem Database, 2019) contains 303,167 molecules
with 20.82% of them being active. The molecules in the
mentioned library are not related to Plasmodium, and they
were screened to find inhibitors of human tyrosyl-DNA
phosphodiesterase 1 (TDP1). This enzyme is a target for cancer
therapy in spite of not being necessary protein for human cells.
This unrelated large and high variance collection is chosen as the
source for transfer learning solely based on its size.
Frontiers in Pharmacology | www.frontiersin.org 384
In Silico
Graph Convolutional Neural Network Model
In the research described here, DeepChem’s implementation of
GCNN was used (Ramsundar et al., 2019). This implementation
offers the creation of architectures with graph convolutional
layers, graph pooling layers, dropout layers, graph gather
layers, and fully connected layers. The molecular graph was
sorted via atom index in order to attain the same graph for
canonical SMILES. The training data was first cleaned by
removing the molecules with missing inhibition data. Two
details needed to be considered in the conversion of molecules
to graphs; firstly, the nodes represent different atoms and need to
contain information of this difference. In order to differentiate
between the atom nodes, DeepChem offers 75 different features
for describing each atom. In this work, 29 of those features were
used containing the type of atom, atom’s degree, atom’s implicit
valence, atom’s hybridization, atom’s aromatic properties, and
total number of Hydrogen connected to the atom. Secondly, in
order to convert molecules to graph and not lose special
information, chirality was added to the features.

Data Augmentation and Hyper-Parameter
Optimization
The validation dataset for this work, i.e., the “lab dataset” is highly
imbalanced. Only 2% of the molecules within the dataset show
inhibitory activity. These molecules are also the most important
part of the dataset, since the goal of the model is to find active
molecules. In order to have a fair validation on this dataset, the data
needs to be balanced first. The data augmentation process created
more copies of the active molecules after shuffling the atom orders.
This balancing process is done via SMILES Enumeration (Bjerrum,
2017), creating on average 38 copies of each active molecule.

The augmented validation dataset can be used for finding the
optimum topology, hyper-parameters, and epochs for training.
Starting with the topology, the hyper-parameters that can be
defined are the number of convolution layers, the size of each
convolution layer, number of neurons in the dense layer, and the
dropout of each layer. The remaining hyper-parameters that can
be defined are the learning rate and batch size. To perform
hyper-parameter optimization and find a fitting architecture,
grid search was performed. Different values were chosen for each
hyper-parameter, the model was trained on the training dataset
and tested on the validation dataset. The set of hyper-parameters
that has the best performance was chosen, and the architecture
and variables of the model were finalized.

Transfer Learning
Training a deep learning model often requires a large amount of
data as the algorithms contain numerous variables that are
optimized during training. DeepMalaria’s training set is in the
order of a few thousands, when compared to the image domain
datasets it is considered to be rather small amount of data. This
amount of data makes the training of the model to be sensitive to
its initial weights. In order to overcome this challenge, transfer
learning was used from a larger source dataset. It has been shown
that the source dataset does not necessarily need to have
correlation with the target dataset. The patterns within the
January 2020 | Volume 10 | Article 1526
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molecules of the transfer dataset (PCBA) can help initialize the
GCNN and make the training on the target dataset (GSK) to be
more efficient. After the optimized architecture for model is
found, the model is trained on the source dataset for 50 epochs,
then the weights are saved and restored in the beginning of
training on the training dataset.

Evaluation of the Model
In order to assess the performance of the model, evaluation
metrics are needed. One evaluation metric that is commonly
used for classification task is accuracy. If the model can correctly
classify active compounds as active (true positive or “TP”) and
inactive compounds as inactive (true negative or “TN”), it would
have a high accuracy. If the model is missing the active molecules
and is incorrectly classifying them as inactive (false negative or
“FN”), or if the model is predicting inactive molecules to be
active (false positive or “FP”), the accuracy would be decreased.
Table 1 shows these categories for the results of classification.

With these definitions in mind, accuracy is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN

In the field of drug discovery, having a high TP and a low FN
is highly important, since the purpose of the model is to predict
the active molecules that are few in number. One metric that can
represent the ability of the model to capture active molecules is
recall, as defined below:

Recall =
TP

TP + FN

Since the test dataset is imbalanced, accuracy would be a
misleading metric. An untrained model can classify every input
as inactive and still have an accuracy of nearly 97%. Furthermore,
recall alone would not be enough to evaluate models in
imbalanced setting because it does not contain any
information of the performance of the model on the inactive
molecules. To fully display model’s behavior, normalized
confusion matrix is used to show the percentage of data
classified as each classification category. Additionally, the Area
Under the Receiver operation Characteristic Curve (ROC-AUC
or AUC) is used as a fair score metric.

Cytotoxicity Prediction
In order to predict the cytotoxicity of the compounds, the model
was trained with the same parameters used for inhibition.
However, the dependent variable in the GSK dataset was
changed to contain cytotoxicity information. Inhibition
percentages over 50 are considered active against the human
Frontiers in Pharmacology | www.frontiersin.org
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cell line (given the label 1) and otherwise considered non-active
(given the label 0). Since only the active compounds with
nanomolar potency against Plasmodium falciparum would go
to next step of evaluation, the model was tested on the
nanomolar active hits to predict their cytotoxicity and is
prospectively evaluated.

In Vitro
Plasmodium Growth Inhibition Assays
P. falciparum cultures were maintained under standard culture
conditions in RPMI 1640 medium supplemented with 25 mM
HEPES, pH 7.4, 26 mM NaHCO3, 2% dextrose, 15 mg/L
hypoxanthine, 25 mg/L gentamycin, and 0.5% Albumax II
maintained at 37°C in 5% CO2 and 95% air. Initially, a fixed
concentration phenotypic screening was performed against
multidrug resistant P. falciparum strain Dd2 (resistant to
chloroquine, pyrimethamine, and mefloquine) using a SYBR
Green I assay (Johnson et al., 2007; Vossen et al., 2010). An EVO-
150 robotic liquid handler (Tecan, Morrisville, NC) was used to
aliquot compounds at a final concentration of 1 µM followed by
addition of culture to 96-well plates (Greiner, Monroe, NC) at 1%
parasitemia, 2% hematocrit. Plates were incubated for 72 h at 37°C
in a humidified atmosphere 5% CO2/95% air prior to freezing.
Plates were subsequently thawed and 1X SYBR Green I was added
with lysis buffer (20 mM Tris-HCl, 0.08% saponin, 5 mM EDTA,
0.8% Triton X-100). After incubation at room temperature in dark
for 1 h, the fluorescent emission was measured at excition and
emission wavelengths of 485 nm and 530 nm, respectively, using a
BioTek Synergyneo2 (Winooski, VT) plate reader. Preliminary hits
exhibiting greater than 50% inhibition were then screened to
determine EC50 values. For EC50, determination compounds were
serially diluted in growth medium starting at 5 µM Untreated
cultures and the ones treated with chloroquine at 1 µM rved as
controls. Curve fitting was performed using GraphPad Prism and
EC50 value was determined for each compound.

Cytotoxicity Determination
Selectivity was determined by counter-screening against human
hepatoma cell lineHepG2 in aMTS (3-(4,5-Dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)
based cytotoxicity assay (CellTiter 96® Aqueous One, Promega,
Madison, WI) (Riss et al., 2004). Briefly, microtiter plates were
seededwith 1,500 cells per well in a 384well plate and incubated for
24 h at 37°C in 5% CO2/95% air atmosphere. The next day,
compounds were added at seven different serially diluted
concentrations starting at 25 µM d incubated for additional 48 h
at stated conditions. MTS solution was next added to each well,
incubated for additional 3 h at 37°C, and absorbancewas read at 490
nmusing BioTek Synergy neo 2 plate reader. Untreated cells served
as control. Curve fitting was performed using GraphPad Prism and
EC50 value was determined.

Stage-Specific Activity Assay
P. falciparum Dd2 cell line was synchronized using a
combination of 5% sorbitol and magnetic column separation
as described (Roberts et al., 2016). Cultures at 2% parasitemia
and 2% hematocrit were added to microtiter plate wells and
TABLE 1 | Classification categories.

Truly active Truly inactive

Predicted as Active TP FP
Predicted as Inactive FN TN
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measurements began 6 h post-invasion (6 hpi). Hit compounds
were added at 3X EC50 concentration at specified time points.
Controls are DHA (3X EC50) and untreated cultures. Giemsa-
stained thin smears were made for each time point and an aliquot
of the culture was fixed for flow cytometric analysis using 0.04%
glutaraldehyde in PBS. After fixing and aspirating, cells were
permeabilized with 0.25% Triton-100 followed by treatment with
RNase (0.05 mg/ml) for 3 h. Next, YOYO 1 (10.24 µM)
fluorescent dye was added and samples were analyzed
(Bouillon et al., 2013) using Beckman Coulter (Indianapolis,
IN) CytoFlex S flowcytometer.

Rate of Killing Determination
PfDd2 culture was synchronized as described (Roberts et al., 2016),
plated into 24 well plates at 2% parasitemia and 2% hematocrit at 6
hpi. Compounds were added at 6, 18, or 30 hpi with a final
concentration of 5X EC50. Each well was exposed to the inhibitor
for either 6 or 12 h using dihydroartemisinin (DHA) (25 µM) and
untreated culture as controls. After washing the compounds off, the
media was changed twice a day. The parasitemia was tracked for 6
days after addition of compounds. Thin smears were stained with
Giemsa, and parasitemia was counted using microscope.
RESULTS

Overview
This work consists of two main sections: in silico and in vitro. In
the in silico approach, DeepMalaria enables virtual screening of
molecules on Plasmodium falciparum using a deep learning
model. At the core, the GCNN model acts as a classifier,
predicting the inhibition of input molecules and classifying
them as “active” or “inactive.” In order to optimize the hyper-
parameters of the deep learning model, the model is validated
externally on an independent and augmented validation dataset.
The optimized model is trained on the large transfer dataset to
extract useful initialization weights from it. Then, the pre-trained
GCNN model is trained on the training dataset. The overview of
our method is shown in Figure 1. This architecture enables the
use of transfer learning for in silico screening, thus we coin the
term “Transilico” for it. The code for this work can be accessed
through www.transilico.com.

In Silico Training
The results of the grid search for hyper-parameter optimization
are shown in Figure 2. Overall, 144 different combinations of
hyper-parameters were chosen for training and the trained
model was tested on the validation dataset.

Trial 121 is among the hyper-parameters that yielded high
average ROC-AUC scores, and it achieves the highest score
between all trials. These hyper-parameters were chosen as the
optimum variables and are shown in Table 2.

Having defined the architecture of the GCNN model, the
model was trained on the transfer dataset. The weights were then
saved and loaded for the main training process to start. The pre-
trained model was fine-tuned on the training dataset with the
Frontiers in Pharmacology | www.frontiersin.org 586
batch size of 32. At each epoch the AUC score on the training set
and the validation set were calculated and recorded. The results
are shown in Figure 3.

As evident fromFigure 3, themodel starts toperformdifferently
on the validation set from the training set after the 2nd epoch.While
the score on the training set rises and model learns the training set
more, the performance on the validation dataset drops. These
results demonstrate over fitting happening after the 2nd epoch.
Therefore, themodel from this epoch is loaded as the trainedmodel
and the optimum duration of training is found.

Phenotypic Screening Identifies Selective
Compounds
Evaluation of the model was performed by phenotypic testing of
compounds from a commercial macrocyclic compound library.
This NP-inspired library is considered a bridge between small
compounds and biomolecules (Driggers et al., 2008), thus
increasing the possibility of targeting unknown biomolecules in
Plasmodium. To rule out any validation bias in this experiment,
we did not consider the in-silico results when buying the library,
and all compounds were purchased based on their druggability as
identified using traditional cluster analysis (data not shown). To
compare the predictions from the DeepMalaria with the outcome
of a traditional Plasmodium phenotypic cell-based screening, all
2,400 compounds were tested for antiplasmodial activities using
SYBR green I fluorescence assay. Multi-drug resistant Pf Dd2
strain was used to provide clinically relevant results. Of the 2,400
compounds, 49 compounds exhibited growth inhibition of
greater than 50% at 1 µM. This is a comparatively high hit rate
(~2%) and provides evidence for the potential of macrocycles as
a new class of antimalarial compounds. The 49 hits underwent
EC50 determination and five compounds showed activity under 1
µM (Table 4). DC-9235, DC-9239, and DC-9236 are analogs and
considered amino acid macrocyclic scaffolds which are novel
antimalarial candidates, and further hit to lead development
would increase the potency of core structure. Other compounds
are not analogs of each other, suggesting discovery of four unique
antimalarial macrocyclic scaffolds. The selectivity of the
compounds for malaria parasite was determined by
counterscreening against human hepatoma HepG2 cell line
using MTS proliferation assay. All 6 hits exhibited greater than
15-fold selectivity index suggesting none is consider to be
cytotoxic for HepG2 cell line (Table 4).

In Silico and In Vitro Results Are
Comparable
After in vitro phenotypic screening, the ground truth labels for
the test dataset are found. The model can now be evaluated both
retrospectively and prospectively, via its prediction on the
validation set and the test set. The results of this evaluation are
shown in Table 3.

The model yields a high recall in both the validation and the
test set, showing the ability of the model in finding active
compounds. To fully display the performance of the model, the
confusion matrices of the validation and test set are shown in
Figure 4.
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Figure 4 shows similar behavior of the model on active
molecules in the validation dataset and the test set, achieving
the goal of the external validation process in DeepMalaria.
Moreover, the model is inclined to predict the input as active,
yielding a higher false positive rate than false negative rate. This
behavior is essential in a drug discovery model, since finding the
active molecules are of priority, and falsely predicting them as
inactive will likely be counterproductive.

As shown in Table 4, the model was able to correctly predict
all of the 6 compounds with nanomolar activity. Based on the
results in Tables 3 and 4, it is evident that DeepMalaria is capable
of virtually identifying potent compounds with high accuracy.
From 44.13% accuracy in the whole library, to 87.75% accuracy
for hits with at least 50% growth inhibition, and finally 100%
accuracy for all nanomolar active compounds, DeepMalaria is
prone to have less false negative when screening more potent set
of molecules. Thus, it is unlikely that the model might miss
highly active compounds. (Figure 5). Since the identification of
FIGURE 1 | Overview of Transilico architecture used to train DeepMalaria. In silico, the validation dataset is augmented and is used to determine the hyper-
parameters of the model. The model is pre-trained on the transfer dataset and fine-tuned on the training dataset. In vitro, the test compounds are tested on Pf. The
results are compared to predictions. The trained model can be applied for drug repurposing. The mechanism of action for the hits are determined.
FIGURE 2 | Grid search results for different sets of hyper-parameters. 144
different sets of hyper parameters for the model are tested on the augmented
validation dataset.
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highly potent hit compounds is a goal of all drug discovery
programs, predicting 100% of the nanomolar active hits proves
the utility of AI as a rapid and low-cost alternative to traditional
methods of bioactive hits discovery.

Comparison to Other Methods
The external validation process can also be used for traditional
approaches of virtual screening. As in traditional approaches, a
Random Forest (RF) and a Fully Connected Neural Network
(NN) models are trained on the ECFP4 of the molecules (with
size 1024) after optimized hyper-parameters were found. RF is
chosen since it offers a fair amount of control over over-fitting.
Both models pass through the process of external validation to be
given the optimum hyper-parameters. Furthermore, in order to
evaluate the impact of transfer learning, a model without
transferred weights is trained. The results are shown in Table 5.

The RF and NN models predict most of the input molecules
as active, resulting in an impractical model. The GCNN in
DeepMalaria can outperform RF without transfer learning,
showing the superiority of learnt features during training (in
GCNN) to isolated feature extraction (ECFP). When transfer
learning was used the model gains a noticeable boost in
performance, correctly predicting more active and inactive
molecules. This shows the effectiveness of DeepMalaria’s
process in early hit prediction.
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Stage Specific Activity Determination of
Active Scaffold
A disadvantage of phenotypic screening compared to target-
based screening is that the biological target of the active
compound is unknown. However, analysis of the development
stages affected by these compounds and the rate of killing may
provide insight into their mechanism of action. We hypothesized
that macrocycl ic compounds are l ikely target new
macromolecules in the plasmodial life cycle because of their
unusual standing as a bridge between small molecule inhibitors
and larger biomolecules (Driggers et al., 2008). We explore this
by assessing the stage-specific activity and the rate of killing of
the four novel antiplasmodial scaffolds.

Macrocyclic Hits Inhibit Multiple Plasmodium
Developmental Stages
Only few of the marketed antimalarials are able to target multiple
stages of the intraerythrocytic life cycle including the early ring stage
(Roberts et al., 2017).Additionally, 4 out of 12 current antimalarials,
including artemisinin, inhibit growthof the early ring stage (Wilson
et al., 2013). To determine the stage specific activity of the hit
compounds identified in this work, synchronous culture was
exposed to compounds at different time points of the life cycle
and the maturation of the parasite was assessed by flowcytometric
and microscopic analysis. As seen in Figure 6, flowcytometric and
Giemsa-stained microscopic data suggest that the control culture
TABLE 3 | Results of the trained model.

# of Active TP TN FP FN Accuracy Recall

Validation Dataset 112 81 2620 1756 31 60.06 72.32
Test Dataset 49 43 1016 1335 6 44.13 87.75
TABLE 2 | Finalized hyper-parameters from grid search.

Hyper-Parameter Optimum Value Hyper-Parameter Optimum Value

# of Conv. Layers 3 Dropout 0
Conv. Layer Sizes 64, 64, 64 Learning Rate 0.0001
# of Neurons 256 Batch Size 128
FIGURE 3 | Area Under the Receiver operation Characteristic Curve (AUC)
scores of the model during training. The model is evaluated on the training
and augmented validation dataset at the end of each epoch. The model
starts to over-fit after 2 epochs.
FIGURE 4 | Confusion matrices of validation dataset (A) and test dataset (B).
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matured as expected progressing from ring (6 h) to early
trophozoite (18 h) to trophozoite (30 h) to multinucleated
schizont (42 h). At 54 h parasites are at the ring stage upon
reinvasion with a concomitant increase in parasitemia as evident
from an increase in the flow cytometric peak. In contrast, DC-9237
inhibits all asexual blood stages of Dd2 including the early ring
stage. DC-9236 inhibits primarily the mature schizonts and both
DC-5921 and DC-5931 inhibit the early stages (Supplementary
Material 1). This multistage active antiplasmodial chemotype
identification from a single library is further evidence of the
utility of macrocyclic compounds as candidate antimalarial
scaffolds since not many compounds would target all or early
asexual stages of P. falciparum.
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DC-9237 Is a Fast-Acting Compound
An attractive property of a successful antimalarial compound is
rapid clearance of parasites, reducing the need for additional doses.
Using synchronized Dd2 culture, we measured the rate of parasite
killing at different stages of intraerythrocytic development. As
evident from Figure 7, compared to the control, DC-9237
inhibited growth at all asexual stages after 6 h of exposure and
parasite population did not resume growth even after 6 days. In
contrast, the remaining compounds did not completely inhibit
growth even at 12 h of exposure, suggesting a low rate of
elimination. DC-9236 is showing higher elimination in the
second life cycle. The types of compounds which are not effective
at the first cell cycle, thus causing a delayed parasite death, are
known to target apicoplast which is a vestigial chloroplast-like
organelle (Kennedy et al., 2019b).

Deepmalaria Identifies Drug Repurposing
Candidates
Drug repurposing is a very important aspect of modern drug
discovery that reduces the cost significantly. Compounds that
have been already approved would make suitable drugs with new
medical indication since they need lower developmental costs and
TABLE 4 | In vitro and in silico results of the compound with Nano-molar activity.

ID Inhibition One-point
(%)

Toxicity
SI

EC50 µM
HepG2

EC50 µM
Pf

DeepMalaria
antimalarial
Prediction

DeepMalaria
Softmax
Output

DeepMalaria
Toxicity
Prediction

DC-9239 79 25 24.2 1.09± 60nM Active 0.70 Negative

DC-9235 92 >40 >25 0.79± 61nM Active 0.71 Negative

DC-9236 98 15.9 6.5 0.41± 30nM Active 0.85 Negative

DC-9237 95 35.3 17 0.49± 44nM Active 0.68 Negative

DC-5931 80 >40 >25 0.52± 25nM Active 0.96 Negative

DC-5921 90 >40 >25 0.9± 10nM Active 0.91 Negative
Januar
y 2020 | Volume 10
FIGURE 5 | DeepMalaria finds potent hits with higher recall. 87.85% for hits
with inhibition of 50% or more, 100% for nanomolar active hits.
TABLE 5 | Comparison of different models on test dataset.

Featurization Accuracy Recall ROC-
AUC

Random Forest ECFP4 14.08 89.79 0.51

DeepMalaria without Transfer
Learning

GraphConv 33.46 77.55 0.55

DeepMalaria GraphConv 44.13 87.75 0.69
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faster approval processes (Pushpakom et al., 2019). It has been
reported that 226 FDA approved drugs are active against different
stages and cell lines of Plasmodium falciparum (Chong et al., 2006;
Derbyshire et al., 2012).After removing all inorganicmolecules and
also inactive ones against blood stages of Dd2 cell line, 211 drugs
were screened virtually usingDeepMalaria. Themodel showed74%
accuracy in predicting those 211 compounds as repositioning
candidates (Supplementary Material 2). Pazhayam et al.
proposed eight of those compounds as stronger candidates
because of sharing common targets between the host and parasite
(Pazhayam et al., 2019). These drugs include Azithromycin,
Cyclosporin A, Esomeprazole, Pentamidine, Omeprazole,
Auranofin, Loperamide and Amlodipine. As expected, the model
predicts all of the eight candidates as potential antimalarials. This
further validates the promise of DeepMalaria as a powerful tool for
drug repurposing (Figure 8).

DISCUSSION

Options for malaria therapy are increasingly becoming limited
because of widespread drug resistance. Even artemisinin-based
Frontiers in Pharmacology | www.frontiersin.org 990
combination therapies (ACTs), the front-line therapeutic choices
for uncomplicated P. falciparummalaria, are gradually becoming
ineffective in many countries of Southeast Asia (Cui, 2011;
Ashley et al., 2014). Reports of failure of dihydroartemisinin-
piperaquine drug combination therapy in Cambodia leaves us
with very few therapeutic choices (Saunders et al., 2014). This
bleak situation emphasizes the urgent need to develop new
antimalarials that act on novel targets. Although recent
increase in novel antimalarial discovery efforts has led to quite
a few lead compounds in preclinical development (Ashley and
Phyo, 2018), the need for new antimalarial drugs will continue to
exist because of expected loss of new drugs due to future
emergence of resistance.

In this work, a deep learning model was trained on publicly
available data to predict Plasmodium falciparum inhibition of
compounds. A validation dataset was created from previous
experiments and was augmented to assist in hyper-parameter
optimization. Transfer learning from a large corpus of unrelated
data was employed to facilitate the training of the deep learning
model. The model was tested on an independent macrocyclic
test dataset in order to find new drug candidates. DeepMalaria
FIGURE 6 | Stage Specific Activity of DC-9237. At different time-points of the malaria parasite intraerythrocytic developmental cycle, DC-9237 was added at a
concentration of 3xEC50. Additions were at 6, 18, 30, and 42 h post-invasion (hpi). Samples were processed 12 h later and analyzed by Giemsa staining and flow
cytometry of YOYO-1 stained samples.
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was able to find 72.32% of active molecules from the validation
dataset and 87.75% of that of the test dataset, while maintaining
an acceptable accuracy in an imbalanced setting. The results
show that deep learning automatic feature extraction can learn
patterns within the molecules that are generalizable to new and
unseen datasets, outperforming the traditional approach of
classifying fingerprints. DeepMalaria has shown increasing
Frontiers in Pharmacology | www.frontiersin.org 1091
accuracy when predicting more potent compounds, a very
important characteristic which did not let any nanomolar
active/non-cytotoxic compound to be missed. Furthermore,
the hit compounds were narrowed down to one fast-acting
compounds working at all stages of P. falciparum growth. Also,
DC-9236 showed inhibition in the second developmental cycle
of Pf causing delayed death most likely because of its action on
FIGURE 7 | Assessment of rate of killing. Synchronous cultures were subjected to 3 x EC50 concentrations of macrocyclic compounds or dihydroartemisinin (DHA)
for 6 or 12 h, followed by washing to remove the inhibitor and incubating in the growth medium in the absence of compounds to monitor recovery. (A) Compounds
added at the schizont stage, (B) treatment at the trophozoite stage, and (C) ring stage culture exposed to the compound. Compounds were added at a stage
where they exhibit block in cell cycle progression.
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the apicoplast. Compounds with delayed death characteristics
would be a very good candidate for combination therapy
(Kennedy et al., 2019a).

We demonstrated the potential of deep learning and the
Transilico architecture to accelerate the process of active
compound identification in early drug discovery (www.
transilico.com). Since last decade AI and especially deep
learning is generating new hope in small molecule early drug
discovery (Leelananda and Lindert, 2016). There is an increased
interest to use machine learning and related technologies to
rapidly discover novel pharmacophores thus avoiding the
expense of HTS (Fleming, 2018). Given the pressing need for
novel antimalarials, accelerated hit identification through the use
of AI as has been presented in this work would be of great
interest. Artificial intelligence has revolutionized many fields
of medicine including drug discovery (Wang and Shen, 2017;
Doan and Carpenter, 2019; Topol, 2019). Expensive HTS, low hit
rate of synthetic libraries, incompatibility of natural products
with HTS, non-diverse libraries etc., are some of the reasons for
limited success of many of today’s drug discovery efforts (Koehn
and Carter, 2005; Li and Vederas, 2009; Schneider, 2017).
However, many AI-based approaches of early drug discovery
such as structural based VS and de novo design of molecules are
still relatively unexplored in malaria therapeutics development.
After the success of abstract and superior performance of deep
learning feature extraction, Generative Adversarial Networks
and Variational Auto-Encoders would act as good candidates
for leveraging this abstract representation for bioactive
molecule identification.
Frontiers in Pharmacology | www.frontiersin.org 1192
To establish AI for accelerated malaria drug lead discovery, we
used a commercial macrocyclic compound library for validation.
Peptidicmacrocycles compounds have characteristics of both small
molecules and polypeptides, and have not been investigated for
antimalarial therapeutics discovery. High hit rate of macrocyclic
compound screening suggests their utility as antimalarials. Other
classes of macrocyclic compounds such as cyclic peptides would
also be a good candidate for further study (Whitty et al., 2017). It is
of note that, although the model was trained on a synthetic library,
DeepMalaria was highly accurate in discovering natural products
hits. This article is the first report regarding the use of transfer
learning for malaria drug discovery and will be a model for future
projects ofAI-baseddrugdiscovery. Additionally, ourmodelwould
aid indrug repurposing as it showed strength inpredictingpotential
antimalarial activities of already approved drugs.
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Capsule networks (CapsNets), a new class of deep neural network architectures
proposed recently by Hinton et al., have shown a great performance in many fields,
particularly in image recognition and natural language processing. However, CapsNets
have not yet been applied to drug discovery-related studies. As the first attempt, we in this
investigation adopted CapsNets to develop classification models of hERG blockers/
nonblockers; drugs with hERG blockade activity are thought to have a potential risk of
cardiotoxicity. Two capsule network architectures were established: convolution-capsule
network (Conv-CapsNet) and restricted Boltzmann machine-capsule networks (RBM-
CapsNet), in which convolution and a restricted Boltzmann machine (RBM) were used as
feature extractors, respectively. Two prediction models of hERG blockers/nonblockers
were then developed by Conv-CapsNet and RBM-CapsNet with the Doddareddy's
training set composed of 2,389 compounds. The established models showed excellent
performance in an independent test set comprising 255 compounds, with prediction
accuracies of 91.8 and 92.2% for Conv-CapsNet and RBM-CapsNet models,
respectively. Various comparisons were also made between our models and those
developed by other machine learning methods including deep belief network (DBN),
convolutional neural network (CNN), multilayer perceptron (MLP), support vector machine
(SVM), k-nearest neighbors (kNN), logistic regression (LR), and LightGBM, and with
different training sets. All the results showed that the models by Conv-CapsNet and RBM-
CapsNet are among the best classification models. Overall, the excellent performance of
capsule networks achieved in this investigation highlights their potential in drug discovery-
related studies.

Keywords: deep learning, hERG, classification model, Capsule network, convolution-capsule network, restricted
Boltzmann machine-capsule networks
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INTRODUCTION

The human ether-a-go-go-related gene (hERG) encodes a
potassium channel protein, which is important for cardiac
electrical activity and the coordination of heartbeat. Blockade
of the hERG potassium channel can result in a potentially fatal
disorder called long QT syndrome, as well as serious
cardiotoxicity, which has led to the withdrawal of several
marketed drugs and the failure of many drug research and
development projects (Fermini and Fossa, 2003; Recanatini
et al., 2005; Sanguinetti and Tristani-Firouzi, 2006; Bowes
et al., 2012; Nachimuthu et al., 2012; Zhang et al., 2012; Shah,
2013; Kalyaanamoorthy and Barakat, 2018; Mladenka et al.,
2018). Therefore, drug candidates that can bind with hERG
should be eliminated as early as possible in drug discovery
studies. At present, various in vitro experimental assays, such
as fluorescent measurements (Dorn et al., 2005), radioligand
binding assay (Yu et a l . , 2014) , and patch-c lamp
electrophysiology (Stoelzle et al., 2011; Gillie et al., 2013;
Danker and Moller, 2014), have been developed to measure
the hERG binding affinity of chemicals. Nevertheless, these
assays are often expensive and time-consuming, implying that
they are not suitable for the evaluation of hERG binding affinity
for a large number of chemicals in the early stage of drug
discovery. Furthermore, the preconditions for the use of these
analytical techniques are that the chemical compounds have
been synthesized and are available in hand, which are usually not
applicable in the era of virtual high-throughput screening. An
alternative strategy is to use in silico methods; compared with
experimental assays, in silicomethods are cheaper and faster, and
also do not involve any of the aforementioned preconditions.

To date, various in silico prediction models have been
developed for hERG channel blockade. These models can be
classified into structure-based and ligand-based models.
Structure-based models utilize molecular docking to predict
the binding mode and binding affinity of compounds to hERG.
However, the structure-based methods often have some
limitations such as protein flexibility, inaccurate scoring
function, and solvent effect (Jia et al., 2008; Li et al., 2013).
Ligand-based models can further be classified into several
categories based on structural and functional features (Zolotoy
et al., 2003; Aronov, 2005), quantitative structure-activity
relationship (QSAR) models (Perry et al., 2006; Yoshida and
Niwa, 2006; Tan et al., 2012), pharmacophore models (Cavalli
et al., 2002; Aronov, 2006; Durdagi et al., 2011; Yamakawa et al.,
2012; Kratz et al., 2014; Wang et al., 2016), and machine learning
models (Wang et al., 2008; Klon, 2010; Wacker and Noskov,
2018). Compared with other models, machine learning models
have attracted more attention in recent years due to the
remarkable performance of machine learning methods in the
handling of classification issues. For example, Wang et al. (2012)
established binary classification models using Naïve Bayes (NB)
classification and recursive partitioning (RP) methods, which
achieved prediction accuracies of 85–89% in their test sets.
Zhang and coworkers (Zhang et al., 2016) used five machine
learning methods to develop models that can discriminate hERG
Frontiers in Pharmacology | www.frontiersin.org 296
blockers from nonblockers, and they found that k-nearest
neighbors (kNN) and support vector machine (SVM) methods
showed a better performance than others. Broccatelli et al. (2012)
derived several classification models of hERG blocker/
nonblocker by using random forests (RF), SVM, and kNN
algorithms with descriptor selections via genetic algorithm
(GA) methods, and their prediction accuracies ranged from 83
to 86%. Didziapetris and Lanevskij (2016) employed a gradient-
boosting machine (GBM) statistical technique to classify hERG
blockers/nonblockers, and this offered overall prediction
accuracies of 72–78% against different test sets. Very recently,
Siramshetty et al. (2018) employed three methods (kNN, RF, and
SVM) with different molecular descriptors, activity thresholds,
and training set compositions to develop predictive models of
hERG blockers/nonblockers, and their models showed better
performance than previously reported ones.

There have been remarkable advances in deep learning
methods since a fast learning algorithm for deep belief nets was
proposed by Hinton in 2006 (Hinton et al., 2006a). They have
widely been applied to fields particularly computer vision, speech
recognition, natural language processing, audio recognition,
social network filtering, machine translation, bioinformatics,
and various games (Collobert and Weston, 2008; Bengio, 2009;
Dahl et al., 2012; Hinton et al., 2012; LeCun et al., 2015;
Defferrard et al., 2016; Mamoshina et al., 2016), where they
have produced results comparable to or in some cases superior to
human experts. In recent years, deep learning has also been
applied to drug discovery, and it has demonstrated its potentials
(Lusci et al., 2013; Ma et al., 2015; Xu et al., 2015; Aliper et al.,
2016; Mayr et al., 2016; Pereira et al., 2016; Subramanian et al.,
2016; Kadurin et al., 2017; Ragoza et al., 2017; Ramsundar et al.,
2017; Xu et al., 2017; Ghasemi et al., 2018; Harel and Radinsky,
2018; Hu et al., 2018; Popova et al., 2018; Preuer et al., 2018;
Russo et al., 2018; Segler et al., 2018; Shin et al., 2018; Cai et al.,
2019; Wang et al., 2019a; Yang et al., 2019). However, there are
still some issues that limit the application of deep learning in drug
discovery. For example, deep learning usually requires a large
number of samples for model training. Unfortunately, there are
often a very limited number of agents (usually hundreds or
thousands) in drug discovery-related studies due to high cost and
the lengthy process involved in obtaining samples and their
associated properties. In addition, commonly used deep
learning algorithms or networks, such as convolutional neural
network (CNN), are primarily designed for two-dimensional
(2D) image recognition. In these networks, some special
algorithms, such as the pooling algorithm in CNN, are adopted
to reduce the dimensionality of the representation, which might
lead to a loss of information.

To overcome the shortcomings of traditional deep learning
networks, Hinton group (Sabour et al., 2017) proposed new deep
learning architectures known as capsule networks (CapsNets),
which introduced a novel building block that is used in deep
learning to improve the model hierarchical relationships inside
the internal knowledge representation of a neural network.
CapsNets have shown great potential in some fields (Xi et al.,
2017; Afshar et al., 2018; Lalonde and Bagci, 2018; Qiao et al.,
January 2020 | Volume 10 | Article 1631
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2018; Vesperini et al., 2018; Zhao et al., 2018; Wang et al., 2019b;
Peng et al., 2019). However, CapsNets have not yet been applied
to drug discovery-related studies. As the first attempt, in this
study, we established two classification models of hERG
blockers/nonblockers by using modified capsule network
architectures. The models were evaluated using a test set and
an external validation set, which are independent of the
training set. Furthermore, our models were also compared
with others.

The rest of this paper is organized as follows. The Materials
and Methods section describes the implementation of the two
capsule networks [convolution-capsule network (Conv-
CapsNet) and RBM-CapsNet] developed in this study, as well
as the data sets used and computational modeling details. The
modeling, evaluation, and comparison with other models are
presented in the Results section. The strengths of the capsule
networks are analyzed in theDiscussion section which is followed
by a final summary.
MATERIALS AND METHODS

Convolution-Capsule Network
Architecture
The architecture of Conv-CapsNet is schematically shown in
Figure 1, which is similar in nature to that of the Hinton's
original Capsule Network, except for one additional hidden
feature layer. Apparently, Conv-CapsNet contains four layers: a
convolutional layer, a hidden feature layer, a PrimaryCaps layer,
and a DigitCaps layer. It is composed of 179 nodes for input,
which are based on the feature vector size of the molecules. With
mapping from the input vector, the hidden feature layer with 128
dimensional nodes was generated by one convolutional
operation and one fully connected operation. The PrimaryCaps
layer comprises eight capsules (ui), and each capsule in this layer
includes eight-dimensional features. Furthermore, we computed
Frontiers in Pharmacology | www.frontiersin.org 397
the contribution (û jji) of each capsule (ui) in PrimaryCaps to that
(vj) in DigitCaps by using Eq. 1.

û jji = Wij � ui (1)

The final layer (DigitCaps) has a two-dimensional capsule (vj)
per digit class (two classes in this investigation). Each of these
capsules received input from all the capsules in the PrimaryCaps
layer through Eq. 2-1, Eq. 2-2, and Eq. 2-3.

cij =
exp bij

� �

Sk exp bikð Þ (2� 1)

sj = Skcijû jji (2� 2)

vj =
‖ sj ‖2

1 + ‖ sj ‖2
sj

‖ sj ‖
(2� 3)

Finally, we computed the length of each digit capsule to
predict the class of chemical molecules from Eq 3.

Lk = Tk max 0,m+ − ‖ vk ‖ð Þ2+l 1 − Tkð Þ

� max 0, ‖ vk ‖−m−ð Þ2 (3)

In view of the small size of the dataset in this account, we
added the L2 regularization behind the convolutional operation
to prevent the network from overfitting (Ng, 2004).

Hyperparameter Optimization
For the hyperparameter optimization of the Conv-CapsNet
architecture, the different numbers of fi lters in the
convolutional layer, nodes in the hidden feature layer, and
dimensions in PrimaryCaps were explored. Additionally, the
dynamic routing iterations between two capsule layers were
tested from 1 to 3 with an increment of 1. For each group of
the parameter settings, the performance of the model was
evaluated by five-fold cross-validation based on the training
FIGURE 1 | Architecture of convolution-capsule networks (Conv-CapsNet). The input is one-dimensional vector containing 179 components. The convolution layer
has 32 filters of size 1×3. The hidden feature layer and PrimaryCaps layer consist of 128 and 64 nodes, respectively. The weight matrix between PrimaryCaps layer
and DigitCaps layer is 8×8×2×2, and two dynamic routing iterations were adopted.
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set. Once the highest accuracy was achieved with all the
candidate settings, the best setting was subsequently applied to
the test set and external validation set. We employed early
stopping to reduce the overfitting problem, which is a
technique commonly used for the reduction of overfitting
(Caruana et al., 2001). With the early stopping, original
training set was randomly divided into a new training set and
a validation set (4:1). When the error in the validation set was
less than that from the previous iteration, the training was
immediately stopped. The final optimal hyperparameters for
Conv-CapsNet are listed in Table 1.

Model Training of Conv-CapsNet
The Conv-CapsNet weights were randomly initialized using a
truncated normal distribution with the standard deviation being
set as 0.01 during training. Both the convolutional and hidden
feature layers adopted the rectified linear unit (Relu) as the
activation function. To reduce the internal-covariate-shift, we
used batch normalization to normalize the input distribution of
each layer to a standard Gaussian distribution (Hinton et al.,
2011; Ioffe and Szegedy, 2015). The adaptive moment estimation
(Adam) method was employed for optimization (Kingma and
Ba, 2014).

Table 2 summarizes the algorithm and training procedure for
Conv-CapsNet. CW, W1, and W2 represent the parameters in
the convolutional, hidden feature, and PrimaryCaps layers,
respectively. The convolutional and the first two fully
connected operations are represented by conv, fc1, and fc2,
respectively; conv_layer, hf_layer, and pc_layer denote the
output from the convolutional, hidden feature, and
PrimaryCaps layers, respectively. Through a feature vector
extraction process in the convolutional layer, the hidden
feature layer, and the PrimaryCaps layer (lines 1–4), pc_layer
was packed as capsules u (line 5). Here, û denotes the
contribution of one layer to the next layer. Next, the routing
algorithm was used to generate the digit capsules (lines 6–13).
Len is the length of the output of DigitCaps layer (lines 14). Lines
15–20 are for the network parameter update using a
gradient step.
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Restricted Boltzmann Machine-
Capsule Network
Architecture
Figure 2 displays the architecture of RBM-CapsNet, which
consists of three layers: a hidden feature layer, a PrimaryCaps
layer, and a DigitCaps layer. In RBM-CapsNet, two restricted
Boltzmann machines (RBMs) replaced the convolutional and
fully connected operations in Conv-CapsNet. The first RBM
encodes the original vector (179-dimension) for the feature space
(the hidden feature layer), which is subsequently used as the
input for the next RBM. The RBMs used energy function (Eq. 4)
as the loss function (Hinton and Salakhutdinov, 2006b).

E v, hð Þ = − aT � v + bT � h + vT � w � h� �
(4)

The capsule networks still consist of PrimaryCaps and
DigitCaps, which are the same as in Conv-CapsNet. The
detailed definitions of all the parameters in Eq. 1, 2, 3, and 4
are listed in the Supplementary Material.

Hyperparameter Optimization
To optimize the hyperparameters in the RBM-CapsNet
architecture, all the combinations of one to five RBM
operations and 32, 64, 128, 256, and 512 nodes in each RBM
were tested. The basic optimization procedure for the
hyperparameters related to the capsules is very similar with
that for Conv-CapsNet. The performance of each RBM-
TABLE 2 | Algorithm and training procedure of convolution-capsule networks
(Conv-CapsNet).

Algorithm: Conv-CapsNet training algorithm, using a mini-batch stochastic
gradient descent (SGD) for simplicity.
Input: mini batch feature vector (x);

Number of Conv-CapsNet training epoch (S);
Number of dynamic routing iterations (iter).

Output: Length of each capsules (Len).
1: For n=1 to S do
2: conv_layer ← conv(x, CW)
3: hf_layer ← fc1(conv_layer, W1)
4: pc_layer ← fc2(hf_layer, W2)
5: u ← Encapule(pc_layer)

6: For all capsule i in PrimaryCaps layer:û jji ←Wijui………… {contribution

computes Eq. 1}
7: For all capsule i in PrimaryCaps layer and capsule j in DigitCaps layer:bij ← 0
8: For m=1 to iter do
9: For all capsule i in PrimaryCaps layer: ci ← softmax(bi) ……{softmax
computes Eq. 2-1}

10: For all capsule j in DigitCaps layer:sj ←oicij û jji …{dynamic computes Eq.

2-2}
11: For all capsule j in DigitCaps layer: vj ← squash (sj) ………{squash
computes Eq. 2-3}
12: For all capsule i in PrimaryCaps layer and capsule j in DigitCaps

layer:  bij ←bij + û jji � vj
13: End for
14: Len← Length  of   v
15: L← loss  of   v………………………………………{loss computes Eq. 3}
16:  W←W − ∂L= ∂W
17: CW←CW − ∂L= ∂CW
18: W1←W1 − ∂L= ∂W1
19: W2←W2 − ∂L= ∂W2
20: End for
TABLE 1 | Hyperparameter settings of convolution-capsule networks
(Conv-CapsNet).

Hyperparameter Setting

L2 normalization term 0.001
Activation Relu
Batch size 148
Iteration epoch 300
Learning rate of network 0.001
Optimizer Adam
Filter 32
Kernel_size 3
Number of nodes in the hidden feature layer 128
Number of nodes in the PrimaryCaps layer 64
Routing time 2
Dimension of each capsule 8
Length of PrimaryCaps 2
Length of DigitCaps 2
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CapsNet architecture was examined by five-fold cross-validation.
The candidate RBM-CapsNet architecture that provided the
highest accuracy was validated using the test set and external
validation set. The detailed information on the optimized
hyperparameters in RBM-CapsNet is summarized in Table 3.

Model Training of Restricted Boltzmann Machine-
Capsule Network
The training process was divided into two stages. First, two RBMs
were pre-trained one by one with the loss function shown in Eq.
4. Second, the parameters of RBMs from pre-training were taken
as initial values and the whole network was fine-tuned by back-
propagation algorithm with end-to-end (Rumelhart et al., 1986).

Table 4 summarizes the algorithm and training procedure for
RBM-CapsNet. q1 and q2 represent the parameters of the hidden
feature and PrimaryCaps layers, respectively. f1 and f2
represent the operations in RBM1 and RBM2, respectively. The
hf_layer and pc_layer denote the output from the hidden feature
and PrimaryCaps layers, respectively. After training RBM1 and
Frontiers in Pharmacology | www.frontiersin.org 599
RBM2 individually (lines 1–6), the pc_layer was packed as
capsules u (line 10). The routing algorithm was then used to
generate the digit capsules (lines 11–18). Len is the length of the
output of DigitCaps layer (lines 19). Lines 20 to 24 are for a
network parameter update using a gradient step (∂L/∂W
represents the gradient of the contribution matrix, and ∂L/∂q1
and ∂L/∂q2 represent the gradients of the parameters for the
hidden feature and PrimaryCaps layers, respectively).

Data Sets
In this investigation, the Doddareddy's hERG blockade data set
was used to establish our models (Doddareddy et al., 2010), which
includes literature compounds tested on the hERG channel and
Food and Drug Administration (FDA)-approved drugs. This data
set contains a total of 2,644 compounds, including 1,112 positives
(hERG blocker, IC50 < 10 mM) and 1,532 negatives (hERG
nonblocker, IC50 > 30 mM). Doddareddy et al. partitioned this
data set into a training set and a test set (Doddareddy et al., 2010).
For comparison, the same partition scheme for the training and
test sets as that by Doddareddy et al. was adopted in this
invest igation. Furthermore, we used Doddareddy 's
experimentally validated dataset (a total of 60 compounds: 50
agents from the Chembridge database and 10 from an in-house
compound library) as an external validation set to assess the
generalization ability of our models. In order to compare the
performance of our models with others reported in the literature,
we also used the same data sets as those in the literature, including
Hou's (Wang et al., 2012; Wang et al., 2016), Zhang's (Zhang et al.,
2016), Sun's (Sun et al., 2017), Siramshetty's (Siramshetty et al.,
2018), and Cai's (Cai et al., 2019) data sets. Here, it is necessary to
mention that an integrated data set of hERG blockade, which is the
largest database to date, has been collected by Sato et al. (2018).
However, we did not use this data set because it was not accessible.
Another reason was that this data set has not been used to develop
prediction models so far, and hence, a comparison study involving
the data set was not feasible.
TABLE 3 | Hyperparameter settings of restricted Boltzmann machine-capsule
networks (RBM-CapsNet).

Hyperparameter Setting

Numbers of RBM 2
Number of nodes in the hidden feature layer 256
Number of nodes in the PrimaryCaps layer 128
Iteration of RBM 100
Iteration of network 200
Learning rate of RBM 0.001
Learning rate of network 0.005
Activation Relu
Batch size 148
Optimizer Adam
Routing time 2
Dimension of each capsule 8
Length of PrimaryCaps 2
Length of DigitCaps 2
FIGURE 2 | Architecture of restricted Boltzmann machine-capsule networks (RBM-CapsNet). The input is one-dimensional vector containing 179 components. The
hidden feature layer and PrimaryCaps layer consist of 256 and 128 nodes, respectively. The weight matrix between PrimaryCaps layer and DigitCaps layer is
8×8×2×2, and two dynamic routing iterations were adopted.
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Molecular Characterization
In this investigation, a combination of MACCS (MDL Molecular
Access) molecular fingerprints (166 bits) and 13 molecular
descriptors was utilized to characterize the chemical
compounds, which has been used by Zhang et al. and showed
a good predictive performance in hERG blockade classification
modeling (Zhang et al., 2016). Another reason why we adopted
this characterization method (MACCS+13 descriptors, a total of
179 features) is because of their short length which is important
for the reduction of the number of parameters in the modeling
and the training time. By the way, the 13 molecular descriptors
were selected because they are thought to be very related to
ADMET properties and have been widely used in the modeling
of various ADMET properties (Hou and Wang, 2008; Hou et al.,
2009; Wang et al., 2012; Zhang et al., 2016). A detailed list of
these descriptors are given as follows: the octanol-water
partitioning coefficient, apparent partition coefficient at pH =
7.4, molecular solubility, molecular weight, number of hydrogen
bond donors, number of hydrogen bond acceptors, number of
rotatable bonds, number of rings, number of aromatic rings, sum
of the oxygen and nitrogen atoms, polar surface area, molecular
fractional polar surface area, and molecular surface area.
Frontiers in Pharmacology | www.frontiersin.org 6100
All the molecular fingerprints and molecular descriptors were
computed with RDKit (Landrum, 2018) and PaDEL-Descriptor
(Yap, 2011), respectively. Because the values of the different
descriptors might span significantly different numerical ranges,
their values were scaled to the same range (0, 1) by using the
following formula:

x* =
x −min

max −min
(5)

where x is the original value, x* is the scaled value, and max and
min are the maximum and minimum values of a
descriptor, respectively.

Model Assessment
All the models were assessed based on their accuracy (Q), sensitivity
(SE), and specificity (SP). Q reflects the total prediction effect of a
classifier. SE and SP represent the predictive power for positives and
negatives, respectively. The definitions are given as follows (TP, true
positive/blocker; TN, true negative/nonblocker; FP, false positive/
blocker; and FN, false negative/nonblocker):

Q =
TP + TN

TP + FP + TN + FN
(6)

SE =
TP

TP + FN
(7)

SP =
TN

FP + TN
(8)

The classification capability of models was measured by area
under the receive operating characteristic curve (AUC), which is
an important indicator to illustrate the classification
performance by changing its discrimination threshold.

Another measurement of the quality of binary (two-class)
classifications is the Matthew's correlation coefficient (MCC).
The MCC considers the balance ratios of the four confusion
matrix categories (TP, TN, FP, and FN), and reflects the
predictive power of models objectively without the influence of
the disproportionate ratio of positives to negatives in the dataset.
The MCC was calculated by using the following equation:

MCC =
TP � TN − FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FP + TNð Þ FP + TPð Þ FN + TNð Þ FN + TPð Þp (9)

Computations
All the calculations were carried out with a single dual-processor,
16-core 2.1 GHz Intel® Xeon® E5-2683 v4 CPU with 126 GB
memory and two NVIDIA Tesla P100 GPU accelerators. The
software modules that were used to implement this project
included Scikit-learn 0.18.1, Python 3.6.4, Anaconda 5.1.0 (64-
bit), and TensorFlow 1.4.0.
RESULTS

Selection of the Optimal Capsule Network
Architectures and Model Development
Hinton et al raised the concept of capsule network and proposed the
first capsule network architecture prototype (Sabour et al., 2017). To
TABLE 4 | Algorithm and training procedure of restricted Boltzmann machine-
capsule networks (RBM-CapsNet).

Algorithm: RBM-CapsNet training algorithm, using a mini-batch stochastic
gradient descent (SGD) for simplicity.
Input: mini batch feature vector (x);

Number of RBM training epoch (S1);
Number of Capsule training epoch (S2);
Number of dynamic routing iterations (iter).

Output: Length of each capsules (Len).
1: For n=1 to S1 do
2: hf layer← f1(x, q1)………………………………………{RBM1 training}
3: End for
4: For n=1 to S1 do
5: pc layer← f2(hf layer, q2)…………………………………{RBM2 training}
6: End for
7: For n=1 to S2 do
8: hf layer← f1(x, q1)
9: pc layer← f2(h1 layer, q2)
10: u←Encapule (pc layer )

11: For all capsule i in PrimaryCaps layer:û jji ←Wijui…………{contribution

computes Eq. 1}
12: For all capsule i in PrimaryCaps layer and capsule j in DigitCaps layer:bij ← 0
13: For m=1 to iter do
14: For all capsule i in PrimaryCaps layer: ……{softmax computes Eq. 2-1}

15: For all capsule j in DigitCaps layer:   sj ←  oicij û jji………{dynamic computes

Eq. 2-2}
16: For all capsule j in DigitCaps layer:vj ← squash(sj )…………{squash
computes Eq. 2-3}

17: For all capsule i in PrimaryCaps layer and capsule j in DigitCaps layer:  bij

←bij + û jji � vj
18: End for
19: Len← Length  of   v
20: L← loss  of   v………………………………………{loss computes Eq. 3}
21: W←W − ∂L= ∂W
22: q1← q1 − ∂ L= ∂ q1
23: q2← q2 − ∂ L= ∂ q2
24: End for
January 2020 | Volume 10 | Article 1631

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Wang et al. CapsNet for Predicting hERG Blockage
find the optimal capsule network architectures for the modeling of
hERG blockade, we tried to construct a number of capsule networks
with different architectures following Hinton's principle. Here, the
Doddareddy's training set (positives: 1,004; negatives: 1,385) was
adopted to train all the models, and the five-fold cross-validation
method was used to monitor the training processes. In the five-fold
cross-validation, the training set was randomly divided into five
subsets. Of the five subsets, four subsets were used as the training
data, and the remaining subset was used as the validation data for
testing the model. The cross-validation process was repeated five
times, with each of the five subsets used exactly once as the
validation data. The average of the results from the five runs was
calculated to produce a single estimation. The five-fold cross-
validation results for the training set are given in Table 5.
According to these results, Conv-CapsNet and RBM-CapsNet
showed the best performance. For the Conv-CapsNet model, the
prediction accuracies for the hERG blockers (SE) and the hERG
nonblockers (SP) were 88.6 and 89.1%, respectively, and the overall
prediction accuracy (Q) was 88.9%. For the RBM-CapsNet model,
the prediction accuracies for hERG blockers and nonblockers were
84.3 and 89%, respectively and the overall prediction accuracy was
87.0%. Importantly, the MCC values of Conv-CapsNet and RBM-
CapsNet were 0.774 and 0.734, respectively, which were also the
highest among all the MCC values (Table 5); a higher MCC value
often indicates a better prediction power of model. Therefore, the
architectures of Conv-CapsNet and RBM-CapsNet were chosen as
our capsule network architectures, and a detailed description for
these architectures was given in theMaterials and Methods section.

Validation of Our Models’ Prediction Ability
Against hERG Blockers/Nonblockers by
Doddareddy’s Test Set and External
Validation Set
In the above subsection, we obtained the optimal architectures of
capsule networks. With these capsule network architectures, two
classification models of hERG blockers/nonblockers, Conv-
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CapsNet and RBM-CapsNet models have been developed. To
verify the predictive ability of these models, two test sets that are
independent of the training set were used: Doddareddy's test set
(positives: 108; negatives: 147) and external validation set
(positives: 18; negatives: 42).

