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Editorial on the Research Topic

Artificial Intelligence in Insurance and Finance

1 INTRODUCTION

Artificial intelligence (AI) has become a phenomenon and caught researchers in almost all domains
by surprise with its overwhelming success accompanied by unprecedented accuracies, sometimes
even surpassing human experts. The finance and insurance sectors are no exceptions to this AI
revolution, especially considering the significant amount of historical data, structured and
unstructured, available in most financial and insurance companies. Another motivating factor is
the evolving expectation of customers for frictionless and on-demand services, which brings not only
challenges but also significant opportunities for applying AI. In the field of insurance, AI promises to
reshape claims, underwriting, distribution, and pricing. In the field of finance, AI is having a seismic
impact on robo-advisory, fraud prediction, trading strategies, risk assessment, and chatbots, to name
a few.

In this context, this research topic brings together 11 papers that have developed new theoretical
or applied models employing AI in a variety of financial and insurance problems.We introduce them
in the order of the first authors’ last names.

2 PAPERS IN THIS RESEARCH TOPIC

Acharya and Fung used state-of-the-art object detection deep learning architectures for extracting
vehicle mileage from odometer images taken by mobile devices. Despite availability of commercial
solutions for license plates and VIN recognition from images, there are no existing commercial
solutions for odometer mileage extraction from images. The authors have also tested empirically the
proposed system in unseen odometer images taken in the wild and have achieved satisfactory
performance, meeting requirements needed for real-life application in the insurance industry.

Inspired by DNA sequencing and natural language processing, Cheong et al. used historical daily
close prices of financial assets and mapped those with positive returns into a sequence, e.g., (AB)
represents assets A and B with price increases in a day. By such temporal-spatial sequences from
every week, the authors tested against random combinations and dynamically discovered assets
whose prices often rise together over consecutive days, thereby informing short-term, likely
profitable trading decisions.

In the study of Dixon and London, a novel neural network architecture called the α-recurrent
neural networks (α-RNNs) was developed for non-stationary time series forecasting. In a nutshell,
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α-RNNs apply exponentially smoothing to the hidden layers of
RNNs and are unconditionally stable with potentially infinite
memory. Simple statistical tests suffice to configure α-RNNs.
Using minute-frequency bitcoin prices and high-frequency
futures tick data, the authors demonstrated that α-RNNs
achieved similar out-sample accuracies as substantially more
complex models including gated recurrent units or long short-
term memory models (LSTMs).

Fong et al. developed an innovative insurance application for
early, automatic detection of product defects from online
customer reviews. The modeling pipeline consists of recurrent
neural networks for predicting negative sentiments and the
presence of defects; followed by a topic discovery model for
clustering negative reviews with defects into similar problems.
The application was developed with home products for early
intervention and more effective cost management of product
defects but is suitable for various artifacts covered by insurance plans.

Fouque and Zhang considered a challenging multiplayer
game, in which all players are indistinguishable, and each
person seeks to minimize the same objective function of
action over time, subject to a stochastic differential equation
with delayed effect from an earlier state, given initial conditions.
Because there is no closed-form solution, the authors designed
two numerical algorithms for estimating an optimal trajectory of
controls using neural networks. Last, the authors prove the
existence and uniqueness of optimality under certain conditions.

Gupta et al. developed a supervised algorithm that generates
task-optimized word embeddings for natural language processing
(NLP) applications. Unlike traditional word embeddings that are
optimized at the word level, this new algorithm produces
embeddings at the sentence-level using a weighted average of
an available pre-trained word-level embedding. This allows for
more targeted applications of NLP to specific domains and, thus,
better performance because the user can inject their weights
accordingly. The authors also performed numerical
experiments to demonstrate the performance of the algorithm.

Jiang briefly outlined a machine learning approach with
LASSO for the challenging problem of forecasting corporate
mergers using a large number of annual reports Form10-K
filed with the U.S. Securities and Exchange Commission. The
unstructured text was preprocessed with NLP techniques and
transformed to a high-dimensional term frequency–inverse
document frequency matrix. Several potentially fruitful
directions are discussed for future research.

Nuti et al. developed a deterministic Bayesian Decision Tree
algorithm, applicable to regression and classification problems. It
eliminates the need for sampling and pruning. In particular, the
algorithm generates a greedy-modal tree (GMT). GMT is salient
because models become explainable, an important component
and often prerequisite in finance and medicine. The authors
tested the new algorithm against various standard benchmarks,
demonstrating comparable performance against other existing
techniques, showing that accuracy does not have to be sacrificed
for explainability.

Bidirectional Encoder Representations from Transformers
(BERT) is one of the most advanced AI models for natural
languages that have emerged in recent years. Yu et al.

leveraged BERT’s pre-trained language models to efficiently
build a closed-domain chatbot for hierarchical classification of
over 380 intents that arise from more than 22,000 questions of
financial customers. The article also presents a thorough
treatment of out-of-vocabulary words. Finally, model class
probabilities are randomly sampled with Monte Carlo
methods for computing confidence intervals.

Yu investigated three information criteria (traditional AIC,
BIC, and information complexity-based ICOMP) to assess
truncated operational risk models. The performances of using
the three information criteria to distinguish various fat-tailed
distributional models such as Champernowne, Frechet,
lognormal, and Weibull distributions were first examined
using simulation studies. The author then studied a use case
beginning with model fitting and model validation, followed by
value-at-risk estimation, and ended up withmodel selection using
various information criteria on the basis of fraud risk data coming
from retail banking of Chinese banks.

The article by Zhang et al. focuses on stock price prediction by
leveraging sentiment information from tweets as an additional
feature. This is achieved by using a conditional generative
adversarial network, where the generator is formed by a LSTM
network, whereas the discriminator is formed by a multilayer
perceptron. The authors showed through experiments that their
approach outperformed state-of-the-art methods based on LSTMs
and traditional methods, such as linear multiple regression,
K-nearest neighbors, and autoregressive integrated moving average.

3 CONCLUSION

In a nutshell, the papers in this research topic illustrate how AI is
comprehensively transforming the way financial and insurance
businesses operate and interact with their consumers and
markets. In particular, deep learning networks are playing an
important role in this transformation. For example, many of the
articles in this research topic make extensive use of recurrent
neural networks to model time series and text data. Similarly,
generative adversarial networks and faster region–based
convolutional neural networks are also used by some of the
articles in this research topic.

It is worth highlighting that the data used in some of the
articles go beyond finance and insurance data and extend to social
media data, such as tweets. This is motivated by the interplay
between social sentiment and financial market movement. It is
also worth mentioning that this topic is rich in AI applications to
financial and insurance areas, including but not restricted to,
financial forecasting, merger activity, financial service chatbots,
and risk assessment.

In closing, we would like to express our appreciation to the
reviewers for their high-quality feedback and timely responses.
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Mileage Extraction From Odometer
Pictures for Automating Auto
Insurance Processes
Shailesh Acharya* and Glenn Fung

Machine Learning Research and Innovation, American Family Insurance, Madison, WI, United States

For an insurance company is a priority to supply customers with an easy and streamlined

way to provide all the information needed when reporting a claim or asking for a quote.

A simple and efficient process to do so improves customer experience, reduces human

error and accelerates the information collection process. An accurate mileage reading

is a key piece of information that is relevant for auto insurance quotes and claims

processing. The vehicle mileage can be combined with the License Plate number and

the Vehicle Identification Number (VIN) to get a complete overview of the information

needed for many insurance processes and workflows. In this paper, we describe a

novel solution for extracting vehicle mileage from odometer images taken by mobile

devices. There are many available low-cost commercial solutions for both License plate

recognition and VIN recognition from images, however, to the best of our knowledge, this

is not existing commercial solutions for odometer mileage extraction from images. Our

proposed system mainly consists of two parts: (a) identifying the odometer display and,

(b) extracting characters inside the display. We leverage existing state-of-the-art object

detection deep learning architectures to solve each part and design a post-processing

algorithm to identify mileage from the extracted characters. We tested empirically

our proposed system in unseen odometer images taken in the wild. We achieve

satisfactory performance that meets the requirements needed for real-life applications

in the insurance industry.

Keywords: image recognition, information extraction, deep learning, computer vision, optical character

recognition

1. INTRODUCTION

In a competitive customer-driven auto insurance landscape, businesses are constantly changing the
way they interact with customers to improve attraction and retention. Better customer experiences
and more efficient interactions with customers lead to satisfaction which is one of the top
differentiators that impact customer loyalty. Digitization and process automation allow service
providers to unveil timely opportunities to offer effective and time-saving interactions to improve
customer experience.

With the incorporation of more sophisticated safety features in modern cars, the increase in
claim cost due to the replacement of modern devices is outpacing the decline in claim frequency.
Hence, there is pressure on insurance companies to create a more effective way to handle auto
claims. Filing a claim is an example of one of the few direct interactions customers have with
their insurer and it comes at a time when they are under stress and will most likely appreciate a
streamlined process.
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However, the typical experience offered today from most
insurers when you have an accident involves a process to manage
the claim filing that can be slow, expensive (for the insurer) and
may involve several insurance representatives. The same idea
applies when a potential new customer is inquiring about a new
insurance policy.

When asking for a quote for a new policy, potential customers
can upload photographs that can be used for retrieving quick
information about the car from their phone to a web-based
app, which can be analyzed in seconds. This results in a quick
and accurate quote. By reducing human error and accelerating
the information collection process, we can make processes
that involve customer interactions smoother, hence simplifying
the policy claims ecosystem for the agent, the customer and
the insurer.

Optical character recognition (OCR) is a widely researched
problem in computer vision. Text extraction from scanned
documents or from pictures taken under controlled lighting has
seen significant improvement with the advent of deep learning
architectures. However, text extraction from images in the wild
is still very challenging. The general purpose OCRs do not work
well for images from uncontrolled sources. In this paper, we
describe a novel solution for extracting mileage readings from
odometer images. In the insurance domain, especially for auto
insurance quotes and claims processing, there are three key
pieces of information; license plate number, odometer mileage
reading and vehicle identification number (VIN). License plate
recognition and VIN recognition from images are very popular
problems and there exist commercial solutions for both. It is
important to note that VIN recognition is a significantly easier
problem since for modern cars the VIN number plates are
standardized. To the best of our knowledge, few or no work
has been done for odometer mileage extraction from images
and there are not reliable available commercial solutions for
this use-case.

There are several open source and commercial OCRs available
in market such as Tesseract [1], and the built-in OCR toolbox
in Matlab [2] to name a few. These OCRs systems are designed
to read characters from high quality pictures taken by scanners
or a camera under good lighting conditions. They use image
pre-processing and character segmentation techniques that are
very specific to document images. They are trained to recognize
printed characters which are different from characters in a
odometer display since odometer images contain huge variation
in color, intensity, font, and texture. For all these reasons,
these OCR systems perform poorly on odometer images. Google
cloud vision API [3] is another interesting commercial option
that does a better job in extracting text from images in the
wild, but its performance on odometer images is nowhere
close to our accuracy expectations and does not meet our
performance requirements.

We divide the mileage extraction problem into two parts;
identifying odometer display and extracting characters inside
the display. We leveraged existing object detection architectures
to solve each part and finally designed a post processing
algorithm to extract mileage number. We tested two different
object detection architectures Single Shot Detector (SSD)[4]
and Faster RCNN [5]. Our system differs from open source

OCR such as tesseract and other commercial OCRs both on
the system architecture and the dataset used for training. We
used hand labeled odometer pictures to train the character
recognition which makes our model much more customized to
odometer characters than any other OCRs. We also designed the
post processing algorithm to distinguish mileage reading from
other characters in odometer display such as tripmeter reading,
temperature, etc.

The rest of the paper flows as follows: In section 2 we
present relevant related work that uses recent machine learning
techniques to extract text from pictures taken in non-restrictive
environments and background on FasterRCNN and SSD object
detectors. In section 3 we describe the data used to train
our system which is described in detail in sections 4 (system
workflow). After that, we share results derived from our empirical
evaluation of the system in section 5 followed by a description
of how the system is being deployed in section 6. We end the
paper with conclusions and lessons learned and discuss future
work in section 7.

2. PRELIMINARIES

2.1. Related Work
As mentioned before, automatic license plate recognition
(ALPR) is a mostly commercially solved problem. Besides traffic
monitoring, this technology is used in many applications such
as, highway toll collection, border and custom checkpoints,
parking access control system and more recently, homeland
security. The ALPR problem is similar in some aspects
to our problem proposed here since most ALPR system
breakdown the problem into similar sub-tasks: number plate
detection, character segmentation, character recognition. Deep
convolutional networks have been used recently to improve
accuracy on ALPR systems [6] and in Bulan et al. [7] they
propose the use of synthetically generated images to improve
CNN performance while reducing the need for human labeling.
Amore comprehensive survey view of such system can be seen in
Sanap and Narot [8], Sonavane et al. [9], and Du et al. [10].

Faster RCNNs have been successfully used to extract text from
pictures taken in the wild, for example in Nagaoka et al. [11],
the authors propose an architecture that takes into consideration
the characteristics of texts by using multiresolution feature maps
to detect texts of various sizes simultaneously. A faster RCNN
approach is also used in Rosetta [12], a recently proposed scalable
system to extract text from web images.

There are many recent real-world applications to detect
text in images where the faster RCNN and the Single Shot
Detector (SSD) architectures have been used successfully. A good
representative example of such system is presented in Yang et al.
[13], where the goal is to extract (detecting and recognizing) text
from biomedical literature figures.

However, to best of our knowledge there is few or no work
related to extracting mileage readings from odometer pictures.

2.2. Faster RCNN
Early object detectors used pyramidal sliding windows over the
input image followed by an image classifier to detect objects
at various location and scales. The Fast RCNN architecture
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FIGURE 1 | Faster RCNN detector.

introduced by Girshick [5] made significant improvement over
these architectures by using selective search for region proposals
and convolutional feature maps as input. Although, Fast RCNN
was significantly faster than the previous architectures, the
region proposal technique was still too slow for most real-time
applications. Faster RCNN, introduced in Ren et al. [14], solves
this problem by using a different region proposal network.

Faster RCNN can be roughly viewed as a combination of two
networks: The region proposal network (RPN) and a classifier as
shown in Figure 1. The RPN takes convolutional feature map
inputs and outputs a set of rectangular object proposals and
an objectness score for each proposal. But before that, the first
step is translating the image to convolutional feature maps by
passing the image through a series of convolution layers. In
faster RCNN, RPN is modeled with a fully convolutional network
[15]. Region proposals are generated by sliding a small sub-
network over this convolutional feature map output. The sub-
network looks at n × n spatial windows of input feature maps
and projects it into a lower dimensional feature vector. At the
end of the sub-network architecture there are two siblings fully
connected layers: a box-regression layer and a box-classification
layer. The regression layer outputs delta coordinates to adjust the
reference anchor coordinates for each spatial window. The box-
classification layer predicts the possibility of an anchor box being
either background or an object. For the next stage of processing,
only the anchors with high scores are retained. The second part
of the faster RCNN architecture is a classifier that predicts the
class label for the regions proposed by the RPN. The classifier
also contains a regression layer that outputs offset coordinates
to further tighten the proposed box. The output region from the
RPN is passed through a ROI pooling layer tomap them to a fixed
shape before feeding them to the classifier. The classifier consists
of a fully connected layer that outputs softmax scores across all
the class labels.

2.3. SSD
The single shot multiBox detector (SSD) was introduced
by Liu et al. [4]. The Faster RCNN algorithm produces
accurate results but the network is still computationally
intensive for use in some real-time applications [4]. The
SSD algorithm proposed a series of improvements over the
existing object detection architectures for accelerating running

FIGURE 2 | Single Shot Detector extracts detections from feature map at

multiple scales.

time. The main idea behind SSD is predicting category
scores and box offsets for a fixed set of default bounding
boxes using small convolutional filters applied to feature
maps. SSD then generates predictions from different scales of
feature maps thereby producing predictions for all of them.
Similarly to the faster RCNN algorithm, the input to SSD
is a convolutional feature map. In the original paper, the
convolutional feature map is generated by passing an image
through the Conv5_3 layer of a VGG-16 network. The feature
map is downscaled using convolutional filters to get feature
maps at multiple scales. Figure 2 shows original feature maps
along with 6 downscaled ones. Each feature map is processed
independently using different convolutional models to detect
objects at particular scales. There is a set of default boxes
associated with each cell of the feature maps. The convolutional
model predicts offset coordinates relative to the default boxes
and class scores for that box. The offset coordinates move and
tighten the default boxes for a better localization of objects. The
architecture is trained end-to-end by minimizing the weighted
sum of the localization loss and the classification loss.

2.4. Transfer Learning
The success of Deep Learning is contributed mostly by the
large datasets available for training the model. However, data
acquisition and annotation is costly and time consuming. Both
SSD and the Faster RCNN detectors contain deep architecture
with large number of parameters. Hence, training them from
scratch with small dataset can lead to overfitting.

Transfer learning allows deep networks to be trained on
one domain and reused on a different domain. The first few
convolution layers of a CNN trained on images learn universal
representation of image features. These layers can be reused to
build an image classifier with a different dataset. The reused
layer can either be fine-tuned on the new network or kept
frozen allowing only the newly added layers to be updated. There
are several different ways to adopt transfer learning in object
detection. Figures 1, 2 show that the first step for both the
SSD and the faster RCNN detector is transforming the images
to convolutional feature maps using a feature extractor. This
feature extractor can be constructed from the first few layers
of pre-trained image classification architectures such as VGG
[16], Inception [17], Resnet [18], etc. trained on a large image
classification dataset such as imagenet [19]. When training the
object detection model, the layers in the feature extractor can
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either be kept frozen or updated with a very small learning rate
depending on the size of the dataset. Another way of adopting
transfer learning in a detection domain is by training a detection
model end-to-end using a large object detection dataset such
as Pascal VOC [20], MS COCO [21], and fine-tuning it with a
new dataset.

3. DATA

Training object detection architectures such as SSD and Faster
RCNN requires a large corpus of annotated training samples.
Our initial dataset contained only around six thousand (6,000)
odometer images. These images were uploaded by customers
when filing an auto insurance claim. Before any further
processing, we manually filter the dataset to remove images
with potential personally identifiable information (PII). We also
removed images that do not contain odometers in them. Finally,
the gathered dataset has total of 6,209 odometer images. The
images came from uncontrolled sources and hence in general
the quality of images in the dataset is poor. Most images suffer
from non-uniform illumination, insufficient lighting, incorrect
orientation and low picture resolution.

3.1. Labeling
The process to label the dataset can be divided in two stages.
In the first stage, we aimed to manually segment the odometer
display by drawing a bounding box enclosing the display. Here,
the term odometer display refers to LCD screens from digital
odometers or mechanical meter from analog odometers. In the
second stage, our goal was to generate boxes enclosing each
individual character inside the odometer display and label the
characters with the corresponding digit.

Both of the annotation stages involved labor intensive and
repetitive tasks. Hence, we resorted to crowdsourcing as a viable
solution for these tasks. There are several commercially available
platforms that facilitate crowdsourcing labeling tasks. We used
two popular crowdsourcing platforms: Amazon Mechanical
Turk (AMT) [22] and Figure Eight (previously known as
Crowdflower) [23].

Amazon Mechanical Turk is one of the largest crowdsourcing
platforms operating today. At any given time, it has hundreds
of active workers ready to work on the given task. It provides
flexibility to build customized user interfaces using HTML, CSS

FIGURE 3 | Sample odometer images.

and javascript. It also provides some basic customizable templates
for annotations tasks like sentiment analysis, image classification,
NER, etc.

For our first stage of the annotation process, i.e., manually
segmenting the odometer display, we used AMT. For this task, we
modified the UI opensourced by Russell et al. [24]. The modified
UI allows workers to draw a box over the image, drag it and resize
it. We collected 3 boxes from different labelers for each image in
order to capture possible annotation errors.

Figure Eight is another crowdsourcing platform that works
similar to AMT. In addition to supporting HTML, CSS and
Javascript for UI design, it has rich UI templates for labeling
different objects in images. It has built-in functionality such
as zoom-in, zoom-out, scrolling, etc. that are very relevant for
us when drawing character level bounding boxes. The zoom-
in functionality facilitates the ability to draw tighter boxes. This
platform also monitors the quality of work done by its workers.
All workers have to pass tests before they can work on any
annotation job. For all these reasons, we found the quality of the
annotations on Figure Eight to be better than the ones obtained
when using AMT but this comes at an extra price. Hence, we
decided to use both platforms for each of our first and second
stage of annotation, depending on the trade-off between the cost
of labeling vs. the quality of the annotations.

For any sort of annotation task completed through
crowdsourcing, it is important that the workers understand
the expected outcome of the solicited annotations. It is essential
to provide clear and detailed labeling instructions, covering all
the corner cases and at the same time being as precise as possible.

FIGURE 4 | Sample annotations. (A) Labeling odometer display. (B) Labeling

characters.
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TABLE 1 | Dataset and distribution.

Total no. of images 6,208

Total no. characters labeled 55,739

Avg. no. char per display 9

Digits 73 %

Alphabets 27 %

FIGURE 5 | Distribution of characters; X represents non-digit characters.

TABLE 2 | Image quality distribution.

Image Quality Percentage

Extremely poor 8.1

Poor 12.8

Average 25.3

Good 33.4

Excellent 20.1

We completed the annotation tasks in several batches, we
evaluated the annotations quality for each batch and identified
the key sources of confusion among the workers. We then
changed the instructions accordingly before sending out the next
batch. Figures 3, 4 show some sample odometer images and the
annotation labels.

Table 1 and Figure 5 show the distribution of the characters
in the dataset. 73% of all labeled characters are digits while only
27% of them are letters. With 52 possible alphabet letters (26-
lowercase and 26-uppercase), the number of samples for each
alphabet class is too small and highly imbalanced. This later
inspires us to group all the alphabet characters together in a single
class when training the character recognition model.

We also collected additional information from the labelers
about the quality of the images in our dataset. During an initial
manual inspection, we noticed that a significant portion of the
images in the dataset were not of good quality. To confirm this,
during annotation, we asked the annotators to rate the image
quality of the characters into different categories. Table 2 shows
the distribution of the images in five categories. Note that a
significant portion of the images (21%) are marked as being of
poor or extremely poor quality.

4. GENERAL WORKFLOW OF THE SYSTEM

The proposed solution consists of two cascaded object detection
classifiers followed by a post-processing algorithm (See
Figure 6). Algorithms for object detection have seen significant
improvement over the last few years. In order to leverage the
effectiveness of these models, we divide our problem into two
sub-problems that can directly be seen as problems in the object
detection domain:

• The first is odometer localization where the goal is to locate the
odometer display given an input image.

• The second is character recognition where the goal is to locate
and recognize characters inside the odometer display.

We next proceed to explain in detail each one of
these sub-problems.

4.1. Odometer Localization
The first stage of the pipeline is to isolate and extract the
odometer display from the rest of the image. There are commonly
two types of odometers: analog and digital. Digital odometers
have LCD displays containing a mileage reading and may be
accompanied by other information such as temperature, time,
fuel status, etc. The analog odometer consists of a mechanical
rolling meter. Although, there is large variation in appearance of
analog and digital odometers, we do not differentiate these two
types for this stage. In order to train the odometer localization
model, we trained an object detection model with odometer
images where the odometer display box is the object of interest.
The position of odometer display is supplied as coordinates (x-
center, y-center, height, width) of the odometer display box.
Object detection algorithms are usually trained to localize and
classify objects in the image. However, for odometer localization
there is a single class i.e., odometer display, so the only output
we want from the model is the localization coordinates. During
inference, the localization model takes an image and output
back the coordinates(x-center, y-center, width, height) of the
odometer display.

4.2. Character Recognition
The second stage of the pipeline consists of a character
recognition model. This an object recognition model trained on
images and labels generated in the second stage of annotation.
The training images for this stage come from the odometer
display labeled in the first stage.We crop the odometer display for
each image in the dataset and feed it to the model along with the
annotations from the second stage. The second stage produces
annotations of position (x-center, y-center, height, width) of
each individual character and the corresponding class label. We
do make some changes to the class labels before training the
classifier. Since we only care about getting the mileage number
in the images, it’s sufficient to recognize only digits in the images
and not the rest of the alphabet characters. Furthermore, if we
look at distribution of characters in Table 1, we have very few
samples per class for the letters in the alphabet. Training a model
to recognize individual alphabet characters means we would
have very few examples for most class labels and we would risk
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FIGURE 6 | Pipeline of proposed architecture.

Algorithm 1: Post-processing algorithm

1: Filter bounding boxes that belong to non-digit character.
2: Augment/extrapolate boxes in horizontal direction by a

factor of a quarter of the width (width4 ) along both sides.
3: Create a graphGwhere vertices represents bounding box and

edges represent overlap between two boxes.
4: Select subgraph with largest number of vertices.
5: Sort boxes in that subgraph horizontally and extract digits in

order to form a mileage number.
6: ifMileage has 7 digits then
7: Discard the last digit
8: end if

9: return Mileage

overfitting. Instead, we categorize characters into 11 different
class labels, 10 for the digits 0–9 and 1 “non-digit” class for all
the alphabets.

4.3. Post-processing
The character recognition stage identifies individual characters
inside the odometer display along with their coordinates. In
the last part of the pipeline, we want to isolate the digits
that are part of the mileage reading. The post-processing step
combines nearby characters to form words/numbers and selects
the most likely number as the mileage reading. In some digital
odometers, we can find additional information being displayed
alongside the mileage reading. Some of the most frequently
seen additional pieces of information include temperature, time,
warning messages, trip meter reading, fuel status, etc. It is
essential to distinguish the actual mileage reading from other
numbers being displayed on the screen. Similarly, for an analog
odometer we observe two variants: most models have six digits
while a few older models have 7 digits. Usually the 7th digit
changes every 1/10th of a mile and is not considered a significant
part of the mileage reading.

In order to deal with special cases like this, we designed a post-
processing algorithm that takes care of all these corner cases. The
processing algorithm is described in detail below in Algorithm 1.

5. EVALUATION AND EMPIRICAL RESULTS

5.1. Experimental Settings
We randomly selected a small portion of the training set and
used it as validation set for all experiments. The hyperparameter
selection for all architectures is based on performance in the
validation set. We used the object detection API included in

tensorflow models [25] to train and evaluate the models. Huang
et al. [26] provides in-depth comparison of speed and accuracy
of different meta-architectures supported by the API. We used a
Amazon Web Services (AWS) Elastic Cloud Compute instance
containing 8 GPU with 12 GB memory each for training and
testing the models. For both odometer localization task and
character recognition task, we train SSD and faster RCNN
architectures with several choices of CNN model for Feature
extraction such as inception v2 [27], resnet101 [18], inception
resnet [28], mobilenet [29], etc. We experimented with both
approaches of transfer learning described in the previous section:
(a) we fine-tuned a detection model trained on the MS COCO
dataset and, (b) we used a classification model trained on
the imagenet dataset for feature extraction and trained the
remaining layers from scratch. We find that using the detection
model trained on the MS COCO dataset gave the best results.
Furthermore, SSD got the best performance with inception v2
as features extractor and Faster RCNN got the best results
with inception Resnet as the feature extractor. We report the
mean average precision for the best performing SSD and faster
RCNN for the two stages; Odometer localization and character
recognition. We report the final accuracy and error analysis for
the faster RCNN architecture which is a winner between the two
architectures for both stages.

The best performing faster RCNN model is finetuned version
of a faster RCNN detector originally trained on MS COCO
dataset. The MS COCO detector was trained with inception
resnet architecture [detailed in Szegedy et al. [28]] as feature
extractor and 90 different categories in MS COCO dataset as
output objects. We finetuned this model by modifying the
last layer to detect one class(odometer display) for odometer
localization. Similarly, for character recognition we modified the
last layer to output 11 classes(0,1,..,9, X). We used a grid anchor
generator with scales of 0.25, 0.5, 1.0, and 2.0, aspect ratios of
0.5, 1.0, and 2.0 and strides of 8 for both height and width. This
means a total of 12 proposal boxes for each anchor position in the
grid. The post processing stage is set to reject all the detections
with score < 0.3. The IOU threshold is set to 0.6 for Non
maximum suppression. The loss being minimized is the sum of
localization loss and classification loss both of which are equally
weighted. We used learning rate of 0.0003 and trained the model
for 50, 000 steps with a batch size of 8.

5.2. Results
A common evaluation technique for object detection models
is to measure mean average precision (map) [20] for a certain
threshold of the Intersection Over Union (IOU) ratio. A
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TABLE 3 | Mean Average Precision of Faster RCNN and SSD architectures for

odometer localization and character recognition stage.

map 0.5IOU SSD Faster RCNN

Odometer Localization 0.79 0.82

Character Recognition 0.89 0.93

FIGURE 7 | Accuracy results comparisons.

prediction is a true positive if the IOU ratio between the
predicted bounding box and the actual box is greater than the
IOU threshold. Table 3 shows the map values (at IOU = 0.5)
of the SSD and the faster RCNN models for both the odometer
localization the and character recognition task. The results
clearly indicate that the faster RCNN algorithm is a winner for
both tasks.

Our mileage extraction model contains two object
detectors working in conjunction. Rather than detecting an
object/character, the objective is to extract the actual mileage
reading. To do so, the model has to predict every single digit
correctly. For our system, getting those numbers right is more
important than getting perfect localization of the odometer
display or the individual characters.

In order to measure system performance, We defined a binary
measure of end-to-end system accuracy in the following way:
the model gets a score equal to 1 if extracted mileage equals
the annotated mileage and 0 otherwise. Furthermore, in most
business use-cases, it is sufficient to get the mileage within a given
error range. For example; if a model predicts the mileage to be
45,607 when the actual mileage is 45,687 then there is an error
of 80 miles. For use cases such as insurance quote generation or
claims processing a perfectly acceptable margin of error is around
a thousand (1,000) miles. Taking this into account, we introduce
one more additional end-to-end system evaluation metric in the
following way: the model gets score = 1 if absolute(extracted
mileage–annotated mileage) < threshold and 0 otherwise (where
threshold= 1,000 miles).

Since the overall quality of images in our odometer images
dataset is not so good, we performed a further analysis on the
effect of the image quality on the performance of the model.
We created a subset of the test set comprised of only the

good quality images. These images are selected from the test
set based on their corresponding annotator rating. This “good-
quality images” subset ended up containing 362 images. Figure 7
shows end-to-end system accuracy for the faster RCNN model
for both the original test set and the “good-quality images”
subset. For the original test set, we obtain end-to-end accuracy
of 85.4% using faster RCNN for both stages. Similarly, we
achieve an accuracy of 88.8% within an error boundary of 1,000
miles. For the “good-quality images” subset, we get a general
accuracy of 90% and an accuracy of 91.4% within an error
bound of 1,000 miles. It is important to note the improvement
of 5% in test set accuracy associated with the improvement in
image quality. This result presents an opportunity to improve
performance by validating the quality of uploaded images in
real time and providing immediate feedback and guidance to
the customer to generate better quality pictures. Sample results
for odometer localization and character recognition are shown
in Figures 8, 9.

5.3. Error Analysis
To identify key weakness of the model and opportunities for
improvement, we performed a more detailed error analysis. For
all the incorrect predictions, we manually assigned the error
to one of the three stages in the pipeline. Figure 10 shows the
distribution of the incurred test set errors among the odometer
Localization, the character Recognition and the post-processing
stage. The localization errors occur when the localization model
cannot properly detect the odometer display, either because it did
not find the display or because the proposed bounding box is
not accurate enough to include all the characters in the display.
It is evident from Figure 10 that a large portion of the errors
are coming from the character recognition stage. Errors in this
stage include not detecting or recognizing characters inside the
odometer display. This error could be minimized by improving
the character recognition model. As we mentioned before, image
quality is an important factor in improving accuracy and we need
to put more effort on ensuring that the uploaded images meet
minimum quality standard.

The post processing algorithm constitutes 15% of the total
error. This error comprises cases such as failure to group digits
together, failure to distinguishmileage from other numbers in the
display, identifying the digit after the decimal point as part of the
mileage, etc.

6. DEPLOYMENT ARCHITECTURE

The deployment of the odometer mileage detector is a work in
progress. However, we are reusing a deployment framework used
in the past for similar image recognition models in our company.
In this section, we will describe such framework.

Containerized deployment is very popular nowadays.
Containers are independent, easily configurable and easily scaled
to multiple machines. Microservices running inside containers
provide isolation from actual system ingesting the service and
provide flexibility to work independently and quickly. We deploy
the model as a microservice running in a docker container.
Docker allows packaging codes and dependencies into a docker
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FIGURE 8 | Selected examples of odometer localization. In case of multiple detections, only the most confident box is shown.

FIGURE 9 | Selected examples of character recognition. Character recognition model scans for characters inside the region(green box) proposed by localization

model. Characters in red are predictions from character recognition model. X represents non-digit character.

FIGURE 10 | Detailed error analysis by stage.

image that runs inside a docker container. Docker containers are
compatible to run on any operating system.

Figure 11 shows the overall architecture used for deployment.
We use tools provided by the Amazon Web Service(AWS)
ecosystem to launch, scale, orchestrate and run the docker
container. Detailed description of each of these tools can

be found in the official site [30]. The central component is
the docker container hosting the odometer mileage extraction
model. We use the Amazon elastic container registry (ECR)
to host docker images and Amazon elastic container services
(ECS) to run the containers. We use Amazon systems manager
parameter store (SMPS) to store runtime parameters and
Amazon CodeBuild to build the docker image. Furthermore,
Amazon ElasticBeanStalk (EBS) is used to orchestrate the
deployment to ECS, as well as to provision and configure other
resources such as LoadBalancer, AutoScaling groups, etc. EBS
facilitates logging, monitoring and sending notifications to the
developers about unexpected service interruptions. We believe
that the Continuous Integration/Continuous Delivery(CI/CD)
principle [31] is a crucial part of any data science project. We
want to be able to train new models or update code base and
deploy them into production automatically withminimum effort.
This allows data scientist to focus more on improving models
rather than spending time on deployment. For CI/CD, we use
Jenkins. As soon as we push changes to a git repository, Jenkins
builds an image, runs tests and deploys the model to production.
Here is a step by step break down of the deployment process:

• Push changes to git repository hosted in bitbucket.
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FIGURE 11 | Deployment architecture.

• Jenkins monitors changes in git repository and initiates
build process.

• Jenkins builds code, runs test and builds image.
• Jenkins pushes image to ECR and issues deploy to ECS.
• ECS pulls new image from ECR and runs it inside

docker container.
• EBS receives a HTTP request with odometer image.
• ELB distributes load across multiple containers and EBS

launches additional container instances if necessary.
• Container processes the image and sends mileage back to

user app.

The client mobile app makes a HTTP request to odometer
server and receives a mileage number in response. It auto-
fills the odometer mileage reading into the form. The user will
have an option to validate, and correct the mileage reading if
necessary, before submitting the form. The odometer picture
is uploaded to a on-premises server along with the form
during submission.

7. CONCLUSIONS AND FUTURE WORK

In this work we developed a novel solution to the insurance-
related problem of extracting mileage readings from odometer
images. We leveraged existing object recognition technology and
designed a post processing algorithm to identify and extract
mileage readings. The developed system was able to get high
accuracy in mileage extraction despite having poor quality
images. We also have provided a complete implementation
design including the tools and technology we are using to deploy,
scale and manage the model in production.

Our detailed error analysis provides insights into the
shortcomings of the system and unveil opportunities to improve

it. We can further improve performance of the model using
image guidance and enforcing minimum requirements on image
quality. For example, when a user takes a picture of the odometer,
the app display could contain a bounding box and the user will
be asked to align the odometer display within that bounding
box. This technique is commonly used in several applications
that read data from credit cards, personal checks, etc. Image
guidance could help mitigate the need for having an accurate
localization model and hence the errors associated with that
model could beminimized significantly. This will also ensure that
the images are taken directly facing the odometer display and
with a proper orientation.

We are also exploring methods to estimate prediction
confidence for the predicted mileage digits. If we
are able to estimate prediction confidence, we can
automatically accept images when we feel confident
that we are predicting the correct mileage reading
and ask the user to repeat the process or enter the
mileage by hand if we fail to produce a confident
enough prediction.

DATA AVAILABILITY STATEMENT

The datasets generated for this study cannot be released
publicly due to the privacy concern of the customers.
Requests to access these datasets should be directed to the
corresponding author.

AUTHOR CONTRIBUTIONS

SA implemented the project, ran experiments, and worked on
manuscript. GF initiated the project, managed it, and worked
on manuscript.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 December 2019 | Volume 5 | Article 6115

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Acharya and Fung Mileage Extraction From Odometer Pictures

REFERENCES

1. Smith R. An overview of the tesseract OCR engine. In: Proc. Ninth Int.

Conference on Document Analysis and Recognition (ICDAR) Parana (2007).

p. 629–33. doi: 10.1109/ICDAR.2007.4378659

2. Matlab OCR toolbox (2018). Available online at: https://www.mathworks.

com/help/vision/ref/ocr.html (accessed February 1, 2019).

3. Hosseini H, Xiao B, Poovendran R. Google’s cloud vision API is not robust to

noise. CoRR. (2017) abs/1704.05051.

4. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, et al. Ssd: single shot

multibox detector. In: European Conference on Computer Vision. Amsterdam:

Springer (2016). p. 21–37.

5. Girshick R. Fast R-CNN. In: The IEEE International Conference on Computer

Vision (ICCV). Beijing (2015).

6. Masood SZ, Shu G, Dehghan A, Ortiz EG. License plate detection and

recognition using deeply learned convolutional neural networks. CoRR.

(2017) abs/1703.07330.

7. Bulan O, Kozitsky V, Ramesh P, Shreve M. Segmentation- and annotation-free

license plate recognition with deep localization and failure identification. IEEE

Trans Intell Trans Syst. (2017) 18:2351–63. doi: 10.1109/TITS.2016.2639020

8. Sanap PR, Narote SP. License plate recognition system-survey. AIP Conf Proc.

(2010) 1324:255–60. doi: 10.1063/1.3526208

9. Sonavane K, Soni B, Majhi U. Survey on automatic number plate recognition

(ANR). Int J Comput Appl. (2015) 125:1–4. doi: 10.5120/ijca2015905920

10. Du S, Ibrahim M, Shehata MS, Badawy WM. Automatic License Plate

Recognition (ALPR): a state-of-the-art review. IEEE Trans Circ Syst Video

Technol. (2013) 23:311–25. doi: 10.1109/TCSVT.2012.2203741

11. Nagaoka Y, Miyazaki T, Sugaya Y, Omachi S. Text detection by faster R-CNN

with multiple region proposal networks. In: 2017 14th IAPR International

Conference on Document Analysis and Recognition (ICDAR). Vol. 6. Kyoto:

IEEE (2017). p. 15–20.

12. Borisyuk F, Gordo A, Sivakumar V. Rosetta: Large scale system for text

detection and recognition in images. In: Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. London:

ACM (2018). p. 71–9.

13. Yang C, Yin X-C, Yu H, Karatzas D, Cao Y. ICDAR2017 robust reading

challenge on text extraction from biomedical literature figures (DeTEXT).

In: 2017 14th IAPR International Conference on Document Analysis and

Recognition (ICDAR). Vol. 1. Kyoto: IEEE (2017). p. 1444–7.

14. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object

detection with region proposal networks. In: Advances in Neural Information

Processing Systems. Montreal, QC: Curran Associates, Inc. (2015). p. 91–9.

15. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic

segmentation. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition. (Boston, MA) (2015). p. 3431–40.

16. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale

image recognition. CoRR. (2014) abs/1409.1556.

17. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper

with convolutions. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. (Boston, MA) (2015). p. 1–9.

18. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. (Seattle, WA) (2016). p. 770–8.

19. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large

scale visual recognition challenge. Int J Comput Vision. (2015) 115:211–52.

20. EveringhamM, Eslami SMA, VanGool L,Williams CKI,Winn J, ZissermanA.

The pascal visual object classes challenge: a retrospective. Int J Comput Vision.

(2015) 111:98–136. doi: 10.1007/s11263-014-0733-5

21. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft

coco: common objects in context. In: European Conference on Computer

Vision. Zurich: Springer (2014). p. 740–55.

22. Mechanical Turk (2019). Available online at: https://www.mturk.com/

(accessed February 1, 2019).

23. Figure Eight (2019). Available online at: https://www.figure-eight.com/

(accessed February 1, 2019).

24. Russell BC, Torralba A, Murphy KP, Freeman WT. LabelMe: a database and

web-based tool for image annotation. Int J Comput Vision. (2008) 77:157–73.

doi: 10.1007/s11263-007-0090-8

25. Github Contributor. Object Detection API. GitHub (2019). [commit

947c92bc44df7499baa3da1fefe7d3094a1f4561]. Available online at: https://

github.com/tensorflow/models/tree/master/research/object_detection

(accessed February 1, 2019).

26. Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, et al.

Speed/accuracy trade-offs for modern convolutional object detectors. In: IEEE

CVPR. Vol. 4. (Honolulu, HI) (2017).

27. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the

inception architecture for computer vision. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. Seattle, WA (2016).

p. 2818–26.

28. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-resnet

and the impact of residual connections on learning. In: AAAI (San Francisco,

CA). (2017). p. 12.

29. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T,

et al. Mobilenets: efficient convolutional neural networks for mobile vision

applications. arXiv preprint. (2017) arXiv:170404861.

30. Amazon Web Services Ecosystem (2019). Available online at: https://aws.

amazon.com/products/ (accessed February 1, 2019).

31. Wikipedia contributors. CI/CD — Wikipedia, The Free Encyclopedia

(2019). Available online at: https://en.wikipedia.org/w/index.php?title=CI/

CD&oldid=877599340 (accessed February 1, 2019).

Conflict of Interest: SA and GF were employed by the company American

Family Insurance.

Copyright © 2019 Acharya and Fung. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 December 2019 | Volume 5 | Article 6116

https://doi.org/10.1109/ICDAR.2007.4378659
https://www.mathworks.com/help/vision/ref/ocr.html
https://www.mathworks.com/help/vision/ref/ocr.html
https://doi.org/10.1109/TITS.2016.2639020
https://doi.org/10.1063/1.3526208
https://doi.org/10.5120/ijca2015905920
https://doi.org/10.1109/TCSVT.2012.2203741
https://doi.org/10.1007/s11263-014-0733-5
https://www.mturk.com/
https://www.figure-eight.com/
https://doi.org/10.1007/s11263-007-0090-8
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://en.wikipedia.org/w/index.php?title=CI/CD&oldid=877599340
https://en.wikipedia.org/w/index.php?title=CI/CD&oldid=877599340
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


ORIGINAL RESEARCH
published: 14 January 2020

doi: 10.3389/fams.2019.00067

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 January 2020 | Volume 5 | Article 67

Edited by:

Yiming Ying,

University at Albany, United States

Reviewed by:

Shao-Bo Lin,

Xi’an Jiaotong University (XJTU),

China

Sijia Liu,

Mayo Clinic, United States

*Correspondence:

Teja Kanchinadam

tkanchin@amfam.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 09 August 2019

Accepted: 16 December 2019

Published: 14 January 2020

Citation:

Gupta S, Kanchinadam T, Conathan D

and Fung G (2020) Task-Optimized

Word Embeddings for Text

Classification Representations.

Front. Appl. Math. Stat. 5:67.

doi: 10.3389/fams.2019.00067

Task-Optimized Word Embeddings
for Text Classification
Representations
Sukrat Gupta †, Teja Kanchinadam*†, Devin Conathan and Glenn Fung

Machine Learning Research Group, America Family Insurance, Madison, WI, United States

Word embeddings have introduced a compact and efficient way of representing text for

further downstream natural language processing (NLP) tasks. Most word embedding

algorithms are optimized at the word level. However, many NLP applications require

text representations of groups of words, like sentences or paragraphs. In this paper,

we propose a supervised algorithm that produces a task-optimized weighted average of

word embeddings for a given task. Our proposed text embedding algorithm combines

the compactness and expressiveness of the word-embedding representations with the

word-level insights of a BoW-type model, where weights correspond to actual words.

Numerical experiments across different domains show the competence of our algorithm.

Keywords: NLP (national language processing), word embedding, text classification, SVM—support vector

machine, text representation models

1. INTRODUCTION

Word embeddings, or a learned mapping from a vocabulary to a vector space, are essential
tools for state-of-the-art Natural Language Processing (NLP) techniques. Dense word vectors, like
Word2Vec [1] and GLoVE [2], are compact representations of a word’s semantic meaning, as
demonstrated in analogy tasks [3] and part-of-speech tagging [4].

Most downstream tasks, like sentiment analysis and information retrieval (IR), are used to
analyze groups of words, like sentences or paragraphs. For this paper, we refer to this more general
embedding as a “text embedding.”

