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Editorial on the Research Topic
Immunomodulatory Roles of Tryptophan Metabolites in Inflammation and Cancer

Tryptophan (TRP) is one of the essential amino acids of mammalian organisms. Besides its primary
function in protein synthesis, TRP is metabolized along the serotonin and the kynurenine pathways.
During inflammation, the kynurenine pathway (KP) plays a crucial role in the regulation of the
immune response, notably as a counter-regulatory mechanism. Three rate-limiting enzymes of KP,
tryptophan 2,3-dioxygenase (TDO) and indolamine 2,3-dioxygenase (IDO) 1 and 2, have been
described in the literature thus far. The activation of KP results in the generation of a range of
biologically active metabolites like kynurenine (KYN), kynurenic acid (KYNA), or quinolinic acid
(QUIN). Furthermore, gut microbiota also degrade TRP to bacterial specific metabolites. Both
endogenous, as well as bacterial TRP metabolites, have profound effects on host physiology as they
contribute to immune homeostasis and impacts on various inflammatory disorders. Moreover, the
KP and its metabolites have been linked to tumorigenesis and implicated in several cancers.

Within this Research Topic, 17 articles discuss new and deepen known aspects of the
immunomodulatory effects of TRP metabolites in various diseases. New mechanistic insights into
the regulation of TRP metabolism and novel signaling pathways activated by specific metabolites
are reported. In addition, possible new therapeutic and diagnostic approaches for various diseases,
involving the KP, are also described.

During inflammation, IDO-mediated TRP degradation along the KP is strongly induced by
pro-inflammatory stimuli. In this issue, Moffett et al. report that the TRP metabolite QUIN, known
for its neurotoxic properties, is highly increased in immune cells during inflammatory processes.
The authors also propose that during inflammation TRP metabolism may take place mostly in
immune cells. This is in contrast to homeostatic conditions and healthy state, where the majority
of TRP degradation occurs in the liver. A possible reason for this switch can be explained by
two means; first it may be due to an increased NAD™ supply, via the KP, required for energy
metabolism and redox balance in immune cells, and second, the requirement of KP metabolites
for immune regulatory functions. On this regard, Manni et al. investigated the influence of KYN
on the regulation of immune responses in a specific mouse model of endotoxin tolerance (ET).
The study reports that pharmacologic treatment of dendritic cells (DC) with KYN, prior their
activation with lipopolysaccharide (LPS), was able to mimic the effects of repeated stimulation
of the same cells with LPS, a process known as ET. Specifically, the authors describe that DC
treatment with KYN promotes aryl hydrocarbon receptor (AhR) activation, which then results in
the dissociation of the c-SRC kinase from the AhR complex. Activated c-SRC is then responsible for
the phosphorylation of the IDO1 enzyme, which in turn acts as important regulator for synthesis
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of the immunoregulatory cytokine TGF-f. Notably, KYN treated
DCs protect mice from lethal endotoxemia in vivo. Another
inflammatory state in which the TRP metabolism plays a
crucial role is the chronic low-grade inflammatory state called
inflammaging. In their review, Sorgdrager et al. summarize
specific studies highlighting the activation of TRP/KYN
pathway in inflammation and discuss the potential role of TRP
metabolites as biomarkers in age-related inflammatory diseases.
Furthermore, the immunomodulatory role of kynurenines
in various infectious and non-infectious diseases and genetic
manipulation of the major enzymes involved in their production
is reviewed in detail by Boros and Vécsei. The work by
Costantini et al. describes an additional level of complexity in
the immunoregulatory function exerted by TRP metabolites
produced by microbes. Those by utilizing TRP via alternative
pathways produce selective metabolites including indoles
or tryptamine, thus, cross-regulating microbes and host
metabolism, resulting in either commensalism or pathogenic
effects. Specifically, some of these metabolites exert direct effects
on immune cells as they function as ligands of specific xenobiotic
receptors, such as, AhR. The activation of these receptors
results in the transcription of a variety of genes associated with
immune control, gut-homeostasis as well as drug metabolism. In
addition to bacteria, TRP metabolism has been also described in
opportunistic or pathogenic fungi. By this means, fungi are able
to modulate Th17 response by the release of TRP metabolites,
thus also inducing IDO1 in specific immune cells.

Dysregulation of TRP metabolism has been described in
various inflammatory/autoimmune disorders. In particular,
IDOL1 activation and production of KP metabolites in peripheral
and CNS disorders was reviewed by Huang et al.. Findings
in peripheral disorders, including rheumatoid arthritis or
atherosclerosis, suggest that IDO1 activation mediates overall
anti-inflammatory activity, exerting a protective function
limiting disease severity. Accordingly, epigenetic regulation
of IDO1 affects the susceptibility to arthritis and other
inflammatory disorders. An anti-inflammatory activity of
kynurenines was also discussed in CNS disorders such as,
Huntington’s disease, Alzheimer’s disease, and multiple sclerosis
(MS). The study by Gaetani et al. confirmed that MS is
characterized by misbalances in TRP metabolism, suggesting
TRP metabolites as biomarker in this disease. Specifically, they
found urinary KYN, as well as the KYN/TRP ratio reduced in MS
patients, indicating a decreased degradation of TRP via the KP.
However, other studies that had determined TRP metabolites
in serum instead of urine describe an activation of KP in the
periphery of MS patients. In the present study, the authors further
found an increase of the microbiota-derived TRP metabolite
indole-3-propionic acid in the urine of MS patients. This could
be a compensation to counteract the adverse effects of acute
inflammation. An altered microbiota-mediated TRP metabolism
was also described in obesity by Cussotto et al.. Specifically, in
obese patients, systemic inflammation, reflected by increased
plasma levels of C-reactive protein, IL-6 and KYN/TRP ratio,
was associated with a reduced production of microbiota-derived
indoles, indicating changes in microbiota composition and
function. Lower production of indoles may affect innate and

adaptive immune responses, as they function as ligands of the
AhR, which mediates regulatory/anti-inflammatory functions
and prevents tissue damage. Accordingly, a diminished activation
of AhR by reduced indoles, may contribute to a disregulation of
gut immune homeostasis in obesity. The connection between
peripheral inflammation and psychiatric disorders has been
demonstrated by De Picker et al.. They found an increase in
plasma markers for acute inflammation associated to a reduction
of both the anti-inflammatory metabolite KYNA and the
KYNA/KYN ratio in patients with acute psychotic illness. This
decrease may be indicative of an increased transfer of TRP or
KYN through the blood-brain barrier and the CNS, serving as a
substrate for local synthesis of KYNA in brain tissue.

Due to their immunoregulatory properties, TRP metabolites,
generated through the KP, have also been linked to tumorigenesis.
In this context, a strong expression of TRP-metabolizing
enzymes by cancer cells promotes the establishment of an
immunosuppressive microenvironment resulting in impaired
immune response against tumor cells. On this regard, the
work of Nafia et al. shows that in a mouse sarcoma model a
combined application of the IDO1 inhibitor GDC-0919 with
an anti-PDL1 antibody leads to a transient decrease in the
plasma KYN levels. However, the treatment did not show any
anti-tumoral activity and did not affect tumor immune cell
infiltrate. Notably, transcriptome analyses of the tumor indicated
that the IDO1 inhibitor either as single agent or combined
with anti-PDL1 significantly induced a downregulation of the
expression of several genes required for natural killer effector
function. In another study, Riess et al. demonstrated that the
inhibitor of cyclin-dependent kinases Dinaciclib inhibited IFN-y
induced synthesis of KP metabolites in glioblastoma cell lines. In
contrast, the non-targeted conventional chemotherapeutic drug
Temozolomid tended to activate the KP, which may represent
an adverse effect inducing tumor immune escape. These data
point out the limitations of certain conventional anti-tumor
therapies and highlight the potential of targeted therapies. The
influence of TRP metabolism on cancer comorbidities such as
anemia, fatique, and depression is discussed by Lanser et al..
They reviewed results on how various clinical and lifestyle
interventions, like nutrition and physical activity, could influence
TRP breakdown and thus possibly anemia and depression. In
contrast, a further review article by Giinther et al. discuss
the limitations of cancer therapy with IDO inhibitors due
to pharmacokinetic features as well as side- and off-target
effects. The described effects should be taken into account when
classifying controversial results regarding the efficacy of IDO1
inhibitors leading to IDO1 inhibition and cancer treatment.
However, the authors also highlight the potential of these
inhibitors independent of the IDO1 signaling pathway.

Cancer cells are also a widely used model for mechanistic
studies of the TRP metabolism pathways and their regulation.
Mohapatra et al. show that in glioblastoma cell (GC) lines under
hypoxic conditions the Hypoxia-inducible factor 1-alpha, HIF1a
mediates TDO2 downregulation both at mRNA and protein
level. The downregulation of TDO2 through hypoxia inhibits
unnecessary consumption of the essential amino acid TRP
and is reversible as re-oxygenation rescued TDO2 expression.
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These data suggest that the regulation of TDO2 expression by
HIFla may be involved in modulating anti-tumor immunity
in GCs. Another way of regulating TDO2 in GCs at the
transcriptional level was investigated by Kudo et al. They
found that the LAP form of the transcription factor CEBPB
is necessary for the expression of TDO2 in these cancer cells.
Moreover, the activation of this transcription factor seems
to be IL-1B-dependent. In cancers, it has been shown that
an increased activity of the rate-limiting enzymes TDO2 or
IDO1 promotes the development of an immunosuppressive
microenvironment promoting tumor immune escape. Thus,
several enzyme-inhibitors are currently tested in vitro as well as
in clinical trials. In this context, Wirthgen et al. show that the
IDO inhibitor 1-methyltryptophan (1-MT) drives the KP toward
the KYNA branch in mice as well as in humans. Interestingly,
similar results in IDO~/~ mice indicate that this effect seems
not to be mediated by IDO1. Under inflammatory conditions,
KYNA mediates mainly immunosuppressive effects as shown in
various experimental in vitro and in vivo models. The increase
of KYNA may represent one potential way of action of 1-MT
and should be considered for preclinical studies and therapeutic
applications in humans. On this regard, potential mechanisms
and anti-inflammatory functions of KYNA were also investigated
by Mandi et al. using a monocytic cancer cell line. The authors
show that the increase of the TNFa-stimulated Gene-6 expression
by KYNA and in particular by new KYNA analogs, may represent
one of the mechanisms explaining their immunosuppressive
effects, as a feedback mechanism on TNFa production.

Constant increasing research activities reveal new insights
into the importance of TRP metabolites for inflammation
and also make them interesting as biomarkers. We anticipate
that these studies will provide state-of-the-art information

about immunomodulatory roles of TRP metabolites and open
additional areas for future investigation.
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Purpose: The investigation of anti-inflammatory and immunosuppressive functions of
Kynurenic acid (KYNA) is now in focus. There is also substantial evidence that TSG-6 has
an anti-inflammatory activity. Therefore, in the present study, we compared the effects of
newly synthetized KYNA analogs on the TNF-a production in U-937 monocytic cells in
correlation with the effects on the TSG-6 expression.

Methods: TNF-a production was measured by ELISA, the TSG-6 expression was
determined by RTgPCR method. As cytokine inducers Staphylococcus aureus and
Chlamydia pneumoniae were used.

Results: KYNA and KYNA analogs attenuated TNF-a production and increased TSG-6
mRNA expression in U-937 cells stimulated by heat inactivated Staphylococcus aureus.
In contrast, KYNA and some of the KYNA analogs increased the TNF-a production of
C. pneumoniae infected U-937 cells; however, the newly synthetized analogs (SZR104,
SZR 105, and SZR 109) exerted significant inhibitory effects on the TNF-a synthesis. The
inhibitory and stimulatory effects correlated inversely with the TSG-6 expression.

Conclusions: TSG-6 expression following activation with bacterial components could
participate in the suppression of inflammatory cytokines, such as TNF-a, We suppose
that the elevation of the TSG-6 expression by KYNA and especially by new KYNA
analogs might be one of the mechanisms that are responsible for their suppressive effect
on TNF-a production as a feedback mechanism. KYNA and KYNA analogs have an
important role in influencing TSG-6 expression, and there is a possible benefit of targeting
TSG-6 expression by kynurenines in inflammatory conditions following infections.

Keywords: kynurenic acid, TNF-«, TSG-6, U-937, Staphylococcus, Chlamydia pneumoniae
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INTRODUCTION

There is an increasing interest in the role of kynurenines in
the immune function. The kynurenine pathway is a regulator of
both innate and adaptive immune responses, and the tryptophan
metabolism kynurenine and production reflect a crucial interface
between the immune and nervous systems (1, 2). Kynurenic
acid (KYNA) is one of the products of the kynurenine pathway
of tryptophan metabolism (3-5). KYNA as an antagonist of
ionotropic glutamate receptors N-methyl-D-aspartate (NMDA)
and the a7 nicotinic acetylcholine receptor (a7nAchR) exert
neuroprotective effects (2, 4-10). KYNA acts both as a blocker
of the glycine co-agonistic site of the NMDA receptor and as
a non-competitive inhibitor of the a7 nicotinic acetylcholine
receptor (11). The investigation of anti-inflammatory and
immunosuppressive functions of KYNA is now in focus. It
has been proved that these immunomodulatory properties
are based on the signaling by G-protein-coupled receptor
35 (GP35) and aryl hydrocarbon receptor (AHR)-mediated
pathways ys (2, 12-14).

Several studies have revealed that KYNA can attenuate
inflammation induced by different stimuli (2, 15, 16). Previously,
we demonstrated that KYNA and a KYNA analog reduced the
TNF-a secretion from human mononuclear cells (17). In the
present study, we compared the effects of newly synthetized
KYNA analogs on the a TNF-a production in U-937 monocytic
cell line. We focused on the potential correlation between the
effects on the TSG-6 (TNFa- stimulated gene 6) expression and
the influence, ie., the suppression, of TNF-a production by
different KYNA analogs.

Tumor necrosis factor -stimulated gene-6 (TSG-6) product
is an 35-kDa hyaluronan(HA)-binding protein (18, 19)
that is secreted by a wide range of cell types in response
to inflammatory mediators. TSG-6 expression has been
shown to be induced in fibroblasts, chondrocytes, monocytes,
mesenchymal stem cells, vascular smooth muscle cells upon
stimulation by proinflammatory signals (20). Moreover, TSG-6
is expressed by astrocytes in the brain (21). A substantial
number of studies have shown that TSG-6 has anti-inflammatory
activity (18, 20, 22-27).

TSG-6 has been reported to inhibit the association of TLR4
with MyD88, thereby suppressing NF-kB activation (26). TSG-6
has also prevented the expression of proinflammatory proteins
(iNOS, IL-6, TNFa, IL-1B). TSG-6 functions by converting
macrophages from a proinflammatory to an anti-inflammatory
phenotype by suppression of TLR4/NF-kB signaling and STAT1
and STAT?3 activation (26).The inhibition of the TLR2 pathway
has also been reported (28).

Therefore, the aim of the present study is to evaluate a
possible connection between the capacity of KYNA and KYNA
analogs on the TSG-6 expression and the inhibition of TNF-a
production first of all in U-937 monocytic cells. Our hypothesis
was that activation of TSG-6 expression might be at least
partially responsible for the TNF-a inhibitory effect of KYNA.
TNF-a induction in U-937 cells was performed with heat killed
Staphylococcus aureus, and the effects were compared with
Chlamydia pneumoniae (C. pneumoniae). Staphylococcus aureus

is a Gram-positive pyogenic coccus and a good inducer of TNF
in mononuclear cells, and it mimics natural conditions (29, 30).
Chlamydia pneumoniae is a Gram-negative bacterium, growing
intracellularly, and it is responsible for different inflammatry
conditions, especially in the lungs and in atherosclerosis.
Chlamydia pneumoniae attach monocytes and multiply in them
(31).The main question was, whether the production of TNF-q,
and TSG-6 could be induced by these criteriae in U-937 cells. It
was demonstrated in a previous study, that C.pneumoniae
upregulated. numerous inflammatory genes in U-937
cells (32).

MATERIALS AND METHODS

Reagents

KYNA (Kynurenic acid) was purchased from Sigma-Aldrich
(Steinheim, Germany). Compounds SZR-72, SZR-73, and SZR-
81 were synthesized by direct amidation of KYNA (33). In
case of SZR-104, SZR-105, and SZR-109, the syntheses were
achieved starting from the corresponding amides followed by
C-3 aminoalkylation with morpholine or with diethylamine in
the presence of formaldehyde (34, 35) (Table 1). KYNA and
the analogs were dissolved in phosphate buffered saline (PBS)
and added in increasing concentration in the WM range to the
cell cultures.

Cell Lines and Infection

U-937 cells were grown in RPMI 1640 medium supplemented
with 10% heat-inactivated FBS (Biowest, Nuaille, France), 2
mmol/L L-glutamine, 1x nonessential amino acids, HEPES 4
mmol/L, 25 pg/mL gentamicin, and 0.5 pg/mL fungizone. HEp-2
cells were maintained in minimal essential medium (MEM) with
Earle’s salts completed with 10% FBS, 2 mmol/L L-glutamine, 1x
nonessential amino acids, 25 pg/mL gentamicin, and 0.5 pg/mL
fungizone. All reagents were purchased from SIGMA, St. Louis,
MO, USA, unless otherwise indicated. The cell lines were
purchased from ATCC. For TNF-a and TSG-6 induction, 5
x 10° U-937 cells/mL were infected with 107 heat inactivated
Staphylococcus aureus (S.aureus), or with 5 MOI (multiplicity of
infection) Chlamydia pneumoniae. Cell supernatants were tested
for TNF-a content by ELISA and cell lysates for TSG-6 mRNA by
RT qPCR.

Bacterial Strains
Staphylococcus aureus (S. aureus, SAI) 108 /mL, were heat
inactivated (29) and were used as a TNF-o inducer (30).
Chlamydia pneumoniae (C. pneumoniae) CWL029 strain from
American Types Culture Collection (ATCC) was propagated
in HEp-2 cells. Infective chlamydiae were quantitated by
indirect immunofluorescent method applying anti-Chlamydia
lipopolysaccharide (cLPS) monoclonal antibody (AbD Serotec,
Oxford, United Kingdom) and FITC-labeled anti-mouse IgG
(Sigma-Aldrich, St. Louis, MO). The concentration of infective
elementary bodies (EB)-s was expressed as inclusion forming
units/mL (IFU/mL).
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TABLE 1 | KYNA and KYNA analogs used in the experiments.

Code Structure Chemical name Empirical formula and Mw
KYNA OH 4-hydroxyquinolin-2-carboxylic acid C1oH7NO3
N 189.17
Z OH
N
0
SzR-72 OH HCl N-(2-(dimethylamino)ethyl)-4-hydroxyquinoline-2-carboxamide hydrochloride C14H18CIN3Oo
-8 H 295.76
NSNS
o |
SzR-73 OH HCI N-(3-(dimethylamino)propyl)-4-hydroxyquinoline-2-carboxamide hydrochloride C15H20CIN3O2
X i | 309.79
N/ N ~NC
o
SzR-81 OH HCI N-(2-(pyrrolidin-1-yl)ethyl)-4-hydroxyquinoline-2-carboxamide hydrochloride C16H20CIN3Oo
N 321.80
N
/
D
(0]
SzR-104 OH 7\ N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide C1gHogN4 O3
e - 358.43
NSO
HNV\N/
I
SzR-105 OH N/ \O N-(2-(pyrrolidin-1-yl)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide Co1HogN4O3
N N/ 384.47
NN
0
SzR-109 N-(2-(pyrrolidin-1-yl)ethyl)-3-((diethylamino)methyl)-4-hydroxyquinoline-2-carboxamide ~ Cp1HggN4O2
370.49

OH —
N
X \

HN\/\D

Stimulation of U 937 Cells by Bacteria

Infection

(a) U-937 cells (5 x 10° cells/mL) were stimulated with
107 heat inactivated S. aureus (29) as a TNF inducer (30)
and were incubated for 24h in CO, incubator at 37°C in
complete RPMI. In parallel experiments, the cell cultures were
pretreated for 30 min with KYNA and KYNA analoques at

a concentration of 250-500 wM. In our prevous experiments
(17), these concentrations proved to be optimal in reducing
cytokine production. Cell supernatants were tested for TNF-a
and TSG-6 content by ELISA and cell lysates for TSG-6 mRNA
by RT qPCR.

(b) U-937 cells were seeded in 24-well plates (5 x 10°
cells/well), and the cells were then infected with C. pneumoniae
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at a multiplicity of infection (MOI) of 5 in complete RPMI
with 0.5% glucose and centrifuged at 800 x g for 1h
RT. The growth medium was replaced in the wells with a
medium containing KYNA analogs at a concentration of 250-
500 wM. The culture plates were incubated for 24h in CO;
incubator at 37°C. Cell supernatants were tested for TNF-o and
TSG-6 content by ELISA and cell lysates for TSG-6 mRNA
by RT qPCR.

Chlamydial DNA Quantitation

For the quantitative assessment of chlamydial replication, a
direct DNA quantitation method was used (36). The cells
in the 96-well plates were infected with C. pneumoniae at a
multiplicity of infection (MOI) of 5. After 24 and 48h, the
infected cells in 3 parallel wells were washed in the plates
twice with 200 wL/well phosphate buffered saline (PBS). Then
100 nL Milli-Q water was added to the wells, and the plates
were stored at —80°C. In order to free the DNA from the
cells, two freeze-thaw cycles were applied. Thoroughly mixed
lysates were used as templates directly for quantitative PCR
(gPCR) using SsoFast™ EvaGreen® Supermix (BioRad). For the
detection of C. pneumoniae DNA, the following primers were
used: ompA F: 5 TGCGACGCTATTAGCTTACGT 3’ and ompA
R: 5 TAGTTTGCAGCAGCGGATCCA 3. A BLAST search
was performed to check the specificity of the product target
sequence of the primer sets. The primers were synthetized by
Integrated DNA Technologies Inc. (Montreal, Quebec, Canada).
During qPCR reaction, after the 10 min at 95°C polymerase
activation step, 40 PCR cycles of 20s at 95°C, and 1min at
64°C were performed. The fluorescence intensity was measured
at the end of the annealing-extension step. The specificity
of amplification was confirmed by the melting curve analysis.
For each PCR, the cycle threshold (Ct) corresponding to the
cycle, where the amplification curve crossed the base line, was
determined. The difference in Ct values detected in the samples
incubated with KYNA and the analogs at a concentration of
250 and 500 uM compared to that of the untreated samples
was calculated.

TNF-o ELISA

The TNF-a concentrations in the supernatants were quantified
by using the TNF-a ELISA kit (Legend Max BioLegend San
Diego) according to the instructions of the manufacturer.

TSG-6 ELISA

The TSG-6 concentrations in the supernatants were quantified by
using the TSG-6 ELISA kit (SIGMA U.S.A. St. Louis) according
to the instructions of the manufacturer.

TSG-6 mRNA Quantification by Reverse

Transcription Quantitative PCR (RT qPCR)

Total RNA was extracted from the samples by using TRI
Reagent (Sigma-Aldrich, St. Louis, MO, USA) according to
the manufacturer’s protocol. The quality and the quantity
of the extracted RNA were assessed by a NanoDrop Lite
spectrophotometer (Thermo Scientific, Waltham, MA, USA).
First-strand cDNA was synthesized by using 2 g of total RNA

with High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Foster City, CA, USA) strictly adhering to the
manufacturer’s recommendations. The qPCR was conducted
with ¢cDNA, 1 pL of primers (10 nM) and SensiFast SYBR®
No-ROX Mix (Bioline GmbH, Luckenwalde, Germany) in a
total volume of 10 wL. The primers used in the assay were the
following: TSG-6 sense 5'- ACT CAA GTA TGG TCA GCG TAT
TC—3/, TSG-6 antisense 5- GCC ATG GAC ATC ATC GTA
ACT-3'; B-actin sense 5'- TTC TAC AAT GAG CTG CGT GTG
GCT—-3/, and B-actin antisense 5- TAG CAC AGC CTG GAT
AGC AAC GTA—3'. All primers were synthetized by Integrated
DNA Technologies Inc. (Montreal, Quebec, Canada). The RT-
qPCR was performed in a CFX96 Touch PCR detection system
(Bio-Rad, Hercules, CA, USA). Thermal cycling was initiated
with a denaturation step of 2 min at 95 °C followed by 40 cycles
each of 10 s at 95°C and 1 min at 60°C. The fluorescence intensity
was detected at the end of the annealing-extension steps. The
specificity of amplification was confirmed by carrying out a
melting curve analysis. The cycle threshold (C;) corresponding to
the cycle, where the amplification curve crossed the base line, was
determined. The Ct of target transcripts was compared with that
of B-actin, the difference being referred to as AC;. The relative
expression level was given as 2=(AACY  where AAC, = AC
for the experimental sample minus AC; for the control sample.
Increases in transcripts >2-fold compared to the control samples
were considered to be significant. Uninfected cells were used as
controls. All of the measurements were performed in duplicate
from 3 biological repetitions.

Human Blood Samples
EDTA-anticoagulated peripheral blood samples from 10 healthy
volunteers were obtained.

Samples (1 mL each) were incubated in the presence of
heat inactivated S, aureus for 18 hr. Parallel blood samples
were pretreated for 30 min with KYNA and KYNA analogs
at a concentration of 500 M. Following the incubation
period, the blood samples were centrifuged at 300 x g, and
the supernatants were tested for TNF-a and TSG-6 content
by ELISA.

For the experiments performed with the human blood we have
the approval of the ethics commitee of the Medical Faculty of the
University. of Szeged (ETT-TUKEB 905/P1/09). This study was
conducted in full accordance with the tenets of Declaration of
Helsinki (1964).

Statistical Analysis

Data are expressed as means =+ SD. Differences between
group means were determined by the unpaired Student ¢-
test. p-values <0.05 were considered significant. Data of
box and whiskers analysis were evaluated by Mann-Whitney
test. The correlation between the TNF-a production and
expression of TSG-6 was evaluated by correlation analysis.
All statistical calculations were performed with the Graph-Pad
Prism 5 statistical program (GraphPad Software Inc., San Diego,
CA, USA).
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FIGURE 1 | KYNA and KYNA analogs attenuate TNF-a levels in SA1
stimulated U-937 cells. U-937 cells (5 x 105/ml) were stimulated with heat
inactivated SA (107/ml) alone, (filled bar), or incubated together with KYNA or
KYNA analogs at a concentration of 500 uM, which were added for 30 min
prior to the addition of SA1 (open bars). The TNF-a levels in the supernatants
were determined after 24 h by ELISA. Each concentration was tested in
duplicate. Data are shown as means + SD of three experiments. *p < 0.01;
**p < 0.001 vs. the samples induced only with SA1 determined by the Student
t-test.

RESULTS

KYNA and KYNA Analogs Attenuate TNF-«
Production in U-937 Human Monocytic
Cells Stimulated by Heat Inactivated
Staphylococcus aureus

The maximum TNF-o concentrations in the supernatants in
SAl-induced cultures of U-937 cells without pretreatment of
KYNA and derivates were 95. &= 8.5 pg/mL. At a concentration
of 500 M, all KYNA analogs suppressed the TNF-a level
significantly, except SZR 73 (Figure 1). The new analogs SZR
104, 105, and 109 exerted the most potent inhibitory effects (p
< 0.001) in equimolar (500 LM) concentration. Results obtained
with 500 WM of the chemicals are demonstrated in Figure 1.
In our previous experiments (17), 25 M KYNA and SZR72
proved to be ineffective. At increasing concentrations (125, 250,
and 500 uM), KYNA and SZR72 exhibited increasing inhibitory
effects on TNF-a production. Similar results were obtained in the
present experiments (data not shown), but only the result with
the most effective concentration (500 wM) is demonstrated in
this paper (Figure 1).

KYNA and KYNA Analogs Increase TSG-6
mMRNA Expression in U-937 Cells

To gain further insight into the connection between the
inhibition of TNF-a production and the induction of TSG-
6 expression exerted by KYNA analoques, we determined
the effects of KYNA analoques on TSG-6 mRNA expression.
Both KYNA and KYNA analogs increased the TSG-6 relative
expression at equimolar concentrations of 500 uM (Figure 2)
significantly. SZR 73 was not effective in this respect, similarly
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FIGURE 2 | Effect of 500 LM of KYNA and KYNA analogs on TSG-6 mRNA
levels in U-937 monocytic cells stimulated with SA1. TSG-6 expressions were
normalized to reference gene of B-actin by using quantitative real-time PCR.
Relative expression was calculated by using the 2~ (AACY method and is given
as a ratio between the target and the reference gene. Control: TSG-6 mRNA
expression without stimulation, Filled bar: TSG-6 mRNA expression in
SA1-stimulated cells without KYNA or KYNA analoques, open bars: TSG-6
mMRNA expression in SA1-stimulated cells in the presence of 500 uM KYNA or
KYNA analogs. Data are shown as means + SD of the results of three
independent experiments. *p < 0.01 vs. SA1 induced cells without chemicals,
**p < 0.001 vs. SA1 induced cells without chemicals, determined by the
Student t-test.

as it was observed in the experiments with TNF-a production.
Thus, we suspect that there is a connection between the
attenuation of SAl-induced TNF protein synthesis and the
TSG-6 gene transcription, which is elevated by KYNA and
KYNA analoques.

KYNA and the KYNA Analogs Differently
Influence TNF-o Production Induced by C.
pneumoniae in U-937 Human

Monocytic Cells

We wanted to compare the effects of KYNA and KYNA
derivates on TNF-a production when the inducer is a Gram-
negative, intracellular bacterium, i.e., Chlamydia pneumoniae (C.
pneumoniae). Our results were unexpected; instead of having
inhibitory effects, KYNA and some of the KYNA analoques
increased the TNF-a production of C. pneumoniae infected U-
937 cells. In contrast, the newly synthetized analogs (SZR104,
SZR 105, and SZR 109) exerted a significant inhibitory effect on
the cytokine synthesis (Figure 3).

KYNA and KYNA Analogs Differently
Influence TSG-6 mMRNA Expression in
U-937 Cells Infected With

Chlamydia pneumoniae

C. pneumoniae induced a considerable TSG-6 expression in
U-937 cells. KYNA, SZR72, and SZR81 inhibited the rate
of expression (Figure4A). Interestingly, the same chemicals
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enhanced the TNF-a production of C. pneumoniae-induced
U-937 cells (Figure3). On the other hand, further KYNA
analoques (SZR 104, SZR 105, and SZR 109) with different
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FIGURE 3 | Effect of KYNA and KYNA analogs on TNF-a production in U-937
human monocytic cells stimulated by Chlamydia pneumonia. U-937 cells were
pretreated for 30 min with KYNA or KYNA analogs and thereafter incubated for
24 h with 5 MOI of Chlamydia pneumoniae. U-937 cells (5 x 10%/mL) were
infected with 5 MOI of Chlamydia pneumoniae alone (filled bar), or incubated
together with KYNA or KYNA analogs at a concentration of 500 wM, which
were added for 30 min prior to the addition of the bacteria (open bars). The
TNF-a levels in the supernatants were determined after 24 h. Each
concentration was tested in duplicate. Data are shown as means + SD of
three experiments. *p < 0.01; *p < 0.001 vs. the samples induced only with
C. pneumoniae determined by the Student t-test.

chemical structure (see Table 1) stimulated TSG-6 expression
(Figure 4B). It is also noteworthy that only these analoques
inhibited significantly the TNF-a production of C. pneumoniae-
induced U-937 cells (Figure 3). Considering the variable effects
of KYNA analogs on the TSG-6 expression and also on the
TNF-a production, we checked the correlation between the two
effects. As it was expected, a significant inverse correlation was
found between the effects on the TNF-a secretion and the TSG-
6 expression exerted by different KYNA analogs (Figure 5).
KYNA, SZR72, and SZR81 induced higher TNF-a secretion by
U-937 cells after C. pneumoniae infection, but they decreased
the TSG-6 expression compared to the cells that were infected
only with C. peumomiae, without any of the compounds (i.e.,
Cpn in Figure 5). In contrast, in the case of the highest rate of
TSG-6 expression (SZR 105), a maximal rate of inhibition of
TNF-a production was observed. Therefore, we suppose that the
different effects of KYNA analoques on the TSG-6 expression in
C. pneumoniae infected cells might explain the difference in their
effects on the secretion of TNF-a.

Altogether, from these data, it seems that inhibition of TNF-
a is not only in correlation with the antiinflammatory effect of
TSG-6, but in this situations, KYNA analogs are able to increase
or even decrease the expression of TSG-6.

Effects of KYNA Analoques on the Quantity
of C. pneumoniae

To ascertain that the effects of KYNA analoques on the TNF-
a or TSG-6 induction is not simply due to their effects on the
replication of C. pneumoniae, we performed experiments for
quantitative assessment of chlamydial replication by a direct
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FIGURE 4 | Effect of 500 pM of KYNA and KYNA analogs on TSG-6 mRNA levels in U-937 monocytic cells stimulated with Chlamydia pneumoniae at a MOI 5.
TSG-6 expressions were normalized to the reference gene of B-actin by using quantitative real-time PCR. Relative expression was calculated by using the 2—(AACY
method and is given as a ratio between the target and the reference gene. Control: TSG-6 mRNA expression without stimulation, Filled bar: TSG-6 mRNA expression
in C. pneumoniae-stimulated cells without KYNA or KYNA analoques, open bars: TSG-6 mRNA expression in C. pneumoniae-stimulated cells in the presence of

500 M KYNA or KYNA analoques. Data are shown as means £ SD of the results of three independent experiments. *p < 0.01 vs. C. pneumoniae- induced cells
without chemicals, **p < 0.001 vs. C. pneumoniae-induced cells without chemicals, determined by the Student t-test. (A) Decreasing, (B) Increasing effects.
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quantitative PCR method (36). C. pneumoniae ompA gene was
detected in the lysate of U-937 cells infected with C. pneumoniae
at a MOI of 5 in the presence or absence of KYNA analoques at
a concentration of 250 or 500 LM, respectively. Direct detection
of C. pneumoniae DNA in the lysate of infected cells was done at
24 and 48 h postinfection. There was no significant inhibition or
even elevation in the quantity of chlamydial DNA in the presence
of different KYNA analoques after the 24 h (open bars) or 48 h
(filled bars) incubation period. The results of the samples tested
at 24 and 48 h of incubation are presented in Figure 6. Therefore,
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FIGURE 5 | Correlation between the TSG-6 expression and TNF-a production
by U-937 cells infected with C. pneumoniae at a MOI 5 in the presence of
KYNA or the analogs. U-937 cells were pretreated for 30 min with KYNA or
KYNA analogs at a concentration of 500 WM, and thereafter incubated for 24 h
with 5 MOI of Chlamydia pneumoniae. The TNF-a levels in the supernatants
were determined with ELISA assay, and the TSG-6 expression by RT gPCR
reactions. The significance of correlation was calculated by correlation analysis
with the Graph-Pad Prism 5 statistical program. Symbols and numbers
represent the data obtained with KYNA or KYNA analogs. Cpn: incubation
only with Chlamydia pneumoniae without compounds. The correlation
coefficient, r value is-0.891, the p-value = 0.0072, the 95% confidence interval
is —0.9838 to —0,4174.

we assume that KYNA analoques do not influence the replication
or the quantity of C. pneumoniae.

Effects of KYNA Analogs on TGS-6 Protein
Production in U-937 Human Monocytic
Cells Stimulated With Heat Inactivated S.

aureus or by Chlamydia pneumoniae

To ascertain whether the effects of KYNA and analogs on
the TSG-6 expression influence parallelly the protein level,
the TSG-6 concentrations in the supernatants of U-937 cells
were determined.

At a concentration of 500 uM, KYNA and KYNA analogs
increased the TGF-6 level significantly, except SZR 73 in SAl
induced cells (Figure 7A). The new analogs SZR 104, 105, and
109 exerted the most potent stimulatory effects (p < 0.001) in
equimolar (500 wM) concentration. C. pneumoniae induced also
TSG-6 production in U-937 cells, but KYNA, SZR72, and SZR81
decreased the level of TSG-6 protein expression (Figure 7B).
On the other hand, further KYNA analoques (SZR 104, SZR
105, and SZR 109) increased the TSG-6 concentration in the
supernatants (7b). These experiments obtained with 500 uM of
KYNA and KYNA analogs support the results obtained with
RT PCR data demonstrating the effects of the chemicals on the
TSG-6 RNA expression.

KYNA Analogs SZR 72 and SZR 105
Attenuate TNF-o Production and Increase
TSG-6 Secretion in Human Whole Blood
Cells Stimulated by Heat Inactivated
Staphylococcus aureus

Some of the results obtained by in vitro experiments with U-
937 monocytic cells were repeated by “ex vivo” experimets

> 16 4
=
=
S 14
-
T 124
Q
o
14 =

o0 1
<
Q 08 -
§
,E 0,6 4
& 04 1
o
©
£ 02
o
.o/
° 0
-

3

O

& g$ QQQ Q$
& W & o2
(ﬁo Q:\’\'\ q:\“’\ ,@\
& & & &

FIGURE 6 | Analysis of the effect of kynurenic acid derivates on C. pneumoniae growth in U-937 cells based on quantitation of chlamydial DNA by qPCR. The cells
were infected in 96-well plates at a MOI of 5 in a medium containing kinurenic acid derivates. Direct detection of C. pneumoniae ompA gene in the lysate of infected
cells was performed at 24 (open bars) and 48 h (filled bars) postinfection. Fold change in the quantity of chlamydial DNA in kinurenic acid derivate treated cultures
compared to the quantities detected in non-treated cultures was calculated. The mean of fold change in 3 parallel cultures and SD are shown. The differences are not

significant.

Frontiers in Immunology | www.frontiersin.org

14

June 2019 | Volume 10 | Article 1406


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Méndi et al.

Kynurenic Acid, TNF and TSG-6

N A PO A
Q- Q-\ Q'\ Q_\
&L L L

RS N
& o K
**p<0.01

B

*** p<0.001

1000~

8004

TSG-6 pg/ml

*p<0.05 ** p<0.01 *** p<0.001

FIGURE 7 | Effect of KYNA and KYNA analogs on TGS-6 protein production
in U-937 human monocytic cells stimulated with heat inactivated S. aureus
(SA1) (A) or by Chlamydia pneumoniae (B). (A) U-937 cells (5 x 10°/ml) were
stimulated with heat inactivated SA1 (107/ml) alone, (filled bar), or incubated
together with KYNA or KYNA analogs at a concentration of 500 wM, which
were added for 30 min prior to the addition of SA1 (open bars). The TSG-6
levels in the supernatants were determined after 24 h by ELISA. Each
concentration was tested in duplicate. Data are shown as means + SD of
three experiments. *p < 0.01; *p < 0.001 vs. the samples induced only with
SA1 determined by the Student t-test. (B) U-937 cells were pretreated for
30min with KYNA or KYNA analogs and thereafter incubated for 24 h with 5
MOI of Chlamydia pneumoniae. U-937 cells (5 x 10°/mL) were infected with 5
MOI of Chlamydia pneumoniae alone (filled bar), or incubated together with
KYNA or KYNA analogs at a concentration of 500 wM, which were added for
30 min prior to the addition of the bacteria (open bars). The TSG-6 levels in the
supernatants were determined after 24 h. Each concentration was tested in
duplicate. Data are shown as means +SD of three experiments. *p < 0.01; “*p
< 0.001 vs. the samples induced only with C. pneumoniae determined by the
Student t-test.

investigating the effects of two KYNA analogs in human
peripheral blood.

There was big individual differences in the TNF-a
concentrations and in TSG-6 concentrations in the supernatants
in SAl-induced blood cultures (Figure 8), between 179 pg/ml
and 850 pg/ml, and between 150 and 750 pg/ml, respectively.
At a concentration of 500 uM, both SZR 72 and SZR 105
suppressed the TNF-a level significantly in the S. aureus
induced blood cultures. Again, the new analog SZR 105
exerted more potent inhibitory effect (p = 0.001) in equimolar
(500 wM) concentration. Similarly to the effects on U-937
cells, the KYNA analogs SZR72 and SZR 105 significantly
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FIGURE 8 | Effect of KYNA analogs SZR 72 and SZR 105 on the TNF-a
production and TSG-6 secretion in human whole blood cells stimulated by
heat inactivated Staphylococcus aureus. EDTA-anticoagulated blood samples
1-1mL each of 10 donors were incubated with SZR72 or SZR105 at a
concentration of 500 wM for 30 min prior to the addition of heat inactivated
Staphylococcus aureus (10 7/ml) The concentrations of TNF-a and that of
TSG-6 in the plasma were determined after 18 h incubation period by TNF-a
and TSG-6 ELISA plotted on the left and right Y axis, respectively. The data are
depicted as box and whiskers plots, where the lines inside the boxes denote
medians, and the boxes mark the interval between 25 and 75 percentile, and
the whiskers the maximum and minimum. Significance were determined by
the Mann-Whitney test.

increased the TSG-6 concentrations in SA1l induced blood
samples (Figure 8).

DISCUSSION

In our experiments, KYNA and different KYNA derivates
inhibited the TNF-a production of U-937 cells stimulated
with heat inactivated Staphylococcus aureus. The rate of the
inhibition was variable according the structure of the analoques
(Figure 1). The effect of the analogs were compared in equimolar
concentration on the TNF-a production when the inducer
was Chlamydia pneumoniae, a Gram negative, intracellular
bacterium. In these experiments, however, not all KYNA
derivates inhibited TNF-a production by U-937 monocytic cells;
moreover, KYNA itself, and SZR72 and SZR81 increased it
(Figure 3). We hypothesized that the difference in the influence
on the TNF-a production might be connected with the difference
in the TSG-6 expression (Figure 4).

The production of TNF-a in C. pneumoniae infected cells
was inhibited only by the KYNA derivates (SZR 104, SZR105,
SZR109) that upregulated the expression of TSG-6 (Figures 4, 5).

It is noteworthy, that TSG-6 itself does not only exert an
antiinflammatory effect (20, 26, 27), but its expression might be
under the influence of KYNA (37). It has been published that
kynurenic acid controls TSG-6-mediated immunosuppression
of the human mesenchymal stem cells (MSCs). In elegant
experiments, it has been demonstrated that KYNA specifically
regulates TSG-6 production by activating aryl hydrocarbon
receptor (AHR). KYNA activates AHR, which directly
binds to the TSG-6 promoter to enhance TSG-6 expression.
Moreover, KYNA-pretreated MSCs can further boost TSG-6
production, and thus enhance the therapeutic capacity of human
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MSCs against lipopolysaccharide (LPS)-induced acute lung
injury (37).

We found that in most experiments, TSG-6 expression was
up-regulated in U-937 monocytic cells stimulated with bacterial
components, and KYNA and KYNA analogs were able to
influence the rate of expression of TSG-6. The elevation of
the TSG-6 expression might be one of the mechanisms that
are responsible for the suppression of TNF-a production as
a feedback effect. This effect was clearly demonstrated in our
experiments using heat inactivated S. aureus as a cytokine
inducer. In the case of C. pneumoniae infection, however, KYNA
and KYNA analoques did not exert this effect uniformly. Some of
them increased TSG-6 expression with a concomitant inhibition
of the production of TNF-a, but several compounds (KYNA,
SZR72, and SZR 81) rather decreased the expression of TSG-6,
and it is very likely that this could lead to an elevated TNF-a
production compared to the TNF-o production of U-937 cells
infected with C. pneumoniae without any KYNA analoque. We
hypothesized that the explanation of the difference in the results
might be due to the different chemical structure of the analoques
(see Table 1). The examined substrates (SZR-72, SZR-73 SZR-
81, SZR-104, SZR-105, and SZR-109) can be classified into two
classes of compounds: the first are amide derivatives (SZR-72,
SZR-73, SZR-81) containing cationic center at the amide side
chain. The second class of compounds (SZR-104, SZR-105, and
SZR-109) are the C-3 aminoalkylated amides, therefore they can
be interpreted as derivatives with dual cationic centers.

They could differently influence the binding of C. pneumoniae
to the Toll-like receptor 2 (TLR2), and especially, differently
activate AHR in the presence of C. pneumoniae. It has to be
highlighted that the newly synthetized analogs, SZR 105 and SZR
109, were the most potent inducers of TSG-6 expression, and the
highest inhibitors of TNF-a production in both types of bacterial
inducers. The study of the exact effect of Chlamydia pneumoniae
on the interaction between AHR and some KYNA analogs needs
to be further investigated and proved.

Whatever the explanation is, our results indicate that there
is a close connection between TNF production and TSG-6
expression, and there is an inverse correlation between the TSG-6
expression and TNF-a production in the presence of KYNA and
KYNA analogs.

This negative correlation was further demonstrated at
the protein level of TSG-6 measured in the supernatants
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Immunooncology is still a growing area in cancer therapy. Drugs within this therapeutic
approach do not directly target/attack the tumor but interfere with immune checkpoints
and target or reprogram key metabolic pathways critical for anti-cancer immune defense.
Indolamine 2,3-dioxygenase 1 (IDO1) and the tryptophan (TRP)-kynurenine pathway
were identified as critical mechanisms in cancer immune escape and their inhibition
as an approach with promising therapeutic potential. Particularly, a multitude of IDO1
inhibiting tryptophan analogs are widely applied in several clinical trials. However, this
therapy results in a variety of implications for the patient’s physiology. This is not only due
to the inhibition of an enzyme important in almost every organ and tissue in the body
but also because of the general nature of the inhibitor as an analog of a proteinogenic
amino acid as well as the initiation of cellular detoxification known to affect inflammatory
pathways. In this review we provide a deeper insight into the physiological consequences
of an IDO1 inhibiting therapy based on TRP related molecules. We discuss potential side
and off-target effects that contribute to the interpretation of unexpected positive as well
as negative results of ongoing or discontinued clinical studies while we also highlight the
potential of these inhibitors independent of the IDO1 signaling pathway.
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INTRODUCTION

The degradation of tryptophan (TRP) along the kynurenine pathway (KP) plays a crucial role
in the regulation of the immune response, notably as a counter-regulatory mechanism in the
context of inflammation (1, 2). Three rate limiting enzymes of KP have been described thus
far, tryptophan 2,3-dioxygenase (TDO2), and indolamine 2,3-dioxygenase (IDO) 1 and 2, which
are regulated by both nutritional and inflammatory pathways (3). In cancers, it has been
shown that an increased IDO1 activity promotes the development of an immunosuppressive
microenvironment that can inhibit effective anti-tumor immune responses (4). Besides cancer
cells, the tumor microenvironment included heterogeneous cell types, including endothelial cells,
immune cells, and mesenchymal stromal cells (MSCs) (5). There are indications that especially
MSCs contribute to a solid tumor environment by IDO-mediated immunosuppressive effects
such as reducing both tumor-infiltrating T-cells as well as B-cells (6). Furthermore, studies of
the microenvironment in acute myeloid leukemia demonstrate a positive correlation between
increased IDO expression in MSC and elevated level of immunosuppressive regulatory T-cells (7).
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Therefore, the inhibition of IDO1 activity is of special interest
as a target for anti-cancer therapy in order to restore
tumor immunity.

In consequence, several IDO1-inhibitors are currently tested
in vitro as well as in clinical trials (8). Many of these inhibitors
such as 1-methyltryptophan (1-MT, Indoximod), INCB024360
(Epacadostat), NLG919 (Navoximod), or Norharmane are
structurally related to TRP, the natural IDO substrate. These
inhibitors bind to the IDO enzyme; however, they are not
catabolized to N-formyl kynurenine. Frequently used IDO
inhibitors in cancer therapy are Indoximod and Epacadostat
which are currently under investigation in several clinical trials
(https://clinicaltrials.gov). The application of IDO inhibitors
should prevent both the depletion of TRP and the production of
immunomodulatory TRP metabolites such as kynurenine (KYN)
or kynurenic acid (KYNA) contributing to a suppression of
IDO-induced immune escape of cancer cells. Although some
promising results were described in vitro and in rodent models
(9-15), however, controversy results regarding the efficiency of
IDO-inhibitors were reported (16-18). This may be the result
of pharmacokinetic or off-target effects such as the activation of
detoxification pathways or the pretense of a nutritional signal due
to TRP mimicry. This should be considered for application of
TRP-related molecules in vivo since these effects can negatively
affect the outcome of cancer treatments.