Table 6 summarizes the prediction results of the Conv-
CapsNet and RBM-CapsNet models. From Table 6, we can see
that both models show excellent prediction ability to the
Doddareddy's test set and external validation set. With the
Conv-CapsNet model, of the 108 blockers in the test set, 102
were correctly predicted, indicating a prediction accuracy of
94.4% for the blockers (SE). For the 147 nonblockers, 132
(TN) were properly predicted. The accuracy for the prediction
of nonblockers (SP) was 89.8%. Of all the 255 agents (blockers
and nonblockers), 234 were correctly predicted and 20 were
wrongly predicted (see Table 6). The overall prediction accuracy
(Q) and AUC measure were 91.8% and 0.940 (see Figure 3),
respectively. For the external validation set, of the 18 blockers, 16
(TP) were correctly discriminated from nonblockers. The
prediction accuracy for the blockers (SE) was 88.9%. Of the 42
nonblockers, 30 (TN) were correctly predicted, indicating a
prediction accuracy of 71.4% for the nonblockers (SP). Totally,
46 out of 60 compounds were correctly predicted. The overall
prediction accuracy (Q) and AUC measure were 76.7% and
0.806, respectively. With the RBM-CapsNet model, in the test
set, 99 (TP) out of 108 blockers were correctly predicted,
indicating a prediction accuracy of 91.7%. Out of 147
nonblockers, 136 (TN) were correctly predicted, indicating a
prediction accuracy of 92.5% for nonblockers. This model
achieved an overall prediction accuracy of 92.2%. For the
external validation set, the prediction accuracies for blockers
(SE) and nonblockers (SP) were 94.4 and 71.4%, respectively.
TABLE 5 | Prediction results of hERG blockers/nonblockers classification
models developed by capsule networks with different architectures.

Capsule network architecture SE SP MCC SD Q (%)

Original CapsNet 80.4% 86.7% 0.673 0.0141 84.1%
FC+FC 82.6% 86.7% 0.694 0.0195 85.0%
Conv+FC 82.2% 86.4% 0.687 0.0166 84.6%
Conv+FC+FC (Conv-CapsNet) 88.6% 89.1% 0.774 0.0109 88.9%
Conv+Conv+FC+FC 84.5% 85.3% 0.693 0.0142 84.9%
Conv+Conv+Conv+FC+FC 81.9% 86.9% 0.685 0.0173 84.9%
One RBM 83.1% 86.5% 0.694 0.0182 84.9%
Two RBMs (RBM-CapsNet) 84.3% 89.0% 0.734 0.0160 87.0%
Three RBMs 84.5% 85.5% 0.696 0.0160 85.0%
Four RBMs 81.2% 86.0% 0.673 0.0108 83.9%
Five RBMs 84.1% 86.4% 0.701 0.0156 85.4%
*Conv, convolutional operation; FC, fully connected operation; RBM, restricted Boltzmann
machine; Conv-CapsNet, convolution-capsule network; RBM-CapsNet, restricted Boltz-
mann machine-capsule network (The training set used was the Doddareddy's training set,
and five-fold cross-validation was used to monitor the training performance. SE (%),
sensitivity; SP (%), specificity; MCC, Matthew's correlation coefficient; SD, standard
deviation; Q (%), overall accuracy). Conv-CapsNet and Conv-CapsNet showed the best
performance.
TABLE 6 | Prediction accuracies of hERG blockade classification models
developed by different methods with the same Doddareddy's training set.

Model SE SP MCC Q (%) AUC

Doddareddy's test set (255/P:108, N:147)
Conv-CapsNet 94.4% 89.8% 0.835 91.8% 0.940
RBM-CapsNet 91.7% 92.5% 0.840 92.2% 0.944
CNN 87.0% 85.0% 0.715 85.9% 0.933
MLP 82.4% 86.4% 0.687 84.7% 0.920
DBN 72.2% 80.8% 0.533 80.8% 0.903
SVM 90.7% 84.4% 0.743 87.1% 0.933
kNN 69.4% 96.6% 0.703 85.1% 0.928
Logistic regression 88.8% 83.7% 0.710 85.5% 0.858
LightGBM 79.6% 82.3% 0.617 81.2% 0.810

Doddareddy's external validation (60/P:18, N:42)
Conv-CapsNet 88.9% 71.4% 0.554 76.7% 0.806
RBM-CapsNet 94.4% 71.4% 0.604 78.7% 0.811
CNN 94.4% 52.4% 0.441 65.0% 0.725
MLP 88.9% 57.1% 0.426 66.7% 0.707
DBN 88.9% 52.4% 0.386 63.3% 0.683
SVM 88.9% 52.4% 0.386 63.3% 0.660
kNN 77.8% 52.4% 0.279 60.0% 0.624
Logistic regression 83.3% 52.4% 0.332 61.7% 0.623
LightGBM 61.1% 59.5% 0.190 60.0% 0.609
January 20
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(TP, true positive; TN, true negative; FP, false positive; FN, false negative; SE (%), sensi-
tivity, SE = TP/(TP + FN); SP (%), specificity, SP = TN/(TN + FP); Q (%), overall accuracy,
Q = [TP + TN)/(TP + TN + FP + FN)].
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The overall prediction accuracy (Q) and the MCC values were
78.7% and 0.604, respectively. AUC for the test and external
validation sets were 0.944 (see Figure 3) and 0.811, respectively.
All of these results clearly demonstrate that the established
Conv-CapsNet and RBM-CapsNet models can not only
correctly classify the training set compounds but also have an
outstanding predictability for external agents outside of the
training set.

Comparison of Our Models With Other
Models Developed With the Same
Doddareddy’s Training Set
To compare the performance of our models with that of others,
we adopted commonly used machine learning methods to
develop prediction models of hERG blockers/nonblockers with
the same Doddareddy's training set. These machine learning
methods include deep belief network (DBN), CNN, multilayer
perceptron (MLP), SVM, kNN, logistic regression (LR), and
LightGBM. Hyperparameters for these methods were
optimized by five-fold cross-validation in advance, and the
optimal hyperparameter values are listed in Tables S1–S4,
respectively. The prediction results to the Doddareddy's test set
and external validation set are also given in Table 6. From Table
6, we can see that the prediction accuracies of the seven models
are obviously lower than those of our Conv-CapsNet and RBM-
CapsNet models.

Comparison of Our Models With Other
Models Developed With Training Sets
Different From Doddareddy’s Training Set
It has been well known that the performance of a prediction
model is often strongly dependent on the training set used.
Therefore, to make a more objective comparison, we collected
various hERG blockade classification models developed with
training sets different from Doddareddy's training set. With
these training sets, we established a series of new prediction
models by the Conv-CapsNet and RBM-CapsNet methods. To
avoid a possible influence of molecular features, the same
Frontiers in Pharmacology | www.frontiersin.org 8102
molecular features used in the literature were used. Table 7
summarizes the prediction accuracies of various models reported
in the literature together with those of models by Conv-CapsNet
and RBM-CapsNet.

Entry 1–3 of Table 7 list models developed with Hou's
training set 1 (positives: 283; negatives: 109), training set 2
(positives: 272; negatives: 120), and training set 3 (positive:
314; negative: 306), respectively. In Hou's training sets 1 and 2,
a threshold of 40 µM was used to distinguish hERG blockers and
nonblockers (blockers: IC50 < 40 µM; nonblockers: IC50 ≥ 40
µM). With training sets 1 and 2, Hou et al. established three
models by RP, NB, and SVM methods, and the SVM models
showed the best performance on their test sets. In Hou's training
set 3, a threshold of 30 µM was used to define hERG blockers and
nonblockers. A Bayesian classification model developed by Hou
et al. with Hou's training set 3 gave a prediction accuracy of 85%
on their test set. With Hou's training sets 1–3, we also separately
established models by Conv-CapsNet and RBM-CapsNet
methods. As shown in Table 7 , our models showed
comparable or superior performance compared with Hou's
models. Entry 4 in Table 7 shows models established by
Zhang's training set (positives: 717; negatives: 210), in which a
threshold of 30 µM was used to define hERG blockers and
nonblockers. With the training set, Zhang et al. built two models
by using SVM and kNN methods, which gave prediction
accuracies of 83.5 and 82.2%, respectively, on their test set.
Our models, developed by Conv-CapsNet and RBM-CapsNet,
exhibited a better performance on the same test set (prediction
accuracies: 84.5 and 85.2%, respectively). Entry 5 in Table 7
displays models developed with Sun's training set, which is a big
data set consisting of 3,024 agents (positives: 483; negatives:
2,541) with a threshold of 30 µM for defining hERG blockers and
nonblockers. With the training set, Siramshetty et al. established
two models by using LibSVM and RF methods, and their
prediction accuracies on the test set were 71.0 and 74.0%,
respectively. Our models offered much higher prediction
accuracies (Conv-CapsNet: 83.3%; RBM-CapsNet: 86.3%).
Entry 6 in Table 7 shows models built with Siramshetty's
FIGURE 3 | Receiver operating characteristic (ROC) curves for Doddareddy's test set by (A) convolution-capsule networks (Conv-CapsNet) and (B) restricted
Boltzmann machine-capsule networks (RBM-CapsNet), respectively.
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training set T3 which were extracted from the ChEMBL
database. In this training set, agents with a binding affinity of
less than 1 µM were defined as hERG blockers, and those with a
binding affinity of greater than 10 µM were defined as hERG
nonblockers. With the training set, Siramshetty et al. established
two models by using LibSVM and RF methods, and their
prediction accuracies on their test set were 78.0 and 81.0%,
respectively. Our Conv-CapsNet and RBM-CapsNet models gave
prediction accuracies of 87.1 and 87.8%, respectively, which are
obviously higher than those of LibSVM and RF models. Very
recently, Cai et al. developed a deep learning model, termed
deephERG, to predict hERG blockers with a large dataset
containing 7,889 compounds (Cai et al., 2019). To make a
comparison, we also used the same datasets to train and test
hERG blocker prediction models. With the same validation set
and evaluation method as those in Cai's work, our Conv-
CapsNet (AUC = 0.974) and RBM-CapsNet (AUC = 0.978)
showed a better performance than their deephERG (AUC =
0.967) (see Table S5). Collectively, for different training sets
given here, the models developed by Conv-CapsNet and RBM-
CapsNet were among the best models established by various
machine learning methods.
DISCUSSION

Since the first capsule networks were proposed by Hinton's group
in 2017 (Sabour et al., 2017), they have attracted considerable
attention because of their performance. For example, despite the
simple three-layer architecture of the original capsule networks,
they have achieved state-of-the-art results with 0.25% test error
on Mixed National Institute of Standards and Technology
Frontiers in Pharmacology | www.frontiersin.org 9103
database (MNIST) without data augmentation, which is better
than the previous baseline of 0.39% (Sabour et al., 2017). The
excellent performance of capsule networks is mainly due to the
introduction of the capsules and dynamic routing algorithms. A
capsule is a set of neurons that forms a vector. These vectors
contain information including the magnitude/prevalence, spatial
orientation, and other attributes of the extracted feature. In the
capsule networks, capsules are “routed” to any capsule in the
next layer via a dynamic routing algorithm, which takes into
account the agreement between these capsule vectors, thus
forming meaningful part-to-whole relationships not found in
standard CNNs. In other words, capsule networks are capable of
catching and holding more fine information than traditional
deep neuron networks, one benefit of which is that the amount of
input data can be significantly reduced.

Although CapsNets were just proposed very recently, they
have already been successfully applied in many fields (Afshar
et al., 2018; Kumar, 2018; Lalonde and Bagci, 2018; Li et al., 2018;
Liu et al., 2018; Mobiny and Van Nguyen, 2018; Qiao et al., 2018;
Zhao et al., 2018; Peng et al., 2019). Among these applications,
majorities are related to image recognition. For example, Afshar
et al. (2018) established a CapsNet for brain tumor classification
by recognizing brain magnetic resonance imaging (MRI) images
and proved that it could successfully overcome the defects of
CNNs. Kumar (2018) proposed a novel method for traffic sign
detection using a CapsNet that achieved outstanding
performance, the input of which was traffic sign images. Li
et al. (2018) built a CapsNet to recognize rice composites from
unmanned aerial vehicle (UAV) images. This is understandable
because CapsNets were originally developed to overcome the
defects associated with image recognition in the traditional deep
learning networks.
TABLE 7 | Prediction results of various hERG blockade classification models developed with training sets different from Doddareddy's training set.

Entry Model Training set Test set SE SP Q

1 RP (Wang et al., 2016) Hou's training set 1
(P: 283; N: 109)

Hou's test set 1
(P: 129; N: 66)

79.8% 75.8% 78.5%
NB (Wang et al., 2016) 82.2% 75.8% 80.0%
SVM (Wang et al., 2016) 90.7% 65.2% 82.1%
Conv-CapsNet 85.7% 78.8% 82.0%
RBM-CapsNet 84.1% 80.3% 82.0%

2 RP (Wang et al., 2016) Hou's training set 2
(P: 272; N: 120)

Hou's test set 2
(P: 140; N: 55)

80.0% 74.5% 78.5%
NB (Wang et al., 2016) 81.4% 80.0% 81.0%
SVM (Wang et al., 2016) 85.0% 74.5% 82.1%
Conv-CapsNet 82.1% 81.8% 82.0%
RBM-CapsNet 81.4% 83.6% 82.0%

3 Bayesian (Wang et al., 2012) Hou's training set 3
(P: 314; N: 306)

Hou's test set 3
(P: 63; N: 57)

86.9% 83.1% 85.0%
Conv-CapsNet 87.3% 86.0% 86.8%
RBM-CapsNet 88.9% 84.2% 86.8%

4 SVM (Zhang et al., 2016) Zhang's training set
(P: 717; N: 210)

Zhang's test set
(P: 188; N: 48)

95.8% 34.0% 83.5%
kNN (Zhang et al., 2016) 92.6% 40.4% 82.2%
Conv-CapsNet 88.8% 66.7% 84.5%
RBM-CapsNet 90.4% 64.6% 85.2%

5 LibSVM (Siramshetty et al., 2018) Sun's training set
(P: 483; N: 2541)

Sun's test set
(P: 53; N: 13)

68.0% 85.0% 71.0%
RF (Siramshetty et al., 2018) 72.0% 85.0% 74.0%
Conv-CapsNet 83.0% 84.6% 83.3%
RBM-CapsNet 86.8% 84.6% 86.3%

6 LibSVM (Siramshetty et al., 2018) Siramshetty's training set
T3 (P: 1406; N: 1708)

Doddareddy's test set
(P: 108; N: 147)

64.0% 89.0% 78.0%
RF (Siramshetty et al., 2018) 68.0% 91.0% 81.0%
Conv-CapsNet 85.2% 88.4% 87.1%
RBM-CapsNet 83.3% 91.2% 87.8%
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In image recognition, the input data is a two-dimensional
array. In this two-dimensional array data, adjacent data points
are often highly correlated. Small changes in any points generally
do not affect image recognition in traditional deep learning
methods. However, in issues related to drug discovery, such as
the evaluation of ADMET properties (like the prediction of
hERG blockers), one-dimensional vectors that describe small
molecular structures and properties are usually used as the
network input, for example, molecular fingerprints and
descriptors. Generally, there is no direct logical relationship
between the components in each vector for this kind of input.
Importantly small changes in vector components might have a
significant impact on the entire molecular structure and its
associated properties. Nevertheless, these small changes in
vector components are often overlooked in traditional deep
learning methods. In addition, the relative positions of vector
components are often critical though there is no direct logical
relationship between them because a vector component
represents a substructure or property. In this situation, capsule
networks, which adopt vector neurons, are expected to have a
better performance in handling this kind of issue (like the hERG
blocker modeling) than other deep scalar neuron networks.

As expected, the two established capsule networks, Conv-
CapsNet and RBM-CapsNet, showed excellent performance in
the classification of hERG blockade. Although this is the first
application of capsule networks in the classification of hERG
blockers/nonblockers, the established models are still among the
best classification models for hERG blockers/nonblockers. There
can be no doubt that the use of capsules or vector neurons is one
of the main reasons that contribute to the excellent performance
of our models. Here each capsule represents a combination of
substructures and/or properties. Analogy to the case in image
recognition, the length of each capsule is the probability that the
combination of substructures or properties exists in a molecule,
and the orientation may represent the relative position of the
combination of substructures in a compound. Obviously, our
capsule networks can learn some combinations of substructures
and/or properties that are important for the hERG blockers or
nonblockers. Even so, we have to acknowledge that the
prediction models of hERG blockers/nonblockers developed by
the new capsule networks are still like a black box. Some
Frontiers in Pharmacology | www.frontiersin.org 10104
questions regarding the models are difficult to answer. For
example, we can't exactly know what the combination of
substructures and/or properties is, and which features are
important to the model and which samples are hard to classify.
Overall, the application of capsule networks in drug discovery is
still in its infancy. Further improvement of capsule networks and
applications in drug discovery are necessary in future studies.
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Drug targets are biomacromolecules or biomolecular structures that bind to specific drugs
and produce therapeutic effects. Therefore, the prediction of drug-target interactions
(DTIs) is important for disease therapy. Incorporating multiple similarity measures for drugs
and targets is of essence for improving the accuracy of prediction of DTIs. However,
existing studies with multiple similarity measures ignored the global structure information
of similarity measures, and required manual extraction features of drug-target pairs,
ignoring the non-linear relationship among features. In this paper, we proposed a novel
approach MDADTI for DTIs prediction based on MDA. MDADTI applied random walk with
restart method and positive pointwise mutual information to calculate the topological
similarity matrices of drugs and targets, capturing the global structure information of
similarity measures. Then, MDADTI applied multimodal deep autoencoder to fuse multiple
topological similarity matrices of drugs and targets, automatically learned the low-
dimensional features of drugs and targets, and applied deep neural network to predict
DTIs. The results of 5-repeats of 10-fold cross-validation under three different cross-
validation settings indicated that MDADTI is superior to the other four baseline methods. In
addition, we validated the predictions of the MDADTI in six drug-target interactions
reference databases, and the results showed that MDADTI can effectively identify
unknown DTIs.

Keywords: drug-target interactions, multiple similarity measures, random walk with restart, positive pointwise
mutual information, multimodal deep autoencoder
INTRODUCTION

Drug targets are a kind of biological macromolecule in the body that have a pharmacodynamics
function by interacting with drugs, such as certain proteins and nucleic acids. Drugs achieve disease
treatment by binding specific targets and changing gene function of their targets. The prediction of
drug-target interactions (DTIs) is a crucial process in drug discovery and it can facilitate the
understanding of drug action mechanism, disease pathology, and drug side effect (Keiser et al., 2009;
Lounkine et al., 2012; Núñez et al., 2012). Drug targets are the main carriers of drug action in drug
therapy; thus, the prediction of DTIs is of great significance for disease therapy.
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Drug-target interactions prediction can be viewed as a binary
classification problem, where the goal is to learn a classifier that
can distinguish true and false DTIs. For this problem, drug-drug
similarities and target-target similarities are helpful, assuming
that similar drugs tend to share similar targets and vice versa
(Klabunde, 2007). Many studies applied a single similarity
measure of drugs and that of targets, i.e., chemical structural
similarity of drugs and amino acid sequence similarity of targets,
to predict DTIs (Jacob and Vert, 2008; Yamanishi et al., 2008;
Bleakley and Yamanishi, 2009; Xia et al., 2010; van Laarhoven
et al., 2011; Gönen, 2012). However, both drugs and targets have
different types of similarity measures and they utilize different
attributes of drugs and targets, such as gene expression
similarities of drugs and target proteins, drug side-effect-based
similarity, proximity in protein-protein interactions and so on. It
is demonstrated that drugs with similar expression patterns are
likely to share common target proteins (Hizukuri et al., 2015;
Vilar and Hripcsak, 2016) and drugs with similar target protein
binding profiles tend to cause similar side effects, implying a
direct correlation between target protein binding and side-effect
similarity (Campillos et al., 2008; Hizukuri et al., 2015). Thus,
only utilizing chemical structural similarity of drugs and amino
acid sequence similarity of targets may miss information that is
relevant to predicting new interactions.

With the development of high-throughput sequencing
technology, massive multi-omics data have been generated,
which provide abundant resources for predicting DTIs,
including drug-side-effect association data from SIDER2 (Kuhn
et al., 2015), drug-disease association data and target protein-
disease association data from KEGG Disease (Kanehisa et al.,
2016), protein-protein interaction data from HIPPIE (Alanis-
Lobato et al., 2016), etc. Based on these data, a variety of
similarity measures for drugs and targets can be calculated,
which describe characteristics of drugs and targets from
various aspects, and there is information complementarity
among them. Thus, methods for predicting DTIs using
multiple similarity measures of drugs and multiple similarity
measures of targets are generated.

Perlman et al. used forward selection and backward elimination
for feature selection. They selected 10 features from 15 features
consisting of 5 similarity measures of drugs and 3 similarity
measures of targets, and they applied logistic regression classifier
to predict DTIs (Perlman et al., 2011). Olayan et al. used multiple
similarity networks of drugs and multiple similarity networks of
targets to construct a heterogeneous networkwith the knowndrug-
target interaction network, and then they manually extracted 12
different path-category-based features from it; finally, they applied
random forest to predict DTIs (Olayan et al., 2017). Nascimento et
al. linearly weighted 10 drug similarity measures and 10 target
similarity measures to obtain the feature of drugs and targets,
respectively, and then they computed the Kronecker product of
themas the feature of drug-target pairs thatwere fed intoKronecker
regularized least squares (KronRLS) to predict DTIs (Nascimento
et al., 2016). Hao et al. used Similarity Network Fusion (SNF)
method to fuse two similarity measures of drugs and two similarity
measures of targets into one drug similaritymeasure and one target
Frontiers in Pharmacology | www.frontiersin.org 2108
similarity measure, respectively, forming features of drugs and
targets, and then input them into dual network integrated logistic
matrix factorization (DNILMF) to predict DTIs (Hao et al., 2017).
Zheng et al. linearly weighted two similarity measures of drugs and
three similarity measures of targets as the feature of drugs and
targets, respectively, and then they applied Multiple Similarities
Collaborative Matrix Factorization (MSCMF) to predict DTIs
(Zheng et al., 2013). Compared with methods using a single
similarity measure of drugs and targets, these methods achieved
more accurate predictions because of fusing multiple
similarity measures.

The similarity measure of drugs (targets) can be regarded as a
similarity network with drugs as nodes and drug-drug similarity
values as the weights of edges. These methods mentioned above
directly applied multiple similarity measures to predict DTIs that
only calculated the similarity between two nodes in isolation and
did not consider the global topological connectivity patterns
within network, ignoring the global structure information of the
similarity network. Researches demonstrated that considering
the global structure of network can improve the performance
(Köhler et al., 2008; Fang and Gough, 2013; Peng et al., 2018). In
addition, these methods relied on manual extraction features of
drug-target pairs, ignoring the non-linear relationship among
features, and failed to provide satisfactory prediction results.

Deep learning is a deep neural network structure with
multiple hidden layers. It combines low-level features to form
more abstract high-level features, discovering effective feature
representations of data. Compared with traditional machine
learning methods, the greatest advantage of deep learning
methods is that they can extract features automatically, which
do not need to perform data processing, such as feature selection,
dimension reduction, format conversion, and so on. A number of
studies applied deep learning to learn high-level features from
the training data automatically and predict bioinformatics tasks
(Pan et al., 2016; Deng et al., 2017; Fu and Peng, 2017;
Gligorijević et al., 2018). Fu et al. used stacked autoencoder to
learn high-level features from miRNA and disease similarity
automatically, and then these features were passed to Deep
Neural Network (DNN) to predict miRNA-disease associations
(Fu and Peng, 2017). Pan et al. extracted raw sequence
composition features from RNA and protein sequences, then
applied stacked autoencoder to learn hidden high-level features,
which are fed into random forest to predict RNA-protein
interactions (Pan et al., 2016). These studies demonstrated that
deep learning has powerful ability to learn high-level features
from original data automatically, which greatly enhanced the
performance of the methods and made them show satisfactory
results. Gligorijević et al. proposed a new deep learning model-
Multimodal Deep Autoencoder (MDA). They applied MDA to
learn low-dimensional features of proteins from multiple
networks and realized the fusion of multiple networks. Finally,
they trained SVM with low-dimensional features of proteins to
predict protein functions and achieved great performance
(Gligorijević et al., 2018).

Therefore, to automatically learn features from multiple
similarity measures to predict DTIs, we introduced MDA and
January 2020 | Volume 10 | Article 1592
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proposed MDADTI, a novel approach for drug-target
interactions prediction based on MDA. MDADTI applied
Random Walk with Restart (RWR) method and Positive
Pointwise Mutual Information (PPMI) to calculate topological
similarity matrices of drugs (targets), capturing the global
structure information of similarity measures. Then it fused
multiple topological similarity matrices of drugs and targets
with MDA to automatically learn the low-dimensional features
of drugs and targets. Finally, it sent them to Deep Neural
Network (DNN) for predicting DTIs. Furthermore, we
validated the predictions of the MDADTI in drug-target
interactions reference databases.
MATERIALS AND METHODS

Multiple similarity measures of drugs (targets) describe the drug-
drug similarity from various aspects, such as drug side-effects
and chemical structure. Multiple similarity measures can provide
complementary information for drugs or targets. Combining
multiple similarity measures can improve prediction accuracy.
Existing methods for predicting DTIs with multiple similarity
measures directly took multiple similarity measures as inputs,
ignoring their global structure information. Moreover, they
required manual extraction features of drug-target pairs,
limiting the size of the dataset used to train the model,
ignoring the non-linear relationship among features, resulting
Frontiers in Pharmacology | www.frontiersin.org 3109
in the lower predictive performance. Multimodal Deep
Autoencoder (MDA) can fuse multiple similarities and learn
high-level features automatically. This paper proposed a novel
approach MDADTI based on MDA to predict drug-target
interactions. MDADTI first applied Random Walk with Restart
(RWR) method and Positive Pointwise Mutual Information
(PPMI) to calculate topological similarity matrices of drugs
(targets), capturing global structural information of each
similarity measure; then it fused multiple topological similarity
matrices of drugs (targets) with MDA, and realized the
automatic learning and dimension reduction of drug features
(target features); finally, the extracted low-dimensional features
were sent into Deep Neural Network (DNN) to predict DTIs.
Figure 1 shows the overall framework of the MDADTI method.

Materials
We evaluated the performance of our method with five datasets,
including enzyme (E), ion channels (IC), G-protein-coupled
receptors (GPCR), nuclear receptors (NR), and DrugBank_FDA.
Each dataset contains 3 types of data: (1) DTIs data; (2) multiple
similarity measures for drugs; (3) multiple similarity measures
for targets.

These five datasets (E, NR, IC, GPCR, and DrugBank_FDA)
were provided by Olayan et al., 2017. The DTIs data of E, NR, IC,
and GPCR were originally collected by Yamanishi et al., 2008
and have been applied to many drug-target interactions
prediction studies (Mei et al., 2012; Ba-Alawi et al., 2016; Lim
FIGURE 1 | The overall framework of MDADTI method. (A) MDADTI applied RWR method and PPMI to calculate topological similarity matrices of drugs (targets);
(B) MDA was applied to fuse multiple topological similarity matrices of drugs (targets) and automatically learned the low-dimensional features of drugs (targets);
(C) DNN was applied to predict DTIs.
January 2020 | Volume 10 | Article 1592
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et al., 2016; Lu et al., 2017). The multiple similarity measures for
drugs and targets we used in this paper in the four datasets were
computed by Nascimento et al., 2016 in the first place.
DrugBank_FDA dataset was extracted from 5.0.3 version of
DrugBank database (Wishart et al., 2007). It only included
DTIs information of drugs approved by the FDA and single
human target proteins; these proteins are not part of protein
complexes. Multiple similarity measures of DrugBank_FDA for
drugs and targets were computed by Olayan et al., 2017.

Table 1 is the summary of drug-target interactions data in five
datasets. As can be seen from Table 1, the number of negative
interactions is larger than that of positive interactions in these
five datasets called imbalanced data, which can reduce the
predictive performance. Thus, we applied Synthetic Minority
Over-sampling Technique (SMOTE) (Chawla et al., 2002) to
manage the imbalanced datasets. SMOTE can syntactically
generate positive samples of these datasets to balance the
minority class and enhance the prediction efficiency of the
classifier (Waris et al., 2016; Khan et al., 2017).

Table 2 shows a variety of similarity measures for drugs and
targets in five datasets used in this paper. In NR, GPCR, IC, and E
datasets, for drugs, the similarities of drugs were calculated based
on distinct chemical structure fingerprints, side-effects profiles;
nine various similarity measures of drugs were obtained. For
targets, various amino acid sequence profiles of proteins,
different parameterizations of the Mismatch (MIS) and the
Spectrum (SPEC) kernels, and target proteins functional
annotation based on Gene Ontology (GO) terms, proximity in
the protein-protein interaction (PPI) network were considered as
target information source to measure and calculate the
similarities of targets; nine various similarity measures of
targets were obtained.

In DrugBank_FDA dataset, different similarity measures
between drugs were computed based on the following: different
types of molecular fingerprints, drug interaction profile, drug
side-effects profile, drug profile of the anatomical therapeutic
class (ATC) coding system, drug-induced gene expression
profile, drug-disease profiles, and drug pathways profiles; 25
various similarity measures of drugs were obtained.
Furthermore, different similarity measures of target proteins
were calculated based on the following protein amino acid
sequence, their GO annotations, proximity in the PPI network,
protein domain profiles and gene expression similarity profiles of
protein encoding genes; 17 various similarity measures of targets
were obtained. Chemical structures of drugs were extracted from
DrugBank (Wishart et al., 2007), while the target protein
sequences were extracted from UniProt (Boutet et al., 2016).
Frontiers in Pharmacology | www.frontiersin.org 4110
Methods
Problem Description
We defined a set of DTIs and it is composed of a set of drugs D =
{ di,i = 1,......, nd } and a set of targets T = { tj,j = 1,......,nt }, where
nd represents the number of drugs and nt represents the number
of targets. We also defined the interactions between D and T as a
binary matrix Y whose element values are 0 or 1, where yij = 1
represents the drug di interacts with the target tj. We defined the
set of similarity matrices between drugs in D as D̂S, whose
dimensions are nd*nd; Similarly, we also defined the set of
similarity matrices between targets in T as T̂S, whose
dimensions are nt*nt. Element values in different similarity
matrices represent how much drugs or targets are similar to
each other based on different measures. The values of all
elements in each matrix are in the range of [0, 1]. Our goal is
to predict novel (i.e., unknown) interactions in Y based on the
matrix Y, similarity matrices of drugs in D̂S and similarity
matrices of targets in T̂S.
Preprocessing of Multiple
Similarity Measures
A similarity matrix of drugs can be regarded as a similarity
network with drugs as nodes and drug-drug similarity values as
the weights of edges. The similarity network of drugs only
calculates the similarity between two drug nodes in isolation
and does not consider the relation among more drugs, thus
cannot directly include the global structure information of
the network. The topological similarity of drugs can describe
the topological similarity between all pair of drug nodes in the
similarity network. If the topological similarity value between
two drug nodes is much larger, it indicates that they have similar
positions in the similarity network and have similar functions.
The topological similarity of drugs includes both the original
information of the similarity network and its global structure
information. Therefore, the topological similarity of drugs can
solve the problem of losing information caused by original
similarity network, which only considers the similarity between
two drugs nodes and ignores the global structure of the similarity
network. In this paper, we applied Random Walk with Restart
(RWR) method and Positive Pointwise Mutual Information
(PPMI) (Cao et al., 2016; Fan et al., 2019) to calculate the
topological similarity of drugs in each similarity network and
capture the global structure information of the similarity
network. The detailed process is as follows:

(1) Given a similarity network  DS
b = {S(1),.…..,S(n)}, we

performed RWR on each similarity network S(j) in D̂S to
TABLE 1 | Summary of drug-target interaction data.

Datasets Number of drugs Number of targets Number of positive interactions Number of negative interactions Total number of interactions

NR 54 26 90 1314 1404
GPRC 223 95 635 20550 21185
IC 210 204 1476 41364 42840
E 445 664 2926 292554 295480
DrugBank_FDA 1482 1408 9881 2076775 2086656
January 2
020 | Volume 10 | Article 1592

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Wang et al. Drug-Target Interactions Prediction
TABLE 2 | Summary of multiple similarity measures of drugs and targets.

Dataset Entity Information source Similarity measures

Drug Chemical structure fingerprints TAN-Tanimoto Kernel
LAMBDA-Lambda-k Kernel
MARG-Marginalized Kernel
MINMAX-MinMax Kernel
SIMCOMP-Graph kernel
SPEC-Spectrum Kernel

Side-effects AERS-bit-AERS bit
AERS-freq-AERS freq
SIDER-Side-effects Similarity

Target Functional annotation GO - Gene Ontology Semantic Similarity
Sequences MIS-k3m1-Mismatch kernel

(k = 3, m = 1)
MIS-k4m1-Mismatch kernel
(k = 4, m = 1)
MIS-k3m2-Mismatch kernel
(k = 3, m = 2)
MIS-k3m2-Mismatch kernel
(k = 4, m = 2)
SPEC-k3-Spectrum kernel
(k = 3)
SPEC-k4-Spectrum kernel
(k = 4)
SW-Smith-Waterman
alignment score

Protein-protein Interactions PPI-Proximity in
protein-protein network

DrugBank_FDA Drug Molecular fingerprints CDK_Standard, CDK_Graph,
CDK_Extended, CDK_Hybridization, KR, MACCS, PubChem, SIMCOMP, EC4, FC4, EC6, FC6, Lambda,
Marginalized, MinMaxTanimoto, Tanimoto, Spectrum

ATC code _FDA_FirstLevel,
FDA

Drug interaction profile D_interactions_FDA
side-effects SIDER-Side-effects Similarity
Drug- induced gene expression Cmap_v2_MCF7
Drug pathways profiles KEGG_Drug_2_Pathway
Drug disease profiles KEGG_Drug_Compound_

DGroup_2_Disease
Target Amino acid sequence mismatch_kernel_3_1,

mismatch_kernel_3_2,
mismatch_kernel_4_1,
mismatch_kernel_4_2,
spectrum_kernel_3,
spectrum_kernel_4
Merged_SWAlign_Edited

GO annotations CC_WANG_BMA
_GO_similarity,
BP_Wang_BMA_combined,
MF_Wang_BMA_combined

Proximity in the PPI network shortest_path_networkX_distance_UP_ID_Sim_Perlman,
shortest_path_networkX_
distance_UP_ID_Sim_Dnorm

Protein domain profiles protein2ipr_binaryMatrix
_cosSim,
protein2ipr_binaryMatrix
_jaccardSim

Gene expression similarity profiles Cmap_v2_MCF7
Target disease
profiles

KEGG_Gene_2_Disease

Target pathway
profiles

KEGG_Gene_2_Pathway
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obtain the topology structure feature of drug nodes. The RWR
approach can be formulated as the following recurrence relation:

p tð Þ
i = ap t−1ð Þ

i
cS jð Þ + 1 − að Þp 0ð Þ

i (1)

where p(t)i is a row vector of drug i and its eth element indicates
the probability of reaching the eth drug node after t steps starting
from drug i, p(0)i is the initial one-hot vector, a is the probability
of restart, and S(j)b is the one-step probability transition matrix
obtained by applying row-wise normalization of the similarity
matrix S(j). The calculation formula of the topological structure
feature of drug node i is as follows:

pi =o
T

t=1
p tð Þ
i (2)

where T is the total number of random walk steps. Repeat this
process for each node i in the similarity network S(j) to obtain
topology feature matrix  P(S(j)) ∈ Rnd�nd .

(2) Based on the topological structure feature matrix P(S(j)), we
applied PPMI (Chen et al., 2016) to calculate the topological
similarity between all pair of nodes, and obtained the topological
similarity matrix X(S(j)) ∈ Rnd�nd of the similarity network S(j),
capturing the global structure information. The topological
similarity between node i and node k is defined as:

X
S jð Þð Þ

ik = max 0, log2
P

S jð Þð Þ
ik oiokP

S jð Þð Þ
ik

oiP
S jð Þð Þ

ik okP
S jð Þð Þ

ik

0

@

1

A (3)

where P(S(j))
ik represents the elements of the ith row and the kth

column of the topological structure feature matrix P(S
(j)).

The preprocessing procedure for multiple similarity measures
of targets is the same as that of drugs.

Feature Learning for Drugs and Targets With MDA
Fusing multiple drug-drug similarity measures and multiple
target-target similarity measures contributes to obtaining
abundant information about drugs and targets. Capturing non-
linear relationships among features can improve the accuracy of
DTIs prediction. Therefore, we applied MDA to fuse multiple
similarity measures of drugs and targets and automatically learn
low-dimensional feature matrices of drugs and targets,
respectively, capturing the non-linear relationship among
features. After the pretreatment, we obtained multiple
topological similarity matrices of drugs X(S(j)) ∈ Rnd�nd , j ∈ ½1,…
…n� that contain both original information of similarity
measures and their global structure information. In this paper,
we applied MDA to fuse multiple topological similarity matrices
of drugs and automatically learn the low-dimensional feature
matrix of drugs H(d)

c ∈ Rnd�d . As an unsupervised neural
network model, MDA uses backpropagation algorithm to train
and adjust the model parameters, so that the input data can still
be restored to the original features by encoding and decoding
process. The structure of MDA is shown in Figure 2.
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Encoding is the process that MDA learns the hidden features
of input data with multi-layer non-linear functions. We first
calculated the non-linear embedding H(S(j)) of each topological
similarity matrix X(S(j)) in the first hidden layer of MDA:

H S jð Þð Þ = s W
S jð Þð Þ

1 X S jð Þð Þ + B
S jð Þð Þ

1

� �
(4)

whereW(S(j))
1 and B(S(j))

1 are weight matrix and bias matrix, j∈[1,…
n], s(x) = 1

1+e−x is the sigmoid activation function.
Then, we computed the low-dimensional feature matrix of

drugs H(d)
c ∈ Rnd�d by applying multiple non-linear functions

(i.e., multiple hidden layers) on the feature representation
obtained by concatenating features from all topological
similarity matrices obtained in the previous layer:

H dð Þ
c = s W1 H S 1ð Þð Þ,……,H S nð Þð Þh i

+ B1

� �
(5)

where ½H(s(1)), ::::::,H(s(n))�is the concatenated matrix of N
embedding H(S(j)) obtained in the previous layer; W1 and B1
are weight matrix and bias matrix, and s(x) is the sigmoid
activation function.

Decoding is the process that MDA reconstructs input data
from hidden features with multi-layer non-linear functions.
Hidden features are obtained through encoding process. We

reconstructed multiple topological similarity matrices dX(S(j)) from
the feature matrix H(d)

c of drugs with a multi-layer non-linear
function:

d
X S jð Þð Þ = s W

S jð Þð Þ
2 H dð Þ

c + B
S jð Þð Þ

2

� �
(6)

where W(S(j))
2 and B(S(j))

2 are weight matrix and bias matrix, j∈
[1, ……, n], s(x) is the sigmoid activation function.

To get the feature matrix of drugs H(d)
c , MDA obtained the

unknown parameters q in the encoding and decoding process by

minimizing the reconstruction error of X(S(j)) and dX(S(j)) :

q̂ = argminL qð Þ =   q
argmino

    n

j=1
loss X S jð Þð Þ, d

X S jð Þð Þ
� �

(7)

where q = fW1,B1,W
(S(j))
1 ,B(S(j))

1 ,W(S(j))
2 ,B(S(j))

2 g is the set of
unknown parameters in the encoding and decoding process,
and n represents the number of drug topological similarity
matrices, and loss(*) is cross-entropy function.

The learning process of the feature matrix H(t)
c of targets is the

same as that of feature matrixH(d)
c of drugs. The hyperparameters

of training MDA include epoch, batch size, and learning rate
with values of 100, 32, and 0.001, respectively.

Deep Neural Network for DTIs Prediction
We formulated the problem of DTIs prediction as a binary
classification problem. We introduced Deep Neural network
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(DNN) to predict DTIs. The DNN of our method consists of 5
fully-connected layers, including 1 input layer, 3 hidden layers,
and 1 output layer. The choice of the number of hidden layers
depends on experiments. After a lot of experiments, MDADTI
achieved best predicted results when DNN consists of 3 hidden
layers and the number of each layer is 300, 200, and 100. All
the neuron units in the layer i are connected to the previous layer
(i-1) and then generated outputs with non-linear transformation
function f:

oj = f o
H

i=1
wioi + bi

� �
(8)

where H is the number of neurons in hidden layer; fwi,bigHi=1 are
the weights and bias of neuron j which sums up all the hidden
units; f(*) is Relu activation function, which is a non-linear
function that can capture hidden patterns in the input data
(Chen et al., 2016) and can reduce gradient vanishing at the
same time.

In order to predict DTIs, we concatenated the feature matrix
of drugs H(d)

c and the feature matrix of targets H(t)
c to get the

feature matrix of drug-target pairs Hc. Then we used Hc to train
DNN, and the final output layer utilized sigmoid = 1

1+e−x function
to predict the interaction possibility of the drug-target pair. If the
Frontiers in Pharmacology | www.frontiersin.org 7113
probability exceeds 0.5, we determine that there is potential
interaction between the drug and the target.

Model Training
MDADTI was trained using the Keras 1.0.1 library with
Tensorflow as the backend. The model ut i l i zed a
backpropagation algorithm to calculate the loss function value
between the output and the label, then it calculated its gradient
relative to each neuron, and updated the weight according to the
gradient direction. We chose cross-entropy function as the loss
function:

C = −
1
nox ot y lna + 1 − yð Þ ln 1 − að Þ½ � (9)

where C is the output of cross-entropy cost function, x represents
the indexof the training samples (i.e., drug-target pairs), t represents
the index of different labels, y represents the true label for sample x
whose value is 0 or 1, and a represents the predicted output for
samplex. Since the closer thepredictedoutput is to the true label, the
smallerCvaluewe canget, our goal is tominimize the cross-entropy
function to get the best prediction of DTIs.

In the process of training the model, choosing a good
optimizer not only accelerate the training of the model but also
FIGURE 2 | Structure diagram of MDA. The MDA consists of two parts: encoder and decoder, the inputs of encoder are multiple topological similarity matrices X (S (j) ) ,

the hidden layer in the red box is feature layer whose output is the low-dimensional feature matrix of drugs H(d)
c , the output of decoder are multiple reconstructed

topological similarity matrices dX (S (j) ) .
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contribute to obtaining relatively good experimental results. It is
observed that momentum-based stochastic gradient descent
(SGD) can effectively train deep learning models (Sutskever
et al., 2013). Thus, we chose SGD with momentum as
optimizer to minimize the objective function.

Overfitting is a common problem in deep learning. It means
that the model works well on the training set, and its predictive
effect on the test set is poor, which results in weak generalization
ability of the model. We used Dropout and EarlyStopping to
prevent overfitting. Dropout (Srivastava et al., 2014) is a
common regularization technique in neural networks, referring
to randomly ‘dropping' (i.e., setting to zero) the output of a
neuron with some fixed probability p. It means that the start-up
effects on the downstream of these neurons are neglected in the
forward propagation, and the weights are not updated in the
backpropagation. The effect of dropout is that the network is less
sensitive to the change of the weight of a certain neuron; it also
leads to increased generalization ability and reduced overfitting.
We used dropout in each fully connected layer of DNN and set
dropout rate of p = 0.5, which seems to be close to optimal for a
wide range of networks and tasks (Srivastava et al., 2014).
EarlyStopping refers to stopping training model when the
performance of the model on the validation set begins to
decline. Thus, the overfitting problem caused by overtraining
can be avoided. We implemented EarlyStopping by training our
model with the training set and computing the accuracy on the
validation set. We monitored the accuracy of MDADTI on
validation set at the end of every epoch and stop the training
when accuracy does not rise for 10 consecutive epochs.
RESULTS

Experimental Setup and Model Evaluation
In this paper, we applied the area under the ROC (receiver-
operating characteristics) curve (AUC) and the area under the
precision-recall curve (AUPR) to evaluate the performance of
MDADTI model. An AUC value of 1 indicates that the
performance is perfect, and an AUC value of 0.5 indicates
random predictive performance. Similar to the AUC score,
AUPR values closer to 1 indicates that the performance is
better. The calculation formulas for True Positive Rate (TPR),
False Positive Rate (FPR), and precision and recall related to
AUC and AUPR are as follows:

TPR = recall = TP=(TP + FN) (10)

FPR = FP=(FP + TN) (11)

precision = TP=(TP + FP) (12)

where TP represents true positive, TN represents true negative,
FP represents false positive, and FN represents false negative;
these formulas are based on the confusion matrix.

The performance of DTIs prediction methods was evaluated
under 5-repeats of 10-fold cross-validation (CV), and both AUC
Frontiers in Pharmacology | www.frontiersin.org 8114
and AUPR were used as the evaluation metrics. We calculated an
AUC score in each repetition of CV and reported a final AUC
score that was the average over the five repetitions. The AUPR
score was calculated in the same manner. The drug-target
interaction matrix Y has nd rows for drugs and nt columns for
targets. We conducted CV under three different settings
as follows:

• CVS1: CV on drug-target pairs—random entries in Y (i.e.,
drug-target pairs) were selected for testing.

• CVS2: CV on drugs—random rows in Y (i.e., drugs) were
blinded for testing.

• CVS3: CV on targets—random columns in Y (i.e., targets)
were blinded for testing.

Under CVS1, we applied 5-repeats of stratified 10-fold cross-
validation to evaluate the performance of MDADTI model. In
each round, we used 90% of elements in Y as training data and
the remaining 10% of elements as test data. Under CVS2, in each
round, we used 90% of rows in Y as training data and the
remaining 10% of rows as test data. Under CVS3, in each round,
we used 90% of columns in Y as training data and the remaining
10% of columns as test data. These three settings CVS1, CVS2
and CVS3 refer to the DTIs prediction for 1) new (unknown)
pairs, 2) new drugs, and 3) new targets, respectively.

For datasets GPCR, IC, E, and DrugBank_FDA, in order to
determine the layer configurations of MDA (the number of
layers and the number of neurons in each layer) in MDADTI
model, we applied 5-repeats of stratified 10-fold cross-validation
under CVS1 to evaluate the performance of MDADTI models
with different layer configurations of MDA. Stratified 10-fold
cross-validation can make the category ratio in each fold be
consistent with that in the whole dataset.

For the small dataset NR, considering the overfitting problem
on the small dataset of MDADTI model, for each CV setting, we
applied transfer learning strategy (Pan and Yang, 2009) to
predict DTIs. We first pretrained MDADTI model under
CVS1 setting with the drug-target interactions in the E dataset.
Then we froze all layers of the pretrained models except the
output layer, i.e., only set weights of the output layer to be
trainable. Finally, we finetuned the pretrained model with drug-
target interactions data in NR dataset and predicted DTIs under
CVS1. The transfer learning process under CVS2 and CVS3
settings are the same as that under CVS1 setting.

In order to focus on the differences between MDADTI and
other methods on NR, GPCR, IC, E, and DrugBank_FDA
datasets, we applied 5-repeats of 10-fold cross-validation under
three different settings to compare the performance of MDADTI
with DDR (Olayan et al., 2017), KronRLS-MKL(Nascimento
et al., 2016), NRLMF(Liu et al., 2016), and BLM-NII (Mei
et al., 2012).

The Results of MDADTI With Different
Layer Configurations of MDA
For GPCR, IC, E, and DrugBank_FDA datasets, in order to
determine the layer configurations of two MDAs for extracting
drug and target features in the MDADTI model, we applied 5-
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repeats of 10-fold cross-validation under CVS1 to evaluate the
performance of MDADTI models with different layer
configurations of MDAs. Figure 3 is a layer configurations
diagram of MDA whose layer configurations is [n*m, n*100,
n*75, 50, n*75, n*100, n*m]. It consists of 7 layers of neurons,
including 1 input layer n*m, where n is the number of input
similarity measures and m is the number of columns of each
similarity matrix, i.e., the number of drugs (targets); 1 output
layer n*m, 2 encoding layers n*100 and n*75, 2 decoding layers
n*75 and n*100, and 1 feature layer with 50 neurons.

For each dataset, we input all similarity measures listed in
Table 2 into three different MDADTI models whose layer
configurations of two MDAs are different, and then we trained
them to predict DTIs. The performance of MDADTI models for
different layer configurations of two MDAs in four datasets
under 5-repeats of 10-fold cross-validation is provided in
Table 3; nd and nt are the number of drugs and targets in each
of the four datasets, respectively. The AUC and AUPR values in
bold are highest among three sets of evaluation indicator values
corresponding tree different layer configurations of MDAs.

From Table 3 we observed that for GPCR dataset, MDADTI
achieved the highest AUC and AUPR when two MDAs have only
one feature layer. Therefore, the MDA extracting the drug
features is configured as [ n*nd,50,n*nd ], and the MDA
extracting target features is configured as [ n*nt,25,n*nt ] when
we applied MDADTI to predict DTIs in GPCR dataset. The AUC
and AUPR of MDADTI are 0.980 and 0.978, respectively. For IC
Frontiers in Pharmacology | www.frontiersin.org 9115
dataset, MDADTI achieved the highest AUC and AUPR when
two MDAs have only one feature layer. Therefore, the MDA
extracting drug features is configured as[ n*nd,50,n*nd ], and the
MDA extracting target features is configured as [ n*nt,50,n*nt ]
when we applied MDADTI to predict DTIs in IC dataset. The
AUC and AUPR of MDADTI are 0.991 and 0.987, respectively.
For E dataset, MDADTI achieved the highest AUC and AUPR
when two MDAs have 1 encoding layer, 1 feature layer, and 1
decoding layer. Therefore, the MDA extracting drug features is
configured as [ n * nd, n * 200, 100, n * 200, n * nd ] and the MDA
extracting target features is configured as [ n * nt, n * 200, 100, n *
200, n * nt ] when we applied MDADTI to predict DTIs in E
dataset. The AUC and AUPR of MDADTI are 0.983 and 0.980,
respectively. For DrugBank_FDA dataset, MDADTI achieved the
highest AUC and AUPR when two MDAs have 1 encoding layer,
1 feature layer, and 1 decoding layer. Therefore, the MDA
extracting drug features are configured as [ n*nd,n*200,100,n *
200, n * nd ]and theMDA extracting target features are configured
as [ n * nt, n * 200 , 100, n * 200, n * nt ] when we applied
MDADTI to predict DTIs in DrugBank_FDA dataset. The AUC
and AUPR of MDADTI are 0.963 and 0.959, respectively.

For the small dataset NR, we applied transfer learning strategy
to predict DTIs, and also applied 5-repeats of 10-fold cross-
validation to evaluate MDADTI and obtain AUC and AUPR.
Finally, we obtained AUC and AUPR of MDADTI in NR, GPCR,
IC, E, and DrugBank_FDA datasets. AUC are 0.966, 0.980, 0.991,
0.983, and 0.963, respectively; AUPR are 0.959, 0.978, 0.987,
FIGURE 3 | The layer configurations diagram of MDA. The layer configurations are [n*m, n*100, n*75, 50, n*75, n*100, n*m]. It consists of 7 layers of neurons,
including 1 input layer n*m, where n is the number of input similarity measures, and m is the number of columns of each similarity matrix, i.e. the number of drugs
(targets), 1 output layer n*m, 2 encoding layers n*100 and n*75, 2 decoding layers n*75 and n*100, 1 feature layer with 50 neurons.
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0.980, and 0.959, respectively. Figure 4 shows the ROC curve and
precision-recall curve of the first repeat of 10-fold cross-
validation in five datasets. The mean_AUC and mean_AUPR
are the average AUC and average AUPR of MDADTI in the first
repeat of 10-fold cross-validation. The train/valid accuracy-
epoch and loss-epoch curves for each dataset are provided in
Figure S1 of Supplementary Material while selecting fold1 as
the test set and the remaining as train set when we performed the
first repeat of 10-fold cross-validation. From Figure S1 we can
observe that the change law of accuracy and loss of our model
while validating is consistent with that while training, which
demonstrates that overfitting has been effectively processed for
each dataset. The hyperparameters of MDADTI model for each
dataset under CVS1 setting are provided in Table S1 of the
Supplementary Material.

Comparisons With Other Methods
In order to focus on the differences between MDADTI and other
methods on NR, GPCR, IC, and E datasets under three different
CV settings, we provided a detailed comparison with DDR,
KronRLS-MKL, NRLMF, and BLM-NII methods. For
DrugBank_FDA dataset, we only compared our method
MDADTI with BLM-NII and NRLMF under three cross-
validation settings because of the large amount of data in
DrugBank_FDA dataset and the high-complexity of DDR and
KronRLS-MKL methods, resulting in their longer runtime than
our method.

DDR: First, it applied a similarity selection procedure to select
a set of informative and less-redundant set of similarities for
drugs and for target proteins. Then it manually extracted 12
different path-category-based feature matrices from the
heterogeneous network, which consists of known drug-target
Frontiers in Pharmacology | www.frontiersin.org 10116
interaction network and similarity networks for drugs and
targets. Finally, it sent feature matrices to the Random Forest
(RF) to predict DTIs.

KronRLS-MKL: First, it computed the weighted combination
of multiple drug kernels and target kernels to get the final drug
kernel and target kernel, then it computed the Kronecker
product of final drug kernel and target kernel as the drug-
target pairwise kernel. Finally, it applied Kronecker regularized
least squares (KronRLS) to predict DTIs.

