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Editorial on the Research Topic

Exploiting DNA Damage Response in the Era of Precision Oncology

The main scope of precision oncology is providing a personally tailored cancer treatment that
targets specific driver alterations identified via a next generation sequencing profiling of a patient
tumor. The application of precision oncology is evolving dramatically and is constantly reshaping
cancer treatment. The already routine implementation of trastuzumab and pertuzumab for
treatment of breast cancer patients with HER2/neu amplification, imatinib in chronic myeloid
leukemia and gastrointenstinal stromal tumors, dabrafenib and trametinib in BRAFV600E-mutant
melanoma, erlotinib and crizotinib for non-small cell lung cancer with the EGFR p.L858R mutation
or the ALK/EML4 rearrangement, respectively, serve as only few examples for the proof of
principle (1).

Genome stability is critical for the maintenance of cellular physiology and is persistently
sustained by the complex signaling networks of cell cycle checkpoint mediators and DNA repair
effectors that together constitute the DNA damage response (DDR) network, which monitors and
repairs damaged DNA (2–4). A major consequence of a compromised DDR function is cellular
transformation and the onset and progression of cancer. Indeed, genomic instability is recognized as
a major hallmark of cancer that commonly evolves on a defective DDR function background (5).

Targeting specific DDR signaling pathways in the context of precision oncology offers
opportunities on two different, but complementary levels. Firstly, the vast majority of anti-cancer
conventional approaches that consist of radiation therapy, as well as chemotherapeutic drugs as for
example platinum compounds, topoisomerase inhibitors and temozolomide, elicit their cytotoxicity
via DNA damage. Deregulated upregulation of particular DDR pathways by cancer cells may
provide an escape mechanism that results in more efficient DNA repair with consequent treatment
resistance and less favorable prognosis (6). Depending on a particular tumor landscape, a
personalized targeted intervention within a specific relevant DDR pathway may therefore be
instrumental for overcoming treatment resistance via chemo-radiosensitization. In that respect,
effective and specific targeting of the three DDR master upstream kinases of the PIKK family, ATM,
ATR and DNA-PK, is in the center of major research efforts in the last years (7–9). An additional
targeting concept to effectively induce tumor cell death is blocking of cell cycle checkpoint
mediators, such as CHK1, CHK2, and WEE1 in cancer cells with a high replication stress,
allowing therefore cell cycle progression with a high burden of DNA damage (10).
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The second major venue to utilize DDR targeting in
personalized cancer treatment are tumors with loss-of-function
mutations in genes encoding DDR components of a particular
repair pathway. These mutations may create an ultimate
dependency on an alternative pathway, which, if targetable,
creates a tumor-specific vulnerability in the form of a synthetic
lethal interaction exploitable in the clinic. Obviously, the dogma
of targeting synthetic lethal interactions in the context of DDR
signaling has been established through the integration of PARP
inhibitors in the management of homologous recombination-
deficient tumors due to BRCA1/BRCA2 inactivating mutations
(11–15). Motivated by this successful clinical implementation,
functional genomic screens are profoundly used to identify novel
synthetic interactions and drug targets in human cancers (16).

This Research Topic of Frontiers in Oncology entitled
“Exploiting DNA Damage Response in the Era of Precision
Oncology” aimed at bringing together contributions covering
various aspects of DDR targeting in the context of precision
oncology frameworks. The scopes of the research and review
articles included in this collection are described below:

- Mohiuddin andKang discuss in their review the biologic rationale
for DNA-PK as a target in cancer. The roles of DNA-PK within
the DDR, as well as in non-DDR signaling are described and an
updated overview over the pharmacological efforts for
generating effective inhibitors is provided.

- In the original research article by Lundgren Mortensen et al. the
authors explore a tumor radiosensitization approach, which
aims at increasing cellular p53 levels by using a stapled peptide,
PM2, that interferes with the MDM2/X-dependent p53
downregulation. The effectiveness of PM2 together with
external beam radiotherapy has been investigated in a panel of
cancer cells.

- Das et al. have presented data of a computational approach to
predict synthetic lethal interactions of somatic mutations in
DDR genes within a TCGA-based pan-cancer cohort of
patients. They have used various in silico approaches,
including drug sensitivities responses, to validate the novel
described synthetic lethal interactions.

- Carr et al. investigated in their research on acute myeloid
leukemia a combination of the novel DNA-PK inhibitor
M3814 and Mylotarg, an approved CD33 antibody
conjugated with the DNA double strand break-inducing
drug calicheamicin. The study demonstrated an enhanced
Frontiers in Oncology | www.frontiersin.org 25
anti-tumor activity of Mylotarg in the combined treatment
modality, resulting from the inhibition of the DNA double
strand break repair through non-homologous end-joining via
M3814.

- Baldwin et al. explored the efficacy of a nano-formulation of the
PARP inhibitor talazoparib in combination with
temozolomide in xenograft models of Ewing Sarcoma. Their
data suggest that the nanoparticle formulation of talazoparib
reduces the toxicity of the combined treatment as compared
to oral administration of the PARP inhibitor.

- Meng et al. reviewed the signaling interplay between DDR
pathways, RNA processing and the generation of tumor-
associated extracellular vesicles that are linked to treatment
resistance and metastasis.

- The minireview by Trenner and Sartori focused on most recent
updates concerning DNA double strand breaks repair
pathways and how they could be exploited further for
cancer treatment. Particular emphasis of this work is on
combinatorial therapeutic approaches and the targeting of
potentially newly discovered synthetic lethal interactions.

- Liptay et al. reviewed mechanisms of acquired drug resistance
in tumors with DDR deficiencies. The authors of this study
concentrated primarily on BRCA-deficient cancers and the
emerging role of replication fork biology in acquired drug
resistance in these tumors.

- Burgess et al. reviewed mechanisms involved in genomic
instability of lung tumors and therapeutic opportunities in
combination of DDR-based targeting with various modalities
including immunotherapies.

Our understanding of the intricate and extremely complex
network of the cellular DDR reshaped by groundbreaking
discoveries in the last decades allowed numerous successful
implementations of these findings into clinical practice. At the
same time, the more we know, the more new questions arise. To
one of them – who will profit from a specific therapy? –precision
oncology will have to furnish answers all over again and again.
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Target in Cancer
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The DNA-dependent protein kinase (DNA-PK) plays an instrumental role in the

overall survival and proliferation of cells. As a member of the phosphatidylinositol

3-kinase-related kinase (PIKK) family, DNA-PK is best known as a mediator of the

cellular response to DNA damage. In this context, DNA-PK has emerged as an intriguing

therapeutic target in the treatment of a variety of cancers, especially when used in

conjunction with genotoxic chemotherapy or ionizing radiation. Beyond the DNA damage

response, DNA-PK activity is necessary for multiple cellular functions, including the

regulation of transcription, progression of the cell cycle, and in the maintenance of

telomeres. Here, we reviewwhat is currently known about DNA-PK regarding its structure

and established roles in DNA repair. We also discuss its lesser-known functions, the

pharmacotherapies inhibiting its function in DNA repair, and its potential as a therapeutic

target in a broader context.

Keywords: DNA-PKcs, DNA-PK, DNA repair, chemotherapeutic target, PRKDC

INTRODUCTION

The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase consisting of
a catalytic subunit (DNA-PKcs) and a Ku heterodimer that is made up of the Ku70 and Ku80
subunits. DNA-PK was accidentally discovered after researchers studying translation found that
double-stranded DNA (dsDNA) contaminated their preparations, leading to the phosphorylation
of specific proteins (1). Early work showed that DNA-PK phosphorylates Sp1 in the formation of
Sp1 transcription complexes (2, 3). It was soon established that DNA-PK was involved in repairing
double-strand breaks (DSBs) through non-homologous end-joining (NHEJ). Since then, DNA-PK’s
role in the DNA damage response (DDR) pathways has been expanded to include pathway choice
between NHEJ and homologous recombination (HR) (4) and in the immune system through V(D)J
and class-switch recombination (5). Given its critical function in DDR pathways, DNA-PK has been
targeted in cancer therapy in concert with DNA-damaging agents (6). More recently, DNA-PK
has been implicated in other cellular processes, including cell cycle progression (7) and telomere
maintenance (Table 1) (33). These findings, combined with the transcriptional targets that associate
with DNA-PK, suggest that DNA-PK is pivotal in pathways outside of the DDR that are critical to
cellular survival and proliferation.

Cloning of the cDNA of DNA-PKcs showed significant homology with the phosphatidylinositol
3-kinase (PI3K) family, however it did not have any activity toward lipids (34). At 460 kDa,
DNA-PKcs is the largest of six serine/threonine kinases in the phosphatidylinositol 3-kinase-related
kinase (PIKK) family, consisting of 4,128 amino acids (35). The PIKK family share significant
homology (Figure 1) (36, 37). Ku heterodimerization is essential to maintain the stability of
both subunits, loss of one subunit leads to decreased levels of the other (38). Although there

7
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is significant sequence divergence in the subunits in higher
eukaryotes, especially compared to lower organisms, there
is structural homology in both subunits (39). Ku70 and
Ku80 contain three domains: an alpha helix/beta barrel
von Willebrand A (vWA) domain on the N-terminus, a
DNA-binding/dimerization core, and a helical domain at the
C-terminus. The vWA domain functions as a surface for protein
interactions, mediating binding between DNA-PK and factors
involved in DNA repair, telomere regulation, and other functions
(40). The C-terminal domain (CTD), where the majority of
sequence divergence exists, contains the nuclear localization
signal (NLS) on both subunits. Although Ku functions as a
heterodimer, each subunit can independently import into the
nucleus (38). The Ku70 CTD contains the SAP domain that
increases the affinity of DNA-binding, whereas the Ku80 CTD
houses the critical DNA-PKcs binding region (40).

DNA-PK IN DNA REPAIR

The role of DNA-PK in DNA repair has been extensively
reviewed (41), and thus is briefly summarized here. Three
main pathways exist to repair damaged DNA: classical NHEJ
(C-NHEJ), alternative NHEJ (A-NHEJ), and HR. HR repairs
DNA with the greatest fidelity because it uses sister chromatids
to repair DSBs, but can only occur in the S and G2 phases of
the cell cycle. Both NHEJ pathways can occur throughout the
cell cycle, though A-NHEJ is more active during S phase (42).
As opposed to the use of template strands in HR, NHEJ ligates
two strands of DNA across a break. C-NHEJ is the primary
form of DNA repair in higher eukaryotes, due to its simplicity
and presence throughout the cell cycle. If C-NHEJ is unable to
repair a DSB, the error-prone A-NHEJ becomes the dominant
pathway (40, 43). But before a damage pathway is pursued, a cell
must detect the presence of DSBs. H2A histone family member
X (H2AX), is phosphorylated both by DNA-PKcs and ATM at its
Ser139 residue to form γ-H2AX, a marker of DNA damage, that
functions to retain factors involved in DSB repair (12).

DNA-PK in Non-homologous End-Joining
By recruiting specific enzymes, NHEJ can repair DSBs of varying
complexity, like those with incompatible ends or damaged bases
(44). The sequence of NHEJ can be described as: (a) DSB end-
recognition and binding by Ku; (b) assembly of the components
of the NHEJ machinery, such as DNA-PKcs, the XRCC4-DNA
ligase IV complex, and XRCC4-like factor (XLF); (c) activation
of DNA-PKcs kinase activity; (d) bridging and, if necessary, end-
processing of the broken DNA strands; (e) end-ligation by the
XRCC4-DNA ligase IV complex; and (f) dissociation of theNHEJ
machinery (36, 44, 45). The order of events following Ku binding
to DNA is unknown; NHEJ is a dynamic process involving
multiple factors interacting simultaneously.

In the first step of NHEJ, the Ku heterodimer recognizes and
binds to the free ends of the DSB and recruits the canonical
factors involved in NHEJ, including XRCC4-DNA ligase IV
(9), XLF (46), and DNA-PKcs. Caspase-2-mediated cleavage
of Ku80 at Asp726 may allow for DNA-PKcs binding and
formation of the DNA-PK complex (47), causing an inward

TABLE 1 | Protein targets of DNA-PK and their associated cellular functions.

Protein

Target

Function References

DNA DAMAGE RESPONSE

Non-homologous end joining

Artemis Contributes to end-processing of DSB (8)

DNA-PKcs Phosphorylates factors involved in NHEJ (8–11)

H2AX Retains factors involved in DSB repair (12)

Ku70/Ku80 Binds to DNA, recruits components of

NHEJ machinery

(8, 9)

XLF Stabilizes ends of DSBs (8, 9)

XRCC4 Stabilizes ends of DSBs and ligates DSB

with Ligase IV

(8, 9)

Homologous recombination

BRCA1 Inhibits DNA-PKcs-mediated

autophosphorylation

(13)

DNA-PKcs Involved in DDR pathway choice via

differential phosphorylation

(14, 15)

H2AX Retains factors involved in DSB repair (12)

RPA Promotes HR after phosphorylation via

recruitment of Rad51

(16, 17)

NON-DNA DAMAGE RESPONSE

Cell cycle progression

Chk2 Forms complex with BRCA1 to organize

mitotic spindle

DNA-PKcs Localizes to centrosomes and

kinetochores

(18–20)

MDM2/HDM2 Overcomes p53-mediated G1 phase cell

cycle arrest

(21, 22)

p53 Causes cell cycle arrest in G1 phase

PLK1 Regulates mitotic entry (19, 23)

PP6 Regulates mitotic exit (23)

Transcriptional regulation

AR Drives expression of prostate

cancer-associated genes

(24)

NRE Impairs glucocorticoid-induced MMTV

transcription

(25)

OCT1 &

OCT2

Drive expression of genes in multiple

tissues

(26)

RNA Pol I Involved in transcriptional elongation (27)

Sp1 Functions as general transcription factor (2)

TBP Functions as general transcription factor (28)

TFIIB Functions as general transcription factor (28)

TRIM28 Activates RNA Polymerase II to activate

transcriptional elongation

(27)

Telomere maintenance

DNA-PKcs Facilitates telomere end-capping (29–31)

hnRNP-A1 Maintains telomeric overhangs and

activates telomerase

(29)

Ku70/Ku80 Maintains telomere length (32)

translocation of the Ku heterodimer and DNA-PKcs activation
through conformational changes in the FAT and FATC domains
(45). The DNA-PK complex likely tethers broken DNA strands,
thereby preventing their nucleolytic degradation (48). DNA-PKcs
phosphorylates members of the NHEJ machinery, including Ku,
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FIGURE 1 | Structure of DNA-PKcs and related members of the phosphatidylinositol 3-kinase-related kinase (PIKK) family. DNA-PKcs can be subdivided into three

large structural units: a large N-terminal helical domain, followed by the Circular Cradle, which contains multiple HEAT (Huntingtin, Elongation Factor 3, PP2A, and

TOR1) repeats and a number of well-conserved phosphorylation clusters, and a C-terminal Head, which contains the highly conserved catalytic kinase domain. The

kinase domain is flanked on either side by the well-conserved FAT (named for its homology in FRAP, ATM, and TRRAP) and FATC (FAT at the C-terminus) domains.

The FKBP12-rapamycin-binding (FRB) domain, which sits between the FAT and kinase domain, is essential for mTOR kinase activity and subsequent G1 to S cell

cycle progression, however, it may serve a different purpose in DNA-PK. The N-terminus contains HEAT repeats (blue) that make contact with other HEAT repeats

(green). The FAT and FATC domains (purple) help stabilize the catalytic domain (yellow), which is adjacent to the FRB domain (orange). ATM, ataxia-telangiectasia

mutated; ATR, ataxia telangiectasia and Rad3-related protein, mTOR, mammalian target of rapamycin; SMG1, one of the serine/threonine-protein kinases; TRRAP,

transformation/transcription domain-associated protein.

XRCC4, XLF, DNA-PKcs itself, and Artemis, which is involved
in DNA end-processing (8). DNA-PKcs autophosphorylation
at Thr2609 and Thr2647 in the ABCDE cluster mediates a
conformational change in DNA-PKcs allowing for DNA end-
processing (10). Conversely, mutagenesis of Ser2056, another
known autophosphorylation site in the PQR cluster, showed that
it likely limits end-processing (11).

While autophosphorylation appears to be crucial in NHEJ,
the importance of binding interactions and DNA-PKcs-mediated
phosphorylation of components of the NHEJ machinery remains
unclear (49). Ku80 is crucial in immobilizing the broken
ends of chromosomes within the nucleus, allowing for proper
alignment at the site of repair (50). Cells harboring a deletion
of the Ku80 carboxyl terminus showed increased sensitivity
to IR and decreased levels DNA-PKcs autophosphorylation
at Thr2647 when compared with controls, but levels of the
autophosphorylated Ser2056 residue were unchanged (51).
Mutant Ku heterodimers containing alanine instead of serine or
threonine at residues 6, 577, and 580 of Ku70 and 715 of Ku80
were still able to function in DNA-damage repair (52).

DNA-PK in Homologous Recombination
When faced with DNA damage-inducing stress, a cell has a
choice between NHEJ and HR, but the competition between the
two pathways is not fully understood. The availability of sister
chromatids in the S and G2 phases of the cell cycle make HR
a more favorable outcome, but some mechanism must exist to
inhibit NHEJ, which can be activated at any point in the cell
cycle. Breast Cancer 1, early onset (BRCA1), a canonical HR
factor, functions in various capacities during DNA repair. In
the context of pathway choice, BRCA1 prevents NHEJ in the
S and G2 phases by inhibiting DNA-PKcs autophosphorylation

at Ser2056. This interaction, mediated BRCA1’s BRCT domain
binding to DNA-PKcs, occurs in a phosphorylation-independent
manner (13).

Beyond cell cycle considerations, other factors influencing
the decision to pursue one DDR pathway over another
remain unclear. Cells with inactivating mutations in Ku and
DNA-PKcs will preferentially use HR as the primary DDR
mechanism (14). Perhaps DNA repair pathway choice centers
on whether DNA-PKcs is activated via phosphorylation: a
phosphorylated/active form of DNA-PKcs favors NHEJ, while an
unphosphorylated/inactive form favors HR. However, seemingly
contradictory findings indicate a more nuanced mechanism.
While mutagenesis and inactivation of DNA-PKcs that impaired
NHEJ favored HR, pharmacological inhibition of DNA-PKcs
impaired HR (15).

Replication protein A (RPA), a heterodimer that binds to
single-stranded DNA (ssDNA), is an important modulator
of HR. RPA complexes with tumor suppressor protein p53
and is hyperphosphorylated after DNA damage via DNA-
PKcs (16). Coupled with the phosphorylation of p53, this
hyperphosphorylation causes dissociation of the RPA-p53
complex and allows RPA to bind to ssDNA and promote HR
via Rad51. Cells treated with camptothecin, followed by siRNA
knockdown of DNA-PKcs-mediated phosphorylation of residues
of RPA32, showed impaired HR (17).

FUNCTIONS OF DNA-PK OUTSIDE OF
DNA REPAIR

Aside from its well-known role in two of the DDR pathways,
DNA-PK functions in other cellular processes, such as cell cycle
progression, transcription, and telomere maintenance. These
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functions may be involved in tumor progression, highlighting
DNA-PK’s potential as a therapeutic target.

DNA-PK’s Role in Cell Cycle Progression
Upon genotoxic stress, p53 causes cell cycle arrest in G1.
Human/murine double minute 2 (MDM2; HDM2 in humans)
overcome this blockade by complexing with p53. Since its
discovery,MDM2—and its interplay with p53—has been targeted
in cancer therapy (53). DNA-PKcs regulates this interaction by
phosphorylating HDM2 at Ser17 to prevent binding with p53
(21). DNA-PK also acts on p53 by phosphorylating its Ser15 and
Ser37 residues, inducing a conformational change that prevents
HDM2 binding (22).

Cells are susceptible to DNA damage during S phase, which
results in stalling or collapse of the replication fork. Replication
stress leads to the formation of one-ended DSBs that are
bound by RPA. Linked to its role in HR, DNA-PKcs-mediated
phosphorylation of Ser4 and Ser8 of RPA32 causes growth arrest
and delays mitotic entry (54).

DNA-PKcs has been implicated in the regulation of mitosis.
Numerous studies have shown that reduction of DNA-PKcs
enzymatic activity, either by pharmacological inhibition or by
siRNA-mediated knockdown, leads to defects in chromosomal
alignment and in nuclear morphology (7). Phosphorylation
of DNA-PKcs at Ser2056, Thr2609, Thr2647, and Thr3950
causes DNA-PKcs localization to centrosomes. Phosphorylated
Thr2609 is also seen at kinetochores during metaphase and
cytokinesis (18, 19, 23). Phosphorylation at Thr2609 causes
an association with polo-like kinase 1 (PLK1) in the mitotic
phase, which regulates mitotic entry and exit, throughout
mitosis at multiple subcellular structures. This interaction is
essential for chromosomal segregation (19). Ser3205, another
residue on DNA-PKcs that is likely essential for the overall
success of mitosis, is phosphorylated by PLK1, allowing for the
localization of DNA-PKcs to the midbody during cytokinesis.
Dephosphorylation of Ser3205, via protein phosphatase 6
(PP6), occurs when cells exit mitosis (23), indicating that
phosphorylation of this specific residue mediates mitotic entry
and exit. DNA-PKcs also phosphorylates downstream targets
involved in mitotic regulation. The Chk2-BRCA1 signaling
pathway, which organizes the mitotic spindle, depends on
DNA-PKcs activity. Chk2-mediated phosphorylation at Ser988
of BRCA1 ensures proper kinetochore-microtubule attachment.
DNA-PKcs regulates Chk2 activity through the phosphorylation
of its Thr68 residue. Knockdown of DNA-PKcs by siRNA
inhibited phosphorylation of Thr68 on Chk2 and impaired
microtubule growth during mitosis (55).

DNA-PK as a Regulator of Transcription
Once established, the critical role DNA-PK plays in the
DDR pathways became the dominant focus of its study.
However, DNA-PK is critical for efficient gene expression,
both in mediating transcriptional machinery and in modulating
transcription factors. In vitro, Chinese hamster ovarian cells
with a Ku70/Ku80 or DNA-PKcs deficiency showed a 2–7-fold
decrease in transcription with multiple promoters compared to
controls (56). RNA polymerase II activity requires functional

activity of the TRIM28 factor, which is phosphorylated by DNA-
PKcs at Ser824 (27). DNA-PK is involved in the phosphorylation
of the general transcription factors TATA-binding protein
(TBP) and transcription factor IIB (TFIIB), allowing them
to synergistically form complexes with RNA polymerase and
transcription factor IIF to stimulate basal transcription (28).
The earliest defined role of DNA-PKcs in transcription was its
activity on the transcription factor Sp1, which activates cellular
promoters by binding to GC-rich regions. Upon binding to
promoters, multiple residues of Sp1 are phosphorylated by DNA-
PKcs (2). DNA-PKcs is also involved in the phosphorylation and
activation of the POU domains of octamer-binding transcription
factors 1 and 2 (OCT1 and OCT2) (26). Serine residues of c-
MYC, the oncoprotein responsible for transcription of ∼15% of
the human genome (57), are phosphorylated by DNA-PKcs (58).
DNA-PKcs also mediates the transcriptional activation of factors
involved in metabolism. After feeding or in response to insulin,
DNA-PK phosphorylates the upstream stimulatory factor-1
(USF-1) transcription factor at its Ser262 residue. The DNA-PK-
USF complex induce transient breaks in the fatty acid synthase
(FAS) promoter region immediately preceding transcriptional
activation. Once transcribed, FAS can induce lipogenesis. DNA-
PKcs-deficient mice fail to induce lipogenesis and are deficient
in triglyceride levels (59). In 17β-estradiol (E2)-treated Michigan
Cancer Foundation (MCF)-7 cells, topoisomerase IIβ-induced
DSBs of the pS2 promoter appear to be critical component
of signal-dependent activation of gene transcription. These
transient DSBs activate the enzymatic activity of poly(adenosine
diphosphate-ribose) polymerase-1 (PARP-1). DNA-PKcs and the
Ku heterodimer were copurified with PARP-1, suggesting that
DNA-PK may be involved in transcriptional activation at these
transient breaks (60). Recent studies demonstrated that DNA-
PKcs functions in the progression of hormone-driven cancers. In
advanced prostate cancer, DNA-PKcs coactivates the androgen
receptor (AR), promoting metastatic phenotypes. Depletion of
DNA-PKcs reduced expression of AR-regulated genes, delaying
the formation of metastases (24). In breast cancer, DNA-PKcs-
mediated phosphorylation of the estrogen receptor-α (ERα) at
Ser118, leads to its stabilization and transcriptional activation.
Inhibition of DNA-PK, either pharmacologically or via siRNA,
reduced activation of ERα as well as increased its ubiquitination
and subsequent degradation (61).

DNA-PK and Telomere Maintenance
Given that telomeres are essentially endogenously occurring
DSBs, it seems likely that DNA-PK would be intricately involved
in their regulation. Paradoxically, DNA-PK’s role in telomere
maintenance is to protect against the processing and fusion
associated with DSBs. The Ku70/Ku80 heterodimer has been
implicated in several processes involving telomeres, including the
silencing of telomere-proximal genes, tethering of telomeres to
the nuclear periphery, and protecting telomeres from nucleolytic
degradation (32, 62). Ku80 is critical for telomere length;
siRNA-mediated knockdown of Ku80 led to significant telomere
shortening (63). Similar results were produced in mice and
human cells when DNA-PKcs activity was impaired (29, 33).
Telomeric repeat-containing RNA (TERRA), a long non-coding
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RNA transcribed from telomeric DNA, has been implicated
in processes related to telomere maintenance, such as the
formation of heterochromatin (64, 65), replication (65), and
end-capping (66). TERRA activity is thought to be mediated by
the heterogenous nuclear ribonucleoprotein A1 (hnRNP A1).
DNA-PKcs-mediated phosphorylation of hnRNP A1 removes
TERRA from chromatin, allowing for telomere replication.
Inhibition of DNA-PKcs/hnRNP A1 activity resulted in TERRA
accumulation at telomeres, impairing efficient replication (66).
DNA-PKcs is instrumental in facilitating telomere end-capping,
likely through an interaction with the kinase interacting protein
(KIP) and the telomeric repeat-binding factor 2 (TRF2), a subunit
of the shelterin complex (67). Phosphorylation of Ser2056 of
DNA-PKcs mediates end-capping. In its absence, uncapped
telomeres are seen as DSBs and are processed, leading to
inappropriate fusion events (30). Pharmacological inhibition of
DNA-PKcs showed similar results in a concentration-dependent
manner (31).

DNA-PK AND CANCER

Deregulated DNA-PK activity is associated with a number of
cancers. In melanoma, DNA-PKcs acts as a metastatic driver
by stimulating angiogenesis and tumor migration. DNA-PKcs
activity was associated with the secretion of pro-metastatic
proteins through modification of the tumor microenvironment
(68). Increased expression and deregulation of DNA-PKcs
was demonstrated to drive the development of hepatocellular
carcinoma (69, 70). Upregulation of DNA-PKcs has also been
observed in multiple myeloma (71), and, along with increased
expression of the Ku subunits, is associated with radioresistance
in cancers of the thyroid (72), nasopharynx (73), oral cavity (74),
and cervix (75). Coupled with its critical cellular functions, these
findings have made DNA-PK a prime therapeutic candidate in
the treatment of malignancy.

PHARMACOTHERAPIES
TARGETING DNA-PK

The development of DNA-PK inhibitors relied on earlier studies
that synthesized small molecules PI3K inhibitors. Quercetin,
a naturally occurring bioflavonoid, acted as a competitive
antagonist against the kinase domain of PI3K and other
protein and lipid kinases. This non-selectivity proved to be
useful, as quercetin was used as a model compound to
develop targeted inhibitors. 2-(4-Morpholinyl)-8-phenyl-4H-1-
benzopyran-4-one (LY294002), was developed as a selective
and competitive inhibitor of PI3K activity. Unlike quercetin,
LY294002 had zero activity against other kinases and had a
2.7-fold increase in potency (IC50 = 1.5–2.0µM) (76).

The specificity and potency of LY294002 against PI3K
activity made it an ideal structural lead compound to
develop new inhibitors that specifically target DNA-PKcs.
This next generation of inhibitors, the 2,6-disubstituted
pyran-4-one and thiopyran-4-one inhibitors, were more
potent (IC50 = 1.1 and 0.72µM, respectively) and selective

for DNA-PKcs when compared to LY294002 (77). This led
to the development of chromen-4-one derivatives, 2-N-
morpholino-8-dibenzofuranyl-chromen-4-one (NU7427)
and 2-N-morpholino-8-dibenzothiophenyl-chromen-4-one
(NU7441). Compared to previous DNA-PKcs inhibitors,
NU7427, and NU7441 were significantly potent (IC50 = 40
and 13 nM, respectively) and specific. At concentrations of
100µM, NU7441 did not have an effect on ATM or ATR
activity and showed minimal activity against PI3K and mTOR
(78). NU7441 potentiates the effects of DNA damage-inducing
chemotherapy in B-cell chronic lymphocytic leukemia (CLL)
(79), breast (80), non-small cell lung carcinoma (NSCLC)
(81), and nasopharyngeal carcinoma (NPC) (82) cell lines,
as well increasing sensitivity to IR and chemotherapy in
colorectal carcinoma cell lines (83). In an attempt to optimize
the pharmacologic profile of NU7441, focused libraries were
used to identify the biological activity of substitutions at the
dibenzothiophene-1 position. The addition of water-soluble
groups at this position proved to be effective, leading to the
development of a new chromen-four-one derivative that has an
even greater potency (IC50 = 6 nM). Unfortunately, this novel
inhibitor may have some undesirable off-target effects (84).
However, these findings highlight the ability to further modify
known DNA-PKcs inhibitors, specifically with water-soluble
groups, to develop more potent therapies. Another strategy to
develop novel inhibitors was to use a homology model of the
ATP-binding site of DNA-PK, based on the crystal structure
of PI3Kγ. KU-0060648, a dual DNA-PKcs and PI3K inhibitor,
has better bioavailability and a more favorable pharmacokinetic
profile compared to NU7441 and also has limited activity against
other PIKK family members. KU-0060648 is also more potent,
with a 500-fold increase in solubility compared to NU7441
(85). DNA-PK inhibitors have also been demonstrated as
effective single agents, taking advantage of synthetic lethality in
ATM-deficient lymphoma models (86).

Another strategy taken to target DNA-PKcs activity in cancer
is through the use of non-coding microRNAs (miRNAs). One
study identified miR-101 as targeting both DNA-PKcs and
ATM. Upregulation of miR-101 sensitized glioblastoma and non-
small cell lung cancer cell lines to IR (87). Another study
demonstrated that transfection with has-miR-96-5p and has-
miR-874-3p combined with IR decreased survival of non-small
cell lung cancer cell lines when compared to IR alone, and had a
similar effect when compared to a DNA-PK inhibitor (NU7026)
plus IR (88).

DNA-PK has been targeted with antibodies and inhibitors
specific to the Ku heterodimer. Though antibodies are
generally ineffective against intracellular targets, there
has been success with ScFv 18-2, which conjugates with
folate via a scissile disulfide linker and enters cells through
folate receptor-mediated endocytosis. Lung cancer cell lines
treated with ScFv 18-2 showed increased levels of γ-H2AX
and decreased phosphorylation of Ser2056. Compared
to controls, treated cell lines were more radiosensitive
(89). Based on the crystal structure of the Ku70/Ku80
heterodimer (7-{[2-(3,4-dimethoxyphenyl)ethyl]amino}-3-
(3-fluorophenyl)pyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione
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(Compound L), was developed as an inhibitor that disrupts
the Ku heterodimer binding to DNA. Compound L decreased
phosphorylation of Ser2056 and downstream DNA-PK targets in
glioblastoma cell lines (90).

The promising effects of DNA-PK inhibitors to sensitize
tumors to chemotherapy and radiation has led to their
implementation in clinical trials. M3814 is being tested with
radiotherapy in advanced solid tumors (NCT02516813).
CC-122, a pleiotropic pathway modulator with activity
against DNA-PK, is in Phase 1 trials studying its effects in
multiple myeloma, advanced solid tumors, and non-Hodgkin’s
lymphoma (NCT01421524). CC-115, a dual DNA-PK and
mTOR inhibitor, is in Phase 2 studies to determine its efficacy in
glioblastoma (NCT02977780).

CONCLUSIONS

Since its discovery, DNA-PK has proven to be an intriguing
modulator of many cellular functions. Its instrumental role
in regulating how cells respond to genotoxic insult has been
the dominant focus of research. Though much has been
discovered, key questions remain that will help elucidate DNA-
PK’s role in cancer. Are there other substrates of DNA-
PK that are yet to be discovered? How does the activity of
the Ku heterodimer and DNA-PKcs change in malignancy?
Finally, can the specific interactions between DNA-PK and its
many substrates be targeted? Thus, far, DNA-PK inhibitors

have focused on potentiating DNA damage through inhibition
of its kinase function, thereby blocking phosphorylation of
key enzymes involved in DNA repair. But these therapies
represent a small portion of the therapeutic strategies that
may be implemented to target DNA-PK. Novel inhibitors that
impair the protein-protein interactions between DNA-PK and
its many substrates have the potential to be more targeted and

potent. In order to develop this next generation of inhibitors,
further study on the regions of DNA-PK that are crucial for
substrate binding is warranted. Given the recent findings on
its structural properties, the many functions and pathways it
regulates, and its therapeutic potential, DNA-PK remains a
subject of great importance that may contribute greatly to
our overall understanding of cancer and to the discovery of
novel therapeutics.
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The tumor suppressor p53 is a key mediator of cellular stress and DNA damage response

cascades and is activated after exposure to ionizing radiation. Amplifying wild-type

p53 expression by targeting negative regulators such as MDM2 in combination with

external beam radiotherapy (EBRT) may result in increased therapeutic effects. The novel

stapled peptide PM2 prevents MDM2 from suppressing wild-type p53, and is thus a

promising agent for therapeutic combination with EBRT. Effects of PM2 and potential

PM2-induced radiosensitivity were assessed in a panel of cancer cell lines using 2D

cell viability assays. Western Blot and flow cytometric analyses were used to investigate

the mechanisms behind the observed effects in samples treated with PM2 and EBRT.

Finally, PM2-treatment combined with EBRT was evaluated in an in vitro 3D spheroid

model. PM2-therapy decreased cell viability in wild-type p53, HPV-negative cell lines.

Western Blotting and flow cytometry confirmed upregulation of p53, as well as initiation

of p53-mediated apoptosis measured by increased cleaved caspase-3 and Noxa activity.

Furthermore, 3D in vitro tumor spheroid experiments confirmed the superior effects of

the combination, as the only treatment regime resulting in growth inhibition and complete

spheroid disintegration. We conclude that PM2 induces antitumorigenic effects in wt p53

HPV-negative cancer cells and potentiates the effects of EBRT, ultimately resulting in

tumor eradication in a 3D spheroid model. This strategy shows great potential as a new

wt p53 specific tumor-targeting compound, and the combination of PM2 and EBRT could

be a promising strategy to increase therapeutic effects and decrease adverse effects

from radiotherapy.

Keywords: p53, wild-type p53, radiosensitization, external beam radiation therapy (EBRT), PM2, spheroid

apoptosis

INTRODUCTION

Today up to 50% of all cancer patients receive at least one dose of external beam radiotherapy
(EBRT) (1–4). With continuous technological increases over the last few decades, it has evolved
into one of the most well-established and successful non-invasive cancer therapy regimens
(5, 6). Improvements to EBRTs such as intensity modulated radiotherapy (IMRT) and volumetric
modulated arc therapy (VMAT) are undergoing continuous development, exemplifying that
EBRT as a field still has room for improvement (5, 7–9). One such improvement is the use
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of radiosensitizers, where sensitizing tumor cells to radiation
damage may further increase the radiotherapy success rate.
Tumor cell radiosensitization could also allow reductions in
radiation dose, thus lowering the risk of adverse effects (10–12).

The transcription factor p53 is a promising target for
radiosensitization, as it plays a key role in both DNA repair and
radiation response mechanisms (13). p53 is upregulated after
exposure to ionizing radiation and drives a variety of cellular
responses in damaged cells, where the specific response depends
quantitatively on the level of p53 accumulation (13–15). The
outcome of p53 accumulation is complex and often cell type
specific (16). While low levels of wt p53 leads to cell cycle arrest,
higher levels may result in apoptosis, senescence or autophagy.
In the event of apoptosis, it is linked to transcription of
pro-apoptotic proteins such as Phorbol-12-myristate-13-acetate-
induced protein 1 (Noxa) (14, 17, 18).

Due to its key role, p53 is commonly inactivated in cancer cells
to avoid the induction of apoptosis, either through mutations
in p53, or by accumulating mutations in p53 regulatory factors
while still maintaining wild-type p53 (wt p53). While wt p53
expression remains intact in around 50% of all cancers, it is often
suppressed by dysfunctional activation pathways, for example
epigenetic silencing of p14 ARF expression or overexpression of
negative feedback regulators such as murine double-minute 2
(MDM2) and its structural homolog, murine double-minute X
(MDMX) (19, 20).MDM2/X are p53 target proteins that bind and
block the transcriptional activity in an autoregulatory feedback
loop and mark the p53 protein for ubiquitination (21).

Previous studies have demonstrated that wt p53 expression
can be amplified by targeting MDM2/X, which has been shown
to result in tumor regression in vivo (22). Inhibiting the MDM2-
p53 protein-protein interaction causes wt p53 accumulation in
the cancer cells, which may eventually lead to cell cycle arrest
or cell death. Promising pre-clinical data has led to several
MDM2/X-p53 inhibitors currently undergoing clinical trials (23,
24). However, none of the current clinical trials are exploring
combined EBRT and MDM2/X-p53 inhibition therapy, which
could PM2 therapy potentially provide further utility within the
growing field of MDM2-p53 inhibitors.

The present study involves PM2, which is a novel stapled
peptide targeting the MDM2/X-p53 interaction (25). Like most
MDM2/X-p53 inhibitors, PM2 mimics the amino acid sequence
of wt p53 that is bound by MDM2/X (26, 27). “Stapling”
in this context means that a covalent hydrocarbon linker has
been introduced between two non-adjacent amino acids, thus
connecting turns of the peptide’s α helix resulting in greater
stability (21, 26, 27). The stabilization of the peptide’s secondary
structure, in addition to increasing its affinity for MDM2/X by
reducing the entropic cost of binding, also results in an increase
in its in vivo half-life. The use of staple peptides, which have a
much more comprehensive network of interactions with MDM2
than small molecule inhibitors such as Nutlin-3, have been shown
to bind to and antagonize Nutlin-3-resistant MDM2 (26, 27).

In a recent study we have established the in vivo potential of
PM2 as a radiotherapy potentiator in a wt p53 colorectal cancer
model (28). In mice carrying wt p53 tumors, PM2 combined with
radiotherapy prolonged median survival by 50%, whereas effects

on p53−/− tumors were negligible. This proof-of-concept study
demonstrates the promise of this application in vivo, and suggests
that a future clinical application of PM2 with radiotherapy in wt
p53 cancers might improve tumor control. However, to enable
such a scenario it is vital to thoroughly assess the effects of PM2
and EBRT on a larger scale, to validate p53-dependent effects, and
most importantly to unravel the mechanisms behind the effects
and the cellular fates of treated cells. Consequently, the aim of this
study was to assess the potential antitumorigenic effects of the
combination of EBRT and PM2 therapy as well as to determine
the mechanisms behind the observed effects.

MATERIALS AND METHODS

Cell Lines
The human squamous cell carcinoma cell lines UM-SCC-74A
and UM-SCC-74B were kindly provided by Professor TE Carey
(University of Michigan, USA) and cultured in Dulbecco’s
Modified Eagle Medium (DMEM) with 10% fetal bovine serum,
1% L-glutamine, 1% antibiotics (100 IU penicillin and 100µg/ml
streptomycin) as well as 1% non-essential amino acids (all from
Biochrom Kg, Berlin, Germany). UT-SCC-45 (kindly provided
by Dr. R. Grenman, Turku University Central Hospital, Finland)
was cultured in DMEM with the abovementioned additives.
HCT116 and A431 were purchased from American Type Culture
Collection (Manassas, VA, USA). HCT116 was cultured in
McCoy’s modified Eagle medium with 10% fetal bovine serum,
1% L-glutamine and 1% antibiotics (100 IU penicillin and
100µg/ml streptomycin) and A431 was cultured in Ham’s F10
with the same additives. H314 was purchased from the European
Collection of Authenticated Cell Cultures (Salisbury, UK) in
DMEM/Ham’s F12 (1:1) with the abovementioned additives.
Cells were incubated at 37◦C with 5% CO2, and cultivated for
no longer than 2 months at a time.

PM2
The stapled MDM2-p53 antagonist, PM2 (MW = 1462.75Da),
was produced at p53 Laboratory (A∗STAR, Singapore) and
dissolved in DMSO to a stock concentration of 10mM and stored
at−20◦C.

NanoBIT Mdm2:p53 PPI Cell Based Assay
HEK293 FT cells were seeded at a cell density of 5∗105 cells
per well into a six-well plate and incubated overnight at
37◦C and 5% CO2 in DMEM with 0.3 mg/ml glutamine, 100
IU/ml penicillin, 100µg/ml streptomycin and 10% fetal calf
serum. Each well was transfected with 2 µg of DNA consisting
of a 1:1 ration of the sMBIT-Mdm2 fusion and LgBIT-p53
fusion vectors (PROMEGA). Each transfection was performed
following the manufacturer’s instructions with a 3:1 ratio of
FuGene transfection reagent (PROMEGA) to DNA in 0% FCS
Opti-MEM no red phenol media. Cells were incubated overnight
and then washed with 1ml of PBS, followed by trysinization
and re-suspension in Opti-MEM media with 0% FCS. The cell
suspension was then adjusted to 2.2× 105 cells per ml.