PHARMACOKINETIC ASPECTS
AFFECTING EFFICACY OF IDO
INHIBITORS

The effective inhibition of IDO1 activity is anticipated to result in
a reduced catalytic degradation of TRP to KYN and an altered
metabolite profile along the KP in response to inflammatory
stimuli. Most IDO1 inhibitors are synthetic TRP analogs acting
as competitive inhibitors of the enzyme. To function as potent
inhibitors it is necessary to reach similar or higher levels than
TRP in the target tissue or to have a higher affinity to IDO than
the natural substrate TRP which has a Michaelis constant (K;;,) of
~7 uM (19). Regarding the reported K; or ICsy values shown in
Figure 1 it is assumed that the TRP analogs D- and L-1-MT (21)
as well as the TRP derivate Norharmane (22) act on micromolar
levels while BMS-986205 (23), Epacadostat (21), and Navoximod
(24) exert inhibitory effects on nanomolar levels.

Indoximod

During last years, two stereoisomers, 1-methyl-D-tryptophan
(D-1-MT = Indoximod) and 1-methyl-L-tryptophan (L-1-MT)
were scrutinized as IDO inhibitors. Indoximod, which is under
investigation in several clinical trials, showed therapeutic effects
in murine tumor models reversing the suppression of T-cell
proliferation and inducing retardation, but no total arrest of
tumor growth (9, 10, 13). Unexpectedly, in an IDOI1 positive
ovarian cancer cell line, Indoximod triggered an increased IFNy-
induced release of the TRP metabolite KYN concurrent with
an increase of IDO1 mRNA (25) indicating an activation of
KP instead of anticipated inhibition. An acceleration of TRP

degradation was also reported in mice and pigs after oral or
subcutaneous applications of L-1-MT, which is not applied in
clinical trials but used as IDO inhibitor in preclinical studies
(14, 17). However, in these studies, KYNA, a stable end product
of KP was increased in plasma rather than KYN, which is
an intermediate metabolite of KP. However, IDO expression
on mRNA or protein levels was not further investigated in
these studies. Nevertheless, these results indicate that 1-MT
induce an increase of TRP degradation via the KP instead of a
downregulation by IDO inhibition.

One reason for the lack of effective IDO1 inhibition could
be that the concentration of 1-MT was too low to inhibit
IDOLI activity in vivo. A phase I trial of tumor patients using
Indoximod as an IDOI inhibitor has shown that doses higher
than 1,200mg 1-MT in a patient do not increase peak serum
levels over ~16 WM (26), indicating a limited accumulation of
the applied inhibitor. This finding is in accordance with previous
findings in pigs showing that a steady-state 1-MT concentration
is already reached after the second 1-MT injection of 1,000
mg/animal/day (27), increasing 1-MT to plasma levels similar to
those of TRP (~30 wM). In studies using a recombinant IDO1
enzyme in cell-free assay systems determined that the L-isomer of
1-MT inhibits 50% of IDO1 activity at concentrations of 19 uM
whereas the D-isomer was not effective (13). Interestingly, in
mature human dendritic cells, L-1-MT only diminished IFNy-
induced increase of KYN at concentrations of 1 mM, whereas
200 WM showed no effect (28). This indicates that 1-MT was
unable to prevent the production of KYN under physiological
conditions in these cells which might be due to a low affinity of
the inhibitor to the enzyme. Thereby, the half maximal inhibitory
concentration (ICsg) of L-1-MT and D-1-MT was 120 wM and
more than 2.5mM, respectively. As shown for 1-MT, it should
be considered that K; values from cell-free assays may not reflect
the inhibitory effect in vivo resulting in inefficient inhibition
at physiological concentrations. According to the reported ICs
values in HeLa cells it is assumed that both L- and D-1-MT
are in vivo relatively ineffective IDO inhibitors. Nevertheless,
significant effects of these drugs on immune response and KP
reveal off-target modes of actions. The ineffective IDO inhibition
by 1-MT in vivo should be considered for the interpretation of
published studies using 1-MT.

Navoximod

Navoximod is a dual specific inhibitor that inhibits IDO1 and
TDO, but with only 20-fold (ECs5p = 1.5 uM) selectivity against
the later enzyme (24). Navoximod is very potent in the inhibition
of IDO1 and was recently used in a phase 1 trial in combination
with Azolizumab against solid tumors (29). According to the
pharmacokinetics data published for orally administered doses
in this study (600 or 1,000 mg), the plasma concentration of the
drug should be sufficient to achieve ECsy inhibition of TDO.
This may explain some of the effects and side effects of the
treatment. The question to what extent a combined IDO1 and
TDO inhibition is advantageous or disadvantageous is currently
still under debate. A recently published article demonstrates the
quickly absorption and moderate bioavailability of Navoximod
and shows that this drug is extensively metabolized mainly by
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FIGURE 1 | Overview of TRP-related IDO-inhibitors currently under investigation for cancer therapy in preclinical studies or clinical trials (according to their matches
under https://clinicaltrials.gov, date of access: 2019-04-03). For L-TRP, one natural IDO substrate, the Michaelis constant (Km) is presented (defined as the substrate
concentration at 1/2 the maximum velocity). The values K; or the IC5q concentration are presented to compare the relative potency of IDO-Inhibitors. The IC5q value
quantifies the concentration at which 50% inhibition is observed and describes the functional strength of the inhibitor under specified assay conditions (20). In
contrast, K; denotes the equilibrium constant of the dissociation of the inhibitor-bound enzyme complex reflecting the binding affinity of the inhibitor. It is assumed that
lower values of IC5q or K;j denote a better inhibition or a tighter binding, respectively. TRP, tryptophan; IDO, indolamine 2,3-dioxygenase; K;, inhibitory constant.

UDP-glucuronosyltransferases (UGT) (30). It would be advisable
to also check the bioactivity of the resulting metabolites.

Epacadostat

Epacadostat is described as highly potent and selective IDO1
inhibitor with moderate oral bioavailability (31). In vitro studies
reveal that Epacadostat decreases the proliferation of regulatory

T-cells concurrent with an increase of activity of cytotoxic T-
lymphocytes (32). The in vivo ICsy after multiple dosing of
Epacadostat is ~70 nM (33) suggesting a more potent inhibitory
activity on IDO than 1-MT (21). After 100 mg oral Epacadostat
application twice daily a maximum plasma concentration of
0.8 LM on day 1 and 0.9 uM on day 8 can be reached (34). It
was shown that after oral application Epacadostat is metabolized
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in the body to IDO inactive plasma metabolites (35). The
main metabolic route is glucuronidation via UGT enzymes.
Another negligible primary metabolite is produced by reductive
metabolism of intestinal microbiota. Further conversion of
this metabolite can occur in the liver via cytochrome P450
(CYP) metabolism after absorption of this metabolite in the
gut. However, data on the bioactivity of these metabolites are
still missing.

In vivo IDO inhibition could be demonstrated in a phase I
study in patients with advanced solid malignancies describing an
effective normalization of serum KYN levels after oral application
of Epacadostat, however, objective responses to the treatment
were not observed (36). According to the promising findings that
Epacadostat improves the anti-tumor response in combination
with other drugs such as Nivolumab or Pembrolizumab (34, 37)
the efficacy of Epacadostat in combination with various drug
partners was investigated in ECHO 301-310 trials (8). However,
the negative results of the phase III trial ECHO 301 in melanoma
patients revealed no improvement of progression-free or overall
survival by Epacadostat compared to the single treatment with
the checkpoint inhibitor Pembrolizumab, which is an antibody
against the programmed cell death ligand 1 (PD-L1) (38). These
results raise fundamental questions about the benefits of IDO
inhibition in cancer treatment. Analysis in endothelial cells of
patients with advanced melanoma showed that only 17 out
of 43 patients have an increased IDO expression and only
2 of 43 patients were IDO1 and PD-L1 double positive (39)
revealing that IDO is not an appropriate target for the majority of
melanoma patients. In this context it might be helpful to identify
patients with specific immune marker phenotypes in order to
develop a personalized / tailored immunotherapy.

BMS-986205

Preclinical data reveal the potent and selective IDO1 inhibitory
properties of BMS-986205 (ICs9p = 1.7nM in HeLa cells).
Preliminary results of a clinical phase 1/2a trail with BMS-986205
alone or in combination with Nivolumab demonstrate that an
ICq can be reliably achieved with 200 mg daily oral application
with this IDO inhibitor (23). Furthermore, it could be shown
that the intratumoral KYN concentrations can be reduced by
90%. Unfortunately, there are no published data regarding the
metabolization of the BMS-986205.

POTENTIAL “OFF-TARGET” EFFECTS OF
IDO INHIBITORS

Activation of Arylhydrocarbon Receptor

There is evidence that IDO inhibitors including 1-MT (both
isomers), Epacadostat, Navoximod, and Norharmane activate
the ubiquitously expressed promiscuous ligand-operated
arylhydrocarbon receptor (AhR) (18, 40). This is supported
by the fact that Epacadostat and Navoximod are extensively
metabolized by enzymes (UGT, CYP) controlled by AhR
indicating that these drugs activate this signaling pathway.
AhR is a ubiquitously expressed promiscuous ligand-operated
receptor which mediates pleiotropic effects on the regulation
of the immune response (41). As natural ligands of AhR the

tryptophan metabolites, L-KYN (42), 6-formylindolcarbazole
(FICZ, a photoproduct of TRP) (43) and KYNA (44), are
described. After ligand-binding, AhR dimerizes with the
AhR nuclear translocator (ARNT) and acts as a transcription
factor, which mediates crucial effects on the pro- and anti-
inflammatory regulation of the immune response (41). In this
context, there is evidence that the direction of ligand-activated
AhR signaling depends on the specific AhR ligand and the
microenvironment (homeostatic or inflammatory) (45). In
addition to transcriptional regulation, it has been suggested
that AhR activation by tryptophan metabolites mediates
non-enzymatic functions of IDO1. Thereby, IDO1 act as a
signaling protein that contributes to TGF-B-driven tolerance
in inflammatory and non-inflammatory context (42, 46).
Furthermore, it is assumed that in cancer cells the AhR-mediated
transcription of IL6 leads to the autocrine activation of IDO
expression via STAT3 (AhR-IL6-STAT3 loop), which is associated
with a poor prognosis in lung cancer (47).

The activation of AhR by IDO inhibitors may be detrimental
to the assumed treatment concept of downregulating the KP by
IDO inhibition. This supports several studies describing pro-
carcinogenic effects of AhR ligands in several human cancers
including prostate, lung, breast, pancreatic and gastric cancer
(45). In transgenic mice, a constitutively active AhR induces
stomach tumors (48) demonstrating an oncogenic potential of
the AhR. On the other hand, there are also several reports
suggesting that AhR ligands have anti-carcinogenic properties.
In human colon cancer cell lines the treatment with AhR ligands
such as methylcholanthrene or 3,3’diindolylmethane was able to
inhibit cell proliferation and stimulate apoptosis (45). Currently,
effects of prolonged AhR activation by IDO inhibitors on cancer
progression are hard to predict. AhR is expressed by many cell
types, including immune cells, which are important in anti-
tumor response.

TRP Mimetics in Somatic Cells

An important off-target mode of action of TRP-related IDO
inhibitors is that they mimic TRP even in the context as fake
nutritional signals. They may target the mammalian target of
rapamycin (mTOR) signaling which is the central pathway in
amino acid sensing and signaling (49). Activation of mTOR
via amino acids leads to initiation of a range of cellular
processes including cell growth, proliferation, differentiation,
and metabolic alterations. High amounts of TRP analogs may
feign an amino acid oversupply. This could potentially be
dangerous because cells cannot react adequately to the amount
of nutrients actually available. However, it is known that 1-MT
can reactivate the mTOR activity inhibited by TRP depletion
in cancer microenvironment (50). This has beneficial effects
for subsequent chemotherapeutic intervention and may be the
most important cause of antitumor effects of this inhibitor (16)
(Figure 2). Most cytotoxic drugs used in anti-cancer therapy
target highly proliferative cells. Therefore, an enhanced mTOR
activity, especially in otherwise “cold” tumors, may boost the
efficacy of these cytotoxic therapies. Furthermore, T-cells are
important players of the host immune system against cancer.
These immune cells depend on mTOR signaling to integrate
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Adverse effects
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FIGURE 2 | Overview of beneficial and potential adverse effects after treatment with IDO inhibitors. Beneficial effects: IDO inhibitors can break the tumour’s immune
escape mechanisms (immunosuppressive microenvironment) by inhibiting the TRP depletion either by inhibiting the IDO enzyme in cancer cells as well as in
surrounding mesenchymal stroma cells (MSC) and thus reducing the TRP conversion or by acting as TRP mimetics. Both mechanisms can reactivate an adequate
T-cell response previously suppressed by the tumor. On the other hand, the inhibition of IDO leads to a reduction of anti-inflammatory TRP metabolites, which also
counteracts the formation of an immunosuppressive microenvironment. Furthermore, the activation of mTOR by TRP mimetics induces proliferation signals in the
tumor. This may beneficially complement a cytotoxic anti-cancer therapy, which is most effective on proliferating cells. Adverse effects: The unspecific activation of
AhR or mTOR by IDO inhibitors may induce inflammatory signaling pathways or growth signals. In the gut, TRP analogs maybe sensed by microbiota as amino acid

and induce an enhanced TRP depletion by activation of the TRPase operon. TRP, tryptophan; IDO, indolamine 2,3-dioxygenase; mTOR, mammalian target of

rapamycin; AhR, arylhydrocarbon receptor, TRPase, tryptophanase.

danger signals for their proper activation (51). Therefore,
the TRP depleted microenvironment typical for a range of
tumors impairs T-cell proliferation and function. Reactivation
of T-cell function via activation of mTOR may overcome the
tumor immune escape and beneficially complement an anti-
cancer therapy.

TRP Mimetics in Microbiota

It has been shown in vitro that the 1-MT-induced increase
in TRP may impede the antimicrobial and immunoregulatory
functions of LPS-induced TRP depletion (52), facilitating
chronic infections due to impaired pathogen growth arrest
(53). During cancer therapy, this might increase the risk of
chronic uncontrolled infections due to an insufficient host
immune response. A problem of oral TRP mimetic application
is furthermore, that subsets of enteric bacteria express TRP

degrading enzymes (54). Tryptophanase is one of these bacterial
enzymes which are known to be induced by TRP in the
gut (55). Most TRP analogs like 1-MT are no substrate of
this enzyme (56). However, they are sensed by the bacteria
as amino acid and therefore equally effective induce the
tryptophanase operon necessary for high enzyme expression
(56). This may lead to enhanced TRP depletion in the gut by
microbiota. Although, the physiological consequences of the
described effects remain unknown, it can be concluded that the
systemic application of TRP analogs disturbs the homeostasis of
TRP metabolism which might affect cell metabolism, immune
response, and growth of potential enteric bacteria. The TRP
mimetic properties were extensively investigated only for 1-
MT. However, it cannot be excluded that other TRP-related
inhibitors may also mimic TRP and interfere with the described
metabolic pathways.
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CONCLUSION

Several IDO1-inhibitors are currently tested in vitro as well
as in clinical trials. However, there are controversial results
regarding the efficacy of IDO inhibitors for IDO inhibition and
cancer treatment. It should be considered that some competitive
inhibitors such as 1-MT or Norharmane can hardly induce
effective in vivo IDO inhibition due to their low in vitro
potency and the fact that they reach plasma concentrations
similar to those of the IDO substrate TRP. Therefore, the
immunomodulatory effect of these inhibitors in the body is
most likely related to off-target effects such as AhR activation
or fake nutritional signaling rather than IDO inhibition. This
should be considered when interpreting the significance of IDO
in in vitro and in vivo studies with these inhibitors. In contrast
to 1-MT and Norharmane, more potent inhibitors such as
Epacadostat or Navoximod inhibit IDO on nanomolar levels
resulting in decreased KYN production in vitro and in vivo.
Nevertheless, the failure of a large phase III clinical trial with
Epacadostat in melanoma patients indicates that IDO, at least
in this type of cancer, is not a suitable target to improve the
efficacy of drugs such as Pembrolizumab. In this context, it
might be beneficial, for example, to use a molecular diagnostic
approach such as biomarker profiles to clarify in advance to
what extent IDO inhibition can be beneficial for the respective
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Inflammation aims to restore tissue homeostasis after injury or infection. Age-related
decline of tissue homeostasis causes a physiological low-grade chronic infammatory
phenotype known as inflammaging that is involved in many age-related diseases.
Activation of tryptophan (Trp) metabolism along the kynurenine (Kyn) pathway prevents
hyperinflammation and induces long-term immune tolerance. Systemic Trp and Kyn
levels change upon aging and in age-related diseases. Moreover, modulation of Trp
metabolism can either aggravate or prevent inflammaging-related diseases. In this review,
we discuss how age-related Kyn/Trp activation is necessary to control inflammaging
and alters the functioning of other metabolic faiths of Trp including Kyn metabolites,
microbiota-derived indoles and nicotinamide adenine dinucleotide (NADT). We explore
the potential of the Kyn/Trp ratio as a biomarker of inflammaging and discuss how
intervening in Trp metabolism might extend health- and lifespan.

Keywords: tryptophan, aging, inflammation, kynurenine, inflammaging, tryptophan 2,3-dioxygenase (TDO),
indoleamine 2,3 dioxygenases (IDO)

INFLAMMAGING: CHRONIC INFLAMMATION THAT DRIVES THE
AGING PROCESS

Inflammation is initiated by the innate immune system in response to mechanical, infectious, or
metabolic tissue stress and aims to restore homeostasis by eliminating damaged cells (1). Aging
is characterized by progressive decline of tissue homeostasis resulting from damaged cellular
components and aberrant functioning of damage-response mechanisms (2).

Age-related changes of the innate immune system are common and include shifts in the
composition of immune cell populations, altered secretory phenotypes and impaired signaling
transduction (3). These changes are paralleled by the development of a chronic inflammatory
state referred to as inflammaging. This is characterized by an imbalance between pro- and
anti-inflammatory responses and fluctuations of inflammatory cytokines, such as interleukin-6
(IL-6), high-sensitive C reactive protein (hsCRP), IL-10 and tissue growth factor beta (TGF-p)
(4, 5). The rate of inflammaging, quantified by measuring these markers, is strongly associated
with age-related disability, disease and mortality (6). It is theorized that inflammaging is driven by
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endogenous ligands released upon age-related tissue damage and
can be aggravated by food excess and attenuated by caloric
restriction, suggesting relevant cross-talk between metabolic and
immune functioning (7).

Understanding how inflammaging is controlled could aid
in the development of diagnostic and therapeutic tools for
many age-related diseases associated with inflammation such
as cancer, atherosclerosis, diabetes mellitus, and Alzheimer’s
disease. Tryptophan (Trp) metabolism is associated with aging
and produces metabolites that control inflammation, regulate
energy homeostasis and modulate behavior (8). We discuss how
activation of Trp metabolism could be involved in the control of
inflammaging and how this can alter the Trp metabolite milieu.
We hypothesize on how this could impact health- and lifespan
and how interfering with Trp metabolism could be used in the
treatment of neurodegenerative diseases.

ACTIVATION OF TRYPTOPHAN
METABOLISM REGULATES
INFLAMMATION

Inflammation Activates Tryptophan

Metabolism

The essential amino acid Trp fuels the synthesis of kynurenine
(Kyn), serotonin (5-HT) and indoles (9, 10). The Kyn pathway of
Trp is the most active pathway of Trp metabolism and produces
metabolites including kynurenic acid and nicotinamide adenine
dinucleotide (NAD™). The Kyn pathway is initiated by the
enzymes tryptophan 2,3-dioxygenase (TDO) and indoleamine
2,3-dioxygenase (IDO and IDO2). In this review, we focus on
the role of IDO1, which we refer to as IDO. Expression of TDO
and IDO (and other enzymes in the Kyn pathway) is species-, cell
type-, and context-specific (11-13).

While IDO plays a minor role in Trp metabolism under
normal circumstances, IDO-dependent Trp metabolism is
strongly activated in response to interferons and other cytokines
that are released upon inflammation (14). Interferon gamma
(IFN-y) is considered the most potent IDO-activating cytokine
and induces expression in a variety of cell types after it binds
to the IDO promotor-region. The effect of IFN-y on IDO
activation is best-characterized in macrophages and dendritic
cells (DCs) but is also evident in connective (e.g., fibroblast)
and epithelial tissue (e.g., pulmonary, renal, gastro-intestinal, and
vascular) (15-19).

Other inflammatory signals that activate IDO include lipid
mediators such as prostaglandin E2 (PGE2) and pathogen
particles such as lipopolysaccharides (LPS) (20). In addition,
while the regulation of IDO is often transcriptional, specific
mediators of inflammation induce post-transcriptional and post-
translational modifications that either promote ubiquitination
and proteasomal degradation of IDO or sustain its activity
through phosphorylation (21, 22).

Inflammation-related IDO activity is often measured by the
Kyn/Trp ratio in blood in diseases characterized by excessive
or chronic inflammation including infections, auto-immune
disorders, cardiovascular disease, and cancer (23).

Activation of Tryptophan Metabolism Has
Anti-inflammatory and Immunosuppressive
Effects

Trp metabolism controls hyperinflammation and induces long
term immune tolerance. These effects pivot on the ability of IDO
to alter the local and systemic Kyn/Trp balance (Figure 1A).
This balance directly affects metabolic and immune signaling
pathways that drive an anti-inflammatory response in IDO-
competent cells (e.g., antigen-presenting cells and epithelial
cells). In addition, it changes the function of neighboring cells
(e.g., T cells) by creating a local (and sometimes systemic)
environment high in Kyn and low in Trp. Several molecular
pathways mediate immune and non-immune responses to
changes in intracellular Trp and Kyn levels (Figure 1B).

Trp Depletion in the Metabolic Regulation of
Inflammation and Tolerance

Trp levels influence nutrient sensing systems such as the
general control non-derepressable 2 (GCN2) stress kinase
and mechanistic target of rapamycin complex 1 (mTORC1).
The kinase GCN2 is activated during amino acid depletion
(or imbalance) and causes phosphorylation of eukaryotic
initiation factor (eIF)2a that has cell-type specific effects on
translation. mTORCI is active during amino acid sufficiency
and governs anabolic metabolism and energy expenditure.
GCN2 and mTORCI are implicated in the metabolic control of
inflammation by immune and non-immune cells (24).

Trp depletion activates GCN2 in IDO-expressing dendritic
cells and macrophages causing them to produce anti-
inflammatory cytokines including interleukin-10 (IL-10) and
TGF-B instead of immunogenic cytokines (25, 26). Additionally,
Trp depletion can alter the secretory phenotype of neighboring
IDO-incompetent dendritic cells, cause GCN2-dependent
differentiation and recruitment of regulatory T cells (Treg)
(27, 28) and prevent T cell activation and proliferation (25).
These concepts seem to be involved in providing tolerance
to apoptotic cells in the spleen (26, 29). However, the role of
IDO/GCN2-signaling is not limited to immune cells. In an
antibody-induced model for glomerulonephritis in mice, which
is lethal in mice lacking IDO expression, IDO/GCN?2 signaling
limited inflammatory tissue damage by inducing autophagy in
renal epithelial cells (15). Taken together, these studies indicate
that IDO can prevent inflammation and promote tolerance in a
context-specific manner by regulating GCN2 activity in immune
and non-immune cells.

mTORCI is a central regulator of cellular function. Cells
of the innate immune system largely depend on mTORCI1
to enable the metabolic transition that is required for their
activation (30). mTORCI1 orchestrates the cellular immune
behavior in response to extracellular and intracellular factors
such as inflammatory stimuli, glucose availability and amino
acid sufficiency. In vitro studies showed that IFN-y inhibited
mTORC1 by depleting cellular Trp levels in IDO-expressing
cells (31) causing suppression of mTORC1 co-localization to
the lysosome and altering the metabolic functioning of human
primary macrophages (32). The relevance of IDO/mTORCI1
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FIGURE 1 | Mechanisms involved the regulation of inflammation by Trp metabolism. Inflammation activates Trp metabolism and causes systemic and intra- and
extra-cellular changes in the Kyn/Trp ratio that suppress the inflammatory response (A). The molecular steps involved in the immunomodulatory effect of activation of
Trp metabolism (B): An inflammatory stimulus activates IDO (and in specific instances TDO) in immune and non-immune cells causing reduced Trp systemic and local
Trp levels and increased intra- and extracellular Kyn content (1); inflammation induces increased expression of AhR (2) that is activated by its ligand Kyn and results in
the secretion of anti-inflammatory cytokines such as IL-10 (3); AhR ligand-activation causes phosphorylation of IDO and results in sustained IDO activity and the
secretion of TGF-B, which is involved in a feedback loop by inducing IDO phosphorylation (4); inflammatory cytokines such as TGF-g and IL-10 induce the amino acid
transporter SLC7A5 on the plasma membrane of naive T-cells causing transport of Kyn into the T cell (5); activation of GCN2 by Trp depletion and AhR
ligand-activation by Kyn cause the differentiation of naive T cells toward regulatory T cells (6). Solid arrows indicate regulatory (transcriptional or translational) and
enzymatic effects, dashed arrows indicate active or passive cross-cellular and cross-compartmental transport of Trp and Kyn. Trp, Tryptophan; Kyn, Kynurenine, IDO,
indoleamine 2,3-dioxygenase; TDO, tryptophan 2,3-dioxygenase; AhR, aryl hydrocarbon receptor; TGF-B, tissue growth factor beta; IL-10, interleukin 10; SLC7A5,
solute carrier family 7 member 5; GCN2, general control non-derepressable 2 stress kinase.

Microenvironment

signaling in controlling inflammation in vivo is yet to
be established.

Future studies are needed to determine how the cellular Trp
content is regulated in response to exogenous and endogenous
inflammatory stimuli and how Trp levels affect GCN2 and
mTORCI signaling to determine the metabolic control of
inflammation in vivo.

Kyn Activates the Aryl Hydrocarbon Receptor

Activated Trp metabolism results in increased Kyn production.
The role of Kyn in the regulation of inflammation is largely
mediated through its function as a ligand of the aryl hydrocarbon
receptor (AhR), a transcription factor that controls local and

systemic immune responses. Recent studies are suggesting that
Kyn/AhR signaling is involved in the generation of Tyeg cells and
the modulation of the immune phenotype of DCs.

Treg cells are derived from naive T cells and are involved
in maintenance of immunological tolerance but also aid
macrophages during the resolution of inflammation by
stimulating them to secrete anti-inflammatory cytokines (33) and
aging is associated with increased Treg populations in immune
and non-immune tissue (34). Kyn supplementation can activate
AhR in naive T cells in the presence of specific inflammatory
cytokines and directly drive Tyeg differentiation (35). Although
Kyn passes relatively easily across the cell membrane of most cell
types, recent data suggest that Kyn-dependent AhR activation in
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T cells requires Kyn transport across the amino acid transporter
SLC7AS5, which is expressed upon T cell activation (36). DCs
play an essential role in creating the microenvironment that is
required for Ty differentiation. To do so, DCs take on a specific
secretory phenotype that is also driven by Kyn-dependent AhR
activation by Nguyen et al. (37). Interestingly, AhR activation can
also induce the expression of IDO, suggesting a Kyn/AhR/IDO
feedback loop that is possibly involved in the maintenance of an
immunosuppressive phenotype in DCs (38).

IDO function in DCs seems to be sustained by
phosphorylation caused either by a chaperone of AhR that
is released upon Kyn binding (39) or through autocrine TGF-$
and NF-kB dependent signaling (22). In the latter study, IDO
seemed to act through a non-catalytic mechanism. In both
studies, IDO phosphorylation sustained the immunomodulatory
phenotype of DCs necessary for long-term tolerance to
inflammatory stimuli. As this type of tolerance could be required
to dampen age-related inflammation, it would be of great interest
to study IDO phosphorylation in aged immune tissue.

To conclude, IDO/Kyn/AhR signaling can modulate
the innate immune system to create an anti-inflammatory
microenvironment that is favorable for the generation
of Trg cells and critical for the maintenance of
long-term immunosuppression.

Tryptophan Metabolism Controls

Inflammation in vivo

The important role of Trp metabolism in controlling
inflammation is highlighted by studies in IDO deficient mice.
These mice show no apparent inflammatory phenotype or auto-
immune disorders (within controlled, pathogen-free laboratory
facilities). Yet, when confronted with an inflammatory stimulus
they develop severe inflammatory diseases. These include
pulmonary infections in response to stem cell transplantation
(40), antibody-induced renal inflammation (15), auto-immunity
in response to chronic exposure to apoptotic cells (29), severe
colitis in response to 2,4,6-trinitrobenzene sulfonic acid (17),
aggravation of hepatic inflammation in response to a high-fat
diet (41) and aggravation of hypercholesterolemia-related
atherosclerosis (42). Of note, IDO-deficiency protected from
inflammation in a mouse model of chronic gastric inflammation
by modulating B cell immunity and suppressing cytotoxicity
of natural killer cells (43). The fact that IDO seems to control
inflammation in response to so many non-infectious stimuli
including metabolic stress, underlines its function as a general
regulator of inflammation and suggests that it could be involved
in the regulation of inflammaging.

Other Tryptophan Metabolites Involved in

Inflammation

Other Trp metabolites are also involved in the control of
inflammation and tissue damage. Examples of this include
serotonin, implicated in intestinal inflammation (44); kynurenic
acid, which exerts anti-inflammatory changes in adipose tissue
(45); 3-hydroxyanthranilic acid and cinnabarinic acid (two other
Kyn metabolites) that are, respectively, connected to vascular

inflammation (46) and autoimmune encephalomyelitis (47);
NAD™, which prevents renal kidney injury (48, 49) and regulates
macrophage immune responses (50); and indoles, crucially
involved in gastro-intestinal and neuronal inflammation (51).

Although a discussion of the specific roles of these metabolites
in age-related inflammation is outside the scope of this review,
it is important to consider the broad role of Trp metabolism
in inflammation.

TRYPTOPHAN METABOLISM AS A
BIOMARKER AND THERAPEUTIC TARGET
IN INFLAMMAGING

There is limited evidence of a direct, mechanistic, role of
Trp metabolism in inflammaging. Yet, observational studies
have indicated that Trp metabolism could be a biomarker
for inflammaging. In addition, Trp metabolism could provide
therapeutic targets to treat age-related diseases associated with
inflammation and possibly even extend lifespan.

The Kyn/Trp Ratio as a Biomarker for

Inflammaging

The Kyn/Trp ratio, measured in blood, is robustly associated
with aging in humans (Table S1) (52-60). The fact that this
association is already evident in healthy young adults (61) and
persists throughout life (56), implies that the age-dependent
increase in the Kyn/Trp ratio is not secondary to the onset
of disease but rather represents a physiological age-related
change. In addition, markers of immune activation are, already
in young adults, strongly associated with the Kyn/Trp ratio
(62). Taken together, these observational data suggests that the
Kyn/Trp ratio could provide a valuable marker for the rate of
(physiological) inflammaging.

As inflammaging is involved in the onset of age-related
diseases, a marker for inflammaging should also predict the onset
of age-related diseases. This is the case for the Kyn/Trp ratio. For
example, an increased Kyn/Trp ratio was found to be associated
with increased frailty (63), reduced cognitive performance
(64), increased risk of cardiovascular disease (65, 66) and
mortality (56, 66) in aged individuals. Other Kyn metabolites,
including the 3-hydroxyanthranilic acid/anthranilic acid ratio
and kynurenic acid, have also been associated with inflammation
and poor outcome in the context of (age-related) diseases of the
brain (67, 68).

The Kyn/Trp ratio—and potentially other Kyn pathway
metabolites—could thus be valuable readouts of the rate of
physiological inflammaging in healthy individuals and predict
the onset of age-related diseases associated with chronic
inflammation. In addition, the Kyn/Trp ratio meets the criteria
for a biological age biomarker (as opposed to chronological
age) (69). As a single biomarker is seldomly able to predict
complex biological processes, the use of the Kyn/Trp ratio in
the prediction of inflammaging and biological aging should
be validated in concordance with other potential biomarkers
of aging preferably in combination with immune markers for
sustained inflammation [e.g., GlycA (70)]. These studies should
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FIGURE 2 | Implications of inflammaging-dependent shunt of Trp metabolism. Age-related decline of tissue homeostasis causes a physiological low-grade chronic
inflammatory phenotype known as inflammaging. We hypothesize that Trp is metabolized toward the Kyn pathway in order to control age-related inflammation.
Consequent disturbances of Trp and Kyn metabolites could be involved in age-related diseases and reduced lifespan.

ideally address intraindividual variability of such markers by
making use of longitudinal study designs.

Consequences of Kyn/Trp Shunt in

Inflammaging

An inflammaging-related shunt of Trp metabolism toward extra-
hepatic Kyn production could impact the functioning of Trp
metabolites in a range of organs during aging (Figure 2).

Indoles in Gastro-Intestinal and Metabolic
Functioning

The microbiome is increasingly recognized to play an important
role in aging and age-related disease (71). Indoles are
microbiota-derived Trp metabolites that are implicated in
immune regulation and affect gastro-intestinal functioning
(51). A recent paper showed that dietary-induced obesity
increased intestinal IDO activity shifting Trp metabolism toward
the production of Kyn and away from microbiota-derived
metabolites (72). Inhibition of IDO in the gut improved
insulin sensitivity and resulted in reduced chronic inflammation.
In addition, age-related changes to the microbiome were
associated with increased expression of enzymes involved in
microbial Trp metabolism (73). These data highlights the
importance of microbiota-dependent Trp metabolism and
suggest that activation of intestinal IDO and age-related
changes in microbiome composition can deplete the body of
health-promoting indoles while affecting the systemic Kyn/Trp
balance. In addition, it provides relevant evidence that links
metabolic inflammation (metaflammation) to gastro-intestinal
Trp metabolism and metabolic health. In this context, it is
interesting to note that Trp metabolites and indoles are emerging
as modulators of adipose tissue homeostasis and obesity (45,
74, 75). Age-related gastro-intestinal metaflammation could thus
cause metabolic disturbances through altering microbiome and
host Trp metabolism.

De novo NAD* Synthesis in Age-Related Tissue
Decline

The liver metabolizes the majority of Trp in a TDO-dependent
manner producing NADT or acetoacetyl-CoA (9). NADV is
a coenzyme and cosubstrate for several important regulatory
proteins involved in cellular metabolism and damage such as
sirtuins and Poly(ADP-ribose) polymerases (PARPs). NAD " can
be generated de novo from Trp or through salvage pathways.
While in vitro the contribution of de novo NAD™ synthesis is
limited, in vivo NAD™ is actively synthesized de novo from Trp,
especially in the liver and the kidney (76).

Declining cellular NAD™ content is a cross-species phenotype
of aging that is associated with a range of age-related diseases
(77). Boosting de novo synthesis of NAD™T from Trp in the liver—
by blocking acetoacetyl-CoA production—improved hepatic
function and inflammation in mice on a high fat diet through
modulation of mitochondrial function (78). Similarly, increasing
de novo synthesis of NADT was protective in mouse models
of renal damage (49, 78) and restored age-related functional
decline of macrophages (50). These recent studies underline
the relevance of de novo NADT synthesis in modulating
health and lifespan by regulating mitochondrial function in
metabolically active tissue such as immune cells and the liver.
Inflammaging could shunt Trp metabolism toward extrahepatic
tissue and possibly contribute to age-related hepatic NAD™
deficits, providing new evidence for theories that link age-related
inflammation and metabolic dysfunction (7).

Peripheral Trp Metabolism as a Target for
Neurodegenerative Diseases

TDO2 and IDO expression in the brain is low and restricted to
specific brain regions. Trp metabolism in the brain is therefore
largely dependent on transport of Trp and Kyn across the blood-
brain barrier. Modulating peripheral Trp metabolism can thus
alter the functioning of Trp and Trp metabolites in the brain
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(13). In mouse models of Alzheimer’s disease and Huntington’s
disease peripheral inhibition of the Kyn pathway prevented
neurodegeneration and memory-deficits (79, 80). Similarly,
inhibition of TDO was neuroprotective in fly and worm models
of Alzheimer’s and Parkinson’s disease (81-83). Although the
mechanisms that underlie these findings are largely unknown and
are difficult to study due to cell type-specific expression of Kyn
pathway enzymes in the brain, they could involve a direct effect
on protein aggregation, altered immune responses, changed
mitochondrial function, or variations in levels of kynurenic acid-
a modulator of neurotransmission (13). In addition, the long-
term activation of AhR potentially contributes to vascular aging,
which is a known risk factor for neurodegenerative diseases (84).

Trp in the Regulation of Lifespan

Evidence from studies in Caenorhabditis elegans and rodents
suggests that targeting Trp metabolism could extend lifespan.
For example, we showed that knockdown of tdo-2 in C. elegans
increased lifespan with ~15% (83). This effect was dependent
on daf-16, the C. elegans homolog of the forkhead box protein
O (FOXO) family of transcription factors. Accordingly, TDO
inhibition and Trp feeding extended lifespan in other studies in a
daf-16-dependent manner (85, 86).

In rats Trp content in liver, kidney and brains decreases with
age while Kyn content in these organs increases (87). A study
across 26 mammalian species showed that the Kyn/Trp ratio in
the liver of healthy adult animals was associated with species-
specific maximum lifespan (88); species that showed a higher
Kyn/Trp ratio were shorter lived.

As TDO inhibitors are readily available and TDO knockout
mice are viable, these models could be used to study the
effects of TDO inhibition on lifespan. However, caution
should be warranted as inhibition of Trp metabolism could
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Several enzymes and metabolites of the kynurenine pathway (KP) have
immunomodulatory effects. Modulation of the activities and levels of these molecules
might be of particular importance under disease conditions when the amelioration of
overreacting immune responses is desired. Results obtained by the use of animal and
tissue culture models indicate that by eliminating or decreasing activities of key enzymes
of the KP, a beneficial shift in disease outcome can be attained. This review summarizes
experimental data of models in which IDO, TDO, or KMO activity modulation was
achieved by interventions affecting enzyme production at a genomic level. Elimination of
IDO activity was found to improve the outcome of sepsis, certain viral infections, chronic
inflammation linked to diabetes, obesity, aorta aneurysm formation, and in anti-tumoral
processes. Similarly, lack of TDO activity was advantageous in the case of anti-tumoral
immunity, while KMO inhibition was found to be beneficial against microorganisms and
in the combat against tumors, as well. On the other hand, the complex interplay among
KP metabolites and immune function in some cases requires an increase in a particular
enzyme activity for the desired immune response modulation, as was shown by the
exacerbation of liver fibrosis due to the elimination of IDO activity and the detrimental
effects of TDO inhibition in a mouse model of autoimmune gastritis. The relevance of
these studies concerning possible human applications are discussed and highlighted.
Finally, a brief overview is presented on naturally occurring genetic variants affecting
immune functions via modulation of KP enzyme activity.

Keywords: kynurenine pathway, IDO, TDO, KMO, immunomodulation, genetic manipulation

INTRODUCTION

The kynurenine pathway (KP) is the main route of Trp metabolism. The enzymes of the pathway
generate numerous metabolites, some of which are pro-inflammatory and/or generate free radicals,
while others are known to be anti-inflammatory and/or scavenge free-radicals. Strong links between
KP function and the immune system are demonstrated by extensive amounts of data on changes
in the levels of KP metabolites and enzyme activities in diseases accompanied by alterations in
immune function. Also, inflammatory cytokines are known to enhance the expression of a key
KP enzyme, indoleamine 2,3-dioxygenase (IDO). Imbalances in the pathway can be detrimental,
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as excessive production of either pro-, or anti-inflammatory
metabolites can contribute to the development of autoimmunity
and/or lead to inefficient immune response against pathogens.
Therefore, the understanding of how the KP changes in
different immunological states, and, the reverse, how KP effects
immunological responses, is cardinal both for understanding
the true nature of specific diseases and for identification of
therapeutic targets. Genetic manipulations leading either to
enhancement or inhibition of the expression of KP enzymes
might be a feasible way of restoring the imbalance of the pathway
in various diseases. Naturally occurring genetic variations in the
coding regions in several genes coding for KP enzymes have
been identified [for a review see (1)]. In the majority of these,
however, a causal relation between a specific gene variant and
disease development has not been elucidated.

This review summarizes available data on the effects of
expression modification of KP enzyme coding genes with specific
attention to immune modulation. Following a brief overview

Abbreviations: KP, kynurenine pathway; IDO, indoleamine 2,3-dioxygenase
(protein); IDO, indoleamine 2,3-dioxygenase (gene in human); Ido, indoleamine
2,3-dioxygenase (murine gene); TDO, tryptophan 2,3-dioxygenase (protein);
Tdo, tryptophan 2,3-dioxygenase (murine gene); TDO, tryptophan 2,3-
dioxygenase (gene in human); KMO, kynurenine 3-monooxygenase (protein);
KMO, kynurenine 3-monooxygenase (gene in human); Kmo, kynurenine
3-monooxygenase (murine gene); CNS, central nervous system; L-KYN, L-
kynurenine; KYNA, kynurenic acid; KATI-IV, kynurenine aminotransferases;
NMDAR, N-methyl-D-aspartate receptor; a7nAChRs, nicotinic acetylcholine
receptors; KYNU, kynureninase; AA, anthranilic acid; 3-HK, 3-hydroxy
kynurenine; XA, xanthurenic acid; 3-HAA, 3-hydroxyanthranilic acid; ACMS,
2-amino-3-carboxymuconate-semialdehyde;  3-HAO,  3-hydroxyanthranilate
3,4-dioxygenase; PIC, picolinic acid; ACMSD, aminocarboxymuconate-
semialdehyde-decarboxylase; QUIN, quinolinic acid; ISRE, IFN stimulated
response element; GAS, gamma-activated sequences; DRE, dendritic cell response
element; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B-cells;
TLRs, toll-like receptors; TGFBR, transforming growth factor beta receptor;
AHR, aryl hydrocarbon receptor; IFNBR, interferon beta receptor; IFNGR,
interferon gamma receptor; TNFR, tumor necrosis factor receptor; SOCS3,
suppressor of cytokine signaling 3; DC, dendritic cell; IFN, interferon; LPS,
lipopolysaccharide; IL, interleukines; TNEF, tumor necrosis factor; mTOR,
mammalian target of rapamycin; NPC, nasopharyngeal carcinoma; AML, acute
myeloid leukemia; AHR, aryl hydrocarbon receptor; ROS, reactive oxygen species;
siRNA, small interfering RNA; IDO~/~, IDO knockout; UPEC, Uropathogenic
Escherichia coli; MuLV, murine leukemia virus; NK cell, natural killer cell; pDC,
plasmocytoid dendritic cell; WT, wild type; ECMV, encephalomyocarditis virus;
sJIA, systemic juvenile idiopathic arthritis; sHLH, secondary hemophagocytic-
lymphohistiocytosis; STING, Stimulator of Interferon Genes; DNP, DNA
nanoparticle; EAE, experimental autoimmune encephalitis; MS, multiple sclerosis;
MOG, myelin oligodendrocyte glycoprotein; c-diGMP, cyclic diguanylate
monophosphate; CIA, collagen induced arthritis; RA, rheumatoid arthritis;
AdIDO, adenoviral vector-mediated IDO gene delivery; NOD, non-obese
diabetic; MRLIpr/lpr, Lupus-prone Murphy Roths large mice; SLE, systemic
lupus erythematosus; MAS, macrophage activation syndrome; DR, diabetic
retinopathy; Angll, angiotensin II; ApoE~/~, Apolipoprotein E knockout;
NAD(P)H, nicotinamide adenine dinucleotide phosphate; AAA, abdominal aortic
aneurysm; VSMC, vascular smooth muscle cell; Ldlr—/~, low density lipoprotein—
receptor deficient; HFD, high fat diet; MMP2, matrix metallopeptidase 2; WAT,
white adipose tissue; OGTT, oral glucose tolerance test; ITT, insulin tolerance
test; TAA, indole-3 acetic acid; CCl4, carbon-tetrachloride; PMN, polymorph
nuclear neutrophil; S.t., Salmonella typhimurium; ShRNA, short hairpin RNA; RT,
radiotherapy; BER, base excision repair; MX, methoxyamine; TS, thymidylate
synthase; IRI, ischemia-reperfusion injury; AKI, acute kidney injury; CTL,
cytolytic T lymphocyte; PD, Parkinson’s disease; SSc, systemic sclerosis; CD,
Crohn’s disease; BM, bacterial meningitis; CSE, cerebro-spinal fluid.

of the metabolites and enzymes of the pathway, we summarize
observations which indicate links between KP and immune
function. This is followed by an overview of findings obtained
by the use of models with targeted ablation and up- or down-
regulation of KP enzymes. With respect to diseases related to
disorders of the immune system, such as infectious diseases,
chronic inflammation, autoimmunity and cancer, these models
have focused on three KP enzymes: IDO, tryptophan 2,3-
dioxygenase (TDO) and kynurenine 3-monooxygenase (KMO)
(Tables 1-5). These enzymes and, in particular, IDO are also
targeted by several pharmacochemical interventions. Discussion
of that field is out of the scope of this review, as we focus on
gene level interventions. Readers interested in pharmacologic
interventions of KP enzymes can find excellent summaries of the
field in Ye et al. (45) and Lemos et al. (46). In the final section,
we provide a summary of available data on those naturally
occurring KP gene variants which are believed to be associated
with different human diseases affecting immune function.

KYNURENINE PATHWAY—-THE MAIN
ROUTE OF TRYPTOPHAN METABOLISM

Disregarding protein synthesis, the KP is the main route of Trp
metabolism, both in the peripheral and in the central nervous
system (CNS) (Figure 1). In the CNS, 95 percent of the resident
Trp is metabolized via the KP, and only the minority of the amino
acid is transformed into serotonin and melatonin. In consecutive
steps of the pathway, numerous metabolites possessing immune-
and neuromodulatory properties are synthesized (47).

The first and rate limiting step of Trp metabolism is the
conversion of the amino acid into N-formyl-L-kynurenine. This
step is catalyzed by one of three enzymes: IDO (often referred to
asIDO1),IDO2, or TDO. (Prior to the discovery of IDO 2, “IDO”
designation was used exclusively. Today IDO and IDO1 are used
as synonyms and IDO2 is reserved for the enzyme recognized
in 2007. In this review we will use IDO unless we are referring to
IDO2). TDO is expressed mainly in the liver, thus plays a cardinal
role in regulating the amount of available Trp throughout the
body, outside the CNS. IDO is expressed in several human
tissues, among them various cell types of the immune system
(48). The enzyme plays a key role in reactions leading to the
synthesis of immunoactive KP metabolites, consequently its role
in immunomodulation is expected. IDO2 expression pattern and
function is not known in detail. A strong argument against the
role of this enzyme in Trp metabolism is the frequent occurrence
of an IDO2 gene variant that gives rise to a non-functioning
enzyme (49), and the high Michaelis Constant of the enzyme for
Trp, which is 100-fold above the physiological concentrations of
the amino acid (50).

N-formyl-L-kynurenine is converted to L-kynurenine (L-
KYN) by formamidase. L-KYN is an important branch point
of the KP as it can be alternatively metabolized into three
different metabolites of which some are neurotoxic, while
others possess neuroprotective and antioxidant properties
(51, 52). Firstly, L-KYN can be metabolized into kynurenic
acid (KYNA) by kynurenine aminotransferases (KATI-IV)
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TABLE 1 | Effects of modulation of IDO function by genetic manipulation in in vivo and in vitro models of systemic inflammation, viral, and bacterial infections.