NRLMF: NRLMF represented the properties of a drug and a
target as two latent vectors in the shared low dimensional latent
space. For each drug-target pair, the interaction probability is
modeled by a logistic function of the drug-specific and target-
specific latent vectors. Moreover, the neighborhood
regularization based on the drug similarities and target
similarities is utilized to further improve the prediction ability
of the model.

BLM-NII: BLM-NII integrated Bipartite Local Model (BLM)
method with a neighbor-based interaction-profile inferring (NII)
procedure to form a DTI prediction approach, where the RLS
classifier with GIP kernel was used as the local model.

For comparison with these methods under CVS1 setting, we
used 5-repeats of 10-fold cross-validation based on drug-target
pairs to evaluate the predictive performance of DDR, KronRLS-
MKL, NRLMF, and BLM-NII. (Figure 5A) shows the
comparison of AUC and AUPR of MDADTI, DDR, KronRLS-
MKL, NRLMF, and BLM-NII on five datasets under CVS1
setting. It can be seen from the figure that the performance of
MDADTI has improved compared with the other methods. For
NR, GPCR, IC, and E datasets, the growth rates of AUC of
MDADTI compared to DDR, KronRLS-MKL, NRLMF, and
BLM-NII are as follows: (NR: 4.43%, 9.65%, 1.79%, 6.74%),
TABLE 3 | The comparison results of MDADTI models with different layer configurations of two MDAs under 5-repeats of 10-fold cross-validation on four datasets. The
AUC and AUPR values in bold are highest among three sets of evaluation indicator values corresponding tree different layer configurations of MDAs in each dataset.

Datasets Different layer configurations of MDAs AUC AUPR

GPCR drug [n*nd,50,n*nd] 0.980 0.978
target [n*nt,25,n*nt]
drug [n*nd,n*75,50,n*75,n*nd] 0.965 0.963
target [n*nt,n*50,25,n*50,n*nt]
drug [ n*nd,n*150,n*75,50,n*75,n*150,n*nd] 0.930 0.925
target [ n*nt,n*75,n*50,25,n*50,n*75,n*nt]

IC drug [n*nd,50,n*nd] 0.991 0.987
target [ n*nt,50,n*nt]
drug [n*nd,n*75,50,n*75,n*nd] 0.944 0.923
target [n*nt,n*75,50,n*75,n*nt]
drug [ n*nd,n*150,n*75,50,n*75,n*150,n*nd] 0.914 0.906
target n*nt,n*150,n*75,50,n*75,n*150,n*nt]

E drug [n*nd,100,n*nd] 0.956 0.947
target [n*nt,100,n*nt]
drug [n*nd,n*200,100,n*200,n*nd] 0.983 0.980
target [n*nt,n*200,100,n*200,n*nt]
drug [n*nd,n*300,n*200,100,n*200,n*300,n*nd] 0.893 0.886
target [n*nt,n*300,n*200,100,n*200,n*300,n*nt]

DrugBank_FDA drug [n*nd,100,n*nd] 0.925 0.912
target [n*nt,100,n*nt]
drug [n*nd,n*200,100,n*200,n*nd] 0.963 0.959
target [n*nt,n*200,100,n*200,n*nt]
drug [n*nd,n*300,n*200,100,n*200,n*300,n*nd] 0.946 0.938
target [n*nt,n*300,n*200,100,n*200,n*300,n*nt]
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FIGURE 4 | The ROC and precision-recall curves of the first repeat of 10-fold cross-validation for five datasets; the left is the ROC curve and the right is the
precision-recall curve. (A) The ROC and precision-recall curves for NR dataset; (B) The ROC and precision-recall curves for GPCR dataset; (C) The ROC and
precision-recall curves for IC dataset; (D) The ROC and precision-recall curves for E dataset; (E) The ROC and precision-recall curves for DrugBank_FDA dataset.
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(GPCR: 1.77%, 3.16%, 2.08%, 3.81%), (IC: 0.20%, 0.92%, 0.71%,
1.02%), and (E: 1.03%, 0.61%, 0.72%, 1.34%). The growth rates of
AUPR of MDADTI compared to DDR, KronRLS-MKL,
NRLMF, and BLM-NII are as follows: (NR: 14.98%, 82.31%,
32.64%, 45.52%), (GPCR: 22.25%, 44.03%, 39.12%, 89.90%), (IC:
5.34%, 10.16%, 14.37%, 20.22%), and (E: 2.17%, 9.25%, 11.87%,
39.20%). For DrugBank_FDA dataset, we only compared our
method with NRLMF and BLM-NII, and the growth rates of
AUC of MDADTI compared to NRLMF and BLM-NII are 7.96%
and 34.87%, respectively. In terms of AUPR, our method has
improved by 213.40% than NRLMF that performs better
between these two baselines methods.

The experimental results show that MDADTI is superior to
DDR, KronRLS-MKL, NRLMF, and BLM-NII under CVS1
setting. The above comparison does not guarantee the efficacy
and superiority of our proposed method. The possibility of
getting good results by chance cannot be ignored. Thus, we
Frontiers in Pharmacology | www.frontiersin.org 12118
performed paired t-test at significance level p = 0.05 to check if
the differences between our method and the other methods are
statistically significant or not under CVS1 setting. The specific
details are as follows: we obtained 50 AUCs and 50 AUPRs for
each method after performing five repeats of 10-fold cross-
validation. In order to check if the differences between our
method and each of baseline methods are statistically
significant or not, i.e., check if mean AUCs (AUPRs) (mean
AUC is the mean value of 50 AUCs) of them have significant
differences, for each baseline method, we performed paired t-test
based on 50 AUCs (AUPRs) of our method MDADTI and 50
AUCs (AUPRs) of the baseline method, respectively. We also
combined bootstrap method to increase the sample size and used
2000 bootstrap samples for performing paired t-test.

The p-values of AUC and AUPR between our method and the
other methods under CVS1 setting are reported in Table S4(a) of
Supplementary Material, whereas p-values are less than 0.05 to
January 2020 | Volume 10 | Article 1592
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demonstrate the statistical superiority of our method. For NR,
GPCR, IC, and E dataset, in terms of AUC, from Table S4(a) we
can observe that MDADTI outperforms the other baseline
methods, being statistically significant in most cases at the
significance level of 0.05, except one comparison case with
DDR in IC dataset, one comparison case with NRLMF in NR
dataset, and four comparison cases with the other four
competing methods in E dataset. In terms of AUPR, we can
observe that MDADTI outperforms other baseline methods,
being statistically significant in all cases at the significance level
of 0.05. For DrugBank_FDA dataset, in terms of AUC, we can see
that our method performs best, and it outperforms NRLMF and
Frontiers in Pharmacology | www.frontiersin.org 13119
BLM-NII methods, being statistically significant at the
significance level of 0.05. In terms of AUPR, we can see that
our method also performs best, and it outperforms NRLMF and
BLM-NII methods, being statistically significant.

For comparison with these methods under CVS2 and CVS3
setting,weused5-repeatsof 10-fold cross-validationbasedondrugs
and targets to evaluate the predictive performance of MDADTI,
DDR, KronRLS-MKL, NRLMF and BLM-NII . The
hyperparameters of MDADTI model for each dataset under
CVS2 and CVS2 settings are provided in Table S2 and Table S3
of SupplementaryMaterial, respectively. The comparison of AUC
and AUPR amongMDADTI, DDR, KronRLS-MKL, NRLMF, and
FIGURE 5 | Comparison of AUC and AUPR among MDADTI, DDR, KronRLS-MKL, NRLMF, and BLM-NII methods on NR, GPCR, IC, E, and Drugbank_FDA
datasets under CVS1, CVS2, and CVS3 setting. (A) Comparison of AUC and AUPR under CVS1 setting; (B) Comparison of AUC and AUPR under CVS2 setting;
(C) Comparison of AUC and AUPR under CVS3 setting. The symbols +/- denote if the differences between our method MDADTI and other methods are statistically
significant (+) or not (-) at the significance level of 0.05.
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BLM-NII methods on NR, GPCR, IC, E, and DrugBank_FDA
datasets under CVS2 and CVS3 settings are provided in Figure 5B
and Figure 5C. The screenshot of MDADTI when it predicts DTIs
in GPCR dataset under CVS2 setting is provided in Figure S2 of
Supplementary Material. The program flow chart of the code of
MDADTI under CVS1,CVS2,and CVS3 settings is provided in
Figure S3 of Supplementary Material.

From Figure 5B we can see that under CVS2 setting in NR,
GPCR, IC, and E datasets, for AUPR, the performance of
MDADTI is improved on these four datasets, and the growth
rates are 9.86%, 36.51%, 5.80%, 10.96%, respectively, compared
with the best method DDR among the baseline methods. For
AUC, compared with these four methods, MDADTI performed
better on E dataset, which was 11.26%, 5.33%, and 8.22% higher
than KronRLS-MKL, NRLMF, and BLM-NII, respectively;
MDADTI performed moderately on the other three datasets.
For DrugBank_FDA dataset, our method performed better than
NRLMF and BLM-NII methods in both AUC and AUPR.

Under CVS3 setting, from Figure 5C we can see that for NR,
GPCR, IC, and E datasets, the AUPR of MDADTI has a certain
improvement in GPCR, IC, and E datasets. The AUPR has
increased by 42.62%, 20%, and 17.07% in GPCR, IC, and E
datasets, respectively, compared with the best performing
method DDR; for AUC, the AUC of MDADTI is the highest
in E dataset compared with the other methods, which was
increased by 2.17% than the AUC of DDR. For IC dataset, the
AUC of MDADTI was increased by 9.30%, 1.08%, and 5.62%
compared with KronRLS-MKL, NRLMF, and BLM-NII,
respectively. Our method performed moderately in the GPCR
dataset, but our method performed poorly on NR dataset. After
analysis, it is found that the data volume of the E dataset is
295480 and the large amount of samples make deep learning
model perform better; however, the data volume of the NR
dataset is only 1404, which is relatively small and does not meet
the requirements for data volume of deep learning. Although we
applied transfer learning method to predict DTIs of NR datasets
under CVS3 setting, the train set of CVS3 setting contains
relatively little information, which affects the effect of transfer
learning and leads to poor prediction results . For
DrugBank_FDA dataset, our method performed better than
NRLMF and BLM-NII methods in both AUC and AUPR.

As a kind of data-driven method, deep learning methods are
superior to traditional machine learning methods when the
amount of data is quite large. By comparing the performance
of our method on the five datasets, our method performed best
on E and DrugBank_FDA datasets and performed worst on NR
dataset, which is consistent with the theory of deep learning.

Similar to CVS1 setting, we performed paired t-test at
significance level p = 0.05 to check if the differences between
our method and the other methods are statistically significant or
not under CVS2 and CVS3 settings. The p-values of AUC and
AUPR between our method and the other methods under CVS2
and CVS3 settings are tabulated in Table S4(b) and Table S4(c)
of Supplementary Material, respectively.

For CVS2 setting, in terms of AUC, from Table S4(b) we can
see that our method outperforms KronRLS-MKL in GPCR
Frontiers in Pharmacology | www.frontiersin.org 14120
dataset, being statistically significant at the significance level of
0.05, and it also outperforms KronRLS-MKL, NRLMF, and
BLM-NII in E dataset. For DrugBank_FDA dataset, our
method MDADTI performs best compared with NRLMF and
BLM-NII methods, and it outperforms them, being statistically
significant. In terms of AUPR, from Table S4(b) we can see that
our method performs best in five datasets and it outperforms
other baseline methods, being statistically significant in most
cases at the significance level of 0.05, except two comparison
cases with DDR in IC and E datasets.

For CVS3 setting, in terms of AUC, from Table S4(c) we can
see that our method outperforms KronRLS-MKL method in
GPCR dataset, being statistically significant at the significance
level of 0.05. Our method also outperforms KronRLS-MKL,
NRLMF, and BLM-NII methods in IC dataset, being
statistically significant. For E and DrugBank_FDA datasets, our
method outperforms all baseline methods, being statistically
significant at the significance level of 0.05. In terms of AUPR,
from Table S4(c) we can see that our method MDADTI
performs best in GPCR, IC, E, and DrugBank_FDA datasets,
and it outperforms all baseline methods, being statistically
significant in all cases. The comparison of AUC and AUPR
between MDADTI with transfer learning and MDADTI without
transfer learning on NR dataset is reported in Table S6 of
Supplementary Material. The performance of MDADTI with
SMOTE method and MDADTI without SMOTE method is
reported in Table S7 of Supplementary Material.

All above analyses demonstrate that MDADTI is superior to
DDR, KronRLS-MKL, NRLMF, and BLM-NII. The main reason
is that different from DDR, KronRLS-MKL, NRLMF, and BLM-
NII, which directly took the original multiple similarity measures
as input and manually extracted the features of the drug-target
pairs, MDADTI applied RWR method and PPMI to capture the
global structure information of the similarity measures, and
applied the multi-layer nonlinear functions of MDA to capture
the complex non-linear relationship among features, and
automatically learned the deep feature representation of drugs
and t a r g e t s , wh i ch a r e h e l p f u l t o imp rov e th e
predictive performance.

For large datasets GPCR, IC, and E, MDA reduced the
dimension of drug feature and target feature while automatically
learning them. The dimension of drug feature in GPCR dataset is
reduced from 223 to 50, and the dimension of target feature is
reduced from 95 to 25. The dimension of drug feature and target
feature in IC dataset are reduced from 210 and 204 to 50,
respectively. The dimension of drug feature and target feature in
E dataset are reduced from 1482 and 1408 to 100, respectively.
Dimensionality reduction accelerates the training speed and saves
the time costs running on large datasets of MDADTI model.

We observed that the predictive performance of MDADTI is
greatly improved in NR dataset under CVS1 setting, which
indicates that our transfer learning strategy helps MDADTI
achieve superior performance with a small amount of labeled
data. This is because we used DTIs in E datasets to pretrain
MDADTI model, and froze all layers except the output layer of
the pretrained model, that is, set the parameters of these frozen
January 2020 | Volume 10 | Article 1592

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Wang et al. Drug-Target Interactions Prediction
layers to be untrainable. These parameters contain the
knowledge learned from the E dataset, which are also
applicable to the NR dataset. Therefore, our transfer learning
strategy can make MDADTI predict DTIs more accurately on
small datasets.

According to statistics, about one-third of the small molecule
drugs in the world drug market are activators or antagonists of
GPCRs, which are related to many diseases, and GPCR is the
target of about 40% of modern drugs (Marinissen and Gutkind,
2001). MDADTI has a significant improvement in predictive
performance on GPCR datasets under CVS1 setting. Therefore,
MDADTI can be used as an effective tool to predict GPCR target
and has great significance for drug development and
disease treatment.

Effectiveness of Feature Learning for
Drugs and Targets With MDA
In order to evaluate the effectiveness of feature learning for drugs
and targets with MDA for improving the predictive performance
of MDADTI, we designed another RWR_DNN method to be
compared with MDADTI. Firstly, RWR_DNN takes multiple

similarity measures for drugs (targets) as original inputs.
Then, it uses RWR and PPMI method to calculate multiple
topological similarity matrices for drugs (targets). Next, it
averages multiple topological similarity matrices of drugs
(targets) to form the feature of drugs (targets). Finally, the
features of drugs and targets are concatenated together and
sent into DNN for predicting DTIs. Similarly, we applied 5-
repeats of 10-fold cross-validation under CVS1, CVS2, and CVS3
setting to evaluate the performance of RWR_DNN. The
hyperparameters of RWR_DNN method on NR, GPCR, IC,
and E dataset under three settings are the same with that of
MDADTI, which are reported in Table S1–S3 of the
Supplementary Material.

The comparison results of RWR_DNN and MDADTI on NR,
GPCR, IC, and E datasets in 5-repeats of 10-fold cross-validation
are shown in Figure 6, where Figure 6 (A) is the comparison of
AUC and Figure 6 (B) is the comparison of AUPR. We can see
the AUC and AUPR values of MDADTI are higher than that of
RWR_DNN in all cases. The results demonstrate that MDA can
automatically learn deep feature representations of drugs and
targets from multiple topological similarity matrices and
effect ive ly improve the predict ive performance of
MDADTI method.

Prediction and Validation of
Unknown DTIs
In this paper, we used NR, GPCR, IC, E, and DrugBank_FDA
datasets to evaluate the performance of our proposed method
MDADTI, and for each dataset, we used 5-repeats of 10-fold
cross-validation to evaluate the performance of MDADTI
method. Since the negative samples in the NR, GPCR, IC, E
and DrugBank_FDA datasets are unknown DTIs, we evaluated
the practical ability of MDADTI model in predicting new
(unknown) interactions. New interactions are predicted high-
Frontiers in Pharmacology | www.frontiersin.org 15121
probability drug-target pairs, but they are unknown DTIs in NR,
GPCR, IC, E, and DrugBank_FDA datasets.

In order to implement this, we used the trained model to
predict unknown DTIs in each dataset and output the interaction
probability of a drug-target pair. Then we ranked them in
descending order according to the predicted probability.
Finally, we selected the top 100 predicted unknown DTIs and
validated them in six reference databases, i.e., to check if they are
included in any of six reference databases: ChEMBL (Gaulton
et al., 2011), DrugBank (Knox et al., 2010), KEGG (Kanehisa
et al., 2011), Matador (Günther et al., 2007), CTD (Davis et al.,
2016), and STITCH (Kuhn et al., 2007). These six reference
databases are online databases that include a large number of
proved known DTIs and they are used by related literature to
evaluate the actual ability of their methods in predicting
unknown DTIs (Liu et al., 2016; Nascimento et al., 2016;
Olayan et al., 2017).

Table 4 shows the top 30 unknown interactions predicted by
the MDADTI model on E dataset. In this table, DTIs in bold
indicate that they exist in one or more reference databases, and
the third column shows their predicted probability. For each
drug-target pair, the reference databases containing it are
displayed in the last column of the table, where C is the
abbreviation of ChEMBL, D is the abbreviation of DrugBank,
M is the abbreviation of Matador, K is the abbreviation of KEGG,
T is the abbreviation of CTD, and S is the abbreviation of
STITCH. For example, the DTI ranking No. 1 is D00528,
hsa1549 and its predicted interaction probability is 1.0, which
is validated in the Matador database. It can be seen from the table
that 21 out of 30 unknown interactions are validated in at least
one of the six reference databases.

In order to visualize the validation of unknown DTIs more
intuitively, we visualized 100 high-probability unknown DTIs in
E dataset. Figure 7 is the network visualization of the top 100
unknown DTIs in E dataset predicted by MDADTI model.
Yellow and blue nodes represent drugs and targets,
respectively. Solid lines represent verified interactions while
dashed lines represent unverified interactions. It can be seen
from the figure that there are potential interactions between a
drug and multiple targets, and some of them have been verified
in six reference databases. For example, 33.33% (3/10) of the
potential targets of drug D00002 have been verified in reference
databases; D00002 represents nicotinamide adenine dinucleotide
(NADH), which is widely used in many diseases like
tuberculosis, Alzheimer's, and Parkinson disease. 44.44% (4/9)
of the potential targets of D00043 are validated in the reference
databases, and D00043 represents isofluorphate, a powerful
miotic used mainly in the treatment of glaucoma. 60% (3/5) of
the potential targets of drug D00410 are validated in reference
databases, and D00410 represents metyrapone, an inhibitor of
the enzyme steroid 11-beta-monooxygenase, which is used as a
test of the feedback hypothalamic-pituitary mechanism in the
diagnosis of Cushing syndrome. 57.14% (4/7) of the potential
targets of drug D00528 are verified in the reference database. We
also observed that a target may interact with multiple drugs, and
some of them are verified in six reference databases. For example,
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hsa1559 interacts with D00510, D00217, and D00437 at the same
time, and all of them are verified in six reference databases.
hsa5150 interacts with D00528, D00501, and D00691, and all of
them are verified in six reference databases.

Finally, Table 5 summarizes the validated proportion of top
N unknown DTIs (N = 10, 30, 50, 100) on five datasets. The
validated proportion of top 10 unknown DTIs are 50%, 80%,
80%, 100%, 80%, respectively. The fractions of validated DTIs of
MDADTI, NRLMF, BLM-NII among the predicted Top N(N =
10, 30, 50) DTIs in NR,GPCR,IC, and E datasets are provided in
Table S5. The fractions of validated DTIs of NRLMF, BLM-NII
are provided by (Liu et al., 2016). Since these databases are still
being updated, the proportion of new DTIs predicted by
MDADTI model will increase in the future. All the above
analyses proved that MDADTI can effectively predict unknown
DTIs because MDADTI model integrated multiple similarity
measures of drugs and targets, which provides abundant
information for predicting DTIs. Moreover, MDADTI not only
considered the original information of similarity measure but
also captured the global structure information of similarity
measures, which improved the prediction accuracy of DTIs.
Frontiers in Pharmacology | www.frontiersin.org 16122
The most important reason is that MDADTI applied MDA to
automatically learn the deep representation of drug feature and
target feature from multiple topological similarity matrices of
drugs and targets, which contributes to the effective prediction of
unknown DTIs.
DISCUSSION

We proposed a novel method MDADTI to predict DTIs based
on MDA. Compared with existing methods, MDADTI applied
RWR and PPMI to calculate the topological similarity matrices
of drugs and targets, capturing the global structure information
of the similarity measures. Then MDA was applied to fuse
multiple topological similarity matrices and learn the feature of
drugs and targets while capturing the non-linear relationship
among features. In addition, MDA also reduced the dimension of
the feature of drugs and targets, which speeded up the training of
MDADTI. To evaluate the performance of MDADTI, we
compared MDADTI with DDR, KronRLS-MKL, NRLMF, and
BLM-NII under three different cross-validation settings. The
FIGURE 6 | The comparison of AUC and AUPR between MDADTI and RWR_DNN method on NR, GPCR, IC and E dataset under CVS1, CVS2 and CVS3 setting.
(A) Comparison of AUC (B) Comparison of AUPR.
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TABLE 4 | Top 30 unknown DTIs predicted by MDADTI model on E dataset. DTIs in bold indicate that they are validated in one or more reference databases.

Rank Drug Target Probability Databases

1 D00528 hsa1549 1.0 M
2 D00542 hsa1571 0.9997 M
3 D00501 hsa5150 0.9997 C
4 D00437 hsa1559 0.9997 M
5 D00043 hsa11330 0.9995 M
6 D00528 hsa5150 0.9992 D K
7 D00410 hsa1543 0.9988 M
8 D00691 hsa8564 0.9985 S
9 D00437 hsa1585 0.9981 M
10 D00410 hsa1585 0.9981 M
11 D00139 hsa1543 0.9972 M
12 D00043 hsa2147 0.9965 M
13 D01441 hsa5594 0.9884 T
14 D00126 hsa246 0.9869 M
15 D00043 hsa1504 0.977
16 D00217 hsa1559 0.9683 T
17 D01223 hsa3988 0.9644 M
18 D00038 hsa5742 0.9640 T
19 D01223 hsa5538 0.9616
20 D00002 hsa31 0.9553
21 D01441 hsa1021 0.9546 T
22 D00528 hsa5743 0.9467 T
23 D00139 hsa5742 0.9344
24 D00217 hsa1558 0.9338 T
25 D00043 hsa1636 0.9326 M
26 D00002 hsa7298 0.9207
27 D03670 hsa1579 0.8932
28 D01441 hsa3551 0.8806
29 D00097 hsa5743 0.8787 D M
30 D00043 hsa686 0.8688
Frontiers in Pharma
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FIGURE 7 | Network visualization of the top 100 unknown DTIs in E dataset. Yellow and blue nodes represent drugs and targets, respectively. Solid lines represent
verified interaction and dashed lines represent unverified interactions. There are 40 unknown DTIs that were verified.
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results showed that MDADTI achieved higher AUC and AUPR
in five datasets than the other four methods under CVS1 setting.
The predictive performance of MDADTI was greatly improved
especially in GPCR and NR datasets. For CVS2 and CVS3
settings, our method has a great improvement in AUPR in five
datasets, and it performed better in large datasets, like E and
DrugBank_FDA datasets. These results proved that MDADTI is
better than the other four baseline methods in predicting DTIs.

In addition, we evaluated the actual ability of MDADTI
method to predict new interactions. For each dataset, we
applied the trained MDADTI model to predict unknown
interactions and selected the top 100 predictions to validate
them in the six reference databases: ChEMBL, DrugBank, KEGG,
Matador, STITCH, and CTD. The results showed that MDADTI
method can effectively identify unknown DTIs.

Since our method currently only predicts whether there is an
interaction between a drug and a target, we plan to predict the
binding affinity scores for drug-target pairs in the next step.
Frontiers in Pharmacology | www.frontiersin.org 18124
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Drug metabolism research plays a key role in the discovery and development of drugs.
Based on the discovery of drug metabolites, new chemical entities can be identified and
potential safety hazards caused by reactive or toxic metabolites can be minimized.
Nowadays, computational methods are usually complementary tools for experiments.
However, current metabolites prediction methods tend to have high false positive rates
with low accuracy and are usually only used for specific enzyme systems. In order to
overcome this difficulty, a method was developed in this paper by first establishing a
database with broad coverage of SMARTS-coded metabolic reaction rule, and then
extracting the molecular fingerprints of compounds to construct a classification model
based on deep learning algorithms. The metabolic reaction rule database we built can
supplement chemically reasonable negative reaction examples. Based on deep learning
algorithms, the model could determine which reaction types are more likely to occur than
the others. In the test set, our method can achieve the accuracy of 70% (Top-10), which is
significantly higher than that of random guess and the rule-based method SyGMa. The
results demonstrated that our method has a certain predictive ability and
application value.

Keywords: deep learning, drug metabolism, metabolites prediction, reaction rules, SMARTS
INTRODUCTION

The discovery of small molecule drugs is time-consuming, expensive and labor-intensive. (Dickson
and Gagnon, 2004; Paul et al., 2010; Dimasi et al., 2015) It is resource intensive, and involves typical
timelines of 10–20 years and costs that range from US$0.5 billion to US$2.6 billion (Paul et al., 2010;
Avorn, 2015). In addition to economic and technical reasons, the main reason is that almost half of
the candidate drugs failed in clinical trials. Up to 25% of compounds were withdrawn due to
metabolic, pharmacokinetic, or toxic problems (Hwang et al., 2016). Drug metabolism can produce
metabolites with physicochemical and pharmacological properties, which are significantly different
from the physical and pharmacological properties of parent drugs (Kirchmair et al., 2013). As
Figure 1 shows, when drugs or other exogenous substances enter the human body, they are largely
controlled by three stages of drug metabolism. In the first stage, reactive groups are introduced by
oxidation, reduction, or hydrolysis. In the second stage, conjugation reactions with macromolecules
occur in vivo. In the third stage, allogeneic and metabolites are removed from liver and intestinal
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cells. After these three stages, exogenous substances such as
drugs may be transformed into non-physiological active
substances or toxic metabolites. 70% clinical drugs are
removed by the body’s metabolic system, so as part of drug
development, it is also necessary to conduct in-depth research on
drug metabolism (Grant et al., 2001; Embrechts and Ekins, 2007;
Lazar and Birnbaum, 2012; Damsky and Bosenberg, 2012; Di,
2014; Mackenzie et al., 2017; Kang et al., 2018). Understanding
the metabolic process of drugs is essential for successful drug
discovery and development, and helps to optimize the stability of
drugs, so as to optimize the half-life in vivo.

In order to reduce the risk caused by metabolic characteristics
of candidate drugs, effective andreliable methods are needed to
predict drug metabolism in vitro. Many experimental methods
can be used to explore the metabolic process of drugs (Diao et al.,
2016; Mackenzie et al., 2017). For example, fast LC-MS scans can
be carried out to specifically detect predicted metabolites.
However, experimental methods are still highly demanding in
terms of equipment, expertise, cost, and time (Kirchmair et al.,
2013). Therefore, it has great prospects to develop computational
tools for predicting drug metabolism with lower cost and higher
throughput than existing tools. Many different methodologies to
predict metabolites or sites of metabolism have been reported
recently. Various methods in predicting drug metabolism using
in silico approaches have been reviewed (Fox and Kriegl, 2006;
Gleeson et al., 2011; Zhang et al., 2011; Tan et al., 2017).
However, most of these methods are limited to P450 catalytic
reactions and represent only unstable sites, rather than
predicting the actual metabolites formed.

Metabolic sites (SOMs) andmetabolite structure are twomain
research directions of computer-aided metabolic prediction
Frontiers in Pharmacology | www.frontiersin.org 2127
methods, which can provide decisive support and guidance for
experimenters. SOM prediction methods usually have high
prediction accuracy. The program MetaSite estimate the
possibility of metabolic reactions at an atomic site using protein
structure information, GRID-derived MIFs of protein, and ligand
and molecular orbital calculations (Gabriele et al., 2005). The
program SMARTCyp contains a pre-calculated energy reaction
analysis table for density functional theory activation, where a
large number of ligand fragments pass through CYP3A4 or
CYP2D6 mediated transformation (Rydberg et al., 2010a;
Rydberg et al., 2010b). A method called cypscore, in which 2400
CYP-mediated transformations and 850 literature compounds are
used as data bases (Hennemann et al., 2010). However, most of
these methods are limited to CYP450 catalytic reactions and can
only predict unstable sites rather than metabolite structures.
Furthermore, predicted SOMs are not identical to identifying
the correct bioinformations that will occur at an atomic location,
and they do not provide information about the type of reaction
that will occur. Therefore, these limitations make it difficult to
draw any quantitative conclusions about the metabolic
possibilities of a molecule.

So far, only a few computational methods have been
developed for predicting the structure ofmetabolites. Existing
methods can be divided into two categories: expert rule-based
anddescriptor-based. Rule-based approaches use data mining
techniques. Large databases with data onmetabolism are used
to extract generalized rules to determine the part of a molecule
that undergoes metabolic alteration (Cariello et al., 2002). The
ligand-based approach relies on the assumption that the
metabolic fate of compounds is entirely determined by their
chemical structure and properties. These methods include
FIGURE 1 | General pathway of drug metabolism.
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quantum mechanics methods. Descriptor-based methods to
obtain an idea of the route of a drug through the metabolic
system, the identification of the involved enzymes, and the
reaction pathways is necessary (Livingstone, 2010). The
program of Bioprint contains a database of most marketed
drugs together with reference compounds and data from a
wide variety of biological and in-vitro ADME assays, called the
Biological fingerprint (Krejsa et al., 2003). Thus, the possible
results of new compounds can be calculated by neighborhood
relation and QSAR model. In the MetaDrug database (Ekins et al.,
2006; Ekins et al., 2005b), metabolic reactions with substrates
(including primary and secondary metabolites), xenobiotic
reactions, and kinetic data on enzyme inhibition are stored. 317
molecules (parent drug and primary and secondary metabolite)
were randomly selected from this database to build kernel-partial
least squares models for metabolism rules (Embrechts and Ekins,
2007). Metabolite prediction is usually accomplished through a large
set of transformation rules. Given the reactant, all rules are then
matched to determine the site of metabolic instability. Expert
systems such as METEOR (Testa et al., 2010; Button et al., 2015),
META (Klopman et al., 1994; Talafous et al., 1994; Klopman et al.,
1997), MetabolExpert (Darvas, 1988), RD-Metabolizer (Meng et al.,
2017), MetaDrug (Korolev et al., 2003; Ekins et al., 2005a), and
KnowItAll (Stouch et al., 2003) are based on these databases and
provide a ranked list of most likely metabolites. In a study described
by AstraZeneca (Scott et al., 2007), the substrates and reaction
centers of the metabolite database were stored as fingerprints in two
databases. Then the query molecule powders are compared with the
two databases, and the proposed SOM is ranked by using the
number of clicks as a weighted scheme. An approach called SyGMa
based on the MDL metabolite database was developed (Ridder and
Wagener, 2010). According to the corresponding rules of MDL
metabolite data coding, the structure of possible metabolites is
predicted, and probability scores are assigned to each metabolite,
covering 70% of all known human metabolic reactions.

So far, one of the difficulties in predicting possible metabolites
is that this task means identifying the reaction site (SOM) and
the type of metabolic reaction correctly. Current methods for
predicting metabolite structure tend to have high false-positive
rates and can only be used for specific enzymes without covering
all the metabolic enzymes involved in human reactions. In view
of the above problems, we mainly designed a deep learning
algorithm combined with drug metabolism characteristics.
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In this work, by combining metabolic reaction template and
Deep Learning, we have established a model to predict the main
metabolites of drugs (Figure 2). Our method has the following
innovations: (1) Data enhancement strategy, which provides
chemically reliable examples of negative reactions through the
metabolic reaction template library; (2) the implementation and
validation of a neural network-based model, which can obtain
that some reaction modes are more or less likely to occur than
other potential modes.
MATERIALS AND METHODS

Data Collection and Processing
We collected metabolic reaction data from MDL Database (2011
edition). Here we used only human metabolic reactions with
effective substrates and metabolites. The data were filtered to
remove unreasonable structures, such as reactants and products
containing R groups, free radicals, metal chelating, and structural
errors, which could make it impossible to distinguish the
reaction records of reaction sites. The pretreatment resulted in
7,380 reaction records, of which 74 reactions had only chiral
changes. We randomly selected 300 response records from them
as standby for external test sets.

Generation of Metabolic Reactions
Template Library
The process of constructing the metabolic reactions template
library is shown in Figure 3. At present, the methods based on
expert system mainly use the general metabolic rules deduced by
experts to predict the structure of metabolites. However, this
method has some drawbacks. The model needs to understand the
influence of coding reaction functional groups. Such rules can
not completely produce the desired response because the
complete background of molecules is ignored. The remaining
Non-coding functional groups of the molecule may affect or react
competitively. So maybe even if the rules are matched, the ideal
reaction product cannot be produced. Therefore, reaction rules
need to be annotated with relevant information, such as
functional groups, priority of reactions. However artificial code
rules are time-consuming, laborious, and lack of internal ranking
mechanism. Based on this, expert rules cannot be implemented
FIGURE 2 | Metabolic reaction product prediction flow chart.
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on a large scale. Marwin H.S. (Law et al., 2009; Segler et al., 2018)
has proved that in predicting the products of inverse synthesis
reaction, the artificial extraction of reaction rules based on expert
rules is far less effective than the algorithm which automatically
judges the type of reaction according to the reactants and
products in the deep learning model training. In order to
construct a database of metabolic templates, we also adopted
the heuristic driving algorithm of Law (Law et al., 2009).

Table 1 shows the most common reaction types in the
database. It can be seen that the most common metabolic
reactions are amide hydrolysis, carboxylic acid hydrolysis, and
hydroxylation of N, O, S atoms.

Producing Candidate Metabolites
The above-mentioned metabolic reaction templates are stored in
the database for subsequent production of positive and negative
potential metabolites. For each atom mapping reaction in the
dataset, the reaction center is defined by determining which
product atoms are different from the corresponding reactant
atoms. The reaction center is expanded to include the
surrounding environment, and then other factors that play a
role in the reaction is found out. Adjacent atoms are defined as
non-hydrogen substituents, where high coverage is achieved at
the expense of low specificity. Metabolic Templates are defined
with SMART format strings encoding reaction centers. The
reaction template generated in this way does not depend on
manual extraction, marking, or sorting.

As shown in Figure 4, we can match the reaction template of
the metabolic database one by one and produce a large number
of potential metabolic reaction products by using RDKit. Positive
Frontiers in Pharmacology | www.frontiersin.org 4129
compounds are the products recorded in the database, and the
rest are all negative products. This strategy can continuously
produce negative products for later use.

Model Training
For deep learning and supervised learning, we need to input
eigenvalues. What we need to consider is using what molecular
descriptors to characterize the whole metabolic process. Here we
choose molecular fingerprints to describe the atomic and
functional characteristics of metabolic reactions. The abstract
representation of molecular fingerprints, which encodes
molecular transformation into a series of vectors, makes it easier
for molecules to compare with each other. If two molecules are
similar, there must be many common fragments between them.
Then molecules with similar fingerprints will have a high
probability of being similar in 2D structures. Here we use
RDKit to generate 1,024-dimensional Morgan molecular
fingerprints. Molecular fingerprint ECFP is suitable for machine
learning because it containsmoremolecular structure details. The
metabolites generated above through the metabolic reaction
template will be scored separately by Deep Learning model.
Here we use Python library of Keras. The input layer consists of
molecular fingerprints of products and reactants, with a total of
2,048 dimensions. One reaction corresponds tomultiple potential
metabolites. Thus, the input layer generates a matrix of 2,048
dimensions with n vectors. We use keras wrapper to realize each
vector, that is, each individual potential metabolite is fully
connected independently, which increases the ability of the
model to achieve one-to-many and many-to-many. The
probability of all potential reaction products is finally mapped
out by the output layer activation function softmax, so that the
total probability of all potential metabolites is 1. According to the
score of the output layer, it is most likely to describe which
metabolites actually exist. Deep neural network models are
trained here to solve problems similar to classification
problems: given hundreds of possible classes (potential
metabolites), predicting real classes (recording reaction
products), each metabolic reaction may correspond to multiple
classifications. We use cross-entropy as the loss function during
training. This objective function can be understood as the negative
logarithm of probability allocated to the true class (true
metabolites). During the training period, we use five-fold cross-
validation to divide all the data sets into five parts, one of them is
taken as the validation set without repetition, and the other four
are used as training model of training set. Cross-validation can
avoid over-fitting and under-fitting, and the final results are
more convincing.
RESULTS AND DISCUSSION

Accuracy of Prediction Results
Following the above steps, we cross-validated the model with five
folds by using 200 epochs. The training set, validation set, test set
segmentation was 7:1:2. The objective of the training period is to
minimize the cross-entropy loss of classification, which is the
FIGURE 3 | The generation of metabolic reactions template.
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natural logarithm of probability allocated to real metabolites.
Considering that there may be more than one metabolic reaction
product for a drug, we believe that the top ten predicted products
may have more reference value. As shown in Table 2, the model
achieves an average test set accuracy of 70% for Top-10 in the
five-fold cross-validation. In addition, we also calculated the
Frontiers in Pharmacology | www.frontiersin.org 5130
accuracy of Top-1, Top-3, and Top-6 rankings. Since our
metabolites are generated automatically by the metabolic
template obtained by the algorithm, as long as the template is
matched, the reaction products can be formed. There is a
problem with the explosion of potential metabolite
combinations. It is a great challenge for the model to hit the
TABLE 1 | The most common type of reactions and SMART fragments in the dataset.

Template SMART Example

O = C-[NH;+0:1]-[C:2]> > [C:2][NH2;+0:1]

O = C-[NH;+0:1]-[c:2]> > [NH2;+0:1]-[c:2]

O = C-[O;H0;+0:1]-[C:2]> > [C:2]-[OH;+0:1]

[C]-[O;H0;+0:1]-[C:2] = [O:3]> > [O:3] = [C:2]-[OH;+0:1]

[C:1]-[N;H0;+0:2](-[C:3])-[C:4]> > [C:1]-[N+;H0:2](-[C:3])(-[C:4])

[c:1]-[S;H0;+0:2] [c:3]> > O = [S;H0;+0:2](-[c:1])-[c:3]

[C:1]-[CH2;+0:2]-[C:3]> > O-[CH;+0:2](-[C:1])-[C:3]

[c:1]:[n;H0;+0:2]:[c:3]> > [O-]-[n+;H0:2](:[c:1]):[c:3]

[c:1]:[cH;+0:2]:[c:3]> > O-[c;H0;+0:2](:[c:1]):[c:3]

[C:1]-[S;H0;+0:2]-[C:3]> > O = [S;H0;+0:2](-[C:1])-[C:3]
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product of the real reaction in the reaction product, but at the
same time, the model can learn a lot of false product information
because of the production of a large number of false metabolites,
thus enhancing the learning ability.

Here, we conducted external tests on 300 reaction records
that were not used for model training. It is also compared with
the rule-based prediction method SyGMa. The accuracy rates of
Top-1, Top-3, Top-6, and Top-10 are 35, 55, 67, and 78%
respectively for our method (Figure 5). The accuracies of
SyGMa for Top-1, Top-3, Top-6, and Top-10 are 20, 39, 50,
and 70 respectively. The accuracy rates of our method are higher
than SyGMa’s. The main reason is that SyGMa does not produce
the correct metabolites in some reactions.

As can be seen from Figure 6, correctly predicted metabolic
reaction products by our method are common metabolic
Frontiers in Pharmacology | www.frontiersin.org 6131
reactions, because these types of reaction samples account for
the vast majority of the training set. Some of the metabolic
reactions that cannot be correctly predicted are due to reaction
types being uncommon with fewer occurrences in data sets, or
because the reactants are too complicated and have multiple
reaction sites. Furthermore, because usually only one metabolite
of a compound is recorded in the reaction record, the Top-1
metabolite predicted by our method may not exactly be the
recorded one, but it may still be one of the metabolites. Besides,
in the reaction record involving multi-site and multi-step
reactions, we can only predict a single-step metabolic reaction
at one site. For our model, it is difficult for us to learn the changes
in ring-opening and ring-closing reactions, because too much
information is lost in those processes. It is difficult to characterize
those metabolic processes only by the molecular fingerprints of
reactants and products.

The amount of our data is small for Deep Learning to learn
more information. The more reaction records that focused on a
specific reaction, the more accurate the prediction of the reaction
is. Thus we need to expand the data set for training. Next, we will
collect more and more metabolic reactions from KEGG and
other databases to train models, so as to improve the prediction
accuracy of the models.
FIGURE 4 | Flow chart for potential metabolites production.
TABLE 2 | Prediction accuracies of the test set.

Accuracy

Top-1 34%
Top-3 51%
Top-6 68%
Top-10 70%
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FIGURE 6 | Reaction cases for correct and incorrect predictions.
FIGURE 5 | Comparison results on external test set.
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Influences of Molecular Fingerprint Radius
on the Results
We retrieved Morgan molecular fingerprints with radius 3 from
potential metabolic reaction products in training set and
retrained them with AutoEncoder algorithm (Figure 7).
Morgan molecular fingerprint with a radius of 3 is equivalent
to ECFP6, which will contain more information about
molecular fragments.

As shown in Table 3, increasing fingerprint radius did not
improve the prediction accuracy of Top-1 and Top-3, but did
Frontiers in Pharmacology | www.frontiersin.org 8133
improve the prediction accuracy of Top-10. The results suggested
that increasing fingerprint radius can improve the accuracy of the
model to a certain extent, and AutoEncoder algorithm can help
improve the prediction ability of the model as well.

Here we take Zileuton as an example to analyze its prediction
results of metabolites. It is an inhibitor of 5-lipoxygenase for the
maintenance treatment of asthma. The main metabolic pathways
of Zileuton are hydroxylation of benzene ring, oxidation of sulfur
atoms on sulfur-containing heterocycles, and hydrolysis of
nitrogen atoms on amide groups (Joshi et al., 2004) (Figure 8
and Table 4).

Here, three metabolites of zileuton were predicted correctly
by our method, namely hydroxylation of the benzene ring and
oxidation of sulfur atoms on sulfur-containing heterocycles.
But our model has not predicted the hydrolysis of N atom of
the side chain amide. The possible reason is that our training
set has too little reactions to this type and the model has not
adequately learned.
TABLE 3 | Prediction accuracies at molecular fingerprint radius of 3.

Accuracy

Top-1 32%
Top-3 51%
Top-6 68%
Top-10 81%
FIGURE 7 | Flow chart of AutoEncoder combined with molecular fingerprint.
FIGURE 8 | Metabolic pathways of Zileuton.
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CONCLUSION

In summary, we developed a deep learning based drug
metabolites prediction algorithm to complement the
experimental methods. By generating a broad coverage of
Frontiers in Pharmacology | www.frontiersin.org 9134
metabolic reaction templates, we can generate a large number
of potential metabolic reactants, and rank all metabolites by
deep neural network algorithm to get the right metabolites
ranked high. The accuracy of Top-1, Top-3, Top-6, and Top-10
in 300 external test sets with metabolic reactions is 35, 55, 67,
and 78% respectively, which is significantly higher than that of
random guess and the rule-based method SyGMa. Nevertheless,
our method still has some limitations. It can rank the
metabolites, but cannot give the probability of occurrence of
metabolic sites. Besides, despite the relatively high prediction
accuracy, it still has a high false-positive problem. To sum up, A
approach of drug metabolites prediction based Deep learning
was developed in this paper, which has certain predictive ability
and can be used to provide some guidance information for
researchers to improve the metabolic properties of
lead compounds.
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Objectives: Little research has been done in pharmacoepidemiology on the use of
machine learning for exploring medicinal treatment effectiveness in oncology. Therefore,
the aim of this study was to explore the added value of machine learning methods to
investigate individual treatment responses for glioblastoma patients treated
with temozolomide.

Methods: Based on a retrospective observational registry covering 3090 patients with
glioblastoma treated with temozolomide, we proposed the use of a two-step iterative
exploratory learning process consisting of an initialization phase and a machine learning
phase. For initialization, we defined a binary response variable as the target label using
one-by-one nearest neighbor propensity score matching. Secondly, a classification tree
algorithm was trained and validated for dividing individual patients into treatment response
and non-response groups. Theorizing about treatment response was then done by
evaluating the tree performance.

Results: The classification tree model has an area under the curve (AUC) classification
performance of 67% corresponding to a sensitivity of 0.69 and a specificity of 0.51. This
result in predicting patient-level response was slightly better than the logistic regression
model featuring an AUC of 64% (0.63 sensitivity and 0.54 specificity). The tree confirms
confounding by age and discovers further age-related stratification with chemotherapy-
treatment dependency, both not revealed in preceding clinical studies. The model lacked
genetic information confounding treatment response.

Conclusions: A classification tree was found to be suitable for understanding patient-
level effectiveness for this glioblastoma–temozolomide case because of its high
interpretability and capability to deal with covariate interdependencies, essential in a
real-world environment. Possible improvements in the model’s classification can be
achieved by including genetic information and collecting primary data on treatment
response. The model can be valuable in clinical practice for predicting personal
treatment pathways.

Keywords: real world evidence, oncology, exploratory study, propensity score modeling, decision tree,
machine learning
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INTRODUCTION

Glioblastoma is one of the most common and aggressive brain
tumors in adults, with a median survival of less than one year
from the time of diagnosis. Apart from the current standard of
care treatment based on surgical resection and post-operative
radiotherapy, there is only one medicinal product available for
the treatment of glioblastoma patients. This temozolomide
intervention has been shown to be efficacious in prolonging
survival in Randomized Controlled Trials (RCTs) (Stupp et al.,
2005; Stupp et al., 2009).

However, specific details on the mechanisms that drive
individual response to temozolomide treatment in clinical
practice, or on the drivers of real-world patient-level treatment
effectiveness, are unknown (van Genugten et al., 2010; Eichler et
al., 2011; Liu et al., 2016). To study these personal responses,
traditional cohort-oriented methods, such as the Kaplan-Meier
survival techniques currently used in pharmacoepidemiology
(Strom and Kimmel, 2006) for investigating real-world
evidence (RWE) data, have shown to be inadequate because of
their difficulties to cope with heterogeneous patient populations;
their restrictive assumptions regarding linear relationships
among variables; their inability to provide patient-level
predictions; and their inability to infer causality (Ankarfeldt
et al., 2017; Arora et al., 2019).

For example, Kaplan-Meier methods provide (sub)
population-level results, that is, they return the average or
median treatment effect rather than patient-level results. Other
statistical methods commonly used in the domain of
medicine, such as logistic regression models, have hitherto
focused mainly on investigating survival probability and
their associated confounding factors when used in
pharmacoepidemiology, as opposed to treatment effectiveness
(Burke et al., 1995).

While currently primarily investigated for their application in
drug discovery and development (Vamathevan et al., 2019),
Onukwugha et al. (2017) suggested machine learning to be a
valuable tool in pharmacoepidemiology as well aiming at
studying this personal treatment’s effectiveness (Onukwugha
et al., 2017). Specifically, conducting exploratory treatment
effectiveness studies using machine learning generates new
knowledge on whether and how the treatment works in its
specific real-world population and health care system context
by accurately making individual predictions (Onukwugha et al.,
2017; Berger et al., 2017; Puranam et al., 2018). These methods
are increasingly being used by oncologists for cancer detection
and prediction of risks, cancer recurrence, and survival (Lavrac,
1999; Kononenko and Kukar, 2001). Henceforward, machine
learning develops as an alternative for traditional survival
methods because it can be used for hypotheses generation on
patient-level treatment effects in heterogenetic real-word patient
populations, among others, through causal assessments
(Vamathevan et al., 2019; Lavrac, 1999; Kononenko and
Kukar, 2001; Cruz and Wishart, 2006; Onukwugha et al., 2017;
Berger et al., 2017; Puranam et al., 2018). However, only little
research has been done so far to explore the value of machine
learning in pharmacoepidemiology (Crown, 2015).
Frontiers in Pharmacology | www.frontiersin.org 2138
In this paper, we present information-based machine learning
methods – decision tree-based classification or classification trees
(CT)—for use in a two-step iterative exploratory learning process
to investigate the stratification factors of individual treatment
response to temozolomide in glioblastoma patients using
observational data. The well-known CT technique can then be
used for patient-level effectiveness predictions of temozolomide.
MATERIALS AND METHODS

To investigate the effects of real-world data (RWD) covariates on
real-world treatment response on a patient-level basis and to be
able to identify confounding factors influencing real-world
treatment response, the methods that are used should allow for
product performance-based data labeling if no primary data are
available on real performance per patient. Hence, these models
should use patient-level information and be able to handle
personal treatment paths and/or genomic information. In this
section, we will first describe the data collection process and
provide a definition of the product’s performance used to
annotate the data set. Next, we will describe the classification
models and exploratory learning process used for theorizing
about personal treatment effectiveness.

Data Setting
In this study, data were extracted from the Belgian Cancer
Registry (BCR), including 4587 patients with glioblastoma
(ICD-10 code C71.0-C71.9) diagnosed between 2004 and 2012,
and vital status information updated until January 1, 2015.
Variables for this study were taken from the full standard set
of variables nationally collected by the BCR—including patient
and tumor characteristics—and Inter Mutualistic Agency (IMA),
including reimbursed therapeutic acts consisting of medical acts
and medications administrated in hospitals and handed out in
pharmacies. These variables were further limited by BCR
oncologists for their potential relevance in the analysis.

The index date, or date of incidence of glioblastoma, was
defined as the date of first microscopic confirmation of
malignancy, first hospitalization for the cancer, first
consultation for the malignancy, first clinical or technical
diagnosis, start of treatment, or date of death, whichever date
came first. Patients with incidence dates that were the same as the
date of death as well as patients without a social security
identification number were excluded.

Temozolomide therapy relevant for the treatment of
glioblastoma was extracted from the IMA data set based on the
medicines’ anatomical therapeutic chemical (ATC) code
(L01AX03) and treatment start data within −1 to 9 months from
the date of incidence. Other chemotherapeutic interventions with
possible interactive effects were extracted from the IMA data set
based on the ATC code for chemotherapy (L01), starting −1
month from the date of incidence. Information on
radiotherapeutic (RT) interventions, biopsy, and surgical
resection were extracted from the IMA data set by BCR51
oncologists based on the relevant nomenclature codes used.
January 2020 | Volume 10 | Article 1665
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The final data set consisted of (a) the patient’s overall survival
(OS) period, a continuous variable calculated as the difference
between the date of death or last confirmation that the patient
was alive and date of incidence; (b) treatment path, that is, binary
variables indicating biopsy and/or surgical resection and RT, and
chemotherapeutic treatment; (c) five discrete covariates (age,
tumor differentiation grade, topography, total number of tumors,
and World Health Organization [WHO] performance score at
diagnosis and recursive partitioning analysis [RPA] class), one
binary covariate (sex), and one categorical covariate (tumor
topography, specifying the location in the brain), confounding
both the patient’s OS and treatment path; and (d) OS binary
observation status specifying whether the survival was censored,
that is, whether the follow-up time was too short to observe the
date of death. The final RWD set consisted of 4528 patients, of
which 3090 treated with temozolomide (Table 1).

Definitions
Because no primary data on treatment response was available for
temozolomide, initialization was needed to label the data. For this
purpose, a binary dependent variable with variables 1 and 0
representing individual-treatment response and non-response,
respectively, was created based on the patients’ gain in OS, that
is, the number of months the patient gained in survival when
being assigned to the temozolomide treatment. Here, OS was used
as the main indicator of the treatment effect because this was the
RCT’s primary endpoint. Patients’ gain in OS was calculated using
nearest neighbor propensity score (PS) matching, a method
commonly used on RWD to mitigate bias induced by the non-
random assignment of treatments. Hence, let T and C be the set of
treated (Z = 1) and control (Z = 0) patients, respectively. The PS =
Pr(Zi = 1|Xi) is defined as the probability of being assigned to the
treatment of consideration conditional on the observed covariates
X. Its value is estimated using a logit model (Rosenbaum and
Rubin, 1983; Rosenbaum and Rubin, 1984) with the selected
covariates X being the observed variables which significantly
affect the survival time, because this variable selection approach
is associated with better PS estimations (see supplementary
materials for more details) (Austin et al., 2007). Following this
nearest neighbor PS technique, each temozolomide-treated
patient is matched to k control patients based on the smallest
difference in estimated PSs, that is, i ∈ T and j ∈ C are matched if
dist (PSTi ,PS

C
j ) is minimal (Rosenbaum and Rubin, 1983;

Rosenbaum and Rubin, 1984).
Here, we chose to set k equal to 10, given a set of 1438 control

patients, to not average out possible covariate effects. This
nearest neighbor PS matching algorithm was performed with
the “MatchIt” 125 package within R (Ho et al., 2011).