Re-suspended HEK-293 FT cells were centrifuged at 1,000
rpm for 5min at room temperature. Ninety microliter of the
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cell re-suspension was added to the wells of a white opaque
96-well plate. Stapled peptides were then titrated onto the 96-
well plate using a suitable 2-fold dilution series from a 10 ×

stock solution containing 10% v/v DMSO. Control wells were
also treated with a 10% DMSO only stock solution to yield a
final residual DMSO concentration of 1% v/v. The 96-well plates
were incubated for 4 h at 37◦C, with 5% CO2. Wells were treated
with a solution of Nano-Glo live substrate, which was prepared
as per the manufacturer’s instructions (PROMEGA). The plates
were shaken for 1min at 22◦C and luminescence assessed after an
additional 50min using an Envision Multi-Plate reader (Perkin-
Elmer, Waltham, MA, USA). NanoBit titration data was used to
determine IC50 values for drug potency by fitting 4-parameter
logistic curves using GraphPad Prism 7.0.

Radiation
Cells were irradiated using 137Cs gamma-ray photons at a dose-
rate of ∼1 Gy/min (Best Theratronics Gammacell R© 40Exactor,
Springfield, USA).

Cell Viability Assays,
2,3-Bis(2-Methoxy-4-Nitro-5-Sulfophenyl)-
2H-Tetrazolium-5-Carboxanilide Salt
(XTT)
Five-hundred to ten thousands cells were seeded in flat-bottomed
96-well plates and incubated for 48 h prior to irradiation
with 2Gy. Three hours post-irradiation, PM2 was added in
concentrations spanning 0–40µM. Cells were incubated at 37◦

for 4–5 days until 80–90% confluence had been obtained. A
mix of XTT Activation Reagent and XTT Reagent was added
according to the American Type Culture Collection 30–1011K
protocol (Manassas, VA, USA). Plates were incubated for up to
6 h at 37◦ and absorbance was measured by using a BioMark
Microplate Reader (Bio-Rad Laboratories AB, Solna, Sweden).

Western Blot
Cells were incubated for at least 24 h prior to irradiation (2Gy)
and/or PM2 treatment, where PM2 (20µM) was added 3 h
after irradiation. Whole-cell lysates were prepared according
to standard protocols. Protein concentrations were measured
using a DeNovix DS-11 spectrophotometer (DeNovix Inc.,
Wilmington, DE, USA). Samples were separated on 4–12% Bis-
Tris SDS gels and transferred to a nitrocellulose membrane
(ThermoFisher Scientific, Uppsala, Sweden) by wet-transfer
blotting. The membrane was blocked for 1 h in PBS with 5%
BSA before incubation with primary antibodies targeting p53,
caspase-3, NaK-ATPase and GLB1 (DO-1 (ab1101), ab13847,
ab76020 and ab128993, AbCam, Cambridge, UK) and β-
actin (A5441, Sigma Aldrich Sweden, Stockholm, Sweden) at
4◦C overnight. After washing with PBS with 1% Tween-20,
the membrane was incubated with respective and species-
specific Horse Radish Peroxidase-labeled secondary antibody
(ThermoFisher Scientific, Waltham, MA, USA) and stained
with electro-chemiluminescent solution (Immobilon, Millipore,
Bedford, USA). Immunoreactive bands were visualized with a

CCD camera (SuperCCD HR, Fujifilm, Japan) and analyzed in
ImageJ version 1.48 (NIH, Bethesda, MD, USA).

Flow Cytometry
Cells were incubated for at least 24 h prior to irradiation and/or
PM2 treatment. Twenty micrometer PM2 was added with a 3-
h delay after irradiation. Cells were collected and fixed in 70%
ethanol at 6, 12, 24, 48, 72, and 96 h post-irradiation and stored
at−20◦C. For cell cycle analyses, 6, 12, 24, and 48 h samples were
rehydrated and washed twice with PBS and stained with DAPI
(Sigma Aldrich Sweden, Stockholm, Sweden) using 1µg/ml for
30min. 24, 48, 72, and 96 h samples were stained with caspase-
3 and Noxa (ab13847 (1:500) and ab13654 (1:1,000), AbCam,
Cambridge, UK) overnight at 4◦C, followed by incubation with
fluorescent labeled secondary antibodies for 90min (ab 1:400)
at room temperature. Analyses were performed using a BD
LSR Fortessa flow cytometer (Becton Dickinson Biosciences, San
Jose, USA). Data analyses for cleaved caspase-3 and Noxa were
performed with BD FACSDiVa (Becton Dickinson Biosciences,
San Jose, USA), while cell cycle analyses of exclusively viable cells
were performed using FlowJo (Becton, Dickinson Biosciences,
San Jose, USA). Coefficient of variation (CV) values, were below
seven for all samples.

3D Assays
For liquid overlay 3D spheroid formation, 96-well plates
were coated with 0.15% agarose dissolved in PBS with 1%
penicillin/streptomycin. 1000 UM-SCC-74B cells/well were
seeded and incubated at 37◦C for 3 days prior to treatment. The
standard dose of 20µM of PM2 was added 3 h after irradiation.
Half of the medium was replaced every 48 h for the first 10 days,
thereafter every 4 days. Samples with repeated PM2 treatments
received a new 20µM dose despite removing of half of the
incubation medium. Images were obtained every 2–4 days using
a Canon EOS 700D camera mounted on an inverted Nikon
Diaphot-TMD microscope. The images were analyzed using
ImageJ version 1.48 (NIH, Bethesda, MD, USA), by measuring
the surface area of each spheroid and calculating the volume,
assuming each spheroid retained a spherical form. Each spheroid
was normalized to its own starting volume at the start of
treatment (Day 0, growth ratio = 1). Spheroids exceeding a
volume of 600 µm3 were excluded (i.e., terminated) from further
analyses as 600 µm3 is the maximum size possible to obtain in
these settings with uncompromised growth conditions.

Statistical Analyses
GraphPad Prism version 6.07 (GraphPad Software, San Diego,
USA) was used for data processing and analysis. p-values
were determined using unpaired student’s t-test for comparison
between two groups or one-way ANOVA followed by Tukey’s
multiple comparisons test, with p < 0.05 (∗), p < 0.01 (∗∗),
p < 0.001 (∗∗∗), and p < 0.0001 (∗∗∗∗). For XTT assays cell
viability was normalized for irradiated and unirradiated samples
separately. Thus, an observed significant difference in viability
between combination treated samples and solely PM2-treated
samples, was considered as the result of PM2 potentiating the
effects of radiation. A modified approach to the coefficient of
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TABLE 1 | Panel of screened cell lines using 0–20µM of PM2 and 0 or 2Gy of EBRT.

Cell line p53 status HPV status Cancer PM2 effect IC50 Significant effect

of combination

A431 Single base mutation (30) Negative Epidermal (vulva) No n/a Yes

H314 Two mutations (31) Negative HNSCC (floor of mouth) No n/a No

UT-SCC-45 Wild-type* (32) Positive HNSCC (floor of mouth) No n/a No

UM-SCC-74A Wild-type (33) Negative HNSCC (tongue) Yes 16µM Yes

UM-SCC-74B Wild-type (33) Negative HNSCC (larynx) Yes 17µM Yes

HCT116 Wild-type (34) Negative Adenocarcinoma (colorectal) Yes 14µM Yes

*Wild-type-status is only assessed for exon 4–8. n/a, not applicable.

drug interaction (CDI) was determined as: CDI = AB/(A∗B),
where AB was the ratio of the combination treatment to controls
and A or B was the ratio of radiation or PM2 treatment to
controls. CDI ≤ 0.7 equaled significant synergistic effect, CDI
≤ 1 equaled additive effect and CDI > 1 equaled antagonistic
effect (29).

RESULTS

PM2 Treatment Decreases Cell Viability
and Radiosensitizes wt p53 Cells in
Monolayer Cultures
Viability assays (XTT) of six cancer cell lines treated with
PM2, either with or without the addition of 2Gy of external
radiation, were performed to measure the efficacy of PM2
alone as well as its potential radiosensitizing effects (Table 1).
PM2 treatment decreased significantly the viability of all
confirmed wt p53, HPV negative cell lines at low doses,
starting at ∼10µM for both HCT116 and UM-SCC-74A and
at a slightly higher dose for UM-SCC-74B (Figure 1A, green
lines). Increasing concentrations of PM2 resulted in reduced
viability. An inhibitory concentration of 50% decrease (IC50)
was measured at 16 and 17µM of PM2 for UM-SCC-74A
and UM-SCC-74B, respectively and 14µM for HCT116. At
concentrations of 20µM of PM2, the average viability was
reduced by 73 and 90% for UM-SCC-74A and UM-SCC-74B,
respectively, and 75% for HCT116, compared to untreated
controls. Combination treatment of PM2 and EBRT exhibited
a significant drop in viability compared to PM2-monotherapy
outcomes at low doses of PM2, starting at 10µM for UM-SCC-
74B cells (Figure 1A). The IC50 of the combination treatment
was detected at 10µM for UM-SCC-74B and 12µM for HCT116.
These IC50-values correlate with the NanoBIT assays using PM2
(IC50 value of 14.8 ± 0.5µM). The NanoBIT assay further
verified the specificity of the antagonistic properties of PM2
to MDM2, with no effect obtained by the scrambled peptide
PM2SCRAM (Supplementary Figure 1A). PM2 did not affect
the two confirmed mutant p53 cell lines, A431 and H314
(Table 1; Supplementary Figure 1B). However, the combination
therapy significantly decreased the viability of A431. The
HPV positive cell line, UT-SCC-45, was unresponsive to
PM2 therapy regardless of the addition of EBRT (Table 1;
Supplementary Figure 1B).

PM2 and Radiation Treatment Results in
G2/M Phase Shift and S-phase Depletion
To investigate underlyingmechanisms of PM2 therapy associated
cytotoxicity, cell cycle analysis of viable cells was performed
on both UM-SCC-74B and HCT116. A distinct G2/M-shift
was observed as early as 6 h post-irradiation with 2Gy for
both HCT116 and UM-SCC-74B (Figure 1B). Single modality
treatments with 20µM of PM2 did not induce a G2/M-shift
for either of the cell lines. More than twice as many cells
comprised the G2/M-phase of the dual treated samples than
untreated controls for both cell lines throughout the 48 h
timeframe (Table 2). An S-phase reduction occurred as early
as 12 h post-treatment for dual treated samples for UM-SCC-
74B and HCT116, followed by S-phase depletion at 24 h post-
treatment (Table 2).

PM2 Upregulates Cleaved Caspase-3,
Noxa, wt p53, and GLB-1
The expression of wt p53, cleaved caspase-3 and GLB-1
following treatment with PM2 and/or radiation was visualized
through Western Blotting. Western Blot analyses detected
an increased expression of p53 in PM2-treated samples at
24 h post-treatment for both cell lines, with a significant
increase between solely PM2-treated and combination treated
samples (Figures 2A,D). Similarly, an increase in expression
of the apoptotic marker cleaved caspase-3 was detected in all
PM2-treated samples as well as irradiated samples, although
the expression of the marker in the combination group
was predominant (Figures 2B,D). Additionally, a significant
increase of senescence marker, Galactosidase beta-1 (GLB-1),
was detected at 72 h post-treatment in combination treated
UM-SCC-74B samples compared to the irradiated samples.
The same trend was observed in the HCT116 samples, where
both the PM2-monotherapy and combination therapy resulted
in a similar increase of GLB-1 compared to irradiated and
control samples (Figures 2C,D). An increase in cleaved caspase-
3 expression was confirmed through flow cytometry in PM2-
treated samples at 48 h post-treatment, peaking at 72 and 96 h
for UM-SCC-74B (40-fold increase compared to controls) and
HCT116 (10-fold increase compared to controls), respectively
(Figure 2E). The combination therapy samples had significantly
higher expression levels of cleaved caspase-3 than PM2-treated
samples for UM-SCC-74B (p ≤ 0.05). A similar trend was
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FIGURE 1 | (A) Cell viability (XTT) response to treatment with 0–20µM of PM2 of UM-SCC-74B and HCT116 without external radiation (green) and in combination

with 2Gy of EBRT (purple). Error bars presented as 95% confidence intervals, n = 6. Please note that irradiated cells were normalized to survival at 2Gy, 0µM PM2,

whereas un-irradiated cells were normalized to survival at 0Gy, 0µM PM2 in order to compensate for the effects of radiation. Dotted line indicated 50% viability of

controls. (B) Cell cycle distribution of viable UM-SCC-74B and HCT116 cells at 6, 12, 24, and 48 h post-treatment with either 2Gy, 20µM of PM2, or the

combination, fitted according to FlowJo cell cycle analysis software. CV-values for all cell cycle analyses were below 7.

observed for HCT116. Expression levels of the p53-dependent
pro-apoptotic protein Noxa correlated with the increase in
cleaved caspase-3 levels. Near-3-fold and 4-fold increases in Noxa
levels were observed after combination therapy compared to
PM2 therapy alone for UM-SCC-74B and HCT116, respectively
(p ≤ 0.01) (Figure 2F).

Radiation Potentiates the Effects of PM2 in
an in vitro 3D Tumor Model
In order to establish whether the potentiating effects of
combining PM2 and radiation, as observed in monolayer
cultures that were present in a 3D multicellular tumor
spheroid system, the growth of wt p53 UM-SCC-74B
spheroids was measured over time. EBRT and PM2 therapy
had similar inhibitory effects on cell growth at repeated
treatments (Figures 3A,B,D,E). Five repeated treatments
of EBRT at 48 h intervals resulted in an average size of
69% of controls at day 14, whereas five repeated doses

of 20µM of PM2 resulted in an average size of 57%.
Combining a single dose of PM2 with EBRT resulted in
greater inhibitory effects than either treatment alone. The
growth inhibiting effect of one PM2 treatment and radiation
treatment was rather persistent, and started to fade after day
ten (Figure 3C). Repeated doses of PM2 (2–5 × 20µM)
in combination with either a single radiation dose (2Gy) or
repeated doses (2–5 × 2 Gy) resulted in increased inhibitory
effects in a repeated-dose-dependent manner (Figures 3C,F). By
day 14, the majority of treatments had resumed normal or near-
normal growth ratios, with the exception of repeated treatments
of 2× 2 Gy/3× 20µM, 3× 2 Gy/3× 20µM, and 5× 2 Gy/5×
20µM (Figure 3C). However, spheroids treated with three and
five fractionated radiation doses in combination with a single
dose of PM2 were reduced to a size of 75 and 55%, respectively,
of untreated controls. Treatment with 5 × 2 Gy/5 × 20µM of
PM2 resulted in spheroid disintegration and cell death, which
persisted beyond the end of the assay (Figures 3C,F, 4). Repeated
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TABLE 2 | S-phase and G2/M-phase development 6–48 h post-treatment with 2Gy, 20µM of PM2, or the combination, of viable UM-SCC-74B and HCT116 cells.

UM-SCC-74B: S-phase UM-SCC-74B: G2/M-phase

Time post-treatment 0 Gy 2 Gy PM2 Combination Time post-treatment 0 Gy 2 Gy PM2 Combination

6 h 34.7% 39.9% 41.6% 42.9% 6h 23.6% 34.21% 19.7% 37.9%

12h 37.9% 17.6% 18.3% 7.31% 12h 19.5% 29.2% 18.3% 39.4%

24h 33.4% 12.7% 12.9% 2.89% 24h 16.8% 13.5% 16.7% 23.8%

48h 20.4% 20.1% 17.4% 5.37% 48h 11.9% 8.99% 10.8% 20.6%

HCT116: S-phase HCT116: G2/M-phase

Time post-treatment 0 Gy 2 Gy PM2 Combination Time post-treatment 0 Gy 2 Gy PM2 Combination

6 h 55.1% 49.4% 55.8% 44.9% 6h 19.5% 41% 19.4% 39.9%

12h 50.7% 39.1% 35.1% 17.3% 12h 18% 31.5% 30.1% 53.8%

24h 33.7% 28% 10.7% 5.51% 24h 14.3% 22.8% 21.1% 42.7%

48h 16.5% 16.2% 23% 17.5% 48h 10.8% 8.57% 20.6% 29.9%

Coefficient of variation (CV) values for all cell cycle analyses were below 7.

FIGURE 2 | Western Blot analyses of p53-expression (A) at 24 h post-treatment of UM-SCC-74B and HCT116 samples with either 2Gy, 20µM of PM2, or the

combination and cleaved caspase-3 expression (B) as well as GLB-1 expression (C) of UM-SCC-74B and HCT116 samples at 72 and 96 h post-treatment,

respectively. NaK-ATPase was used as loading control for p53 and cleaved caspase-3, β-actin for GLB-1 expression. All samples were normalized to controls,

represented as a dotted line at y = 1. n ≥ 3, error bars presented as SD. Representative Western Blot images (D) of p53, cleaved caspase-3 and GLB-1 expression

of UM-SCC-74B at 24 h (p53) and 72 h (cleaved caspase-3, GLB-1) post-treatment, and HCT116 samples at 24 h (p53), 72 h (GLB-1), and 96 h (cleaved caspase-3)

post-treatment. Flow cytometric analyses of cleaved caspase-3 (E) and Noxa-expression (F) of UM-SCC-74B and HCT116 samples at 24, 48, 72, and 96 h

post-treatment with either 2Gy, 20µM of PM2, or the combination. n ≥ 3, error bars represent SD. Significance was determined using one-way ANOVA: p ≤ 0.05 (*),

p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****).

treatments of 2 × 2 Gy/3 × 20µM and 3 × 2 Gy/3 × 20µM of
PM2 also resulted in continuous growth inhibition throughout
day 14; however, this combination did not result in spheroid

disintegration (Table 3; Figure 4). All combination treatments
demonstrated synergistic inhibitory effects on the proliferation
rate of UM-SCC-74B spheroids prior to day 14 (Table 4).
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FIGURE 3 | Therapeutic effect on growth of UM-SCC-74B spheroids of (A) EBRT, (B) PM2 therapy, and (C) combination therapy of EBRT and PM2 therapy (2Gy

and 20µM of PM2 at 48 h intervals). Representative images of UM-SCC-74B spheroids during EBRT (D), PM2 therapy (E), and treatment combinations over time (F).

n ≥ 4, error bars represent 95% confidence intervals. Table 3 details the synergism between the treatments regimens.

TABLE 3 | CDI-values of selected treatments of UM-SCC-74B spheroids on Day 10 and Day 14 post treatment.

Day 10 Day 14

Treatment 1 × 2 Gy 2 × 2 Gy 3 × 2 Gy 5 × 2 Gy Treatment 1 × 2 Gy 2 × 2 Gy 3 × 2 Gy 5 × 2 Gy

1 × 20µM 0.705 0.507 0.493 0.472 1 × 20µM 1.03 0.93 0.821 0.815

2 × 20µM n/a 0.209 n/a n/a 2 × 20µM n/a 0.51 n/a n/a

3 × 20µM 0.412 0.122 0.244 n/a 3 × 20µM 0.944 0.333 0.182 n/a

5 × 20µM 0.398 n/a n/a 0.201 5 × 20µM 0.568 n/a n/a 0.023

CDI < 0.7 equaled a significant synergistic effect, CDI ≤ 1 equaled additive effect, and CDI > 1 equaled antagonistic effect. n/a, not assessed.

DISCUSSION

Several MDM2-p53 inhibitors are currently undergoing different
stages of both preclinical and clinical evaluation. On the
clinical level, the antagonists are primarily being tested
either as single modality treatments or in combination with
chemotherapeutic agents such as doxorubicin or cytarabine

(23). Interestingly, even though wt p53 plays a central role in

radiation response mechanisms, none of the current clinical trials
are combining MDM2-p53 inhibitors with ionizing radiation.

However, previous studies have demonstrated that stabilization
of wt p53may offer great potential to boost the therapeutic effects
of radiotherapy (28, 35, 36). Consequently, the present study
aimed to investigate whether the novel stapled MDM2/X-p53
inhibitor PM2 can potentiate the therapeutic effects of ionizing
radiation in a panel of cell lines, the synergistic potential of
various combinations of doses and fractionations, as well as the
underlying mechanisms behind the effects.

In the present study, a single dose of PM2 (20µM)
impaired cell viability in all three wt p53 cell lines grown
in monolayer. Furthermore, after a single dose of ionizing
radiation (2Gy), the effects of PM2 were significantly amplified
(Table 1). The amplification resulted in differences between
irradiated and un-irradiated samples at doses as low as
10µM (Figure 1A). All three wt p53 HPV-negative cell lines
responded in a similar fashion to PM2 therapy, with UM-
SCC-74B demonstrating the most pronounced sensitivity with
and without radiation. As expected, the two p53 mutated cell
lines did not respond to PM2 monotherapy. Interestingly, even
though A431 (which has a single point mutation of TP53)
was unaffected by PM2 therapy alone, a significant decrease in
viability was detected when combined with ionizing radiation
(Supplementary Figure 1B). Some effect of Nutlin-1 on mutant
p53 cells, albeit at considerably higher concentrations than
required for wt p53 cell lines, has previously been shown
in an in vitro study (37). Thus, it is possible that there
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FIGURE 4 | Spheroid response to selected repeated treatments of 20µM of PM2, 2Gy of EBRT, or combinations of the treatment modalities at day 14, 21, and 28

post-start of treatment, presented as parts of whole with representative images of the different therapeutic responses. Terminated, maximum assay dependent

spheroid size reached (>600 µm3 ); no, no spheroid growth inhibition (spheroids with growth rates matching those of untreated controls); partial, partial growth

inhibition (spheroids with reduced growth rates compared to untreated controls); complete, complete spheroid growth inhibition (spheroids with unchanged spheroid

size post-start of treatment); regression, reclining spheroid size post-start of treatment; disintegration, dissolution of non-viable spheroids n ≥ 4.

TABLE 4 | Median and maximum time (d) to spheroid termination due to excessive growth (volume >600 µm3 ) of selected treatments.

Treatment Control 2 × 2Gy and

3 × PM2

3 × 2Gy and

3 × PM2

5 × 2Gy 5 × PM2 5 × 2Gy and

1 × PM2

5 × 2Gy and

5 × PM2

Median time to termination (d) 14 21 28 21 21 21 Not reached

Maximum time to termination (d) 17 25 35 25 21 25 Not reached

“Not reached” meaning no termination was present during the course of the assay.

is potential for combined PM2 and radiotherapy also for
selected mutant p53 cancers. No response was observed on the
HPV positive cell line UT-SCC-45 regardless of the addition
of ionizing radiation. This is in line with previous studies
indicating that the HPV E6 protein binds to p53, resulting
in ubiquitin-dependent degradation and rendering MDM2-p53
inhibitors useless (38). In this study, only one HPV-positive
cell line was investigated, and further studies are needed to
confirm this finding. Furthermore, the lack of response when
using the scrambled PM2 peptide (PM2SCRAM) validates the
specificity of PM2 to its target (Supplementary Figure 1A).
Taken together, these results support and validate previous
findings on the specific MDM2/X-p53 antagonistic properties of
PM2 (25, 27, 28).

Two of the main cellular responses following p53 activation
are cell cycle arrest and apoptosis, the latter through transcription
of pro-apoptotic proteins such as Noxa (14, 17, 37). In
the present study, combination therapy (EBRT and PM2)
prolonged and increased the amount of viable cells in the
radiosensitive G2/M-phase and resulted in S-phase depletion
(Table 2; Figure 1B). The prolonged arrest in G2/M-phase
and S-phase depletion suggests that the irradiated cells are
unable to repair the DNA damage and are more likely
to undergo cell death rather than proceed through mitosis,
further preventing cell proliferation (39, 40). These results
demonstrate that the combination therapy of PM2 and
EBRT resulted in greater effects and potency than either
treatment alone.
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Western Blot results confirmed PM2 specificity through an
extensive increase in p53-levels following PM2 therapy. The
upregulation of p53-expression is in concordance with our
previous study (28) as well as studies using Nutlin-3, where
increased p53-expression was directly correlated to increasing
concentrations of the MDM2-p53 inhibitor (37). Combination
therapy further increased wt p53 levels in both UM-SCC-74B
and HCT116 samples (Figures 2A,D). UM-SCC-74B samples
presented a near 5-fold increase in wt p53 levels following
combination therapy. The extensive increase could be the
reason why UM-SCC-74B was more sensitive both to PM2
therapy and to the combination treatment compared to HCT116
throughout the study. Four-fold and near-three-fold increases
in cleaved caspase-3 levels were detected in PM2-treated UM-
SCC-74B and HCT116 samples, respectively, indicating elevated
apoptotic activity (Figures 2B,D). Interestingly, elevated levels
of senescence were also detected, through increased levels of
GLB-1 (Figures 2C,D). The GLB-1 levels followed the same
pattern as p53, cleaved caspase-3 and Noxa, meaning the
greatest increase was observed for the combination treated
samples. However, the increase was less pronounced and
failed to reach significance in the HCT116 samples. These
results warrant further investigation of the mechanisms behind
the possible induction of p53-mediated senescence pathways
following PM2 therapy.

Flow cytometric analyses confirmed the increased levels of
cleaved caspase-3 in both cell lines (Figure 2E). Increased levels
of Noxa were detected in both UM-SCC-74B andHCT116, where
the levels following the combination of EBRT and PM2 therapy
proved greater than EBRT or PM2-monotherapy (Figure 2F).
Interestingly, in samples treated with only EBRT, neither cleaved
caspase-3 nor Noxa-expression levels differed from untreated
controls, whereas PM2 therapy resulted in distinct increases at
72 h post-treatment. The increased levels of Noxa-expression of
the PM2-treated samples suggest that the observed cell death
could be the result of p53-mediated apoptosis. Thus, we conclude
that the apoptotic effects induced by PM2 therapy are further
potentiated by a combination with EBRT in wt p53 cancer cell
lines. Moreover, the present study is the first to demonstrate
increased senescence and p53-mediated apoptosis in cells treated
with a combination of PM2 and EBRT, and may provide an
explanation to the synergistic therapeutic effects obtained.

While monolayer assays are suitable for mechanistic

evaluations, often generating greater therapeutic responses,

anti-tumorigenic properties are better assessed in assays

simulating the 3D-structure of tumors, such as in vitro 3D

tumor spheroid models. When switching from monolayer to 3D
models, the treatment schedule must be changed accordingly
to better emulate an in vivo setting. As such, PM2-treatments
were incubated for 48 h in all 3D assay settings to simulate the
biological elimination and excretion rates in vivo. Treatment with
PM2 every second day is less frequent than other MDM2-p53
inhibitors in current clinical trials (41). However, PM2 offers
an extended biological half-life as well as inhibition of both
p53 negative regulators MDM2 and MDMX. Therefore, less
frequent doses of PM2 therapy could potentially circumvent
issues of resistance and toxicities as seen with other MDM2-p53

inhibitors, for example Nutlin-3 (23, 26). Furthermore, treatment
resistance can be avoided by combining PM2 therapy with EBRT.

In the present study, UM-SCC-74B spheroids irradiated with
one, two, three or five times 2Gy at 48 h intervals resulted
in dose-dependent growth inhibition (Figure 3A). Interestingly,
a single dose (20µM) of PM2 incubated for 48 h, which in
monolayer assays was highly potent in reducing viability, failed
to impair UM-SCC-74B spheroid growth. This difference in
PM2-potency is likely due to the changes in treatment schedule
from monolayer to 3D setting (42). However, repeated doses at
48 h intervals did inhibit growth in a dose-dependent manner
similar to that of repeated EBRT (Figure 3B). When combining
the two therapies, potentiating effects were observed; a single
20µM dose of PM2 (48 h incubation) which previously rendered
little or no effect as a monotherapy, resulted in synergistic
growth inhibitory effects for all treatments until day 14, with
CDI < 0.7 when combined with either single or fractionated
radiation treatments (Table 3; Figure 4). A further evolution of
the combination regimens with both repeated EBRT and PM2
doses resulted in synergism in all combinations (Table 3). While
all combinations resulted in growth inhibition, the majority
of the spheroids eventually regained normal growth patterns
(Figure 4). However, the rate at which they did differed markedly
between the treatment regimes. There was a strong repeated-
dose-dependent response to combination therapy: two repeated
doses of each treatment resulted in growth inhibition surpassing
the standard 14-day assay (data not shown), while adding a
third dose of PM2 further increased the time to spheroid
progression (Table 4; Figure 4). Three repeated doses of each
therapy further prolonged the inhibitory effects, extending the
median time to spheroid termination due to excess size to
28 days post-start of treatment, a 2-fold increase compared
to untreated controls (Table 4). Most strikingly, five repeated
doses of both therapies resulted in 100% spheroid disintegration
(Figures 3C, 4). These findings demonstrate for the first time
that, despite each treatment having an inhibitory effect alone,
combining PM2 and EBRT can result in complete collapse of
tumor spheroids and tumor cell death. This demonstrates the
great potential of PM2 as a radiosensitizer in combination with
fractionated EBRT, and may be especially suitable to increase the
effect and reduce the frequency of recurrent tumors from small
surviving subpopulations.

To conclude, the potential antitumorigenic effects of the
combination of EBRT and PM2 therapy, as well as the
mechanisms behind the effects and the cellular fates of treated
cells were assessed in the present study. The study presents
previously unknown data on PM2 and radiation treatment,
demonstrating cell cycle arrest as well as upregulation of
p53-mediated apoptosis. We therefore conclude that PM2
shows great promise as a future therapeutic cancer drug
candidate, particularly as a radiosensitizer in combination with
ionizing radiation.
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Supplementary Figure 1 | (A) Titrations of PM2 and PM2SCRAM against

HEK293 cells that are transiently transfected with the Mdm2:p53 NanoBIT

system. Cells were treated for 4 h with either compound in 10% FCS containing

DMEM cell media. IC50 of PM2 were determined to be 14.8 ± 0.5µM using a

4-parameter model. Curve fitting was performed using Prism 8 (Graphpad). (B)

Cell viability (XTT) response to treatment with 20µM of PM2 of A431, H314,

UT-SCC-45, and UM-SCC-74A cells with or without EBRT (2Gy) n ≥ 4. Please

note that irradiated cells were normalized to survival at 2Gy, 0µM PM2, whereas

un-irradiated cells were normalized to survival at 0Gy, 0µM PM2 in order to

compensate for the effects of radiation.
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Alterations in DNA damage response (DDR) is one of the several hallmarks of cancer.

Genomic instability resulting from a disrupted DDR mechanism is known to contribute to

cancer progression, and are subjected to radiation, cytotoxic, or more recently targeted

therapies with limited success. Synthetic lethality (SL), which is a condition where

simultaneous loss-of-function of the genes from complementary pathways result in loss

of viability of cancer cells have been exploited to treat malignancies resulting from defects

in certain DDR pathways. Albeit being a promising therapeutic strategy, number of SL

based drugs currently in clinical trial is limited. In this work we performed a comprehensive

pan-cancer analysis of alterations in 10 DDR pathways with different components of DNA

repair. Using unsupervised clustering of single sample enrichment of these pathways in

7,272 tumor samples from 17 tumor types from TCGA, we identified three prominent

clusters, each associated with specific DDR mechanisms. Somatic mutations in key

DDR genes were found to be dominant in each of these three clusters with distinct DDR

component. Using amachine-learning based algorithmwe predicted SL partners specific

to somatic mutations in key genes representing each of the three DDR clusters and

identified potential druggable targets. We explored the potential FDA-approved drugs for

targeting the predicted SL genes and tested the sensitivity using the drug screening data

in cell lines with mutation in the primary DDR genes. We have shown clinical relevance,

for selected targetable SL interactions using Kaplan-Meier analysis in terms of improved

disease-free survival. Thus, our computational framework provides a basis for clinically

relevant and actionable SL based drug targets specific to alterations in DDR pathways.

Keywords: DNA damage response, synthetic lethality, single sample gene set enrichment analysis, mutual

exclusivity, somatic mutations, drug sensitivity, disease-free survival, Kaplan-Meier analysis

INTRODUCTION

Responding to DNA damage from various internal or external stimuli is a crucial process for
cell viability. Normally the DNA repair pathways guide the cell fate decisions for cells exposed
to DNA damage; they can either be repaired and restored to normal function, or in cases where the
damage is irreversible the cell is “sacrificed” by senescence via activation of certain DNA damage
response (DDR) pathways (1). But in a third scenario, because of inefficient repair of damaged
DNA, the affected cell evades senescence, which leads to proliferation of cells carrying oncogenic
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alterations, and subsequently develops cancer (2). Genomic
instability caused by driver mutations is a hallmark of cancer
(3). A key function of the DDR machinery in cancer cells is
to promote genomic stability and guiding cell fate decisions.
Traditional cancer therapies involving radiation and cytotoxic
chemotherapies induce DNA damage and exploit DDR pathways
to facilitate tumor cell death. Thus, DDR pathways play a major
role to determine response to these therapies (4).

DNA damage response (DDR) is a complex multi-level
process involving sub-pathways like base-excision, nucleotide
excision and mismatch repair for handling single-strand breaks,
or homologous recombination repair, homology directed repair,
non-homologous end joining, and Fanconi anemia pathways
for handling double-strand breaks in DNA (5). Deficiency and
alterations in various components of the DDR machinery is
common in all types of cancers (6), but generally deficiency in
one component can be compensated by other components of
DDR (2, 7). Synthetic lethal (SL) interactions are formed between
components which are compensatory between themselves.
So, a better understanding of the SL relationships between
components of DDR is a promising approach to tackle resistance
to conventional cancer therapy. Guided by the knowledge of
specific DDR alterations in individual patients, SL-based drug
targets can be attractive choices for personalized cancer therapy.

The success of PARP inhibitors in treating BRCA1/2 mutated
tumors in clinical trials demonstrated the validity of the
concept of SL (8). FDA approval of PARP inhibitor drugs for
treating BRCA1/2-mutated ovarian and breast cancer patients
has propelled interest in exploration of other potential SL
associations between DDR components. Use of shRNA or
CRISPR screenings in cancer cell lines is a viable approach for
identifying synthetic lethal interactions specific to certain cancer
genes of interest (9, 10), but running these screenings are costly
when the number of the genes of interest is large. On the other
hand, computational prediction of cancer-specific SL interactions
can identify many potential candidates for SL interactions
(11, 12), but without proper validation of these predictions
it is hard to prioritize the targets. We tried to address this
limitation by our previously published machine-learning based
computational method called DiscoverSL that harnesses the
large-scale tumor genomic and clinical data from cancer patients
combined with the RNAi and drug screening data from cancer
cell lines to infer statistical measures on predicted synthetic
lethal interactions to prioritize clinically relevant and targetable
candidates (13). Another computational method ISLE also
prioritizes SL pairs by identifying those pairs that are predictive
of patients’ survival upon co-inactivation; but they use literature-
derived SL interactions from shRNA-screening experiments (14).
Driven by the need to identify potential SL based drug targets
specific to alterations in certain DDR pathways in cancers,
here we performed a pan-cancer analysis on enrichments or
deficiencies of different DDR pathways and alterations in the
DDR components from genomic data of 17 tumor types from
The Cancer Genome Atlas (TCGA). Combining the existing
knowledgebase on potential SL interactions from literature
and the SL predictions from DiscoverSL algorithm with the
FDA-approved drug targets, we propose clinically relevant,

and potentially actionable, cancer specific network of SL DDR
alterations, and drug interactions.

MATERIALS AND METHODS

Data Source and Pre-processing
The primary source of tumor genomic and clinical data of 17
tumor types is the cancer genome atlas (TCGA) project (15).
Somatic mutation, and RSEM processed and Z-score normalized
RNA-Seq v2 gene expression data of TCGA tumor samples
are downloaded from cBioPortal (16). Additionally, raw RNA-
Seq count data of TCGA tumor, and normal samples was
collected from a published resource from Gene Expression
Omnibus accession GSE62944, that processed TCGA raw RNA-
Seq data using featurecount package to generate the gene-wise
raw counts (17).

The gene-pathway associations for 10 DDR pathways were
collected from the curated geneset (c2 version 6.2) in the MsigDB
database (18).

For validation purposes, we collected processed shRNA
screening data in 214 cancer cell lines from Achilles project
version 2.4.3 in form of essentiality scores calculated using
ATARiS (19). Genomic profiles (mutation) of these cancer
cell lines are collected from the cancer cell line encyclopedia
[CCLE (20)].

Drug-protein interaction data are collected from the databases
DrugBank and DGIDB (21, 22). For drug sensitivity analysis
we collected drug screening data from the genomics of drug
sensitivity in cancer (GDSC) data portal (23). From this portal
we collected the drug response data in cancer cell lines using LN-
IC50 and AUC scores as well as the genomic mutation profiles of
the corresponding cancer cells.

Computational and Meta-Data
Single sample enrichment scores for 10 DDR pathways across
7,272 tumor samples from 17 histology was calculated using
ssGSEA analysis from R package GSVA (24). RSEM processed
and Z-score normalized RNA-Seq v2 gene expression data
of TCGA cohort, downloaded from cBioPortal, was used for
ssGSEA analysis. Unsupervised clustering of tumor samples
was performed using hierarchical clustering with spearman
correlation as the similarity metric.

Synthetic lethal partners for DDR genes in 17 cancer types
are calculated using recently published DiscoverSL algorithm.
For each pair of potential synthetic lethal gene pairs and a given
cancer type from TCGA, DiscoverSL uses p-values calculated
from four parameters: (a) DiffExp: differential expression of
the secondary gene in samples with vs. without mutation
in the primary gene (calculated from TCGA RNA-Seq raw
count data available from GSE62944, using EdgeR package)
(b) Exp.correlation: expression correlation of the primary and
secondary gene (calculated using Pearson’s correlation) (c)
Mutex: mutual exclusivity of mutation of the primary and
secondary gene (calculated using a hypergeometric test described
in the following section), and (d) SharedPathway: probability that
the primary and secondary genes are part of common pathways
(Also calculated using hypergeometric test using the c2 collection
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from MSigDB). In DiscoverSL, these four parameters are used as
features in a Random Forest model trained with a set of positive
and negative examples of synthetic lethal interactions derived
from literature. Detailed description for calculation of all four
parameters and the Random Forest model can be found in the
SupplementaryMethods section of our previous publication (13).

Synthetic lethal interactions reported in previous literature or
SL screens are collected from the database SynLethDB (25) and
another recent publication that curated SL interactions obtained
from SL screens in human cell lines (14).

Calculation of Mutual Exclusivity and
Mutual Co-occurrence
The probability of a tumor sample belonging to a DDR cluster
D (1, 2, or 3, derived from the unsupervised clustering of
ssGSEA scores of 10 DDR pathways) and co-occurrence of a
gene mutation event E for any DDR gene (Gene1) associated
with 10 DDR pathways is calculated with a hypergeometric test.
Let PMutco be the hypergeometric P-values for co-occurrence
of mutation in Gene1 and DDR cluster D. The formula for
calculation of the hypergeometric P-value is as follows:

PMutco =

min(S1mut ,S2)
∑

i=S12mut

(

S1mut
i

) (

ST−S1mut
S2−i

)

(

ST
S2

)

Where,

S12mut =Number of tumor samples belonging to DDR cluster
D and carrying mutation in Gene1
S1mut = Number of tumor samples with mutation in Gene1
S2 = Number of tumor samples belonging to DDR cluster D
ST = Total Number of tumor samples

Similarly, mutual exclusivity with genetic mutation in two DDR
genes Gene1 and Gene2 is calculated with a hypergeometric
test that calculates the probability of co-occurrence of mutation
in Gene1 and Gene2 in patient samples (from TCGA) for a
given cancer. Let PMutex be the hypergeometric P-values for co-
occurrence of mutation for Gene1 and Gene2. The formula for
calculation of the hypergeometric P-values is as follows:

PMutex =

min(S1mut ,S2mut)
∑

i=S12mut

(

S1mut
i

) (

ST−S1mut
S2mut−i

)

(

ST
S2mut

)

Where,

S12mut = Number of cancer samples for a cancer type C with
mutation in both Gene1 and Gene2
S1mut = Number of cancer samples for a cancer type C with
mutation in Gene1
S2mut = Number of cancer samples for a cancer type C with
mutation in Gene2
ST = Total Number of cancer samples for a cancer type C

For TCGA mutation data, cases with non-silent mutations are
considered as gene mutation events. Opposite to the mutual
co-occurrence, the mutual exclusivity P-values should represent

the P-value for non-co-occurrence of mutations in Gene1
and Gene2. So, the mutual exclusivity P-value MutexMut is
calculated as:

MutexMut = 1− PMutex

For MutexMut , the null hypothesis is that the two genes are
mutated in the same tumor samples. When MutexMut takes a
higher value (e.g., 0.98) that means the null hypothesis cannot be
rejected and the gene mutations are not mutually exclusive, while
MutexMut < 0.05 means that the null hypothesis can be rejected
and the gene mutations are mutually exclusive, i.e., the two genes
are not mutated in the same samples.

Themutual co-occurrence andmutual exclusivity p-values are
adjusted for multiple testing correction by false discovery rate
using Benjamini and Hochberg (26).

In-silico Validation of the Predicted
Synthetic Lethal Interactions
We have used multiple methods to validate the significance
of SL pair interactions. (1) To assess the effect of silencing
the SL gene (gene2) in cancer cell lines where the primary
gene (gene1) is mutated, significance of difference in shRNA
score [essentiality calculated using ATARiS algorithm from
shRNA screening of 214 cell lines (19)] is calculated by t-
test using shRNA screening data from Achilles 2.4.3 project.
We termed this parameter as PvalRNAi. (2) To assess the
clinical outcome of under-expression vs. over-expression of the
predicted SL gene (gene2) in cases with mutation in the primary
gene (gene1), Kaplan Meier survival analysis was performed
on disease free survival in TCGA clinical data. (4) To assess
the potential drug sensitivity a p-value is calculated using t-
test on the LNIC50 values between primary gene mutated vs.
non-mutated cells from the Genomics of Drug Sensitivity in
Cancer (GDSC) project data. We termed this parameter as
Drug Sensitivity.

RESULTS

Somatic Mutations in the Components of
DDR in a Pan-Cancer Context
To explore the association of 10 DDR pathway related alterations
and gene mutations in pan-cancer context, we first identified the
DDR pathway specific genes from Reactome and KEGG pathway
database [MSigDB c2 collection v6.2 (18)]. These 10 pathways
constitute 221 genes and represent different components of
DDR handling including single strand breaks or double strand
breaks in DNA as illustrated in Figure 1A and outlined in
the introduction section. Next, we identified somatic mutations
among the 221 genes in TCGA data comparing 17 cancer
types. All cancer types had somatic alterations in one or more
DDR genes. Figure 1B represents the somatic mutation in 17
TCGA cancer types. We considered genes having mutation in
at least 1% samples in a given cancer, and present in any two
or more cancers, resulting in 72 genes. Of all DDR genes, TP53
was the most frequently mutated gene. The other frequently
mutated DDR genes were PRKDC, ATM, BRCA2, POLE, ATR,
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FIGURE 1 | (A) Network diagram of genes associated with 10 DNA damage response pathways at different level of DNA repair: base excision repair, nucleotide

excision repair, mismatch repair, double strand break repair, homologous recombination repair of replication independent DNA double strand breaks, non-homologous

end joining, G2-M DNA damage checkpoint, Fanconi anemia pathway, P53 dependent DNA damage response and P53 independent DNA damage response.