Gene Type of genetic Disease modeled Study design Effect of gene modulation References
modulation
DO DO/~ Systemic inflammation Mouse model of LPS induced Restoration of imbalance of pro-and 2)
sepsis anti-inflammatory cytokines,
increased survival rate
DO/~ Viral infection Murine leukemia virus induced Decreased virus replication; increased (€]
murine AIDS model number of pDCs and increased type |
IFN production; increased survival
rate following Toxoplasma gondii
infection
IDO~/= Viral infection ECMV induced mouse model of Decreased virus replication and (4)
acute viral myocarditis myocardium necrosis; higher survival
rate
DO/~ Pain hypersensitivity related  Pain hypersensitivity induced by Diminished acute and chronic pain 5)
to viral infection Influenza A virus and MuLV infection  sensitivity related to influenza A and
MuLV infections, respectively
IDO Viral infection Hel a cells transfected with Overexpression of IDO prior to viral 6)
overexpression pcDNA3-IDO infection diminished viral replication
thus decreasing infection spread to
the neighboring cells
DO/~ Viral infection LP-BPM5 retrovirus infection of Gene knockout did not have any (7)
mice - a model of murine AIDS effect on disease progression and
viral load
DO/~ Bacterial infection Mouse model of Mycobacterium In vitro findings showed enhanced T 8)
tuberculosis infection cell proliferation after infection,
however, in vivo no significant
difference could be observed in
survival rate or in the number of
activated T cells
DO/~ Bacterial infection Murine cystitis model provoked by Increased levels of pro-inflammatory 9)
uropathogen Escherichia coli cytokines, higher granulocyte
infection accumulation, and local inflammation
of the bladder and decreased survival
of the extracellular bacteria
DO/~ Bacterial infection Mouse model of Rhodococcus equi  Decreased levels of TGFB and FOXP3 (10)

infection

expression in the liver tissue indicating
reduced T regulatory cell responses
and prolonged liver inflammation

IDO, Indoleamine 2,3-dioxygenase gene; IDO~/~, IDO knockout; pDC, plasmocytoid dendritic cell; IFN, interferon; ECMV, encephalomyocarditis virus; MulV, murine leukemia virus;

TGFB, transforming growth factor beta; FOXP3, forkhead box P3.

from which KATII plays the most important role in the
human CNS (53, 54). Secondly, L-KYN is also a substrate
of kynureninase (KYNU), an enzyme responsible for the
formation of anthranilic acid (AA). Finally, the third route of
L-KYN metabolism is catalyzed by KMO to form 3-hydroxy
kynurenine (3-HK) which can be further transformed into
xanthurenic acid (XA) by KATs. 3-HK and AA can both be
metabolized into 3-hydroxyanthranilic acid (3-HAA), which,
alongside with 3-HK, have free-radical generating properties,
thus can lead to oxidative stress and neurodegeneration
(55). However, depending on the redox properties of
the cell, 3-HK and 3-HAA can also serve as antioxidant
molecules (56).

Further down the pathway, the unstable 2-amino-3-
carboxymuconate-semialdehyde (ACMS) is formed by
3-hydroxyanthranilate  3,4-dioxygenase (3-HAO). ACMS
can be transformed either into picolinic acid (PIC) by an

aminocarboxymuconate-semialdehyde-decarboxylase (ACMSD)
catalyzed reaction, or it can form the NAD+ and NADP+
precursor quinolinic acid (QUIN) via a non-enzymatic
conversion. QUIN is a key figure in excitotoxicity mediated
neurodegeneration (52, 57, 58).

In light of the numerous enzymes participating and
metabolites generated, the involvement of the KP in various
disorders is not surprising. Indeed, changes in KP enzyme activity
and metabolite levels have been detected in inflammatory,
autoimmune, neurodegenerative and psychiatric diseases, as well.

In the following sections of this review we will briefly consider
observations that point to existing links between KP and immune
function. Then we will overview results obtained by models in
which the KP was modulated by interventions effecting gene
activity. Finally, we list known genetic alterations in genes of
KP enzymes that are believed to be associated with changes in
immune functions.
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TABLE 2 | Effects of modulation of IDO function by genetic manipulation in animal models of allergy and autoimmunity.

Gene Type of genetic
modulation

Disease modeled

Study design Effect of gene modulation References

IDO DO/~

DO/~

DO/~

DO/~

DO/~

AdIDO

Transfection with
Ido

DO/~

Airway allergy

Autoimmunity

Autoimmunity

Autoimmunity

Autoimmunity

Autoimmunity

Autoimmunity

Autoimmunity

Mouse model of acute and chronic Decrease in Th2 response upon (11)
allergic airway inflammation exposure to allergen: diminished Th2

cell activation, Th2 cytokine

production, decreased airway

inflammation, mucus secretion, and

airway hyperresponsiveness

Mice models of sJIA, MAS and No difference in the symptoms of (12)
sHLH IDO~/~ animals compared to

WT—possibility of the presence of

other Trp metabolizing enzymes

restoring the absence of Ido

EAE mouse model of MS Immunization with MOG, systemic (13)
treatment with DNPs or c-diGMP
induced STING signaling, thus potent
regulatory immune responses could
be achieved, leading to restrained
EAE severity and delayed disease
onset. However, in the case of lack of
IDO in hematopoietic cells, no
therapeutic response could be
observed

EAE mouse model of MS Exacerbated EAE disease severity, (14)
increased encephalitogenic Th1 and
Th17 responses and diminished Treg
responses in IDO~/~ animals.

CIA mouse model of RA More severe disease demonstrated (15)
by increased erosion and cellular
infiltration of the joints of IDO~/~
animals, higher production of IFNy
and IL-17 in the lymph nodes and
higher Th1 and Th17 cell frequency in
paws

CIA rat model of RA Significant reduction of bony (16)
destruction, soft tissue swelling and
synovial hyperplasia, indicating
decreased disease severity
NOD mouse model of T1D After TGFB treatment production of (17)
pro-inflammatory cytokines (IL-6 and
TNFa) was decreased and pancreatic
B-cell auto-antigen generation was
diminished
MRLIpr/lpr mouse model of SLE The injection of apoptotic thymocytes (18)
in IDO~/~ MRLIpr/lpr animals caused
elevation of autoantibody titers,
pro-inflammatory cytokine production
and dysregulated T cell responses
leading to lethal autoimmunity due to
renal failure

IDO, Indoleamine 2,3-dioxygenase gene; IDO~/~, IDO knockout; sJIA, systemic juvenile idiopathic arthritis; MAS, macrophage activation syndrome; sHLH, secondary hemophagocytic-
lymphohistiocytosis; WT, wild type; Trp, tryptophan, EAE, experimental autoimmune encephalitis; MS, multiple sclerosis; MOG, myelin oligodendrocyte glycoprotein;, DNF DNA
nanoparticle; c-diGMR, cyclic diguanylate monophosphate; CIA, collagen induced arthritis; RA, rheumatoid arthritis; IFN'y, interferon gamma; AdIDO, adenoviral vector-mediated IDO gene
delivery; NOD, non-obese diabetic; T1D, type 1 diabetes,; TGFB, transforming growth factor beta; MRLIpr/lpr, Lupus-prone Murphy Roths large mice; SLE, systemic lupus erythematosus.

OBSERVATIONS INDICATING LINKS enzyme of the pathway, deserves particular attention. IDO is
BETWEEN THE KYNURENINE PATHWAY believed to exert its effects on immune function both by direct

AND IMMUNE FUNCTIONS
Indoleamine 2,3-Dioxygenase

and indirect mechanisms. As an enzyme, IDO plays a role in
Trp utilization and through this, in cellular metabolism via
mTOR and GCN2 linked pathways. By converting Trp to KYN,

Interplay between several enzymes of the KP and immune IDO has a central role in determining concentrations of KP
function are well-demonstrated. In this respect IDO, a key  metabolites, many of which are direct or indirect regulators

Frontiers in Immunology | www.frontiersin.org

37 November 2019 | Volume 10 | Article 2570


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Boros and Vécsei

Immunomodulatory Effects of the KP

TABLE 3 | Effects of modulation of IDO function by genetic manipulation in transplant animal models.

Gene Type of genetic Disease modeled Study design Effect of gene modulation References
modulation
DO Adenoviral Ido Transplantation Adenoviral gene transfer into Prolonged survival of transplanted (19)
gene transfer pancreatic islets; transplantation tissue; depletion of local Trp; inhibition
into diabetogenic mice of T cell proliferation

EIAV based Ido Transplantation Mouse model of corneal transplant Prevention of allogeneic T cell (20)
gene transfer responses; prolonged corneal graft

survival
hIDO gene transfer ~ Transplantation Rat model of lung transplant Blockage of local T cell responses, (21)
via PEI inhibition of intracellular ROS

formation, thus reducing necrosis and

apoptosis of lung cells
hIDO gene transfer ~ Transplantation Rat model of lung transplant Selective decrease of complex | (22)
via PEI activity of the electron transport chain,

leading to decreased ATP production

in the lung infiltrating T cells, causing

damage in their cytotoxic properties
Sleeping beauty Transplantation Rat model of lung transplant, Diminished collagen deposition in (23)
transposon investigation of lung fibrosis IDO*/* lungs, resulting in a more
mediated hIDO preserved bronchus-alveolar
delivery architecture. In vitro findings revealed

that IDO*/* lung cells inhibited the

TGFB mediated proliferation of

fibroblasts
adenoviral Ido Transplantation Rat model of skin transplant Wounds with IDO expressing (24)
gene transfer fibroblast healed faster than those

with IDO~/~ fibroblasts due to

enhanced capillary formation
adenoviral Ido Transplantation Rat model of cardiac allograft Decreased infiltration of the cardiac (25)
gene transfer survival allograft with monocytes,

macrophages and T cells,

accompanied by diminished intragraft

levels of IFNy, TNFa, TGFB, IL-1B,

resulting in prolonged graft survival
PEI carrier hIDO Transplantation Mouse model of lung Prolonged graft survival due to (26)

transfer transplantation

inhibited early T cell responses and
diminished memory T cell formation.
T cell inhibiting properties were found
to be due to the impairment of
calcium signaling of the cells

IDO, Indoleamine 2,3-dioxygenase gene; IDO~/~, IDO knockout; Trp, tryptophan; EIAV, Equine infectious anemia virus; PEI, polimer polyethilenimine; ROS, reactive oxygen species;
TGFB, transforming growth factor beta; IFNy, interferon gamma; TNFa, tumor necrosis factor alpha.

of immunofunction. Furthermore, IDO also acts as a signal
protein. In concert with TGFp, it regulates activation through
non-canonical NF-kB response elements, thus affecting of its own
production as well (45, 46).

IDO production and activity is controlled at different levels,
including both transcriptional and post-translational regulation
[reviewed in (46, 59)] (Figure 2). At the protein level, both its
substrate, Trp, and its co-factor, heme, enhance IDO activity
(61, 62). NO was found to reversibly inhibit the enzyme by
binding to the active site (63, 64). Antioxidants also inhibit
enzyme activity, both at transcriptional and post-transcriptional
levels (62). Phosphorylation of two tyrosine side chains also can
modulate IDO activity and its halflife (65). Decrease in IDO
enzyme levels can be the result of ubiquitylation of the protein
by the suppressor of cytokine signaling 3 (SOCS3) factor and
proteosomal degradation (66).

At the level of transcription several cis-regulatory elements
in the IDO promoter transmit regulatory signals. These are
IFN stimulated response elements (ISRE), palindromic gamma-
activated sequences (GAS), dendritic cell response elements
(DRE) and non-canonical NF-kB binding sites [see reviews (60,
65)]. A number of transcription factors have been identified
so far, which bind to these elements and play roles in the
transcriptional regulation of IDO. Among them are IRF-1, IRF-
8, Statla, NF-kB (67) and aryl hydrocarbon receptor (AHR).
Recently, epigenetic regulation of the gene through histone
deacetylase activity has also been reported (68). Through these
factors various receptor-ligand pathways converge to determine
IDO gene expression. These transmit regulatory signals from
activated toll-like receptors (TLRs), transforming growth factor
beta receptors (TGFBRs), AHR, interferon beta and gamma
receptors (IFNBR and IFNGR), and members of the tumor

Frontiers in Immunology | www.frontiersin.org

38

November 2019 | Volume 10 | Article 2570


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Boros and Vécsei

Immunomodulatory Effects of the KP

TABLE 4 | Effects of modulation of IDO function by genetic manipulation in in vitro and in vivo models of chronic inflammation and cancer.

Gene Type of genetic  Disease modeled Study design Effect of gene modulation References
modulation
DO DO/~ Chronic inflammation Mouse model of DR Reduced retinal capillary degeneration 27)
DO/~ Chronic inflammation Angll induced atherosclerosis Reduced ROS production; diminished (28)
mouse model endothelial cell dysfunction and apoptosis
DO/~ Chronic inflammation Mouse model of AAA: Ldlr—/~ mice  Reduced VSMC apoptosis (29)
infused with Angll and fed with HFD
IDO~/~ and siRNA  Chronic inflammation Angll induced AAA formation in Protection against AAA (80)
mediated Kynu ApPoE~/~ mice formation —decrease in elastic lamina
silencing degradation and aortic expansion
DO/~ Chronic inflammation Mouse model of obesity Lower body weight and fat mass; (31)
increased number of M2
(anti-inflammatory) macrophages in the
WAT,; protection against the development
of liver steatosis and insulin resistance;
diminished LPS plasma levels
DO/~ Chronic inflammation CCl4 induced mouse model of Aggravation of liver fibrosis: higher TNFa (32)
hepatic fibrosis producing macrophages in the liver; higher
TNFa and fibrogenic factor expression
DO/~ Intestinal immunity Citrobacter rodentium-induced Attenuated intestinal inflammatory (33)
colitis mouse model response: less edema, cellular infiltration,
epithelial damage and reduced intestinal
colonization of bacteria
IDO silencing via Tumor immunity B16F10 melanoma cells in vitro and  Decrease in tumor size; prevention of T (34)
SiRNA mouse model cell apoptosis; restoration of host
antitumor immunity
IDO silencing via Tumor immunity B16F10 melanoma mouse model Tumor growth is attenuated and the (35)
shiDO-ST number of lung metastases was
diminished
IDO silencing via Tumor immunity SKOV-3 human ovarian cancer cell  Decrease in tumor growth, peritoneal (36)
shRNA line and mouse model dissemination and ascites formation,
increase in the number of tumor infiltrating
NK cells in vivo, increased sensitivity to NK
cells in vitro
IDO silencing via Tumor immunity Genetic downregulation of IDO in Enhanced sensitivity of cells to FK866, 387)

shRNA
cells

A549 human lung adenocarcinoma

MX, pemetrexed and gemcitabine therapy

IDO, Indoleamine 2,3-dioxygenase gene; Ido~/~, Ido knockout; Kynu, kynureninase gene; siRNA, small interfering RNA; shIDO-ST, shRNA: short hairpin RNA; DR, diabetic retinopathy;
Angll, Angiotensin Il; AAA, abdominal aortic aneurysm; Ldlr~/~, low density lipoprotein—receptor deficient; HFD, high fat diet; ApoE~/~, Apolipoprotein E knockout; CCl4, carbon-
tetrachloride; ROS, reactive oxygen species; VSMC, vascular smooth cell; WAT, white adipose tissue; LPS, lipopolysaccharide; TNFa, tumor necrosis factor alpha; NK cell, natural killer

cell; MX, methoxyamine.

necrosis factor receptor superfamily (TNFRs). Activation of any
of these receptors by their ligands can trigger signaling pathways
that promote or maintain the expression of IDO. Consequently,
inflammatory signals, such as IFNs, lipopolysaccharides (LPS),
interleukins (ILs) (such as IL-1, IL-2, IL-27, IL-10) TNFs,
TGFs, and prostaglandins, can induce IDO production (69, 70).
Thus, induction of the enzyme can be very complex and cell
type specific [reviewed in (71)]. Moreover, some inflammatory
markers act synergistically to increase IDO production and
the types of cytokines affecting gene expression may differ
in various cell types. This might be reflected by seemingly
contradictory reports on the roles of particular ligands in IDO
induction. According to some data, IFNy is one of the main
inducers of IDO expression (72). On the other hand, results
obtained in LPS induced systemic inflammatory rat model did
not support the role of IFNy in IDO induction in the CNS

and a more important role for other inflammatory cytokines,
such as TNFoa and IL-6, was proposed. Strengthening this
conclusion, in LPS-stimulated glial cell cultures an increase
of IDO expression was observed, accompanied by elevated
levels of TNFa and IL-6, but no IFNy expression. Based on
these observations, it was concluded that IDO induction in the
CNS by LPS is not mediated by IFNy (73). However, recent
findings strongly argue for the role of IFNs in the activation
of IDO expression. It was found that not IFNy but IFNa
signaling was essential in enhancing IDO expression after B7
ligation of CTL4-Ig (74). IDO expression up-regulation via CpG
oligodeoxynucleotide binding to TLR9 was also IFNa dependent
(75). Futhermore, IDO expression was found to be upregulated
by cytosolic DNA via the STING/IFNaf pathway (76). Thus, it
seems firmly established that type I IFNs play a cardinal role
in enhanced IDO gene expression with inflammatory signals
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TABLE 5 | Effects of modulation of TDO and KMO function by genetic manipulation in in vitro and in vivo models.

Gene Type of genetic Disease modeled Study design Effect of gene modulation References
modulation
TDO Lack of Tdo Tumor immunity P815 mouse tumor model Slower tumor progression, higher number of (38)
expression cytolytic T cells in the tumor
microenvironment
TDO~/~ Autoimmunity EAE mouse model of MS Protective effects against neuronal loss in the (39)
spinal cord
TDO expression Infection HelLa T-Rex cells transfected with Antiparasitic, antiviral, and antibacterial effect; (40)
pcDNA4-Tdo vector containing suppression of T cell proliferation
human liver TDO cDNA
KMO KMO~/~ Viral infection EMCV induced mouse model of Higher survival rate of Kmo=/~ animals; 41)
viral myocarditis decrease in the cellular infiltration of
marophages and neutrophiles in heart tissue
siRNA mediated Autoimmunity Mouse model of autoimmune Disease exacerbation due to excessive Th17 (42)
Kmo silencing gastritis cell formation
KMO~/~ Chronic inflammation Diabetic mouse and zebrafish Proteinuria related to the malfunctioning of (43)
models kidney podocytes (proposedly due to NAD™
depletion)
KMO~/~ IRI IRI leading to AKI in @ mouse model Decreased renal tubular necrosis and (44)

neutrophil granulocyte infiltration

TDO, Tryptophan 2,3-dioxygenase gene; TDO-/-, TDO knockout; KMO, Kynurenine 3-monooxygenase gene; KMO-/-, KMO knockout; EAE, experimental autoimmune encephalitis; MS,
multiple sclerosis; EMCV, encephalomyocarditis virus; IRI, ischemia-reperfusion injury; AKI, acute kidney injury.

and that IDO expression following LPS treatment is induced by
type I IFNGs.

IDO is expressed by numerous cells of the immune system:
monocytes, dendritic cells (DCs), macrophages and microglia
(48). It regulates immune responses in various direct and indirect
ways (Figure 3). On the one hand, by decreasing the amount
of available Trp, it causes an increase in free transfer RNA,
thus activating the GCN2 stress-kinase pathway leading to T cell
anergy and cell cycle arrest (77). On the other hand, a lack of
the amino acid leads to the inhibition of the rapamycin (mTOR)
pathway followed by a translational block (78). Moreover, via
the formation of different immunologically active kynurenine
metabolites, IDO also contributes to the apoptosis of effector T
cells and promotes the formation of regulatory T cells (59, 79).

Another important link between KP and the immune system
is manifested by DCs, in particular in their role in inflammatory
processes. Sepsis is a systemic inflammatory response syndrome
which leads to hemodynamic shock accompanied by multi-organ
failure. It is a major cause of mortality and morbidity among
hospitalized patients. Sepsis is the consequence of microbial
infection, in which Gram-negative bacteria outer-membrane
components (LPS) trigger the uncontrolled production of
pro-inflammatory cytokines, which leads to the imbalance of
pro-and anti-inflammatory factors. DCs seem to play a cardinal
role is sepsis development, as they are capable of producing pro-
(IL-12) and anti-inflammatory (IL-10) cytokines, the balance of
which was found to be altered during infection (80). In DCs,
IDO expression is induced by LPS and the enzyme production
contributes to the imbalance of anti- and pro-inflammatory
cytokines (2).

A growing body of data shows the involvement of IDO in
immune responses to tumors [see in (45, 46, 81)]. A pivotal role

of the enzyme is seen in establishing the immunosuppressive
microenvironment of tumors by altering the functions of
infiltrating T lymphocytes, thus promoting immune escape and
progression of cancer cells (82, 83). Upregulated expression of
IDO has been reported in the microenvironment of laryngeal
and esophageal carcinomas (84-87) and higher plasma enzyme
activity was reported in lung-, gynecological-, breast- and
colorectal cancers, and melanoma. Both local expression changes
and elevated plasma IDO activity was reported in patients
with nasopharyngeal carcinoma (NPC) (81). Interestingly, a
significant difference in plasma IDO levels could be detected
between healthy controls and NPC patients with metastasis, in
contrast to patients without metastasis. Plasma IDO activity
was also found to have a prognostic value, as patients with
higher levels of enzyme activity had significantly lower rates
of survival compared to those with lower IDO activity. Higher
enzyme activity was shown to result from higher expression
levels: Fukuno et al. reported that IDO mRNA expression in
patients with acute myeloid leukemia (AML) was associated
with a worse disease outcome (88). In light of the role IDO
plays in immune responses to cancer, it is no wonder that IDO
modulation is a hot topic in cancer research. Many therapeutic
approaches are underway for pharmaceutical enzyme inhibition
(65). This review will not discuss these in detail since our aim is
to give an overview of findings on approaches targeting the KP
by gene modulation.

Tryptophan-Dioxygenase

The first step of the KP can also be catalyzed by TDO, a functional
ortholog enzyme of IDO. However, while IDO is mainly
expressed by various immune cells, thus regulating the amount
of locally available Trp, TDO is expressed in the liver, affecting
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FIGURE 1 | The kynurenine pathway of tryptophan metabolism. Enzymes of
the KP metabolise Trp into products possessing immune- and
neuromodulatory properties. By the utilization of Trp and generation of NAD
coenzyme precursor the KP has profound effects on cellular protein and
energy metabolism. Several internal metabolites of the pathway play role on
redox regulation and have neuroprotective - or neurotoxic effects. Immune
functions are modified by the KP both directly, via immuno modulatory
metabolites and indirectly, via changing the metabolism of immune cells by
altering amino acid availability, redox status and energy balance.
Abbreviations: Trp: tryptophan; TDO:tryptophan 2,3-dioxygenase;
IDO:indoleamine 2,3-dioxygenase; N-formyl KYN:N-formyl-kynurenine;
L-KYN:L-kynurenine; KAT:kynurenine aminotransferase; KYNA: kynurenic acid;
KYNU:kynureninase; AA:anthranilic acid; KMO:kynurenine 3-monooxygenase;
3-HK:3-hydroxy kynurenine; XA: xanthurenic acid; KYNU:kynureninase;
3-HAA: 3-hydroxyanthranilic acid; 3-HAQO:3-hydroxyanthranilate
3,4-dioxygenase; ACMS: 2-amino-3-carboxymuconate-semialdehyde;
ACMSD: aminocarboxymuconate-semialdehyde-decarboxylase; PIC: picolinic
acid; QUIN: quinolinic acid; QPRTase:quinolinate phosphoribosyltransferase;

NAD™*: nicotinamide adenine dinucleotide; CNS: central nervous system.

the systemic level of the amino acid. The activity of the enzyme
can be regulated by various mechanisms. TDO transcription is
enhanced by glucocorticoids and this is potentiated by glucagon,
but inhibited by adrenaline and insulin (89). TDO can also be
activated by its cofactor, heme, and its substrate, Trp [reviewed
in (61)]. Recent evidence demonstrates TDO presence in rat
skin and the CNS of humans (90, 91), thus broadening the

location and raising further questions on the exact role of the
enzyme. As Trp stabilizes the TDO enzyme complex (92), and
cortisone, a hormone with anti-inflammatory effects, enhances
TDO expression (93, 94), one can expect the involvement of
the enzyme in immune processes. This was reported first in the
early 2000s (95, 96): in 2000, Tatsumi et al. proposed a role for
the enzyme in tolerance during embryonic implantation, based
on finding upregulated expression of TDO mRNA in murine
decidualized stromal cells surrounding the implanted embryo
(96). In 2001 Suzuki et al. reported high TDO expression during
early murine gestation, preceding the expression of IDO, thus
revealing an important role of TDO in fetal tolerance (95). When
regarding the immune modulator effects of the KP, research has
been mainly focused on IDO, but a growing body of evidence
is accumulating on the involvement of TDO as well. It indicates
the presence of the enzyme in tumor immune resistance (38,
97) and parasite, viral and microbial infections (98) (Table 5).
Expression of TDO by several different tumor types—such as
melanomas, bladder-, and hepatocarcinomas—drew attention
to the possible role of the enzyme in tumor immunity. TDO
was found to be constitutively expressed in glioblastomas and
excessive production of the AHR agonist KYN was found to
contribute to the immune escape, higher motility and survival of
tumor cells (38).

Kynurenine Monooxygenase

A third enzyme with assumed immunomodulatory effects of the
KP is KMO, which is situated at an important branch point
of the pathway. KYN can be catalyzed by KATs into KYNA,
representing a neuroprotective and antioxidant branch of the
pathway. On the other hand, KMO can convert KYN to 3-
HK, which can be further converted into PIC and QUIN. Both
of these metabolites are known to have neurotoxic and free
radical generating properties. Thus, KMO has a key role in
determining the balance between pro- (QUIN, 3-HK, PIC) and
anti-inflammatory (KYNA) kynurenine metabolites.

The substrate of the KMO enzyme, KYN, was shown to
promote tumor formation and the generation of regulatory
T cells via AHR (99) and adenylate- and guanylate-cyclase
pathway activation (38). However, the mode of action of KYN
on AHR raised questions, as the structure of the metabolite
does not show the necessary features for high-affinity AHR
binding. Recently two KYN condensation products have been
identified, which are high affinity AHR ligands, active at low
picomolar levels. Thus, KYN seems to be a pro-ligand that
spontaneously converts to derivatives possessing AHR agonist
properties (100). Theoretically, enhancing the metabolism of
KYN via KMO upregulation could be protective against the
development of tumors. However, upregulation of KMO also
leads to the formation of metabolites with reactive oxygen species
(ROS) generating properties, such as 3-HK, 3-HAA, and QUIN.
QUIN also exerts excitotoxic effects through the activation of
NMDAR:s (38). Pharmacological inhibition of KMO enhances the
production of KYNA, a metabolite with neuroprotective effects.
Besides its neuroprotective effects (101, 102) KYNA also has an
important role in immunomodulation, mainly via the activation
of GPR35 receptors and AHRs [reviewed: (103)]. KYNA was
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FIGURE 2 | Overview of pathways leading to IDO enzyme production and regulation. IDO activity is regulated at different levels. Its substrate Trp and cofactor heme
are positive regulators of the enzyme, whereas antioxidants and NO act as inhibitors. Phosphorylation at tyrosine side chains and ubiquitination modulate DO activity
and half life. At the level of transcription several cis regulatory elements of the IDO promoter collect regulatory signals via binding of transcription factors and epigenetic
regulators, which respond to signals arriving from receptors that are activated by cytokines and other immunomodulatory molecules. Extracellular signals produced by
other cells or pathogens and intracellular signals, such as cytosolic dsDNA can both induce IDO expression and feed-back regulation of the production has also been
described [see text for details and (60)]. Abbreviations: IFN: interferon; TNF: tumor necrosis factor; TGFf: transforming growth factor beta; LPS: lipopolysaccharide;
dsDNA: double strand DNA; TLR: toll-like receptor; TGFBR: transforming growth factor beta receptor; IFNBR: interferon beta receptor; IFNGR: interferon gamma
receptor; TNFR: tumor necrosis factor receptor; AHR: aryl hydrocarbon receptor; ISRE: IFN stimulated response element; DRE: dendritic cell response element; GAS:
gamma-activated sequences; HDAC: histone deacetylase; ~P: phosphorylation; IDO: indoleamine 2,3-dioxygenase; SOCS3: suppressor of cytokine signaling 3; Trp:
tryptophan; NO: nitrogen oxide.

found to attenuate inflammation under inflammatory conditions ~ and different gene delivery techniques into model animals
by several means: by reducing TNF expression in monocytes,IL-4  and tissue culture cells have yielded results regarding the
secretion of T-cell receptor stimulated variant natural killer-like T immunomodulatory effects of these enzymes. The next section
cells and LPS induced IL-23 formation of DCs [reviewed: (103)].  will review these results. We find it important to point out here
The expression of KMO was also found to be upregulated in  that with the rapid progress of gene modulatory and gene editing
the CNS of rats in LPS induced systemic inflammation, together  techniques it is expected that the data summarized here will grow
with a significant increase in pro-inflammatory cytokines such as  in the near future.
TNFa and IL-6 (73).

KMO expression and activity have been investigated in

autoimmunity related diseases. A link seems to exist through IMMUNOMODULATION VIA ALTERING THE
AHRs as these receptors play an important role in the regulation EXPRESSION OF GENES THAT CODE FOR

of pro-inflammatory Th17 cell differentiation (42) and Trp ENZYMES OF THE KYNURENINE
metabolites act as agonists of AHRs. KP metabolites play rolesin ~ PATHWAY
promoting the differentiation of naive T cells into effector Th17
cells (104), which are governors of autoimmune diseases (105). Indoleamine 2,3-Dioxygenase
Stephens et al. reported that Th17 cells highly express KMO, and ~ Effects of Genetic Modification of Indoleamine
that either the inhibition of the enzyme or the addition of 3-HK  2,3-Dioxygenase Related to Immune Responses in
augmented the formation of effector T cells (42). Infection

Since these three enzymes of the KP seem to be associated  During the course of sepsis, induction of IDO by bacterial
with immune functions, genetic approaches aimed at modifying  endotoxins plays a pivotal role in the disproportional production
immune responses are focused on altering their expression. So  of pro- and anti-inflammatory cytokines. Consequently, the
far, primarily gene knockouts, gene expression regulation by  detrimental effects of excessive pro-inflammatory stimuli could
small interfering RNA (siRNA), short hairpin RNA (shRNA)  be lessened by the genetic inhibition of IDO (2). Indeed, in IDO
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FIGURE 3 | Effects on IDO activity on immune responses. IDO is expressed by
various cells of the immune system in response to activation by inflammatory
markers such as IFNs, ILs, TNFs, PGs and LPS. By decreasing the amount of
available Trp IDO activates the GCN2 stress-kinase pathway leading to T cell
anergy and cell cycle arrest, inhibits the mTOR pathway thus diminishing T cell
proliferation. By increasing KP metabolite concentrations IDO also contributes
to the apoptosis of effector T cells and promotes the formation of T cells of the
regulatory subtype. Via these mechanisms IDO might exert profound effects on
both systemic and local immune responses. Abbreviations: IFNs: interferons;
lls: interleukins; TNFs: tumor necrosis factors; PGs: prostaglandines; LPS:
lipopolysaccharide; DC: dendritic cell; IDO: indoleamine 2,3-dioxygenase; Trp:
tryptophan; KP: kynurenine pathway; mTOR: mammalian target of rapamycin.

knockout mice (IDO~/7) the balance was shifted toward the
production of the anti-inflammatory IL-10. IDO inhibition had
beneficial effects on the survival rates as well: overall survival
from LPS induced shock was higher among IDO~/~ animals
compared to wild-type mice (2) (Table 1).

In mouse model, Blumenthal et al. found upregulation of
IDO expression upon Mycobacterium tuberculosis infection both
in vitro and in vivo. Though in vitro experiments indicated
that genetic ablation of the enzyme resulted in enhanced T cell
proliferation after infection, such changes were not observed in
vivo, as there was no significant difference between the numbers
of activated T cells in the lungs and lymph nodes of IDO~/~
and IDO*/* animals. In accordance with this, the survival rate
of Mycobacterium tuberculosis infected IDO™/~ mice did not
differ significantly from that of their IDO expressing counterparts
(8). Uropathogenic Escherichia coli (UPEC) was also found to
elevate IDO expression in vitro in human uroepithelial cells and
polymorphonuclear leukocytes. In mice in vivo genetic ablation
of the enzyme (IDO~/7) resulted in increased levels of pro-
inflammatory cytokines, such as granulocyte-colony stimulating
factor, IL-6 and IL-17, leading to an increase in granulocyte
accumulation and local inflammation in the bladder of animals
and decreased survival of extracellular bacteria as compared
to wild type (IDO*/*) mice. These observations led to the

conclusion that via IDO up-regulation the pathogen reduces
host inflammatory responses thus enabling its own survival (9).
Similarly to UPEC, infection with Rhodococcus equi, a facultative
intracellular pathogenic bacterium also enhanced IDO expression
in DCs and alveolar macrophages. In the liver tissue of IDO™/~
animals, infection with the pathogen decreased TGFp level and
FOXP3 expression, indicating a reduction in T regulatory cell
responses, in parallel with prolonged liver inflammation (10).
The IDO immunomodulatory role was also studied in
chronic viral diseases. Infection of mice by LP-BM5 Murine
Leukemia Virus (MuLV) resulted in the development of fatal
immunodeficiency syndrome, also known as murine AIDS.
Similarly to acquired immunodeficiency in humans, murine
AIDS is characterized by activation and proliferation of T and B
cells with altered functions, a decrease in the number of function
of natural killer (NK) cells and abnormal cytokine production.
Animals suffering from the disease are more prone to developing
B cell lymphoma and to opportunistic infections. Genetic
inhibition of IDO was found to evoke protective effects in MuLV
infected animals: in IDO™/~ mice an increase was observed
in the levels of type I IFNs and the number of plasmocytoid
dendritic cells (premature type of DCs, pDCs) accompanied by
a decrease in virus replication as compared to wild type animals.
Interestingly, type I IFN neutralization in IDO deficient animals
abolished the decrease in virus replication, suggesting a cardinal
role of these IFNs in immune responses against viruses (3). The
enhanced production of type I IFNs was attributed to pDCs,
which were earlier reported to produce a number of different
type I IENs upon viral infection (106), and are chronically up
regulated in HIV patients too (107). According to a further report
from the same laboratory, genetic inhibition of IDO expression
was also beneficial with the encephalomyocarditis virus (ECMV)
murine model of acute viral myocarditis (4). Similarly to the case
of MuLV infected mice, IDO™/~ animals showed a significantly
higher survival rate after ECMV infection compared to WT
mice. In knockout animals, ECMV replication was inhibited,
as demonstrated by the lower levels of viral genomic RNA in
the heart and consequently the decreased levels of myocardial
damage. The mechanism of the protective effect in the absence
of the enzyme is believed to be the lack of KYN and 3-HK
production. These metabolites are proposed to decrease the
production of antiviral type I IFNs, key factors in myocardial
damage protection. Indeed, treatment of IDO~/~animals with
these KP metabolites decreased the otherwise elevated levels of
type I IFNs and led to increased myocardial destruction and a
prominent reduction in the survival rate. Based on the findings
that bone marrow transplantation from IDO~/~ animals to
IDO*/* mice resulted in significantly higher IFNB levels than
was in the case with IDO™/~ animals receiving bone marrow
from WT animals, it was proposed that type I IFN production is
regulated in the bone marrow. It was concluded that inhibition
of antiviral type I IFN production by IDO is the result of
multiple mechanisms: on the one hand, the number of activated
macrophages is suppressed by the formation of KP metabolites,
and on the other hand, local Trp depletion also can contribute
to a decrease in type I IFN production (4). In pDCs type I IFN
production is regulated by the mTOR pathway (108) that can
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be antagonized by amino acid starvation (109). Considering that
IDO catalyses the metabolism of Trp, one can suppose that the
enzyme inhibits mTOR signaling via locally depleting Trp (4).

IDO overexpression was also found to be beneficial in the
course of West Nile virus infections. Using IDO expressing
HeLa cells, it was shown that overexpressing IDO prior to viral
infection resulted in a significant decrease in viral replication.
Excessive enzyme expression restricted the spread of the infection
to the neighboring cells (6).

In contrast with the findings of Hoshi and colleagues,
O’Connor et al. reported that IDO deficient LP-BM5 infected
mice displayed similar disease severity to their IDO expressing
counterparts. These authors detected no differences in retroviral
load between IDO~/~ and WT animals, thus the lack of enzyme
did not seem to affect viral replication or viral spread (7).
Similar results were reported by Huang et al., as they found no
significant effect of either pharmacological or genetic inhibition
of IDO on the outcome and severity of MuLV infection. On the
other hand, this study identified IDO as a major factor in pain
hypersensitivity related to acute influenza A and MuLV infection.
IDO was found to enhance hypersensitivity via the production of
KYN, and genetic inhibition of IDO resulted in the alleviation of
acute and chronic pain related to infection (5).

Effects of Genetic Modification of Indoleamine
2,3-Dioxygenase on Immune Responses in
Autoimmune and Allergic Diseases

Besides inflammation related to bacterial and viral infections,
the role of IDO in autoimmune and allergic processes has also
gained attention (Table 2). Studies on the role of IDO in mucosal
allergic processes revealed that though the enzyme is not essential
for antigen-induced airway immune tolerance, it plays a cardinal
role in antigen-induced Th2 mediated immune responses (11).
Genetic inhibition of the enzyme in a mouse model of acute
allergic airway inflammation led to a decrease in effector T cell
formation and in the production of Th2 cytokines, such as IL-
4, IL-5, IL-9, and IL-13, which play important roles in asthma
and other allergic diseases (110). As a consequence, attenuation
in airway inflammation, mucus secretion, airway eosinophilia
and hyperresponsiveness was observed in IDO~/~ animals when
compared to their WT counterparts. Investigation of a chronic
asthma model yielded similar results with fewer DCs in the
lymph nodes and a decrease in parameters indicating allergic
airway inflammation. In accordance with this, IFNy (a Th1 type
cytokine) expression was elevated. In summary, IDO expression
of infiltrating DCs seems to be essential in promoting Th2 type
immune response upon exposure to airway allergens (11).

In contrast with the above, no effect of knocking out
IDO was found in an auto-inflammatory disease, systemic
juvenile idiopathic arthritis (sJIA) (12). In a number of sJIA
cases secondary hemophagocytic-lymphohistiocytosis (sHLH)
develops, a condition characterized by the over-activation of
macrophages [macrophage activation syndrome (MAS)], thus
leading to a potentially fatal disease state. The development of
a cytokine storm—in which IL-18, IL-6, and IL-18 play cardinal
roles—is characteristic of both sJIA and sHLH (111). It has been
supposed that both sJIA and sHLH were the consequences of

the lack of effective down regulation of an exaggerated immune
response (112, 113). Taking into account the immunomodulatory
effects of IDO, assuming the involvement of the enzyme in
these disease states seemed well-grounded. However, results of
Put et al. did not support this hypothesis. Genetic inhibition of
IDO in mice models of sJTIA, MAS, and sHLH, did not indicate
differences in the symptoms of IDO™/~ animals as compared to
WT mice. Though neither the level of IDO2 nor TDO was found
to be elevated, they hypothesized that the absence of IDO was
compensated by other Trp metabolizing enzymes of the KP (12).

According to results reported by Lemos et al., the presence of
IDO is essential in provoking beneficial immune responses in a
mouse model of experimental autoimmune encephalitis (EAE)
(13). Cytosolic DNA leads to the activation of the Stimulator
of Interferon Genes (STING) adaptor and results in the
induction of interferon type I (IFNaf) production. Continuous
activation of STING provokes autoimmunity due to a failure
in immune tolerance. In an EAE mouse model of multiple
sclerosis (MS), it was found that following immunization
with myelin oligodendrocyte glycoprotein (MOG), systemic
treatment with DNA nanoparticles (DNPs) or cyclic diguanylate
monophosphate (c-diGMP) induced STING signaling. In this
way, potent regulatory immune responses could be achieved
leading to restrained EAE severity and delayed disease onset. In
accordance with this, reduced levels of effector T cell infiltration
in the CNS and decreased immune responses to the administered
MOG therapy in the spleen were observed. Interestingly, MOG
treatment stimulated CNS neurons to express IDO, however,
after DNP therapy no IDO expression could be detected in
the CNS of immunized mice. The authors concluded that
while immunization with MOG led to IDO expression in
neurons, DNP induced the enzyme in tissues outside the CNS
and paradoxically diminished MOG induced IDO expression
in neurons. Based on these findings it was proposed that
IDO induction in lymphoid tissues inhibited infiltration of
effector immune cells in the CNS and consecutive neuronal
IDO expression. In accordance with the above, for therapeutic
responses IDO gene function was essential only in hematopoietic
cells and lack of IDO in non-hematopoietic cells did not cause
changes in the outcome of DNP therapy. The changes provoked
by DNP administration were found to be highly dependent on
intact IDO and IFNap receptor genes, as no therapeutic responses
were observed in either STING-KO or IDO~/~ animals. It
was concluded, that attenuation of immune responses upon
DNPs and c-diGMP application was due to the induction of T
cell regulatory responses via the STING-IFNap-IDO pathway.
This, accompanied by elevated Trp degradation and changes
in the balance of pro-and anti-inflammatory metabolites and
cytokines, results in better immune response outcome (13).
Earlier reports on diminished Treg responses, exacerbated EAE
disease severity and increased encephalitogenic Thl and Th17
responses in IDO~/~ mice supports this notion. Administration
of the Trp metabolite 3-HAA, besides inhibiting Thl and
Th17 cells, also enhanced Treg cell responses, thus improving
disease outcome. It was concluded that IDO, by promoting
the formation of Trp metabolites, such as 3-HAA, enhances
Treg differentiation (14).
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Investigation of IDO mRNA expression in mice with collagen
induced arthritis (CIA), an animal model of rheumatoid
arthritis (RA), revealed a significant increase in the level of the
transcript in the lymph nodes of affected animals. Enhanced
IDO expression was mainly limited to DCs in lymph nodes. By
comparing disease progression in IDO deficient to WT mice, it
was found that though the severity of the disease was similar
at the early stages, in WT animals a plateau was observed
5 days after disease onset, while in IDO™/~ mice arthritis
progressed further leading to a more severe disease. Increased
joint damage, higher production of IFNy and IL-17 in the lymph
nodes and higher Thl and Th17 cell frequency were observed
in paws of IDO deficient animals. These observations led to
the conclusion that IDO activation in lymph nodes is essential
in reducing the accumulation of Thl and Th17 cells in joints
and thus restraining disease severity and progression in RA
animal model (15).

In accordance with the findings of Criado et al., Chen et al.
reported that adenoviral vector-mediated intra-articular IDO
gene delivery (AdIDO) into ankles of CIA rats ameliorated
disease severity. In the ankle joints of CIA animals, a significant
reduction was observed in bone destruction, soft tissue swelling
and synovial hyperplasia. Furthermore, a significant decrease in
CD4+ T cell infiltration accompanied by a higher apoptosis
rate and reduced CD68 macrophage infiltration was detected
in AdIDO treated CIA animals. Reduced Th17 cell activity
was found as well, as was indicated by diminished IL-17,
IL-6, IL-1p concentrations and RORyt expression in ankle
joints and draining lymph nodes. The authors concluded
that IDO gene therapy reduced arthritis via the up-regulation
of the Trp degradation pathway, thus increasing kynurenine
concentrations, leading to increased CD4+ T cell apoptosis and
diminished IL-17 production (16).

Type I diabetes is an autoimmune diseases, in which
insulin-producing pancreatic cells are destroyed by activated T
lymphoctyes (114). In pDCs IDO expression is triggered by
TGEFpP via the non-canonical NF-kB pathway. Besides its Trp
catabolizing ability, in pDCs IDO acts as a signaling molecule as
well: promoting its own and also TGFp expression, it amplifies
immune tolerance and enables the spreading of TGFf dependent
tolerance (115-117).

In a study of non-obese diabetic (NOD) mice, the animal
model of autoimmune diabetes, TGFp failed to activate the
non-canonical NF-kB pathway, thus no up-regulation could
be achieved in Ido expression. However, after transfection of
the Ido gene into NOD pDCs, TGFf administration led to
the activation of the NF-kB pathway. This enhanced IDO
expression was accompanied by a decrease in IL-6 and TNFa
pro-inflammatory cytokine production and an up-regulation
of the anti-inflammatory TGFf, ensuring a more immune-
tolerant setting. Enhanced IDO expression also led to decreased
production of pancreatic $-cell auto-antigens. It was concluded,
that immunoregulatory functions of TGFf require a basal
expression level of IDO, which could be achieved by the
forced expression of the enzyme (17). The observation that
enhancement of both the enzymatic and signaling activity of IDO
proved to be beneficial in NOD mouse model, might allow us

to expect success from IDO modulation in other, autoimmune
diabetes related disorder as well.

A study reported by Ravishankar et al. further strengthens
the role of IDO in the course of autoimmune diseases. In a
model of Lupus-prone Murphy Roths large (MRLIpr/Ipr) mice—
an analog of systemic lupus erythematosus (SLE)—significant
constitutive IDO expression was observed in the spleen of pre-
symptomatic MRLIpr/Ipr animals. In contrast, in normal mice
little basal IDO activity was present. Treatment of MRLIpr/lpr
mice with pharmacological IDO inhibitor, DIMT, yielded
significantly elevated autoantibody levels and IgG immune-
complex deposition in the skin and kidneys of affected animals,
what is a manifestation of loss of self-tolerance. Injecting
apoptotic thymocytes in IDO~/~ MRLIpr/lpr animals resulted
in an increase in autoantibody titers, pro-inflammatory cytokine
production, and dysregulated T cell responses culminating in
lethal autoimmunity. On the other hand, exposure of IDO*/+
MRLIpr/Ipr mice to apoptotic cells did not lead to pathogenic
autoimmunity, as the response to thymocytes was low and self-
limiting. Whether the presence of IDO enables the suppression of
T cell responses to the antigens presented or whether it inhibits
the antigen presentation itself to potentially autoreactive T cells,
needs further elucidation. Nevertheless, the role of IDO in the
maintenance of immune homeostasis and in the prevention of
autoimmune progression is inevitable (18).

Effects of Genetic Modification of Indoleamine
2,3-Dioxygenase on Transplant Related Immune
Responses

Besides studies on the role of IDO in immune responses
to infections and autoimmune reactions, its involvement in
transplant responses is also a focus of research (Table3). A
possible way of treating autoimmune (Type I) diabetes could
be the restoration of insulin production via the transplantation
of insulin producing pancreas cells (118). However, major
concerns are the reappearance of autoimmunity and the rejection
of the allograft (119). A study by Alexander et al. yielded
promising results with respect of these issues. They found that
transplantation of diabetic mice with pancreatic islets expressing
IDO via adenoviral gene transfer resulted in prolonged graft
survival (19). In vitro experiments revealed a significant depletion
of locally available Trp and inhibition of the proliferation of T
cells obtained from diabetic animals. The extended in vivo graft
survival was proposed to be due to local Trp depletion at the
site of transplantation, in accordance with the in vitro findings.
These results suggest that transplanted pancreatic cells expressing
IDO due to ex vivo genetic editing are capable of inhibiting
the proliferation of host diabetic T cells, thus preventing graft
rejection (19). These findings open new possible avenues in the
treatment of type I diabetes.