In this paper we propose a supervised algorithm that produces embeddings at the sentence-level
that consist on an weighted average of an available pre-trained word-level embedding. The resulting
sentence-level embedding is optimized for the corresponding supervised learning task. The weights
that the proposed algorithm produces can be use to estimate the importance of the words with
respect to the supervised task. For example, when classifying movie reviews into one of two classes:
action movies or romantic movies, words like “action,” “romance,” “love,” and “blood,” will get
precedence over words, like “movie,” “i,” and “theater.” This leads to the shifting of the text-level
vector toward words with larger weights, as can be seen in Figure 1.

When we use an unweighted averaged word embedding (UAEm) [5] for representing the two
reviews, we see that all the words get the same importance, due to which the reviews—“I like

action movies” and “I prefer romance flicks”—end up close to each other in the vector space.
Our algorithm, on the other hand, identifies “romance” and “action” as two important words
in the vocabulary for the supervised task, and assigns weights with high absolute value to these
words. This leads to shifting of the representation of the two reviews toward their respective
important words in the vector space, increasing the distance between them. This indicates that,
for the task of differentiating an action movie review from a romantic movie review, our algorithm

17
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FIGURE 1 | Unweighted (UAEm) (left) and Optimal embeddings (OptEm) (right) of two movie reviews in feature space. Distance between the two reviews increases

for OptEm representation of the text.

produces a representation at the review level more adequate for
discriminating between the two kinds of reviews.

Our algorithm has many advantages over simpler text
embedding approaches, like bag-of-words (BoW) and the
averaged word-embedding schemes discussed in section 2. In
section 4, we show results from experiments on different datasets.
In general, we observed that our algorithm is competitive with
other methods. Unlike the simpler algorithms, our approach
finds a task-specific representation. While BoW and some
weighting schemes, like tf-idf, rely only on word frequencies
to determine word importance, our algorithm computes how
important the word is to a specific task. We believe that for
some applications, this task-specific representation is important
for performance; one would expect the importance of words to
be very different whether you are trying to do topic modeling or
sentiment analysis.

It is important to note that other deep-learning-based
approaches for text classification also implicitly optimize the
text-level representation from word-level embedding in the top
layers of the neural network. However, in order to train such
models large datasets are needed. Our empirical results show
that our proposed representation is in general competitive with
traditional deep learning based text classification approaches and
outperforms them when the training data is relatively small.

Additionally, by generating importance weights to each one
of the words in the vocabulary, our algorithm yields a more
interpretable result than looking at the weights corresponding
to the word-embedding dimensions that have no human-
interpretable meaning. Effectively, our text embedding algorithm
combines the compactness and expressiveness of the word-
embedding representations with the human-interpretability of
a BoW-type model.

Furthermore, in contrast with some deep-learning-based
approaches, our approach does not impose constraints or require

special processing (trimming, padding) with respect to the length
of the sentence or text to be classified. In summary, we can
summarize the contributions of the paper as follows:

• Our algorithm provides a task optimized text embedding from
word level embeddings.

• Our algorithm outperforms other more complex algorithms
when training data is relatively small in size.

• Our algorithm can be implemented by leveraging existing
libraries in a trivial way as it only requires access to a SVM
implementation.

• Our resulting task specific text embedding are as compact as
the original word level embedding while providing word level
insights similar to a BOW type model.

The rest of the paper is organized as follows: in section 2,
we discuss related work. Later, in section 3, we present a
detailed explanation and mathematical justification to support
our proposed algorithm. In section 4, we present and described
our proposed algorithm.

2. RELATED WORK

Various representation techniques for text have been introduced
over the course of time. In the recent years, none of these
representations have been as popular as the word embeddings,
such asWord2Vec [1] and GLoVE [2], that took contextual usage
of words into consideration. This has led to very robust word and
text representations.

Text embedding has been a more challenging problem over
word embeddings due to the variance of phrases, sentences,
and text. Le and Mikolov [6] developed a method to generate
the embeddings that outperforms the traditional bag-of-words
approach [7]. More recently, deeper neural architectures have
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been developed to generate these embeddings and to perform text
classification tasks [8] and some of these architectures involve
sequential information of text, such as LSTMs [9], BERT [10], and
XLNET [11]. Furthermore, recently developed attention models
can also provide insights about word importance, however they
require large amounts of training data.

Methods have been developed that use word embeddings to
generate text embeddings without having to train on whole texts.
These methods are less costly than the ones that train directly on
whole text, and can be implemented faster.

Unweighted average word embedding [5] generated text
embeddings by computing average of the embeddings of all the
words occurring in the text. This is one of the most popular
methods of computing text embeddings from trained word
embeddings, and, though simple, has been known to outperform
the more complex text embedding models especially in out-of-
domain scenarios. Arora et al. [12] provided a simpler method
to enhance the performance of text embedding generated from
simple averaged embedding by the application of PCA.

The unsupervised text embedding methods face the problem
of importance-allocation of words while computing the
embedding. This is important, as word importance determines
how biased the text embedding needs to be toward the more
informative words. DeBoom et al. [13] introduced a method
that would assign importance to the words based on their tf-idf
scores in the text.

Our method generates weights based on the importance of
the words perceived through a supervised approach. We use
classifiers to determine the weights of the words based on their
importance captured through the procedure. The advantage of
this method over other methods is that we keep the simplicity
of Wieting’s algorithm [5], while incorporating the semantically
agreeable weights for the words.

3. OPTIMAL WORD EMBEDDINGS

A sentence, paragraph, or document can be represented using a
given word-level embedding (wle) as follows:

Ai =

k
∑

j=1

δijλjvj (1)

where,

• Ai ∈ Rn is a vectorial representation or embedding at the
sentence, text or document level (we will refer it as tle in rest
of the paper) of ith sample;

• we will assume that Ai is the ith row of a matrix A ∈ Rm×n

containing a collection of m documents, k is the number of
words in the wle corpus V ;

• λj ∈ R is a weighting factor associated with the jth word
vj ∈ V . Note that for the widely used averaged tle (text2vec)
representation [5], λj = 1, ∀j;

• δij is a normalized occurrence count. It is the number of
times jth word appears in the document i divided by the total
number of words in the document i.

Our proposed algorithm assumes that we have a supervised
classification problem for which we want to find an
optimal representation at the document (text) level from
the word embeddings.

More concretely, we consider the problem of classifying m
points in the n-dimensional real space Rn, represented by the
m×nmatrix A, according to membership of each point Ai in the
classes +1 or−1 as specified by a givenm×m diagonal matrix D
with ones or minus ones along its diagonal.

In general, this linear classification problem can formulated
as follows:

min
(w,γ ,y≥0)

cL(y)+ R(w)

s.t. D(Aw− eγ )+ y ≥ e
(2)

where,

• e ∈ R
m×1 is a column of ones;

• y ∈ R
m×1 is a slack vector;

• (w, γ ) ∈ R
(n+1)×1 represents the separating hyperplane.

• L is a loss function that is used to minimize the
misclassification error.

• R is a regularization function used to improve generalization.
• c is a constant that controls the trade-off between error and

generalization.

Note that, if L(.)=‖(.)+‖
2
2 and R(.)=‖.‖22, then Equation (2)

corresponds to an SVM formulation [14]. The corresponding
unconstrained convex optimization problem is given as:

min
ω,γ

c‖(e− D(Aw− eγ ))+‖
2
2 + ‖w‖22 (3)

which we will denote by

(w, γ ) = SVM(A,D, c) (4)

From (1), we can rewrite A as:

A =











A1

A2

...
Am











=













∑k
j=1 δ1jλjvj

∑k
j=1 δ2jλjvj

...
∑k

j=1 δmjλjvj













(5)

That is,

A = 13V (6)

where 1 ∈ R
m×k; is a matrix of occurrences count with δij in the

(i, j) position. 3 = diag((λ1, . . . , λk)) ∈ R
k×k, and V ∈ R

k×n is
the matrix whose rows are all the word2vec vectors considered in
the word2vec corpus or dictionary.

From (3) and (6),

min
w,γ ,λ

c‖(e− D((13V)w− eγ ))+‖
2
2 + ‖w‖22 (7)

where λ = (λ1, . . . , λk).
Formulation (7) is a biconvex optimization problem, which

can be solved using alternate optimization [15]. By solving this
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problem, not only do we obtain an SVM-type classifier, but also
learn the optimal importance weights for each word in our corpus
(λ1, . . . , λk) which can be used to interpret classification results
for the specific tasks at hand. Though we could have restricted
the λi to be positive, we choose to leave them unconstrained in
order to make our algorithm more scalable and computationally
efficient. Another interesting consideration would be to add
a relative importance constrained on addition to the non-
negativity bounds of the form:

λ1 + λ2 + . . . + λk = 1 (8)

but again, we choose not to for computationally efficiency. We
will explore this option in the future.

In (7), if we fix 3 to a constant 3̄, we have:

Ã = 13̄V (9)

We can obtain the corresponding optimal solution for (w, γ ) by
solving (w∗, γ ∗) = SVM(Ã,D, c).

On the other hand, if we fix (w, γ ) = (w̃, γ̃ ), we get

Aw̃ = (13V)w̃ = (1W̃)λ (10)

where W̃ ∈ R
k×k

= diag(Vw̃).
Similarly, from (7) and (10) and making M̃ = 1W̃, we have

minγ ,λi c‖(e− D(M̃λ − eγ ))+‖
2
2 + ‖w̃‖22

≡ minγ ,λi c‖(e− D(M̃λ − eγ ))+‖
2
2

(11)

since w̃ is a constant.
We can obtain an approximate optimal (λ, γ ) by solving

(λ∗, γ ∗) = SVM(M̃,D, c). Note that this solution will consider
a regularization term for λ.

We are ready now to describe our proposed alternate
optimization (AO) algorithm to solve formulation (7).

One of the advantages of the algorithm is that it can
be easily implemented by using existing open-source SVM
libraries, like the ones included in scikit-learn [16] or
a more recent GPU-based fast SVM implementation like
ThunderSVM [17].

The optimal text embedding algorithm, then, inherits the
convergence properties and characteristics of the AO problems
[15]. It is important to note that the set of possible solutions
to which Algorithm 1 can converge can include certain type of
saddle points (i.e., a point that behaves like a local minimizer
only when projected along a subset of the variables). However,
it is stated in the paper [15] that it is extremely difficult to find
examples where converge occurs to a saddle point rather than to
a local minimizer.

In order to further reduce the computational complexity
of the proposed algorithm, we can consider a simplified
loss function L(.)=‖.‖22 and R(.)=‖.‖22. Then formulation
(7) becomes the corresponding unconstrained convex
optimization problem:

min
w,γ ,λ

c‖e− D((13V)w− eγ )‖22 + ‖w‖22 (12)

Algorithm 1: Optimal Text Embedding

Input : Training vocabulary matrix (V); scaled word
occurrence matrix (1); vector of labels diag(D);
max number of iterationsmaxiter;
tolerance tol;
regularization parameters c1 and c2;

Output: optimal word weight vector λ
∗;

classification hyperplane (w∗, γ ∗);
Initialize ∀j λj=1; 30=diagonal(λ)
i = 0;

while i ≤maxiter or ‖3i − 3i−1‖ > tol do
iter++;
Given 3i−1, calculate Ã = 1 ¯3i−1V ;
Solve (wi, γ ) = SVM(Ã,D, c1);
Given (wi, γ ), calculate 1W̃i as described in equation
(10);
Solve (λi, γ ) = SVM(M̃,D, c2);

end

λ
∗
= λi;

(w∗, γ ∗) = (wi, γi);

Fixing 3 = 3̃, from (9) and (12), we have

c‖(e− D(Ãw− eγ ))‖22 + ‖w‖22 (13)

This formulation corresponds to a least-squares or Proximal
SVM formulation [18, 19], and its solution can be obtained
by solving a simple system of linear equations. We will denote
formulation (13) by

(w, γ ) = LSSVM(Ã,D, c) (14)

If Ā =

[

Ã
...− e

]

then the solution to (13) is given by

(w, γ ) = (ĀTĀ+

1

c
I)−1ĀTDe (15)

On the other hand, fixing (w, γ ) = (w̃, γ̃ ), we have

minλ c‖e− D((1W̃λ)− eγ )‖22 + ‖w̃‖22
≡ minλ c‖e− D((1W̃λ)− eγ )‖22

(16)

since w̃ is a constant. Hence,

λ = ((1W̃)T(1W̃))−1(1W̃)TDe(1− γ ) (17)

Furthermore,

(1W̃)T(1W̃) = W̃T1T1W̃ (18)

From (17) and (18),

λ = (W̃T1T1W̃)−1(1W̃)TDe(1− γ )

= (1T1W̃)−1(W̃)−1W̃1TDe(1− γ )

= diag( 1
Vw̃ )(1

T1)−11TDe(1− γ )

(19)
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For some problems,1T1 can be ill-conditioned, which may lead
to incorrect values for λ. In order to improve conditioning we
add a Tikhonov regularization perturbation [20]. (19) becomes

λ = diag(
1

Vw̃
)(1T1 + ǫI)−11TDe(1− γ ) (20)

where ǫ is a very small value.
Note that (1T1 + ǫI)−1 involves calculating the inverse of a

k × k matrix, where k is the number of words in the word2vec
dictionary. In some cases, k can be much larger than m, the
number of training set examples. If this is the case, we can use
the Sherman-Morrison-Woodbury formula [21]:

(Z + uvT)−1
= Z−1

− Z−1u(I + vTZ−1u)−1vTZ−1 (21)

with Z = ǫI, u = v = 1T . Then (1T1 + ǫI)−1 becomes

(1T1 + ǫI)−1
=

1

ǫ
(I − 1T(11T

+ ǫI)−11) (22)

which involves inverting anm×mmatrix withm << k.
The λ we obtained is a vector of weights of the words that

would be used in (1) to calculate text2vec of a given sample.
Algorithm 1 can be modified to consider formulation (3)

instead of (13) by making two simple changes:

1. Substitute line 6 of Algorithm 1 by: Solve Equation (15) to
obtain (wi, γ );

2. Substitute line 8 of Algorithm 1 by: Solve Equation (19) to
obtain λi;

4. EXPERIMENTS

We used binary classification as the task for evaluating our
algorithm performance by comparing it to the following
methods:

1. UAEm: Unweighted average of the word vectors that comprise
the sentence or document [5].

2. WAEm: Weighted averaged text representations. We
computed WAEm using tf-idf coefficients as the weights as
described in De Boom et al. [13].

3. FastText [22], an open-source, free, library that allows users
to learn text representations and text classifiers. The classifiers
are based in a simple shallowmodel instead of deep one which
allows the framework to train models in a fast manner.

4. AdvCNN [8] is a CNN based deep network which comprises
of parallel convolutional layers with varying filter widths and
it achieves state-of-the-art performance on sentiment analysis
and question classification.

5. VanillaCNN is a custom CNN architecture we designed and
is similar to Kim [8] except that in this case there is only one
convolutional layer instead of parallel layers.

Note that in both the CNN experiments we have initialized the
embedding layer with pre-trained word2vec models and these
vectors are kept static.

We implemented two versions of our Algorithm 1: SVM-
based (SVM-OptEm) (Formulation 3) and least square SVM-
based (LSSVM-OptEm) (Formulation 12).

In SVM-OptEm, we used a support vector machine (SVM)
[23] as the classifier. We used a scikit-learn [24] implementation
of SVM for the experiments.

In LSSVM-OptEm, we used a least square support vector
machine (LS-SVM) [23] as the classifier.

4.1. Datasets
To showcase the performance of our model, we chose fifteen
different binary classification tasks over the subsets of different
datasets. Twelve public datasets are briefly described in Table 1.

We also performed experiments on three datasets belonging
to the insurance domain.

• BI-1 and BI-2: These datasets consist of the claim notes with
binary classes based on topic of phone conversation. These
notes were taken by call representative of the company after
the phone call was completed. For BI-1, we classified the call
notes into two categories based on claim complexity: simple
and complex. For BI-2, we wanted to identify notes that
documented a failed attempt made by the call representative
to get in touch with the customer. It is important to note that
the corpus is same for these two datasets but the classification
task is different.

• TRANSCRIPTS: These datasets consist of the phone
transcripts with two classes: pay-by-phone calls and others.
These transcripts were generated inside the company for the
calls received at the call center. Each call would be assigned a
class based on the purpose of the call.

4.2. Word Embeddings
We chose to work on different word2vec-based word
embeddings. These word embeddings have either been pre-
trained models or in-house trained models. These embeddings
were used on the datasets based on their contextual relevance.

• wikipedia [38]: The skip-gram model was trained on English
articles in Wikipedia by FastText [39].

• google-news [40]: The model was trained on Google News
Data, and is available on the Google Code website [41].

• amzn: The skip-gram model was trained in-house on amazon
reviews [27, 28]. Gensim [42] was used to train the model.

• yelp: The skip-gram model was trained in-house on yelp
reviews [37]. Gensim was used to train the model.

• transcript: The continuous bag-of-words model was trained
in-house on the transcripts generated in the of the calls
from call centers. Gensim was used to train the model over
approximately 3 million transcripts.

• claim-notes: The continuous bag-of-words model was trained
in-house on the notes taken by call representatives after the
call was completed. C-based code from Google Word2vec
website [41] was used to train the model over approximately
100 million notes.

We used different word2vec models to verify that our models
works well independently of the underlying embedding

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 January 2020 | Volume 5 | Article 6721

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Gupta et al. Task-Optimized Word Embeddings

TABLE 1 | Brief description of the public datasets used for our experiments.

Dataset Description Positive class References

20NEWSGRP-SCI 20 Newsgroup documents Science-related documents [25]

AMZN-EX Amazon reviews Electronics review [26]

AMZNBK-SENT Amazon book reviews Positive review [27, 28]

BBC BBC news articles Sports article [29]

BLOG-GENDER Blog articles Male Writer [30]

DBPEDIA Wikipedia articles Artist article [31–33]

IMDB IMDB movie reviews Positive review [34]

SCIPAP Sentences from scientific papers Owner-written sentence [35]

SST Movie reviews Positive sentiment [36]

YAHOO-ANS Questions from Yahoo’s question-answer dataset Health-related question [33]

YELP-REST Yelp Restaurant Reviews Restaurant-related review [37]

YELP-STAR Yelp Reviews Positive review [37]

representation. Moreover, it also gives better contextual
representation of words for these datasets.

4.3. Text Processing
The method of processing employed on text was similar to the
one done for training the word2vec models. This ensured the
consistency of word-occurrence in the dataset in lieu to themodel
that would be used for mapping the words.

Different word2vec models had different processing
procedures, such as substitutions based on regular expressions,
removal of non-alphabetical words, and lowercasing the text.
Accordingly, text-processing was done for the training data.

4.4. Results
To compare performance of the algorithms tested, we decided
to use area under curve (AUC) for evaluation. This metric was
chosen in order to remove the possibility of unbalanced datasets
affecting the efficacy of the accuracy of the models.

The performance of our models for the experiments can be
seen in Table 2.

Our algorithm provides better or comparable performance
against UAEm and WAEm. This performance is achieved over
multiple iterations, as seen in Figure 2. The number of iterations
required to reach the best performance for our model varies with
the dataset and training size.

It is important to note that our proposed algorithm tends to
achieve better AUC performance when the training data is small
which it is the case for many scenarios in the insurance domain
where labels are difficult and expensive to obtain. This fact make
the algorithm a good choice for active learning frameworks where
labels are scarce specially at early iterations of such approaches.

In general, our algorithm approached an “equilibrium” stage
for the vector λ, as seen in Figure 3. In other words, as the
algorithm iterate, the norm of the difference between the current
weights and the weights from the previous iteration of the words
approaches zero. This behavior is seen consistently for all the
experimental cases. This shows that our algorithm exhibits good
convergence behavior as expected.

4.5. Text Representation
One of the advantages our model holds over UAEm andWAEm

is that our model can be used to extract the most important
words in the training set. As our model reconfigures the weights
of the words at each iteration, it also indirectly reassigns the
degree of importance to these words. We can obtain these
words by taking the absolute values of the weights assigned
to these words at the end of the iteration. This information
can be used for improving different algorithms, such as visual
representation of text and topic-discovery, and as features for
other models.

Figure 4 shows weights of top 15 words for three of our
datasets. Weights assigned to the words are based on the role
they play in helping the classifier determine the class of any
given sample.

Table 3 shows the top 10 words for three of our datasets. The
words are determined by taking the absolute value of the weights
i.e., λ∗ learned from the algorithm and rank them in descending
order. For a human eye, these words clearly makes sense with
respect to the given classification task. For example,

1. AMZN-EX classification task is to predict items belonging to
eletronics category based on reviews.

2. YAHOO-ANS classification task is to predict health related
questions.

3. DBPEDIA classification task is to predict artistic articles.

We also found that words that are least informative about the
given task have weights(λ∗) close to zero.

Following our results presented in Table 2, we want to
highlight the following observations:

• Our method is competitive with more sophisticated models.
As a matter of fact, we are winning on 7 out of 15 text
classification tasks from various domains.

• Our method seems to significantly outperform other
approaches when the dataset size is relatively small in size.
This might be very relevant in situations where labeling data is
expensive to obtain which is often the case in many industrial
applications.
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TABLE 2 | Binary text classification AUC and accuracy results for test data for: UAEm, WAEm, VanillaCNN, AdvCNN, the SVM-based implementation (SVM-OptEm)

and the least square SVM-based implementation (LSSVM-OptEm).

Dataset Word2Vec model Avg length (words)
Data size Area under curve

Train Test UAEm WAEm SVM-OptEm LSSVM-OptEm FastText VanillaCNN AdvCNN

20NEWSGRP-SCI Google-news 86 3000 2000 0.904 0.9053 0.9427 0.9040 0.9081 0.9150 0.9139

AMZN-EX Wikipedia 100 10,000 10,000 0.9914 0.9897 0.9887 0.9822 0.9838 0.9921 0.9924

AMZNBK-SENT Amzn 5 10,000 10,000 0.9294 0.9218 0.9344 0.9269 0.9294 0.9273 0.9378

BBC Google-news 458 1,850 500 0.9978 0.9973 0.9959 0.9978 0.9946 0.9921 0.9948

BLOG-GENDER Wikipedia 422 2,000 1,000 0.7668 0.7536 0.7992 0.7813 0.7580 0.7428 0.7569

DBPEDIA Wikipedia 48 10,000 10,000 0.9921 0.9870 0.9930 0.9935 0.9934 0.9974 0.9976

IMDB Wikipedia 237 5,000 2,500 0.9116 0.8935 0.9321 0.9209 0.9206 0.8981 0.9102

SCIPAP Wikipedia 26 1,500 750 0.8630 0.8515 0.9208 0.9220 0.9205 0.8973 0.9105

SST Google-news 11 10,000 10,000 0.9016 0.8990 0.9040 0.8967 0.8722 0.9203 0.9168

YAHOO-ANS Wikipedia 12 20,000 10,000 0.9316 0.9293 0.9287 0.9248 0.8819 0.9334 0.9280

YELP-REST Yelp 117 40,000 40,000 0.9733 0.9709 0.9696 0.9627 0.9342 0.9773 0.9779

YELP-STAR Yelp 125 20,000 10,000 0.9707 0.9652 0.9707 0.9665 0.9567 0.9747 0.9778

BI-1 Claim-notes 128 1,508 561 0.8850 0.8270 0.8852 0.9114 0.9014 0.7023 0.7907

BI-2 Claim-notes 137 1,081 238 0.7653 0.666 0.8007 0.8338 0.5403 0.4875 0.5640

TRANSCRIPTS Transcript 828 5,000 3,000 0.9616 0.9604 0.9638 0.9620 0.9617 0.9745 0.9736

The highest score for each evaluation metric is in boldface.

FIGURE 2 | AUC scores of test data over iterations.

5. CONCLUSIONS AND FUTURE WORK

Our paper provides an alternative way of sentence/document-
level representation for supervised text classification, based on

optimization of the weights of words in the corresponding text
to be classified. This approach takes labels into consideration
when generating optimal word’s weights for these words.
Numerical experiments show that our proposed algorithm is
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competitive with respect with other state-of-the-art techniques
and outperformed CNNs when the training data was small

FIGURE 3 | Average of weight difference over iteration for three datasets. This

difference approaches zero over iterations.

and we even show that this approach is not sensitive to
document lengths.

Our model also brings additional benefits to the table.
It provides a ranking of the relevance of the words with
respect to the text classification problem at hand. This ranking

TABLE 3 | Top 10 Words with highest absolute weights for AMZN-EX,

YAHOO-ANS, AND DBPEDIA.

AMZN-EX YAHOO-ANS DBPEDIA

Book Period Born

Sound Profile Author

Product Mushrooms Singer

Player Medicare Directed

Use Daily Album

Unit Youngest Artist

Price Longest Writer

Quality Anger Known

Lens Aerobics Musician

Radio Confirm Novelist

For a human eye, most of these words makes sense given the classification task.

FIGURE 4 | Weights of top 15 words identified by OptEm for two of the datasets used in our experiments. The words appear to be very informative; some can be

easily associated to corresponding class.
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of words by importance can be used for different NLP
applications related to the same task, such as extraction-based
summarization, context-matching, and text cleaning. By learning
the optimal weights of the words, our model also tends to
remove or ignore less informative words, thus performing its
own version of feature selection. Our text embedding algorithm
combines the compactness and expressiveness of the word-
embedding representations with the human-interpretability of a
BoW-type model.

We intend to extend this work to make the proposed
algorithm more scalable in order to incorporate larger, more
complex classification models and tasks, such as multi-label,
multi-class classification and summarization.

We want to explore using other normalizations and
constraints to the weight vector. One possibility is to explore 1-
norm regulation for the weight vector to make it more sparse
and have a more aggressive feature (word) selection. Another
interesting direction is to consider group regularization similar
[43], where the groups of words are suggested by a graph

naturally defined by the distances between the words provided
by the word embedding. In this way, semantically similar words

would be weighted similarly and the result of the algorithmwould
be a clustering of terms by semantic meaning or topics that are
relevant to the classification problem at hand.
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We consider a general class of mean field control problems described by stochastic

delayed differential equations of McKean–Vlasov type. Two numerical algorithms are

provided based on deep learning techniques, one is to directly parameterize the

optimal control using neural networks, the other is based on numerically solving

the McKean–Vlasov forward anticipated backward stochastic differential equation

(MV-FABSDE) system. In addition, we establish the necessary and sufficient stochastic

maximum principle of this class of mean field control problems with delay based on the

differential calculus on function of measures, and the existence and uniqueness results

are proved for the associated MV-FABSDE system under suitable conditions.
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1. INTRODUCTION

Stochastic games were introduced to study the optimal behaviors of agents interacting with each
other. They are used to study the topic of systemic risk in the context of finance. For example,
in Carmona et al. [1], the authors proposed a linear quadratic inter-bank borrowing and lending
model, and solved explicitly for the Nash equilibrium with a finite number of players. Later, this
model was extended in Carmona et al. [2] by considering delay in the control in the state dynamic
to account for the debt repayment. The authors analyzed the problem via a probabilistic approach
which relies on stochastic maximum principle, as well as via an analytic approach which is built on
top of an infinite dimensional dynamic programming principle.

Both mean field control and mean field games are used to characterize the asymptotic behavior
of a stochastic game as the number of players grows to infinity under the assumption that all the
agents behave similarly, but with different notion of equilibrium. The mean field games consist of
solving a standard control problem, where the flow of measures is fixed, and solving a fixed point
problem such that this flow of measures matches the distribution of the dynamic of a representative
agent. Whereas, the mean field control problem is a non-standard control problem in the sense that
the law of state is present in the McKean–Vlasov dynamic, and optimization is performed while
imposing the constraint of distribution of the state. More details can be found in Carmona and
Delarue [3] and Bensoussan et al. [4].

In this paper, we considered a general class of mean field control problem with delay effect in
the McKean–Vlasov dynamic. We derived the adjoint process associated with the McKean–Vlasov
stochastic delayed differential equation, which is an anticipated backward stochastic differential
equation of McKean–Vlasov type due to the fact that the conditional expectation of the future of
adjoint process as well as the distribution of the state dynamic are involved. This type of anticipated
backward stochastic differential equations (BSDE) was introduced in Peng and Yang [5], and for
the general theory of BSDE, we refer Zhang [6]. The necessary and sufficient part of stochastic
maximum principle for control problem with delay in state and control can be found in Chen
and Wu [7]. Here, we also establish a necessary and sufficient stochastic maximum principle based

27
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on differential calculus on functions of measures as we consider
the delay in the distribution. In the meantime, we also prove
the existence and uniqueness of the system of McKean–Vlasov
forward anticipated backward stochastic differential equations
(MV-FABSDE) under some suitable conditions using the method
of continuation, which can be found in Zhang [6], Peng and
Wu [8], Bensoussan et al. [9], and Carmona et al. [2]. For a
comprehensive study of FBSDE theory, we refer to Ma and Yong
[10].

When there was no delay effect in the dynamic, Ma et al.
[11] proved the relation between the solution to the FBSDE and
quasi-linear partial differential equation (PDE) via “Four Step
Scheme.” E et al. [12] and Raissi [13] explored the use of deep
learning for solving these PDEs in high dimensions. However,
the class of fully coupled MV-FABSDE considered in our paper
has no explicit solution. Here, we present one algorithm to
tackle the above problem by means of deep learning techniques.
Due to the non-Markovian nature of the state dynamic, we
apply the long short-term memory (LSTM) network, which is
able to capture the arbitrary long-term dependencies in the
data sequence. It also partially solves the vanishing gradient
problem in vanilla recurrent neural networks (RNNs), as was
shown in Hochreiter and Schmidhuber [14]. The idea of our
algorithm is to approximate the solution to the adjoint process
and the conditional expectation of the adjoint process. The
optimal control is readily obtained after the MV-FABSDE being
solved. We may also emphasize that the way that we present here
for numerically computing conditional expectation may have a
wide range of applications, and it is simple to implement. We
also present another algorithm solving the mean field control
problem by directly parameterizing the optimal control. Similar
idea can be found in the policy gradient method in the regime
of reinforcement learning [15] as well as in Han and E [16].
Numerically, the two algorithms that we propose in this paper
yield the same results. Besides, our approaches are benchmarked
to the case with no delay for which we have explicit solutions.

The paper is organized as follows. We start with an N-player
game with delay, and let number of players goes to infinity to
introduce a mean field control problem in section 2. Next, in
section 3, we mathematically formulate the feedforward neural
networks and LSTM networks, and we propose two algorithms
to numerically solve the mean field control problem with delay
using deep learning techniques. This is illustrated on a simple
linear-quadratic toy model, however with delay in the control.
One algorithm is based on directly parameterizing the control,
and the other depends on numerically solving the MV-FABSDE
system. In addition, we also provide an example of solving
a linear quadratic mean field control problem with no delay
both analytically, and numerically. The adjoint process associated
with the delayed dynamic is derived, as well as the stochastic
maximumprinciple is proved in section 4. Finally, the uniqueness
and existence solution for this class of MV-FABSDE are proved
under suitable assumptions via continuationmethod in section 5.

2. FORMULATION OF THE PROBLEM

We consider an N-player game with delay in both state and
control. The dynamic (Xi

t)0≤t≤T for player i ∈ {1, . . . ,N} is given

by a stochastic delayed differential equation (SDDE),

dXi
t = bi(t,Xt ,Xt−τ ,α

i
t ,α

i
t−τ )dt + σ

i(t,Xt ,Xt−τ ,α
i
t ,α

i
t−τ )dW

i
t ,

t ∈ (0,T],

Xi
0 = xi0,

Xi
t = α

i
t = 0; t ∈ [−τ , 0),

(2.1)

for T > 0, τ > 0 given constants, where Xt = (X1
t , · · · ,X

N
t ),

and where ((Wi
t)t∈[0,T])i=1,··· ,N are N independent Brownian

motions defined on the space (�,F ,P), (Ft)0≤t≤T being the
natural filtration of Brownian motions.

(bi, σ i) :[0,T]××R
N
× R

N
× A× A→ R× R,

are progressively measurable functions with values in R. We
denote A a closed convex subset of R, the set of actions
that player i can take, and denote A the set of admissible
control processes. For each i ∈ {1, . . . ,N}, A-valued measurable
processes (αit)0≤t≤T satisfy an integrability condition such that

E

[

∫ T
−τ
|αit|

2dt
]

< +∞.

Given an initial condition x0 = (x10, · · · , x
N
0 ) ∈ R

N , each
player would like to minimize his objective functional:

Ji(α) = E

[

∫ T

0
f i(t,Xt ,Xt−τ ,α

i
t)dt + gi(XT)

]

, (2.2)

for some Borel measurable functions f i :[0,T]×R
N
×R

N
×A→

R, and gi : RN
→ R.

In order to study the mean-field limit of (Xt)t∈[0,T], we assume
that the system (2.1) satisfy a symmetric property, that is to
say, for each player i, the other players are indistinguishable.
Therefore, drift bi and volatility σ i in (2.1) take the form of

(bi, σ i)(t,Xt ,Xt−τ ,α
i
t ,α

i
t−τ ) = (bi, σ i)(t,Xi

t ,µ
N
t ,X

i
t−τ ,µ

N
t−τ ,α

i
t ,α

i
t−τ ),

and the running cost f i and terminal cost gi are of the form

f i(t,Xt ,Xt−τ ,α
i
t) = f i(t,Xi

t ,µ
N
t ,X

i
t−τ ,µ

N
t−τ ,α

i
t) and gi(XT)

= gi(Xi
T ,µ

N
T ),

where we use the notation µN
t for the empirical distribution of

X = (X1, · · · ,XN) at time t, which is defined as

µN
t =

1

N

N
∑

j=1

δ
X
j
t
.

Next, we let the number of players N go to +∞ before we
perform the optimization. According to symmetry property and
the theory of propagation of chaos, the joint distribution of
the N dimensional process (Xt)0≤t≤T = (X1

t , . . . ,X
N
t )0≤t≤T

converges to a product distribution, and the distribution of
each single marginal process converges to the distribution of
(Xt)0≤t≤T of the following McKean–Vlasov stochastic delayed
differential equation (MV-SDDE). For more detail on the
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argument without delay, we refer to Carmona and Delarue [3]
and Carmona et al. [17].

dXt = b(t,Xt ,µt ,Xt−τ ,µt−τ ,αt ,αt−τ )dt

+ σ (t,Xt ,µt ,Xt−τ ,µt−τ ,αt ,αt−τ )dWt , t ∈ (0,T],

X0 = x0,

Xt = αt = 0, t ∈ [−τ , 0).

(2.3)

We then optimize after taking the limit. The objective for each
player of (2.2) now becomes

J(α) = E

[

∫ T

0
f (Xt ,µt ,Xt−τ ,µt−τ ,αt)dt + g(XT ,µT)

]

, (2.4)

where we denote µt := L(Xt) the law of Xt .

3. SOLVING MEAN-FIELD CONTROL
PROBLEMS USING DEEP LEARNING
TECHNIQUES

Due to the non-Markovian structure, the above mean-field
optimal control problem (2.3 and 2.4) is difficult to solve either
analytically or numerically. Here we propose two algorithms
together with four approaches to tackle the above problem
based on deep learning techniques. We would like to use two
types of neural networks, one is called the feedforward neural
network, and the other one is called Long Short-Term Memory
(LSTM) network.

For a feedforward neural network, we first define the set of
layers M

ρ

d,h
, for x ∈ R

d, as

M
ρ

d,h
:= {M : R

d
→ R

h
|M(x) = ρ(Ax+ b),A ∈ R

h×d, b ∈ R
h
}.

(3.1)
d is called input dimension, h is known as the number of hidden
neurons,A ∈ R

h×d is the weight matrix, b ∈ R
h is the bias vector,

and ρ is called the activation function. The following activation
functions will be used in this paper, for some x ∈ R,

ρReLU(x) := x+ = max(0, x); ρs(x) :=
1

1+e−x
;

ρtanh(x) := tanh(x); ρId(x) := x.

Then feedforward neural network is defined as a composition
of layers, so that the set of feedforward neural networks with l
hidden layers we use in this paper is defined as

NN
l
d1 ,d2
= {M̃ : R

d1
→ R

d2
|M̃ = Ml ◦ · · · ◦M1 ◦M0,

M0 ∈M
ρReLU
d1 ,h1

,Ml ∈M
ρId
hl ,d2

,Mi ∈M
ρReLU
hi ,hi+1

, h· ∈ Z
+, i = 1, . . . , l− 1}.

(3.2)

The LSTM network is one of RNN architectures, which are
powerful for capturing long-range dependence of the data. It
is proposed in Hochreiter and Schmidhuber [14], and it is
designed to solve the shrinking gradient effects which basic
RNN often suffers from. The LSTM network is a chain of

cells. Each LSTM cell is composed of a cell state, which
contains information, and three gates, which regulate the flow of
information. Mathematically, the rule inside tth cell follows,

Ŵft =ρs(Af xt + Uf at−1 + bf ),

Ŵit =ρs(Aixt + Uiat−1 + bi),

Ŵot =ρs(Aoxt + Uoat−1 + bo),

ct =Ŵft ⊙ ct−1 + Ŵit ⊙ ρtanh(Acxt + Ucat−1 + bc),

at =Ŵot ⊙ ρtanh(ct),

(3.3)

where the operator ⊙ denotes the Hadamard product.
(Ŵft ,Ŵit ,Ŵot ) ∈ R

h
× R

h
× R

h represents forget gate, input gate
and output gate, respectively, h refers the number of hidden
neurons. xt ∈ R

d is the input vector with d features. at ∈ R
h is

known as the output vector with initial value a0 = 0, and ct ∈ R
h

is known as the cell state with initial value c0 = 0. A· ∈ R
h×d

are the weight matrices connecting input and hidden layers,
U· ∈ R

h×h are the weight matrix connecting hidden and output
layers, and b ∈ R

h represents bias vector. The weight matrices
and bias vectors are shared through all time steps, and are
going to be learned during training process by back-propagation
through time (BPTT), which can be implemented in Tensorflow
platform. Here we define the set of LSTM network up to time t as

LSTMd,h,t =

{

M :(Rd)t×R
h
×R

h
→ R

h
×R

h
|M(x0, . . . , xt ,

a0, c0) = (at , ct), ct = Ŵft⊙ct−1+Ŵit⊙ρtanh(Acxt+Ucat−1+bc),

at = Ŵot ⊙ ρtanh(ct), a0 = c0 = 0

}

, (3.4)

where Ŵf· ,Ŵi· ,Ŵo· are defined in (3.3).
In particular, we specify the model in a linear-quadratic form,

which is inspired by Carmona et al. [2] and Fouque and Zhang
[18]. The objective function is defined as

J(α) = E

[

∫ T

0

(

1

2
α2t +

cf

2
(Xt −mt)

2

)

dt +
ct

2
(XT −mT)

2

]

,

(3.5)
subject to

dXt =(αt − αt−τ )dt + σdWt , t ∈ [0,T],

X0 =x0,

Xt = αt =0, t ∈ [−τ , 0),

(3.6)

where σ , cf , ct > 0 are given constants, and mt :=

∫

R
xdµt(x)

denotes the mean of X at time t, and µt := L(Xt). In the
following subsections, we solve the above problem numerically
using two algorithms together with four approaches. The first
two approaches are to directly approximate the control by
either a LSTM network or a feedforward neural network, and
minimize the objective (3.5) using stochastic gradient descent
algorithm. The third and fourth approaches are to introduce the
adjoint process associated with (3.6), and approximate the adjoint
process and the conditional expectation of adjoint process using
neural networks.
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3.1. Approximating the Optimal Control
Using Neural Networks
We first set 1t = T/N = τ/D for some positive integer N. The
time discretization becomes

−τ = t−D ≤ t−D+1 ≤ · · · ≤ t0 = 0 = t0 ≤ t1 ≤ · · · ≤ tN ≤ T,

for ti − ti−1 = 1t, i ∈ {−D + 1, · · · , 0, · · · ,N − 1,N}. The
discretized SDDE (3.6) according to Euler-Maruyama scheme
now reads

Xti+1 = Xti+(αti−αti−D )1t+σ
√

1t1Wti , for i ∈ {0, · · · ,N−1},
(3.7)

where (1Wti )0≤i≤N−1 are independent, normal distributed
sequence of random variables with mean 0 and variance 1.

First, from the definition of open loop control, and due to
non-Markovian feature of (3.6), the open-loop optimal control
is a function of the path of the Brownian motions up to time t,
i.e., α(t, (Ws)0≤s≤t). We are able to describe this dependency by
a LSTM network by parametrizing the control as a function of
current time and the discretized increments of Brownian motion
path, i.e.,

(ati , cti ) = ϕ1(ti, (1Ws)t0≤s≤ti |8
1) for ϕ1 ∈ LSTM2,h1 ,t

and81
= (Af ,Ai,Ao,Ac,Uf ,Ui,Uo,Uc, bf , bi, bo, bc),

α(ti, (Ws)t0≤s≤ti ) ≈ ψ1(ati |9
1) for ψ1

∈M
Id
h1 ,1

and91
= (A, b),

(3.8)

for some h1 ∈ Z
+. We remark that the last dense layer is used to

match the desired output dimension.
The second approach is again directly approximate the control

but with a feedforward neural network. Due to the special
structure of our model, where the mean of dynamic in (3.6)
is constant, the mean field control problem coincides with the
mean field game problem. In Fouque and Zhang [18], authors
solved the associated mean field game problem using infinite
dimensional PDE approach, and found that the optimal control
is a function of current state and the past of control. Therefore,
the feedforward neural network with l layers, which we use to
approximate the optimal control, is defined as

αti (Xti , (αs)ti−D≤s<ti ) ≈ψ
2(Xti , (αs)ti−D≤s≤ti |9

2)

for ψ2
∈ NN

l
D+1,1, 9

2
= (A0, b0, . . . ,Al, bl).

(3.9)
From Monte Carlo algorithm, and trapezoidal rule, the objective
function (3.5) now becomes

J =
1

M

M
∑

j=1

[(

1

2
(α

(j)
t0
)2 +

cf

2
(X

(j)
t0
− X̄t0 )

2
+

N−1
∑

i=1

(

(α
(j)
ti
)2 + cf (X

(j)
ti
− X̄ti )

2

)

+

1

2
(α

(j)
tN
)2 +

cf

2
(X

(j)
tN
− X̄tN )

2

)

1t

2
+

ct

2
(X

(j)
tN
− X̄tN )

2

]

, (3.10)

where M denotes the number of realizations and X̄ :=

1
M

∑M
j=1 X

(j) denotes the sample mean. After plugging in the

neural network either given by (3.8) or (3.9), the optimization
problem becomes to find the best set of parameters either
(81,91) or 92 such that the objective J(81,91) or J(92) is
minimized with respect to those parameters.

The algorithm works as follows:

Algorithm 1: Algorithms for solving mean field control
problem with delay by directly approximating the optimal
control using neural networks

Initialization of parameters21 = (81,91) for approach 1
(3.8) or21 = (92) for approach 2 (3.9);
for each epoch e = 1, 2, . . . do

• Generate1W ∈ R
M×N for1W

(j)
ti

:=Wji ∼ N(0, 1),

j ∈ {1, . . . ,M} and i ∈ {1, . . . ,N} ;

• α
(j)
ti
= 0 for i = {−D, . . . ,−1}, ∀j;

• X
(j)
0 = X̄0 = x0, α

(j)
0 ≈ ϕ

(j)
0 (2e), ∀j, for some network

ϕ given by (3.8) or by (3.9) at t0 with proper inputs;

• J = 1
M

∑M
j=1

1
2 (ϕ

(j)
0 )21t

2 ;

for (i = 0, . . . ,N − 1) do

• X
(j)
ti+1
= X

(j)
ti
+ (α

(j)
ti
− α

(j)
ti−D

)1t + σ
√

1t1W
(j)
ti
,∀j;

• X̄ti+1 =
1
M

∑M
j=1 X

(j)
ti+1

;

• α
(j)
ti+1
≈ ϕ

(j)
ti+1

(2e), ∀j, is given by either (3.8) or (3.9)

at ti+1 ;
if (i = N − 1) then
• J =

J + 1
M

∑M
j=1

(

1
2 (ϕ

(j)
ti+1

)2 +
cf
2 (X

(j)
ti+1
− X̄ti+1 )

2

)

1t
2 ;

else
• J =

J+ 1
M

∑M
j=1

(

1
2 (ϕ

(j)
ti+1

)2+
cf
2 (X

(j)
ti+1
− X̄ti+1 )

2

)

1t;

end

end

• J = J + 1
M

∑M
j=1

ct
2 (X

(j)
tN
− X̄tN )

2,∀j ;

• Compute the gradient ∇J(2e) by backpropagation
through time ;
• Stop if J(2e) converges, or |∇J(2e)| < δ for some

threshold δ, and return2e;
• Otherwise, update2e+1 = 2e − η∇J(2e), according

to stochastic gradient descent algorithm, for some
learning rate η > 0 small ;

end

In the following graphics, we choose x0 = 0, cf = ct = 1, σ =
1,T = 10, τ = 4,1t = 0.1,M = 4,000. For approach 1, the
neural network ϕ ∈ NN, which is defined in (3.2), is composed
of 3 hidden layers with d1 = 42, h1 = 64, h2 = 128, h3 =
64, d2 = 1. For approach 2, the LSTM network ϕ ∈ LSTM,
which is defined in (3.4), consists of 128 hidden neurons. For
a specific representative path, the underlying Brownian motion
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paths are approximately the same for different approaches.
Figure 1 compares one representative optimal trajectory of the
state dynamic and the control, and they coincide. Figure 2 plots
the sample average of optimal trajectory of the state dynamic and
the control, which are trajectories of approximately 0, and this is
the same as the theoretical mean.