Further, let YT = OST and YC = OSC be the observed
continuous outcomes of the treated and control units,
respectively. Denote by C (i) the set of k control patients j ∈ C
matched to the treated patient i ∈ T. Define the weights wij = 1/k
if j ∈ (i) and wij = 0 otherwise. From the formula for the average
treatment effect (Ho et al., 2011), we defined the treated patient’s
survival gain (SG): SGi = OSTi −oj∈C(i)wijOS

C
j . Following the
Frontiers in Pharmacology | www.frontiersin.org 3139
guidelines of the European Society for Medical Oncology
(ESMO) andMagnitude of Clinical Benefit scale (MCBS) and
with the aim of maximizing treatment response rate(TRR)
(Becker and Ichino, 2002), patients were labeled with
“response” whenever their SG was longer than the threshold l
equal to one month (Cherny et al., 2015).

Classification Model
We used classification techniques within machine learning to
divide individual patients into treatment response and non-
response groups, with the purpose to fully understand
individual treatment response to temozolomide. For
TABLE 1 | Main characteristics of the real-world study population.

Real-World

Control group (n
= 1438)

Treated group (n =
3090)

Age
Range (median) 0–94 (74) 5–98 (61)
no. (%) < 50 98 (42%) 582 (19%)
no. (%) >= 50 1,340 (58%) 2,508 (81%)

Sex – no. (%)
Male 814 (57%) 1,847 (60%)
Female 624 (43%) 1243 (40%)

WHO performance status—n
(%)
0—asymptomatic 253 (18%) 415 (13%)
1—symptomatic but

completely ambulatory
850 (59%) 2265 (73%)

2—symptomatic, up and
about >50% walking hours

197 (14%) 313 (10%)

3—symptomatic, confined to
bed/chair > 50% walking

84 (6%) 61 (2%)

hours 54 (4%) 36 (1%)
4—completely disabled; totally

confined to bed/chair
RPA—n (%)
Class III† 43 (3%) 162 (5%)
Class IV‡ 789 (55%) 2,419 (78%)
Class V § 606 (42%) 509 (16%)

Surgical procedure (biopsy/
debulking)—n (%)
No 169 (12%) 23 (1%)
Yes 1,269 (88%) 3,067 (99%)

Radiotherapy treatment—n
(%)
No 899 (63%) 130 (4%)
Yes 539 (37%) 2,960 (96%)

Chemotherapy treatment—n
(%)
No 1,342 (93%) 2,277 (74%)
Yes 96 (7%) 813 (26%)

Time from diagnosis to
radiotherapy: range (median)

377.0–256.3
(Arora et al., 2019)

−313.6 to 186.9
(Vamathevan et al.,

2019)
Time from diagnosis to
chemotherapy: range (median)

−4.0 to 190.0
(Stupp et al., 2005)

−4.3 to 389.7 (Burke et
al., 1995)
January 2020 | V
Patients were categorized according to recursive partitioning analysis (RPA) classes:
†Age < 50 years and World Health Organization (WHO) status 0. ‡ Age < 50 years and
WHO status > 0 or age ≥ 50 years and surgical resection. §Age ≥ 50 years and no
surgical resection
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exploratory reasons, we used a CT to extract patterns from the
data. CTs are highly interpretable and intuitive as well as well
attuned to coping with missing data and heterogeneous data
types (Kelleher et al., 2015). While recursively creating branches
for different covariate values, ordered in function of their
classification error minimization power, the CT algorithm (for
details see Supplementary Material) gradually improves
prediction accuracy. Missing data is handled by classifying
these observations in branches based on surrogate variables,
predicting the most likely missing variable value.

As pointed out by Puranam et al. (2018), we believe that our
sample size of 3090 temozolomide-treated patients was
sufficiently large to extract valuable evidence (Shaikhina et al.,
2017). Although identification of the best classification model
was not the main purpose of this research, we did compare this
technique with a logistic regression model, one of the most
commonly used statistical classification methods in the
medicinal literature (Kononenko and Kukar, 2001).

The set of treated patients T was divided into a training set,
comprising 80% (2472 units) of the temozolomide-treated patients
sampled at random, and a test set, comprising the remaining 20%
(618 units). The CT algorithm was trained and validated using 10-
fold cross validation to obtain the most generalizable model using
the “rpart” package within R, which implements the Classification
and Regression Tree (CART) algorithm described by Breiman et
al. (1984). Given that the difference between our defined binary
response and predicted response by the classification model can be
described by a confusion matrix, we can define the following
properties: the number of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). From these
properties, the true positive rate (TPR) and the true negative rate
(TNR) are defined as TPR = TP/(TP + FN) and FPR = FP/(TN +
FP), respectively. The CT and logistic regression model
performance were then evaluated by calculating the area under
the curve (AUC) of the receiver operating characteristic (ROC)
curve, mapping the models’ sensitivity and specificity measured by
the TPR and 1 –TNR, respectively (Fawcett, 2006; Cherny et al.,
2015). The AUC and ROC curves were computed using the
“pROC” package within R (Robin et al., 2011).

Iterative Exploratory Learning Process
The focus of this study was on investigating the confounding
factors and causal effects of individual treatment response to
temozolomide. As classification methods within machine
learning identify correlations but cannot by themselves
reach causal inference (Puranam et al., 2018), further
interpretation of the CT is required. We conducted a two-
step iterative exploratory learning process, as depicted in
Figure 1 , which aids inductive theory building. This
learning process consisted of the evaluation of (i) possible
unobserved confounding variables, for example through
expert consultation, and (ii) the redefinition of response as a
target feature when not available as primary data, by changing
TRR assumptions and/or using different response-
identification algorithms. Iteration ended when no further
improvements were obtained, giving the model’s optimal
AUC achievable in practice (see Appendix for pseudo-code).
Frontiers in Pharmacology | www.frontiersin.org 4140
RESULTS

First, we will show results for the data labeling process for
patients treated with temozolomide. Thereafter, the outcome of
the trained and validated CT is given and evaluated. The training
set for the CTmodel consisted out of 2472 temozolomide-treated
patients. These CT results are finally compared to the results of
the logistic regression model.

Initialization: Binary Response Labeling
The observed covariates significantly affecting the survival time
of temozolomide-treated patients included patients’ age, RT, and
chemotherapeutic treatment (p-value < 0.001), and WHO
performance score (p-value < 0.01) (see supplementary
materials for more details). Nearest neighbor PS matching
based on these covariates resulted in 1063 control units
matched once or multiple times to one treated unit. Following
the ESMO-MCBS (Cherny et al., 2015), we obtained a TRR of
52%, meaning 1,607 of 3,090 temozolomide-treated patients
showed SG > 1 month.

Classification Results
The CART algorithm showed a maximal decrease in
classification error when first dividing the treated patients
according to their age (Figure 2, see supplementary materials
for more details). Another covariate stratifying the training set
included patients’ chemotherapeutic treatment path, but such
covariate interdependencies are currently not analyzed in RCT
and treatment effectiveness studies (Stupp et al., 2005; Strom
and Kimmel, 2006; Stupp et al., 2009; van Genugten et al.,
2010). CT performance evaluation of the test data set resulted in
an AUC of 0.6650 (Figure 3A). Compared to a model that is no
better than a random classifier, featuring an AUC of 0.50, the
CT performed better than chance but still showed poor
prediction skills. Associated with this AUC was a sensitivity
of 0.6850, meaning that 31% of patients who would benefit from
the treatment were not recognized by the model, and a
specificity of 0.5114, meaning that 49% of patients who would
not benefit from the treatment were predicted to benefit by
the model.

The logistic regression model achieved a slightly lower AUC
of 0.6357 with a sensitivity of 0.6337 and specificity of 0.5420
(Figure 3B). Although they showed a better specificity than the
CT, the results of the logistic regression model are still far
too low.

Iterative Exploratory Learning Process
With an AUC of 66.50% and 63.57% for the CT and logistic
model, respectively, further interpretation of the model was
done to obtain a higher sensitivity and lower specificity. In this
temozolomide case, two learning steps were followed depicted
in Figure 1: (i) theorization about possible unobserved
confounding variables and (ii) redefinition of treatment
response as a target feature. In the first case, a low AUC,
which is associated with many misclassifications (false
responders and non-responders), can result from the problem
of spuriousness, suggesting that there may be some important
January 2020 | Volume 10 | Article 1665
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confounding variables that were omitted from the data set, that
were not collected in the data source, or that were just unknown
(i.e., not known from any translational research). As an
example, from our case, the BCR does not dispose of genetic
information such as the methylation of the promoter for the
gene encoding O-6-methylguanine-DNA methyltransferase.
However, based on clinical research literature, this appears to
be associated with a higher survival benefit (Stupp et al., 2005;
Stupp et al., 2009).

In the second case, one can modify the TRR definition. In our
case, for example, modifying the threshold to 3 months (giving a
TRR of 43%) in the algorithm led to a CT with a different
structure and lower AUC of 0.6005 (see supplementary
materials). Again, age and status of chemotherapeutic
treatment were shown to be the main classification variables.
DISCUSSION

Although the prediction structure induced by RWD confirms
the importance of patient age, which was previously used as a
Frontiers in Pharmacology | www.frontiersin.org 5141
stratification variable during RCT, the CT based on observational
data reveals extra interdependencies of chemotherapy as a co-
treatment effect, which was not found in preceding RCT-based
studies. Such variable interdependencies cannot be investigated
through current pharmacoepidemiology methods, including
Kaplan Meier survival analysis techniques. In the following
sections, we will discuss the causality assessment to generate
hypotheses about personal treatment effectiveness and show the
significance of this method. Next, we will discuss some
limitations of the proposed method as well as possible issues
with the data.

Hypotheses Generation Through
Exploratory Learning
Our CT model had an AUC of 67% with an associated sensitivity
equal to 0.69 and specificity equal to 0.51. In the case of cancer
treatments, a low specificity is undesirable because the treatment
of false positives can be dangerous for the patient, depriving him
or her of correct treatment, and can also be very costly,
considering the high oncology drug prices during health care
budget austerity. Therefore, theorizing about personal treatment
FIGURE 1 | Flowchart of two-step iterative exploratory learning process. The model is iterated until the area under the receiver operating characteristic curve (AUC)
is satisfactory, i.e. until the highest achievable AUC in practice is found. Unobserved confounding variables are (unknown) variables currently not captured in real-
world situations. (AUC, area under the receiver operating characteristic curve; CT, decision tree).
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effectiveness was done following an iterative learning process. A
starting point for the first learning step of the CT was to explain
why false responders and non-responders were observed in the
various groups because this could suggest that there are some
essential variables not being collected in RWD, such as genomic
information, or other unidentified factors confounding RWE that
are not detected by cohort-oriented methods used in current
efficacy and effectiveness studies. Mitigating this problem of
spuriousness may be essential to avoid wrong causal
conclusions. Thus, including known or yet unknown
unobserved (depending on data set used) confounding variables,
for example through expert-consolations or conducting
Frontiers in Pharmacology | www.frontiersin.org 6142
translational research, may lead to a subsequent CART search
to induce a CT with better prediction accuracy and possibly a
higher specificity.

In the second learning step, one can experimentally modify the
TRR definition (under the guidance of experts) and/or method.
Ideally, this can be done by collecting a treatment response
identifier as primary data from the data source, such as
information on tumor growth. Here, the TRR was based on PS
matching and a non-variable SG threshold of 1 month. Depending
on the extent of the phenotype (e.g. blood pressure) and genotype
(e.g. mutations) variable collection in RWD sources, advanced
TRR identification algorithms can greatly improve the labeling.
FIGURE 2 | Summary predictive classification tree model after training and validation. Predicted stratification variables for TMZ in glioblastoma include age, RPA
class, and chemotherapeutic (Chemo) and radiotherapeutic (RT) patient status. For each stratified patient class a confusion matrix indicates the number (N) and
percentage (P) of treated patients from the test set for which the CT predicts treatment response correctly (responders to predicted treatment response and non-
responders to predicted non-response) with respect to the labeled SG value. E.g. the CT model predicts the class of patients aged 52 to 61 years and >63 years
not receiving concomitant or adjuvant chemotherapy to respond to the treatment with a true positive (TP) probability of 58%. For this class, with patients aged < 63
years 82% are correctly predicted (true negative [TN]) not to respond.
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Patient-Level Effectiveness Prediction
We found a combination of age and chemotherapeutic treatment
status to be the main stratification factors of real-world personal
treatment response to temozolomide in glioblastoma. Additionally,
further specifications of these factors not found in preceding RCT-
based studies were discovered. For example, the CT predicts positive
response to the treatment for patients being assigned to
chemotherapeutic treatment and being older than 63 years with a
probability of 66%. Additionally, patients aged 52 to 61 years and
Frontiers in Pharmacology | www.frontiersin.org 7143
>63 years not receiving concomitant or adjuvant chemotherapy are
predicted to respond to the treatment with a probability of 58%.
Using the iterative learning process described in Hypotheses
Generation Through Exploratory Learning section, a higher AUC
and hence better predictions could be obtained when (un)known
stratification factors are identified and included. As an example, in
our case, the BCR does not yet dispose of genetic information, such
as the methylated promoter for the gene encoding O-6-
methylguanine-DNA methyltransferase, which is associated with a
FIGURE 3 | Receiver operating characteristic (ROC) curve featuring model performance evaluation as an area under the curve (AUC), sensitivity TPR and FPR or (1-
specificity) for (A) the CT prediction model 3 and (B) a logistic regression model of the test data set. The CT model (A) featured an AUC of 0.6650, a sensitivity of
0.6850, and a specificity of 0.5114, The logistic regression model (B) achieved a slightly lower AUC of 0.6357 with a sensitivity of 0.6337 and specificity of 0.5420.
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larger survival benefit (Stupp et al., 2005; Stupp et al., 2009; van
Genugten et al., 2010). When the achieved AUC is satisfactory and
thus treatment effectiveness is fully understood, that is, when all
stratification and confounding variables are known, the model can
be used for accurate patient-level effectiveness predictions.

Significance of the Proposed Methodology
for RWD
In this temozolomide-glioblastoma case, the CT was potentially
useful for exploring covariate interdependencies and
confounders of individual treatment responses. With this, the
importance of factors yet unknown to previously conducted
clinical research, such as phenotypical or genotypical
variations, can easily be integrated and tested for their effects
using this technique. Therefore, CTs may be valuable in terms of
discovering variations in patient-level effectiveness of medicines,
which might not be discovered otherwise. This confirms recent
literature discussing the promise of machine learning techniques
in pharmaceutical innovation and decision making (Reps et al.,
2018; Beam and Kohane, 2019; Rajkomar et al., 2019). Therefore,
we argue that RWE-based machine learning analysis can be used
in exploratory treatment effectiveness studies (Berger et al., 2017;
Puranam et al., 2018) for improving the understanding of TRR
and the specification of treatment paths with a level of detail not
previously achieved in pharmacoepidemiology studies of
temozolomide. In practice, when considering cancers that are
being treated following multiple sequences (e.g. first- to third-
line treatments) with a range of different, possibly combined,
interventions (as is the case for melanoma, colorectal, and breast
cancer) in conjunction with a range of different diagnostic tools,
the technique can also be useful for exploring and predicting
optimal treatment sequences and therefore guide clinical
decision making.
Limitations of the Proposed Method
This study does not come without limitations. For the CT’s
predictive accuracy, the quality of the RWD is very important.
Within health care, data sources may be of low veracity, that is,
they may contain incomplete, imprecise, or inconsistent data.
Data cleaning is an important step to mitigate this problem.
Also, data sources may capture a low variety of information.
Here, no primary data on treatment response was available,
which required the use of PS matching to estimate
personal treatment effect. Also, the BCR does not dispose of
genetic information.

Additionally, we must note that the TRR definition did not
consider survival censoring, that is, the OS of both treated and
control patients were assumed to be uncensored. Fortunately, in
this study, censoring was rarely observed given the severity of
the disease; only 1% of matched cohort patients (13 of 1063)
and 7% of treated patients (211 of 3090) had censored OS, and
the latter was only of importance if the SG was less than one
month because these would potentially be wrongfully classified
as non-responsive. In such cases, the use of semi-supervised
machine learning methods, where treatment response as the
Frontiers in Pharmacology | www.frontiersin.org 8144
target feature is missing when the OS of either matched treated
patient and/or matched control patient is censored, may
improve these results.

Lastly, the used matching technique does not control for
unobserved variables and does not consider early patient death
before start of treatment. In our case, the latter may be important
because of short patients’ OS.
CONCLUSIONS

Using machine learning, we showed an increased understanding
of patient-level treatment responses and specification of
individual treatment paths that were not be identified using
cohort-oriented methods used in previous RCT studies. Through
the iterative learning model, confounding factors can be
identified to achieve the most optimal prediction model of
patient-level effectiveness.

We believe that machine learning can be effective in the
observational phase following “initial” licensing in an adaptive
licensing approach, as suggested by Eichler et al. (2012), or in the
pilot phase after licensing following Phase III pre-approval
studies in the sequential study design suggested by Franklin
et al. (2014). In both cases, machine learning can be used for
exploratory treatment effectiveness studies where hypotheses are
generated to further guide efficient designs of large-scale
confirmatory observational trials, both in disease database and
pragmatic RCTs.

The CT method was found to be the suitable for this case
because of its high interpretability and capability to deal with
covariate interdependencies. However, the CT is suitable up to a
maximum level of complexity characterized by the number of
baseline variables, amount of possible treatment pathways and
their combinations, and extent of OS censoring. Thus, when
considering medicinal products such as cetuximab or
panitumumab for colorectal cancer, CTs become inadequate
because more patients will have censored OS while receiving
multiple and more combined treatments in different sequences
depending on their genetic expression, resulting in a smaller
sample-to-feature ratio. As a result, methods should account for
label uncertainty, for example, by including the likelihood of the
treatment response measure. Further studies involving predictive
data analytics used for real-world effectiveness exploration are
needed to determine whether more advanced techniques within
machine learning should be considered to deal with the higher
complexity in these cases. These methods include probability-
based Bayesian classification, support vector machines, and
neural networks conducted through supervised or semi-
supervised learning.
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Ultrafast Shape Recognition (USR), along with its derivatives, are Ligand-Based Virtual
Screening (LBVS) methods that condense 3-dimensional information about molecular
shape, as well as other properties, into a small set of numeric descriptors. These can be
used to efficiently compute a measure of similarity between pairs of molecules using a
simple inverse Manhattan Distance metric. In this study we explore the use of suitable
Machine Learning techniques that can be trained using USR descriptors, so as to improve
the similarity detection of potential new leads. We use molecules from the Directory for
Useful Decoys-Enhanced to construct machine learning models based on three different
algorithms: Gaussian Mixture Models (GMMs), Isolation Forests and Artificial Neural
Networks (ANNs). We train models based on full molecule conformer models, as well
as the Lowest Energy Conformations (LECs) only. We also investigate the performance of
our models when trained on smaller datasets so as to model virtual screening scenarios
when only a small number of actives are known a priori. Our results indicate significant
performance gains over a state of the art USR-derived method, ElectroShape 5D, with
GMMs obtaining a mean performance up to 430% better than that of ElectroShape 5D in
terms of Enrichment Factor with a maximum improvement of up to 940%. Additionally, we
demonstrate that our models are capable of maintaining their performance, in terms of
enrichment factor, within 10% of the mean as the size of the training dataset is
successively reduced. Furthermore, we also demonstrate that running times for
retrospective screening using the machine learning models we selected are faster than
standard USR, on average by a factor of 10, including the time required for training. Our
results show that machine learning techniques can significantly improve the virtual
screening performance and efficiency of the USR family of methods.

Keywords: virtual screening, machine learning, ultrafast shape recognition, ligand based virtual screening, ligand
similarity, ElectroShape
Abbreviations: ANN, artificial neutral Nework; AUC, area under curve; CSR, chiral shape recognition; DG, distance geometry;
DUD, directory of useful decoys; DUD-E, directory of useful decoys-enchanced; EF, enrichment factor; ETKDG,
experimental-torsion knowledge distance geometry; GMM, gaussian mixture model; HTS, high throughput screening;
LBVS, ligand-based virtual screening; LEC, lowest energy conformation; ROC, receiver operator characteristic; SBVS,
structure-based virtual screening; SMILES, simplified molecular input line entry specification; USR, ultrafast shape
recognition; USRCAT, ultrafast shape recognition with CREDO atom types; VS, virtual screening.
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INTRODUCTION

The discovery and development of a new drug is a time-
consuming process that can take 14 years to complete
successfully, incurring a cost of about 2.5 billion US dollars
(DiMasi et al., 2016). Virtual Screening (VS) is a search approach
that leverages electronic databases of chemical compounds and
modern computing resources to streamline this process. The aim
of this process is to computationally pre-screen molecules to find
those that are most likely to exhibit affinity for binding to a given
target protein. In this way, laboratory time and resources
associated with High Throughput Screening (HTS) can be
drastically reduced by preferentially testing only the
compounds that are more likely to become successful leads
(Leach and Gillet, 2007). Advances in processing power and
high-capacity storage as well as development of Big-Data
techniques has made this process of molecular screening
feasible, resulting in significant savings of time and cost and
significantly streamlining the drug discovery cycle (Leach and
Gillet, 2007; Lavecchia and Giovanni, 2013).

Ligand-Based Virtual Screening (LBVS) is underpinned by
the concept of similarity as defined in the Similarity Property
Principle, which simply states that similar molecules tend to
exhibit similar properties (Johnson and Maggiora, 1990). Many
LBVS methods exist, but in essence they all require two steps.
First, is the generation of a descriptor which represents a
molecule. Second, is the search for a quantitative distance
function which given two descriptors pertaining to different
molecules computes the similarity between these. Descriptors
for a library of molecules are compared to a query molecule's
descriptor, which typically exhibits bioactivity. The result is a
similarity ranking of all the molecules in the library. The top
molecules from this list, i.e. the most similar to the bioactive one,
are moved forward for physical testing.

There are many different types of LBVS methods such as
fingerprints, pharmacophore modelling, Quantitative Structure-
Activity Relationship modelling (QSAR), Ultrafast Shape
Recogn i t ion (USR) , e t c . LBVS methods may use
physicochemical properties, 2D topology, 3D molecular shape,
and other dimensions such as electrostatics, lipophilicity, etc. in
their descriptor generation stage. Some methods use a
combination of these features (e.g. SHAFTS uses both
pharmacophores and 3D structure information (Liu et al.,
2011). In the case of LBVS methods that use shape
information, these may be broadly divided into alignment and
alignment-free methods. Alignment methods build a 3D model
of the query and target molecules which are then superimposed.
A common metric is to calculate volume overlap between the
aligned (superpositioned) models. Alignment-free methods do
not require an alignment for the descriptor comparison and are
generally more efficient. For a review of shape-based similarity
methods please refer to Finn and Morris (2013).

Ultrafast Shape Recognition (USR) is an alignment-free LBVS
technique (Ballester and Richards, 2007a; Ballester and Richards,
2007b) that distils molecular shape into a rotation-invariant
descriptor vector made up of 12 real numbers. These
Frontiers in Pharmacology | www.frontiersin.org 2148
descriptors are then compared directly using a modified
Manhattan Distance metric in order to obtain a measure
of similarity.

The greatest advantage of this method is the exceedingly
concise way in which the shape of a molecule is condensed into a
small 12-element descriptor. The comparison of such small
descriptors is fast to compute and efficient to store. This
significant feature of USR made it orders of magnitude faster
than any other shape-based similarity method that existed at the
time (Ballester and Richards, 2007a).

This method was developed in 2007, however, extensions to
this algorithm have since been proposed that extend the purely
shape-based descriptors of USR with other physicochemical
properties of the molecule, examples of which are ElectroShape
4D (Armstrong et al., 2010), ElectroShape 5D (Armstrong et al.,
2011) and USRCAT (Schreyer and Blundell, 2012), which
respectively add atomic partial charges, lipophilicity, and
atomic types to pure USR descriptors, obtaisning better virtual
screening scores than the original USR algorithm.

Even though extensive research has been carried out in the
application of machine learning techniques to structure-based as
well as ligand-based virtual screening, to the best of our
knowledge there has not been a study systematically applying
machine learning to USR and USR-based descriptors. The aim is
to improve virtual screening performance with respect to the
standard USR method.

In this study, we use the datasets provided in Directory of
Useful Decoys-Enhanced (DUD-E) to train machine learning
models based on Gaussian Mixture Models, Isolation Forests,
and Artificial Neural Networks using USR and ElectroShape 5D
descriptors in order to explore the performance improvement
achievable by abandoning the standard USR similarity metric
based on the inverse Manhattan Distance function in favour of a
full machine learning approach.

GMMs and Isolation Forests were chosen because they are
unsupervised, one-class learning methods that can be trained
only on positive examples, in a sense, mimicking the standard
USR method of using actives as search templates. GMMs and
Isolation Forests take different approaches to this one-class
learning problem. The former is a generative model, aiming to
learn the probability distribution governing the training
examples, whilst the latter is an outlier detection model, which
rather than find clusters in the training data, detects outlying
points. Further to these two algorithms, we chose to explore the
use of ANNs in this study. This is a supervised method in wide
use that gives excellent performance in a varied range of
domains. We chose this algorithm because it enabled us to
compare the performances of the two unsupervised methods
with a supervised model. One-class learning methods are
interesting in virtual screening since DUD-E contains real
active molecules but only putative inactives (hence
termed decoys).

Ballester et al. (2009) determined that using the LECs as active
search templates provides a good performance-speed balance
when evaluating compound databases using USR. We, therefore
train alternative models using full active molecule conformers as
February 2020 | Volume 10 | Article 1675
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training data as well as using only the active LECs in order to
determine the performance differences between the
two approaches.

Additionally, we also train similar models based on
successively smaller fractions of the available training dataset
so as to gauge the performance degradation of our models with
respect to training dataset size. A good performance achieved
even with a small number of active training examples is desirable
because often, only a small number of actives are known a priori
at the commencement of a prospective virtual screening exercise.

Through this study we demonstrate the potential of these
techniques in significantly improving their retrospective
screening performance. Our models obtain performance
improvements over the state-ofthe-art ElectroShape 5D
algorithm of a similar magnitude to those obtained by
ElectroShape 5D itself over the original USR method, which
were on the order of a maximum improvement of 738% and
mean improvement of 253% for full conformers and a maximum
of 755% and mean of 283% for LECs.

Ultrafast Shape Recognition
The USR technique was ideated by Ballester and Richards
( 2007a ; 2 007b ) whe r e i n th ey p ropo s ed a nove l
nonsuperpositional shape-based virtual screening technique
meant to preserve the virtual screening performance of
superpositional algorithms while obtaining the speed benefits
of non-superpositional methods.

Ballester et al. point out that the 3D shape of a molecule can
be encoded by taking the Euclidean distance of each atom to a
predetermined number of centroids located within the space
occupied by the molecule. The number and position of the
Frontiers in Pharmacology | www.frontiersin.org 3149
centroids can be arbitrary, however, while pointing out that
their selection had not been validated to be the optimal one, the
authors chose four well-defined centroids as follows:

1. The molecular centroid (ctd)
2. The closest atom to ctd (cst)
3. The furthest atom from ctd (fct)
4. The furthest atom to fct (ftf).

Centroids computed for an example molecule are shown in
Figure 1. Computing the Euclidean distances of all the atoms in
the conformer to each of these four centroids yields four separate
distance distributions of size proportional to the number of
atoms making up the molecule.

As Ballester et al. indicate, however, there are several reasons
these distributions are problematic to work with for the purposes
of similarity searching. Most importantly, making use of these
distributions as-is, it would not be possible to compare molecules
having differing numbers of atoms because the distributions
yielded by molecules of different sizes would also be of
different sizes. In addition to this, distributions are normally
represented as histograms, however this would still leave open
the question of finding an optimal bin size given distributions of
wildly differing sizes and characteristics generated from a
database of molecules, not to mention the storage volume and
processing power required for their processing.

They solve these problems by pointing out that a distribution
is completely determined by its statistical moments (Hall, 1983),
and condensing the four distributions into their respective first
three moments, corresponding to the mean, the variance and the
skewness of the distribution (Ballester and Richards, 2007a). This
FIGURE 1 | Illustration of USR centroids computed for a sample conformer of the Zidovoudine molecule. Centroids are indicated with yellow spheres. Lines
between every centroid and the molecular centre are displayed for clarity. Four different rotations of the molecule are illustrated. Legend: ctd, molecular centroid; cst,
closest atom to ctd; fct, furthest atom to ctd; ftf, furthest atom from fct.
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results in a vector of 12 decimal values making up a descriptor
encapsulating shape information for a given conformer. The
authors propose using this vector as a stand-in for the molecule's
3D structure in similarity comparisons. Ballester et al. (2009)
modify this process by taking the square root and cube root of
the second and third moments respectively, thus normalising
them to a scale comparable to that of the first moment and
resulting in better similarity matching performance.

The resulting descriptors could, in theory, be compared to
each other using any similarity measure, however Ballester et al.
chose to use a metric based on the Manhattan distance according
to Equation 1.

Sqi = (1 +
1
12o

12

l=1

jMq
l −Mi

l j)−1 (1)

where Sqi gives a similarity value between the query conformer q
and the conformer i being screened and ~Mq and ~Mi are the
descriptor vectors for the query conformer and the conformer
being screened, respectively. Here the sum is normalised by
dividing it by the number of elements in the USR descriptor.

Ballester et al. (2009) formally evaluated the USR method
comparing it to ESshape3D in terms of Enrichment Factor (EF)
finding it to offer, on average, significantly better ranking
performance. They furthermore pointed out that the ideal
active conformers to use as search templates are those
experimentally observed in their bound state via X-ray
crystallography or MRI. When this is not available, however,
they show that using the LECs is a good, but obviously not
perfect, approximation. When using LECs they obtained
retrospective virtual screening performance that is only slightly
worse than the maximum possible enrichment.

As they point out, the method can be easily extended by
incorporating into the descriptors other, nonspatial, atomic-
centred information (Ballester et al., 2009). This was achieved
by Armstrong et al. in a series of three papers—Armstrong et al.
(2009); Armstrong et al. (2010) and Armstrong et al. (2011).

Armstrong's first effort at extending USR (Armstrong et al.,
2009) was in the development of the Chiral Shape Recognition
(CSR) method, aimed at overcoming the shortcoming of USR
that enantiomers, i.e. molecules that are mirror images of each
other, generate identical descriptors, however do not necessarily
bind equally to a protein, causing false positives. Armstrong et al.
modified the USR method to account for chirality in the
descriptor calculation, thus eliminating this source of error and
obtaining enrichment factor improvements of 121%, 113%, and
106% at 0.25%, 0.5%, and 1% EF respectively.

Subsequently, Armstrong et al. (2010) again modified CSR by
incorporating atomic partial charges into its descriptors,
resulting in a new method they called ElectroShape. They did
this by adding an extra dimension to the descriptors, consisting
of the partial charge pertaining to each atom scaled by a constant
quantity Q so as to give them a magnitude comparable to the
other spatial dimensions. This method resulted in a near
doubling in performance over USR.

Armstrong et al. further extended their ElectroShape method
in 2011 by adding lipophilicity in the form of ALogP to the
Frontiers in Pharmacology | www.frontiersin.org 4150
ElectroShape descriptors in a similar manner as they had done
for electrostatics, obtaining a further mean performance
improvement of 110% over ElectroShape (Armstrong et al.,
2011). This method shall hereafter by referred to as
ElectroShape 5D.

Ultrafast Shape Recognition with CREDO Atom Types
(USRCAT) is a further method that extends USR. Proposed by
Schreyer and Blundell (2012), this method incorporates the atom
types maintained in the CREDO Structural Interatomics
Database (Schreyer and Blundell, 2009), these being
hydrophobic, aromatic, hydrogen bond donor and hydrogen
bond acceptor. It does this by computing separate distributions
for each atom type, joining the resulting distribution moments
into a single descriptor vector with 60 elements. USRCAT, on
average, obtained a slightly higher average performance score
than ElectroShape in retrospective screening on the DUD-E
database with an EF0.25% of 15.64 as opposed to 8.84 for USR
and 14.48 for ElectroShape, however the exact performance
depended on the target under consideration, with some targets
scoring better than ElectroShape and others worse.

Other extensions to USR have also been proposed with a
variety of modifications, ranging from the combination of USR
descriptors with 2D fingerprints, incorporating atomic types and
applying graph theory to the USR centroid concept (Cannon
et al., 2008; Shave et al., 2015).

Machine Learning Methods
Machine learning techniques have been applied extensively to
virtual screening; both in Structure-Based Virtual Screening
(SBVS) (Betzi et al., 2006; Ain et al., 2015; Wojcikowski et al.,
2017) as well as LBVS where 2D fingerprints are naturally suited
to be used as training data for machine learning algorithms
(Stahura and Bajorath, 2004; Hert et al., 2006; Chen et al., 2007;
Geppert et al., 2010; Kurczab et al., 2011; Lavecchia, 2015). This
has, however, not been the case with USR, where to our
knowledge, only Cannon et al. (2008) have applied machine
learning to USR descriptors, and even then, in combination with
2D fingerprints.

In the work presented in this paper, we make an initial effort
to fill this lacuna in current research related to USR, obtaining
significant performance improvements over one of the highest
performing USR-derived methods, ElectroShape 5D, by training
severa l machine learning models on ElectroShape
5D descriptors.

LBVS can be considered as a ranking problem, where the
objective is to sort molecules by similarity to one or more ligands
that are used as search templates. We have chosen three machine
learning algorithms to explore in this study, that are well suited
to model this problem—GMMs, Isolation Forests, and ANNs.

A Gaussian Mixture Model (Reynolds, 2015) is a generative
machine-learning model that models a distribution of data
points using a combination of weighted Gaussian distributions.
It can be considered to be a clustering algorithm similar to k-
means (Hartigan and Wong, 1979); however, in a GMM, cluster
membership of a data point is not absolute but instead is
influenced probabilistically by several centroids. A GMM is
described mathematically by Equation 2 below:
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f (xjm,S) = o
M

k=1

ck
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p Skj jp exp½ x − mk)

TS−1
k x − mkð Þ� �

(2)

where M is the number of Gaussians, also known as
components, making up the GMM; µk is the mean for
component k; Sk is the covariance matrix for component k,
giving the co-variance between every pair of dimensions; and ck
is the weight for component k. These number of components is a
hyperparameter of the algorithm as is usually tuned through an
iterative cross-validation process. The GMM is trained using the
Expectation Maximization algorithm (Dempster et al., 1977).

GMMs have wide-ranging applications in machine learning.
They have been used in speech recognition (Stuttle, 2003), audio
speech classification (Siegler et al., 1997), for language and
speaker identification (Reynolds, 1995; Reynolds and Rose,
1995), as well as in visual object tracking (Santosh et al., 2013)
and image enhancement applications (Celik and Tjahjadi, 2011).
They have also been used in virtual screening and, in particular,
protein-ligand docking (Grant and Pickup, 1995; Grant et al.,
1996; Jahn et al., 2010; Jahn et al., 2011).

Isolation forests (Liu et al., 2008) are a class of machine
learning models known as ensemble models. Ensemble models
make use of a collection of simpler models to improve their
predictions over those that would have been obtained by any
single one model. Isolation Forests are similar to the Random
Forest algorithm (Ho, 1995) in that they create a number of
Decision Trees (Breiman, 2017) based on the training data and
averages the predictions from each decision tree to arrive at a
final result. While Random Forests are a supervised algorithm
used to perform classification tasks, Isolation Forests are
unsupervised and are meant to be used to perform anomaly
detection in a set of observations.

Contrary to other clustering algorithms which attempt to
identify similar samples within the input dataset, Isolation
Forests explicitly identify anomalies in the data. They do so by
exploiting the fact that, averaged over a number of Decision
Trees, the path length that will be needed to generate a prediction
for an outlier will be, on average, significantly shorter than that
required for an inlier observation.

The rationale for using Isolation Forests as an algorithm for ranking
USR descriptors is by extension of the formal evaluation of the USR
method by Ballester et al. (2009). Herein it was shown that upon
clustering the conformers of the active molecules for a given protein,
several cluster centroids emerge, corresponding to shapes matching the
one or more binding modes presented by the target protein.

By definition, a large number of actives will fall on, or close to a
given centroid, since most active molecules will have at least one
conformer that matches a binding mode of the target protein. This
means that, taking all the active conformers as a set, high-density
zones should be apparent and centred around the cluster centroids.
Non-binding conformers, on the other hand, will fall outside these
high-density zones, making them into outliers or anomalies.
Training an Isolation Forest using the descriptors for the active
molecules and ranking these points by their anomaly score should
yield results with good predictive power.

The thirdmachine learning algorithm that we explored along the
course of this study is the Artificial Neural Network (ANN). ANNs
Frontiers in Pharmacology | www.frontiersin.org 5151
are models loosely inspired by the structure of the brain, beingmade
up of several successive layers of nodes (neurons), each output of
one layer of nodes feeding in to the inputs of the next.

The neural net is usually set up with an input layer having the
same number of nodes as the number of features in the input
data. The output of the input layer is then routed through one or
more hidden layers and into an output layer which gives the
result predicted by the network.

A single node j in layer i of a neural network consists of a
vector of weights Wi,j equal in length to the number of nodes in
layer i − 1 and an activation function, which computes an output
value for the neuron ai,j by taking into account the outputs of the
previous layer ai−i and the corresponding weights Wi.

There are a variety of activation functions that may be used in
a neural network layer and it is possible to use different activation
functions in different layers of a single network. Common ones
include linear, sigmoid, and Rectified Linear Unit (RelU).

ANNs can be used for both classification as well as regression
problems. For regression tasks, the output layer normally
consists of one node with a linear activation function giving a
real-valued output. For a classification network, the output layer
is normally set up with one node for each class. The Softmax
function, also called the Normalised Exponential Function, is
applied to the outputs resulting a set of probabilities over the
output classes.

In the context of molecule similarity ranking, regression
networks are clearly the type of neural network that are the
most suitable and the type of network used in this study. In our
experiments, we used RelU activation for our hidden layer and
linear activation on the output layer. The RelU activation is
simple and is described by Equation 3 below:

f xð Þ =
0, if x ≤ 0

x, if x ≥ 0

(

(3)

The linear activation function is also simple: f(x) = x.
Our intention in the selection of these three particular

machine learning algorithms for our study was primarily to
explore one-class learning models. Additionally, the “traditional”
virtual screening process only involves using the known actives
as “templates” against which to compare candidate molecules
and not any decoys. Translating this into the machine-learning
domain, this could be compared to one-class learning methods
that, unlike supervised binary classifiers, do not make use of
negative examples, but only positive ones. For these reason, we
focussed most of our resources on exploring one-class learning
algorithms, as we believed they would be better suited to the
LBVS problem. However, we selected ANN as a general-purpose,
widely-used supervised algorithm against which to compare the
performance of the other one-class learning algorithms.
METHODS

Most of the previous literature involving USR has been evaluated
on the Directory of Useful Decoys (DUD) database of
compounds (Huang et al., 2006), however shortcomings have
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since been identified in DUD (Mysinger et al., 2012). Actives in
the dataset were not diverse enough to ensure unbiased results
from virtual screening algorithms. Decoy selection was also not
optimal as significant imbalance existed between the net charges
of actives and decoys with 42% of the actives having a net charge
versus only 15% of the decoys. In 2012, Mysinger et al. released a
new and updated database named DUD-E which tackled these
shortcomings (Mysinger et al., 2012). DUD-E provides active
and decoy datasets for 102 protein targets with an average active/
decoy ratio of 1:50. To our knowledge, only the USRCAT
method has been evaluated on DUD-E. We, therefore, made
the choice of using the DUD-E the purposes of training and
evaluating our models.

As previous work was evaluated on the DUD database, for
ease of comparison, we selected the DUD38 subset of targets
provided by DUD-E which consists of 38 of the 40 targets in
Frontiers in Pharmacology | www.frontiersin.org 6152
DUD. The protein targets we considered together with the
respective number of actives, decoys and resulting conformers
are shown in Table 1. We have also provided the dataset sizes on
disk for the 3D conformers that we generated from the SMILES
representations of the molecule datasets as well as the sizes of the
descriptors generated from said conformer data. These can be
seen in Table S2 in the Supplementary Material.

As with many virtual screening methods that depend on
molecular 3D shape, a sufficient number of conformers have to
be generated to adequately sample the molecules' conformational
space in order to produce effective results in USR. We generated
conformers from the Simplified Molecular Input Line Entry
Specification (SMILES) strings provided in DUD-E using the
RDKit open-source cheminformatics library (Landrum and
Others, 2013) following the protocol devised by Ebejer
et al. (2012).
TABLE 1 | The list of 38 protein targets that we considered in this study along with the number of active and decoy molecules that were available for each protein
target, and the respective number of active and decoy conformers we generated. These targets correspond to the “Dud38” subset in DUD-E.

Target Description Active
Mols.

Decoy
Mols.

Active
Confs.

Decoy
Confs.

Confs./mol
(Actives)

Confs./mol
(Decoys)

ACE Angiotensin-converting enzyme 282 16,900 31,947 1,266,730 113 74
ACES Acetylcholinesterase 453 26,250 55,549 2,153,887 122 82
ADA Adenosine deaminase 93 5,450 7,786 332,177 83 60
ALDR Aldose reductase 159 9,000 4,797 375,355 30 41
AMPC Beta-lactamase 48 2,850 1,351 99,431 28 34
ANDR Androgen Receptor 269 14,350 12,068 543,761 44 37
CDK2 Cyclin-dependent kinase 2 474 27,850 21,273 1,371,687 44 49
COMT Catechol O-methyltransferase 41 3,850 1,262 147,125 30 38
DYR Dihydrofolate reductase 231 17,200 16,679 873,009 72 50
EGFR Epidermal growth factor receptor erbB1 542 35,050 41,580 2,405,525 76 68
ESR1 Estrogen receptor alpha 383 20,685 21,024 1,212,349 54 58
FA10 Coagulation factor X 537 28,325 38,757 2,087,845 72 73
FGFR1 Fibroblast growth factor receptor 1 139 8,700 9,232 535,529 66 61
GCR Glucocorticoid receptor 258 15,000 12,111 652,595 46 43
HIVPR Human immunodeficiency virus type 1 protease 536 35,750 67,552 3,436,686 126 96
HIVRT Human immunodeficiency virus type 1 reverse transcriptase 338 18,891 16,576 836,334 49 44
HMDH HMG-CoA reductase 170 8,750 22,037 827,459 129 94
HS90A Heat shock protein HSP 90-alpha 88 4,850 4,918 235,367 55 48
INHA Enoyl-[acyl-carrier-protein] reductase 43 2,300 3,900 118,362 90 51
KITH Thymidine kinase 57 2,850 3,168 150,295 55 52
MCR Mineralocorticoid receptor 94 5,150 3,960 215,697 42 41
MK14 MAP kinase p38 alpha 578 35,850 34,310 2,096,198 59 58
NRAM Neuraminidase 98 6,200 6,030 325,337 61 52
PARP1 Poly [ADP-ribose] polymerase-1 508 30,050 18,925 1,242,760 37 41
PDE5A Phosphodiesterase 5A 398 27,550 32,657 1,876,746 82 68
PGH1 Cyclooxygenase-1 195 10,800 8,123 410,263 41 37
PGH2 Cyclooxygenase-2 435 23,150 19,598 960,837 45 41
PNPH Purine nucleoside phosphorylase 103 6,950 3,277 284,801 31 40
PPARG Peroxisome proliferator-activated receptor gamma 484 25,300 71,166 2,527,881 147 99
PRGR Progesterone receptor 293 15,650 13,041 578,492 44 36
PUR2 GAR transformylase 50 2,700 7,931 195,987 158 72
PYGM Muscle glycogen phosphorylase 77 3,950 3,300 212,652 42 53
RXRA Retinoid X receptor alpha 131 6,950 8,008 316,919 61 45
SAHH Adenosylhomocysteinase 63 3,450 1,883 118,691 29 34
SRC Tyrosine-protein kinase SRC 524 34,500 39,561 2,313,655 75 67
THRB Thrombin 461 27,004 57,028 2,131,048 123 78
TRY1 Trypsin I 449 25,980 47,961 1,933,063 106 74
VGFR2 Vascular endothelial growth factor receptor 2 409 24,950 25,349 1,518,622 61 60
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Conformer generation is performed using open-source code
by Steven Kearnes

1

which follows the protocol laid out by (Ebejer
et al., 2012). We modified this code in two ways:

• Use of ETKDG. We modified the code to use Experimental
Torsion Knowledge Distance Geometry (ETKDG) as the
conformer generation algorithm (Riniker and Landrum,
2015). ETKDG is a stochastic conformer generation method
which builds upon the existing Distance Geometry (DG)
algorithm (Blaney and Dixon, 1994) by using experimental
knowledge about preferential torsional-angles. The major
advantage in using ETKDG as opposed to DG is that the
output of DG is not optimal and the resulting conformers
may be in a distorted state (e.g., aromatic rings which are not
planar). In order to remedy this, a second energy
minimisation step is usually performed on these conformers
in which inter-atomic force-field calculations are used to relax
the molecule into a stable, energy-minimized state. This
computationally expensive step is avoided by Experimental-
Torsion Knowledge Distance Geometry (ETKDG) as the
embedded knowledge in the algorithm produces conformers
that are already energy minimized.

• Maximum energy cutoff. We removed all conformers which
had a total energy higher than that of the LEC by 5 kcal/mol
or more. This ensures that conformers with high energy
(typically unsound structures) are discarded.

Prior to conformer generation, we validated and standardized
the molecules using the MolVS tool

2

. This tool has been now
integrated into RDKit.

Once we had generated a sufficient number of conformers for
the compounds pertaining to our chosen protein targets, we
calculated USR descriptors as well as descriptors for CSR,
ElectroShape, and ElectroShape 5D for all the generated
conformers. Note, however, that for reasons of time and
resource availability, we chose to perform our machine
learning experiments exclusively on the descriptors for USR
and those for ElectroShape 5D. ElectroShape 5D was chosen
because it is the highest performing USR-like method among
those we evaluated.

The processes of conformer and descriptor generation
resulted in excess of 300 GB of data. In order to generate and
process this in a feasible amount of time, we used a Python 3.6/
Spark 2.3.0 cluster on Amazon Web Services consisting of 3
compute-optimised c5.2xlarge instances having 8 cores and 16
GB of memory each. Cheminformatics analysis was performed
using RDKit (version 2018.09.1). We also used the machine
learning algorithms supplied with version 0.20.2 of the Scikit-
learn library as well as Keras v.2.2.4/Tensorflow v.1.14.

Experiments
The first experiments that we conducted were retrospective
virtual screening using both USR and ElectroShape 5D over all
the DUD38 protein targets in DUD-E. This gave us a baseline
1https://github.com/pandegroup/vs-utils [Last Accessed 4 May 2019]
2https://github.com/mcs07/MolVS [Last Accessed: 5 August 2019]
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performance level against which to compare the results of the
machine learning experiments.

For both USR as well as ElectroShape 5D, two versions of the
experiments were performed.

The first used the full molecule conformer models of the
actives as search templates for the similarity matching,
comparing each conformer of each unknown molecule to each
conformer of the template, taking the maximum similarity as the
similarity score between the two molecules.

The second used only the LEC for each active as the search
templates rather than all the active conformers in order to
replicate the results of Ballester et al. (2009).

Having obtained baseline performance measures for the
standard Manhattan distance-based USR and ElectroShape 5D
screening processes, we proceeded to train the three types of
machine learning models described previously.

Our training protocol was similar for all three algorithms and
is described as follows:

1. Partition the training set into test set T (20%) and training set
L (80%).

2. Partition L set into 5 folds, L1…L5.
3. For every choice of hyperparameter (grid search), perform 5-

fold cross validation on L, i.e. perform training and testing
over j = 1…5 iterations, each time taking Lj = x as a test set and
the 4 folds Lj ≠ x together as training set.

4. Select highest scoring grid search hyperparameter value
combination averaged over the 5 iterations.

5. Train model using highest performing hyperparameter
combination using L as the training set and T as the test
set to evaluate final model. This ensures that the final test set
is completely disjoint from the training data and avoids bias
in the final results.

This process was repeated for every protein target at
successively smaller portions of the entire dataset available in
DUD-E equivalent to 100%, 80%, 60%, 50%, 30%, 10%, 5%, and
10 molecules, selected at random. All this is furthermore
repeated for models trained using full molecule conformer
models and for LECs models, running the training/testing
cycle for a total of 16 times per protein target.

Evaluation
For every model trained, we evaluated the performance using
two criteria—the Receiver Operator Characteristic (ROC) Area
Under Curve (AUC) and the EF. EF is a measure used specifically
in retrospective virtual screening studies. EF at a given
percentage of a dataset is defined as the ratio of the fraction of
actives correctly found within the first x% of the ranked dataset
to the fraction of actives that would be found by chance. This is
defined formally in Equation 4.

EFx% =
ax%=cx%

a100%=c100%

where EFx% is the enrichment factor at x%, ax% is the number
of actives found in the top x% of the sorted dataset and cx% is the
total number of compounds in x% of the dataset. This measure,
however, depends on the ratio of decoys to actives that are
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present in the dataset, and therefore is problematic to use when
comparing results across different studies. For this reason, we
also evaluate our models based on the ROC AUC.

The disadvantage to using ROC AUC performance metric, in
the context of retrospective virtual screening, is that they give a
picture of the performance of the method across the entire
dataset, however in virtual screening only the top-ranked
molecules are of interest. This is because in a prospective
screening scenario, it is not possible to physically test all the
compounds in the dataset and the available resources for testing
in the laboratory would be invested only on the best-
ranked compounds.

Unlike the EF, the ROC AUC does not depend on the
structure of the dataset, making it more suitable and robust
when used for comparison across studies using different
benchmark datasets.
RESULTS

The first stage in our experiments was to implement and evaluate
the standard USR and ElectroShape 5D methods. Evaluation of
our results with those of Ballester et al. (2009) and Armstrong
et al. (2011) show them to be comparable albeit with differences,
since they are evaluated on different datasets with a different
decoy selection. Our results are shown in Figures 2 and 3. As can
be seen, ElectroShape 5D obtains better performance than
Frontiers in Pharmacology | www.frontiersin.org 8154
standard USR in all the protein targets being considered. The
corresponding ROC AUC measures can be seen in the
Supplementary Material.

We observed that, in general, our results show a similar trend
to those presented by Armstrong et al. (2011) (reproduced in
Figure 4), i.e., most targets that show a high enrichment in our
results also show a high enrichment in Armstrong's results and
vice versa , but there are differences. The Pearson
productmoment correlation coefficient for the two sets of data
is 0.35, indicating a mild positive correlation. Given the
differences in decoy selection in DUD-E in comparison with
DUD (Mysinger et al., 2012), it is not surprising that our results
differ from those obtained by Armstrong. This relatively low,
albeit positive, correlation coefficient, indicates that differences in
dataset selection can have a significant impact on virtual
screening results.

Once we generated results for our baseline methods, we
trained and evaluated our machine learning models as
described in the section Experiments. The results obtained
from our machine learning experiments are visualised as
follows. For each machine learning model, we have graphed
the EF1% as well as the ROC AUC achieved by the model along
with the corresponding evaluation result achieved by
ElectroShape 5D. Along with these we graph the improvement
ratio between the performance of the model and the performance
of ElectroShape 5D so as to indicate immediately the advantage
in performance afforded by the use of the machine learning
FIGURE 2 | Comparison of Enrichment Factor at 1% (EF1%) obtained by USR with that obtained by ElectroShape 5D using full conformer models. Also plotted is
the percentage ratio of the Enrichment Factor score of ElectroShape 5D compared to Ultrafast Shape Recognition (USR). Mean ratio = 253% ± 122%, max = 738%,
min = 104%.
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FIGURE 3 | Comparison of Enrichment Factor at 1% obtained by USR with that obtained by ElectroShape 5D using Lowest Energy Conformers. Also plotted is the
percentage ratio of the Enrichment Factor score of ElectroShape 5D compared to Ultrafast Shape Recognition (USR). Mean ratio = 283% ± 125%, max = 755%,
min = 124%.
FIGURE 4 | ElectroShape 5D EF1% calculated on the DUD dataset as reported in Armstrong et al. (2011). Legend: 5D(x,y,z,q = MMFF94x,aLogP)—ElectroShape
5D with partial charge and lipophilicity as the 4th and 5th dimensions, 4D(x,y,z,q = MMFF94x)—ElectroShape 4D using partial charge as the 4th dimension, 4D(x,y,z,
q = aLogP)—ElectroShape 4D using lipophilicity as the 4th dimension. Reproduced from Armstrong et al., 2011.
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method over ElectroShape 5D for every protein target. We do
this for models trained on full conformer models as well as for
those trained on LECs. Due to space constraints, we only present
the EF1% results. These can be seen in Figures 5–11. A complete
set of visualisations is made available in the Supplementary
Material (Figures S1–S15).

All the results obtained by the machine learning models we
trained are presented in tabular form in Table 2.

Note that when training the ANNs, we expected to see a
performance drop in the LEC model with respect to the full
conformer-trained model, as for the other models, however,
training both using a hidden layer size of 100 nodes, this did
not materialise and the performance obtained for the LEC-
trained model, in terms of mean EF1% improvement ratio over
ElectroShape 5D, was virtually the same for the same hidden
layer size (255% ± 106% vs. 256% ± 129%). Upon increasing the
hidden layer size to 500 nodes, this situation did not change
(333% ± 128% vs. 327% ± 148%). It is also interesting that the
ANN performance did not surpass that of the full-conformer
GMM. Based on these results, the ANN model does not perform
as well as GMMs.