Enhanced IDO expression was also found to be beneficial
in the case of transplantation of an immune-privileged tissue,
the cornea (20). Over expression of IDO in donor corneal
endothelial cells prior to the transplant resulted in increased
formation of L-KYN in the allograft. As a consequence, the
proliferation of allogeneic T cells was locally inhibited, thus
permitting the prolonged survival of the graft when compared to
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no IDO expresser controls. Similarly, enhanced IDO expression
prevented lung allograft injury in a rat model. Liu et al.
used non-viral gene transfer methods to deliver human IDO
gene to enhance IDO expression in the transplanted lungs.
They found that both functional and histological properties
of IDO overexpressing lungs were significantly improved in
comparison to allografts without enhanced gene expression (21,
23). IDO gene delivery blocked local T cell responses, but
could not prevent the recruitment of neutrophil granulocytes.
Enhanced IDO expression led to the inhibition of intracellular
ROS formation, thus reducing ROS induced necrosis and
apoptosis of lung cells (21). IDO overexpressing lung allografts
displayed more preserved bronchus-alveolar architecture due
to significantly less interstitial and peribronchial collagen
deposition than controls. In vitro IDO expressing lung cells
inhibited the TGFp mediated proliferation of fibroblasts,
however, this could also be prevented by the addition of
Trp, suggesting that local Trp depletion due to enhanced
IDO expression was the mechanism of fibroblast proliferation
prevention (23).

In following studies, Liu et al. found that in transplanted lung
allografts IDO overexpression reduced the number of infiltrating
CD3+ and CD8+ T cells. CD8+ T cells lost their cytotoxic
properties, and a significant reduction was observed in their
TNFa and IL-2 production. In vivo findings revealed that IDO
overexpression limited ATP production in CD8+ cells. In vitro
studies showed that IDO selectively diminished the activity of
electron transport chain complex I, which explains the reduced
ATP production of infiltrating T cells (22).

Further studies revealed that besides enhanced IDO
expression, systemic administration of a KP metabolite, 3-
HAA was also capable of prolonging lung allograft survival.
Furthermore, IDO overexpression in lung allografts, in addition
to TNFa and IL-2, also decreased the level of IFNy, IL-12, IL-4,
IL-5, IL-6, and IL-13. However, there was no reduction in the
level of a potential protective cytokine, IL-10. As IL-2, IL-4,
IL-12, and IL-6 play important roles in the production of effector
memory T cells, it was proposed that IDO overexpression
inhibited not only early T cell responses, but also diminished
the formation of memory T cells, thus prolonging the survival
of the allograft. In vitro findings demonstrated that high IDO
environment led to decreases in intracellular calcium levels,
phospholipase C-y1 phosphorylation and mitochondrial mass.
These observations offer novel insight into the mechanisms
by which IDO exerts T-cell inhibiting properties: namely by
impairing T cell receptor activation via decreasing calcium
influx, thus impairing calcium signaling (26).

IDO overexpression in fibroblasts diminished CD3+ T cell
recruitment at cutaneous wounds as well. The in vitro model
showed that wounds receiving IDO expressing human fibroblasts
had faster healing rates compared to those grafted with non-
treated fibroblasts. This was partly because of the significantly
increased vascularisation in wounds prior to receiving IDO
expressing fibroblasts as observed in an in vivo rat model.
However, the addition of Trp diminished otherwise enhanced
angiogenesis, implicating the Trp depleting role of IDO in the
course of capillary formation (24).

Overexpression of the enzyme was found to be beneficial
regarding cardiac allograft survival as well. Overexpression of
IDO in DCs resulted in decreased allogeneic T cell proliferation
in vitro. Based on in vivo experiments it was concluded that
adenovirus mediated IDO gene transfer in the donor heart led
to decreased monocytes, macrophages and T cells infiltrating the
organ. This was accompanied by diminished intragraft IFNy,
TNFa, TGFB, and IL-18 levels and prolonged graft survival (25).

Altogether, these findings underline the feasibility of
using IDO gene induction for the purpose of preventing
allograft rejection.

Effects of Genetic Modification of Indoleamine
2,3-Dioxygenase on Immune Responses in Disease
States Related to Chronic Inflammation and in
Intestinal Immunity

In addition to its possible use to modulate immune processes
related to infectious diseases, allergy, transplantation, and
autoimmunity, the involvement of IDO has also been
investigated in diseases accompanied by chronic inflammation,
such as diabetes, aorta aneurysm, obesity, and hepatic fibrosis
(Table 4).

Hyperglycaemia induced chronic retinal inflammation has a
pivotal role in the development of diabetic retinopathy (DR), one
of the major causes of visual impairment worldwide (120). In
a recent study, Nahomi et al. reported a 50 percent increase of
the level of IFNy in human diabetic retinas accompanied with
elevated IDO expression (27). Genetic inhibition of IDO function
in diabetic IDO~/~ mice was found to reduce retinal capillary
degeneration, as acellular capillary formation in knockout mice
was alleviated as compared to their WT counterparts (27).

Chronic inflammation has been reported to be a primary
feature of atherosclerosis as well (121). The higher angiotensin
II (Angll) plasma levels in atherosclerosis suggest hormone
involvement in the development of various cardiovascular
diseases. This raised the possibility of using the hormone to
generate animal models of diseases linked to atherosclerosis.
Indeed, infusion of Apolipoprotein E knockout (ApoE~/~) mice
with AnglI led to the development of more severe atherosclerotic
lesions in the aorta. In the affected aortic segments, high
numbers of lipid-laden macrophages and lymphocytes were
observed accompanied by increased macrophage infiltration
in the adventitia (122). In a mouse model of atherosclerosis,
Angll was found to enhance the expression of IDO in parallel
with increased IFNYy expression, indicating a link between the
KP and arterial degeneration (28). Inhibition of the enzyme
exerted beneficial effects, as in WT mice Angll infusion resulted
in increased oxidative stress, dysfunction, and apoptosis of
endothelial cells, however, these detrimental effects were all
suppressed in IDO™/~ animals. AnglII infusion also increased
plasma kynurenine levels in WT animals, however, such changes
were not observed in IDO deficient ones. In vitro studies revealed
that upon IFNYy induced Ido activation, 3-HK is formed, which,
by increasing nicotinamide adenine dinucleotide phosphate
(NAD(P)H) oxidase activity, leads to enhanced ROS production,
triggering dysfunction and apoptosis of endothelial cells (28).
These results propose a possible therapeutic approach to
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atherosclerosis linked cardiovascular diseases: genetic inhibition
of IDO leading to reduced 3-HK and, consequently, diminished
ROS production could be a feasible way of avoiding endothelial
cell loss.

Abdominal aortic aneurysm (AAA) is a potentially fatal
condition characterized by the abnormal dilatation of the
abdominal aorta. The pathomechanism leading to the disease is
similar to that seen in atherosclerosis, as it includes the apoptosis
of vascular smooth muscle cells (VSMCs), degeneration of the
extracellular matrix by a metalloproteinase mediated mechanism,
collagen remodeling and chronic inflammation of the aortic wall
(123, 124). In a hypercholesterolemic mouse model of AAA,
in which low density lipoprotein—receptor deficient (Ldlr—/")
mice were infused with AnglI and fed with high fat diet (HFD),
the absence of IDO was found to be protective against the
development of aneurysms (29). In IDO~/~ animals infused
with Angll, TUNEL assay did not indicate increased levels of
apoptosis, but a-actin staining was increased. Both observations
suggest the protective effect of IDO exerted via the inhibition of
apoptosis of VSMC. A comparison of circulating immune cells in
IDO*/* and IDO~/~ animals revealed no significant difference
in the number of neutrophils, monocytes, CD44 and CD8+
T cells or CD19+ B cells. Similarly, no significant difference
was detected in infiltrating macrophages and T lymphocytes
in the adventitia and media of the aortic aneurysm. However,
IL-17 production was significantly decreased in IDO deficient
animals as compared to their IDO expressing counterparts (29).
In summary, these findings raise the possibility of a mechanism
similar that seen in the development of atherosclerosis. As such,
IDO mediated 3-HK formation could be one of the main culprits
in arterial wall degeneration (28, 29).

Recently a further kynurenine metabolite and an enzyme of
the pathway were identified to take part in the pathomechanism
of the disease. According to a study by Wang et al., IDO
knockout and siRNA mediated Kynu silencing in ApoE~/~
mice were protective against Agll induced AAA formation
(30). In ApoE~/~ mice the genetic inhibition of both IDO
and KYNU caused a decrease in elastic lamina degradation
and aortic expansion was observed following Angll infusion.
The comparison of serum inflammatory markers, such as
IFNy, TNFa, IL-6, and cyclophilin-A, revealed no significant
differences between IDO expressing and IDO™/~ animals,
suggesting another IDO regulated mechanism apart from
immune mediation. 3-HAA was identified as a main factor
in the pathomechanism of aneurysm development as it was
found to upregulate the expression of matrix metallopeptidase 2
(MMP2), which has a central role in the pathophysiology of AAA
formation via extracellular matrix degeneration (30, 125).

The production of 3-HAA was regulated by both IDO and
KYNU. On the one hand, AngIl infusion in IDO*/* mice
induced the expression of both enzymes, which resulted in the
elevation of the level of 3-HAA both in the plasma and aorta
of these animals, however, no such changes were observed in
the absence of IDO. On the other hand, genetic inhibition of
KYNU led to decreased 3-HAA production and diminished
MMP?2 expression, consequently preventing the formation of
AAA (30). The investigation of human AAA samples revealed

similar changes in the KP: both IDO and KYNU enzymes
were significantly upregulated in human aneurysm samples,
accompanied by higher levels of 3-HAA in the affected aortic
wall (30). These findings underline the therapeutic potential of
interfering in the pathway to prevent vascular degeneration.
Association between obesity, inflammation and the gut
microbiome has been intensively investigated in the past decades
(31, 126). In a recent study, Laurans et al. reported that IDO~/~
mice fed a high fat diet showed lower body weight and fat
mass compared to WT animals on the same diet. Knockout
animals also had lower liver weights accompanied by less lipid
accumulation and decreased macrophage infiltration in the
organ, implying the presence of a protective mechanism against
steatosis. A decrease in inflammatory processes was also detected
in white adipose tissue (WAT) of IDO™/~ mice compared
to their wild type counterparts. In epididymal and inguinal
adipose tissues, lower numbers of infiltrating macrophages were
detected and in inguinal WAT the number of M2 type cells
was higher, whereas there was no significant change in the
number of M1 type cells (31). M2 macrophages are associated
with alleviating inflammation, propagating wound healing and
are regarded as a “benign” subtype in contrast with the pro-
inflammatory, activated M1 type ones (127). In accordance
with this, the levels of anti-inflammatory cytokines—such as
IL-10, 4, and 5—were significantly higher in animals lacking
the enzyme. Besides protection against liver steatosis, genetic
inhibition of IDO also proved to be beneficial against the
development of insulin resistance, as indicated by lower insulin
concentrations measured during oral glucose tolerance tests
(OGTT) and better results to insulin tolerance tests (ITT) by
IDO~/~ animals compared to WT mice. These findings suggest
the protective role of IDO inhibition against obesity and obesity
related pathological changes in metabolism affecting the liver and
glucose homeostasis. Laurans et al. also attempted to identify
the causative role of IDO in obesity and related disorders. They
found that KYN and KYNA supplementation did not abolish
the positive effects of IDO deletion on body weight, thus it is
unlikely that the beneficial metabolic changes seen in the case
of IDO inhibition are the consequences of the lack of these
metabolites (31). Several previous observations on obesity related
intestinal dysbiosis and gut derived LPS translocation (128), the
demonstration of high IDO expression in the gastrointestinal
tract, and that activity of IDO was increased in the intestine of
high fat diet animals (129) support the assumption that higher
intestinal IDO expression leads to a shift toward kynurenine
production instead of the formation of indole derivatives (31).
In concert with this assumption, Laurans and colleagues found
that in the IDO™/~ HED fed mice higher intestinal levels of
indole-3 acetic acid (IAA) were present. In parallel with this,
the levels of two cytokines known to be dependent on indole
derivatives (130), IL-17 and IL-22 [which both play primary
roles in rapid immune response of the host against microbes
(131)] were increased, accompanied by the decreased expression
of inflammation related genes. These changes in the intestinal
tract were accompanied by significantly diminished LPS levels in
the plasma of IDO~/~ animals on HFD compared to WT HED
animals. All combined, these findings strongly suggest a causative
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effect of IDO deletion in maintaining an intact intestinal immune
barrier in obesity (31).

However, while the absence of IDO can be beneficial, as in
most of the cases cited above, the lack of the enzyme can also
have detrimental effects in certain cases. The seemingly opposing
findings demonstrate the diverse and complex role of the enzyme
in the regulation of immune processes. Hepatic fibrosis is a
consequence of chronic inflammation which can be triggered
by various agents, such as viral infection, drugs, metabolic and
autoimmune diseases (32). Elevated expression of IDO has been
reported in hepatitis (132), leading to the assumption that the
enzyme might be involved in hepatic fibrosis. Based on data
of elevated levels of pro-inflammatory cytokines, such as TNFa
and IL-6, in a hepatitis model, Ogiso et al. proposed that the
induction of IDO by pro-inflammatory agents might play a role
in the disease. In a carbon-tetrachloride (CCl4) induced animal
model of the disease, the absence of IDO was found to aggravate
the progress of fibrosis. The number of macrophages producing
TNFa was significantly higher in the liver of IDO knockout
animals, leading to a rise in the level of TNFa accompanied
by the elevated expression of fibrogenic factors as compared to
WT animals. On the grounds that IDO activation leads to a
decrease in available Trp with the simultaneous production of
kynurenine metabolites and that Trp is cardinal in the activation
of NK and T cells, it was proposed that the elimination of IDO
activity contributes to liver fibrosis by a dual mechanism: the
inhibition of the enzyme results in sufficiently high Trp levels for
lymphocyte activation and prevents the formation of kynurenine
metabolites that suppress lymphocytes (32).

IDO seems to play an important role in intestinal immunity
under normal circumstances as well. Harrington et al. reported
a significant elevation of IgA and IgG in the gut and sera of
IDO~/~ mice as compared to wild type animals (33). Antibiotic
treatment of IDO™/~ animals led to a decrease in IgA and
IgG levels indicating that the increased level of these Igs was
a consequence of the lack of IDO modulatory effects on gut
microbiota. Based on the observation that the elevated baseline
Ig levels of IDO null animals could be corrected by antibiotic
treatment, the authors proposed the involvement of IDO in
a negative-feedback mechanism, which limits B lymphocyte
responses to commensal microorganisms in the intestinal tract.
This notion was supported by the finding that infection of
IDO~/~ mice with a bacterial enteropathogen similar to the
human pathogen Escherichia coli, Citrobacter rodentium, resulted
in attenuated intestinal inflammatory responses. This was
manifested in less oedema, cellular infiltration, epithelial damage
and reduced intestinal colonization of the bacteria in IDO null
animals as compared to WT (33). These beneficial effects were
attributed to the elevated formation of natural secretory IgA,
which facilitated the prevention of intestinal colocalization of the
pathogen. It was hypothesized that IDO regulated gut microbiota
by stimulating Ig production via the formation of cytotoxic
kynurenine metabolites, as these kynurenines could inhibit
the proliferation of the antibody producing B cells. Another
mechanism by which the enzyme can affect B cell responses is
by its ability to modulate T cell activity (33).

Effects of Genetic Modification of Indoleamine
2,3-Dioxygenase on Immune Responses to Cancer

A steadily growing body of data shows upregulated states of
IDO in various cancer types making it a potent target for
therapeutic approaches. To date, several chemical inhibitors of
the enzyme have reached clinical trials, however, there are only
a handful of those therapeutic approaches which attempt to
modulate the enzyme function by genetic means [reviewed in
(65)]. Besides post-translational modifications, the activity of
the enzyme is also controlled at the transcriptional level (65),
and in most interventions a decrease in the enzyme activity is
desired, so genetic modulation seems feasible and exploring ways
to achieve it is highly warranted. As upregulated IDO expression
has been reported in various tumors (81), silencing the IDO
gene could be an effective way for interfering immune escape
in malignancies (Table 4). Report that IDO silencing by siRNA
technology in cultured B16F10 melanoma cells diminished Trp
catabolism and prevented apoptosis of T cells supports this
notion. Transplantation of IDO inhibited tumor cells into mice
resulted in the formation of smaller tumors. Moreover, in vivo
IDO-siRNA treatment enabled the recovery of T cell responses,
thus restoring host antitumor immunity, and silencing the gene
also caused a delay in tumor onset (34). In melanoma mouse
model, silencing injection of IDO specific shRNA, expressed
from a plasmid in Salmonella typhimurium, attenuated tumor
growth and led to a significant decrease in the number of lung
metastases. In Ido-silenced animals massive tumor cell death was
observed accompanied by polymorph nuclear neutrophil (PMN)
infiltration in tumors. The production of excessive amounts of
ROS led to the apoptosis of cancerous cells. Though it is likely
that cytotoxic PMN recruitment is primarily to clear off S.t.
cells, the production of ROS generates a microenvironment that
is disadvantageous for tumor growth (35, 133). IDO silencing
has been demonstrated to be effective in ovarian cancer as well
(36). Injection of SKOV-3 human ovarian cancer cells with
short hairpin RNA (shRNA) silenced IDO (SKOV-3/shIDO)
into mice resulted in reduced tumor growth when compared
to animals receiving IDO expressing cells. Simultaneously,
peritoneal dissemination and ascites formation was inhibited and
NK cell accumulation in the tumors was increased in SKOV-
3/shIDO cell injected mice compared to those injected with
tumor cells without IDO inhibition. In vitro studies revealed
that in co-culture with NK cells, SKOV-3/shIDO cells displayed
significantly decreased survival rates compared to those of non-
IDO inhibited SKOV-3 cells, suggesting that IDO inhibition
increases cancer cell sensitivity to NK cells (36).

In a recent study Wang et al. reported that radiotherapy
(RT) treatment of patients with non-small cell lung carcinoma
caused a decrease in KYN/Trp ratio, indicating diminished
IDO activity, which was restored post-RT. They also reported
a significant correlation between IDO activity and the clinical
outcome of patients receiving RT. Those patients who had a
higher KYN/Trp ratio prior to RT treatment showed significantly
poorer survival than those with alower KYN/Trp ratio. Similarly,
there was correlation between greater KYN levels pre- and post-
RT treatment and modest survival. These data suggested that

Frontiers in Immunology | www.frontiersin.org

48

November 2019 | Volume 10 | Article 2570


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Boros and Vécsei

Immunomodulatory Effects of the KP

RT induced favorable immune activity changes and IDO activity
depended on the dose of implemented RT therapy. The authors
hypothesized that defining the optimal dose of therapy is crucial
in the modulation of IDO function, as a low dose would not be
able to cause satisfactory immunomodulatory changes, whereas
overdose can lead to detrimental impairment of the immune
system (134).

The potential of enhancing cancer treatment efficacy by IDO
function modulation was also demonstrated by Vareki et al. Anti-
IDO shRNA transfected A549 human lung adenocarcinoma cells
exhibit enhanced sensitivity to anti-cancer treatment. Genetic
depletion of IDO sensitized the cells to the NAD+ inhibitor
FK866, base excision repair (BER) inhibitor methoxyamine
(MX), the folate anti-metabolite pemetrexed and the nucleoside
analog gemcitabine—the latter two are already approved
anticancer drugs. Simultaneous downregulation of IDO and
thymidylate synthase (TS), a rate-limiting and key enzyme of
DNA repair, led to the sensitization of the cells to 5FUdR
as well. These results demonstrate the potential of genetic
inhibition of IDO in combination with chemotherapy in cancer
treatment (37).

Thus far, IDO targeting in cancer research and in therapeutic
approaches involves mainly pharmaceutical enzyme inhibition.
However, the use of IDO inhibitors has limitations [reviewed in
(135)], underpinning the importance of genetic interventions,
both alone and in combination therapy. Most of the known
IDO inhibitors are analogs of the enzyme’s natural substrate and
act as competitive inhibitors of the enzyme. Thus, in order to
exert the desired effect, these molecules either need to be used
in concentrations at which they can compete with Trp in the
target site, or need to show higher affinity for the enzyme than
its own substrate. Trp analogs can also interfere with amino
acid supply, thus misleading the cell, which in turn cannot give
competent responses to changes in nutrient levels. A further
limitation is that several of the applied drugs, such as 1-MT,
Epacadostat, Norharmane, and Navoximod are AHR activators.
This calls for specific attention, since there are data on AHR
ligands possessing pro-carcinogenic effects [reviewed in (135)],
though results are conflicting in regard of this question and
further investigation is needed in order to clarify this issue.
On the other hand, it must be emphasized here that similarly
to the disadvantages and concerns regarding pharmaceutical
enzyme inhibition, genetic modifications also carry dangers and
raise several questions [reviewed in (136)]. There are concerns
regarding the use of both viral and non-viral vectors and the
oft-target effects. Integration of the transfected genetic material
into unwanted sites might evoke unwanted, potentially fatal
immune responses for the host. While choosing sides between
the two therapeutic approaches at present is hardly possible,
in light of the progress of drug design and gene delivery
techniques, it is likely that IDO targeting in either way or
in combination will enter into the regiment of treatments of
important malignancies.

Tryptophan-Dioxygenase
Similarly to IDO, the effect of the functional ortholog enzyme,
TDO, expression was studied on the immune response to

tumors in animal models. Pilotte compared tumor rejection
rate observed upon injecting TDO expressing and TDO non-
expressing P815 tumor cells into the peritoneal cavity of mice
(38). Though both cell lines produced tumors, the growth of
tumors resulting from cells not expressing TDO was slower
than those originating from cells which expressed TDO. TDO
expression led to a decrease in T lymphocyte proliferation in
the tumor microenvironment, indicated by the fewer cytolytic
T lymphocytes (CTL) detected in the peritoneal cavity of
animals. They concluded that TDO inhibition promotes tumor
rejection. Furthermore, they concluded that inhibition of IDO
and TDO might have synergestic effects in improving host
response to tumors. Interestingly, pharmacological inhibition of
TDO potentiated tumor-rejecting ability (38). These findings
raise the possibility of targeting the TDO enzyme in an anti-
tumor therapy.

While inhibition of T lymphocytes resulting from TDO
expression can be detrimental for anti-tumor activity, the activity
of the enzyme can be beneficial in the fight against infectious
diseases. TDO expressing HeLa cells were found to exert
antiparasitic, antiviral and antibacterial effects, as these cells
were found to be able to inhibit the growth of Toxoplasma
gondii, Herpes simplex virus and Staphylococcus aureus after
tetracycline stimulation. Similarly to the finding of diminished
T lymphocyte proliferation in the tumor microenvironment
upon TDO expression, the presence of the enzyme resulted
in the restriction of T cell proliferation in cells pre-treated
with anti-CD3 mitogenic antibody. Furthermore, supernatant
obtained from TDO expressing cells was capable of inhibiting
allogeneic T cell responses. Both the antimicrobial and T cell
proliferation inhibitory effects of TDO expressing cells were
blocked by administering exogenous Trp, suggesting that the
mechanism by which these effects are achieved is due to the
decreased level of Trp available because of its metabolization
by TDO (40).

A recent study of Elbers et al. revealed that hypoxia
significantly impaired both antibacterial, antiparasitic and
immunoregulatory properties of TDO. Investigation of TDO
expression and enzymatic activity in HeLa cells engineered to
express the enzyme and murine liver homogenates revealed that
under low oxygen conditions, though the expression was not
affected, the enzymatic activity of the protein was significantly
reduced. In line with this, under hypoxic conditions, the growth
of Enterococcus faecalis and Staphylococcus aureus was no longer
inhibited, and T cell proliferation was restricted. Considering
that hypoxia can often be observed in tumoral tissues and
that infected tissues often exhibit low oxygen levels, the loss of
normoxia could be a key factor in the loss of appropriate immune
responses against pathogens and tumors (137).

Genetic inhibition of TDO was also investigated in EAE model
of MS. Though TDO deficiency had no impact on leukocyte
infiltration in the CNS, nor on the rate of demyelination, disease
activity or degradation of the optic nerve, it had protective
effects against neuronal loss in the spinal cord. This discrepancy
could be explained either by the different sensitivities of these
areas and/or by the diverse expression of TDO in separate brain
areas (39).
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As TDO is expressed in the liver, and some corticoids
which are widely used in immunosuppressive therapy following
transplant induce its expression (93, 138), it follows that TDO
modulation might be exploited in allogeneic liver transplant
protection. Reduction of locally available Trp in the liver can
diminish T cell responses (40), while simultaneous production
of kynurenines can promote the development of suppressive,
rather than effector dendritic cells, thus further inhibiting T cell
responses (138). At present, however, there is no available data
on findings on the effects of the genetic modulation of TDO on
liver transplantation. Taking into account the reasons mentioned
above and the positive effects of IDO modulation on allograft
rejection, investigating the possibility of TDO use in this respect
seems warranted.

Kynurenine 3-Monooxygenase

The third enzyme of the KP which has been subject to studies
concerning its immunomodulatory roles is KMO. In light of
the position of KMO in the hierarchy of KP enzymes, and
that the induction of KMO is likely to shift the balance
toward the production of neurotoxic and pro-inflammatory
metabolites, targeting enzyme inhibition is a tempting approach
for interfering in excessive inflammatory processes. Indeed,
modulation of KYNA production by KMO inhibition has gained
interest in the past decades and is a promising therapeutic
approach for disease states linked to neurodegeneration, major
depression, cancer, and immunological abnormalities (139).
Besides utilizing specific KMO inhibitors, Kmo knockout animals
are also efficient tools for investigating the effects of the lack of the
enzyme (Table 5).

Giorgini et al. generated Kmo™/~ mice and investigated
the levels of different KP metabolites in the brain, liver, and
plasma of the animals. The levels of Trp and NAD™ tended
to be only slightly decreased in these tissues. The marginal
decrease in Trp level suggests that KMO inhibition has only
a slight influence on upstream KP enzymes such as IDO and
TDO. The findings that practically no difference in NAD™
levels was found supports the assumption that alternative
NAD generating mechanisms are able to produce the necessary
amount of metabolite when the KP is inhibited. The levels
of KYN, AA, and KYNA were elevated, with a more striking
increase in the level of the latter in the periphery than in
the brain. Interestingly, though the levels of the product of
the enzyme, 3-HK, were significantly decreased both in the
periphery and the brain, the metabolite was still detectable. This
observation suggests that in KMO™/~ animals other enzyme
isoform(s) are capable of producing the metabolite in small
quantities (139). Noteworthy was the difference between levels
of QUIN in the periphery and in the CNS of Kmo null
animals. A significant decrease in the level of this excitotoxic
metabolite was detected both in the liver and plasma of
KMO™/~animals, but there was only a moderate decrease
in the brain. Based on these findings the authors concluded
that peripheral inhibition of KMO might be sufficient for
neuroprotection, as targeted inhibition of KMO in the CNS
would not result in a more prominent decrease in the levels

of QUIN (139). Though the decrease in the amount of 3-
HK and QUIN accompanied by the increase of KYNA levels
in the CNS could shift neurotoxicity toward neuroprotection,
excessive elevation of KYNA holds plenty of danger (140).
There is a growing body of evidence on the association
of exaggerated KYNA levels and impairment in cognitive
functions (101, 141-143).

Genetic modulation of KMO activity as a possible therapeutic
approach for intervening infections was investigated by Kubo
et al. in an EMCV induced mice model of viral myocarditis
(41). They found that the survival rate of KMO~/~ mice
was significantly higher compared to WT animals. This was
accompanied by a significant decrease in the cellular infiltration
of macrophages and neutrophils in the heart tissue of knockout
animals. Moreover, the number of EMCV infected cells was
significantly reduced in KMO™/~ specimens in parallel with
lower levels of EMCV genomic RNA. Viral infection upregulated
the expression of Kmo as significantly higher Kmo mRNA
levels were detected in KMO™/* animals after EMCV infection.
These findings support the notion that links upregulated enzyme
expression to higher mortality upon viral infection. Differences
between WT and knockout animals were detected not only
in the heart tissue but also in the periphery. In the serum
of KMO™/~mice lower chemokine and cytokine levels, while
higher levels of KYN and KYNA were detectable compared
to WT animals (41). KYN has been shown to inhibit T
and NK cell proliferation, and, via the generation of ROS,
induces the apoptosis of NK cells (144-146). KYNA also exerts
immune modulating effects by restricting TNF production of
macrophages via G protein-coupled receptor GPR35 activation
(147). Based on the anti-inflammatory effects of KYN and KYNA,
elevated levels of these metabolites are proposed to be key
factors in decreased inflammatory responses seen in KMO ™/~
animals. Thus, genetic inhibition of the enzyme is expected
to exert beneficial effects by preventing excessive cytokine and
chemokine production and decreasing the recruitment of cells of
the immune system (41).

In a mouse model of autoimmune gastritis, siRNA mediated
gene silencing of Kmo led to the exacerbation of the disease.
A self-regulatory mechanism was proposed, whereby the
expression of Kmo ensures kynurenine catabolism, therefore
reducing the amount of available AHR agonist kynurenine, thus
lessening the formation of Th17 cells and pro-inflammatory IL-
17 production. Accordingly, the inhibition of the enzyme
exacerbated inflammatory processes via promoting the
formation of Th17 cells (42).

Changes in KMO function have been reported in diseases
linked to chronic inflammation as well. The expression of
KMO in podocytes was found to be decreased in a diabetic
environment, both in human and mouse kidneys (43). Genetic
inhibition of the enzyme under diabetic conditions in mice and
zebrafish resulted in proteinuria, a condition often related to
diabetes. Serum kynurenine metabolite levels in these animals
were changed showing an increase in the levels of KYNA and
KYN parallel with a decrease in the level of AA, suggesting a
shift in the KP. Depletion of NAD™ was found to have a negative
effect on insulin sensitivity and also on the proper functioning of
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podocytes. Based on these findings, decreased expression and/or
genetic inhibition of KMO leading to decreased production
of NAD" was proposed to contribute to diabetes related
proteinuria (43).

In a recent study of Zheng et al., genetic deletion of KMO was
found to be protective against ischemia-reperfusion injury (IRI)
induced acute kidney injury (AKI). KMO ™/~ mice showed better
kidney function and significantly diminished tubular necrosis in
the kidney tissue than KMO™/* animals. Similarly, significantly
less neutrophil granulocyte infiltration was measured in the renal
tissue upon KMO deficiency. Following IR the levels of Trp were
significantly decreased in both KMO~/~ and KMO™/* groups
compared to animals without IRI. IRI also led to increased levels
of the protective KYNA in KMO™/~ mice. The plasma level of
3-HK was elevated followed by IRI in KMO expressing animals,
however, such changes were not observed in KMO deficient
animals. Considering the ROS generating, thus potentially pro-
apoptotic properties of 3-HK, it could be concluded that genetic
ablation of KMO, followed by decreased production of 3-HK,
carry potential for preventing AKI after IRI (44).

Despite that these findings suggest promising results
upon KMO ablation, inhibition of the enzyme might hold
disadvantages as well. Recently Badawy has proposed, that
QUIN is the most potent immunosuppressant KP metabolite,
and it plays antagonistic role with the anti-inflammatory KNYA
(148). Though downregulation of KMO might be beneficial
in regards to elevated anti-inflammatory KYNA production,
this would be accompanied by a diminished amount of the
immunosuppressant QUIN. This situation clearly represents
the complexity and delicate balance of the pathway and its
metabolites, and raises further difficulties to be overcome.

ASSOCIATIONS BETWEEN GENE
VARIATIONS LEADING TO CHANGES IN
KP ENZYME FUNCTION AND HUMAN
DISEASES

With the advent of new generation sequencing, a growing body of
data is accumulating on polymorphisms in the human genome.
It is, however, a great challenge to establish causality between
genomic changes and the appearance and/or progression of
specific diseases, and associations between genetic variants with
disease states remain mostly obscure. Variants of genes encoding
KP enzymes have been found to occur in frequencies differing
between patient groups of specific diseases and samples of healthy
population (1). Association of IDO variants have been suggested
with depression (48, 149, 150) and autoimmune diseases such
as systemic sclerosis (151) and Crohn’s disease (152). TDO
variants are believed to be associated with hypertryptophanemia
(153) and psychiatric disorders such as Tourette syndrome (154)
and autism (155). KMO mutations were found to be related
to psychiatric diseases such as schizophrenia (156-161), bipolar
disorder (162), and postpartum depression (163), and also in
multiple sclerosis (164). Variations of the AADAT gene encoding
the KATII enzyme were found to be associated with bacterial
meningitis (165-167), changes in KYNU are believed to be

related to essential hypertension (168, 169) and xanthurenic
aciduria (170). An SNP in the HAAO gene encoding 3-HAO was
found to be associated to hypospadiasis by a so far unknown
mechanism (171), and changes in ACMSD were proposed to be
linked with Parkinson’s disease (PD) (172).

Despite the numerous findings pointing to possible
associations of specific SNPs with specific diseases, only in
very few cases are known where a change in a gene sequence
results in a change in the activity of an enzyme connected to
the disease, thus indicating direct causal link between gene
variant(s) and disorder(s). In the following part of this section
we summarize findings of those naturally occurring variations
in KP genes that disturb the activity of the encoded enzyme and
thus are proposedly linked to human diseases in which immune
functions are altered.

Several IDO gene variants -present in the population with
differing frequencies-have been shown to impact enzyme
function (173). Nonetheless, there are only a very limited number
of studies on these variants, despite the great clinical relevance
they might have in a better understanding the pathomechanisms
of specific diseases.

Systemic sclerosis (SSc), a connective tissue disease of which
a hallmark is autoimmunity, is indicated by the infiltration of
circulating antibodies and activated T cells in the affected tissues
(151). Underlying the role of altered immune response in the
disease are findings of disequilibrium of the pro-inflammatory
Th17 and regulatory T cell functions in patients with SSc (174).
Considering the T cell modulatory effects of IDO, one can easily
foresee the involvement of the enzyme in the disease. Tardito
and colleagues investigated the occurrence of five IDO SNPs in
SSc (151). Three of these nucleotide alterations are located in the
coding region of the IDO gene, which all result in amino acid
changes, the other two are in the intronic regions. The frequency
of the 5 SNPs in the worldwide population vary between 1 and 22
percent, and each occur both in homo- and heterozygous forms
(based on data of www.ensembl.org). In the case of four out of
the five SNPs involved in this study there were no observable
frequency differences in their appearance among groups of SSc
and control samples.

A comparison of the frequency of SNP rs7820268 between
a group of SSc patients and a matching control group of
healthy controls revealed significant difference (151). Rs7820268
is a change of a C to T within intron 5 of the IDO
gene. The minor allele is present in 22 percent of the
population worldwide with 37 percent as the highest population
minor allele frequency (based on data of www.ensembl.org).
The frequency of T allele was significantly higher among
patients compared to healthy controls, and similarly higher
were the frequencies of both genotypes carrying the T allele
(TT and TC). By comparing the suppression activity of
T regulatory cells of patients with at least one T allele
to those homozygous for the C allele, it was shown that
CD8+ Treg suppression activity was impaired in individuals
carrying the minor (T) allele. The authors concluded that the
rs7820268 IDO SNP possibly affects IDO expression and/or
activity in a certain type of immune cells, e.g., DCs, which,
via cell-to-cell crosstalk affect the suppressive function of
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CD8+ Treg cells leading to the evolution of autoimmune
processes (151).

Association of IDO gene variants with another autoimmune
disease, Crohn’s disease (CD), has been reported by Lee et al.
(152). CD is a chronic inflammatory bowel disease, which
includes the involvement of the gastrointestinal tract and often
several extraintestinal manifestations, further worsening the
phenotype. In CD the expression of IDOI was found to be
upregulated, and the activity of the enzyme was found to be
in positive correlation with disease severity and inflammatory
markers such as erythrocyte sedimentation rate and C-reactive
protein (175). A comparison of the frequencies of 6 different
IDO1 variants among CD patients and healthy controls did not
reveal significant differences, nevertheless the higher frequencies
of three of the investigated variants were found to be associated
with the severity of the disease (152). Both rs35059413 and
rs35099072 are a C to T nucleotide change (indicated in reverse
orientation) resulting in a Ala to Thr and Arg to His amino
acid change in the 4th and 77th amino acid position of the
protein, respectively (based on data of www.ensembl.org). The
third variant is a C to A nucleotide change in exon 7. Patients
carrying any of these three coding IDOI gene variants were more
likely to show extraintestinal manifestations such as arthritis,
uveitis, and perianal disease, indicators of CD severity. Serum
KYN/Trp ratio, that is an indicator of IDO activity, revealed a
decrease in enzyme activity in patients possessing IDOI1 SNPs.
These findings strongly support the existence of an association
between a more severe disease phenotype and a decrease in IDO1
activity which is likely to originate from mutations of the IDO
gene (152).

Investigation of genetic variants of another KP gene, AADAT,
that encodes KATII, revealed that in a SNP (rs1480544), a
C to T change in the intronic region of the gene might
be associated with bacterial meningitis (BM) (165). The
minor allele was found to be more frequent among patients
suffering from the disease than in healthy volunteers. The
TT genotype was found to be accompanied by a decrease in
several inflammatory markers in the blood, such as TNFa,
IL1B, and IL6, and a diminished immune cell number in
the cerebrospinal fluid (CSF) (165). These findings led to the
hypothesis that this genetic variant could affect the course of
the infection by influencing the recruitment of immune cells
at the site of infection and the production of inflammation-
related cytokines. Further studies focusing on this genetic variant
revealed that in individuals with the TT genotype an increased
level of KYNA and an elevation in the level of an anti-
inflammatory cytokine, IL-10, were observed compared to those
carrying the CC genotype (166). This led to the conclusion
that BM patients bearing this AADAT SNP might expect a
better disease outcome due to a less excessive inflammatory
response. As the SNP is located in a putative exonic silencer,
it is hypothesized that it leads to enhanced AADAT mRNA
production and consequently to an increase in the amount
of protein produced (166, 176). As a consequence, production
of the neuroprotective and antioxidant KYNA is increased in
carriers of the SNP, further alleviating neuronal damage caused
by infection (166).

CONCLUSIONS

In light of the large number of metabolites that are able to
evoke neurotoxic vs. neuroprotectant, ROS generating vs.
antioxidant, pro- vs. anti-inflammatory effects, it is no wonder
that alterations of the KP have been linked to disease states.
Indeed, altered kynurenine production has been shown in
several neurodegenerative (177-179), psychiatric (180), and
inflammatory diseases (181). Several of these ailments are
characterized by altered immune functions, primarily as the
result of altered levels of specific metabolites resulting from
a change in the activity of key enzymes of the pathway such
as IDO, TDO, or KMO. Interfering in the pathway in order
to restore the imbalances of kynurenine metabolites could be
a feasible way of ameliorating symptoms and reducing the
progression of disease states. Results obtained using animal
models indicate that frequently, though not exclusively, specific
enzyme activity at either normal or increased levels could be
the culprit behind unwanted immune reactions. On the other
hand, this might offer possibilities to restore normal function
by downregulating specific genes. The emerging technique of
genetic therapy is a promising therapeutic approach that has
been or is currently attempted in a regimen of diseases: e.g.,
neurological disorders such as Huntington’s disease [IONIS-
HTTRx; ClinicalTrials.govidentifier: NCT02519036; (182)] and
spinal muscular atrophy (SMA) (140), immunological diseases
as severe combined immune deficiency due to adenosine-
deaminase deficiency [ADA-SCID; (183)], cardiovascular
diseases (184) and malignant diseases like acute lymphoblastic
leukemia (185) or non-Hodgkin lymphoma (186). In most cases
genetic therapy is viewed as a technology by which entire genes
or gene segments are inserted or removed to/from the genome.
However, an effective genetic approach could be selective
inhibition of the expression of a specific gene at a given tissue
type and/or in a specific time frame. Results from animal models
suggest that this could be a possibility in the cases of several
diseases in which an overreaction of the immune response
might be ameliorated by inhibiting KP enzyme activity locally
and temporarily.

Regarding the modulation of immune function via the KP
by genetic interventions, the first and rate limiting enzyme,
IDO has been in the focus of research. Most of these studies
use animal models, primarily mice knockouts. Several studies,
on the other hand, were performed by modifying KP enzyme
expression in animal or human cells in tissue culture. Inhibition
of the enzyme at a genetic level was found to be beneficial
in animal models of bacterial (2) and viral (3, 4) infections,
immune modulation following organ transplant (19, 20) and
diseases in which chronic inflammation plays a crucial role,
such as DR (27), atherosclerosis (28), AAA (29, 30) and
metabolic changes linked to obesity (31). Inhibition of the
enzyme is also a promising way of interfering in tumor mediated
immunological changes, thus restoring anti-tumor immunity
(33, 34, 36, 45, 46). Genetic inhibition of a functional ortholog
of the enzyme, TDO, was also found to be beneficial in the
combat against tumors (38). On the other hand, cell culture
studies also revealed antimicrobial effects of enhanced expression
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of the enzyme (40). Genetic modulation of another KP enzyme,
KMO has also proven to be two sided: inhibition was found
to be protective against EMCV infection in a mouse model
of viral myocarditis (41), however, lack of KMO was reported
to lead to autoimmune disease exacerbation (42) and also
caused malfunction of podocytes in the kidney and consequent
proteinuria (43).

Genome wide association studies have proposed several
genetic variants of genes encoding KP enzymes to be associated
with human diseases. However, there are only a handful of
studies on the effects of these genetic changes on enzyme
function. Thus, establishing cause-case relations between specific
SNPs and disease development requires a great amount of
further work. Nonetheless, findings obtained from genetically
modified animal studies suggest that intervention in the KP by
genetic modulation might be a promising therapeutic approach.
Thus, research aimed at uncovering the effects of naturally
occurring gene variations on the expression and function of the
encoded enzymes is highly warranted, as results of these studies
combined with preclinical findings can help in the identification
of novel therapeutic targets and in the development of suitable
therapeutic approaches.
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Abnormal circulation in solid tumors results in hypoxia, which modulates both tumor
intrinsic malignant properties as well as anti-tumor immune responses. Given the
importance of hypoxia in glioblastoma (GBM) biology and particularly in shaping
anti-tumor immunity, we analyzed which immunomodulatory genes are differentially
regulated in response to hypoxia in GBM cells. Gene expression analyses identified the
immunosuppressive enzyme tryptophan-2,3-dioxygenase (TDO2) as the second most
downregulated gene in GBM cells cultured under hypoxic conditions. TDO2 catalyses
the oxidation of tryptophan to N-formyl kynurenine, which is the first and rate-limiting
step of Trp degradation along the kynurenine pathway (KP). In multiple GBM cell lines
hypoxia reduced TDO2 expression both at mMRNA and protein levels. The downregulation
of TDO2 through hypoxia was reversible as re-oxygenation rescued TDO2 expression.
Computational modeling of tryptophan metabolism predicted reduced flux through
the KP and lower intracellular concentrations of kynurenine and its downstream
metabolite 3-hydroxyanthranilic acid under hypoxia. Metabolic measurements confirmed
the predicted changes, thus demonstrating the ability of the mathematical model to
infer intracellular tryptophan metabolite concentrations. Moreover, we identified hypoxia
inducible factor 1a (HIF1a) to regulate TDO2 expression under hypoxic conditions, as
the HIF1a-stabilizing agents dimethyloxalylglycine (DMOG) and cobalt chloride reduced
TDO2 expression. Knockdown of HIF1a restored the expression of TDO2 upon cobalt
chloride treatment, confirming that HIF1a controls TDO2 expression. To investigate the
immunoregulatory effects of this novel mechanism of TDO2 regulation, we co-cultured
isolated T cells with TDO2-expressing GBM cells under normoxic and hypoxic conditions.
Under normoxia TDO2-expressing GBM cells suppressed T cell proliferation, while
hypoxia restored the proliferation of the T cells, likely due to the reduction in kynurenine
levels produced by the GBM cells. Taken together, our data suggest that the regulation of
TDO2 expression by HIF1a may be involved in modulating anti-tumor immunity in GBM.
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Mohapatra et al.

Hypoxic Regulation of Tryptophan Metabolism

INTRODUCTION

More than 60 years ago, Thomlinson and Gray postulated the
occurrence of hypoxic regions in solid tumors (1). Initial interest
in studying hypoxia in tumors was due to the realization that
hypoxic cells are more resistant to radiotherapy (2) resulting
in adverse clinical outcomes for the patients. Measurements
of intra-tumoral oxygen levels revealed a highly heterogeneous
hypoxic landscape within a tumor. The oxygen concentration in
moderately hypoxic regions was determined to be ~1% oxygen
(03), while in severely hypoxic tumor regions it fell below 1%
0, (3).

Cells under hypoxic conditions are known to shut down
non-essential processes by chromatin modifications and a global
downregulation of gene expression (4), while simultaneously
genes needed for cell survival under oxygen limitation are
upregulated through hypoxia inducible transcription factors
(HIFs) (5). The most well-known HIF family member HIFla
is degraded under normoxic conditions by the action of
prolyl-hydroxylase (PHD) enzymes. However, under hypoxic
conditions PHD function is inhibited, thus stabilizing HIF1a and
activating the expression of its target genes (6). Furthermore,
HIFla can also inhibit the expression of genes during
hypoxia (7).

Similar to other solid tumors, the most aggressive primary
brain tumor, glioblastoma multiforme (GBM), is prone to severe
hypoxia. GBM are characterized by the presence of necrotic foci
and surrounding severely hypoxic pseudopalisades consisting
of outwardly migrating GBM cells trying to escape the core
hypoxic regions (8). Measurements of O levels in tumors from
14 GBM patients revealed a median O, level of 0.7% (9). Bio-
availability of oxygen to a tumor cell in a solid tumor depends
on a number of factors such as the distance of the tumor cell
from the nearest blood vessel and diminished blood supply due to
the abnormal vasculature found in tumors (10, 11). Irrespective
of the factors causing hypoxic stress, hypoxia has been shown
to drive established hallmarks of cancer progression in GBM
such as inhibition of cell death (12), induction of angiogenesis
(13), activation of endothelial to mesenchymal transition (14),
modulation of cellular metabolism (15), and tumor immune
escape (16).

Of note, hypoxic regions of solid tumors often harbor a large
number of immunosuppressive cells, which inhibit anti-tumor
immune responses (17). Tumor hypoxia in GBM has been shown
to exert immune suppression by activation of regulatory T cells
(Tregs) (18). HIFla-mediated gene regulation is involved in
promoting hypoxic suppression of anti-tumor immunity (19, 20).
For instance, HIFla induces the expression of the inhibitory
immune checkpoint regulator programmed death-ligand 1 (PD-
L1), which facilitates the suppression of anti-tumor immune
effects (21, 22). Furthermore, hypoxia also obstructs anti-tumor
immunity by reduction of tumor cell MHC presentation and the
tumor cell expression of chemokines essential for immune cell
infiltration (23).

In light of the important role played by hypoxia in GBM
biology and particularly in modulating anti-tumor immune
responses, we analyzed GBM cells for genes involved in

the regulation of anti-tumor immunity that are differentially
regulated upon hypoxia. We find that hypoxia significantly
reduces the expression of the immunosuppressive enzyme
tryptophan-2,3-dioxygenase (TDO2). TDO2 catalyses the first
step of tryptophan (Trp) catabolism along the kynurenine
pathway (KP) and is known to play an important role in
GBM as it promotes tumor cell motility and suppresses anti-
tumor immune responses via production of Trp metabolities that
activate the aryl hydrocarbon receptor (AHR) (24).

MATERIALS AND METHODS

Cell Culture

Human GBM cell lines A172, U-87 MG, and LN-18 were
obtained from ATCC. Cells were cultivated in DMEM (Gibco)
containing 10% FBS (Gibco), 2mM Glutamine (Gibco), 1 mM
Sodium Pyruvate (Gibco), 100 ug/ml Streptomycin, and 100
U/ml Penicillin (Gibco). Cells were authenticated by Multiplex
Cell Authentication service (Multiplexion GmbH) and were
routinely monitored using the Venor® GeM Classic mycoplasma
detection kit (Minerva Biolabs). Twenty-four hours after cell
seeding a medium change was done following which, various
treatments were carried out. Unless stated otherwise, cells
were normally cultivated at normoxic conditions i.e., 18.6% O,
concentration (conc.) (25) in a SANYO MCO-18AIC incubator
with 5% CO, and at 37°C.