(B) Somatic mutations in genes from the 10 DNA damage response pathways in 17 cancer types. We included genes that are mutated in at-least 1% of tumor

samples in more than one tumor types. Numbers in each cell represents frequency of samples carrying mutation in corresponding gene in that cancer type. Rows and

columns are sorted by the frequency of mutation of the DDR genes in the tumor types.

BRCA1, and FANCM. Among the 17 cancer types, uterine
corpus cancer (UCEC), head and neck cancer (HNSC), and skin
cutaneous melanoma (SKCM) had most frequent alterations in
DDR genes.

Exclusive Pattern of Enrichment Is
Observed Between Certain Components of
DDR
To check the difference in enrichments of the 10 DDR pathways
in the pan-cancer scenario, we did single sample geneset
enrichment (ssGSEA) analysis on 7,272 tumor samples from
17 tumor types from TCGA. Using unsupervised clustering,
we found three pathway clusters and three sample clusters of
tumor samples (Figure 2A). The sample cluster 1 had enrichment
of DNA double strand break repair associated pathways, while
the sample cluster 2 had enrichment in single strand break
repair related pathways and p53 dependent or independent
DNA damage response at G1. Sample cluster 3, had some
similar attributes from cluster 1, but can be characterized by
more enrichments in G2/M cell cycle checkpoints, Fanconi
anemia and mismatch repair pathways. So, the cluster 1 and
cluster 3 were mostly enriched for late-stage DDR (double
strand break repair and late-stage cell cycle, respectively), and

cluster 1 was more enriched in early-stage DDR (single strand
break repair and p53 dependent or independent G1 checkpoint).
From the correlation analysis of pan-cancer wide enrichment
scores (ssGSEA) as shown in Figure 2B, we observed exclusive
pattern of enrichments between the DDR pathways from three
groups; one consisting of pathways related to double strand
break repair (group 1; enriched in cluster 1), one consisting
of pathways related to late-stage cell cycle checkpoints (G2/M),
Fanconi anemia and mismatch repair (group 2; enriched in
cluster 3), and the other one consisting of single strand break
repair and p53 dependent or independent DNA damage response
(group 3; enriched in cluster 2). Among the pathways in group
1 and group 2, non-homologous end joining had negative
correlation with the pathways in group 2, while homologous
recombination had a positive correlation with these pathways.
Mismatch repair had weak positive correlation with not just
the pathways from the same group (Fanconi anemia and
G2/M checkpoint) but also homologous recombination repair
pathway from group 1. This correlation can be attributed to
the fact that many components of the Fanconi anemia pathway
interacts with the mismatch repair related proteins (27). The
correlation of the homologous recombination repair with G2/
M DNA damage checkpoint is also expected as this pathway
of double strand break repair is restricted to G2 phase or late
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FIGURE 2 | (A) Unsupervised clustering of ssGSEA scores of 10 DDR pathways across 7,272 tumor samples reveals three distinct clusters of tumors. A mutually

exclusive enrichment pattern can be seen between these DDR pathways: P53 dependent or independent G1 DNA damage response and double strand break repair,

homologous recombination repair, and non-homologous end joining. (B) Correlation plot showing the correlation of ssGSEA enrichments of 10 DDR pathways.

(C) Stacked barplot shows the fraction of samples belonging to each of the three DDR clusters identified from (A) in each of the 17 tumor types from TCGA.

S phase (28). Among the pathways in group 3, nucleotide and
base excision repair had weak positive correlation with p53
mediated DNA damage checkpoints. All pathways from group
3 had negative correlations with the pathways from group 1
and group 2. P53 dependent or independent DNA damage
response showed strongest negative correlation with homologous
recombination repair (r < −0.6). From published literature
we see that p53 has direct role in suppressing homologous
recombination repair of DNA double strand breaks (29). Thus,
tumors may undergo DNA double strand break repair through
activated homologous recombination repair in the absence of
p53mediated apoptosis, while tumors are most likely to undergo
cell cycle arrest at G1 phase by intervention of p53. We
checked the distribution the samples assigned to these three
clusters in each of the 17 cancer types (shown in Figure 2C).
Though there was some variability in distribution of three
clusters in different cancer types, cluster 1 had the lowest
frequency of samples in almost all cancer types (only kidney
renal cell carcinoma KIRC had almost equal frequency of all
3 clusters).

Underlying Gene Mutation Signatures of
the Three Major DDR Clusters
To compare the somatic mutations among DDR pathway
genes between the 3 clusters (obtained from the ssGSEA

analysis, see Figure 2A), we performed a statistical test for

mutual co-occurrence of the somatic mutations of the 221

genes among the three DDR clusters. Figure 3A, represents

40 genes (hypergeometric test, FDR corrected p < 0.3)
showing higher occurrence of somatic mutations. These
genes formed mutually exclusive pattern between the DDR
clusters. The mutated genes representing cluster 1 were
mostly associated with nucleotide excision repair (POLR2A,
POLR2B, ERCC4, POLD1), mismatch repair (RFC1, MLH1),
base excision repair (POLD1, PARP1), and Fanconi anemia
(FANCM, FANCA). The mutated genes in tumors from cluster
2 were mostly associated with homologous recombination
repair (BRCA2, RAD50, RAD54B, BLM, MDC1, LIG1), non-
homologous end joining (RAD50, XRCC4), ATM pathway
(TP53), Fanconi anemia (BRCA2, USP1), meiotic recombination
(MLH3, RAD50, BLM) and also mismatch repair (EXO1, MSH6,
MLH3), base excision repair (LIG1, LIG3), and nucleotide
excision repair (ERCC5, DDB1, ERCC2, CUL4B, LIG1). The
genes mutated in cluster 3 were mainly associated with cell
cycle checkpoints (CHEK2, ATR, CDKN1A, POLE, PSME4,
PSMC2, PRKDC), and additionally with Fanconi anemia
(FANCE, PALB2), and non-homologous end joining (LIG4,
PRKDC). Moreover, in all cancer types, we observed mutually
exclusive pattern of mutations between the clusters, but not
within the same cluster (Figures 3B–E, Supplementary Figure 1;
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FIGURE 3 | (A) Mutual co-occurrence of certain DDR genes was observed with each of the three DDR clusters identified in 2b. In the matrix, the color key blue to red

denotes the tendency from mutual exclusivity to mutual co-occurrence of the corresponding gene mutation (y-axis) and the corresponding DDR cluster (x-axis). The

p-values for co-occurrence of DDR gene mutations and DDR clusters calculated using hypergeometric test are shown in each cell. (B–E) Mutually exclusive mutations

of DDR genes representing three different DDR clusters (from 3a) is shown for tumor types (B) SKCM (C) BRCA (D) OV (E) PAAD.

p-value calculated using hypergeometric test followed by
FDR correction).

Analysis of Transcriptome-Wide Synthetic
Lethal Candidates Identifies Common and
Exclusive Targets for Different DDR
Clusters
We looked for potential synthetic lethal partners of the
cluster specific 40 significant DDR genes (see Figure 3A) using
two approaches: (1) from published synthetic lethal screens
in human cell lines (14, 25) and (2) using our previously
published machine-learning based algorithm DiscoverSL (13).
To shortlist themost probable SL candidates from theDiscoverSL
predictions, we applied two in-silico validation approach. First,
we calculated the conditional essentiality of the SL interaction,
i.e., the statistical significance of difference between the shRNA
scores (targeting the synthetic lethal gene) for human cell lines
with or without mutation in the primary gene; and second,
we performed Kaplan-Meier analysis on TCGA clinical data
to check if the primary gene is mutated, the differences in
disease-free survival between patients when the SL interactor
gene downregulated (expression<median) compared to samples
where the gene is upregulated (expression > median). The
SL pairs which showed significant effects of co-inactivation
from both validation methods were chosen as the final list

of most probable SL interactors for DDR genes. Figure 4A

shows a representation of selected SL interactors for genes
from the three DDR clusters. A subset of genes was shown
to be exclusively associated with each cluster (shown as
colored boxes in Figure 4A). We checked the functional
enrichments of the common and exclusive SL interactors of
these DDR genes. The common SL interactors for all three
clusters were enriched for MAPK pathway, ERBB pathway, GAP
junction, and proteasomes (Figure 4B). Functional enrichment
analysis exclusive to the three DDR clusters (Figures 4C–E)
showed that, cluster 1 is associated with NGF signaling,
ERBB signaling, integrin pathway, retinoic acid pathway, Fc
gamma mediated phagocytosis; cluster 2 is found to be
enriched with cell cycle and immune system associated pathways
were enriched, and cluster 3 had mostly immune response
related pathways.

DDR Genes Having Distinct Alteration
Patterns Between Different DDR Clusters
Are Potentially Synthetic Lethal
Having observed mutually exclusive mutation pattern of 40
DDR genes associated with different clusters (shown in selected
cancers in Figures 3B–E), we wanted to see if these genes
also exhibit synthetic lethality. To test this hypothesis, we
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FIGURE 4 | (A) Predicted SL interactors of genes mutated in cluster 1, cluster 2, or cluster 3. Blue denotes an SL interaction and white denotes no SL interaction

between the corresponding SL gene (columns) and DDR cluster (row). We can see there is some overlap and some exclusivity between SL partners for DDR genes

from different DDR clusters. (B–E) Barcharts show pathways enriched for predicted synthetic lethal partners (B) common for all clusters (C–E), unique for gene

mutations specific to DDR clusters 1, 2 and 3, respectively.

searched for synthetic lethal interactions between DDR genes

from published synthetic lethal screens in human cell lines.

We identified SL interactions between multiple DDR genes that

supported our postulation (Supplementary Table 1). Further,

from the predicted SL interactions from DiscoverSL we found

many potential SL relationships that fulfilled the 2 in silico

validation criteria mentioned above (Supplementary Table 1).

A representation of 3 SL pairs one from each cluster, that
passed our rigorous filter criteria were shown in Figure 5.
The filtered SL pairs are validated in-silico at shRNA level
(Figure 5A), and by Kaplan Meier analysis showing the clinical
relevance of the same pairs as disease-free survival when ±

mutation in one gene had a significant association of over
(>median) or under (<median) expression of SL partner
gene (Figure 5B). As shown from the figure, PARP1 (cluster
1) was found to have conditional essentiality with cell lines
having mutation in CHEK2 (cluster 3) and a survival advantage
of down regulation of PARP1 in prostate cancer patients
when CHEK2 was mutated. Similarly, TP53BP1 (cluster 3) has
conditional essentiality in cell lines having mutation in TP53
(cluster 2) with survival advantage in lung cancer patients,
and POLD1 (cluster 3) has conditional essentiality in cell
lines having mutation in BRCA2 (cluster 1) and survival
advantage shown in skin cancer patients. A complete list of SL
interactions (previously reported or novel prediction) is shown
in Supplementary Table 1.

Analysis of Drug Sensitivity Associated
With Mutations in DDR Genes From
Different Clusters
To find potential drugs for targeting the SL interactors of
DDR genes from different clusters, we combined the drug-
target information from the databases DrugBank (21) and
DGIdb (22), and the drug sensitivity data in cell lines from
GDSC portal (23). We limited our drug search to only the
drugs approved by FDA for treating cancers, as per the
National Cancer Institute resource (https://www.cancer.gov/
about-cancer/treatment/drugs). For the drugs targeting SL
interactors of the DDR genes from each cluster, we calculated
the relative drug sensitivity in presence of mutations in the
primary gene. Figure 6A shows the drugs targeting potential
SL interactors for the mutations in the primary DDR genes
from different clusters. Drugs showing significantly increased
sensitivity for specific DDR gene mutations highlighted
with green (p < 0.1, one-sided t-test). Combining the drug
sensitivity results with the information on the potential
SL interactions from literature and computer predictions,
we generated a network of the DDR gene alterations, SL
interactions and drugs (Figure 6B). The SL interactions are
restricted to only those showing significant clinical benefit from
the disease-free survival analysis (described in the previous
section). The drug Gefitinib (targeting EGFR signaling) was
only seen to have sensitivity for the gene FANCE from DDR
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FIGURE 5 | (A) Predicted synthetic lethal partners for gene mutations specific to each DDR cluster, that have conditional essentiality in presence of the corresponding

gene mutations as observed from cancer cell line RNAi screening data from Achilles portal. The term RNAiScore in y-axis is used to represent the essentiality score of

genes in shRNA screenings processed by ATARiS algorithm, as collected from the Achilles project v 2.4.3 (described in the data collection section in Methods). The

more negative RNAiScore, the more essential the corresponding gene. (B) From TCGA genomic and clinical data, certain predicted synthetic lethal genes of the

primary genes from each of the three DDR cluster show survival advantage in terms of increased disease-free survival when down-regulated compared to when

up-regulated (down<median, up>median) in certain cancer types in presence of somatic mutations in that DDR gene.

cluster 3 (Figure 6C). The drug Bleomycin (targeting DNA
replication, Figure 6D) showed sensitivity to only TP53
mutation. The drugs Olaparib (PARP-inhibitor, Figure 6E),
Nilotinib (targeting ABL signaling, Figure 6F), Lenalidomide
targeting protein stability, and Alectinib targeting RTK signaling
was only seen to have sensitivity for genes from DDR cluster 2
(BRCA2, TP53, or ERCC5). The drugs Vorinostat, Trametinib,
Idelalisib, Docetaxel, Bortezomib, Dasatinib, and Midostaurin,
targeting histone acetylation, PI3K/MTOR signaling,
ERK/MAPK signaling, mitosis, proteasome and kinases,
respectively, showed sensitivity for DDR genes from all three
clusters (Figures 6A,F).

DISCUSSION

DNA damage response alterations are vital to the transformed
cells to evade senescence. But at the same time, these alterations
which are common in cancers are also supposed as “Achilles heel”
of the cancer that makes them vulnerable to certain cytotoxic
or targeted therapies (30). In order to get an understanding
of potential targets specific to different DDR alterations, we
performed an analysis of multi-cancer study on the patterns
of alteration in 10 DDR pathways across 7,272 tumors from
17 tumor histology in TCGA. We identified distinct sample
clusters based on defect in DDR mechanism rather than by
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FIGURE 6 | (A) Drugs targeting predicted synthetic lethal partners for gene mutations specific to each DDR cluster, that have conditional sensitivity in presence of the

corresponding gene mutations as observed from cancer cell line drug screening data from GDSC portal. In the matrix, color coding of each cell denotes whether the

corresponding drug (in y-axis) is sensitive to mutations in the corresponding DDR gene (in x-axis). The column color labels annotate the DDR clusters where mutations

in the corresponding DDR gene is prevalent. (B–E) Sensitivities of Gefitinib in presence of FANCE mutation, Bleomycin in presence of TP53 mutation, Nilotinib in

presence of BRCA2 mutation, and Olaparib in presence of TP53 mutation; as seen from cancer cell lines in GDSC portal. The DrugScore in the y-axis represents LN

IC50 values of the drugs in the cell lines with/without mutation in the corresponding DDR genes. (F) Association network of predicted synthetic lethal genes of gene

mutations specific to each DDR cluster across TCGA tumor types, and potential drugs targeting the synthetic lethal genes which are also sensitive to mutations in the

primary DDR gene. The following color coding is applied; tumor types: red, DDR gene mutations specific to DDR cluster 1: cyan, DDR gene mutations specific to DDR

cluster 2: pink, DDR gene mutations specific to DDR cluster 3: purple, synthetic lethal genes: white and drugs: green.

histology. This pattern of exclusive enrichment of certain DDR
pathways and depletion of others is expected as tumors with
defects in certain DDR pathways tend to rely on the residual DDR
pathways to evade apoptosis resulting from genotoxic stress (7).
Cancer type-specific distribution of the number of tumor samples
belonging to these three clusters showed that all cancer types
had a higher fraction belonging to defects in double strand break
repair pathways, such as homologous recombination, which is
consistent with the observations from a previous pan-cancer
study (6).

Notably, looking at the underlying genomic signatures of the
DDR clusters, we found that the somatic mutation patterns of
genes from different clusters showed a clear mutually exclusive
signature in all cancers (see Figure 3A). Association of the
genes representing the three clusters indicates that these genes
were involved in complementary DDR pathways; cluster 1 has
genetic alterations related to single strand break repair pathways
like base excision and nucleotide excision repair. Cluster 2
has genetic alterations related to homologous recombination,
non-homologous end joining repair, and nucleotide excision
repair. Cluster 3 has genetic alterations mostly related to cell

cycle checkpoints. In support of our findings, a considerable
crosstalk among the single- and double-strand lesion repair
pathways and replication fork restart pathways has been reported
by several studies. A functional crosstalk was shown in which
overexpression of a DNA repair component in one pathway
compensates for a repair defect in another, conferring therapeutic
resistance (31). A signaling crosstalk between the homologous
recombination and canonical non-homologous end joining
pathways through ATR, ATM, and DNA-PK has been reported
(32, 33). Finally, a direct crosstalk when specific components
are shared among pathways, for example, PARP1 functions
in base excision repair and in alternative non-homologous
end joining (34). These findings suggest that simultaneous
alterations in these pathways will be potentially detrimental to
the tumor cells. Identifying cancers that are functionally defective
in specific repair pathways could benefit DNA-repair targeted
therapies (35). From our findings, we showed that there are
indeed potential SL relationships between genes from different
clusters, and their co-inactivation can be lethal to the tumor
cells (as seen in Figure 5, from RNAi screening data, e.g.,
CHEK2 and PARP1, TP53 and TP53BP1, BRCA2 and POLD1).
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As many of the SL interactions found from the essentiality
screens do not translate into clinically beneficial targets, we also
checked from TCGA clinical data, whether co-inactivation of the
potential SL candidates show a significant increase in disease-
free survival time. Among the potential SL interactors from
different clusters, BRCA2 (cluster 2) and PARP1 (cluster 1) have
been reported in literature as SL partners (26). Additionally,
we found potential SL relationships between TP53 (cluster 2)
and TP53BP1 (cluster 3), and CHEK2 (cluster 3) with PARP1
(cluster 1) that has not been reported previously but show
clinical benefits upon co-inactivation in lung adenocarcinoma
(LUAD) and prostate adenocarcinoma (PRAD), respectively.
We observed that co-inactivation of potential SL partners
does not always show significant clinical benefit (in increased
survival time) in all tumor types. The varying sensitivity to
co-inactivation of same SL partners in different tumor types
may be linked to the underlying heterogeneity of different
tumor histology.

Given the importance of DDR pathways in cancer, we
hypothesize the occurrence of common SL mechanisms between
cancer types. We identified SL genes common to all clusters,
that are associated with MAPK, ERBB, proteasome pathways.
From the drug sensitivity data, the cancer drugs targeting
kinases (Dasatinib, Bosutinib, Axitinib, Alectinib), PI3K/MTOR
pathway (Idelalisib, Temsirolimus), MEK pathway (Trametinib,
Dabrafenib), EGFR signaling (Cetuximab, Gefitinib), proteasome
(Bortezomib), HDACs (Vorinostat, Belinostat), cell cycle
(Paclitaxel, Docetaxel, Palbociclib), Retinoid receptors
(Bexarotene) were found to be sensitive to mutations in
genes from multiple DDR clusters. The importance of the
receptor tyrosine kinase signaling (EGFR/MEK/ERK/PI3K)
in regulation of DDR pathways and mediating radiation or
chemo resistance is well-known, and many ongoing clinical
trials are investigating the potential of combination therapies
involving DDR inhibitors and tyrosine kinase inhibitors
in cancers [reviewed by (36)]. Also, there is evidence of
HDAC inhibitors triggering DNA damage in cancer cells
which further attenuates by DNA-damaging chemotherapy
or radiation (37). So, inactivation of DDR proteins may
sensitize cancer cells to HDAC inhibitors, as we see from our
analysis. There are reports connecting proteasomes to DDR
pathways and proteasome inhibitors are shown to enhance
sensitization of cancer cells to DNA damaging agents (38).
Consistently, our analysis indicates that co-inactivation of DDR
genes combined with proteasome inhibitors may be lethal to
cancer cells.

Among the SL interactor pathways exclusive to DDR cluster
1, there were pathways associated with efficient DNA double
strand break repair, e.g., integrin, ERBB pathways. It has been
previously shown that activated ERBB pathway can trigger DNA
double strand break repair (39) and disabling the ERBB pathway
resulted in genotoxic cell death induced by radiation (40).
Similarly, it has been shown that beta integrins can positively
regulate components of homologous recombination repair of
DNA double strand breaks, facilitating resistance to radiation-
induced cell death (41). Thus, co-inactivation of single strand
break repair (which is predominantly associated with DDR

cluster 1) with ERBB or integrin pathway can be lethal to
cancer cells. This observation is further supported by our drug
sensitivity analysis, as we observed sensitivity of EGFR signaling
inhibitor drug cetuximab to be sensitive to alterations in cluster
1 (Figure 6F).

The SL interaction of cluster 2 with cell cycle related pathways
was also expected from our analysis, as the gene alterations
specific to cluster 3 were mostly associated with cell cycle
checkpoints. Consistently, from the drug sensitivity analysis, we
found sensitivity of the drug Palbociclib (targets cell cycle) in
presence of alterations in cluster 2. Besides them, some drugs
were only sensitive to mutations in cluster 2 which was mostly
associated with double strand break repair; e.g., Olaparib (PARP
inhibitor), Nilotinib (ABL inhibitor), and Bleomycin (DNA
ligase inhibitor). PARP inhibitor drugs are the first ever FDA-
approved therapies for treating tumors deficient in homologous
recombination repair (42). In case of Bleomycin, we found
literature reports supporting the sensitivity to Bleomycin by
impairing p53 function in transgenic mice (43).

Interestingly, the SL interactors of gene alterations specific
to cluster 3 were mostly enriched for immune system mediated
cell killing, e.g., complement cascade associated with innate
immunity. As stated earlier, the DDR cluster 3 was mostly
associated with alterations in cell cycle checkpoint genes, e.g.,
CHEK2,ATR, PRKDC. It was reported that inhibition of cell cycle
components (CDK4/6) can trigger anti-tumor immune response
(44). Also, DDR signaling is involved in innate immune response,
and currently DDR inhibitors (ATR or PARP1 inhibitors)
combined with immune checkpoint inhibitors are undergoing
clinical trials (45–47).

In summary, DNA and DNA damage response proteins have
incredible potential as next generation therapeutic targets for the
treatment of multiple cancers. While long term effects of DDR
inhibition have yet to be understood in patients, and the potential
for the emergence of secondary cancers exists, there is significant
evidence at both the preclinical and early clinical stage that this
specific targeting strategy will be the next breakthrough in cancer
therapy. Our systematic analysis of multi-cancer SL targets and
drug sensitivity revealed many potential drug targets for treating
cancers deficient in DNA damage response in addition to PARP
inhibitors and established a framework to explore and prioritize
the potential targeted therapies for certain DDR alterations
in cancer.
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Supplementary Figure 1 | Mutually exclusive mutations of DDR genes

representing three different DDR clusters (from Figure 3A) is shown for 15 tumor

types.

Supplementary Table 1 | This table contains a filtered list of the literature

reported and predicted synthetic lethal interactions of DDR genes from 3 clusters

in TCGA tumor types. The synthetic lethal interactions presented in this table has

the following filters: (1) the primary gene (Gene1) has mutation in at-least 5 tumor

samples from the corresponding TCGA tumor type (2) the primary gene (Gene1)

and the synthetic lethal gene (Gene2) has significant conditional essentiality from

the Achilles shRNA screening data (p < 0.1) (3) there is significant difference in

survival between patients having high or low expression of the synthetic lethal

gene (Gene2) in presence of mutation in Gene1 (p < 0.1) (4) there is significant

difference in drug sensitivity for drugs targeting Gene2 in cell lines with or without

mutation in Gene1 (p < 0.1).
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DNA double-strand breaks (DSBs) are highly deleterious, with a single unrepaired DSB

being sufficient to trigger cell death. Compared to healthy cells, cancer cells have a higher

DSB burden due to oncogene-induced replication stress and acquired defects in DNA

damage response (DDR) mechanisms. Consequently, hyperproliferating cancer cells rely

on efficient DSB repair for their survival. Moreover, augmented DSB repair capacity

is a major cause of radio- and chemoresistance and, ultimately, cancer recurrence.

Although inherited DDR defects can predispose individuals to develop certain cancers,

the very same vulnerability may be therapeutically exploited to preferentially kill tumor

cells. A paradigm for DNA repair targeted therapy has emerged in cancers that exhibit

mutations in BRCA1 or BRCA2 tumor suppressor genes, conferring a strong defect

in homologous recombination, a major and error-free DSB repair pathway. Clinical

validation of such approaches, commonly described as synthetic lethality (SL), has

been provided by the regulatory approval of poly(ADP-ribose) polymerase 1 inhibitors

(PARPi) as monotherapy for BRCA1/2-mutated breast and ovarian tumors. In this

review, we will describe the different DSB repair mechanisms and discuss how their

specific features could be exploited for cancer therapy. A major emphasis is put on

advances in combinatorial treatment modalities and SL approaches arising from DSB

repair pathway interdependencies.

Keywords: DSB repair, homologous recombination (HR), BRCA, alternative end joining (a-EJ), PARP inhibition

(PARPi), DNA polymerase theta, synthetic lethality, cancer therapy

INTRODUCTION

The integrity of our genome is constantly challenged by endogenous and exogenous insults that
can induce DNA damage. To counteract genotoxic threats, cells are equipped with a diverse set of
DNA damage signaling and repair mechanisms, collectively known as the DNA damage response
(DDR) (1). During tumorigenesis, however, precancerous cells frequently acquire loss-of-function
alterations in DDR genes, including core components of selected DNA repair pathways, to
accelerate mutagenesis and become malignant (2). While healthy cells have to deal with a minor
amount of damage and take advantage of the full DNA repair capacity, malignant cells are
frequently equipped with reduced DNA repair functionality to cope with increased replication
stress and elevated levels of endogenous DNA damage (3). Consequently, cancer cells become even
more dependent on DNA repair mechanisms to survive and proliferate. Conventional treatment
modalities such as radiation therapy and certain forms of chemotherapy have been built on the
premise to force DNA damage-induced cell death. In summary, cancer cells are often compromised
in their ability to adequately process DNA damage, which exerts selective pressure to sustain DNA
repair through upregulation of mutagenic pathways, ultimately promoting disease progression and
therapy resistance (4, 5).
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DNA double-strand breaks (DSBs) are considered the
most lethal of all DNA lesions, eliciting the majority of
the cytotoxic effects induced by ionizing radiation (IR) and
certain anti-cancer drugs. Therefore, DSB repair represents a
potent and targetable vulnerability in cancer cells. In healthy
somatic cells two-ended DSBs are mainly repaired by two
pathways: classical non-homologous end joining (c-NHEJ)
and homologous recombination (HR) (Figure 1). Auxiliary
mechanisms of DSB repair include single-strand annealing
(SSA) and alternative end joining (a-EJ) that rely on the
presence of larger repeat sequences and microhomologies at
the breakpoint, respectively [(6, 7); Figure 1]. Importantly,
functional interdependencies between different DNA repair
pathways and within compensatory DSB repair mechanisms
offer therapeutic opportunities to selectively treat DDR-
deficient tumors based on the concept of synthetic lethality
(SL) (3, 5, 8, 9).

DSB REPAIR PATHWAYS

The decision as to whether a given DSB is processed by c-
NHEJ, HR, or alternative repair pathways is determined by
several factors, including genetic and genomic background, DSB
complexity, chromatin state, and cell cycle phase. For instance,
c-NHEJ operates throughout the cell cycle, whereas HR relies on
the presence of an undamaged sister chromatid and is therefore
restricted to late S/G2 (7, 10). Therefore, HR activation requires
high cyclin-dependent kinase (CDK) activity (11). In addition,
numerous HR genes are found upregulated in S/G2 phase of the
cell cycle (7). At the chromatin level, the appropriate equilibrium
between HR and c-NHEJ is mainly established by BRCA1 and
53BP1, large DDR adaptor proteins that are enriched at DSB
sites (12, 13). Whereas, 53BP1 mediates c-NHEJ events and
is pivotal in repairing programmed DSBs (e.g., during class-
switch recombination), BRCA1 antagonizes 53BP1 to promote
DSB resection and HR [(14, 15); Figure 1]. Importantly, one-
ended DSBs, predominantly induced by fork breakage or collapse
due to high replication stress, lack an adjacent second DNA
end for rejoining and can only be repaired by HR-related
mechanisms (7).

C-NHEJ
C-NHEJ is accountable for the repair of most two-ended
DSBs in mammalian cells (Figure 1). Rapid and high-affinity
binding of the Ku70-Ku80 heterodimer (Ku) to DNA ends
is followed by the recruitment of DNA-dependent protein
kinase catalytic subunit (DNA-PKcs), forming the active DNA-
PK holoenzyme. Key functions of DNA-PK in c-NHEJ are
(i) promoting synapsis of the broken ends, (ii) coordinating
necessary processing of incompatible ends by DNA nucleases
(e.g., Artemis) and polymerases, and (iii) engaging the DNA
ligase complex composed of DNA ligase IV, XRCC4, XLF,
and PAXX (7, 16). Despite rejoining DSBs without the use
of extensive sequence homology, c-NHEJ is often highly
accurate and its core factors therefore considered as genome
“caretakers” (10, 17, 18).

HR
In case c-NHEJ fails or is inappropriate, DSBs are subjected
to extensive 5′-end resection, generating 3′-single-stranded (ss)
DNA overhangs that interfere with Ku loading and promote
high-fidelity repair by HR [(7, 19); Figure 1]. In a first step,
the MRE11-RAD50-NBS1 (MRN) complex in conjunction with
CtIP, also known as RBBP8, coordinates tethering and short-
range nucleolytic degradation of DSB ends (20, 21). MRE11
exhibits a dual endo- and exonuclease activity that is critical for
DNA end resection (22). Following long-range resection carried
out by EXO1 or the BLM-DNA2 ensemble, the 3′ ssDNA tails
are coated by the RPA heterotrimer. In the central step of HR,
BRCA2 with the help of BRCA1 and PALB2 delivers RAD51
monomers to ssDNA, resulting in RPA removal and RAD51
presynaptic filament formation required for strand invasion and
homology search. Interestingly, in G1 phase, BRCA1-PALB2-
BRCA2-RAD51 complex formation is impaired by proteasome-
mediated degradation of PALB2 (7). Mechanistically, PALB2-
interacting protein KEAP1 in complex with cullin-3-RBX1
ubiquitylate PALB2, thereby suppressing PALB2-BRCA1 (23).
HR in somatic cells is mostly completed by synthesis-dependent
strand annealing (SDSA), generating non-crossovers, although
other outcomes are possible (24).

Alternative DSB Repair Pathways
A-EJ is genetically distinct from Ku-dependent c-NHEJ
and RAD51-dependent HR and requires the presence of
microhomology (MH) regions (2–20 bp), which are exposed
following MRN-CtIP-mediated resection [(25, 26); Figure 1].
Importantly, long-range resection impedes a-EJ and favors HR
or SSA (27, 28). DNA polymerase theta (Polθ), a low-fidelity
DNA polymerase-helicase, has been recently identified as
key factor driving a-EJ by limiting RAD51 nucleation onto
ssDNA (29–31). The Polθ-helicase domain displaces RPA from
ssDNA tails, whereas the Polθ-polymerase domain promotes
their synapsis, thereby facilitating MH-mediated annealing
and subsequent gap filling (32, 33). The essential ligation step
during a-EJ is performed by the DNA ligase IIIα-XRCC1
complex (26). Contrary to a-EJ, SSA requires more extensive
DNA end resection followed by RAD52-mediated annealing of
homologous tandem repeat sequences (>20 bp) [(34); Figure 1].
Whether a-EJ and SSA serve primarily as backup pathways in
mammalian cells deficient in either c-NHEJ or HR, or are favored
at specific genomic loci still remains to be established (35).

DSB REPAIR PROTEIN DYSFUNCTION IN
CANCER

Only a minor number of human cancers are associated with
downregulation or alterations of core c-NHEJ genes (36). Rare
mutations in LIG4 (encoding DNA ligase IV), XLF, DCLRE1C
(encoding Artemis) or PRKDC (encoding DNA-PKcs) have been
identified in a radiosensitive sub-class of patients with severe
combined immunodeficiency (SCID) and can predispose to
cancer (37, 38). As c-NHEJ is the predominant DSB repair
pathway in human cells, complete loss-of-function is likely to
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FIGURE 1 | DSB repair pathways in mammalian cells. Two-ended DSBs are preferably repaired by two major competing pathways: classical non-homologous end

joining (c-NHEJ) and homologous recombination (HR). In addition, DSBs can be subjected to alternative end joining [a-EJ, also referred to as DNA polymerase

theta-mediated end joining (TMEJ)] or single-strand annealing (SSA). BRCA1 and 53BP1 are placed at the center of DSB repair pathway choice. Whereas, chromatin

recruitment of 53BP1 drives c-NHEJ, BRCA1 antagonizes 53BP1 to channel DSB repair into HR. (i) C-NHEJ begins with Ku70-Ku80 (Ku) binding to DSB ends,

followed by the recruitment of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), forming the DNA-PK holoenzyme implicated in DNA synapsis. If

necessary, DNA-PK coordinates limited processing of incompatible or chemically modified DNA ends by nucleases (e.g., Artemis) and other enzymes. The DNA ligase

IV (LigIV)-XRCC4-XLF-PAXX complex executes the final ligation step. DNA end resection interferes with the default engagement of c-NHEJ by removing Ku from DNA

ends, which is a critical step for initiating HR (ii). First, the MRE11-RAD50-NBS1 (MRN) complex senses the DSB and with the help of BRCA1 and CtIP promotes

limited resection of the 5′ strand. Next, more extensive 5′-3′ resection by exonuclease 1 (EXO1), or by the Bloom’s syndrome (BLM) helicase together with the DNA2

nuclease, generates long 3′ ssDNA overhangs that become rapidly coated with the RPA heterotrimer. The BRCA1-PALB2-BRCA2 complex disassembles RAD51

heptamers and loads monomeric RAD51 onto ssDNA, promoting RAD51 filament assembly. Template-dependent strand extension is followed by

“synthesis-dependent strand annealing” (SDSA), resulting in a non-crossover gene conversion. Alternatively, capture of the second ssDNA by the D-loop forms a

double Holliday junction intermediate, which can be resolved either as a non-crossover or as a crossover. (iii) SSA requires at least 20–25 base pairs (bp) of DNA

sequence homology, which are typically found between repetitive elements (indicated as green boxes) in the genome. Subsequently, RAD52 promotes annealing of

complementary ssDNA and leftover non-homologous flaps of the 3′ overhangs are cleaved by XPF-ERCC1. The factors that promote gap filling and ligation during

SSA remain largely elusive. (iv) In contrast to SSA, a-EJ (or TMEJ) utilizes short microhomologies (MHs) of 2–20 bp (indicated as red boxes) to join the two DNA

strands. PARP1 has been implicated in promoting DNA end synapsis and recruiting the specialized DNA polymerase θ (Polθ) to DSBs. Polθ stabilizes MH-mediated

joints between the two DNA ends serving as primers for fill-in synthesis. 3′ flaps extending from the joints are removed by XPF/ERCC1. Flap endonuclease 1 (FEN1)

has recently been implicated in the removal of 5′ flaps generated by Polθ-mediated strand displacement, while the DNA Ligase III (LigIII)-XRCC1 complex is essential

for the final ligation step. Inset, bottom left: DSB repair pathway-specific inhibitors. Inhibition of c-NHEJ has so far been mainly achieved by targeting DNA-PK using

different small molecule inhibitors. Strategies to inhibit a-EJ and SSA focus on targeting their respective DNA annealing factors Polθ and RAD52, while the primary

target to disrupt HR is RAD51 (see text for more details).

drive cell death due to an unreasonably high DSB burden (36).
Elevated DNA-PKcs levels were implicated in the progression of
various types of tumors such as prostate cancer and melanoma

(36). Noteworthy, PRKDC is with 2.1% the sixth most frequently
mutated DNA repair gene in all cancers and considered a
potential oncogene, exhibiting frequent copy number gains (39).
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A comprehensive analysis of somatic DDR gene alterations
delineates HR as the most frequently altered DNA repair
pathway across 33 cancer types, most notably ovarian cancer
(40). Mutational signatures associated with robust HR deficiency
(HRD) primarily included alterations affecting BRCA1, BRCA2,
two canonical RAD51 paralog genes (RAD51B, RAD51C), BLM,
and RAD50 (40). Large-scale molecular profiling of solid tumor
samples across 21 cancer lineages detected pathogenic HR gene
mutations with an overall frequency of 17.4%. Here, again,
BRCA2 (3%) and BRCA1 (2.8%) were the most commonly
mutated bona fide HR genes and predominantly seen in ovarian
and breast cancers (41). Heterozygous germline mutations in
BRCA1 and BRCA2 are responsible for the majority of hereditary
breast and ovarian cancer (HBOC) syndrome patients. However,
only ∼20–25% of HBOC families have BRCA mutations
and other low-to-moderate penetrance HBOC susceptibility
genes involved in HR have been identified, including BRIP1,
RAD51C, and PALB2 (42). Moreover, revisiting whole-exome
sequencing datasets of non-BRCA1/2 familial breast cancer
patients confirmed the existence of likely pathogenic germline
variants in MRE11A, RAD50, and NBN, encoding components
of the MRN complex (43, 44). Lord and Ashworth have
coined the term “BRCAness” to denote HRD tumors that
share molecular features of BRCA1/2-mutant tumors and are
therefore expected to effectively respond to the same treatment
modalities (45). Remarkably, however, a recent study indicated
that most somatic BRCA1/2 alterations in non-BRCA associated
cancer types may be incidental findings unrelated to tumor
pathogenesis, rendering them therapeutically irrelevant (46).
In contrast to the situation encountered for BRCA1/2, no
inactivating mutations of RAD51 have been reported in tumors.
Paradoxically, RAD51 is frequently found overexpressed and
has been associated with poor prognosis in patients with solid
malignancies, thus potentially acting as a driver of aberrant
HR (47).

Similarly, elevated MRN expression has been correlated
with tumor progression and poor survival in patients with
rectal and gastric carcinomas and prostate cancer (48–50).
However, with the exception of a positive relationship between
MRN deficiency and microsatellite instable (MSI) colorectal
cancers, large scale studies will be required to substantiate its
relevance in clinical settings (51). Like MRN, CtIP also has
rather oncogenic potential at the cellular level, most likely
by facilitating a-EJ-dependent chromosomal instability (52–
54). Accordingly, mice heterozygous for a null Ctip allele did
not display increased tumor susceptibility, meanwhile CtIP
inactivation suppressed mammary tumorigenesis caused by p53
deficiency (55). Although still far from being fully characterized,
a-EJ is intrinsically mutagenic, typically generating deletions at
the repair junction, and suggested to be a major driving force
of genomic instability in human cancers (56–58). In particular,
a-EJ reliant on Polθ, also referred to as theta mediated end
joining (TMEJ, see Figure 1), has emerged as a distinct DSB
repair pathway acting predominantly in HRD tumors or on
breaks incompatible with c-NHEJ and HR (59). Consistently,
depletion of BRCA1/2 resulted in increased usage of TMEJ
using reporter assays in human cells (25). Elevated POLQ

(encoding for Polθ) expression has been described in numerous
cancer types, including breast and ovarian cancer (29, 59–61).
Overall, CtIP and Polθ may drive tumorigenesis through a-EJ
in defined biological contexts and therefore represent promising
therapeutic targets.

DSB REPAIR PROTEINS AS DRUG
TARGETS

As outlined above, DSB repair constitutes an Achilles’ heel of
cancer cells and there is a continuous search for compounds
specifically targeting DSB repair components to exploit this
key vulnerability.

Combinatorial Treatment Regimens
Involving DSB Repair Inhibitors
DNA repair targeted therapy was first considered most beneficial
in combination with conventional DNA-damaging agents (62,
63). In recent years, mainly thanks to the development of
PARPi, additional treatment strategies including DDR inhibitor
combinations have been implemented in clinical trials (3,
64, 65). Furthermore, DDR-targeting drugs were found to
enhance the effectiveness of immunotherapy by fostering
increased immunogenic surveillance and restricted tumor
growth (66, 67). An elevated mutation load was shown to
increase neoantigen levels in cancer cells thereby promoting
tumor immunogenicity (68). Here, we will mainly focus on
available DSB repair pathway inhibitors and their synergistic
effect in combination with standard chemo- or radiotherapy.
Moreover, existing PARPi-based combination strategies will also
be highlighted.

Pharmacological Targeting of c-NHEJ

Restraining c-NHEJ capacity has been primarily achieved
by targeting DNA-PK (Figure 1). Conceptually, compounds
blocking c-NHEJ are thought of as being most effective when
used in combination with radiation therapy, as c-NHEJ is
taking care of roughly 80% of IR-induced DSBs (69). Whereas,
numerous DNA-PKcs small-molecule inhibitors (DNA-PKi)
have been developed over the last 20 years, only one specific
agent is known to target the Ku heterodimer (70). Weterings
et al. identified a compound interfering with the binding of Ku
to DNA and sensitizing human cell lines to IR (71). Similarly,
the majority of DNA-PKi displayed synergistic effects with IR
and chemotherapeutics including etoposide and cisplatin (72).
For example, VX-984 induced radiosensitivity of glioblastoma
cells grown as orthotopic xenografts (73), whereas combination
of the DNA-PKi KU-0060648 with ATR inhibitor AZD6738
potentiated radiosensitization of head and neck squamous cell
carcinoma cell lines (74). The most potent DNA-PKi (M3814,
CC-115 and CC-122) are currently being investigated in several
clinical trials (72). Of particular interest, a dose escalation phase I
clinical trial combines M3814 with Avelumab (NCT03724890), a
human monoclonal antibody targeting the protein programmed
death-ligand 1 (PD-L1). Remarkably, CC-115, a dual inhibitor
targeting DNA-PK and the structurally related mammalian target
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of rapamycin kinase (TORK), was shown to induce caspase-
dependent cell death in primary chronic lymphocytic leukemia
(CLL) cells and to be clinically effective in CLL patients with
an ATM mutation (75, 76). However, it remains an open
question of whether DNA-PKi act solely by impairing DSB repair,
as other cellular functions of DNA-PKcs have been reported,
including cell cycle progression, transcription and telomere
maintenance (70).