It is also important to note that the imbalance in the training
datasets, i.e., the ∼1:50 active/decoy ratio, can cause some
supervised machine learning models such as ANNs to give
misleading test results by adapting their response to the
distribution of labels in the training data rather than to the
structure of the data itself. We verified the effect of the DUD-E
unbalanced datasets on our ANN models by training alternative
Frontiers in Pharmacology | www.frontiersin.org 10156
models using oversampling of the active conformers to balance
the active/decoy ratio. Through these experiments we saw that
the results obtained by balancing the datasets were comparable to
those obtained from the unbalanced ones (mean unbalanced
ROC AUC = 0.937 ± 0.037 vs. balanced ROC AUC = 0.955 ±
0.33, mean unbalanced EF1% = 38.2 ± 11.7 vs. mean balanced
EF1% = 37.3 ± 14.7). Balancing the datasets in this way, however
results in almost twice the training data for each model that is
trained, and therefore a correspondingly longer training time.
Given the marginal differences in results obtained through these
experiments, therefore, we stuck to using the original unbalanced
data to train our ANNs. Note that dataset balance is not an issue
with either GMMs or Isolation Forests since decoys are not used
when training these models.

Varying the Size of the Training Dataset
We have repeated our experiments for every machine learning
algorithm multiple times using successively smaller portions of
the available dataset so as to explore the manner in which the
performance given by each model degrades with dataset size and
to understand how the performance of machine learning models
degrades with a reduced dataset.

Figures 12 and 13 contain plots illustrating the performance
variation with number of known actives of our GMM models,
the best performing models in our tests. The complete set of
figures illustrating the performance change with dataset size for
all our trained models can be found in the Supplementary
Material (Figures S1–S15).
FIGURE 5 | Comparison of Enrichment Factor at 1% obtained by Gaussian Mixture Models with that obtained by ElectroShape 5D using full conformer model. Also
plotted is the percentage ratio of the Enrichment Factor score of Gaussian Mixture Model (GMM) compared to ElectroShape 5D. Mean ratio = 430% ± 223%,
max = 941%, min = 107%.
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FIGURE 6 | Comparison of Enrichment Factor at 1% obtained by Gaussian Mixture Model with that obtained by ElectroShape 5D using Lowest Energy Conformers.
Also plotted is the percentage ratio of the Enrichment Factor score of Gaussian Mixture Model (GMM) compared to ElectroShape 5D. Mean ratio = 291% ± 162%,
max = 829%, min = 0%.
FIGURE 7 | Comparison of Enrichment Factor at 1% obtained by Isolation Forest with that obtained by ElectroShape 5D using full conformer model. Also plotted is
the percentage ratio of the Enrichment Factor score of Isolation Forest compared to ElectroShape 5D. Mean ratio = 211% ± 90%, max = 941%, min = 107%.
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FIGURE 8 | Comparison of Enrichment Factor at 1% obtained by Isolation Forest with that obtained by ElectroShape 5D using Lowest Energy Conformers. Also plotted is
the percentage ratio of the Enrichment Factor score of Isolation Forest compared to ElectroShape 5D. Mean ratio = 190% ± 84%, max = 460%, min = 0%.
FIGURE 9 | Comparison of Enrichment Factor at 1% obtained by Artifical Neural Networks with 500-node hidden layer with that obtained by ElectroShape 5D using
full conformer models. Also plotted is the percentage ratio of the Enrichment Factor score of Artificial Neural Network (ANN) compared to ElectroShape 5D. Mean
ratio = 328% ± 149%, max = 636%, min = 30%.
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FIGURE 10 | Comparison of Enrichment Factor at 1% obtained by Artificial Neural Networks with 100-node hidden layer with that obtained by ElectroShape 5D
using full conformer models. Also plotted is the percentage ratio of the Enrichment Factor score of Artificial Neural Network (ANN) compared to ElectroShape 5D.
Mean ratio = 256% ± 129%, max = 565%, min = 82%.
FIGURE 11 | Comparison of Enrichment Factor at 1% obtained by Artifical Neural Networks with 100-node hidden layer with that obtained by ElectroShape 5D
using Lowest Energy Conformers. Also plotted is the percentage ratio of the Enrichment Factor score of Artificial Neural Network (ANN) compared to ElectroShape
5D. Mean ratio = 256% ± 107%, max = 491%, min = 57%.
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The statistical significance annotations were computed using
the Wilcoxon rank-sum test (Mann and Whitney, 1947). This is
a non-parametric test and therefore does not assume normality
in the data. We have visually checked the distribution for each
bin using histograms and found that they were not normal. It
also assumed that the groups being compared are independent
and not paired, which is the case with our box plots. The
Wilcocon rank-sum test tests the null hypothesis that for any
two observations a and b drawn from group A and group B
respectively, the probability of a being greater that b is the same
as that for b being greater that a. This test is used to investigate
whether two sampling distributions are the same.
Frontiers in Pharmacology | www.frontiersin.org 14160
It is apparent from these figures that performance is
better maintained for low number of actives by using full
conformer models than by LECs. This is most pronounced
for Neural Networks as well as GMMs, however it is also
apparent for Isolation Forests, albeit more weakly.
Nevertheless, even for small active training sets for which
the mean performance is low, outliers are apparent with high
enrichment factors. This shows that the performance of the
methods we have explored is highly dependent on the
protein target that is being considered and it is difficult to
know a-priori, how well a method will perform given the
number of available actives.
FIGURE 12 | Performance variation of full-conformer model Gaussian Mixture Models with number of actives. Scatter plot indicates one point per template within
the given range. The number of templates captured within the range is indicated in the axis labels. Note that multiple points belonging to the same target could fall
within a single range due to the binning thresholds used.
TABLE 2 | Summary of machine learning results expressed as percentage ratios over ElectroShape 5D. A value of 100% indicates that the same performance as
ElectroShape 5D was obtained.

LEC GMM Isolation Forest ANN ANN
(Hidden layer = 100) (Hidden layer = 500)

Mean EF1%( ± std) 291%( ± 162%) 191%( ± 084%) 256%( ± 107%) 333%( ± 130%)
Max EF1% 829% 450% 491% 618%
Min EF1% 0% 0% 57% 121%
Mean AUC( ± std) 133%( ± 17%) 126%( ± 15%) 139%( ± 17%) 144%( ± 21%)
Max AUC 171% 155% 175% 179%
Min AUC 104% 99% 104% 105%

Full Conformers
Mean EF1%( ± std) 430%( ± 223%) 211%( ± 90%) 256%( ± 129%) 328%( ± 149%)
Max EF1% 941% 403% 565% 636%
Min EF1% 107% 0% 82% 30%
Mean AUC( ± std) 137%( ± 19%) 124%( ± 14%) 136%( ± 20%) 143%( ± 20%)
Max AUC 173% 153% 173% 177%
Min AUC 105% 99% 103% 104%
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For LEC models a performance peak is apparent at around
25–49 actives, beyond which performance degrades again. We
observed this effect on GMMs and Isolation Forest models, but
not on Neural Networks. It is possible that implementing a more
comprehensive parameter sweep during the tuning of these
models could eliminate or reduce this effect. For example, in
the case of GMMs, allowing a larger number of Gaussian
components would probably resolve the active clusters better
and improve performance for larger numbers of actives.

A general observation in our results is that, across the
machine learning models that we trained, those trained on
full conformers preserve good performance when trained with
as little as 5–9 actives, while with those trained on LECs, the
cutoff is in the 10–24 actives range. These results indicate that
for small datasets, models should be trained using full
conformer models.

Running Times
In order to understand how the time required to train and
perform a retrospective virtual screening run varies with dataset
size, we plotted the time taken to perform our experiments
against the corresponding dataset portion used as training set
using box plots, with separate boxes representing the run-time
for each machine learning algorithm. The timings include the
time taken to train the final, tuned model and evaluate the
molecules under test. This does not include the time required to
generate the conformers and the USR and ElectroShape 5D
descriptors. These plots can be found in the Supplementary
Frontiers in Pharmacology | www.frontiersin.org 15161
Material (Figures S16–S19). Additionally we have also presented
running-time statistics in Table S1.

Note that, if used in a prospective screening scenario, a machine
learning model would have been pre-trained from the available
training data, therefore the time required for training would not be
a factor when measuring the running time for such a study. In this
case, however, since a retrospective experiment was being carried
out we considered the total time required for training as well as
testing/evaluation to be an important consideration.

It is apparent from the plots supplied in the Supplementary
Material that GMMs were the quickest models overall for LEC
models (8s ± 11s mean time) and the second quickest for the full
conformer models (787s ± 868s mean time). For full conformer-
trained models, GMMs were quicker for dataset fractions up to
60% of the full dataset, however, were slower than Isolation
Forest for dataset fractions larger than 60%. At the 30% fraction
the GMM running time increased. This could have been caused
by transient resource contention on the machine on which the
experiments were being run.

Isolation Forest speed performance compared favourably to
GMMs for large datasetswhenusing full conformermodels (397s ±
373s mean time for isolation forest vs. 787s for GMMs), however,
for smaller datasets using LECs it was considerably slower than the
other algorithms, including ANNs (453s ± 423s for Isolation Forest
vs. 131s ± 89s forANNs). This is quite surprising and is likely due to
the fact that no matter the size of the training data, an ensemble of
decision trees of comparable size need to be created by the
algorithm. Tweaking the hyperparameters to use smaller
FIGURE 13 | Performance variation of Lowest Energy Conformation (LEC) model Gaussian Mixture Model with number of actives. Scatter plot indicates one point
per template within the given range. The number of templates captured within the range is indicated in the axis labels. Note that multiple points belonging to the
same target could fall within a single range due to the binning thresholds used.
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ensembles for LECs would probably make this model faster,
however, this was not attempted in this study.

Neural Networks appear to be themost consistent with respect to
speed performance. In general, it is the slowest algorithm (1855s ±
1659s mean time for full conformers and 131s ± 89s mean time for
LECs), except for Isolation Forest in the LEC scenario.

It is worthnoting that, notwithstanding the necessity to train the
machine learning models before running the virtual screening
procedure, the total time required to perform our retrospective
screening on each target took, on average, a much shorter time to
complete than the standardUSRalgorithmswhich took, on average
10 timesmore time to complete. Part of this discrepancy is likely the
efficiency of our Python implementation of USR, which must
necessarily be slower than the C-based implementations of the
algorithms in the scikit-learn library. The magnitude of the
difference, however, makes it unlikely for this to be the entire
explanation.A largepart of thediscrepancy also comes fromthe fact
that, in USR, all the conformers in the test set of molecules must be
compared to every conformer of every active template. Over the
course of an entire retrospective screening cycle, this adds up to a
large amount of computation.

With machine learning algorithms, however, this is not
necessary. The bulk of the running-time when using machine
learning methods is the training of the model, however this, in
general, does not require the repeated comparison of all the data
points with all the active data points in a Cartesian product
fashion. Additionally, once a model is trained, classifying new
data points is generally a fast process because it does not involve
comparing the new point with the training data directly, but only
requires that the new data be evaluated according to the model
built during training. All this, clearly depending on which
particular machine learning algorithm is being used, implies a
much smaller amount of computation than the “brute force”
approach inherent in standard USR.
DISCUSSION

Throughout this study we sought to answer two research
questions, namely:

• Can machine learning techniques replace the naïve
Manhattan distance in USR and USR-like methods to
improve Virtual Screening performance?

• What is the minimal amount of data required to adequately
train USR and USR-like machine learning models?

In pursuit of the first question, we used the datasets provided
in DUD-E to generate a suitable number of conformers to
adequately sample the conformational space of the molecules
from which we generated corresponding USR and ElectroShape
5D descriptors.

We then selected three suitable machine learning algorithms,
namely Gaussian Mixture Models, Isolation Forests, and Artificial
Neural Networks and we trained and evaluated these models using
the descriptors we had previously generated. In doing so, we
obtained results that significantly outperformed USR as well as
ElectroShape 5Dwhen using both the full conformer models of the
Frontiers in Pharmacology | www.frontiersin.org 16162
active molecules as training data, as well as when using only the
LowestEnergyConformations (LECs).Concretely, in termsofEF1%
the bestmean improvement overElectroShape 5Dwas that of 430%
obtained usingGMMs trained on full conformers, the samemodels
having obtained a maximum improvement of 941% over
ElectroShape 5D. This was followed by a mean improvement of
328% with a maximum of 636%, obtained by ANNs, again trained
on full conformer models. When using LECs as training data,
GMMs obtained amean performance improvement of 291% and a
maximum of 829%, outperforming ANNs with a hidden layer size
of 100, which obtained a mean improvement of 256% with a
maximum of 613%. It is clear, however, that some targets are
more responsive to screening by USR descriptors, there being a
relatively large variance in the mean performance figures. This is
also reflected in the literature (Armstrong et al., 2009; Ballester et al.,
2009; Armstrong et al., 2010; Armstrong et al., 2011) and is,
therefore, expected.

These improvements over ElectroShape 5D are of a similar
magnitude to the performance increase afforded by ElectroShape
5D itself over USR and are, therefore, highly significant. Machine
learning algorithms assimilate the features of all the active
molecules into a single model, in contrast to the naïve USR-
based algorithms which can only consider one molecule at a time
as a search query. This feature of machine-learning algorithms
appears to make a large difference to the similarity matching
performance in the LBVS context when compared with the
standard algorithm for the USR family of methods.

In order to explore our second research question, we trained
the machine learning models on progressively smaller fractions
of the selected DUD-E targets so as to explore the manner in
which the performance of the models varied whilst decreasing
training dataset size. Our results demonstrate that when using
full conformers to train the models, better performance is
obtained when the number of actives is low. In general a
performance peak is observed when training with 25–49
actives. With the LEC models, this peak is more pronounced,
indicating that for small active training sets it is more
advantageous to train with full conformers than LECs.

We also observed that performance of ourmodelswas preserved
when only 5–9 actives are used for training when using full
conformer models while, for the LEC-trained models, the
performance remained acceptable down to the 10–24 actives level.

Taking into account all the results obtained, in terms of VS
performance as well as running times, and we come to the
conclusion that GMMs were, overall, the most efficient models
that we tested, achieving excellent performance in the shortest
time (except for the largest datasets; see Figures S16 and S17 in
Supplementary Information) and while also exhibiting good
stability with decreasing dataset size.
CONCLUSION

To the best of our knowledge, this research project constitutes
the first study to explore the viability of several machine learning
algorithms in their application to LBVS using USR and USR-
like descriptors.
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We have demonstrated the utility of applying machine
learning methods to the LBVS scenario when using USR-like
descriptors, managing to obtain significant performance
improvements over both the USR and the ElectroShape 5D
algorithms using the Gaussian Mixture Model (GMM),
Isolation Forest and Artificial Neural Network (ANN)
algorithms. The GMM models were found to achieve the best
performance improvement over ElectroShape 5D in terms of
enrichment factor, giving an improvement of 291% for LEC-
trained models and 430% for full conformer trained models with
maximum improvements of 829% and 940%, respectively. These
results clearly represent non-trivial improvements over the
classical, non-machine learning, USR family of methods.

Furthermore we demonstrated that these trained models
maintain stable performance when trained with drastically
smaller quantities of training data, especially when full
conformer molecule models are used, maintaining statistically
similar performance from full dataset down to the 5–9 active
range for full conformer models.

We also demonstrated the significant advantages in terms of
running times, where retrospective screening took, on average 10
times less time to complete using our machine learning models
than for USR and ElectroShape 5D.

Due to the sheer magnitude of the options available when it
comes to machine learning methods, this work must be considered
as a starting point for further research into the topic of machine
learning on USR, however, we believe that it makes a valid
contribution to the field, as it demonstrates significant
performance improvements over current state-of-the-art methods
that do not use machine learning.
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Predicting protein-ligand interactions using artificial intelligence (AI) models has attracted
great interest in recent years. However, data-driven AI models unequivocally suffer from a
lack of sufficiently large and unbiased datasets. Here, we systematically investigated the
data biases on the PDBbind and DUD-E datasets. We examined the model performance
of atomic convolutional neural network (ACNN) on the PDBbind core set and achieved a
Pearson R2 of 0.73 between experimental and predicted binding affinities. Strikingly, the
ACNN models did not require learning the essential protein-ligand interactions in complex
structures and achieved similar performance even on datasets containing only ligand
structures or only protein structures, while data splitting based on similarity clustering
(protein sequence or ligand scaffold) significantly reduced the model performance. We
also identified the property and topology biases in the DUD-E dataset which led to the
artificially increased enrichment performance of virtual screening. The property bias in
DUD-E was reduced by enforcing the more stringent ligand property matching rules, while
the topology bias still exists due to the use of molecular fingerprint similarity as a decoy
selection criterion. Therefore, we believe that sufficiently large and unbiased datasets are
desirable for training robust AI models to accurately predict protein-ligand interactions.

Keywords: artificial intelligence, convolutional neural network, protein-ligand interaction, virtual screening,
molecular docking, scoring function, topology fingerprint
INTRODUCTION

Structure-based virtual screening (molecular docking) has been widely used to discover new ligands
based on target structures (Kitchen et al., 2004; Shoichet, 2004; Irwin and Shoichet, 2016; Zhou
et al., 2016; Wang et al., 2017; Lyu et al., 2019; Peng et al., 2019). The molecular docking approach is
designed to identify small molecules from a large chemical library that possess complementary to a
protein binding site. The heart of molecular docking is the scoring function for estimation of
binding affinities of protein-ligand complexes. Large research efforts in the field have been dedicated
to the development of scoring functions in terms of their abilities to reproduce crystal ligand
binding poses, to prioritize the known active compounds in a large compound database, and to
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predict the relative binding affinities (Stahl and Rarey, 2001;
Halgren et al., 2004; Huang et al., 2006a; Wang et al., 2016; Liu
et al., 2017; Guedes et al., 2018; Su et al., 2019). Despite some
success, it is still very challenging to predict protein-ligand
interactions accurately and efficiently using molecular docking.

In the retrospective studies, the performance of virtual screening
was evaluated on several public available benchmarking datasets,
including the Community Structure-Activity Resource (CSAR)
(Dunbar et al., 2011), the PDBbind (Liu et al., 2017), the Directory
of Useful Decoys (DUD) (Huang et al., 2006b), and the Directory of
Useful Decoys - Enhanced (DUD-E) (Mysinger et al., 2012). The
CSAR and PDBbind datasets were compiled to facilitate the
prediction of the binding affinities based on experimental complex
structures. The availability of experimental protein-ligand complex
structures allows the structure-based featurization to correlate the
protein-ligand binding interactions and the binding affinities. The
DUD and DUD-E datasets were originally designed to assess
docking enrichment performance by distinguishing the annotated
actives from among a large database of computationally generated
non-binding decoy molecules.

In recent years, deep learning (DL) technologies in the field of
artificial intelligence (AI) have rapidly developed, and have been
quickly introduced into the different aspects of drug discovery and
development process (Chen et al., 2018; Ching et al., 2018; Hu et al.,
2018; Ivanenkov et al., 2019; Xu et al., 2019; Zhavoronkov et al.,
2019). However, DL relies on large and high-quality annotated
datasets, and this approach is only in the early stages of applicability
for protein-ligand binding prediction (Shen et al., 2019). Two types
of representations have been applied in studying protein-ligand
interactions (Ching et al., 2018). One is three-dimensional (3D)
grid, which discretize protein-ligand complex structure into a 3D
grid with features stored at the grid point (Wallach et al., 2015;
Ragoza et al., 2017; Jiménez et al., 2018; Stepniewska-Dziubinska
et al., 2018). For example, a 3D convolutional neural network
(CNN) model was shown to outperform the AutoDock Vina in
enrichment performance by achieving amean area under the curve
(AUC) of 0.86 on theDUD-Edataset (Ragoza et al., 2017). Another
model (named Pafnucy) was tested for binding affinity prediction
on the PDBbind v2013 core set with a Pearson R2 of 0.49
(Stepniewska-Dziubinska et al., 2018).

The other representation is graph neural network (Battaglia
et al., 2018), every atom is a vertex and the atomic features
(including atom type, charge, distances, and neighbors) in
molecule are stored at the atom (Pereira et al., 2016; Gomes et al.,
2017; Cang et al., 2018; Feinberg et al., 2018). For example, DeepVS
was reported to achieve a mean AUC of 0.81 for cross-target cross
validation (CV) on the DUD dataset (Pereira et al., 2016). The
atomic convolutional neural network (ACNN) was developed for
binding affinity prediction but did not outperform random forest
(RF) on the PDBbind datasets (Gomes et al., 2017). Cang et al.
(2018) achieved a PearsonR2 of 0.66 on the PDBbind v2013 core set
using the model trained on the refined set.

However, Sieg et al. (2019) recently reported that the AI models
were heavily biased by 1Dproperties and 2D topology trained on the
DUDandDUD-Edatasets. Onlywith the use of six physicochemical
properties, RF classifiers achieved mean AUCs up to 1.0 for intra-
Frontiers in Pharmacology | www.frontiersin.org 2166
target CV, while for cross-target CV on DUD and DUD-E,
maximum mean AUCs of 0.78 and 0.80 were able to obtain,
individually. Only using topology information of compounds, RF
and DeepVS achieved a mean AUC of 0.78 for cross-target CV on
DUD, and grid-based CNN model yielded a mean AUC of 0.84 for
cross-target CV on DUD-E. Similarly, Chen et al. (2019) also
reported the bias on topology in DUD-E. These studies
demonstrate that AI models trained on ligand properties or ligand
topology have comparable enrichment performance as those trained
on docked complexes.

In the present work, we systematically investigated the data
biases in the PDBbind and DUD-E datasets, including different
data splitting methods, featurization, models, and metrics. We
trained ACNNmodels (Gomes et al., 2017) on the protein-ligand
complex structures, as well as on the ligand structures without
the presence of proteins or on the protein structures by removing
the ligand information. Strikingly, all these models performed
comparably well in predicting binding affinities in test subsets,
which strongly suggests that the ACNN models did not require
learning essential protein-ligand interactions. Furthermore, we
visualized the individual atomic contributions decomposed from
the ACNN scores and found that the ACNN models may
actually rely on the similarity of atomic features that exist in
the training and test subsets to predict binding affinities. These
results indicate that PDBbind has data biases in both proteins
and ligands for building reliable AI models. Finally, we
demonstrated that model learned the topology bias in DUD-E
even after reducing the property bias by carefully designed CV
experiments. We expect that our study will provide a useful
guideline to assess the model performance in predicting protein-
ligand interactions using state-of-the-art AI approaches.
METHODS

Datasets
The PDBbind is a comprehensive collection of protein-ligand
complexes in the Protein Data Bank (PDB) with experimentally
measured binding affinities, which contains core, refined, and
general sets (Table 1) (Li et al., 2014). For clarification, the
PDBbind v2013 core set is identical to the v2015 core set. At
present study, we only report the results obtained from the
PDBbind v2015. The general set contains a total of 11,987
protein-ligand complexes in PDB with experimentally measured
binding affinity data. The refined set contains 3,796 complex
structures chosen from the general dataset to enforce higher
quality protein-ligand complex structures and binding affinities.
TABLE 1 | The PDBbind and DUD-E datasets.

Name Task type Sets Crystal
structures

#Actives #Decoys

PDBbind Regression Core 195 195 0
Refined 3,706 3,706 0
General 11,987 11,987 0

DUD-E Classification Original 102 22,886 1,411,214
MW ≤ 500 102 19,374 1,182,039
Fe
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The core set consists of 195 high-quality complexes clustered in 65
structural groups, each containing three complexes with low,
medium, and high binding affinities. In addition, Wan et al.
(2013) modeled 2,431 binding interactions of 17 kinase inhibitors
against 143 protein kinases using physics-based approach. We also
tested thekinase inhibitor selectivitypredictionon thisdatasetusing
ACNN models trained on the PDBbind refined set.

The DUD and DUD-E datasets were designed for
benchmarking molecular docking enrichment power by
providing challenging decoys. For each annotated active, 50
decoys with six similar physicochemical properties, including
molecular weight (MW) and cLogP, but dissimilar topology
(fingerprint) were selected from the ZINC12 database (Irwin
et al., 2012). The DUD-E dataset consists of 22,886 actives and
1,411,214 decoys against 102 targets. We compiled a variation of
DUD-E, namedDUD-E(MW ≤ 500) by simply removing actives with
MW(only accounting for all heavy atoms) greater than 500 and the
same fraction of decoys (Table 1).

Dataset Splitting
Each PDBbind set was split into the training, validation, and test
subsets following an 80/10/10 ratio. We trained models on the
training subset by using early stopping to avoid overfitting, tuned
hyperparameters on the validation subset to select the best
model, and subsequently evaluated model performance on the
test subset. We applied three types of dataset splitting methods,
including random, ligand scaffold-based, and protein sequence-
based splitting. Scaffold-based splitting was based on ligand
scaffold similarity, where the ligand 2D scaffolds (Bemis and
Murcko, 1996) were extracted using RDKit software (Landrum,
2006) and clustered using Extended-Connectivity Fingerprints
(ECFP) (Rogers and Hahn, 2010) with Tanimoto coefficient (Tc)
cutoff value of 0.8. The obtained large, medium, and small
clusters were assigned into the training, validation, and test
subsets, respectively. The test subset contained the smallest
clusters to create a greater challenge for AI models. The
sequence-based splitting was performed by using the UCLUST
(Edgar, 2010) program with sequence identity cutoff of 0.4.

To stay consistent with a previous report, we trained models on
the refined and general sets, and tested on the core set. To avoid the
same protein-ligand complex used in training and testing
simultaneously, we removed samples in the refined and general
sets overlapping with the core set. In addition, we removed analogs
or homologs based on ligand scaffold or protein sequence similarity
when we applied scaffold-based and sequence-based splitting in
training. Nevertheless, we subsampled the same number of samples
(2,036 samples accounting for 55% of the refined set, 7,792 samples
accounting for 65% of the general set) from the rest of samples in the
refined or general sets, respectively, and split them into the training
and validation subsets following a 90/10 ratio.

We split DUD-E into three folds based on target classes to
perform the cross-class CV study. There are 26 kinases in the first
fold, 31 targets in the second fold (including15proteases, 11nuclear
receptors, and five G-protein coupled receptors), and the rest of 45
targets in the third fold. We also applied a random CV on DUD-E
by randomly splitting the targets into three folds with the same fold
sizes as the cross-class CV.
Frontiers in Pharmacology | www.frontiersin.org 3167
Models
ACNN
Weapplied the graph-basedmodel ACNN implemented in the open
source DeepChem package (Ramsundar et al., 2019) for predicting
protein-ligand interactions in PDBbind. The ACNN model only
requires atomic numbers and Cartesian coordinates of protein-
ligand complexes as input to predict binding affinities. First, the
ACNNmodel applies three independent atomic convolution blocks
to extract atomic features from the ligand, protein, and protein-
ligand complex, individually. In an atomic convolution block, the
maximum number of closest neighbors (M) is used to represent the
atomic environment for each atom. To represent the pairwise
interaction, a radial basis function kernel is applied to map the
distance between the atom and its each neighbor into a vector. And
the atomic feature (a vector) is obtained by element-wise sum of M
pairwise vectors. The atomic convolution blocks share the same
initial parameters but will be changed after training. Secondly, one
weight-sharing atomistic fully connected layer predicts atomic
energies from all the atomic features. Thirdly, the ACNN model
sumsup the atomic energies to predict the energies of protein, ligand,
and complex, individually, and then obtains the binding energy by
subtracting the energies of protein and ligand from the energy of the
binding complex. For analysis of bias in PDBbind, we modified
ACNN to model only protein structures (protein alone), and only
ligand structures (ligand alone) (Supplementary Figure 1). For
protein alone, two independent atomic convolution blockswere used
to extract atomic features from the same protein, and led to two
different protein energies calculated from the same fully connected
layer. The predicted “binding affinity” was the difference between
two protein energies. The same strategy was applied for ligand alone
as well. This strategy decouples the correlation of molecule size
(number of atoms) and binding energy (sum of atomic energies),
which enforces the ACNN model with the ability to learn
atomic features.

All models were trained with an early-stopping strategy by
stopping training if the performance on the validation subset did
not improve in five epochs. The maximum number of neighbors of
each atom was set to 4 at present study. We used a batch size of 16
and grouped samples with similar binding affinities into batches
without changing the samples in one batch from the first to the last
epochs. This training strategy is similar to the “curriculum learning”
strategy (Bengio et al., 2009) because it reduces the difficulty of
learning via training on the organized data.

Random Forest
Two feature sets for decoy selection were used to build the RF
models (Breiman, 2001) to evaluate the bias in the DUD-E dataset.
The first feature set consisted of six physicochemical properties,
includingMW(only accountingall heavyatoms), cLogP,numberof
rotatable bonds, number of hydrogen bond donors, number of
hydrogen bond acceptors, and net charge. The second feature set
was ECFP (Morgan fingerprint with a radius of 2 and 2,048 bits in
RDKit), which has been widely applied to encode molecular 2D
topology into fixed length binary vector. We computed the
properties and ECFP using the open source RDKit package.

The RF classifier from scikit-learn (Pedregosa et al., 2011)
version 0.21.3 was used. The default parameters were used except
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that the number of estimators was set to 100 and the seed of
random state was set to 0 for deterministic behavior during
fitting. The AUC value was used to evaluate the classification
performance of the RF. The enrichment factor was calculated as
EFsubset = (Activessubset/Nsubset)/(Activestotal/Ntotal). The higher
the percentage of known actives found at a given percentage of
the ranked database, the better the enrichment performance of
the virtual screening. Since the practical value of virtual screening
is to find active compounds as early as possible, we chose the
enrichment factor at the top 1% of the ranked dataset (EF1) to
evaluate the early enrichment performance in the present study.
In kinase inhibitor selectivity prediction, we used predictive
index (PI) as a semi-quantitative measurement of the power of
the target ranking order, where PI value (ranging from 1 to −1) of
1 indicates the perfect prediction, and 0 is completely random
(Pearlman and Charifson, 2001).
RESULTS

High Performance Achieved on the
PDBbind Datasets Using Random Splitting
We evaluated the performance of ACNN model to predict
protein-ligand binding affinities on the PDBbind datasets using
different data splitting approaches. The Pearson R2 values on test
subsets are reported in Supplementary Table 1. Firstly, we used
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a random splitting approach to split each PDBbind dataset into
the training, validation, and test subsets five times with different
random seeds. The increased number of protein-ligand
complexes in the refined and general sets improved the ACNN
model performance significantly (Figure 1A). The core set had
the lowest mean R2 value of 0.04, the refined and general sets
with more samples were shown much higher performance with
R2 values of 0.80 and 0.70, respectively. We also trained the
models on the refined and general sets, and tested the models on
the core set, individually. The results were also promising,
outperformed previously reported results of R2 value of 0.66
using model trained on the refined set (Cang et al., 2018; Shen
et al., 2019), with R2 values of 0.70 and 0.73 using models trained
on the refined and general sets, individually (Figure 1B and
Supplementary Table 2).

Since PDBbind contains large number of kinase targets (309
kinase structures accounting 9.76% of the refined set), we wanted to
test the performance of ACNN model on a benchmarking dataset
for kinase inhibitor selectivity modeling (Wan et al., 2013). Using
the models trained on the PDBbind refined set, the calculated mean
EF20 value of 1.12 and PI value of 0.01 indicate that such ACNN
models cannot be used to predict the ranking order of the kinase
targets for a given inhibitor (Supplementary Table 3).

To study the prediction power of theACNNmodel, it is critical to
decompose the contributions of the ligands and protein from the
complex structure. Therefore, we generated two extra datasets by
FIGURE 1 | Atomic convolutional neural network performance measured by the Pearson R2 values obtained from the different PDBbind datasets using different
splitting approaches. Each dataset was split into the training, validation, and test subsets five times with different random seeds following an 80/10/10 ratio, and
studied on three different binding components, including protein-ligand complex structure (binding complex), only ligand structure (ligand alone), and only protein
structure (protein alone), individually. (A) Models trained and tested within the same set. (B) Models trained on randomly selected subsets of the refined and the
general sets (removing the core set structures) and tested on the core set. Models trained on the PDBbind datasets (C) (protein alone) and (D) (ligand alone) using
different splitting methods.
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dividing the protein-ligand complex structure (binding complex)
into ligand structure (ligand alone) and protein structure (protein
alone), individually. Strikingly, the model performance did not
change significantly on datasets of ligand alone or protein alone in
both the refined and general sets (Figure 1A, B and Supplementary
Table 1). These results indicate that the ACNN model does not
require learning protein-ligand interactions to achieve high
performance, and suggest that data biases exist in PDBbind, both
with proteins and with ligands.

Protein and Ligand Similarity Biases
in PDBbind
Li et al. reported that the protein similarity impacts the
performance of AI models (Li and Yang, 2017). Therefore, we
applied sequence-based splitting to reduce the impact of the
protein similarity between the training and test subsets. When
trained on protein alone, the R2 value was reduced from 0.84
(random splitting) to 0.63 (sequence-based splitting) in the refined
set; while it was reduced from 0.73 to 0.54 in the general set
(Figure 1C and Supplementary Table 1). In addition, we guessed
that ACNN learned the bias on ligand similarity. Therefore, we
split the PDBbind datasets based on ligand scaffold similarity, and
the performance of ACNN models was reduced significantly.
When trained on ligand alone, the R2 value was reduced from
0.71 (random splitting) to 0.48 (scaffold-based splitting) in the
refined set, and from 0.60 to 0.42 in the general set. Since similar
targets bind similar ligands, it is not surprising that protein
sequence-based splitting also significantly reduced the model
performance compared to random splitting. The R2 values were
reduced to 0.35 and 0.23 in the refined and general sets,
individually (Figure 1D and Supplementary Table 1).

To further investigate what the ACNNmodel exactly learned
from the ligand structures, we derived the atomic contributions
from the ACNN models (ligand alone) trained on the PDBbind
refined set (with structures in the core set removed) (Figure 2).
Three representative systems were chosen from the core set to
illustrate the atomic contributions of the ligands. Two protein
tyrosine phosphatase 1B (PTP1B) inhibitors had similar atomic
scores in Br atoms but different scores in S atoms, which suggests
that the ACNNmodel could predict atomic contributions based
on local atomic features (Figure 2A). However, the derived
atomic contributions differed significantly in models trained
with different random seeds, as demonstrated by the scores of
the same Br atom changing from 0.55 to −0.04 in different
models (Supplementary Figure 2). Atomic scores on the ligands
bound to the antibody Fab showed that the model could predict
one ligand (1zea) with larger molecular size but lower affinity by
assigning negative scores on atoms with potentially unfavorable
binding contributions (Figure 2B). For two acetylcholinesterase
(AChE) inhibitors with similar size, the model correctly
predicted the more potent inhibitor by identifying the
presence of specific functional groups, such as Cl atom and
ethyl group (Figure 2C). Combing the observations from those
representative systems, the ACNN model is able to learn the
correlation between atomic features and binding affinities.
However, this correlation does not have to relate to protein-
Frontiers in Pharmacology | www.frontiersin.org 5169
ligand interactions and may only represent the similarity of the
ligands in PDBbind.

Property Bias in DUD-E
Although the accurate prediction of ligand binding affinities is the
ultimate goal of molecular docking, the practical value of structure-
based virtual screening is to enrich the active compounds in the top
ranked subset. Generally, the success of a virtual screeningmethod is
evaluated by its capacity to discriminate known active compounds
from a background of decoy molecules. However, Sieg et al. (2019)
reported that the distributions of MW beyond 500 Da between
actives and decoys in DUD-E were mismatched (Supplementary
Figure 3). Indeed, only using six properties as features, RF achieved a
meanEF1 of 22.2 and ameanAUCof 0.73 in randomCVonDUD-E
(Figure 3A). Therefore, we compiled theDUD-E(MW ≤ 500) dataset to
remove this specific MW bias (Supplementary Figure 4). A mean
EF1 of 15.4 and amean AUC of 0.71 was achieved in randomCV on
DUD-E(MW ≤ 500), more importantly, amean EF1 of 5.14 and amean
AUCof 0.66was achieved in cross-class CV, which indicates that the
model cannot use property bias to achieve high performance in
cross-class CV on the DUD-E(MW ≤ 500).

Topology Bias in DUD-E
In DUD and DUD-E, the actives and decoys against the same
target are dissimilar on topology and can be easily differentiated
based on fingerprint (von Korff et al., 2009; Venkatraman et al.,
2010;Hu et al., 2012; Lagarde et al., 2015; Kearnes et al., 2016; Sieg
et al., 2019). However, whether the actives and decoys can be
differentiated in cross-target CV based on fingerprint remains
unclear, due to the mixed property bias and topology bias. By
avoiding the use of property bias, we may study the independent
contribution of topology bias onDUD-E. As shown inFigure 3B,
using RF with molecular fingerprint (FP) as features, a mean
AUCof 0.91 and ameanEF1 of 32.75 in randomCVwas obtained
onDUD-E. Themodel achieved amean AUC of 0.86 and amean
EF1 of 15.33 in cross-class CV on the DUD-E(MW ≤ 500). These
results indicate that themodel can still use topology bias inDUD-
E even after avoiding the property bias.

To investigate the topology bias in the DUD-E dataset, we
calculated the relative frequency of bit set on each bit (2,048 bits)
for actives and decoys in DUD-E(MW ≤ 500) and the bit
f r equenc i e s o f Z INC12 compounds a s r e f e r ence
(Supplementary Figure 5). Eighty-four bits with absolute log2
fold change ≥ 1 and mean relative frequency ≥ 0.03 were selected
as representative bits (Supplementary Figure 6). About half of
bit frequencies of actives and decoys are located on the opposite
side of the bit frequencies of ZINC12 compounds, for example,
the most populated bit 1,452 representing an aryl-alkyl ether
group (Figure 4). This indicates that the topology distribution of
decoys is strikingly different to actives. The rest of representative
bits have relatively close frequencies between decoys and
ZINC12 compounds, while larger differences between actives
and ZINC12 compounds exist, such as bit 235 (representing six-
membered aromatic ring) and bit 352 (representing aromatic
ring with a sp2-hybridized carbon substituent). This further
demonstrates that topology bias is not only caused by using
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FIGURE 3 | Performance of RF on the DUD-E datasets using (A) six properties or (B) topology fingerprints. Note that the DUD-E(MW ≤ 500) dataset was compiled by
removing actives with MW (only including heavy atoms) greater than 500 and their associated decoys. The cross-class CV split the dataset into three folds based on
target classes, and the random CV randomly split targets with the same fold sizes as in cross-class CV.
FIGURE 2 | Atomic contributions derived from the ACNN model (ligand alone) on three representative systems chosen from the PDBbind core set, including
(A) protein tyrosine phosphatase 1B (PTP1B) inhibitors, (B) ligands bound to the antibody Fab and (C) acetylcholinesterase (AChE) inhibitors. The ACNN model
(ligand alone) was trained on the refined set (removing the core set structures) and tested on the core set. Each row shows two ligands from the same protein target
with different binding affinities (pKi or pKd) (predictive values included inside the parentheses). The first column shows the superimposed ligand structures using the
binding pocket alignment approach. The second and third columns show atomic contributions of each ligand. The size of the balls represents the absolute values of
atomic scores. The atomic scores of selected atoms are labeled explicitly. The atoms with black spheres have negative scores. The molecular images were
generated using UCSF Chimera (Pettersen et al., 2004).
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fingerprint as a decoy filter, but also resulted from the different
topology distribution between actives and ZINC12 compounds.
Therefore, the DUD and DUD-E datasets are not suitable for
training models which directly or indirectly utilize the
compound topological information.
DISCUSSION AND CONCLUSIONS

State-of-the-art AI technologies represent a new paradigm in
virtual screening with both opportunities and challenges for
future improvement. The differences in different AI models
mainly come from two aspects: one is the training dataset, and
the other is the characterization method. At present work, we
focused on analyzing the biases in two widely applied datasets
for protein-ligand interactions. The former is represented by
PDBbind, a collection of experimentally determined protein-
ligand complex structures with known binding affinities, which
is reliable, but the amount of data is small and arguably suffers
from the data redundancy caused by the protein and ligand
similarity. Our systematic investigation of ACNNmodels on the
PDBbind datasets led to a surprising observation that the model
performance was not correlated with learning essential protein-
ligand interactions. Even the models trained on ligands or
proteins performed as well as trained on complexes, while
data splitting based on the similarity (protein sequence or
ligand scaffold) clustering reduced the performance
significantly. This suggests that the model performance may
rely on the similarity of atomic features existing in the training
and test subsets. It is expected that the rapidly increased amount
Frontiers in Pharmacology | www.frontiersin.org 7171
of protein-ligand binding and structural data will improve the
generality of the models by sampling the much larger and
diverse chemical space.

DUD-E has become a common dataset for evaluating structure-
based virtual screeningmethods, whichwere designed to benchmark
enrichment performance by prioritizing the actives among a large
amount of property-match but topology-dissimilar decoymolecules.
As evidenced at present study, the topology bias is difficult to avoid
when train on DUD-E. Therefore, care must be taken when using
DUD-E for training AI models to predict protein-ligand
interactions. However, DUD-E can still serve as an independent
dataset to test the prediction power of AImodels without using it for
training. The use of fingerprint for selecting topological dissimilar
decoys in the DUD andDUD-E datasets introduces topology bias in
cross-target, and even cross-class CV. If we want to perform cross-
target CV on DUD-like datasets for benchmarking AI models, the
decoys shall be selected not only dissimilar to actives of a specific
target, but also similar to actives of the other targets. Therefore, it is
desirable to develop a more sophisticated approach for DUD-like
decoy selection by depleting the topology bias, and such dataset may
serve as a general-purpose benchmarking dataset to assess the
enrichment performance of different virtual screening approaches
(including AI models).

Nevertheless, it is encouraging that ACNN models have shown
powerful capability for learning correlations hidden in structural
data. Using the same neural network structure, ACNN was able to
learn the structural similarities between ligands and between
proteins. Even after protein sequence similarity clustering, ACNN
still performed well in predicting ligand binding affinities. It is likely
that ACNN model is well suitable for analysis of protein binding
pocket, and it can be applied in protein pocket similarity analysis and
protein pocket druggability prediction.

In summary, sufficiently large and unbiased datasets are
desirable to fully exploit the potential of AI models for protein-
ligand interactions. In addition to the guidelines proposed by Sieg
et al. (2019), we can envision extra practical guidelines in
developing and applying AI-based models. First of all, target
structure-based methods do not guarantee that the performance
of predicting ligand binding affinities is correlatedwith the learning
of protein-ligand interactions. Vice versa, we demonstrated that
ACNN models trained on the PDBbind datasets did not learn the
essential protein-ligand interactions. Therefore, control
experiments of training on the free ligands (ligand alone) and the
free proteins (protein alone) can facilitate our understanding of
what the AImodels learned from the complex structures. Secondly,
PDBbind is probably still going to be the best quality and the most
accessible dataset for benchmarking protein-ligand interactions.
However, it is necessary to evaluate the model performance by
splitting datasets based on protein sequence and ligand scaffold
similarity. Redundancy reduction increases the level of difficulty in
model training, but will definitely improve the robustness ofmodel
transferability. Lastly, protein-ligand binding follows the laws of
physics. The interpretability of AI models is critical for studying
protein-ligand binding interactions, and visualization of atomic
contributions decomposed from the models shall be engaged in
extracting human understandable insights.
FIGURE 4 | Significantly changed bits between actives and decoys on DUD-E

(MW ≤ 500). Eighty-four bits with absolute log2 fold change ≥ 1 between the
actives and decoys and mean relative frequency ≥ 0.03 were selected as
representative bits from the Morgan fingerprints (2,048 bits). The bits were
sorted by frequencies of ZINC12 compounds. The chemical features of three
selected bits are presented, and the chemical features of all 84 bits are
summarized in Supplementary Table 4.
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Synthetic lethality (SL), an important type of genetic interaction, can provide useful insight
into the target identification process for the development of anticancer therapeutics.
Although several well-established SL gene pairs have been verified to be conserved in
humans, most SL interactions remain cell-line specific. Here, we demonstrated that the
cell-line-specific gene expression profiles derived from the shRNA perturbation
experiments performed in the LINCS L1000 project can provide useful features for
predicting SL interactions in human. In this paper, we developed a semi-supervised
neural network-based method called EXP2SL to accurately identify SL interactions from
the L1000 gene expression profiles. Through a systematic evaluation on the SL datasets
of three different cell lines, we demonstrated that our model achieved better performance
than the baseline methods and verified the effectiveness of using the L1000 gene
expression features and the semi-supervise training technique in SL prediction.

Keywords: synthetic lethality, L1000 gene expression profiles, machine learning, semi-supervised neural network,
target identification
INTRODUCTION

Two genes are considered a synthetic lethal (SL) pair if perturbation of both genes induces a defect
in cell viability, while perturbation of either gene is not harmful to cell survival (Boone et al., 2007).
Different types of perturbations were considered to trigger SL in previous studies, including
knockdown, knockout, mutation, aberrant gene expression, copy number variation, and drug
treatment (Whitehurst et al., 2007; Jerby-Arnon et al., 2014; Han et al., 2017; Sinha et al., 2017).
Studying synthetic lethal interactions may help gain novel insights into target identification. Many
cancer cells carry specific mutations in one gene (e.g., a tumor suppressor gene) of a synthetic lethal
pair, and thus its synthetic lethal partner becomes a promising drug target (O'Neil et al., 2017). For
example, the known synthetic lethal interactions between the tumor suppressor gene BRCA1/2 and
the drug target gene PARP1 can be used to selectively kill cancer cells by triggering fatal DNA
damages (Bryant et al., 2005; Farmer et al., 2005). To this end, PARP1 inhibitors have been
approved to treat certain types of BRCA-mutated cancers (Fong et al., 2009).

SL gene pairs can be experimentally screened by developing double-knockout strains in model
organisms and human cell lines. The synthetic lethality network in yeast has been well constructed
using synthetic genetic arrays (SGA) (Tong et al., 2001) and diploid synthetic lethality analysis with
in.org February 2020 | Volume 11 | Article 1121174
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microarrays (dSLAM) (Pan et al., 2007). Nearly one million gene
pairs covering 90% of the whole yeast genome were screened in a
recent study (Costanzo et al., 2016). Compared to yeast strains,
which can undergo sexual reproduction to generate double-
knockout offspring from parents bearing different single
knockouts, it is more challenging to develop double-knockout
human cell lines in an efficient manner. Thus, a relatively low
number of human gene pairs (about hundreds or thousands) can
be screened by RNA interference (Whitehurst et al., 2007; Barbie
et al., 2009) and CRISPR-Cas9 (Shen et al., 2017; Han et al.,
2017) based double-knockout experiments. Due to the difficulty
in the establishment of large-scale double-knockout systems in
human cell lines, the currently screened gene pairs only account
for a small fraction of all possible combinations of human genes.

To overcome the current difficulty in experimental screen and
generate more SL interactions in human, computational methods
have recently been proposed to predict novel human SL pairs
recently. The most direct idea is to leverage the abundant SL pairs
characterized in yeast to infer human SLs through ortholog
mapping (Deshpande et al., 2013; Wu et al., 2013; Srivas et al.,
2016). The application of these methods was limited, as a large
number of human genes do not have evolutionarily close yeast
orthologs. Network-based methods predict human SLs through
analyzing the protein-protein interaction (PPI) networks,
metabolic networks, or signaling pathways (Folger et al., 2011;
Kranthi et al., 2013; Zhang et al., 2015; Apaolaza et al., 2017).
Statistical methods were also developed to identify SL gene pairs
from human cancer cells based on the principle that the
perturbations (e.g., mutation, aberrant gene expression, and copy
number variation) of both SL genes should be subject to negative
selection and exhibit a mutually exclusive pattern (Jerby-Arnon
et al., 2014; Srihari et al., 2015; Jacunski et al., 2015; Sinha et al., 2017;
Lee et al., 2018). Besides, there exist severalmachine-learning-based
approaches for predicting SL gene pairs. Most of these approaches
learn from the adequate amount of supervised information of yeast
(Wong et al., 2004; Pandey et al., 2010; Li et al., 2011). Only a few
machine learning methods for predicting human SLs were
developed. For example, Das et al. used a Random Forest
classifier with multi-omics features (e.g., differential expression,
expression correlation, mutual exclusivity and shared pathways) to
predict SL pairs in human cancer (Das et al., 2018); and Liu et al.
proposed a logistic matrix factorization model regularized by the
PPI similarity network and the gene ontology (GO) semantic
similarity network to predict SL pairs (Liu et al., 2019).

Although a number of SL interactions are conserved in humans,
most of them are only observed in specific cell lines or tissues (Ryan
et al., 2018). A recent study detected SL pairs in three cell lines and
found that onlyabout 10%ofSL interactionswere sharedby twocell
lines, and no SL pair was identified in all the three cell lines (Shen
et al., 2017). Despite the extensive applications of the above
computational methods in SL prediction, most of them make
predictions for the human genetic network without considering
the cell line or tissue context. Although one of the aforementioned
methods (Das et al., 2018) can predict SL in different human cancer
types, it is difficult to directly apply this method to cell lines, as the
homogenous genetic background of cell lines cannot provide
Frontiers in Pharmacology | www.frontiersin.org 2175
enough mutation-related omics data. To provide a feasible tool
for capturing the unique SL interaction networks for individual cell
types, we aim to develop a computationalmethod to learn from the
experimentally measured SL interactions through considering the
cell-line specific genetic information.

In this paper, we have proposed a novel computational method,
EXP2SL, to predict cell-line specific SL interactions in human. The
cell-line specific gene expression profiles resulting from the shRNA
knockdownexperiments in theLINCSL1000project (Subramanian
et al., 2017)were used to capture the informationof cell-line specific
genetic background. Since the available labeled data in single cell
lines are limited, a semi-supervised objective function is used to
exploit the large amount of unlabeled data. Tested on the
combinatorial CRISPR-Cas9 perturbation-based SL datasets in
three different cell lines, our model showed competitive
prediction ability compared to the baseline methods. We also
verified the effectiveness of the features derived from the L1000
geneexpressionprofiles and the semi-supervisedobjective function.
Furthermore,we evaluated the importance of each gene included in
the L1000 gene expression profiles and found that the cell viability
related functions were enriched among the top attributing genes.
METHODS

Data Processing
The L1000 Gene Expression Profiles
The LINCS L1000 project (Subramanian et al., 2017) measured the
expression levels of 978 landmark genes under different
perturbations (i.e., shRNA or compounds) and control conditions
(i.e., empty vectors or solvents) in different human cell lines. Here,
we used the gene expression profiles resulting from shRNA
perturbations to construct the features of the corresponding
shRNA target genes, which were 978-dimensional vectors.

Specifically, the raw data from the LINCS L1000 project were
preprocessed based on the pipeline in the original paper
(Subramanian et al., 2017) with minor modifications; We first
directly obtained the Level 3 data from L1000, which contained
the quantile normalized gene expression profiles. The shRNA
profiles perturbed after 96 hours were used, as the data amount
for this time point was the largest. Based on this dataset, we
calculated the z-score for each dimension of a shRNA perturbed
profile x∈R978 by

z =
x −median Vð Þ

1:4826 ∗MAD Vð Þ , (1)

where z is a 978-dimensional z-score of the shRNA perturbation
profile x, V is the set of vector control profiles from the same
plate, median(V) and MAD(V) stand for the median value and
the median absolute deviation of V, and 1.4826 is a scaling factor
to make the resulted z-scores close to normal distribution.
Notably, in the original L1000 preprocessing pipeline
(Subramanian et al., 2017), the control profiles were replaced
by all the profiles on the plate, called population control. Here,
we argue that this data preprocessing scheme may cause a biased
February 2020 | Volume 11 | Article 112
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control distribution due to the specific perturbation design.
Thus, we use the expression levels treated with empty vectors
as the control for the shRNA perturbed profiles.

For each gene, typically more than one types of shRNA were
designed to knock down the expression of the corresponding gene
product. To eliminate the off-target effects of shRNAs and obtain a
robust signature for each single gene, the z-scores obtained fromthe
replicated trials of the same shRNA were first processed using an
algorithm with L1000 Level 5 data (Subramanian et al., 2017), then
the same protocol was used to reduce the shRNAs targeting the
same gene. More specifically, the z-scores were weighted and
averaged according to the Spearman correlations to obtain a final
978-dimensional L1000 gene expression profile for each gene,
which was then used as the input gene features for our model and
other baseline models.

SL Labels
The SL labels in our datasets were constructed from the CRISPR
double-knockout experiments performed in human cell lines (Shen
et al., 2017; Zhao et al., 2018;Najmet al., 2018).A recently proposed
computational approach called GEMINI (Zamanighomi et al.,
2019) was used to identify SL interactions from the combinatorial
CRISPR perturbation based cell viability studies. We adopted the
GEMINI scores to select the positive and negative SL pairs for
constructing our datasets. Inparticular, for eachcell line, positive SL
pairs were selected from gene pairs satisfying two criteria: 1)
GEMINI “strong” scores larger than zero, which indicates the
existence of the synergic lethal effect, and 2) GEMINI “strong”
scores ranking among top5%, to reduce the potential false positives.
Themain reason for choosing this threshold is that the top 5% gene
pairswere considered as “themost significant hits in each screen” in
the GEMINI paper (Zamanighomi et al., 2019). To more
thoroughly evaluate the performance of our method, we also
tested another threshold (i.e., 10%) for choosing the positive SL
pairs (Tables S1-S2). Negative SL pairs were those gene pairs
satisfying 1) a GEMINI “strong” score less than zero, which
means that there exists no synergic lethal effect between these two
genes, and 2) a GEMINI “strong” score among the bottom 50%, to
remove the potential false negatives. The gene pairs that were not
selected as positive or negative SL pairs were considered as
unknown pairs. Finally, cell lines with adequate numbers (>100)
of genepairswith bothSL labels andL1000gene expressionprofiles,
including A549, A375, and HT29, were used in our study. The
numbers of training samples for the cell lines are summarized in
Table 1.