Long Term Hypoxic Exposure

A172, U-87 MG, and LN-18 cells in T25 flasks containing
5ml medium, were subjected to either normoxic or hypoxic
conditions for 3, 5, 8, and 10 days. For hypoxic conditions (i.e.,
1% O;) cells were placed in the Labotect incubator C42. For
each time point, cells were seeded in duplicates; one of the
flasks was incubated in normoxic conditions and served as a
control for the other flask incubated under hypoxic conditions.
At the indicated time points, 1 ml culture supernatant from each
treatment was harvested and used for metabolic measurements.
Subsequently, the cells were harvested by trypsinization in 1.5ml
PBS. The cell count of the harvested cells was measured using 10
1 of cell suspension and Trypan Blue dye (Gibco) in a 1:1 ratio
with an automated Cell Counter (Countess, Invitrogen). The
remaining cells were further processed for either RNA, protein
or intracellular metabolite extraction.

Treatment With Hypoxia Mimetics

HIFla protein stabilization was attained by using the hypoxia
mimetic compounds dimethyloxalylglycine (DMOG) and cobalt
chloride (CoCl,). DMOG was obtained from Frontier Scientific
Inc. and reconstituted in 100% ethanol (Sigma). Cells were
treated such that the final DMOG concentrations of 0.5, 1, 2, and
3 mM were obtained according to the treatment specifications.
EtOH was used as carrier control. A second hypoxia mimetic
agent, cobalt chloride (CoCl,) was obtained from Sigma and
reconstituted in ddH,O. Cells were treated for 24 h such that a
final treatment concentration of 100, 150, 200, 250, and 300 uM
of CoCl, was obtained.
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RNA Isolation and Quantitative (q)RT-PCR
Total RNA was isolated using the RNAeasy Mini Kit (Qiagen).
cDNA was reverse transcribed from 1 pg total RNA using
the High Capacity cDNA reverse transcriptase kit (Applied
Biosystems). cDNA amplification was performed using the
SYBR Select Master Mix (Thermo Fisher Scientific) during the
(Q)RT-PCR on a StepOnePlus real-time PCR system (Applied
Biosystems). For all (q)RT-PCR measurements 18s RNA was used
as a housekeeping gene for normalization. (q)RT-PCR primers
for a gene were designed using Primer Blast (NCBI), such that on
the genomic DNA at least one intron separated the forward and
reverse primers.
Primer sequences used:

TDO2 Forward 5'-CAAATCCTCTGGGAGTTGGA-3'
Reverse 5-GTCCAAGGCTGTCATCGTCT-3

18s RNA Forward 5'-GATGGGCGGCGGAAAATAG-3
Reverse 5'-GCGTGGATTCTGCATAATGGT-3

NDRG1 Forward 5'-TCAAGATGGCGGACTGTG-3
Reverse 5'-GAAGGCCTCAGCGAGCTT-3'

Protein Isolation and Western Blots

Total protein was harvested using ice-cold RIPA lysis buffer
(1% IGEPAL/NP40, 12mM sodium-deoxycholate, 3.5mM
sodium dodecyl sulfate (SDS) supplemented with a protease and
phosphatase inhibitor (Roche/Sigma-Aldrich). The Bradford
protein assay (Biorad) was employed for total protein content
measurement and subsequent normalization between samples
across one experiment. Protein samples were separated using a
10% SDS-PAGE gel and transferred onto an activated 0.45 pm
PVDF membrane (Sigma-Aldrich), subsequently the membrane
was blocked with 5% BSA for 30 min and incubated with primary
antibodies overnight. The primary antibodies were used in
1:1000 dilution for mouse anti-human TDO2 (#TA504730,
Origene), rabbit anti-human NDRG1 (#HPA006881, Sigma),
and rabbit anti-human Tubulin (#ab108629, Abcam plc.).
Membranes were subsequently incubated for 1h with 1:5000
diluted HRP-conjugated secondary antibodies (anti-rabbit
ab.: #GENA9340-1M, anti-mouse ab.. #GENXA931, both
from GE Healthcare). Either Pierce® ECL Western Blotting
Substrate or SuperSignal® West Femto Maximum Sensitivity
Substrate (both Thermo Scientific) were used to generate the
signals, which were captured either on an autoradiography
film (Amersham Hyperfilm, GE Healthcare) or on the
ChemiDoc XRS+ (Bio-Rad Laboratories) using Image Lab
Software 5.2.1.

siRNA-Mediated HIF1a Knockdown

siRNA stocks (20 uM) were prepared by reconstituting ON-
TARGETplus Human SMARTPOOL siRNA reagent targeting
HIFla (Dharmacon) in sterile PBS in accordance to the
manufacturer’s recommended ratio. ON-TARGETplus Non-
targeting Pool siRNA (Dharmacon) was used as a control.
siRNA transfection mix was prepared using siRNA stocks and
Lipofectamine RNAIMAX (Thermo Fisher Scientific) according
to the manufacturer’s protocol. Cells were treated with the

transfection mix for 24h, which was followed by a fresh
medium change and incubation with cobalt chloride for 24h
before harvest.

High Performance Liquid Chromatography
(HPLC)

For Trp and Kyn measurements (Figures 2A,B) in cell culture
supernatants, 72% trichloroacetic acid (Sigma-Aldrich) was
added in a ratio of 162.8 pl per 1 ml of supernatant for protein
precipitation. Samples were then centrifuged at full speed for
12 min, following which the supernatants were analyzed in a
Dionex Ultimate® 3000 uHPLC (Thermo Scientific, Waltham,
MA, USA) by chromatographic separation. An Accucore™ aQ
column (Thermo Scientific™) with 2.6 um particle size with
a gradient mobile phase consisting of 0.1% trifluoroacetic acid
(TFA) in water (A) and 0.1% TFA in acetonitrile (B) was
utilized for separation of Trp and Kyn, which were detected
at UV emission spectra of 280 and 365nm, respectively. The
Chromeleon™ 7.2 Chromatography Data System (Thermo
Scientific™ Dionex™) was used for data analysis.

For intracellular analyses of Trp and Trp-derived compounds
(Figure 2C), the samples were rapidly frozen in liquid nitrogen
following trypsinization and pelleting of harvested cells.
Subsequently, metabolites were extracted with 0.1ml 6%
perchloric acid per million of cells in an ultrasonic ice-bath
for 10 min. For analyses of extracellular content, supernatants
were mixed with an equal volume of 12% perchloric acid
and incubated on ice for 10 min. Prior analysis, samples were
centrifuged for 10min at 4°C and 16.400g to precipitate
proteins and to remove remaining cell debris. Metabolites were
separated by reversed phase chromatography on an Acquity
HSS T3 column (100 x 2.1 mm, 1.7 wm, Waters) connected
to an Acquity H-class UPLC system (Waters). The column
was heated to 37°C and equilibrated with 5 column volumes
of 100% solvent A (20 mM sodium acetate, 3 mM zinc acetate,
pH 6) at a flow rate of 0.55ml min~!. Clear separation of Trp
and Trp-derived compounds was achieved by increasing the
concentration of solvent B (Acetonitrile) in solvent A as follows:
4min 0% B, 10min 5% B, 13min 15% B, 15min 25% B, and
return to 0% B in 3min. Trp, 3HAA, KynA and tryptamine
were detected by fluorescence (Acquity FLR detector, Waters,
excitation: 254nm, emission: 401nm). Kyn and OH-Kyn
were determined by simultaneous recording of absorption at
365nm (Acquity PDA detector, Waters). For quantification,
ultrapure standards were used (Sigma). Data acquisition
and processing was performed with the Empower3 software
suite (Waters).

Microarray Analysis

RNA was harvested after 5 days from the control and hypoxic
cells, using the RNAeasy Mini Kit (Qiagen). Labeled ss-cDNA
was generated from 100 ng total RNA using the Affymetrix
WT PLUS Reagent Kit, as per the manufacturer’s instructions.
Subsequently, 5.5 pg of fragmented and labeled ss-cDNA
were hybridized for 17h at 45°C on Affymetrix Human Gene
2.0 ST chip following the manufacturers instructions. The
Affymetrix GeneChip® Scanner 3000 was used for scanning
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the hybridized chips according to the GeneChip® Expression
Wash, Stain and Scan Manual for Cartridge Arrays (P/N
702731). The Raw CEL files were imported from disk followed
by RMA normalization and summarization using the oligo
package and were annotated at the probeset level using
NetAffx (26). Differential gene expression was conducted by
fitting a linear model and estimating a moderated t-statistic
followed by eBayes adjustment as described in the limma
package (27, 28). All analyses were run in R, version 3.4.4
(https://cran.r-project.org/) and Bioconductor version 3.6
(https://bioconductor.org/). All graphical representations
were generated using ggplot2, ggpubr, and RcolorBrewer.
All datasets have been made publicly available in the Gene
Expression Omnibus (GEO) repository under accession
number GSE138535.

Modeling of Trp Metabolism

To simulate Trp metabolism in A172 cells, we employed
the previously published comprehensive kinetic model of Trp
metabolism (29). Microarray data previously generated for A172
cells exposed to normoxia or hypoxia for 5 days, were integrated
into the Trp model using SBMLmod as described previously
(30). No transporters and no external metabolites were used.
Instead the concentration of cellular Trp was set to the measured
intracellular concentration, assuming a cell volume of 10 pL.
Steady-state concentrations and fluxes were calculated using the
steady state task of COPASI 4.26 (31).

Proliferation Measurements in T Cell

Co-cultures

The functional characterization of PBMC from healthy donors
was approved by the Ethics Committee of the University of
Heidelberg. PBMC isolation was carried by density-gradient
centrifugation and T cells were enriched using the MojoSort
Human CD4T cell isolation kit (Biolegend) according to the
manufacturer’s instructions. T cells were cultured in 96 well plates
either alone or in a co-culture with A172 cells in RPMI1640
(Thermo Fisher Scientific) containing 10% FCS in the presence of
5 pg/ml phytohaemagglutinin (PHA) (Sigma) and 1 U/l rhIL-
2 (Novartis). All cultures were performed in duplicate sets, one
set under normoxia and the second under hypoxia. A glove
box (Coylab) and an incubator (Heracell 150i, Thermo Fisher
Scientific) with oxygen level regulation were used for ensuring
continued hypoxia conditions during all steps of culturing.
PKH26 (Sigma-Aldrich) was used to label T cells prior to culture.
After 6 days of culturing, PKH26 mean fluorescence intensity
(MFI) was measured by flow cytometry (BD FACSCanto II (BD
Biosciences). The degree of reduction in PKH26 fluorescence
intensity reflected the number of cell divisions undergone by the
cells. Suppression of T cell proliferation by hypoxia was measured
by calculating the ratio between the PKH26 MFI of T cell co-
cultured with A172 cells and the PKH26 MFI of T cells cultured
alone, for both normoxia and hypoxia culture conditions.

Statistical Analysis
GraphPad Prism v5.04 (GraphPad Software Inc.) was used for
performing statistical analysis. For single comparisons between

two datasets, two-tailed unpaired Students t-test was utilized.
Rank sum analysis by the Mann-Whitney U-test was carried
out wherever necessary. For multiple comparisions, one-way
ANOVA with Tukey’s multiple comparisons test was employed.
Data was collected from at least three independent experiments.
All data are plotted as mean == SEM, unless stated otherwise.
Differences with a p < 0.05 were considered to be statistically
significant (ns: not significanti.e., p > 0.05; *p < 0.05; **p < 0.01;
5 p < 0.001; ¥*p < 0.0001).

RESULTS

TDO2 Expression Is Suppressed Under
Hypoxia
To investigate if hypoxia differentially regulates genes that
play a role in anti-tumor immune responses in GBM cells, we
performed microarray analysis of A172 GBM cells exposed to
5 days of hypoxia (1% O;) as compared to cells cultured in
normoxia (18.6% O3) (GSE138535). Analysis of the microarray
data revealed tryptophan-2,3-dioxygenase (TDO2) to be the
second most downregulated gene under hypoxia (Figure 1A,
Supplementary Table 1). TDO2 is an immunosuppressive
enzyme, whose metabolic products have been shown to
modulate anti-tumor immune responses by inhibition of T
cell proliferation as well as induction of apoptosis in T cells
(32, 33). Apart from TDO?2, other immune-regulatory genes,
such as TLR3 and CCL2 were also strongly downregulated under
hypoxia (Supplementary Table 1). However, in the present study
we focussed our attention on TDO2, the strongest differentially
regulated gene candidate among the genes with known effects
on immune responses. TDO2 integrates molecular O, into Trp
to generate formyl-kynurenine, which is further converted to
kynurenine (34). Therefore, reduced O, concentrations under
hypoxia would be expected to affect the enzymatic activity of
TDO2, however our microarray data revealed that also the
expression of TDO2 may be reduced upon hypoxia in GBM cells.
To validate the results of the microarray, we next performed
qRT-PCR measurements. To test for the presence of hypoxia
we assayed N-myc downstream regulated 1 (NDRG1), a gene
known to be upregulated under hypoxia in GBM (35, 36), as a
surrogate hypoxia marker that was also significantly upregulated
by hypoxia in the microarray (Supplementary Table 1). Analysis
of mRNA transcript levels in A172 cells exposed to hypoxic
conditions for different durations, confirmed the presence of
hypoxia as NDRG1 was significantly upregulated (Figure 1B,
left). Further, the qRT-PCR measurements confirmed the
result of the microarray analysis, as a significant reduction
in TDO2 mRNA levels was observed at all-time points upon
hypoxic exposure (Figure 1B, right). Downregulation of TDO2
mRNA in response to hypoxia was not limited to A172
cells, but was also observed in U-87MG and LN-18 GBM
cells (Figures 1C,D). Western blot analysis of all three GBM
cell lines exposed to either normoxia or hypoxia revealed
that TDO2 protein expression was reduced under hypoxia,
while expression of the hypoxia surrogate marker NDRGI
was increased (Figure 1E). To investigate whether the hypoxic
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FIGURE 1 | Hypoxia reversibly downregulates tryptophan-2,3-dioxygenase (TDOZ2) expression in GBM cells. (A) Volcano plot showing differentially regulated genes in
A172 cells upon exposure to 5 days of hypoxia compared to 5 days normoxic controls. (B) gRT-PCR analysis of NDRG1 (left) and TDO2 (right) mRNA expression in
A172 cells after 3, 5, 8, or 10 days of exposure to either normoxia (white) or hypoxia (back). (C) gRT-PCR analysis of NDRG1 (left) and TDO2 (right) mRNA expression

(Continued)

Frontiers in Immunology | www.frontiersin.org

December 2019 | Volume 10 | Article 2762


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Mohapatra et al.

Hypoxic Regulation of Tryptophan Metabolism

not significant.

FIGURE 1 | in U-87MG cells after 5 days of either normoxia (white) or hypoxia (black) exposure. (D) gRT-PCR analysis of NDRG1 (left) and TDO2 (right) mRNA
expression in LN-18 cells after 5 days of either normoxia or hypoxia. (E) Western blot analysis of TDO2 and NDRG1 protein expression in A172, U-87MG, and LN-18
cells subsequent to 5 days normoxia or hypoxia. a-Tubulin protein expression was used as a loading control. (F) NDRG1 (left) and TDO2 (right) mRNA expression in
A172 cells analyzed by gRT-PCR after exposure to hypoxia for 5 days followed by re-oxygenation for 3 days under normoxic conditions (ND3). Data from at least three
independent experiments are expressed as mean + S.E.M. Statistical significance was assumed at p < 0.05 ("o < 0.01, **p <0.001, ***p < 0.0001). n.s.,

downregulation of TDO2 expression can be restored by re-
oxygenation, we subjected A172 cells to 3 days of normoxia
after 5 days of hypoxia. Re-oxygenation completely restored the
expression of TDO2 (Figure 1F), indicating that the observed
hypoxic downregulation of TDO?2 is reversible.

Hypoxia-Mediated TDO2 Downregulation

Reduces Flux Through the KP

TDO?2 catalyses the first step of Trp degradation along the KP
(37). However, after establishing the regulatory effects of hypoxia
on TDO?2 expression, we aimed to investigate effects of reduced
oxygen on Trp degradation and KP metabolite production, which
likely results from both the hypoxia-mediated reduction in TDO2
expression and possibly also reduced TDO2 catalytic activity
due to O; limitation. Analysis of supernatants harvested from
the long-term hypoxia experiments with A172 cells (shown in
Figure 1B), revealed that cells growing under hypoxic conditions
produced less Kyn than the cells cultured under normoxia
(Figure 2A). This reduction in Kyn production corresponded to
the high amount of Trp that remained present in the supernatants
of the hypoxic cells (Figure 2B). Taken together, these results
indicate that hypoxia downregulates Trp catabolism.

We next hypothesized that the reduced amount of Kyn
produced by TDO2 upon hypoxia should affect the metabolic
flux of the entire KP. We therefore performed computational
modeling of Trp metabolism to predict the steady state
fluxes and metabolite concentrations in the KP. To this
end, gene expression data from A172 GBM cells cultivated
under either hypoxia or normoxia (see Figure1A) was
integrated into the previously mentioned mathematical model
of Trp metabolism (29). In line with our hypothesis, the
model predicted a significantly decreased Trp catabolic flux
mainly caused by the reduced enzymatic flux through TDO2,
while the flux through DOPA decarboxylase (DDC) remained
unperturbed (Figure 2C). Further, reduced metabolic flux was
also predicted for downstream enzymes that degrade Kyn, such
as the kynurenine aminotransferases (KATs) and kynurenine-
3-monooxygenase (KMO), which generate kynurenic acid
(KynA) and 3-hydroxy-anthranilic acid (3HAA), respectively
(Figure 2C). This reduced metabolic flux under hypoxia through
major enzymes of the KP resulted in reduced simulated
intracellular concentrations not only of Kyn but also of its
downstream metabolite 3HAA (Figure 2C, gray plots). In
contrast, the simulated production of Trp metabolites not
directly dependent on TDO?2 activity such as tryptamine were
predicted to remain unaffected under hypoxia (Figure2C,
gray plots).

To validate the predictions of the mathematical model
of Trp metabolism, we analyzed the changes in intracellular

concentrations of Trp metabolites in the A172 GBM cells after
5 days of exposure to hypoxia. In line with the simulations,
the intracellular concentrations of the KP metabolites Kyn and
3HAA were significantly reduced under hypoxia (Figure 2C,
black plots). Although intracellular KynA concentrations were
reduced, this decrease failed to attain significance (Figure 2C,
black plots). Furthermore, confirming the predictions, the
intracellular tryptamine concentrations remained unchanged
under hypoxia. In the cell supernatants no changes in 3HAA
and KynA levels were observed under hypoxia and tryptamine
was undetectable (Supplementary Figure 1). However, in line
with our simulations and previous observations, Trp levels
in the supernatants increased significantly under hypoxic
conditions consistent with the significant decrease in Kyn
production (Supplementary Figure 1). Taken together, these
results confirm our computational predictions and show that
hypoxic downregulation of TDO2 expression reduces flux
through the KP.

TDO2 Expression Is Reduced Upon
Stabilization of HIF1o by Chemical Hypoxia

Mimetics

Hypoxia mediates most of its effects through the master regulator
HIFla, however a HIFla independent global downregulation
of gene expression by hypoxia has also been described (4).
Therefore, we next investigated if HIFla plays a role in the
hypoxia-mediated downregulation of TDO2. For this, we
stabilized HIF1a protein under normoxic conditions by the use
of chemical hypoxia mimetics such as dimethyloxalylglycine
(DMOG) or cobalt chloride (CoCly). Microarray analysis
of A172 cells incubated for 24h in the presence of 3 mM
DMOG (GSE138535), revealed that TDO2 gene expression was
strongly downregulated upon HIFla stabilization (Figure 3A,
Supplementary Table 2). qRT-PCR analysis of A172 cells
exposed to a range of DMOG concentrations, confirmed
the microarray data, as elevated NDRG1 mRNA levels upon
DMOG exposure (Figure 3B, left) corresponded to a decrease
in TDO2 mRNA expression at tested DMOG concentrations
(Figure 3B, right). Analysis of the mRNA expression of
A172 cells exposed to a second hypoxia mimetic, cobalt
chloride (CoCl,), also significantly reduced TDO2 mRNA
expression at concentrations of 250 uM CoCl, and above
(Figure 3C, right). Correspondingly, mRNA levels of the
surrogate hypoxia marker NDRG1 were elevated upon exposure
to 200uwM CoCl, and above (Figure 3C, left). In summary,
these results indicate that TDO2 expression is regulated
by HIFla.
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siRNA-Mediated Silencing of HIF1«

Restores TDO2 Expression

We next investigated whether the absence of HIF1a can abrogate
the observed reduction in TDO2 expression. siRNA-mediated
silencing of HIFla resulted in a significant reduction in HIFla
mRNA (Figure 4A). The reduction of HIFla was functionally
relevant as it prevented the mRNA induction of the surrogate
hypoxia marker NDRGI upon exposure to CoCl, (Figure 4B).

Most importantly, however, the suppression of TDO2 mRNA
expression upon CoCl, exposure was abrogated in the absence of
HIFla (Figure 4C). Finally, Western blot analysis of A172 cells
under the above conditions revealed a complete rescue of TDO2
protein expression upon knockdown of HIFla (Figure 4D).
Taken together, these results confirm that HIF1a controls TDO2
expression in GBM cells.

Hypoxia Impairs the Ability of Tumor Cells
to Suppress T Cell Proliferation

TDO2 expression in tumor cells enables them to effectively
downregulate the proliferation and thus the anti-tumor activity
of infiltrating T cells through production of KP metabolites (32)
and the depletion of Trp (38, 39). As our results demonstrate
that TDO2 expression is significantly reduced in GBM cells
under hypoxic conditions, we next investigated the effect of
hypoxia on the proliferation of activated T cells in the presence
of A172 GBM cells cultured under either normoxia or hypoxia.
Under normoxic conditions, the GBM cells in the co-culture
system were clearly capable of suppressing T cell proliferation
as compared to the normoxic T cell mono-cultures (Figure 5A).
However, under hypoxic conditions the previously observed
T cell suppression by GBM cells was reduced (Figure5B).
Quantification of T cell proliferation expressed as PKH26 mean
fluorescent intensity (MFI) revealed that exposure to hypoxia
significantly reduced the T cell suppressive capacity of A172
GBM cells in the co-culture system (Figure 5C).

DISCUSSION

Over the past decades, the role of hypoxia in shaping the
tumor microenvironment and its contribution to tumor cell
intrinsic properties as well as anti-tumor immunity has been well-
documented (17). Hypoxia is a frequently occurring feature in
most solid tumors including GBM, where it not only drives tumor
malignancy but also determines tumor morphology (8).

Here, we set out to investigate the role of hypoxia
in controlling GBM-derived factors that impact anti-tumor
immune responses. Gene expression analysis identified TDO2
as the immunomodulatory factor most strongly regulated in
response to hypoxia. TDO?2 is a heme containing dioxygenase
enzyme, which catalyses the first step of the KP, namely
the conversion of Trp to formyl-kynurenine (32). Trp is
the least abundant essential amino acid in humans, which
in addition to its role in protein synthesis also functions
as the precursor for diverse neurotransmitters, hormones
and vitamins including serotonin, tryptamine, melatonin, and
nicotinamide (40, 41). Trp catabolism along the KP is a well-
known modulator of immune responses. Initially identified
as an immunosuppressive mechanism preventing the rejection
of allogeneic fetuses (42), Trp catabolism has also been
implicated in neuropsychiatric disorders (43, 44), auto-immune
and inflammatory diseases (45, 46).

Moreover, human cancers often express high levels of
indoleamine-2,3-dioxygenase 1 (IDO1) and/or TDO?2, the initial
Trp-catabolic enzymes of the KP (37). TDO2, for instance is
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expressed in diverse tumor entities including breast cancer,
bladder cancer, hepatocellular carcinoma, melanoma, non-small
cell lung cancer, ovarian carcinoma, renal cell carcinoma, and
GBM, where it promotes tumor cell motility and suppresses T
cell proliferation and function (24, 47, 48). As Trp catabolism
along the KP plays an important tumor-promoting role, this has
resulted in interest toward targeting the enzymes of this pathway
for cancer therapy (49).

Abnormal or inadequate vasculature in GBM results in
formation of regions that have restricted nutrient and oxygen
supply (50). Malignant cells in these nutrient-deprived hypoxic
regions adapt to survive by profound metabolic reprogramming.
In human GBM cells, numerous genes involved in global cellular
metabolism are downregulated in response to hypoxia (15). This
enables the cells to conserve nutrients in order to redirect them
toward essential life-sustaining processes. Hypoxic regions in
GBM, due to their nutrient-restricted microenvironment, tend
to have a limited supply of Trp, which would dictate that cells

conserve Trp under hypoxia. Here, we show that indeed upon
hypoxic exposure GBM cells reversibly downregulate TDO2
expression (Figures 1A-E), which is restored upon availability
of oxygen (Figure 1F). This reversibility may enable tumor
cells to effectively regulate Trp catabolism as necessary under
cyclic hypoxia, which has been described to frequently occur
during tumor progression and metastasis (51). In line with
the downregulation of TDO2, the amount of downstream Kyn
produced under hypoxia was reduced significantly (Figure 2A),
corresponding to higher levels of Trp remaining in the
extracellular space (Figure 2B).

In humans, Trp can be degraded by a number of enzymes
along different metabolic pathways, however a majority of the
available free Trp has been reported to be degraded via the
KP (37). Therefore, we hypothesized that hypoxic control of
TDO?2 expression, might influence global Trp flux in a tumor
cell. We employed a previously described computational model
(29) to integrate gene expression data in order to predict
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changes in Trp metabolism under hypoxia. Our predictions
revealed that indeed under hypoxia, the global Trp flux was
significantly reduced (Figure 2C, blue plots). This reduction
upon hypoxia can be attributed to the reduction in metabolic flux
through TDO2 and consequently other downstream enzymes
in the KP (Figure 2C, blue plots). In line, the computational
model predicted that intracellular concentrations of Kyn and its
downstream metabolite 3HAA were significantly reduced under
hypoxia (Figure 2C, gray plots). In contrast, the flux through
enzymes outside the KP, such as DDC, which degrades Trp to
the neuromodulator tryptamine, remained virtually unperturbed
(Figure 2C, blue plots). These predictions substantiate our
hypothesis, that under hypoxia tumor cells downregulate TDO2
expression in order to conserve Trp.

To validate the computational predictions, we next measured
intracellular metabolite concentrations of A172 GBM cells
cultured under the same conditions as for the microarray
analysis. The measured intracellular concentrations of Kyn and
other Trp metabolites reflected the exact pattern of the predicted
concentrations (Figure 2C, black plots), demonstrating that
prediction of Trp metabolite concentrations accurately reflects
their relative changes. The measurements showed that under
hypoxic conditions the intracellular pool of Trp remains largely
unchanged due to a significant reduction in the flux through
TDO2. The latter was reflected by a reduced production of Kyn
and downstream metabolites, while the concentration of other
Trp metabolites such as tryptamine was unaltered (Figure 2C).
Previously, we have shown that tumor cells in a nutrient-deficient
but normoxic microenvironment upregulate the expression of
tryptophanyl-tRNA synthetase to better utilize the available Trp
pool for protein synthesis (52). Taken together, our current
results establish the presence of a second adaptation to limited
Trp availability under nutrient stress, where tumor cells conserve
Trp by downregulation of TDO2 under hypoxic conditions.

Reduced Kyn levels in response to hypoxia have previously
been attributed in tumor cells and fibroblasts to reduced

expression and activity of IDO1 (53-55), which catalyzes the
same reaction as TDO2. The presence of chemokines or
chemokine-producing immune cells can however increase the
expression of IDO1 under hypoxia (54, 56). Other studies have
also reported the upregulation of IDO1 expression upon hypoxic
exposure or HIF1a stabilization in neural and immune cells (57-
59). Taken together, these studies indicate that the regulation
of IDO1 under hypoxic conditions is highly cell type specific
and also depends upon microenvironmental factors such as
immune cell infiltration. Elbers and colleagues also previously
described hypoxia-mediated downregulation of Trp metabolism,
which they attributed to reduced TDO2 enzymatic activity under
hypoxia (60). The authors used recombinant TDO2 protein
in an overexpression system to arrive at the aforementioned
conclusions. However, our results provide evidence for the
existence of a transcriptional mechanism regulating TDO2-
mediated Trp degradation under hypoxia.

Most  biological effects of TDO2 including its
immunosuppressive actions can be attributed either to the
depletion of Trp, which activates nutrient sensing mechanisms
such as GCN2 (61) or to the accumulation of downstream
KP metabolites. The KP metabolite 3HAA modulates immune
functions by enhancing the differentiation of Tregs, reducing
T cell proliferation and inducing T cell death (62-64). 3HAA
can also interfere with the anti-tumor activity of macrophages
by inhibiting their NO production (64). Moreover, 3HAA can
be converted further along the KP to quinolinic acid (QA)
(65), which can serve as a precursor for NAD+ biosynthesis
(66-68). In line with immunosuppressive effects of 3HAA, its
metabolic product QA can also modulate immune cell function
by suppressing T cell proliferation and increasing Tregs (64).

AHR activation accounts for many of the effects of
Trp degradation (24, 69-72). KP metabolites including Kyn,
kynurenic acid, xanthurenic acid, and cinnabarinic acid are
potent AHR activators (24, 69-72). Moreover, engagement of
nuclear coactivator 7 by 3HAA has been reported to enhance
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activation of the AHR in dendritic cells (73). AHR activation
results in AHR binding to HIF1B (ARNT), which also is a binding
partner for HIFla upon its hypoxia-mediated stabilization.
Sharing a common binding partner increases the likelihood of
competition between the two transcription factors for ARNT
binding in scenarios where both AHR activation and HIFla
stabilization take place. In line, reports indicate that HIFla
stabilization adversely affects the activity and downstream gene
regulation subsequent to AHR activation in an ARNT-dependent
fashion (74). Thus, hypoxia could counteract TDO2 effects
mediated via AHR. Furthermore, in GBM, signaling through
HIFla and AHR can crossregulate each other at several points
of contact, coordinating metabolic regulation of anti-tumor
immunity as well as tumor growth (75).

In this light, we investigated if HIFla can also interfere
upstream of AHR by regulating TDO2 expression or whether
the observed hypoxia-mediated TDO2 downregulation is a
general HIFla- independent hypoxia effect. We used the
hypoxia mimetic DMOG to stabilize HIF1a in A172 GBM cells
under normoxic conditions. Microarray results and qRT-PCR
measurements identified TDO2 to be the most downregulated
gene upon HIFla stabilization by DMOG (Figures 3A,B).
Further, use of a second HIFla stabilizing agent, CoCl,,
also resulted in a significant reduction in TDO2 expression
(Figure 3C). siRNA-mediated knockdown of HIFla rescued
TDO?2 expression (Figures 4A-D). Taken together, these results
suggest that HIF1la employs a two-pronged strategy to regulate
AHR activity, first by direct competitive binding of ARNT (74)
and second by downregulating TDO2 expression, thus reducing
the concentration of AHR-activating Trp-metabolites.

Although lower oxygen levels are essential for immune
cell maturation, extreme pathological hypoxia especially in a
tumor acts as an effective immunosuppressive strategy, helping
tumors escape immune surveillance (20). TDO?2 also helps tumor
immune evasion by activating the AHR through its downstream
metabolites (24). In light of the existence of these two distinct
modi operandi of tumors to suppress anti-tumor immunity, we
next ascertained their role in tumor immune suppression under
hypoxic conditions. Our data revealed a significant reduction
in the immune suppressive abilities of GBM cells in hypoxic
co-cultures with T cells (Figures 5A-C).

In the present study, we report a HIF1a-dependent regulatory
mechanism in GBM cells through which hypoxia can reversibly
regulate the expression of the Trp-degrading enzyme TDO2
and thus the production of known immunosuppressive onco-
metabolites. Our results further suggest that GBM cells in
their quest to give anti-tumor immunity a slip, employ the
immunosuppressive effects of both TDO2 and hypoxia in a well-
coordinated fashion. In microenvironments with ample oxygen
and nutrient availability, tumor cells can employ the TDO2-Kyn-
AHR axis to suppress the immune system. While in a nutrient-
deficient hypoxic microenvironment, where hypoxia itself keeps
the immune system in check, tumor cells in a HIFla-dependent
fashion can downregulate TDO2 expression so as to conserve
Trp. This novel mechanism may present new insights for better
clinical management of anti-tumor immune suppression by both
TDO?2 expression as well as by hypoxia.
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Objective: Different patterns of immune system upregulation are present in the acute
vs. post-treatment states of psychotic illness. We explored the existence of state
and trait markers in the peripheral immune system and two immune-associated
neuroendocrine pathways (IDO and GTP-CH1 pathway) in a longitudinal sample
of psychosis patients. We also evaluated the association of these markers with
neuropsychiatric symptomatology.

Method: Plasma concentrations of peripheral blood markers were measured in a
transdiagnostic group of 49 inpatients with acute psychosis and 52 matched healthy
control subjects. Samples were obtained in patients within 48 h after hospital admission
for an acute psychotic episode (before initiation of antipsychotics), after 1-2 weeks and
again after 8 weeks of treatment. Kynurenine, kynurenic acid (KA), 3-hydroxykynurenine
(8-HK), quinolinic acid (QA), phenylalanine, tyrosine, nitrite, and neopterin were measured
using HPLC and LC-MS/MS analysis. Concentrations of CRP, CCL2 (MCP1) and
cytokines were determined with multiplex immunoassay. PANSS interviews and cognitive
tests were performed at baseline and follow-up. Mixed model analyses were used to
identify trait and state markers.

Results: Patients had significantly higher plasma concentrations of CRP, CCL2, IL1RA,
and lower concentrations of KA and KA/Kyn at all time points (F7.5-17.5, all p <
0.001). Increased concentrations of IL6, IL8, IL1RA, TNFa, and CCL2 and decreased
QA and 3-HK (F8.7-21.0, all p < 0.005) were found in the acute psychotic state and
normalized after treatment. Low nitrite concentrations at admission rose sharply after
initiation of antipsychotic medication (F42.4, p < 0.001). PANSS positive scale scores
during the acute episode correlated with pro-inflammatory immune markers (- > |0.5),
while negative scale scores correlated inversely with IDO pathway markers (- > [0.4]).
Normalization of KA and 3-HK levels between admission and follow-up corresponded
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De Picker et al.

State-Specific Neuroimmune Markers in Psychosis

to a larger improvement of negative symptoms (r = 0.5, p < 0.030) A reverse association
was found between relative improvement of SDST scores and decreasing KA levels

(r=0.5,p <0.010).

Conclusion: The acute psychotic state is marked by state-specific increases of immune
markers and decreases in peripheral IDO pathway markers. Increased CRP, CCL2, and
IL1RA, and decreased KA and KA/Kyn are trait markers of psychotic illness.

Keywords: psychosis, schizophrenia, cytokines, kynurenines, kynurenic acid, inflammation, immune, biomarkers

INTRODUCTION

Premorbid dysregulation of the immune system has been
identified as an important factor of vulnerability for
schizophrenia (1-3). Immune system activation could also
be involved in schizophrenia symptom development by
upregulating two neuroendocrine pathways which affect
the biological availability of the two main monoamine
neurotransmitter precursors: tryptophan (Trp) and tyrosine
(Tyr) (cfr. Figure 1).

Stimulation by inflammatory molecules, particularly IFNy,
strongly activates indoleamine-2,3-dioxygenase (IDO) and the
closely related tryptophan 2,3-dioxygenase 2 (TDO?2), the
first and rate-limiting enzymes of tryptophan breakdown into
kynurenine (Kyn). In particular IDO has been linked to immune
functioning: the enzyme is found in a variety of immune cells,
including microglia in the central nervous system (CNS), and is
often upregulated when the immune response is activated (4).
Kynurenine is further degraded into downstream metabolites
such as 3-hydroxykynurenine (3-HK), quinolinic acid (QA), and
kynurenic acid (KA), which directly affect neuronal functioning.
KA is an endogenous antagonist of all ionotropic excitatory
amino acid receptor activities and therefore considered a
protective metabolite against neurotoxic NMDA receptor agonist
QA (5). However, abnormal accumulation of KA could lead
to glutamatergic hypofunctioning and induce psychotomimetic
effects (6, 7). In animal models, elevated KA levels are associated
with sensory gating deficits and schizophrenia-like cognitive
dysfunctions (e.g., deficits in set-shifting tasks, spatial working
memory, hippocampal long-term potentiation, and attentional
processing of environmental stimuli) (8-12).

A second neuroendocrine pathway which is upregulated by
proinflammatory cytokines runs through GTP cyclohydrolase
1 (GTP-CH1), producing neopterin and tetrahydrobiopterin
(BH4). BH4 is an essential cofactor of phenylalanine-hydroxylase
(PHA), tyrosine-hydroxylase, tryptophan-hydroxylase, and nitric
oxide synthases (NOS) and plays a fundamental role in the
synthesis of monoamine neurotransmitters (13). Neopterin is
released by activated human monocytic cells at the expense
of BH4 activity. BH4 is particularly sensitive to oxidative
stress and BH4 deficiencies have been reported in patients
afflicted with various chronic inflammatory conditions as well
as schizophrenia (14-16). In summary, the IDO and GTP-CH1
pathways may represent a neuroendocrine link between the
immune system abnormalities and neuropsychiatric symptoms
of psychosis patients.

Meta-analyses have confirmed peripheral changes in the
levels of cytokines, chemokines, lymphocytes, and oxidative
stress markers of patients with schizophrenia during acute
exacerbations (acute psychotic relapse or first psychotic episode),
which normalize with antipsychotic treatment (summarized in
De Picker et al.) (17). These “state” markers are differentiated
from other “trait” markers that remain significantly altered
throughout the disorder (18, 19). Thus, different patterns of
immune system upregulation are present in the acute vs. post-
treatment states of psychotic illness. We hypothesized similar
state-dependent changes to exist in the immune-associated
neuroendocrine pathways.

The aim of this study was to identify state and trait IDO
and GTP-CH1 pathway markers together with immune system
markers in a longitudinal sample of patients during acute
psychotic exacerbation, and to evaluate the association of these
markers with neuropsychiatric symptomatology.

MATERIALS AND METHODS

Participants

We recruited a transdiagnostic group of 49 inpatients fulfilling
the Diagnostic and Statistical Manual of Mental Disorders
(DSM—5) criteria for a diagnosis within the spectrum of
primary psychotic illnesses (DSM-5 #295.1-295.6, 295.9, 298.9).
Patients were newly admitted to one of three major psychiatric
hospitals in the Antwerp region of Belgium (University
Psychiatric Hospital Antwerp Campus Duffel, Multiversum
Campus Alexianen, and Campus Amedeus) for first-episode
psychosis or for acute relapse of psychosis, as defined by
Positive and Negative Syndrome Scale (PANSS) interview scores
(20), and were antipsychotics-naive or-free for at least 4
weeks prior to hospital admission. Additionally, 52 healthy
age-, gender-, and BMI-matched controls from the same area
were enrolled. All controls were considered healthy based on
clinical evaluation with vital signs and laboratory tests (including
liver enzymes, hematology, HBV, HCV, and HIV serology,
and urinalysis). Individuals with a personal medical history
of (1) auto-immune disorders or any chronic or recent acute
physical illnesses associated with abnormal immune changes or
who used anti-inflammatory or immunomodulating drugs or
systemic corticosteroids within the last 3 weeks; or (2) substance
use disorders according to DSM-5 criteria (except nicotine or
caffeine) within the last 3 months were excluded. Control subjects
with a personal history of any psychiatric disorders or family
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history (first degree relatives) of psychotic or bipolar disorders
were also excluded.

Patients’ symptom severity was measured using the Positive
and Negative Syndrome Scale (PANSS). Psychotic exacerbations
were defined by a total score of >14 on the positive scale of the
PANSS and at least a score of 5 on one item or a score of 4
on two “psychotic” PANSS items P1, P3, P5, or G9 at Screening
(20, 21). PANSS interviews were conducted with patients during
the acute psychotic state and at follow-up (within 1 week of
each blood sampling) by a trained interviewer. Together with
the interviews, cognitive measures (Symbol-Digit Substitution
Task Test and WAIS IV Letter-Number Sequencing Task)
were obtained.

The study procedures were described in detail to all
participants, who gave written informed consent. The local ethics
committees of University Hospital Antwerp, Emmaiis, Brothers
of Charity, and Spes et Fides approved the study.

Blood Sampling
Non-fasting blood samples were obtained from all participants
in a standardized manner at three different occasions in

patients and two occasions in controls. Whenever possible, a
first (Unmedicated Psychosis; UMP) sample was obtained from
patients within 48 h of hospital admission (available for 37 of
49 patients), after which antipsychotic medication was initiated
as determined by clinical needs. Subsequently, a sample was
obtained during the first 2 weeks of hospitalization (Psychosis,
in some patients this represented the first study sample; mean
10.2 & 5.6 days after UMP sample) together with the first PANSS
interview and cognitive tests. Finally, the last (Follow-up) sample
was obtained after at least 8 weeks of treatment (mean 81.2
+ 25.9 days after Psychosis sample) together with the second
PANSS interview and cognitive tests. In controls, two samples
were drawn at the same time of day at least 6 weeks apart (mean
77.1 £ 43.2 days). Blood samples were collected from January
2014 to May 2016 without any dietary or fasting protocols and
drawn via a forearm vein in EDTA and citrate containing tubes.
See Supplementary Figure 1 for timing of blood draws. Blood
samples were transferred to the laboratory (<30 min) on cold
packs and centrifuged for 10 min at 4°C immediately after arrival.
The resulting plasma was aliquoted into Eppendorf tubes which
were frozen immediately at —80°C and kept frozen until analysis.
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LCMS Quantitative Analysis of Trp, Kyn,

QA, and KA by LC-MS/MS

IDO pathway analytes Trp, Kyn, QA, and KA were measured
in citrate plasma samples using liquid chromatography-tandem
mass spectrometry (LCMS) analysis at the Institute of Legal
Medicine and Core Facility Metabolomics of the Medical
University of Innsbruck, Austria as described elsewhere (22).
Samples were shipped frozen to Innsbruck where they were
stored at —20°C until analysis. Samples were processed in batches
of 20-30 samples. Additionally, two quality control samples
were analyzed with each batch of patient samples added to each
batch. These plasma samples were kindly donated by the blood
bank of the Medical University of Innsbruck. They were stored
at —20°C prior to use. The order in which the samples were
processed was pre-specified to make sure all samples belonging
to the same participant were in the same batch, and each batch
contained a similar number of patient and control samples (see
also Supplementary Material).

HPLC Quantitative Analysis of Phe, Tyr,

Nitrite, and Neopterin

Free concentrations of phenylalanine (Phe), Tyr, nitrite, and
neopterin were measured in EDTA plasma samples by high
performance liquid chromatography (HPLC) analysis at the
Center of Chemistry & Biomedicine of the Medical University of
Innsbruck, Austria as described elsewhere (4, 13). For an estimate
of NO production, the stable NO metabolite nitrite (NO27) was
determined in the cell-free culture supernatants by the Griess
reaction assay (Promega, Madison, Wisconsin).

Plasma aliquots were shipped frozen to Innsbruck at two
different timepoints (6 months interval) and were stored at
—20°C until analysis. They were processed in batches of 20-30
samples with a pre-specified order, as above.

HPLC Quantitative Analysis of 3-HK

3-hydroxykynurenine (3-HK) was measured at the University
of Antwerp Department of Pharmaceutical Sciences by HPLC
with electrochemical detection as described elsewhere (23). Two
hundred milliliters of citrate plasma sample was deproteinized
with 40 ml of 0.23 M perchloric acid. To 120 ml of deproteinized
sample was added a solution of 20 g/l sodium decane sulphonate
and 1 g/l EDTA in acetonitrile:water (40:60) and injected into
a HPLC system equipped with a Chromolith Performance 3.0
x 100 mm column with a Chromolith guard cartridge. Elution
solvent was 2.0 g/l decane sulphonic acid, 100 mg EDTA, and
5.9 ml phosphoric acid in 1,250 ml of water and 130 ml ACN.
pH is brought to 3.5 with trimethylamine. Flow was 1.7 ml/min.
Detection was coulometrically using an ESA electrochemical
detector at 350 mV. Recovery of 3-HK was more than 95%.
Within-assay CV was 4.7%, between-assay CV was 14.7%.
Specificity was checked by observing retention by changing
solvent composition.

Quantitative Immunoassays

Immune markers of interest were measured in duplicate in EDTA
plasma by an electrochemiluminescence immunoassay technique
developed by Mesoscale Discovery (Rockville, USA), according

to the manufacturer’s instructions. We used standardized kits
V-PLEX Proinflammatory Panel 1 Human Kit (for detection
of IFNy, IL10, IL12p70, IL1B, IL6, IL8, and TNFa), V-PLEX
Cytokine Panel 1 Human Kit (for IL17A), V-PLEX Chemokine
Panel 1 Human Kit (for monocyte chemoattractant protein-
1, MCP1/CCL2) and V-PLEX Vascular Injury Panel 2 Human
Kit (for C-reactive protein, CRP). Additionally, IL-1RA was
detected using a custom 4-Spot Prototype Human IL-1RA kit.
Concentrations for each cytokine were calculated by fitting
the sample signals on a 4-parametric logistic calibration curve.
Assays were excluded if concentrations were below detection
threshold in >50% of participants (as was the case for IFNvy, IL10,
IL12p70, IL17A), as well as all data points with an intra-assay
coeflicient of variation >15% (cfr. Table 2).

Statistical Analysis

To estimate the activity of PHA, the ratio of the substrate Phe
vs. the concentrations of the enzyme product Tyr (Phe/Tyr)
was calculated. A similar ratio was calculated for Kyn/Trp and
KA/Kyn as indices of IDO and KAT, respectively.

All statistical analyses were performed in JMP version 13
and Review Manager 5.3. Non-normally distributed markers
were log normalized prior to the use of parametric statistics
(IL1RA, IL6, IL8, CCL2, TNFa, CRP, QA, QA/KA). We applied a
reflected transformation to the distribution of neopterin because
of negative skew. Outlier plasma concentrations of markers (>3
x z-score) were excluded from analysis.

Baseline differences in clinical and demographic parameters
between cohorts were examined by two-tailed independent ¢-
tests for continuous variables and Pearson chi-square test for
categorical variables. Pearson correlation analyses tested the
association between different markers and symptom severity. All
medium-to-high strength correlations (r > [0.3|) are reported.
All data are presented as mean %+ SD unless otherwise indicated.

A series of linear mixed model restricted maximum likelihood
(REML) analyses were performed with the different immune and
neuroendocrine markers as the dependent variables. To model
trait differences in peripheral immune and neuroendocrine
markers between the cohorts as well as differences related to
the acute psychotic state vs. post-treatment state in patients,
Subject was included as random effect and Cohort, State
(i.e., the psychotic state, including both UMP, and Psychosis
timepoints) nested in Cohort and Batch as fixed effects (marker
= [SubjID] + Cohort + State[Cohort] + Batch). Because the
graphical presentation of the identified markers (demonstrated
in Figure 2) indicated distinct results for the samples taken at
admission (during Unmedicated Psychosis; UMP), the above
linear mixed model for each marker was repeated using UMP
as State. Dependent variables which demonstrated significant
effects for State [Cohort] in either of two mixed models were
considered state markers, whereas variables for which Cohort was
significant in both mixed model analyses were considered trait
markers. Subsequently, the models were adjusted for sex, age,
BM]I, and smoking.