3.2. Approximating the Adjoint Process
Using Neural Networks
The third and fourth approaches are based on numerically
solving the MV-FABSDE system using LSTM network and
feedforward neural networks. From section 4, we derive the
adjoint process, and prove the sufficient and necessary parts of
stochastic maximum principle. From (4.7), we are able to write
the backward stochastic differential equation associated to (3.6)
as,

dYt = −cf (Xt −mt)dt + ZtdWt , t ∈ [0,T], (3.11)

with terminal condition YT = ct(XT − mT), and Ys = 0 for
s ∈ (T,T + τ ]. The optimal control (α̂t)0≤t≤T can be obtained in
terms of the adjoint process Yt from the maximum principle, and
it is given by

α̂t = −Yt + E[Yt+τ |Ft].

From the Euler-Maruyama scheme, the discretized version of
(3.6) and (3.11) now reads, for i = {0, . . . ,N − 1},

Xti+1 =Xti + (α̂ti − α̂ti−D )1t + σ
√

1t1Wti , where1Wti ∼ N(0, 1).

(3.12)

Yti+1 =Yti − cf (Xti − X̄ti )1t + Zti
√

1t1Wti , (3.13)

where we use the sample average X̄t =
1
M

∑M
j=1 X

(j)
t

to approximate the expectation of Xt . In order to solve
the above MV-FABSDE system, we need to approximate
(Yti ,E[Yti+D |Fti ],Zti )0≤ti≤tN .

The third approach consists of approximating
(Yti ,E[Yti+D |Fti ],Zti )0≤ti≤tN using three LSTM networks as
functions of current time and the discretized path of Brownian
motions, respectively, i.e.,

(aYti , c
Y
ti
) = ϕY (ti, (1Ws)t0≤s≤ti |8

Y )

for ϕY ∈ LSTM2,hY ,ti and

8Y
= (AY

f ,A
Y
i ,A

Y
o ,A

Y
c ,U

Y
f ,U

Y
i ,U

Y
o ,U

Y
c , b

Y
f , b

Y
i , b

Y
o , b

Y
c ),

Yti ≈ ψ
Y (aYti |9

Y ) for ψY
∈M

Id
hY ,1

and9Y
= (AY , bY ),

(aEYti , cEYti ) = ϕEY (ti, (1Ws)t0≤s≤ti |8
EY )

for ϕEY ∈ LSTM2,hEY ,ti and

8EY
= (AEY

f ,AEY
i ,AEY

o ,AEY
c ,UEY

f ,UEY
i ,UEY

o ,UEY
c , bEYf , bEYi , bEYo , bEYc ),

E[Yti+D |Fti ] ≈ ψ
EY (aEYti |9

EY ) for ψEY
∈M

Id
hEY ,1

and9EY
= (AEY , bEY ),

(aZti , c
Z
ti
) = ϕZ(ti, (1Ws)t0≤s≤ti |8

Z)

for ϕZ ∈ LSTM2,hZ ,ti

and8Z
= (AZ

f ,A
Z
i ,A

Z
o ,A

Z
c ,U

Z
f ,U

Z
i ,U

Z
o ,U

Z
c , b

Z
f , b

Z
i , b

Z
o , b

Z
c ),

Zti ≈ ψ
Z(aZti |9

Z) for ψZ
∈M

Id
hZ ,1

and9Z
= (AZ , bZ), (3.14)

for some hY , hEY , hZ ∈ Z
+. Again, the last dense layers are used

to match the desired output dimension.
Since approach 3 consists of three neural networks with large

number of parameters, which is hard to train in general, we
would like to make the following simplification in approach 4
for approximating (Yti ,E[Yti+D |Fti ],Zti )t0≤ti≤tN via combination
of one LSTM network and three feedforward neural networks.
Specifically,

(ati , cti ) = ϕ(ti, (1Ws)t0≤s≤ti |8)

for ϕ ∈ LSTM2,h,ti and

8 = (Af ,Ai,Ao,Ac,Uf ,Ui,Uo,Uc, bf , bi, bo, bc),

Yti ≈ ψ
Y (ati |9

Y ) for ψY
∈ NN

l
h,1 and

9Y
= (AY

0 , b
Y
0 , . . . ,A

Y
l , b

Y
l ),E[Yti+D |Fti ] (3.15)

≈ ψEY (ati |9
EY ) for ψEY

∈ NN
l
h,1 and

9EY
= (AEY

0 , bEY0 , . . . ,AEY
l , bEYl ),

Zti ≈ ψ
Z(ati |9

Z) for ψZ
∈ NN

l
h,1 and

9Z
= (AZ

0 , b
Z
0 , . . . ,A

Z
l , b

Z
l ).

In words, the algorithm works as follows. We first initialize the
parameters (2Y ,2EY ,2Z) = ((8Y ,9Y ), (8EY ,9EY ), (8Z ,9Z))
either in (3.14) or (2Y ,2EY ,2Z) = ((8,9Y ),9EY ),9Z)
in (3.15). At time 0, X0 = x0, (Y0,E[YtD |F0],Z0) ≈

(ϕY0 (2
Y ),ϕEY0 (2EY ),ϕZ0 (2

Z)) for some network (ϕY ,ϕEY ,ϕZ)
given by either (3.14) or (3.15), and α0 = −Yt0 + E[YtD |Ft0 ].
Next, we update Xti+1 and Yti+1 according to (3.12), and the

solution to the backward equation at ti+1 is denoted by Ỹti+1 . In
the meantime, Yti+1 is also approximated by a neural network.

In such case, we refer to Ỹ· as the label, and Y· given by the
neural network as the prediction. We would like to minimize
the mean square error between these two. At time T, YtN is also
supposed to match ct(XtN − X̄tN ), from the terminal condition
of (3.11). In addition, the conditional expectation E[Yti+D |Fti ]

given by a neural network should be the best predictor of Ỹti+D ,
which implies that we would like to find the set of parameters
2EY such that E[(Ỹti+D − ϕEYti (2EY ))2] is minimized for all
ti ∈ {t0, . . . , tN−D}. Therefore, for M samples, we would like to
minimize two objective functions L1 and L2 defined as

L1(2
Y ,2Z) =

1

M

[ M
∑

j=1

N
∑

i=0

(ϕ
Y ,(j)
ti
− Ỹ

(j)
ti
)2

+

M
∑

j=1

(

ϕ
Y ,(j)
tN
− ct(X

(j)
tN
− X̄tN )

)2
]

, (3.16)

L2(2
EY ) =

1

M

M
∑

j=1

N−D
∑

i=0

(

ϕ
EY ,(j)
ti
− Ỹ

(j)
ti+D

)2
.

The algorithm works as follows:
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Algorithm 2: Algorithms for solving mean field control
problem with delay according to MV-FABSDE

Initialization of parameters (2Y
1 ,2

EY
1 ,2Z

1 ) for approach 3
as in (3.14) or approach 4 as in (3.15);
for each epoch e = 1, 2, . . . do

• Generate1W ∈ R
M×N for1W

(j)
ti

:= 1Wji ∼ N(0, 1),

j ∈ {1, . . . ,M} and i ∈ {1, . . . ,N} ;

• α
(j)
ti
= 0 for i ∈ {−D, . . . ,−1},∀j ;

• X
(j)
0 = X̄0 = x0,∀j;

(

Y
(j)
0 ,E[Y

(j)
tD
|F0],Z

(j)
0

)

≈

(

ϕ
Y ,(j)
0 (2Y

e ),ϕ
EY ,(j)
0 (2EY

e ),ϕ
Z,(j)
0 (2Z

e )
)

given by either

(3.14) or by (3.15); α
(j)
0 ≈ −ϕ

Y ,(j)
0 + ϕ

EY ,(j)
0 at t0 ;

• L1(2
Y
e ,2

Z
e ) = 0, L2(2

EY
e ) = 0 ;

for (i = 0, . . . ,N − 1) do

• X
(j)
ti+1
= X

(j)
ti
+ (α

(j)
ti
− α

(j)
ti−D

)1t + σ
√

1t1W
(j)
ti
,∀j;

• X̄ti+1 =
1
M

∑M
j=1 X

(j)
ti+1

;

• Ỹ
(j)
ti+1
= Y

(j)
ti
− cf (X

(j)
ti
− X̄ti )1t+ Zti

√

1t1W
(j)
ti
,∀j ;

if (i ≤ N − D) then

•

(

Y
(j)
ti+1

,E[Y
(j)
ti+1+D
|Fti+1 ],Z

(j)
ti+1

)

≈

(

ϕ
Y ,(j)
ti+1

(2Y
e ),ϕ

EY ,(j)
ti+1

(2EY
e ),ϕ

Z,(j)
ti+1

(2Z
e )
)

,∀j given

by (3.14) or by (3.15) at ti+1 ;

• L1+ =
1
M

∑M
j=1

(

ϕ
Y ,(j)
ti+1
− Ỹ

(j)
ti+1

)2
;

else

•

(

Y
(j)
ti+1

,E[Y
(j)
ti+1+D
|Fti+1 ],Z

(j)
ti+1

)

≈

(

ϕ
Y ,(j)
ti+1

(2Y
e ), 0,ϕ

Z,(j)
ti+1

(2Z
e )
)

,∀j given by (3.14) or

by (3.15) at ti+1 ;

• L1+ =
1
M

∑M
j=1

(

ϕ
Y ,(j)
ti+1
− Ỹ

(j)
ti+1

)2
;

end
end
for (i = 0, 1, . . . ,N − D) do

• L2+ =
1
M

∑M
j=1

(

ϕ
EY ,(j)
ti
− Ỹ

(j)
ti+D

)2
;

end

• L1+ =
1
M

∑M
j=1

(

ϕ
Y ,(j)
tN
− ct(X

(j)
tN
− X̄tN )

)2
;

• Compute the gradient ∇L1(2
Y ,2Z) and ∇L2(2

EY )
by backpropagation through time;

• Stop if L1(2
Y ,2Z) are close to 0, and L2(2

EY )

converges, return (2Y ,2EY ,2Z);

• Otherwise, update2Y
e+1,2

Z
e+1 and2

EY
e+1 according to

SGD algorithm;
end

Again, in the following graphics, we choose x0 = 0, cf =
ct = 1, σ = 1,T = 10, τ = 4,1t = 0.1,M =

4, 000. In approach 3, each of the three LSTM networks
approximating Yti ,E[Yti+D|Fti ] and Zti consists of 128 hidden
neurons, respectively. In approach 4, the LSTM consists of 128
hidden neurons, and each of the feedforward neural networks has
parameters d1 = 128, h1 = 64, h2 = 128, h3 = 64, d2 = 1. For
a specific representative path, the underlying Brownian motion
paths are the same for different approaches. Figure 3 compares
one representative optimal trajectory of the state dynamic and

the control via two approaches, and they coincide. Figure 4 plots
the sample average of optimal trajectory of the dynamic and the
control, which are trajectories of 0, which is the same as the
theoretical mean. Comparing to Figures 1, 2, as well as based on
numerous experiments, we find that given a path of Brownian
motion, the two algorithms would yield similar optimal trajectory
of state dynamic and similar path for the optimal control. From
Figure 6, the loss L1 as defined in (3.16) becomes approximately
0.02 in 1,000 epochs for both approach 3 and approach 4. This
can also be observed from Figure 5, since the red dash line and
the blue solid line coincide for both left and right graphs. In
addition, from the righthand side of Figure 6, we observe the loss
L2 as defined in (3.16) converges to 50 after 400 epochs. This is
due to the fact that the conditional expectation can be understood
as an orthogonal projection. Figure 7 plots 64 sample paths of the
process (Zti )t0≤ti≤tN , which seems to be a deterministic function
since σ is constant in this example. Finally, Figure 8 shows the
convergence of the value function as number of epochs increases.
Both algorithms arrive approximately at the same optimal value
which is around 6 after 400 epochs. This confirms that the
out control problem has a unique solution. In section 5, we
show that the MV-FASBDE system is uniquely solvable. It is
also observable that the first algorithm converges faster than
the second one, since it directly paramerizes the control using
one neural network, instead of solving the MV-FABSDE system,
which uses three neural networks.

3.3. Numerically Solving the Optimal
Control Problem With No Delay
Since the algorithms we proposed embrace the case with no delay,
we illustrate the comparison between numerical results and the
analytical results. By letting τ > T we obtain αt−τ = 0 in (3.6),
and we aim at solving the following linear-quadratic mean-field
control problem by minimizing

J(α) = E

[

∫ T

0

(

1

2
α2t +

cf

2
(Xt −mt)

2

)

dt +
ct

2
(XT −mT)

2

]

,

(3.17)
subject to

dXt = αtdt + σdWt , t ∈ [0,T],

X0 = x0.
(3.18)

Again, from section 4, we find the optimal control

α̂t = −Yt ,

where (Yt ,Zt) is the solution of the following adjoint process,

dYt = −cf (Xt −mt)dt + ZtdWt . (3.19)

Next, we make the ansatz

Yt = φt(Xt −mt), (3.20)

for some deterministic function φt , satisfying the terminal
condition φT = ct . Differentiating the ansatz, the backward
equation should satisfy

dYt = (φ̇t − φ
2
t )(Xt −mt)dt + φtσdWt , (3.21)
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FIGURE 1 | On the left, we compare one representative optimal trajectory of (Xti )t0≤ti≤tN . The plot on the right show the comparison of one representative optimal

trajectory of (αti )t0≤ti≤tN between approach 1 and approach 2.

FIGURE 2 | On the left, we compare the sample mean of optimal trajectories of (Xti )t0≤ti≤tN . The plot on the right show the comparison of sample mean of trajectories

of optimal control (αti )t0≤ti≤tN between approach 1 and approach 2.

where φ̇t denotes the time derivative of φt . Comparing with
(3.19), and identifying the drift and volatility term, φt must satisfy
the scalar Riccati equation,

{

φ̇t = φ
2
t − cf ,

φT = ct ,
(3.22)

and the process Zt should satisfy

Zt = φtσ , (3.23)

which is deterministic. If we choose x0 = 0, cf = ct = 1,T = 10,
φt = 1 solves the Riccati equation (3.22), so that Zt = 1, ∀t ∈
[0,T], and from (3.20), the optimal control satisfies

α̂t = −(Xt −mt). (3.24)

Numerically, we apply the two deep learning algorithms
proposed in the previous section. The first algorithm

directly approximates the control. According to the open
loop formulation, we set

(ati , cti ) = ϕ(ti, (1Ws)t0≤s≤ti |8)

for ϕ ∈ LSTM2,h,t and

8 = (Af ,Ai,Ao,Ac,Uf ,Ui,Uo,Uc, bf , bi, bo, bc),

α(ti, (Ws)t0≤s≤ti ) ≈ ψ(ati |9) for ψ ∈M
Id
h,1 and9 = (A, b),

(3.25)

for some h ∈ Z
+. We remark that the last dense layer is used

to match the desired output dimension. The second algorithm
numerically solves the forward backward system as in (3.18)
and (3.19). From the ansatz (3.20) and the Markovian feature,
we approximate (Yt ,Zt)0≤t≤T using two feedforward neural
networks, i.e.,

Yti ≈ ψ
1(ti,Xti |9

1) for ψ1
∈ NN

l
2,1, 9

1
= (A1

0, b
1
0, . . . ,A

1
l , b

1
l );

Zti ≈ ψ
2(ti,Xti |9

2) for ψ2
∈ NN

l
2,1, 9

2
= (A2

0, b
2
0, . . . ,A

2
l , b

2
l ).

(3.26)
Figure 9 shows the representative optimal trajectory of (Xti −

X̄ti )t0≤ti≤tN and (αti )t0≤ti≤tN from both algorithms, which are
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FIGURE 3 | On the left, we compare one representative optimal trajectory of (Xti )t0≤ti≤tN . The plot on the right shows the comparison of one representative optimal

trajectory of (αti )t0≤ti≤tN between approach 3 and approach 4.

FIGURE 4 | On the left, we compare the sample mean of optimal trajectories of (Xti )t0≤ti≤tN . The plot on the right shows the comparison of sample mean of trajectories

of optimal control (αti )t0≤ti≤tN between approach 3 and approach 4.

FIGURE 5 | Plots of representative trajectories of [(Yti )t0≤ti≤tN , (
˜Yti )t0≤ti≤tN , (E[Yti+D |Fti ])t0≤ti≤tN ], from approach 3 (one the left) and from approach 4 (on the right).
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FIGURE 6 | Convergence of loss L1 (on the left) and convergence of loss L2 (on the right) as defined in (3.16) from approach 3 and approach 4.

FIGURE 7 | 64 trajectories of (Zti )t0≤ti≤tN based on approach 3 (on the left) and approach 4 (on the right).

exactly the same. The symmetry feature can be seen from the
computation (3.24). On the left of Figure 10 confirms the mean
of the processes (Xti − X̄ti )t0≤ti≤tN and (αti )t0≤ti≤tN are 0 from
both algorithms. The right picture of Figure 10 plots the data
points of x against α, and we can observe that the optimal control
α is linear in x as a result of (3.24), and the slope tends to be -
1, since φ = 1 solves the scalar Riccati equation (3.22). Finally,
Figure 11 plots representative optimal trajectories of the solution
to the adjoint equations (Yt ,Zt). On the left, we observe that the
adjoint process (Yt)0≤t≤T matches the terminal condition, and on
the right, (Zt)0≤t≤T appears to be a deterministic process of value
1, and this matches the result we compute previously.

4. STOCHASTIC MAXIMUM PRINCIPLE
FOR OPTIMALITY

In this section, we derive the adjoint equation associated to
our mean field stochastic control problem (2.3) and (2.4). The
necessary and sufficient parts of stochastic maximum principle

FIGURE 8 | Comparison convergence of objective values as in (3.10) among

four approaches.
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FIGURE 9 | Representative optimal trajectory of (Xti −
¯Xti )t0≤ti≤tN and (αti )t0≤ti≤tN from algorithm 1 (on the left) and from algorithm 2 (on the right).

FIGURE 10 | The picture on the left plots the sample averages of (Xti )t0≤ti≤tN and (αti )t0≤ti≤tN for both algorithm 1 and 2; The plot on the right shows the points of x

against α for both algorithms.

FIGURE 11 | The plot on the left shows representative trajectories of [(Yti )t0≤ti≤tN , (
˜Yti )t0≤ti≤tN ]. The picture on the right plots 64 trajectories of (Zti )t0≤ti≤tN .
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have been proved for optimality. We assume

(H4.1) b, σ are differentiable with respect to
(Xt ,µt ,Xt−τ ,µt−τ ,αt ,αt−τ ); f is differentiable with
respect to (Xt ,µt ,Xt−τ ,µt−τ ,α); g is differentiable with
respect to (XT ,µT). Their derivatives are bounded.

In order to simplify our notations, let θt = (Xt ,µt ,αt). For
0 < ǫ < 1, we denote αǫ the admissible control defined by

αǫt := αt + ǫ(βt − αt) := αt + ǫ1αt ,

for any (α)0≤t≤T and (β)0≤t≤T ∈ A. Xǫt := Xα
ǫ

t is the
corresponding controlled process. We define

∇Xt := lim
ǫ→0

Xǫt − Xαt
ǫ

to be the variation process, which should follow the following
dynamic for t ∈ (0,T],

d∇Xt =

[

∂xb(t, θt , θt−τ )∇Xt + ∂xτ b(t, θt , θt−τ )∇Xt−τ

+ Ẽ[∂µb(t, θt , θt−τ )(X̃t)∇X̃t]+ Ẽ[∂µτ b(t, θt , θt−τ )(X̃t−τ )∇X̃t−τ ]

+ ∂αb(t, θt , θt−τ )1αt + ∂ατ b(t, θt , θt−τ )1αt−τ

]

dt

+

[

∂xσ (t, θt , θt−τ )∇Xt + ∂xτ σ (t, θt , θt−τ )∇Xt−τ

+ Ẽ[∂µσ (t, θt , θt−τ )(X̃t)∇X̃t]+ Ẽ[∂µτ σ (t, θt , θt−τ )(X̃t−τ )∇X̃t−τ ]

+ ∂ασ (t, θt , θt−τ )1αt + ∂ατ σ (t, θt , θt−τ )1αt−τ

]

dWt (4.1)

with initial condition ∇Xt = 1αt = 0, t ∈ [−τ , 0).
(X̃t ,∇X̃t) is a copy of (Xt ,∇Xt) defined on (�̃, F̃ , P̃), where we
apply differential calculus on functions of measure, see Carmona
and Delarue [3] for detail. ∂xb, ∂xτ b, ∂µb, ∂µτ b, ∂αb, ∂ατ b are
derivatives of b with respect to (Xt ,Xt−τ ,µt ,µt−τ ,αt ,αt−τ ),
respectively, and we use the same notation for ∂·σ .

In the meantime, the Gateaux derivative of functional α →
J(α) is given by

lim
ǫ→0

J(αǫ)− J(α)

ǫ

=E

[

∂xg(XT ,µT)∇XT + Ẽ[∂µg(XT ,µT)(X̃T)∇X̃T]
]

+ E

∫ T

0

[

∂xf (θt ,Xt−τ ,µt−τ )∇Xt + Ẽ[∂µf (θt ,Xt−τ ,µt−τ )(X̃t)∇X̃t]

+ ∂xτ f (θt ,Xt−τ ,µt−τ )∇Xt−τ + Ẽ[∂µτ f (θt ,Xt−τ ,µt−τ )(X̃t−τ )∇X̃t−τ ]

+ ∂α f (θt ,Xt−τ ,µt−τ )(1αt)

]

dt

(4.2)

In order to determine the adjoint backward equation of
(Yt ,Zt)0≤t≤T associated to (2.3), we assume it is of the following
form:

dYt = −ϕtdt + ZtdWt , t ∈ [0,T],

YT = ∂xg(XT ,µT)+ Ẽ[∂µg(XT ,µT)(X̃T)],

Yt = Zt = 0, t ∈ (T,T + τ ]

(4.3)

Next, we apply integration by part to ∇Xt and Yt . It yields

d(∇XtYt) = Yt

[

∂xb(t, θt , θt−τ )∇Xt + ∂xτ b(t, θt , θt−τ )∇Xt−τ

+ Ẽ[∂µb(t, θt , θt−τ )(X̃t)∇X̃t] + Ẽ[∂µτ b(t, θt , θt−τ )(X̃t−τ )∇X̃t−τ ]

+ ∂αb(t, θt , θt−τ )1αt + ∂ατ b(t, θt , θt−τ )1αt−τ

]

dt

+ Yt

[

∂xσ (t, θt , θt−τ ) + ∂xτ σ (t, θt , θt−τ )∇Xt−τ

+ Ẽ[∂µσ (t, θt , θt−τ )(X̃t)∇X̃t] + Ẽ[∂µτ σ (t, θt , θt−τ )(X̃t−τ )∇X̃t−τ ]

+ ∂ασ (t, θt , θt−τ )1αt + ∂ατ σ (t, θt , θt−τ )1αt−τ

]

dWt − ϕt∇Xtdt

+ ∇XtZtdWt + Zt

[

∂xσ (t, θt , θt−τ )∇Xt

+ ∂xτ σ (t, θt , θt−τ )∇Xt−τ + Ẽ[∂µσ (t, θt , θt−τ )(X̃t)∇X̃t]

+ Ẽ[∂µτ σ (t, θt , θt−τ )(X̃t−τ )∇X̃t−τ ] + ∂ασ (t, θt , θt−τ )1αt

+ ∂ατ σ (t, θt , θt−τ )1αt−τ

]

dt

We integrate from 0 to T, and take expectation to get

E[∇XTYT]

= E

∫ T

0
Yt

[

∂xb(t, θt , θt−τ )∇Xt + ∂xτ b(t, θt , θt−τ )∇Xt−τ

+ Ẽ[∂µb(t, θt , θt−τ )(X̃t)∇X̃t] + Ẽ[∂µτ b(t, θt , θt−τ )(X̃t−τ )∇X̃t−τ ]

+ ∂αb(t, θt , θt−τ )1ατ + ∂ατ b(t, θt , θt−τ )1αt−τ

]

dt

− E

∫ T

0
ϕt∇Xtdt + E

∫ T

0
Zt

[

∂xσ (t, θt , θt−τ )∇Xt

+ ∂xτ σ (t, θt , θt−τ )∇Xt−τ + Ẽ[∂µσ (t, θt , θt−τ )(X̃t)∇X̃t]

+ Ẽ[∂µτ σ (t, θt , θt−τ )(X̃t−τ )∇X̃t−τ ] + ∂ασ (t, θt , θt−τ )1αt

+ ∂ατ σ (t, θt , θt−τ )1αt−τ

]

dt (4.4)

Using the fact that Yt = Zt = 0 for t ∈ (T,T + τ ], we are able
to make a change of time, and by Fubini’s theorem, so that (4.4)
becomes

E[∇XTYT] = E

∫ T

0

(

Yt∂xb(t, θt , θt−τ )+ Yt+τ ∂xτ b(t + τ , θt+τ , θt)

+ Ẽ[∂µb(t, θ̃t , θ̃t−τ )(Xt)]

+ Ẽ[∂µτ b(t + τ , θ̃t+τ , θ̃t)(Xt)

)

∇Xtdt

+ E

∫ T

0

(

∂αb(t, θt , θt−τ )+ ∂ατ b(t + τ , θt+τ , θt)

)

1αtdt

− E

[ ∫ T

0
ϕt∇Xt

]

dt + E

∫ T

0

(

Zt∂xσ (t, θt , θt−τ )

+ Zt+τ ∂xτ σ (t + τ , θt+τ , θt)+ Ẽ[∂µσ (t, θ̃t , θ̃t−τ )(Xt)]

+ Ẽ[∂µτ σ (t + τ , θ̃t+τ , θ̃t)(Xt)

)

∇Xtdt

+ E

∫ T

0

(

∂ασ (t, θt , θt−τ )+ ∂ατ σ (t + τ , θt+τ , θt)

)

1αtdt

(4.5)
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Now we define the Hamiltonian H for
(t, x,µ, xτ ,µτ , y, z,α,ατ ) ∈ [0,T] × R × P2(R) × R ×

P2(R)× R× R× A× A as

H(t, x,µ, xτ ,µτ ,α,ατ , y, z)

= b(t, x,µ, xτ ,µτ ,α,ατ )y+ σ (t, x,µ, xτ ,µτ ,α,ατ )z

+ f (t, x,µ, xτ ,µτ ,α) (4.6)

Using the terminal condition of YT , and plugging (4.5) into (4.2),
and setting the integrand containing ∇Xt to zero, we are able to
obtain the adjoint equation is of the following form

dYt =−

{

∂xH(t,Xt ,µt ,Xt−τ ,µt−τ ,αt ,αt−τ ,Yt ,Zt)

+ Ẽ[∂µH(t, X̃t ,µt , X̃t−τ ,µt−τ , α̃t , α̃t−τ , Ỹt , Z̃t)(Xt)]

+ E[∂xτH(t + τ ,Xt+τ ,µt+τ ,Xt ,µt ,αt+τ ,αt ,Yt+τ ,Zt+τ )|Ft]

+ E[Ẽ[∂µτH(t + τ , X̃t+τ ,µt+τ , X̃t ,µt , α̃t , α̃t−τ , Ỹt+τ , Z̃t+τ )

(Xt+τ )]|Ft]

}

dt + ZtdWt

YT =∂xg(XT ,µT)+ Ẽ[∂µg(X̃T ,µT)(XT)].

(4.7)

Theorem 4.1. Let (αt)0≤t≤T ∈ A be optimal, (Xt)0≤t≤T be the
associated controlled state, and (Yt ,Zt)0≤t≤T be the associated
adjoint processes defined in (4.7). For any β ∈ A, and t ∈ [0,T],

(

∂αH(t,Xt ,µt ,Xt−τ ,µt−τ ,αt ,αt−τ ,Yt ,Zt)

+ E[∂ατH(t + τ ,Xt+τ ,µt+τ ,Xt ,µt ,αt+τ ,αt ,Yt+τ ,Zt+τ )|Ft]

)

(β − αt) ≥ 0 a.e.

(4.8)

Proof: Given any (βt)0≤t≤T ∈ A, we perturbate αt by ǫ(βt − αt)
and we define αǫt := αt + ǫ(βt − αt) for 0 ≤ ǫ ≤ 1. Using the
adjoint process (4.7), and apply integration by parts formula to
(∇XtYt). Then plug the result into (4.2), and the Hamiltonian H
is defined in (4.6). Also, since α is optimal, we have

0 ≤ lim
ǫ→0

J(αǫ)− J(α)

ǫ

= E

∫ T

0

(

[∂αH(t, θt , θt−τ ,Yt ,Zt)+

E[∂ατH(t + τ , θt+τ , θt ,Yt+τ ,Zt+τ )|Ft]

)

(βt − αt)dt (4.9)

Now, let C ∈ Ft be an arbitrary progressively measurable set,
and denote C′ the complement of C. We choose βt to be βt :=

β1C + αt1C′ for any given β ∈ A. Then,

E

∫ T

0

(

[∂αH(t, θt , θt−τ ,Yt ,Zt)

+ E[∂ατH(t + τ , θt+τ , θt ,Yt+τ ,Zt+τ )|Ft]

)

(βt − αt)1Cdt ≥ 0,

(4.10)

which implies,

(∂αH(t, θt , θt−τ ,Yt ,Zt) (4.11)

+ E[∂ατH(t + τ , θt+τ , θt ,Yt+τ ,Zt+τ )|Ft])(β − αt) ≥ 0. a.e.

Remark 4.2. When we further assume that H is convex in
(αt ,αt−τ ), then for any β ,βτ ∈ A in Theorem 4.1, we have

H(t,Xt ,µt ,Xt−τ ,µt−τ ,αt ,αt−τ ,Yt ,Zt)

≤ H(t,Xt ,µt ,Xt−τ ,µt−τ ,β ,βτ ,Yt ,Zt), a.e.

as a direct consequence of (4.8).

Theorem 4.3. Let (αt)0≤t≤T ∈ A be an admissible control.
Let (Xt)0≤t≤T be the controlled state, and (Yt ,Zt)0≤t≤T be the
corresponding adjoint processes. We further assume that for
each t, given Yt and Zt , the function (x,µ, xτ ,µτ ,α,ατ ) →
H(t, x,µ, xτ ,µτ ,α,ατ ,Yt ,Zt), and the function (x,µ) → g(x,µ)
are convex. If

H(t,Xt ,µt ,Xt−τ ,µt−τ ,αt ,αt−τ ,Yt ,Zt)

= inf
α′∈A

H(t,Xt ,µt ,Xt−τ ,µt−τ ,α
′

t ,α
′

t−τ ,Yt ,Zt),
(4.12)

for all t, then (αt)0≤t≤T is an optimal control.

Proof: Let (α′t)0≤t≤T ∈ A be a admissible control, and let

(X′t)0≤t≤T = (Xα
′

t )0≤t≤T be the corresponding controlled state.
From the definition of the objective function as in (2.4), we first
use convexity of g, and the terminal condition of the adjoint
process Yt in (4.7), then use the fact thatH is convex, and because
of (4.12), we have the following

J(α)− J(α′) = E[g(XT ,µT)− g(X′T ,µ
′

T)]

+ E

∫ T

0
[f (t, θt ,Xt−τ ,αt−τ )− f (t, θ ′t ,X

′

t−τ ,α
′

t−τ )]dt

≤ E[∂xg(XT ,µT)(XT − X′T)+ Ẽ[∂µg(XT ,µT)(X̃T)(X̃T − X̃′T)]]

+ E

∫ T

0
[f (t, θt ,Xt−τ ,αt−τ )− f (t, θ ′t ,X

′

t−τ ,α
′

t−τ )]dt

= E[(∂xg(XT ,µT)+ Ẽ[∂µg(X̃T ,µT)(XT)])(XT − X′T)]

+ E

∫ T

0
[f (t, θt ,Xt−τ ,αt−τ )− f (t, θ ′t ,X

′

t−τ ,α
′

t−τ )]dt

= E[YT(XT − X′T)]+ E

∫ T

0
[f (t, θt ,Xt−τ ,αt−τ )

− f (t, θ ′t ,X
′

t−τ ,α
′

t−τ )]dt = E

∫ T

0

[

(

b(t, θt , θt−τ )− b(t, θ ′t , θ
′

t−τ )
)

Yt

+

(

σ (t, θt , θt−τ )− σ (t, θ
′

t , θ
′

t−τ )
)

Zt

]

dt − E

∫ T

0

[

(

∂xH(t, θt , θt−τ ,Yt ,Zt)

+ Ẽ[∂µH(t, θ̃t , θ̃t−τ , Ỹt , Z̃t)(Xt)]
)

(Xt − X′t)

]

dt

− E

∫ T

0

[(

E[∂xτH(t + τ , θt+τ , θt ,Yt+τ ,Zt+τ )|Ft]

+ E[Ẽ[∂µτH(t + τ , θ̃t+τ , θ̃t , Ỹt+τ , Z̃t+τ )(Xt)]|Ft]

)

(Xt − X′t)

]

dt

+ E

∫ T

0

[

H(t, θt , θt−τ ,Yt ,Zt)−H(t, θ ′t , θ
′

t−τ ,Yt ,Zt)

]

dt
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+ E

∫ T

0

[

(

b(t, θt , θt−τ )− b(t, θt , θt−τ )
)

Yt +
(

σ (t, θt , θt−τ )

−σ (t, θt , θt−τ )
)

Zt

]

dt ≤ −E

∫ T

0

[

∂xH(t, θt , θt−τ ,Yt ,Zt)(Xt − X′t)

+ Ẽ[∂µH(t, θt , θt−τ ,Yt ,Zt)(X̃t)(X̃t − X̃t
′

)

]

dt

− E

∫ T

0

[

∂xτH(t, θt , θt−τ ,Yt ,Zt)(Xt−τ − X′t−τ )

+ Ẽ[∂µτH(t, θt , θt−τ ,Yt ,Zt)(X̃t−τ )(X̃t−τ − X̃′t−τ )]

]

dt

+ E

∫ T

0

[

H(t, θt , θt−τ ,Yt ,Zt)−H(t, θ ′t , θ
′

t−τ ,Yt ,Zt)

]

dt

≤ E

∫ T

0

[

∂αH(t, θt , θt−τ ,Yt ,Zt)(αt − α
′

t)+ ∂ατH(t, θt , θt−τ ,Yt ,Zt)

(αt−τ − α
′

t−τ )

]

dt ≤ E

∫ T

0

(

∂αH(t, θt , θt−τ ,Yt ,Zt)

+ E[∂ατH(t + τ , θt+τ , θt ,Yt+τ ,Zt+τ )|Ft]

)

(αt − α
′

t)dt ≤ 0. (4.13)

5. EXISTENCE AND UNIQUENESS RESULT

Given the necessary and sufficient conditions proven in section
4, we use the optimal control (α̂t)0≤t≤T defined by

α̂(t,Xt ,µt ,Xt−τ ,µt−τ ,Yt ,Zt ,E[Yt+τ |Ft],E[Zt+τ |Ft])

= argmin
α∈A

H(t,Xt ,µt ,Xt−τ ,µt−τ ,αt ,αt−τ ,Yt ,Zt),
(5.1)

to establish the solvability result of the McKean–Vlasov FABSDE
(2.3) and (4.7) for t ∈ [0,T]:

dXt = b(t,Xt ,µt ,Xt−τ ,µt−τ , α̂t , α̂t−τ )dt

+ σ (t,Xt ,µt ,Xt−τ ,µt−τ , α̂t , α̂t−τ )dWt ,

dYt = −

{

∂xH(t,Xt ,µt ,Xt−τ ,µt−τ , α̂t , α̂t−τ ,Yt ,Zt)

+ Ẽ[∂µH(t, X̃t ,µt , X̃t−τ ,µt−τ , ˜α̂t , ˜α̂t−τ , Ỹt , Z̃t)(Xt)]

+ E[∂xτH(t + τ ,Xt+τ ,µt+τ ,Xt ,µt , α̂t+τ , α̂t ,Yt+τ ,Zt+τ )|Ft]

+ E[Ẽ[∂µτH(t + τ , X̃t+τ ,µt+τ , X̃t ,µt , ˜α̂t+τ , ˜α̂t , Ỹt+τ , Z̃t+τ )

(Xt)]|Ft]

}

dt + ZtdWt (5.2)

with initial condition X0 = x0;Xt = α̂t = 0 for t ∈ [−τ , 0) and
terminal condition YT = ∂xg(XT ,µT)+ Ẽ[∂µg(X̃T ,µT)(XT)]. In
addition to assumption (H 4.1), we further assume

(H5.1) The drift and volatility functions b and σ are linear in
x,µ, xτ ,µτ ,α,ατ . For all (t, x,µ, xτ ,µτ ,α,ατ ) ∈ [0,T]×
R× P2(R)× P2(R)× A× A, we assume that

b(t, x,µ, xτ ,µτ ,α,ατ ) = b0(t)+ b1(t)x+ ¯b1(t)m

+b2(t)xτ + ¯b2(t)mτ + b3(t)α + b4(t)ατ ,

σ (t, x,µ, xτ ,µτ ,α,ατ ) = σ0(t)+ σ1(t)x+ σ̄1(t)m

+σ2(t)xτ + σ̄2(t)mτ + σ3(t)α + σ4(t)ατ ,
(5.3)

for some measurable deterministic functions
b0, b1, ¯b1, b2, ¯b2, b3, b4, σ0, σ1, σ̄1, σ2, σ̄2, σ3, σ4 with
values in R bounded by R, and we have used the notation
m =

∫

xdµ(x) and mτ =
∫

xdµτ (x) for the mean of
measures µ and µτ , respectively.

(H5.2) The derivatives of f and g with respect to (x, xτ ,µ,µτ ,α)
and (x,µ) are Lipschitz continuous with Lipschitz
constant L.

(H5.3) The function f is strongly L-convex, which means that
for any t ∈ [0,T], any x, x′, xτ , x

′

τ ∈ R, any α,α′ ∈ A,
any µ,µ′,µτ ,µ

′

τ ∈ P2(R), any random variables X and
X′ having µ and µ′ as distribution, and any random
variables Xτ and X′τ having µτ and µ′τ as distribution,
then

f (t, x′,µ′, x′τ ,µ
′

τ ,α
′)− f (t, x,µ, xτ ,µτ ,α)

− ∂xf (t, x,µ, xτ ,µτ ,α)(x
′
− x)

− ∂xτ f (t, x,µ, xτ ,µτ ,α)(x
′

τ − xτ )

− E[∂µf (t, x,µ, xτ ,µτ ,α)(X) · (X
′
− X)]

− E[∂µτ f (t, x,µ, xτ ,µτ ,α)(Xτ ) · (X
′

τ − Xτ )]

− ∂α f (t, x,µ, xτ ,µτ ,α)(α
′
− α) ≥ κ|α′ − α|2.(5.4)

The function g is also assumed to be L-convex in (x,µ).

Theorem 5.1. Under assumptions (H5.1-H5.3), the McKean–
Vlasov FABSDE (5.2) is uniquely solvable.

The proof is based on continuation methods. Let λ ∈
[0, 1], consider the following class of McKean–Vlasov FABSDEs,
denoted by MV-FABSDE(λ), for t ∈ [0,T]:

dXt = (λb(t, θt , θt−τ )+ Ibt )dt + (λσ (t, θt , θt−τ )+ Iσt )dWt ,

dYt =−

{

λ

(

∂xH(t, θt , θt−τ ,Yt ,Zt)+ Ẽ[∂µH(t, θ̃t , θ̃t−τ , Ỹt , Z̃t)(Xt)]

+ E[∂xτH(t + τ , θt+τ , θt ,Yt+τ ,Zt+τ )|Ft]

+ E[Ẽ[∂µτH(t + τ , θ̃t+τ , θ̃t , Ỹt+τ , Z̃t+τ )(Xt)]|Ft]

)

+ I
f
t

}

dt + ZtdWt ,

(5.5)
where we denote θt = (Xt ,µt ,αt), with optimality condition

αt = α̂(t,Xt ,µt ,Xt−τ ,µt−τ ,Yt ,Zt ,E[Yt+τ |Ft],

E[Zt+τ |Ft]), t ∈ [0,T],

and with initial condition X0 = x0;Xt = αt = 0 for t ∈ [−τ , 0)
and terminal condition

YT = λ

{

∂xg(XT ,µT)+ Ẽ[∂µg(X̃T ,µT)(XT)

}

+ I
g
T ,

and Yt = 0 for t ∈ (T,T + τ ], where (Ibt , I
σ
t , I

f
t )0≤t≤T are some

square-integrable progressively measurable processes with values
in R, and I

g
T ∈ L2(�,FT ,P) is a square integrableFT-measurable

random variable with value in R.
Observe that when λ = 0, system (5.5) becomes decoupled

standard SDE and BSDE, which has an unique solution. When
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setting λ = 1, Ibt = Iσt = I
f
t = 0 for 0 ≤ t ≤ T, and I

g
T = 0, we

are able to recover the system of (5.2).

Lemma 5.2. Given λ0 ∈ [0, 1), for any square-integrable

progressively measurable processes (Ibt , I
σ
t , I

f
t )0≤t≤T , and I

g
T ∈

L2(�,FT ,P), such that system FABSDE(λ0) admits a unique
solution, then there exists δ0 ∈ (0, 1), which is independent on λ0,
such that the system MV-FABSDE(λ) admits a unique solution for
any λ ∈ [λ0, λ0 + δ0].

Proof: Assuming that (X̌, Y̌ , Ž, α̌) are given as an input, for any
λ ∈ [λ0, λ0 + δ0], where δ0 > 0 to be determined, denoting
δ := λ− λ0 ≤ δ0, we take

Ibt ←δ[b(t, θ̌t , θ̌t−τ )]+ Ibt ,

Iσt ←δ[σ (t, θ̌t , θ̌t−τ )]+ Iσt ,

I
f
t ←δ

[

∂xH(t, θ̌t , θ̌t−τ ,Yt ,Zt)+ Ẽ[∂µH(t,
˜
θ̌t ,
˜
θ̌t−τ ,

˜Y̌t ,
˜
Žt)(Xt)]

+ E[∂xτH(t + τ , θ̌t+τ , θ̌t , Y̌t+τ , Žt+τ )|Ft]

+ E[Ẽ[∂µτH(t + τ ,
˜
θ̌t+τ ,

˜
θ̌t ,
˜Y̌t+τ ,

˜
Žt+τ )(X̌t)]|Ft]

]

+ I
f
t ,

I
g
T ←δ

[

∂xg(X̌T ,µT)+ Ẽ[∂µg(
˜X̌T ,µT)(X̌T)

]

+ I
g
T .