The Workflow of EXP2SL
The basic idea of our EXP2SL model is to extract useful
information from the L1000 expression profiles to accurately
predict cell-line specific SL interactions. To achieve this goal, a
Frontiers in Pharmacology | www.frontiersin.org 3176
semi-supervised objective function was designed to fully exploit
the large amount of unlabeled data (Figure 1).

The Network Architecture of EXP2SL
For a given cell line, suppose that there areN genes (marked as the
indices 1, 2,…, N) with measured shRNA data from the LINCS
L1000project (Subramanian et al., 2017).The correspondingL1000
gene expressionprofiles canbe represented as a set offeature vectors
ffi ∈ R978gNi=1.

For a given cell line, our model first encodes the gene features
through E sequential fully-connected layers, that is,

hei = ReLU We
encoderh

e−1
i + beencoder

� �
,

e = 1, 2,…, E, i = 1, 2,…,N ,

(2)

where h0i = f i, ReLU(x) stands for the rectifier linear activation
function ReLU(x) = max(0,x), W1

encoder ∈ Rd�978,We
encoder ∈

Rd�d(e = 2,…, E), and beencoder ∈ Rd(e = 1,…, E) denote the
learnable parameters (d is the dimension of the hidden layers).

After E encoding layers, the updated gene features fhEi gNi=1 are
then used to predict SL interactions. More specifically, for a gene
pair (i, j), i, j = 1,2,…, N and i ≠ j, a confidence score is calculated
through a linear layer to predict the potential of SL interaction
between this gene pair, that is,

si,j =
1
2

Wout h
E
i , h

E
j

� �
+Wout h

E
j , h

E
i

� �� �
+ bout , (3)

where Wout∈R1×2d and bout∈R stand for learnable parameters.
Note that the pairs (i, j) and (j, i) are equivalent to each other, so
we calculate the average prediction scores of concatenations of
½hEi ,  hEj � and ½hEj ,  hEi � to obtain the equivalent prediction results
for input pairs (i, j) and (j, i).

The Semi-Supervised Objective Function
As described in SL Labels, the gene pairs with different SL labels
can be classified into positive, negative, and unknown sets,
denoted as P, N, and U, respectively. Here, we designed a
semi-supervised loss function that utilizes information from all
three sets to optimize the parameters of our model. More
specifically, our loss consisted of three parts:

The first part of our objective function is the mean squared
error (MSE) of positive and negative samples, calculated as

LMSE = o
i,jð Þ∈P∪N

(̂si,j − si,j)
2, (4)

where ŝi, j = 1 if (i, j) ∈ P, ŝi, j = – 1 if (i, j) ∈ N, and si, j stands for
the potential score of gene pair (i, j) predicted by EXP2SL.

The secondpart of the objective function is inspired by the semi-
supervised Bayesian personalized ranking (BPR) loss (Rendle et al.,
2009), which uses the unknown labels to boost the prediction
performance. In particular, the BPR loss is defined as

LBPR = o
a,bð Þ∈P, c,dð Þ∈U

log s sa,b − sc,d
� �

+ o
c,dð Þ∈U , e,fð Þ∈N

log s sc,d − se,f
� �

, (5)
TABLE 1 | Number of labeled training samples for each cell line.

A549 A375 HT29

Positive SL gene pairs 126 18 18
Negative SL gene pairs 1106 44 123
Total 1232 62 141
February 2020 | Volume 11 | Article 112

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Wan et al. EXP2SL: Synthetic Lethality Prediction
where s stands for the sigmoid function s (x) = 1
1+e−x . This

objective function aims to enlarge the margins of the predicted
scores between positive SL and unknown pairs, as well as those
between the unknown and negative SL pairs. To calculate this
loss, we sample the negative and unknown pairs with the sample
number equal to the positive pairs during model training.

The above MSE and BPR objective functions are further
combined with an L2 regularizier over all the learnable model
parameters to construct the final objective function of our
EXP2SL model, that is,

L qð Þ = LMSE + l1LBPR + l2jjqjj2, (6)

where q denotes the model parameters, and l1 and l2 stand for
the weight parameters controlling the contributions of the BPR
loss and the L2 regularization term, respectively.

To train the EXP2SL model, we used the Adam optimizer
(Kingma and Ba, 2014) with the default learning rate 0.001 and
the number of training epochs 1,000.We also clipped the gradient if
it was larger than 5 to stabilize the training process. We
implemented our model with PyTorch 1.0.1 (Paszke et al., 2017).

Hyper-Parameters
The hyper-parameters of our model include the weight of the
BPR loss l1 from [16, 32, 64, 128], the weight of the L2
Frontiers in Pharmacology | www.frontiersin.org 4177
regularization l2 from [0.1, 0.05, 0.01, 0.005, 0.0001], the
number of encoding layers from [0, 1, 2, 3, 4], and the
dimension of hidden features d from [32, 64, 128, 256]. For
each cell line, a grid search was performed to select the best
combination of hyper-parameter settings from the above
mentioned ranges, according to the AUC scores achieved by
five repeats of 5-fold cross validations under the “split pair”
setting (i.e., gene pairs were randomly split into training and test
sets). Details about the cross-validation settings can be found in
Performance Evaluation. The baseline models were tuned using
the same strategy, and the ranges for hyper-parameters in each
baseline model are described in the Baseline Models.

Extraction of Feature Importance
Here, we used the saliency map-based approach proposed in
(Simonyan et al., 2013) to evaluate the importance of each
position along the 978-dimensional input features ffigNi=1. The
basic idea of this method is to calculate the gradients of the
output score with respect the to the input features, and the larger
absolute values of gradients would suggest the more importance
of the corresponding feature dimension. After the training
process, the positive and negative SL pairs of each cell line are
fed into the EXP2SL model, and the corresponding importance
for each input feature dimension is calculated by
FIGURE 1 | Workflow of the EXP2SL model. For a pair of gene, their L1000 gene expression profiles derived from knockdown conditions are the inputs of the
encoding layers. Then, the updated features for both genes in a given pair are concatenated to predict the confidence score of being an SL pair by a linear
combination. In addition, a semi-supervised objective function is used to train the model parameters, which aims to utilize the information from both known (positive
and negative) and unknown SL gene pairs.
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w = o
i,jð Þ∈ P ∪N

j ∂ si,j
∂ f i

+j j ∂ si,j
∂ f j

j, (7)

where si, j is the predicted confidence score of gene pair (i, j), and
w is a 978-dimensional vector containing the importance score of
each dimension of the input L1000 gene expression profiles. To
reduce the variance caused by random initialization of network
parameters and random sampling of the unknown and negative
gene pairs for calculating the BPR loss during the training
process, we also take the summation of w vectors from 10
trained EXP2SL models to obtain the final importance scores
for the 978 feature dimensions. The top 50 ranked features are
then selected for each cell line. We examined the overlaps of the
selected features between cell lines and calculated the over-
representations of functional gene sets and pathways using the
WebGestalt server (Liao et al., 2019).

Baseline Models
Logistic Regression
We used the logistic regression (LR) model implemented based
on scikit-learn (Buitinck et al., 2013). The L1000 expression
profiles were used as input to the LR model. For each pair of
input genes (i,j), the features of genes i and j (denoted as fi and fj,
respectively) were concatenated before being fed into the LR
model. Since LR may produce different results for pairs (i, j) and
(j, i), each of the two pairs were treated as an individual input
with the same label in the training phase. In the test phase, the
prediction values from both inputs were then averaged to obtain
the final prediction score. The inverse of regularization strength
(a hyper-parameter) was chosen from [10, 1, 0.5, 0.1, 0.05, 0.01].

Random Forest
We used the random forest (RF) classifier implemented based on
scikit-learn (Buitinck et al., 2013). The input and output of RF
were the same as those of LR described above. The number of
trees was selected from [32, 64, 128] and the maximum depth of
the trees was selected from [8, 16, None], where “None” means
that the trees will keep expanding until no node can be split.

Support Vector Machine
Weused the support vectormachine (SVM) classifier implemented
basedon scikit-learn (Buitinck et al., 2013). The input and output of
SVMwere the sameas those ofLRandRFdescribedabove.Theonly
hyper-parameter, the inverse of regularization strength, was
selected from [100, 50, 10, 5, 1, 0.5, 0.1].

Gradient Boosting Decision Tree
We used the gradient-boosting decision tree (GBDT) classifier
implemented by the XGBoost project (Chen and Guestrin, 2016).
The input and output of GBDT were the same as other classifiers
described above. The number of trees was selected from [32, 64, 128]
and the maximum depth of the trees was selected from [4, 8, 16].

NetLapRLS
NetLapRLS (Xia et al., 2010) (a semi-supervised regressor) was
implemented basedonpyDTI (https://github.com/stephenliu0423/
PyDTI).AsNetLapRLS treats symmetric gene pairs (i, j) and (j, i) in
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the same way, there is no need to average the predictions of both
pairs. Three types of similarity matrices were used as the input to
NetLapRLS: 1) The protein-protein interaction (PPI) similarity
matrix Sp, i.e., the pairwise PPI similarities between all pairwise
genes used in the cell line. The human PPI data were obtained from
the STRING database v11 (Szklarczyk et al., 2014). Protein pairs
marked with STRING scores larger than 0.8 were considered
positive interaction pairs in the PPI network. The PPI similarity
between two proteins (i, j) were calculated as the Jaccard similarity
of their interaction partners in the PPI network, that is,

Sp i, jð Þ = N ið Þ ∩ N jð Þj j
N ið Þ ∪ N jð Þj j , (8)

where N(x) stands for the neighbors of protein x in the PPI
network. 2) The L1000 profile similarity matrix Sl, i.e., the
absolute values of the pairwise L1000 profile similarities
between all the genes used in the cell line. The L1000 profile
similarity between two genes were calculated as the Pearson
correlation between their L1000 gene expression profiles. 3) The
combination of both PPI and L1000 similarities, calculated as 1 –
(1 – Sp)(1 – Sl). The best hyper-parameter settings were selected
from all the combinations over gd = gt from [0.0001, 0.001, 0.01,
0.1, 1] and bd = bt from [0.003, 0.03, 0.3,3, 30].
RESULTS

Cell-Line Specificity of SL Interactions
To demonstrate the cell-line specificity of SL interactions, we
examined 378 CRISPR knockout pairs screened in different cell
lines from the Big Papi SynLet library (Najm et al., 2018). Their
SL scores were calculated by GEMINI (Zamanighomi et al.,
2019), a computational tool for identifying SL interactions
from pairwise CRISPR knockout screens. Three cell lines were
used in our performance evaluation, including A549, A375, and
HT29. Among these three cell lines, A549 and A375 exhibited
relatively high correlation (Pearson correlation 0.71, Figure 2A)
in GEMINI scores, which measure the strength of the SL
interactions. Meanwhile, the correlations between HT29 and
the other two cell lines are relatively low (Pearson correlations
0.36 and 0.28, Figure 2A). These results indicate that the SL
interaction patterns between the same gene pairs in different cell
lines can be quite different.

Next, we examined the positive and negative SL samples
selected from the Big Papi dataset according to the criteria
described in SL Labels. By comparing the SL labels of the same
gene pairs in the three cell lines, we found that most gene pairs
have inconsistent labels cross different cell lines (Figure 2B). There
are 38 gene pairs with at least one positive label in the three cell
lines, but only one of them (i.e., the BRCA1-PARP1 gene pair) is
always labeled as a positive SL. Among these 38 gene pairs, 16 have
negative labels in one cell line but positive labels in another one.

Based on the above observation that most SL pairs were not
conserved across different cell lines, we built prediction models
for each cell line separately. In addition to the Big Papi dataset,
we also included the data from other literature (Shen et al., 2017;
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Zhao et al., 2018), which further enlarged the SL data of cell line
A549. The overlaps of gene pairs used as labeled training samples
between the three cell lines are shown in Figure 2C.

Performance Evaluation
We compared the performance of our model to that of several
baseline methods through cross-validation on the aforementioned
datasets for the three cell lines. LR, RF, SVM, and GBDT were
selected as the baseline methods because they are the machine
learning baseline models and accept vector input, which is suitable
for our case. NetLapRLS is also used as a baseline model, as it is a
well-established semi-supervised method that accepts network
input and which can be used to test the effectiveness of other
features, such as thePPInetwork.Two settingswere used to split the
training and test samples. The first one was called “split pair” in
which genepairswere randomly split into training and test sets. The
second one was called “split gene” in which, for each test gene pair,
at least one gene is not seen in training data. The “split gene” setting
wasmainly used to testwhether the prediction can be generalized to
unseen genes, which ismore challenging.Note that the splittingwas
performed over positive and negative SL pairs, and our model also
utilized the unknown pairs during the training process.

Area under the receiver operating characteristic curve (AUC),
area under the precision-recall curve (AUPR), F1 score, accuracy,
precision, sensitivity and selectivity were used to evaluate the
Frontiers in Pharmacology | www.frontiersin.org 6179
classification performance (Tables 2 and 3). The receiver
operating characteristic (ROC) and precision-recall (PR) curves
achieved by EXP2SL and the baseline models are shown in Figures
S2–S3. Under the “split pair” setting, all the models achieved
relatively high performance, which indicates that the prediction
problem defined under this setting was relatively easy. The
performance of our model was comparable with the top-
performing baseline methods under this setting. However, under
themore practical “split gene” setting inwhichwewished to predict
SL pairs containing novel genes without experimental screen data
(due to the limited existing experimental data), the SL prediction
taskbecamedifficult as all themodels achievedrelatively lowerAUC
andAUPRscores than thoseunder the “split pair” setting.However,
our model exhibited a significantly better performance than that of
all the baseline models under this “split gene” setting. EXP2SL
achieved the best performance in at least 6/7metrics for all the three
cell lines (Table 3). We also tested our model and the baseline
methodswith a less strict threshold for defining the positive SLpairs
(i.e., 10%), and our model also achieved a better performance than
that of the baseline methods (Tables S1–S2).

Ablation Study and Feature Comparison
To evaluate the contribution of the semi-supervised objective
function to the final prediction, we tested our EXP2SL model
without the BPR loss. That is, we modified the objective function
FIGURE 2 | SL datasets for three human cell lines. (A) Correlations of the GEMINI scores between three different cell lines for the same gene pairs measured in the
Big Papi dataset. (B) The binary SL labels for the gene pairs in the Big Papi dataset. The 38 gene pairs measured in all the three cell lines and with at least one
positive SL label are included in the figure. (C) The Venn diagrams of all labeled SL pairs, positive SL pairs, and negative SL pairs used in our dataset, which were
constructed from the Big Papi dataset and other available CRISPR-Cas9 based experimental screens in the literature.
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in Equation 6 and used only the MSE loss and the L2 regularization
term; our model can thus be trained in a supervised manner. An
obvious decrease in performance under the “split gene” setting
could be observed when we removed the BPR loss (see the “EXP2SL
(no BPR loss)” row in Table 3). Therefore, the results demonstrated
that the semi-supervised objective function had an important
contribution to the prediction performance of our model.

One of the baseline models, NetLapRLS, can also incorporate
different similarity matrices (i.e., the L1000 profile similarities,
the PPI similarities, and the combined similarities, as described
in NetLapRLS), thus allowing the comparison between different
settings using different input information. The NetLapRLS
models with L1000 profile similarities and with PPI similarities
as the input features achieved similar performance, and the
combination of both features only led to a slight increase in
performance in most cases. In general, the performance of
NetLapRLS was worse than EXP2SL.

We also incorporated the PPI network into our EXP2SL
framework (denoted as EXP2SL (PPI) in Tables 2 and 3) using
a graph convolution network (Lei et al., 2017), as described in
Supporting Material and Figure S1. In this case, no significant
improvement in AUC and AUPR scores was observed after
adding the PPI network information (p values larger than 0.1
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for all the cell lines in both conditions, Wilcoxon rank-sum test).
These results indicate that using only the L1000 gene expression
profiles is adequate to enable the models to capture useful
features for accurately predicting SL interactions.

Feature Importance Analysis
We used the scheme described in Extraction of Feature
Importance to extract the important features based on the
saliency map approach (Simonyan et al., 2013). Those features
(i.e., the corresponding expression levels of 978 genes) ranked
among the top 50 (about 5% from the 978-dimensional features)
were selected as the important features for each cell line. Among
the selected feature sets, there is only one gene shared across all
the three cell lines, that is, AKT1. AKT1 is known as a serine/
threonine protein kinase, which regulates many viability related
cellular processes, including proliferation, apoptosis, and cell
survival (Chen et al., 2001; Lee et al., 2011). Most features were
considered as the top 50 important features only in one cell line
(47, 46, and 46 unique important features for A549, A375, and
HT29, respectively), which suggests that the prediction may rely
on the specific gene expression landscapes in different cell lines.

We also checked the over-representation of functional gene sets
and pathways among the selected important features of the three
TABLE 2 | Performance evaluation in three different cell lines under the “split pair” setting. The mean and standard deviation (in brackets) of metrics over 10 repeats of
5-fold cross-validations are shown. The best results for each cell line and each metric are marked in bold.

Dataset Model name AUC AUPR F1 Accuracy Precision Sensitivity Specificity

A549 LR 0.863 (0.041) 0.556 (0.089) 0.577 (0.068) 0.913 (0.030) 0.622 (0.109) 0.573 (0.033) 0.952 (0.032)
RF 0.854 (0.039) 0.552 (0.076) 0.567 (0.069) 0.912 (0.027) 0.600 (0.104) 0.559 (0.032) 0.952 (0.026)
SVM 0.809 (0.038) 0.505 (0.084) 0.555 (0.060) 0.914 (0.019) 0.610 (0.104) 0.523 (0.037) 0.958 (0.019)
GBDT 0.847 (0.039) 0.520 (0.086) 0.552 (0.065) 0.908 (0.029) 0.573 (0.120) 0.552 (0.037) 0.948 (0.033)
NetLapRLS(L1000)1 0.760 (0.044) 0.344 (0.088) 0.407 (0.068) 0.845 (0.034) 0.357 (0.119) 0.512 (0.039) 0.883 (0.038)
NetLapRLS(PPI) 2 0.760 (0.045) 0.344 (0.090) 0.407 (0.079) 0.845 (0.034) 0.357 (0.130) 0.512 (0.032) 0.883 (0.037)
NetLapRLS(combined) 3 0.827 (0.042) 0.488 (0.091) 0.519 (0.061) 0.898 (0.025) 0.523 (0.100) 0.539 (0.017) 0.938 (0.027)
EXP2SL(no BPR loss) 4 0.866 (0.038) 0.576 (0.086) 0.583 (0.071) 0.916 (0.032) 0.638 (0.135) 0.565 (0.036) 0.955 (0.035)
EXP2SL(PPI) 5 0.870 (0.041) 0.574 (0.078) 0.583 (0.055) 0.915 (0.020) 0.636 (0.081) 0.573 (0.039) 0.954 (0.020)
EXP2SL 0.871 (0.044) 0.573 (0.083) 0.582 (0.070) 0.914 (0.024) 0.634 (0.084) 0.579 (0.063) 0.952 (0.023)

A375 LR 0.994 (0.004) 0.983 (0.006) 0.981 (0.011) 0.989 (0.007) 0.967 (0.018) 1.000 (0.015) 0.984 (0.011)
RF 0.997 (0.004) 0.990 (0.015) 0.987 (0.016) 0.993 (0.007) 0.977 (0.028) 1.000 (0.010) 0.990 (0.010)
SVM 0.991 (0.004) 0.978 (0.017) 0.972 (0.020) 0.984 (0.008) 0.962 (0.033) 0.991 (0.000) 0.983 (0.009)
GBDT 0.999 (0.009) 0.997 (0.013) 0.993 (0.019) 0.996 (0.013) 0.993 (0.020) 0.994 (0.022) 0.997 (0.012)
NetLapRLS(L1000) 1 0.989 (0.005) 0.983 (0.006) 0.969 (0.014) 0.976 (0.013) 0.956 (0.026) 0.990 (0.012) 0.966 (0.022)
NetLapRLS(PPI) 2 0.990 (0.002) 0.985 (0.003) 0.972 (0.012) 0.978 (0.010) 0.956 (0.021) 0.995 (0.000) 0.966 (0.017)
NetLapRLS(combined) 3 0.994 (0.007) 0.990 (0.007) 0.983 (0.016) 0.987 (0.018) 0.971 (0.026) 1.000 (0.000) 0.979 (0.033)
EXP2SL(no BPR loss) 4 1.000 (0.003) 1.000 (0.011) 1.000 (0.013) 1.000 (0.008) 1.000 (0.023) 1.000 (0.000) 1.000 (0.012)
EXP2SL(PPI)5 1.000 (0.008) 1.000 (0.010) 1.000 (0.015) 1.000 (0.014) 1.000 (0.026) 1.000 (0.000) 1.000 (0.023)
EXP2SL 1.000 (0.012) 1.000 (0.029) 1.000 (0.026) 1.000 (0.016) 1.000 (0.043) 1.000 (0.000) 1.000 (0.021)

HT29 LR 0.967 (0.015) 0.861 (0.049) 0.851 (0.032) 0.958 (0.012) 0.855 (0.053) 0.895 (0.048) 0.968 (0.017)
RF 0.955 (0.020) 0.821 (0.067) 0.824 (0.030) 0.947 (0.005) 0.792 (0.039) 0.899 (0.073) 0.955 (0.005)
SVM 0.949 (0.017) 0.765 (0.079) 0.808 (0.065) 0.943 (0.015) 0.744 (0.069) 0.942 (0.100) 0.941 (0.018)
GBDT 0.973 (0.016) 0.880 (0.061) 0.855 (0.029) 0.960 (0.015) 0.861 (0.065) 0.897 (0.040) 0.969 (0.021)
NetLapRLS(L1000) 1 0.935 (0.017) 0.738 (0.094) 0.778 (0.064) 0.941 (0.025) 0.786 (0.139) 0.836 (0.053) 0.954 (0.034)
NetLapRLS(PPI) 2 0.927 (0.024) 0.729 (0.086) 0.772 (0.053) 0.939 (0.008) 0.787 (0.048) 0.822 (0.056) 0.953 (0.009)
NetLapRLS(combined) 3 0.939 (0.019) 0.764 (0.094) 0.784 (0.054) 0.939 (0.020) 0.778 (0.107) 0.850 (0.035) 0.949 (0.026)
EXP2SL(no BPR loss4 0.957 (0.026) 0.834 (0.071) 0.826 (0.043) 0.943 (0.017) 0.779 (0.088) 0.926 (0.051) 0.946 (0.023)
EXP2SL(PPI)5 0.967 (0.018) 0.869 (0.033) 0.851 (0.026) 0.956 (0.011) 0.838 (0.067) 0.912 (0.084) 0.962 (0.022)
EXP2SL 0.969 (0.008) 0.880 (0.027) 0.866 (0.027) 0.959 (0.012) 0.872 (0.055) 0.903 (0.049) 0.968 (0.018)
February
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1The NetLapRLS method using only the L1000 similarity.
2The NetLapRLS method using only the PPI similarity.
3The NetLapRLS method using the combination of L1000 and PPI similarities.
4The EXP2SL model without the BPR loss.
5The EXP2SL model with additional PPI information incorporated by a graph convolution module.
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cell lines using the WebGestalt server (Liao et al., 2019). The gene
ontology (GO) related to biological processes was first used to
examine the enriched functional annotations of the selected
feature sets (Tables S3–S5). The enriched GO terms were
ranked according to the false discovery rate (FDR) scores and p
values. As a result, the top 10 enriched functional annotations for
the selected features of HT29 contains the regulation of cell death,
proliferation, and apoptosis (p values < 10–6 and FDRs < 10–3),
which are cell viability related functions. Then, we also checked the
over-representation of selected genes among the KEGG pathways
using the WebGestalt server (Liao et al., 2019) (Tables S6–S8).
Among the top 10 enriched pathways ranked according to the
FDR scores and p values, we found multiple cancer-related
pathways for cell line HT29 and also cell cycle or cancer-
regulatory pathways for A375 and A549, e.g., the p53 and ERBB
signaling pathways. All these results indicated that the selected
features are probably related to the regulation of cell viability.

CONCLUSION

In this paper, we proposed a semi-supervised neural network
based method, EXP2SL, to accurately predict cell-line specific SL
interactions. Our method exploits the L1000 expression profiles
Frontiers in Pharmacology | www.frontiersin.org 8181
measured from the shRNA knockdown experiments performed
in different cell lines to learn the cell-line specific SL interactions
from the labeled data generated by CRISPR-Cas9 double-
knockout based screens. In addition, a semi-supervised
objective function is designed to make use of the large amount
of unlabeled data. Tests on three datasets corresponding to three
different cell lines showed that our model achieved better
performance than the baseline models. At the same time, we
verified that the L1000 gene expression profiles and the semi-
supervised objective function are useful in SL prediction.
Moreover, we analyzed the most important genes among the
whole L1000 gene expression profiles, and found that the top
attributing genes are related to the regulation of cell viability,
which suggested that our model may pay more attention to such
meaningful components of the whole gene expression profiles.

The major contributions of our work are the demonstration of
L1000 expression profiles as effective features for SL prediction, and
a novel semi-supervised neural network algorithm to accurately
capture SL interactions. To our best knowledge, our model is the
first computational approach for predicting cell-line specific
synthetic lethal interactions, which may potentially benefit the
target identification for specific tissue or cancer types. However, the
application of our model may be limited in certain cancer types
TABLE 3 | Performance evaluation in three different cell lines under the “split gene” setting. The mean and standard deviation (in brackets) of metrics over 10 repeats of
5-fold cross-validations are shown. The best results for each cell line and each metric are marked in bold.

Dataset Model name AUC AUPR F1 Accuracy Precision Sensitivity Specificity

A549 LR 0.709 (0.039) 0.328 (0.050) 0.373 (0.039) 0.816 (0.044) 0.404 (0.070) 0.435 (0.059) 0.853 (0.058)
RF 0.715 (0.037) 0.348 (0.052) 0.379 (0.038) 0.850 (0.024) 0.461 (0.058) 0.394 (0.038) 0.896 (0.027)
SVM 0.708 (0.026) 0.340 (0.051) 0.380 (0.032) 0.838 (0.020) 0.433 (0.037) 0.432 (0.060) 0.876 (0.030)
GBDT 0.715 (0.030) 0.333 (0.051) 0.363 (0.032) 0.841 (0.043) 0.401 (0.094) 0.399 (0.057) 0.888 (0.054)
NetLapRLS(L1000) 1 0.668 (0.024) 0.252 (0.038) 0.321 (0.021) 0.815 (0.016) 0.294 (0.057) 0.407 (0.029) 0.858 (0.018)
NetLapRLS(PPI) 2 0.668 (0.030) 0.252 (0.048) 0.321 (0.041) 0.815 (0.016) 0.294 (0.070) 0.407 (0.036) 0.858 (0.019)
NetLapRLS(combined) 3 0.685 (0.032) 0.331 (0.043) 0.371 (0.035) 0.863 (0.021) 0.426 (0.083) 0.368 (0.046) 0.918 (0.027)
EXP2SL(no BPR loss) 4 0.699 (0.032) 0.358 (0.053) 0.389 (0.035) 0.857 (0.033) 0.450 (0.083) 0.401 (0.043) 0.906 (0.042)
EXP2SL(PPI) 5 0.755 (0.024) 0.390 (0.044) 0.419 (0.034) 0.861 (0.041) 0.465 (0.079) 0.450 (0.047) 0.903 (0.054)
EXP2SL 0.756 (0.030) 0.392 (0.043) 0.419 (0.024) 0.863 (0.048) 0.458 (0.073) 0.448 (0.050) 0.907 (0.061)

A375 LR 0.945 (0.026) 0.884 (0.050) 0.874 (0.046) 0.930 (0.034) 0.866 (0.054) 0.897 (0.031) 0.925 (0.033)
RF 0.947 (0.028) 0.886 (0.045) 0.891 (0.038) 0.934 (0.032) 0.865 (0.039) 0.938 (0.025) 0.917 (0.027)
SVM 0.924 (0.027) 0.860 (0.047) 0.873 (0.035) 0.916 (0.026) 0.864 (0.044) 0.915 (0.032) 0.905 (0.030)
GBDT 0.923 (0.019) 0.852 (0.056) 0.875 (0.048) 0.920 (0.022) 0.862 (0.047) 0.926 (0.040) 0.909 (0.047)
NetLapRLS(L1000) 1 0.915 (0.050) 0.822 (0.054) 0.821 (0.085) 0.895 (0.052) 0.827 (0.020) 0.889 (0.112) 0.933 (0.069)
NetLapRLS(PPI) 2 0.915 (0.033) 0.823 (0.063) 0.821 (0.046) 0.895 (0.036) 0.827 (0.047) 0.889 (0.029) 0.933 (0.025)
NetLapRLS(combined) 3 0.921 (0.022) 0.837 (0.054) 0.840 (0.045) 0.912 (0.030) 0.858 (0.063) 0.869 (0.024) 0.955 (0.025)
EXP2SL(no BPR loss) 4 0.952 (0.035) 0.895 (0.052) 0.905 (0.042) 0.943 (0.031) 0.873 (0.045) 0.967 (0.032) 0.922 (0.033)
EXP2SL(PPI) 5 0.976 (0.028) 0.936 (0.028) 0.932 (0.022) 0.966 (0.024) 0.919 (0.046) 0.959 (0.062) 0.961 (0.055)
EXP2SL 0.976 (0.023) 0.935 (0.055) 0.926 (0.046) 0.964 (0.030) 0.902 (0.045) 0.965 (0.038) 0.960 (0.025)

HT29 LR 0.754 (0.056) 0.417 (0.075) 0.531 (0.041) 0.823 (0.050) 0.505 (0.059) 0.709 (0.048) 0.841 (0.067)
RF 0.846 (0.030) 0.494 (0.062) 0.587 (0.037) 0.858 (0.028) 0.524 (0.057) 0.763 (0.057) 0.869 (0.026)
SVM 0.827 (0.034) 0.465 (0.044) 0.595 (0.043) 0.857 (0.032) 0.539 (0.066) 0.792 (0.056) 0.863 (0.036)
GBDT 0.823 (0.057) 0.452 (0.071) 0.546 (0.044) 0.822 (0.046) 0.495 (0.055) 0.758 (0.026) 0.839 (0.057)
NetLapRLS(L1000) 1 0.801 (0.043) 0.441 (0.056) 0.542 (0.042) 0.826 (0.042) 0.475 (0.079) 0.755 (0.070) 0.837 (0.055)
NetLapRLS(PPI) 2 0.794 (0.026) 0.423 (0.047) 0.525 (0.030) 0.818 (0.022) 0.458 (0.069) 0.761 (0.040) 0.828 (0.034)
NetLapRLS(combined) 3 0.814 (0.029) 0.464 (0.081) 0.550 (0.045) 0.840 (0.043) 0.479 (0.062) 0.758 (0.073) 0.853 (0.055)
EXP2SL(no BPR loss) 4 0.788 (0.035) 0.481 (0.040) 0.577 (0.059) 0.830 (0.037) 0.531 (0.086) 0.752 (0.040) 0.835 (0.048)
EXP2SL(PPI) 5 0.865 (0.032) 0.553 (0.038) 0.612 (0.024) 0.872 (0.012) 0.563 (0.049) 0.766 (0.046) 0.882 (0.018)
EXP2SL 0.866 (0.039) 0.558 (0.066) 0.620 (0.046) 0.877 (0.028) 0.577 (0.065) 0.756 (0.065) 0.890 (0.035)
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 2020 | Volume 11
1The NetLapRLS method using only the L1000 similarity.
2The NetLapRLS method using only the PPI similarity.
3The NetLapRLS method using the combination of L1000 and PPI similarities.
4The EXP2SL model without the BPR loss.
5The EXP2SL model with additional PPI information incorporated by a graph convolution module.
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with high heterogeneity. Another limitation of our model is the
dependence of the available L1000 gene expression profiles as input
to EXP2SL. Although the L1000 expression profiles of more than
3,500 genes have been measured by shRNA knockdown
experiments in the three cell lines analyzed in this work, there
exist some cell lines with a paucity of data, whichmay thus limit the
applications of our model on such cell lines.
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Gene expression profiles are useful for assessing the efficacy and side effects of drugs. In
this paper, we propose a new generative model that infers drug molecules that could
induce a desired change in gene expression. Our model—the Bidirectional Adversarial
Autoencoder—explicitly separates cellular processes captured in gene expression
changes into two feature sets: those related and unrelated to the drug incubation. The
model uses related features to produce a drug hypothesis. We have validated our model
on the LINCS L1000 dataset by generating molecular structures in the SMILES format for
the desired transcriptional response. In the experiments, we have shown that the
proposed model can generate novel molecular structures that could induce a given
gene expression change or predict a gene expression difference after incubation of a given
molecular structure. The code of the model is available at https://github.com/
insilicomedicine/BiAAE.

Keywords: deep learning, generative models, adversarial autoencoders, conditional generation, representation
learning, drug discovery, gene expression
INTRODUCTION

Following the recent advances in machine learning, deep generative models found many applications in
biomedicine, including drug discovery, biomarker development, and drug repurposing (Mamoshina
et al., 2016; Zhavoronkov, 2018). A promising approach to drug discovery is conditional generation,
where a machine learning model learns a distribution p(x | y) of molecular structures x with given
property y. Such models can generate molecules with a given synthetic accessibility, binding energy, or
even activity against a given protein target (Kadurin et al., 2016; Polykovskiy et al., 2018a).

In this paper, we studied how conditional models scale to a more complex biological property;
specifically, we have studied how drug incubation influences gene expression profiles. Using the
LINCS L1000 (Duan et al., 2014) dataset, we build a joint model p(x, y) on molecular structures x
and induced gene expression changes y.

In many conditional generation tasks, x completely defines y. For example, molecular structure
completely defines its synthetic accessibility score. For our task, however, some transcriptome
changes are unrelated to the drug effect on cells, and we cannot infer them only from an
incubated drug.
in.org April 2020 | Volume 11 | Article 2691184
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We propose a new model—the Bidirectional Adversarial
Autoencoder—that learns a joint distribution p(x, y) of objects
and conditions. The model decomposes objects and their properties
into three feature parts: shared features s common to both x and y;
exclusive features zx relevant only to x and not y; and exclusive
features zy relevant only to y and not x: p(x, y) = p(s, zx, zy). For the
transcriptomes and drugs, shared features s may contain
pharmacophore properties, target protein information, binding
energy, and inhibition level; exclusive features zx may describe the
remaining structural information; and zy may represent unrelated
cellular processes. As features s are common to both x and y, the
model can extract them from both x and y.

The paper is organized into sections: Related Work surveys
related work; Models presents the proposed Bidirectional
Adversarial Autoencoder; Experimental Evaluation compares
and validates the models on two datasets: the toy Noisy
MNIST dataset of hand-written digits and LINCS L1000
dataset of small molecules with corresponding gene expression
changes; and Conclusion concludes the paper.
RELATED WORK

Conditional generative models generate objects x from a conditional
distribution p(x | y), with y usually being limited to class labels. The
Adversarial Autoencoder (AAE) (Makhzani et al., 2015) consists of
an autoencoder with a discriminator on the latent representation z
that tries to make the latent space distribution indistinguishable
from a prior distribution p(z); its conditional extension—Supervised
AAE (Makhzani et al., 2015)—works well for simple conditions but
can violate the conditions in other cases (Polykovskiy et al., 2018b).
Conditional Generative Adversarial Networks (CGAN) (Mirza and
Osindero, 2014) supplied the condition as an auxiliary input to both
generator and discriminator. Perarnau et al. (2016) inverted
CGANs, allowing us to edit images by changing the labels y. In
FusedGAN (Bodla et al., 2018), a GAN generated a generic
“structure prior” with no supervision, and a CGAN generated an
object x from condition y and the latent representation learned by
the unconditional GAN. Other papers explored applications of
Conditional AAE models to the task of image modification
(Antipov et al., 2017; Lample et al., 2017; Zhang et al., 2017).

CausalGAN (Kocaoglu et al., 2018) allowed components of
the condition to have a dependency structure in the form of a
causal model making conditions more complex. The Bayesian
counterpart of AAE, the Variational Autoencoder (VAE)
(Kingma and Welling, 2013), also had a conditional version
(Sohn et al., 2015a), where conditions improved structured
output prediction. CycleGAN (Zhu et al., 2017) examined a
related task of object-to-object translation.

Multimodal learning models (Ngiam et al., 2011) and multi-
view representation models (Wang et al., 2016a) explored
translations between different modalities, such as image to text.
Wang et al. (2016b) presented a VAE-based generative multi-
view model. Our Bidirectional Adversarial Autoencoder
provided explicit decoupling of latent representations and
brought the multi-view approach into the AAE framework,
Frontiers in Pharmacology | www.frontiersin.org 2185
where the basic Supervised AAE-like models (Makhzani et al.,
2015) did not yield correct representations for sampling
(Polykovskiy et al., 2018b).

Information decoupling ideas have been previously applied in
other contexts: Yang et al. (2015) disentangled identity and pose
factors of a 3D object; adversarial architecture from Mathieu
et al. (2016) decoupled different factors in latent representations
to transfer attributes between objects; Creswell et al. (2017) used
VAE architecture with separate encoders for class label y and
latent representation z, forcing z to exclude information about y;
InfoVAE (Zhao et al., 2017) maximized mutual information
between input and latent features; and Li et al. (2019) proposed a
VAE modification that explicitly learns a “disentangled”
representation s to predict the class label and a “non-
interpretable” representation z that contains the rest of the
information used for decoding.

InfoGAN (Chen X. et al., 2016) maximized mutual
information between a subset of latent factors and the
generator distribution. FusedGAN (Bodla et al., 2018)
generated objects from two components, where only one
component contains all object-relevant information. Hu et al.
(2018) explicitly disentangles different factors in the latent
representation and maps a part of the latent code to a
particular external information.

Conditional Generation for Biomedicine
Machine learning has numerous applications in biomedicine and
drug discovery (Gawehn et al., 2016; Mamoshina et al., 2016;
Ching et al., 2018). Deep neural networks demonstrated positive
results in various tasks, such as prediction of biological age
(Putin et al., 2016; Mamoshina et al., 2018a; Mamoshina et al.,
2019), prediction of targets and side effects Aliper et al., 2017;
Mamoshina et al., 2018b; West et al., 2018), and applications in
medicinal chemistry (Lusci et al., 2013; Ma et al., 2015).

Alongside large-scale studies that measure cellular processes,
deep learning applications explore transcriptomics (Aliper et al.,
2016b; Chen Y. et al., 2016); these works study cellular processes
and their change following molecular perturbations. Deep
learning has also been applied to pathway analysis (Ozerov
et al., 2016), the prediction of protein functions (Liu, 2017),
the discovery of RNA binding proteins (Zheng et al., 2017), the
discovery of binding patterns of transcription factors (Qin and
Feng, 2017), medical diagnostics based on omics data
(Chaudhary et al., 2017), and the analysis of DNA and RNA
sequences (Budach and Marsico, 2018).

In drug discovery, apart from predicting pharmacological
properties and learning useful representations of small molecules
(Duvenaud et al., 2015; Aliper et al., 2016a; Kuzminykh et al., 2018),
deep learning is being widely applied to the generation of molecules
(Sanchez and Aspuru-Guzik, 2018). Multiple authors have
published models that generate new molecules that are similar to
the training data or molecules with predefined properties (Kadurin
et al., 2017a; Kadurin et al., 2017b; Segler et al., 2017 Gómez-
Bombarelli et al., 2018). AI-generated molecules have also been
tested in vitro (Polykovskiy et al., 2018b). Reinforcement learning
and generative models further enabled the generation of complex
non-differentiable objectives, such as novelty (Guimaraes et al.,
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2017; Putin et al., 2018a; Putin et al., 2018b). Generative models aim
to eliminate the bottleneck of traditional drug development
pipelines by providing promising new lead molecules for a
specific target and automating the initial proposal of lead
molecules with desired properties. Recently, Zhavoronkov et al.
(2019) developed a model GENTRL to discover potent inhibitors of
discoidin domain receptor 1 (DDR1) in 21 days.
MODELS

In this section, we introduce Unidirectional and a Bidirectional
Adversarial Autoencoders and discuss their applications to
conditional modeling. While we have focused on an example
of molecular generation for transcriptome changes, in general,
our model is not limited to these data types and can be used for
generation in other domains.

Supervised Adversarial Autoencoder
Our model for conditional generation is based on a Supervised
Adversarial Autoencoder (Supervised AAE, SAAE) (Makhzani
et al., 2015) shown in Figure 1. The Supervised AAE learns three
neural networks—an encoder Ex, a generator (decoder) Gx, and a
discriminator D. The encoder maps a molecule x onto a latent
representation z = Ex(x), and a generator reconstructs the
molecule back from z and gene expression changes y: Gx(z, y).
Frontiers in Pharmacology | www.frontiersin.org 3186
We trained a discriminator D to distinguish latent codes from
samples of the prior distribution p(z) and modified the encoder
to make the discriminator believe that encoder’s outputs are
samples from the prior distribution:

min
Ex ,Gx

 max
D

 l1Ex,y∼pd x,yð Þl
x
rec x,Gx Ex xð Þ, yð Þð Þ

+Ez∼p zð Þ log  D zð Þ + Ex∼pd xð Þ log  (1 − D Ex xð Þð Þ),
(1)

where lxrec is a similarity measure between the original and
reconstructed molecule, and pd(x, y) is the data distribution.
Hyperparameter l1 balances reconstruction and adversarial
losses. We trained the model by alternately maximizing the
loss in Equation 1 with respect to the parameters of D and
minimizing it with respect to the parameters of Ex and Gx

(Goodfellow et al., 2014).
Besides passing gene expression changes y directly to the

generator, we could also train an autoencoder (Ey, Gy) on y and
pass its latent codes to the molecular decoder Gx (Figure 2). We
call this model a Latent Supervised Adversarial Autoencoder
(Latent SAAE). Its optimization problem is:

min
Ex ,Ey ,Gx ,Gy

max
D

 l1Ex,y∼pd x,yð Þl
x
rec x,Gx Ex xð Þ,Ey yð Þ� �� �

+l2Ey∼pd yð Þl
y
rec y,Gy Ex yð Þð Þ� �

+ Ez∼p zð Þ log  D zð Þ
+Ex∼pd xð Þ log  (1 − D Ex xð Þð Þ) :

(2)
FIGURE 1 | The Supervised Adversarial Autoencoder model (SAAE).
FIGURE 2 | The Latent Supervised Adversarial Autoencoder model (Latent SAAE).
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Hyperparameters l1 and l2 balance object and condition
reconstruction losses as well as the adversarial loss.
Bidirectional Adversarial Autoencoder
Both SAAE and Latent SAAE models learn conditional
distribution p(x | y) of molecules for specific transcriptome
changes. In this paper, we learned a joint distribution p(x, y)
instead. Our model is symmetric in that it can generate both x for
a given y and y for a given x. We assume that the data are
generated with a graphical model shown in Figure 3. Latent
variables zx and zy are exclusive parts that represent features
specific only to molecules or transcriptome changes. Latent
variable s represents a shared part that describes features
significant for both molecules and expression changes. To
produce a new data point, we sampled exclusive (zx, zy) and
shared (s) parts independently and used generative distributions
Gx (x | s, zx) and Gy (y | s, zy) to produce x and y.

To train a model, we used inference networks that predict
values of s, zx, and zy: Ex(zx | x), Ey(zy | y), and E(s | x, y) = Ex(s | x)
= Ey(s | y). Note that we used two separate networks for inference
of s from one of x and y to perform conditional sampling (when
only one of x or y is known). For example, to sample p(x | y), we
would do the following steps:

s ∼ Ey(sjy), zx ∼ p zxð Þ, x ∼ Gx s, zxð Þ : (3)

For the molecule, s may describe its pharmacophore—
binding points that are recognized by macromolecules. For the
gene expression, s may describe affected proteins. Note that we
can infer pharmacophore from a list of affected genes and vice
versa. The exclusive part zx of a molecule describes the remaining
structural parts besides the pharmacophore points. The exclusive
part zy of a transcriptome describes cellular processes that
influence the expression but are not caused by the drug.

Figure 4 shows the proposed Bidirectional AAE architecture.
We used two deterministic encoders Ex and Ey that infer latent
codes from molecules and transcriptomes:

zx, sxð Þ = Ex xð Þ,  zy , sy
� �

= Ey yð Þ : (4)
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Two deterministic decoders (generators) Gx and Gy

reconstruct molecules x and gene expression changes y back
from the latent codes:

x = Gx zx, sxð Þ, y = Gy zy , sy
� �

(5)

The objective function consists of three parts, each capturing
restrictions from the graphical model—the structure of the
shared representat ion, reconstruct ion qual i ty , and
independence of shared and exclusive representations.

Shared loss ensures that shared representations extracted
from the molecule sx and gene expression sy are close to each
other, as suggested by the graphical model:

min
Ex ,Ey

 Lshared = Ex,y∼Pd x,yð Þ  ‖ sx − sy ‖22 : (6)

Reconstruction loss ensures that decoders reconstruct
molecules and gene expressions back from the latent codes
produced by the encoders. We also use a cross-reconstruction
loss, where molecular decoder Ex uses shared part sy from a gene
expression encoder Ey for reconstruction and vice versa:

min
Ex ,Ey ,Gx

Lx
rec = Ex∼pd xð Þl

x
rec x,Gx zx , sxð Þð Þ

+ Ex,y∼pd x,yð Þl
x
rec x,Gx zx, sy

� �� �
(7)

min
Ex ,Ey ,Gy

Ly
rec = Ey∼pd yð Þl

y
rec y,Gx zy , sy

� �� �

+ Ex,y∼pd x,yð Þl
y
rec y,Gy zx, sy

� �� �
(8)

where lxrec and lyrec are some distance measures in the
molecules and gene expression space.

Discriminator loss is an objective that encourages
distributions p(s), p(zx), and p(zy) to be independent, which
means that shared and exclusive parts must learn different
features. This restriction comes from a graphical model. It also
encourages p(s), p(zx), and p(zy) to be standard Gaussian
distributions N(0, I) to perform a sampling scheme from
Equation 3. We optimized the discriminator in an adversarial
manner (Goodfellow et al., 2014) similar to SAAE:
FIGURE 3 | The underlying graphical model of the data: molecules x, gene expression changes y, three latent variables correspond to the exclusive (zx, zy) and
shared (s) features between x and y.
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min
Ex ,Ey ,Gx ,Gy

max
D

Ladv = Es0 ,z 0x ,z 0y∼p sð Þp zxð Þp zyð Þ log  D z 0x , s
0, z 0y

� �

+ 1
2 Ex,y∼pd x,yð Þ log  1 − D(zx, sx, zy)

� �

+ 1
2 Ex,y∼pd x,yð Þ log   1 − D(zx, sy , zy)

� �
(9)

Note that since the target distribution for adversarial training
is factorized, we expected that the trained model would learn
independence of s, zx, and zy.

Additional discriminator losses We also added additional
discrimination objective to explicitly encourage independence of
zx from (sy, zy) and zy from (sx, zx):

min
Ex ,Ey ,Gx ,Gy

max
D

Linfo = Ex,y∼pd x,yð ÞEy0∼pd yð Þ

log  D zx , sx, zy
� �

+ log 1 − D (zx , sx, z
0
y)

� �� �

+Ex,y∼pd x,yð ÞEx0∼pd xð Þ log  D zx, sy , zy
� �

+ log   1 − D (z 0x, sy , zy)
� �� �

,

(10)

where z0x is an exclusive latent code of x′, and z0y is an exclusive
latent code of y′. In practice, we obtain zx′ and zy′ by shuffling zx
and zy in each batch.

Combining these objectives, the final optimization problem
becomes a minimax problem that can be solved by alternating
gradient descent with respect to encoder and decoder
parameters, and gradient ascent with respect to the
discriminator parameters:

min
Ex ,Ey ,Gx ,Gy

max
D

l1Lshared + l2Lx
rec + l3Ly

rec + Ladv + Linfo : (11)

The hyperparameters l1, l2, and l3 balance different
objectives. In general, we optimize lambdas based on the
performance of BiAAE on the holdout set in terms of the
target metrics, such as estimated negative conditional log-
likelihood. In practice, we found that optimal values of
Frontiers in Pharmacology | www.frontiersin.org 5188
lambdas yielded the gradients of loss components on a
similar scale.

Unidirectional Adversarial Autoencoder
The Bidirectional AAE can generate molecules that cause given
transcriptome changes and transcriptome changes caused by a
given molecule. However, if we only need conditional generation
of molecules p(x | y), we simplify the model by removing the
encoder of sx. The encoder Ex returns only an exclusive part: zx =
Ex(x). For this model, we derived the objective from Equation 11
by setting sx equal to sy (Figure 5).
EXPERIMENTAL EVALUATION

In this section, we have described the experimental setup and
presented numerical results on the toy Noisy MNIST dataset
and a LINCS L1000 dataset (Duan et al., 2014) of gene
expression data.

Noisy MNIST
We start by validating our models on the Noisy MNIST (Wang
et al., 2015) dataset of image pairs (x, y), for which we know the
correct features in the shared representation s. The image x is a
handwritten digit randomly rotated by an angle in [−p/4,p/4].
The image y is also a randomly rotated version of another image
containing the same digit as x but with strong additive Gaussian
noise. As a result, the only common feature between x and y is
the digit. Bidirectional and Unidirectional AAEs should learn to
store only the information about the digit in s.

The train-validation-test splits contain 50,000, 10,000, and
10,000 samples respectively. We set the batch size to 128 and
the learning rate to 0.0003, and we used the Adam (Kingma and
Ba, 2015) optimizer with b1 = 0.5, b2 = 0.9 for models with
FIGURE 4 | The Bidirectional Adversarial Autoencoders model. The discriminators ensure that three latent code components are independent and indistinguishable
from the prior distribution.
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adversarial training and b1 = 0.99 and b1 = 0.999 for others with a
single update of autoencoders per a single update of the
discriminator. Encoder and decoder architectures were the same
for all models, with 12-dimensional zx, zy and 4-dimensional s.
The encoder had 2 convolutional layers with a number of channels
1 ! 32 ! 16 with 2D dropout rate 0.2 followed by three fully-
connected layers of size 64 ! 128 ! 128 ! 16 with batch
normalization. The decoder consisted of 2 fully connected layers
followed by 3 transposed convolution layers; the discriminators
have two hidden layers with 1024! 512 units. We set the weights
for Lrec to 10 and 0.1 for Lshared. Other l were set to 1. For
Unidirectional AAE, we increased weight for Linfo to 100. For
baseline models we used similar architectures. Please refer to the
Supplementary Material for additional hyperparameters.

Conditional generative model p(x | y) should produce
images with the same digit as image y, which we evaluate by
training a separate convolutional neural network to predict
the digit from x and comparing the most probable digit to the
actual digit of y known from the dataset. We also estimated a
conditional mutual information MI(x,sy|y) using a Mutual
Information Neural Estimation (MINE) (Belghazi et al., 2018)
algorithm for BiAAE, UniAAE, JMVAE, and VCCA models.
For SAAE, LatentSAAE, CVAE, and VIB we estimated MI(x,
s|y) since these models do not separate embeddings into
shared and exclusive parts explicitly. Models with high
mutual information extract relevant information from y. A
neural network for MINE consisted of a convolutional
encoder for x and fully-connected encoder for sy. We then
passed a concatenated embedding through a fully-connected
neural network to get a final estimate of mutual information.
Results in Table 1 suggest that the BiAAE model extracted
relevant mutual information which, besides all, contained
information about the digit of y. In Figure 6, we show
example samples from the model.
Frontiers in Pharmacology | www.frontiersin.org 6189
Differential Gene Expression
In this section, we have validated Bidirectional AAE on a gene
expression profiles dataset with 978 genes. We use a dataset of
transcriptomes from the Library of Integrated Network-based
Cellular Signatures (LINCS) L1000 project (Duan et al., 2014).
The database contains measurements of gene expressions before
and after cells react with a molecule at a given concentration.

For each cell line, the training set contains experiments
characterized by the control (geb∈R978) and perturbation-
induced (gea∈R978) gene expression profiles. We represented
molecular structures in the SMILES format (Weininger, 1988;
Weininger et al., 1989). We augmented the dataset by randomly
matching control and perturbation-induced measurements from
the same plate.

We preprocessed the training dataset by removing molecules
with a molecular weight less than 250 and more than 550 Da. We
then removed molecules that did not contain any oxygen or
nitrogen atoms or contained atoms besides C, N, S, O, F, Cl, Br,
and H. Finally, we removed molecules that contained rings with
FIGURE 5 | The Unidirectional Adversarial Autoencoder: a simplified version of a Bidirectional Adversarial Autoencoder for generating from p(x|y). The discriminator
part ensures that the three latent code components are independent, and the object’s exclusive latent code is indistinguishable from the prior distribution.
TABLE 1 | Quantitative results for a Noisy MNIST experiment. Conditional
Generation section evaluates how often the model produced a correct digit.
Latent Codes section estimates the Mutual Information between zx and s (y for
SAAE).

Model Accuracy, % MI(x,sy|y) MI(x,s|y)

SAAE (Makhzani et al., 2015) 43.68 — 1.665
Latent SAAE 34.76 — 1.681
CVAE (Sohn et al., 2015b) 0.4583 — 0.3074
JMVAE (Suzuki et al., 2017) 5.38 0.9515 —

VIB (Alemi et al., 2017) 43.6 — 1.121
VCCA (Wang et al., 2016b) 23.35 1.239 —

BiAAE (our) 49.21 1.432 —

UniAAE (our) 47.61 1.627 —
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more than eight atoms or tetracyclines. The resulting dataset
contained 5,216 unique SMILES. Since the dataset is small, we
pretrained an autoencoder on the MOSES (Polykovskiy et al.,
2018a) dataset and used its encoder and decoder as initial
weights in all models.