Pharmacological Targeting of HR

MRE11 harbors endo- and exonuclease activity essential for
DNA end resection, thereby channeling DSBs into homology-
directed repair pathways (22). A forward chemical genetic
screen identified mirin as the first MRE11 inhibitor targeting
its exonuclease activity and preventing ATM activation (77). In
addition, structure-guided nuclease-specific MRE11 inhibitors
revealed that endonuclease inhibition promotes c-NHEJ in lieu
of HR, whereas exonuclease inhibition caused a more profound
DSB repair defect (78, 79). CtIP’s role in DSB resection has
been mostly attributed to its interaction with and stimulation
of MRE11, although intrinsic CtIP endonuclease activities have
also been demonstrated (80–83). Intriguingly, CtIP-specific
inhibitors have not been reported yet. However, inhibition of
Bromodomain-containing protein 4 (BRD4) was found to induce
an HRD signature by decreasing transcriptional activity of the
CtIP promoter and enhancer (84). Reduced CtIP protein levels
correlated with increased PARPi sensitivity, potentially qualifying
CtIP as a predictive marker for PARPi response. Consistently,
different BRD4 inhibitors (e.g., JQ1 and AZD5153) sensitized a
broad range of tumor types to PARPi in multiple in vitro and in
vivomodels (85).

BRCA1 and BRCA2 represent challenging targets for
structure-based drug discovery, as they are both large proteins
made up of short, functional domains, serving as hubs for
multiple protein-protein interactions, interspersed by long,
intrinsically disordered linkers (86). In this regard, Pessetto
et al. identified a cell permeable peptide ablating phosphoprotein
binding by the BRCA1 tandem BRCT domains and enhancing
PARPi sensitivity of cancer cells (87). Similarly, a BRCA2-
mimetic cell-penetrating peptide disrupting BRCA2-RAD51
interaction conferred PARPi sensitivity in cancer cell lines (88).
Small molecules selectively targeting BRCA1’s ubiquitin ligase
activity, which is mediated by the N-terminal RING domain and
required for efficient DSB resection (89), might also offer a valid
alternative to inhibit HR.

Chemical inhibitors of RAD51 (e.g., B02, IBR2, RI-1/2) have
been reported to either interfere with RAD51 oligomerization,
filament formation or DNA binding, and, ultimately, to induce
HR deficiency [(78, 90–94); Figure 1]. Triple combination of
B02, the PARPi veliparib and a p38 MAPkinase inhibitor
(LY2228820) significantly reduced primary tumor growth in
an orthotopic triple negative breast cancer (TNBC) mammary
xenograft model (95). Similarly, cancer cell proliferation in a
breast cancer xenograft model and in a chronic myelogenous
leukemia model bearing the BCR-ABLT315I mutation was
significantly slowed upon IBR2 treatment (94). RI-1 potentiated
the effect of the alkylating agent Iomustine on a glioma

xenograft model, reduced growth of cervical cancer xenografts
and hindered TNBC growth in vivo when combined with
veliparib (96–98). Based on these preclinical findings, RAD51i
were proposed as potential candidates for a novel class
of broad-spectrum therapeutics for difficult-to-treat cancers.
Interestingly, Cyteir Therapeutics is currently recruiting patients
for a phase 1/2 study with CYT-0851, an oral RAD51i
designed to reduce the ability of RAD51 to migrate to and
from sites of excessive DNA damage (NCT03997968). In
addition to direct RAD51 inhibition, inactivation of RAD51
can also be achieved by indirect mechanisms, including
tyrosine kinase inhibitors (93). For example, it was recently
reported that cediranib (AZD-2171), a potent inhibitor of
vascular endothelial growth factor (VEGF) tyrosine kinases,
constrains HR through transcriptional repression of RAD51 and
BRCA1/2 (99). Accordingly, combination of the PARPi olaparib
with cediranib showed superior progression-free and overall
survival outcomes in relapsed ovarian cancer patients without
documented BRCA1/2mutations (100).

Even though drugs inhibiting c-NHEJ or HR have proven
highly effective in combinatorial treatment strategies, they
usually lack tumor specificity and receiving patients often suffer
from toxic side effects, resulting in a narrow therapeutic window.
Nowadays, SL-based strategies provide a more promising
approach for therapeutic interventions, particularly in patients
with HRD.

Exploiting Synthetic Lethality in
HR-Defective Tumors
The most popular synthetic lethal interaction (SLI) exploited in
cancer therapy is the one between BRCA and PARP1 genes (101,
102). Catalytic inhibition of PARP1 “traps” PARP1 molecules
on damaged DNA, resulting in replication fork collapse and
DSB formation. In combination with HRD, due to BRCA1/2
loss, PARP trapping leads to persistent accumulation of DSBs,
inducing cell cycle arrest and apoptosis (Figure 2A). In two
landmark studies, pharmacological targeting of PARP1 with the
orally active PARPi olaparib showed a favorable therapeutic index
in homozygous BRCA-mutated breast or ovarian cancer (103,
104). There are currently six small-molecule PARPi available
in the clinic, four of them (olaparib, rucaparib, niraparib
and talazoparib) have already obtained approval in different
therapeutic settings (65). Despite this remarkable success story,
resistance to PARPi remains a major problem in the clinic and
an active area of research (105). Nonetheless, the identification
of additional, cancer-specific SL gene pairs holds great promise
in developing effective monotherapy regimens, as exemplified
below (Figure 2B).

Two seminal studies from the Sfeir and D’Andrea laboratories
established that HRD cancers display a pronounced dependency
on TMEJ to limit the toxicity of DSBs [(29, 30); Figure 2B].
Moreover, the fact that Polθ is generally absent in normal
cells but upregulated in many cancers makes it a highly
desirable drug target (29). Consequently, two established
precision oncology companies, Artios Pharma and Repare
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FIGURE 2 | Synthetic lethal (SL) strategies to target HR-deficient (HRD) tumors. (A) PARPi (red dot) trap PARP1 proteins on endogenous DNA lesions, including

single-strand breaks or gaps. If not removed timely, trapped PARP1 blocks the replication machinery, leading to one-ended DSBs that need to be repaired by HR. In

HRD tumors such as BRCA1- or BRCA2-mutated cancers, DSBs persist and accumulate, ultimately causing cell death due to SL. (B) HRD tumors are addicted to

alternative, mutagenic DSB repair process (a-EJ and SSA) to sustain proliferation. Targeting Polθ (or FEN1) or RAD52 by small molecule inhibitors (red dots) would

eliminate a-EJ or SSA, respectively, resulting in SL. (C) Apurinic/apyrimidinic (AP) sites (black dot) are one of the most frequent spontaneous lesions in DNA. If not

timely removed by APE2, they have the potential to block DNA replication. Consequently, APE2 inhibition (red dot) would lead to massive accumulation of AP sites

associated with increased rates of fork collapse and DSB formation. In healthy cells, HR can deal with those DSBs, promoting cell survival. In contrast, treating HRD

tumors with APE2i would cause DSB-induced cell death due to SL.

Therapeutics, have launched Polθ inhibitor programs with first-
in-human clinical studies due to start soon. Furthermore,
CRISPR-based genetic screens targeting 309 murine DDR genes
identified 140 Polq SL genes, including many HR mediators,
several c-NHEJ genes and key components of the 53BP1
anti-resection pathway (106). Notably, 30% of human breast
cancers in the TCGA cohort were found to be likely deficient
in one or more of the 140 Polq SL genes, significantly
broadening the number of patients that may benefit from Polθ
inhibition (106).

Another interesting SLI was repeatedly reported between
RAD52 and BRCA1/2 [(107–111); Figure 2B]. Due to the
multiple roles of RAD52 in genome maintenance pathways,
the exact mechanism underlying the RAD52-BRCA SL remains
to be fully understood (112). However, it has been reported
that RAD52-dependent SSA acts as an important backup when
direct protein-protein interactions in the BRCA1-PALB2-BRCA2
complex, required to channel resected DSBs down the HR
path, are disrupted (113). In large agreement with this notion,
RAD52 inhibitors exerted synergistic activity with PARPi against
BRCA1-deficient tumor cells (114). Remarkably, combined
disruption of RAD52 and POLQ caused additive hypersensitivity
to cisplatin, indicating distinct back-up roles in DSB repair and a
potentially effective approach for SL therapeutic strategies (115).
Several small-molecule RAD52 inhibitors have been developed,
but none of them have been subjected to clinical trials (78).

Last but not least, genetic screens by the Elledge laboratory
uncovered FEN1 (encoding Flap endonuclease 1) and APEX2
(encoding AP endonuclease 2, APE2) as SL genes in BRCA1/2-
deficient backgrounds (116). They proposed that in the context
of HRD, FEN1 may be responsible for the removal of Polθ-
dependent 5′ flaps during TMEJ (Figures 1, 2B), while APE2 is
mainly processing abasic sites at replication forks to avoid fork
collapse and DSB formation [(116); Figure 2C].

Notably, acquired genomic instability due to HRD facilitates
acquisition of mutations that could trigger therapy resistance (4).
For instance, PARPi resistance mechanisms have mostly been
linked to either reactivating BRCA mutations or DDR rewiring,
thereby functionally restoring HR. In these cases, chemical
inhibition of the reactivated HR pathway has been proposed
to overcome PARPi resistance (117). Interestingly, numerous
studies revealed that reversion mutations of BRCA genes display
MH signatures that likely originate from error-prone DSB
repair mechanisms such as a-EJ and SSA (118). Consequently,
combined inhibition of PARP1 and Polθ (or RAD52) should
prolong drug responses and prevent resistance acquisition (118).
In addition, targeting alternative SLIs with HRD (Figure 2C)
could be beneficial when PARPi resistance arises due to loss of
PARP1 expression or activation (117).

Finally, it remains to be said that only few robust SLIs have
been identified since the discovery of the SL between PARP
inhibition and BRCA1/2 loss of function in 2005 (119). Moreover,

Frontiers in Oncology | www.frontiersin.org 6 December 2019 | Volume 9 | Article 138843

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Trenner and Sartori Targeting DNA Double-Strand Break Repair

it has been argued that most SLIs display incomplete penetrance
due to extensive molecular heterogeneity seen in tumors (120).
Therefore, assessing the penetrance of SLIs will become an
important aspect of future research.

CONCLUSIONS

It has become increasingly evident that targeted inhibition of
DSB repair proteins offers a wide range of possible applications in
cancer treatment. Initially, combinatorial therapy of DSB repair
inhibitors with DNA-damaging agents (e.g., IR or cisplatin)
were considered most effective. Given that DSB repair deficiency
results in increased tumor immunogenicity, the combination
of selected DSB repair inhibitors with immunotherapy will
very likely find its way into the clinic. In addition, the
emerging concept of exploiting SL as anti-cancer therapy is
expected to allow more selective and efficient tumor killing
without the side-effects of conventional drugs. Importantly,
sequential therapy with DNA repair inhibitors was found to
be less toxic compared to simultaneous drug administration
meanwhile retaining treatment efficacy (121, 122). Consequently,
detailed evaluation of the drug administration timing is of vital
interest to reduce cytotoxicity. In addition, the stratification
of robust biomarkers and detection of mutational signatures
will be highly critical to the implementation of SL but also

combinatorial therapy regimens (123). Finally, DSBs are repaired
by multifactorial pathways that are heavily connected. These
interdependencies generate potentially druggable vulnerabilities
but also opportunities for tumors to develop drug resistance.
Thus, establishing potent inhibitors for each DSB repair pathway
will create new treatment opportunities for a wide range
of tumors.
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Nanoformulation of Talazoparib
Increases Maximum Tolerated Doses
in Combination With Temozolomide
for Treatment of Ewing Sarcoma

Paige Baldwin 1, Rostislav Likhotvorik 2, Nabeela Baig 2, Jodie Cropper 2, Ruth Carlson 2,

Raushan Kurmasheva 2,3*† and Srinivas Sridhar 1,4,5*†

1Department of Bioengineering, Northeastern University, Boston, MA, United States, 2Greehey Children’s Cancer Research

Institute, San Antonio, TX, United States, 3Department of Molecular Medicine, The University of Texas Health Science Center

at San Antonio, San Antonio, TX, United States, 4Department of Physics, Northeastern University, Boston, MA,

United States, 5Division of Radiation Oncology, Harvard Medical School, Boston, MA, United States

The Pediatric Preclinical Testing Program previously identified the PARP inhibitor

talazoparib (TLZ) as a means to potentiate temozolomide (TMZ) activity for the treatment

of Ewing sarcoma. However, the combination of TLZ and TMZ has been toxic in both

preclinical and clinical testing, necessitating TMZ dose reduction to ∼15% of the single

agent maximum tolerated dose. We have synthesized a nanoparticle formulation of

talazoparib (NanoTLZ) to be administered intravenously in an effort to modulate the

toxicity profile of this combination treatment. Results in Ewing sarcoma xenograft models

are presented to demonstrate the utility of this delivery method both alone and in

combination with TMZ. NanoTLZ reduced gross toxicity and had a higher maximum

tolerated dose than oral TLZ. The dose of TMZ did not have to be reduced when

combined with NanoTLZ as was required when combined with oral TLZ. This indicated

the NanoTLZ delivery system may be advantageous in decreasing the systemic toxicity

associated with the combination of oral TLZ and TMZ.

Keywords: talazoparib, temozolomide, nanoparticle, combination therapy, Ewing sarcoma

INTRODUCTION

Ewing sarcoma (ES) comprises the fourth most common highly malignant childhood solid tumor
(1, 2). Most patients are diagnosed between 10 and 20 years old and 70% of patients will be
cured with intensive chemotherapy regimens (3). However, 25% of patients present with metastatic
disease at the time of diagnosis and the prognosis for these cases is unfavorable with 5-year survival
rates around 30% (1). Advances in chemotherapy regimens, radiotherapy, and surgery have shown
dramatic improvements in the management of local tumors. These advances have come in the
form of dose intensification and compression, with few advances in identifying new compounds
for treating these tumors. However, very little progress has been made in the treatment of advanced
or metastatic disease.

ES is defined by a tumor-specific chromosomal translocation (4–6). In approximately 85%
of all tumors, the EWSR1 gene on chromosome 22 is fused to FLI1, a member of E26
transformation-specific sequence (ETS) family of transcription factors, on chromosome 11. In the
remaining 15% of ES tumors, the EWSR1 is fused to other members of the ETS family, mostly
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the ERG gene on chromosome 21 (7, 8). It has been shown
recently, that ETS transcription factors interact with Poly-ADP
ribose polymerase 1 (PARP1), the founding member of the DNA
damage repair superfamily of enzymes (9, 10). It is postulated that
PARP1 is a direct transcriptional target of EWSR1-FLI1, and it
interacts with EWSR1-FLI1 or EWSR1-ERG fusion proteins in
a feed-forward loop to enhance oncogenic transcription factor
function (9). Further, ETS gene fusions induce DNA double-
strand breaks (9, 11). Thus, it is postulated that inhibiting PARP
activity has a selective effect on ES cells through downregulating
the activity of the oncogenic EWSR1-FLI1 fusion protein, leading
to selective hypersensitivity of ES cell lines to PARP inhibitors as
was identified using a genomic screen (12). However, despite the
promising activity of PARP inhibitors as single agents in vitro,
they have shown only modest activity in in vivo models without
defects in homologous recombination (10).

Talazoparib (TLZ), a potent PARP inhibitor, was evaluated
as a single agent in 44 xenograft models representing childhood
solid tumors, but only two models demonstrated regression (10).
There was no activity in ES xenografts, which appears to be
reflective of clinical activity, since a phase II clinical trial of the
PARP inhibitor olaparib showed no activity in ES tumors (13).
Preclinical studies indicate the combination of PARP inhibitors
with chemotherapy agents that damage DNA induces synergy in
vitro and promising activity in xenograft models (9, 10, 14–16).
It has been shown in vitro that the potency of temozolomide
(TMZ) can be potentiated up to 40-fold through inhibition
of PARP by TLZ, not only in ES cells (17). In our previous
study, neither TLZ nor TMZ as single agents yielded biologically
significant anti-tumor activity against ES xenografts, while the
combination of the two agents led to dramatic regression in 5
of the 10 ES xenograft models (17). However, this combination
was toxic, necessitating a reduction of TMZ to ∼15% of its
single agent maximum tolerated dose (MTD). Results of a recent
phase I/II clinical trial to assess the combination of TMZ and
TLZ in pediatric patients with recurrent disease (NCT02116777)
suggests a similar TMZ dose reduction is required to make this
combination tolerable.

Nanoparticles have been widely studied as drug delivery
systems due to their inherent ability to reduce toxicity while
maintaining therapeutic efficacy (18, 19). Nanoparticles can be
administered intravenously meaning the drug is 100% available
in the vasculature. In contrast, oral drugs must cross the gastro-
intestinal barrier, a rate limiting step for drug absorption, and
subsequently undergo first-pass metabolism. Tumors are known
to rapidly induce blood vessel growth to supply them with
nutrients, resulting in a highly disorganized vascular network
with compromised lymphatic draining. This leaky vasculature,
and poor lymphatic drainage, aids in the enhanced permeability
and retention (EPR) effect, whereby nanoparticles are more
likely to extravasate and remain in tumor tissue instead of
healthy tissues (20). A nanoformulation of TLZ (NanoTLZ)
has been developed and shown to be more effective than oral
TLZ at delaying ascites formation in a disseminated ovarian
cancer model (21). Additionally, NanoTLZ induced greater
regression than both oral and intravenous (IV) TLZ in a BRCA1
deficient model of breast cancer without any signs of toxicity

(22). Therefore, we sought to utilize NanoTLZ in combination
with TMZ to more effectively treat ES. We hypothesized that
NanoTLZ would be less toxic than oral TLZ, consequently
allowing for combination with TMZ at doses closer to the single
agent MTD. Lowering the toxicity of the combination is expected
to provide more effective treatment for these tumors.

MATERIALS AND METHODS

Synthesis and Characterization of
NanoTLZ
Formulation and characterization of NanoTLZ have been
previously reported (21, 22). Briefly, fixed ratios of 1,
2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-
dioleoyl-3-tri methyl-ammonium-propane (chloride salt)
(DOTAP), cholesterol, and 1,2-distearoyl-sn-glycero-3
phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000
(DSPE-PEG2000), and TLZ were mixed in chloroform and
evaporated to form a thin film. The film was hydrated with
phosphate buffered saline (PBS) at 50◦C and sized using bath
sonication for 20min. Nanoparticles were dialyzed against
PBS and additional non-encapsulated drug which is insoluble
in aqueous media was removed via syringe filter (23). Vehicle
nanoparticles were prepared following the same protocol without
the addition of TLZ. Fluorescently labeled nanoparticles were
prepared by including Cyanine 5 (Cy5) in the lipid mixture.

Each batch was characterized in regards to size and zeta
potential using a Brookhaven 90Plus analyzer equipped with
ZetaPALS. The concentration of encapsulated TLZ was measured
by lysing nanoparticles with methanol for analysis via high
performance liquid chromatography as previously described.

In vitro Assessment of NanoTLZ
ES-6, ES-7, EW-8 ES cells have been previously determined to
be sensitive to single agent TLZ and therefore, were utilized
to ensure NanoTLZ was as effective as free TLZ in vitro (10).
TC-71 cell line is not sensitive to single agent TLZ but has
been previously shown that treatment with a low dose of TLZ
can potentiate killing by TMZ, therefore, TC-71 was further
used to assess the ability of NanoTLZ to potentiate the effect of
TMZ by treating cells with the IC10 of either TLZ or NanoTLZ
and assessing dose response to TMZ. The Alamar Blue R© assay
was used to assess cell viability (BioRad). Cells were seeded
to reach 20–40% confluency. TLZ, NanoTLZ, or TMZ were
added to wells 24 h after cell seeding, and incubated for 96 h.
Following the 96 h incubation of cells in 24-well plates, 10%
v/v of Alamar Blue was added and fluorescence was measured
after 4 h (excitation 530 nm, emission 590 nm). Wells containing
RPMI 1640 (Hyclone), 10%FBS (Sigma) and untreated cells, 10%
v/v Alamar blue, were used as positive controls. Wells with
culture medium without cells containing 10% v/v Alamar Blue
were assays as negative controls. Fluorescence was recorded on
the Spectra Max plate reader, with the Alamar Blue protocol
provided by Softmax Software. All experiments were performed
in triplicate. Statistical analysis and curve plotting (3-parameter
polynomial analysis) were performed using standard equations
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included in the GraphPad Prism 7.0c package (GraphPad
Software Inc., USA).

Immunoblotting
Mice harboring KT-10 xenografts were treated with 0.165
mg/kg TLZ BID x5 PO or 0.33 mg/kg NanoTLZ SID,
IV, on days 1, 3, and 5. Tumors were collected from
3 mice/group for immunoblotting. Cells were lysed using
RIPA buffer (89900, Pierce) according to standard protocols.
Samples were separated on a 4–12% gradient gel (NP0321,
Invitrogen) and then transferred onto a PVDF or nitrocellulose
membrane. Membranes were blocked with 3% BSA in TBS-
T for 1 h at room temperature, then incubated with primary
PARP1/cleaved PARP1 or GAPDH antibodies overnight (Cell
Signaling Technology). After secondary antibody incubation
and washing, membranes were developed using enhanced
chemiluminescence (NEL103001EA, PerkinElmer).

MTD of NanoTLZ
All animal studies and procedures, unless otherwise stated, were
conducted in accordance with the Institutional Animal Care
and Use Committee (IACUC) reviewed and approved at the
University of Texas Health San Antonio.

For evaluation of toxicity, non-tumored C.B.17SC scid-/-
female mice (Taconic Farms, NY) were administered 0.125, 0.25,
0.5, or 1 mg/kg NanoTLZ IV either on days 1, 3, and 5 or daily for
5 days to assess the single agentMTD (n= 3/group). To assess the
combination MTD, mice were treated with 0.5 mg/kg NanoTLZ
IV daily for 5 days combined with 5, 10, 20, 30, or 40 mg/kg TMZ
oral gavage daily for 5 days. A second combination assessed 1.0
mg/kg NanoTLZ IV on days 1, 3, and 5 combined with 50 mg/kg
TMZ oral gavage for 5 days. Body weight was measured daily for
21 days. Loss of more than 20% of the initial body weight was
considered toxic and the next lower dose would be considered
the MTD.

In vivo Localization
This animal study was performed in accordance with protocols
approved by the IACUC at Northeastern University. NCr-nu/nu
mice were implanted with 106 MDA-MB-231-D3H2LN cells in
matrigel. When tumors reached ∼100 mm3 a single dose of
NanoTLZ-Cy5 IV was administered (n = 3). Twenty-four hours
after administration fluorescent imaging was completed using an
IVIS Lumina II. The primary image was collected at an excitation
wavelength of 640 nm, the background image was excited at
570 nm and the collected emission was 695–770 nm.

Efficacy of NanoTLZ Monotherapy
The KT-10 Wilms tumor PDX model was used to assess the
activity of NanoTLZ. This model has a PALB2 mutation, hence
is defective in homologous recombination and is sensitive
to TLZ (10). The PPTP previously identified relevant doses
of free TLZ for this model which were used in this study
(10). MTD testing in non-tumored mice as mentioned in
section MTD of NanoTLZ was used to identify the NanoTLZ
dose. C.B.17SC scid-/- mice implanted with KT-10 xenografts
were treated with 1 mg/kg NanoTLZ or vehicle (empty

nanoparticles) IV on days 1, 3, and 5; or with 0.1625 or
0.33 mg/kg free TLZ by oral gavage daily for 5 days (n =

8–10/group). Tumor diameters were measured weekly using
digital calipers, and body weights were measured. Animals
were euthanized when tumor volume reached 400% of the
volume at start of treatment. Tumor responses were classified
into 5 categories: progressive disease (PD), >25% increase in
tumor volume; stable disease (SD), <25% increase in tumor
volume and <50% regression; partial response (PR), regression
≥50% for at least one time point; complete response (CR),
no measurable tumor (<0.04 cm3); and maintained complete
response (MCR), tumor volume <0.1 cm3 at the end of the
study (17).

NanoTLZ in Combination With TMZ
C.B.17SC scid-/- mice implanted with TC-71 ES xenografts were
utilized to assess efficacy of NanoTLZ in combination with
TMZ. The TC-71 model was selected as it does not respond
to either TLZ or TMZ as a single agent but is responsive
to the combination (17). Mice were treated with 1 mg/kg
NanoTLZ IV on days 1, 3, and 5 combined with TMZ 50
mg/kg oral gavage (PO) daily for 5 days (n = 10/group). Tumor
dimensions and body weight were measured twice weekly.
Animals were euthanized when tumor volume reached 400%
of the volume at start of treatment. Tumor responses were as
described above.

Statistical Analysis
All in vitro data were plotted as mean ± SD. The statistical
significance of in vitro data was determined by using Student’s
t-tests with α = 0.05 for significance. In vivo efficacy data were
plotted individually or as median relative tumor volume. Toxicity
data were plotted as mean ± SEM. The log-rank test with the
Bonferroni correction for multiple comparisons was used to
assess family-wise significance of survival curves. All statistical
testing computed with Prism 7.

RESULTS

Validation of NanoTLZ
NanoTLZ has been previously optimized and found to have
stable physicochemical properties which impart advantages for
nanoparticle mediated delivery of TLZ (21, 22). In order to
validate NanoTLZ efficacy in vitro, ES-6, ES-7, and EW-8 ES
cells were treated with either TLZ or NanoTLZ. All cell lines
were found to have lower IC50 values in response to NanoTLZ
(Figure 1A). Both NanoTLZ and TLZ were also found to
potentiate the effect of TMZ in TC-71 cells (Figure 1B).

The PARP1 total and cleaved protein levels were evaluated
in KT-10 xenograft model. This Wilms tumor model has
shown previously to be sensitive to the free TLZ treatment,
hence, it was used here to determine the effect of NanoTLZ
on the target protein (10). As shown on Figure 1C, PARP1
levels were significantly reduced in tumor cells treated
with TLZ or NanoTLZ compared to control or empty
nanoparticle. The levels of cleaved PARP1 remained low
overall in all treatment groups with slight increases of cleaved
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FIGURE 1 | NanoTLZ is as efficacious at free TLZ in vitro. ES-6, ES-7, and EW-8 cell lines were treated with TLZ or NanoTLZ for 72 h and viability was assessed by

Alamar Blue (n = 3/line). IC50 plots for TLZ and NanoTLZ in ES-6, ES-7, and EW-8 cell lines (A). Statistical significance of TLZ and NanoTLZ IC50 values were assessed

for each cell line by Student’s t-tests with α = 0.05 for significance; *p < 0.05 vs. NanoTLZ; **p < 0.01 vs. NanoTLZ.TC-71 cells were treated with the IC10 of TLZ or

NanoTLZ and dose response to TMZ was measured using Alamar Blue. Potentiation of TMZ activity in TC-71 cells combined with TLZ or NanoTLZ (B). Statistical

significance of TMZ, TLZ, and NanoTLZ combination IC50 values were assessed by one way ANOVA followed by Tukey’s test for multiple comparisons; ***p < 0.001

vs. NanoTLZ; ****p < 0.0001 vs. TMZ; #p < 0.001 vs. TMZ + NanoTLZ. Mice harboring KT-10 xenografts were treated with 0.165 mg/kg TLZ BID x5 PO or 0.33

mg/kg NanoTLZ SID, IV, on days 1, 3, and 5. NanoTLZ and TLZ demonstrate inhibitory effect on total PARP1 protein levels in KT-10 tumor xenograft (n = 3/group) (C).

PARP1 in TLZ and NanoTLZ treated cells indicating that
neither of the drugs had strong apoptotic effect at the
clinically relevant doses used before (0.165 mg/kg TLZ BID
x5 PO and 0.33 mg/kg NanoTLZ SID, days 1, 3, and 5,
IV) (17).

The efficacy of NanoTLZ relies on the EPR effect; therefore,
it was crucial to ensure the particles accumulate at the
tumor. NanoTLZ was fluorescently labeled via the encapsulation
of Cyanine 5 (Cy5) dye. The addition of Cy5 did not
significantly alter the diameter, polydispersity, or zeta potential
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FIGURE 2 | NanoTLZ preferentially accumulates within tumors. The size distribution of NanoTLZ as measured by DLS does not change with the addition of Cy5 dye

(A). Live animal fluorescent imaging demonstrated NanoTLZ-Cy5 accumulates in the tumor 24 h after injection (n = 3) (B).

FIGURE 3 | KT-10 xenografts exhibit a dose dependent response to TLZ. Animals bearing KT-10 xenografts were treated with either 0.1625 mg/kg (A), 0.33 mg/kg

oral TLZ BID x 5 (B), or 1.0 mg/kg NanoTLZ (IV) SID x 5 (C) and relative tumor volume was plotted for each animal (n = 8–10/group). Percent change in weight during

and after treatment (D).

of NanoTLZ, and therefore was optimal to assess tumor
accumulation (Figure 2A). Twenty-four hours after a single
dose of NanoTLZ-Cy5 was administered, fluorescence was
observed localized to the tumor via live animal imaging
(Figure 2B).

NanoTLZ Monotherapy
Toxicity testing was conducted to assess the MTD of single agent
NanoTLZ. Doses of up to 1 mg/kg NanoTLZ (IV) administered

daily (SID) on days 1, 3, and 5 and for 5 consecutive days
were tolerated with no appreciable weight loss (data not shown).
Therefore, 1 mg/kg on days 1, 3, and 5 was chosen to compare
to oral TLZ therapy since the nanoformulation was expected to
have a longer circulation time, and not require daily dosing.

As mentioned earlier, the KT-10 Wilms tumor PDX model
has a PALB2 mutation, hence is defective in homologous
recombination and is sensitive to TLZ (10). Animals bearing
KT-10 xenografts were treated with either 0.1625 mg/kg or 0.33
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FIGURE 4 | NanoTLZ and TMZ are tolerable at higher doses than previously established with TLZ and TMZ. Tumor free mice (n = 3/group) were treated with 0.5

mg/kg NanoTLZ SID x5 in combination with increasing doses of TMZ and body weight was measured daily for 21 days (A). An alternative schedule assessed weight

change during treatment with 50 mg/kg TMZ for 5 days and 1.0 mg/kg NanoTLZ on days 1, 3, and 5 (B).

FIGURE 5 | TC-71 xenografts are responsive to the combination of NanoTLZ + TMZ. Mice bearing TC-71 xenografts (n = 10/group) were treated with 1 mg/kg

vehicle or NanoTLZ (IV) on days 1, 3, and 5, 50 mg/kg TMZ (PO) on days 1–5, or the combination of the two and tumor volume was monitored twice weekly

(A). Median relative tumor volume during 8 weeks of treatment (B). Change in body weight during and up to 30 days after treatment (C). Kaplan-Meier survival of

TC-71 xenografts for 12 weeks after treatment initiation (D). Statistical significance assessed via the log-rank test followed by the Bonferroni correction for multiple

comparisons, **p < 0.01 vs. NanoTLZ+TMZ.

mg/kg free TLZ (PO) administered twice daily (BID) for 5 days.
These doses were selected based on our previous testing of free
TLZ (10). KT-10 tumors responded to TLZ treatment in a dose-
dependent manner (Figures 3A,B). All tumors responded to oral
TLZ and NanoTLZ therapy (Figures 3B,C). Most tumors in both
treatment groups exhibited a partial response (PR) to therapy.
However, 2/10 (20%) of tumors treated with NanoTLZ exhibited
a complete response (CR), and 1/10 (10%) maintained complete
response (MCR) over the course of the study. In contrast, only
10% of tumors treated with oral TLZ exhibited a CR to treatment.

None of the treatments elicited significant weight loss throughout
the course of the study (Figure 3D).

NanoTLZ Combined With TMZ
We previously established TC-71 xenografts are sensitive to the
combination of TLZ and TMZ and therefore sought to explore
the effect of utilizing NanoTLZ in combination with TMZ.
Toxicity testing demonstrated the combination of NanoTLZ
and TMZ daily for 5 days resulted in an average loss of ∼8%
body weight at the highest dose of each drug (Figure 4A). The
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combination of 1 mg/kg NanoTLZ on days 1, 3, and 5 and
50 mg/kg TMZ daily for 5 days resulted in an average loss of
3% body weight, therefore, this regimen was chosen for efficacy
testing (Figure 4B). Treatment with 1 mg/kg NanoTLZ or empty
nanoparticles IV on days 1, 3, and 5 did not yield any antitumor
response (Figures 5A,B). Single agent TMZ, 50 mg/kg PO daily
for 5 days, also was not active in this model as evidenced
by the median fold change in tumor volume (Figure 5B). The
combination of NanoTLZ+TMZ was active with all tumors
initially responding to the treatment (Figure 5A). Progressive
disease (PR) was observed in both single agent control arms,
while 4/10 (40%) of tumors exhibited a PR to the combination
and an additional 40% of tumors maintained a CR.

The combination therapy did elicit acute weight loss of 16.6%
during the treatment cycle, but animals recovered after the
treatment period (Figure 5C). Twenty percent weight loss is
considered to be acceptable per the Pediatric Preclinical Testing
Program (PPTP) protocol used in this study (10, 17). One
animal treated with the combination therapy did not tolerate
the treatment and was found dead the week after completing
treatment. TMZ at the same dose only resulted in a loss of 4.6%
body weight during the treatment period, while NanoTLZ elicited
no weight loss throughout the study.

The combination of NanoTLZ and TMZ significantly
extended the overall survival compared to the vehicle control and
single agent groups (Figure 5D). The median survival time was
11–14 days in the control groups compared to 63 days in the
combination group (∗∗p < 0.01). At the end of the observation
period 4/10 mice treated with NanoTLZ and TMZ had no
palpable tumors.

DISCUSSION

The combination of TLZ and TMZ has demonstrated substantial
activity in a number of ES models, however, toxicity necessitated
TMZ dose reduction. In order to bypass some of the limitations
associated with oral drug delivery a nanoformulation of TLZ,
NanoTLZ, was assessed in two different xenograft models. In
vitro comparison of TLZ and NanoTLZ demonstrated NanoTLZ
was as potent if not more potent than TLZ, as evidenced
by the IC50 values. Both TLZ and NanoTLZ potentiated the
effect of TMZ in TC71 cells, though TLZ was more efficient
than NanoTLZ. Together, these results indicated NanoTLZ is
of similar potency to free TLZ and should be assessed in
vivo. In vivo imaging demonstrated that NanoTLZ preferentially
accumulates in tumors, likely through the EPR effect, and
presents a pronounced target inhibition effect. This suggests
that more drug may be delivered to the tumor resulting in less
drug accumulation in other organs. It was expected this would
decrease the systemic toxicity observed with oral TLZ delivery.

KT-10 xenografts have demonstrated dose dependent
response to single agent TLZ and therefore, this model was
utilized in order to ensure NanoTLZ maintained efficacy in vivo.
Both NanoTLZ at 1 mg/kg SID and oral TLZ at 0.33 mg/kg BID
induced similar responses. However, 3/10 of animals treated
with NanoTLZ exhibited a CR with 1/3 MCR until the end of

the study, while only 1/10 of animals treated with oral TLZ
exhibited a CR. It is important to note that animals receiving
NanoTLZ treatment received 33% more drug daily than those
on oral TLZ treatment because NanoTLZ was found to be more
tolerable than oral TLZ. This higher dose is likely one factor
contributing to the enhanced response rate. PARP inhibitors
have been shown to exhibit a better anti-tumor effect when PARP
is at least 90% inhibited (24, 25). One strategy for achieving
long-term inhibition is twice daily administration, as was done
with the oral treatment. Previous studies have demonstrated
plasma drug concentrations after a single dose of NanoTLZ can
be fit with a two compartment model yielding a terminal half-life
of 37.5 h (22). The extended half-life of the nanoformulation lead
to a similar antitumor effect with only a single injection daily,
compared to the twice daily oral administration.

Although ES cell lines were found to be sensitive to
PARP inhibitors in vitro, the lack of in vivo translation
necessitated the need to develop rational combinations. The
PPTP previously demonstrated 6/10 ES xenografts were sensitive
to the combination of TLZ and TMZ (17). Two different
combination doses were found to be tolerable when combining
the two oral drugs, but both required substantial dose reduction
of either TLZ or TMZ. Previous tolerable doses were 30 mg/kg
TMZ SID x 5 + 0.1 mg/kg TLZ BID x5, or 12 mg/kg TMZ SID x
5+ 0.25 mg/kg TLZ BID x5 (17). Toxicity testing with NanoTLZ
in combination with oral TMZ indicated the combination was
better tolerated than the combination of the two free drugs,
allowing each drug to be delivered at a higher dose than in
the previous study. The combination of 1 mg/kg NanoTLZ
administered on days 1, 3, and 5, with 50 mg/kg TMZ SID x5
induced a response in all tumors with a PR in 4/10 and MCR
in 4/10 tumors 12 weeks post treatment initiation. Although
little weight loss was observed during the MTD testing this
treatment regimen did induce acute weight loss (<20%) during
the treatment period in the efficacy study, but this was reversed
when the treatment ended. The MTD testing was conducted in
tumor-free mice and differences in weight loss may be attributed
to the shrinking tumors or the presence of the tumors themselves,
both of which may affect body weight. The combination of
NanoTLZ and oral TMZ significantly extended overall survival
compared to each of the single agent controls.

The data presented here demonstrates that changing the
delivery system from oral TLZ to NanoTLZ provides an
opportunity to modify the dosing required for combination
therapy. NanoTLZ was tolerated at a higher total dose compared
with free TLZ, and allowed combination with higher doses of
TMZ. The KT-10 data demonstrated NanoTLZ administered
once daily at a high dose achieved a similar response to twice daily
lower dosing, indicating the pharmacokinetics had been altered.
The combination of NanoTLZ and TMZ in TC-71 xenografts was
promising, but perhaps a better response could be elicited with a
lower dose of NanoTLZ administered daily.

NanoTLZ demonstrates similar activity in vivo as oral
TLZ, but only requires once daily dosing rather than
twice daily. It is better tolerated than the oral formulation,
which allows for higher doses to be administered. NanoTLZ
administered every other day for 5 days effectively potentiated
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the effect of daily TMZ treatment with 40% of animals
being tumor free after 12 weeks. The combination of
oral TLZ and TMZ has previously demonstrated both
preclinical and clinical toxicity; therefore, NanoTLZ can
provide greater versatility in further exploring the best way
to limit systemic toxicity while maximizing the effect of
this combination.
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RNA processing was recently found to affect DNA damage response. The RNA

processing factors THRAP3 and BCLAF1 play critical role in keeping DNA genomic

stability by regulating the transcription, mRNA splicing and export of DNA repair proteins

BRCA2, PALB2, Rad51, FANCD2, and FANCL in response to DNA damage. RNA

processing factors THRAP3 and BCLAF1 play critical roles in maintaining DNA genomic

stability. These factors regulate transcription, mRNA splicing and nuclear RNA export

of DNA repair proteins BRCA2, PALB2, Rad51, FANCD2, and FANCL in response

to DNA damage. Splicing factors SRSF10 and Sam68 were found to control the

DNA damage agent-induced mRNA splicing of transcripts including BCLAF1, BRCA1,

BCL2L1, CASP8, CHK2, and RBBP8 to regulate apoptosis, cell-cycle transition and DNA

repair. Splicing factors and RNA binding proteins (RBPs) were also found to play a critical

role in DNA/RNA hybrids (R-loops) formed during transcription and RNA processing

to prevent RNA-induced genome instability. At the same time, DNA repair proteins

FANCI and FANCD2 were found to regulate the nuclear localization of splicing factors

SF3B1 in the DNA damage response. In addition, tumor-derived extracellular vesicles

(Evs) enhanced by chemotherapeutic agents in cancer were found to promote cancer

metastasis and drug resistance. Inhibiting Evs from cancer cells significantly reduced

cancer metastasis and drug resistance. Furthermore, cross-talk between the DNA

damage response and the immune response was observed including the enhancement

of the efficacy of immune checkpoint blockade by PARP inhibitors and the effect of

PD-L1 on mRNA stability of various mRNAs involved in DNA damage response by acting

as a novel RNA binding protein to increase drug resistance in cancer cells. This review

will introduce recent progress on the interplay of the DNA damage response, the RNA

processing and the extracellular vesicles mediated metastasis.

Keywords: THRAP3, BCLAF1, RNA processing, extracellular vesicles, R-loops, RBPs, PD-L1

INTRODUCTION

Generally, RNA processing is not included in DNA damage response network, which is mainly
consisted of DNA repair proteins, cell cycle checkpoint regulators, PI3K-like kinases ATM, ATR,
or DNA-PK and downstream kinases Chk1 and Chk2. However, recent studies indicate RNA
processing directly involves in traditional DNA damage repair mediated by BRCA1 (1) and BRCA2

57

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.01538
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.01538&domain=pdf&date_stamp=2020-01-17
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xiangbing-meng@uiowa.edu
mailto:shujie-yang@uiowa.edu
https://doi.org/10.3389/fonc.2019.01538
https://www.frontiersin.org/articles/10.3389/fonc.2019.01538/full
http://loop.frontiersin.org/people/700543/overview
http://loop.frontiersin.org/people/877429/overview
http://loop.frontiersin.org/people/813315/overview


Meng et al. DNA Damage and RNA Processing

(2, 3). Many observations indicate that there are connections
between DNA damage and immune system activation.
Intracellular immune checkpoint protein PD-L1 was fond
to regulate DNA damage response by acting as RNA binding
proteins to regulate many DNA repair proteins (4). DNA damage
also can activate immune system (5–7). In this review, we will
introduce recent progression on how RNA processing cross-talk
with cellular response to DNA damage and the connections
between immune system with cellular response to DNA damage
including how immune checkpoint protein PD-L1 regulates
cellular response to DNA damage and how DNA damage can
active immune system.