(5.6)
According to the assumption, let (X,Y ,Z) be the solutions of

MV-FABSDE(λ0) corresponding to inputs (X̌, Y̌ , Ž), i.e., for t ∈
[0,T]

dXt = (λ0bt + δ ˇbt + Ibt )dt + (λ0σt + δσ̌t + Iσt )dWt ,

dYt =−

{

λ0(∂xHt + Ẽ[∂µH̃t(Xt)]

+ E[∂xτHt+τ |Ft]+ E[Ẽ[∂µτ H̃t+τ (Xt)]|Ft])

+ δ(∂xȞt + Ẽ[∂µ
˜Ȟt(X̌t)]+ E[∂xτ Ȟt+τ |Ft]

+ E[Ẽ[∂µτ
˜Ȟt+τ (X̌t)]|Ft])+ I

f
t

}

dt + ZtdWt ,

(5.7)

with initial condition, X0 = x0, Xs = αs = 0 for s ∈ [−τ , 0), and
terminal condition

YT = λ0

(

∂xgT+ Ẽ[∂µg̃T(XT)]

)

+δ

(

∂xǧT+ Ẽ[∂µ ˜ǧT(X̌T)]

)

+ I
g
T ,

(5.8)
and Yt = Zt = 0 for t ∈ (T,T+τ ], where we have used simplified
notations,

bt := b(t, θt , θt−τ ); ˇbt := b(t, θ̌t , θ̌t−τ );

σt := σ (t, θt , θt−τ ); σ̌t := σ (t, θ̌t , θ̌t−τ );

∂xHt := ∂xH(t, θt , θt−τ ,Yt ,Zt);

Ẽ[∂µH̃t(Xt)] := Ẽ[∂µH(t, θ̃t , θ̃t−τ , Ỹt , Z̃t)(Xt)]

E[∂xτHt+τ |Ft] := E[∂xτH(t + τ , θt+τ , θt ,Yt+τ ,Zt+τ )|Ft];

E[Ẽ[∂µH̃t(Xt)]|Ft] := E[Ẽ[∂µτH(t + τ , θ̃t+τ , θ̃t , Ỹt+τ , Z̃t+τ )

(Xt)]|Ft];

∂xgT := ∂xg(XT ,µT); Ẽ[∂µg̃T(XT)]]

:= Ẽ[∂µg(X̃T ,µT)(XT)]

similar notation for ∂xȞt , Ẽ[∂µ
˜Ȟt(X̌t)], E[∂xτ Ȟt+τ |Ft],

and E[Ẽ[∂µτ
˜Ȟt+τ (X̌t)]|Ft]. (5.9)

We would like to show that the map 8 :(X̌, Y̌ , Ž, α̌) →
8(X̌, Y̌ , Ž, α̌) = (X,Y ,Z,α) is a contraction. Consider
(1X,1Y ,1Z,1α) = (X − X′,Y − Y ′,Z − Z′,α − α′), where
(X′,Y ′,Z′,α′) = 8(X̌′, Y̌ ′, Ž′, α̌′). In addition, for the following
computation, we have used simplified notation:

1bt := b(t, θt , θt−τ )− b(t, θ ′t , θ
′

t−τ );

1ˇbt := b(t, θ̌t , θ̌t−τ )− b(t, θ̌ ′t , θ̌
′

t−τ );

1σt := σ (t, θt , θt−τ )− σ (t, θ
′

t , θ
′

t−τ );

1σ̌t := σ (t, θ̌t , θ̌t−τ )− σ (t, θ̌
′

t , θ̌
′

t−τ )

∂xgT := ∂xg(XT ,µT)− ∂xg(X
′

T ,µT);

1Ẽ[∂µg̃T(XT)]] := Ẽ[∂µg(X̃T ,µT)(XT)]

− Ẽ[∂µg(
˜X̌′T ,µT)(X

′

T)]

1∂xHt := ∂xH(t, θt , θt−τ ,Yt ,Zt)

− ∂xH(t, θ ′t , θ
′

t−τ ,Yt ,Zt)

1Ẽ[∂µH̃t(Xt)] := Ẽ[∂µH(t, θ̃t , θ̃t−τ , Ỹt , Z̃t)(Xt)]

− Ẽ[∂µH(t, θ̃ ′t , θ̃
′

t−τ , Ỹt , Z̃t)(X
′

t)]

1E[∂xτHt+τ |Ft] := E[∂xτH(t + τ , θt+τ , θt ,Yt+τ ,Zt+τ )|Ft]

− E[∂xτH(t + τ , θ ′t+τ , θ
′

t ,Yt+τ ,Zt+τ )|Ft]

1E[Ẽ[∂µH̃t(Xt)]|Ft] := E[Ẽ[∂µτH(t + τ , θ̃t+τ , θ̃t , Ỹt+τ ,

Z̃t+τ )(Xt)]|Ft]− E[Ẽ[∂µτH(t + τ , θ̃ ′t+τ , θ̃
′

t ,

Ỹt+τ , Z̃t+τ )(X
′

t)]|Ft]

similar notation for1∂xȞt ,1Ẽ[∂µ
˜Ȟt(X̌t)], 1E[∂xτ Ȟt+τ |Ft],

and1E[Ẽ[∂µτ
˜Ȟt+τ (X̌t)]|Ft]. (5.10)

Applying integration by parts to1XtYt , we have

d(1XtYt)

= Yt

{

[λ01bt + δ1ˇbt]dt + [λ01σt + δ1σ̌t]dWt

}

−1Xt

{

λ0(∂xHt + Ẽ[∂µH̃t(Xt)]+ E[∂xτHt+τ |Ft]

+ E[Ẽ[∂µτ H̃t+τ (Xt)]|Ft])+ δ(∂xȞt + Ẽ[∂µ
˜Ȟt(X̌t)]

+ E[∂xτ Ȟt+τ |Ft]+ E[Ẽ[∂µτ
˜Ȟt+τ (X̌t)]|Ft])

}

dt

+1XtZtdWt + (λ01σt + δ1σ̌t)Ztdt.

(5.11)
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After integrating from 0 to T, and taking expectation on both
sides, we obtain

E[1XTYT]

=λ0E

∫ T

0

(

1btYt +1σtZt −1Xt(∂xHt + Ẽ[∂µH̃t(Xt)]

+ E[∂xτHt+τ |Ft]+ E[Ẽ[∂µτ H̃t+τ (Xt)]|Ft])

)

dt

+ δE

∫ T

0

(

1ˇbtYt +1σ̌Zt −1Xt(∂xȞt + Ẽ[∂µ
˜Ȟt(X̌t)]

+ E[∂xτ Ȟt+τ |Ft]+ E[Ẽ[∂µτ
˜Ȟt+τ (X̌t)]|Ft])

)

dt

(5.12)
In the meantime, from the terminal condition of YT given in
(5.8), and since g is convex, we also have

E[1XTYT]

= E

[

1XT

(

λ0(∂xgT + Ẽ[∂µg̃T(XT)])+ δ(∂xǧT

+Ẽ[∂µ ˜ǧT(X̌T)])+ I
g
T

)]

≥ λ0E[g(XT ,µT)− g(X′T − µ
′

T)]

+ δ1XT(∂xǧT + Ẽ[∂µ ˜ǧT(X̌T)])+1XTI
g
T

(5.13)
Following the proof of sufficient part of maximum principle and
using (5.12), and (5.13), we find

λ0(J(α) − J(α′))

= λ0E[g(XT ,µT)− g(X′T ,µ
′

T)]

+ λ0E

∫ T

0
[f (t, θt ,Xt−τ ,µt−τ )

− f (t, θ ′t ,X
′

t−τ ,µ
′

t−τ )]dt

≤ E[1XTYT]− δ1XT(∂xǧT + Ẽ[∂µ ˜ǧT(X̌T)])−1XTI
g
T

+ λ0E

∫ T

0
[f (t, θt ,Xt−τ ,µt−τ )− f (t, θ ′t ,X

′

t−τ ,µ
′

t−τ )]dt

= λ0E

∫ T

0

[

1btYt +1σtZt

− 1Xt(∂xHt + Ẽ[∂µH̃t(Xt)]+ E[∂xτHt+τ |Ft]

+ E[Ẽ[∂µτ H̃t+τ (Xt)]|Ft])

]

dt

+ δE

∫ T

0

[

1ˇbtYt +1σ̌tZt −1Xt(∂xȞt + Ẽ[∂µ
˜Ȟt(X̌t)]

+ E[∂xτ Ȟt+τ |Ft]+ E[Ẽ[∂µτ
˜Ȟt+τ (Xt)]|Ft])

]

dt

+ λ0E

∫ T

0
[H(t, θt , θt−τ ,Yt ,Zt)−H(t, θ ′t , θ

′

t−τ ,Yt ,Zt)]dt

− λ0E

∫ T

0
(1btYt +1tσZt)dt − δ1XT(∂xǧT

+ Ẽ[∂µ ˜ǧT(X̌T)])−1XTI
g
T

= λ0E

∫ T

0

[

H(t, θt , θt−τ ,Yt ,Zt)−H(t, θ ′t , θ
′

t−τ ,Yt ,Zt)

− 1Xt(∂xHt + Ẽ[∂µH̃t(Xt)]+ E[∂xτHt+τ |Ft]

+ E[Ẽ[∂µτ H̃t+τ (Xt)]|Ft])

]

dt + δE

∫ T

0

[

1ˇbtYt

+ 1σ̌Zt −1Xt(∂xȞt + Ẽ[∂µ
˜Ȟt(X̌t)]+ E[∂xτ Ȟt+τ |Ft]

+ E[Ẽ[∂µτ
˜Ȟt+τ (X̌t)]|Ft])

]

dt

− δ1XT(∂xǧT + Ẽ[∂µ ˜ǧT(X̌T)])−1XTI
g
T

≤ −E

∫ T

0
λ0κ|1αt|

2dt + δE

∫ T

0

[

1ˇbtYt +1σ̌tZt

− 1Xt(∂xȞt + Ẽ[∂µ
˜Ȟt(X̌t)]+ E[∂xτ Ȟt+τ |Ft]

+E[Ẽ[∂µτ
˜Ȟt+τ (X̌t)]|Ft])

]

dt − δ1XT(∂xǧT

+ Ẽ[∂µ ˜ǧT(X̌T)])−1XTI
g
T (5.14)

Reverse the role of α and α′, we also have

λ0(J(α
′)− J(α))

≤− E

∫ T

0
λ0κ|1α

′

t|
2dt + δE

∫ T

0

[

1ˇb′tY
′

t +1σ̌
′

tZ
′

t

−1X′t(∂xȞ
′

t + Ẽ[∂µ
˜Ȟ′t(X̌

′

t)]+ E[∂xτ Ȟ
′

t+τ |Ft]

+ E[Ẽ[∂µτ
˜Ȟ′t+τ (X̌

′

t)]|Ft])

]

dt − δ1X′T(∂xǧT

+ Ẽ[∂µ ˜ǧT(X̌
′

T)])−1X′TI
g
T

(5.15)

Summing (5.14) and (5.15), using the fact that b and σ have the
linear form, using change of time and Lipschitz assumption, it
yields

2λ0κE

∫ T

0
|1αt|

2dt

≤ δE

∫ T

0

[

1ˇbt1Yt +1σ̌1Zt −1Xt(1∂xȞt

+ 1Ẽ[∂µ
˜Ȟt(Xt)]+1E[∂xτ Ȟt+τ |Ft]

+ 1E[Ẽ[∂µτ
˜Ȟt+τ (Xt)]|Ft])

]

dt + δ1XT(∂x′ ǧ
′

T

− ∂xǧT + Ẽ[∂µ ˜ǧ
′

T(X̌T)]− Ẽ[∂µ ˜ǧT(X̌T)])

≤

1

2
E

∫ T

0

[

ǫ(|1Xt|
2
+ |1Yt|

2
+ |1Zt|

2)

+

1

ǫ
δ2
(

|1ˇbt|
2
+ |1σ̌ |2 + |1∂xȞt +1Ẽ[∂µ

˜Ȟt(Xt)]

+ 1E[∂xτ Ȟt+τ |Ft]+1E[Ẽ[∂µτ
˜Ȟt+τ (Xt)]|Ft]|

2

)]

dt

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 May 2020 | Volume 6 | Article 1141

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Fouque and Zhang Deep Learning for Delay MFC

+

1

2

(

ǫ|1XT |
2
+

1

ǫ
δ2
∣

∣

∣

∣

∂x′ ǧ
′

T − ∂xǧT + Ẽ[∂µ ˜ǧ
′

T(X̌T)]

− Ẽ[∂µ ˜ǧT(X̌T)]

∣

∣

∣

∣

2)

≤

1

2
ǫE

[

∫ T

0
ǫ(|1Xt|

2
+ |1Yt|

2

+ |1Zt|
2
+ |1αt|

2)dt + |1XT |
2
]

+

1

2
δ
C

ǫ
E

[

∫ T

0
(|1X̌t|

2
+ |1Y̌t|

2
+ |1Žt|

2

+ |1α̌t|
2)]dt + |1X̌T |

2
]

, (5.16)

Next, we apply Ito’s formula to1X2
t ,

d1X2
t

= 21XtdXt + d〈X,X〉t

= 21Xt(λ01bt + δ1ˇbt)dt + 21Xt(λ01σt

+ δ1σ̌t)dWt +

(

λ01σt + δ1σ̌t

)2

dt

(5.17)

Then integrate from 0 to T, and take expectation,

E[|1Xt|
2]

= 2λ0E

∫ t

0
|1Xs1bs|ds+ 2δE

∫ t

0
|1Xs1ˇbs|ds

+ E

∫ t

0
|λ01σs + δ1σ̌s|

2ds

≤λ0E

∫ t

0
(|1Xs|

2
+ |1bs|

2)ds+ E

∫ t

0
(|1Xs|

2
+ δ2|1ˇbs|

2)ds

+ E

∫ t

0
(2λ20|1σs|

2
+ 2δ2|1σ̌s|

2)ds

≤CE

∫ t+τ

0
(|1Xs|

2
+ |1αs|

2)ds+ δCE

∫ t+τ

0
(|1X̌s|

2
+ |1α̌s|

2)ds

(5.18)
From Gronwall’s inequality, we can obtain

sup
0≤t≤T

E[|Xt|
2] ≤ CE

∫ T

0
|1αt|

2dt+δCE

∫ T

0
(|1X̌t|

2
+|1α̌t|

2)dt

(5.19)
Similarly, applying Ito’s formula to |1Yt|

2, and taking
expectation, we have

E

[

|1Yt|
2
+

∫ T

t
|1Zs|

2ds

]

= 2λ0E

∫ T

t

∣

∣

∣

∣

1Yt

(

1∂xHt +1Ẽ[∂µH̃t(Xt)]

+1E[∂xτHt+τ |Ft]+1E[Ẽ[∂µτ H̃t+τ (Xt)]|Ft]

)
∣

∣

∣

∣

+ 2δE

∫ T

t

∣

∣

∣

∣

1Yt

(

1∂xȞt +1Ẽ[∂µ
˜Ȟt(X̌t)]+1E[∂xτ Ȟt+τ |Ft]

+1E[Ẽ[∂µτ
˜Ȟt+τ (X̌t)]|Ft]

)∣

∣

∣

∣

+ E|1YT |
2

≤E

∫ T

t

(

1

ǫ
|1Yt|

2
+ ǫλ20

∣

∣

∣

∣

1∂xHt +1Ẽ[∂µH̃t(Xt)]

+1E[∂xτHt+τ |Ft]+1E[Ẽ[∂µτ H̃t+τ (Xt)]|Ft]

∣

∣

∣

∣

2)

dt

+ E

∫ T

t

(

|1Yt|
2
+ δ2

∣

∣

∣

∣

1∂xȞt +1Ẽ[∂µ
˜Ȟt(X̌t)]

+1E[∂xτ Ȟt+τ |Ft]+1E[Ẽ[∂µτ
˜Ȟt+τ (X̌t)]|Ft]

∣

∣

∣

∣

2)

dt

+ E

∣

∣

∣

∣

λ0

(

1∂xgT +1Ẽ[∂µg̃T(XT)]

)

+ δ

(

1∂xǧT +1Ẽ[∂µ ˜ǧT(X̌T)]

)∣

∣

∣

∣

2

(5.20)

Choose ǫ = 96max{R2, L}, and from assumption (H5.1
- H5.2) and Gronwall’s inequality, we obtain a bound for
sup0≤t≤T E|1Yt|

2; and then substitute the it back to the same

inequality, we are able to obtain the bound for
∫ T
0 E|Zt|

2dt. By
combining these two bounds, we deduce that

E

[

sup
0≤t≤T

|Yt|
2
+

∫ T

0
|Zt|

2dt

]

≤CE

(

sup
0≤t≤T

|1Xt|
2
+

∫ T

0
|1αt|

2dt

)

+ δCE

[

sup
0≤t≤T

(

|1X̌t|
2
+ |1Y̌t|

2
)

+

∫ T

0

(

|1Žt|
2
+ |1α̌t|

2
)

dt

]

(5.21)

Finally, combining (5.19) and (5.21), and (5.16), we deduce

E

[

sup
0≤t≤T

|1Xt|
2
+ sup

0≤t≤T

|1Yt|
2
+

∫ T

0

(

|1Z2
t | + |1αt|

2
)

dt

]

≤δCE

[

sup
0≤t≤T

|1X̌t|
2
+ sup

0≤t≤T

|1Y̌t|
2
+

∫ T

0

(

|1Žt|
2
+ |1α̌t|

2
)

dt

]

(5.22)

Let δ0 =
1
2C , it is clear that the mapping8 is a contraction for all

δ ∈ (0, δ0). It follows that there is a unique fixed point which is
the solution of MV-FABSDE(λ) for λ = λ0 + δ, δ ∈ (0, δ0).

Proof of Theorem 5.1: For λ = 0, FABSDE(0) has a unique
solution. Using Lemma 5.2, there exists a δ0 > 0 such that
FBSDE(δ) has a unique solution for δ ∈ [0, δ0], assuming (n −
1)δ0 < 1 ≤ nδ0. Following by a induction argument, we repeat
Lemma 5.2 for n times, which gives us the existence of the unique
solution of FABSDE(1).

6. CONCLUSION

Overall, we presented a comprehensive study of a general
class of mean-field control problems with delay effect. The
state dynamics is described by a McKean–Vlasov stochastic
delayed differential equation. We derive the adjoint process
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associated to the dynamics, which is in the form of an
anticipated backward stochastic differential equation of
McKean–Vlasov type. We also prove a version of stochastic
maximum principle, which gives necessary and sufficient
conditions for the optimal control. Furthermore, we prove
the existence and uniqueness of this class of forward
anticipated backward stochastic differential equations under
suitable conditions.

However, due to the lack of explicit solutions, numerical
methods are needed. The non-linear nature of the problem due
to the McKean–Vlasov aspect combined with non-Markovianity
due to delay rule out classical numerical methods. Our study
show that deep learning methods can deal with these obstacles.
we proposed two algorithms based on machine learning to
numerically solve the control problem. One is to directly
approximate the control using a neural network, while the loss
is given by the objective function in the control problem. The
other algorithm is based on the system of forward and backward
stochastic differential equations. We approximate the adjoint
processes (Y·,Z·) and the conditional expectation of the adjoint
process E[Y·+τ |F·] using neural networks. In this case, there
are two loss functions that we need to minimize as shown in
(3.16). The first loss is associated with the adjoint process Y·,

and the other one is related to E[Y·+τ |F·]. After minimizing
the losses, the optimal control can be readily obtained from
the adjoint processes. In addition, Figure 8 illustrates that the
optimal value to the control problem, that is computed from
different methods, converges. Moreover, our method also works
when the control problem has no delay. As a sanity check, we
provide an example of control problem without delay effect, and
we show that the solution obtained from the algorithm matches
the explicit solution.
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to Distinguish Truncated Operational
Risk Models
Daoping Yu*
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In this paper three information criteria are employed to assess the truncated operational

risk models. The performances of the three information criteria on distinguishing the

models are compared. The competing models are constructed using Champernowne,

Frechet, Lognormal, Lomax, Paralogistic, and Weibull distributions, respectively.

Simulation studies are conducted before a case study. In the case study, certain

distributional models conform to the external fraud type of risk data in retail banking

of Chinese banks. However, those models are difficult to distinguish using standard

information criteria such as Akaike Information Criterion and Bayesian Information

Criterion. We have found no single information criterion is absolutely more effective than

others in the simulation studies. But the information complexity based ICOMP criterion

says a little bit more if AIC and/or BIC cannot kick the Lognormal model out of the pool

of competing models.

Keywords: information criteria, model selection, operational risk, truncated models, Value at Risk (VaR)

1. INTRODUCTION

This paper mainly applies model selection information criteria to operational risk models subject
to data truncation. In the practice of collecting operational loss data of a bank, certain losses below
a threshold value are not recorded. Thus, the data at hand can be viewed as truncated from below.
The truncated models, compared to the shifted models and naive models, have been determined to
be appropriate to model loss data for operational risk [1].

Model selection differs from model validation. Perhaps there are a few models passing the
validation process. Model selection criteria are further used to separate a most suitable model from
the rest. Traditional information criteria such as Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) have been documented [2] for a banking organization to employ when
comparing alternative models. The recent research work of Isaksson [3] and Svensson [4] have
explored model selection for operational risk models. Using AIC and/or BIC, they have determined
the overall best distributional model(s) for internal data or external data for operational risk in
financial institutions.

The purpose of this paper is to assess the effectiveness of information complexity based ICOMP
criterion, compared with AIC and/or BIC, to distinguish the fat tailed distributional models for
operational risk.

The structure of the remaining of this paper is as follows. In section 2, six candidate distributions
for construction of the truncated models of operational risk are reviewed: they are Champernowne
distribution, Frechet distribution, Lognormal distribution, Lomax distribution, Paralogistic
distribution, and Weibull distribution. In section 3, we give an introduction to such standard

44
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information criteria as AIC and BIC for model selection. After
reviewing standard information criteria, another information
criterion based on information complexity, known as ICOMP, is
presented. In section 4, we conduct simulation studies for the six
distributional models. In section 5, we walk the readers through
the model fitting, model validation, VaR estimation, and model
selection procedure, using a real data set for external fraud type
of losses in retail banking across commercial banks in China.
The practical performance of all information criteria presented
in this paper is compared. Concluding remarks are provided
in section 6.

2. PARAMETRIC DISTRIBUTIONS FOR
OPERATIONAL RISK

The real data of operational losses usually exhibit fat tail
properties. The main body of the data are of low severity and
high frequency. In other words, operational losses of small sizes
occur on a frequent basis. The losses of significantly larger sizes
would occur less frequently, but cannot be ignored, since a few
extremely large magnitude of losses could be very influential
to the financial health and security of a financial institution.
A few appropriate distributions for modeling the skewed type
of operational loss data have been studied in the literature: for
instance, the Champernowne distribution (see for example, [5]),
the Lognormal distribution (see for example, [6]), and the Lomax
distribution (also known as two-parameter Pareto distribution)
as a special case of the Generalized Pareto Distribution (see for
example, [7]), etc. There are a few other distributions that are
suitable to model fat tailed risks, such as the Frechet distribution,
the Paralogistic distribution, and theWeibull distribution (see for
instance, [8]).

2.1. Champernowne Distribution
The Champernowne distribution is originally proposed in the
study of income distribution, and it is a generalization of the
logistic distribution, firstly introduced by an econometrician D.
G. Champernowne [9, 10], in the development of distributions
to describe the logarithm of income. The Champernowne
distribution has probability density function (pdf)

fCHAMP(α,M)(x) =
αMαxα−1

(xα
+Mα)2

, x > 0, (1)

and cumulative distribution function (cdf)

FCHAMP(α,M)(x) =
xα

xα
+Mα

, x > 0, (2)

where α > 0 is the shape parameter and M > 0 is
another parameter that represents the median of the distribution.
The Champernowne distribution looks more like a Lognormal
distribution near x value of 0 when α > 1, while converging to
a Lomax distribution in the tail. In addition, by inverting the cdf
given in (2) one obtains the quantile function (qf) as

F−1
CHAMP(α,M)

(β) = M

(

β

1− β

)1/α

, 0 < β < 1. (3)

For more details about the application of Champernowne
distribution to operational risk modeling, readers are referred to
a monograph (see [5]).

2.2. Frechet Distribution
The Frechet distribution is also known as the inverse Weibull
distribution. The pdf of the two-parameter Frechet distribution
is given by

fFrechet(α, θ)(x) =
α (x/θ)−α e−(x/θ)−α

x
, x > 0, (4)

and the cdf is given by

FFrechet(α, θ)(x) = e−(x/θ)−α

, x > 0. (5)

The qf is found by inverting (5) and given by

F−1
Frechet(α, θ)

(β) = θ
(

− logβ
)

−1/α
, 0 < β < 1. (6)

For the Frechet distribution, α > 0 is the shape parameter, and
θ > 0 is the scale parameter.

2.3. Lognormal Distribution
The Lognormal distribution with parameters µ and σ is defined
as the distribution of a random variable X whose logarithm is
normally distributed with mean µ and variance σ 2. The two-
parameter Lognormal distribution has pdf

fLN(µ,σ )(x) =















1
√

2πσx
e
−

(

log x− µ
)2

2σ 2 , if x > 0,

0, if x ≤ 0,

(7)

where−∞ < µ < ∞ is the location parameter and σ > 0 is the
scale parameter.

The two-parameter Lognormal distribution has cdf

FLN(µ,σ )(x) = 8

(

log x− µ

σ

)

, x > 0, (8)

and by inverting (8), the quantile function

F−1
LN(µ,σ )

(β) = eµ + σ8−1(β), 0 < β < 1 (9)

is obtained. Here 8 and 8−1 denote the cdf and qf of the
standard normal distribution, respectively.

2.4. Lomax Distribution
The pdf of the two-parameter Pareto distribution, also called
Lomax distribution, is given by

fLOMAX(α, θ)(x) = αθα (x+ θ)−α−1 , x > 0, (10)

and the cdf is given by

FLOMAX(α, θ)(x) = 1−
(

θ/(x+ θ)
)α

, x > 0, (11)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 August 2020 | Volume 6 | Article 2845

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Yu Selecting Truncated Operational Risk Model

and the qf is found by inverting (11) and given by

F−1
LOMAX(α, θ)

(β) = θ
(

(1− β)−1/α
− 1

)

, 0 < β < 1. (12)

We refer readers to Arnold [11] for more details of Pareto
distributions, and see Klugman et al. [8] for the applications of
Pareto distributions to insurance loss modeling.

2.5. Paralogistic Distribution
The pdf of the two-parameter Paralogistic distribution is given by

fPL(α, θ)(x) =
α2 (x/θ)α

x (1+ (x/θ)α)α+1
, x > 0, (13)

and the cdf is given by

FPL(α, θ)(x) = 1−
(

1+ (x/θ)α
)

−α
, x > 0, (14)

and the qf is found by inverting (14) and given by

F−1
PL(α, θ)

(β) = θ
(

(1− β)−1/α
− 1

)1/α
, 0 < β < 1. (15)

The Paralogistic distribution is characterized by the shape
parameter α > 0 and the scale parameter θ > 0.

2.6. Weibull Distribution
The pdf of the two-parameter Weibull distribution is given by

fWeibull(α, θ)(x) =
α (x/θ)α e−(x/θ)α

x
, x > 0, (16)

and the cdf is given by

FWeibull(α, θ)(x) = 1− e−(x/θ)α , x > 0, (17)

and the qf is found by inverting (17) and given by

F−1
Weibull(α, θ)

(β) = θ
(

− log (1− β)
)1/α

, 0 < β < 1. (18)

The parameter α > 0 characterizes the shape of the Weibull
distribution, and the parameter θ > 0 characterizes the scale.

3. INFORMATION CRITERIA

Given a data set, X1, . . . ,Xn, the amount of objective information
contained in the data is fixed. However, different models may be
fitted to the same data set in order to extract the information.
We want to select the model that best approximates the
distribution of the data. There are various information criteria
for model selection, such as the Akaike Information Criterion
[12], Bayesian Information Criterion [13], and Information
Complexity (ICOMP) [14, 15]. The defining formulas of all these
three contain negative double log-likelihood.

Let L
(

θ1, . . . , θk
∣

∣X1, . . . ,Xn

)

be the likelihood function of a
model with k parameters based on a sample of size n, and let̂θ1,
. . . , ̂θk denote the corresponding estimators of those parameters
using the method of Maximum Likelihood Estimation (MLE).

The AIC is defined as:

AIC = −2 logL
(

̂θ1, . . . ,̂θk
∣

∣X1, . . . ,Xn

)

+ 2k. (19)

The BIC is defined as:

BIC = −2 logL
(

̂θ1, . . . ,̂θk
∣

∣X1, . . . ,Xn

)

+ k log n. (20)

The ICOMP is defined as:

ICOMP = −2 logL
(

̂θ1, . . . ,̂θk
∣

∣X1, . . . ,Xn
)

+ 2C1

(

I−1(̂θ1, . . . ,̂θk)
)

,

(21)

where

C1

(

I−1
)

=

s

2
log

(

tr
(

I−1
)

s

)

−

1

2
log

(

det
(

I−1
))

,

with s, tr, and det denoting the rank, trace, and determinant of
I−1 (the inverse of Fisher information matrix), respectively.

Using those information criteria, the preferred model is the
one that minimizes AIC, BIC, or ICOMP. In general, it is
known that when the number of parameters increases, the model
likelihood increases as well. We see that there is a competition
between the increase in the log-likelihood value and the increase
in the number of model parameters in the AIC and BIC formulas.
If the increase in the log-likelihood value is not sufficient to
compensate the increase in the number of parameters, then it is
not worthwhile to have the additional parameters. Note also that
the BIC criterion penalizes the model dimensionality more than
AIC for log n > 2.

ICOMP penalizes the interdependencies among parameter
estimators of MLE, i.e., the complexity of variance-covariance
structure of model’s maximum likelihood estimators via the
inverse Fisher information matrix. It is a generalization of the
maximal information measure proposed by van Emden [16]. Let
In = n ·I denote the Fisher informationmatrix based on a sample
of size n. The ICOMP penalty term is a function of the matrix I

rank, trace and determinant. The minimum value of the penalty
term is zero, which is reached when the variances of parameter
estimators are equal and the covariances are zeros. The ICOMP
criterion is very effective for regression-type models.

4. SIMULATION STUDIES

To get an idea of how each of AIC, BIC, and ICOMP performs
in selecting distributional models, let us first of all conduct some
simulation studies. The purpose of the simulation is to see which
criterion can capture the true underlying distribution fromwhich
the data is generated from.

We are going to simulate data from each of Champernowne,
Frechet, Lognormal, Lomax, Paralogistic, and Weibull
distributions, with specified parameter values. For each
distribution, the simulation is done twice, the first time with a
relatively small sample size of 100, and the second time with a
relatively large sample size of 1,000. Thus, there are in total 12
data sets being simulated. Then we fit all six distributions to each
of the 12 simulated data sets.
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In Tables 1–12, we will present the results of the simulation
studies, about the performance of all three information criteria.

In Table 1, AIC values of 2,142 and 2,141 are both regarded
as the smallest AIC values since the difference in a magnitude of

TABLE 1 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 2,142 2,191 2,148 2,144 2,141 2,155

BIC 2,147 2,196 2,153 2,149 2,146 2,160

ICOMP 2,155 2,205 2,144 2,160 2,155 2,171

Data generated from Champernowne (shape = 1.5, scale = 12,000), sample size 100.

TABLE 2 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 21,823 22,085 21,859 21,911 21,833 22,181

BIC 21,833 22,095 21,869 21,921 21,843 22,190

ICOMP 21,836 22,099 21,855 21,928 21,848 22,197

Data generated from Champernowne (shape = 1.5, scale = 12,000), sample size 1,000.

TABLE 3 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 2,348 2,339 2,353 2,364 2,353 2,399

BIC 2,353 2,344 2,358 2,370 2,358 2,404

ICOMP 2,362 2,354 2,349 2,374 2,370 2,408

Data generated from Frechet (shape = 1, scale = 20,000), sample size 100.

TABLE 4 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 24,051 23,913 24,138 24,197 24,101 24,784

BIC 24,061 23,923 24,147 24,207 24,111 24,794

ICOMP 24,066 23,928 24,134 24,213 24,135 24,803

Data generated from Frechet (shape = 1, scale = 20,000), sample size 1,000.

TABLE 5 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 1,821 1,833 1,822 1,833 1,822 1,850

BIC 1,826 1,838 1,827 1,839 1,827 1,855

ICOMP 1,833 1,843 1,818 1,840 1,832 1,867

Data generated from Lognormal (location = 7, scale = 3), sample size 100.

one is too small and that might be due to round up of decimals.
That tiny difference is insignificant. The same logic applies to
the lowest BIC values of 2,147 and 2,146. When the sample size
is 100, AIC and BIC cannot separate the true Champernowne

TABLE 6 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 18,900 19,029 18,876 19,034 18,921 19,027

BIC 18,910 19,039 18,886 19,044 18,931 19,037

ICOMP 18,912 19,039 18,872 19,043 18,932 19,044

Data generated from Lognormal (location = 7, scale = 3), sample size 1,000.

TABLE 7 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 2,045 2,098 2,051 2,044 2,045 2,052

BIC 2,050 2,103 2,056 2,049 2,050 2,058

ICOMP 2,057 2,111 2,047 2,058 2,058 2,068

Data generated from Lomax (shape = 1.2, scale = 8,000), sample size 100.

TABLE 8 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 21,075 21,400 21,104 21,075 21,075 21,353

BIC 21,085 21,410 21,114 21,085 21,085 21,363

ICOMP 21,089 21,415 21,100 21,090 21,089 21,370

Data generated from Lomax (shape = 1.2, scale = 8,000), sample size 1,000.

TABLE 9 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 2,085 2,148 2,093 2,098 2,080 2,083

BIC 2,091 2,153 2,098 2,104 2,086 2,088

ICOMP 2,097 2,162 2,089 2,107 2,094 2,096

Data generated from Paralogistic (shape = 2, scale = 20,000), sample size 100.

TABLE 10 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 20,973 21,385 20,996 21,254 20,955 21,081

BIC 20,983 21,395 21,005 21,264 20,965 21,091

ICOMP 20,984 21,398 20,992 21,262 20,968 21095

Data generated from Paralogistic (shape = 2, scale = 20,000), sample size 1,000.
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TABLE 11 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 2,096 2,146 2,101 2,146 2,107 2,087

BIC 2,101 2,152 2,106 2,151 2,112 2,092

ICOMP 2,111 2,160 2,097 2,156 2,120 2,105

Data generated from Weibull (shape = 0.3, scale = 5,000), sample size 100.

TABLE 12 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 19,332 – 19,418 19,937 19,469 19,194

BIC 19,342 – 19,428 19,947 19,478 19,203

ICOMP 19,346 – 19,414 19,945 19,480 19,211

Data generated from Weibull (shape = 0.3, scale = 5,000), sample size 1,000.

model from the Paralogistic model. ICOMP tends to favor the
Lognormal more than all other models, even though the true
model is Champernowne instead of Lognormal. This bias can be
corrected by increasing the sample size.

In Table 2, across each row of the three information criteria,
the lowest value has been highlighted. All the three information
criteria are able to distinguish the true Champernowne model
from the other models, if the data is generated with a large sample
size of 1,000.

From Table 3, AIC and BIC can determine the best model that
is consistent with the underlying true model that generates the
data, since the true Frechet model produces the lowest AIC and
BIC values among all models. ICOMP says the Lognormal model
has the smallest information complexity value, while the true
Frechet model turns out to have the second lowest complexity
value. This error may be due to the relatively small sample size
of 100, and it can be eliminated by increasing the sample size to
1,000, which can be seen in the following table.

When the sample size is 1,000, all AIC, BIC, and ICOMP
criteria are successful in identifying the Frechet model as the true
model from which the data is generated. This is supported by the
lowest values of all information criteria for the Frechet model in
Table 4.

In Table 5, we have highlighted a few lowest values of AIC
and/or BIC, ignoring the slight difference of one in the values,
perhaps due to round up error. It seems that neither AIC nor
BIC can separate the true Lognormal model from the other
two competing models: the Champernowne model and the
Paralogistic model, because all three models produce the lowest
AIC and BIC values. ICOMP successfully distinguishes the true
Lognormal model from all other models. This simulation study
of fitting various models to Lognormal data of sample size 100
suggests that ICOMP is indeed more effective than AIC and BIC
to identify the true Lognormal model when the sample size is as
small as 100. But this advantage of ICOMP may disappear if we
increase the sample size to 1,000, as shown in the next table.

The Lognormal model produces the lowest AIC value, the
lowest BIC value, and the lowest ICOMP value, as indicated in
Table 6. Thus, all three information criteria successfully select
the true underlying model that generates the data, when the true
model is Lognormal and the sample size is 1,000.

From Table 7, we can tell that AIC and BIC fail to distinguish
among the Champernowne model, the true Lomax model, and
the Paralogistic model. We ignore the difference of one in the
values that may be due to round up error, and those highlighted
values are treated as the smallest ones in that particular row.
ICOMP has a biased favor toward the Lognormal model,
suggested by the lowest ICOMP value of 2,047 produced by the
Lognormal model. However, the true model is Lomax instead of
Lognormal. This type of error will go away if the sample size is
bigger as indicated in the coming table.

When the true model that generates the data is Lomax, even
if the sample size is as large as 1,000, none of AIC, BIC, or
ICOMP seems to be able to distinguish the competing three
different models: they are the Champernowne model, the true
Lomax model, and the Paralogistic model, since they all produce
the lowest information criteria values across each row in Table 8.
The magnitude of one in the difference of the highlighted values
may be subject to round up issues, and such tiny differences do
not say much about distinguishing the models.

When the sample size is 100, AIC and BIC can weakly identify
the true Paralogistic model that generates the data, since the
Paralogistic model produces the smallest AIC and BIC values in
Table 9. The reason we say weakly identifying the true model is
because the AIC and BIC values of a competing Weibull model
are close to those of the true model. However, ICOMP makes a
wrong decision to select the Lognormal model (with the lowest
ICOMP value of 2,089), even though the ICOMP value (2,094) of
the true Paralogistic model comes as the next lowest. ICOMP will
make a right decision when the sample size is increased to 1,000
as in the subsequent table.

When the sample size is as large as 1,000, all AIC, BIC, and
ICOMP can correctly identify that the true underlying process
that generates the data is the Paralogistic model, which has the
lowest information criteria values as highlighted in Table 10.

From Table 11, you can tell that AIC and BIC are able to
identify the true Weibull model that has generated the data
of a relatively small sample size 100, since the Weibull model
produces the lowest AIC and BIC values. But ICOMP fails to do
so, and ICOMP erroneously picks the Lognormalmodel (with the
lowest ICOMP value of 2,097) and puts the true Weibull model
(with the next lowest ICOMP value of 2,105) in the second place.

Fortunately, when the sample size increases from 100 to 1000,
ICOMP seems to correct its mistake as of wrongly picking the
Lognormal model in the previous table, and now ICOMP also
identifies the trueWeibull model that has generated the data. AIC
and BIC are still working well. All three information criteria end
up to have the smallest value for theWeibull model. By the way, in
thisTable 12, there are no values produced for the Frechet model,
since the numerical procedure in maximizing the log-likelihood
does not converge. Obviously, when the sample size is 1,000, the
Frechet model is definitely not a good fit for the data generated
from the Weibull model.
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Even if we have only presented 12 tables as above, more
simulation studies can be done across a wide range of the
parameter values for each distribution, and ICOMP still exhibits
a tendency to favor the Lognormal model when the sample size is
small. That sort of tendency can disappear when the sample size
gets large enough.

Let us make a remark here. When the true data generating
process is a Lognormal model, ICOMP beats AIC and BIC if
the sample size is small. When the data of small sample size
is simulated from another distribution, ICOMP might lose the
competition to AIC and/or BIC.

5. CASE STUDY: EXTERNAL FRAUD RISK

In this section, we illustrate the model performance on the real
data. We walk through the entire process of modeling, beginning
with model fitting and model validation, then Value-at-Risk
(VaR) estimation, and ends up withmodel selection using various
information criteria.

We have collected data for operational losses of external fraud
type in retail banking in branches of major commercial banks of
China in 2009–2015. We have recorded the amount of principal
indemnification involved in each event. If a savings account
holder or a debit card holder loses their money of deposit due to
external fraud, a certain proportion of the original loss amount
of principal deposit may be indemnified or reimbursed by the
bank to mitigate the loss of bank customers. That proportion is
determined by the court in accord with how much responsibility
the bank is supposed to assume during the events of external
fraud. Usual proportion numbers could be 100, 90, 80, 70, 50, or
0%. There are 181 data points that represent the cost of debit card
or savings account external fraud events for branches of major
commercial banks in China. The cost measure is in Chinese Yuan
(RMB) currency. Even though the data have been collected over
a span of a few years, the loss sizes are not scaled for inflation.
Also the legal costs, involved in the law sue process, are not
included. To illustrate the impact of data modeling threshold on
the considered models, we split the data set into two portions:
losses that are at least 26,000 RMB, which will be regarded
as observed and used for model building and VaR estimation;
and losses that are below 26,000 RMB, which will be treated as
unrecorded by the bank or unobserved. The modeling threshold
is a different concept from the reporting threshold: the former is
the threshold chosen by the model builders, and the latter is the
threshold chosen by each individual bank. We use a modeling
threshold of 26,000 RMB just for demonstration purposes. Such
a choice of modeling threshold results in 103 observed losses. A
quick summary statistics of the 103 observed data shows that it is
right-skewed and tentatively heavy-tailed, with the first quartile
40,085, median 72,000, and the third quartile 220,879; its mean is
342,838, standard deviation 944,314, and skewness 5.731.

Such a real dataset is used to conduct the case study, and we
consider three distributional models; they are Champernowne,
Lomax, and Lognormal models. MLE estimators are solved
numerically, when explicit formulas can not be obtained for
maximization of the log-likelihood functions. In Table 13, we

report the resulting MLE parameter estimates. Further, we assess
all models using the visual inspection in Figures 1–6 and formal
goodness-of-fit test statistics. The KS and AD goodness-of-fit test
statistics are given in Table 14. The VaR estimates are provided in
Table 15. Finally the information criteria values are summarized
in Table 16.

5.1. Model Fitting
Using the 103 observations of the aforementioned construction
of dataset, exceeding (inclusively) the modeling threshold 26, 000
Chinese RMB, we fit the Champernowne, Frechet, Lognormal,
Lomax, Paralogistic, and Weibull distributions to the data by
the truncated approach. The values of parameter estimators are
obtained using numerical procedure, when there are no closed
form formulas for the parameter estimators. The results are
reported in the following table.

For the truncated Champernownemodel, the shape parameter
estimate is 0.84, and the scale parameter estimate 11,654 is an
estimate of the median of the fitted Champernowne distribution.
For the truncated Frechet model, the shape parameter estimate
is 0.812, and the scale parameter estimate is 16,440. For the
truncated Lognormal model, the location parameter estimate
of the Lognormal distribution is 6.66, and the scale parameter
estimate is 2.952. For the truncated Lomax model, the shape
parameter estimate is 0.82, and the scale parameter estimate is

TABLE 13 | Parameter MLEs using truncated approach of the Champernowne,

Frechet, Lognormal, Lomax, Paralogistic, and Weibull models.

ParameterChampernowne Frechet Lognormal Lomax Paralogistic Weibull

Shape 0.84 0.812 – 0.82 0.912 0.285

Scale 11,654 16,440 2.952 12,812 12,199 5,500

Location – – 6.66 – – –

FIGURE 1 | Champernowne QQ-plot.
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FIGURE 2 | Frechet QQ-plot.

FIGURE 3 | Lognormal QQ-plot.

12,812, which in general is not the median estimate unless the
shape parameter were exactly equal to one. The shape parameter
estimate of the Champernowne model 0.84 seems pretty close
to the shape parameter estimate 0.82 of the Lomax model. If we
compare the cdf of the Champernowne distribution with that of
the Lomax distribution, we could find that they would coincide
when the shape parameter α of both were equal to one. For
the truncated Paralogistic model, the shape parameter estimate
is 0.912, and the scale parameter estimate is 12,199. For the
truncated Weibull model, the shape parameter estimate is 0.285,
and the scale parameter estimate is 5,500.

FIGURE 4 | Lomax QQ-plot.

FIGURE 5 | Paralogistic QQ-plot.

5.2. Model Validation
To validate the fitted models we employ visual inspection tools
like quantile-quantile plots (QQ-plots) and furthermore two
goodness-of-fit test statistics, Kolmogorov-Smirnov (KS) test
statistic and Anderson-Darling (AD) test statistic.

In Figures 1–6, we present plots of the fitted-versus-empirical
quantiles for the six truncated distributional models. In all
the plots both fitted and empirical quantiles have been taken
the logarithmic transformation. It seems hard to distinguish
the truncated Champernowne (Figure 1), Frechet (Figure 2),
Lomax (Figure 4), and Paralogistic (Figure 5) models, as
indicated by the graphical inspection of QQ-plots. The truncated
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FIGURE 6 | Weibull QQ-plot.

TABLE 14 | The KS and AD statistics for the fitted models, using truncated

approach.

Test

statistics

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

KS 0.063 0.066 0.054 0.068 0.064 0.107

AD 0.309 0.309 0.257 0.319 0.320 1.285

TABLE 15 | External Fraud Risk: VaR(β) estimates, measured in millions and

based on the fitted models, using truncated approach.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

VaR(0.99) 2.759 4.737 0.746 3.406 3.064 1.173

VaR(0.995) 5.092 11.154 1.292 7.913 7.074 1.920

VaR(0.999) 18.905 81.098 3.804 55.834 49.06 4.874

TABLE 16 | External Fraud Risk: Information criteria for truncated

Champernowne, Frechet, Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 2,676 2,676 2,675 2,676 2,676 2,678

BIC 2,681 2,682 2,680 2,682 2,682 2,683

ICOMP 2,695 2,694 2,676 2,695 2,694 2,697

Lognormal (Figure 3) model looks good overall by examining the
QQ plot visually. The truncatedWeibull (Figure 6) model has the
QQ plot a little bit further away from the identity line compared
to the other five models.