For all baseline models on differential gene expressions, we
used similar hyperparameters shown in Table 2 (please refer to
the Supplementary Material for the exact hyperparameters). In
all experiments, we split our dataset into train, validation, and
test sets, all containing different drugs. To construct a training
example, we sampled a drug-dose pair, a perturbation for this
drug and dose, and a control expression from the same plate as
the perturbed expression.

We used a two-step encoder for y = (h, Dge) shown in Figure
7, where Dge=gea−geb. We first embedded Dge with a fully-
connected neural network, and then concatenated the obtained
representation with a logarithm of concentration h. We passed
the resulting vector through a final encoder. The decoder has a
symmetric architecture.

Generating Molecular Structures for Gene
Expression Profiles
The proposed BiAAE model can generate molecules for given
gene expression changes and vice versa. We started by
experimenting with the molecular generation (Table 3). In the
experiment, we reported a negative log-probability of generating
the exact incubated drug x given the dose and gene expression
Frontiers in Pharmacology | www.frontiersin.org 7190
change averaged over tokens log p(x|Dge,h). We also estimated a
Mutual Information MI(x,sy|Dge,h) similar to the MNIST
experiment described above. For each h and Dge, we generated
a set of molecules G and estimated a fraction of valid molecules
and internal diversity of G:

IntDiv Gð Þ = 1 −
1

Gj j Gj j − 1ð Þ o
m1,m2 ∈ G

m1 ≠ m2

T m1,m2ð Þ, (12)

where T is a Tanimoto similarity on Morgan fingerprints.
This metric shows whether a model can produce multiple
candidates for a given gene expression or collapses to a
single molecule.
FIGURE 6 | Qualitative results on a Noisy MNIST dataset. The figure shows generated images x for a noisy image y (left column) as a condition. Generated images
must have the same digit as y.
FIGURE 7 | The architecture of the condition encoder for changes in the transcriptome. The input to the expression encoder is the difference between the control
and perturbed expressions. We passed the dose to the last layers of the encoder.
TABLE 2 | Hyperparameters for neural networks training on gene expression
data. All neural networks are fully connected, and decoders have an architecture
symmetric to the encoders.

Hyperparameter Value

Molecular Encoder GRU; hidden size 128; 2 layers
Expression Encoder IN(978)!256!OUT(128)
Difference Encoder IN(129)!128!OUT(10 + 10)
Discriminator IN!1024!512!OUT(1)
Batch Normalization After each linear layer in encoders
Activation Function LeakyReLU
Learning Rate 0.0003
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The proposed BiAAE and UniAAE architectures show the
ability to capture the dependencies in the training set and
generalize to new objects from the validation set. The BiAAE
model provides better mutual information while preserving valid
diverse molecules.

Comparing Generated Molecular Structures to
Known Active Molecules
In this experiment, we show that the proposed generative model
(BiAAE) can produce biologically meaningful results. We used a
manually curated database of bioactive molecules ChEMBL 24.1
(Gaulton et al., 2016) and additional profiles of gene expression
knockdown from LINCS L1000 (Duan et al., 2014).

The first experiment evaluates molecular generation given a
transcriptome change of a small molecule inhibitor of a specific
protein. The ChEMBL dataset has experimental data on
molecules that inhibit a certain human protein. We chose
template molecules that are present in both LINCS molecule
perturbation dataset and ChEMBL dataset. We used molecules
that had inhibition concentration less than 10 mM IC50 for only
one protein.

The condition for molecular generation is a transcriptome
change and a dose of a template molecule. Specifically, the
condition is a shared part sy of the gene expression and dose
embedding. The model is expected to generate molecules that are
similar to known drugs. In Figure 8, for several protein targets,
Frontiers in Pharmacology | www.frontiersin.org 8191
we show a known inhibitor and generated molecules that could
induce similar transcriptome profile changes.

The second experiment evaluates molecular generation given
a transcriptome change of a specific gene knockdown. The
LINCS dataset contains gene knockdown transcriptomes that
the model was not trained on. For each gene knockdown, we
found a corresponding human protein in the ChEMBL dataset.
We chose template molecules that had a proven IC50 less than
10mM for only one protein. The condition for molecular
generation is a transcriptome change of a gene knockdown and
the most common dose 10 mM in LINCS. The model is expected
to generate molecules that produce the same transcriptome
change of gene knockdowns.

The condition is different compared to the previous
experiment in a way that the gene knockdown expression
profile is not induced by a small molecule but rather shows the
desired behavior of the potential drug. In Figure 9, we show
generated molecules and compare them to known inhibitors of a
protein corresponding to a knocked down gene. We expect these
molecules to produce similar effects in gene expression to
gene knockdown.

Predicting Gene Expression Profiles for an
Incubated Drug
We experimented with predicting gene expression changes after
drug incubation (Table 4). First, we report estimated mutual
information MI(Dge,h ,sx|x) similar to the previous
experiments. We also report the R2 metric, which measures the
determination coefficient between the real and predicted (Dge, h)
for a given molecule. Finally, we report a top-1 precision metric,
which shows the fraction of samples for which the largest
absolute change in real and predicted Dge matched.

To compute R2 and top-1 precision, we only used drugs that
were administered at h = 10 mM concentration. Since we are only
interested in a certain concentration, we discarded generated
(Dge, h) tuples if h was far from 10 mM (outside the range [−6.5,
−5.5] in log10 scale). Note that VIB was not able to generate any
gene expression changes near 10 mM.
TABLE 3 | Validation results of conditional generation p(x|Dge,h).

Model NLL MI
(x,sy|Dge,h)

MI
(x,s|Dge,h)

Internal
Diversity

Validity

SAAE 0.55 — 0.11 0.85 0.64
Latent SAAE 0.55 — 0.00 0.85 0.62
CVAE 1.22 — 0.00 0.84 0.58
JMVAE 1.42 0.00 — 0.61 0.82
VIB 1.46 — 0.00 0.17 0.29
VCCA 1.36 0.00 — 0.53 0.71
BiAAE 0.77 0.32 — 0.85 0.76
UniAAE 0.53 0.00 — 0.85 0.61
FIGURE 8 | The examples of generated molecules conditioned on gene expression changes from a protein inhibitor; Real most similar inhibitors from ChEMBL are
provided for comparison.
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The experiment demonstrates that proposed UniAAE,
BiAAE, and LatentSAAE models generalize well the symmetric
t a sk and show good metr i c s on pred ic t ing gene
expression changes.
DISCUSSION

The key advantage of the proposed model compared to the
previous works is the joint adversarial learning of latent
representations of paired objects. This representation improves
conditional generation metrics and shows promising results in
molecular generation for desired transcriptome changes.

Three discriminator neural networks ensure that the latent
representations divided into shared and exclusive parts are more
meaningful and useful for the conditional generation. Two
additional discriminator losses help the model learn a more
expressive shared part and make sure that all three parts are
mutually independent.

However, adversarial training slightly complicates the
training procedure for the BiAAE model. In comparison with
other baseline models, the training loss contains more terms,
each with a coefficient to tune. In general, we tune these
coefficients using grid search, and we select the best coefficients
according to the generative metrics on the validation set. In
practice, we simplify the grid search and use the same coefficient
Frontiers in Pharmacology | www.frontiersin.org 9192
for the adversarial terms l1=l4=l5 since the corresponding
losses have values on the same scale. We choose the search
space for coefficients l2,l3 in a way that the second and third
terms provide the gradient in the same scale as the other terms.

Another problem that arises when we use the adversarial
approach is the instability of training. The instability is the
consequence of the minimax nature of adversarial training
(Goodfellow et al., 2014). To overcome the instability, we use
approaches described in (Bang and Shim, 2018), i.e., we use
sha l low discr iminators and Adam opt imizer wi th
parameters b1=0.5,b2=0.9.
CONCLUSION

In this work, we proposed a Bidirectional Adversarial
Autoencoder model for the generation of molecular structures
for given gene expression changes. Our AAE-based architecture
extracts shared information between molecule and gene
expression changes and separates it from the remaining
exclusive information. We showed that our model outperforms
baseline conditional generative models on the Noisy MNIST
dataset and the generation of molecular structures for the desired
transcriptome changes.
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Computational methods can increase productivity of drug discovery pipelines, through
overcoming challenges such as cardiotoxicity identification. We demonstrate prediction
and preservation of cardiotoxic relationships for six drug-induced cardiotoxicity types
using a machine learning approach on a large collected and curated dataset of
transcriptional and molecular profiles (1,131 drugs, 35% with known cardiotoxicities,
and 9,933 samples). The algorithm generality is demonstrated through validation in an
independent drug dataset, in addition to cross-validation. The best prediction attains an
average accuracy of 79% in area under the curve (AUC) for safe versus risky drugs, across
all six cardiotoxicity types on validation and 66% on the unseen set of drugs. Individual
cardiotoxicities for specific drug types are also predicted with high accuracy, including
cardiac disorder signs and symptoms for a previously unseen set of anti-inflammatory
agents (AUC = 80%) and heart failures for an unseen set of anti-neoplastic agents (AUC =
76%). Besides, independent testing on transcriptional data from the Drug Toxicity
Signature Generation Center (DToxS) produces similar results in terms of accuracy and
shows an average AUC of 72% for previously seen drugs and 60% for unseen
respectively. Given the ubiquitous manifestation of multiple drug adverse effects in
every human organ, the methodology is expected to be applicable to additional tissue-
specific side effects beyond cardiotoxicity.

Keywords: machine learning, cardiotoxic adverse effect, safety pharmacology, bioinformatics and computational
biology, in silico analysis
INTRODUCTION

Drug cardiotoxicity significantly limits the application of numerous therapies, and also slows down
the drug research and development process (Cook et al., 2014; Onakpoya et al., 2016). As the
attrition rate due to cardiotoxicity remains high, the need and importance of novel approaches
capable of efficient safety testing has been widely emphasized, but not solved (Cook et al., 2014;
Waring et al., 2015). Human-based approaches exploiting in silicomethods have been postulated as
the most promising alternative to costly animal experiments (Lawrence et al., 2008; Vicente et al.,
2018), which frequently exhibit limited translation ability to human (Mak et al., 2014; Rodriguez
et al., 2016).
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In this regard, great progress has been made for example to
evaluate the ability of in silico models to assess and predict the
clinical risk of drug-induced arrhythmias (Lancaster and Sobie,
2016; Passini et al., 2017; Dutta et al., 2017). However, less
attention has been paid to the prediction of other forms of drug-
induced cardiotoxicity, such as cardiomyopathies, heart failure,
myocardial ischemia or myocarditis (Mladěnka et al., 2018).
Novel approaches are therefore needed to account for the wider
spectrum of possible cardiovascular drug side effects beyond
those mainly linked to adverse electrophysiological interactions.

Machine learning methods are gaining recognition in
biological data analysis (Mamoshina et al., 2016; Lin and Lane,
2017; Lo et al., 2018). However, less than a handful of studies
have addressed drug cardiotoxicity prediction beyond drug-
induced arrhythmias. Huang and colleagues used protein-
protein interactions to predict general cardiotoxicity for 578
drugs, using a support vector machine method (Huang et al.,
2011). Using transcriptional profiles and fingerprints of 251
drugs, Wang et al. focused on prediction of gastrointestinal,
liver and kidney toxicities, and myocardial infraction, a single
form of cardiotoxicity, using an extra trees algorithm for multi-
label classification (Wang et al., 2016). Messinis et al. (2018)
developed a transcriptomic-based predictor of drug-induced
cardiomyopathy with 31 drugs. Importantly, although all these
studies reported relatively good accuracies (0.68 (Huang et al.,
2011), 0.80 (Wang et al., 2016) and 1 (Messinis et al., 2018),
respectively) under different cross-validation strategies (random
split of samples or leave-one-drug out), none of them conducted
an independent validation on drugs previously unseen by the
trained model. This is crucial to ensure the translatability of
proposed approaches to real-world applications, and thus an
important limitation of previous work. In addition, none of the
previous algorithms was developed to predict all major forms of
drug cardiotoxicity.

Our hypothesis is that molecular and structural properties of
drugs combined with their associated transcriptional changes in
gene expression represent a suitable strategy to characterize their
cardiac safety. The goal of this work is therefore to tackle four
main challenges in cardiotoxicity prediction, namely prediction
of six cardiotoxicity types, addressing the class imbalance
problem, robust validation with independent datasets, and
combination of transcriptional data and molecular descriptors.
Our aim is to develop an independently-validated supervised
machine-learning-based approach for the simultaneous
prediction of all major forms of drug cardiotoxicity in human,
using a substantial dataset of transcriptional and molecular
descriptors compiled from diverse publicly-available data
repositories. Our proposed approach specifically accounts for
independent validation, the challenges of severe safety class
imbalance and the preservation of relationships between
different drug-induced cardiotoxicities. Addressing class
imbalance is crucial as available datasets are usually heavily
unbalanced (i.e., unequal distribution between drug types and/
or cardiotoxic classes) (Banerjee et al., 2018), especially in large
datasets curated automatically. This limits the generalization
ability of data-driven methods, and in particular of
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unsupervised ones. In this work, we overcome these challenges
by the application of supervised classifiers, as they generally
demonstrate higher predictive performance on unbalanced
biological data (Miller et al., 2008). Importantly, we
demonstrate prediction of all six main forms of cardiotoxicity
related to drug action in human. Through this work, we therefore
significantly increase the domain of applicability and translation
capabilities of machine-learning for cardiotoxicity prediction in
preclinical drug evaluation. The findings and methodologies are
expected to be generalizable to other organ-specific side effects.
MATERIALS AND METHODS

Data Preparation
The first step was to curate a database of cardiotoxic and
matching safe drugs (Figure 1B and Table 1), using diverse
publicly-available knowledge and data repositories, including
DrugBank (Wishart et al., 2008) (www.drugbank.com),
Connectivity map Project (https://clue.io/cmap) (Subramanian
et al., 2017), SIDER(Kuhn et al., 2016) (sideeffects.embl.de),
MedDRA (https://bioportal.bioontology.org/ontologies/
MEDDRA) and MESH (https://www.ncbi.nlm.nih.gov/mesh).

Names and IDs were retrieved from the MedDRA dictionary
for all cardiac (MedDRA ID 10007541) and vascular (MedDRA
ID 10047065) disorders. Interactions of chemicals in the form of
STITCH compound identifiers and their MedDRA terms of side
effects were downloaded from the publicly available SIDER
database. We used PubChem Compound Identifiers (CIDs) to
match this list to the information on drug targets, drug status
(‘approved', ‘investigational', etc.), and drug SMILES notations
obtained from the Drugbank database. For drug target
information, only experimentally verified interactions (such as
inhibition, activation and intercalation between drugs and
proteins or other molecules, like DNA) as provided by
Drugbank were considered for this work. Compounds linked
to the MedDRA term ‘cardiac disorders' were labeled as drugs
with cardiotoxicity reports and were considered as ‘positive cases'
in further model contraction. Compounds with same targets and
no record of cardiac disorders in the database were considered as
safe and as ‘negative cases' in further model contraction. Safe
compounds were additionally filtered by their status, and only
approved compounds currently on the market were used for
analysis, resulting in 26 (out of 759) drugs being removed from
the analysis. This was performed to prevent possible unreported
toxicities in drugs considered safe but withdrawn from the
market. The unsafe group includes both marketed and
withdrawn drugs, including drugs withdrawn due to cardiac
side effects. Information about therapeutic classes of drugs were
collected from the MESH medical vocabulary.

In this work, we used the Connectivity map project as a
source of gene expression cell responses to drugs, or drug
transcriptional profiles. These were measured using an L1000
high-throughput profiling method. The L1000 fluorescent assay
allows the detection and quantification of the expression of up to
978 landmark and 80 control transcripts simultaneously in each
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TABLE 1 | Summary of databases and knowledge portals used in the study.

Name Type of data Link Reference

DrugBank Drug structure, list of targets www.drugbank.com (Wishart et al., 2008)
MedDRA Side effect hierarchy https://bioportal.bioontology.org/ontologies/MEDDRA
SIDER Drug safety information sideeffects.embl.de (Kuhn et al., 2016)
MESH Pharmacological classes information https://www.ncbi.nlm.nih.gov/mesh
Connectivity map Project Transcriptional profiles https://clue.io/cmap (Subramanian et al., 2017)
DToxS Transcriptional profiles https://martip03.u.hpc.mssm.edu/index.php
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FIGURE 1 | Proposed approach for drug-induced cardiotoxicty prediction. (A) In silico prediction of multiple forms of drug-induced cardiac adverse reactions. (B)
The design of the proposed machine learning model builds on a comprehensive database of drugs linked to their transcriptional profiles, molecular descriptors,
fingerprints and safety information. Our database was collated using several publicly-available knowledge and data repositories, as detailed in Table 1. The rcdk
package was used to calculate the set of molecular descriptors and fingerprints. After collation, the whole dataset was split into training and testing sets of unique
sets of drugs in each. Using training data, the set of the most predictive features was selected. Those features were later used to train multi-label models (chain of
classifiers with nested stacking vs sets of individual classifier). Training was performed with two cross-validation strategies: random vs leave-drug-out. (C) Proposed
chain of classifiers with nested stacking model for multi-label prediction of drug cardiac safety. Each classifier L in the chain is trained on a set of F features and the
L-1 labels predicted by the previous L-1 classifiers. (D) Considered cross-validation approaches. Random cross-validation results in validation and testing sets
having profiles of drugs from training sets, which leads to inflated performance on validation and low generalisation abilities on unseen test data compared to leave-
drug-out cross-validation.
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well of 384-well plate, where each well can contain a separate
drug profile. This massive scale expression data is available in
multiple levels starting from raw fluorescent intensity values
from each well to replicate collapsed scores for drugs. In this
work, we used well-established ‘core' human cell lines with drug
transcriptional profiles available. We explored the provided
transcriptional profiles (normalized across each scan plate) of
the 977 ‘landmark genes' (Level 3a—NORM, as described in
detail in https://clue.io/connectopedia/data_levels), for six cell
lines (A549 and MCF7 for training and validation and PHH,
SKB, SKM1, A673 for sensitivity testing), two incubation times
(6 and 12 h), and multiple drug concentrations. To link the drug
transcriptional profiles provided by the Connectivity map project
to the information about their side effects, targets and status, we
utilized the Chemical Translation Service (http://cts.fiehnlab.
ucdavis.edu/) to match PubChem CIDs to their corresponding
Broad IDs. In total, we collected a database of 1,131 drugs (fully
analyzed for relationships across cardiotoxicity types), 357 of
which had transcriptional profiles (used for prediction), with a
total of 9,933 samples. Samples refer to independent
transcriptional profiles of a drug at a given cell line, incubation
time or concentration.

Calculation of Molecular Descriptors
and Fingerprints
We used the ‘rcdk' package (Guha et al., ) to calculate seven
molecular descriptors widely used in drug property prediction
(Dong et al., 2015; Zhang et al., 2016): molecular weight (MW),
partition coefficient (XLogP), atomic polarisabilities (apol),
topological polar surface area (TopoPSA), polar surface area
expressed as a ratio to molecular size (tpsaEfficiency), Ghose-
Crippen LogKow (ALogP) and molar refractivity (AMR). We
also calculated the commonly used 79-bit ‘estate' fingerprint.
These are widely used descriptors in drug property prediction
and have been shown to characterize drug properties, including
safety (Dong et al., 2015; Zhang et al., 2016).

Selection of Transcriptional Features
In order to evaluate the predictive power of individual
transcriptional profiles to cardiac safety prediction, following
(Cai et al., 2018) two selection methods (correlation-based,
wrapped-based) were considered. Correlation-based methods
aim to identify transcriptional features (genes) highly
correlated with each cardiotoxicity form. Wrapped-based
methods use predictive models to score all combinations
of feature subsets for each form of cardiotoxicity. As a
correlation-based method, the ‘select.cfs' function from the
Biocomb R package (Novoselova et al., 2018) was used, while
the Boruta algorithm implemented in the Boruta R package
(Lagani et al., 2017) was used as a wrapper-based method. This
way, for each cardiotoxicity form, we identify two subsets
of genes.

Cohen's Kappa scores (Cohen, 1960), calculated by the
‘Kappa.test' function from the fmsb R package, were used (i) to
estimate the accuracy of classifiers, and (ii) to evaluate the
similarities between vectors. The evaluation of similarities
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between vectors was applied to binary vectors of cardiotoxicity
types, and between transcriptional features vectors selected using
either correlation-based or wrapper-based methods, as described
above. The Kappa scores are given by:

k = 1 −  
1 − po
1 − pe

(1)

where po is the relative observed agreement between two binary
vectors, and pe is the expected agreement between predicted and
actual values. Values smaller than 0 demonstrate poor agreement
and values from 0.81 to 1 correspond to almost perfect
agreement. To analyze whether the chosen genes were
associated with the same or different biological functions, we
also intersected the lists of determined genes with the Reactome
database of pathways (Fabregat et al., 2018).

Training, Validation and Testing
Set Design
Models were trained on the expression values of relevant genes,
seven molecular descriptors values and 79 fingerprint values,
calculated as detailed above (340 features in total). We randomly
split the entire drug dataset by protein targets (information
obtained from the Drugbank) into unique training (291 drugs,
8,237 samples) and testing (66 drugs, 1,696 samples) sets. By
such design, both datasets only overlap by a set of protein targets,
but drugs on the testing phase are completely unseen during
training, therefore facilitating preclinical translation to novel
chemicals. This strategy was also enforced during model
development, where for each cardiotoxicity label its respective
training and validation sets were preserved completely non-
overlapping by drugs with leave-drug-out cross-validation
strategy (Figure 1D). We collapsed samples, so each drug
profile referred to gene expression values for each individual
drug with one cell line, incubation time and concentration.
Models were trained on matrices size of 340 × 1,154 and tested
on 340 × 746.

To benchmark the performance of models and select the best
set of parameters, we used leave-drug-out cross-validation in
contrast to random cross-validation (Figure 1C). This cross-
validation strategy is crucial to accurately assess the performance
of the model on unseen drugs, and therefore evaluate its
translational potential into real-world practice. We performed
the synthetic minority over-sampling technique (SMOTE)
(Chawla et al., 2002), implemented in the DMwR R package
(Torgo, 2013), on the training set in cross-validation to avoid
overfitting at any stage. To determine the generalisation ability of
methods for novel drugs, we assessed the best-performing
models on the selected testing set of 66 unique drugs.

Chain of Classifiers With Nested Stacking
To predict cardiovascular safety we employed a chain classifier
with nested stacking, which takes into account label
dependencies (Figure 1C). The chain of classifiers with nested
stacking (Senge et al., 2019) is a model that receives a feature
vector and maps it to a set of labels. Each classifier in the chain is
trained on a set of features and the set of labels predicted by the
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previous classifiers. We used cardiotoxicity types as labels and
gene expression values along with molecular descriptors and
fingerprints as features. We used the following order of
cardiotoxicity types obtained from MedDRA (see ‘Data
Preparation'): ‘Vascular disorders', ‘Cardiac disorder signs and
symptoms', ‘Cardiac arrhythmias', ‘Heart failure', ‘Coronary
artery diseases', ‘Pericardial disorders' and ‘Myocardial
disorders'. This order was based on the number of drugs
related to those side effects. Because the first model will not
receive the information from other cardiotoxicity types, we
introduced vascular disorders (which is also related to cardiac
disorders) as the first disorder for prediction, in order to
minimize the effect of the first position for ‘Cardiac disorder
sign and symptoms'. However, the accuracy of ‘Vascular
disorder' prediction was not used in the evaluation of the
model performance. This way, the chain of classifiers takes a
set of features (transcriptional, molecular descriptors and
fingerprints) and is tasked to predict whether the drug has
cardiotoxicity reports (‘positive case') or not (‘negative case'),
for six cardiotoxicity types.

To determine which algorithm accounts best for the observed
data, we adapted several supervised binary classification
algorithms widely used in bioinformatics: elastic net logistic
regression (glmnet R library by Friedman et al. (Friedman
et al., 2010)), random forest (ranger R library by Marvin et al.
(Wright and Ziegler, 2017)), gradient boosting (gbm R library by
Ridgeway et al. (Greenwell et al., 2007 )) and categorical boosting
(catboost R library by Prokhorenkova et al. (Prokhorenkova
et al., 2018)). All models were optimized with Latin hypercube
sampling of parameters (clhs R library by Roudier (Minasny and
McBratney, 2006)) towards maximum Matthews correlation
coefficient (MCC):

MCC = otp�otn −ofp�ofn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
otp +ofp
� �

otp +ofn
� �

otn +ofp
� �

otn +ofn
� �q (2)

where tp (true positives) and tn (true negatives) are the number
of unsafe and safe compounds predicted correctly, respectively,
and fp (false positives) and fn (false negatives) are the number of
safe and unsafe drugs predicted wrongly, respectively. An MCC
of 0 indicates that the prediction is not better than a random
prediction, an MCC of 1 indicates perfect prediction or total
agreement, and an MCC of −1 indicates total disagreement.

The optimized parameters are supplied in Supplementary
Table 4. We trained models with five-fold cross-validation
selected to leave drugs out to compensate for overfitting, and
to receive more robust performance metrics. Once trained, to
predict the cardiac safety of any unseen chemicals, the model
only receives as inputs their transcriptional features, molecular
descriptors, and fingerprints.

Model Comparison
In this study, our proposed chain of classifiers with nested
stacking for multi-label classification of drug cardiotoxicity is
compared against a set of independent binary classifiers by
cardiotoxicity types (meaning the drug has at least one side
effect). We adapted the same four classification algorithms
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(elastic net logistic regression, random forest, gradient boosting
and categorical boosting) for this task. We adjusted the set of
hyperparameters and validation and tested models as described
in the previous section. The optimized parameters for each
model are supplied in Supplementary Table 4.

Model Evaluation
In addition to MCC, the following metrics were used to evaluate
model performance for each cardiotoxicity forms:

Accuracy = otp +otn

otp +otn +ofp +ofn
, (3)

where tp is a number of correctly predicted drugs with
cardiotoxicity reports, tn is a number of correctly predicted
drugs without cardiotoxicity reports, fn is a number of
incorrectly predicted drugs with cardiotoxicity reports and fp is
a number of incorrectly predicted without cardiotoxicity reports.
Accuracy shows the ratio of correctly predicted drugs to a total
number of drugs.

F1 = 2� precision� recall
precision + recall

(4)

or F1 score, where

precision = otp

otp +ofp

and

recall = otp

otp +ofn
;

where tp is a number of correctly predicted drugs with
cardiotoxicity reports, tn is a number of correctly predicted
drugs without cardiotoxicity reports, fn is a number of
incorrectly predicted drugs with cardiotoxicity reports and fp is
a number of incorrectly predicted without cardiotoxicity reports.
Precision equals the fraction of correctly predicted unsafe
compounds in all compounds predicted as unsafe, whereas
recall shows the sensitivity of a model and equals the fraction
of correctly predicted unsafe compounds out of all real
unsafe compounds.

External Validation
As external validation data, we downloaded gene expression drug
profiles from the Drug Toxicity Signature Generation Center
(DToxS) website (https://martip03.u.hpc.mssm.edu/index.php).
This website provides access to expression data of PromoCell
cardiomyocytes (up to four lines) incubated with FDA approved
drugs. In total, we obtained 1,338 samples, which were collapsed
in the same manner as Connectivity map data, so each drug
profile referred to gene expression values for one cell line,
incubation time and concentration. As a result, models were
tested on 654 profiles of 51 drugs, 18 of which were for the same
drugs used for training and validation of models. We used ‘rcdk'
package to calculate the same fingerprints and set of molecular
descriptors as for the drug dataset that training and testing.
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AUC =
Z ∞

−∞
TPR(T) −FPR 0 (T)dT

� �
(5)

or area under the receiver operating characteristic (ROC)
curve, where TPR is the true positive rate (identical to
recall) and FPR is the false positive rate. AUC measures the
diagnostic ability of a predictor, where an AUC of 0.5
indicates that the prediction is not better than a random
prediction, and an AUC of 1 indicates perfect prediction.
The pROC R library by Robin et al. (2011) was used to
calculate AUC values for the classifiers.
RESULTS

Enriched Analysis and Prediction of Six
Drug-Induced Cardiotoxicity Forms Using
Transcriptional and Molecular Data
Figure 1 describes the computational and dataset framework
defined through this study. The six main drug-induced
cardiotoxicity forms were identified from MedDRA as the
focus for prediction: ‘Cardiac disorders signs and symptoms',
‘Cardiac arrhythmias', ‘Heart failure', ‘Coronary artery
disease', ‘Pericardial disorders', and ‘Myocardium disorders'
(Figure 1A).

Then, a large dataset of drugs was collected from diverse
publicly-available data repositories (Figure 1B), including two
sources of information: transcriptional profiles and derived
molecular descriptors and fingerprints. This yielded
information on 1,131 drugs, 357 of which had transcriptional
Frontiers in Pharmacology | www.frontiersin.org 6200
profiles with a total of 9,933 samples. As a strategy for validation,
these were split into unique training (291 drugs, 8,237 samples)
and testing (66 drugs, 1,696 samples) sets. Training was blinded
to drugs on the testing set, hence facilitating preclinical
translation to novel unseen chemicals (Figure 1C).

Transcriptional and molecular descriptors for the drugs
were used as inputs to the machine learning algorithms
(Figure 1D). All machine-learning models were evaluated in
performance on the blinded testing dataset, also considering
two independent (random and leave-drug-out) cross-
validation strategies (Figure 1D). Further details on study
design are provided in Methods.

Figure 2A shows the number of drugs labeled as unsafe for
the six groups of cardiotoxicity forms considered. Notably,
49% (46 out of 93) of antineoplastic drugs are reported to
cause ‘cardiac disorders and signs and symptoms', indicating a
high prevalence across cardiotoxicity forms and drug classes
(Supplementary Table 1). On the other hand, 24% of CNS,
21% of CV, and 27% of antineoplastic agents produced cardiac
arrhythmias, and 23% of CV and 25% of antineoplastic agents
induced coronary artery disease (Supplementary Table 1).
The prevalence of heart failure, myocardial disorders and
pericardial disorders was lower for all drug classes,
although still significant in some cases (for example, 14%
of ant ineop las t i c agent s produc ing hear t f a i lu re ;
Supplementary Table 1). We also evaluated the level of
association between cardiotoxicity forms in terms of
Cohen's Kappa (Figure 2B) . ‘Cardiac arrhythmias '
demonstrate a substantial association with both ‘cardiac
disorder signs and symptoms' and ‘coronary artery
A B

FIGURE 2 | Prevalence and association of different cardiotoxicity forms in the drug database. (A) Proportion of drugs labeled as unsafe for given cardiotoxicity forms
out of all unsafe drugs (numbers in black) and all drugs (numbers in white). (B) Levels of association between cardiotoxicity forms, measured in terms of Cohen's
Kappa. Symbols represent statistical significance level by Z-test (*p <0.05, **p <0.01). ‘Cardiac dis S&S' is the MedDRA term for cardiac disorder signs and
symptoms, ‘dis' is for disorders.
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disorders', with Cohen's Kappa values of 0.61 and 0.60
respectively. Interestingly, ‘heart failure' demonstrates a
lower agreement with ‘cardiac disorder signs and symptoms'
compared to ‘cardiac arrhythmias' and ‘coronary artery
disorders' but higher agreement with ‘myocardial disorders'.

Based on the strong associations observed between drug-
induced cardiotoxicity forms, we concluded that a prediction
model should leverage dependance between side effects, and be
able to re-use the information learned about the molecular basis
of one side effect to better understand the molecular basis of
others. This motivates our formulation of the cardiotoxicity
prediction task as a multi-label classification problem, and our
proposed machine-learning architecture as a chain of classifiers
(Figure 1D), in order to preserve such relationships between
drug-induced cardiotoxicity forms.

Candidate Genes and Pathways
Associated With Cardiotoxicity
We then evaluated whether the association between
cardiotoxicity forms identified in Figure 2 was also evident
from transcriptional data, either in terms of genes or
pathways. We hypothesized that transcriptional data would
reveal underlying information on cardiotoxicity types when
genetic pathways, rather than individual genes, are considered
in the analysis. Figures 3A, B show the comparison of the
gene vectors ranked as important by two feature selection
methods for the different cardiotoxicity forms. Similarly,
Frontiers in Pharmacology | www.frontiersin.org 7201
Figures 3C, D show this comparison in terms of the
Reactome pathways to which those genes are related.

Analysis of the list of genes showed little to no intersection
between them (Supplementary Table 2). Conversely, the
consideration of pathways significantly improved the
agreement (Supplementary Table 3). Gene and associated
pathways for ‘cardiac disorders', ‘cardiac arrhythmias' and
‘heart failure' identified by both methods display moderate to
high agreement, whereas for pericardial disorders no
significant agreement was found. Interestingly, cardiac
arrhythmias and coronary artery diseases show high
similarity in both selected vectors of genes and pathways,
and of label vectors of drugs.

Interestingly, G protein-coupled receptor transduction was
selected as important by both methods for the prediction of
cardiac disorder signs and symptoms (‘G alpha (q) signaling
events' and ‘G alpha (s) signaling events') and heart failure
(‘G-alpha (i) signaling events'). IGF1R and IGF1R-related
signaling were also among the genes and Reactome terms
selected by both methods for cardiac disorder signs and
symptoms and for pericardial disorders. MAMLD1 gene,
included in the Notch signaling pathways, was the only one
ranked as important for predicting cardiac arrhythmias by
both selection procedures. This further suggests association
between different cardiotoxicity forms also at the feature level,
which again motivates us to use a chain of classifiers to keep
relations between cardiotoxicity forms during prediction.
A B

C D

FIGURE 3 | Similarities in the list of selected genes identified by (A) the correlation feature selection, and (B) the Boruta wrapper-based algorithm. Similarities in the
list of pathways associated with genes identified by correlation-based feature selection (C), and the wrapper-based algorithm (D). Levels of association between
cardiotoxicity forms are measured in terms of Cohen's Kappa. Symbols represent statistical significance level by Z-test (*p <0.05, **p <0.01). ‘Cardiac dis S&S' is the
MedDRA term for cardiac disorder signs and symptoms, ‘dis' is for disorders.
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Machine Learning Prediction of Drug-
Induced Cardiotoxicity Forms: The
Importance of Leave-Drug-Out Cross-
Validation
Using transcriptional and molecular features, all investigated
forms of drug-induced cardiotoxicity were predicted with
relatively good accuracy using the proposed chain of classifiers
model with nested stacking trained with leave-drug-out cross-
Frontiers in Pharmacology | www.frontiersin.org 8202
validation, and for all algorithms considered (elastic net logistic
regression, gradient boosting, categorical boosting, and random
forests). The best results were obtained for the chain of random
forest classifiers, with an average AUC of 0.79 and an average
MCC of 0.38 across all cardiotoxicity forms on validation, and
0.66 and 0.15 on testing (Figure 4A, Table 2, Supplementary
Figure 1 and Supplementary Table 4). The second best results
were obtained with a chain of gradient boosting classifiers, with
A

B C D

FIGURE 4 | Prediction of cardiotoxicity forms using the chain of classifiers with nested stacking (CC) versus a set of binary classifiers (BC). (A) AUC of best
performing CC and BC in safety drug prediction on validation (val) and testing sets (test) for each independent cardiac disorder. (B) Average AUC across all cardiac
disorders for CC versus BC in validation and test sets. (C, D) Comparison between random vs leave-drug-out cross-validation strategies. Average performance
across all labels is shown for the best performing chain of classifiers (CC) model, trained with leave-drug-out vs random cross-validation strategies, and for a set of
independent binary classifiers (BC). Random cross-validation significantly inflates the accuracy of the trained models compared to leave-drug-out validation. Cardiac
dis S&S': cardiac disorder signs and symptoms, ‘dis': disorders, ‘arrhyt': arrhythmias.
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TABLE 2 | The performance of multi-label classification models trained on transcriptional profiles and molecular descriptors and fingerprints of drugs on the validation
and the testing set. The values are reported for Area under the receiver operating characteristic (ROC) curve (AUC; upper value), % and Matthews correlation (MCC;
lower value).

Cardiotoxicity form Set Cardiac dis S&S Cardiac
arrhythmias

Heart failures Coronary
artery dis

Pericardial dis Myocardial dis Mean ± 0.5 SD

Leave drug out cross-validation strategy
Chain of classifiers with nested stacking
Dual feature set
RF Validation AUC 63 88 79 91 64 88 79 ± 6

MCC 0.21 0.50 0.29 0.68 0.13 0.46 0.38 ± 0.10
Testing AUC 70 64 58 54 83 87 66 ± 9

MCC 0.33 0.37 0.04 0.10 0.14 −0.08 0.15 ± 0.9
ELNET Validation AUC 62 67 65 55 71 65 64 ± 3

MCC 0.20 0.23 0.19 −0.03 0.6 0.37 0.17 ± 0.07
Testing AUC 67 65 63 49 66 70 63 ± 4

MCC 0.28 0.28 −0.08 −0.08 −0.03 0.01 0.06 ± 0.09
GBM Validation AUC 67 87 74 90 60 86 77 ± 6

MCC 0.29 0.55 0.35 0.66 0.16 0.54 0.42 ± 0.09
Testing AUC 66 62 51 55 60 64 60 ± 3

MCC 0.22 0.26 −0.08 0.03 0.12 −0.04 0.08 ± 0.07
CATBOOST Validation AUC 64 84 64 88 65 53 70 ± 7

MCC 0.30 0.68 0.32 0.65 0.24 0.02 0.37 ± 0.13
Testing AUC 67 63 59 57 67 49 60 ± 3

MCC 0.27 0.18 −0.07 0.09 0.35 0.0 0.14 ± 0.08
Transcriptional features only
RF Validation AUC 63 83 82 90 61 89 78 ± 6

MCC 0.24 0.47 0.4 0.66 −0.02 0.62 0.4 ± 0.13
Testing AUC 69 65 58 64 71 67 66 ± 2

MCC 0.22 0.19 0 0.21 0.11 0.11 0.14 ± 0.04
Descriptors and molecular fingerprints only
RF Validation AUC 66 83 82 86 48 81 74 ± 7

MCC 0.24 0.55 0.37 0.51 −0.08 0.19 0.3 ± 0.12
Testing AUC 63 72 42 56 62 58 59 ± 5

MCC 0.21 0.22 0.01 0.16 −0.08 −0.07 0.08 ± 0.07
A set of independent binary classifiers
RF Validation AUC 57 62 61 61 57 53 58 ± 2

MCC 0.14 0.12 0.06 −0.03 0.0 0.17 0.08 ± 0.04
Testing AUC 64 63 59 59 45 58 58 ± 3

MCC 0.21 0.18 −0.02 0.12 −0.01 −0.01 0.08 ± 0.05
ELNET Validation AUC 60 58 61 55 72 64 62 ± 3

MCC 0.12 0.15 0.10 −0.08 0.06 0.17 0.09 ± 0.05
Testing AUC 65 67 61 52 64 65 62 ± 3

MCC 0.19 0.25 −0.03 −0.08 −0.04 −0.05 0.04 ± 0.07
GBM Validation AUC 59 61 50 49 58 66 57 ± 3

MCC 0.11 0.22 −0.02 −0.03 −0.14 0.37 0.08 ± 0.09
Testing AUC 67 61 54 57 50 63 59 ± 3

MCC 0.21 0.20 −0.02 0.04 −0.03 0.05 0.08 ± 0.05
CATBOOST Validation AUC 62 60 61 56 54 70 60 ± 3

MCC 0.23 0.26 0.20 0.28 0.07 0.37 0.24 ± 0.05
Testing AUC 72 66 66 60 55 61 63 ± 3

MCC 0.37 0.22 0.0 0.11 0.0 0.06 0.13 ± 0.07
Random cross-validation strategy
Chain of classifiers with nested stacking
RF Validation AUC 92 96 93 95 94 92 94 ± 1

MCC 0.70 0.77 0.53 0.72 0.44 0.26 0.57 ± 0.10
Testing AUC 68 62 52 50 73 79 64 ± 6

MCC 0.21 0.28 −0.09 −0.04 0.27 −0.07 0.09 ± 0.09
A set of independent binary classifiers
RF Validation AUC 90 88 74 83 86 77 83 ± 3

MCC 0.67 0.61 0.25 0.57 0.56 0.16 0.47 ± 0.11
Testing AUC 66 63 59 56 45 58 58 ± 4

MCC 0.20 0.20 0.03 −0.09 −0.01 −0.01 0.05 ± 0.06
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average AUC of 0.71 and average MCC of 0.24 on validation, and
0.66 and 0.15 on test set. The chain of categorical boosting
classifiers showed average AUC of 0.77 and average MCC of 0.51
on validation, with average AUC of 0.65 and average MCC of
0.13 for testing. Finally, elastic net demonstrated the most
modest performance among the trained set of chain classifiers,
achieving an average AUC of 0.66 and average MCC of 0.16 on
validation, with average AUC of 0.60 and average MCC of 0.11
for testing. Following these results, we selected a chain of random
forest classifiers as the best model and evaluated its performance
in detail, including validation on new cell types, external
independent dataset and across cardiotoxicity types and
pharmacological classes of drugs.

Importantly, cardiotoxicity types predicted with the best
performing chain of classifiers model kept similar relationships
to the ones shown in the original data (Figure 2 and
Supplementary Figure 2). This was particularly clear for the
predominant associations between cardiac disease signs and
symptoms, cardiac arrhythmias and coronary artery disease.

With individual binary predictors, the best set of random
forest classifiers only obtained an average AUC of 0.67 and an
average MCC of 0.08 across cardiotoxicity types on validation,
with an average AUC of 0.62 and average MCC of 0.16 on testing
(Figure 4A , Table 2 , Supplementary Figure 1 and
Supplementary Table 4). Therefore, while cardiotoxicy types
were predicted with different accuracies, the inclusion of
information about other cardiotoxicities improved prediction
accuracy for all cardiotoxicity types (Figure 4B). This was also
observed on five different partitions of the entire dataset
(Supplementary Figure 3), where the chain of classifiers
Frontiers in Pharmacology | www.frontiersin.org 10204
outperformed the sets of individual binary classifiers. In line
with that, the exclusion of cardiotoxicity forms resulted in
a decreased prediction accuracy of sequential labels
(Supplementary Table 4).

On the contrary to leave-drug-out, in the case of random
cross-validation, samples using the same drugs may be present in
training and testing datasets, and thus predictors learn
associations between individual drugs and their safety rather
than general features related to cardiotoxicity forms. This may
produce unrealistically high results, indeed overestimating the
accuracy of prediction.

To investigate these aspects in further detail, we compared
predictions with our proposed chain of random forest classifiers
with nested stacking and a set of independent random forest
classifiers, both trained with either leave-drug-out or random
cross-validation strategies. When validated and optimized with
random cross-validation, both models demonstrate almost
perfect accuracy on validation (averages for all cardiotoxicity
types: AUC = 1, MCC = 0.95 for chain of classifiers; AUC = 1,
MCC = 0.97 for independent predictors; Figures 4C, D, Table 2
and Supplementary Table 4) . Although apparently
outperforming the models trained with leave-drug-out cross-
validation, models trained with random cross-validation were
however less accurate when predicting cardiotoxicity types of
previously unseen drugs (Figures 4C, D, Table 2 and
Supplementary Table 4). Quantitatively, the chain of
classifiers trained and optimized with a random cross-
validation strategy exhibited an AUC of 0.67 and MCC of 0.13,
compared to an AUC of 0.70 and MCC of 0.16 for leave-drug-
out cross-validation (average values for all cardiotoxicity types).
A B

FIGURE 5 | Sensitivity of predictive accuracy to feature types, cell lines and incubation times. (A) Merging of molecular descriptors and fingerprints and
transcriptional features results in increased average performance across all drug classes. (B) The best performing model demonstrates similar predictive accuracy
across different cell lines (A549, MFC7) and incubation times (6 and 24 h) incubation times. For new cell lines (PHH, SKB, SKM1, A673), the model discriminates
more accurately seen drugs with unseen cell lines (‘New val') than unseen drugs (‘New test'). For new data type (DToxS), the model also discriminates more
accurately seen drugs (‘DToxS val') than unseen drugs (‘DToxS test').
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Similarly, a set of individual classifiers with random cross-
validation showed an AUC of 0.62 and MCC of 0.09,
compared to an AUC of 0.62 and MCC of 0.15 in the case of
leave-drug-out cross-validation.

To further explore the predictive value of individual feature
sets, we compared for the entire dataset the proposed chain of
random forest classifiers with nested stacking separately trained
Frontiers in Pharmacology | www.frontiersin.org 11205
on each feature set. Models trained on both feature types
outperformed models trained only on one feature, showing on
validation an AUC of 0.80 for both feature types vs an AUC of
0.62 for molecular descriptors and fingerprints, or an AUC of
0.76 for transcriptional features only (Figure 5A, Table 2,
Supplementary Table 4). Similarly, the dual transcriptomic
and molecular classifier is more accurate on testing. The model
FIGURE 6 | Predictive accuracy across drug classes, cardiotoxicity forms and feature types. The best performing model trained on either molecular descriptors and
fingerprints, transcriptional features or both demonstrates different performance in predicting types of agents. For each drug class, the top bar plot shows the AUC
of the best predictor and the bottom bar plot displays the number of safe and unsafe drugs. CV for cardiovascular agents, CNS for Central nervous system agents.
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trained only on molecular descriptors and fingerprints achieves
0.65 AUC, being 0.66 AUC when trained only for
transcriptional features.

External Validation
To further investigate the predictive power of the developed
predictor and to assess its performance on different source of
transcriptional data, we additionally analyzed the DToxS dataset
(https://martip03.u.hpc.mssm.edu/index.php).

Notably, while DToxS provides gene expression data
measured with a different technique (RNAseq) and with
different cell lines (PromoCell cardiomyocytes), the proposed
chain of random forest classifiers with nested stacking still
achieved good accuracy when discriminating previously seen
drugs (average AUC of 72%, Figure 5B). The accuracy partially
drops when predicting cardiotoxicity forms for unseen drugs
(average AUC of 60%, Figure 5B). Interestingly, while the model
trained on molecular descriptors and fingerprints only shows
superior accuracy in predicting seen drugs (average AUC of 90%,
Supplementary Table 4), the dual transcriptomic and molecular
classifier is still more accurate on testing for unseen drugs. For
example, it is able to differentiate safe from drugs with reports of
cardiac arrhythmias with an AUC of 70% (vs 58% for molecular
descriptors and fingerprints, Supplementary Table 4). The
transcriptional feature only model shows less accuracy when
tested on new data, with an average AUC for all labels of 57%
(Supplementary Table 4). However, this model is more accurate
in predicting cardiac disorder signs and symptoms (AUC of 65%
vs 56% and 52%, for dual and molecular descriptors and
fingerprints models, respectively; Supplementary Table 4).

Predictive Accuracy Across Drug Classes
and Cardiotoxicity Forms
The best model (chain of random forest classifiers with nested
stacking) demonstrated different predictive accuracy across
cardiotoxicity forms and drug classes (Figure 6 and
Supplementary Table 4). For example, for antineoplastic
drugs, the best model predicted ‘pericardial disorders' more
accurately (Figure 6; AUC = 0.95) than the average across all
drugs, also achieving high accuracy in the prediction of ‘heart
failure' (AUC = 0.76). ‘Cardiac disorder signs and symptoms',
‘cardiac arrhythmias' and ‘heart failure' were also more
accurately predicted in the case of anti-inflammatory drugs
compared to other cardiotoxicity types (Figure 6; AUCs of
0.86, 0.78 and 0.76, respectively).

High accuracy was also achieved in the prediction of
‘myocardial disorders' by cardiovascular agents, as well as for
‘heart failure' induced by central nervous system agents (both with
AUC = 0.77, Figure 6). On the contrary, predictions for ‘cardiac
arrhythmias' were close or worse than random guessing for
cardiovascular and central nervous system agents (AUCs of 0.51
and 0.46, respectively) and for cardiovascular agents (AUC =
0.51). Greater error in the prediction of ‘coronary artery disorders'
was found for antineoplastic agents (AUC = 0.35). Some of these
cases of limited performance may be partially explained by a small
frequency of side effects for specific drug types. For example, only
Frontiers in Pharmacology | www.frontiersin.org 12206
16 out of 56 total cardiovascular agents in our dataset are known to
cause cardiac arrhythmias and coronary artery diseases (Figure 6).
However, for antineoplastic drugs the frequency of coronary artery
disease (7/33) is the same than for cardiac arrhythmias (7/33) and
bigger than for heart failure (3/33), but the predictor performs
better in predicting the latter two than coronary artery disease,
indicating a possible dependency on feature types.

Interestingly, the model trained individually on molecular
descriptors and fingerprints demonstrated higher accuracy than
the transcriptomic or dual predictors in safety predictions of
‘cardiac arrhythmias' for cardiovascular, antineoplastic and
central nervous system agents, but not for anti-inflammatory
agents (Figure 6). For central nervous system agents, in general,
the molecular descriptor-based predictor is more accurate.
Notably, for ‘coronary artery disorders', a combination of the
two feature types leads to a decrease in accuracy compared to
individual feature set predictors.

For interpretability of these prediction differences, we
analyzed the feature space in testing against the best model
predictions when trained on either individual or combined
feature types (Supplementary Table 5 and Supplementary
Figures 4–8). Different transcriptional features and molecular
descriptors were associated with the accuracy of prediction. For
instance, drug samples with higher expression values of Alpha-
Synuclein (SNCA) or Heat Shock Protein 8 (HSPA8) genes were
more often predicted incorrectly by all three predictors
(Supplementary Figures 4 and 5). Drugs with a higher
number of atomic bonds (nAtomBond) (Supplementary
Figure 6) were classified less correctly when training on the
combined feature set or only on molecular descriptors. The same
was observed for drugs with higher values of polar surface area to
molecular size ratio (tpsaEffiency) or topological polar surface
area based on fragment contr ibut ions (TopoPSA)
(Supplementary Figures 7 and 8).
DISCUSSION

This study presents the first machine learning approach capable
of predicting six forms of drug-induced cardiotoxicity from both
gene expression and molecular descriptors data. Importantly, the
algorithm (based on a chain of classifiers) is specifically
developed to incorporate relationships between cardiotoxicity
forms, identified in our data analysis, and to tackle class
imbalance between cardiotoxic and safe drugs. We
demonstrate high accuracy with the strictest validation strategy
using drug datasets not used in training, and its importance
compared to random cross-validation on samples. A further
specific contribution of this study is the large comprehensive
dataset of 1,131 drugs curated and collected from publicly
available resources. This can provide a useful benchmark for
future studies. Thus, we propose a novel and robust solution for
preclinical drug safety testing that can potentially be expanded to
other organs' toxicities.

To implement this solution, we first collected and analyzed a
large dataset of 1,131 drugs from publicly available databases.
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They include both safe and cardiotoxic drugs, 357 of which with
cellular transcriptional profiles and a total of 9,933 samples
available. Secondly, we proposed and implemented a chain of
classifiers with nested stacking approach that classifies drugs by
their risk, able to relatively accurately predict up to six forms of
cardiotoxicity. Our method achieves a 0.80 average AUC across
all cardiotoxicity types on a leave-drug-out cross-validation
strategy on 291 drugs (8,237 samples). Further validation of
the method on new and previously unseen 66 drugs (1,696
samples) with multiple mechanisms of action demonstrated
that the proposed model holds high generalisation abilities
compared to sets of individual classifiers. Models trained with
leave-drug-out cross-validation were able to discriminate
between safe and unsafe drugs with a 0.70 average AUC across
all cardiotoxicity types. The model demonstrated higher
accuracy for specific adverse drug effects and type of agents,
and in particular for pericardial disease, cardiac disease and
symptoms, heart failure and myocardial disease for
antineoplastic, anti-inflammatory, cardiovascular and central
nervous system agents, respectively. These results suggest the
translational potential of the proposed approach towards
applications in a pre-clinical context.

The combined dataset collected in this study demonstrated
associations between forms of drug-induced cardiac
complications, which are in agreement with the known
literature on cardiac comorbidities. Clinical reports have
evidenced a significant association between heart failure and
other cardiovascular comorbidities, such as atrial fibrillation,
ischemic heart disease and arrhythmias (Lawson et al., 2018;
Kendir et al., 2018). Patients with a history of coronary heart
disorders have been also shown to have a higher incidence of
atrial fibrillation, one of the most common forms of cardiac
arrhythmias (Naser et al., 2017). In our work, coronary artery
disorders, which include ischemia and myocardial infarction,
demonstrated a significant similarity to cardiac arrhythmias in
terms of the drugs they are related to. We showed the same for
heart failure and cardiac disorders, which displayed a moderate
and substantial agreement to cardiac arrhythmias.

Notably, the list of genes identified as most important features
(obtained by using two completely distinct feature selection
methods while counting distinct genes for each label)
demonstrates a significant amount of intersection at the level
of associated pathways. For example, pathways related to Notch
signaling were ranked as important for cardiac arrhythmia
prediction by both methods. Previous evidence has shown the
importance of Notch signaling in heart development and cardiac
disease, including malignant congenital arrhythmias (D'Amato
et al., 2016). IGF signaling and IGF1R were also selected
consentaneously by both algorithms for cardiac disorder signs
and symptoms and pericardial disorders, evidencing their key
role in heart tissue functioning (Troncoso et al., 2014). In spite of
being profiled using cancer cell lines, the selected features seem
biologically relevant to cardiotoxicity, given their human origin.
This emphasizes the potential benefits of using the combined
approach for feature selection. At the same time, further detailed
investigation of the feature importance list could help evaluate
Frontiers in Pharmacology | www.frontiersin.org 13207
the proposed genes as possible therapeutic targets for
cardiovascular therapies.