RNA Processing Factors Also Function in
Maintaining DNA Genomic Stability
RNA-processing factors function in the maintenance of genome
stability; they regulate mRNAs encoding for DNA repair proteins
or directly involve in DNA damage responses by interacting
with DNA repair proteins. For example, RBM14 is an RNAbp
and joins the PARP-dependent DSB repair by interacting with
PARP1 (8). Other RNA-binding proteins including FUS/TLS,
EWS, TARF15, and some hnRNPs also play important roles in
the PARP-dependent DSB repair process (8, 9). mRNA splicing
factor hnRNP C is another example required for PALB2/BRCA2
nucleoprotein complex function in DNA repair (3). Knockdown
of hnRNP C caused the expression reduction of DNA repair
proteins including BRCA1, BRCA2, RAD51, and BRIP1 at both
the mRNA level and the protein level (10). BCLAF1 (1) is a
BRCA1 binding partner at the BRCA1-mRNA splicing complex
induced by DNA damage, which was named as a Bcl2-associated
transcription factor to promote apoptosis. BRCA1/BCLAF1
target genes include ATRIP, BACH1, and EXO1 (1). Besides
BCLAF1, the DNA damage-induced BRCA1 protein complex
includes BRCA1, Prp8, U2AF65, U2AF35, and SF3B1 (1).
Depletion of BRCA1, BCLAF1, and U2AF65 increases sensitivity
to DNA damage and causes defective DNA repair. A high
incidence of somatic mutations of BCLAF1, U2AF65, U2AF35,
SRSF2, SF3A1, SF3B1, and PRPF40B at the BRCA1/BCLAF1
mRNA splicing complex was reported in various cancer types
(1). Most transcription and pre-mRNA splicing processes are
inhibited in response to DNA damage. However, transcription,
pre-mRNA splicing and mRNA exportation from the nucleus are
active in response to DNA damage for DNA damage response
(DDR) genes including BRCA2, PALB2, Rad51, FANCD2, and
FANCL (11). These genes are required for DNA damage repair
to maintain genomic stability and are regulated by RNAbps
THRAP3 and BCLAF1 in response to DNA damage. Depletion
of both BCLAF1 and THRAP3 leads to the reduction of mRNA
splicing, downregulation of the export of BCLAF1/THRAP3
target genes, and the loss of their encoded proteins compared

Abbreviations: FUS/TLS, fused in sarcoma/translocated in sarcoma; EWS,

Ewing sarcoma; TARF15, TATA box-binding protein-associated factor 68 kDa;

hnRNPs, heterogeneous nuclear ribonucleoproteins; MFAP1, microfibrillar-

associated protein 1; IRF3, interferon regulatory factor 3; STING, STimulator of

Interferon Genes; TBK1, TANK binding kinase 1; IRF3, interferon regulatory

factor 3; Evs, extracellular vesicles; RNAbps, RNA binding proteins; R-loops,

DNA/RNA hybrids.

to mild effects by depletion of THRAP3 or BCLAF1 alone
(Figure 1) (11).

Splicing Factors and RNA Helicases Are Involved in

Cellular Responses DNA Damage

During the DNA damage response, splicing factors and
RNA helicases play integral roles in gene expression. mRNA
interactome capture was utilized to identify proteins that were
highly enriched in mRNA metabolic processes and components
of the nucleolar proteome, including several RNA helicases
DDX5/p68, DDX1, SLFN11, and DDX3X (9). DDX54 is one of
the 266 RBPs in the DDR proteins with increased binding to poly
(A)+ RNA upon IR exposure (9). The interaction of DDX54 with
specific proteins of core spliceosomal complexes B (CDC40),
C(DDX41), and U2 snRNP including SF3B1, DDX42, U2AF1,
andDHX8was increased upon IR exposure (9). Another example
of RNAbp in cellular responses to DNA damage is MFAP1
(microfibrillar-associated protein 1), a spliceosome-associated
factor. MFAP1 depletion induced the increase of γH2AX foci and
DNA breaks by causing alterations of mRNA splicing and gene
expression of target genes involved in cellular responses to DNA
damage (12).

DNA Damage Induces the Alterations of
RNA Splicing of Many Transcripts Involved
in Genomic Stability Maintenance
DNA damage induced by oxaliplatin was found to change the
binding and activity of several regulatory RNA binding proteins
including SRSF10, hnRNP A1/A2, and Sam68 on the Bcl-x pre-
mRNA to alter splice site selection and to increase the level
of pro-apoptotic Bcl-xS (13, 14). These RNA binding proteins
also collaborate to drive the DNA damage-induced splicing
alteration of several transcripts involved in cellular response to
DNA damage including BCLAF1, BRCA1, BCL2L1, CASP8, and
CHK2 (Figure 1) (13, 14). Mutations of the RNA processing
factors result in the increase of spicing isoforms of DNA
repair proteins including BARD1β, FANCE14, and BRCA1-
111q in cancers. BRCA1-associated RING domain protein 1
(BARD1) splice variant (SV), BARD1β, can sensitize colon cancer
cells to poly ADP ribose polymerase 1 (PARP-1) inhibition by
impairing BRCA1 mediated DNA homologous recombination
repair (15). FANCE splice isoform (FANCE14) impaired mono-
ubiquitination of FANCD2 and FANCI, which inhibits the FA-
BRCA pathway (16). A BRCA1-111q splice variant lacking part
of exon 11 still contributes to drug resistance to PARP inhibitors
and cisplatin. Spliceosome inhibitors can reduce BRCA1-111q
levels and increase sensitivity to PARP inhibitors and cisplatin in
cancer cells carrying exon 11 mutations of BRCA1 (17).

DNA Repair Proteins Function to Prevent
Co-transcriptional R-loop-Associated DNA
Damage
RNA–DNA hybrids (R-loops) have been associated with genomic
instability in human diseases including cancer and neurological
diseases. RNases H are a family of endonucleases that hydrolyze
RNA residues in RNA/DNA hybrids to prevent the accumulation
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FIGURE 1 | DNA damage response and repair proteins and RNA binding proteins act coordinately to maintain genome stability.

of R-loops for the maintenance of genome stability (18). The
ssDNA-binding protein replication protein A (RPA) interacts
with RNaseH1 at R loops in cells. RPA acts as a sensor of R loops
and a regulator of RNaseH1 in suppression of genomic instability
(19). Genome-wide RNA-loops are studied by S9.6 antibody
CHIP against RNA–DNA hybrids and RNAse H1 R-ChIP. A
catalytically inactive RNASEH1 that can bind RNA–DNAhybrids
but not resolve them is used in RNAse H1 R-ChIP (18). In
contrast to the S9.6 antibody, RNASEH1 has a higher affinity for
RNA-DNA hydrids (20). Using S9.6 antibody coupled to mass
spectrometry, SRSF1, FACT, and Top1, were identified as R-loop-
associated factors. DHX9 helicase promotes R-loop suppression
and transcriptional termination. Endonuclease RNase H and
helicases DHX9 (20) and SETX are known to resolve the R-
loop (21). The RNA/DNA hybrid interactome is a useful resource
to study R-loop biology (22). R-loops at CTG.CAG tracts are
vulnerable to cause DNA instability (22–25). Enhanced R-loops
formation are observed at gene-specific repeat expansions in
many genetic disorders such as Huntington’s disease [CAG
repeats], and fragile X mental retardation or fragile X syndrome
(FXS). These well-known neurological diseases are associated
with abnormal R-loops accumulation at trinucleotide repeat (22–
25). Splicing factors and RNA binding proteins (RBPs) play
critical role in DNA/RNA hybrids (R-loops) to prevent RNA-
induced genome instability (26). Although no clear mechanisms
have been identified, many DNA repair proteins, RNA binding
proteins and long non-coding RNAs are involved in suppression
R-loops formation as shown in Table 1.

The BRCA1 and SETX Complex Suppresses

R-loop-Associated DNA Damage

Senataxin (SETX) is a RNA/DNA helicase and a BRCA1
interacting protein identified by yeast two hybrid assays and MS-
based BRCA1/protein interaction screens (21). Knockout SETX
gene leads to a defect in reproduction in male mice. Mutations of

TABLE 1 | Known factors involved in R-loops.

Factors Function

BRCA1 and SETX complex Suppresses R-loop associated DNA

damage

BRCA2 and PAF1 Prevent R-loops accumulation

FA pathway Prevent R-loops accumulation

RECQ like helicases Sgs1and BLM Regulate R-loop-associated genome

instability

WRN Prevents R-loop-associated genomic

instability

RNA helicases DDX1, DDX21, and

Ddx19

Reduce R·loops formation

RNA processing proteins FUS and

TDP43

Inhibit R loops-associated DNA damage

GA0045A R-loops dependent TET1 binding CpG

islands at promoters

Long non-coding RNAs (dilncRNAs) Required for R-loop-driven DNA

damage repair

SETX is found in two distinct neurological disorders including
ataxia with oculomotor apraxia type 2 (26) and a juvenile
form of ALS (27). BRCA1 and SETX complex is recruited to
suppress co-transcriptional R-loop-associated DNA damage (21).
A deficiency in BRCA1/SETX complex results in unrepaired
ssDNA breaks and increases of γ-H2Ax signal.

Inactivated BRCA2 and Depleted PAF1 Cause the

R-loops Accumulation

R-loops are frequently found in BRCA2-deficient cancer cells.
BRCA2 is involved in the release of RNA polymerase II
(RNAPII) from promoter-proximal pausing (PPP) sites. BRCA2
inactivation decreases RNAPII-associated factor 1 (PAF1)
recruitment and impedes nascent RNA synthesis. PAF1 depletion
also causes the R-loop accumulation (2, 3).
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The FA Pathway Plays a Role in Preventing R-loop

Accumulation

The FA pathway prevents R loop accumulation that hinders
replication fork (RF) progression and results in DNA breaks.

FANCD2 foci increase in untreated and MMC-treated cells
defective in FANCD2 or FANCA indicates that the FA functions
at R loop. FANCD2 was found to interact and recruit RNA
processing (28–30) enzymes hnRNPU and DDX47 to R-loops
during mild replication stress (33). BRCA2/FANCD1 and
FANCD2/FANCI were found to protect stalled replication forks,
indicating that the Fanconi Anemia (FA) pathway may take a
role in preventing R loop-dependent genome instability. The
Fanconi anemia (FA) pathway is critical to repair inter-strand
DNA cross-links (ICLs). However, a 5′ exonuclease, SAN1, is
involved in ICLs independent of the FA pathway. Knockout of
SAN1 increases sensitivity to ICLs. SAN1 was found to interact
with senataxin (SETX) to resolve R-loops to prevent cross-link
sensitivity (28–30).

R-loop-Associated Genome Instability Is Regulated

by RECQ-Like Helicases Sgs1 and BLM

Sgs1 is the ortholog of human Bloom’s syndrome helicase BLM
in yeast. The loss of SGS1 increases R-loop accumulation. BLM
has been confirmed in suppressing R-loop in Bloom’s syndrome
fibroblasts or by depletion of BLM in human cancer cells (31).

WRN Is a Regulator for R-loop-Associated Genomic

Instability

Werner syndrome (WS) is a rare, autosomal recessive disorder
characterized by the appearance of premature aging caused
by deficiency of Werner protein (WRN). WRN deficiency
sensitizes cells to replication- transcription collisions and
promotes accumulation of R-loops.WS cells show impaired ATR-
mediated CHK1 activation to mild replication stress. WS cells
prevent chromosomal instability by ATM mediated activation of
CHK1 (32).

RNA Helicases DDX1, DDX21, and Ddx19 Are

Involved in Reducing R-loops

RNA helicase DDX1 is necessary to maintain the single-stranded
DNA generated by end resection. DDX1 plays a role in resolving
RNA-DNA structures accumulated at sites of active transcription
with DSBs (33). Knockdown of SIRT7 as well as depletion
of DDX21 leads to the increased formation of R loops and
DNA double-strand breaks, indicating that DDX21 and SIRT7
mediated deacetylation of DDX21 cooperate to prevent R-loop
accumulation (34). The nucleopore- associated mRNA export
factor Ddx19 was activated by ATR/Chk1 and re-localized to
the nucleus to remove nuclear R-loops upon replication stress
or DNA damage. Ddx19 resolves R-loops in vitro via its helicase
activity (35).

RNA Processing Proteins FUS and TDP43 Are

Involved in R-loop-Associated DNA Damage

FUS and TDP43 are linked to Amyotrophic lateral sclerosis
(ALS), a progressive motor neuron dysfunction disease.
FUS or TDP43 depletion leads to an accumulation of

transcription- associated DNA damage and increased sensitivity
to a transcription-arresting agent. FUS or TDP43 normally
contribute to the prevention of transcription-associated DNA
damage (36).

GADD45A Is Involved in R-loops Dependent TET1

Binding CpG Islands at Promoters

R-loops are enriched at CpG islands (CGIs) to regulate chromatin
states. GADD45A (growth arrest and DNA damage protein
45A) is an epigenetic R-loop reader to recruit the demethylation
machinery at promoter CGIs. GADD45A binds to R-loops and
recruits TET1 (ten-eleven translocation 1) to promote DNA
demethylation at the promoter of tumor suppressor TCF21. The
antisense long non-coding (lncRNA) TARID (TCF21 antisense
RNA inducing promoter demethylation) forms an R-loop at
the TCF21 promoter and the binding of GADD45A to the R-
loop triggers local DNA demethylation and TCF21 expression.
Thousands of R-loop-dependent TET1 binding sites at CGIs is
identified in embryonic stem cells by genomic profiling (37).

Long Non-coding RNAs (dilncRNAs) Are Required for

R-loop-Driven DNA Damage Repair

Damage-induced long non-coding RNAs (dilncRNAs) are
transcribed from broken DNA ends to pair with the resected
DNA ends, form DNA:RNA hybrids and promote homologous
recombination (HR) repair by contributing to the recruitment
of the HR proteins BRCA1, BRCA2, RNase H2, and RAD51.
BRCA2mediates the localization of RNase H2 toDSBs by directly
interacting with RNase H2 (38).

DNA Repair Proteins Control the Nuclear
Distribution of Splicing Factors in
Replication Stress
Both FANCD2 and FANCI were co-purified with SF3B1 and
yielded strong signals of interaction with SF3B1 in the nucleus
in proximity ligation assay (PLA) (39). FANCI and SF3B1 yielded
strong PLA signals throughout the cell cycle, whereas PLA signals
between FANCD2 and SF3B1 were restricted to the chromatin
of interphase cells (39). Therefore, it is hypothesized that FANCI
associates with and regulates the dynamics of the nucleoplasmic
pool of SF3B1, whereas FANCD2 associates with the chromatin-
bound pool of SFs.

TUMOR-DERIVED EXTRACELLULAR
VESICLES AFFECT BYSTANDER CELLS IN
TUMOR MICRO-ENVIRONMENT

Tumor-derived Evs secreted from cancer cells treated with
chemotherapy carry distinct type of damage-associated
molecular patterns (DAMPs) that activate innate immune
cells including natural killer (NK) cells. Stress-induced ligands
from tumor-derived Evs bind with activating receptor NKG2D
to activate NK cells in the tumor microenvironment (40).
Activated NK cells promote the clearance of drug-treated tumor
cells (40). The Evs is necessary for the RNA clearance step
in homologous recombination repair of DNA double-strand

Frontiers in Oncology | www.frontiersin.org 4 January 2020 | Volume 9 | Article 153860

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Meng et al. DNA Damage and RNA Processing

breaks (DSBs). Chemotherapy stress promotes extracellular
vesicles (Evs) secretion from tumor cells. The released
Evs from cells treated with cisplatin were found to induce
invasion and increased resistance to cisplatin via p38 and
JNK signaling when taken up by bystander cells in tumor
microenvironment. Evs uptake inhibitors heparin, amiloride,
and dynasore were shown to prevent Evs-mediated adaptive
response and sensitize cells to cisplatin (41). MiR-21 in
the exosomes released from cisplatin- resistant oral cavity
squamous cell carcinoma (OSCC) cells was reported to
decrease the DNA damage signaling in response to cisplatin
and increase drug resistance to cisplatin by targeting PTEN
and PDCD4 (42). Annexin A6 enriched tumor-derived Evs
secreted from cancer cells treated with chemotherapeutic
compounds taxanes and anthracyclines were found to promote
cancer metastasis to lung by inducing the activation of
NFκB and CCL2. Inhibiting annexin A6 in Evs from cancer
cells significantly reduced cancer metastasis (43). Exosomes
generated from breast cancer cells lead to the generation
of reactive oxygen species, DNA damage response, and the
stabilization of p53 and autophagy in primary mammary
epithelial cells (44). Exosomes released by ovarian cancer
regulate intercellular communication between tumor cells
and local immune cells, cancer-associated fibroblasts and
normal stroma, within the tumor microenvironment to
accelerate pre-metastatic niche formation and metastatic
invasion (45). Preoperative administrations of the non-steroidal
antiinflammatory drug ketorolac and/or resolvins induced
T cell responses and eliminated micrometastases in multiple
tumor-resection models. Ketorolac and resolvins exhibited
synergistic antitumor activity (46). A similar observation was
also found in leukemia. Exosomes secreted from acute myeloid
leukemia (AML) cells create a leukemic niche at the bone
marrow (BM) to promote leukemic cell proliferation by inducing
DKK1 and suppress normal hematopoiesis through exosome
secretion. Disruption of exosome secretion delayed leukemia
development by targeting the exosome release regulator Rab27a
in AML cells (47).

CROSSTALK BETWEEN THE DNA
DAMAGE RESPONSE AND IMMUNE
CHECKPOINT INHIBITION

PD-L1 (B7-H1) Regulates the DNA Damage
Response
PD-L1 has been well-known as immune checkpoint inhibition
to the activation of T cells by interacting with PD1. PD-
L1 was recently found as a novel RNA binding protein to
increase drug resistance in cancer cells by increasing mRNA
stability of various mRNAs encoding for proteins involved in
DDR and repair (4). Luo lab reported that PD-L1 acts as an
RNA binding protein to protect target RNAs from degradation
by interacting with EXOSC10 and EXOSC4, which are key
components of the RNA exosome (4). Knockdown of PD-
L1 by small hairpin RNAs (shRNAs) increases sensitivity to
the chemotherapy agent, cisplatin. Knockdown of PD-L1 also

increases sensitivity to ionizing radiation (IR) (4). Genome-
wide RNA transcripts interacting with PD-L1 were identified by
the crosslinked RIP sequencing (RIP-seq) by PD-L1 antibody.
PD-L1 knockdown on the alteration of gene expression in
genome wide was identified by comparing control and PD-
L1 knockdown cells by RNA sequencing (RNA- seq). About
135 genes were found to be enriched in both datasets of
the RNA-seq analysis and RIP-seq analysis, including ATM,
BRCA1, and FANCL and other genes involved in cellular
responses to DNA damage metabolic, transcriptional, and
protein modification pathways (4). A PD-L1 antibody, H1A,
was developed to destabilize PD-L1 by disrupting the PD-
L1 stabilizer CMTM6. This disruption resulted in PD-L1
degradation through the lysosome and increased sensitivity
to radiotherapy and cisplatin (4). These studies indicate that
targeting intracellular PDL1 may enhance the efficacy of
chemotherapy or radiotherapy by overcoming PDL1 mediated
drug resistance (Figure 2).

FIGURE 2 | Crosstalk between DDR and immune system. (A) PD-L1 can

increase mRNA stability of DNA damage response genes as a RNA binding

protein in cancer cells. PD-L1 antibody H1A can increase sensitivity to DNA

damage agents by reducing PD-L1 mediated stability of DDR transcripts. (B)

DNA damage agents and PARP inhibitors can induce STING pathway to

activate immune system.
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Activation of Immune System by DNA
Damage Response
Immune System Is Activated by PARP Inhibitors

Recent studies show that PARP inhibitor or Chk1 inhibitor
promotes antitumor immunity of PD-L1 blockade in NSCLC.
PARP inhibitor selectively triggers anti-tumor immunity in
ERCC1- or BRCA-defective contexts, indicating that PARP
inhibitors might promote therapeutic effects by inhibiting DNA
damage repair and activating anti-tumor effect in populations
with DNA repair defect (Figure 2) (48, 49). PARP inhibitor was
also found to trigger the STING-dependent immune response
independent of BRCAness (50).

Activation of Immune System by DNA Damage

Activated STING

In addition to causing the activation of cell cycle checkpoint
and DNA repair and the induction of cell death, DNA damage
response network induced by chemotherapy and radiotherapy
can also activate the immune system. Damaged cancer cells
secrete type I interferons and proinflammatory cytokines
transcriptionally activated by IRF3 or NFB. The cytosolic
damaged DNA from micronuclei can be recognized by the
DNA sensor cGAS (cyclic guanosine monophosphate adenosine
monophosphate synthase) to activate type I interferons by
STING/TBK1/IRF3 pathway (5–7). Homologous recombination
repair protein RAD51 also plays a role in initiating immune
signaling by preventing the fragmented nascent DNA
accumulates in the cytoplasm and initiation of the STING-
induced innate immune response (51). Etoposide-induced DNA
damage can induce the activation of NF-κB by an alternative
STING- dependent and cGAS-independent pathway. The
alternative STING signaling pathway includes the DNA damage
response proteins ATM (ataxia telangiectasia mutated), PARP1
(poly-ADP-ribose polymerase 1), DNA sensor IFI16 (interferon-
inducible protein 16), Tp53, and the E3 ubiquitin LIGASE
TRAF6 (52). The efficacy of immune checkpoint blockade (ICB)

is enhanced by ATM inhibition and further potentiated by

radiation in pancreatic cancer (52).

CONCLUSION

In summary, there are cross-talks between cellular responses to
DNA damage, RNA processing, and the extracellular vesicles
related to immune checkpoint inhibition. RNAbps involved in
RNA processing play critical roles in maintaining DNA genomic
stability by regulating the transcription, mRNA splicing, and
export of DNA repair proteins. On the other hand, DNA
repair proteins can regulate the nuclear distribution of splicing
factors in response to DNA damage. Splicing factors, RNAbps,
and DNA repair proteins also work coordinately to prevent
RNA-induced genome instability by resolving R-loops formed
during transcription and RNA processing. Cross-talk between
the immune response and cellular responses to DNA damage
includes the enhancement of the effect of immune checkpoint
inhibitors by PARP inhibitors or STING pathway. Tumor-
derived Evs enhance cancer metastasis and drug resistance
partially due to PD-L1 delivered from tumor-derived Evs, which
acts as a novel RNA binding protein to increase drug resistance
in cancer cells by affecting mRNA stability of various mRNAs
involved in cellular response to DNA damage.
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Despite significant advances in the treatment of acute myeloid leukemia (AML) the

long-term prognosis remains relatively poor and there is an urgent need for improved

therapies with increased potency and tumor selectivity. Mylotarg is the first AML-targeting

drug from a new generation of antibody drug conjugate (ADC) therapies aiming at

the acute leukemia cell compartment with increased specificity. This agent targets

leukemia cells for apoptosis with a cytotoxic payload, calicheamicin, carried by a

CD33-specific antibody. Calicheamicin induces DNA double strand breaks (DSB) which,

if left unrepaired, lead to cell cycle arrest and apoptosis in cancer cells. However,

repair of DSB by the non-homologous end joining pathway driven by DNA-dependent

protein kinase (DNA-PK) can reduce the efficacy of calicheamicin. M3814 is a novel,

potent and selective inhibitor of DNA-PK. This compound effectively blocks DSB

repair, strongly potentiates the antitumor activity of ionizing radiation and DSB-inducing

chemotherapeutics and is currently under clinical investigation. Suppressing DSB repair

with M3814 synergistically enhanced the apoptotic activity of calicheamicin in cultured

AML cells. Combination of M3814 with Mylotarg in two AML xenograft models,

MV4-11 and HL-60, demonstrated increased efficacy and significantly improved survival

benefit without elevated body weight loss. Our results support a new application for

pharmacological DNA-PK inhibitors as enhancers of Mylotarg and a potential new

combination treatment option for AML patients.

Keywords: DNA-PK, ADC-antibody drug conjugate, AML-acute myeloid leukemia, therapy, DSB-double-strand

break

INTRODUCTION

It is estimated that over 20,000 people in the U.S. will be diagnosed with AML in 2019 (1). Despite
established standards of induction and consolidation therapies, the overall 5 years survival rate
is ∼30%, and U.S. statistics show few changes in per capita AML deaths in the last two decades
(1). Strong chemotherapeutic regimens remain the standard approaches to AML treatment, and
patient mortality is often linked to treatment-related toxicities or ablated normal hematopoiesis
(2). Further limitations arise when considering the advanced median age of diagnosis (68 years),
and associated health-liabilities, when facing broadly cytotoxic treatments. Accordingly, death rates
from AML are higher in patients over 65 years of age (1). Therefore, there is a clear need for novel,
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targeted therapeutic strategies for AML. Such therapies would
ideally display high potency toward the leukemic burden and
improved tolerability in normal tissues.

Antibody drug conjugates (ADCs) are targeted therapeutics
with broad potential for anti-cancer efficacy through their
diverse target antigens and drug payloads. ADCs consist of
recombinant monoclonal antibodies (mAbs) that are covalently
bound to cytotoxic chemical agents (commonly referred to
as warheads) via synthetic linkers. These conjugates facilitate
the delivery of highly cytotoxic small-molecule drugs with the
high selectivity, stability and pharmacokinetic profile of mAbs
(3). The first ADC to receive FDA approval, gemtuzumab
ozogamicin (MylotargTM), leverages the selectivity of an anti-
CD33 antibody to target AML cells. The transmembrane
glycoprotein CD33 is expressed on the surface of leukemia blasts
in most patients with AML, but not on normal hematopoietic
stem cells (4). Mylotarg consists of a humanized IgG4 anti-
CD33 antibody conjugated to the calicheamicin derivative N-
acetyl-γ-calicheamicin dimethyl hydrazide (4). Its anti-leukemic
activity is derived from the internalization and lysosomal
localization of CD33/Mylotarg complexes, wherein the acidic
environment facilitates linker hydrolysis and release of the
cytotoxic calicheamicin moiety (4–6).

Calicheamicin is a member of the enediyne family of
antibiotics, which binds the minor groove of DNA in a sequence-
specific manner and is reduced to form a reactive intermediate
that triggers the formation of DNA double strand breaks
(DSB) and single strand breaks (SSB) (7–10). Calicheamicin-
induced DNA damage leads to cell cycle arrest to assist DNA
repair machinery or, if damage is unrepairable, apoptosis and
cell death (11). DNA repair and/or the associated cell fate
decisions occur through activation of the ataxia telangiectasia
mutated (ATM), ataxia telangiectasia and rad3-related (ATR)
and DNA-dependent protein kinase (DNA-PK)-driven pathways
(12, 13). Accordingly, cells defective for ATM or DNA-PK
are hypersensitive to calicheamicin (9, 14). Given the apparent
impact of DNA-PK activity on cells sensitivity to calicheamicin-
induced DNA damage, we hypothesized that pharmacological
inhibition of DNA-PK catalytic activity may enhance the anti-
leukemic effects of Mylotarg by potentiation of the cytotoxicity
of its warhead, calicheamicin. M3814 belongs to a new generation
of potent and selective inhibitors of DNA-PK protein kinase (15,
16). It effectively blocks DSB repair driven by DNA-PK via the
non-homologous end joining (NHEJ) mechanism and strongly
potentiates the antitumor activity of ionizing radiation and
DSB-inducing chemotherapy agents (15). M3814 has completed
Phase 1 evaluation as a single agent and currently undergoing
clinical investigation in combination with radiotherapy and/or
immunotherapy in solid tumors.

The guardian of the genome, p53, is a central regulatory
node in DNA damage response shown to be a key player in
protecting or destroying cells with damaged DNA to suppress
tumor formation (17, 18). Recently, we reported that p53
plays a critical role in determining cell fate in the response
of irradiated cancer cells to DNA-PK inhibitor, M3814 (16).
Blocking DSB repair in cancer cells expressing wild-type p53
causes overactivation of the ATM signaling axis with a substantial
boost of p53 activity and reinforcement of ATM/p53-controlled

cell cycle checkpoints, leading to a complete cell cycle arrest and
premature cell senescence. Cancer cells with dysfunctional p53
were not protected from entry intomitosis with unrepairedDSBs,
causing severe chromosomal aberrations, mitotic errors and
apoptotic cell death. This new mechanistic model for response
to combined treatment with DSB-inducing agents and a DNA-
PK inhibitor was derived from solid tumor cell lines which have
been shown to retain their p53-dependent cell cycle arrest but
frequently lose their p53 apoptotic activity (19). Acute leukemia
cells, however, are known to preserve their ability to undergo
effective apoptosis and cell death in response to p53 pathway
activation (20). Therefore, the M3814-induced p53 activity boost
in response to DSBs could further potentiate the activity of
calicheamicin in AML cells, the majority of which express wild-
type and functional p53. Here, we show that suppressing DSB
repair with M3814 synergistically enhances the anti-leukemic
activity of calicheamicin in cultured AML cells through p53
dependent and independent mechanisms. Combination of the
selective DNA-PK inhibitor withMylotarg in two AML xenograft
models is well-tolerated, provides significant efficacy and survival
benefit compared to Mylotarg alone and could offer a new
combination approach to AML therapy.

MATERIALS AND METHODS

Cell Lines and Reagents
All cell lines were obtained, mycoplasma free, from the Merck
Tissue Culture Bank (Merck KGaA, Darmstadt, Germany). Cells
were originally purchased from ATCC (Manassas, Virginia), or
DSMZ (Braunschweig, Germany) and kept in liquid nitrogen
at low passage until use. Cell line identity was confirmed
by short tandem repeats (STRs) analyses and mycoplasma
infection was excluded by PCR-based testing. Molm-13, MV4-
11, and HL-60 cells were maintained in RPMI 1640 media
(GIBCO, Gaithersburg, MD) supplemented with 20% heat-
inactivated fetal bovine serum (FBS). AML cell lines were
cultured at low confluency and no longer than 20 passages to
avoid cell differentiation. Culture medium was supplemented
with 10% fetal bovine serum (FBS) (Corning Life Science,
Tewksbury, MA, USA). M3814 and M3814R were synthesized
at Merck KGaA, Darmstadt, Germany. Calicheamicin was
purchased from MedChemExpress (Monmouth Junction, NJ,
USA). All compounds were dissolved in DMSO to prepare
stock solutions and kept frozen at −20◦C until use. The
final concentration of DMSO in media did not exceed 0.1%
(vol/vol). Mylotarg (gentusumab ozogamicin for injection,
Pfizer, 5 mg/vial) was purchased from Asaman, Inc. (Avon,
MA, USA).

Cell Growth and Viability Assays
For drug combination matrix cell growth/viability testing, cells
were plated at 2 × 104 cells/ml overnight in 96-well plates. The
next day, cells were treated with the indicated concentrations of
M3814 and calicheamicin. Drugs were added using D300e digital
dispenser (Tecan) in DMSO with diluent normalization (DMSO
0.1%). Effect on cell growth/viability was assessed at 48, 72 or
144 h using the CellTiterGlo 2.0 Cell Assay (Promega, Madison,
WI, USA) according to manufacturer’s protocol. Luminescence
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was detected using an EnVision plate reader (Perkin Elmer,
Waltham, MA, USA). Calicheamicin dose-response curves and
IC50 values for fixed M3814 doses were generated by graphing
relative viability and curve fitting using GraphPad Prism (v8.0.1).
Synergism between M3814 and calicheamicin was calculated and
graphed according to Bliss and Loewe models using Combenefit
software (v. 2.021) (21). Cell counting assays were performed
by plating 2 × 105 cells/well in 6-well plates and treating in
triplicate with the indicated drugs. Viable cells were counted at
specified timepoints using trypan exclusion and a Cellometer
Mini automated cell counter (v1.2.3.3) (Nexcelom Bioscience,
Lawrence, MA, USA).

Live-Cell Imaging
Live-cell imaging was performed using an IncuCyte ZOOM
live cell analysis system (Essen BioScience, Ann Arbor, MI,
USA). 2,000 cells/well were plated in poly-d-lysine coated, black
walled 96-well plates (Becton Dickinson, Bedford, MA, USA).
Incucyte Annexin V Green reagent was added to media as per
manufacturer’s instructions (Essen BioScience, Ann Arbor, MI,
USA). Cells were treated with the indicated concentrations of
M3814 and calicheamicin and imaged using a 10x objective at 2 h
intervals for 5 days. Relative apoptosis was calculated as Annexin
V-positive events per mm2 normalized to percent confluence.

Western Blot Analyses
MV4-11 cells plated at 1–5 × 105 cells/ml in T75 flasks
were treated with the indicated drugs. Lysates were prepared
at 6, 24, 48, or 96 h using RIPA lysis buffer (Cell Signaling
Technology, Danvers, MA) supplemented with protease and
phosphatase inhibitors (Roche Diagnostics, Indianapolis, IN,
USA). Lysates were resolved using NuPAGE 4–12% Bis-Tris,
or 3–8% Tris-Acetate gels (Thermo Fisher Scientific, Waltham,
MA, USA), and transferred to Nitrocellulose membranes with
an iBlot 2 Gel Transfer Device (Thermo Fisher Scientific,
Waltham, MA, USA). Membranes were treated and imaged with
a LI-COR Odyssey CLx imaging system in accordance with
the LI-COR Near-Infrared (NIR) Western Blot Detection
Protocol (LI-COR, Lincoln, NE, USA). Primary antibodies were
as follows: p-ATM (S1981) (#ab81292, Abcam Biotechnology,
Cambridge, MA, USA); ATM (#MA1-23152, Thermo Fisher
Scientific, Waltham, MA, USA); p-CHK2 (T68) (#2197, Cell
Signaling Technology, Danvers, MA, USA); CHK2 (#6334,
Cell Signaling Technology, Danvers, MA, USA); p-p53 (S15)
(#9284, Cell Signaling Technology, Danvers, MA, USA); p53
(#48818, Cell Signaling Technology, Danvers, MA, USA); p21
(#2947, Cell Signaling Technology, Danvers, MA, USA); MDM2
(#sc-965, Santa Cruz Biotechnology, Dallas, TX, USA); Puma
(#12450, Cell Signaling Technology, Danvers, MA, USA);
Cleaved PARP (#5625, Cell Signaling Technology, Danvers, MA,
USA); Cleaved Caspase 3 (#9664, Cell Signaling Technology,
Danvers, MA, USA), and Vinculin (#V9131, Sigma-Aldrich, St.
Louis, MO, USA).

Gene Expression Analysis
RNA was isolated using RNeasy Mini Kit with on column
DNase digestion (Qiagen, Germantown, MD, USA). RNA

purity and concentration were determined using a Nanodrop
spectrophotometer (Thermo Fisher Scientific). cDNA was
synthesized using Superscript IV Vilo Master Mix (Thermo
Fisher Scientific) as described by manufacturer. Quantitative
PCR was performed using TaqMan Fast Advanced Master
Mix and a 7500 Fast Dx Real-Time PCR Instrument
(Applied Biosystems). TaqMan probes used were CDKN1A
(Hs00355782_m1), MDM2 (Hs01066930_m1), BBC3
(Hs00248075_m1) and GAPDH (Hs02758991_g1). Relative
fold-change gene expression was normalized to GAPDH.

Cell Cycle and Apoptosis
For cell cycle and apoptosis analyses, 0.4–2 × 106 cells/well
were plated in 6-well plates and treated in triplicate with the
indicated drugs. At specified timepoints, 1 × 106 cells were
either fixed in 70% ethanol and stained with 7-AAD (7-amino-
actinomycin D) (BD Biosciences, San Jose, CA, USA) for cell
cycle analysis, or stained with phycoerythrin (PE) conjugated
Annexin V and 7-AAD for apoptosis analysis, using the PE
Annexin V Apoptosis Detection Kit I (BD Biosciences, San Jose,
CA, USA). Samples were analyzed using a BD FACSCanto flow
cytometer (BD Bioscience, San Jose, CA) and data was processed
using FlowJo software (v10.6.1) (FlowJo, LLC).

Animal Studies
Study designs and animal usage were approved by local
animal welfare authorities (Regierungspräsidium Darmstadt,
Hesse, Germany). For MV4-11 xenograft studies, female,
8–10 weeks old H2d Rag2 [C;129P2-H2d-TgH(II2rg)tm1Brn-
TgH(Rag2)tm1AltN4] mice (Taconic Biosciences, Denmark) were
used. 2.5 × 106 tumor cells were injected subcutaneously in
the flank, in 100 µl of 1:1 (v:v) Dulbecco’s phosphate-buffered
saline (calcium- and magnesium-free)/ MatrigelTM Basement
Membrane Matrix (BD Biosciences). Tumors were left to reach
65–180 mm3 and mice were randomized into groups of equal
mean tumor volume (170 mm3) prior to treatment. For HL-60
xenograft studies, female, 6–8 weeks old Hsd:Athymic Nude-
Foxn1nu mice (Envigo, France) were used. 2 × 106 tumor
cells were injected subcutaneously in the flank, in 100 µl of
1:1 (v:v) Dulbecco’s phosphate-buffered saline (calcium and
magnesium free)/MatrigelTM Basement Membrane Matrix (BD
Biosciences). Tumors were left to reach 94–284 mm3 and mice
were randomized into groups of equal mean tumor volume
(170 mm3) prior to treatment. M3814 was suspended for oral
administration in a vehicle of 0.5% Methocel/0.25% Tween20
in 300mM citrate buffer, pH 2.5. Mylotarg was formulated for
intravenous administration according to the package insert by
reconstituting the lyophilizate to a concentration of 1 mg/ml
in water for injection and diluting to final concentration using
0.9% saline.

Statistical Analyses
All statistical tests were performed with GraphPad PRISM
version 7.0 (GraphPad Software Inc.). The data were analyzed
with Student t-tests. P ≤ 0.05 were considered statistically
significant. All assays were conducted independently three times,
unless indicated otherwise, and representative data is shown as
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mean ± SD. Significance values are ∗p < 0.05, ∗∗p < 0.01, and
∗∗∗p < 0.001. NS stands for non-significant (p > 0.05).

RESULTS

M3814 Potentiates the Antitumor Activity
of Calicheamicin in AML Cells
We have previously shown that the DNA-PK inhibitor M3814
can effectively enhance the antitumor effect of ionizing radiation
(IR) by inhibiting NHEJ repair of IR-induced DSBs in solid
tumor cells (15, 16). In cancer cells expressing wild-type p53, this
effect is largely due to overactivation of the ATM/p53 signaling
axis boosting p53 to levels much higher than the levels induced
by radiation alone. This is leading to a complete cell cycle
arrest and premature cell senescence but not apoptosis (16). We
hypothesized that p53 wild-type acute leukemia cells, known to
be highly sensitive to p53-induced apoptosis (22), will be more
effectively killed by the M3814 mediated p53 boost in response to
calicheamicin-induced DSBs.

To this aim, we first examined whether M3814 potentiates the
cytotoxicity of calicheamicin in p53 wild-type AML cells in vitro.
Exponentially proliferating MV4-11 and Molm-13 cells (both
expressing wild-type p53) were exposed to concentration ranges
of calicheamicin and M3814, alone and in combination, and the
effect on cell growth/viability was determined after 48 h by the
CellTiter-Glo assay. Cell viability was reduced across a range
of calicheamicin concentrations when combined with increasing
doses of M3814 (100, 300, and 900 nM). These concentrations
are within the previously defined selectivity range (16). The curve
shift and the corresponding IC50 values suggested a combination
effect (Figure 1A). Analysis of cell viability across the full range
of calicheamicin and M3814 concentrations by two different
methods (Loewe and Bliss excess) using Combenefit software
(21) revealed similar regions of synergy in the dose matrices
for both cell lines (Figure 1B). The concentration ranges at
which synergy was observed at this timepoint was 0.2–4 pM
calicheamicin for MV4-11 and 0.4–10 pM for the Molm-13
cells. To confirm that the observed synergism between M3814
and calicheamicin is indeed due to inhibition of DNA-PK
catalytic activity, we tested the effect of the DNA-PK inhibitor
on cell growth/viability of MV4-11 and Molm-13 cells using
the pharmacologically active M3814 eutomer (Figure 1C, upper
panel) and its distomer,M3814R (Figure 1C, lower panel), shown
to be over 20-fold less potent in inhibiting DNA-PK enzymatic
activity (16). As expected, synergy was observed in both cell lines
exposed to the combination of M3814 and calicheamicin but not
in cells treated with M3814R and calicheamicin, indicating that
the inhibition of DNA-PK kinase activity underlies the observed
synergistic relationship (Figure 1C).

M3814 Overactivates p53 in Response to
Calicheamicin in AML Cells
We investigated the effect of the combination treatment with
calicheamicin and M3814 on p53 activity in the p53 wild-type
MV4-11 cell line. Cells were treated with solvent (DMSO) or
calicheamicin (0.5 or 1 pM) and M3814 (300 or 1,000 nM)

alone and in combination. These M3814 concentrations were
shown to be within the activity range (over 80% DNA-PK
inhibition) in most tested cancer cell lines, while remaining
selective to its target (16). Gene expression analysis of three
key p53 transcriptional targets, responsible for p53 protein
stability (Mdm2), p53-dependent cell cycle arrest (p21) and
p53-dependent apoptosis induction (Puma), showed a dose-
dependent upregulation in response to calicheamicin after 24 and
48 h exposure to the indicated concentrations of single agents or
drug combinations (Figure 2A). While M3814 treatment did not
affect p53 target gene expression in the absence of calicheamicin-
induced DNA damage, combined M3814 and calicheamicin
treatment resulted in a dose-dependent 2- to 5-fold increase
in expression (Figure 2A). These results indicated that the
combination treatment enhances p53 pathway activation in the
response to calicheamicin in agreement with our findings in solid
tumor cellular models (16).