Looking at Figure 1, all points except for the two most
extremely large observations lie nearly on or very close to
the identity line. Compared with Figure 1 fitting the truncated
Champernowne model, we see that Figure 3 indicates a slightly
better fit of the truncated Lognormal model in the most extreme

right tail (for the largest two observations) because those two
points in Figure 3 get closer to the identity line compared to
in Figure 1. However, such improvement comes at the cost of
a slightly worse fit of the next few observations just below the
largest two.

Visual inspection of Figures 1, 4 tells us that they look very
similar to each other. This is consistent with what we have
observed in the closeness of parameter estimates in Table 13

between the truncated Champernowne model and the truncated
Lomax model.

The KS goodness-of-fit test statistic measures the maximum
absolute distance between the fitted cdf and the empirical cdf.
The AD goodness-of-fit test statistic measures the cumulative
weighted quadratic distance (placing more weight on tails)
between the fitted cdf and the empirical cdf. The KS and AD
statistics have been evaluated using the MLE parameter estimates
from Table 13. The following is the table of the KS statistics and
the AD statistics for each of the fitted models.

From Table 14, it looks like that all fitted models have low KS
and AD values except that the Weibull model produces relatively
higher values of KS and AD statistics than the other models. This
is consistent with the visual inspection of the QQ-plots.

5.3. VaR Estimates
The final product of operational risk modeling is VaR estimation,
built upon the parameter estimates of the fitted models. The
concept of VaR is useful in both finance and insurance, and let’s
define VaR as follows: Let 0 < β < 1. VaR is defined as

VaR(β) = F−1(β) , (22)

where F−1(β) denotes a quantile evaluated at level β of the
cumulative distribution function F, and F−1 is a notation used
for the generalized inverse of F.

Having gone through the model fitting and model validation,
we now are ready to compute the estimates of VaR(β) for all three
models. We summarize the results in Table 15.

From Table 15 we see that the considered six models, five of
which exhibited nearly as good fit as one another to the studied
data, produce substantially different VaR estimates, especially at
the very extreme right tail. For example, the Frechet model
produces the most conservative VaR estimates at all three levels.
The Frechet distribution comes from the family of distributions
to model extreme values. The fitted Frechet model turns out
to be more heavy-tailed than the other fitted models. On the
other hand, the fitted Lognormal model ends up to be less heavy-
tailed than the others, and Lognormal VaR values are smaller
than the VaR values of other models. For instance, the 99.9%
VaR of the truncated Lognormal model is 3.8 million RMB;
while it is 18.9 million RMB for the truncated Champernowne
model and 55.8 million RMB for the truncated Lomax model.
The 99% VaR and 99.5% VaR of the six models maintain the
same order of ranking, but the magnitude of gap is not as much
as in the highest level of 99.9% VaR. Despite producing very
different VaR estimates, we will see in the following section
that the six models are very close in terms of the values of
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information criteria, with an exception for ICOMP of the
Lognormal model.

5.4. Information Criteria Results
Finally, in Table 16 we present the values of all information
criteria considered in this paper for the truncated
Champernowne, Frechet, Lognormal, Lomax, Paralogistic, and
Weibull models. The log-likelihood function has been obtained
using the truncated distributional approach. Likewise, the Fisher
information matrix I(θ1, . . . , θk) has been derived using the
truncated likelihood for the respective parametric distributions.

As we can see from Table 16, the six models are
indistinguishable using traditional information criteria such as
AIC and BIC, since the values of each criterion are very close
for all models. In particular, a slight difference in the AIC values
with a magnitude of 1 out of more than 2,000 provides little
evidence. It is very similar if we look at the difference of 1 or 2 in
the BIC values. The use of the more refined information measure
ICOMP does not help among the truncated Champernowne,
Frechet, Lomax, Paralogistic, and Weibull models, but has the
ability to distinguish the truncated Lognormal model from the
other five models. The ICOMP favors the truncated Lognormal
model since it produces significantly lower value of ICOMP than
the other five models. We can see there is a difference of no <18
out of roughly twenty six hundred, which contrasts that tiny
difference in the values of AIC and/or BIC.

6. CONCLUDING REMARKS

In this paper, we have studied the problem of model
selection in operational risk modeling, which arises due to
that various truncated models are all validated but cannot be
distinguished. Through the numerical illustrations of simulation
studies and a case study in the previous two sections, the
performances of the traditional well-known model selection
criteria such as Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) and another information criterion
based on Information Complexity (ICOMP) have been assessed
and compared.

We summarize our conclusions as follows. Is ICOMP really
credible when choosing a Lognormal model? It depends on
the size of the sample, and also relies on whether or not the
Lognormal model gets kicked out of the pool of candidate models
by AIC and/or BIC. Simulation studies have shown that when
the true underlying model is Lognormal and the sample size is
100, ICOMP can successfully identify the Lognormal as the true
model, while AIC and/or BIC cannot distinguish the Lognormal

model from some of the other models (for example, the
Champernowne model, and the Paralogistic model). However,
when the sample size in the simulation increases to 1,000, AIC
and/or BIC can also successfully separate the true Lognormal
model from other models. In this way, when the sample size
is 1,000, ICOMP loses its competitive advantage. On the other
hand, when the underlying true model is Champernowne,
Frechet, Lomax, Paralogistic, or Webull, instead of Lognormal,
if the sample size is set to be 100, ICOMP will still erroneously
choose Lognormal as the winning model, while AIC and/or BIC
will not make such a mistake. Fortunately, this disadvantage of
ICOMP will disappear when the sample size increases to 1,000.
The reason why ICOMP prefers the Lognormal model so much
is probably because the information complexity of the Lognormal
variance covariance matrix is simpler than other models.

In order to make full use of the advantages of all the three
information criteria and avoid the disadvantages of them, a large
sample size is desirable. Otherwise, caution has to be used when
the sample size of data at hand is small, for which we propose two
stages of model selection. In the first stage, we use AIC and/or
BIC to select the best model. If it turns out that AIC and/or BIC
are successful, then we use ICOMP to strengthen the selection of
the best model. Otherwise, if AIC and/or BIC fails, we will enter
the second stage. Due to the failure of AIC and/or BIC, theremust
be several indistinguishable competing models. We consider two
different situations. One situation is that AIC and/or BIC have
kicked the Lognormal model out from the candidate pool, if
so then we cannot continue to use ICOMP to avoid ICOMP
choosing the Lognormal by mistake. The other situation is that
after using AIC and/or BIC, the Lognormal is still surviving in
the pool of candidate models, then ICOMP may be used further.
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Financial Forecasting With α-RNNs:
A Time Series Modeling Approach
Matthew Dixon1,2* and Justin London2
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The era of modern financial data modeling seeks machine learning techniques which are
suitable for noisy and non-stationary big data. We demonstrate how a general class of
exponential smoothed recurrent neural networks (α-RNNs) are well suited to modeling
dynamical systems arising in big data applications such as high frequency and algorithmic
trading. Application of exponentially smoothed RNNs to minute level Bitcoin prices and
CME futures tick data, highlight the efficacy of exponential smoothing for multi-step time
series forecasting. Our α-RNNs are also compared with more complex, “black-box”,
architectures such as GRUs and LSTMs and shown to provide comparable performance,
but with far fewer model parameters and network complexity.

Keywords: recurrent neural networks, exponential smoothing, bitcoin, time series modeling, high frequency trading

1. INTRODUCTION

Recurrent neural networks (RNNs) are the building blocks of modern sequential learning. RNNs use
recurrent layers to capture non-linear temporal dependencies with a relatively small number of
parameters (Graves, 2013). They learn temporal dynamics bymapping an input sequence to a hidden
state sequence and outputs, via a recurrent layer and a feedforward layer.

There have been exhaustive empirical studies on the application of recurrent neural networks to
prediction from financial time series data such as historical limit order book and price history
(Borovykh et al., 2017; Dixon, 2018; Borovkova and Tsiamas, 2019; Chen and Ge, 2019; Mäkinen
et al., 2019; Sirignano and Cont, 2019). Sirignano and Cont (2019) find evidence that stacking
networks leads to superior performance on intra-day stock data combined with technical indicators,
whereas (Bao et al., 2017) combine wavelet transforms and stacked autoencoders with LSTMs on
OHLC bars and technical indicators. Borovykh et al. (2017) find evidence that dilated convolutional
networks out-perform LSTMs on various indices. Dixon (2018) demonstrate that RNNs outperform
feed-forward networks with lagged features on limit order book data.

There appears to be a chasm between the statistical modeling literature (see, e.g., Box and Jenkins
1976; Kirchgässner and Wolters 2007; Hamilton 1994) and the machine learning literature (see. e.g.,
Hochreiter and Schmidhuber 1997; Pascanu et al. 2012; Bayer 2015). One of the main contributions
of this paper is to demonstrate how RNNs, and specifically a class of novel exponentially smoothed
RNNs (α-RNNs), proposed in (Dixon, 2021), can be used in a financial time series modeling
framework. In this framework, we rely on statistical diagnostics in combination with cross-validation
to identify the best choice of architecture. These statistical tests characterize stationarity and memory
cut-off length and provide insight into whether the data is suitable for longer-term forecasting and
whether the model must be non-stationary.

In contrast to state-of-the-art RNNs such as LSTMs and Gated Recurrent Units (GRUs) (Chung
et al., 2014), which were designed primarily for speech transcription, the proposed class of α-RNNs is
designed for times series forecasting using numeric data. α-RNNs not only alleviate the gradient
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problem but are designed to i) require fewer parameters and
numbers of recurrent units and considerably fewer samples to
attain the same prediction accuracy1; ii) support both stationary
and non-stationary times series2; and iii) be mathematically
accessible and characterized in terms of well known concepts
in classical time series modeling, rather than appealing to logic
and circuit diagrams.

As a result, through simple analysis of the time series properties
of α-RNNs, we show how the value of the smoothing parameter, α,
directly characterizes its dynamical behavior and provides a model
which is both more intuitive for time series modeling than GRUs
and LSTMs while performing comparably. We argue that for time
series modeling problems in finance, some of the more
complicated components, such as reset gates and cell memory
present in GRUs and LSTMs but absent in α-RNNs, may be
redundant for our data. We exploit these properties in two ways i)
first, we using a statistical test for stationarity to determine
whether to deploy a static or dynamic α-RNN model; and ii)
we are able to reduce the training time, memory requirements for
storing the model, and in general expect α-RNN to be more
accurate for shorter time series as they require less training
data and are less prone to over-fitting. The latter is a point of
practicality as many applications in finance are not necessarily big
data problems, and the restrictive amount of data favors an
architecture with fewer parameters to avoid over-fitting.

The remainder of this paper is outlined as follows. Section 2
introduces the static α-RNN. Section 3 bridges the time series
modeling approach with RNNs to provide insight on the network
properties. Section 4 introduces a dynamic version of the model
and illustrates the dynamical behavior of α. Details of the training,
implementation and experiments using financial data together
with the results are presented in Section 5. Finally, Section 6
concludes with directions for future research.

2. α-RNNS

Given auto-correlated observations of covariates or predictors, xt ,
and continuous responses yt at times t � 1, . . . ,N , in the time
series data D :� {(xt , yt)}Nt�1, our goal is to construct an m-step
(m> 0) ahead times series predictor, ŷt+m � F(x_t), of an observed
target, yt+m ∈ Rn, from a p length input sequence x_t

yt+m :� F(x_t) + ut , where x_t :� {xt−p+1, . . . , xt},

xt−j �: Lj[xt] is the jth lagged observation of xt ∈ Rd , for j �
0, . . . , p − 1 and ut is the homoscedastic model error at time t.
We introduce the α-RNN model (as shown in Figure 1):

ŷt+m � FW,b,α(x_t) (1)

where FW,b,α(x_t) is an α ∈ [0, 1] smoothed RNN with weight
matrices W :� (Wh,Uh,Wy), where the input weight matrix
Wh ∈ RH×d , the recurrence weight matrix Uh ∈ RH×H , the
output weight matrix Wy ∈ Rn×H , and H is the number of
hidden units. The hidden and output bias vectors are given by
b :� (bh, by).

For each index in a sequence, s � t-p+2, . . . ,t, forward passes
repeatedly update a hidden internal state ĥs ∈ RH , using the
following model:

(output) ŷt+m � Wyĥt + by ,
(hidden state update) ĥs � σ(Uh

~hs−1 +Whxs + bh),
s � t − p + 2, . . . , t

(smoothing) ~hs � αĥs + (1 − α)~hs−1,

where σ() :� tanh() is the activation function and ~hs ∈ RH is an
exponentially smoothed version of the hidden state ĥs, with the
starting condition in each sequence, ĥt−p+1 � σ(Whxt−p+1).

3. UNIVARIATE TIMES SERIES MODELING
WITH ENDOGENOUS FEATURES

This section bridges the time series modeling literature (Box and
Jenkins, 1976; Kirchgässner and Wolters, 2007; Li and Zhu, 2020)
and the machine learning literature. More precisely, we show the
conditions under which plain RNNs are identical to autoregressive
time series models and thus how RNNs generalize autoregressive
models. Then we build on this result by applying time series
analysis to characterize the behavior of static α-RNNs.

We shall assume here for ease of exposition that the time series
data is univariate and the predictor is endogenous3, so that the
data is D :� {yt}Nt�1.

We find it instructive to show that plain RNNs are non-linear
AR(p) models. For ease of exposition, consider the simplest case
of a RNNwith one hidden unit,H � 1.Without loss of generality,
we set Uh � Wh � ϕ,Wy � 1, bh � 0 and by � μ. Under backward
substitution, a plain-RNN, FW,b(x_t), with sequence length p, is a
non-linear auto-regressive, NAR(p), model of order p: :

ĥt−p+1 � σ(ϕyt−p+1)
ĥt−p+2 � σ(ϕĥt−p+1 + ϕyt−p+2)

. . . � . . .
ĥt � σ(ϕĥt−1 + ϕyt)

ŷt+m � ĥt + μ

then

ŷt+m � μ + σ(ϕ(1 + σ(ϕ(L + σ(ϕ(L2 + . . . + σ(ϕLp−1) . . . )[yt].
(2)

1Sample complexity bounds for RNNs have recently been derived by (Akpinar
et al., 2019). Theorem 3.1 shows that for a recurrent units, inputs of length at most
b, and a single real-valued output unit, the network requires only O(a4b/ϵ2)
samples in order to attain a population prediction error of ε. Thus the more
recurrent units required, the larger the amount of training data needed.
2By contrast, plain RNNs model stationary time series, and GRUs/LSTMs model
non-stationary, but no hybrid exists which provides the modeler with the control to
deploy either.

3The sequence of features is from the same time series as the predictor hence n �
d � 1.
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When the activation is the identity function σ :� Id , then we
recover the AR(p) model

ŷt+m � μ +∑
p−1

i�0
ϕi+1L

i[yt], ϕi :� ϕi. (3)

with geometrically decaying autoregressive coefficients when∣∣∣∣ϕ
∣∣∣∣< 1.
The α-RNN(p) is almost identical to a plain RNN, but with an

additional scalar smoothing parameter, α, which provides the
recurrent network with “long-memory”4. To see this, let us
consider a one-step ahead univariate α-RNN(p) in which the
smoothing parameter is fixed and H � 1.

This model augments the plain-RNN by replacing ĥs−1 in the
hidden layer with an exponentially smoothed hidden state ~hs−1.
The effect of the smoothing is to provide infinite memory when
α≠ 1. For the special case when α � 1, we recover the plain RNN
with short memory of length p≪N .

We can easily verify this informally by simplifying the
parameterization and considering the unactivated case. Setting
by � bh � 0, Uh � Wh � ϕ ∈ R and Wy � 1:

ŷt+1 � ĥt , (4)

� ϕ(~ht−1 + yt), (5)

� ϕ(αĥt−1 + (1 − α)~ht−2 + yt), (6)

with the starting condition in each sequence, ĥt−p+1 � ϕyt−p+1.
With out loss of generality, consider p � 2 lags in the model so
that ĥt−1 � ϕyt−1. Then

ĥt � ϕ(αϕyt−1 + (1 − α)~ht−2 + yt) (7)

and the model can be written in the simpler form

ŷt+1 � ϕ1yt + ϕ2yt−1 + ϕ(1 − α)~ht−2, (8)

with auto-regressive weights ϕ1 :� ϕ and ϕ2 :� αϕ2. We now see
that there is a third term on the RHS of Eq. 8 which vanishes
when α � 1 but provides infinite memory to the model since ~ht−2
depends on y1, the first observation in the whole time series, not
just the first observation in the sequence. To see this, we unroll the
recursion relation in the exponential smoother:

~ht+1 � α∑
t−1

s�0
(1 − α)sĥt−s + (1 − α)ty1. (9)

where we used the property that ~h1 � y1. It is often convenient to
characterize exponential smoothing by the half-life5. To gain
further insight on the memory of the network, Dixon (2021)
study the partial auto-correlations of the process ŷt+m + ut to
characterize the memory and derive various properties and
constraints needed for network stability and sequence length
selection.

FIGURE 1 | An illustrative example of an α-RNN with an alternating hidden recurrent layer (with blue nodes) and a smoothing layer (white block), “unfolded” over a
sequence of six time steps. Each lagged feature xt−i in the sequence x_t is denoted by the yellow nodes. The hidden recurrent layer contains H units (blue nodes) and the
ith output, after smoothing, at time step t is denoted by ~h

i
t. At the last time step t, the hidden units connect to a single unactivated output unit to give ŷt+m (red node).

4Long memory refers to autoregressive memory beyond the sequence length. This
is also sometimes referred to as “stateful”. For avoidance of doubt, we are not
suggesting that the α-RNN has an additional cellular memory, as in LSTMs.

5The half-life is the number of lags needed for the coefficient (1 − α)s to equal a
half, which is s � −1/log2(1 − α).
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4. MULTIVARIATE DYNAMIC α-RNNS

We now return to the more general multivariate setting as in
Section 2. The extension of RNNs to dynamical time series
models, suitable for non-stationary time series data, relies on
dynamic exponential smoothing. This is a time dependent,
convex, combination of the smoothed output, ~ht , and the
hidden state ĥt :

~ht+1 � αt+ĥt + (1 − αt)+~ht , (10)

where + denotes the Hadamard product between vectors and where
αt ∈ [0, 1]H denotes the dynamic smoothing factor which can be
equivalently written in the one-step-ahead forecast of the form

~ht+1 � ~ht + αt+(ĥt − ~ht). (11)

Hence the smoothing can be viewed as a dynamic form of
latent forecast error correction. When (αt)i � 0, the ith component
of the latent forecast error is ignored and the smoothing merely
repeats the ith component of the current hidden state (~ht)i, which
enforces the removal of the ith component from the memory.
When (αt)i � 1, the latent forecast error overwrites the current ith

component of the hidden state (~ht)i. The smoothing can also be
viewed as a weighted sum of the lagged observations, with lower or
equal weights, αt−s+∏ s

r�1(1 − αt−r+1) at the s≥ 1 lagged hidden
state, ĥt−s:

~ht+1 � αt+ĥt +∑
t−1

s�1
αt−s+∏

s

r�1
(1 − αt−r+1)+ĥt−s + g(α),

where g(α) :� ∏ t−1
r�0(1 − αt−r)+~y1. Note that for any (αt−r+1)i � 1,

the ith component of the smoothed hidden state (~ht+1)i will have
no dependency on all the lagged ith components of hidden states
{(ĥt−s)i}s≥ r. The model simply forgets the ith component of the
hidden states at or beyond the rth lag.

4.1. Neural Network Exponential Smoothing
While the class of αt-RNN models under consideration is free to
define how α is updated (including changing the frequency of the
update) based on the hidden state and input, a convenient choice
is use a recurrent layer. Remaining in the more general setup with
a hidden state vector ĥt ∈ RH , let us model the smoothing
parameter α̂t ∈ [0, 1]H to give a filtered time series

~ht � α̂t+ĥt + (1 − α̂t)+~ht−1. (12)

This smoothing is a vectorized form of the above classical
setting, only here we note that when (αt)i � 1, the ith component
of the hidden variable is unmodified and the past filtered hidden
variable is forgotten. On the other hand, when (αt)i � 0, the ith

component of the hidden variable is obsolete, instead setting the
current filtered hidden variable to its past value. The smoothing
in Eq. 12 can be viewed then as updating long-term memory,
maintaining a smoothed hidden state variable as the memory
through a convex combination of the current hidden variable and
the previous smoothed hidden variable.

The hidden variable is given by the semi-affine transformation:

ĥt � σ(Uh
~ht−1 +Whxt + bh), (13)

which in turn depends on the previous smoothed hidden variable.
Substituting Eq. 13 into Eq. 12 gives a function of ~ht−1 and xt :

~ht � g(~ht−1, xt; α) (14)

:� α̂t+σ(Uh
~ht−1 +Whxt + bh) + (1 − α̂t)+~ht−1. (15)

We see that when (αt)i � 0, the ith component of the smoothed
hidden variable (~ht)i is not updated by the input xt . Conversely,
when (αt)i � 1, we observe that the ith hidden variable locally
behaves like a non-linear autoregressive series. Thus the
smoothing parameter can be viewed as the sensitivity of the
smoothed hidden state to the input xt .

The challenge becomes how to determine dynamically how
much error correction is needed. As in GRUs and LSTMs, we can
address this problem by learning α̂ � F(Wα ,Uα ,bα)(x_t) from the
input variables with the recurrent layer parameterized by
weights and biases (Wα,Uα, bα). The one-step ahead forecast of
the smoothed hidden state, ~ht , is the filtered output of another
plain RNN with weights and biases (Wh,Uh, bh).

5. RESULTS

This section describes numerical experiments using financial
time series data to evaluate the various RNNmodels. All models
are implemented in v1.15.0 of TensorFlow (Abadi et al., 2016).
Times series cross-validation is performed using separate
training, validation and test sets. To preserve the time
structure of the data and avoid look ahead bias, each set
represents a contiguous sampling period with the test set
containing the most recent observations. To prepare the
training, validation and testing sets for m-step ahead
prediction, we set the target variables (responses) to the t +
m observation, yt+m, and use the lags from t − p + 1, . . . t for

FIGURE 2 | The partial autocorrelogram (PACF) for 1 min snapshots of
Bitcoin mid-prices (USD) over the period January 1, 2018 to November
10, 2018.
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each input sequence. This is repeated by incrementing t until
the end of each set. In our experiments, each element in the
input sequence is either a scalar or vector and the target
variables are scalar.

We use the SimpleRNN Keras method with the default
settings to implement a fully connected RNN. Tanh
activation functions are used for the hidden layer with the
number of units found by time series cross-validation with
five folds to be H ∈ {5, 10, 20} and L1 regularization,

λ1 ∈ {0, 10− 3, 10− 2}. The Glorot and Bengio uniform method
(Glorot and Bengio, 2010) is used to initialize the non-recurrent
weight matrices and an orthogonal method is used to initialize
the recurrence weights as a random orthogonal matrix. Keras’s
GRU method is implemented using version 1,406.1078v, which
applies the reset gate to the hidden state before matrix
multiplication. See Appendix 1.1 for a definition of the reset
gate. Similarly, the LSTM method in Keras is used. Tanh
activation functions are used for the recurrence layer and

FIGURE 3 | The four-step ahead forecasts of temperature using theminute snapshot Bitcoin prices (USD) with MSEs shown in parentheses. (top) The forecasts for
each architecture and the observed out-of-sample time series. (bottom) The errors for each architecture over the same test period. Note that the prices have been
standardized.

TABLE 1 | The four-step ahead Bitcoin forecasts are compared for various architectures using time series cross-validation. The half-life of the α-RNN is found to be
1.077 min (α̂ � 0.4744).

Architecture Parameters λ1 H MSE (test) MSE (val) MSE (train)

RNN 461 0 20 2.432 × 10−5 1.921×10− 5 8.453 × 10− 6

α-RNN 132 0 10 1.342 × 10−5 9.610×10− 6 7.664 × 10− 6

αt-RNN 86 0 5 9.875 × 10−6 8.614×10− 6 7.734 × 10− 6

GRU 371 0 10 1.055 × 10−5 7.293 × 10− 6 6.293 × 10− 6

LSTM 491 0 10 8.164 × 10−6 5.711 × 10− 6 4.922 × 10− 6
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sigmoid activation functions are used for all other gates. The
AlphaRNN and AlphatRNN classes are implemented by the
authors for use in Keras. Statefulness is always disabled.

Each architecture is trained for up to 2000 epochs with an Adam
optimization algorithm with default parameter values and using a
mini-batch size of 1,000 drawn from the training set. Early stopping
is implemented using a Keras call back with a patience of 50 to 100
and a minimum loss delta between 10− 8 and 10− 6. So, for example,
if the patience is set to 50 and the minimum loss delta is 10− 8, then
fifty consecutive loss evaluations on mini-batch updates must each
lie within 10− 8 of each other before the training terminates. In
practice, the actual number of epoches required varies between
trainings due to the randomization of the weights and biases, and
across different architectures and is typically between 200 and 1,500.
The 2000 epoch limit is chosen as it provides an upper limit which is
rarely encountered. No random permutations are used in the mini-
batching sampling in order to preserve the ordering of the time
series data. To evaluate the forecasting accuracy, we set the forecast
horizon to up to ten steps ahead instead of the usual step ahead
forecasts often presented in the machine learning literature—longer
forecasting horizons are often more relevant due to operational
constraints in industry applications and are more challenging when
the data is non-stationary since the fixed partial auto-correlation of
the process ŷt+m + ut will not adequately capture the observed

FIGURE 4 | The PACF of the tick-by-tick VWAP of ESU6 over the month
of August 2016.

FIGURE 5 | The ten-step ahead forecasts of VWAPs are compared for various architectures using the tick-by-tick dataset. (top) The forecasts for each architecture
and the observed out-of-sample time series. (bottom) The errors for each architecture over the same test period.
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changing partial auto-correlation structure of the data. In the
experiments below, we use m � 4 and m � 10 steps ahead. The
reason we use less thanm � 10 in the first experiment is because we
find that there is little memory in the data beyond four lags and
hence it is of little value to predict beyond four time steps.

5.1. Bitcoin Forecasting
One minute snapshots of USD denominated Bitcoin mid-prices
are captured from Coinbase over the period from January 1 to
November 10, 2018. We demonstrate how the different networks
forecast Bitcoin prices using lagged observations of prices. The
predictor in the training and the test set is normalized using the
moments of the training data only so as to avoid look-ahead bias
or introduce a bias in the test data. We accept the Null hypothesis
of the augmented Dickey-Fuller test as we can not reject it at even
the 90% confidence level. The data is therefore stationary
(contains at least one unit root). The largest test statistic is
−2.094 and the p-value is 0.237 (the critical values are 1%:
-3.431, 5%: -2.862, and 10%: -2.567). While the partial
autocovariance structure is expected to be time dependent, we
observe a short memory of only four lags by estimating the PACF
over the entire history (see Figure 2).

We choose a sequence length of p � 4 based on the PACF and
perform a four-step ahead forecast. We comment in passing that
there is little, if any, merit in forecasting beyond this time horizon
given the largest significant lag indicated by the PACF. Figure 3
compares the performance of the various forecasting networks
and shows that stationary models such as the plain RNN and the
α-RNN least capture the price dynamics—this is expected because
the partial autocorrelation is non-stationary.

Viewing the results of time series cross validation, using the first
30,000 observations, in Table 1, we observe minor differences in
the out-of-sample performance of the LSTM, GRU vs. the αt-RNN,
suggesting that the reset gate and extra cellular memory in the
LSTM provides negligible benefit for this dataset. In this case, we
observe very marginal additional benefit in the LSTM, yet the
complexity of the latter is approximately 50x that of the αt-RNN.
Furthermore we observe evidence of strong over-fitting in the GRU
and LSTM vs. the αt-RNN. The ratio of training to test errors are
respectively 0.596 and 0.603 vs. 0.783. The ratio of training to
validation errors are 0.863 and 0.862 vs. 0.898.

5.2. High Frequency Trading Data
Our dataset consists of N � 1, 033, 468 observations of tick-by-
tick Volume Weighted Average Prices (VWAPs) of CME listed

ESU6 level II data over the month of August 2016 (Dixon, 2018;
Dixon et al., 2019).

We reject the Null hypothesis of the augmented Dickey-Fuller
test at the 99% confidence level in favor of the alternative
hypothesis that the data is stationary (contains no unit roots.
See for example (Tsay, 2010) for a definition of unit roots and
details of the Dickey-Fuller test). The test statistic is −5.243 and
the p-value is 7.16 × 10− 6 (the critical values are 1%: –3.431, 5%:
–2.862, and 10%: –2.567).

The PACF in Figure 4 is observed to exhibit a cut-off at
approximately 23 lags. We therefore choose a sequence length of p �
23 and perform a ten-step ahead forecast. Note that the time-stamps
of the tick data are not uniform and hence a step refers to a tick.

Figure 5 compares the performance of the various networks
and shows that plain RNN performs poorly, whereas and the
αt-RNN better captures the VWAP dynamics. From Table 2, we
further observe relatively minor differences in the performance of
the GRU vs. the αt-RNN, again suggesting that the reset gate and
extra cellular memory in the LSTM provides no benefit. In this
case, we find that the GRU has 10x the number of parameters as
the αt-RNN with very marginal benefit. Furthermore we observe
evidence of strong over-fitting in the GRU and LSTM vs. the
αt-RNN, although overall we observe stronger over-fitting on this
dataset than the bitcoin dataset. The ratio of training to test errors
are respectively 0.159 and 0.187 vs. 0.278. The ratio of training to
validation errors are 0.240 and 0.226 vs. 0.368.

6. CONCLUSION

Financial time series modeling has entered an era of unprecedented
growth in the size and complexity of data which require new
modeling methodologies. This paper demonstrates a general
class of exponential smoothed recurrent neural networks (RNNs)
which are well suited to modeling non-stationary dynamical
systems arising in industrial applications such as algorithmic and
high frequency trading. Application of exponentially smoothed
RNNs to minute level Bitcoin prices and CME futures tick data
demonstrates the efficacy of exponential smoothing for multi-step
time series forecasting. These examples show that exponentially
smoothed RNNs are well suited to forecasting, exhibiting few layers
and needing fewer parameters, than more complex architectures
such as GRUs and LSTMs, yet retaining the most important aspects
needed for forecasting non-stationary series. Thesemethods scale to
large numbers of covariates and complex data. The experimental

TABLE 2 | The ten-step ahead forecasting models for VWAPs are compared for various architectures using time series cross-validation. The half-life of the α-RNN is found
to be 2.398 periods (α̂ � 0.251).

Architecture Parameters λ1 H MSE (test) MSE (val) MSE (train)

RNN 41 0 5 2.310 × 10−4 1.843 × 10− 4 5.843 × 10− 5

α-RNN 132 0 10 1.926 × 10−4 1.288 × 10− 4 3.456 × 10− 5

αt-RNN 86 0 5 1.682 × 10−4 1.311 × 10− 4 4.824 × 10− 5

GRU 1,341 0 20 1.568 × 10−4 1.036 × 10− 4 2.488 × 10− 5

LSTM 491 0 10 1.685 × 10−4 1.390 × 10− 4 3.154 × 10− 5

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org February 2021 | Volume 6 | Article 5511387

Dixon and London Exponentially Smoothed Recurrent Neural Networks

60

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


design and architectural parameters, such as the predictive horizon
and model parameters, can be determined by simple statistical tests
and diagnostics, without the need for extensive hyper-parameter
optimization.Moreover, unlike traditional time seriesmethods such
as ARIMAmodels, these methods are shown to be unconditionally
stable without the need to pre-process the data.
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APPENDIX

1. GRUS AND LSTMS

1.1. GRUs
A GRU is given by:

smoothing : ~ht � α̂t+ĥt + (1 − α̂t)+~ht−1
smoother update : α̂t � σ(1)(Uα

~ht−1 +Wαxt + bα)
hidden state update : ĥt � σ(Uhr̂t+~ht−1 +Whxt + bh)

reset update : r̂t � σ(1)(Ur
~ht−1 +Wrxt + br).

When viewed as an extension of our αt RNNmodel, we see that it
has an additional reset, or switch, r̂t , which forgets the
dependence of ĥt on the smoothed hidden state. Effectively, it
turns the update for ĥt from a plain RNN to a FFN and entirely
neglect the recurrence. The recurrence in the update of ĥt is thus
dynamic. It may appear that the combination of a reset and
adaptive smoothing is redundant. But remember that α̂t effects
the level of error correction in the update of the smoothed hidden
state, ~ht , whereas r̂t adjusts the level of recurrence in the
unsmoothed hidden state ĥt . Put differently, α̂t by itself can
not disable the memory in the smoothed hidden state (internal
memory), whereas r̂t in combination with α̂t can. More precisely,
when αt � 1 and r̂t � 0, ~ht � ĥt � σ(Whxt + bh) which is reset to
the latest input, xt , and the GRU is just a FFN. Also, when αt � 1
and r̂t > 0, a GRU acts like a plain RNN. Thus a GRU can be seen
as a more general architecture which is capable of being a FFN or
a plain RNN under certain parameter values.

These additional layers (or cells) enable a GRU to learn
extremely complex long-term temporal dynamics that a vanilla
RNN is not capable of. Lastly, we comment in passing that in the
GRU, as in a RNN, there is a final feedforward layer to transform
the (smoothed) hidden state to a response:

ŷt � WY
~ht + bY . (A1)

1.2. LSTMs
LSTMs are similar to GRUs but have a separate (cell) memory, ct ,
in addition to a hidden state ht . LSTMs also do not require that
the memory updates are a convex combination. Hence they are
more general than exponential smoothing. The mathematical
description of LSTMs is rarely given in an intuitive form, but the

model can be found in, for example, Hochreiter and Schmidhuber
(1997).

The cell memory is updated by the following expression
involving a forget gate, α̂t , an input gate ẑt and a cell gate ĉt

ct � α̂t+ct−1 + ẑt+ĉt . (A2)

In the terminology of LSTMs, the triple (α̂t , r̂t , ẑt) are respectively
referred to as the forget gate, output gate, and input gate. Our
change of terminology is deliberate and designed to provided
more intuition and continuity with RNNs and the statistics
literature. We note that in the special case when ẑt � 1 − α̂t we
obtain a similar exponential smoothing expression to that used in
our αt-RNN. Beyond that, the role of the input gate appears
superfluous and difficult to reason with using time series analysis.

When the forget gate, α̂t � 0, then the cell memory depends
solely on the cell memory gate update ĉt . By the term α̂t+ct−1, the
cell memory has long-term memory which is only forgotten
beyond lag s if α̂t−s � 0. Thus the cell memory has an adaptive
autoregressive structure.

The extra “memory”, treated as a hidden state and separate
from the cell memory, is nothing more than a Hadamard product:

ht � r̂t+tanh(ct), (A3)

which is reset if r̂t � 0. If r̂t � 1, then the cell memory directly
determines the hidden state.

Thus the reset gate can entirely override the effect of the cell
memory’s autoregressive structure, without erasing it. In contrast,
the αt-RNN and the GRU has one memory, which serves as the
hidden state, and it is directly affected by the reset gate.

The reset, forget, input and cell memory gates are updated by
plain RNNs all depending on the hidden state ht .

Reset gate : r̂t � σ(Urht−1 +Wrxt + br)
Forget gate : α̂t � σ(Uαht−1 +Wαxt + bα)
Input gate : ẑt � σ(Uzht−1 +Wzxt + bz)

Cell memory gate : ĉt � tanh(Ucht−1 +Wcxt + bc).
The LSTM separates out the long memory, stored in the cellular
memory, but uses a copy of it, which may additionally be reset.
Strictly speaking, the cellular memory has long-short
autoregressive memory structure, so it would be misleading in
the context of time series analysis to strictly discern the two
memories as long and short (as the nomenclature suggests). The
latter can be thought of as a truncated version of the former.
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An Explainable Bayesian Decision
Tree Algorithm
Giuseppe Nuti 1, Lluís Antoni Jiménez Rugama1* and Andreea-Ingrid Cross2

1UBS, New York, NY, United States, 2UBS, London, United Kingdom

Bayesian Decision Trees provide a probabilistic framework that reduces the instability of
Decision Trees while maintaining their explainability. While Markov Chain Monte Carlo
methods are typically used to construct Bayesian Decision Trees, here we provide a
deterministic Bayesian Decision Tree algorithm that eliminates the sampling and does not
require a pruning step. This algorithm generates the greedy-modal tree (GMT) which is
applicable to both regression and classification problems. We tested the algorithm on
various benchmark classification data sets and obtained similar accuracies to other known
techniques. Furthermore, we show that we can statistically analyze how was the GMT
derived from the data and demonstrate this analysis with a financial example. Notably, the
GMT allows for a technique that provides explainable simpler models which is often a
prerequisite for applications in finance or the medical industry.

Keywords: explainable machine learning, Bayesian statistics, greedy algorithms, Bayesian decision trees, white box

1 INTRODUCTION

The success of machine learning techniques applied to financial and medical problems can be encumbered
by the inherent noise in the data.When the noise is not properly considered, there is a risk to overfit the data
generating unnecessarily complexmodels thatmay lead to incorrect interpretations. Thus, there has been lot
of efforts aimed at increasing model interpretability in machine learning applications [1–5].

Decision Trees (DT) are popular machine learning models applied to both classification and
regression tasks with known training algorithms such as CART [6], C4.5 [7], and boosted trees [8].
With fewer nodes than other node-based models, DT are considered an explainable model. In
addition, the tree structure can return the output with considerably fewer computations than other
more complex models. However, as discussed by Linero in [9], greedely constructed trees are
unstable. To improve the stability, new algorithms utilize tree ensembles such as bagging trees [10],
Random Forests (RF) [11], and XGBoost (XG) [12]. But increasing the number of trees also increases
the number of nodes and therefore the complexity of the model.

The Bayesian approach was introduced to solve the DT instability issue while producing a single tree
model that accounts for the noise in the data. The first techniques, also known as BayesianDecision Trees,
were introduced in [13], BCART [14, 15], and BART [16]. The former article proposed a deterministic
algorithm while the other three are based on Markov Chain Monte Carlo convergence. Some recent
studies have improved upon these algorithms, for review see [9], and include a detailed interpretability
analysis of themodel, [17].Whilemost of the Bayesianwork is based onMarkov Chain convergence, here
we take a deterministic approach that: 1) considers the noise in the data, 2) generates less complexmodels
measured in terms of the number of nodes, and 3) provides a statistical framework to understand how the
model is constructed.

The proposed algorithm departs from [13], introduces the trivial partition to avoid the pruning
step, and generalizes the approach to employ any conjugate prior. Although this approach is
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Bayesian, given the input data andmodel parameters the resulting
tree is deterministic. Since it is deterministic, one can easily
analyze the statistical reasons behind the choice of each node.
We start with an overview of the Bayesian Decision Trees in
Section 2. Section 3 describes the building block of our
algorithm, namely the partition probability space, and provides
the algorithms to construct the greedy-modal tree (GMT).
Section 4 benchmarks the GMT vs. common techniques
showing that the GMT works well for various publicly
available data sets. Finally, a trading example is discussed in
Section 5 followed by some conclusive remarks in Section 6.

2 BAYESIAN DECISION TREES OVERVIEW

A Decision Tree is a directed acyclic graph. All its nodes have a
parent node except the root node, the only one that has no parent.
The level ℓ ∈ N0 of a node is the number of ancestors of the node,
starting from 0 at the root node. We classify the nodes as either
sprouts or leaves. While sprouts point to two other child nodes in the
case of binary trees, leaves are terminal nodes containing the model
information. Each sprout contains a rule used to choose one of its
children. To query the tree, we start at the root node and apply the
rules to an input to select the child nodes until we reach a leaf.

We can use Decision Trees to partition Rd and assign an
output to each subset of the partition. In this work, we restrict
ourselves to finite partitions of Rd . Each leaf of the tree will
correspond to one of the subsets of the partition, one-to-one and
onto. Our approach of Decision Trees departs from the Bayesian
Decision Tree framework which provides a marginal likelihood to
a Decision Tree based on some input data. Let’s define the input
data asD � [(xi, yi)]ni�1 with n independent observations. A point
x � (x1, . . . , xd) in Rd contains the features of each observation
whose outcome y is randomly sampled from a random field Yx .
The Bayesian Decision Tree assumes the distribution of Yx is
constant at each leaf. Given x, the tree will return the posterior
distribution of the parameters θ generating Y within the leaf x
belongs to. In practice, the distribution of Y will determine the
type of problem we are solving: a discrete random variable
translates into a classification problem whereas a continuous
random variable translates into a regression problem.

The probability of such a Bayesian Decision Tree, namely T ,
can be computed with the usual Bayes approach,

p(T |D) � p(D|T )
p(D) p(T ), (1)

where p(T ) is the prior distribution over the tree space. To
compute the marginal likelihood p(D|T ), we consider the
partition D � {D1, . . . ,Dk} induced by T and take the product
of the marginal likelihoods at each leaf,

p(D|T ) � ∏
k

j�1
L(Dj) � ∏

k

j�1
∫
Θ

p(Dj

∣∣∣∣θ)p(θ)dθ (2)

The probability p(θ) from Eq. 2 is the prior distribution of the
parameters θ. In this article, we will assume for simplicity that

p(θ) is independent of T although this is not a requirement. The
purpose of p(θ) is therefore two-fold:

- To obtain the tree probability from Eq. 1,
- To compute the posterior distribution of the parameters
generating Y at each leaf.

Figure 1 shows a Bayesian Decision Tree that partitions R2

into [(−∞, 5) × (−∞,∞), (5,∞) × (−∞, 2.5), (5,∞) ×
(2.5,∞)] and the corresponding posterior distributions Beta
(1, 5), Beta (3, 1), and Beta (1, 3). More information about
conjugate priors and marginal likelihoods can be found in [18].

In an attempt to build explainable Bayesian Decision Trees, we
define a greedy construction that does not apply Markov Chain
Monte Carlo. This construction balances the greedy approach
from [6] with the Bayesian approach discussed in [9, 14–17]. For
this, we compute the probability of each split at every node and
choose the modal split. This results in a model that performs well
with different data sets as shown in Section 4.

3 FROM THE PARTITION PROBABILITY
SPACE TO BAYESIAN DECISION TREES

The building block of the GMT algorithm is the partition
probability space. For this space, we only consider binary
partitions of the form Sr,h �
{{x ∈ Rd such that xr ≤ h}, {x ∈ Rd such that xr > h}} where
r ∈ {1, . . . , d}, h ∈ R∖{xr1, . . . , xrn}. Any partition of this form
will induce a partition {D1,D2} of D. Note that any of these
two subsets are allowed to be the empty set. Finally, for each
dimension we identify all partitions that result in the same non-
empty D1 and D2. All partitions that leave D1 or D2 empty are
also identified as the trivial partition S0. After identification, we

will have 1 + ∑
d

r�1
(nr − 1) different partitions S, nr tbeing the

number of different features along dimension r. Following the
minimum margin classifier idea, the partition representative
location h will be placed at the mid-point between contiguous
different features in a dimension.

FIGURE 1 | Example of a Bayesian Decision Tree for a 2-categories
example in R2. On the left: the data set is displayed three times. The first layer
corresponds to the data set before any split. The second layer displays the
two sets resulting from splitting along dimension 1. The third layer is an
additional split of the right subset along dimension 2. The final leaves are
displayed in orange. On the right: equivalent tree with posterior distributions
for probability of being red assuming a Beta (1,1) prior distribution. The
marginal likelihood of the tree is p(D|T ) � B(1, 5)B(3, 1)B(1, 3)/B(1,1)3,
where B is the Beta function.
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The partition probability space is the finite probability space
defined by partitions S and their probabilities p(S|D). These
probabilities can be computed using Eqs 1, 2when replacing T by
S. In practice, we will work with ln[p(D|S)p(S)] which are the
log-probabilities from Eq. 1 omitting the constant normalizing
factor p(D):

ln[p(D|S)p(S)] � ln[p(S|D)] + ln[p(D)] (3)

We will also need the feature sorted indices of the input features
for computation and visualization purposes, namely i1, . . . , in such
that xrirj ≤ x

r
irj+1

for all r � 1, . . . , d and j � 1, . . . , n − 1. An example
of the split probability space is shown in Figure 2. In this example,
the inputs x live in R2 and the outcomes are drawn from a
Bernoulli random variable. The points x are generated from

two independent Gaussian distributions equally likely, i.e. we
drew from each distribution with probability 0.5. The first
distribution is a multivariate Gaussian with mean (−1,−1)t and
covariance 2I. Points sampled from this distribution have a
probability of 0.25 of being green. The second distribution is
another multivariate Gaussian with mean (1, 3)t and covariance
0.5I. In this case, the probability of being green is 0.75. Because the
mean of these Gaussian distributions are further apart along the x2

axis, the most probable partitions given the data are found along
this dimension.