All significance levels are reported as two-sided P-values,
corrected for multiple testing wusing the Benjamini-
Hochberg implementation (24) of the False Discovery Rate
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TABLE 1 | Demographics, PANSS interview, and cognitive test results at baseline
and follow-up.

Patients Controls Test statistic
N 49 52
Age range 19-49 years 18-47 years
Age mean + SD 324 +7.5 28.5+7.0 12.66, df99,
years years p =0.010
M:F (absolute) 42:7 39:13
M:F (pct) 86:14 75:25 x1.82,
p=0177
BMI mean + SD 249+40 239437 t1.29, p=0.201
Smoking 63.8% 5.9% x36.77,
p < 0.001
THC use prior to study (heavy use  18.8% light 3.9% light x19.5,
defined as more than three times  20.8% heavy p < 0.001
per week)
Duration of illness 6.1+59
years
1st episode 26.1%
Acute At
psychosis follow-up
(n = 46) (n =39)
PANSS total score 83.44+ 146 59.1+121 110.9, df37,
p < 0.001
PANSS positive scale score 248+50 108+29 t17.9, df37,
p < 0.001
PANSS negative scale score 184+74 17270 1.3, df37,
p=0.197
PANSS general psychopathology  40.6 +£7.9 309+ 7.1 6.9, df37,
scale score p < 0.001
SDST score (humbers correct) 44.0+12.0 48.0+11.7 t2.84,df37,
p =0.008
NS adjusted score 50+22 52+24 t0.77, df37,
p = 0.446

Data are expressed as mean values + SD.

(FDR) correction. An FDR adjusted p-value of 0.05 was used as
cutoft for significance (significant p-values are indicated by *).

RESULTS
Demographics

We enrolled 52 controls and 49 patients, of whom seven
dropped out of the study prior to the last timepoint. The first
unmedicated UMP blood sample was available for 37 out of 49
patients. Demographic information and patients’ PANSS scores
are presented in Table 1. PANSS scores were not available for
analysis in three patients. Patients’ baseline PANSS total scores,
positive subscale and general psychopathology subscale scores
were significantly higher than at follow-up.

Trait and State Markers of Psychosis

Increased concentrations of IL6, IL8, TNFa, CCL2, and
decreased Nitrite were identified as markers of the unmedicated
acute psychotic state [State(Cohort) for UMP: all F = 8.68-
42.36; p = < 0.001-0.004), whereas increased ILIRA (F =

8.33; p = 0.005) and decreased 3-HK (F = 12.81; p = 0.001)
and QA (F = 16.07; p < 0.001) were state markers of the
whole acute psychotic episode, both before and after initiation
of antipsychotic medication. We identified increased IL1RA,
CRP, and CCL2 and decreased KA and KA/Kyn as trait markers
(Cohort: all F =5.96-17.39; p = < 0.001-0.017) (see Figure 2).
No significant differences were identified for Trp, Phe, Tyr,
Phe/Tyr, and Neopterin. Results of the analyses are summarized
in Table 2 and Supplementary Table 1.

Adjustment for Confounders

The above analyses were adjusted for the effects of sex, BMI,
smoking, and age: (1) A significant interaction between cohort
and sex existed in KA (F = 17.39; p < 0.001) and KA/Kyn (F =
13.64; p < 0.001), with male controls demonstrating higher KA
and male patients demonstrating lower KA; (2) Nitrite levels were
lower in men compared to women in both cohorts (F = 12.0, p
< 0.001); (3) Higher BMI significantly increased concentrations
of CRP, IL1IRA, and QA in both cohorts; (4) The effect of
smoking was not significant; (5) A significant interaction between
cohort and age was found for ILIB (F = 7.96; p = 0.006) and
Kyn/Trp (F = 8.94; p = 0.004) and a significant main effect of
age for IL6 (F = 7.45; p = 0.008). Results are summarized in
Supplementary Table 1.

Relationship Between Immune and
Neuroendocrine Markers

TNFa concentrations in patients but not controls correlated with
Kyn (r = 0.310-0.509), Kyn/Trp (r = 0.361-0.451), QA (r =
0.432-0.481), and QA/KA (r = 0.349-0.518), but not with KA
at each of the three timepoints. In contrast, in controls CRP and
IL1RA concentrations correlated with IDO pathway metabolites.
Results are summarized in Supplementary Table 2.

Relationship With Clinical Symptoms and

Patient Characteristics

PANSS positive scale scores during the acute psychotic state
correlated with concentrations of IL1B (r = 0.463, p = 0.026),
IL6 (r = 0.541, p = 0.008), and CRP (r = 0.507, p = 0.014)
and correlated inversely with Neopterin (r = —0.427, p = 0.021),
whereas PANSS negative scale scores correlated with Kyn
(r = 0458, p = 0.013), QA/KA (r = 0.379, p = 0.040) and
inversely with KA/Kyn (r = —0.400, p = 0.032). Furthermore,
the relative change in PANSS negative scale scores between the
acute and post-treatment states [(acute—post-treatment)/acute]
correlated inversely with the relative change in KA (r = —0.470,
p =0.024) as well as 3-HK (r = —0.465, p = 0.026).

Both groups improved between the first and second rounds
of cognitive testing but patients performed significantly poorer
compared to controls (SDST controls 70.0 &£ 12.1, vs. patients
45.6 £ 12.1, within-pairs F = 0.76, p = 0.386, among-pairs
F = 85.0, p < 0.001; LNS controls 9.96 & 2.9 vs. patients 5.10
=+ 2.3, within-pairs F = 5.6, p = 0.020, among-pairs F = 85.4, p
< 0.001). The relative change in SDST performance over time in
patients [(acute—post-treatment)/acute] correlated inversely with
the relative change in KA (r = —0.489, p = 0.010) and KA/Kyn
(r=—0.358, p = 0.067).
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DISCUSSION

Trait and State Markers of Psychotic lliness
In the present study, we tested the hypothesis that state
or trait increases in levels of pro-inflammatory cytokines
may be accompanied by state-specific IDO and GTP-CHI
pathway abnormalities in schizophrenia spectrum disorders.
We defined five immune (ILIRA, IL6, IL8, TNE, CCL2) and
three neuroendocrine (QA, 3-HK, Nitrite) state markers of
acute exacerbations which normalized after treatment with
antipsychotics. Five trait markers (ILIRA, CRP, CCL2, KA,
KA/Kyn) differentiated between patients and controls at any
of the timepoints. ILIRA and CCL2 were both state and trait
markers, distinguishing patients from controls as well as patients
during a psychotic episode from those at post-treatment follow-
up. Kyn/Trp was a trait marker only in participants older than 30
years of age.

Our findings confirm the association of schizophrenia and
the acute psychotic state with increased peripheral (pro-
inflammatory) immune markers, as described earlier by Miller
et al. in two meta-analyses of blood cytokine and CRP levels.
Miller et al. identified IL1B, IL6, and TGFp as state markers
for acute exacerbations, while IL12, IFNy, TNFa, sIL2R, and
CRP were trait markers. IFNy and IL12p70 were measured in
our study but did not meet quality control criteria required
for further analysis. CCL2 was also identified as a trait marker
(defined here as elevated in both first- and multiple-episode
schizophrenia patients irrespective of treatment) in another
recent meta-analysis (25).

However, although our patients exhibited state and trait
immune activation, the GTP-CH1 pathway did not differentiate
patients from controls (except for nitrite) and the IDO
pathway appeared overall downregulated in patients vs. controls.
Although this finding contradicts our original hypothesis of
immune-activated IDO upregulation, it is in line with results
from two recent amino-acid profiling studies (one cross-sectional
study in 208 first episode psychosis patients and one 7-
month follow-up study in 38 schizophrenia patients) in which
tryptophan and kynurenine were decreased in participants with
schizophrenia vs. controls (26, 27).

Furthermore, subgroup analyses of a recent meta-analysis
by Plitman et al. of 13 studies in schizophrenia demonstrated
that KA levels were increased centrally (cerebrospinal fluid
and brain tissue, n = 7 studies) but not peripherally (n = 5
studies) (28). However, two studies of peripheral IDO pathway
metabolites which have emerged since then suggest a relative
decrease in KA even in the presence of a pro-inflammatory
state (29, 30). We therefore repeated this meta-analysis using
the same methods, while adding the data of the two newer
studies plus our own findings. Significant study heterogeneity
existed in the main analysis (I’ = 90%), with the funnel plot
indicating the smallest and oldest study (31) acted as an outlier,
influencing the overall result. When this study was excluded, the
meta-analysis of the remaining seven studies indicated KA levels
were mildly but significantly decreased in the blood of patients
with schizophrenia compared to controls (standardized mean
difference —0.35, p = 0.020) (cfr. Figure 3).

Our study has specifically looked at state-specific changes
of neuroendocrine markers. Only a few other studies
have longitudinally investigated IDO pathway metabolite
concentrations in both arms downstream from kynurenine in
psychosis patients. Myint et al. (32) studied 53 medication-free
patients with schizophrenia admitted to hospital with psychotic
symptoms and treated with antipsychotic medication over
6 weeks. They also identified decreased KA and KA/Kyn as
trait markers, but found increased 3-HK at admission, which
normalized after 6 weeks of treatment (32). Fazio et al. (33)
found decreased QA and 3-HK in first- and multiple-episode
schizophrenia patients, the latter of which increased significantly
in first-episode patients after 1 year of treatment. KA levels were
found to be increased in their study, however this result may have
been confounded by a gender imbalance in this study (69% male
in patients vs. 44% in controls), considering KA levels are lower
in females than males (33, 34). Szymona et al. (30) analyzed
blood levels of KA and 3-HK in 51 chronic schizophrenia
patients during acute relapse, after 4 weeks of therapy and at
remission. KA levels were significantly lower in comparison
with controls throughout the study, whereas 3-HK did not differ
from controls at admission and during therapy but increased at
remission and correlated negatively with the improvement of
negative symptoms (SANS scores) at discharge-matching our
findings for PANSS negative scale scores. Finally, Wurfel et al.
demonstrated reductions in serum KA and KA/QA in acutely ill
inpatients with affective psychosis.

Age and Sex Effects

The term “inflammaging” (35) has been coined to indicate
significant relationships between aging and circulating
concentrations of immune markers such as IL-6 and neopterin,
as well as increased tryptophan breakdown in the presence
of immune activation in the elderly (36). Moreover, we have
recently demonstrated important age effects on microglial
activity during psychosis in a subpopulation of our current
sample, in whom TSPO radioligand uptake was measured using
Positron Emission Tomography (37, 38).

In the current study, we observed that state and trait
increases in ILIRA and IL6 became more pronounced in older
patients, while state-dependent changes of QA and 3-HK were
more pronounced in younger patients. Not unimportantly given
the sexual dimorphism in age of onset and progression of
schizophrenia, a significant interaction between cohort and sex
existed in KA.

Limitations

There are some noteworthy limitations to the present study.
Firstly, the number of samples obtained was not the same in
all patients. Our aim was to obtain blood samples at the earliest
possible time during the acute psychotic episode. Therefore, some
patients were enrolled in the study within 48 h of being admitted
to hospital and before the initiation of antipsychotic medication
(UMP timepoint), whereas others only entered the study at a
later timepoint (Psychosis, timepoint) within the first 2 weeks
of hospitalization. We therefore preferred methods of analyses
which are less affected by missing or unbalanced data, such as
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TABLE 2 | Concentrations of different immune markers at the different timepoints.

Compound UMP (at admission) Psychosis (<2 weeks Follow-up (>8 weeks Control Datapoints
in hospital) treatment) excluded or missing
IL6 (pg/ml) 3.09 + 6.83 0.38 +1.12 0.20 + 0.21 0.16 + 0.26 N=11
IL8 (ng/ml) 0.98 +4.17 1.30 + 4.61 0.20 +£0.77 0.03 + 0.08 N=4
ILTRA (ng/mi) 0.33+0.16 0.28 +0.15 0.25 + 0.07 0.22 + 0.07 N=16
IL1B (pg/ml) 0.07 +0.29 0.03 + 0.08 0.02 + 0.08 0.27 +1.86 N=25
TNFa (pg/ml) 8.01 +5.55 6.23 + 5.51 6.35 + 6.41 5.44 + 4.02 N =41
CRP (ng/ml) 4.03 £6.22 2.18 £3.10 2.20 +£1.99 1.00 £ 1.22 N=4
CCL2 (pg/ml) 99.12 + 36.96 82.99 + 24.80 88.85 + 36.06 7517 £ 27.46 N=23
Trp (g/mi) 10.68 + 2.66 10.57 +2.19 10.21 +1.93 10.88 + 1.76 N=0
Kyn (ng/ml) 172.30 + 36.58 165.64 + 40.45 179.38 + 43.41 185.16 + 47.09 N=0
KA (ng/ml) 5.22 +1.62 5.05 + 2.03 5.35+1.99 6.83 + 2.66 N=0
QA (ng/ml) 72.39 £ 24.79 78.55 + 30.59 91.43 + 38.88 88.39 + 25.17 N=0
3-HK (nmol/l) 27.95 + 8.98 28.77 £ 14.55 32.04 + 16.09 35.69 + 15.53 N=16
Nitrite 26.16 + 15.86 59.86 + 34.151 63.64 + 34.25 39.47 +30.16 N=6
Neopterin 5.80 +2.07 5.44 +2.31 6.50 +5.15 5.56 +2.74 N=6

Data are expressed as mean values + SD. Phe and Tyr are not represented due to significant batch effects.

linear mixed models. Secondly, our naturalistic study design does
not allow us to differentiate to which extent changes between
the different illness states can be accounted for by effects of
treatment with antipsychotic medication, non-specific aspects

of being hospitalized or natural illness course. Furthermore,
although there is a significant reduction between baseline and
follow-up PANSS total and positive subscale scores, our follow-
up period of 8 weeks may still have been too short for the immune
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markers to normalize. A longitudinal study with longer follow-up
period would be needed to monitor the evolution of state makers
and to verify if the trait markers indeed remain altered in patients
irrespective of their clinical course (39).

All patients in our study were started on a regimen
of antipsychotic treatment during the follow-up period.
Unfortunately, our data did not allow us to compare
neuroimmune markers against the type and dose of antipsychotic
treatment. Antipsychotics in general have been suggested to
increase nitric oxide plasma levels, which would explain the
sharp increase in nitrite levels in patients after antipsychotics
were initiated (40). Thirdly, our findings concern peripheral
measures which cannot be generalized to the central nervous
system and are susceptible to confounding by factors which affect
peripheral bioavailability. We repeated our analysis controlled
for albumin concentration which did not alter our findings.
All samples were taken in non-fasting conditions, except UMP
which were usually drawn together with routine clinical sampling
in early morning fasting conditions—as plasma kynurenine is
typically lower in non-fasting conditions, it is unlikely this would
explain our findings (41). Our IDO pathway results were very
consistent despite having been generated in two different labs
(University of Antwerp and University of Innsbruck) and with
two different methods (LC-MS/MS vs. HPLC). In contrast, the
GTP-CHI1 pathway results were subject to considerable batch
effects which could have nullified any biological differences in
Phe, Tyr, and Neopterin.

The importance of IDO pathway metabolites is usually
linked to their actions in the central nervous system. TRP,
KYN, and 3-HK readily cross the blood-brain barrier while
KA and QA cannot (42). Human brain kynurenines are not
autonomous but are linked to, and influenced by, the peripheral
IDO pathway (5). Sixty to eighty percentage of cerebral KYN—
the predominant source of downstream cerebral IDO pathway
metabolites—is contributed from the periphery, where the
highly regulated IDO pathway accounts for ~80% of non-
protein-bound Trp metabolism (43, 44). During inflammation
and enhanced tryptophan breakdown, increased amounts of
peripheral KYN are transported across the blood-brain barrier
and become available for further downstream metabolization
in astrocytes and microglia of the central nervous system.
Finally, while our work has focused on IDO-initiated kynurenine
metabolism, it is worth pointing out the existence of an
alternative—albeit less well-studied—route catalyzed by TDO2.
While TDO2 expression in mammals is mostly restricted to the
liver, one study has demonstrated a 1.6-fold increase in TDO2
mRNA as well as increased density of TDO2-immunopositive
astrocytes in postmortem tissue of patients with schizophrenia
(45). Clearly further work is needed to elucidate the differential
pathophysiological roles of IDO- vs. TDO2-mediated kynurenine
metabolism in pro-inflammatory states.

Clinical Relevance and Recommendations

for Future Research
After adjustment for potential confounders and multiple testing
we find that immune and neuroendocrine profiles of patients

differ throughout the course of a psychotic episode. Future
studies evaluating these compounds in both exploratory or
interventional designs should therefore carefully select or
differentiate between patients in different illness stages.

While positive symptom scores during the acute episode
correlated mostly with markers of the pro-inflammatory state,
IDO pathway markers were associated with negative symptom
scores. Normalization of KA and 3-HK levels between admission
and follow-up corresponded to a larger improvement of negative
symptoms. A reverse association was found between relative
improvement of SDST scores and decreased KA levels, which
could represent the first evidence in humans of the preclinical
findings that sudden increases in brain kynurenic acid impair
cognitive flexibility (8). More comprehensive research in larger
samples would be needed to further explore this relationship.

Clearly, the most unexpected finding of this study is the
global downregulation of both arms of the IDO pathway
in psychosis. The IDO or kynurenine pathway has been of
interest to schizophrenia research because of its strong relation
to the immune system as well as the fact that KA tightly
controls glutamatergic and dopaminergic neurotransmission
and influences behavior in animals (46). In humans, exogenous
glutamate receptor antagonists induce schizophrenia-like
phenomena in healthy controls.

Based on our findings, which are echoed by recently
published evidence on decreased peripheral KA concentrations,
a critical re-evaluation of the kynurenic acid hypothesis is
needed. Alternative hypotheses to identify the origins of the
IDO pathway abnormalities in schizophrenia, their relation to
treatment responses and in particular the striking discrepancies
between central and peripheral findings should be considered
(29). Similar to a mechanism proposed in glioblastoma patients,
in whom plasma concentrations of Trp, Kyn, KA, and QA
were found to be decreased compared with healthy controls
in the context of CNS IDO1 upregulation (47), decreased
peripheral KA could be indicative of an increased demand for
and transfer of Trp or Kyn through the blood-brain barrier
to serve as substrate for local synthesis of KA in brain tissue.
This corresponds to increased KA concentrations in the CSF of
patients with schizophrenia (48). This hypothesis however does
not explain why KA remains decreased throughout the illness
course as trait marker while, especially in younger patients, 3-
HK and QA concentrations increase post-treatment. Nor does
it clarify why we found Kyn, 3-HK, and QA concentrations to
correlate with TNFa concentrations in patients while KA levels
did not.

Despite several decades of increased attention for kynurenines
in the field of mental health research, many basic issues about
their pathophysiology remain unsettled as recently extensively
reviewed by Schwarcz and Stone (42). The effect of persistent
up- or downregulation of kynurenine pathway metabolism in
the periphery on the dynamics of blood-brain barrier transport
have not yet been studied. Future work is needed to clarify the
functional dynamics of IDO pathway metabolism in the CNS
as well as the implications of peripheral kynurenine changes.
Ideally future studies in psychosis patients should look at both
kynurenine pathway arms, comparing both CSF and plasma
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and longitudinally following patients throughout the course of
their illness.

CONCLUSION

To our knowledge, this is the first study to comprehensively
and longitudinally evaluate state and trait changes of IDO
and GTP-CHI1 pathway metabolites in parallel to immune
markers in psychosis patients. Our study confirmed that the
acutely psychotic (and unmedicated) state is marked by specific
state increases of immune markers (IL6, IL8, TNFa, CCL2,
ILIRA) and decreased Nitrite. We also demonstrated these
increases in peripheral pro-inflammatory immune markers are
accompanied by state-specific decreases in peripheral 3-HK
and QA. Trait markers which differentiate psychosis patients
from healthy controls throughout the illness course were
increased CRP, CCL2, and ILIRA, and decreased KA and
KA/Kyn. While PANSS positive scale scores during the acute
episode correlated with pro-inflammatory immune markers,
IDO pathway markers were associated with negative scale
scores and normalization of KA and 3-HK levels between
admission and follow-up corresponded to a larger improvement
of negative symptoms. A reverse association was found
between relative improvement of SDST scores and decreasing
KA levels.
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HOST-MICROBE TRYPTOPHAN CO-METABOLISM

Microbes have evolved to exploit humans as a rich source of nutrients to support survival and
replication. Although mammals and microbes may differ in their requirement for tryptophan
(Trp), being an essential amino acid in the former and produced, with some exceptions, by
bacteria and fungi, common catabolic enzymes are shared by both host and pathogens. Indoleamine
2,3-dioxygenases (IDOs) catabolize Trp to kynurenines and are widely distributed from bacteria
to metazoans. The evolutionary conservation of the kynurenine pathway may be linked to
the importance of the de novo synthesis of nicotinamide adenine dinucleotide (NAD+), to
which it ultimately leads, although additional functions of kynurenines are increasingly being
recognized. Indeed, it is now clearly established that mammalian IDOs regulate infection and
drive immune tolerance by means of Trp deprivation and the generation of active metabolites,
including kynurenines. An additional level of complexity can be envisaged when microbes utilize
Trp via alternative pathways upon colonization of the host in a relationship that can be either
commensalism or pathogenic. In these situations, the host and microbes are found to share
common substrates but the presence of dissimilar metabolic pathways may result in the generation
of metabolites, such as indoles or tryptamine that can cross-regulate each others metabolism. Here,
we discuss the potential relevance of Co-Trp metabolism or alternative secondary pathways of Trp
degradation in modulating host immune response and eventually the xenobiotic receptors (XRs),
while regulating microbe fitness. These concepts are expected to open a novel scenario in which
a comprehensive assessment of the metabolic status is crucial to correctly evaluate pathological
colonization and drive the most appropriate therapeutic strategy.

CO-METABOLISM DICTATES PATHOGEN VIRULENCE

Trp is one of the 20 amino acids used for building proteins with the unique characteristic of bearing
an indole, a bicyclic ring formed by a benzene and a pyrrole group, linked to the a-carbon by a
—CH2-group (1). The presence of the indole group not only dictates the biochemical properties
of Trp, a highly hydrophobic amino acid that guarantees the stabilization of protein and peptide
structures, but also makes Trp a reservoir of indole-based bioactive molecules with fundamental
implications in organism physiopathology (1, 2). The relevance of Trp and its catabolic pathways
acquires a novel dimension when they are envisioned in the context of a relationship between
host and microbes. Indeed, the different entities involved in the relationship share the same Trp
substrate, which is fundamental for all the parties at play, but is catabolized along peculiar patterns.
Therefore, multiple levels of interactions can be foreseen, starting from the competition of the Trp
substrate to the generation of bioactive molecules via shared or exclusive catabolic pathways with
cross-regulatory properties, and each will be discussed upon in the following sections.
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First, the requirement for Trp differs between the organisms.
Indeed, while Trp is an essential amino acid in mammals,
microorganisms, and higher plants possess the ability to
synthesize Trp from chorismate, a common precursor of
aromatic amino acids produced by the shikimate pathway
from phosphoenol pyruvate and erythrose-4-phosphate (3). This
dependence of mammals from external sources of Trp creates
a first level of interaction in the host/microbe interface. Indeed,
mammals might obtain Trp not only from the diet, but also
from commensal microorganisms that possess the shikimate
pathway and may represent a source of Trp. On the contrary,
pathogens may co-opt host mechanisms of Trp degradation as
a strategy to evade the host immune response (4). For instance,
in a murine model, the gut pathogen Clostridium difficile induced
IDO1 expression to deplete the Trp pool and increase kynurenine
production in the cecal tissue by IDOl-expressing CD11ct
myeloid cells, among other stromal cells. As a consequence,
neutrophil accumulation and pathogen clearance were limited
(4, 5). Other pathogens however, depend on the host for Trp
availability, including common intracellular pathogens, and it
is the host that depletes the Trp pool to limit the virulence
of the pathogens (4, 6). For instance, the parasite Toxoplasma
gondii is Trp-auxotroph and IDO activity suppresses its growth,
as first demonstrated by Pfefferkorn and co-workers in cultured
human fibroblasts treated with IFNy (7). Thus, Trp itself appears
as a double-edged sword in the host-microbe interaction: on
the one hand, it may ensure a positive symbioses between the
host and Trp synthesizing microbes; on the other hand, it may
be used as a weapon to deprive the host or, vice versa, Trp-
auxotroph pathogens of Trp, resulting in increased or reduced
virulence, respectively.

Second, Trp may be catabolized via shared catabolic pathways.
In mammals, Trp is metabolized along four different pathways
leading to the formation of (i) serotonin and melatonin, (ii)
tryptamine, (iii) indolepyruvic acid, and (iv) kynurenine (8).
The kynurenine pathway accounts for nearly 95% of all Trp
degradation (8), and the rate-limiting step is catalyzed by one of
three enzymes, namely indoleamine 2,3-dioxygenase 1 (IDO1),
IDO2, and tryptophan 2,3-dioxygenase (TDO), with distinct
localization, affinity, and regulation (8). The evolution of IDOs
and TDO has been the subject of intense research. TDO is
widely present in metazoan and many bacterial species, but
not in fungi, and is characterized by a high efficiency for Trp
degradation throughout the evolution (9). On the contrary,
IDO is found in mammals, lower vertebrates, invertebrates,
fungi, and bacterial species, but only mammalian IDO1 and
fungal IDOs show high efficiency for Trp degradation (9).
Irrespective of the ancestral role of IDOs and TDO and their
evolution, it is evident that microorganisms are endowed with
the ability to catabolize Trp along the kynurenine pathway,
as partially demonstrated by experiments in germ-free mice
that show a decrease in the kynurenine pathway (10). In
this scenario, two opposite outcomes are possible. Indeed,
not only the distinct dioxygenases might compete for the
same substrate to produce kynurenine for self-advantage, but
they can also compensate each other in physiological or
pathological conditions characterized by kynurenine deficiency,

again identifying Trp and its catabolism as a double-edged
sword in host-microbe interaction. Unfortunately, studies on the
kynurenine pathway in microbes and how it intersects with host
metabolism are still very scarce, and it is not possible to draw any
conclusions in support of one or the other possibility.

As a third level of interaction, Trp may be catalyzed via
distinct catabolic pathways by the host and microbes, resulting
in the generation of metabolites that can cross-regulate each
other metabolism. In recent years, we have identified and
characterized the “postbiotic” molecule indole-3-aldehyde (3-
IAld) derived from the microbial degradation of Trp and
produced by probiotics such as lactobacilli (11). 3-IAld proved
critical in the maintenance and restoration of intestinal epithelial
integrity. Indeed, by binding the aryl hydrocarbon receptor
(AhR) and activating the expression of IL-22, 3-IAld promotes
the repair of the intestinal epithelial lining and the reduction
of inflammatory markers (11). Another interesting example
is represented by indole, produced by bacteria and some
plants from Trp via the enzymes tryptophanase and indole-
3-glycerol phosphate lyases, respectively (12). Interestingly,
indole negatively regulates the virulence of various pathogens,
such as the gastrointestinal tract pathogens enterohemorrhagic
Escherichia coli (EHEC) (13, 14) and Citrobacter rodentium
(14). For instance, mice infected with C. rodentium and
manipulated to contain different concentrations of indole
in the gastrointestinal tract showed an inverse correlation
between colonization/mortality and amounts of indole (14). In
addition, indole can enhance the competitiveness of commensal
microorganisms, for instance by promoting the growth of E. coli
in mixed-cultures with Pseudomonas aeruginosa via inhibition
of quorum sensing (15). However, microorganisms may also
adopt specialized ways to use Trp and catabolic intermediates as
pathogenic molecules. For instance, A. fumigatus can incorporate
Trp and/or anthranilate via non-ribosomal peptide synthetases to
generate toxic molecules (16), such as the Trp-derived iron (III)-
complex hexadehydroastechrome that increased the virulence
of A. fumigatus and the mortality in a neutropenic murine
pulmonary model upon overexpression (17).

Overall, these examples illustrate how Trp and catabolic
molecules play a fundamental role in regulating the interaction
between the host and the microbes, which can occur at
multiple levels and with opposite outcomes. Indeed, Trp and its
metabolites may serve to establish a symbiotic relationship or
otherwise be used to weaken the partner by depleting essential
molecules or creating toxic substances.

TRYPTOPHAN DEGRADATION BY
MICROBES: TOXICITY VS.
IMMUNOMODULATION

Indole: The Interkingdom Molecule

The enzyme tryptophanase (TnA) is responsible of Trp
degradation and release of indole and indole-derivatives.
Importantly, TnA is widely expressed in Gram-negative as well
as in Gram-positive bacteria (14, 18). The indole ring is found
in humans as the nucleus of human hormones as serotonin or
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melatonin, but is also found in plants in auxins, which may
affect plant orientation by promoting cell division to one side
of the plant in response to sunlight and gravity. Indole is also
synthesized in the bowel by microbes, regulating the biofilm as
quorum sensing molecule or the intestinal physiology. Thus, the
indole ring being diffused in different ecosystems, is considered
a type of “archetypical hormone” able to regulate the relation
between the host and microbes in plants but also in the animal
kingdom. The mechanisms of action in the host by indole and
indole derivatives are not well-characterized yet, although a very
large part of research has focused the mechanistic function on
their capacity to bid the XRs (11, 19, 20). Interestingly, animals
can’t synthesize indole, while many bacteria and also fungi
produce indole and indole-derivatives with some pathogens
such as A. fumigatus synthesizing toxic indole alkaloids (21).
In addition, indole and indole-derivatives are detected in the
human blood as well as in peripheral tissues in physiological
conditions. Frequently, indoles can be measured in urine but
traces are also present in lymph nodes (22-24). A good example
of co-metabolism with the host among the indole-derivatives is
the indoxyl sulfate, typically representing a uremic toxin, derived
from indole in the liver via the actions of cytochrome P450
enzymes (25).

The Indole Pyruvate (IPyA) Route: A Direct

Effect on Immunity

The indole-3-pyruvic acid (IPyA) route is key to converting
aromatic amino acids to aroma compounds via transamination
of Trp (26). IPyA secondary metabolites are indol-3-
acetaldehyde (3-IAAld), indole-3-acetic-acid (IAA), and
indole-3-carboxaldehyde (3-IAld)—all known as being AhR
ligands (11) (Figure 1). AhR is part of the XRs family. XRs
have evolved as cellular sensors for ligands (endogenous
and exogenous) able to transcribe for genes encoding for
drug-metabolizing enzymes.

XRs are also extremely involved in regulating general
physiology since they can also transcribe for genes involved
in immune regulation, cell metabolism, energy homeostasis
(Figure 1). Families of XRs may bind a very large family
of unrelated ligands by direct or indirect binding (27, 28).
XRs may include the pregnane X receptor (PXR), the
AhR, the constitutive androstane receptor (CAR), and
the peroxisome proliferator-activated receptors (PPARs)
(Figure 1). More recently, XRs family has been deeply
investigated for their ability to directly communicate with
the gut microbiota (11, 29, 30).

XRs respond to different metabolites produced by the host as
well as by the microbiota. Thus, metabolism and co-metabolism
are strictly related to XR activation pathway (30). Therefore, the
acute or chronic symptoms of dysbacteriosis generally reflect the
XR role in regulating the host physiology as energy metabolism,
glucose homeostasis, immune-regulation.

Indeed, it was demonstrated that certain bacterial
tryptophan-derived metabolites activate PXR particularly
expressed in intestinal epithelial cells. The downstream
signaling of intestinal PXR affects murine intestinal
permeability, gut inflammation, and in peripheral tissue
bile acid metabolism and drug resistance. Thus, in case
of dysbiosis, where there is a severe lack of PXR ligands
homeostasis is seriously compromised. Restoration of PXR
signaling by using gnotobiotic mice or by administering PXR
ligands, may result in abolishing pro-inflammatory signs
and loss of barrier dysfunction in the context of intestinal
inflammation (31).

In addition, we have demonstrated in mice that the
indole-derivative 3-IAld is an AhR ligand that promotes
IL-22 production. 3-IAld restored antifungal resistance
and increased IL-22 production, ameliorated colitis via
gut NKp46™ cells and via the XR AhR. These results
suggest that the activity of 3-IAld could be exploited to
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guarantee homeostasis and microbial cooperation at mucosal
surfaces in conditions of immune dysregulation (11, 32).
More recently, 3-IAld has been proved also changing
together with a tryptophan-rich diet, the program of
intraepithelial CD4" T cells into immunoregulatory T cells
in mice (20).

Kynurenines: Immunomodulatory

Functions

As in mammalians, Trp may also be degraded in to kynurenines
by microbes. For example, Pseudomonas aeruginosa, a Gram-
negative bacteria frequently involved in healthcare-associated
pneumonia, catabolizes tryptophan through the kynurenine
pathway. Thus, bacterial metabolites may interfere with the
host’s immune response during in vivo infection and acute lung
injury (33). Another important evidence of co-metabolism, was
demonstrated for the opportunistic fungus Candida albicans
(34). Trp metabolites produced by the fungus Candida, in
particular 5-hydroxytryptophan metabolites, are also able to
modulate Th17 response, similarly to kynurenines as shown
for mammalians (34). The opportunistic fungal pathogen A.
fumigatus also has three ido genes (idoA,B,C) in its genome (35—
37). Enzymatic studies suggest that Idos of A. oryzae, participate
in Trp degradation (38). Furthermore, previous studies on A.
fumigatus grown on Trp showed upregulation of these ido genes
(36). However, the relative contributions of individual Idos and
adaptation to the hosts environment, as well as the impact of
kynurenines released by the fungus during lung infection in vivo,
remain unclear.
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Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO2) are the key
enzymes of tryptophan (TRP) metabolism in the kynurenine pathway (KP). Both enzymes
function as indicators of immunosuppression and poor survival in cancer patients. Direct
or indirect targeting of either of these substances seems thus reasonable to improve
therapy options for patients. In this study, glioblastoma multiforme (GBM) as well as
head and neck squamous cell carcinomas (HNSCC) were examined because of their
different mechanisms of spontaneous and treatment-induced immune escape. Effects
on gene expression and protein levels were examined. Accompanying assessment of
TRP metabolites from treated GBM cell culture supernatants was conducted. Our results
show a heterogeneous and inversely correlated expression profile of TRP-metabolizing
genes among GBM and HNSCC cells, with low, but inducible IDO7 expression upon IFNy
treatment. TDOZ2 expression was higher in GBM cells, while genes encoding kynurenine
aminotransferases were mainly confined to HNSCC cells. These data indicate that the
KP is active in both entities, with however different enzymes involved in TRP catabolism.
Upon treatment with Temozolomide, the standard of care for GBM patients, /DO7 was
upregulated. Comparable, although less pronounced effects were seen in HNSCC upon
Cetuximab and conventional drugs (i.e., 5-fluorouracil, Gemcitabine). Here, IDO7 and
additional genes of the KP (KYAT T, KYAT2, and KMO) were induced. Vice versa, the novel
yet experimental cyclin-dependent kinase inhibitor Dinaciclib suppressed KP in both
entities. Our comprehensive data imply inhibition of the TRP catabolism by Dinaciclib,
while conventional chemotherapeutics tend to activate this pathway. These data point
to limitations of conventional therapy and highlight the potential of targeted therapies to
interfere with the cells’ metabolism more than anticipated.

Keywords: targeted therapy, solid tumor models, tryptophan metabolites, IDO1, chemotherapy
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INTRODUCTION

Tumor cells release immunosuppressive factors that shape a
tolerogenic environment and enable progression and invasion.
Indoleamine 2,3-dioxygenase (IDO1) is an intracellular
monomeric, immune-checkpoint molecule that degrades
the essential amino acid l-tryptophan along the kynurenine
pathway (KP) (1, 2). Like other immune checkpoints, including
programmed cell death protein 1 and cytotoxic T-lymphocyte-
associated protein 4, IDO suppresses the hosts’ antitumor
immunity by inducing apoptosis in T- and natural killer cells
(3). As a direct consequence of this, many cancer and cancer-
associated cells express IDOI (mesenchymal stromal cells,
myeloid-derived suppressor cells, dendritic cells, endothelial
cells, tumor-associated macrophages, and fibroblasts) (3-6).
IDOLI is influenced by interferon-y (IFNy) (7-9), nitric oxide
(10), pro- [interleukin (IL)-1B, tumor necrosis factor o] and
anti-inflammatory (IL4, IL10, transforming growth factor
B) cytokines. IDOI activity inhibits T-cell activation and
proliferation and even mediates regulatory T-cell recruitment
to the tumor microenvironment, provoking local immune
tolerance. In head and neck squamous cell carcinomas
(HNSCCs), IDOI inversely correlates with programmed
cell death protein ligand 1, which constitutes an important
prognostic biomarker for immune-checkpoint inhibition (11).
The increased IDOI1 activation decreases intratumoral TRP
levels, resulting in tumor starvation and increase in kynurenine
(KYN) metabolites (which are toxic to lymphocytes) (12). This
immune exhaustion may be further boosted by conventional
chemotherapeutics, leading to decreased efficacy. Therefore,
IDO1 overexpression in the tumor microenvironment intimately
impairs patients’ outcome and may serve as a future prognostic
predictor and drug target (13-18).

In the KP, most studies focused on IDO1 because this molecule
is amenable to pharmacological intervention (19-22), and a
couple of specific and global IDO inhibitors [including natural
compounds (17, 23, 24)] already entered clinical trials, mostly
reporting safe application and efficacy (stable disease at best
outcome) (25). Current trials are evaluating the efficacy of IDO1
inhibitors in combination with chemotherapy, radiotherapy,
and other immunotherapies including cytotoxic T-lymphocyte-
associated protein 4 blockade (11, 22). The latter is based on
the observation of an enhanced lytic ability of tumor-antigen-
specific T cells upon IDO1 inhibition and decreased numbers
of local immunosuppressive cells such as regulatory T cells
and myeloid-derived suppressor cells (20, 26). The efficacy and
toxicity data from recent clinical trials with IDO1 inhibitors is
reviewed in Yentz and Smith (27). In most cases, however, overall
survival was not significantly improved, leaving the future role
for this combination therapy in question (28). More key enzymes
are involved in TRP metabolism: tryptophan 2.3-dioxygenase
(TDO2), a member of the oxidoreductases family, catalyzes the
same initial step of the KP as IDO1 (2). Thus, TDO2 has been

Abbreviations: CDKi, cyclin-dependent kinase inhibitor; GBM, glioblastoma
multiforme; HNSCC, head and neck squamous cell carcinoma; IDO1, indoleamine
2,3-dioxygenase; IFN, interferon; KYAT, kynurenine aminotransferase; KP,
kynurenine pathway; PBMC, peripheral blood mononuclear cells; SCC, squamous
cell carcinoma; TDO?2, tryptophan 2,3-dioxygenase.

shown to be constitutively and highly expressed in various cancer
cells such as malignant glioma and HNSCC (29, 30). More
importantly, TDO2 also has immunomodulatory functions by
promoting immune tolerance. This, in turn, promotes survival,
growth, invasion, and metastasis and decreases patients’ survival
(just like IDOI) (13, 22, 31, 32).

In this study, we performed a comprehensive analysis on the
expression status of genes belonging to the KP. HNSCC and
glioblastoma multiforme (GBM) were picked as prime examples
for different spontaneous and treatment-induced immune escape
mechanisms. Therefore, expression changes were determined
under standard and targeted therapy, and results were compared
among each other.

MATERIALS AND METHODS

Tumor Cell Lines and Culture Conditions
Patient-derived GBM cell lines (N = 13; HROG02, HROGO04,
HROGO05, HROG06, HROG10, HROG15, HROG24, HROG36,
HROG38, HROG52, HROG63, HROG73, HROG75) and
HNSCC cell lines (N = 6; FADU, Detroit-562, Cal-33,
PE/CA/PJ-15, UT-SCC-14, UT-SCC-15) were either established
and basically characterized in our lab or originally obtained from
the German collection of cell cultures (DSMZ; Braunschweig,
Germany). UT-SCC14 and UT-SCC15 cells were kindly provided
by Prof. R. Grenman [University of Turku, Finland (33)]. All
cells were routinely cultured in our lab and maintained in
full medium: Dulbecco’s modified Eagle Medium/HamsF12
supplemented with 10% fetal calf serum, glutamine (2 mmol/L),
and antibiotics (medium and supplements were purchased from
PAA, Colbe, Germany). For functional analysis, cell lines from
each tumor entity were chosen, and all subsequent experiments
were performed with these lines only.

IFNy Stimulation

Cells were cultured in six-well plates or ibidi chamber
slides, incubated overnight and treated with IFNy
(50ng/ml, Immunotools, Friesoythe, Germany) for 24
and 72h, respectively. Thereafter, cells were harvested and
further processed.

Cytostatic Drugs and Targeted Substance
Cytostatics used in this study included 5-fluorouracil (5-FU)
(2.5uM), Cisplatin (0.2 uM), Gemcitabine (0.0002 wM), and
Cetuximab (0.34 wM) for HNSCC, as well as Temozolomide
(10 uM, TMZ) for GBM (pharmacy of the University Hospital
Rostock). CDKi Dinaciclib (10 or 100nM) was used as
experimental targeted drug. All substances were used in doses
below the ICs( as determined before.

Apoptosis/Necrosis Assay

A Yo-Pro-1/PI-based assay for discriminating early apoptotic,
late apoptotic, and necrotic cells was applied as described
before (34).

Hemolysis Assay
Hemolytic activity of Dinaciclib was determined by hemoglobin
release from whole blood cells after 2h of incubation. Briefly,
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whole blood of healthy donors (N = 5) was seeded in 96-
well plates and treated with increasing Dinaciclib doses (ranging
from 1, 5, and 10 wM). Negative controls were left untreated,
and positive controls (=maximum lysis) were treated with
1% sodium dodecyl sulfate. Following the incubation period,
cell-free supernatants were transferred into a new 96-well
plate, and absorption was measured on a plate reader at
560 nm (reference wave length, 750 nm). Hemolytic activity was
quantified according to the following formula and corrected for
spontaneous hemolysis (=untreated controls):

%Hemolysis = ((ODs¢pnmsample
—ODsgpnmbufter)/ODsgonmmax — ODsgonm, buffer) x 100

In addition, peripheral blood mononuclear cells (PBMC)
viability (N = 5) were determined by Calcein AM staining.
This was done upon 24h incubation at the above-mentioned
doses. Fluorescence measurement and quantification were done
as described (34).

IDO1 Immunofluorescence

Tumor cells were treated with 50 ng/ml of IFNy (Immunotools),
TMZ, Cetuximab, or Dinaciclib for 24h in chamber slides,
respectively. Cells were washed with phosphate-buffered saline,
fixed in 4% paraformaldehyde w/o methanol (Thermo Scientific,
Darmstadt, Germany) for 20 min, washed again, followed by
cell permeabilization in 0.3% Triton X—100/5% normal bovine
serum in phosphate-buffered saline for 60 min. Cells were then
incubated overnight at 4°C in monoclonal rabbit IDO1 primary
antibody (1:100; Cell Signaling Technology, Frankfurt/Main,
Germany). Cells were washed, labeled with fluorochrome-
conjugated secondary antibody using goat antirabbit secondary
antibody (1:250, Boster Biological Technology, Pleasanton CA,
USA), and incubated in the dark for 2h. Cell nuclei were
stained with 4/,6-diamidino-2-phenylindole (DAPI), and cells
were analyzed with a Zeiss LSM-780 Confocal Laser Microscope
(Zeiss, Jena, Germany). Quantification of staining intensity
was done using the Image] software. Therefore, channels were
split into red, green, and blue. Subsequently, integrated density
profiles of the same size were measured in the green channel.

IDO1 Immunohistochemistry on Patients’
Tumor Samples

Primary antibody against IDO1 (rabbit IgG, clone D5J4E,
Cell Signaling Technology, dilution 1:200) was used. All
samples were pretreated for 20min at 97°C and pH 6.9.
Standard immunoperoxidase technique was applied using an
automated immunostainer (DAKO link) with diaminobenzidine
as chromogen. IDO1 expression was defined as cytoplasmatic and
membranous staining in >1% inflammatory cells.

Quantification of Tryptophan, Kynurenine,
and Kynurenic Acid in Cell Culture
Supernatant by Liquid Chromatography

Tandem Mass Spectrometry System
The basis for the measurement was the method of Fuertig et al.
which was adapted to the system used here (35).

Sample Preparation

Cell culture supernatant was mixed 1:1 with internal
standards [10 wuM D5-kynurenic acid (Buchem BV, Apeldoorn,
Netherlands), 10 uM D5-phenylalanine (Cambridge Isotope
Laboratories, Inc. Andover, MA, United States), 5pM
D4-kynurenine (Cambridge Isotope Laboratories), 10uM
D5-tryptophan (Sigma Aldrich, Hamburg, Germany), 10 pM
D3-quinolinic acid (Buchem BV), 5.5nM 15N5-8-hydroxy-2-
deoxyguanosine (Cambridge Isotope Laboratories)], and with
10 pl of mobile phase (0.4% formic acid, 1% acetonitrile in
water). Reagents were gently shaken on a mixer, and 150 pl
of ice-cold methanol was added. Samples were incubated
overnight at —20°C to allow protein precipitation. On
the following day, samples were centrifugated at 0°C and
18,000xg for 15min. Supernatants were transferred to a
new tube, and the liquid phase was removed by evaporation
at 30°C among vacuum. Solid samples were stored until
measurement at —20°C. Afterwards, dried extracts were
reconstituted in 100 pl of acidified mobile phase. Samples
were incubated at 40°C (1h), centrifuged (4°C, 18,000xg,
5min), and clear supernatant (100 l) was transferred onto a
96-well plate.

Liquid Chromatography Tandem Mass Spectrometry

Measurements were performed on an AB Sciex 5500 QTrap™
mass spectrometer (AB SCIEX, Darmstadt, Germany) with
electrospray ionization in positive mode combined with a
high-performance liquid chromatography system (Agilent 1260
Infinity Binary LC, Santa Clara, United States) including a
degasser unit, column oven, autosampler, and a binary pump.
Twenty microliters of the supernatant was injected and separated
using a VisionHT C18 column (100 x 2.1 mm; particle size,
3 wm; Grace, MD, United States). To prevent contamination,
a precolumn (VisionHT Cl18, Guard 5 x 2mm) was used
additionally. The temperature of the column oven was set at
15°C. The flowrate was set to 0.4 ml/min, and the sample
was separated in a total run time of 11 min using solution A
(water 4+ 0.1% formic acid + 0.01% trifluoroacetic acid) and
solution B (MeOH + 0.1% formic acid + 0.01% trifluoroacetic
acid) with the following gradient: 0-2.8 min, 97% A, 3% B;
2.8-3.3min, 70% A, 30% B; 3.3-4.4, 40% A, 60% B; 4.5-
5.0min, 40% A, 60% B; 5.0-5.5, 5% A, 95% B; 5.5-6.9 min,
5% A, 95% B; 6.9-7.0 min, 97% A, 3% B; 7.0-11.0 min, 97% A,
3% B.

The eluate between 0.5 and 9 min was introduced into the
mass spectrometer and analyzed in MRM mode. The ion spray
voltage (IS) was 4,000 V, the curtain gas flow was 40.0 psi, and the
ion source temperature were set at 550°C.

Internal standards were used for metabolite quantification
(Table1). Data analysis, including peak integration and
concentration determination, was performed with Analyst
software (Version 1.5.1, AB Sciex, Darmstadt, Germany).

RNA Isolation, cDNA Synthesis, and

Quantitative Real-Time PCR

Total RNA was isolated with RNeasy Mini Kit (Qiagen, Hilden,
Germany) according to the manufacturers’ instructions. RNA
was reverse transcribed into complementary DNA (cDNA) from

Frontiers in Immunology | www.frontiersin.org

91

February 2020 | Volume 11 | Article 55


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Riess et al.