We then examined the status of ATM/p53 signaling in
MV4-11 cells. Exponentially growing cells were exposed to the
solvent (DMSO), calicheamicin (1 pM), M3814 (1µM), and their
combination (1µM M3814 plus 1 pM calicheamicin) and the
levels of key proteins from the ATM (p-ATM, p-CHK2) and
p53 pathways (p-p53Ser15, p21, Mdm2, Puma) were analyzed
by Western blotting at 6, 24, 48, and 96 h (Figure 2B). At
a concentration of 1 pM, calicheamicin increased slightly the
levels of p-ATMSer1981 and its direct phosphorylation target p-
CHK2Thr68, most notably between 6 and 48 h. The effect on
p53 signaling was more pronounced with p-p53Ser15 and total
p53 levels following the pattern of p-CHK2 activation. The p53
transcriptional targets, p21, Mdm2, and Puma, all had elevated,
if slightly different patterns. Cell cycle checkpoint protein p21
was upregulated quickly but its level decreased after 24 h while
the apoptosis regulator Puma reached highest levels at 48 h
and remained elevated until 96 h post treatment. Mdm2 was
elevated more uniformly within the studied period. As seen
previously in epithelial cancer cells (16), DNA-PK inhibitor
did not show significant effect on all tested proteins except
for Puma levels that were slightly higher than the levels in
the DMSO control also found to be somewhat elevated at 48
and 96 h. These increases in the control treatments are likely
caused by apoptosis in a small fraction of cells due to population
overgrowth. The combination of calicheamicin and M3814
induced the expression levels of all tested proteins compared
to calicheamicin or M3814 alone at as early as 6 h and caused
a pronounced upregulation at 24 h, when p-ATMSer1981 was
most elevated. The cell cycle inhibitor, p21, was highest at 24 h
and remained elevated until 96 h while calicheamicin-induced
p21 was down to basal levels at 96 h. Mdm2 levels were more
uniform and higher than in the treatment with calicheamicin
alone. The apoptosis inducer, Puma, was also elevated compared
to calicheamicin alone and strongest at 48 h. Two markers
of apoptosis, cleaved Caspase 3 and cleaved PARP, were also
tested. Cleaved caspase 3 was mildly elevated by calicheamicin
alone, most notably at 96 h, but significantly stronger in the
combination treatment peaking at 96 h. Cleaved PARP elevation
was only detected in the combination treatment and was highest
at 96 h. These Western blot analyses revealed that M3814 can
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FIGURE 1 | M3814 synergizes with calicheamicin in killing AML cells. (A) Proliferating MV4-11 and Molm-13 cells were exposed to increasing concentrations of

calicheamicin alone or in combination with three fixed concentrations of M3814 and their viability was measured after 48 h by CellTiter-Glo assay. Relative viability was

graphed for fixed M3814 doses and curve fitting performed to generate IC50 values. (B) Loewe and Bliss synergy score matrices for MV4-11 and Molm-13 cells

treated with combinations of calicheamicin and M3814. Relative viability by CellTiter-Glo assay was processed using Combenefit software to generate synergy score

matrices. Boxes/cells include synergy scores above standard deviations and significance indicators. *P < 0.05, **P < 0.01, ***P < 0.001. (C) The structure of the

pharmacologically active enantiomer (eutomer) M3814 and overlays of Bliss synergy matrices on combination dose response surfaces for MV4-11 and Molm-13 cells

treated with calicheamicin and M3814 for 48 h (top). The structure of the pharmacologically inactive enantiomer (distomer) M3814R and overlays of Bliss synergy

matrices on combination dose response surfaces for MV4-11 and Molm-13 cells treated with calicheamicin and M3814R for 48 h (bottom). Results were analyzed and

graphed using Combenefit software.
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FIGURE 2 | M3814 overactivates p53 in response to calicheamicin in AML cells. (A) Relative gene expression analysis of key p53 transcriptional targets, Mdm2, p21

and Puma, in MV4-11 (p53 wild-type) cells treated with DMSO, calicheamicin (0.5 or 1.0 pM), or M3814 (300 or 1,000 nM) alone or in combination. Relative

expression determined by the 2(−11Ct) method with GAPDH reference. (B) Western blot analysis of ATM and p53 pathway proteins as well as apoptotic indicators at

6, 24, 48, and 96 h in lysates of MV4-11 cells treated with vehicle, M3814 (1µM), calicheamicin (1pM), or the combination of calicheamicin (1 pM), and M3814 (1µM).

(C) Relative gene expression analysis at 6 and 24 h of key p53 transcriptional targets, Mdm2, p21, and Puma, in MV4-11 (p53 wild-type) cells treated with DMSO,

M3814 (1µM), M3541 (1µM), calicheamicin (1.0 pM), calicheamicin (1 pM) + M3814 (1µM), or calicheamicin (1 pM) + M3814 (1µM) + M3541 (1µM). *P < 0.05,

**P < 0.01, ***P < 0.001.

enhance ATM/p53 signaling in the AML cell line MV4-11 in
agreement with our findings in epithelial cancer cell lines (16).
The overactivation of the ATM and p53 pathways resulted in
significantly higher levels of the p53-dependent controllers of cell
cycle and apoptosis, p21 and Puma, predicting stronger cell cycle
arrest and/or apoptotic activity.

To confirm the role of ATM activation in the elevated p53
response we used the novel, potent and selective inhibitor
of ATM catalytic activity, M3541 (23). Adding 1µM M3541,
a concentration previously shown to inhibit over 80% of
ATM autophosphorylation in response to ionizing radiation

in multiple cancer cell lines (16, 23), to the combination
of calicheamicin and M3814 in MV4-11 cells abrogated the
enhancing effect ofM3814 on p53 targets, p21,Mdm2, and Puma,
bringing them close to untreated levels at 6 h and still significantly
reduced relative to the calicheamicin/M3814 combination at 24 h
(Figure 2C). ATM inhibitors have limitations as a cellular probe
for DSB-induced p53 activation because they simultaneously
inhibit its main function as a driver of DSB repair via the
homologous recombination pathway (24). Continuous ATM
inhibition has been shown to suppress the repair of DSBs and
potentiate DSB-inducing agents (23) that may lead to a secondary
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ATM-independent activation of p53 at later time points. This
may explain the incomplete inhibition of the p53 response at
24 h. However, the observed suppression of p53 activation in the
early stages of the calicheamicin/M3814 combination treatment
is in agreement with our data with solid tumor cell lines (16) and
support the hypothesis that p53 activity boost is downstream of
M3814-induced ATM overactivation.

ATM/p53 Pathway Boost by M3814
Contributes to the Antitumor Activity of
Calicheamicin in MV4-11 Cells
When activated by genotoxic stress, the p53 pathway can exert
two major functions, cell cycle arrest and/or apoptosis to aid
in the repair of DNA damage or eliminate damaged cells and
suppress tumorigenesis (25). Both functions are activated by
many genotoxic chemotherapeutics in p53 wild-type cancer cells
and contribute to the antitumor activity of these agents (26).
The p53-dependent apoptotic response plays a major role in the
therapy of AML which is predominantly p53 wild-type (22). We
assessed if the enhanced activation of the p53 pathway by M3814
contributes to potentiation of calicheamicin antitumor activity.

Firstly, we examined the cell cycle effect of the combined
treatment. MV4-11 cells were exposed to calicheamicin (1.0 pM)
and M3814 (1µM) alone and in combination as in Figure 2

for 24 h and subjected to cell cycle analyses (Figure 3A). M3814
treatment slightly slowed down cell cycle progression as revealed
by mild growth delay (Figure 3B). Calicheamicin alone partially
arrested MV4-11 cells in G1 phase primarily reducing the S
phase population. The combination treatment led to nearly
complete cell cycle block in G1 and G2/M phase with only 5%
of the cells remaining in S phase, typical for p53-dependent,
p21-mediated cell cycle arrest (19, 27) that effectively halted
cell growth (Figure 3B). These experiments suggested that the
M3814 mediated ATM-dependent p53 boost could contribute to
the antitumor effect by strengthening the calicheamicin-induced
cell cycle arrest.

Next, we asked if the DNA-PK inhibitor can enhance
calicheamicin-induced apoptosis in MV4-11 cells in vitro. Again,
cells were exposed to calicheamicin (1.0 pM) and M3814
(1µM) alone and in combination, and the cell population
undergoing apoptosis was identified and quantified by staining
with phycoerythrin (PE) conjugated Annexin V and 7-amino-
actinomycin D (7-AAD) at 24, 48, 72, and 96 h (Figure 3C).
The changes in apoptotic cell fraction (combined early and
late apoptosis) are summarized in Figure 3D. A time-dependent
increase in the fraction of MV4-11 cells undergoing early and
late apoptosis was observed in response to calicheamicin alone.
The combined treatment resulted in a consistent increase in
the fraction of apoptotic cells relative to calicheamicin alone.
These results support the hypothesis that by overactivation
of the ATM signaling axis M3814 increased calicheamicin-
induced p53 transcriptional activity, reinforced p53-dependent
cell cycle arrest and apoptosis thus extending the validity of
our mechanistic model (16) to acute leukemia cells. In contrast
to irradiated solid tumor cells, which acquired p53-dependent
premature senescence in the presence of M3814, this boost in

p53 activity led to increased calicheamicin-induced apoptosis
and cell death in MV4-11 cells. Therefore, M3814-induced p53
overactivation could offer a new approach to enhancing the
activity of Mylotarg’s warhead calicheamicin in AML cells.

M3814 Potentiates Calicheamicin
Cytotoxicity Independent of p53 in HL-60
Cells
Most AML patients express wild-type p53 in their blasts at
diagnosis (22). However, ∼10% carry disabling p53 mutants and
represent a significant treatment challenge with the established
AML therapies (28). The mechanistic model for potentiation
of DSB-inducing agents by M3814 in solid tumors cells (16)
predicted enhancement of p53-dependent response in p53 wild-
type AML cells, but also suggested potentiation of DSB-inducing
therapies in p53 dysfunctional cells. These p53-mutant or null
cells lack p53-dependent cell cycle arrest and effective protection
from mitotic entry with unrepaired DSBs that could lead to
mitotic catastrophe (16, 29). In epithelial cancer cells, such
outcome was delayed until chromosomal damage accumulates
over one or more subsequent cell cycles (16).

We examined the mechanism of response to the
calicheamicin/M3814 combination in the p53-null AML
line HL-60. Firstly, we compared the relative viability of the
combined treatment in the p53 wild-type MV4-11 and the
p53-deficient HL-60 cell line. Exponentially growing cells were
exposed to a combination matrix of a range of M3814 and
calicheamicin concentrations, and their relative growth/viability
was determined at 48, 72, and 144 h. Dose-response curves
generated for three fixed M3814 concentrations (100, 300,
and 900 nM) indicated a delayed onset of cytotoxicity for the
combination in HL-60 cells compared to MV4-11 (Figure 4A).
Our data revealed that M3814 could synergistically enhance the
activity of calicheamicin in HL-60 cells but with delayed kinetics.

These findings were supported by live-cell imaging of MV4-11
and HL-60 cells continuously monitoring calicheamicin/M3814
induced changes in cell growth and viability. IncuCyte Annexin
V reagent was used to assess real-time apoptosis induction.
Annexin V positive cell events were recorded over a period of 5
days and normalized to cell confluence (Figure 4B). Comparison
of the curves of relative apoptotic events showed that while
M3814 potentiated calicheamicin apoptotic activity in MV4-11
cell continuously, it provided insignificant enhancement in HL-
60 cells up to 50 h which was substantially accelerated over the
later part of drug exposure. These results are consistent with the
hypothesis that p53-dependent apoptosis of AML cells known
to occur with rapid onset (22) is the primary driver of the
early response to the calicheamicin/M3814 combination inMV4-
11 cells. The delayed cell killing of the p53-null HL-60 cells
resembled the delayed response of p53 dysfunctional epithelial
tumor cells to ionizing radiation and M3814 (16) and suggested
that mitotic catastrophe might be involved.

Next, we analyzed the effect of calicheamicin/M3814
treatment on cell cycle progression and viability. HL-60 cells
were exposed to calicheamicin (5 pM), M3814 (1µM) or the
combination and their cell cycle distribution was analyzed at
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FIGURE 3 | M3814 enhances antitumor activity of calicheamicin in AML cells by a p53-dependent mechanism. (A) Cell cycle analysis of 7-AAD stained MV4-11 cells

treated with DMSO, M3814 (1µM), calicheamicin (1 pM), or calicheamicin (1pM) + M3814 (1µM). (B) Cell number as assessed by trypan exclusion at 0, 24, 48, and

72 h for MV4-11 cells treated in triplicate with DMSO, M3814 (1µM), calicheamicin (1 pM) or the combination of calicheamicin (1pM) + M3814 (1µM). (C)

Representative images from flow cytometry analysis of apoptosis at 24, 48, 72, and 96 h in MV4-11 cells treated in triplicate with DMSO, M3814 (1µM), calicheamicin

(1 pM) or the combination of calicheamicin (1 pM) and M3814 (1µM). (D) Average percentage of Annexin V-positive cells (early and late apoptotic) from flow cytometry

analysis of cells treated in triplicate as in (c) and analyzed at 24, 48, 72, and 96 h. *P < 0.05, **P < 0.01, ***P < 0.001.

48, 72, and 96 h (Figure 4C). The DMSO control and M3814
treatment exhibited a normal cell cycle profile with traces of
apoptotic (sub-G1) population remaining practically unchanged.
Cells treated with calicheamicin showed a slight G2/M arrest
and increased apoptotic (sub-G1) fraction little changed over
the next 2 days. HL-60 cells exposed to the combination were
arrested predominantly in G2/M (57%) and had 22% apoptotic
(sub-G1) fraction at 48 h. At 72 h, the G2/M peak diminished
dramatically giving rise to an increasing (39%) apoptotic

(sub-G1) population. At 96 h, most of the cells (63%) were in the
sub-G1 population. The remaining 37% of the cell population
displayed a profile indicative of ongoing cell death. These
results demonstrated that M3814 can substantially enhance the
killing potential of calicheamicin in the p53-defficient AML
cell line HL-60. Altogether, our experiments revealed that
the DNA-PK inhibitor M3814 synergizes with and effectively
potentiates the activity of calicheamicin in proliferating AML
cells in vitro.
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FIGURE 4 | M3814 potentiates calicheamicin cytotoxicity independent of p53 in HL-60 cells. (A) Calicheamicin dose-response curves for fixed M3814 concentrations

and Bliss synergy matrices for MV4-11 cells (left) and HL-60 cells (right) treated with calicheamicin and M3814 as in Figure 1 and assayed for relative viability using

CellTiter-Glo assay at 48, 72, and 144 h. Synergy results were analyzed and graphed using Combenefit software. (B) MV4-11 cells (top) and HL-60 cells (bottom)

were seeded in 96-well plates and exposed to vehicle (DMSO), M3814 (900 nM), calicheamicin (1.2 pM) or combination of M3814 (900 nM) + calicheamicin (1.2 pM)

in the presence of IncuCyte Annexin V reagent and their growth and apoptosis was monitored by live time-lapse imaging by IncuCyte at 10x magnification. Relative

apoptosis events were determined from imaging data and calculated as Annexin V-positive events normalized to percent confluence, averaged from eight fields of

view across duplicate wells. (C) Cell cycle analysis of 7-AAD stained HL-60 cells treated with DMSO, M3814 (1µM), calicheamicin (5 pM) or the combination of

calicheamicin (5 pM) + M3814 (1µM) for 48, 72, and 96 h. Cells in each phase (sub-G1, G1, S, G2/M) were calculated as a percentage of total cell count (100%) and

corresponding numbers positioned in close proximity to the phase they represent.
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M3814 Shows Strong Combination Benefit
With Mylotarg in AML Xenograft Models
We sought to determine whether the potentiation of free
calicheamicin by M3814 in vitro could translate to an in
vivo combination setting with Mylotarg using mouse xenograft
models of AML. MV4-11 and HL-60 tumor xenografts were
established subcutaneously in immunodeficient mice and treated
intravenously with vehicle, a single dose of Mylotarg (0.1 mg/kg
in MV4-11 and 1.0 mg/kg in HL-60) and daily oral doses of
M3814 (100 mg/kg), alone and in combination. Animals were
monitored over time for tumor volume and body weight changes.
M3814 treatment alone did not show a significant effect onMV4-
11 tumor volumes as compared to vehicle (Figure 5). Mylotarg
treatment led to an initial reduction in tumor volume, and while
3 xenografts had a complete response, tumor outgrowth was
observed in 7 animals. Combined treatment with M3814 and
Mylotarg, however, resulted in complete responses in 7 of 10
tumor xenografts. Similar results were seen in HL-60 xenografts
where no significant activity of M3814 alone on tumor volumes
was detected (Figure 5). At the used dose, Mylotarg treatment
did not produce a substantial reduction in tumor volume across
the treatment group, 3 xenografts had a complete response
and tumor outgrowth was observed in 6 animals. Combined

treatment with M3814 and Mylotarg, increased the number of
complete responses, with no measurable tumor volume in eight
of nine treated animals at the termination of the study on day
45. Thus, there was a clear combination effect of M3814 and
Mylotarg in vivo in both MV4-11 and HL-60 tumor xenografts.
Furthermore, this combination had minimal effects on body
weight in both MV4-11 and HL-60 studies, indicating potential
favorable tolerability (Figure 5).

DISCUSSION

Using molecular tools and early chemical inhibitors, DNA-PK
inhibition has been shown to enhance the antitumor effect
of ionizing radiation and DSB-inducing chemotherapeutics
and was proposed as a new combination strategy for cancer
therapy (30, 31). M3814 is the first potent and selective
inhibitor of DNA-PK catalytic activity that has undergone
Phase 1 clinical evaluation and is currently being tested in
proof-of-concept clinical studies in combination with DSB-
inducing therapies. Due to its target selectivity, M3814 offers
an excellent molecular probe for mechanistic studies and
therapeutic intervention in DSB repair. Recently, we showed
that inhibition of radiation-induced DSB-repair by M3814

FIGURE 5 | M3814 shows a strong combination benefit with Mylotarg in AML xenograft models. Established subcutaneous MV4-11(group size: 10 mice) and HL-60

(group size: 9 mice) xenograft tumors in immunodeficient mice were treated with Mylotarg (0.1 mg/kg in MV4-11 and 1.0 mg/kg in HL-60, single administration,

intravenous injection), M3814 (100 mg/kg, daily, oral gavage), and the combination thereof as indicated. Statistical analysis was performed on log transformed tumor

volume data applying a repeated measurement ANOVA with Bonferroni post-test for comparing the groups treated with Mylotarg + M3814 and Mylotarg alone using

GraphPad Prism software. CR, complete response.
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causes a unique reinforcement of ATM/p53 regulated cell
cycle checkpoints and two district cellular responses that are
under p53 control: p53 dependent complete proliferation block
and premature senescence that protect cells from death or
mitotic catastrophe and apoptotic death in the absence of p53
functionality (16). While an enhanced p53 response protects
irradiated solid tumor cells from the lethal consequences of
radiation-induced DNA damage, the same response in acute
leukemia cells may offer a new way for enhanced cell killing
via p53-dependent apoptosis. This difference in p53 dependent
apoptotic response has been attributed to the fact that that
majority of solid tumors expressing wild-type p53 acquire defects
in the p53-dependent apoptotic signaling (19, 32) while most
acute leukemias are known to preserve p53 wild-type status and
apoptotic function (22).

Here, we investigate the applicability of this approach
to combination therapy of DNA-PK inhibitor M3814 with
Mylotarg, an ADC armed with a potent DSB-inducing warhead,
calicheamicin. Our results demonstrate that calicheamicin
activity is synergistically potentiated by M3814 in p53 wild-
type MV4-11 and MOLM-13 cells in vitro. The significant
overactivation of the p53 pathway and induction of cell cycle
arrest and apoptosis inMV4-11 cells suggests that p53-dependent
cell cycle arrest and apoptosis is an important contributor
to the potentiation of calicheamicin in the p53 wild-type
setting. Our results do not exclude p53-independent killing
of p53 wild-type AML cells. Indeed, it has been shown that
calicheamicin can induce apoptosis in p53-null clone of the
p53 wild-type HCT116 cancer cell line but did not investigate
the possibility for involvement of different mechanisms (11).
Engaging the p53-dependent apoptotic signaling has been
established as an important component of current AML therapies
with proven clinical success and its synergistic enhancement
by a DNA-PK inhibitor offers a new approach for potential
therapeutic intervention.

A different mechanism is likely behind the enhanced activity
of calicheamicin/M3814 combination in the p53 null HL-60 cell
line. In the absence of functional p53, a weakened checkpoint
control allows a larger number of cells to enter mitosis with
unrepaired DSBs, frequently leading to mitotic catastrophe
(29). The slower onset of cell death in HL-60 cells during
calicheamicin/M3814 treatment and the predominant G2/M
arrest giving rise to an increasing apoptotic (sub-G1) population
remarkably resembling the fate of irradiated HeLa cell under
M3814 treatment (16) hint to involvement of mitotic catastrophe
(33). However, apoptotic or necrotic cell death independent of

mitotic catastrophe in p53-deficient cells cannot be excluded as a
contributor to the overall enhanced AML cell killing in response
to the calicheamicin/M3814 combination. Future focused studies
in panels of p53-deficient cell lines are needed to establish the
predominant mechanism of M3814 enhanced calicheamicin-
induced cell death in AML.

The results described in this manuscript suggest that
regardless of the p53 status of AML cells and the mechanisms
of response, DNA-PK inhibition effectively sensitizes AML cells
to Mylotarg in vitro and in vivo. Thus, M3814 could offer a
new combination approach to AML therapy with a potentially
improved treatment outcome. Selectively targeting the CD33-
positive AML cells may spare normal bone marrow cells from
enhanced p53-dependent toxicity. Indeed, our mouse models
revealed a minimal increase of body weight loss which was
fully reversible. However, the true safety window of such a
combination strategy could be determined only in the proper
clinical setting.

Antibody drug conjugates with several deferent DNA
damaging payloads have been reported and are at different
stages of preclinical and clinical evaluation (34). They may offer
interesting new opportunities for combination with inhibitors of
DNA repair pathways, such as M3814.
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Most cancers have lost a critical DNA damage response (DDR) pathway during tumor

evolution. These alterations provide a useful explanation for the initial sensitivity of tumors

to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed

repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive

efforts are being made to develop novel targeted therapies exploiting such an HDR

defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example

of this approach. Despite the success of PARP inhibitors, the presence of primary or

acquired therapy resistance remains a major challenge in clinical oncology. To move the

field of precision medicine forward, we need to understand the precise mechanisms

causing therapy resistance. Using preclinical models, various mechanisms underlying

chemotherapy resistance have been identified. Restoration of HDR seems to be a

prevalent mechanism but this does not explain resistance in all cases. Interestingly,

some factors involved in DNA damage response (DDR) have independent functions in

replication fork (RF) biology and their loss causes RF instability and therapy sensitivity.

However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs

and acquired drug resistance. In this review we discuss the recent advances in the field

of RF biology and its potential implications for chemotherapy response in DDR-defective

cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in

maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to

novel tools that, combined with a better understanding of drug resistance mechanisms,

may constitute a great advance in personalized diagnosis and therapeutic strategies for

patients with HDR-deficient tumors.

Keywords: DNA replication, replication fork, chemotherapy, drug resistance, DNA damage response, DNA damage

tolerance, PARP inhibitors, BRCA1/2

DNA DAMAGE RESPONSE-TARGETED CANCER THERAPY AND
RESISTANCE

Damage to DNA occurs naturally in cells during cellular metabolism, or after exposure to external
agents such as ultraviolet light, ionizing irradiation (IR), or genotoxic chemicals (1). While
healthy cells are able to repair the DNA lesions, cells that have defects in the DNA damage
response (DDR) pathway do not repair the lesions as efficiently, resulting in genome instability
and potentially the development of cancer (2). Instructive examples of malignancies with defects
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in the DDR are ovarian and breast cancers with mutations in
genes of the homologous recombination (HR) pathway, such
as BRCA1 and BRCA2 (3–7). The HR pathway is one of the
three major cellular pathways that repair DNA double strand
breaks (DSBs) (8–10). Whereas, the other pathways, classical
non-homologous end-joining (NHEJ) and theta-mediated end
joining (TMEJ) do not require a template for repair and tend to
be error-prone, HR occurs after DNA replication and uses the
undamaged sister chromatid as a template for error-free repair of
DSBs [reviewed in (9, 11)].

Although DDR alterations cause mutagenesis and malignant
transformation, they also provide a therapeutic opportunity
that can be explored by DNA damage-inducing therapies (12,
13). In fact, alterations in the DDR even provide a useful
explanation for the initial drug sensitivity. Most cancers have
lost a critical DDR pathway during cancer evolution (14, 15).
Patients therefore respond to clinical interventions that cause
DNA damage, e.g., chemotherapy using DNA crosslinkers and
radiotherapy. Whereas, the normal cells of the body can still
cope with the damage, the tumor cells that lack proper DNA
repair cannot and die. Accordingly, HR-deficient cancers (e.g.,
due to BRCA1/2 mutations) are often sensitive to classical
DNA-crosslinking agents such as platinum-based drugs (13, 16).
However, these agents are associated with significant side effects
due to the damage of normal tissues (17).

An alternative to this conventional therapy is a more targeted
type of treatment that is based on the synthetic lethality concept:
the mutation in one of two genes is harmless for the cells but the
simultaneous inactivation of those two genes is lethal (18, 19).
Because tumors that have lost a certain DDR pathway rely more
on other DNA repair mechanisms, selectively inhibiting these
alternative pathways gives an opportunity to induce synthetic
lethality in these tumor cells. In contrast, the normal cells still
have all DDR pathways available and can cope with the damage
induced by the treatment.

A successful example of this concept is the approval of
poly(ADP)ribose polymerase (PARP) inhibitors (PARPi) to
target BRCA1/2-deficient ovarian and breast cancers (20, 21),
with relatively moderate side effects [reviewed in (22, 23)].
Several PARP enzymes, and in particular its founding member
PARP1, are important in coordinating responses to DNA damage
(24, 25). PARP1 is quickly recruited to single-stranded DNA
(ssDNA) sites upon damage and catabolizes the formation of
branched PAR polymers, which then serve as a scaffold for the
recruitment of downstream repair factors (26).When the lesion is
removed, poly(ADP-ribose) glycohydrolase (PARG) removes the
PAR chains and PARP1 is released from DNA, together with the
other involved proteins. PARPi inhibit the PARylation reaction
and trap PARP to DNA, delaying the repair of the damage. It
is thought that accumulation of SSBs in the absence of PAR
synthesis and physical trapping of PARP1 on DNA eventually
lead to RF collapse and DSBs (8, 27, 28). Since PARP1 also
senses unligated Okazaki fragments during DNA replication and
facilitates their repair, the synthetic lethality may also origin from
replication-associated single-stranded DNA gaps (29). Recently,
another model for PARPi-induced genotoxicity was presented,
where PARPi deregulates restart of transiently stalled forks (see

“Replication fork reversal and its players” below), elevating
the fork progression rate above a tolerable threshold in the
presence of DNA damage (30–32). However, the relevance of
the mechanisms mentioned above in different model systems
and different therapy contexts remains to be better understood.
Importantly, since HR is required for error-free DSB repair
following replication, BRCA1/2-deficient tumor cells lacking HR
activity are not able to tolerate the damage induced by PARPi and
they eventually die, whereas normal cells can cope with PARPi
treatment (27).

Despite the clinical benefits of PARPi, most patients with
disseminated BRCA1/2-mutated cancer still die because their
tumors either show upfront resistance or develop secondary
resistance (33). Thus, drug resistance remains a major challenge
in targeting DDR pathways.

Mechanisms of resistance to PARPi in HR-deficient tumors
have been studied extensively in preclinical models [reviewed
in (34)]. Residual hypomorphic activity or reactivation of
BRCA1/2 function by secondary mutations, is one of the
major mechanisms found in patients (5, 35–39). Moreover,
the restoration of HR independently of BRCA1 function (via
the downregulation of factors involved in blocking DNA
end resection and promoting NHEJ) is also prominent in
animal models (40–54) and we expect that this also occurs in
humans. Additional mechanisms discovered are related to the
upregulation of the drug efflux transporter ABCB1/P-gp (55,
56), the loss of the drug target via downregulation of PARP1
in BRCA1/2-proficient cells (57), PARP1 point mutations that
abrogate PARPi-induced trapping (58), or the partial restoration
of PARylation activity via the loss of PARG, the functional
antagonizer of PARP1 (59).

More recently, attention has been brought to the contribution
of replication fork (RF) integrity to genome stability and drug
response (60, 61). Interestingly, besides their role in DNA repair,
BRCA1/2 are also important to protect stalled RFs, allowing the
resolution of replication intermediates while preventing excessive
nucleolytic degradation (62–64). This dual role of BRCA1/2 in
DNA repair and RF protection makes BRCA1/2-deficient cells
highly sensitive to DNA damaging agents and drugs affecting
replication (see more details in the section “Fork stability as
a resistance mechanism in BRCA-deficient tumors”). Besides
BRCA1/2, other DNA repair factors such as RNF8, RNF168,
53BP1, and RAD51 are present at RFs and play a role in their
dynamics (65–70). In agreement with this, several studies have
demonstrated that restored stability of RF in BRCA1/2-deficient
cells achieved via re-activation of BRCA1/2 or additional loss
of other factors regulating RF processing, confers resistance to
PARPi and platinum drugs (62, 63, 71–73) [reviewed in (60, 61)].

Hence, various well-known mediators of DSB repair have
independent functions in RF biology. Since their defect is linked
to increased anti-cancer therapy sensitivity, it raises the question
whether the defective RF metabolism is the main determinant of
anti-cancer therapy response or, at least, a major contributor.

Given the increasing implications of RF homeostasis for
cancer therapy, we focus our attention in this review to RF
remodeling and the different methods currently used to study RF
constitution and dynamics. Next, we discuss crucial molecular
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players of these processes and the relation of PARP and PARPi
with the RF remodeling “metabolism.” In addition, we discuss the
role of fork stability and restart in cancer drug resistance and the
biological role of DDT pathways in the maintenance of genome
integrity and cancer. Moreover, we will suggest some practical
applications of this knowledge in the clinic, in terms of diagnosis
and prognosis, predicting personalized treatment responses, and
for the development of new therapeutic strategies.

THE TOOL-BOX TO STUDY RF
STRUCTURE, COMPOSITION AND
DYNAMICS

To investigate RF biology, high-resolution, quantitative
molecular tools are necessary, in particular for the study of
protein interactions at RFs during unperturbed S-phase or
replication stress. Because each method has it strengths and
pitfalls, a combination of several methods is useful to obtain a
complete picture of the hypothesis to be tested. Before focusing
on the mechanisms of RF biology in the context of cancer
therapy, we provide a brief outline of the most commonly
used techniques.

Electron Microscopy (EM)
Electron microscopes use a beam of accelerated electrons as
a source of illumination. Since the wavelength of electrons
can be up to 100,000 times shorter than that of visible light
photons, electron microscopes have a much higher resolution
than light microscopes and are ideal to visualize small structures.
Actually, EM is the only method that allows direct observation
and quantification of DNA replication intermediates. Several
structures, such as reversed forks, Holliday junctions and even
the distinction between single-stranded DNA (ssDNA) and
double-stranded DNA (dsDNA) have been observed using this
method (74).

Briefly, living cells are exposed to tri-methyl-psoralen (TMP)
and irradiated with 365–366 nm monochromatic light to cross-
link DNA. This crosslinking step preserves DNA replication
intermediate (RI) structures during the subsequent extraction
and enrichment procedures. Genomic DNA is then extracted
and, in an optional step, RI are enriched by binding, washing
and elution in a benzoylated-naphthoylated DEAE (BND)
cellulose column, since this resin has high affinity to ssDNA
(which is always present at RFs). Afterwards, the DNA
sample is concentrated in size-exclusion columns and spread
in the presence of the cationic detergent benzyl-dimethyl-
alkylammonium chloride (BAC). This monolayer of DNA is
absorbed to carbon-coated grids and stained with uranyl acetate.
Finally, the individual DNA molecules can be visualized after the
grids undergo flat angle rotary shadowing with platinum (74)
(Figure 1A).

The high resolving power of EM (in the range of 30–50
base-pairs) allows the visualization of the fine architecture of
DNA structures, such as reversed forks, and, combined with
drug treatment or genetic manipulations, can reveal any kind
of DNA alterations caused by these perturbations. Moreover,

because nucleosomal DNA is not accessible to the crosslinking
reagent psoralen, the final, deproteinized DNA will appear as
ssDNA bubbles that represent the nucleosome position in vivo,
providing valuable information on the chromatin organization
on replicating DNA (74) (Figure 1A). Despite the enormous
benefits of EM, it is a relatively laborious technique, it requires
specialized, expensive equipment and it is a static method that
only provides a snapshot of the RIs at a given time-point
(Table 1).

DNA Fiber Assay
In this procedure, ongoing replication events are
sequentially labeled with two thymidine analogs [commonly
iododeoxyuridine (IdU) and chlorodeoxyuridine (CldU)] and,
after cell lysis, individual DNA molecules are stretched into
fibers using the combing (75, 76) or the spreading technique
(represented in Figure 1B) (77). The two modified nucleotides
are then detected by two-color immunofluorescence and
visualized in a fluorescence microscope (Figure 1B).

Unlike EM, the visualization of individual RFs using the
DNA fiber assay provides a better understanding of the
dynamic behavior of RFs, based on several parameters, such
as: the speed of ongoing RFs, the number of newly initiated
forks, the distance between replication origins, the frequency
of fork stalling/collapse, for instance, upon induction of
replication stress (78, 79). Therefore, the combination of different
experimental variables, such as the duration of labeling with
thymidine analogs, the existence (or not) and extent of chase after
labeling, as well the exposure to different genotoxic agents, gives a
global picture of the fluctuating alterations in RFs. Combinations
of EM and DNA fiber methods offer optimized conditions to
elucidate mechanistic aspects of the cellular responses to specific
types of replication stress (80).

The scale of the detected DNA fibers is 1µm = 2–4Kb,
which means that only RF degradation of at least 2 kb can be
directly observed, whereas smaller losses are undetected, making
this a technique relatively low in resolution, when compared to
others (61) (Table 1). Even though the “simple” DNA fiber assay
does not provide information on the location of the RFs in the
genome, it can be combined with a DNA probe (Fluorescence
in situHybridization-FISH) specific for a certain genomic region
(81). Due to the limited sensitivity of immunofluorescence, the
detection of proteins at RFs is not feasible with this method
(Table 1).

Isolation of Proteins on Nascent DNA
(iPOND)
As its name indicates, iPOND is an approach focused on
the detection of proteins associated with nascent DNA. In
this method, cells are incubated with the thymidine analog 5-
Ethynyl-2′-deoxyuridine (EdU) to label newly replicated DNA.
After cross-linking of proteins and DNA with formaldehyde,
the click reaction in performed to link biotin to EdU (82).
After cell lysis and sonication to shear chromatin, proteins in
close proximity to biotin and EdU-labeled DNA are purified
with streptavidin-coated agarose beads. These isolated proteins
are then resolved by Western blotting or mass spectrometry
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FIGURE 1 | Overview of techniques frequently used to study replication fork biology. Various methodologies, including electron microscopy (A), single molecule DNA

fiber assay, using the spreading technique (B), iPOND (C), and SIRF (D), are being used to study replication fork-associated processes. Combining these techniques

allowed many research groups to identify novel factors associated with replication forks and their role in replication fork dynamics and replication stress responses.

Ab, antibody; BAC, benzyl-dimethyl- alkylammonium chloride; BND, benzoylated-naphthoylated DEAE; CldU, chlorodeoxyuridine; EdU, 5-Ethynyl-2′-deoxyuridine;

IdU, iododeoxyuridine; iPOND, isolation of proteins on nascent DNA; PLA, proximity ligation assay; Pt/C, Platinum/carbon; RF, Replication fork; RIs, replication

intermediates; SIRF, in situ analysis of protein interactions at DNA replication forks; TMP, tri-methyl-psoralen.
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TABLE 1 | Summary of the advantages and disadvantages of the different techniques used to study replication fork biology.

Technique Advantages Disadvantages

Electron microscopy ◦ Direct visualization and quantification of fork structures

◦ High resolution: 30–50 base pairs

◦ Static method

◦ Laborious and requires specialized and expensive technique

and equipment

DNA fiber assay ◦ Single molecule resolution

◦ Can measure several parameters: rate of fork elongation,

inter-origin distances, frequency of origin firing, and frequency of

fork collapse

◦ Allows monitoring the dynamics of replication perturbation for a

prolonged period of time

◦ Relatively low resolution (only length differences corresponding to

at least 2–4Kb of DNA can be observed)

◦ Inter-observer variability of the image analysis

iPOND ◦ Improved sensitivity (compared to IF)

◦ Combined with pulse-chase methods provides high spatial and

temporal resolution of protein dynamics.

◦ Allows analysis of posttranslational modifications

◦ Compatible with unbiased screening approaches.

◦ Coupling with SILAC/mass spectrometry: highly quantitative

and unbiased

◦ Laborious

◦ Large amount of starting material required

◦ Limited quantification potential

◦ Does not consider heterogeneity of cell populations

◦ SILAC/mass spectrometry: requires high-cost specialized

equipment with limited access

SIRF ◦ Single cell resolution

◦ Allows analysis of heterogeneous cell populations (location and

type)

◦ Readily quantifiable

◦ Sensitive (very little starting cell material)

◦ Does not require special equipment

◦ Not all epitopes at the forks may be accessible to antibodies

◦ Limited to distances no >∼40 nm

IF, immunofluorescence; iPOND, Isolation of proteins on nascent DNA; SILAC, stable isotope labeling with amino acids in cell culture; SIRF, in situ analysis of protein interactions at DNA

replication forks.

(69) (Figure 1C). Besides allowing the identification of proteins
at active RFs, this technique also enables the investigation of
proteins recruited to stalled and collapsed forks, depending on
the addition of different replication stress-inducing agents to
the cells (69).

Compared to immunofluorescence, iPOND is amore sensitive
technique and also enables the analysis of posttranslational
modifications. Additionally, combined with pulse-chase
experiments, it offers a high spatial and temporal resolution of
protein dynamics at replicating DNA. Another advantage of
iPOND is the possibility to combine it with unbiased screening
approaches by coupling iPOND to mass spectrometry (Table 1).
Hence, this methodology is very useful to identify new proteins
present at active and perturbed RFs (69).

Despite its relative high sensitivity, iPOND lacks an
amplification step, which means that large amounts of starting
material are needed to achieve sufficient protein for detection
(82). It is also a laborious and not very trivial technique, requiring
specialized technical skills. Other drawbacks of this tool are its
limited quantitative potential and the fact that it analyses cells as
a whole population, not considering individual cell heterogeneity
(Table 1).

One extension of mass spectrometry-coupled iPOND is the
combination with stable isotope labeling with amino acids in cell
culture (SILAC). For this purpose, two different cell populations
are grown in a medium containing either normal amino acids or
amino acids labeled with stable non-radioactive heavy isotopes.

This way, the abundance of specific proteins can be directly
compared and quantified between the two samples (69).

An alternative protocol for iPOND, named aniPOND
(accelerated native iPOND) has also been developed. The
major advantages of aniPOND compared to the earlier
described iPOND are the milder lysis conditions that
preserve better the DNA-protein complexes, the absence
of the formaldehyde crosslinking step that may interfere
with downstream analysis, and an improved protein
yield (83).

In situ Analysis of Protein Interactions at
DNA Replication Forks (SIRF)
SIRF is a technology that fuses iPOND and a modified version
of the proximity ligation assay (PLA), used to detect proteins in
close proximity to others (84). In this method, like in iPOND,
EdU is incorporated into replicating DNA and then biotinylated
using the click chemistry (85). Afterwards cells are incubated with
primary antibodies against biotin and the protein of interest and
detection follows the principles of PLA: two secondary antibodies
conjugated with oligonucleotides are added to the cells and bind
to the primary antibodies. When the secondary antibodies (and
consequently EdU-labeled DNA and the protein of interest) are
in close proximity (<40 nm), the two oligonucleotides can anneal
to each other and form a circular DNA structure that serves
as a template for a PCR-based amplification reaction (rolling
circle amplification). These amplified DNA circles are then
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FIGURE 2 | RAD51-mediated RF reversal (A) and an overview of replication fork restart mechanisms (B). (A) At stalled replication forks, ssDNA tracks are protected

and coated with RPA. The DNA recombinase RAD51 replaces RPA and binds to DNA, contributing to the remodeling of the stalled fork into a reversed fork (4-way)

structure. Besides RAD51, there are other replication fork remodelers, mentioned in the main text, but for simplicity only RAD51 is represented in this figure.

(B) PARP1-mediated suppression of RECQ1 helicase is an important regulator of a premature restart of reversed forks (upper panel). Because of the least amount of

processing involved, RECQ1-mediated pathway represents the first-choice restart mechanism of reversed forks. DNA2/WRN-driven restart involves regulated

processing of the regressed arms and uses HDR to resolve the replication intermediate (middle panel). Reversed forks that could not be restarted in S phase are

processed by MUS81 endonuclease later in mitosis and DSB break is formed in the process. The collapsed fork is then rescued by POLD3-driven D-loop formation

and synthesis re-initiation (lower panel). PCNA, proliferating cell nuclear antigen; RPA, replication protein A.

detected by sequence-specific DNA fluorescent probes, allowing
the visualization and quantification of signal that corresponds
to the sites of interaction between active RFs and the protein
of interest (85) (Figure 1D). Besides SIRF using EdU to label
nascent DNA, mapping proteins at forks can also be assessed by
the standard PLA method between any given protein and PCNA
(or other fork components).

The combination of this efficient and sensitive tool with other
immunofluorescence parameters, such as cell cycle or cell identity
markers, enables the analysis of heterogeneous cell populations
with a single cell resolution. Additionally, it can be performed in
any standard molecular biology laboratory, as it does not require
special equipment (85). Pitfalls of SIRF are the fact that only

interactions closer than 40 nm can be visualized and that some
epitopes at RFs may not be accessible to antibodies (85) (Table 1).