Our method takes advantage of the chain of classifiers
approach. This approach significantly outperformed binary
classification approaches that treat each label independently,
with an improvement of 12.9% in terms of AUC (from AUC
of 0.62 to 0.70). This highlights the importance of incorporating
information about related adverse reactions in predicting drug
safety. While demonstrating good generalisation abilities on
unseen data, the model showed different performance across
cardiotoxicity types depending on the type of agents. Cardiac
arrhythmia-related safety was predicted more accurately for
cancer and anti-inflammatory agents than for cardiovascular
and central nervous system agents. This might be improved by
the introduction of information more relevant to specific
mechanisms of arrhythmogenesis.

The accumulated body of evidence suggests that gene
expression signatures alone could also be used as a biomarker
of cell response to drugs (Aliper et al., 2016; Xie et al., 2018). Our
results, in line with previous studies (Wang et al., 2016),
demonstrate that coupling of transcriptional profiles and
molecular descriptors indeed improves the predictive power of
algorithms. Thus, the combination of both feature types indeed
increases the mean accuracy of a chain of classifiers by 8% (AUC
of 0.65 to 0.70).

Previous research (Wang et al., 2016; Messinis et al., 2018)
reported good accuracy in the prediction of multiple adverse
reactions and myocardial infarction. However, such approaches
were evaluated using drugs included in the training, rather than
in an independent dataset as in our study, and neglected existing
dependencies between various forms of cardiotoxicity, as
demonstrated here. Indeed, our findings suggest that the
retention of the information about cardiotoxicity types
dependencies results in greater accuracy (Figures 4A, B). At
the same time, we show that models trained with random cross-
validation may display a significantly inflated performance on
validation (Figures 4C, D), however becoming less accurate
when predicting previously unseen drugs. In general, a leave-
drug-out cross-validation strategy demonstrated a more robust
performance compared to random cross-validation, the latter
evidencing inflated accuracy metrics, which in turn may
complicate model optimisation and overstate their expected
generalization ability. Our proposed chain of classifiers model
with nested stacking has indeed better generalization for multi-
label predictions than previous models such as that by Wang and
colleagues (Wang et al., 2016), and demonstrates a superior
performance compared to models based on sets of
individual classifiers.

Our model can predict both acute (cardiac arrhythmias) and
chronic (coronary artery disorders and heart failures) effects of
drugs, based on clinical human responses collected via SIDER.
Chronic drug-induced cardiac changes are often irreversible and
their effect is delayed. Therefore their prediction poses a
challenge, as they require long-term animal experimentation
and the drug effect on the animal cardiac system is highly
variable and hard to translate into the human clinic (Lamberti
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et al., 2014). Another key advantage of our approach is the use of
perturbation databases such as LINCS and Connectivity map.
They constitute great resources for preclinical applications
(Musa et al., 2018) and even have been used extensively to
identify novel drug candidates that confirmed their effectiveness
experimentally (Han et al., 2018). Providing a cheaper alternative
to animal models, computational methods that integrate
transcriptional responses of drugs and their molecular
characteristics, such as proposed, can be used prior to animal
experiments identifying drug cardiotoxicity early in the pre-
clinical phase.

Using transcriptional signatures, molecular descriptors and
fingerprints, the general methodology proposed in this study
could be further applied to other tissue-specific side effects and
organs. We presume that our approach can be also extended to
other areas including drug target prediction, where information
about the multi-label properties of drugs or multi-target
properties plays a vital role (Ramsay et al., 2018).

A current limitation of the database used in this study is the
absence of isomers (drugs with similar chemical structure, and
hence similarmolecular descriptors and fingerprints) with different
safety profiles. While we expect such chemicals to have different
transcriptional profiles, and therefore to be discriminated by their
transcriptional features, further analysis is required to test this
hypothesis. Our model demonstrated good generalisation
properties under completely new cell lines (Figure 5B). However,
cross-platform differences in the acquisition of transcriptome data
pose additional challenges for future use, and validation on an
external dataset of RNAseq expression samples showed amoderate
loss of prediction accuracy (Figure 5B). In addition, a limiting
factor in the number of drugs used in this study was the availability
of drug transcriptional profiles (rather than information on drug-
induced cardiotoxicities), and the release of additional datasets
would be a valuable resource for future studies. This study is also
constrained by the feature space explored, with only 971 of
landmark genes analyzed, seven molecular descriptors, and one
type of fingerprints used for model contraction. Inclusion of
information about expression values of other genes or more
comprehensive descriptors and fingerprints might increase the
predictive power of models and bring more insights. Machine-
learning algorithms, however, are known to be limited in their
ability to provide an interpretation of learnt associations.
Mechanistic models coupled with machine-learning-based
approaches represent an alternative attractive approach, with the
Frontiers in Pharmacology | www.frontiersin.org 14208
potential to shed light on aspects of the underlying cardiotoxicity
mechanisms (Lancaster and Sobie, 2016). Whereas these aspects
fall beyond the goal of our study in presenting our proposed
approach, they deserve future consideration in order to refine its
predictive power, so it does comparison against other multi-target
machine-learning algorithms.
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Conventional drug discovery is long and costly, and suffers from high attrition rates, often
leaving patients with limited or expensive treatment options. Recognizing the
overwhelming need to accelerate this process and increase success, the ATOM
consortium was formed by government, industry, and academic partners in October
2017. ATOM applies a team science and open-source approach to foster a paradigm shift
in drug discovery. ATOM is developing and validating a precompetitive, preclinical, small
molecule drug discovery platform that simultaneously optimizes pharmacokinetics,
toxicity, protein-ligand interactions, systems-level models, molecular design, and novel
compound generation. To achieve this, the ATOM Modeling Pipeline (AMPL) has been
developed to enable advanced and emerging machine learning (ML) approaches to build
models from diverse historical drug discovery data. This modular pipeline has been
designed to couple with a generative algorithm that optimizes multiple parameters
necessary for drug discovery. ATOM's approach is to consider the full pharmacology
and therapeutic window of the drug concurrently, through computationally-driven design,
thereby reducing the number of molecules that are selected for experimental validation.
Here, we discuss the role of collaborative efforts such as consortia and public-private
partnerships in accelerating cross disciplinary innovation and the development of open-
source tools for drug discovery.

Keywords: artificial intelligence, machine learning, drug discovery and development, data science
in silico modeling
INTRODUCTION

Preclinical drug discovery typically takes five and a half years and accounts for about one third of the
cost of drug development (Paul et al., 2010). The process is largely empirical with a sequential,
iterative approach to optimizing key drug discovery parameters—efficacy, pharmacokinetics (PK),
safety, and developability. Millions of molecules are tested, thousands are produced, and most fail to
progress in preclinical or clinical settings (Shannon Decker and Atkinson, 2007; Mohs and Greig,
2017). Furthermore, translation from R&D to the clinic is insufficient with a success rate of less than
10%, and safety liabilities and poor efficacy cited as the main causes of attrition (Miller et al., 2017;
Lowe, 2019).
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Patients are waiting for the field of drug discovery to innovate
new processes that will help improve the success rate of
pharmaceutical development, lower drug costs, and get medicines
to the clinic more quickly. With the average cost of developing a
newmolecular entity at over $2 billion, in large part due to the costs
of failures, researchers are challenged to work outside the
conventional slow, sequential, and costly drug development
paradigm to better meet the urgent needs of patients (Kramer
et al., 2007; Munos, 2009; Mullin, 2014; DiMasi et al., 2016). To
increase the generation of successful new molecular entities, a
number of groups have called for more innovation around the
culture of and approach to drug discovery (Munos, 2006; Papadaki
and Hirsch, 2013; Parekh et al., 2015). In particular, because so
much of the cost of development stems from the cost of failures,
approaches that improve our ability to distinguish early which
molecules will ultimately succeed can have a disproportionate
impact on improving the output of new medicines illustrate the
potential for accelerating drug discovery through artificial
intelligence (AI)-driven approaches (Ringel et al., 2013).

The demonstrations of ML for polypharmacological drug
design, deep neural nets for predicting quantitative structure-
activity relationships (QSAR), and generative molecular design
through the use of variational autoencoders and generative
adversarial networks (Besnard et al., 2012; Ma et al., 2015;
Blaschke et al., 2018) hold great promise. To this end,
significant interest has been raised in the application of
approaches that combine AI, simulation, and experimentation
to drug discovery (Vamathevan et al., 2019). Recognizing the
compelling need for a paradigm shift in drug development, the
ATOM consortium was established in October 20171. ATOM's
founders, the Frederick National Laboratory for Cancer Research
(FNLCR, on behalf of the National Cancer Institute), Lawrence
Livermore National Laboratory (LLNL, on behalf of the
Department of Energy), GSK (GlaxoSmithKline), and the
University of California, San Francisco (UCSF), have joined
forces to leverage resources toward the common goal of
benefiting patients. ATOM is applying an integrated approach
to combine capabilities such as high-performance computing,
human-relevant in vitro experimentation, data-driven and
mechanistic modeling, and curation of pharmacological data
toward the development of a novel preclinical drug discovery
and development platform.

Drug Discovery Consortia
As the complexity of biomedical research questions has
increased, so too has the need to bring together expertise and
resources from multiple disciplines and organizations (Cooke
et al., 2015). Consequently, several articles by thought leaders
have called for more collaboration in the drug development
process (Altshuler et al., 2010; Dahlin et al., 2015; Alteri and
Guizzaro, 2018; Takebe et al., 2018; Chaturvedula et al., 2019).
Open innovation and open-source research strategies which
emphasize the value of collaboration and use of both internal
and external information, are creating the opportunity for the
drug research and development industry to leverage know-how
1atomscience.org
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from across organizations (Munos, 2006; Hunter and Stephens,
2010; Owens, 2016). Cross-industry collaboration is particularly
important in the application of computational approaches to
drug discovery, where for instance, most companies have one or
fewer drugs approved per year, far too small a sample size to
support these approaches (Munos, 2009). The advantages of
bringing together organizations into public-private partnerships
(PPP) and consortia include not just scale, but also new-found
agility and increased creativity alongside risk reduction and cost
sharing (Papadaki and Hirsch, 2013; Slusher et al., 2013;
Rosenberg, 2017; Kuchler, 2019). In fact, the US Food and
Drug Administration (FDA), acknowledges the critical role of
PPPs and consortia with respect to the innovation and
modernization of medical product development (Maxfield
et al., 2017).

One notable example of cross-sector collaboration is the Merk
Molecular Activity Challenge2 where the pharmaceutical
company provided contestants with a training set of molecular
descriptors and activities and a test set of descriptors only, and
spurred the development of innovative ML methods for QSAR
(Ma et al., 2015). In the last 2 years, new academic-industry
consortia projects have emerged, focusing on applications of ML
in drug discovery. The Machine Learning for Pharmaceutical
Discovery and Synthesis Consortium, with membership from
three Massachusetts Institute of Technology departments and
several leading pharmaceutical companies, focuses on the
application of ML to automate drug discovery and synthesis3.
Summer 2019 saw the start of a new Innovative Medicines
Initiative collaborative project led by Janssen, dubbed Machine
Learning Ledger Orchestration for Drug Discovery (MELLODDY)4

(Kuchler, 2019). With a 3-year timeframe, the MELLODDY project
focuses on employing federated ML to foster sharing data
insights while preserving organizational intellectual property.
Pharmaceutical industry participants will train models on their
own proprietary data and share those models to increase the impact
of AI and ML in the industry.

As an open consortium backed by major public entities, the
Department of Energy, the National Cancer Institute, and the
University of California Office of the President, as well as
pharmaceutical leader GSK, the Accelerating Therapeutics for
Opportunities in Medicine consortium (ATOM) is committed to
creating new tools for drug discovery that can be shared broadly
and benefit the public good. Computational approaches to drug
design hold the potential to drastically improve the field's ability
to generate novel drugs for patients in need. Harnessing
advances in computational power and AI, ATOM is building a
new, comprehensive, integrated platform for efficient molecular
property prediction, optimization, and design. Drawing from
team science, open innovation, and open-source concepts, the
ATOM platform combines ML, simulation, and experimentation
to generate novel drug candidates more rapidly than traditional
approaches. ATOM's current scope focuses within the area of
pharmaceutical-industry-0517
4www.imi.europa.eu/projects-results/project-factsheets/melloddy
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preclinical drug discovery, but its outcomes aim to benefit not
only the member organizations and their immediate
stakeholders, but the biomedical community at large including
academicians, start-ups, private industry, clinicians, and patients.

AI-Driven Drug Discovery
Drug discovery is relying increasingly on computational and AI-
driven methods. Collaborative efforts that combine scientific know-
how and computational power are being stood up to incubate
innovative methods while sharing risk and accelerating progress. In
the past decade significant advances have been made to accelerate
the drug discovery process such as the development of
computational and AI-based methods for virtual screening and in
silico drug design. Moving beyond structure-based approaches and
virtual screens, several seminal publications have demonstrated the
use of generative adversarial networks and variational autoencoders
for de novo drug design (Kadurin et al., 2017; Olivecrona et al., 2017;
Gómez-Bombarelli et al., 2018; Merk et al., 2018; Polykovskiy et al.,
2018; Putin et al., 2018; Segler et al., 2018; Ståhl et al., 2019; Hong
et al., 2020). For example, a recently published deep generative
model demonstrated the design of small-molecule drug candidates
for discoidin domain receptor 1 prioritizing synthetic feasibility,
efficacy, and uniqueness with respect to known small molecules,
showcasing the ability to rapidly discover drugs at low cost
(Zhavoronkov et al., 2019).

Collaborative AI-Driven Drug Discovery at ATOM
The promise of AI-driven drug design carries with it, several
challenges—the need for appropriate datasets, ability to generate
and test evolving biological hypotheses, multi-parameter
optimization, reduction in design-make-test-analyze cycle times,
and adaptability of research culture (Schneider et al., 2020). ATOM
is tackling these challenges through the collaborative development
of a preclinical, open-source, small-molecule drug discovery
platform (Chaturvedula et al., 2019). The initial stages have
focused on building computational infrastructure, curating
preclinical data from both GSK and public sources, and creating
and testing data-driven modeling capabilities.

ATOM has developed a data-driven modeling pipeline capable
of rapidly building and optimizing ML models for bioassay activity
and molecular property predictions. This modeling pipeline is
important for developing predictive models for public and private
pharmaceutical assay datasets. While ML-based techniques to
predict drug properties from structures are regularly used in the
field of computational drug design, there remains a need for an
automatedmodular pipeline for commonmodeling tasks. Some key
features for such a software package are to enable reproducibility,
incorporate new models, support a variety of chemical
representations, allow for hyperparameter optimization, and
validate predictive performance (Dahl et al., 2014; Gilmer et al.,
2017; Feinberg et al., 2018; Yang et al., 2019).

Existing commercial pipeline tools such as BIOVIA Pipeline
Pilot are limited in their customizability and can be cost prohibitive
to small academic research groups and start-up companies5. On the
other end of the spectrum, open-source pipeline tools such as
5www.3dsbiovia.com/products/ collaborative-science/ biovia-pipeline-pilot/
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KNIME are useful as GUI-based platforms for data processing,
model fitting, and analysis, (Berthold, 2008) but have yet to
demonstrate the suitability for large scale model generation.

The ATOM Modeling Pipeline (AMPL)
AMPL6, or the ATOM Modeling Pipeline, extends the popular
DeepChem7 library and supports ML and molecular featurization
tools (Minnich et al., 2020). AMPL is implemented as a Python
library that integrates with existing data science ecosystems and
utilities. AMPL automates and optimizes many common ML
model fitting tasks that are performed for pharmaceutical
datasets including model fitting, validation, and prediction.
AMPL allows researchers to reproducibly train and test models,
incorporate new models, and provide utilities for automated
dataset characterization, model validation, and uncertainty
quantification. AMPL is designed to be a versatile library that
can interface with many services and tools.

AMPL allows users to build in silicomodels based onmolecular
properties to aid in drug discovery. With an initial focus on safety
and pharmacokinetic modeling, AMPL has been extensively tested
on activity and property assay datasets. In preparation for the
initial release of the pipeline, 11,552 regression and classification
models were built to evaluate data splitting algorithms, model
types, and feature types (Minnich et al., 2020). AMPL supports a
wide variety of dataset splitting algorithms for validation and
testing, including random splits, Butina clustering, scaffold splits,
and temporal splits. AMPL uses models from scikit-learn and
DeepChem including random forest, XGBoost, fully connected
neural network, and graph convolution neural network models.
Small molecules were represented as SMILES strings using the
RDKit cheminformatics library and the molecule validation and
standardization tool, MolVS. AMPL's data curation module was
applied to datasets to filter out compound assay values with wide
variability, and to characterize the datasets with Tanimoto
distances between chemical fingerprints or Euclidean distances
between descriptor feature vectors. Several featurization
approaches were compared including Extended Connectivity
Fingerprints (ECFP), DeepChem graph convolution latent
vectors, Mordred chemical descriptors, and Molecular Operating
Environment (MOE) descriptors. Due to the modular nature of
AMPL's implementation, extensions to the pipeline are available
for additional splitting algorithms, model types, and feature types.

Hyperparameter optimization is an important task for
cheminformatics ML model fitting that may improve model
predictive performance. AMPL supports basic hyperparameter
optimization functions including searches using basic linear grids,
logistic grids, random searches, and user-specified searches. Model
fitting for safety and pharmacokinetic parameters used AMPL's
hyperparameter optimization module to explore model parameter
combinations. Generally, hyperparameter optimization improved
predictive performance on properties of external test sets except for
certain cases with limited data or ECFP featurization.

AMPL automatically calculates standard model performance
metrics for regression and classification models. The regression
6github.com/ATOMconsortium/AMPL
7github.com/deepchem/deepchem
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performance statistics include R2, mean absolute error, and mean
square error to evaluate the level of agreement between the model
predicted values and actual experimental ground truth values.
AMPL also includes classification performance metrics such as
precision and recall, area under the precision-recall curve (PRC-
AUC), negative predictive value, cross entropy, and accuracy
metrics. As previously described, model prediction uncertainty was
calculated for several of PK datasets for comparison with model
prediction error (Minnich et al., 2020). AMPL enables this type of
uncertainty quantification analysis toward better understanding
model predictions, uncertainty, and error.

AMPL is open-source, modular, and flexible, allowing for
additions or extensions as needed. This makes data-driven
modeling using modern ML libraries accessible to the wider
scientific community including academic or government
laboratories and small companies. AMPL is now available for
download on Github8. The website includes detailed library
documentation as well as example Jupyter notebooks to learn to
use the pipeline.

AMPL Validation
Bioassay data, specifically the half-maximal effective drug
concentration (EC50), and the half-maximal inhibitory drug
concentration (IC50), of known hepatic, central nervous system,
cardiovascular, and cellular toxicity safety liabilities were used to
benchmark safetymodels.Modelswerefit for assays suchasBSEP,b2
adrenoceptor, muscarinic acetylcholine receptor, dopamine D2,
voltage-gated potassium channels, and phospholipidosis induction.
Foreachassay type,modelhyperparameterswereoptimizedresulting
in 2,130 classificationmodelswith thresholds appropriate set for each
assay. As described by Minnich et al, the predictive performance of
the classification models was evaluated using common validation
statistics including receiver operating characteristic area under the
curve (ROC AUCs) built on safety datasets. Predictive performance
variedbasedonassay type, dataset size, dataset split type, feature type,
and model type, but overall produced many useful models for
pharmaceutical safety properties (Minnich et al., 2020).

A diverse set of pharmacokinetic data including blood-to-plasma
ratio, plasma protein binding, in vivo clearance, volume of
distribution, hepatocyte clearance, and microsomal clearance,
logD was used to fit predictive models with AMPL (Minnich
et al., 2020). Nine thousand four hundred twenty-two regression
models were fit for all the assay types and corresponding model
parameters were evaluated for improvements to predictive
performance as described by Minnich et al. General trends
between different training and test splits, feature types, and model
types were examined. When using neural network models with
calculated descriptors for many of these PK datasets, model
predictions with MOE descriptors were slightly better than
predictions with open-source Mordred descriptors. Several PK
datasets with larger numbers of measurements (10,000 or more)
benefitted from DeepChem's graph convolutional neural network
models with better predictions compared to experiment than ECFP
or calculated descriptors. For smaller PK datasets, random forest
8github.com/ATOMconsortium/AMPL
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models with MOE descriptors had slightly better performance than
other feature and model combinations (Minnich et al., 2020).

AMPL is designed to automatically and rapidly build and
evaluate cheminformatics models. Automation of deep learning
model training, parallelized hyperparameter search, performance
benchmarking, and data and model storage are essential for
reproducible ML predictions in drug discovery. Given the wide
range of activity and property assay types, the validation
performed by Minnich et al. demonstrate there is no single
best model fitting approach for every dataset. This underscores
the need to rapidly search and fit predictive models for new
datasets enabled by the AMPL software suite.

Two examples of model fitting on publicly accessible datasets
are available with the AMPL repository. Each example describes
a general method of curating datasets, fitting a ML model, and
using the created model for new predictions. Example code is
included to download the datasets from their original source,
perform basic curation on the datasets, train a model on the
curated datasets, and then load the fitted model for prediction on
a withheld test set. In the first example, AMPL mimicked a
DeepChem example model by fitting a model to a public aqueous
solubility dataset using DeepChem's graph convolutional neural
network model (Delaney, 2004). In a second example, AMPL was
used to fit a predictive neural network model using Mordred
descriptors for human liver microsomal clearance from a public
PK dataset (Wenzel et al., 2019). The entire process of data
curation to analysis and visualization for these sample datasets is
automated and reproducible with the AMPL library and tools.

AMPL models can be applied toward related compounds to
rapidly predict bioassay activity or safety and pharmacokinetic
properties. In the context of ATOM, AMPL is a key component
in the overall mission to accelerate the drug discovery process.
CONCLUSIONS

Given heavy reliance on expensive and lengthy experimentation, the
field of drug discovery is increasingly integrating both
computational and AI-driven methods for virtual screening and
in silico drug design. Further, the application of deep neural network
architectures in generative design in conjunction with data-driven
and mechanistic modeling for functional property prediction and
an in silico framework for rapid lead optimization will drastically
change how drug discovery is done.

Collaborative efforts have been employed in recent efforts to
develop new capabilities where risks and required investment
have been high. ATOM provides an avenue for collaborative AI-
driven drug discovery that results in an open-source framework
that broadens availability and an opportunity to raise the level of
collaborative drug discovery efforts.

The AMPL serves as the initial step toward the development
of an open-source preclinical drug design platform that will
accelerate the process of getting more effective therapies to
patients. Future efforts involve extending the modeling
capability of AMPL toward the development of an open-source
pre-clinical drug discovery platform (Figure 1).
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Future Efforts
At ATOM, efforts are underway to integrate current and emerging
computational capabilities with active learning in an AI-driven
platform. ATOM is creating a generative molecular design
framework that integrates predictive models from AMPL and
initiates cycles of generative molecular design and multiparameter
optimization. The goal of ATOM's generative molecular design
framework is to propose novel small-molecule drug candidates with
optimized properties based on design criteria such as potency,
selectivity, cardiotoxicity, hepatoxicity, solubility, clearance, and
synthetic accessibility9. New experimental and molecular
simulation data will be selectively acquired to support the ML-
based approach and will be integrated into the computational
pipeline to kick start additional cycles of the molecular design and
optimization. The integration of active learning will streamline
time-consuming and costly experimentation and will guide the
design of novel drug candidates (Figure 1). Collectively, these efforts
usher in a paradigm shift in drug discovery that emphasizes
collaboration, innovation, and the development of open-
source tools.
9 atomscience.org/abstracts-and-presentations/2019/9/25/generative-lead-
optimization-of-de-novo-molecules-case-study-in-discovery-of-potent-selective-
aurora-kinase-inhibitors-with-favorable-secondary-pharmacology
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of drug design criteria. These parameters are simultaneously optimized for the generation of novel molecules by the generative molecular design framework. The
multi-parameter optimization loop, in grey, can be run for numerous cycles. An active learning approach is used to decide whether a molecular simulation or
experiment is needed to improve or validate the models. Data that result from these simulations and experiments are then used to re-train the property prediction
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Generative models are becoming a tool of choice for exploring the molecular space. These
models learn on a large training dataset and produce novel molecular structures with
similar properties. Generated structures can be utilized for virtual screening or training
semi-supervized predictive models in the downstream tasks. While there are plenty of
generative models, it is unclear how to compare and rank them. In this work, we introduce
a benchmarking platform called Molecular Sets (MOSES) to standardize training and
comparison of molecular generative models. MOSES provides training and testing
datasets, and a set of metrics to evaluate the quality and diversity of generated
structures. We have implemented and compared several molecular generation models
and suggest to use our results as reference points for further advancements in generative
chemistry research. The platform and source code are available at https://github.com/
molecularsets/moses.

Keywords: generative models, drug discovery, deep learning, benchmark, distribution learning

INTRODUCTION

The discovery of newmolecules for drugs andmaterials can bring enormous societal and technological
progress, potentially curing rare diseases and providing a pathway for personalized precision medicine
(Lee et al., 2018). However, complete exploration of the huge space of potential chemicals is
computationally intractable; it has been estimated that the number of pharmacologically-sensible
molecules is in the order of 1023 to 1080 compounds (Kirkpatrick and Ellis, 2004; Reymond, 2015).
Often, this search is constrained based on already discovered structures and desired qualities such as
solubility or toxicity. There have been many approaches to exploring the chemical space in silico and
in vitro, including high throughput screening, combinatorial libraries, and evolutionary algorithms (Hu
et al., 2009; Curtarolo et al., 2013; Pyzer-Knapp et al., 2015; Le and Winkler, 2016). Recent works
demonstrated that machine learning methods can produce new small molecules (Merk et al., 2018a;
Merk et al., 2018b; Polykovskiy et al., 2018b; Zhavoronkov et al., 2019a) and peptides (Grisoni et al.,
2018) showing biological activity.
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Over the last few years, advances in machine learning, and
especially in deep learning, have driven the design of new
computational systems for modeling increasingly complex
phenomena. One approach that has been proven fruitful for
modeling molecular data is deep generative models. Deep
generative models have found applications in a wide range of
settings, from generating synthetic images (Karras et al., 2018)
and natural language texts (Yu et al., 2017), to the applications in
biomedicine, including the design of DNA sequences (Killoran
et al., 2017), and aging research (Zhavoronkov et al., 2019b). One
important field of application for deep generative models lies in
the inverse design of drug compounds (Sanchez-Lengeling and
Aspuru-Guzik, 2018) for a given functionality (solubility, ease of
synthesis, toxicity). Deep learning also found other applications
in biomedicine (Mamoshina et al., 2016; Ching et al., 2018),
including target identification (Mamoshina et al., 2018),
antibacterial drug discovery (Ivanenkov et al., 2019), and drug
repurposing (Aliper et al., 2016; Vanhaelen et al., 2017).

Part of the success of deep learning in different fields has been
driven by ever-growing availability of large datasets and standard
benchmark sets. These sets serve as a common measuring stick
for newly developed models and optimization strategies (LeCun
et al., 1998; Deng et al., 2009). In the context of organic molecules,
MoleculeNet (Wu et al., 2018) was introduced as a standardized
benchmark suite for regression and classification tasks. Brown
et al. (2019) proposed to evaluate generative models on goal-
oriented and distribution learning tasks with a focus on the
former. We focus on standardizing metrics and data for the
distribution learning problem that we introduce below.

In this work, we provide a benchmark suite—Molecular Sets
(MOSES)—for molecular generation: a standardized dataset, data
preprocessing utilities, evaluation metrics, and molecular
generation models. We hope that our platform will serve as a
clear and unified testbed for current and future generative
models. We illustrate the main components of MOSES in
Figure 1.

Distribution Learning
In MOSES, we study distribution learning models. Formally,
given a set of training samples Xtr � {xtr1 , . . . , xtrN } from an
unknown distribution p(x), distribution learning models
approximate p(x) with some distribution q(x).

Distribution learning models are mainly used for building
virtual libraries (van Hilten et al., 2019) for computer-assisted
drug discovery. While imposing simple rule-based restrictions on
a virtual library (such as maximum or minimum weight) is
straightforward, it is unclear how to apply implicit or soft
restrictions on the library. For example, a medicinal chemist
might expect certain substructures to be more prevalent in
generated structures. Relying on a set of manually or
automatically selected compounds, distribution learning
models produce a larger dataset, preserving implicit rules from
the dataset. Another application of distribution learningmodels is
extending the training set for downstream semi-supervized
predictive tasks: one can add new unlabeled data by sampling
compounds from a generative model.

The quality of a distribution learning model is a deviation
measure between p(x) and q(x). The model can define a
probability mass function q(x) implicitly or explicitly. Explicit
models such as Hidden Markov Models, n-gram language
models, or normalizing flows (Dinh et al., 2017; Shi et al.,
2019) can analytically compute q(x) and sample from it.
Implicit models, such as variational autoencoders, adversarial
autoencoders, or generative adversarial networks (Kadurin et al.,
2016; De Cao and Kipf, 2018; Gómez-Bombarelli et al., 2018) can
sample from q(x), but can not compute the exact values of the
probability mass function. To compare both kinds of models,
evaluation metrics considered in this paper depend only on
samples from q(x).

Molecular Representations
In this section, we discuss different approaches to representing a
molecule in a machine learning-friendly way (Figure 2): string
and graph representations.

String representations. Representing a molecular structure as
a string have been quickly adopted (Jaques et al., 2016; Guimaraes
et al., 2017; Kadurin et al., 2017; Olivecrona et al., 2017; Yang
et al., 2017; Kang and Cho, 2018; Popova et al., 2018; Putin et al.,
2018; Segler et al., 2018) for generative models due to the
abundance of sequence modeling tools such as recurrent
neural networks, attention mechanisms, and dilated
convolutions. Simplified molecular input line entry system
(SMILES) (Weininger, 1988) is the most widely used string
representation for generative machine learning models.

FIGURE 1 | Molecular Sets (MOSES) pipeline. The open-source library provides a dataset, baseline models, and evaluation metrics.
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SMILES algorithm traverses a spanning tree of a molecular graph
in depth-first order and stores atom and edge tokens. SMILES
also uses special tokens for branching and edges not covered with
a spanning tree. Note that since a molecule can have multiple
spanning trees, different SMILES strings can represent a single
molecule. While there is a canonicalization procedure to uniquely
construct a SMILES string from a molecule (Weininger et al.,
1989), ambiguity of SMILES can also serve as augmentation and
improve generative models (Arús-Pous et al., 2019).

DeepSMILES (O’Boyle and Dalke, 2018) was introduced as an
extension of SMILES that seeks to reduce invalid sequences by
altering syntax for branches and ring closures. Some methods try
to incorporate SMILES syntax into a network architecture to
increase the fraction of valid molecules (Kusner et al., 2017; Dai
et al., 2018). SELFIES (Krenn et al., 2019) defines a new syntax
based on a Chomsky type-2 grammar augmented with self-
referencing functions. International Chemical Identifier
(InChI) (Stein et al., 2003) is a more verbose string
representation which explicitly specifies a chemical formula,
atoms’ charges, hydrogens, and isotopes. However, Gómez-
Bombarelli et al. (2018) reported that InChI-based models
perform substantially worse than SMILES-based models in
generative modeling—presumably due to a more complex syntax.

Molecular graphs.Graph representations have long been used
in chemoinformatics for storing and processing molecular data.
In a molecular graph, each node corresponds to an atom and each
edge corresponds to a bond. Such graph can specify hydrogens
either explicitly or implicitly. In the latter case, the number of
hydrogens can be deduced from atoms’ valencies.

Classical machine learning methods mostly utilize molecular
descriptors extracted from such graphs. Deep learning models,
however, can learn from graphs directly with models such as
Graph Convolutional Networks (Duvenaud et al., 2015), Weave
Networks (Wu et al., 2018), and Message Passing Networks
(Gilmer et al., 2017). Molecular graph can also be represented
as adjacency matrix and node feature matrix; this approach has
been successfully employed in the MolGAN model (De Cao and
Kipf, 2018) for the QM9 dataset (Ramakrishnan et al., 2014).

Other approaches such as Junction Tree VAE (Jin et al., 2018)
process molecules in terms of their subgraphs.

Metrics
In this section, we propose a set of metrics to assess the quality of
generative models. The proposed metrics detect common issues
in generative models such as overfitting, imbalance of frequent
structures or mode collapse. Each metric depends on a generated
set G and a test (reference) set R. We compute all metrics (except
for validity) only for valid molecules from the generated set. We
suggest generating 30, 000 molecules and obtaining G as valid
molecules from this set.

Fraction of valid (Valid) and unique (Unique@k)
molecules report validity and uniqueness of the generated
SMILES strings. We define validity using RDKit’s molecular
structure parser that checks atoms’ valency and consistency of
bonds in aromatic rings. In the experiments, we compute
Unique@K and for the first K � 1, 000 and K � 10, 000 valid
molecules in the generated set. If the number of valid molecules
is less than K, we compute uniqueness on all valid molecules.
Validity measures how well the model captures explicit
chemical constraints such as proper valence. Uniqueness
checks that the model does not collapse to producing only a
few typical molecules.

Novelty is the fraction of the generated molecules that are not
present in the training set. Low novelty indicates overfitting.

Filters is the fraction of generated molecules that pass filters
applied during dataset construction (see Section 5). While the
generated molecules are often chemically valid, they may contain
unwanted fragments: when constructing the training dataset, we
removed molecules with such fragments and expect the models to
avoid producing them.

Fragment similarity (Frag) compares distributions of BRICS
fragments (Degen et al., 2008) in generated and reference sets.
Denoting cf (A) a number of times a substructure f appears in
molecules from set A, and a set of fragments that appear in either
G or R as F, the metric is defined as a cosine similarity:

Frag(G,R) �
∑
f∈F
[cf (G) · cf (R)]�������∑

f∈F
c2f (G)

√ �������∑
f∈F
c2f (R)

√ . (1)

If molecules in both sets have similar fragments, Frag metric is
large. If some fragments are over- or underrepresented (or never
appear) in the generated set, the metric will be lower. Limits of
this metric are [0,1].

Scaffold similarity (Scaff) is similar to fragment similarity
metric, but instead of fragments we compare frequencies of
Bemis–Murcko scaffolds (Bemis and Murcko, 1996).
Bemis–Murcko scaffold contains all molecule’s ring structures
and linker fragments connecting rings. We use RDKit
implementation of this algorithm which additionally considers
carbonyl groups attached to rings as part of a scaffold. Denoting
cs(A) a number of times a scaffold s appears in molecules from set
A, and a set of fragments that appear in either G or R as S, the
metric is defined as a cosine similarity:

FIGURE 2 | Different views on a vanillin molecule.
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Frag(G,R) �
∑
s∈S
[cs(G) · cs(R)]�������∑

s∈S
c2s(G)

√ �������∑
s∈S
c2s(R)

√ . (2)

The purpose of this metric is to show how similar are the
scaffolds present in generated and reference datasets. For
example, if the model rarely produces a certain chemotype
from a reference set, the metric will be low. Limits of this
metric are [0,1].

Note that both fragment and scaffold similarities compare
molecules at a substructure level. Hence, it is possible to have a
similarity one even when G and R contain different molecules.

Similarity to a nearest neighbor (SNN) is an average
Tanimoto similarity T(mG,mR) (also known as the Jaccard
index) between fingerprints of a molecule mG from the
generated set G and its nearest neighbor molecule mR in the
reference dataset R:

SNN(G,R) � 1

|G| ∑mG∈G
max
mR∈R

T(mG,mR), (3)

In this work, we used standard Morgan (extended
connectivity) fingerprints (Rogers and Hahn, 2010) with
radius 2 and 1024 bits computed using RDKit library
(Landrum, 2006). The resulting similarity metric can be
interpreted as precision: if generated molecules are far from
the manifold of the reference set, similarity to the nearest
neighbor will be low. Limits of this metric are [0,1].

Internal diversity (IntDivp) (Benhenda, 2017) assesses the
chemical diversity within the generated set of molecules G.

IntDivp(G) � 1 −
������������������
1

|G|2 ∑
m1 ,m2∈G

T(m1,m2)pp

√
. (4)

This metric detects a common failure case of generative
models—mode collapse. With mode collapse, the model
produces a limited variety of samples, ignoring some areas of
the chemical space. A higher value of this metric corresponds to
higher diversity in the generated set. In the experiments, we
report IntDiv1 (G) and IntDiv2 (G). Limits of this metric
are [0,1].

Fréchet ChemNet Distance (FCD) (Preuer et al., 2018) is
calculated using activations of the penultimate layer of a deep
neural network ChemNet trained to predict biological activities
of drugs. We compute activations for canonical SMILES
representations of molecules. These activations capture both
chemical and biological properties of the compounds. For two
sets of molecules G and R, FCD is defined as

FCD(G,R) � 				μG − μR
				2 + Tr[ΣG + ΣR − 2(ΣGΣR)1/2] (5)

where μG, μR are mean vectors and ΣG, ΣR are full covariance
matrices of activations for molecules from sets G and R
respectively. FCD correlates with other metrics. For
example, if the generated structures are not diverse enough
(low IntDivp) or the model produces too many duplicates (low
uniqueness), FCD will decrease, since the variance is smaller.
We suggest using FCD for hyperparameter tuning and final

model selection. Values of this metric are non-negative, lower
is better.

Properties distribution is a useful tool for visually assessing
the generated structures. To quantitatively compare the
distributions in the generated and test sets, we compute a 1D
Wasserstein-1 distance between property distributions of
generated and test sets. We also visualize a kernel density
estimation of these distributions in the Experiments section.
We use the following four properties:

• Molecular weight (MW): the sum of atomic weights in a
molecule. By plotting histograms of molecular weight for
the generated and test sets, one can judge if a generated set is
biased toward lighter or heavier molecules.

• LogP: the octanol-water partition coefficient, a ratio of a
chemical’s concentration in the octanol phase to its
concentration in the aqueous phase of a two-phase
octanol/water system; computed with RDKit’s Crippen
(Wildman and Crippen, 1999) estimation.

• Synthetic Accessibility Score (SA): a heuristic estimate of how
hard (10) or how easy (1) it is to synthesize a given molecule.
SA score is based on a combination of the molecule’s
fragments contributions (Ertl and Schuffenhauer, 2009).
Note that SA score does not adequately assess up-to-date
chemical structures, but it is useful for assessing distribution
learning models.

• Quantitative Estimation of Drug-likeness (QED): a [0,1]
value estimating how likely a molecule is a viable candidate
for a drug. QED is meant to capture the abstract notion of
esthetics in medicinal chemistry (Bickerton et al., 2012).
Similar to SA, descriptor limits in QED have been changing
during the last decade and current limits may not cover
latest drugs (Shultz, 2018).

DATASET

The proposed dataset used for training and testing is based on the
ZINC Clean Leads (Sterling and Irwin, 2015) collection which
contains 4, 591, 276 molecules with molecular weight in the range
from 250 to 350 Da, a number of rotatable bonds not greater than
7, and XlogP (Wang et al., 1997) not greater then 3.5. Clean-leads
dataset consists of structures suitable for identifying hit
compounds and they are small enough to allow for further
ADMET optimization of generated molecules (Teague et al.,
1999). We removed molecules containing charged atoms,
atoms besides C, N, S, O, F, Cl, Br, H, or cycles larger than
eight atoms. The molecules were filtered via custom medicinal
chemistry filters (MCFs) and PAINS filters (Baell and Holloway,
2010). We describe MCFs and discuss PAINS in Supplementary
Information 1. We removed charged molecules to avoid
ambiguity with tautomers and pH conditions. Note that in the
initial set of molecules, functional groups were present in both
ionized and unionized forms.

The final dataset contains molecules, with internal diversity
IntDiv1 � 0.857; it contains 448, 854 unique Bemis-Murcko
(Bemis and Murcko, 1996) scaffolds and 58, 315 unique BRICS
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(Degen et al., 2008) fragments. We show example molecules in
Figure 3 and a representative diverse subset in Supplementary
Information 2. We provide recommended split into three non-
intersecting parts: train (1, 584, 664 molecules), test (176, 075
molecules) and scaffold test (176, 226 molecules). The scaffold
test set has all molecules containing a Bemis-Murcko scaffold
from a random subset of scaffolds. Hence, scaffolds from the
scaffold test set differ from scaffolds in both train and test sets.
We use scaffold test split to assess whether a model can
produce novel scaffolds absent in the training set. The test
set is a random subset of the remaining molecules in the
dataset.

BASELINES

We implemented several models that cover different approaches
to molecular generation, such as character-level recurrent neural
networks (CharRNN) (Preuer et al., 2018; Segler et al., 2018),
Variational Autoencoders (VAE) (Kadurin et al., 2016; Blaschke
et al., 2018; Gómez-Bombarelli et al., 2018), Adversarial
Autoencoders (AAE) (Kadurin et al., 2016; Polykovskiy et al.,
2018b), Junction Tree Variational Autoencoders (JTN-VAE) (Jin
et al., 2018), LatentGAN (Prykhodko et al., 2019), and non-neural
baselines.

Model comparison can be challenging since different training
parameters (number of epochs, batch size, learning rate, initial
state, optimizer) and architecture hyperparameters (hidden layer
dimension, number of layers, etc.) can significantly alter their
performance. For each model, we attempted to preserve its
original architecture as published and tuned the
hyperparameters to improve the performance. We used
random search over multiple architectures for every model
and selected the architecture that produced the best value of
FCD. Models are implemented in Python 3 utilizing PyTorch
(Paszke et al., 2017) framework. Please refer to the Supplementary
Information three for the training details and hyperparameters.

Character-level recurrent neural network (CharRNN)
(Segler et al., 2018) models a distribution over the next token
given previously generated ones. We train this model by
maximizing log-likelihood of the training data represented as
SMILES strings.

Variational autoencoder (VAE) (Kingma andWelling, 2013)
consists of two neural networks—an encoder and a decoder—that
infer a mapping from high-dimensional data representation onto
a lower-dimensional space and back. The lower-dimensional
space is called the latent space, which is often a continuous
vector space with normal prior distribution. VAE parameters are
optimized to encode and decode data by minimizing
reconstruction loss and regularization term in a form of
Kullback-Leibler divergence. VAE-based architecture for the
molecular generation was studied in multiple previous works
(Kadurin et al. 2016; Blaschke et al. 2018; Gómez-Bombarelli et al.
2018). We combine aspects from these implementations and use
SMILES as input and output representations.

Adversarial Autoencoder (AAE) (Makhzani et al., 2016) replaces
the Kullback-Leibler divergence from VAE with an adversarial
objective. An auxiliary discriminator network is trained to
distinguish samples from a prior distribution and model’s latent
codes. The encoder then adapts its latent codes to minimize
discriminator’s predictive accuracy. The training process oscillates
between training the encoder-decoder pair and the discriminator.
Unlike Kullback-Leibler divergence that has a closed-form analytical
solution only for a handful of distributions, a discriminator can be
used for any prior distribution. AAE-based models for molecular
design were studied in (Kadurin et al., 2016; Kadurin et al., 2017;
Polykovskiy et al., 2018b). Similar to VAE, we use SMILES as input
and output representations.

FIGURE 3 | Examples of molecules from MOSES dataset.

TABLE 1 | Performance metrics for baseline models: fraction of valid molecules,
fraction of unique molecules from and molecules.

Model Valid (↑) Unique@1k (↑) Unique@10k (↑)

Train 1.0 1.0 1.0
HMM 0.076 ± 0.0322 0.623 ± 0.1224 0.5671 ± 0.1424
NGram 0.2376 ± 0.0025 0.974 ± 0.0108 0.9217 ± 0.0019
Combinatorial 1.0 ± 0.0 0.9983 ± 0.0015 0.9909 ± 0.0009
CharRNN 0.975 ± 0.026 1.0 ± 0.0 0.999 ± 0.0
VAE 0.977 ± 0.001 1.0 ± 0.0 0.998 ± 0.001
AAE 0.937 ± 0.034 1.0 ± 0.0 0.997 ± 0.002
JTN-VAE 1.0 ± 0.0 1.0 ± 0.0 0.9996 ±0.0003
LatentGAN 0.897 ± 0.002 1.0 ± 0.0 0.997 ± 0.005

Reported (mean ± SD) over three independent model initializations.
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Junction Tree VAE (JTN-VAE) (Jin et al., 2018) generates
molecules in two phases by exploiting valid subgraphs as
components. In the first phase, it generates a tree-structured
object (a junction tree) whose role is to represent the scaffold of
subgraph components and their coarse relative arrangements.
The components are valid chemical substructures automatically
extracted from the training set. In the second phase, the
subgraphs (nodes of the tree) are assembled together into a
coherent molecular graph.

Latent Vector Based Generative Adversarial Network
(LatentGAN) (Prykhodko et al., 2019) combines an
autoencoder and a generative adversarial network. LatentGAN

pretrains an autoencoder to map SMILES structures onto latent
vectors. A generative adversarial network is then trained to
produce latent vectors for the pre-trained decoder.

Non-neural baselines implemented in MOSES are n-gram
generative model, Hidden Markov Model (HMM), and a
combinatorial generator. N-gram model collects statistics of
n-grams frequencies in the training set and uses such
distribution to sequentially sample new strings. Hidden
Markov models utilize Baum-Welch algorithm to learn a
probabilistic distribution over the SMILES strings. The
model consists of several states (s1,...,sK), transition
probabilities between states p(si+1 | si), and token emission

TABLE 2 | Performance metrics for baseline models: fraction of molecules passing filters (MCF, PAINS, ring sizes, charge, atom types), novelty, and internal diversity.

Model Filters (↑) Novelty (↑) IntDiv1 IntDiv2

Train 1.0 0.0 0.857 0.851
HMM 0.9024 ± 0.0489 0.9994 ± 0.001 0.8466 ± 0.0403 0.8104 ± 0.0507
NGram 0.9582 ± 0.001 0.9694 ± 0.001 0.8738 ± 0.0002 0.8644 ± 0.0002
Combinatorial 0.9557 ± 0.0018 0.9878 ± 0.0008 0.8732 ± 0.0002 0.8666 ± 0.0002
CharRNN 0.994 ± 0.003 0.842 ± 0.051 0.856 ± 0.0 0.85 ± 0.0
VAE 0.997 ± 0.0 0.695 ± 0.007 0.856 ± 0.0 0.85 ± 0.0
AAE 0.996 ± 0.001 0.793 ± 0.028 0.856 ± 0.003 0.85 ± 0.003
JTN-VAE 0.976 ± 0.0016 0.9143 ± 0.0058 0.8551 ± 0.0034 0.8493 ± 0.0035
LatentGAN 0.973 ± 0.001 0.949 ± 0.001 0.857 ± 0.0 0.85 ± 0.0

Reported (mean ± SD) over three independent model initializations.

TABLE 3 | Performance metrics for baseline models: Fréchet ChemNet Distance (FCD) and Similarity to a nearest neighbor (SNN).

Model FCD (↓) SNN (↑)

Test TestSF Test TestSF

Train 0.008 0.476 0.642 0.586
HMM 24.4661 ± 2.5251 25.4312 ± 2.5599 0.3876 ± 0.0107 0.3795 ± 0.0107
NGram 5.5069 ± 0.1027 6.2306 ± 0.0966 0.5209 ± 0.001 0.4997 ± 0.0005
Combinatorial 4.2375 ± 0.037 4.5113 ± 0.0274 0.4514 ± 0.0003 0.4388 ± 0.0002
CharRNN 0.073 ± 0.025 0.52 ± 0.038 0.601 ± 0.021 0.565 ± 0.014
VAE 0.099 ± 0.013 0.567 ± 0.034 0.626 ± 0.0 0.578 ± 0.001
AAE 0.556 ± 0.203 1.057 ± 0.237 0.608 ± 0.004 0.568 ± 0.005
JTN-VAE 0.3954 ± 0.0234 0.9382 ± 0.0531 0.5477 ± 0.0076 0.5194 ± 0.007
LatentGAN 0.296 ± 0.021 0.824 ± 0.030 0.538 ± 0.001 0.514 ± 0.009

Reported (mean ± SD) over three independent model initializations. Results for random test set (Test) and scaffold split test set (TestSF).

TABLE 4 | Fragment similarity (Frag), Scaffold similarity (Scaff).

Model Frag (↑) Scaf (↑)

Test TestSF Test TestSF

Train 1.0 0.999 0.991 0.0
HMM 0.5754 ± 0.1224 0.5681 ± 0.1218 0.2065 ± 0.0481 0.049 ± 0.018
NGram 0.9846 ± 0.0012 0.9815 ± 0.0012 0.5302 ± 0.0163 0.0977 ± 0.0142
Combinatorial 0.9912 ± 0.0004 0.9904 ± 0.0003 0.4445 ± 0.0056 0.0865 ± 0.0027
CharRNN 1.0 ± 0.0 0.998 ± 0.0 0.924 ± 0.006 0.11 ± 0.008
VAE 0.999 ± 0.0 0.998 ± 0.0 0.939 ± 0.002 0.059 ± 0.01
AAE 0.991 ± 0.005 0.99 ± 0.004 0.902 ± 0.037 0.079 ± 0.009
JTN-VAE 0.9965 ± 0.0003 0.9947 ± 0.0002 0.8964 ± 0.0039 0.1009 ± 0.0105
LatentGAN 0.999 ± 0.003 0.998 ± 0.003 0.886 ± 0.015 0.1 ± 0.006

Reported (mean ± SD) over three independent model initializations. Results for random test set (Test) and scaffold split test set (TestSF).
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probabilities p(xi | si). Beginning from a “start” state, at each
iteration the model samples a next token and state from
emission and transition probabilities correspondingly. A
combinatorial generator splits molecular graphs of the
training data into BRICS fragments and generates new
molecules by randomly connecting random substructures.
We sample fragments according to their frequencies in the
training set to model the distribution better.

PLATFORM

The dataset, metrics and baseline models are provided in a
GitHub repository https://github.com/molecularsets/moses
and as a PyPI package molsets. To contribute a new model,
one should train a model on MOSES train set, generate 30,
000 samples and compute metrics using the provided
utilities. We recommend running the experiment at least
three times with different random seeds to estimate
sensitivity of the model to random parameter
initialization. We store molecular structures in SMILES
format; molecular graphs can be reconstructed using
RDKit (Landrum, 2006).

RESULTS

We trained the baseline models on MOSES train set and provide
results in this section. In Table 1we compare models with respect
to the validity and uniqueness metrics. Hidden Markov Model
and NGram models fail to produce valid molecules since they
have a limited context. Combinatorial generator and JTN-VAE
have built-in validity constraints, so their validity is 100%.

Table 2 reports additional properties of the generated set:
fraction of molecules passing filters, fraction of molecules not
present in the training set, and internal diversity. All modules
successfully avoid forbidden structures (MCF and PAINS) even
though such restrictions were only defined implicitly—using a
training dataset. Combinatorial generator has higher diversity
than the training dataset, which might be favorable for
discovering new chemical structures. Autoencoder-based
models show low novelty, indicating that these models overfit
to the training set.

Table 3 reports Fréchet ChemNet Distance (FCD) and
similarity to a nearest neighbor (SNN). All neural network-
based models show low FCD, indicating that the models
successfully captured the statistics of the dataset. Surprisingly, a
simple language model, character level RNN, shows the best results

FIGURE 4 | Distribution of chemical properties for MOSES dataset and sets of generated molecules. In brackets—Wasserstein-1 distance to MOSES test set.
Parameters: molecular weight, octanol-water partition coefficient (logP), quantitative estimation of drug-likeness (QED) and synthetic accessibility score (SA).
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in terms of the FCD measure. Variational autoencoder (VAE)
showed the best results in terms of SNN, but combined with low
novelty we suppose that the model overfitted on the training set.

In Table 4 we report similarities of substructure
distributions—fragments and scaffolds. Scaffold similarity from
the training set to the scaffold test set (TestSF) is zero by design.
Note that CharRNN successfully discovered many novel scaffolds
(11%), suggesting that the model generalizes well.

Finally, we compared distributions of four molecular
properties in generated and test sets (Figure 4): molecular
weight (MW), octanol-water partition coefficient (logP),
quantitative estimation of drug-likeness (QED), and synthetic
accessibility score (SA). Deep generative models closely match the
data distribution; hidden Markov Model is biased toward lighter
molecules, which is consistent with low validity: larger molecules
impose more validity constraints. A combinatorial generator has
higher variance in molecular weight, producing larger and
smaller molecules than those present in the training set.

DISCUSSION

From a wide range of presented models, CharRNN currently
performs the best in terms of the key metrics. Specifically, it
produces the best FCD, Fragment, and Scaffold scores, indicating
that the model not only captured the training distribution well,
but also did not overfit on the training set.

The presented set of metrics assesses models’ performance
from different perspectives; therefore, for each specific
downstream task, one could consider the most relevant metric.
For example, evaluation based on Scaf/TestSF score could be
relevant when model’s objective is to discover novel scaffolds. For
a general evaluation, we suggest using FCD/Test metric that
captures multiple aspects of other metrics in a single number.
However, it does not give insights into specific issues that cause
high FCD/Test values, hence more interpretable metrics
presented in this paper are necessary to investigate the model’s
performance thoroughly.

CONCLUSION

With MOSES, we have designed a molecular generation
benchmark platform that provides a dataset with molecular

structures, an implementation of baseline models, and metrics
for their evaluation. While standardized comparative studies and
test sets are essential for the progress of machine learning
applications, the current field of de novo drug design lacks
evaluation protocols for generative machine learning models.
Being on the intersection of mathematics, computer science,
and chemistry, these applications are often too challenging to
explore for research scientists starting in the field. Hence, it is
necessary to develop a transparent approach to implementing
new models and assessing their performance. We presented a
benchmark suite with unified and extendable programming
interfaces for generative models and evaluation metrics.

This platform should allow for a fair and comprehensive
comparison of new generative models. For future work on this
project, we will keep extending the MOSES repository with new
baseline models and new evaluation metrics. We hope this work
will attract researchers interested in tackling drug discovery
challenges.
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