Each partition S can be encoded into a tree node N : if the
partition is s0, the node becomes a leaf and stores the posterior
hyper-parameters of θ; for any other Sr,h, the node becomes a
sprout and stores the values r and h. Among all partitions, the

FIGURE 2 | Example of a data set whose outcomes are either green or red. The location of the points is sampled from a mixture of two Gaussian distributions with
equal probability. One distribution draws outcomes from a Bernoulli distribution with probability 0.25, while the other from a Bernoulli with probability 0.75. On the left:
log-probabilities of all possible non-trivial partitions given the data set. On the right: actual probability of a point being green and modal splits along each dimension.
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mode and its node are of particular interest. Algorithm 1 returns
the modal node in the general case. For the classification problem, we
also provide Algorithm 2 withO(dn) cost assuming p(θ) follows a
Dirichlet conjugate prior. Both algorithms start by computing
ln[p(D|S0)p(S0)] and initializing N to be a leaf. Then, they loop
through each dimension and the sorted features to verify whether
there exists a new node with higher log-probability. Because the
features are sorted, there is at most one observation that moves from
D2 to D1 when j increases by one.

With the partition space and modal node defined, we can
introduce the GMT construction. We start by finding the modal
nodeN for our initial data setD. This node is the root of the tree
and will be returned by the train method inAlgorithm 3. IfN is a
leaf, the GMT is completed. Otherwise, we splitD intoD1 andD2

according toN . We repeat the process for the new input data sets
D1 andD2, and linkN 1 andN 2 to their parentN . The recursion
is defined in the grow_tree method from Algorithm 3. Note that
Algorithms 1 and 2 are just two implementations of
find_modal_node, but one can replace this method by any
other that returns the desired node based on the partition
space. In addition, one can easily compute ln[p(D|T )] for the
GMT by adding the leaves’ ln[L(Dj)] calculated in Algorithm 1
line 2, or Algorithm 2 line 2. In practice, we realized that the
GMTmarginal log-likelihood ln[p(D|T )] tends to be the highest
when exploring for different possible roots.

The average cost ofAlgorithm 3 isO[c(n)ln(n)]where c(n) is
the cost of find_modal_node. If we choose find_modal_node to
be Algorithm 2, the average cost of Algorithm 3 becomes

O[dn ln(n)]. While Algorithms 1 and 2 only look at one
successor ahead, we could improve the greedy exploration by
looking at several levels ahead as suggested in [13]. Looking at m
levels ahead comes at the expense of increasing the order of c(n),
for instance c(n) � (dn)m in the case of Algorithm 2. Section 4
shows that the GMT constructed by looking at only one level
ahead performs well in practice.

4 BENCHMARK

4.1 Decision Trees, Random Forests,
XGBoost, and GMT
In this Section we use Algorithm 2 and 3 to construct the GMT.
We assume that the outcomes, 0 or 1, are drawn from Bernoulli
random variables. The prior distribution p(θ) is chosen to be the
Beta (10, 10) and each tree will return the expected probability of
drawing the outcome 0. The prior probabilities for each partition
will be p(S0) � 1 − 0.91+ℓ and p(Sr,h) � 0.91+ℓ/dnr , where ℓ is the
level and nr the number of non-trivial partitions along r. Note that
the denominator d in p(Sr,h) is implicitly assuming a uniform prior
distribution over the dimension space. One could also project the
probabilities on each dimension to visualize which features are
most informative. As an alternative to the suggested p(S), one can
use the partition margin weighted approach from [13].

The accuracy is measured as a percentage of the correct
predictions. Each prediction will simply be the highest
probability outcome. If there is a tie, we choose the category 0
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by default. We compare the GMT results to DT [6, 19], RF [11,
19], and XG [12]. For reproducibility purposes, we set all random
seeds to 0. In the case of RF, we enable bootstrapping to improve
its performance. We also fix the number of trees to five for RF and
XG. We provide the GMT Python module with integration into
scikit-learn in [20].

We test the GMT on a selection of data sets from the
University of California, Irvine (UCI) database [21]. We
compute the accuracy of the DT, RF, XG, and GMT with a
shuffled 10-fold cross validation.We do not perform any
parameter tuning and keep the same p(θ) and p(S) for all
examples. Accuracy is shown in Table 1 while training time
and node count in Table 2.

The results reveal some interesting properties of the GMT.
Noticeably, the GMT seems to perform well in general. In all
cases, the DT accuracy is lower than the RF accuracy. The only
case in which RF considerably outperforms the GMT is with the
EEG data set. One reasonmay be that some information is hidden
at the lower levels, i.e. feature correlation information that is hard
to extract by looking at only one level ahead. The accuracy
difference between GMT and RF indicates that these two
techniques may work well for different data sets. Interestingly,
the XG and GMT yield similar accuracies. Finally, in most cases
the GMT takes more time to train than the other three techniques
which is caused by the feature sorting overhead computation.
Notably, the node count in Table 2 shows that we successfully
managed to simplify the models while producing similar
accuracy. Note that for four of the seven data sets, the average
number of nodes is less than ten and produces slightly better
accuracies than RF. Ten nodes implies less than five sprouts in
average which can be easily analyzed by a human. This highlights
the importance of the priors p(S) and p(θ) to avoid a pruning
step. The strength of these two priors will determine how much
statistical evidence do we require from our data to produce a
meaningful split. In the following Section 5, we take a deeper look
and explain the reasons behind the GMT construction with a
finance application.

4.2 Bayesian Decision Trees and GMT
In this section we analyze the GMT on the Wisconsin breast-cancer
data set studied in [9, 14] which is available at the University of
California, Irvine (UCI) database [21]. Although this data set
contains 699 observations, we are going to use the 683 that are
complete. Each observation contains nine features and the outcome
classifies the tumor as benign or malignant. We test the GMT for
p(S0) � 1 − q1+ℓ , q ∈ {0.75, 0.8, 0.85, 0.90, 0.95, 0.97} and a
Dirichlet prior with parameters (α1, α2) ∈ {1, 2, 3, 4, 5, 10}2. For
each of the 216 parameter sets we perform a 10-fold cross
validation and plot the average accuracy in Figure 3. The results
display a lower average accuracy compared to the 98.4% for BCART
[14] with nine ormore leaves, and the 96.8% for BART [9].Whenwe
run the methods and parameters from Section 4.1 we obtain 95.3%
for DT, 95.8% for RF, and 95.5% for XG. We were unable to
compare the BCART and BART performance with the data sets
from Section 4.1 due to the lack of software.

5 TRADING EXAMPLE

We consider three stocks, A, B, and C, whose price follows a
multidimensional Ornstein-Uhlenbeck process, [22]. Using the

TABLE 1 | Accuracy of DT, RF, XG, and GMT for several data sets. We apply a
shuffled 10-fold cross validation to each test. Results are sorted by relative
performance, starting from hightest accuracy difference between GMT and RF.

Accuracy

d n DT
[6, 19]

RF
[11, 19]

XG
[12]

GMT GMT
− RF

Credit 23 30,000 72.5% 78.6% 82.0% 82.0% 3.4%
Diabetic 19 1,151 60.4% 63.1% 65.2% 65.3% 2.2%
Heart 20 270 72.6% 78.5% 80.4% 80.4% 1.9%
Seismic 18 2,584 87.8% 91.9% 93.0% 93.2% 1.3%
Haberman 3 306 59.8% 69.6% 69.9% 69.6% 0.0%
Gamma 10 19,020 81.7% 85.9% 86.2% 84.9% −1.0%
EEG 14 14,980 83.8% 88.1% 80.5% 79.8% −8.3%
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notation from [22], we can sample the prices by applying the
Euler’s discretization, Xt+Δt � μ + e−θΔt(Xt − μ) + G. We
assume that σ is a unitary matrix, therefore the random vector
G follows a normal distribution with mean 0 and covariance
(θ + θT )− 1[I − e−(θ+θ

T )Δt]. For this example, we set the
parameters to,

μ � ⎛⎜⎝
100
110
105

⎞⎟⎠, θ � ⎛⎜⎝
4 −1 0
0.4 2 0
0 0 0.2

⎞⎟⎠, Δt � 0.1. (4)

Our goal is to train the GMT to predict the best portfolio
configuration. Given that we have three stocks, we consider
the following eight buy/sell configurations: +A/−B/−C (buy
one stock A, sell one stock B, sell one stock C), −A/−B/−C,
−A/+B/−C, +A/+B/−C, −A/−B/+C,+A/−B/+C, -A/+B/+C,
+A/+B/+C. At each time step, we take the three stock
prices Xti as inputs. The outcome is defined as the
configuration that corresponds to the next price move, i.e.
sign(X1

ti+1 − X1
ti )A/sign(X2

ti+1 − X2
ti )B/sign(X3

ti+1 − X3
ti )C. For

example, if the prices are (100, 105, 110) at ti and
(110, 100, 120) at ti+1, the features are (100, 105, 110), the
outcome is +A − B + C, and the profit between ti and ti+1
for this portfolio is +(110 − 100) − (100 − 105) + (120 − 110).
Each portfolio configuration is identified to an integer from 0
to 7. We sample 10,000 time steps, train on the first 8,000
observations and test on the next 2,000.

We treat this problem as an eight class classification
problem. The GMT is trained with the p(S) from Section 4
and a Dirichlet conjugate prior p(θ) with hyper-parameters
(1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8). To benchmark the results,
we train a 10 × 10. nodes neural network using the
MLPClassifier from [19]. During the test phase, our
predictions will be the expected modal portfolio
configuration: if the input x returns the leaf posterior
hyper-parameters α*, we predict the portfolio
arg maxk {αpk/∑ αp}. The test results are shown in Figure 4.

The GMT we obtained by training on the first 8,000
observations has only four leaves: if the price of stock A is
below 99.96 and the price of stock B below 109.85, we choose
+ A + B − C; if the price of A is below 99.96 and the price of B
above 109.85, we choose + A-B-C; if the price of A is above 99.96
and the price of B below 110.14, we choose −A + B − C; and if the
price of A is above 99.96 and the price of B above 110.14, we

choose −A − B + C. Although the mean reversion for stock C is
not captured in this model, we successfully recovered simple rules
to trade the mean reversion of A and B. Since the price of C is
more volatile by Eq. 4, the current price of C is not enough to
recover the mean reversion decision logic. Some filtering of the
price of C would allow to capture its mean reversion. In the neural
network case, the over-parametrization makes it difficult to
recover this simple model.

The deterministic nature of Algorithm 3 provides a
practical framework to explain how was the GMT
constructed. We look at each of the nodes to understand
how were the modal nodes chosen. The resulting GMT model
contains three sprouts—node 0, node 1, node 2—and four
leaves—node 3, node 4, node 5, node 6. Figure 5 shows the log-
probability 3) of splitting our data-set at a particular price by stock
for the three sprouts. At the root level, node 0, we consider the
whole data set. In this case, one can increase the GMT likelihood the
most by choosing S0,99.96, i.e., splitting the data according to Stock
A’s price at 99.96. After this node becomes a sprout, the input data is
split into two subsets of sizes 3,640 (inputs with Stock A’s price
below 99.96), and 4,360 (inputs with Stock A’s price above 99.96).

TABLE 2 | Training time in milliseconds and average node count per fold. The node count includes the number of leaves.

Train time (ms) Node count

DT [6, 19] RF [11, 19] XG GMT DT [6, 19] RF [11, 19] XG GMT

Credit 569.5 334.7 133.6 1,044.2 8,505.2 3,898.9 579.6 43.4
Diabetic 8.7 10.1 15.2 26.8 399.2 182.3 329.6 7.0
Heart 1.4 4.8 20.1 13.2 83.4 44.7 179.6 9.2
Seismic 10.5 11.7 20.5 18.5 410.2 177.7 304.6 6.4
Haberman 1.0 4.1 15.6 1.4 179.8 66.3 194.0 3.2
Gamma 245.2 232.2 92.2 519.1 3,564.0 1,514.9 551.6 111.4
EEG 123.4 101.2 117.9 550.8 2,553.4 1,374.7 472.8 203.4

FIGURE 3 | Average accuracy vs. average number of leaves for each
GMT parameter set applied to the Wisonson breast-cancer data. The color
indicates which parameter q ∈ {0.75, 0.8,0.85, 0.90, 0.95, 0.97} was chosen.
We include a quadratic regression of the results.
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These two subsets’ partition log-probabilities are then shown in node
one and node two plots respectively. By looking at the two figures, we
conclude we can maximize the log-probability by splitting at Stock’s
B price 109.85 for node 1, and at Stock’s B price 110.14 for node 2.
The black horizontal line in each figure marks the log-probability of
S0, i.e.. the stopping condition. When any possible split log-
probability is below this line, the node is chosen to be a leaf, as it
happens in this example for nodes 3, 4, 5, and 6. Finally, note that by
symmetry, the blue, orange, and green lines should look periodic
because the extreme splits only separate one input point from the
data set. In addition, the green line looks convex which indicates it is
better not to split the data based on Stock C’s price.

6 DISCUSSION AND FUTURE WORK

The proposed GMT is a deterministic Bayesian Decision Tree that
reduces the training time by avoiding any Markov Chain Monte

Carlo sampling or a pruning step. The GMT numerical example
results show similar accuracies to other known techniques. This
approach may be most useful where the ability to explain the
model is a requirement. Hence, the advantages of the GMT are
that it can be easily understood. Furthermore, the ability to specify
p(θ) and p(S) may be particularly suitable to noisy problems.
However, it is not clear whether the hyper-parameters used in the
examples are optimal for each data set. Future work will explore
the sensitivity and parameter tuning for different prior
distributions. It still remains to find a more efficient
deterministic way to explore meaningful trees like Markov
Chain Monte Carlo based Bayesian Decision Trees do.

As an extension, we would like to assess the performance of this
algorithm on regression problems and experiment with larger
partition spaces such as the SVM hyperplanes. Another
computational advantage not explored is parallelization, which
would allow for a more exhaustive exploration of the tree
probability space from Eq. 1.

FIGURE 4 | From top to bottom, left to right: Simulated stock prices, test period PnL (Profit and Loss) for the GMT, test period PnL for the neural network, confusion
matrix for the GMT, and confusion matrix for the neural network. The PnL is the cumulative profit achieved when the predicted portfolios are executed. The costs are
omitted for simplicity.
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Identifying Actionable Serial
Correlations in Financial Markets
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Financial markets are complex systems where information processing occurs at multiple
levels. One signature of this information processing is the existence of recurrent
sequences. In this paper, we developed a procedure for finding these sequences and
a process of statistical significance testing to identify the most meaningful ones. To do so,
we downloaded daily closing prices of the Dow Jones Industrial Average component
stocks, as well as various assets like stock market indices, United States government
bonds, precious metals, commodities, oil and gas, and foreign exchange. We mapped
each financial instrument to a letter and their upward movements to words, before testing
the frequencies of these words against a null model obtained by reshuffling the empirical
time series. We then identify market leaders and followers from the statistically significant
words in different cross sections of financial instruments, and interpret actionable trends
that can be traded upon.

Keywords: financial markets, serial correlations, complex systems, information processing, recurrent sequences

1 INTRODUCTION

In his seminal 1970 paper, Fama introduced the notion of an efficient market, within which
the prices of securities fully reflect all information from the past, as well as future expectations
on their returns [1]. In his paper, the empirical evidence Fama cited as supporting this efficient
market hypothesis is zero (or close to zero) serial correlation. However, if financial markets
are truly efficient, then it would be impossible for traders to profit beyond the fundamental
values of the securities. Naturally, the only trading strategy that makes sense in an efficient market
would be buy-and-hold. This brings us then to the elephant in the room: why are there so many
hedge funds (according to https://www.investopedia.com/terms/h/hedgefund.asp, more than
10,000 of them) in the world, and why are so many of them making money? Fundamentally,
all hedge funds engage in some form of technical trading [2–4], frequently dismissed by financial
economists as not founded on firm principles. The profitability of technical trading was first
investigated by Lukac et al. [5] and Brock et al. [6]. Testing 12 technical trading rules for 12
commodities between 1978 and 1984, Lukac et al. found that seven rules produced significant
gross returns, while four rules produced significant net returns and significant risk-adjusted
returns, after taking into account transportation and storage costs. Testing the commonly used
moving average and trading range break rules on the Dow Jones index from 1897 to 1986, Brock
et al. found these technical trading rules generating significant positive returns, especially from
buy signals. Later, Levich and Thomas [7], Parisi and Vasquez [8], Kwon and Kish [9], also
showed that technical trading can be significantly profitable, for currency futures contracts
between 1976 and 1990, for many stocks on the Chilean stock market between 1989 and 1998, and
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for the New York Stock Exchange value-weighted index over
the period 1962 to 1996, respectively.

When the technical trading rules were tested within shorter
subperiods in Refs. [7] and [9], their profitabilities were found to
be lower for the last sub-periods, 1986 to 1990 and 1985 to 1996,
respectively. Kwon and Kish suspected that this was due to the
market becoming more efficient after computerization. But as
they pondered this, a wave of criticism on technical trading
started, led by the papers by Ready [10] and Bajgrowicz and
Scaillet [11]. In these papers, as well as those by Fang et al. [12]
and Taylor [13], technical trading rules found to be profitable in
the earlier periods in Ref. [6] were tested for later periods, and
found to have lost their magic. Taylor, who examined the
performance of momentum-based technical trading rules over
the cross section of Dow Jones Industrial Average component
stocks between 1928 and 2012, found the profitability of these
technical trading rules evolving slowly over time, but are most
profitable between the mid-1960s to the mid-1980s. This
phenomenon was also observed for the performance of hedge
funds. For example, earlier studies by Ackermann et al. and Liang
reported stellar performances of 9.2–16.1% annual return for 906
hedge funds between January 1994 and December 1995) [14], and
monthly returns ranging from −0.10 to +1.35% for 385 hedge
funds between January 1994 and December 1996 [15],
respectively. However, a more recent study by Fung et al. of
1,603 funds between January 1995 and December 2004 found
them delivering 14–24% annual return only between 1995 and
1999 [16]. In 1998, the average return was zero, presumably
because of the Long Term Capital Management crisis, and
generally anemic from 2000 onwards (except for 12% in
2003), because of the NASDAQ crash in 2000. In principle,
these criticisms focused on technical trading rules shown to be
profitable in earlier papers, and therefore do not constitute
definitive proof that technical trading rules as a whole do not
work. For example, it is entirely possible that some rules work
well in a given period, but as they becomes less effective in
another period, other rules would become more profitable. It is
also possible, while a technical trading rule is profitable in a given
period, another rule that we have not considered might do even
better. This last problem of finding the optimal technical trading
rule based on hidden temporal patterns is one ideally suited to
machine learning. In one of the earliest studies, Allen and
Karjalainen used a genetic algorithm to learn technical trading
rules for the daily S&P 500 prices from 1928 to 1995 [17].
Unfortunately, the rules learned did not perform better than
the simple buy-and-hold strategy in out-of-sample test periods,
although some rules did performed better in some periods.
Fernández-Rodríguez et al. had better luck, finding that the
simple technical trading rule is superior to the buy-and-hold
strategy for bear and bull markets [18].

Ultimately, through the literature survey above, we see that
machine learning is also not exhaustive. It finds the best, but not
all that are profitable. Also, technical trading rules discovered
through machine learning (including those using artificial
neural networks [19–21]) do not necessarily perform better
than those learned by human traders. Here let us address the
question why technical trading rules have only short-lived

successes, from the context of information processing by
complex systems. For example, a typical language like
English contains more than 100,000 words, using which we
construct sentences containing about 20 words. However, an
overwhelming majority of the 2010

5
sentences that we form by

randomly selecting words are unintelligible. For an English
sentence to be meaningful, the sequence of words has to
closely obey a set of rules that we call the English grammar,
and further constrained to convey meaning. Because of this
severe reduction of the space of all possible sentences to the
space of all meaningful sentences, we expect in daily usage many
sentences or sub-sentences to be repeated. Another way to look
at this phenomenon, is that recurrent sequences are necessary
for the transmission of meaning or information, and for
information processing in general. Consequently, the rules of the
language make it more likely for repetition to occur. Another
example of information processing in complex systems is the
Krebs cycle in our biological pathways, which gets activated more
than 1013 times a day to produce adenosine triphospate (ATP) [22,
23], a molecule that we constantly consume to stay alive. If we could
measure the concentrations of all transcribed species, the highly
recurrent sequences associated with the Krebs cycle would be
impossible to miss.

Financial markets are also complex systems, in which
participants are constantly learning how to process the
complex information coursing through the system. As they
do so, they add to the complex information in the system.
Therefore, efficient or not, we expect hidden rules and
recurrent sequences to be present in financial markets.
However, as financial agents act on the market, they are
themselves acted upon. As such, no agent or strategy can
dominate forever, even though a previously-dominant strategy
may return to dominance time and again. This explains why
technical trading rules can be profitable (because exploitable
information always exists in the market), and why their
profitabilities are short-lived (because they generate
information that can be exploited by other technical trading
rules). Therefore, when a group of technical trading rules become
unprofitable, another group of technical trading rules become
profitable. This tells us that to hunt for this shifting information,
we should look not only for correlations in time, but also
correlations in space, across different instruments and
different asset classes. So far, technical trading focuses on
temporal patterns representing high-order serial correlations
in individual instruments, but spatio-temporal patterns
involving multiple instruments should also exist, and can be
exploited for technical trading. Surprisingly, after a broad survey
of the literature, we found no previous studies on technical
trading based on spatio-temporal patterns. In fact, when we search
Google Scholar using “pattern recognition” and “multivariate time
series”, we end up with two hits. In the 2011 conference paper by
Spiegel et al. [24], time series segmentation was first used to
define features in the individual time series, before these
features were used to define patterns across the small number
of car accelerator sensor time series. In their 2016 paper [25],
Fontes and Pereira used a three-step method involving
subsequence matching and fuzzy clustering, followed by PCA to
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analyze sensor time series cross section from a gas turbine for
monitoring and fault prediction.

In this paper, we take the natural next step to test the feasibility
of technical trading using spatio-temporal patterns over the cross
section of Dow Jones Industrial Average component stocks, as
well as over cross sections of multiple asset classes including
commodities, bonds, FOREX rates, indices, metals, and oil and
gas. To find these recurrent spatio-temporal patterns, all these
existing works relied on time series segmentation to first convert a
real-valued time series into a symbolic time series. This is
computationally heavy, so instead of time series segmentation,
we describe in Section 2 how we collected and cleaned our data,
and how we map a specific choice of price movements to spatio-
temporal cross sections of strings with lengths up to 5 days and
comprising up to 10 alphabets. Ultimately, with this symbolic
mapping all temporal patterns can be mapped to strings of
alphabets. However, even after this simplification the
extraction of actionable information on financial markets is
not a trivial task, firstly because we have no prior knowledge
what these signals would look like, and must thus analyze
movements within the system, identify recurrent sequences
that appear, and use these to infer the rules of information
processing within financial markets. Such an analysis has been
carried out in various fields to analyze various complex systems
[26–30], and we ourselves have done so for natural languages [31]
and teaching practices [32]. Secondly, the very many signals
overlap in time to mask each other, and more importantly,
participants hide their intentions as they trade. This leads to
the financial markets becoming so “noisy” that one can guess
price movements correctly only slightly more than 50% of the
time (although Kelly showed in 1956 that this is sufficient to
ensure a positive return betting on an outcome [33]). This second
problem also occurs for our gene expression machinery, or the
information processing machinery of other complex systems.
Fortunately, network science has made great strides in

systematically and independently identifying spatial motifs
[34–36], which are collections of nodes that are co-activated
much more frequently than we expected from random and
uncorrelated activation of nodes, or temporal motifs [37, 38],
which are sequences of nodes that are activated one after another.
Spatial motifs can be very large, and we need a lot of data to be
confident that they are not products of random fluctuations.
Similarly, temporal motifs can be very long, making the space of
sequences to search through very large indeed. As far as we know,
there have been no efforts to develop methods for identifying
spatio-temporal motifs, consisting of different cross sections of
nodes at different lags. Therefore, in Section 2, we describe how
to unpack spatio-temporal sequences into collections of temporal
sequences, and thereafter test these empirical sequences against
null models to identify sequences that are repeated more
frequently than by chance. We then report in Section 3 that
in general, there are no actionable serial correlations for single
instruments, but many recurrent multiple-instrument spatio-
temporal sequences exist, which allow one to design trading
strategies around them. Finally, we tested the feasibility of
these trading strategies in Section 4, before summarizing our
findings in Section 5.

2 DATA AND METHODS

2.1 Data
We downloaded two sets of time series data in the form of
comma-separated values (CSV) files. The first set (see
Supplementary Table S1) comprised daily prices of the 30
component stocks of the Dow Jones Industrial Average (DJI).
These belong to the 30 largest publicly-owned United States
companies, which are prominent brand names many people
are familiar with. We used the maximum time period for each
stock, so that we can compare them across the longest possible

FIGURE 1 | (A) The price time series of five financial instruments, mapped to the alphabets ‘A’, ‘B’, ‘C’, ‘D’, ‘E’. When the price of an instrument rises, the
corresponding letter is added to the spatial cross section. (B) For days t � 1 to t � 6, the spatial cross sections are non-empty, but there are no price gains on day t � 7
(and therefore the spatial cross section on this day is empty). Thereafter, on day t � 8, we find a new non-empty spatial cross section. Hence we find a length-6 spatio-
temporal sequence (of non-empty spatial cross sections) that ends on day t � 6, and another spatio-temporal sequence starting on day t � 8. In practice, because
we set the price on a non-trading day to the price on the last trading day, the longest spatio-temporal sequence we have to deal with in this paper is length-5. (C) The
length-6 spatio-temporal sequence shown in (B) can also be thought of as being equivalent to 2 × 2 × 2 × 4 × 2 × 3 � 192 length-6 temporal sequences. Some of these
temporal sequences are shown here.
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time period. The second set (see Supplementary Table S2)
comprised daily prices of three to five instruments each from
six different asset classes, including stock indices, precious metals,
commodities, government bonds, energy materials, and foreign
exchange. The 26 instruments in this second data set were
selected primarily because data was readily available, and also
because they are easily recognizable.

We then imported these CSV files into Python for cleaning.
First, we removed empty cells or cells that contain
errors, before saving the cleaned data as two separate
numpy files. The first file contains the dates in International
Organization for Standardization (ISO) format, while the
second file contains the corresponding closing prices. For
missing prices over weekends or public holidays, we set
them equal to the prices of the previous days. As such, a
financial instrument can only increase continuously for at
most 5 days, as closing prices over the weekends are set to
those on Friday.

2.2 Compiling Lists of Spatio-Temporal
Sequences
To avoid having to deal with the full complexity of financial
markets, but still be able to discover statistically significant
patterns within the data, we map the day-to-day price change
time series to symbolic sequences from a small alphabet. There
are many ways this can be done, depending on what trading
strategy we would like to adopt. For example, if we would like to
watch for 2 days of positive price changes, and buy the
instruments that are most likely to also experience positive
price changes in the next one, two, or three days, we would
choose to map the price changes to letters of an alphabet (one
letter for each instrument), only when the price changes are
positive. This example is illustrated in Figure 1A. Alternatively,
if we would like to sell an instrument whose price is most likely
to fall after 2 days of gain in the prices of two other instruments,
we can map positive price changes to uppercase letters ‘A’, ‘B’,
‘C’, . . ., and negative price changes to lowercase letters ‘a’, ‘b’,
‘c’, . . ..

In Figure 1B, we show howwe organize the symbolic sequences of
the cross section of instruments into spatio-temporal sequences. A
spatio-temporal sequence consists of spatial cross sections like (‘B’, ‘C’),
(‘C’, ‘E’), (‘A’, ‘C’), (‘A’, ‘B’, ‘C’, ‘E’), (‘A’, ‘E’), (‘B’, ‘C’, ‘E’) at successive
times. Spatial cross sections at different times need not be the same in
size, like (‘B’, ‘C’) and (‘A’, ‘B’, ‘C’, ‘E’) for example. Spatio-temporal
sequences also need not be equally long in time. For example, the
spatio-temporal sequence (‘B’, ‘C’)→ (‘C’, ‘E’)→ (‘A’, ‘C’)→ (‘A’, ‘B’,
‘C’, ‘E’) → (‘A’, ‘E’) → (‘B’, ‘C’, ‘E’) has a temporal length of 6. This
spatio-temporal sequence stops here, because in the time series cross
section, no instrument has an increasing price on day 7. The spatial
cross section (‘B’, ‘C’, ‘D’, ‘E’) on day 8 then represents the start of
the next spatio-temporal sequence, which may have a different
temporal length. Going through the time series cross section
{(Δp1,1, . . . ,Δp1,t , . . . ,Δp1,T ), . . . , (ΔpN ,1, . . . ,ΔpN ,t , . . . ,ΔpN ,T )},
where Δpi,t is the price change of instrument i � 1, . . . ,N on day
t � 1, . . . ,T , we then obtain a list of spatio-temporal sequences

{Σ1, . . . ,Σk, . . . ,Σn}, where Σk � σk,1 → σk,2 →/→ σk,mk consists
of mk spatial cross sections σ l � (sl,1, sl,2, . . . , sl,pl). In spatial cross
section σ l , the price changes of 1≤ pl ≤N instruments (whose
symbols are sl,1, . . . , sl,pl) are positive.

2.3 Null Model and Test of Statistical
Significance
In general, when we expand the spatio-temporal sequences into
temporal sequences, and count the number of times they appear,
some temporal sequences will be frequent, while others will be
rare. However, a frequent temporal sequence may be less
informative than a rare temporal sequence, if the former
contains many highly-frequent symbols. In other words, these
frequent temporal sequences can occur by chance, because their
symbols are so common. Therefore, the frequencies of different
temporal sequences must be tested against appropriate null
models, to ensure at the very least that they are not likely to
be obtained by chance.

Depending on what information we are interested in, we
can construct different null models. In Section 3.1, we will
show that the probability of empirically finding positive price
movements in an instrument for r consecutive days is pr , where
p is the probability of finding positive price movement for the
instrument on any given day. This suggests that the
appropriate null model to use for one instrument is
independent price movements on each day. We can of
course use this same null model for all N instruments.
However, in this null model the N instruments would be
uncorrelated in time (between different time lags) and also
in space (between different instruments), when strong cross
correlations between instruments are well known. Using such a
null model, we will find many statistically significant spatio-
temporal sequences with strong cross correlations between
instruments on the same days. There is no gain trading these
spatio-temporal sequences, since we cannot act on strong cross
correlations within the same day. Therefore, we should choose
a different null model that does not throw the baby out with the
bath water.

A simple null model that preserves spatial cross correlations,
but contains no temporal correlations, can be obtained by
reshuffling the empirical spatio-temporal sequences, as shown
in Figure 2. If this reshuffling is done within individual spatio-
temporal sequences, we also preserve the distribution of lengths.
With this null model, and some additional care, it is even possible
to perform statistical testing at the level of spatio-temporal
sequences. However, we chose for simplicity to perform
statistical testing at the level of temporal sequences. A temporal
sequence is a simple word (string of symbols), like ‘BCA’,
‘BCABA’, and so on. To do the test, we extract all possible
words that can be generated from the list of spatio-temporal
sequences. For example, for (‘B’, ‘C’) → (‘C’, ‘E’) → (‘A’, ‘C’), we
can generate the words ‘BCA’, ‘BCC’, ‘BEA’, ‘BEC’, ‘CCA’, ‘CCC’,
‘CEA’, ‘CEC’. We then count the number of times each word
appears after this unpacking of the spatio-temporal sequences.
These are our empirical frequencies.
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Next, we shuffle the empirical spatio-temporal sequences S �
100 times to create an ensemble of null-model spatio-temporal
sequences. For a spatio-temporal sequence of length mk, we can
generate up to mk! null-model spatio-temporal sequences. Some
short spatio-temporal sequences withmk < 5 will be repeated if we
shuffle them S � 100 times, but we need not worry about
repetitions even if the data contains just n � 10 spatio-
temporal sequences, as there will be 〈m!〉n ∼ 1017 distinct
combinations if 〈m!〉 � 50 is the average number of null-
model spatio-temporal sequences that can be generated from
each empirical spatio-temporal sequence. Since we shuffle the
empirical spatio-temporal sequences S � 100 times, after
unpacking the null-model spatio-temporal sequences into
temporal sequences, and counting the number of times
different words appear, we will have a distribution of S � 100
null-model frequencies for each word.

Since we sampled the null model S � 100 times, it is convenient
for us to perform the statistical test at the level p< 0.01. A word that
is significant at this level would have an empirical frequency that is
larger than all S � 100 null-model frequencies. Also, because the
null-model frequencies of all words are obtained simultaneously
from the shuffling of spatio-temporal sequences, we do not need to
make Bonferroni [39] or similar corrections [40] for the multiple
comparisons that we are making. All statistically significant words
will truly be at the p< 0.01 level of confidence. In a sense, by testing
observations against the null model, we are simultaneously testing all
kinds of autocorrelations and cross correlations between the sign
time series of the various instruments.

3 RESULTS

3.1 1-Letter Words
When we analyze each of the 56 instruments independently, by
emitting a single letter when the price increases, we are looking at
bull runs of different durations in their time series. We show the
distributions of durations for stocks in the first data set in
Supplementary Figure S1, and those for instruments in the
second data set in Supplementary Figure S2. Plotted on a
linear-log scale, these graphs are all close to being linear,
suggesting that the distributions are exponential. Such an
exponential distribution arises very naturally if we assume that
the price increase on one day is uncorrelated with a price increase
on any other day. Therefore, if the probability of a price increase
is p, the probability of finding a bull run over r days is simply

pr � exp(r ln p) � exp(−r∣∣∣∣ln p∣∣∣∣). (1)

This result should not surprise us, since it is just an
unconventional way to present a very well known observation
in finance, namely the serial correlation or autocorrelation is
nearly zero [41]. This also means that there is no signal for a
trader to act on, when the 1-letter word lengths are so distributed,
beyond betting on the probability p of getting a price increase on a
given day, regardless of the number of days of price increases
prior to it. According to Fama and others after him, the market is
thus “efficient” [1].

3.2 2-Letter Words
However, this does not mean that there is no actionable price
movement information in the financial markets. In fact, trying to
understand this information by looking at the price movement of
a single instrument is like trying to understand the first sentence
of this paragraph by looking at the distribution {_,_, _, ‘a’, ‘a’, _, _,
_, ‘aa’, _, _, ‘a’, _, _, ‘aa’, ‘a’} of the letter ‘a’ appearing in the words.
If we use two letters, say ‘a’ and ‘e’, the distribution {‘ee’, _, ‘e’, _,
‘ea’, ‘a’, ‘ee’, _, _, ‘aae’, ‘e’, ‘ee’, ‘a’, _, ‘e’, ‘aa’, ‘ae’} is now more
informative (though still not enough for us to comprehend the
sentence). The distribution {‘ee’, ‘i’, ‘e’, _, ‘ea’, ‘a’, ‘ee’, ‘i’, _, ‘aiae’,
‘ie’, ‘ee’, ‘iai’, ‘i’, ‘e’, ‘iaia’, ‘ae’} becomes even more informative if
we include one more letter (‘i’). In this subsection, let us
demonstrate (as a proof of concept) how we can extract more
information from the distribution of 2-letter words. To do this, let
us examine two pairs of instruments, (A � HD, B � TRV) and
(A � platinum, B � USD-EUR), which are chosen because
individually, their distributions of 1-letter words are the least
informative (in that the probability of finding a word with length-
r is closest to the product of independently finding r length-1
words).

For the HD-TRV pair, we used data between Sep 22, 1981 and
Mar 7, 2018. Going through the 9,194 closing prices, we found
1,019 trading days when there were no price increases in either
HD or TRV. The rest of the trading days are partitioned into
1,974 spatio-temporal sequences. The shortest of these spatio-
temporal sequences are {(A)}, {(B)}, and {(A, B)}, which are the
three possible spatial cross-sections. The longest spatio-temporal
sequence is length-22 (price increases over multiple holidays and
weekends). We focused on the 1,676 spatio-temporal sequences
length-5 and shorter. These unpack into 4,213 temporal
sequences, with the distribution shown in Table 1. As
expected, after statistical testing at the level of p< 0.01 most of
the temporal sequences are insignificant, except for BABA and
BABB. This tells us that after a price increase in TRV on day 1,
followed by a price increase in HD on day 2, followed by a price
increase in TRV on day 3, there is a very significant chance of
price increases in either HD or TRV.We can findmore actionable

FIGURE 2 | Shuffling a length-10 spatio-temporal sequence with spatial
cross sections of different sizes, to obtain a null-model ensemble of length-10
spatio-temporal sequences.
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temporal sequences if we relax the criterion of our statistical
testing to p< 0.05.

For the platinum-USD-EUR pair, we used data between Dec
27, 1979 and Mar 13, 2018. Going through the 9,922 prices, we
found 639 trading days when there were no price increases in
either platinum or USD-EUR. The rest of the trading days were
partitioned into 1,884 spatio-temporal sequences, and the
longest spatio-temporal sequence is length-27 (price
increases over multiple holidays and weekends). Focusing
on the 1,449 spatio-temporal sequences length-5 and
shorter, we find that these unpack into 3,185 temporal
sequences, with the distribution shown in Table 2. In this
case, we find BA occurring more frequently than expected
from the null model, at the p< 0.01 level. No other temporal
sequences occur more frequently than expected from the null
model, even at the p< 0.05 level. This tells us that an increase in
the USD-EUR exchange rate is very likely to be followed by an
increase in the price in platinum the next day—an observation
that traders can act on! Interestingly, ABBA, AAABB, and
AAAAB occur less frequently than expected from the null
model, the first two at the p< 0.05 level, while the last at the
p< 0.01 level. The observations on AAABB and AAAAB
suggest that following 3–4 days of increases in the platinum
price, we are likely to find an ensuing decrease in the USD-

EUR exchange rate. This is also an observation that traders can
act on.

3.3 5-Letter Words
In Section 3.2, we illustrated how we can better understand the
information contained in an English sentence by going from
one-letter sequences to two-letter sequences, and how the
information extraction improved with three-letter
sequences. In this subsection, let us show that this is also
true for financial markets, by going to a cross section of five
stocks, (A) GE, (B) CSCO, (C) HD, (D) JPM, (E) MMM, using
prices between Feb 16, 1990 and Mar 8, 2018. Out of the 10,248
trading days, there are 2,225 days on which there are no price
increases in any of the five stocks. From the remaining 8,023
trading days, we found 1,987 spatio-temporal sequences of
lengths between 1 and 5. After unpacking, we obtained 158,106
temporal sequences.

Out of 5 + 52 + 53 + 54 + 55 � 3, 905 distinct five-letter
temporal sequences of length up to 5, we found 183 temporal
sequences (< 5%) that are statistically significant at the level of
p< 0.05. Of these, 35 (< 1%) are statistically significant at the
level of p< 0.01. These are not small numbers. The distributions of
dynamical motifs are skewed in favor of longer temporal
sequences. For the p< 0.05 temporal sequences, four are length-

TABLE 1 | Empirical frequencies of 2-letter temporal sequences of up to length-5, corresponding to price increases in HD and TRV. In this table, an asterix indicates statistical
significance at the level of p<0.01.

Seq Freq Seq Freq Seq Freq Seq Freq Seq Freq

A 453 AA 227 AAA 104 AAAA 54 AAAAA 35
AAAAB 31

AAAB 48 AAABA 28
AAABB 24

AAB 100 AABA 45 AABAA 30
AABAB 30

AABB 48 AABBA 21
AABBB 24

AB 197 ABA 99 ABAA 37 ABAAA 37
ABAAB 34

ABAB 39 ABABA 37
ABABB 31

ABB 91 ABBA 34 ABBAA 30
ABBAB 27

ABBB 38 ABBBA 28
ABBBB 27

B 478 BA 232 BAA 106 BAAA 59 BAAAA 32
BAAAB 23

BAAB 45 BAABA 26
BAABB 21

BAB 90 BABA* 58 BABAA 25
BABAB 23

BABB* 60 BABBA 17
BABBB 19

BB 213 BBA 103 BBAA 40 BBAAA 32
BBAAB 28

BBAB 37 BBABA 30
BBABB 27

BBB 106 BBBA 45 BBBAA 27
BBBAB 26

BBBB 45 BBBBA 25
BBBBB 27
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2, five are length-3, 27 are length-4, and 147 are length-5. For the
p< 0.01 temporal sequences, one is length-3, five are length-4, and
29 are length-5. Therefore, the identification of longer dynamical
motifs seems to be easier. However, they are also less common
overall. For trading, a compromise has to be found.

For this cross section of five stocks, we also found a very
interesting statistic: of the 183 p< 0.05 temporal sequences, 39
starts with A (GE), 32 starts with B (CSCO), 27 starts with C
(HD), 43 starts with D (JPM), and 42 starts with E (MMM).
Restricting ourselves then to the 147 length-5 p< 0.05 temporal
sequences, we found that 22 ends with A (GE), 47 ends with B
(CSCO), 42 ends with C (HD), 14 ends with D (JPM), and 22 ends
with E (MMM). This suggests that, even though we only look at
five stocks, JPM, MMM, and GE are leaders in market-wide bull
runs (and thus less likely to follow), whereas CSCO and HD are
followers (and thus less likely to lead).

Finally, we find 11 of the p< 0.05 length-5 motifs containing
ABB. These are ABABB, BAABB, CBABB, CCABB, DBABB,
EAABB, EABBB, EBABB, ECABB, EDABB, EEABB. Apart
from EABBB, ABB occurs at the end. This is an observation
that traders can definitely act upon. However, since ABB is
itself a p< 0.01 length-3 motif, perhaps it is not surprising that
we find these length-5 motifs extending ABB. The situation is

different with CBB, whose empirical frequency is exceeded by
15 null-model frequencies (p � 0.15), and thus not very
significant. In spite of this, we find 8 length-5 motifs at
p< 0.05 containing CBB. These are ABCBB, ADCBB,
CBBBB, EACBB, EBCBB, ECCBB, EDCBB, EECBB. Except
in CBBBB, CBB again occurs at the end of the other motifs,
making them actionable. More importantly, if we compare the
two series of length-5 motifs,

ABABB, BAABB, CBABB, CCABB, DBABB, EAABB,

EBABB, ECABB, EDABB, EEABB;

ABCBB, ADCBB, EACBB, EBCBB, ECCBB, EDCBB,

EECBB,

we find that six prefixes match, and their empirical frequencies
are close to each other. Therefore, we can write these 12 length-5
motifs as

AB[ABB
CBB

], EA[ABB
CBB

], EB[ABB
CBB

], EC[ABB
CBB

],

ED[ABB
CBB

], EE[ABB
CBB

], (2)

and then further as

TABLE 2 | Empirical frequencies of 2-letter temporal sequences of up to length-5, corresponding to price increases in platinum and USD-EUR. In this table, an empirical
frequency that is significantly higher than expected from the null model is indicated by an asterix (p< 0.05) or two asterixes (p<0.01), whereas an empirical frequency that
is significantly lower than expected from the null model is indicated by a dagger (p< 0.05) or a double dagger (p<0.01).

Seq Freq Seq Freq Seq Freq Seq Freq Seq Freq

A 343 AA 154 AAA 64 AAAA 47 AAAAA 17
AAAAB‡ 11

AAAB 37 AAABA 15
AAABB† 11

AAB 77 AABA 48 AABAA 22
AABAB 18

AABB 46 AABBA 18
AABBB 16

AB† 147 ABA 83 ABAA 43 ABAAA 21
ABAAB 13

ABAB 35 ABABA 18
ABABB 17

ABB 78 ABBA† 34 ABBAA 22
ABBAB 16

ABBB 34 ABBBA 15
ABBBB 13

B 317 BA** 181 BAA 83 BAAA 45 BAAAA 21
BAAAB 14

BAAB 41 BAABA 16
BAABB 16

BAB 86 BABA 49 BABAA 22
BABAB 20

BABB 45 BABBA 18
BABBB 21

BB 166 BBA 81 BBAA 47 BBAAA 22
BBAAB 20

BBAB 40 BBABA 14
BBABB 22

BBB 80 BBBA 39 BBBAA 23
BBBAB 24

BBBB 39 BBBBA 17
BBBBB 23
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AB
EA
EB
EC
ED
EE

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[ABB
CBB

] �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AB

E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
B
C
D
E

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[ABB
CBB

]. (3)

In doing so, we are repacking the 12 length-5 temporal motifs
back into a spatio-temporal motif.