Tryptophan and Cancers Drug Response

1 pg RNA using 1 pl ANTP mix (10mM), oligo (dT)15
primer (50 ng/il), 1 pl reverse transcriptase (100U), and 4
ml 5x reverse transcription buffer complete (all purchased
from Bioron GmbH, Ludwigshafen, Germany). Final reaction
volume was 20 pl (filled with RNAse free water). cDNA
synthesis conditions were as follows: 70°C for 10 min, 45°C
for 120 min, and 70°C for 10min. Target cDNA levels of
human cell lines were analyzed by quantitative real-time PCR
using TagMan Universal PCR Master Mix and self-designed
TagMan gene expression assays either labeled with 6-FAM-3'
BHQ-1 or 5 HEX—3' BHQ-1 to be used as duplex: IDOI,
TDO2, KMO, HAAO, KYAT1/2/3/4, KYNU, QPRT, and GAPDH

TABLE 1 | Internal standards.

or fS-actin were used as housekeeping genes. Reaction was
performed in the light cycler Viia7 (Applied Biosystems, Foster
City, USA) with the following PCR conditions: 95°C for
10min, 40 cycles of 15s at 95°C, and 1 min at 60°C. All
reactions were run in triplicates. The messenger RNA (mRNA)
levels of target genes were normalized to GAPDH/B-actin.
Reactions were performed in triplicate wells and repeated
four times. The general expression level of each sample
was considered by calculating 27ACT (ACt = Cttarget

CtHousekeeping genes)~

Statistical Analysis
All values are reported as mean =+ SD. After proving the
assumption of normality, differences between controls and

Analyte Qimass(m/z2) Q3mass(m/z) CE(v) DP(v) treated cells were determined using the unpaired Students -
test. If normality failed, the non-parametric Mann-Whitney U-
Tryptophan 205.1 118.0 28.0 39.0 test was applied. Statistical evaluation was performed using
d5-Tryptophan 2101 1221 37.0 31.0 GraphPad PRISM software, version 5.02 (GraphPad Software,
Kynurenine 209.1 94.1 19.6 41.0 San Diego, CA, USA). In case of multiple comparisons, two- or
d4-Kynurenine 21341 140.1 21.0 39.0 one-way ANOVA on ranks (Bonferroni’s multiple comparison
Kynurenic acid 190.1 162.0 24.0 65.0 test) was used. The criterion for significance was taken
d5-Kynurenic acid 196.1 167.1 24.0 65.0 tobe p < 0.05.
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FIGURE 1 | Relative messenger RNA (MRNA) expression of IDO1, TDO2, KYNU, KYAT2, KYAT3, and KYAT4 in glioblastoma multiforme (GBM) and head and neck
squamous cell carcinoma cells (HNSCC). The graphs indicate the mRNA expression normalized to the housekeeping genes (2-2CT). GBM (N = 13, HROGO02,
HROG04, HROGO05, HROG06, HROG10, HROG15, HROG24, HROG36, HROG38, HROG52, HROG63, HROG73, HROG75) and HNSCC cell lines [N = 6; FADU,
Detroit-562, Cal-33, PE/CA/PJ-15, UT-SCC14, UT-SCC-15 (33)].
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FIGURE 2 | IDO1 immunohistochemistry. Representative images of primary glioblastoma multiforme (GBM) [HROG36 (a,b), HROG63 (c,d), and HROG73 (e,f)] and
head and neck squamous cell carcinoma (HNSCC) [HNSCCO06 (g,h), HNSCCO2 (i,j), HNSCCO1 (k,l)] samples. Left panel: Routine HE staining. Right panel: Note the
focal IDO1 expression on tumor-infiltrating lymphocytes exclusively in HNSCC cases. HNSCC case 1 (g,h): tonsil (HPVPOSt¥e): case 2 (i,j): mouth base (HPVnesative,
relapse); case 3 (k,l): larynx (HPV™€93ive) Pictures were taken at 20x and 10x magnification, respectively.

RESULTS

Basal IDO1 and Related Genes in GBM and
HNSCC Cell Lines

While IDOL1 itself is not the only mechanism by which tumors
can resist immune-mediated killing, we studied the expression
status of different KP-related genes on a panel of human
GBM and HNSCC cell lines. These experiments revealed not
only differences between both entities but also a heterogeneous
profile of all tested genes among cell lines (Figure1). IDOI
was differently expressed by most glioma samples (11/13)
analyzed. In general, IDOI was only detectable at very low levels
(Figure 1). TDO2, the other rate-limiting enzyme of the KP
(36), was constitutively expressed by all glioma samples, and
expression was even higher in comparison to IDOI. Generally,
expression status for TDO2 and kynurenine hydrolase (KYNU)
was higher in GBM, while HNSCC expressed more kynurenine
aminotransferases (KYAT) (Figure 1). Hence, these data indicate
that the KP is active in both entities, with however different
enzymes being involved in TRP catabolism.

Still, tumor cell lines grown in vitro not necessarily
represent the in vivo situation; we therefore analyzed the IDO1
abundance in clinical resection specimens (Figure 2). In GBM,
IDO1 was detectable in one of three cases (representative
images are shown in Figure 2). By contrast, HNSCC samples
presented with IDO1 but only on a small fraction of tumor-
infiltrating lymphocytes (Figure2). Although not analyzed
systematically, the only HPVPOSiti"® case in this small cohort
showed highest IDO1 abundance, nicely reflecting the tumors’
immunogenicity (11, 37).

Gene Expression and Protein Changes

Upon IFNy Stimulation

IDO1 is an IFNy-inducible enzyme. Upon stimulation,
the KP is activated to induce immunosuppression. In vitro
stimulation with IFNy mimics the in vivo situation of an
inflammatory microenvironment. Hence, upon immune-
mediated inflammation, IDOl-negative tumor cells may
upregulate IDOI as resistance mechanism.
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FIGURE 3 | Relative messenger RNA (MRNA) expression of IDO1, TDO2, KYNU, KYAT2, KYAT3, and KYAT4 as well as IDO1 protein abundance following interferon-y
(IFNy) stimulation in glioblastoma multiforme (GBM) and head and neck squamous cell carcinoma (HNSCC) cells. The cell cultures were either untreated or treated
with IFNy (50 ng/ml) for 24 h. (A) The graphs indicate the mRNA expression normalized to the housekeeping genes (2-2CT). GBM N = 5 cell lines (HROGO2,
HROGO05, HROG52, HROG63, HROG75); HNSCC, N = 4 cell lines (FADU, Detroit-562, Cal-33, PE/CA/PJ-15). (B) IDO1 immunofluorescence in selected cell lines.
Cell nuclei were stained with DAPI, and IDO1 was depicted by monoclonal rabbit IDO1 primary antibody (1:100; Cell Signaling Technology), followed by secondary
antibody (1:250, Boster Biological Technology Pleasanton, CA, United States) labeling. Cells were analyzed with a Zeiss LSM-780 Confocal Laser Microscope.

IDO1

HROGO05

HROG63

Detroit-562

FaDu

Using five individual GBM cell lines, IDOI expression was
inducible in all cases (Figure 3A). Upregulation of IDOI was high
on protein levels in HROGO5 cells and marginal in HROG63
(Figure 3B). TDO2 and KYAT3 were suppressed upon IFNy
stimulation in three of five samples and hardly detectable in one
cell line, supporting data from a recent publication (38). KYNU
was not affected by IFNy stimulation (Figure 3A).

Just as in GBM, IDOI was inducible in HNSCC cells
(Figure 3A). Immunofluorescence revealed focal expression of
singular cells with different intensity (Figure3B). Of note,
IFNy stimulation even induced upregulation of KYATI, KYAT2,
KYAT3, and KYAT4 (Figure 3A and data not shown), most likely
constituting a compensatory mechanism as described before in
experimental autochthonous tumor models (39).

Interference With the KP of Cytostatic and
Targeted Therapies

Next, we examined whether cytostatic and targeted drugs have
an influence on the KP. For GBM, TMZ was chosen, and for
HNSCC, 5-FU, Cisplatin, Gemcitabine, as well as Cetuximab

were used. As a targeted yet still experimental agent, the potent
and specific CDKi Dinaciclib was applied to cells of both entities.

Before this experiment, drug doses were carefully tested
in dose-response analyses (data not shown) along with
discrimination of apoptosis and necrosis. Generally, drugs used
in this study tended to induce necrosis, while apoptosis, if
present, was only detectable at early time points. Exemplary
results for the HNSCC cell line Detroit-562 are given in
Supplementary Figures 1A,B. While cytostatics are well-known
to affect normal cells viability, the impact of the CDKi
Dinaciclib on immune and red blood cells is less clear.
We therefore performed a hemolysis and leukocyte viability
assay. In this experiment, no toxicity was seen against normal
cells (Supplementary Figure 1C). Even at high concentrations,
Dinaciclib impaired cellular viability/integrity only marginally
(Supplementary Figure 1C).

TMZ is an oral alkylating agent that methylates DNA
at the O° position of guanine causing cell cycle arrest at
G2/M. It is used as standard of care for GBM. However,
acquired resistance, a process not fully understood, leads to
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FIGURE 4 | Relative messenger RNA (mRNA) expression of IDO1, KYAT1, KYAT2, KYAT3, KYAT4, and KMO upon cytostatic drugs and targeted therapy in
glioblastoma multiforme (GBM) cells. Graphs indicate the mRNA expression of selected kynurenine pathway (KP)-related genes normalized to the housekeeping
genes (2-2CT). Results show data of three independent experiments. *o < 0.05; **p < 0.01 vs. control. Two-way ANOVA.

major limitations in treatment. Here, TMZ downregulated
IDOI in three of five GBM cell lines but led to increased
expression in HROG52 and HROG63—a paired GBM cell line
established from the very same patient (primary lesion and
upon relapse) (Figure 4). Gene expression of KYAT2, KYAT4,
and KMO was heterogeneous. Generally, there was a trend
toward higher expression of those genes but with cell-line-
specific differences (e.g., KYAT3: p < 0.05 vs. control in
HROGO5 cells; Figure4). KYNU expression was not affected
by TMZ (data not shown). Interestingly, the combination
of IFNy and TMZ that mimics the in vivo situation led
to similar or even stronger IDOI upregulation compared to
IENy alone in two out of four glioma samples (Figure5).
Adding Dinaciclib to either IFNy or TMZ lowered the mRNA
expression of IDOI massively. Other KP-related genes like

TDO2 and KYATI-4 were similarly downregulated (Figure 5).
Supplementary Table for Figure 5 provides a detailed statistical
analysis of each cell line in relation to the individual
treatment regimens.

In HNSCC cells, Cetuximab was the only IDOI-inducing
substance (exemplary results for Detroit-562 cells are given in
Figure 6). Beyond that, the cytostatics as well as Cetuximab
induced at least one of the KP-related genes (p < 0.05 vs.
control), implicating activation of this pathway via different
effectors. By adding Dinaciclib to cytostatic drugs, this effect
was abrogated, even in the presence of IFNy (Figure 6 and
data not shown). Of note, Dinaciclib alone as well as in
combination with other substances effectively suppressed all KP-
related genes, implying inhibition of the TRP catabolism by
this CDKi.
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FIGURE 5 | Relative messenger RNA (mMRNA) expression of IDO1, TDO2, KYAT1, KYAT2, KYAT3, and KYAT4 upon concomitant treatment with interferon-y (IFNy) and
cytostatic drugs in glioblastoma multiforme (GBM) cells. The cell cultures (N = 5, HROG02, HROG05, HROG52, HROG63, HROG75) were either left untreated or
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selected KP-related genes normalized to the housekeeping genes (2-2CT). Results show data of three independent experiments. A statistical report is given in
Supplementary Table for Figure 5.

Dinaciclib Blocks IFNy-Induced IDO1
Expression in GBM and HNSCC Cells

Considering the active downregulation of KP-related genes by
Dinaciclib, we investigated whether this CDKi is able to inhibit or
reverse IFNy-induced IDO1 upregulation in GBM and HNSCC
cells on a protein level. TMZ and Cetuximab were included as
active inductors of IDOI and associated KP-related genes.

IFNY and selected drugs were added simultaneously for 72 h.
Dinaciclib effectively blocked IFNy-induced IDO1 protein in
both entities, while TMZ alone as well as the combination with
IFNy strongly enhanced IDO1 protein level (Figure 7). Hence,
mRNA expression data were nicely confirmed.

When Dinaciclib was combined with IFNy and TMZ, the
IDO1-inducing stimulus of these latter substances was far too
strong to be suppressed (Figure 7). However, the low number of
residual cells in this combination hints toward additive or even
synergistic effects independent from IDO1 (Figures 7A,B).

While IDO1 was highly inducible in GBM cells only, we then
determined protein level upon IFNy-prestimulation approaching
the in vivo situation. The cytotoxic effect of Dinaciclib was
preserved; however, levels of IDO1 enzyme were not significantly
altered (Supplementary Figures 2A,B). Comparable results were
obtained for TMZ. Virtually, all residual cells showed positive
staining; still there was a trend toward lower intensity in
monotherapy and in combination (Supplementary Figure 2B).

Taken together, the CDKi Dinaciclib is able to block IFNy-
mediated and thus most likely even chemotherapy-induced
IDOI upregulation in GBM and HNSCC cells. However, blunt
interference with this TRP-metabolizing enzyme is unlikely.

Treatment Induced Influence on

KP-Related Metabolites

Our data revealed IDO1 induction by TMZ, which is reversible
by Dinaciclib. Thus, we examined the influence on KP-related
metabolites in GBM cell lines.

TRP, KYN, and the downstream metabolite kynurenic acid
(KYNA) were quantified by MS using cell culture supernatants
of GBM cell lines (Figures8A,B). TRP was catabolized
after 24h from all cell lines among all treatment regimens.
Adding TMZ or Dinaciclib in monotherapy marginally affected
TRP consumption as well as KYN and KYNA production.
Stimulation with either IFNy or a combination of TMZ
resulted in greatly enhanced TRP depletion and increased
KYN levels, although to varying degrees in the different cell
lines (Figure 8A). Small amounts of KYNA were produced
constitutively and to a greater extent after IFNy mono- and TMZ
combination in all cell lines (Figure 8A). In contrast, KYNA level
remained unchanged upon Dinaciclib in combination with IFNy,
confirming immunofluorescence results (please see Figure 7 for
details). The same was true for the KYN/TRP ratio, being only
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FIGURE 6 | Relative messenger RNA (MRNA) expression of IDO1, KYAT1, KYAT2, KYAT3, KYAT4, and KMO upon cytostatic drugs and targeted therapy in head and
neck squamous cell carcinoma (HNSCC) cells. Graphs indicate the mRNA expression of selected KP-related genes normalized to the housekeeping genes (2-2CT).
Results show data of three independent experiments using HNSCC cell line Detroit-562. *p < 0.05; “*p < 0.01. One-way ANOVA (Bonferroni’s multiple
comparison test).

affected in samples treated with IFNy as well as the combination A recent study described dramatically suppressed tumor growth
of IFNy and TMZ (Figure 8B). upon IDOI knockdown by increasing the number of CD4*

These data underline our gene and protein expression and CD8' T cells in murine GBM models (9). However, the
data. The CDKi Dinaciclib is directly or indirectly capable of  exact mechanisms underlying IDO1 and thus TRP metabolism
blocking the KP. TMZ particularly in combination with the along the KP remain unclear. Therefore, we focused on the
proinflammatory cytokine IFNy accelerates TRP consumption  expression of IDOI and IDO-related KP genes and their potential

accompanied by KYN and KYNA production in GBM cells. involvement in immune evasion in experimental models of
HNSCC and GBM.
DISCUSSION We were able to show that the KP is active in both entities,

with different enzymes involved in TRP catabolism. Of note,
The finding that high IDOI expression is associated with  basal IDOI expression was low and inversely correlated with
shorter survival in cancer patients made IDO1 a promising target ~ TDOZ. In the only prior study on primary GBM cultures, similar
either by specific inhibitors or indirectly by immunomodulation. ~ results were described with constitutive TDO2 expression in
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FIGURE 7 | Indoleamine 2,3-dioxygenase (IDO1) protein abundance in selected glioblastoma multiforme (GBM) and head and neck squamous cell carcinoma
(HNSCC) cells upon cytostatic drugs and targeted therapy. The cell cultures [(A) GBM: HROGO05; (B) HNSCC: Detroit-562] were either left untreated or treated with
IFNy (50 ng/ml) for 24 h. Treatments were performed simultaneously, i.e., IFNy + TMZ, Cetuximab, and/or Dinaciclib. Cell nuclei were stained with DAPI. Original
magnification 20x. (C,D) Quantification was done to score staining intensity in untreated and treated HROGO5 and Detroit-562 cells. This was carried out using
Imaged software as described in Material and Methods.

most GBM cell cultures (29). In here, TDO2 likely promotes
tumor growth by suppressing antitumor immune responses
(2, 31). KP products are considered as therapeutic targets
because IDOI and other genes of the TRP metabolism are not
expressed in healthy brain tissue, but gradually increase with
GBM dedifferentiation (low vs. high grade GBM). In HNSCC,
different results on IDOI are documented, and expression is
heterogeneous among different HNSCC cell lines. Of note, IDO1
abundance of primary resection specimen and cultured cells
seems to be independent from anatomical site and HPV status
(40). Still, IDO1 is a useful marker for progression of in oral
squamous cell carcinoma (41). In esophageal squamous cell
carcinoma, progression and metastasis correlates with strong
inflammation at the tumors™ invasive front and disturbed TRP
metabolism (42). These cumulative data highlight the biological
relevance of the KP in malignancies and may explain why IDO1 is
barely detectable upon long-term in vitro culture. By mimicking
the inflamed microenvironment and thus taking a step closer to
the in vivo situation, IFNy was added as strong IDO1 inductor

(43). While GBM cells responded with the expected IDOI
upregulation on mRNA expression and protein level as well as
accelerated TRP consumption, this molecule was barely inducible
in HNSCC cells. It is conceivable that this is due to the duration
of in vitro culture. GBM cells were established recently and thus
used in defined low passages (<P40), whereas half of the HNSCC
cell lines were long-term cultures with more or less unknown
passage [Detroit-562 as well as UT-SCC14 and UT-SCC15 (44)
are the only exceptions; <P40]. Cell lines may acquire additional
mutations overtime changing their protein expression. Another
in vitro limitation is that experiments were conducted without
immunological pressure. In vivo studies are desirable to verify
the results.

Indirect effects of TRP metabolism include interference
with other biological functions like migration, angiogenesis,
and cell growth regulation (18, 40). To investigate the
influence of anticancer drugs on TRP catabolism, we performed
a comprehensive analysis using conventional chemotherapy
(TMZ, 5-FU, Cisplatin, Gemcitabine) and targeted drugs
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FIGURE 8 | Indoleamine 2,3-dioxygenase (IDO) protein abundance in glioblastoma multiforme (GBM) and head and neck squamous cell carcinoma (HNSCC) cells as
well as kynurenine pathway (KP) metabolite levels in GBM cells upon cytostatic drugs and targeted therapy. Treatments were performed sequentially, i.e., interferon-y
(IFNy) pretreatment for IDO1 induction, followed by Temozolomide (TMZ) and/or Dinaciclib. (A) KP metabolites changed upon TMZ but not Dinaciclib treatment. The
combination of TMZ and IFNy accelerates tryptophan (TRP) consumption accompanied by kynurenine (KYN) and kynurenic acid (KYNA) production (B). KYN/TRP
ratios in GBM cells were determined dividing KYN values by TRP values. Results show data of a single measurement.

(Cetuximab, Dinaciclib). The KP-related gene expression and  Given our observation on a further enhanced KP activity upon
metabolites were determined in residual cells. In GBM, the = TMZ treatment, this might provide an explanation of (acquired)
standard of care drug TMZ was applied either with or without  drug resistance and final relapse. Hence, IDO1 blocking agents
IFNy stimulation. While this substance affected IDOI on the  should be investigated in TMZ-tailored therapeutic approaches.
expression level, the amount of the resulting protein increased. In HNSCC cells, KP activation was different. KP-related
This may be explained by either increased protein’s half-life due  genes were exclusively induced by standard drugs, and only
to a reduced rate of degradation or the preferential translation =~ Cetuximab induced IDOI. Additional upregulated genes
during cellular stress. In previous studies, exposure of several  involved kynurenine aminotransferases, responsible for
cultured human malignant glioma cell lines, primary neurons,  synthesizing a neuroprotectant, and KMO. While the specific
and a neuroblastoma cell line to IFNy reduced TRP levels in  biochemical activity of these molecules and biological relevance
culture medium accompanied by increased IDOI expression and  in cancer is barely examined, we interpret this result as one
KYN production (29, 45). Our results confirm these data, andin ~ possible mechanism of resistance upon therapy—a finding quite
addition, we were able to demonstrate that IFNy stimulation in ~ common after conventional chemotherapy and usually also
combination with TMZ stimulated KYN and KYNA production  being associated with poor response toward neoadjuvant therapy
and TRP catabolism in GBM cell cultures. The increase in TRP  in other entities (50).

catabolism and KYN production (KYN/TRP ratio) is widely used Mechanistically, this can be attributed to the secretion of
as indirect indicator of the cumulative activities of TDO2, IDO1,  proinflammatory substances, such as prostaglandin E2 or high-
and IDO-2 (38, 46). The KP in brain tumors is likely triggered = mobility group protein Bl by dying tumor cells, secondary
by IFNy from immediate surrounding tissue (29, 47, 48). Thus,  contributing to KP activation. By accumulating TRP, toxic
IDOI expression in brain tumor cells is likely to be triggered  metabolites of tumor cells actively shape an immunosuppressive
when IFNy is produced from activated T cells and/or microglia =~ microenvironment. Breaking down this shield is one of the main
and neurons. Furthermore, gliomas and glioneuronal tumors  objectives in pharmacological inhibition of KP. Questions remain
have an elevated tryptophan uptake and catabolism in vivo (49).  why most inhibitors failed in clinical trials, and mechanisms are
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only just beginning to become clear. A fact worth mentioning
is the functional redundancy of IDO1, IDO-2, and TDO2 (51),
augmenting the risk of mechanistic bypass.

Dinaciclib is a potent and specific CDK inhibitor of CDKI,
CDK2, CDKS5, and CDKO9. Preclinical studies showed that this
inhibitor is capable of decelerating tumor growth in numerous
cancer entities via cell cycle arrest and apoptosis induction (52,
53). In our study, Dinaciclib was the only KP-inhibiting substance
tested here. Of note, impairment of the KP was independent from
the combination partner, and this CDKi effectively suppressed
IFNy-induced IDOI upregulation after simultaneous treatment.
While this result was completely unexpected and has—to the
best of our knowledge—not been described previously, our data
do not support the idea of blunt interference with the KP.
GBM cells with strong IDOI expression showed only marginally
reduced IDO1 protein level after Dinaciclib treatment. This
effect might be boosted after long or repeated treatment cycles.
In line with these findings, several preclinical studies already
proposed synergistic effects of selective and unselective IDO1
inhibitors when administered in conjunction with chemo- and/or
radiotherapy (4). This may finally have impact for second-
or third-line immunotherapeutic approaches. Therefore, the
late KYN/TRP index is indeed a relevant clinical benchmark
providing prognostic value for GBM patients (54).

Summarizing our findings, we provide evidence for the
relevance of TRP catabolism in malignancies especially in the
context of standard therapy. The CDKi Dinaciclib was identified
as indirect KP inhibitor. Lastly, specific KP inhibition may
increase the efficacy of standard drugs by restoring immune
function and thus improve patients’ outcome.
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Multiple sclerosis (MS) is an autoimmune disease of the central nervous system
(CNS) that is associated with demyelination and neuronal loss. Over recent years, the
immunological and neuronal effects of tryptophan (Trp) metabolites have been largely
investigated, leading to the hypothesis that these compounds and the related enzymes
are possibly involved in the pathophysiology of MS. Specifically, the kynurenine pathway
of Trp metabolism is responsible for the synthesis of intermediate products with potential
immunological and neuronal effects. More recently, Trp metabolites, originating also from
the host microbiome, have been identified in MS, and it has been shown that they are
differently regulated in MS patients. Here, we sought to discuss whether, in MS patients, a
specific urinary signature of host/microbiome Trp metabolism can be potentially identified
S0 as to select novel biomarkers and guide toward the identification of specific metabolic
pathways as drug targets in MS.

Keywords: tryptophan, urine, signature, metabolite, multiple sclerosis, kynurenine, indole-3-propionic acid,
microbiota

INTRODUCTION

The levels of the essential amino acid Tryptophan (Trp) and the function of Trp derivatives
have long been a subject of research interest in autoimmunity. Mammals utilize Trp for different
reasons, such as protein synthesis, the release of immunomodulant catabolites, and the synthesis
of the aminergic neurotransmitter serotonin, the neurohormone melatonin, several neuroactive
kynuramine metabolites of melatonin, and trace amine tryptamine. Indeed, Trp is metabolized by
the mammalian host cells via four different pathways, of which the most relevant is the kynurenine
pathway. The other two pathways provide the transamination and decarboxylation of Trp. The
hydroxylation in serotonin occurs for only 1% of dietary Trp. Interestingly, the metabolic products
of the kynurenine pathway are known to have several effects on vascular system, immune system,
immunotolerance, and infections.

From the time when Trp and Trp derivatives were administered in multiple sclerosis (MS) to
treat autoimmunity empirically (1), many advances have been made on the knowledge of Trp
metabolic functions (2). It is almost universally agreed that the catabolism of Trp has different
physiological implications, such as having antimicrobial and immunomodulant properties. For all
of these reasons, Trp metabolites have been largely investigated in MS (3).
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From a pathophysiological point of view, MS is characterized,
from its earliest stages, by the coexistence of acute focal
inflammation, glial cell hyperactivation, and progressive neuro-
axonal loss (4). In the relapsing-remitting phenotype of
the disease, inflammatory mechanisms are prominent and
are largely responsible for the clinical manifestations of the
disease, which are usually transient and recurrent (4). On
the contrary, the progressive phenotype of the disease, which
often follows the relapsing-remitting phase, is thought to be
largely sustained by neurodegenerative mechanisms, probably
as the ultimate consequence of previous recurrent episodes
of brain and spinal cord inflammation (5). Additionally, the
development of meningeal lymphocytic infiltrates and B-cell
follicle-like structures in progressive MS patients may enhance
neurodegenerative phenomena (6). MS can be extremely variable
between individuals, with huge differences in the frequency of
episodes of focal inflammation, in the possibility of the transition
from the relapsing-remitting to the progressive phenotype, in
the rate of progression, and in disability outcomes (7). Among
the numerous factors potentially underlying this variability, a
link between environment, microbial commensals, and host
immunity has been suggested (8).

The earlier findings that Trp metabolized by indoleamine-
2,3-dioxygenase (IDO) along the kynurenine pathway, plays
a role in the pathophysiology of neuroinflammatory and
neurodegenerative disorders, led several groups of researchers
to study the changes in the levels of kynurenines in plasma,
urine and cerebrospinal fluid in MS patients or in mice with
experimental autoimmune encephalitis (EAE), the animal model
of MS (9-13).

Systemic activation of Trp metabolism may have critical
effects in MS. For instance, it has been demonstrated that
Trp degradation is increased in the brain during the acute
phase of EAE (14). Experimental results obtained by the use
of the pharmacological inhibitor of IDO (1-methyl-Trp) also
support a role for this pathway in MS. Indeed, the treatment
of mice with 1-methyl-Trp resulted in EAE exacerbation (14).
This latter evidence might suggest a protective role of IDO
metabolites in EAE, although some downstream products of
the kynurenine pathway, such as quinolinic acid, may also
promote neurotoxicity.

Recently, metabolomics provided new insights into the
research field of MS immunopathology, showing significant
promise for unraveling the sources of disease heterogeneity,
for understanding the interaction between the environment
and immunity, and for monitoring disease progression and
response to treatment in MS patients. For instance, untargeted
metabolomics has been used recently in plasma samples of EAE
mice to find a signature of 44 metabolites corresponding to six
major pathways that were considerably altered, including bile
acid biosynthesis, taurine metabolism, tryptophan and histidine
metabolism, and linoleic acid and D-arginine metabolic pathways
(9). Interestingly, the signature also included various metabolites
categorized under the xenobiotics class, which are normally
not synthesized in the body but can be metabolized by the
microbiome as equolsulphate, homostachydrine, hippurate, and
a Trp-derivative, indoleacrylate, which is also excreted in urine.

Besides, another Trp-derivative metabolite produced by the
microbiota, indole-3-propionic acid, was found to be elevated in
the plasma of EAE mice (9).

From a clinical perspective, one of the most important
outcomes in MS is the risk of developing a progressive disease
course (15). Indeed, while the relapsing-remitting phase can
be effectively managed with immunomodulatory drugs, few
treatments are available for progressive MS, and the progression
of neurological disability is difficult to manage (16). In this
context, Lim et al. recently wrote a paper targeted at deciphering
a metabolic signature in serum to predict the transition
from relapsing-remitting to progressive MS and to find a
metabolic biomarker. Accordingly, they examined the role of
the kynurenine pathway in MS progression and found that this
pathway has a strong association with MS subtypes, correlating
with disease severity scores (17).

Metabolomics has also been done on urine samples, which
are readily available for analysis, and this has been used
as a potential source of biomarkers in MS (18). Nuclear
magnetic resonance (NMR) spectroscopy of urine allowed for
the identification of metabolites that differentiated EAE-mice
from healthy and MS drug-treated EAE mice (19). More recently,
the metabolic profile in urine of mice bearing chronic EAE was
performed with an untargeted combined metabolomics approach
using gas chromatography- and liquid chromatography-mass
spectrometry (GC-MS and LC-MS) (20). The authors identified
eight metabolites characterizing EAE mice that are commonly
found in plasma and urine and are potential biomarkers (20).
Interestingly, the amino acid metabolism was primarily affected
during EAE, as supported by urine analysis (20).

It is worth noting that in the diagnostic and/or therapeutic
work-up of MS patients, standard urine analysis is usually
performed, which makes urine sampling feasible for other
investigations also. Additionally, urine is a metabolite-rich
fluid that reflects the body’s homeostasis and gut microbiome
changes. Thus, a combined metabolomics analysis in urine,
where both changes in host inflammatory/metabolic responses
and in gut microbiome during MS may be highlighted, might
help identifying novel biomarkers. This may provide a model
to characterize pathogenic aspects of MS and to develop
therapeutic approaches. We have therefore decided to perform
an observational study aimed at investigating a broad panel
of Trp metabolites, of both human and microbial origin, in
urine samples from relapsing-remitting MS (RRMS) patients, in
order to specifically investigate the possible relationship of Trp
metabolites with the earliest inflammatory phase of the disease.
We have compared the findings in RRMS patients to a control
group of healthy individuals, and we have specifically looked for
differences between MS patients and controls and for possible
associations with disease characteristics.

MATERIALS AND METHODS

Patients

Urine samples were obtained from 47 consecutive patients
with RRMS and 43 healthy controls, i.e., individuals without
MS or autoimmune or inflammatory diseases. Patients and
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healthy controls were prospectively and consecutively recruited
over a l-year period at the Section of Neurology, Department
of Medicine, University of Perugia (Italy). For MS patients,
inclusion criteria were: (i) a diagnosis of RRMS according to
the 2010 revision of the McDonald criteria (21); (ii) no recent
history of infectious disorders (i.e., <30 days before the inclusion
in the study); (iii) age >18 years. The study was approved
by the local Ethics Committee (# 2925/16), and patients gave
informed consent for the collection of samples and subsequent
analysis. The main demographic and clinical characteristics of
patients were collected by experienced neurologists. For each
patient, the disability level at the time of urine sampling was
quantified by scoring on the Expanded Disability Status Scale
(EDSS) (22). Urine samples were collected at the same time
of the day (between 09:00 and 12:00) in order to avoid any
potential confounding effect of diurnal rhythm. Urine samples
were subsequently analyzed by laboratory technicians who were
blinded to clinical data.

Urine Analysis

Urine Trp metabolites were assessed by means of high-
performance liquid chromatography-tandem mass spectrometry
(HPLC-MS/MS). We used a targeted approach where a set
of host or microbial metabolites derived from Trp were
measured in urine. Details of HPLC-MS/MS analysis are
reported in the Supplementary Methods. The following Trp
metabolites and ratios were determined: (i) Trp; (ii) kynurenine;
(iii) anthranilate; (iv) kynurenine/Trp (K/T) ratio; (v)
kynurenine/anthranilate (K/A) ratio; (vi) 3-hydroxykynurenine;
(vii) 3-hydroxyanthranilate; (viii) serotonin; (ix) tryptamine; (x)
indole-3-acetic acid; (xi) indole-3-acetamide; (xii) indole-3-lactic
acid; (xiii) indole-3-propionic acid.

Statistical Analysis

Continuous variables are reported as mean =+ standard deviation
(SD) if normally distributed or as median, interquartile range
(IQR), if non-normally distributed. Logarithmic transformation
was applied to Trp metabolite values in order to reach normality,
as verified with the Shapiro-Wilk test. Differences of (log)
Trp metabolite values between groups were tested with the
Student’s ¢-test, while their association with continuous variables
was tested with Pearson’s correlation coefficient test. General
linear models were performed for multivariable analysis. All
tests were two-sided, and the significance threshold was set to
p < 0.05. IBM SPSS Statistics software version 22 was used for
statistical analysis.

RESULTS

The Trp Metabolic Urinary Signature of
RRMS Patients

The main demographic and clinical characteristics of RRMS
patients and controls are reported in Table 1. A total of 35
patients (74.5%) were under disease modifying drugs at the time
of urine sampling. In the entire cohort of MS patients and
controls, females had significantly lower urinary tryptophan (p
= 0.001), kynurenine (p = 0.01), anthranilate (p = 0.01), and
serotonin (p = 0.01) concentrations (p = 0.04) than males (data

TABLE 1 | Main patient and control characteristics.

RRMS HC p-value

Ne a7 43 ND
Age (years)° 31.8+97 327+106 NS
F/M 40/7 27/16 p =0.02
Disease duration (years)® 75+£83 ND ND
Ongoing None 11 (23.4%) ND ND
therapy? Interferons 15 (31.9%)

Glatiramer acetate 10 (21.3%)

Dimethylfumarate 6 (12.8%)

Fingolimod 3 (6.4%)

Natalizumab 1(2.1%)

Alemtuzumab 1(2.1%)
EDSSP 16+£05 ND ND
Recent relapse (<30 days)? 9(19.1%) ND ND

@Data are shown as number (percentage).

bData are shown as mean + standard deviation.

EDSS, Expanded Disability Status Scale; HC, healthy controls; ND, not determinable; NS,
not significant; RRMS, relapsing-remitting multiple sclerosis.

not shown). After adjusting for gender, RRMS patients had a
significantly lower urine concentration of kynurenine (1.4 pM,
IQR: 0.5-3uM vs. 4puM, IQR: 1.9-6.8w, p = 0.01) and a
lower K/T ratio (19, IQR: 15.5-27.5 vs. 29.8, IQR: 13.5-43, p =
0.04) than healthy controls (Figure 1). In contrast, no significant
difference between patients and control subjects was found in
the other Trp analyzed metabolites (see Materials and Methods).
Within the RRMS cohort, Trp metabolites were not correlated
with age and disease duration. In contrast, we found significant
correlations between EDSS scores and urine concentrations of
the following metabolites: (i) tryptophan (r = 0.5, p = 0.001),
(ii) K/T (r = —0.3, p = 0.03), and (iii) indole-3-propionic acid
(r = 0.5, p < 0.001; Figure 1). In a multivariate model taking
into account age and gender, the correlations were confirmed for
tryptophan (f = 0.1, p < 0.04), K/T (8 = —0.02, p = 0.003), and
indole-3-propionic acid (p = 4.4, p = 0.001). Finally, in RRMS
patients, we found no difference in treated compared to untreated
individuals, nor were there significant variations depending on
the type of ongoing treatment.

In our cohort of RRMS patients, we found that urinary Trp
metabolites were differently expressed in patients who had had
a recent relapse (i.e,, within 30 days before urine sampling).
Specifically, the urine K/A ratio was significantly lower in patients
with a recent relapse than in clinically stable patients (2.3 WM,
IQR: 1.2-43pM vs. 6.6 LM, IQR: 2.5-13.7pM, p = 0.03),
with a significantly higher urinary anthranilate concentration in
relapsing vs. stable patients (1.1 wM, IQR: 0.5-1.8 uM vs. 0.2 u M,
IQR: 0.1-0.3 pM, p = 0.02) (data not shown). Finally, relapsing
patients had significantly higher urine indole-3-propionic acid
concentrations than stable patients (0.05 uM, IQR: 0-0.1 pM vs.
0.01 .M, IQR: 0-0.04 M, p = 0.04; Figure 1).

DISCUSSION

The pathophysiology of MS is extremely complex since it
relies on the interplay between several players, such as the
peripheral immune system, central nervous system resident
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FIGURE 1 | In patients with relapsing-remitting multiple sclerosis (RRMS), we found a significantly lower urinary concentration of kynurenine (A) (median and
interquartile range are reported) and kynurenine/tryptophan (K/T) ratio (B) (median and interquartile range are reported) than in healthy controls (HC). Additionally, a
significant negative correlation between urinary K/T and the Expanded Disability Status Scale (EDSS) score at urine sampling was found (C). In RRMS patients in
proximity (i.e., <30 days) to a clinical relapse, significantly higher urinary indole-3-propionic acid concentrations were found than in clinically stable RRMS patients
(D) (median and interquartile range are reported). Moreover, urinary indole-3-propionic acid concentrations were positively correlated with the EDSS score at urine
sampling (E). “o < 0.05.

immune cells and glial cells, and neurons (23). MS is supposed
to have a multifactorial etiology, and different environmental
and genetic risk factors may play a role in determining the risk
of developing the disease and in driving different phenotypic
disease characteristics (24). Interestingly, Trp metabolism can
be influenced both by the individual genetic background and
interaction with environmental factors, such as diet. A great deal
of interest is now being taken in determining how microbial
commensals can modulate the host immune system, since this
could lead to the potential discovery of new therapeutic targets.
In this study, we found some intriguing preliminary clues that
a dysbalanced human Trp metabolism may have an association
with MS, a finding that is supported by the evidence that this
specific metabolism plays a central role in the control of immune
activation (25). Specifically, we found that in the earliest and
most inflammatory phenotype of MS, ie., RRMS, there is a
specific urinary Trp metabolite signature, which is characterized
by a lower concentration of kynurenine and a lower K/T ratio
than in healthy controls. Additionally, K/T was negatively and
independently correlated with the degree of disability at the
time of urine sampling. Taken together, these findings seem
to suggest that in the earliest stages of MS, a reduced Trp

metabolism toward kynurenine can be found, and the lower
the synthesis of kynurenine, the worse the degree of clinical
impairment due to MS. Of interest, the synthesis of kynurenine
via the IDO1 enzyme has been hypothesized to enhance the
conversion of naive T CD4+ cells into regulatory T cells (26),
and kynurenine has shown immunoregulatory properties via
the activation of the Aryl hydrocarbon Receptor (AhR) (27).
Thereafter, reduced synthesis of kynurenine and a subsequent
lower urinary kynurenine and K/T ratio may play a role in the
pathophysiology of MS, where dysfunctional regulatory T cells
favor autoimmune processes in the central nervous system (28).

From a biological point of view, once Trp is converted
into kynurenine, the kynurenine pathway of Trp degradation
is activated, which leads to the synthesis of a variety of
compounds with both neurotoxic and neuroprotective properties
that can influence MS pathology and, consequently, the
degree of neurological impairment (29). Among the human
urinary kynurenine downstream metabolites that we have
measured in our study (i.e, 3-hydroxykynurenine and 3-
hydroxyanthranilate), we did not find any significant association
with the degree of disability apart from the above-mentioned
negative correlation between K/T and EDSS. However, when
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interpreting this latter result, it should be noted that most of
our patients had a low disability score. Therefore, the correlation
between urinary Trp metabolites and the degree of neurological
impairment deserves further confirmation on larger and more
heterogeneous cohorts of MS patients, also including patients
with progressive MS and with a longer disease duration.

Our findings are different from those reported for serum by
Lim et al., who described higher serum K/T in MS patients than
in controls (17). It is possible that this opposite result relies on
the use of different biological samples (i.e., urine vs. serum),
potentially reflecting different phases of Trp metabolism and/or
different activities of the involved enzymes at different body
sites. In this context, in order to understand the relationship
between Trp metabolite concentrations in different biofluids,
studies examining urine, blood, and cerebrospinal fluid in the
same subjects at the same time are highly desirable.

Another possible explanation for the discrepancy between
our findings and those coming from the literature might be the
different characteristics of the enrolled patients. For instance, in
the cohorts investigated by Lim et al., progressive MS patients
were also included, and none of the patients was under disease-
modifying drugs. Moreover, in the same paper, no information
was provided on recent disease activity, although it can be
assumed that enrolled patients had no history of recent relapses
since, in the previous 3 months, they had not undergone steroid
therapy (17).

The latter point could be extremely important in influencing
Trp metabolite concentrations in body fluids, since we found that
their urinary concentrations change in proximity to a clinical
relapse, with a decrease in K/A and an increase in indole-3-
propionic acid.

The decrease in K/A might either reflect a reduction in urinary
kynurenine, a compound with immunoregulatory properties
as discussed above, or an increase in anthranilate, or both.
Of interest, anthranilate has been shown to increase in the
blood in a wide range of human diseases, probably with a
sort of “cleaning up” effect after an acute injury (30). Indeed,
anthranilate has been associated with an antagonism to other
neurotoxic kynurenines, such as quinolinic acid, as well as with
a reduction in oxidative stress and in inflammatory responses
(30-32). Thereafter, the decrease in urinary K/A in proximity
of MS clinical relapses could reflect both a decrease in urinary
kynurenine, which could enhance inflammatory responses, and
an increase in urinary anthranilate, probably as a consequence of
compensatory mechanisms following acute inflammation.

Also, the association between indole-3-propionic acid and MS
disease activity is particularly interesting, since this molecule is
one of the Trp-derived metabolites produced by the microbiota,
called post-biotics (33, 34), that have been deeply investigated in
recent years because of their presence in peripheral tissues and
their ability to bind xenobiotic receptors. Indole-3-propionic acid
is now known to contribute to changes in body weight gain on a
tryptophan-rich diet (35). It may destroy indoxyl sulfate-induced
expression of fibrosis and inflammation in kidney proximal
tubular cells (36). More interestingly, it is also considered an
antioxidant and has been reported to be neuroprotective (37).
More recently, the mechanism by which the indole-3-propionic

acid interacts with the mammalian host epithelial barrier has
been described: the xenobiotic receptor pregnane X receptor
(PXR) is, in fact, able to recognize this metabolite and reduce gut
inflammation (38, 39). Interestingly, high blood levels of indole-
3-propionic acid have also been found by other research groups
in mice with EAE (9).

Since indole-3-propionic acid has been shown to have
an antioxidant effect (40), its urinary increase may reflect
an additional compensatory mechanism, driven by microbial
commensals, trying to counteract the negative effects of acute
inflammation. On the other hand, it is not possible to rule out
a deleterious effect of indole-3-propionic acid, given the positive
correlation that we have found between this Trp derivative and
the degree of disability. Further studies investigating the possible
immune and neuronal effects of indole-3-propionic acid are
therefore needed to understand its pathophysiological role in MS.

In conclusion, although our findings are preliminary and
deserve further confirmation on larger and unselected cohorts,
they seem to suggest that a misbalanced human Trp metabolism
is associated with MS, probably reflecting disease activity
and severity. More interestingly, we found some clues that
commensal microbials may interact with the host, especially in
proximity to MS relapses, by synthesizing compounds such as
indole-3-propionic acid.

FUTURE PERSPECTIVES

The study of Trp metabolites in MS is providing the scientific
community with fascinating clues on the interaction between
the microbiota and the human immune system in the context
of autoimmune diseases. Our study, performed on urinary
Trp metabolites, showed some preliminary and very interesting
results, such as reduced urinary K/T in RRMS and its negative
correlation with disability measures. In this sense, an altered
Trp metabolism could either precede or follow autoimmune
pathophysiological processes taking place in MS and could have
an association with acute episodes of inflammatory activity
during a chronic disease such as MS. More generally, it will
be fundamental to understand if Trp metabolites are associated
with a pathogenic effect and/or if they reflect the bystander
activation of compensatory mechanisms to the ongoing MS-
related autoimmunity. This step is required in order to proceed
further in the Trp metabolism research field in search of
novel potential therapeutic targets. In the near future, the
study of Trp metabolism with the help of artificial intelligence
and machine learning may become extremely effective in
assisting medical doctors and biologists to address and solve
complex diagnostic, prognostic, and therapeutic tasks. Indeed,
probabilistic graphical models may be used to decipher or predict
how the host and the microbiota share a common metabolic
nutrient such as Trp and how this shared catabolism may be
affected during immunopathology. Additionally, further studies
on larger cohorts of MS patients are required in order to
better investigate the correlations between Trp metabolites in
different biofluids and more specific disease characteristics, such
as neuroradiological and cerebrospinal fluid findings.
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Many patients with cancer suffer from anemia, depression, and an impaired quality
of life (Qol). These patients often also show decreased plasma tryptophan levels
and increased kynurenine concentrations in parallel with elevated concentrations of
Th1 type immune activation marker neopterin. In the course of anti-tumor immune
response, the pro-inflammatory cytokine interferon gamma (IFN-y) induces both, the
enzyme indoleamine 2,3-dioxygenase (IDO) to degrade tryptophan and the enzyme
GTP-cyclohydrolase | to form neopterin. High neopterin concentrations as well as an
increased kynurenine to tryptophan ratio (Kyn/Trp) in the blood of cancer patients are
predictive for a worse outcome. Inflammation-mediated tryptophan catabolism along
the kynurenine pathway is related to fatigue and anemia as well as to depression and
a decreased QoL in patients with solid tumors. In fact, enhanced tryptophan breakdown
might greatly contribute to the development of anemia, fatigue, and depression in
cancer patients. IDO activation and stimulation of the kynurenine pathway exert immune
regulatory mechanisms, which may impair anti-tumor immune responses. In addition,
tumor cells can degrade tryptophan to weaken immune responses directed against
them. High IDO expression in the tumor tissue is associated with a poor prognosis
of patients. The efficiency of IDO-inhibitors to inhibit cancer progression is currently
tested in combination with established chemotherapies and with immune checkpoint
inhibitors. Inflammation-mediated tryptophan catabolism and its possible influence on
the development and persistence of anemia, fatigue, and depression in cancer patients
are discussed.

Keywords: inflammation, tryptophan, kynurenine, cancer, anemia, fatigue, depression

INTRODUCTION

Cancer is a leading cause of death and disability worldwide with an increasing prevalence.
Patients with malignant diseases often have sustained systemic immune activation, which is
linked to tumor progression and a poor clinical outcome (1, 2). Initially, immune activation is
an important mechanism to prevent carcinogenesis. However, this mechanism does not seem to
work properly in patients with advanced cancer. Tumor cells are able to escape immune-mediated
elimination by leukocytes due to loss of antigenicity and/or immunogenicity but also
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by creating an immunosuppressive microenvironment and by
blocking anti-tumor immune response (3). Tryptophan (Trp)
metabolism appears to play an important role within the tumor
microenvironment (4).