REPLICATION FORK REVERSAL AND ITS
PLAYERS

Remodeling of RFs involves unwinding of newly synthesized
strands and annealing of nascent and parental strands. In this
process, the standard three-way junction forks are converted into
four-way junction structures. Since annealing of nascent DNA
strands form regressed arms at the fork, this remodeling event is
called RF reversal (Figure 2A). This was shown to be an effective
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mechanism allowing cells to cope with replication stress and to
maintain genome integrity (70). Interestingly, recent work of
Mutreja et al. (86) has demonstrated that replication fork reversal
can be regulated globally and may represent a “safety brake”
to prevent potential collisions of ongoing unaffected forks with
DNA lesions ahead of them. The authors also demonstrated that
this global fork slowing and reversal requires ATR-dependent
signaling (86).

The initial step of fork reversal is associated with the
accumulation of ssDNA at challenged RFs. This can occur either
by physical uncoupling of the polymerase and replicative helicase
or by controlled nucleolytic digestion of nascent DNA in certain
contexts, such as in response to inter-strand crosslinks (ICLs)
or increased torsional stress (70, 87). Uncovered ssDNA at
the affected fork is promptly recognized by a highly abundant
Replication protein A (RPA). The high affinity of RPA toward
ssDNA allows a dynamic cellular response to a variety of
replication stress-inducing agents of both endogenous and
exogenous origin (88–90).

The interaction of RPA with ssDNA is highly dynamic and
involves repeated dissociation and re-association of RPA subunits
due to conformational changes. Dynamic interaction of RPA
with both DNA and other proteins allows RPA to carry out
various functions and is crucial for maintaining the stability of
the fork affected by replication stress (Figure 2A). First, coating
of ssDNA with RPA removes secondary structures (91, 92). RPA
nucleofilaments then attract checkpoint signalization proteins
such as ATR and its interactor ATRIP (ATR-interacting protein)
to initiate a global cellular response to replication stress (89, 93).
Furthermore, RPA nucleofilaments help recruit and regulate the
activity of various DNA repair proteins required for stabilization
and recovery of the challenged fork (94, 95). All these functions
are essential for preventing RF collapse and maintenance of
chromosomal integrity (91).

RAD51 recombinase is well-known for catalyzing strand-
invasion in HR repair of DNA double-strand breaks. Loading
to ssDNA at double-strand breaks is highly dependent on
its interaction with BRCA2. However, RAD51 also plays an
important role in regulating RF reversal (Figure 2A) (70).
Interestingly, these two functions are genetically separated,
since its recruitment to stalled forks and its enzymatic activity
promoting fork reversal are BRCA2-independent (96, 97).
Dungrawala et al. (98) identified a ssDNA-binding protein,
RADX, to be enriched at RFs and to antagonize the accumulation
of RAD51 and RF reversal. Nevertheless, how the recruitment
of RAD51 to stalled forks is regulated remains largely elusive.
Due to impaired fork reversal, cells depleted of RAD51
do not show reduced RF progression following genotoxic
treatments, leading to hypersensitivity to a wide-range of
genotoxic agents and increased frequency of chromosome
breakage (70).

Several remodelers have been shown to associate with stalled
RFs and drive their reversal, such as SMARCAL1, ZRANB3,
and HLTF (94, 99, 100). Interestingly, a common feature of
all three is the lack of a 3′-ssDNA unwinding activity typical
for helicases. Instead, upon recruitment to stalled forks, their

critical role in remodeling of challenged RFs is facilitated
by their ATP-dependent dsDNA translocase activity, allowing
the formation of regressed arms by unwinding of newly
synthesized strands and annealing of nascent and parental
strands (99, 101).

SMARCAL1 is a multi-domain protein of the SNF2 family of
ATPases (102). It associates with the active replisome complex
and drives the remodeling of stalled forks by branch migration
and fork regression. SMARCAL1-mediated remodeling has been
shown to prevent an alternative repair mechanism involving the
initial formation of double-strand breaks by MUS81 cleavage of
the stalled fork (94).

Another member of the SNF2 family of remodelers is
the ZRANB3 translocase. Upon induction of replication
stress, ZBRANB3 associates with polyubiquitinated PCNA
to facilitate RF reversal and replication slowdown (100).
Ciccia et al. (103) showed that ZRANB3 activity is also
required for resolution of recombination intermediates and
efficient restart of arrested forks. In mammalian cells, siRNA-
mediated downregulation of ZRANB3 leads to increased
frequency of sister chromatid exchange and sensitivity of
the cells to treatments interfering with replication, such as
hydroxyurea (HU), camptothecin (CPT), cisplatin, and UV
irradiation (103).

HLTF, the last member of the SNF2-family known to be
required for fork remodeling so far, was originally identified
as a human homolog of the yeast template-switching protein
Rad5 (104). The ancient and conserved HIRAN domain was
shown to be crucial for the interaction of HLTF with 3′-ssDNA
at RFs (105). Similar to Rad5 in yeast, HLTF also possesses a
E3-ubiquitin ligase-containing RING domain, which facilitates
the K-63-linked polyubiquitination of PCNA (104). HLTF RING
mutants were shown to fail in promoting efficient fork reversal,
likely due to impaired recruitment of the downstream remodeler
ZBRANB3 and other factors that require polyubiquitinated
PCNA for efficient association with stalled RFs (100, 106).

The interplay between various fork remodeling factors seems
to be highly complex and is not fully understood yet.

Deficiencies in SMARCAL1, ZRANB3, or HLTF lead to
enhanced replication stress, collapse of stalled RFs and
chromosomal instability, which sensitizes these cells to a wide
range of replication stress-inducing agents (99, 100, 107).
Lower expression or truncating gene mutations of SMARCAL1,
ZRANB3, and HLTF have also been linked to susceptibility
to various types of cancer (108–113). Recently, Puccetti et al.
(114) identified non-redundant functions of SMARCAL1 and
ZRANB3 in alleviation of Myc oncogene-induced replication
stress. The authors also showed that both alleles of SMARCAL1
and ZRANB3 are required for fork stabilization in Myc-
overexpressing primary cells (114). However, SMARCAL1-,
ZRANB3-, and HLTF-mediated fork remodeling also possess a
threat to genome integrity in cells lacking functional BRCA1/2
by providing a substrate for unregulated extensive degradation of
the regressed arms (72, 96, 97, 106). An overview of the factors
described in this and the following chapters can be found in
Table 2.
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TABLE 2 | Overview of several key players involved in RF metabolism.

Factor Enzymatic activity Function in RF remodeling/

chemoresistance and clinical evidence

References

RAD51 Recombinase RF reversal/depletion restores RF stability in BRCA-deficient

cells in vitro.

(70)

RAD54 DNA translocase Regulation of RF reversal and restoration through branch

migration.

(115)

SMARCAL1 (SWI/SNF-related

matrix-associated actin-dependent

regulator of chromatin subfamily A-like

protein 1)

ATP-dependent annealing helicase

(translocase)

RF reversal/depletion restores RF stability and confers

chemo-, PARPi-resistance in BRCA-deficient cells in vitro.

Low mRNA associated with reduced survival in

BRCA1-mutant breast cancer.

(96, 106)

ZRANB3 (Zinc finger Ran-binding

domain-containing protein 3)

ATP-dependent annealing helicase

and endonuclease (translocase)

RF reversal/depletion restores RF stability in

BRCA1/2-deficient cells in vitro.

(97, 100, 106)

HLTF (Helicase-like transcription factor) ATP-dependent annealing helicase

(translocase)/E3 ubiquitin ligase

RF reversal/depletion restores RF stability in

BRCA1/2-deficient cells in vitro.

(106)

FBH1 (F-box DNA helicase 1) DNA helicase/translocase RF reversal (116)

BLM (Bloom syndrome protein) ATP-dependent DNA helicase RF reversal and restart (117, 118)

RECQL5 (RecQ protein-like 5) ATP-dependent DNA helicase RF reversal (119)

FANCM (Fanconi anemia group M protein) ATP-dependent translocase RF reversal, restart and protection of stalled forks (120–122)

RADX (RPA-related, RAD51-antagonist on

X-chromosome)

ssDNA-binding protein Antagonizing RF reversal/depletion restores RF stability and

confers chemo- and PARPi-resistance in BRCA2-deficient

cells in vitro.

(98)

CtIP (CTBP-interacting protein) 5′ flap endonuclease RF processing, restart of stalled forks (72, 123)

MRE11 (Meiotic recombination 11) 3′->5′ exonuclease and

endonuclease

RF processing/inhibition restores RF stability in

BRCA1/2-deficient cells in vitro.

(63, 72, 97,

124)

RAD52 Recruitment of MRE11 to stalled RFs and fork degradation in

BRCA2-deficient cells/depletion or inhibition restores RF

stability in BRCA2-defective cells in vitro.

(97)

PTIP (PAXIP1—PAX-interacting protein 1) RF processing via recruitment of MRE11/loss restores RF

stability in vitro. Poor prognosis in BRCA1/2 mutant ovarian

cancer.

(62)

PARP1 (Poly (ADP-ribose) polymerase 1) Poly-ADP-ribosyltransferase Recruitment of MRE11 to stalled RF, fork reversal, regulation

of fork restart/deletion restores RF stability in

BRCA1/2-deficient cells in vitro. Deficiency reduces

tumor-free survival in Brca2−/− mouse model.

(62, 125)

EXO1 (Exonuclease 1) 5′->3′ exonuclease, 5′ structure

specific DNA endonuclease, 5′->3′

RNase H

Further RF processing initiated by CtIP and MRE11/depletion

restores RF stability in BRCA1/2-deficient cells in vitro.

(72)

RECQ1 (ATP-dependent DNA helicase Q1) ATP-dependent DNA helicase RF restart via branch migration (30)

WRN (Werner syndrome ATP-dependent

helicase)

ATP-dependent DNA helicase, 5′->3′

exonuclease

RF processing and HR-mediated restart of stalled forks (126)

DNA2 (DNA replication ATP-dependent

helicase/nuclease)

ssDNA-dependent ATPase, 5′->3′

helicase, 5′->3′ endonuclease

RF processing and HR-mediated restart of stalled forks (127)

MUS81 (Methyl methanesulfonate and

ultraviolet-sensitive gene clone 81)

Crossover junction endonuclease RF fork processing and restart/Impaired recruitment via EZH2

inhibition or depletion restores RF stability in BRCA2-deficient

cells in vitro. Low expression associated with poor prognosis

in BRCA2-mutated tumors.

(73)

CHD4

(Chromodomain-helicase-DNA-binding

protein 4)

Chromatin remodeler RF processing via chromatin accessibility/depletion restores

RF stability in BRCA-deficient cells and confers

chemoresistance in vitro. Poor prognosis in BRCA2 mutant

ovarian cancer.

(62, 71)

EZH2 (Enhancer of zeste homolog 2) Chromatin modifier (Histone-lysine

N-methyltransferase)

RF processing and restart via H3K27 trimethylation and

MUS81 recruitment/depletion restores RF stability and

confers chemoresistance in BRCA2-deficient cells. Low

expression associated with poor prognosis in

BRCA2-mutated tumors.

(73)
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MECHANISMS OF FORK RESTART

The ability to restart stalled RFs is essential to avoid excessive
accumulation of replication intermediates, which are prone to
aberrant processing and if not resolved properly, may cause
chromosome segregation defects later in mitosis (128–130).
To carry out this task, eukaryotic cells have evolved various
mechanisms to process stalled replication intermediates and to
restart affected RFs (Figure 2B, Table 2). Conversion of reversed
forks back to standard three-way DNA junctions is a process
essential for restoration of replication and successful duplication
of the genome. In eukaryotes, failure in restarting severely
damaged forks can be, to a certain extent, buffered by firing
of dormant replication origins. However, systemic dysregulation
of the process e.g., by genetic alterations or drug interventions
significantly elevates chromosomal instability (131, 132).

RECQ1 is the most abundant member of the RecQ family
of helicases in human cells (133, 134). However, its specific
role in replication was not known for a long time. Thangavel
et al. (134) showed that RECQ1 associates with replication
origins in a cell cycle-dependent manner and that depletion
of RECQ1 suppresses the RF rate in unperturbed S phase.
Berti et al. (30) provided a mechanistic explanation for this
phenotype by identifying the role of RECQ1 in priming branch
migration at reversed forks and driving their restart (Figure 2B).
By combining electron microscopy with single-molecule DNA
fiber assay, Berti at al. (30) demonstrated a critical function
of the RECQ1 helicase in promoting RF restart following
topoisomerase 1 inhibition. Furthermore, the authors showed
that the activity of RECQ1 at the reversed RFs is negatively
regulated by PARP1, demonstrating a major role of PARylation
in preventing RECQ1-mediated restart of forks.

Germline mutations leading to loss of the helicase activity
of RECQ1 have been associated with increased susceptibility to
breast cancer (135, 136). Another study showed that embryonic
fibroblasts from mice lacking RECQ1 activity display increased
rates of spontaneous chromosomal breakage and aneuploidy
(132). Importantly, while genetic alterations reducing the activity
of RECQ1 have been shown to increase susceptibility to certain
types of cancer, overexpression of RECQ1 has been associated
with increased replication stress survival, drug resistance, and
overall poor prognosis in patients with multiple myeloma.
The authors also showed that reducing RECQ1 expression by
DNA methyltransferase inhibition sensitized multiple myeloma
cells to PARPi (137). Collectively, these findings highlight the
importance of RECQ1 in DNA metabolism and maintenance of
chromosomal integrity and may open opportunities for novel
targeted therapies (135, 136).

Another mechanism by which reversed RFs can be restarted
involves unwinding of nascent strands in regressed arms by the
ATP-dependent helicase activity of Werner syndrome protein
(WRN) and nucleolytic processing by DNA2 (Figure 2B).
Compared to other factors acting at stalled RFs, the role of
WRN is more complex due to its dual helicase and exonuclease
activities (126). Recruitment of WRN to reversed RFs and its
proper function is highly dependent on an orchestrated action of
ATM and ATR kinases. Interestingly, phosphorylation mediated

by ATM and ATR is required for different steps in the process
of stalled fork recovery. While ATR-mediated phosphorylation
of multiple residues at the C-terminus of WRN is required for
proper nuclear foci formation and co-localization with RPA,
ATM-mediated phosphorylation is essential for formation of
RAD51 nuclear foci, enabling proper recovery of collapsed forks
(138). Furthermore, both helicase and exonuclease activities
are required to limit MUS81-dependent breakage of forks
after HU-induced arrest (126). Rodriguez-Lopez et al. (139)
showed that normal progression RFs is affected in cells lacking
functional WRN protein. The authors observed asymmetric
progression of bi-directional forks diverging from the majority
of replication origins, suggesting an increased frequency of RF
stalling. Based on these data, the authors concluded that WRN
is either protecting RFs from collapse or promotes resolution of
replication intermediates at collapsed forks (139).

DNA2, likeWRN, possesses nucleolytic and helicase activities.
Together with exonuclease 1 (EXO1), DNA2 has been known for
its function in mediating processive DSB resection downstream
of the MRN complex and CtIP in eukaryotic cells. By nucleolytic
processing of 5′ ends and generating 3′ ssDNA overhangs at
DSBs, EXO1 and DNA2 carry out the initial step essential for
HR (140–142). Independently of its role in dsDNA break repair,
DNA2 has also been shown to assist WRN in controlling HR-
mediated restart of reversed RFs by resecting the regressed
arm following nucleotide depletion by HU (127). Importantly,
this function of DNA2 may play a major role in tolerance to
chronic replication stress, induced e.g., by oncogene activation,
commonly exhibited by cancer cells. Indeed, Peng et al. (143)
demonstrated that normal pancreatic ductal cells that were
transformed into cancer cells by activating K-RAS showed
overexpression of DNA2 in early stages of transformation.
Elevated levels of DNA2 mRNA were also found in a wide range
of cancer types, further demonstrating the importance of DNA2-
mediated recovery of stalled forks in replication stress tolerance
(143, 144).

The restart of reversed RFs via RECQ1- and DNA2/WRN-
dependent pathways allows the resolution of most of the reversed
RFs in S phase and is essential for maintenance of chromosomal
integrity in eukaryotic cells (30, 127). Nevertheless, more
processing is required in certain situations to prevent potentially
mutagenic genomic rearrangements arising from unresolved
complex replication intermediates (145). MUS81 is a cell-cycle
regulated, structure-specific endonuclease that preferentially
cleaves branched DNA substrates, such as replication or
recombination intermediates. Processing of the reversed forks by
MUS81 leads to formation of DSBs and subsequent recovery of
stalled forks via HR (Figure 2B). MUS81-dependent processing
of stalled forks was initially implicated in the resolution of
forks perturbed by nucleotide pool depletion (146). However,
other groups showed that processing of unusual replication
intermediates by MUS81 may also be responsible for oncogene-
induced genotoxicity, since depletion of MUS81 alleviated
chromosomal breakage and resulted in an increase of reversed
forks in human U2OS cells overexpressing the oncogenes Cyclin
E andCdc25A (147). Therefore, the outcome ofMUS81-mediated
DNA processing and DSB induction at stalled forks is highly
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FIGURE 3 | Replication fork stability or degradation in BRCA1/2-proficient and -deficient cells. (A) Reversed replication fork arms are protected from degradation by

RAD51 nucleofilaments stabilized by BRCA1 and BRCA2. In the absence of BRCA1/2 proteins RAD51 dissociates from ssDNA at the regressed arms, leaving the

nascent DNA susceptible to nucleolytic resection by exonucleases such as MRE11. (B) Overview of the factors shown to restore RF stability and confer

chemoresistance upon their loss in BRCA1- or BRCA2-deficient cells.

dependent on the genetic background and the context in which
the replication intermediates are formed.

FORK STABILITY AS A RESISTANCE
MECHANISM IN BRCA-DEFICIENT
TUMORS

BRCA1 and BRCA2 have well-known roles in the repair of
DNA DSBs by HR. BRCA1 is crucial for the resection of
DNA at DBS sites, creating two regions of ssDNA on either

side of the break. BRCA2, with the help of PALB2, localizes
the DNA recombinase RAD51 to the exposed ssDNA regions,
forming stable nucleoprotein filaments which invade the intact
homologous DNA double helix (148). Besides these, BRCA1/2
have many other cellular functions independent of their role
in HR. One of these is their function in the protection of
RFs under replication stress conditions by stabilizing RAD51
nucleofilaments and preventing excessive processing of forks
by nucleases (Figure 3A) (63, 64, 149). While RF reversal
has been shown to alleviate chromosomal instability upon
exposure to genotoxic treatments (70), it also provides an entry
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point for nascent DNA degradation in cells lacking BRCA1
or BRCA2 (72, 96, 97, 106). Step-wise processing of nascent
DNA at reversed forks by different nucleases has been shown
to drive fork degradation. The MRE11-dependent resection is
initiated by CtIP and then further extended by EXO1 (72). The
enzymatic inhibition of MRE11 by mirin or siRNA-mediated
depletion of EXO1 results in the protection of RFs in BRCA1/2-
deficient cells treated with HU. Interestingly, the combination
of MRE11 inhibition and EXO1 knockdown had a synergistic
effect on the stability of stalled forks, indicating a potentially
independent function of these nucleases in fork degradation (72).
However, other groups have observed a full restoration of fork
stability by MRE11 inhibition alone, pointing to MRE11 as the
nuclease responsible for most of the processing of regressed
arms in BRCA-deficient cells (62, 63). Furthermore, loss or
down-regulation of factors involved in chromatin recruitment
of MRE11 also restores fork stability and alleviates chromosome
breakage in HU-treated BRCA-deficient cells (62).

Ray Chaudhuri et al. (62) showed that recruitment of MRE11
to stalled RFs is impaired upon loss of PTIP, a member of
the MLL3/4 complex. The authors also demonstrated that Ptip
deficiency rescues lethality in Brca2-deficient mouse embryonic
stem cells. The restoration of RF stability promotes resistance of
BRCA2-deficient tumors to cisplatin and PARPi independently
of HR restoration. Interestingly, this function of PTIP at RFs
is independent of its interaction with 53BP1 in the canonical
DSB repair, since 53BP1/BRCA1-deficient B cells did not show
any protection of forks upon nucleotide depletion (62). Similarly,
loss of PARP1, which has been linked to regulation of MRE11-
dependent restart and recombination at stalled forks (150), also
restores RF stability and rescues lethality of Brca2 null mouse
embryonic stem cells (62). Another group demonstrated that
depletion of RAD52, similarly to loss of PARP1 or PTIP, leads
to reduced recruitment of MRE11 to chromatin and completely
abolishes RF degradation in BRCA2-defective cells (97).

A genome-wide short hairpin RNA (shRNA) screen
performed by Guillemente et al. (71) has identified the
chromatin remodeling factor CHD4 to promote cisplatin
resistance in BRCA2-mutated ovarian cancer cell line PEO-1
upon its downregulation. The depletion of CHD4 restored
normal cell cycle progression and alleviated chromosomal
aberrations upon cisplatin treatment (71). Mechanistically,
similar to the situation in PTIP-,PARP1-, or RAD52-deficient
cells, the phenotype of CHD4-depleted cells can be explained
by the reduced chromatin recruitment of MRE11 and an
increased RF stability in BRCA2-deficient cells upon replication
stalling (62).

Various epigenetic modifications may also play an important
role in RF remodeling and resolution of stalled RFs. Rondinelli
et al. (73) performed a gene expression analysis of chromatin
modifiers in HR-defective BRCA1/2-deficient tumors and found
the enhancer of zeste homolog 2 (EZH2) to score as the top
overexpressed chromatin modifier in various tumor types. The
authors showed that EZH2 localizes to RFs stalled by HU and
promotes recruitment of the MUS81 nuclease by mediating
trimethylation of H3K27 (73). MUS81-dependent processing of
stalled RFs has been shown to have a significant role in resolution

of replication intermediates and replication restart (145, 151). Lai
et al. proposed a new function of MUS81-dependent processing
in replication stress tolerance and survival of BRCA2-deficient
cells upon nucleotide depletion by HU. Lemacon et al. (72)
then provided a mechanistic explanation for this phenotype by
demonstrating that MUS81 resection at replication intermediates
drives POLD3-dependent fork rescue upon HU-induced fork
stalling. Interestingly, impaired MUS81 recruitment to RFs,
e.g., by enzymatic inhibition or siRNA-mediated knockdown
of EZH2, conferred RF stability and chemoresistance to PARPi
and cisplatin in BRCA2-, but not in BRCA1-deficient cells (73).
Consistent with these findings, low expression of EZH2/MUS81
have been found to correlate with chemoresistance and poor
therapy outcome in patients with BRCA2-mutated tumors (73).
However, it is not fully understood how MUS81 loss promotes
PARPi resistance in BRCA2-deficient cells. The treatment-
specific response of MUS81-depleted BRCA2-deficient cells to
HU and PARPi may be explained by the importance of PARP1
in RF slowing and regulation of restart (30). Inhibition of
PARP1 may promote RECQ1-dependent restart of reversed
forks, therefore depriving cells of a substrate for MUS81 (30, 152,
153). However, more research has to be done to fully understand
the context-specific synthetic lethal/viable interaction between
BRCA2 and MUS81 deficiency.

Recently, the loss of RADX was identified as another
mechanism protecting aberrant processing at stalled forks in
BRCA2-deficient cells. RADX is an ssDNA binding protein that
acts as a negative regulator of RAD51 (98). Dungrawala et
al. (98) showed that inactivation of RADX enables excessive
accumulation of RAD51 at RFs, leading to lower rate of
replication elongation and formation of DSBs. However, in cells
lacking BRCA2, depletion of RADX was sufficient to compensate
for the decreased stability of RAD51 filaments and to rescue RF
stability. This translated into reduced sensitivity to HU, cisplatin,
CPT and PARPi.

Besides the proteins described above, several other factors
have also been shown to promote RF remodeling such as DNA
helicases FBH1, WRN, BLM, RECQL5, and DNA translocases
RAD54 and FANCM (Table 2). However, the relevance of these
proteins for replication fork metabolism in the context of
BRCA1/2 deficiency and chemoresistance remains to be studied
in more detail (115–117, 119, 120, 126). Collectively, genetic
alterations resulting in rewired fork protection in BRCA1/2-
deficient cells are highly complex and the interaction dynamics
between various remodelers, processing factors, and other DNA
repair factors remain to be further investigated. Furthermore,
while loss of certain factors, such as PTIP, PARP1 (62), or fork
remodelers SMARCAL1, HLTF, and ZRANB3 confer RF stability
in both BRCA1- and BRCA2-deficient backgrounds (106), loss
of CHD4, EZH2, and RADX only restore fork stability in cells
lacking BRCA2 (Figure 3B) (71, 73, 98). These findings suggest
that different pathways leading to restored fork stability may
exist in mammalian cells, even though they all lead to the
same endpoint: limited processing of stalled forks by nucleases
(60). Importantly, while preventing reversed fork degradation by
limiting nuclease access or activity (by loss of PTIP, CHD4, etc.)
is likely to support therapy survival in the clinics, the possible
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FIGURE 4 | Overview of the DDT pathways and their regulation by various post-translational modifications of PCNA. (A) During normal replication PCNA interacts with

the anti-recombinase PARI through SUMO modification to prevent potentially mutagenic recombination events in the absence of replication stress. (B) In response to

replication stress, PrimPol-mediated lesion skipping allows cells to re-initiate synthesis downstream of the lesion and prevent RF stalling, while leaving an ssDNA gap

behind. Alternatively, cells can employ one of three DDT pathways regulated by various modifications at K164 of PCNA. (C) Poly-ubiquitination in early S-phase

initiates a mechanistically complex, but error-free TS, which requires RAD51-mediated strand invasion and newly replicated sister chromatid for synthesis over the

damaged template. In contrast, mono-ubiquitination leads to the frequently mutagenic TLS in late S or G2/M phase. This process requires a step-wise exchange of

high-fidelity replicative polymerases for specialized low-fidelity non-processive polymerases to enable synthesis over the lesion (D). (E) The last DDT mechanism is

“salvage” HR repair which is commonly repressed by SUMOylation of PCNA and by the anti-recombinase PARI in order to prevent chromosome rearrangements

caused by hyper-recombination. The question marks indicate that the factors involved in the processes in human cells are not clearly defined. HR, homologous

recombination; PARI, PCNA-associated recombination inhibitor; SUMO, small ubiquitin-like modifier; TLS, translesion synthesis; Ub, ubiquitin.

impact of preventing formation of the reversed RF as a targeted
structure for degradation is more debated.

DNA DAMAGE TOLERANCE PATHWAYS

Another group of mechanisms allowing maintenance of genome
integrity, which can involve RF remodeling, are DDT pathways.
While the highly complex DDR network is essential for ensuring
genome integrity over generations, immediate activation of
the repair machinery at the damaged DNA may not be
beneficial in every scenario. Prolonged stalling of RFs induced
by DNA damage significantly increases the risk of fork

collapse and genome instability. To minimize the chances
of increased rates of fork collapse and formation of highly
cytotoxic DSBs, cells developed DDT pathways that enable DNA
synthesis beyond the damaged template, thereby completing
the DNA replication prior to damage repair. The bypassed
lesion is then removed later on by the specialized DNA repair
pathways in the process called post-replicative repair (154,
155). Four major DDT pathways enabling bypass of DNA
lesions have been described thus far: translesion synthesis (TLS),
DNA primase-polymerase (PrimPol) mediated re-priming,
template switching (TS) and the HR-mediated “salvage” pathway
(156, 157) (Figure 4).
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TLS is a mechanistically straightforward pathway compared
to the TS and HR salvage repair, and it only requires
the replacement of high-fidelity replicative polymerases by
specialized low-fidelity non-processive polymerases (158). Low-
fidelity of the TLS polymerases can be attributed to the lack
of proofreading activity and the more flexible structure of
the active site, which is able to accommodate modified bases
and allow base mismatches (159, 160). Exchange of a stalled
replicative polymerase for a TLS polymerase is a stepwise process
involving at least two switching events (161). In the first step,
the replicative polymerase is replaced by one of the insertion
TLS polymerases, such as POL κ, POL ι, POL η, or REV1 that
enable DNA synthesis over the DNA lesion. Then, either the
same or another extension TLS polymerase elongates the newly
synthesized DNA fragment to prevent detection of the lesion
by the proof-reading activity of the replicative DNA polymerase
(162, 163). This step is facilitated by the POL ζ complex of B-
family polymerases (REV3L, REV7, POLD2, POLD3 (164–167).
The last switching event restores a replicative DNA polymerase
on the DNA template and reinitiates normal DNA synthesis.
However, while the TLS is an easy, straightforward mechanism
allowing lesion bypass and preventing fork stalling, it is also
intrinsically error-prone. This is due to the higher frequency
of nucleotide misincorporation by the TLS polymerases on the
undamaged template, and due to the fact that synthesis over
certain lesions, such as abasic sites, is often mutagenic (159, 160).

Another DDT mechanism is facilitated by the TLS primase
PrimPol. PrimPol is a member of the archeo-eukaryotic primase
(AEP) superfamily and has been shown to enable the bypass of
various types of DNA lesions, either via its TLS activity or by
lesion skipping (157, 168–171). While TLS is characterized by
continuous DNA synthesis over the damaged template, lesion
skipping involves the re-initiation of DNA synthesis of the
leading strand de novo downstream of the replication block
on the undamaged template. Therefore, PrimPol-mediated re-
priming also represents a powerful RF remodeling-independent
restart mechanism for stalled forks (172–175). Unlike TLS,
lesion skipping results in the formation of a ssDNA gap behind
the site of re-initiation and it needs to be repaired post-
replicatively (170). PrimPol shares several properties with other
TLS polymerases; it lacks the 3′-5′ exonuclease proofreading
activity and exhibits low-fidelity and low-processivity DNA
synthesis (157, 176–178).

Interestingly, experimental data from yeast and human cells
indicate that DNA re-priming and stalled RF reversal are
mutually exclusive events (175, 179). Disturbing the balance
between fork reversal and re-priming may have a significant
impact on genome stabilitymaintenance, especially in the context
of anticancer therapy in BRCA1/2-mutated tumors. Recent work
of Quinet et al. demonstrated that the ATR-mediated increase
in expression of PrimPol and its recruitment to stalled RFs
abolishes the nascent DNA degradation in BRCA1/2-deficient
human cells treated with multiple doses of genotoxic agents,
such as UVC, HU and cisplatin. The authors also showed that
the PrimPol-mediated adaptive response is dependent on ATR
signaling. However, while elevated levels of Prim Pol lead to
stalled RF protection, it also resulted in accumulation of ssDNA

gaps in the genome (175). More research is required to fully
understand the dynamics between the two pathways and the
biological consequences of preventing RF degradation in BRCA-
mutated tumors at the expense of accumulation of ssDNA gaps
resulting from discontinuous replication.

Another, genetically distinct DDT pathway, TS, is a
mechanistically more complex pathway for lesion bypass.
In contrast to TLS, it uses the homologous template for synthesis,
and therefore, facilitates an error-free synthesis over the damage
site. Similarly to HR DNA repair, the initial step requires the
stalled nascent strand to invade the newly replicated sister
chromatid and is facilitated by RAD51 (156, 180, 181). The
structure formed when the stalled nascent strand invades the
undamaged chromatid is called the sister chromatid junction
(SCJ). The undamaged template is then used to replicate DNA
over the lesion containing the parental strand. After the gap is
filled, SCJ is resolved back into two duplex DNA strands and the
lesion bypass process is completed (156).

The last known DDTmechanism called “salvage” HR pathway
is an alternative to the TS pathway. Like TS, salvage HR repair
also employs template switching to bypass the DNA lesion.
However, the major difference between the two pathways is that
salvage HR repair is hyper-recombinogenic and thus only serves
as the last resort of cells to replicate DNA over lesion if TLS and
TS fail (182–184).

A tight regulation of pathway choice between the DDT
mechanisms is important to limit the accumulation of mutations
in case of TLS. It also prevents aberrant recombination events
leading to potential genomic rearrangements and genome
instability in the case of the salvage HR pathway. The regulation
of the TLS, TS, and salvage HR pathways is facilitated by
post-translational modifications (PTM) of PCNA (see Figure 4),
which act as a molecular switch regulating pathway choice (185).
In contrast to other pathways, PrimPol-mediated lesion bypass
is not stimulated by PCNA and its PTMs. Instead, human
PrimPol may be directly recruited to the stalled RFs through
its interaction with the ssDNA-binding protein RPA (176). The
initial PCNA modification, which is induced upon contact of
a RF with the DNA lesion, is mono-ubiquitination at K164. In
yeast, this modification is carried out by the E2-E3 complex
Rad6-Rad18. In humans, however, several proteins seem to be
implicated and their dynamics is not fully understood yet (186).
Preferentially, the mono-ubiquitin mark would be extended to a
poly-ubiquitin chain in a UBC13-dependent manner to stimulate
ZRANB3-driven RF reversal and the error-free TS pathway in
early S-phase (100, 103, 187, 188). In human cells, at least two
E3 ubiquitin ligases can cooperate with UBC13 in promoting
PCNA polyubiquitination; HLTF and SHPRH (104). However,
their relative contribution to extending the mono-ubiquitin
mark on PCNA is not well-understood yet. The second DDT
pathway choice is the mutagenic TLS that has been shown to
occur in late S or G2/M phase of the cell cycle. This pathway
is initiated if the K164 mono-ubiquitin mark on PCNA is
not extended (156, 189). The last choice is the salvage HR
pathway, which is ubiquitin-independent. In yeast, the pathway
is actively suppressed during normal S phase by sumoylation of
PCNA at K164 and by the activity of the Srs2 anti-recombinase
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associated with SUMO-modified PCNA (190–192). In contrary
to ubiquitination, sumoylation of PCNA is cell-cycle dependent
and is strictly limited to S phase (193). Thus, HR-mediated lesion
bypass is limited to late S and G2/M phases and serves only
as the last resort for synthesis over the lesions that escaped
the TS and TLS pathways (187). In humans, the Srs2 ortholog
PARI (PCNA-associated recombination inhibitor) was shown
to interact with PCNA and restrict unscheduled HR at RFs
in vitro (194). However, the role of PCNA SUMOylation and its
regulation in human cells is still debated (190).

ALTERATIONS OF DDT PATHWAYS IN
CANCER

Defects in DNA replication or repair play amajor role in genomic
instability, one of the hallmarks of cancer. Given the importance
of DDT pathways in the resolution of replication stress by
preventing fork stalling and collapse, it is not surprising that
alterations in genes encoding TLS polymerases and other DDT
components have been associated with cancer development and
drug resistance (195). When analyzing samples from various
types of tumors, Albertella et al. found that about half of the
tumor samples studied showed more than a 2-fold increase
in expression of at least one specialized TLS DNA polymerase
(196). On the one hand, increased activity of TLS polymerases
may significantly contribute to mutagenicity and may increase
the chances of oncogenic transformation (197). On the other
hand, cancer cells with higher expression of these polymerases,
such as Pol β, may escape the cytotoxic effect of various
drugs, including alkylating agents, and hence significantly
contribute to chemoresistance (198–200). Interestingly, different
TLS polymerases were shown to be upregulated in different
types of tumors; upregulation of Pol theta (Pol θ, POLQ) was
shown to indicate poor outcome in breast cancer patients (201),
while elevated expression of Pol eta (Pol η, POLH) correlates
with decreased survival of patients with non-small cell lung
cancer (202) or metastatic gastric adenocarcinoma treated with
platinum drugs (203).

The ability of TLS polymerases to carry out replication over
DNA lesions induced by anti-cancer treatments and therefore
increase survival of cancer cells makes them attractive targets
for improving the efficacy of currently used chemotherapeutics.
Nevertheless, developing compounds highly selective toward
TLS polymerases has been very challenging, mainly due to
common substrates and some interaction partners shared by
TLS and replicative polymerases (e.g., PCNA). Moreover, while
several small molecule inhibitors of TLS components have
been discovered, none of them were shown to have activity in
vivo (204). Examples comprise previously described selective
inhibitors of REV7 (205), oxetanocin derivatives inhibiting Pol
η (206), or small molecule compounds blocking the interaction
between components of the Pol ζ complex (207). One example of
a small inhibitor shown to be active in vivo is a recently described
molecule JH-RE-06. The compound prevents mutagenic TLS by
blocking REV1-REV7 interaction and therefore, inhibiting the
recruitment of polymerase POL ζ. This was shown to suppress

TLS-mediated mutagenicity induced by cisplatin in vitro and to
sensitize tumors to cisplatin treatment in vivo (204).

Moreover, suppression of various TLS components has been
associated with an improved response to DNA damaging agents,
such as cisplatin in certain types of tumors. siRNA-mediated
knockdown of REV1 or REV3L (the essential subunit of POL
ζ) was shown to sensitize intrinsically resistant tumors to
chemotherapy or to reduce the frequency of acquired resistance
in relapsed tumors (208). Doles et al. (209) showed that in
addition to the pronounced sensitivity of REV3-deficient tumors
to cisplatin and improved survival of treated mice, REV3-
deficient cells also displayed lower amounts of cisplatin-induced
mutations potentially decreasing a risk for secondary mutations
leading to acquired resistance (209). Similarly, the suppression of
Rev1 was shown to decrease cisplatin- and cyclophosphamide-
induced mutagenesis in a mouse model for B-cell lymphoma
and to limit acquired cyclophosphamide resistance in vitro
(155). Moreover, DDT-defective PcnaK164R lymphoma and breast
cancer lines were also hypersensitive to cisplatin (210).

In summary, both DNA repair and DDT pathways are
important to prevent RF collapse and maintain genome integrity.
Therefore, defects in proteins involved in these processes can
lead to cancer and also affect the response of cells to different
genotoxic agents, which reflects on drug sensitivity or resistance
in the clinic. However, several aspects of the intricate relationship
between DDR and DDT, as well as their interaction at the RF are
still unclear and need to be further investigated.

FUTURE DIRECTIONS IN PREDICTING
THERAPY RESPONSE

The understanding of resistance mechanisms involving known
DDR factors and/or RF remodelers/processors, together with the
advance in biological in vitro and in vivo models for studying
cancer, should be implemented in the clinical practice in the
future for personalized diagnosis and for selecting an effective
treatment strategy. Classical clinical and histopathological
staging/grading will remain an import source of information.
Here, we expect that computational pathology and deep learning
algorithms will have a major impact to overcome the problem
of inter-observer variability. Recent studies in breast cancer
suggest that quantitative image analysis of histomorphometric
features of early stage ER+ breast cancer are useful to predict
patient survival independently (211, 212). Moreover, there are
great expectations that the multiomics analysis of tumor samples,
including next generation DNA/RNA sequencing, epigenomics,
proteomics, and metabolomics, will make a difference to predict
therapy response (Figure 5) [reviewed in (213–215)]. Indeed,
the combination of these approaches has already been useful in
exploring several aspects of the biological complexity of cancer
(216, 217). However, some challenges in this context include the
computational integration of such heterogeneous data and the
availability of adequate amounts of optimally collected tumor
tissue both before and during therapy.

Some novel computer tools are available for this type of
integrated analysis [reviewed in (214)] and include platforms
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FIGURE 5 | Future perspectives for predicting personalized therapy outcome. The use of patient samples for histology and multi-omics analysis will remain valuable

tools to characterize tumors. In addition, patient-derived 3D organoid/ex vivo cultures may provide additional material for functional testing, such as RAD51 foci

detection upon ionizing radiation, or DNA fiber analysis to probe for replication fork speed and/or stability. Together with the increasing knowledge of the importance of

DDT and RF remodeling in anticancer drug response, these additional tools may allow automated functional analyses coupled with NGS profiling of DDR genes in

patient-derived samples, providing the potential for designing personalized therapy strategies and predicting their outcomes in the future. DDR, DNA damage

response; FFPE, formalin-fixed, paraffin-embedded; gDNA, genomic DNA; IF, immunofluorescence; NGS, next-generation sequencing; RF, replication fork.
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that analyse miRNA and mRNA expression (dChip-GemiNi,
mirConnX, IntegraMiR), associate epigenomic with RNA
expression and clinical data (such asMENT,MethHC,Wanderer,
MethCNA) or integrate proteomic with several other types
of data from multiple studies (XCMS Online, CancerSysDB)
[reviewed in (214)].

The collection of data for multiomics analysis largely depends
on the availability of patient samples. Moreover, the use of liquid
biopsies and circulating tumor DNA for sequencing purposes
would be complementary. Regarding the analysis at the protein
level, the improvement in MS proteomics to reduce sample input
and increase sensitivity for low abundance proteins would also
help in this context.

The recent developments in the field of patient-derived 3D
organoid cultures enable the expansion of tumor cells acquired
by biopsy of different types of tumors (218–220). In vitro-
cultured organoid lines often preserve morphological features,
drug response profiles, as well as the heterogeneity of the original
tumor (221). Therefore, 3D organoids could be another source
of material for multi-omics approaches. However, it is important
to keep in mind that the predictive power of tumor organoid
cultures has clear limitations and is not 100% (222).

The ability to be rapidly expanded and genetically modified
makes 3D organoids in principle a versatile tool for downstream
functional testing of therapy response, including the study of
RF biology (Figure 5) (62, 222). Nevertheless, the predictive
power of 3D organoids has limitations that we still need to
understand to make a significant step toward personalized
medicine in clinical oncology (222). Ex vivo approaches to
study living tumor fragments may be another direction in
which RF biology in the context of anti-cancer therapy may be
studied further.

Genetic testing for germline mutations in BRCA1 and BRCA2
has been available since the 1990s (223). Moreover, advances
in next-generation sequencing (NGS) technology allowed for
systematic investigation of the mutational landscape in BRCA1-
and BRCA2-mutated tumors (224, 225). In addition, the
identification of other DNA repair genes associated with HR
deficiency opened the possibility for targeted therapy in those
patients, including PARP inhibitors (226). Despite the undoubted
significance of NGS data in predicting therapy success in patients
with defects in the HR DNA repair pathway, this approach
does not allow to study the role of epigenetics in modulating
expression of HR genes, including BRCA1 and BRCA2, nor
functional testing for residual or restored HR repair or RF
stability. Restoration of HR in BRCA1-deficient tumors by loss
of 53BP1 is frequently found in tumors that acquire PARPi
resistance (41, 50, 227). Similarly, loss of several other NHEJ
and HR regulators, such as RIF1, REV7, and HELB have
been shown to restore resection at DSB sites and promote
HR repair, leading to improved DDT, chromosomal integrity,
and consequently to acquired chemoresistance (44, 52, 53,
228). Restoration of damage-induced RAD51 foci formation
is a well-established marker of DNA end processing and HR
repair at DSBs. Therefore, implementing automated assays for
RAD51 foci formation in patient samples would provide an

important functional link to the complementary information

acquired with next-generation sequencing on genetic alterations
(Figure 5) (227).