3.4 10-Letter Words
Ultimately, there are tens of thousands of stocks on the New York
Stock Exchange and other US exchanges, so the 30 DJI
component stocks, or even the 500 S&P 500 component stocks
cannot provide a comprehensive picture on all information
flowing through these stock markets. If we go beyond stock
markets, to include assets from other financial markets
(commodities, oil and gas, bonds, foreign exchange, . . .), it is
clear a cross section of five instruments represents not even the tip
of an iceberg. It is thus tempting to consider cross sections of
many more instruments. However, as we have seen from Section
3.2 and Section 3.3, while the numbers of spatio-temporal
sequences remain comparable, the numbers of temporal
sequences that we unpack going from a two-letter alphabet to
a five-letter alphabet increased 50-fold. If we now go from a five-
letter alphabet to a 10-letter alphabet, the numbers of temporal
sequences is expected to increase another 30-fold, to
approximately 5 × 106. If this number of temporal sequences
gets any larger, testing them statistically will no longer be feasible
on a desktop computer, so we must forget going to 50 letters
(utilizing both uppercase and lowercase letters), where we would
have to deal with 3 × 108 temporal sequences after unpacking, or
larger alphabets.

At the same time, the information we can extract from
financial markets become richer when we use larger alphabets.
To illustrate this, and also highlight new problems encountered,
let us analyze two large cross sections of instruments in this
subsection: 1) a cross section of 10 DJI component stocks, and 2)
a cross section of nine mixed assets. In the first cross section, (A)
GE, (B) CSCO, (C) HD, (D) JPM, (E) MMM, (F) MRK, (G) UTX,
(H) BA, (I) VZ, (J) XOM, we used prices between Feb 16, 1990
andMar 8, 2018. Out of 10,248 trading days, we found 1,863 days
on which there were no price increases in any of the stocks. For
the rest of the trading days, price increases were organized into
1,738 spatio-temporal sequences up to length-5. For 10 stocks,
there are 111,110 unique temporal sequences. Out of these, 3,580
temporal sequences are statistically significant at the p< 0.05
level, while 672 are significant at the p< 0.01 level. As
functions of sequence length, these are distributed as

(F1, F2, F3, F4, F5) � (2, 43, 42, 235, 3258) (4)

for p< 0.05, and

(F1, F2, F3, F4, F5) � (0, 20, 3, 33, 616) (5)

for p< 0.01, where Fn is the frequency of length-n dynamical
motifs. Of the p< 0.05 motifs,

(Fpre
A , Fpre

B , Fpre
C , Fpre

D , Fpre
E , Fpre

F , Fpre
G , Fpre

H , Fpre
I , Fpre

J )
� (214, 149, 207, 197, 363, 605, 105, 143, 516, 1081),

(6)

where Fpre
σ is the number of motifs starting with the letter σ � A,

. . ., J, whereas

(Fpost
5,A , Fpost

5,B , Fpost
5,C , Fpost

5,D , Fpost
5,E , Fpost

5,F , Fpost
5,G , Fpost

5,H , Fpost
5,I , Fpost

5,J )
� (426, 289, 830, 125, 270, 159, 204, 495, 191, 269),

(7)

Fpost
σ being the number of motifs ending with the letter

σ � A, . . . , J. This tells us that XOM, MRK, VZ, MMM are the
top four leaders, while HD, BA, GE, CSCO,MMM are the top five
followers. Again, leaders are not followers (with the exception
of MMM).

Because of the number of p< 0.05 motifs, we can no longer
visually inspect individual sequences like we did for the 5-letter case
to identify actionable patterns. This is why a visualization scheme is
necessary. Since XOM is the strongest leadmover, we can choose to
visualize only the 1,063 length-5motifs that start with J, in the form
of a tree rooted in J. From this root, we draw branches to the 10
letters in the first level (if such sequences exist), and from each of
these letters, draw branches to the 10 letters in the second level (if
such sequences exist), and so on and so forth until we reach the end
of the sequences (the leaves). Because we draw only existing
sequences, some branches will have more leaves while others
will have fewer, as shown in Figure 3. The tree diagrams with
other roots in this cross section of 10 DJI stocks are shown in

FIGURE 3 | Tree diagram of dynamical motifs rooted in (J) XOM (price
increase on the first day). In this figure, we label all ten stocks with price
increases on the second day, but use a larger font for (A) GE, (D) JPM, and (I)
VZ, to indicate that price increases in these stocks are followed by the
largest numbers of dynamical motifs. For price increases on the third day, we
label only those stocks following XOM and GE/JPM/VZ, and are themselves
followed by the most dynamical motifs. Except for (J) XOM following VZ, we
find consistently (A) GE, (C) HD, and (H) BA following price increases on the
second day. This is also true for the branches we did not highlight, as well as
for the fourth day.
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Supplementary Figure S3. In Supplementary Figure S4, we also
show the tree diagrams for a second cross section of 10 DJI stocks.

The second cross section we feature here consists of indices
and precious metals, namely (A) gold, (B) silver, (C) palladium,
(D) S&P 500, (E) Hang Seng, (F) platinum, (G) Dow Jones, (H)
Nikkei, and (I) NASDAQ. We used prices between Apr 2, 1990
and Jan 28, 2018. Of the 10,164 trading days, we find 1,604 days
on which there were no price increases in any of the assets. For the
rest of the trading days, price increases were organized into
1,607 spatio-temporal sequences up to length-5. For the nine
assets, 9,145 temporal sequences are statistically significant at the
p< 0.01 level. This is many more than the 672 p< 0.01 temporal
sequences found for the cross section of 10 DJI stocks, suggesting
that the DJI cross section is well exploited, and therefore there is
less actionable information remaining. In contrast, the cross
section of nine mixed assets investigated here is not well
exploited, so there is more information that traders can act
on. This is to be expected, since fewer funds and traders
simultaneously trade indices and precious metals in the
portfolios they manage.

We also found the 9,145 p< 0.01 temporal sequences
distributed as

(F1, F2, F3, F4, F5) � (0, 81, 697, 6463, 1904). (8)

Unlike for the cross section of 10 DJI stocks, in this cross section
of nine mixed assets, length-4 sequences outnumber length-5
sequences. For the length-4 sequences,

(Fpre
4,A, Fpre

4,B , Fpre
4,C , Fpre

4,D, Fpre
4,E , Fpre

4,F , Fpre
4,G, Fpre

4,H , Fpre
4,I )

� (719, 708, 727, 729, 727, 707, 729, 691, 724), (9)

while

(Fpost
4,A , Fpost

4,B , Fpost
4,C , Fpost

4,D , Fpost
4,E , Fpost

4,F , Fpost
4,G , Fpost

4,H , Fpost
4,I )

� (711, 720, 724, 712, 712, 727, 724, 722, 711).
(10)

None of the assets are particularly strong leaders or strong
followers. For the length-5 sequences, from the distribution

(Fpre
5,A, Fpre

5,B , Fpre
5,C , Fpre

5,D, Fpre
5,E , Fpre

5,F , Fpre
5,G, Fpre

5,H , Fpre
5,I )

� (394, 115, 186, 281, 88, 209, 292, 71, 268), (11)

we find the strong leaders are (A) gold, (D) S&P 500, (G) Dow
Jones, (I) NASDAQ, while the weak leaders are (B) silver, (E)
Hang Seng, (H) Nikkei. Gold is well known to be a leading
indicator of inflation [42, 43], so it would not be surprising for gold
to also lead smaller-scale market movements. Using the Hilbert
transform to complexify the return time series of major global
indices, Vodenska et al. showed convincingly that FOREXmarkets
lead equity markets, and the US equity market is one of the leaders
of other equity markets [44]. Finally, from the distribution

(Fpost
5,A , Fpost

5,B , Fpost
5,C , Fpost

5,D , Fpost
5,E , Fpost

5,F , Fpost
5,G , Fpost

5,H , Fpost
5,I )

� (102, 132, 437, 234, 358, 111, 164, 197, 169),
(12)

we see that (C) palladium, (E) Hang Seng are strong followers,
while (A) gold, (F) platinum are weak followers. As expected, (A)
gold being a strong leader is a weak follower, whereas (E) Hang
Seng being a weak leader is a strong follower. Surprisingly, (C)
palladium is a strong follower, even though it is not weak as a
leader. Similarly, (F) platinum is one of the weakest followers,
even though it is not the strongest of leaders.

The tree diagrams for length-5 p< 0.01 dynamical motifs in
this cross section of nine mixed assets are shown in
Supplementary Figure S5. If we look at the tree diagram
rooted in (A) gold, who is the strongest leader in this cross
section, we find that price increases in (A) gold on the first day is
followed most strongly by price increases in (D) S&P 500, (E)
Hang Seng, (G) Dow Jones, (I) NASDAQ. This response by stock
indices to rallies in the gold price is not at all surprising, apart
from the weak response from (H) Nikkei. For subsequent days,
price increases occur predominantly in (E) Hang Seng and (H)
Nikkei. As it turned out, whoever the leader was on the first day
(E) Hang Seng and (H) Nikkei were consistently the assets that

FIGURE 4 | Probability densities of the fractional returns for trading
MMM on day 4 and XOM on day 5 based on the p<0.01 length-5 motif XOM
→ VZ → BA → MMM → XOM, between Feb 16, 1990 and Mar 8, 2018.

FIGURE 5 | Distributions of fractional returns for trading on day 4 and
day 5 of p<0.01 length-5 motifs in the first cross section of DJI component
stocks, comprising (A) GE, (B) CSCO, (C) HD, (D) JPM, (E) MMM, (F) MRK, (G)
UTX, (H) BA, (I) VZ, (J) XOM, between Feb 16, 1990 and Mar 8, 2018.
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responded on the second and third days. This behavior is not seen
in the United States indices, (D) S&P 500, (G) Dow Jones, and (I)
NASDAQ. It is well known that Nikkei follows United States
indices [45–47]. The tree diagrams of two other cross sections of
mixed assets are also shown in Supplementary Figures S6, S7.

4 FEASIBILITY

After identifying the dynamical motifs, let us check whether they
can be traded profitably.We do this for length-5 motifs, which are
the most informative. First, let us explain how a simple trading
strategy can be developed using one specific p< 0.01 length-5
motif, say XOM → VZ → BA → MMM → XOM from the first
DJI cross section. In this motif, price increase first occurs for
XOM on day 1, then for VZ on day 2, for BA on day 3, for MMM
on day 4, and finally for XOM on day 5. After observing a price
increase in XOM at the end of day 1, we can of course buy VZ, BA,

MMM, and XOM, to sell at the ends of days 2, 3, 4, and 5,
respectively. However, this is risky, as we cannot be sure the price
increase of XOM on day 1 is the start of the length-5 motif we are
targeting. It could be the start of another motif, or just an
idiosyncratic price movement that is not part of any motif.
Therefore, a safer way to exploit this length-5 motif is to first
observe the market for 3 days. If price increase occurs for XOM
on day 1, VZ on day 2, and BA on day 3, there is a strong likelihood
that we are in the midst of the length-5 motif. We can then buy
MMM at the end of day 3, and since it is expected to experience a
price increase, sell it at the end of day 4 tomake a profit. Finally, if the
price of MMM does increase on day 4, we can buy XOM at the end
of day 4, and sell it at the end of day 5. In this way, we can execute
one to two transactions every time XOM → VZ → BA occurs.

For this length-5 motif, we find that over the period Feb 16,
1990 to Mar 8, 2018, the price increase sequence XOM → VZ →
BA appeared 964 times, while the price increase sequence
XOM → VZ → BA → MMM appeared 477 times. Buying
MMM 964 times at the end of day 3 and selling it at the of
day 4, we compute for each transaction the fractional return

rMMM(t) � PMMM(t + 3) − PMMM(t + 2)
PMMM(t + 2) (13)

for the price increase sequence XOM→VZ→ BA that started on
day t. The normalized histogram for these 964 fractional returns
is shown in Figure 4. Similarly, of the 477 times the price increase
sequence XOM → VZ → BA → MMM appeared, price increase
in XOM followed 236 times. If we wait for the price increase
sequence XOM → VZ → BA → MMM to appear, buy XOM at
the end of day 4, and sell it at the end of day 5, we find the
fractional return

rXOM(t) � PXOM(t + 4) − PMMM(t + 3)
PMMM(t + 3) (14)

for the price increase sequence XOM→VZ→ BA that started on
day t. The normalized histogram for these 477 fractional returns
is also shown in Figure 4.

FIGURE 6 | Distributions of weekly average fractional returns for trading
on day 4 and day 5 of all p<0.01 length-5motifs in the first cross section of DJI
component stocks, comprising (A) GE, (B) CSCO, (C) HD, (D) JPM, (E) MMM,
(F) MRK, (G) UTX, (H) BA, (I) VZ, (J) XOM, between Feb 16, 1990 andMar
8, 2018.

FIGURE 7 | Distributions of conditional probabilities for price increases on day 4 and day 5 for all p< 0.01 length-5 motifs in the first cross section of DJI component
stocks, comprising (A) GE, (B) CSCO, (C) HD, (D) JPM, (E) MMM, (F) MRK, (G) UTX, (H) BA, (I) VZ, (J) XOM, between Feb 16, 1990 and Mar 8, 2018. Since we distinguish
between strong and weak leaders, in this figure we show the conditional probabilities for motifs with different roots from (A) to (J).
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The average fractional returns are 0.0012 for MMM, and
0.0007 for XOM. These are positive, but puny. More
importantly, over the roughly 28-year period, we would have
traded only (964 + 477)/28 � 51.5 times a year based on the
motif XOM→VZ→ BA→MMM→ XOM. A human trader can
easily trade many more times, let alone trading algorithms.
Therefore, we next check the distribution of fractional returns
shown in Figure 5, if we trade on day 4 (60,153 transactions) and
day 5 (35,855 transactions) for all p< 0.01 length-5 motifs. The
average fractional return on day 4 is 0.0035, while that on day 5 is
0.0042. While these average fractional returns are higher than
those for XOM → VZ → BA → MMM → XOM alone, the
distributions shown in Figure 5 give us the wrong impression
that trading in these motifs is high-risk and low-return. To put it
more accurately, we get such dismal performance only if we
choose to trade one random motif a week.

If we trade multiple motifs in the same week, then our
prospects would be different. This is because we may fail to
profit from some motifs, but still succeed in other motifs.
Therefore, we should first average the fractional return over all
motifs we trade in a given week, before compiling the histogram
of 424 weekly average fractional returns shown in Figure 6.
Unlike for the fractional return of individual transactions, when we
trade all possiblemotifs and average the fractional returns over them,
we find that we almost never losemoney in any week. The average of
the average fractional return per week is 0.0035 on day 4 and 0.0042
on day 5, the same as when we average over the distributions of
fractional returns. However, since we now know the average
fractional return per week is (almost) always positive, we can
compound them to get an average fractional return of 0.0077 per
week, or an average fractional return of 0.4004 per annum!

Another way to understand this profitability is in terms of
p(X4 > 0|X1 > 0,X2 > 0,X3 > 0), which is the conditional
probability for a price increase X4 > 0 to be observed on day 4,
given that price increases X1 > 0, X2 > 0, X3 > 0 have been
observed on day 1, day 2, and day 3 for a given length-5
motif, and p(X5 > 0|X1 > 0,X2 > 0,X3 > 0,X4 > 0), which is the

conditional probability for a price increase X5 > 0 to be
observed on day 5, given that price increases X1 > 0, X2 > 0,
X3 > 0, X4 > 0 have been observed on day 1, day 2, day 3, and
day 4 for the same length-5motif. When we plot these conditional
probabilities as a violin plot in Figure 7, we see that the
conditional probability for day 4 is mostly larger than 0.5.
There seems to be no correlation between the strength of this
conditional probability and the strength of the stocks as leaders.
Finally, we see that the conditional probability for day 5 is
significantly larger than 0.5.

Before we conclude, let us also test the feasibility of our simple
trading strategy for the p< 0.01 length-5 motifs in the first cross
section of nine mixed assets, comprising (A) gold, (B) silver, (C)
palladium, (D) S&P P 500, (E) Hang Seng, (F) platinum, (G) Dow
Jones, (H) Nikkei, and (I) NASDAQ. If we trade one random
motif each week, we would have the distributions of fractional
returns shown in Figure 8. Based on these distributions, the
average fractional return on day 4 (558,752 transactions) is
0.0025, while that on day 5 (318,509 transactions) is 0.0028.
However, if we trade all possible motifs each week, we would have
the distributions of 3,182 weekly fractional return shown in
Figure 9. Just like for the first cross section of DJI stocks, the
average weekly fractional returns on day 4 and day 5 are still
0.0025 and 0.0029, but as we can see from Figure 9, the downside
risk of getting negative average weekly fractional returns is greatly
reduced. As we can see from the violin plot in Figure 10, most of
the conditional probabilities on day 5 are larger than their
counterparts on day 4. However, only the day-5 conditional
probabilities of motifs starting with (E) Hang Seng and (H)
Nikkei are significantly larger than 0.5.

We also investigated a second cross section of DJI stocks, as
well as a second and third cross sections of mixed assets. The
distributions of fractional returns, weekly average fractional
returns, and conditional probabilities of these cross sections
are shown in Supplementary Figures S8 and S9.

FIGURE 8 | Histograms of the fractional returns for day 4 and day 5
trading based on p<0.01 length-5 motifs from the first cross section of nine
mixed assets, comprising (A) gold, (B) silver, (C) palladium, (D) S&P 500, (E)
Hang Seng, (F) platinum, (G) Dow Jones, (H) Nikkei, and (I) NASDAQ,
using prices between Apr 2, 1990 and Jan 28, 2018.

FIGURE 9 |Histograms of the weekly average fractional returns for day 4
and day 5 trading based on all p <0.01 length-5 motifs from the first cross
section of nine mixed assets, comprising (A) gold, (B) silver, (C) palladium, (D)
S&P 500, (E) Hang Seng, (F) platinum (G) Dow Jones, (H) Nikkei, and (I)
NASDAQ, using prices between Apr 2, 1990 and Jan 28, 2018.
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5 CONCLUSIONS AND OUTLOOK

In this paper, we explained how information processing by self-
organized functions in complex systems lead to the existence of
recurrent activity sequences or dynamical motifs. In financial
markets, which are also complex systems, past and expected
information that gets incorporated into prices must therefore
be in the form of recurrent sequences. Thus far, technical
traders have exploited temporal patterns corresponding to
high-order serial correlations of individual instruments, but
actionable spatio-temporal patterns (also called dynamical
motifs) must also exist. To identify these dynamical motifs
Σk � σk,1 → σk,2 →/→ σk,mk with mk spatial cross sections,
σk,l � (sk,l,1, sk,l,2, . . . , sk,l,pk,l), each of which containing pk,l
activities, we first described a procedure for mapping price
increases in a spatial cross section of financial instruments to
an alphabet, so that price increases in the cross section can be
mapped first to a symbolic spatio-temporal sequence, and then
unpacked into a collection of temporal sequences represented
as simple strings. We then described how statistically significant
temporal sequences can be identified by testing the empirical
frequencies of these frequencies against a null model obtained by
reshuffling the spatio-temporal sequence (or collection of spatio-
temporal sequences). Such a null model preserves equal-time spatial
cross correlations, but completely destroys any serial correlations.
Dynamical motifs that traders can act on are thus temporal
sequences that occur more frequently then expected from the
null model.

We tested the above procedure on the 30DJI component stocks,
as well as 26 instruments from various asset classes, to find the
absence of serial correlations that traders can exploit, if they are
traded individually. We then tested the procedure on two pairs of
instruments, to find two length-4 dynamical motifs for (HD, TRV)
that are statistically significant at the p< 0.01 level, and one length-
2 dynamical motif for (platinum, USD-EUR) that is statistically
significant at the p< 0.01 level. After testing the procedure next on
a cross section of five DJI component stocks, and finding 35

dynamical motifs (29 of which are length-5) that are statistically
significant at the p< 0.01 level, we proceeded to identify dynamical
motifs in five cross sections containing eight to ten instruments.
For a cross section of 10 DJI component stocks and a cross section
of nine mixed assets, we reported in detail the 672 and 9,145
dynamical motifs that are statistically significant at the p< 0.01
level, how to identify leaders and followers, and more importantly,
how to visualize these in the form of tree diagrams with different
roots. Finally, we checked using our historical data whether these
dynamical motifs can be traded feasibly, by targeting the price
increases expected on day 4 and day 5 in length-5 motifs. We
showed that if we trade only a single dynamical motif, the downside
risk is appreciable, even though the expected fractional return is
positive. While the expected fractional return is not greatly
improved by trading all p< 0.01 length-5 motifs, we found that

FIGURE 10 | Histograms of the conditional probabilities for day 4 and day 5 trading based on all p< 0.01 length-5 motifs from the first cross section of nine mixed
assets, comprising (A) gold, (B) silver, (C) palladium, (D) S&P 500, (E) Hang Seng, (F) platinum, (G) Dow Jones, (H) Nikkei, and (I) NASDAQ, using prices between Apr 2,
1990 and Jan 28, 2018.

FIGURE 11 | The number of times two length-5 motifs ((top) MMM →
CSCO→ HD→ CSCO→ CSCO, and (bottom) HD→ JPM→ JPM→ CSCO
→GE) in the cross section of five DJI component stocks (A) GE, (B) CSCO, (C)
HD, (D) JPM, (E) MMM, appear for each year between Feb 16, 1990 and
Mar 8, 2018.
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the downside risk is greatly reduced. This is true for the 10-DJI-
component-stock cross section, as well as for the 9-mixed-assets
cross section. For the 10-DJI-component-stock cross section with
616 p< 0.01 length-5 motifs, downside risk was practically non-
existent, and an expected fractional return of 0.0077 per week, or
equivalently 0.4004 per annum could be achieved.

In this study, we identified dynamical motifs consisting of
price increases over five consecutive days from daily prices. For
616 length-5 motifs in the cross section of 10 DJI component
stocks, we could execute 96,000 trades over 28 years, or about
3,400 trades per year. For 9,145 length-5 motifs in the cross
section of nine mixed assets, we could execute about 877,300
trades, or about 31,300 trades per year. To get better returns, a
trader would want to trade more frequently. This can be done by
going to higher-frequency data, and use the high-frequency
motifs identified for trading. We do not know how well such a
strategy will perform, but imagine it doing better, since in high-
frequency data, autocorrelations and cross correlations do not
have time to die out, and therefore motifs would become easier to
identify, and are also statistically more significant. In this paper,
we also mapped all price increases in an instrument to a single
letter. If we do not have many instruments, it is possible (and
perhaps desirable) to use two letters per instrument, so that one
would represent a small increase, while the other would represent
a large increase. Alternatively, we can map the price increases in
an instrument to more than one instance of the letter. For
example, an increase of 0–1% can be mapped to A, an
increase of 1–2% to AA, and an increase of 2–5% to AAA.
Traders can then choose to act only if a large price increase is
expected. Other variations are also possible.

As a final caveat, let us say that like for purely temporal
patterns of single instruments, the profitabilities of spatio-
temporal patterns containing multiple instruments are also
expected to be short-lived, because once a spatio-temporal
pattern becomes dominant it can be exploited by other spatio-
temporal patterns. In Figure 11 we show the frequencies of two
length-5 motifs (at the p< 0.01 of statistical significance) over the
period 1990 to 2018. In general, these frequencies are low, so for
the most part it is difficult to tell visually whether they occurred
uniformly over the period, or their occurrences were
concentrated over certain subperiods. However, the frequency
spike of MMM → CSCO→ HD→ CSCO → CSCO in 2016 will

surely not be the product of a uniform probability that produced
the frequencies in other years. Even though this has not happened
in our data sets, we must be prepared for the eventuality of
temporal motifs losing their statistical significance. Therefore, as
we trade the significant sequences, we must at the same time be
mining for new significant sequences. Once these latter
sequences are discovered, they should be added to the
trading pool, but we must also develop the criterion for
discarding sequences that are no longer significant. This
must be done in a way that maximizes the lifetime returns
from such sequences, weighted against the potential for losses at
the end of their usable lifetimes.
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Sentiment-Guided Adversarial
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Prediction of stock prices or trends have attracted financial researchers’ attention for many
years. Recently, machine learning models such as neural networks have significantly
contributed to this research problem. These methods often enable researchers to take
stock-related factors such as sentiment information into consideration, improving
prediction accuracies. At present, Long Short-Term Memory (LSTM) networks is one
of the best techniques known to learn knowledge from time-series data and to predict
future tendencies. The inception of generative adversarial networks (GANs) also provides
researchers with diversified and powerful methods to explore the stock prediction
problem. A GAN network consists of two sub-networks known as generator and
discriminator, which work together to minimize maximum loss on both actual and
simulated data. In this paper, we developed a sentiment-guided adversarial learning
and predictive models of stock prices, adopting a popular variation of GAN called
conditional GAN (CGAN). We adopted an LSTM network in the generator and a
multilayer perceptron (MLP) network in the discriminator. After extensively pre-
processing historical stock price datasets, we analyzed the sentiment information from
daily tweets and computed sentiment scores as an additional model feature. Our
experiments demonstrated that the average forecast accuracies of the CGAN models
were improved with sentiment data. Moreover, our GAN and CGANmodels outperformed
LSTM and other traditional methods on 11 out of 36 processed stock price datasets,
potentially playing a part in ensemble methods.

Keywords: stock prediction, data processing, labels, regression, long short-term memory, sentiment variable,
conditional generative adversarial net, adversarial learning

1 INTRODUCTION

Stock prediction has been attached with great importance in the financial world. While stock
fluctuation is very unpredictable, researchers have made every effort to simulate the stock
variation because a relatively reasonable prediction can create massive profits and help reduce
risks. Stock prediction researchers often consider two kinds of solution methods: classification
and regression. Classification methods predict stock movement, while regression methods
predict stock prices. Stock movement prediction can be seen as a simple classification task
since it only predicts whether the stock will be up or down by a certain amount, or remain almost
unchanged. However, many researchers focus their efforts on stock price prediction–a regression
task that forecasts future prices with past values – since it could yield more profits than simple
movement prediction. In a regression task, researchers have to tackle very complex situations to
forecast the future price accurately. Like other time-series prediction problems, many factors
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should also be taken into consideration besides historical
prices. Investors’ sentiments, economic conditions, and
public opinions are all critical variables that should be
added into a stock prediction system. Particularly, sentiment
analysis has been identified as a useful tool in recent years. Not
just price and price-related values, researchers have paid more
attention to the extraction of sentiment information from
newspapers, magazines, and even social media. For example,
Ref. [1] examined the relation between social media sentiment
and stock prices, in addition to economic indicators in their
research on stock market. Ref. [2] Focused on combining
stock-related events with the sentiment information from
reviews of financial critics. They analyzed sentiments and
predicted the fluctuation of the stock market with a matrix
and tensor factorization framework. Besides mathematical
methods, the development of natural language processing
also provides additional techniques for analyzing text and
sentiment information. Machine learning, data mining, and
semantic comprehension have made extracting large amounts
of stock sentiments possible. With the development of social
media, people are increasingly inclined to exchange
information through the Internet platform. Real-time stock
reviews contain a wealth of financial information that reflects
the emotional changes of investors. Works such as [3, 4]; and
[5] analyzed sentiment information from large numbers of
real-time tweets, which were related to stocks and
corresponding companies, then investigated the correlation
between stock movements and public emotions with
supervised machine learning principles. In particular, Ref.
[3] utilized two mood tracking tools, OpinionFinder and
Google-Profile of Mood States (GPOMS), to analyze the text
content of daily tweets, which succeeded in measuring varying
degrees of mood. These research results proved that modern
techniques are mature enough to handle mountains of
sentiment data and that Twitter is a valuable text resource
for sentiment analysis.

In our work, we used VADER (Valence Aware Dictionary and
sEntiment Reasoner) [6] as a mood tracking tool to help us
analyze the sentiment information from tweets. We extracted
sentiment features from the past several days of tweets and input
them into stock prediction models to predict future stock prices.
Applying sentiment analysis to nine stocks, we trained the models
with two-month-long training sets with tweets and tested the
model performance with the final five days’ data. We applied
several linear and nonlinear models such as LSTM to this
regression task. Moreover, referring to the theories of
recurrent neural networks and generative adversarial networks,
we designed a sentiment-guided model to improve the accuracy
of stock prediction further.

In the remainder of this article, the organization is set in the
following order: First, in Section 2 we review existing stock
prediction methods and the development of GANs. Then, in
Section 3, we introduce our methods in data collection and
processing. In Sections 4 and 5, we propose our sentiment-
guided adversarial learning model as well as comparisons
between our models and baselines. Finally, conclusions and
future work are discussed at the end of this paper in Section 6.

2 RELATED WORKS

In this section, we first present an overview of the relatively recent
generative adversarial networks, followed by a brief review of
some traditional methods for stock price prediction.

2.1 Adversarial Learning of Neural Networks
Generative adversarial networks (GANs) [7], which try to fool a
classification model in an adversarial minimax game, have shown
high potential in obtaining more robust results compared to
traditional neural networks [8]. In a GAN framework, a generator
produces fake data based on noisy samples and attempts to
minimize the difference between real and fake distribution,
which is maximized by a discriminator oppositely. The GAN
framework and GAN-based research have attracted huge
attention in various fields recently. Existing GAN works
mainly focus on computer vision tasks like image classification
[9] and natural language processing like text analysis [10]. With
the inception and extensive applications of knowledge
representation of natural or complex data such as languages
and multi-media, the GAN framework is also widely applied
to classification missions for data in representation spaces (e.g.,
vector spaces of matrices) rather than just for the original data in
feature spaces. Some researchers also extended applications of
GAN to more challenging problems such as recommendation
systems [11] or social network alignment problems [12].

Conditional GANs (CGANs) [13] add auxiliary information
to input data, guiding the training process to acquire expected
results. Additional information (like class labels or extra data) is
fed into both generator and discriminator to perform the
conditioning. This architecture is mostly used in image
generation [14] and translation [15]. However, we noticed that
the CGAN framework has rarely been applied to time-series
prediction, specifically, stock prediction problem. In our work, we
added sentiment labels to guide the training process of our model
and achieved a stronger performance.

Previous work [16] has shown the capacity of GANs for
generating sequential data and to fulfill the adversarial training
with discrete tokens (e.g., words). Recurrent neural networks
(RNNs) have also been widely used to solve problems based on
sequential data, such as speech recognition and image
generation. Ref. [17] first combined RNNs with a GAN
framework and successfully produced many kinds of
continuous sequential data, including polyphonic music.
Inspired by this work, researchers paid more attention to the
potential of RNNs in adversarial training. Refs. [18, 19]
succeeded in producing realistic real-valued multi-
dimensional time-series data and concentrated their work on
medical applications. They built models capable of synthesizing
realistic medical data and developed new approaches to create
predictive systems in the medical domain. Ref. [20] utilized
prerecorded human motion data to train their models and
applied their neural network in random motion synthesis,
online or offline motion control, and motion filtering. Our
work drew on the idea of the RNN-GAN framework and
applied time-series analysis to the financial problem of stock
prediction. Although similar application in stock prediction has
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been raised recently [21], the main difference was that our work
also utilized text data from Twitter to create sentiment scores,
which could gauge the market mood and guide our models to
achieve more accurate prediction.

2.2 Stock Prediction Methods
The stock market prediction problem has a long history and is
regarded as an essential issue in the field of financial
mathematics. According to the development of research
over the years, we can divide the prediction techniques into
two categories: statistical and machine learning methods.
Frequently used statistical techniques include the
autoregressive method (AR), the moving average model
(MA), the autoregressive moving average model (ARMA),
and the autoregressive integrated moving average (ARIMA)
[22]. These methods adopt the principles of random processes
and essentially rely on past values of the sequences to analyze
and predict the future data. Another technique is generalized
autoregressive conditional heteroskedasticity (GARCH) [22],
which takes the fluctuation of variance into account and nicely
simulates the variation of financial variables. However, both
kinds of techniques depend on strong prerequisites such as
stationarity and independent and identically distributed (iid)
random variables, which may not be satisfied by data in the
real-world financial markets.

Recently, machine learning methods (including linear
regression, random forest, and support vector machine)
stimulate the interest of financial researchers and are
applied to forecasting problems. Among them, support
vector machine (SVM) and its application in the financial
market revealed superior properties compared to other
individual classification methods [23]. Since the emergence
of deep learning networks, researchers have proved that neural
networks can obtain better performance than linear models.
Their capacity to extract features from enormous amount of
raw data from diverse sources without prior knowledge of
predictors makes deep learning a preferred technique for stock
market prediction. Artificial neural networks and other
advanced neural models like convolution neural networks
(CNNs) are evidenced to be good at capturing the non-
linear hidden relationships of stock prices without any
statistical or econometric assumption [24]. Furthermore,
neural networks have also been found to be more efficient
in solving non-linear financial problems compared to
traditional statistical methods like ARIMA [25]. Nowadays,
RNNs are one of the most popular tools in time-series
prediction problems. Notably, the LSTM network has been
a great success due to its ability to retain recent samples and
forget earlier ones [26]. Each LSTM unit has three different
gates: forget gate, update gate, and output gate. LSTM units can
change their states by controlling their inner operant, namely,
their three gates. In our model, we utilized the LSTM network
to extract features according to the timeline and to generate
fake stock prices from real past price values. We also used
sentiment measures to enhance the robustness of our
prediction models and make the generative results approach
the real distribution.

3 DATA AND METHODS

In this section, we document our data sources and preprocessing
techniques. The latter part includes feature engineering,
imputation of missing data, fast Fourier transform for
denoising data, and last but not least, Isolation Forest for
anomaly or outlier detection.

3.1 Data Collection and Sentiment Analysis
Before we started our work, we had the conviction that a
collection of tweets related to the stocks could make
comparatively accurate models of the investors’ mood and
thus reach better predictions of the stock market prices.
Generally speaking, tweets have neutral, positive, or negative
emotions; and we focused on those that contains one or
several cashtags (unique identifiers for businesses), which
could influence the stock’s trend in the following day. If
negative sentiment dominated a day, then the next day’s stock
prices would be expected to fall. The number of followers on one’s
Twitter account would also be a significant factor. The more
followers of an account, the higher the influence of tweets from
the account, and the more significant their impact would likely
have on stock prices. Cashtags system is a particularly convenient
feature of Twitter, allowing users to see what everyone is saying
about public companies. The way this system works is similar to
the well-known #hashtags of Twitter, except that a cashtag
requires “$” followed by a stock symbol (e.g., $GOOG for
Google, LLC; $FB for Facebook, Inc.; and $AAPL for Apple Inc.).

For our work, financial tweets and their retweets were
downloaded from the website, https://data.world/kike/nasdaq-
100-tweets. The time span of these tweets is 71 days from Apr
1–June 10, 2016. We could get all tweets mentioning any
NASDAQ 100 companies from this source. The key daily
stock price data includes Open prices (O), High prices (H),
Low prices (L), and Close prices (C); they were subsequently
crawled from Yahoo Finance with the Python package, pandas_
datareader. We produced nine datasets, each one including tweets
and price values for the nine companies as listed inTable 1. These
companies are from different sectors/industry groups by the
Global Industry Classification Standard (GICS). They could be
classified into three price-trend categories: descending prices,
mildly fluctuating prices, and ascending prices. Figure 1 shows
the Open price curves of nine stocks with the three distinct trends.

To analyze the sentiment of each tweet, we used VADER [6],
which is available from vader-sentiment, a ready-made Python
machine learning package for natural language processing.
VADER is able to assign sentiment scores to various words
and symbols (punctuations), ranging from extremely negative
(−1) to extremely positive (+1), with neutral as 0. In this way,
VADER could get an overall sentiment score for a whole sentence
by combining different tokens’ scores and analyzing the grammar
frames. We assumed that the neutral emotion plays a much
weaker role in the overall market’s mood since neural sentiment
tends to regard the stock market as unchanged in a specific
period. Thus, we excluded the neutral sentiment scores in our
analysis and only took the negative and positive moods into
consideration. VADER places emphasis on the recognition of
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uppercase letters, slang, exclamation marks, and the most common
emojis. Tweet contents are not written academically or formally, so
VADER is suitable for social media analysis. However, we needed to
add some new words to the original dictionary of VADER, because
VADER missed or misestimated some important words in financial
world and therefore caused inaccuracy. For example, “bully” and
“bullish” are negative words in the VADER lexicon, but they are
positive words in the financial market. We updated the VADER
lexicon with the financial dictionary Loughran-McDonald Financial
Sentiment Word Lists [27], which include many words used in the
stock market. This dictionary has seven categories, and we adopted
the “negative” and “positive” lists. We further deleted about 400
existing words in VADER that overlap the Loughran-McDonald
Financial SentimentWord Lists. Finally, we added new negative and
positive words to the VADER dictionary and attached sentiment
scores to them, with +1.5 to each positive word and −1.5 to each
negative word from the Loughran-McDonald lists.

To get one day’s overall sentiment score for one stock, we first
analyzed all related tweets with VADER and gained the scores of
each tweet. Considering that the more followers the bigger
influence, we further regarded the number of followers as
weights and calculated the weighted average of sentiment
scores. The daily percentage change of this average was taken
as a comprehensive factor, called compound_multiplied, for
1 day. One problem of our data was that we have only tweets’
data but no price data on the non-trading days. To make full use
of the tweets’ data, we filled the gaps up with the price values from
past trading days. We utilized moving averages to fill in the
missing values.

We also normalized the compound_multiplied variable as
neural networks generally perform better and more efficiently
on scaled data. Figure 2 shows the box plots of
compound_multiplied and per_change (see Section 5.1.2
for details) for the nine stocks before the data was scaled.

TABLE 1 | Stock prices of nine companies selected for experiments in this study.

Company Symbol Sector Industry group

Apple Inc AAPL Information Technology Technology Hardware & Equipment
Cisco Systems Inc CSCO Information Technology Communications Equipment
Electronic Arts Inc EA Communication Service Media & Entertainment
Eastbay Inc EBAY Consumer Discretionary Internet & Direct Marketing Retail
Endo International PLC ENDP Health Care Pharmaceuticals
Kandy Hotels Co KHC Consumer Discretionary Hotels Resorts & Cruise Lines
NVIDIA Corporation NVDA Information Technology Semiconductors
Starbucks SBUX Consumer Discretionary Consumer Services
Skyworks Solutions Inc. SWKS Information Technology Semiconductors

FIGURE 1 | The nine stocks classified into three classes with distinct price trends. The variations of Open price from April 1 to June 10, 2016 are displayed. The first
column presents the stocks with descending prices; the second represents the stocks with mildly fluctuating prices; and the third represents the stocks with ascending
prices.
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3.2 Data Processing for Stock Prices
As discussed before, we collected stock prices from nine stock
symbols, each of which contains four columns of time-series price
data for each trading day: Open, High, Low, and Close. To change
the sequential data into suitable input for our models, we did data
cleaning and transformation for the training datasets, and
approximate normalization for our both training and testing
data. We present further details of these transformations below.

3.2.1 Data Cleaning
In consideration of the volatility of the stock market, we had to
tackle the price data on days that showed abnormal trends or
fluctuation. To accomplish the anomaly detection, we utilized the
Isolation Forest (iForest) algorithm [28] to find such data points
before treating them. Isolation Forest can directly describe the
degree of isolation of data points based on binary trees without

using other quantitative indicators. The main steps of
distinguishing outliers were as follows: For a group of data
with multiple dimensions, we attempted to build a binary
search tree (BST). We first picked several dimensions, and
then randomly selected one dimension and a value between
the maximum and the minimum in that dimension as the
root of the BST. Next, we divided the data into two groups
(i.e., subtrees of the BST) according to the selected value.
Likewise, we continued to subdivide the data according to
another randomly selected value in another feature
dimension—this step was repeated until the BST could not be
further subdivided. Finally, we detected the anomaly data
according to the path lengths of the nodes in the BST.

More specifically, in our work, we adopted only two dimensions
in the iForest algorithm and detected the outliers within two steps.
(I) We selected High price and Low price as the two dimensions to
detect anomaly situations that stock prices fluctuated intensely in
one day. Figure 3 shows the anomaly detection results when we
applied the iForest to the AAPL dataset. (II) For each one of the four
price series (O, H, L, C), we respectively selected the differences yt −
yt−1 and yt+1 − yt , in which yt was the price data on a particular date
t, as the two input dimensions to iForest. In this way, we were able to
detect anomaly local trends on the timeline. Figure 4A shows the
detection result of ‘Open Price’ from the AAPL dataset, and
Figure 4B displays the anomaly in the form of time series. After
we identified each outlier yt by considering its distances from yt ± 1

using iForest, we replaced yt with the rolling average
1
3 (yt−2 + yt−1 + yt). As a result, we prevented our model from
being excessively influenced by outliers during the training process.

3.2.2 Data Transformation
We noticed the successful applications of RNNs in wave forms like
sinusoids, so we further transformed our time-series datasets into a
wave-like form in order to improve the training effect. In our
prediction problem, we assumed that the changes in stock data
were periodic, which gave us the opportunity to introduce Fourier
Transform into our data processing work. Fourier transform can
decompose a periodic function into a linear combination of

FIGURE 2 | Left: Box plots of changes in daily sentiment scores aggregated from tweets that contained cashtags of selected stocks over the time period Apr
2–Jun 10, 2016. Outliers are omitted to declutter the graph. The triangles mark the mean values. Right: Box plots of per_change with outliers shown as circles.

FIGURE 3 | Detecting outliers in the dimensions of High price and Low
price with Isolation Forest on AAPL-Open in the training dataset. Only four
points of outliers were flagged out by the algorithm.
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orthogonal functions (such as sinusoidal and cosine functions) [29].
With Fast Fourier Transform (FFT), we could extract both global and
local trends of our stock datasets and thus reduce their noise. For each
of the four prices (O, H, L, C of a stock dataset), we respectively used
FFT to create a series of sinusoidal waves (with different amplitudes
and frames) and then combined these sinusoidal waves to
approximate the original curve. In Figure 5, we can see that the
pink curve, which was made by a combination of 32 components,
closely approximates the original price graph of AAPL-Open training
set. By using the derived curve, namely, the denoised sequential data,
we could enhance the smoothness of our training set, and reduce
noisiness in our data. Consequently, we smoothened the time-series
data to make our training data more predictable.

3.2.3 Approximate Normalization
To make sure that our models could learn the features of time-series
variables, we alsomodified the sequential price data tomake it satisfy
(roughly) normal distribution. In financial research, there is a
traditional assumption that the simple daily returns of time-series

data are iid normal samples, as long as the sequential data has
constant mean and same variance over time; see [30]; for example.
We calculated Rt , defined as one-period simple returns of the price
values before inputting them into our supervised learning models as
targets, where yt represents one of the four prices for a given stock on
day t that we are interested to predict:

Rt � yt − yt−1
yt−1

. (1)

Let R̂t be an estimate of Rt returned by a machine learning model
trained with predictors including historical returns,
Rt−1,Rt−2,/,Rs for some s< t. Subsequently, we can obtain an
estimate of the stock price, ŷt � yt−1(1 + R̂t).

4 MODEL THEORY

In this section, we present the architecture of our CGAN
framework in relation to the sub-networks of our choice.

FIGURE 4 | (A) Detecting outliers according to (yt − yt−1) and (yt+1 − yt) with Isolation Forest using the AAPL-Open training set as an illustration. (B) Anomaly
detection results in the form of time series on the same price values in (A).

FIGURE 5 | Fourier transform curves with 5, 15, 25, 30, and 32 components on AAPL-Open training set.
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4.1 Long Short-Term Memory Networks
Introduced by [31], LSTM is a special kind of RNN, which can learn
both short-term and long-term correlations effectively from
sequential data. An LSTM network usually consists of many
repeating modules, the LSTM units, and we can tune the number
of the units to improve the performance of the network. These
LSTMunits concatenate with each other in line with the information
transmitting from one to another. Each unit contains three kinds of
gates: Forget gate (decides what kind of old information to be
discarded), Update gate (decides what kind of new information
to be added), and Output gate (decides what to be output). Figure 6
shows how the past information flows through an LSTM unit
between two time steps, and how the LSTM unit transforms the
data in both its long-term and short-termmemory. The information
transmission process is from Ct−1 to Ct , which will be changed by
inner operants. Ct is a latent variable; χt is the input; and yt is the
output. Themathematical operations in the three gates are defined as
follows, where W. and b. are parameters to be estimated for
minimizing some loss functions:

I. Forget gate:

Ft � sigmoid(Wf [yt−1, χt] + bf ). (2)

II. Update gate:

Ut � sigmoid(Wu[yt−1, χt] + bu),
~Ct � tanh(WC[yt−1, χt] + bC),
Ct � Ft*Ct−1 + Ut*Ct

˜ .