In fact, enhanced Trp breakdown, reflected by decreased Trp
and elevated kynurenine (Kyn) concentrations in the peripheral
blood, is often observed in cancer patients and related to tumor
progression, poor clinical outcome (Table 1) and an impaired
quality of life (QoL) (58, 85). Trp breakdown in patients with
malignancies is primarily mediated by increased tryptophan
2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase 1
(IDO1) activities (86). The latter is primarily activated by pro-
inflammatory cytokines of the T helper 1 (Thl) type immune
response, particularly interferon gamma (IFN-y) (87). IFN-y
also stimulates the formation of reactive oxygen species (ROS)
as well as the expression of GTP-cyclohydrolase I (GCH-1) in
target cells. In human monocytes/macrophages, this enzyme
subsequently degrades GTP to form the pteridine neopterin,
which has been established as a clinically useful marker for Thl
driven immune activation (88).

Higher neopterin concentrations mostly coincide with
increased IDO-activation as reflected by a higher Kyn/Trp
ratio (24, 46, 89, 90) and are related to tumor progression
and an increased mortality rate (1, 91) in patients with
malignant diseases.

Trp is essential for the growth and proliferation of all kinds
of cells; therefore, local inflammation-induced Trp depletion is
initially a defense mechanism of the immune system to limit
growth of microbes but also of proliferating malignant cells
(92). However, tumor cells seem to develop countermeasures
via degradation of Trp, allowing them to escape this defense
mechanism. Moreover, stimulation of IDO1 and Trp breakdown
also impacts on Trp availability for immune cells over time
and leads to the accumulation of Trp metabolites such as the
kynurenines, which can directly modulate anti-tumor immune
responses (93).

Apart from an activated immune system and enhanced Trp
breakdown, patients with malignancies frequently suffer from
anemia (94). Anemia is a main contributor to sustained fatigue
(95), which is the most frequently reported symptom in cancer
patients (96), affecting up to 78% (97). Actually, activities of daily
living are mostly affected by cancer related fatigue (CRF) (98).
Another common comorbidity is depression, affecting ~20%
of cancer patients (99-101). All these comorbidities have been
related to immune activation and the associated Trp breakdown.

This review discusses the current knowledge on and
consequences of immune activation and Trp breakdown for the
development and persistence of anemia, fatigue, and depression
in cancer patients. Moreover, it gives an overview of possible
therapeutic options for the treatment of comorbidities. At the
beginning, a brief depiction of Trp metabolism and its relations
to immune activation will be given.

TRYPTOPHAN METABOLISM

Trp is an essential amino acid that is required for protein
biosynthesis. Therefore, it is essential for the growth and
proliferation of cells. Trp must be supplied by diet or obtained

from protein degradation, since it cannot be synthesized by
human cells. The required daily amount for adults lies between
175 and 250mg. Yet, the average daily intake for many
individuals lies between 900 and 1,000 mg (102, 103). Thus,
decreased Trp concentrations are suggested to be primarily
caused by enhanced Trp breakdown.

Trp is also an important precursor for several bioactive
metabolites including tryptamine, serotonin, melatonin,
kynurenine (Kyn) and quinolinic acid (QUIN) and
kynurenic acid (KYNA) as well as for the coenzyme NAD™.
These metabolites are mainly generated by two different
biochemical pathways.

First, Trp can be catabolized by the enzyme tryptophan 5-
hydroxylase (TPH) to 5-hydroxytryptophan (5-HTP) (Figure 1).
5-HTP is converted into 5-methoxytryptophan (5-MTP) by
the hydroxyindole-O-methyltransferase (HIOMT) (104) and
subsequently decarboxylated to 5-hydroxytryptamine (5-HT) by
the vitamin B6 dependent aromatic-L-amino-acid decarboxylase
(AADC) (105). 5-HT, better known as serotonin, is an important
neurotransmitter that modulates numerous neuropsychological
processes including mood, anxiety, anger, reward, and cognition
(106). It is also involved in important processes outside the
central nervous system (CNS), including regulatory functions
in the gastrointestinal (GI) tract as well as cardiovascular and
pulmonary system. Actually, over 90% of the total body serotonin
is synthesized in the GI tract (107).

Although only 1% of the available Trp is converted by
the Trp/5-HT pathway in healthy individuals, decreased Trp
availability is associated with decreased serotonin concentrations
and consequently with neuropsychologic disorders (105).
In the pineal gland, aryl alkylamine N-acetyltransferase
(AANAT) converts 5-HT into N-acetyl-5-hydroxytryptamine,
which is further catabolyzed by the HIOMT to N-acetyl-5-
methoxytryptamine (5-MT), better known as melatonin (108).
Melatonin is primarily secreted at night and regulates the
circadian rhythm under normal light/dark conditions (109).
Finally, Trp can be directly decarboxylated by the AADC
to tryptamine, which is an important neuromodulator of
serotonin (110).

The second and quantitatively most important pathway
is the decay to Kyn (Figure2). Approximately 90% of the
available Trp is oxidized to N-formylkynurenine by either
tryptophan 2,3-dioxygenase (TDO; EC 1.13.11.11), indoleamine
2,3-dioxygenase 1 (IDO1; EC 1.13.11.52), or indoleamine
2,3-dioxygenase 2 (IDO2; 1.13.11.-). N-formylkynurenine
is then subsequently hydrolyzed to Kyn by kynurenine
formamidase. Kyn is further catalyzed by one of the four
kynurenine aminotransferases (KATs) to KYNA. It can
also be hydroxylated to 3-hydroxykynurenine (3-HK) by
kynurenine 3-monooxygenase (KMO) and then converted
to 3-hydroxyanthralinic acid (3-HAA) by the kynureninase
(KYNU). Another important enzyme of the Kyn pathway,
namely 3-hydroxyanthranilic acid dioxygenase (HAD), converts
3-HAA into 2-amino-3-carboxymuconate semialdehyde, which
decays non-enzymatically into QUIN. Finally, phosphoribosyl
transferase (QPRT) converts QUIN into nicotinamide, which is
an important component of NAD' and NADP™ being necessary
for energy production (111).
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TABLE 1 | Altered tryptophan metabolism in different cancer types and its relations to disease severity, progression, and survival.

Cancer type

Tryptophan metabolism within tumor tissues

Tryptophan metabolism in the peripheral blood

Findings References

Findings References

Acute myeloid leukemia

Breast cancer

Colorectal cancer

Gastrointestinal tumors

Glioma

Gynecological cancer

Up-regulation of IDO1 expression upon IFN-y
stimulation was related to an impaired overall
survival

Increased IDO1 mRNA expression was
correlated with an impaired overall survival

Folgiero et al. (5)

Fukuno et al. (7)

Increased IDO1 mRNA expression was related
to an impaired overall survival and relapse-free

Chamuleau et al. (9)

survival

Increased IDO1 expression inhibited T-cell Tang et al. (10)
proliferation

High IDO1 expression was associated with Wei et al. (11)

TNM stage, histological grade, lymph node
metastasis, progression-free survival, and
overall survival

Up-regulation of IDO1, TDO2, and KMO
expression was found

IDO1 expression increased with higher tumor
stages

Heng et al. (13)

Isla Larrain et al. (15)
Increased IDO1 expression promotes tumor

progression and is associated with an impaired
overall survival

Chen et al. (17)

Higher IDO1 expression was associated with
an impaired overall survival in estrogen receptor
positive group

Higher IDO1 expression was predictive for a
better overall survival

Soliman et al. (18)

Jacquemier et al. (19)

IDO1 expression was increased and correlated
with tumor stages and lymph node metastasis

Yu et al. (20)
Increased IDO1 expression upon IFN-y Ferdinande et al. (21)
stimulation correlated with metastasis rate and
an impaired overall survival

Increased IDO1 expression was associated Gao et al. (23)
with an impaired overall survival

Increased IDO1 expression upon IFN-y
stimulation correlated with reduced T-cell
infiltration, higher metastasis rate and an
impaired overall survival

Brandacher et al. (25)

Increased IDO1 expression in esophageal
cancer tissues was associated with
differentiation grade, TNM stage, lymph node
metastasis, and an impaired overall survival

Jia et al. (26)

High IDO1 expression was a negative
prognostic factor

Increased IDO1 expression in esophageal
cancer cells was related to disease progression
and an impaired overall survival

Up-regulation of IDO1, IDO2, and KMO
expression upon IFN-y stimulation was found

Laimer et al. (28)

Zhang et al. (29)

Adams et al. (30)

Increased IDO1 expression was correlated with
an impaired overall survival

Downregulation of IDO1 expression was
associated with a better overall survival
Marginal IDO expression in patients in early
stage cervical cancer predicted a favorable
outcome

Mitsuka et al. (32)

Wainwright et al. (33)

Heeren et al. (34)

Increased Kyn levels were associated with a
shorter overall survival

Mabuchi et al. (6)

Kyn/Trp ratio was increased and associated
with a shorter overall survival

Corm et al. (8)

Trp levels predict tumor progression and were
associated with overall survival

Eniuetal. (12)

Low Trp levels and an increased Kyn/Trp ratio
were found

Lyon et al. (14)

Increased Kyn/Trp ratio was associated with
higher tumor grade and elevated neopterin
levels

Girgin et al. (16)

Kyn/Trp ratio was increased and related to high Engin et al. (22)
neopterin levels and lymph node metastasis

Reduced Trp levels and an increased Kyn/Trp
ratio was related to high neopterin levels and
an impaired QoL

Huang et al. (24)

Trp levels were decreased and associated with
elevated neopterin levels

lwagaki et al. (27)

High Kyn/Trp ratio was correlated with an
impaired overall survival

Low Trp, KYNA and QUIN levels, and a high
Kyn/Trp ratio were found

Zhai et al. (31)

Adams et al. (30)

Increased Kyn/Trp ratio correlated with
advanced disease, poor response to therapy,
and an impaired overall survival

Gostner et al. (35)

(Continued)
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TABLE 1 | Continued

Cancer type

Tryptophan metabolism within tumor tissues

Tryptophan metabolism in the peripheral blood

Findings

References

Findings

References

Hepatocellular
carcinoma

Kidney cancer

Lung cancer

Increased IDO expression in endometrial
carcinoma cells correlated with reduced T-cell
infiltration and an impaired disease-specific
survival

Increased IDO expression in cervical cancer
cells was associated with higher tumor stage,
lymph node metastasis, and an impaired
overall survival

High IDO1 expression in ovarian carcinoma
cells correlated with reduced T-cell infiltration
and an impaired overall survival

High IDO1 expression in endometrial cancer
tissues was related to reduced T-cell infiltration,
lymph node-metastasis, and poor
progression-free survival

Increased IDO1 expression in ovarian cancer
cells was correlated with impaired survival in
patients with serous-type ovarian cancer

High IDO1 expression in endometrial
carcinoma cells was related to an impaired
progression-free and overall survival

Increased IDO1 expression was associated
with T-cell infiltration and an impaired overall
survival

Increased KMO expression was correlated with
an impaired overall survival and an increased
time to recurrence

Increased IDO1 expression upon IFN-y
stimulation correlates with metastasis rate and
an impaired overall survival

Increased IDO1 expression in tumor infiltrating
cells was associated with an increased
progression-free survival

Up-regulation of IDO1 expression upon IFN-y
stimulation was found

High IDO1 mRNA levels were associated with
an increased overall survival

IDO1 expression was increased and correlated
with TNM stage and lymph node-metastasis

de Jong et al. (36)

Inaba et al. (38)

Inaba et al. (40)

Ino et al. (42)

Okamoto et al. (44)

and Takao et al. (45)

Ino et al. (47)

Li et al. (48)

Jin et al. (49)

Pan et al. (50)

Ishio et al. (51)

Trott et al. (52)

Riesenberg et al. (54)
and Yuan et al. (55)

Tang et al. (56)

Enhanced Kyn production and increased TDO2 Hsu et al. (59)

expression by cancer-associated fibroblasts
was found

Kyn/Trp ratio was increased and related to
lymph node metastasis, FIGO stage, tumor
size, parametrial invasion, and poor
disease-specific survival in patients with
cervical cancer

Kyn/Trp ratio was increased in patients with

ovarian cancer and associated with higher
FIGO stages

Kyn/Trp ratio was increased

Increased QUIN levels and reduced KYNA
levels were found in patients with primary
ovarian cancer

Elevated Trp levels and a decreased Kyn/Trp
ratio was found and associated with elevated
neopterin levels

Kyn/Trp ratio was increased and associated
with a poorer progression-free survival

Low Trp levels and a high Kyn/Trp ratio were
associated with an increased lung cancer risk
in the EPIC study;

In the International Lung cancer cohort
consortium (5,364 smoking-matched case-
control pairs) the highest quintiles of
kynurenine, Kyn/Trp, quinolinic acid and
neopterin were associated with a 20-30%
higher risk and tryptophan with a 15% lower
risk of lung cancer

Post-induction chemotherapy increased
Kyn/Trp ratio was associated with an impaired
progression-free and overall survival

Ferns et al. (37)

Sperner-Unterweger
etal. (39)

de Jong et al. (41)

Fotopoulou et al.
43

Schroecksnadel
et al. (46)

Lucarelli et al. (53)

Chuang et al. (57)

Huang et al. (58)

Creelan et al. (60)

No associations between IDO1 expression and Karanikas et al. (61) Low Trp levels and a high Kyn/Trp ratio were Kurz et al. (62)
clinicopathological parameters were found found and associated with high neopterin
levels, low hemoglobin levels, fatigue, and QoL
Increased IDO1 expression by infiltrating tumor  Astigiano et al. (63) Low Trp levels and a high Kyn/Trp ratio were Engin et al. (64)
cells was related to an impaired overall survival found and associated with elevated neopterin
levels
(Continued)
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Cancer type Tryptophan metabolism within tumor tissues Tryptophan metabolism in the peripheral blood
Findings References Findings References
Low Trp levels and a higher Kyn/Trp ratio were ~ Suzuki et al. (65)
found and related to tumor progression
Lymphoma High IDO1 expression in tumor infiltrating Nam et al. (66) High Kyn levels and Kyn/Trp ratio were found Masaki et al. (67)
immune cells was related to an increased and associated with tumor progression and a
overall survival shorter overall survival in patients with adult
T-cell leukemia/lymphoma
Up-regulation of IDO1 in non-Hodgkin Liu et al. (68) High Kyn levels correlated with an impaired Yoshikawa et al. (69)
lymphoma tissues was related to tumor overall survival
progression, higher serum LDH and an
impaired overall survival
IDO1 expression was increased in stroma cells  Choe et al. (70) Low Trp levels and high Kyn levels were found  Giusti et al. (71)
of Hodgkin lymphoma and correlated with an and related to a shorter overall survival in
impaired overall survival patients with adult T-cell leukemia/lymphoma
High IDO1 expression in non-Hodgkin Ninomiya et al. (72)
lymphoma tissues was related to a lower
remission rates and an impaired overall survival
IDO1 mRNA expression was increased in adult Hoshi et al. (73)
T-cell leukemia/lymphoma cells
Melanoma Increased IDO1 expression in nodal metastases Pelak et al. (74) Low Trp levels and a high Kyn/Trp ratio were Weinlich et al. (75)
was associated with an impaired overall survival found and associated with high neopterin levels
and an impaired overall survival
Increased IDO1 expression in nodal metastases Ryan et al. (76) Patients who developed major depression Capuron et al. (77)
was associated with clinical recurrence during IFN-« therapy had a significantly higher
Kyn/Trp ratio
Increased IDO1 expression in sentinel lymph Speeckaert et al. (78)
nodes correlated with an impaired
progression-free and overall survival
Increased IDO1 expression in nodal Brody et al. (79)
metastases was associated with a poor survival
Osteosarcoma High IDO1 expression correlated with an Urakawa et al. (80)

impaired metastasis-free and overall survival

Pancreatic cancer Increased IDO1 expression upon IFN-y
stimulation correlated with lymph node

metastasis and an impaired overall survival
Prostate cancer IDO1 expression was increased and correlated
with serum Kyn/Trp ratio (83)
Thyroid carcinoma
with tumor aggressiveness

Zhang et al. (81)

Feder-Mengus et al.

Higher HAA/HK ratio was associated with a
reduced pancreatic cancer risk

Huang et al. (82)

High Kyn levels were associated with an
impaired cancer-related survival

Pichler et al. (2)

IDO1 expression was increased and associated Moretti et al. (84)

TDO, IDO1, and IDO2 are heme-containing enzymes and
catalyze the first and rate-limiting step in Trp breakdown. TDO
is mainly expressed in the liver and oxidizes excess Trp, thereby
generating ATP and especially NAD™. In mammals, NAD" is
synthesized from Trp via the Preiss-Handler pathway in liver
and kidney (112). Actually, the Trp concentration in the diet
has been shown to influence the liver NAD™ levels (113). TDO
expression is stimulated by its substrate Trp (114) as well as
by heme (115) and corticosteroids (116). NAD™ inhibits TDO
expression, thus forming a negative feedback loop (117). IDO1
can be expressed by many different cells, including antigen-
presenting cells (APCs) like monocyte-derived macrophages,
dendritic cells (DCs) and fibroblasts. Its expression is mainly
induced by inflammatory stimuli such as IFN-y, tumor necrosis
factor alpha (TNF-«), IL-1, and IL-2 secreted by Thl type cells,

inflammatory cytokines of innate immune cells as well as TGF-p,
IL-10, and adenosine secreted by regulatory T cells (Treg) (118).
IDOLI expression is further stimulated by its own product Kyn
via the aryl hydrocarbon receptor (AhR) (119-121) as well as
by the cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2)
(122). Contrary to this, IDO1 expression is inhibited by the anti-
inflammatory cytokines IL-4 and IL-13 (123, 124). Little is known
about the physiological functions of the recently detected IDO2.
It is primarily expressed in the liver, kidney, brain, placenta, and
APCs including DCs and B cells; yet, IDO2 is significantly less
active when compared to IDO1 (125). Similar to IDO1, IDO2
expression is stimulated by AhR activation (120). Interestingly,
IDO2 negatively regulates IDO1 activity by competing for heme-
binding (126). IFN-y also stimulates KMO, KYNU and HAD
activity (127).
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FIGURE 1 | Tryptophan pathway to serotonin and melatonin: This figure illustrates tryptophan breakdown to serotonin via the intermediate product
5-hydroxytryptophan (5-HTP) and the further conversion to melatonin via the intermediate product 5-acetyl-5-hydroxytryptamine.
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TRYPTOPHAN BREAKDOWN VIA THE
KYNURENINE PATHWAY MODULATES
IMMUNE RESPONSE

An immunologicaly privileged milieu with a decreased reactivity
to allogeneic (non-self) antigens is found in certain parts of
the human body (e.g., brain, eye, testis, placenta). This immune
tolerance prevents fetal rejection and immune responses against
immunogenic sperms. An enhanced expression of TDO, IDO1,
and IDO2, with a subsequent accumulation of Trp metabolites,
is found in several parts of the human body including the
placenta (128, 129), maternal and embryonic tissues in early
conceptions (130, 131) as well as in the epididymis (132-134).
Therefore, these enzymes are suggested to play an important
role in immune tolerance. Immune tolerizing effects are also
observed in the local tumor microenvironment. An enhanced
Trp catabolism via Kyn pathway seems to be involved in immune
paralysis against tumor cells. This may be primarily mediated by
increased IDO1 expression and subsequent accumulation of Trp
metabolites, since IDOL is either expressed by many tumor cells
themselves (see Table 1) or by tumor associated cells such as DCs
or endothelial cells (ECs) (118).

Nearly all metabolites of the Kyn pathway affect immune
activity via several mechanisms (Figure2). Trp depletion

slows down protein biosynthesis in immune cells and induces
cell cycle arrest of T cells via elF-2-alpha kinase GCN2,
thus making them highly susceptible to Fas-ligand-mediated
apoptosis (135, 136). Activation of GCN2 further promotes
the generation of regulatory phenotypes (Tyeg) in naive CD4*
T cells (137). Activation of AhR by its endogenous ligand
Kyn results in reduced T helper 17 (Th17) cell differentiation,
while promoting the generation of Ty cells (138, 139).
Treg cells, in turn, induce IDOI expression in DCs, thus
expanding their own population and forming a positive
regulatory feedback loop (137). Th1l7 cells upregulate KMO
expression, which reduces the availability of Kyn for AhR
activation and consequently results in a reduced Th17 formation
in the sense of a negative regulatory feedback loop (140).
Finally, several metabolites of Trp breakdown such as Kyn,
3-HK, 3-HAA, QUIN, and picolinic acid were demonstrated
to suppress the proliferation of CD4" lymphocytes, CD8*
lymphocytes, and natural killer (NK) cells. Furthermore, they
induce apoptosis of these cells probably mediated by oxygen
free radicals (141-144), while 3-HAA induces apoptosis of
monocytes/macrophages (145). However, apoptosis primarily
occurs in Thl cells and not in Th2 cells, thereby forming
a negative feedback loop and preventing an excessive Thl
activation (141). In addition, the final product of the Kyn
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FIGURE 2 | Tryptophan breakdown via the kynurenine pathway and its interactions with the immune system: This figure illustrates tryptophan breakdown via the
kynurenine pathway. The orange boxes indicate the effects of immune mediators on the kynurenine pathway and the yellow boxes indicate the effects of tryptophan
metabolites on the immune system.
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pathway NAD™ also induces apoptosis in CD4" and CD8*
lymphocytes (146).

Apart from immune modulating properties, Kyn metabolites
may also help tumors to “optimize their microenvironment™
Formation of QUIN by glioma cells was described to promote
resistance to oxidative stress (147). Additionally, tumor cells
might enhance their own IDO activity via an autocrine
AhR-IL-6-STAT3 signaling loop (148), thereby suppressing
T-cell proliferation. Upregulation of the tryptophanyl-tRNA
synthetase WARS may protect Trp-degrading cancer cells from
excessive intracellular Trp depletion via IFNy and/or GCN2-
signaling (149).

On the other hand, 5-MTP, which is produced by
mesenchymal cells such as fibroblasts via 5-HTP, inhibits
migration of cancer cells, tumor growth and cancer metastasis.
This effect is probably mediated by 5-MTP derived inhibition
of COX-2, which is constitutively overexpressed in cancer cells
and promotes carcinogenesis (150). Therefore, reduced 5-MTP
formation due to decreased Trp availability can contribute to
tumor growth and cancer metastasis.

IMMUNE TOLERANCE RELATED TO
INDOLEAMINE 2,3-DIOXYGENASE 1
ACTIVATION IN CANCER PATIENTS

IDO1 expression is a counter-regulatory mechanism to slow
down potentially harmful over-activated immune responses.
However, when the immune system attempts to fight a tumor,
this counter-regulation is highly undesirable (151). In the
majority of studies, an upregulation of IDOI1 expression was
associated with a poor clinical outcome (Table 1). Only in a small
number of tumor entities, increased IDO1 activity was associated
with a favorable prognosis (19, 54). The apparent inflammation-
induced IDO1 expression in these patients probably indicates a
stronger innate anti-tumor immune response.

It is suggested that IDO1 takes different positions in the three
phases of cancer immunoediting: elimination, equilibrium, and
escape (118). In the first phase (elimination), most tumor cells
are recognized, and destroyed by the immune system. Low-level
IDO1 production in the tumor microenvironment contributes
to this tumor defense by inhibiting tumor proliferation (152).
During the second phase (equilibrium), heterogeneity, and
genetic instability progress in tumor cells that survived the
elimination phase, thus enabling tumor cells to resist the immune
response (153). In the last phase (escape), the tumor cells
themselves as well as the tolerogenic immune cells produce large
quantities of IDO1 (154), which results in immune tolerance
described above (155, 156).

Due to these findings, inhibition of IDO1 as a therapeutic
approach in cancer treatment has gained increasing attention
in immuno-oncology. A recent study found that limitation
of programmed cell death protein 1 (PD-1) inhibition might
be due to an immunosuppressive tumor microenvironment
based on IDOI1 activation within macrophages (157). This
suggests that IDO inhibition can be a potential therapeutic
target in cancer patients, specifically in those who do not

respond to immune checkpoint inhibitors. By now, clinical
trials testing IDO1 inhibitors in combination with other
chemotherapeutic or immunotherapeutic agents seem more
promising than administration of IDO1 inhibitors alone. So
far, five IDO1 inhibitors were studied as potential therapeutic
options in cancer patients: indoximod [IDO pathway modulator;
1-methyl-D-tryptophan (1-MT)], epacadostat (selective IDO1
inhibitor; INCB024360), navoximod (GDC-0919), BMS-986205,
and IDO1-targeting vaccines. All these IDO1 inhibitors were
shown to be safe and well-tolerated (158-161). Epacadostat is the
clinically most advanced IDO1 inhibitor and has been shown to
inhibit tumor growth in mice models (162).

In human patients, epacadostat monotherapy was not
effective (163, 164), while combined administration with PD-
1 or cytotoxin T-lymphocyte-associated protein 4 (CTLA-4)
inhibitors showed promising clinical activity in phase I/II
studies (165-168). Unfortunately, a recent trial with combined
administration of epacadostat with pembrolizumab found no
superiority over pembrolizumab alone (169). Despite this
setback, several ongoing trials investigate the effect of other (also
structurally new) IDOLI inhibitors in combination with different
immunotherapies (162).

INDOLEAMINE 2,3-DIOXYGENASE 2,
TRYPTOPHAN 2,3-DIOXYGENASE, AND
KYNURENINE 3-MONOOXYGENASE IN
TUMOR IMMUNE TOLERANCE

Until now, IDO2 has been investigated far less than IDOI1.
Although IDO2 is expressed by cancer cells, it does not contribute
to the accumulation of Trp metabolites to the same extent
as IDO1 (170, 171). However, it was recently implicated that
IDO2 affects B cell-mediated autoimmunity (172), and also
contributes to carcinogenesis in models of pancreatic cancers
(173). Interestingly, IDO2-deficiency was predictive for disease-
free survival in patients receiving adjuvant radiotherapy (173).

Recent studies revealed that TDO may also be involved
in tumor immune-escape. It was demonstrated that TDO is
expressed in various tumors including glial tumors (174), breast
cancers (175), lung cancers (59), colorectal carcinomas (176),
melanomas, bladder carcinomas, and hepatocellular carcinomas
(177). In glial tumors, TDO activity suppressed the anti-tumor
immune responses via increased Kyn production (174). TDO was
shown to be a promising therapeutic target to improve immune
response to cancer cells (178). A recent study by Schramme
et al. demonstrated that TDO inhibition increases the antitumor
efficacy of immune checkpoint inhibitors (179).

Also, KMO activity may be involved in tumor immune
tolerance. Recent studies have shown that its overexpression
is related to rapid cancer progression and a poor prognosis
(49, 180). Similar to inflammatory-induced IDO1 expression,
KMO expression is induced by inflammatory stimuli (181, 182).
Interestingly enough, the non-steroidal anti-inflammatory drug
diclofenac is capable of binding human KMO, thereby inhibiting
its activity (183). Since there is evidence that diclofenac also
exerts anti-cancer effects (184), a possible explanation might be
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its interaction with Trp metabolism. Diclofenac inhibits COX-2
related IDO1 expression and KMO expression, thus reducing the
accumulation of Trp catabolites.

FATIGUE AND DEPRESSION ARE
RELATED TO IMMUNE ACTIVATION IN
CANCER PATIENTS

Cancer related fatigue (CRF) is a complex multi-dimensional
phenomenon that affects physical, cognitive and emotional
activity, and behavior (185). It is associated with the cancer
and its comorbidities themselves and often deteriorates during
treatment (186). Actually, persisting fatigue limits the adherence
of patients to cancer therapy (187). Chronic inflammation is
proposed to be a leading cause of CRF. Higher inflammatory
markers including IL-6, TNF-«, CRP, and neopterin were shown
to correlate with fatigue in cancer patients prior to treatment,
during treatment and also after treatment (62, 188-190).

Patients with lung cancer and moderate or severe fatigue
are presented with lower Trp and hemoglobin concentrations,
but with higher inflammatory markers (62). They furthermore
assessed their QoL worse, and decreased QoL was associated
with higher inflammatory markers and lower Trp concentrations.
These results in 50 patients with lung cancer are well in
line with earlier data showing significant correlations between
fatigue/decreased QoL and immune-mediated Trp degradation
in patients with different malignant diseases (85) as well as
in patients with HIV-infection (191). Interestingly, correlations
between inflammatory markers and decreased QoL were only
seen in patients without antidepressant therapy in both HIV-
infected and lung cancer patients. Also, in patients with colorectal
cancer increased neopterin and decreased Trp levels correlated
significantly with a decreased survival; QoL was worse in patients
with low Trp (192).

A recent study in patients with solid tumors excluded
patients with known depression or antidepressant treatment
or established infection (90). Again, an association between
immune activation and the QoL of patients as well as their
depression susceptibility became evident. Fatigue was present in
a high percentage of patients and was significantly associated
with a decreased QoL, with decreased Trp and hemoglobin
values (90). As low Trp or increased Kyn/Trp concentrations
were associated with fatigue and decreased QoL, respectively,
in several studies, this data indicates that immune activation
and immune-mediated Trp degradation might contribute to the
development of fatigue. Also, Kim and co-workers suggested a
key role of inflammation-induced IDO-activation in CRF (193).

It is of importance that treatment with corticosteroids or anti-
inflammatory drugs like celecoxib reduces fatigue in patients with
advanced cancer (194, 195), suggesting that anti-inflammatory
therapy improves fatigue by interfering with immune activation.
A causal relationship between fatigue and immune activation has
also been proposed in patients with other autoimmune diseases
and infection (196) and treatment with TNF-o antagonists
significantly reduces fatigue in patients with rheumatoid arthritis
and psoriasis (197, 198).

Fatigue is one of the main symptoms of depression,
which is another common comorbidity in subjects suffering
from malignancies, affecting ~20% of the patients (99-101).
Depression is probably not only due to emotional distress but also
due to immunological mechanisms, which might negatively affect
the QoL and increase all-cause mortality (199-201). Enhanced
Trp breakdown as a consequence of immune activation has been
proposed to play a crucial role in the development of depression
in cancer patients (202-204).

Recently, correlations between inflammation markers
(neopterin and CRP) and depression scores in a population
of patients with solid tumors were reported, and particularly
in male patients, lower Trp levels were associated with higher
depression scores and stronger fatigue (90).

This clinical data fit well with results from animal
experiments: Depressive-like behavior related to immune
activation was demonstrated to be associated with an
upregulation of IDO1 (205-207) as well as KMO (208-
210). Peripheral administration of lipopolysaccharide activated
IDO, resulting in a distinct depressive-like behavioral syndrome
(205). Interestingly, IDO inhibition prevented the development
of depressive-like behavior (211), while Kyn administration
dose dependently induced depressive-like behavior. Also the
anti-inflammatory cytokine IL-10 was able to normalize IDO1
expression, thus relieving depressive-like behavior in mice (212).

Depression is also related to enhanced Trp breakdown and
immune activation in patients with HIV-infection (191, 213), as
well as in patients receiving immunotherapy [e.g., IL-2 or INF-¢;
(77,214)].

Immune activation probably affects the development of CRF
and depression also by other mechanisms: Pro-inflammatory
cytokines, for one thing, directly affect basal ganglia and
dopamine function and, for another, activate sensory nerves.
This results in production of pro-inflammatory cytokines and
prostaglandins by microglia in the CNS, which then affect the
functionality of neurons, thereby contributing to fatigue (215).
Immune activation furthermore influences the biosynthesis of
the catecholamines dopamine, epinephrine and norepinephrine
and the neurotransmitter serotonin (216).

INFLAMMATORY-INDUCED TRYPTOPHAN
BREAKDOWN CONTRIBUTES TO THE
DEVELOPMENT OF CANCER RELATED
FATIGUE AND DEPRESSION

There are several pathophysiological mechanisms, which might
explain how Trp metabolites cause CRF or neurobehavioral
symptoms related to CRF such as depression.

Trp is a crucial amino acid in brain homeostasis and a
precursor for serotonin and melatonin synthesis. It can cross
the blood-brain barrier; therefore, reduced Trp availability
may contribute to serotonin dysregulation and neurobehavioral
manifestations (217, 218). However, also the accumulation of
downstream metabolites of the Kyn pathway is suggested to
trigger neurobehavioral symptoms (204, 205).
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QUIN, which is primarily produced by
monocytes/macrophages and microglia, generates free radicals,
causes structural changes, and is a selective agonist at the
glutamate receptor sensitive to N-methyl-D-aspartate (NMDA
receptor) (219). Its accumulation results in excitotoxicity,
neuronal cell death and disturbs glutamatergic transmission
(220). QUIN cannot cross the blood brain barrier, which is why
only QUIN synthesized by microglia or monocytes/macrophages
migrated to the CNS influences neuroimmunology (221). On
the contrary, KYNA is considered as a neuroprotective Trp
metabolite, because it acts as antagonist at the NMDA and other
glutamate receptors (222). Previous studies have demonstrated
that KYNA can protect against QUIN related neuronal damage
(223). This balance between neurotoxic and neuroprotective
effects is expressed by the QUIN/KYNA ratio and related to the
grade of pathway activity, but also immune activation (224). It
was shown that depressed patients have a higher QUIN/KYNA
ratio compared to healthy controls, thus moving the balance
toward the neurodegenerative effects (225). The imbalance of
neurotoxic and neuroprotective Trp metabolites is suggested
to play a major role in the development of neuropsychiatric
symptoms including CRF and depression (226). 3-HK also exerts
neurotoxic effects by causing lipid peroxidation (227).

Although immune system activation frequently coincides with
fatigue or depression in cancer patients, it has to be kept in
mind, that fatigue or depression also can develop isolatedly in
patients with other predisposing conditions (like anxiety or little
social support). Probably the development of neuropsychiatric
disturbances and depression is alleviated in the presence of an
activated immune system and accelerated Trp breakdown, but it
must not necessarily lead to depressed mood. Maybe the handling
of bad news is impaired if Trp and thus serotonin availability
is low.

Additionally, also other factors, like psychosocial aspects
including demographical factors (age, gender, culture/ethnicity
and social support), behavior/well-being (composed of
stress/distress—including spiritual, anxiety, sleep disturbance,
coping style, and pain) but also functional status (performance
status, physical activity level, physical functioning, and
productivity/work) contribute to the development, severity, and
duration of CRF and depression. Moreover, an imbalance in the
autonomic nervous system, disturbances in the hypothalamic-
pituitary-adrenal axis and circadian rhythm as well as hypoxia
or anemia are key players in the pathophysiology of CRF and
depression (228, 229). These factors might in fact enforce vicious
circles, such as e.g., psychosocial stress triggers oxidative stress
and inflammation, and thus tumor progression (201).

INHIBITION OF TRYPTOPHAN
BREAKDOWN FOR TREATMENT OF
FATIGUE AND DEPRESSION

Experiments in mice demonstrated that the IDO pathway
modulator indoximod inhibits depressive-like behavior
(consecutive to bacterial infection) without altering the
infectious immune response (211, 230). Moreover, the specific
IDOL1 inhibitor epacadostat was shown to reverse chronic

social defeat in mice (231). Another interesting compound,
which might target IDO, is the antibiotic minocycline,
which was demonstrated to reduce IDO activation and thus
prevent depressive-like behavior in animal studies (232-234).
Minocycline was also able to decrease IDO expression and
the formation of pro-inflammatory cytokines in LPS-treated
monocytic human microglial cells (235-237), suggesting that
IDO inhibition might be responsible for the anti-depressive
effects of minocycline. Also, in humans a large and statistically
significant antidepressant effect of minocycline has been
observed when comparing to placebo [see review and meta-
analysis by Rosenblat and McIntyre (238)]. Due to the good
tolerability, future larger RCTs investigating the potential
of minocycline (238), but also of other anti-inflammatory
treatments (239) are considered. Contrary to these findings,
a recent study with mice showed no improvement of cancer-
related behavioral symptoms when inhibiting IDO1 (either by
an unspecific or a specific IDO inhibitor). Mice treated with
1I-MT even had slightly more treatment-associated burrowing
deficits. Genetic deletion of IDO on the other hand had no
effect on the behavior of mice, but was associated with a worse
tumor outcome (240). In consideration of these conflicting data,
more studies investigating effects of IDO inhibition in cancer
are needed. Clinical trials targeting TDO revealed antidepressant
effects as well as amelioration of neurodegeneration following
TDO inhibition, and seem to be a promising therapeutic target
in cancer patients, especially with neurobehavioral symptoms
(241, 242).

Inhibition of KMO also seems to be a possible therapeutic
approach in the treatment of fatigue and depression by
shifting Kyn metabolism toward the enhanced production
of neuroprotective KYNA while decreasing production of
neurotoxic QUIN. A recent mice trial revealed that KMO gene
deletion substantially reduces 3-HK and QUIN concentrations
while elevating KYNA concentrations (243). It was further shown
to ameliorate neurodegeneration in patients with Alzheimer’s and
Parkinson’s diseases (242). Therefore, KMO inhibition may be
a promising therapeutic target in inflammation-related fatigue
or depression by reducing generation of the neurotoxic Trp
metabolites 3-HK and QUIN.

Another recent study showed decreased IDO1 and KMO
expression in the murine brain as well as decreased IDO1 and
IDO2 expression in human peripheral blood mononuclear cells
as a consequence of antidepressant treatment (244, 245). This, in
turn, demonstrates that reduction of psychosocial stress can also
reduce inflammation-related factors.

NUTRITION, MICROBIOME, AND
PHYSICAL ACTIVITY AND ITS
ASSOCIATION WITH TRYPTOPHAN
BREAKDOWN, FATIGUE, AND
DEPRESSION

Monoaminergic antidepressants and also omega-3 fatty acids
were demonstrated to reduce neurotoxic effects related to
Trp breakdown (246). Omega-3 fatty acids contribute to the
beneficial effects of the Mediterranean diet, which is regarded
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as anti-inflammatory diet (247). High adherence to this diet is
linked to a lower risk of developing cancer and to a reduced
cancer mortality in observational studies (248). A “Western”
diet rich in refined sugars and long chain fatty acids and
with low fiber content on the other hand enforces a type 1
pro-inflammatory state (249). Mouse experiments furthermore
showed that Western diet exposure exacerbated hippocampal
and hypothalamic proinflammatory cytokine expression and
brain IDO activation after immune stimulation with LPS (250).
Inflammation-induced Trp degradation in humans might then
further intensify subdued psychosocial factors such as mood,
negative thoughts and lack of energy or simply make patients
more susceptible to them.

In fact, diet and the gut microbiome may influence
inflammation and Trp metabolism by several ways (251):
Microbiota metabolize phytochemicals (e.g., in vegetables) to
indoles, which activate AhR as ligands, while other microbial-
derived metabolites such as the short chain fatty acids butyrate,
propionate, and acetate importantly mediate the crosstalk
between host-microbiota and thereby have immune modulating
effects (251). Actually Trp metabolic pathways are regarded as
key biochemical pathways influencing the microbiota-neural-
immune axis by translating information on the nutritional,
inflammatory, microbial, and emotional state of the organism
to the immune system (252-254) and by modulating intestinal
immune response (251).

A recent review by Weber et al. proposed that preclinical and
several clinical studies argued for the use of a ketogenic diet
(KD) in combination with standard therapies in patients with
cancer (255): KD had the potential to enhance the antitumor
effects of classic chemo- and radiotherapy and to increase the
QoL of patients (255). However, the heterogeneity between
studies investigating these effects and low adherence to diet
limit the current evidence (256). Interestingly, KD was shown to
positively influence the Kyn pathway in rats (257). Increased f-
hydroxybutyrate concentrations and an increased production of
the neuroprotective KYNA were found in rat brain structures as
a consequence of KD (258, 259). Also, a recent study in children
revealed that Kyn levels significantly decreased and KYNA levels
significantly increased 3 months after starting a KD (260).

Significant differences regarding Trp metabolism were
reported between a low-glycemic load dietary pattern
(characterized by whole grains, legumes, fruits, and vegetables)
and a diet high in refined grains and added sugars on
inflammation and energy metabolism pathways (261). In
line with results of this study, a Mediterranean diet and other
plant-based diets have been proposed to reduce fatigue in cancer
survivors (262).

As cancer cells are very vulnerable to nutrient deprivation
(especially glucose), fasting or fasting-mimicking diets (FMDs)
might be another effective strategy to generate environments that
can reduce the capability of cancer cells to adapt and survive
and thus improve the effects of cancer therapies (263). Further
studies investigating the effects of FMDs on Trp catabolism in
the tumor microenvironment might therefore provide interesting
new insights for future treatment approaches.

Besides, treatment with probiotics might be beneficial for
cancer patients: In colorectal cancer survivors, probiotics

(Lactobacillus acidophilus and rhamnosus) improved CRE
irritable bowel syndromes and QoL significantly in a double-
blind placebo-controlled study (264); furthermore, probiotics
and also melatonin supplementation appear to alleviate side
effects of radiation therapy (265). Probiotic supplementation
with Lactobacillus plantarum in combination with SSRI
treatment improved cognitive performance and decreased Kyn
concentrations in patients with major depression [compared
to SSRI treatment alone, (266)]. Supplementation with a
multispecies probiotic had a beneficial effect on Trp metabolism
in trained athletes (267) and influenced Trp degradation and
gut bacteria composition in patients with Alzheimer’s disease
(268). Additionally, highly adaptive lactobacilli where shown
to produce the AhR ligand indole-3-aldehyde, which enabled
IL-22 transcription for the fine tuning of host mucosal reactivity
(269). Conclusively, these studies indicate that beneficial effects
of probiotics on fatigue or depression might be due to alterations
of Trp metabolism or anti-inflammatory effects [see review by
(270)]. However, evidence is limited due to the heterogeneity
of clinical trials. Therefore, further well-designed longitudinal
placebo-controlled studies are desperately needed (271, 272).

Also, a recent review of clinical trials that assessed nutritional
interventions for preventing and treating CRF suggests that
supplementation with probiotics but also ginseng, or ginger
may improve cancer survivors’ energy levels and that nutritional
interventions, alone or in combination with other interventions
should be considered as therapy for fatigue in cancer survivors.
Nevertheless, there is lacking evidence to determine the
optimal diet to improve CRF in cancer patients (262, 273).
Furthermore, also physical activity, psychosocial, mind-body,
and pharmacological treatments have been proven to be
effective (187).

Physical exercise also affects Trp metabolism and thereby
might improve fatigue and depression. As this subject has been
discussed elsewhere recently (274, 275), it will be discussed
only briefly hereafter. Physical activity increases Trp availability
in the brain, which results in an increased 5-HT synthesis
and anti-depressant effects (276). Increased muscle use of
branched-chain amino acids (BCAAs) favors the passing of Trp
through the blood-brain barrier (277). In addition, endurance
exercise increases concentrations of circulating free fatty acids,
which displaces Trp from albumin, thus increasing free Trp
concentrations (278). Additionally, physical activity increases
the expression of kynurenine aminotransferases, which enhance
the conversion of Kyn into KYNA (unable to cross the blood-
brain barrier), thus protecting the brain from stress-induced
changes (279). Interestingly, intense physical exercise induces the
formation of several pro-inflammatory cytokines (280), which in
turn activate IDO1 and Trp breakdown.

IMMUNE ACTIVATION CAUSING
TRYPTOPHAN DEGRADATION AND
(CONSEQUENTLY) ANEMIA

Another common comorbidity in cancer causing fatigue is
anemia (95, 281). Anemic cancer patients have a worse QoL, an

Frontiers in Immunology | www.frontiersin.org

February 2020 | Volume 11 | Article 249


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Lanser et al.

Tryptophan Breakdown in Cancer Patients

adverse outcome as well as a reduced rate of local tumor control
compared to non-anemic cancer patients (282, 283).

Anemia is the most common “hematological complication,”
found in ~40-64% of patients with malignant diseases (94) and
is mostly due to anemia of chronic disease (ACD) (284). ACD
is caused by enhanced formation of pro-inflammatory cytokines,
which can on the one hand directly inhibit erythropoiesis and on
the other hand restrict the availability of iron for erythropoiesis.
The latter is caused by an increased uptake and retention of iron
within the cells of the reticuloendothelial system together with
a suppression of iron absorption in the duodenum. The master
regulator of iron homeostasis, hepcidin, has a decisive role in
these processes. Similarly to Trp breakdown, this is initially a
protective mechanism of the immune system to restrict available
iron from microbes or tumor cells (285, 286).

IFN-y, one of the main cytokines of Thl type immune
response, activates IDO and neopterin formation in
hematopoietic stem cells and also exerts an influence on
the proliferation of various stem cell populations (287). The
intravenous injection of neopterin into mice resulted in a
prolonged decrease in the number of erythroid progenitor
cells and increased the number of myeloid progenitor cells
(CFU-GMs) by activating stromal cells (288).

Trp metabolites like Kyn, on the other hand, increase hepcidin
expression and inhibit erythropoietin (EPO) production by
activating AhR (289). AhR competes with hypoxia-inducible
factor 2a (HIF-2a), the key regulator of EPO production, for
binding with HIF-18 (289, 290). Well in line with this finding,
Kyn/Trp and neopterin were shown earlier to be associated
inversely with hemoglobin concentrations and positively with
hepcidin concentrations in patients with HIV-infection before
antiretroviral therapy (287). Antiretroviral treatment slowed
down immune-mediated Trp catabolism and improved iron
metabolism and anemia (287).

Interestingly, in patients with different malignant diseases,
increased Kyn/Trp and neopterin concentrations also coincided
with lower hemoglobin values (85). Also, recent data confirms
that anemic cancer patients present with higher inflammatory
markers and a higher Kyn/Trp than non-anemic individuals
(90). The same is also true for patients with anemia due to
inflammation (291) and for HIV-infected patients (191).

Also, QUIN was shown to inhibit EPO production (292)
by stimulating the production of nitric oxide (NO) (293) and
inducing HIF-1a degradation (294).

In patients with myelodysplastic syndromes, a fundamental
role for Trp metabolized along the serotonin pathway
in normal erythropoiesis and in the physiopathology
of MDS-related anemia was demonstrated recently:
Decreased blood serotonin levels were related with impaired
erythroid proliferating capacities, and treatment with
fluoxetine, a common antidepressant, was effective in
increasing serotonin levels and the number of erythroid
progenitors (295).

Low serotonin concentrations are also associated with the
development of depression. Vulser et al. actually showed a
considerable association between anemia and depression in

otherwise healthy adults (296). Increased Trp degradation might
therefore be a connection between anemia and depression.

These findings show that impaired Trp availability but also
accumulation of Trp metabolites, may affect erythropoiesis.
In cancer patients, tumor cells produce TDO and IDO1, and
both are equally capable of producing Kyn (174). However,
they may only contribute to local Trp degradation and
do not influence systemic Trp breakdown. On the other
hand, IDO1 activity is also stimulated by the activated
immune system and thereby contributes to systemic Trp
catabolism. Therefore, inflammation-induced IDO1 activation
and consecutive Trp breakdown might influence erythropoiesis.
The most common symptom of anemia is fatigue, which is
why both ACD and inflammation-induced Trp breakdown
may be major contributors to overall-fatigue in patients with
malignant diseases.

CONCLUSION

Inflammation-induced Trp breakdown in cancer patients is
considered to play a key role in the pathophysiology of
tumor immune tolerance. Accumulation of Trp metabolites as
well as impaired Trp availability suppress the tumor immune
response and may also greatly contribute to the development
of comorbidities such as fatigue, depression, or anemia, which
are all common in patients with malignancies. Although anemia
is primarily caused by the enhanced immune response itself,
inflammatory-induced Trp degradation may also be involved
strongly. Studies have shown that inhibition of Trp breakdown
might be a promising therapeutic option in cancer patients to
counteract the immunosuppressive tumor microenvironment.
Especially cancer patients with no response to immune
checkpoint inhibitors might benefit from an additional IDO1
inhibition. Moreover, there is evidence that inhibition of IDO1,
TDO, and KMO or other interventions targeting Trp metabolism
(like diet or probiotics) may further improve neurobehavioral
manifestations including CRF or depression. Further studies
investigating the effects of IDO1, TDO, or KMO inhibition
on tumor immune response should also take the impact on
neurobehavioral manifestations into consideration.
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