As discussed above, the role of DDT pathways and DNA RF
metabolism in the context of therapy response and resistance has
gained a lot of attention in recent years. Various groups have
identified novel factors implicated in the metabolism of DNA
RFs and replication stress tolerance. Several of those factors,
including DNA2, EZH2, and MUS81, showed the potential
to be used as biomarkers for predicting response to DDR-
targeting therapies in BRCA-deficient tumors (72, 137, 143).
Nevertheless, similar to a functional HR restoration readout,
functional assays for testing DDT, RF remodelers and fork
stability would be needed to reliably phenotype tumor-derived
samples and to predict therapy success. Recently, a novel system
based on the formation of UVA-induced digoxygenin-tagged
trimethylpsoralen ICLs was described by Mutreja et al. (86).
Combined with the traditional DNA fiber spreading procedure,
this technique allows the detection of individual ICL lesions and
enables the study of cellular responses to ICL-inducing agents
at the single-molecule resolution (86). One of the limitations
of the DNA fiber technique currently used by many research
groups is the time-consuming process of preparation of slides
with the DNA spreads and the inter-observer variability of the
image analysis (Table 1). Developing a pipeline for automated
and standardized preparation of DNA fibers involving molecular
combing and analysis of selected replication parameters, such
as stability of stalled forks, rate of replication elongation, or
lesion bypass, may enable a more precise prediction of therapy
response in patients with DDR defects in their cancer. We hope
that combining multiomics data with automated RAD51 foci
formation and DNA RF analysis represents a powerful toolbox
for predicting therapy outcome in patients with tumors defective
in DDR pathways in the future (Figure 5).
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Despite advances in our understanding of the molecular biology of the disease and

improved therapeutics, lung cancer remains the most common cause of cancer-related

deaths worldwide. Therefore, an unmet need remains for improved treatments, especially

in advanced stage disease. Genomic instability is a universal hallmark of all cancers.

Many of the most commonly prescribed chemotherapeutics, including platinum-based

compounds such as cisplatin, target the characteristic genomic instability of tumors

by directly damaging the DNA. Chemotherapies are designed to selectively target

rapidly dividing cells, where they cause critical DNA damage and subsequent cell death

(1, 2). Despite the initial efficacy of these drugs, the development of chemotherapy

resistant tumors remains the primary concern for treatment of all lung cancer patients.

The correct functioning of the DNA damage repair machinery is essential to ensure

the maintenance of normal cycling cells. Dysregulation of these pathways promotes

the accumulation of mutations which increase the potential of malignancy. Following

the development of the initial malignancy, the continued disruption of the DNA repair

machinery may result in the further progression of metastatic disease. Lung cancer is

recognized as one of the most genomically unstable cancers (3). In this review, we

present an overview of the DNA damage repair pathways and their contributions to lung

cancer disease occurrence and progression. We conclude with an overview of current

targeted lung cancer treatments and their evolution toward combination therapies,

including chemotherapy with immunotherapies and antibody-drug conjugates and the

mechanisms by which they target DNA damage repair pathways.

Keywords: lung cancer, DNA damage, DNA repair, cancer therapy, chemotherapy

DNA DAMAGE REPAIR AND GENOMIC INSTABILITY IN LUNG
CANCER

The integrity of cellular DNA is under continual stress, receiving over 30,000 damaging events per
day (4). Damaged DNA bases and DNA single-strand breaks are the most abundant types of DNA
damage. Although DNA double-strand breaks are less common, they are considered as the most
deleterious types of DNA damage (5). Maintaining DNA integrity is essential to prevent cancer
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development, which is accelerated by the accumulation of
mutations. DNA breaks can arise from both endogenous
and exogenous insults (6). Endogenous DNA damage can be
induced by cellular processes, including somatic and meiotic
recombination, and reactive oxygen species (ROS) that arise
from normal cellular metabolism. Exogenous insults include
cellular exposure to radiation, chemotherapeutic agents, and
environmental carcinogenic compounds (7).

Lung cancers generally exhibit a unique genomic profile
in contrast with other tumor types, with a high rate somatic
mutation burden, second only to melanoma (8). The somatic
lung cancer mutation rate was found to be much higher in
smokers, 8–10 mutations/Mb, compared to <1 mutation/Mb
in non-smokers, strongly supporting the causality of tobacco
carcinogens (9). Highlighting the high genome instability in lung
cancers, aneuploidy, (an abnormal number of chromosomes)
is detected in over 60% of NSCLC cases (10) and genome
duplication is observed in 30–50% of lung cancers (11).

The development of lung cancer is primarily thought to
result from environmental provocation; however, there is data
supporting that germlinemutations inDNA repair genes increase
the predisposition to the disease (12). Supporting this it has been
shown that in∼2.5% of all cancer, a germline mutation in a DNA
repair gene was associated with cancer development (12).

DNA repair pathways are crucial to prevent the accumulation
of DNA lesions and mutations that may promote tumorigenesis
through the dysregulation of cell growth and death pathways.
However, the gradual loss of genomic integrity can be
accelerated by environmental factors such as carcinogens from
cigarette smoke promoting the development of driver mutations,
including oncogene activation and/or loss of tumor suppressor
function, further increasing the likelihood of tumorigenesis.

Specifically, genomic instability promotes lung cancer
pathogenesis by the constitutive activation of proto-oncogenes,
including the members of the EGFR (ERBB), MYC, and RAS
families, along with PIK3CA, NKX2-1, and ALK. Mutations
(KRAS, EGFR, and PIK3CA) and amplifications (MYC, EGFR,
HER2, PIK3CA, and NKX2-1) commonly activate these proto-
oncogenes. In addition, translocations and inversions can also
occur, positioning these genes under the control of constitutively
active genes such as MYC or create chimeric proteins, such as the
ALK-EML4 fusion commonly observed in lung cancers (13, 14).

Probably the most significant exogenous factor contributing
to lung cancer is the exposure of lung cells to cigarette smoke,
which is well-known to significantly increase an individual’s
risk of developing lung cancer. Cigarette smoke is recognized
as a major carcinogen, identified to contain 98 individual
carcinogenic compounds (15). Many of these are predicted
to be mutagenic via direct interaction with the DNA (16). If
cells are unable to effectively repair these lesions, mutations
may arise as a result of the carcinogenic exposure, potentially
promoting tumorigenesis.

Once a DNA damage event is detected, it can be repaired
by one or several of the DNA repair pathways: broadly defined
as base excision repair (BER); direct repair (DR); homologous
recombination (HR); mismatch repair (MMR); nucleotide
excision repair (NER); or non-homologous end joining (NHEJ;

as shown in Figure 2). Defective DNA repair mechanisms in
cancer cells are often associated with poor patient prognosis
due to enhanced disease progression. However, defects in DNA
repair machinery may also provide an avenue to specifically
target cancer cells due to increased sensitivity to anti-cancer
therapies (17).

DNA REPAIR PATHWAYS

Nucleotide Excision Repair
Bulky DNA adducts caused by UV light and chemotherapeutic
agents, such as Cisplatin, are repaired primarily through the
nucleotide excision repair pathway (NER). This pathway is
composed of a series of enzymatic reactions which are facilitated
by over 30 proteins. Cisplatin and other platinum compounds
bind to the DNA and form adducts, which lead to intrastrand
or interstrand crosslinks (Figure 1A). These bulky adducts
cause distortion of the DNA helix, blocking the replicative
DNA polymerases and subsequently DNA replication and
require the NER pathway (or the MMR pathway) for repair.
These chemotherapeutic agents exploit differences in cellular
proliferation and DNA repair pathways in cancerous cells to
specifically target tumors.

As with the other DNA repair pathways, NER is a stepwise
process initiated by DNA damage recognition; followed by
recruitment of the pre-incision protein complex and DNA
unwinding. This allows for excision of the damaged fragment and
subsequent DNA repair and ligation [reviewed in (7)].

Depending on the DNA damage recognition step, the NER
pathway is divided into two sub-pathways. Transcription coupled
NER (TCR) is initiated by the stalling of transcription by RNA
polymerase II promoting the subsequent recruitment of the
Cockayne syndrome (CS) complementation group A and B to
initiate repair (18, 19). During global genome NER (GGR), the
XPC/hHR23B, DDB1, and DDB2/XPE complexes recognize the
DNA lesions. Following damage recognition, TCR and GGR
follow the same mechanism. The DNA helix is unwound by
the TFIIH complex to enable access to the pre-incision complex
(XPD, XPB, XPA, and XPG) (20, 21), opening the DNA double
strand for the recruitment of RPA The damaged DNA is then
excised, leading to removal of a patch of 24–32 base pairs,
facilitated by XPG and the CPF-ERCC1 (excision repair cross-
complementing enzyme group 1) endonucleases. DNA synthesis
replaces the excised DNA in conjunction with PCNA and RPC,
followed by the repair of the backbone through DNA ligase I (18).

Single nucleotide polymorphisms (SNPs) in NER associated
proteins have been shown to have clear links to lung cancer
patient survival and responsiveness to treatments. SNPs in NER
proteins including ERCC1, ERCC6, POLD2, POLE, and XPA are
associated with progression free survival. SNPs in other NER
proteins, including ERCC6, GTF2H4, GTF2HA, MAT1, POLD1
are associated with overall survival (22, 23). Furthermore,
decreased expression of XPG/ERCC5 and CSB/ERCC6 has been
demonstrated to increase the risk of lung cancer (24).

Cisplatin sensitivity has been associated with SNPs and
gene expression within the NER pathway. ERCC1 (excision
repair cross-complementing enzyme group 1) is one such
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FIGURE 1 | A summary of lung cancer treatments, including chemotherapy, radiotherapy, immunotherapies, and antibody-drug conjugates and the mechanisms by

which they target DNA damage repair pathways. Figure created with Biorender.

protein and functionally associates with XPF (xeroderma
pigmentosum complementation group F) to incise damaged
DNA (25).

ERCC2, another NER repair protein, is a helicase that
unwinds DNA strands in the vicinity of a damaged site. ERCC2
mRNA expression has been shown to significantly correlate with
cisplatin resistance in preclinical studies (26, 27). Cumulative
evidence indicates that polymorphisms of the NER repair gene,
ERCC5, could serve as pharmacogenomics biomarkers (28). In
addition, a polymorphism in RRM1, a large regulatory subunit of
ribonucleotide reductase, involved in the NER pathway, has been
identified as a promising prognostic biomarker (29).

Mismatch Repair
DNAmismatch repair (MMR) is a conserved process responsible
for the recognition and repair of mispaired bases generated
during DNA replication and other DNA damage repair pathways.
In addition to base mismatch, MMR can recognize other DNA
lesions including DNA crosslinks induced by chemotherapeutic
agents (30, 31).

The MMR process consists first of the damage recognition
by the sliding clamp MutSα (MSH2/MSH6 heterodimer, for
base mismatch) or MutSβ (MSH2/MSH3 heterodimer, for base
insertion/deletion), followed recruitment of the MutLα complex
(formed byMLH1 and PMS2) for the incision step. Exonuclease 1
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FIGURE 2 | DNA repair pathways. (A) Repair of bulky adducts via the Nucleotide excision repair pathway. (B) Repair of mismatches via the mismatch repair pathway.

(C) Repair of DNA double-strand breaks via the homologous recombination and non-homologous end-joining pathways. (D) Repair of DNA single strand breaks and

damaged and oxidized bases via the base excision repair pathway. Figure created with Biorender.

(EXO1) is then recruited to excise the damage, leaving a gap filled
by DNA polymerase δ (Polδ). Finally, DNA ligase I closes the
remaining nick on the newly synthesized strand [see for review
(32), Figure 2B].

Inactivation ofMMR can have wide ranging consequences due
to its involvement in the repair of base substitution mismatches
and insertion–deletion mismatches that escape DNA polymerase
proofreading during replication (33). MMR proteins function in
the activation of cell cycle checkpoints, supressing DNA lesions,
and the initiation of apoptosis (34).

MMR proteins can be inactivated without causing cell
lethality; however, this can lead to a significantly increased rate of
genome-wide point mutations, resulting from unrepaired DNA
synthesis errors. The mutator phenotype conferred by this loss
of MMR activity contributes to the initiation and promotion
of multi-stage carcinogenesis (35). MMR is dysregulated in
non-small cell lung cancer, most frequently from mutations
in the MSH2 and MLH1 genes, which are responsible for

recognition of the mispaired nucleotides, deletions/insertions,
and cisplatin-induced interstrand cross-links (36, 37). Decreased
expression of MSH2 has been associated with increased cisplatin
sensitivity (38).

In addition to mutations, mismatch repair may also
be downregulated through epigenetic changes including
hypermethylation of the MLH1 promoter, a defect occurring
in 69% of non-small cell lung cancers, although it should be
noted that this has also been disputed (39, 40). The prognostic
significance of expression and methylation changes in these
genes in non-small cell lung cancers is not well-understood and
requires further study (41).

Base Excision Repair and Single-Strand
Break Repair
Oxidative DNA damage has been shown to be a driver of
carcinogenesis (42). Damage to bases within DNA requires the
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base excision repair (BER) pathway for the effective repair of
these lesions (Figure 2D). The BER pathway removes small
covalent modifications such as those generated from reactive
oxygen species (ROS) as a result of cellular metabolism
or endogenous damage (43). Guanine, due to its chemical
composition, is the most frequently oxidized base and following
oxidation forms 8-oxo-7, 8-dihydro-guanine (8-oxoG) (44, 45).
These lesions may result in G:C to A:T transversion during
replication, due to the mis-pairing of 8-oxoG with cytosine
of adenine nucleotides. Significantly these transversions are
suggested to be one of the most common mutagenic features
observed inmany cancers (46, 47). Other types of damage involve
alkylation or deamination (48).

The repair of these lesions involves the recognition and
removal of the adduct by a specific DNA glycosylase (mono-
or bi-functional), such as OGG1, NTH1, UNG, SMUG1,
TDG, NEIL1, NEIL2, or NEIL3 [see for review (49)]. An
AP-endonuclease, most commonly APE1, then catalyzes the
hydrolysis of the site to generate a DNA single-strand break.
This then activates the single-strand break repair pathway, which
stimulates the poly-ADP ribose activity of PARP1. PARP1 uses
NAD+ to catalyze the addition of long, branched PAR chains
to onto serine, tyrosine and glutamic acid residues in the
PARP1 automodification domain, in a process known as auto-
ADP-ribosylation (50–54). This leads to further activation of
PARP1 and thereby stimulates the PARP1-mediated poly-ADP-
ribosylation of other repair proteins such as XRCC1 (X-ray repair
cross-complementing protein 1). The nucleotide is then replaced
by a DNA polymerase β and finally DNA ligase III repairs the
DNA backbone (55). This process replaces a single nucleotide;
however, long-patch BER is also possible where DNA polymerase
δ/ε with PCNA replace a short sequence containing the damage
(∼5 nucleotide). The endonuclease FEN1 resects the generated
flap before final nick ligation by DNA ligase I. The reconstitution
of long-patch-BER has demonstrated an absolute requirement for
the endonuclease activity of FEN1, which, is often upregulated in
cancers (56).

The reliance of tumor cells on BER pathways makes an
attractive target for cancer therapy. Supporting this, elimination
of N-Methylpurine DNA glycosylase (MPG) or inhibition of
APE1 has been shown to increase sensitivity of cancer cells
to alkylating chemotherapeutics (57). Several APE1 and Pol β

inhibitors have also been developed and proved to be effective
in cell line and mouse models; however, these have not yet
progressed to human trials (58). PARP1 inhibitors have been
approved as a human cancer therapy andwill be discussed further
in this review.

Mutations in key BER genes have been associated with an
increased risk of lung cancer and decreased patient survival
(59). Variants in the BER glycolyase and AP-endonuclease OGG1
and APEX1, respectively, have been shown to be associated
with an increased risk of lung cancer (60–62). Variants in BER
proteins have also been shown to associate with decreased patient
survival, including; MDB4, a DNA binding protein, APE1,
the primary endonuclease, OGG1, XRCC1 and Polymerase β

variants (60–64).

DNA Double-Strand Break Repair
Regarded as potentially the most severe form of DNA damage,
DNA double-strand breaks (DSBs) are induced by a variety of
mechanisms. These include exogenous factors such as ionizing
radiation and chemotherapeutic agents, or endogenous sources
such as faulty DNA replication and oxidative stress induced by
reactive oxygen species (ROS) during normal cellular metabolism
(65). It is predicted that over 10 DSBs are induced per cell, per day
and this can have severe consequences for cells, as failure to repair
dsDNA breaks can lead to senescence or apoptosis. Furthermore,
incorrect repair can result in genomic instability or mutation of
critical regulatory genes and subsequently, tumorigenesis (66).
Non-small cell lung cancers frequently exhibit mutations or loss
of essential components of the DSB repair pathways (67, 68). Two
main pathways are involved in the repair of DSBs; Homologous
Recombination (HR) andNon-Homologous End Joining (NHEJ)
[Figure 1C, (69)].

The two pathways are generally distinct from each other,
however some of the repair machinery is involved in both
pathways. NHEJ does not require a homologous template and
involves the ligation of the two free DNA ends, without extensive
resection, in contrast to HR. This ligation is initiated by the tight
binding of the ring-shaped Ku70/Ku80 heterodimer to the two
DSB ends to promote recruitment of DNA-dependent protein
kinase (DNA-PK) and form an active catalytic complex (69). The
bridging of the dsDNA break by the complex may initially enable
DNA digestion or gap-filling by recruitment of the proteins
Artemis (70), XLF (71), and PAXX (72), followed by induction of
the Ligase IV/XRCC4 complex’s DNA end ligation activity (66).
The configuration of the DSB ends can lead to alternative NHEJ
pathways [see for review (73)]. This process, which functions
in all stages of the cell cycle, can result in the joining of cut
DNA fragments from either a single gene or entirely separate
chromosomes. Therefore, NHEJ is generally regarded as a more
error prone method of DSB repair. NHEJ has been implicated in
DNA translocation from one region or chromosome to another,
having the potential to result in uncontrolled cell growth.

In late S and G2 phase, mammalian cells can repair dsDNA
breaks by HR due to the availability of a homologous sister
chromatid in close proximity to use as a template. HR requires
the high fidelity matching of individual sequence bases to allow
more accurate DNA repair than NHEJ, and without loss of bases
(1, 74, 75). HR is initiated by the ATM-dependent recruitment of
the Mre11-Rad50-NBS (MRN) complex. This serves to further
activate ATM and promotes the further recruitment of other
repair proteins, including MDC1, to the site of the break (76, 77).
The MRN complex then resects DNA up to 3 kb from the dsDNA
break site and in conjunction with Exo1 and Dna2, digests the
DNA strand between the nick and DSB (78–80), exposing a
section of single-stranded DNA (ssDNA) to which replication
protein A (RPA) rapidly binds, promoting the recruitment of
BRCA1 (81). Under the control of the BRCA1 and BRCA2
proteins (82), Rad51 then facilitates the search for a homologous
DNA sequence and promotes the strand invasion to generate a
D-loop. The resynthesis of the damaged strand is then completed
by DNA polymerase eta, using the homologous sister chromatid
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as template (83). The resulting Holliday junction is then resolved,

by the 3
′

-flap endonucleaseMUS81-EME1 or Gen1 resolvase (84,
85). Extensive degradation has also been observed at some DSBs,
resulting from other mechanisms of repair called alternative-
non-homologous end joining and single-strand annealing, both
of which have the potential to cause mutagenic deletions (86, 87).
However, it remains to be determined whether these alternative
mechanisms of repair contribute toward lung tumorigenesis.

Similarly to many other cancer types, lung cancers display
a high level of mutations in the tumor suppressor gene, TP53.
TP53 has multiple faucets to its role in the maintenance of
genome stability, including responding directly to DNA damage
to promote repair and cell cycle arrest, the transcriptional
regulation of DNA repair genes and the induction of apoptosis.
In the absence of TP53 cells accumulate DNA damage and resist
cell death. TP53 has been shown to be mutated in around 50% of
all non-small-cell lung cancers (NSCLCs) and over 90% of small
cell lung cancers (SCLCs). Since the presence of TP53 mutations
have been detected in preneoplastic lesions in the lung, it has been
hypothesized that the mutation of TP53 is likely to be an early
event in the development of lung cancer (88).

In addition to TP53 mutations, mutations in the DSB repair
kinase ATM, were identified in 6.12% of NSCLC. Mutations
were also prevalent in other key DNA repair proteins including,
TP53, BRCA2, EGFR, and PARK2 (12). There was an increased
incidence of familial cancer syndromes associated with these
mutations (89). Germline mutations in DNA repair pathway
genes, similar to other solid tumors, are the most common
subclass of genes associated with an increase in NSCLC
predisposition (12).

Mutations in several DNA damage response genes, including
PARP1, BRCA1, ATM, and TP53 have been shown to be
associated with cancer progression and metastasis. The presence
of DDR gene mutations has been linked with an increased
tumor mutational burden in NSCLC. This study also showed
that mutations in DNA repair genes were not mutually exclusive
as 77% had a mutation in two or more genes associated with
DNA repair. PARP1 and ATM mutations increase metastatic
potential, likely due to their association with SNAIL-1, a master
regulator of the epithelial-mesenchymal transition required for
metastasis. Mutations in BRCA1 disrupt DSB repair via HR,
increasing themutation rate, and subsequently increasing the risk
of tumorigenesis (90–92).

Mutations in DNA repair genes have been associated with
a differential tumor response to cancer therapy. Mutations
or changes in expression of genes that have been associated
with chemotherapy sensitivity of NSCLC include TP73, MDM2,
PTWN, PIK3, DNPK1, and DNA-PKcs (93). The treatment
of NSCLC tumors possessing DNA-PK, TP53, and PTEN
mutations with radiation similarly alters sensitivity in a mutant
dependent manner (93). Mutations of MDM2 and TP53 have
been associated with an increase in patient survival in lung
adenocarcinoma (93).

Lung cancer has been well-characterized as possessing one
of the most aggressive mutation rates of all cancers. Supporting
this an average mutation rate of 4.21 mutations per megabase

was identified in a screen of somatic mutations in protein kinase
genes from 210 cancer cell lines (46). Sequencing of 188 primary
lung adenocarcinomas identified 26 mutated genes, including
several known tumor suppressor genes including TP53, KRAS,
CDKN2A, and STK11 (LKB protein). High mutation rates in
DNA repair genes, including CDNK2 (p16) and RB were also
shown via whole-genome and transcriptome sequencing of lung
cancers (9, 40). As mentioned above mutations in STK11/LKB1
and consequential disruption of AMPK signaling pathways are
amongst the most frequent aberrations in lung cancers [reviewed
in (94)]. Both LKB1 and AMPK have been suggested to have roles
in DNA repair pathways, however the full extent of the influence
of LKB1 downregulation on DNA repair pathways in lung cancer
has not yet been explored (95, 96).

Translocations, which can result from errors in repairing
DSBs, are also common in lung cancers, with gene fusions
in the tyrosine kinases ALK and ROS1 being the first
identified, targetable driver rearrangements in NSCLC.
Fusions in other kinases have also been established as
targetable, oncogenic drivers, including RET, NTRK, EGFR, and
BRAF (97).

DNA REPAIR PATHWAYS AS
THERAPEUTIC TARGETS

The recommended frontline treatment for patients with stage
I–III NSCLC is surgery. For inoperable locally advanced
tumors, the current standard of care involves concurrent
radiotherapy and doublet chemotherapy followed by 1 year
of adjuvant immunotherapy, Durvalumab. Therapies for the
treatment of advanced lung cancer have become more targeted
to the individual tumor, utilizing advances in molecular
target technologies based on genomic abnormalities detected
in the tumor tissue. It is estimated that up to 69% of
patients with advanced NSCLC could have alterations in one
or more molecular targets that could guide their treatment
(98). These include EGFR activating mutations, KRAS, BRAF,
HER2, and MET mutations, ROS1, ALK, RET, and NTRK
rearrangements. EGFR, ALK, ROS-1, and BRAF positive
tumors now have clinically applicable targeted specific therapies
[reviewed in (99)] which offers superior patient outcomes and an
improved toxicity profile compared to standard platinum doublet
based chemotherapy. Clinical trials are currently underway
investigating compounds that specifically target KRAS, HER2,
MET, RET, and NTRX alterations in NSCLC. These compounds,
if proven efficacious, will dramatically expand the treatment
landscape for these patients. Single agent pembrolizumab,
platinum-based doublet therapy with or without immunotherapy
are current options in the first line for patients that do not
fit an identified targeted therapy. Treatment decisions on the
most appropriate choice will have to be balanced across a
number of factors including assessment on the extent of tumor
PD-L1 expression, patient co-morbidities, patient performance
status, extent of disease as well as patient preference. This,
together with other agents targeting DNA repair and/or genome

Frontiers in Oncology | www.frontiersin.org 6 July 2020 | Volume 10 | Article 1256104

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Burgess et al. DNA Repair and Lung Cancer

instability, along with the emerging immunotherapies are
discussed further, below.

CHEMOTHERAPIES—DNA DAMAGING
AGENTS

Platinum Therapy
Platinum doublet therapy has been a frontline therapy for
lung cancer since the 1990’s. This therapy consists of platinum
compounds in combination with several third generation
chemotherapeutic drugs, including; cisplatin/carboplatin in
combination with gemcitabine, pemetrexed, docetaxel, or
paclitaxel (100). It has been generally accepted that the main
mechanism of action of platinum compounds as a cancer
therapy is by crosslinking the purine bases within DNA, causing
DNA damage. In rapidly growing cancer cells this leads to
inhibition of DNA replication, cell division, and eventual cell
death. Other suggested contributions of platinum compounds
to cellular toxicity also include; oxidative stress, modulation
of calcium signaling, and activation of several other kinases
and signaling pathways [reviewed in (101)]. The emergence of
personalized therapies and the toxicity and subsequent side-
effects of platinum therapy have led to a reduction in their use.
However, until a more effective treatment is found for tumors
without an identified biomarker mutation or translocation,
platinum treatment is likely to remain a mainstay of lung
cancer treatment.

Topoisomerase Inhibitors
Topoisomerase inhibitors are commonly used in combination
with platinum agents for treatment of small cell lung cancer
(SCLC). First line treatment for SCLC widely involves the
topoisomerase II inhibitor, etoposide in combination with
platinum therapy. The topoisomerase II enzyme functions to
cleave double-stranded DNA and topoisomerase II inhibitors
such as etoposide inhibit this activity leading to stable protein-
linked DSBs in DNA and subsequent cell death in rapidly
dividing cancer cells (102). Topoisomerase I functions to induce
single-strand breaks in the DNA to reduce torsional stain
on the DNA helix. Relapsed refractory SCLC is commonly
treated with the topoisomerase I inhibitors topotecan or
irinotecan, following resistance to platinum and topoisomerase
II targeting therapies. Inhibition of topoisomerase I, by
topotecan or irinotecan prevents repair of these single-
strand breaks that are then converted into double-strand
breaks in the S-phase of the cell cycle leading to tumor
cell death.

DNA-Damage Targeted Therapies
Despite the advances made in “personalized medicine” for
the treatment of lung cancers, new treatments have generally
not been suitable for the majority of patients, due to a
lack of mutations identified in targetable genes. Of further
concern, patients inevitably develop resistance to these targeted
therapies through an additional mutation in the target gene or
initiation of a downstream signaling pathway that stimulates
tumor growth. Therefore, although significant progress has

been made in lung cancer treatment in recent years, new
treatment strategies are urgently required. Several proteins
involved in the DNA damage response have been identified as
emerging targets for cancer treatment, including; PARP1, ATR,
and Chk1.

PARP Inhibitors
The term “synthetic lethality” describes how perturbation
of one gene is compatible with cell viability; however,
simultaneous disruption of two genes results in cell
death (103). In cancer treatments, synthetic lethality can
be used to exploit tumor-driven mutations and protein
expression alterations to induce cancer-specific cell death
[reviewed in (104)]. This treatment specifically targets
the tumor cells over the normal cells, which reduces
toxic side-effects for patients and improves quality of life
during treatment.

The most recognized example of synthetic lethality used in
cancer therapy is the use of PARP inhibitors in homologous
recombination deficient tumors (105, 106). Inhibition of the
PARP enzymes results in PARP immobilization at DNA single-
strand breaks and homologous recombination repair is required
for replication forks to bypass this lesion. Diminished capacity
to complete functional homologous recombination confers
cell death following treatment with PARP inhibitors. The
breast cancer associated proteins BRCA1/2 function in the
repair of DNA via homologous recombination; therefore, PARP
inhibitors are approved for treatment of BRCA1/2 mutated
breast, ovarian, and pancreas cancer (107). The first PARP
inhibitor to be approved by the European Medicines Agency
in 2014 was Olaparib (Lynparza; AstraZeneca, London, UK),
which is currently used as maintenance therapy for patients
with BRCA1/2 mutated ovarian cancer following platinum-
based chemotherapy. Subsequently, Niraparib and Talazoparib
were also approved for use in a maintenance therapy setting.
Several other potent PARP inhibitors are in late clinical
trial development including, Veliparib. There are 416 PARP
inhibitor clinical trials currently listed on clinicaltrials.gov,
including 40 in lung cancer, indicating the potential of
this treatment.

Although PARP inhibitor treatment in patients with a range
of tumor types with germline BRCA1/2 mutations have shown to
be effective, such mutations are only found in ∼5% of patients
with lung cancer (108). It is now clear that clinical efficacy would
be beneficial beyond this niche population of patients. The need
for a definitive biomarker for PARP inhibitor sensitivity has
been well-documented (109) and a number of strategies have
been explored to predict tumor sensitivity to PARP inhibitors,
including unsuccessful attempts to identify predictive biomarkers
for homologous recombination-deficient tumors (110). In terms
of lung cancer, it has been suggested that high levels of DNA
repair inhibiting proteins, such as SLFN11, and low levels of DNA
repair promoting proteins, including ATM, may be a superior
predictive biomarkers to BRCA1/2 mutations in small cell lung
cancer (111, 112).

Significantly, tumors with mutations in the DNA repair
protein PTEN account for 4–8% of all NSCLCs and it has been
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shown that PTEN mutant tumor cells are sensitive to PARP
inhibitors, expanding the number of lung cancer patients this
therapy may benefit (113, 114). While PARP inhibitors use
in BRCA1/2 mutated tumors remains the best characterized
treatment based on synthetically lethality, numerous other
synthetic lethal interactions have been identified using RNAi
screens, based on other mutations found in lung cancer,
including mKRAS and EGFR mutations [summarized in (115)].

Although several combination treatment lung cancer clinical
trials, with PARP inhibitors are underway, these trials are still
in their early stages and the majority data or trial outcomes are
not publically available. However, a recent trial published data,
showing the safety and activity of a combination treatment of
the PARP inhibitor Olaparib with the DNA damaging alkylating
agent temozolomide in patients with relapsed SCLC. The
combination was confirmed as safe and active, with an overall
response (defined as >30% decrease in the sum of the longest
diameter of target legions) in 41.7% of patients and median
overall survival of 8.5 months (116). It has also been suggested
that a combination of PARP1 inhibitors with immunotherapies
may also be an effective combination treatment for lung cancers,
particularly in tumors with other DNA repair defects, such as
ERCC1 deficiency (117).

PARP inhibitors have also been implicated as a radiosensitizer
in NSCLC. Since radiation therapy is the first-line treatment in
patients with locally advanced NSCLC, this could have significant
implications for their treatment (118, 119).

THE DNA DAMAGE RESPONSE AND
IMMUNOTHERAPIES

Immune-Checkpoint Inhibitors
The treatment of lung cancer through immunotherapies,
including immune checkpoint inhibitors, and targeted
antibodies, has dramatically expanded over recent years.
Checkpoint inhibitors which target PD-1 and PDL-1 are
considered a standard first and second-line treatment in lung
cancer. These immunotherapies block the PD-1 checkpoint
to enable the immune system to recognize and target cancer
cells. There are now multiple antibodies that are raised against
anti-PD1 or anti-PD-L1, including Atezolizumab, Avelumab,
Durvalumab, Pembrolizumab, and Nivolumab (120).

Although immunotherapies do not directly target DNA
damage repair, DNA damage, and genome instability has been
shown to induce changes in the tumor microenvironment
and stimulate the generation of neoantigens on cancer cells,
increasing the tumor response to immunotherapies. This has led
to the hypothesis that DNA damaging agents, such as cisplatin,
may increase the efficacy of immunotherapies. Indeed, clinical
and preclinical data have shown that chemotherapy can induce
PD-L1 expression on tumor cells (121–123).

Testing of PD-L1 expression has rapidly become standard
for newly diagnosed patients with advanced NSCLC. A high
number of mutations in a tumor, known as the tumor mutation
burden, is also associated with an increased response rate
to immunotherapy. Similarly, microsatellite instability, also

associated with genome instability, is also linked with a better
response to immunotherapy. Many commercial laboratories now
offer a comprehensive gene sequencing report comprising of the
PD-L1 expression, tumor mutation burden, and microsatellite
instability status of tumors (124).

In light of the above, the treatment of lung cancer patients with
immunotherapies in combination with chemotherapy has shown
improvement in patient survival and tumor response rate as such
it has now become the standard of care for first-line treatment
in several lung cancer subtypes (125–128). Pembrolizumab as
a single agent was compared to standard platinum doublet
chemotherapy in the first line setting in patient with advanced
NSCLC in those with a tumor PD-L1 expression >50%. Updated
analysis revealed a median overall survival improvement of
15.8 months in favor of pembrolizumab reported in this group.
Based on this study single agent pembrolizumab is favored
over platinum based chemotherapy in those with a PD-L1
>50%. A phase 2 randomized study using the combination of
pembrolizumab plus carboplatin and pemetrexed demonstrated
an objective response rate of 55% in the combination compared
to 29% in chemotherapy alone, p:0.0016, supporting the use of
a DNA damaging agent in combination with immunotherapy
(129). A later phase III randomized placebo controlled trial
confirmed the addition of pembrolizumab to chemotherapy led
to a significant improvement in median progression free survival
(8.8 vs. 4.9 months) and overall survival (12 months overall
survival: 69.2 vs. 49.4%) in advanced non-squamous NSCLC.
Similar findings have also been observed in another double-
blind phase III trial in treatment-naive patients with metastatic
squamous NSCLC. In this study, pembrolizumab was combined
with carboplatin and either paclitaxel or nab-paclitaxel. In the
total population median overall survival was 15.9 months in the
combination (chemo-immunotherapy) vs. 11.3 months in the
standard arm (130). This constitutes level one evidence for the
use of combination chemo-immunotherapy and is considered as
an option for the first-line treatment of patients in squamous
and non-squamous advanced NSCLC, irrespective of the tumor
PD-L1 status (131).

Antibody Drug Conjugates
Antibody-drug conjugates (ADCs) are a rapidly developing area
of targeted therapy in lung cancers [reviewed in (132)]. ADCs
consist of monoclonal antibodies that are covalently bound to
a cytotoxic chemical. These immuno-conjugates are designed to
have greater cancer cells toxicity whilst minimizing off target
effects on normal cells. The ADCs are now in their third
generation through linker optimization, which allows for lower
de-conjugation rate in circulation whilst still having a potent
impact on cancer cells.

The development of ADCs is limited by the identification
of a specific target antigen on the cell surface which has high
expression in tumors and low or no expression in normal
tissue. The toxic warhead is still a limiting factor based
on a small number of cytotoxic drug families, similarly to
other cancer therapies, inducing DNA damage or inhibiting
microtubule formation. Difficulties arise with the selection
of drugs with requirements for retaining potency following
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linkage whilst maintaining solubility. Compounds that target
DNA include Calicheamicins which induce DNA double-strand
breaks, Duocarmycins which alkylate DNA, Benzodiazepines
which bind DNA to induce crosslinks and Camptothecin analogs
inhibiting DNA topoisomerase I (119, 133, 134). Other ADC
warheads include Auristatins, Maytansinoids, and Tubulysins
which aim to prevent cancer cell proliferation by inhibiting
tubulin assembly (135–138).

Several ADC have been developed that contain compounds
that induce DNA damage, as discussed below. These ADC
have shown promise for potential treatment of lung cancer,
however it should be noted that none of these are currently
licensed for use. For example, Sacituzumab Govitecan (IMMU-
132) which utilizes an antibody against the transmembrane
glycoprotein, Trop-2 (which is highly expressed in epithelial
malignancies), conjugated with SN-38, the active metabolite of
the topisomerase I inhibitor, irinotecan. In preclinical models,
IMMU-132 was shown to deliver 136 fold more SN-38 than
irinotecan (139). Clinical trials have shown an overall response
rate of between 14 and 31% with IMMU-132 in NSCLC and
SCLC (139).

SGN-15 is an ADC targeting topoisomerase II, using the
drug Doxorubicin linked to a monoclonal antibody against the
carbohydrate antigen Lewis-Y. In a phase II trial comparing
SGN-15 in combination with docetaxel to docetaxol treatment
alone in NSCLC patients, the overall response rate was 6% for the
combination vs. 21% for docetaxol alone. However, the overall
survival was greater in the combination treatment (140).

Rovalpituzumab Tesirine (Rova-T) consists of an antibody
against delta-like ligand DLL-3 conjugated to pyrrolo-
benzodiazepine dimer toxin (a DNA damaging agent). In a
phase I trial, SCLC patients had a 18% overall response rate to
Rova-T. An improved response rate of 38% was also observed in
patients with high DLL3 expression (141). Another phase II trial
showed a 14% overall response rate in SCLC patients with DLL3
high expression and 12% overall (142).

Although DNA damage inducing ADCs are not currently
approved for treatment of lung cancer, the combination of
ADCs with other therapies is under investigation. The treatment
of patients with immunotherapy through the targeting of
programmed cell death 1 ligand 1 (PDL1) or cytotoxic T
lymphocyte antigen 4 (CTLA4) along with ADCs, has shown
potential in several tumor types. ADC targeted therapy is
rapidly advancing but there is still much to learn in terms
of resistance and toxicity before this class of therapy can be
fully utilized.

Radiotherapy
Radiation therapy is an effective anti-cancer therapy which
induces DNA damage by targeting the DNA to induce
multiple forms of damage, including double and single-strand
breaks and oxidative lesions. Furthermore, indirect ionization
involves interaction with water molecules surrounding DNA to
produce radical oxygen species (ROS). These ROS also generate
further DNA single-strand breaks, DNA DSBs, and oxidized
DNA bases, this leads to cell death in genomically unstable
tumors (143).

Radiation therapy is commonly utilized in the treatment of
several cancers, including lung cancer. It is still considered a
first-line therapy in the treatment of non-small cell lung cancer
(NSCLC). However, small cell lung cancer is primarily treated
with chemotherapy, although combination radiotherapy and
chemotherapy is used as a second line therapy (144). Radiation
therapy for lung cancer has evolved over time to increase the
accuracy of the X-ray dose delivered to the tumor, subsequently
decreasing toxicity to adjacent tissues (145).

Dose fractionation and 3-Dimensional conformal radiation
therapy (3DCRT, using CT images) significantly improved
radiation treatment (146). The development of multileaf
collimators allowing modulation of the X-ray beam dose-
rate led to intensity-modulated radiation therapy (IMRT,
characterized by a static delivery) and volumetric-modulated
arc therapy (VMAT, with a dynamic delivery), which
improved the target volume accuracy and led to less organ
toxicity (147, 148).

Potential mechanisms of radiation resistance include
mutations in EGFR and RAS, increased expression of MDM2
and Livin α, or decreased TP54I3 expression (149, 150).
Various XRCC1 mutations have been identified to increase
and decrease radio sensitivity in NSCLC (43, 151, 152).
Blood-based microRNAs (miRNAs) have been identified
as potential biomarkers to elucidate the tumor response to
radiotherapy (153).

The field of radiation therapy is still evolving, notably with the
development of stereotactic ablative radiation therapy [SBRT or
SABR, used by the CyberKnife system (154)], where a very high
dose is locally delivered using 3DCRT or IMRT (155). Radiation
therapy can also be used in combination with sensitizing drugs
(156). The molecules used target DNA [such as Cisplatin (157)
or Paclitaxel (158)], DNA repair (PARP inhibitor) (159), or
growth factors receptors (e.g., Epidermal Growth Factor Receptor
blockade by the drug Cetuximab) (160).

Radioimmunoconjugates
Similarly to some ADCs, radioimmunoconjugates (RICs) are
designed to induce DNA-damage specifically in tumor cells,
in order to induce cell death. In this case, radionuclides are
conjugated via a linker to a monoclonal antibody in order to
deliver a dose of radiation specifically to tumor cells expressing
a specific cell-surface antigen [reviewed in (161)]. Although
a promising area of tumor therapy, RIC therapy has several
limitations, due to the radioactive conjugates involved. The
pharmacokinetic biodistribution is dependent on the conjugated
antibody and this leads to a dose rate two orders of magnitude
below conventional external beam radiation therapy, which may
limit the use of RICs (162). Although this type of therapy has
shown promise in several cancer types, there are no published
studies in lung cancer thus far.

CONCLUSIONS

Lung cancer is a highly unstable cancer with genomic instability
being a primary driver of the disease. The highly genetically
diverse lung cancers are driven by the exposure to DNA damage
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from both exogenous and endogenous sources. Although the
loss of the normal DNA repair machinery and accumulation of
mutations initially drives the tumor progression, it also provides
a targetable defect for therapeutic intervention. Such agents that
target these defects have been shown to be effective against
lung cancer, including combining traditional therapies, such
as platinum agents and radiotherapy, and more recently with
targeted therapies, such as immunotherapies. Future research
efforts are likely to involve refining these combination treatments
to overcome the development of tumor resistance to treatments
and to improve survival outcomes for patients. Further study
of agents that target DNA damage and repair pathways, such
as PARP1 inhibitors and ADCs linked to DNA damaging
agents are vital to determine their regulatory and subsequent
approval for use in the clinic. It is also likely that the further
characterization of DNA repair proteins and pathways will

drive the quest for new lung cancer therapeutics targets in
subsequent years.
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