(3)

III. Output gate:

Ot � sigmoid(Wo[yt−1, χt] + bo),
yt � Ot*tanh(Ct). (4)

Note that sigmoid and tanh are activation functions applied to an
input vector elemenwise, whereas * represents elementwise
multiplication of vectors. These three gates cooperate with each
other and together determine the final information that is output
from an individual unit. In this work, we took advantage of the
memory property of LSTM and improved its accuracy with
adversarial learning framework.

Nowadays, LSTM has been widely applied in many research
fields such as machine translation, language modeling, and image
generation.

4.2 Adversarial Learning Model
As the conditional GAN framework [13] has proved to be a great
success, we adopted this idea in our GAN-based model to
improve the training effect. Figure 7 illustrates the
architecture of our GAN-based model. Let Xt �
{Xt−n+1, . . . ,Xt−1,Xt} represent the input data in the form of
time series, in which each term is the historical data from the
corresponding day from n − 1 days ago to end of current day t.
Note that Xt is a vector that includes all the daily factors on day t.
In addition, let Zt be the sentiment label on day t. Our generator is
a multiple-input single-output system, which inputs n historical
days’ data with m factors from the stock market each day (plus,

FIGURE 6 | Information flow through an LSTM unit.

FIGURE 7 | The architecture of our conditional adversarial
learning model.
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the label) and outputs a specific kind of future price data (Open,
High, Low, or Close) as the prediction. Since the stock data is
typical time-series data, we adopted an LSTM network in our
generative model denoted by G. LSTM was trained to extract the
features of price data from the past n days, and then used to
predict stock prices on day t + 1. The generator modelG generally
consists of three kinds of layers: embedding layer, LSTM layer,
and fully connected (FC) layer. An embedding layer first embeds
a label in the latent space and turns it into a dense vector, then
combines the latent vector with the input matrix, which is the
price data from the past in our application. Afterward, an LSTM
layer generates some prediction result. A dropout layer could be
added between two LSTM layers to make the network have a
better generalization and less likely to overfit. Lastly, an FC layer
with the Leaky Rectified Linear Unit (ReLU) activation function
outputs simulated or fake data ~Xt+1, which approximates the real
target data Xt+1. The output of our generator is defined as follows:

~Xt+1 � G(Xt |Zt). (5)

In our work, m � 4 and n � 5. The four factors were historical
Open price, High price, Low price and Close price, which could be
seen as four features of the stock data for the price prediction
problem. Specifically, we utilized all four kinds of stock prices in
the past five business days to forecast each kind of price (O, H, L,
or C) on the next day.

The purpose of our discriminator D is to classify input data as
real or fake. This classification model is expected to output 0
when it receives real input data or 1 when it receives fake input
data. For the input, we concatenated Xt with ~Xt+1 and Xt+1
respectively to get the fake data ~Xt+1 � {Xt−n+1, . . . ,Xt , ~Xt+1}
and the real data Xt+1 � {Xt−n+1, . . . ,Xt ,Xt+1}. In this way, we
could make the discriminator learn the features of sequential data
better. Our discriminator D consists of two parts: two embedding
layers and a multilayer perceptron (MLP) network. The

embedding layers worked in the way same as those in G,
i.e., the embedding layers transformed the data and labels into
suitable input for MLP. The MLP model then projected the data
into higher dimensional space and effectively accomplished the
classification task. The Leaky ReLU activation function was used
in the hidden layers of the MLP and the sigmoid function was
used in the output layer. Returning either 0 and class 1, the output
of a discriminator while making a correct decision is as follows:

0 � D(Xt+1|Zt), (6a)

1 � D(~Xt+1
∣∣∣∣Zt). (6b)

Specifically, if we select Open price to be predicted byG, we would
concatenate the prediction result to Open price values from the
past n days. Then, we distinguished this sequence from the
corresponding one sampled from real data with D.

We alternatively trained G and D with binary cross-entropy
loss (i.e., log loss), L(~y, y) � −y log(~y) − (1 − y)log(1 − ~y), where
y is the target value and ~y is a predicted value. On the one hand,
our generator G simulated the fluctuations of the stock market
and to minimize the difference between its prediction and the real
data. On the other hand, our discriminator D tried to distinguish
and maximize that difference. The training of G focused on
making the discriminator D confused; it attempted to
minimize the adversarial loss so that D could not discriminate
the prediction easily. The adversarial loss at each data point on
day t + 1 for the generator was

Gloss(~Xt+1) � L(D(~Xt+1
∣∣∣∣Zt), 0). (7)

The training of D focused on improving its ability to distinguish
the difference between Xt+1 and ~Xt+1 , so it attempted to
maximize the adversarial loss at each data point on day t + 1:

Dloss(Xt+1, ~Xt+1) � L(D(Xt+1|Zt), 0) + L(D(~Xt+1
∣∣∣∣Zt), 1). (8)

FIGURE 8 |Comparison of the prediction curves of different models on the AAPL-Open and KHC Low test sets. For AAPL Open, among all models, KNN achieved
the minimumMAPE over the five-day test period; see Table 3. However, on each of the last three days, CGAN actually performed better than KNN. For KHC Low, GAN
predictions were closest to the market values and CGAN came next.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 6011058

Zhang et al. Adversarial Learning for Stock Prediction

93

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


In general, the generator tried to make D(~Xt+1
∣∣∣∣Zt) � 0 while the

discriminator tried to achieve D(Xt+1|Zt) � 0 and D(~Xt+1
∣∣∣∣Zt) � 1.

[7] defined the loss function of this specific binary classification task
as cross-entropy loss. To achieve the training process described by
Eq. (7) and Eq. (8), we updated D by maximizing
Ex ∼ preal(x)[logD(x|z)] + E~x ∼ pfake(~x)[log(1 − D(G(~x|z)))], and then
updated G by minimizing E~x ∼ pfake(~x)[log(1 − D(G(~x|z)))]. In this
way, the total loss function of the minimax game over all training
samples was as follows:

min
G

max
D

LRMSprop (D,G) � Ex ∼ preal(x)[logD(x|z)]
+ E~x ∼ pfake(~x)[log(1 − D(G(~x|z)))],

(9)

where preal(x) was the distribution of real data, pfake(~x) was the
distribution of fake data, and lastly, z represented the label vector.

The two models G and D were trained iteratively with the
RMSprop optimizer, a stochastic gradient descent algorithm with
mini batches [32]. In each iteration, we first trained the
discriminator r times and then trained the generator one time,
in which r was seen as a hyper-parameter to be tuned in our
training process. The reason for training D first was that a trained
discriminator would help improve the training effect of the
generator. Besides, we also adopted gradient clipping (ensuring
the norm of a gradient not too large in magnitude) for bothG and
D at the end of each iteration to avoid the potential problem of
gradient explosion.

If Zt is omitted from the discussion in this subsection, then we
have simply a GAN model. In practice, we used Keras [33] with
TensorFlow [34] version 2 as the backend to implement our
LSTM, GAN, and CGAN models.

5 EXPERIMENT

In this section, we summarize the numerical results of our
learning and prediction models in multiple error measures in
response to hyperparameter search when applicable.

5.1 Experimental Settings
We collected price data and related tweets of nine companies
from April 1st to June 10th, 2016. The data before June 5th was
taken as the training set and the last five days’ data as the test
set. For each dataset, we respectively experimented on Open
price, High price, Low price, and Close price, so we totally built
and tested 9 × 4 � 36 models and datasets (36 groups of
experiments).

We have already illustrated the main data processing work in
Section 3. Here, we elaborate on specific configuration of our
models.

5.1.1 Baseline Models
Linear Multiple Regression (LMR) is a classical statistical
approach for analyzing the relationship between one
dependent variable and one or more independent variables. Its
simple formula in matrix notation is Y � Xβ + ε, where ε is iid
normal with mean 0 and variance matrix, σ2I, and I is the identity

matrix of order the same as number of independent
observations in Y.

K-Nearest Neighbors (KNN) [35] can be used in both
classification and regression problems. In our time-series
regression problem, the input is the k closest training
sequences from the feature space according to the timeline,
and the output is the average of the values of the k nearest
neighbors.

Autoregressive Integrated Moving Average (ARIMA) is
composed of autoregression (AR), an integrated (I) model that
calculates differences, and moving average (MA). Auto ARIMA
[36, 37] can automatically perform grid search with parallel
processing to find an optimal combination of p, q, and d,
which are the parameters associated with order of AR, degree
of differencing with I, and order of MA, respectively.

Long Short-TermMemory is a special kind of recurrent neural
network. We tuned three hyper-parameters to improve its
training effect: the number of LSTM units, step size, and
training epochs.

5.1.2 Data Pre-Processing Techniques
Besides Open price, High price, Low price, and Close price,
we also added two more engineered factors to the dataset
as input to predict the price on day t + 1. One was the
sentiment variable, compound_multiplied, which was obtained
with the method illustrated in Section 3.1. The other was
per_change, which was obtained by the equation:
per change :� 100% × [Close(t) −Open(t)]/Open(t). Table 2
shows the AAPL dataset sample with six columns, where the
compound_multiplied was the sentiment variable.

Transformations for baseline models (LMR, KNN, and auto
ARIMA) When predicting one type of stock price mentioned
above, we utilized the two derived factors, per_change and
compound_multiplied, as predictors.

Techniques for neural-network models (LSTM, GAN, and
CGAN) (I)As for LSTM, we chose only three factors as input. For
instance, we used ‘Open price’, per_change and
compound_multiplied from day t as input when we predicted
the Open price on day t + 1. However, for our adversarial learning
model, we chose four kinds of prices as input and utilized the
other two factors to create labels. The details about the labels were
discussed below. (II) We converted time-series data to data that
was fitting in supervised learning problems. Specifically, if we
predicted the price on day t + 1 with the prices from the past
5 days, we would create a six-term sequence
Xt+1 � {xt−4, xt−3, xt−2, xt−1, xt , xt+1}. In other words, we used
the first five time-lagged columns as input and the last column
as the real target price on day t + 1.

5.1.3 Settings for Adversarial Learning Models
Labels We utilized the two variables, compound_multiplied and
per_change, to create our final sentiment label in the CGAN
models. The reason for adding the per_change was that we would
like to take the local trend of past stock variation into account.
Finally, the label was set to three classes: 0, 1, and 2. The three
classes respectively represent three different tendencies of
forecasting prices: up, down, and almost unchanged. Our
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model was trained to learn the categories from labels with the
training set and enhance its prediction accuracy. Let Zt represent
the label on day t. The process of creating the labels could be
captured by the following min-max scaling of each vt ∈ [0, 3]
before mapping it to Zt ∈ {0, 1, 2}, meaning [0, 1) 1 0, [1, 2)1
1, and [2, 3]12:

vt � λ1 × compound multiplied(t) + λ2 × per change(t), (10)

Zt � min(2,⌊3
vt −min(vt)

max(vt) −min(vt)⌋),

where λ1 + λ2 � 1 and 0≤ λ2, λ2 ≤ 1. Empirically, tuning λ1 and λ2
could change the training accuracies.

We also did experiments to evaluate the impact of the
sentiment analysis had made in our work. Specially, we
modified our CGAN models by taking out the embedding
layers and not inputting the sentiment labels Zt . Without the
labels Zt, we have GANmodels. In this way, we could compare the
training effect of our models with or without sentiment labels.

Hyper-parameters As discussed in Section 4, we alternately
trained theD and theG. The epoch ratio, r, defined as epochs ofD
to epochs of G, was in the range of [1, 4].

The learning rates for D and G, αD and αG, were searched in the
range, [5 × 10− 5, 8 × 10− 4], respectively, with the same decay, 10−8.
We also tuned αD and αG in our experiments to improve the training
process. Besides, the gradient clipping thresholds were set to be the
same at 0.8 for both the generator and the discriminator.

5.2 Results and Discussions
We used mean absolute percentage errors (MAPE) as the main
metric to evaluate the performance of our model. The metric
equation is

MAPE � 100%
N

∑
N

t�1

∣∣∣∣∣∣∣∣∣
yt − ~yt
yt

∣∣∣∣∣∣∣∣∣
,

where yt is the real price on day t, ~yt is the prediction price by a
model, and N is number of data points. In our experiments, we first
trained theCGANmodel until the loss curves of both the generator and
the discriminator converged. The training process was described in
Section 4. After that, we tested the generator “LSTMmodel” to get the
prediction results of testing data. Figure 8 displays the comparison of
prediction curves on the AAPL-Open and KHC-Low test sets. As our
test sets contained five-day-long data, we calculated the averageMAPEs
for the five days’OHLC prices as the performance metric of the model.

Empirically, we tuned three kinds of hyper-parameters to
improve the performance of our adversarial learning model:

the learning rates of the sub-networks, αD and αG; the epoch
ratio r; weightage λ1 and λ2 in Eq. (10). Table 3 show the MAPE
results of the nine test sets. We did four groups of experiments,
respectively on O, H, L, C, for each test set and then calculated the
average MAPE to compare the performances of different models
effectively. KNN achieved minimum mean MAPE for AAPL,
SBUX, CSCO, SWKS, and KHC; linear models for EA and ENDP;
GAN and CGAN for NVDA and EBAY, respectively. While KNN
achieved minimum errors most of the time, GAN and CGAN
were the best for 11 of the 36 stock prices and the second best for
18. In terms of overall average of all nine MAPEs (last column of
Table 4), KNN was the best and CGAN came as a close second.
Without sentiment labels, GAN models on average had a higher
average of all MAPEs than CGAN, showing that our sentiment
labels help generally in improving price prediction accuracy.

Root mean square errors (RMSE), mean square errors (MSE),
mean absolute errors (MAE), and symmetric mean absolute
percentage errors (SMAPE) were also used to verify the
training results. Their defining equations are recapped here:

RMSE �

������������
1
N
∑
t�1

N

(yt − ~yt)
2

√√

, MSE � 1
N
∑
t�1

N

(yt − ~yt)
2,

MAE � 1
N
∑
t�1

N

|yt − ~yt |, SMAPE � 100%
N

∑
t�1

N
∣∣∣∣yt − ~yt

∣∣∣∣
(
∣∣∣∣yt
∣∣∣∣ + ∣∣∣∣~yt

∣∣∣∣)/2
.

To evaluate our model in a more comprehensive view, we selected
AAPL and EBAY to illustrate these four metrics. We respectively
obtained the results of O, H, L, C from all models and then
calculate the average errors to compare the performance more
carefully. Table 5 for AAPL shows that KNN performed best on
average while CGAN came second. Table 5 for EBAY
demonstrates that the CGAN models outperformed all the
baselines not only in MAPE but also in RMSE, MSE, MAE,
and SMAPE.

As discussed above, we treated λ1 and λ2 as hyper-parameters.
Considering the importance of condition labels, adjusting the
proportion of sentiment information would be necessary every
time we trained the CGAN model. For short-term stock data,
we need to train the model only once, since people’s attitude
toward a stock often remains more or less the same in a short
period. However, readjusting λ1 and λ2 every month maybe
useful. We collected another tweet dataset about Apple Inc.
with a time span from Jan. 1, 2014 to Dec. 31, 2015 (available
from stocknet-dataset by [5]. We selected three periods in these
two-year-long datasets and calculated the MAPEs of prediction

TABLE 2 | Stock price data and two engineered features on the first five days of the AAPL dataset, where NaN represents Not a Number.

Date Open High Low Close per_change compound_multiplied

4/1/16 108.78 110.00 108.20 109.99 1.1123 NaN
4/2/16 109.33 110.73 108.89 110.37 0.9529 1.1750
4/3/16 109.87 111.46 109.58 110.74 0.7934 -0.1666
4/4/16 110.42 112.19 110.27 111.12 0.6339 -0.1836
4/5/16 109.51 110.73 109.42 109.81 0.2739 0.2064
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results for the Open price. In the three groups of experiments, we
chose three different (λ1, λ2) pairs in our CGAN model with
λ2 :� 1 − λ1. We also applied GAN as the baseline to highlight
the influence of condition labels. As shown inTable 6, for the first test
period, which follows immediately after the time span of the training
data, the MAPEs from CGAN and GAN were least (see the first row
of each group in Table 6). However, both models performed worse
with increasingly larger MAPEs during the subsequent test periods
except for GAN in the last training scenario. Thus, the learning
models should be trained periodically, or whenever the test errors are
larger than user-desired tolerances, especially when they are used in
real-time prediction tasks.

TABLE 3 | Tables 3a–i present theMAPEs of forecasted O, H, L, and C prices from
various models for nine stock symbols. The smallest MAPE is highlighted in
bold across the models in each column for every stock price; the second smallest
is underlined. The last column contains the average values of the MAPEs of the
four price targets.

Open High Low Close Mean/%

a). MAPEs of the AAPL test set.
LMR 1.1958 2.9199 1.4223 2.1880 1.9315
KNN 0.5546 0.8539 0.4884 0.4090 0.5765
ARIMA 2.6741 1.4260 3.2027 2.6597 2.4906
LSTM 1.4061 4.5924 5.7139 5.2507 4.2408
GAN 0.7929 1.5085 1.2227 1.2868 1.2027
CGAN 0.7067 1.4688 0.6841 1.3076 1.0418
b). MAPEs of the SBUX test set.
LMR 0.9019 1.1674 1.3397 1.2923 1.1753
KNN 0.5593 0.4919 0.6338 0.5265 0.5529
ARIMA 1.1861 1.0757 1.1539 1.0580 1.1184
LSTM 0.5040 3.8398 4.0186 3.7970 3.0399
GAN 0.6448 0.8664 0.8240 0.9556 0.8227
CGAN 0.6888 0.9053 0.6280 0.8969 0.7798
c). MAPEs of the EA test set.
LMR 0.5037 0.8308 0.9628 0.9709 0.8170
KNN 0.5964 0.8414 0.9878 1.0162 0.8604
ARIMA 3.1441 3.8026 1.4712 2.4455 2.7158
LSTM 0.8987 16.9632 17.0647 16.4948 12.8554
GAN 0.9095 0.8225 1.0935 0.7298 0.8888
CGAN 1.2390 1.0105 1.3181 0.7448 1.0781
d). MAPEs of the ENDP test set.
LMR 2.6631 2.892 3.2137 2.8585 2.9068
KNN 2.4014 2.4446 4.3038 3.4666 3.1541
ARIMA 7.5329 10.8514 7.8179 12.4049 9.6518
LSTM 1.9243 33.3106 27.6254 37.3947 25.0638
GAN 3.4240 53.2661 3.9620 4.8264 16.3696
CGAN 5.4597 3.6090 4.0107 3.1991 4.0696
e). MAPEs of the CSCO test set.
LMR 1.1367 0.6497 0.8273 0.4343 0.7620
KNN 0.3813 0.1555 0.7219 0.1840 0.3607
ARIMA 1.3303 1.7011 2.7049 1.1942 1.7326
LSTM 0.5645 7.2849 7.9551 8.0766 5.9703
GAN 0.4081 0.2811 0.6025 0.2095 0.3753
CGAN 0.6318 0.4245 0.6968 0.2559 0.5022
f). MAPEs of the NVDA test set.
LMR 2.4894 2.5058 2.0899 3.6247 2.6774
KNN 0.9341 1.0531 0.6399 1.5637 1.0477
ARIMA 2.1786 1.9938 1.5984 2.0929 1.9659
LSTM 0.8402 12.1243 10.8188 10.297 8.5201
GAN 1.0658 0.7822 0.4776 1.2834 0.9022
CGAN 1.1604 2.4538 0.4854 1.4711 1.3927
g). MAPEs of the SWKS test set.
LMR 1.3381 1.6378 1.2815 1.6442 1.4754
KNN 1.5065 1.1174 1.2586 1.6564 1.3847
ARIMA 2.5976 2.0430 2.5419 3.4855 2.6670
LSTM 1.9081 6.2990 6.3457 7.1987 5.4379
GAN 1.9350 1.7313 1.2501 2.0234 1.7350
CGAN 1.7149 1.8520 1.2180 2.1641 1.7372
h). MAPEs of the EBAY test set.
LMR 0.3222 1.0901 0.813 1.0681 0.8234
KNN 0.8402 0.5033 0.6336 0.7170 0.6735
ARIMA 1.1214 1.3163 1.5132 1.7715 1.4306
LSTM 0.2329 1.2547 0.5792 0.6469 0.6784
GAN 0.6034 0.5628 0.7878 0.5867 0.6352
CGAN 0.5781 0.4940 0.7231 0.6964 0.6229
i). MAPEs of the KHC test set.
LMR 0.7283 0.7682 0.8998 1.4204 0.9542
KNN 0.3715 0.1547 0.4089 0.4968 0.3580
ARIMA 1.0659 1.0437 1.9594 0.6984 1.1919

(Continued in next column)

TABLE 3 | (Continued) Tables 3a–i present the MAPEs of forecasted O, H, L, and C
prices from variousmodels for nine stock symbols. The smallest MAPE is highlighted
in bold across the models in each column for every stock price; the second smallest
is underlined. The last column contains the average values of the MAPEs of the four
price targets.

Open High Low Close Mean/%

LSTM 0.8691 5.9214 6.3042 5.9614 4.7640
GAN 0.5725 0.2316 0.3953 0.7931 0.4981
CGAN 0.5304 0.3763 0.4749 0.6463 0.5070

TABLE 4 | Counts number of times a model is the best and second best in
predicting the stock prices, and lists the mean of all mean values in the last
column of Tables 3a–i.

Overall performance of all models

Best Second Mean/%

LMR 6 4 1.5026
KNN 14 12 0.9965
ARIMA 0 1 2.7738
LSTM 5 1 7.8412
GAN 8 8 2.6033
CGAN 3 10 1.3035

TABLE 5 | Comparison of prediction results in different metrics on the AAPL and
EBAY test sets using the average values of model errors on O, H, L, C prices.
The smallest errors are displayed in bold font across the models we have built; the
second smallest errors are underlined.

Model RMSE MSE MAE MAPE/% SMAPE/%

a). Errors of the AAPL test set.
LMR 2.2721 5.8504 1.9176 1.9315 1.9231
KNN 0.7154 0.5680 0.5721 0.5764 0.5753
ARIMA 2.6184 7.1359 2.4613 2.4906 2.4546
LSTM 5.1174 30.7145 4.2006 4.2408 4.1406
GAN 1.5321 2.5507 1.1970 1.2028 1.2152
CGAN 1.3464 2.0495 1.0378 1.0418 1.0511
b). Errors of the EBAY test set.
LMR 0.2457 0.0689 0.1994 0.8234 0.8287
KNN 0.1970 0.0392 0.1628 0.6735 0.6765
ARIMA 0.4410 0.2071 0.3453 1.4306 1.4142
LSTM 0.2248 0.0617 0.1636 0.6784 0.6737
GAN 0.1903 0.0369 0.1534 0.6351 0.6368
CGAN 0.1867 0.0353 0.1503 0.6229 0.6230
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6 CONCLUSIONS AND FUTURE WORK

For individual investors and investment banks, rational prediction
through statistical modeling helps decide stock trading schemes
and increase their expected profits. However, it is well known that
human trading decisions are not purely rational and the irrational
drivers are often hard to observe. Introducing proxies of irrational
decision factors such as relevant online discussion from Twitter
followed by sentiment analysis has become an advanced approach
in financial price modeling.

In this work, we have successfully built a sentiment-
conditional GAN network in which LSTM served as the
generator. We encoded Twitter messages, extracted sentiment
information from the tweets, and utilized it to conduct our stock
prediction experiments. The experiments showed, for about a
third of our models, superior properties of our GAN and CGAN
models compared to LMR and ARIMA models, KNN method,
as well as LSTM networks. Our GAN and CGAN models could
better adapt to the variations in the stock market and fluctuation
trends of some real price data. Hence they could play a role in
ensemble methods that combine strong models with small
prediction errors to achieve better accuracies than any
individual model when no one model would always perform
best; see, for example, [38].

Even though our neural network models could outperform the
simpler baselinemodels at times, it could still be enhanced. Themain
obstacle in our work was that we failed to find tweets’ dataset that
was longer than 70 days, which might largely weaken the training
effect. For instance, we initially planned to add more labels to our
input data, since it would help represent varying degrees of
sentiment tendencies instead of only ‘up’, ‘down’, and ‘almost
unchanged’. Nevertheless, the GAN-based models could not learn
better withmore labels in such a short time-series dataset. Therefore,
we finally chose only three classes to make sure that our model
would be fully trained. The same consideration went when we
created the sentiment variable, which was the reason why we
only selected ‘positive’ and ‘negative’ lists when adding new
words to the dictionary. If we could get a dataset with a longer
time coverage, we would be able to do experiments with sentiment
labels in more categories and potentially further improve our
models.

Another shortcoming in our current approach is that we only
took sentiment factors into account. The stock market is very

complicated and there are potentially a great many factors to be
considered. There are some other factors like economic growth,
interest rates, stability, investor confidence and expectations. We
also noticed that political events would have a huge impact on the
variation of the stock market. We can extract political
information from newspapers and news websites. If we added
these factors to the input, our model may better learn the features
of the stock market and make the prediction tendencies close to
that in the real world.

In this work, we have assumed that the tweets are more or
less truthful. However, social media sources could be
contaminated with fake news or groundless comments, that
are hard to be distinguished from the good ones with real
signals. A fruitful area of future research is to look into GAN
models for alleviating the problem.

It is also known that neural network models often need
much bigger datasets to beat simpler models. To this end, there
are multiple ways we could explore: consider more than nine
stocks; join all stock prices into one single dataset, i.e., to train
one model on panel data grouped by stocks and prices (O, H, L,
C) instead of a single time series; sample our datasets at hourly
frequency.

Lastly, many properties of neural networks are still active areas of
research. For example, in LSTM, GAN, and CGANmodels, the loss
function values and the solution quality often appear to be sensitive
to small changes in inputs, hyperparameters, or stopping conditions.
Creating stable yet efficient numerical algorithms are necessary for
reliable solutions. In addition, the success of neural networks are
often associated with computer vision problems. Adopting them in
finance may require different techniques or transformations.

In the future, we would like to explore the topic further in the
following directions:

1) Obtaining larger datasets and creating labels in more
classes to improve our model by examining hourly data,
for example.

2) Building GANmodels for detecting overhyped or deceitful
messages about a stock before incorporating them into our
models.

3) Attempting to extract more stock-related factors and
adding them as predictors in our models.

4) Experimenting with more stocks or other financial assets,
and considering having one model for all stock price data.

TABLE 6 |Comparison of the MAPEs for AAPL-Open dataset from CGAN and GAN over three different testing periods for each training time span. The smallest error in each
test group for each model is highlighted in bold.

Time span for training set Time span for testing set λ1 CGAN/% GAN/%

2014-01-01–2014-03-31 2014-04-01–2014-04-10 0.2 3.81 3.73
2014-04-11–2014-04-20 5.52 4.93
2014-05-01–2014-05-10 3.88 3.77

2014-07-01–2014-09-30 2014-10-01–2014-10-10 0.2 0.77 0.71
2014-10-11–2014-10-20 1.03 0.97
2014-11-01–2014-11-10 0.95 0.88

2015-01-01–2015-03-31 2015-04-01–2015-04-10 0.9 2.90 8.98
2015-04-11–2015-04-20 9.58 8.71
2015-05-01–2015-05-10 10.65 9.79
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5) Utilizing more sophisticated natural-language processing
(NLP) methods to analyze the financial or political
information from news media and assessing the impact
and the role they play in the stock market.
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Auto Defect Detection Using
Customer Reviews for Product Recall
Insurance Analysis
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The challenge for Product Recall Insurance companies and their policyholders to manually
explore their customer product’s defects from online customer reviews (OCR) delays
product risk analysis and product recall recovery processes. In today’s product life cycle,
product recall events happen almost every day and there is no practical method to
automatically transfer the massive amount of valuable online customer reviews, such as
defect information, performance issue, and serviceability feedback, to the Product Recall
Insurance team as well as their policyholders’ engineers to analyze the product risk and
evaluate their premium. This lack of early risk analysis and defect detection mechanism
often increases the risks of a product recall and cost of claims for both the insurers and
policyholder, potentially causing billions of dollars in economic loss, liability resulting from
the bodily injury, and loss of company credibility. This research explores two different kinds
of Recurrent Neural Network (RNN) models and one Latent Dirichlet Allocation (LDA) topic
model to extract product defect information from OCRs. This research also proposes a
novel approach, combined with RNN and LDA models, to provide the insurers and the
policyholders with an early view of product defects. The proposed approach first employs
the RNN models for sentiment analysis on customer reviews to identify negative reviews
and reviews that mention product defects, then applies the LDA model to retrieve a
summary of key defect insight words from these reviews. Results of this research show
that both the insurers and the policyholders can discover early signs of potential defects
and opportunities for improvement when using this novel approach on eight of the
bestselling Amazon home furnishing products. This combined approach can locate the
keywords of these products’ defects and issues that customers mentioned the most in
their OCRs, which allows the insurers and the policyholders to take required mitigation
actions earlier, proactively stop the diffusion of the detective products, and hence lower the
cost of claim and premium.
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INTRODUCTION

In the Product Recall Insurance landscape, as the number of
product recall events increases every year in almost every
industry, insurance companies are constantly faced with the
difficulty of predicting recall risk, assessing the potential of
loss, and estimating the premium. While manufacturers have
been using advanced quality control tools for product
development, defective products can still be found on the
market, and product recall events often happen [1]. The
motivation is this paper is to develop a novel approach,
combined with RNN and LDA models, to provide the insurers
and the manufacturers with an early view of product defects.

These product recall events can cost both the insurance
companies and the manufacturers billions of dollars of loss
and bring significant brand reputation impact that lasts for an
extended period. A good example is the recent 2016 Samsung
Galaxy Note 7 explosions recall event. This event cost Samsung
more than $5 billion of loss and the subsequent loss of sales in the
electronics industry [2]. Allianz Global Corporate & Specialty
(AGCS) has analyzed the average value of each product recall
insurance claim, excluding small value claims, to be about
1.4 million Euro between 2012 and 2017 [3]. Product recall
insurance is intended to provide manufacturers with financial
protection for the cost of the recall and their liabilities but when
the number of cases increases the insurers have become the
biggest victims.With the growth under the new era of Web
2.0, various social media and e-commerce sites such as
Amazon.com and Twitter.com now provide online virtual
communities for consumers to share their feedback on
different products and services. Such feedback, which always
includes customer complaints and defect information about
the products, can provide valuable intelligence, such as the
product’s design, performance, and serviceability, for the
insurers and the manufacturers to take remedial actions to
avoid potential recalls. While there is a large amount of such
information available on these sites, there is a lack of an effective
method to automatically distill the information to the
engineering team.

In the Samsung Galaxy Note 7 recall case, a study showed that
there were early customer reports of overheating problems
through online customer feedback before Samsung realized
and took action [4–6]. It is, however, a challenge for the
insurers and the manufacturers to manually read through a
large amount of customer feedback available online and be
able to discover early signs of product defects, delaying the
manufacturers to take necessary recovery actions.

As technology progresses with faster computers and better
computational algorithms, we are now able to collect, process,
and extract useful information from a large amount of textual
customer feedback. In the field of business and product design,
studies [7, 8] show that machine learning predictive models can
successfully extract useful information from OCRs, including
customer buying patterns and customer requirements on
future product design. This research provides the foundation
for applying machine learning predictive models to detect
defective product information from OCRs.

This research explores methods of extracting product defect
information from online customer reviews (OCRs) and
demonstrates a novel predictive model using Recurrent Neural
Network (RNN) and Latent Dirichlet Allocation (LDA) topic
model. The new predictive model provides the insurance
companies and the manufacturers with an early view into
product defects, enabling them to make an assessment of
product recall risks, and take required mitigation actions early
to proactively stop the spread of the defective products. This will
help both sides to prevent further damages and economic losses.

The scope of this research studies the viability of a probabilistic
model with RNN and LDA to analyze, extract, and identify
defective product information from OCRs. RNN is a type of
neural network model for analyzing time-series data. This model
can solve problems involving sequences of word order textual
data. LDA is a type of generative probabilistic model for
discovering a set of topics best describes a collection of
discrete data. This consists of the collection of customer online
review data with manual labels for supervised learning,
quantitative models for testing the hypothesizes associated
with identifying product defects, and verification of models.

The new proposed approach includes two quantitative RNN
classifiers and one LDA topic model. The first RNN classifier
differentiates negative OCRs from non-negative OCRs. The second
RNN classifier differentiates OCRs that contain defect information
from OCRs that do not contain defect information. The LDA topic
model, which combines the first and the second RNN classifiers,
generates a set of key product defect topics for a product using OCRs.

The input data consists of 9,000 randomly selected OCRs, and
their star ratings, from the furniture section of Amazon’s
Customer Review Public Dataset. This customer review dataset
will be used as input for the RNN classifiers.

The rest of the paper is organized as follows: in Data, we
discuss related literature reviews. Then, in Methods and Results,
we present a detailed explanation of the data and our proposed
model. After that, in Conclusion we present the results. Lastly, in
Discussion and Future Work, andData Availability Statement, we
end with conclusion, discussion and future work, respectively.

RELATED WORK

Product Defect and Product Recalls
These defective product recall events can cost manufacturers as
well as their insurers billions of dollars and bring significant
impact that lasts for an extended period. The United States
Consumer Product Safety Commission (CPSC) has concluded
that deaths, injuries, and property damages from consumer
product incidents cost the nation more than $1 trillion
annually [9]. According to AGCS, these events have caused
insured losses of over $2bn over the past five years, making
them the largest generator of liability losses. An empirical, event-
time analysis found that product recall events had a direct impact
on the company’s equity price for two months after the events’
release [10]. These kinds of events expose companies not only to
economic damages, but also negative consequences such as loss of
goodwill, loss in product liability suits, and loss to their rivals [11].
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Due to increased product complexity and more stringent
product safety legislation [12], studies show that the trend of
product recall events is increasing and no industry is immune
from a product recall event [13]. Recalls happen when the
manufacturer does not address the issue or was unaware of it
before the product was distributed to the market. The main two
reasons for recalls are 1) a consequence of design flaws, which
make the product fail to meet required safety standards, and 2)
manufacture defects in products that do not conform to
specifications such as poor craftsmanship [14]. According to
Beamish [15], in the toy manufacturing industry, design flaws
contributed to 70.8% of the recalls, while only 12.2% of the recalls
were from manufacture.

Time to Recall and Product Recall Strategy
The strategy and the timing for the recall of a defective product
have a direct impact on both the finances and the reputation of
manufacturers and insurers. Time is an essential factor during a
defective product recall event. The longer the defective product
remains in the marketing and distribution process, the harder it is
for the company to take recovery action, and poses more potential
for injuries [16, 17]. Studies showed that manufacturers with a
preventive recall strategy in place, such as continuously
identifying product defects and initiating voluntary recalls,
have a shorter time to recall than companies with a reactive
approach such as initiating recall after a hazard is reported [17].
There is also research proving that a positive customer and public
relations impact on the company will result when a proactive
recall strategy is implemented during a product defect event [18,
19]. While it is hard to avoid the existence of defective product
risk, the aforementioned studies have shown that time to recall
and a company’s recall strategy have a direct impact on the
company’s reputation and losses, which supports the fact that
when a company has an early view of product defect, it can reduce
the loss of business and damage to reputation, and regain
consumer trust.

Opinion Mining With Online Customer
Reviews
With the rise of Web 2.0, social media and customer review sites
have enabled companies to discover consumer feedback on their
products with increased speed and accuracy. Information
embedded in CORs has a direct impact on companies and
their products [20]. Comparing to “Offline” word of mouth
customer opinions, OCRs have a much more significant
impact because of their persistent, easily accessible, and open-
to-public format [21]. Companies have been looking at OCRs to
improve their product and marketing strategies [22]. OCRs
enable companies to monitor customer concerns and
complaints, as well as to take corrective actions [20]. Some
companies even respond to these customer text reviews
personally to improve their service [23].

Product Defects Discovery
While there are several research studies and proposed algorithms
for using the previous generation products’ OCRs to provide

valuable information to engineers on the next generation of
product development and product design, there is little
attention in academia for using OCRs in the later stages of the
product cycle to discover customer complaints and product
defects [24]. Abrahams et al. proposed a new algorithm using
a sentiment analysis method to classify the type of product defect
information (e.g., performance defects, safety defects, non-defect,
etc.) embedded in OCRs for vehicles [24]. They recognized that
while traditional sentiment analysis methods can successfully
identify complaints in other industries, they fail to distinguish
defects from non-defects and safety from performance defects in
the automotive industry. This is because OCRs in the auto
industry that mentions safety defects have more positive
words, and fewer negative words and subjective expressions
than other OCRs. Alternatively, their team spent 11 weeks
building and tagging a set of automotive “smoke” words
dataset from the OCRs before doing sentiment analysis. This
method has shown success in defect discovery and classification,
but it is also highly domain-specific for the automotive industry.
Bleaney et al. studied and compared the performance of various
classifiers, including Logistic Regression, k-nearest neighbors
(k-NN), Support-Vector Machines (SVM), Naïve Bayes (NB)
classifier, and Random Forest (Decision Tree) on identifying
safety issues (“Mentions Safety Issue,” “Does Not Mention
Safety Issue”) embedded in OCRs in the baby product
industry [6]. They found that the Logistic Regression classifier
had the highest precision, with 66% in the top 50 reviews
surfaced. Zhang et al. proposed an unsupervised learning
algorithm using the LDA topic model’s method to group and
identify key information and words in each type of defect from
complaints and negative reviews [25].

While these studies have shown some success in using
sentiment analysis methods to extract defective information
from OCRs, these studies have not been able to locate
defectives with OCRs from a product level or accept all OCRs
from a single product.

Natural Language Processing
In the field of linguistics and computer science, there is active and
ongoing research on how to improve how computers understand
human behavior and language. The development of Natural
Language Processing (NLP), which is a type of artificial
intelligence concentrated on understanding and manipulating
human language, has achieved practical successes over the years.
NLPmodels have successfully helped researchers solve real-world
human text processing problems, especially research on using
OCRs to extract product defects [6, 24, 26]. In this research,
Latent Dirichlet Allocation (LDA) and Neural Network and
Recurrent Neural Network (RNN) are used to extract product
defect information.

Text Representation
Word embedding is a widely adopted method in representing
raw textual data to its low-dimension property. This encoding
scheme transforms each word into a set of meaningful, real-
valued vectors [27]. Instead of randomly assigning vectors to
words, Mikolov et al. have created GloVe, one of the most
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widely-used pre-trained datasets among researchers for
mapping words to vectors, which is to be used in this
research [28]. This dataset maps words that have closer
English meaning to a closer vector scale in a general
sentiment analysis task. An example would be mapping the
term “king” in a closer scale to “man” in vector, while further
from “woman.” Other studies have also built models on top of
these two datasets to enhance word embedding in domain-
specific sentiment analysis tasks [27, 29, 30].

Latent Dirichlet Allocation
Another unsupervised NLPmethod that can discover textual data
insight is the Latent Dirichlet Allocation (LDA). LDA is a three-
level hierarchical Bayesian model that can discover a set of
unobserved groups, or topics, that best describe a large
collection of observed discrete data. As Blei et al. suggested,
the goal of LDA is to “find short descriptions of the members
of a collection that enable efficient processing of large collections
while preserving the essential statistical relationships that are
useful for basic tasks, such as classification, novelty detection,
summarization, and similarity and relevance judgments.” [31].
LDA was first proposed and used for discovering population
genetics structure in the field of bioengineering in 2000 [32] and
further used in NLP processing on textual data in 2003 [31].

Researchers have been using LDA to discover topics from a
large collection of OCRs to help the industry to gain insight into
their product. Santosha et al. and Zhai et al. both suggested using
LDA for grouping and producing an effective summary of product
features from a large collection ofOCRs. Santosha et al. successfully
used the product features terms from the LDA topic model to build
a FeatureOntology Tree for showing product features relationships
[33], while Zhai et al. built a semi-supervised LDA with additional
probability constraints to show product features linkage between
products [34]. Researchers have also suggested LDA topic model
can be used on serving industries to discover business insight such
as a summary of OCRs on travel and hospitality review sites. Titov
et al. and Calheiros et al. both have suggested using LDA outputted
topic’s terms to discover and analyze customer reviewer’s
sentiment for businesses to improve customer experience [35,
36]. In the field of product defect management, Zhang et al.
used the LDA topic model to discover short summaries of
product defects and solutions on a large amount of online
product negative reviews and complaints to help engineers and
customers discover product defect information [25].

Neural Network and Recurrent Neural
Network
A neural network is a set of connected computational input/
output units that loosely model the biological brain [37]. A neural
network can be trained iteratively with supervised data, can
recognize or “Learn” specific patterns embedded in this data,
and perform prediction tasks based on these learned patterns
without pre-programmed rules. In the context of this research,
the neural network plays an important role in solving text
classification problems, especially when using recurrent neural
network architecture [38]. Based upon the Neural Network

architecture, researchers in the 1980s have been proposing
adding recurrent connections between nodes to solve problems
involving sequential data, which is now called the Recurrent
Neural Network (RNN) [39, 40]. While this type of network can
solve sequential recognition, Bengio et al. found that it is difficult
to solve problems where the sequences are getting longer and
prediction depends on input presented at an earlier time [41].
This is due to vanishing gradients where the error gradient
propagating back tends to vanish in time [42]. Hochreiter
et al. also proposed the Long Short-Term Memory (LSTM)
approach, a particular type of RNN architecture, which further
improved the problem involving long data sequences. LSTM
overcomes this problem by adding gates in RNN nodes to
regulate the flow of information [42]. Researchers suggested
that LSTM can greatly improve the accuracy of sequence
learning, such as offline handwriting recognition [43], as well
as text classification problems that involve word order [38]. An
LSTM-RNN model can build the relations between sentences in
semantic meaning on text classification, which can increase the
model accuracy over that of the traditional methods [44, 45].

DATA

Data Collection and Data Labeling
The primary data source of this study is the OCRs and their
associated metadata from the Amazom.com marketplace. This
dataset contains customer text reviews, product information, star
ratings, review dates, and other relevant information. The
customer reviews dataset will be used as input for sentiment
analysis to identify negative customer reviews, determine their
usefulness in providing information about defects, classify the
types of defects found in the OCRs, and extract product defect
topics within the context of this research.

Amazon’s Customer Reviews Public Dataset is an organized
version of OCR data in a number of tab-separated values (TSV)
files for researchers in the fields of Natural Language Processing
(NLP), Information Retrieval (IR), and Machine Learning (ML).
This data set contains more than 130 million OCRs and
associated metadata in 43 product categories in the
United States marketplace from 1995 until 2015.

Furniture Customer Reviews and Data Format
The furniture section subset of this dataset was used in this study.
This data subset contains 792,114 OCRs and associated metadata
of customer options on Amazon furniture products. Due to the
constraint of manual labor in creating a supervised dataset, this
study randomly selected 3,000 Amazon OCRs with a rating of
three or more stars and 6,000 Amazon OCRs with a rating of one
or two stars for model building, training, and testing. A sample
data of this dataset is shown in Figure 1. The focus of this study is
the textual analysis in the “review_body” column of the dataset.

Data Labeling
Successful machine learning models are built on large volumes of
high-quality training data. To build RNN models that can extract
defective information embedded in each OCR, each OCR needs
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FIGURE 1 | Simple amazon raw data.

TABLE 1 | Definition of AWS SageMaker ground truth labels.

Label Definitions of Labels Example

Manufacturing defect OCRs that mention products that have manufacturing defects and/or
are improperly manufactured with physical parts, apart from its
intended design

I Was very happy with the purchase for the first 3 or 4 days. Then the
bearing dropped out of the tube in the middle of it. (review_id:
R238K8EITCNRZZ

Problematic design or
quality

OCRs that mention products that have a problematic design or quality
issue, with no mention of physical parts falling off

The knee cushion is not comfortable for sitting any longer than about
10 min. The chair is clunky and hard to move on the floor without picking it
up. (review_id: R31BYJESH8F2DO)

Bad customer service OCRs related to the frustration of delivery of the product or customer
support process, while not related to the physical products themselves

I Have since called twice more with no returned call. This is the worst
customer service I have ever received (review_id: R3VG1CFNR60ED)

No defect information
provided

OCRs did not mention any of the defect information from the last three
categories

We bought four of these, they are just some real cheap chairs that are
overpriced. (review_id: R2F8RCR0LFI7SS)

FIGURE 2 | AWS SageMaker interface for labelers.
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to be manually labeled by human labelers for RNN model
training and testing purposes. The “Amazon Web Services
(AWS) SageMaker Ground Truth” data labeling service was
procured to manually label OCRs to build the required supervised
dataset. AWS SageMaker Ground Truth provides a platform for
independent labelers to label machine learning tasks, and each of the
9,000 OCRs was reviewed by three human labelers to ensure the
accuracy of the data. Human-labeled results are also generated with a
confidence score for each label to ensure high-quality data.

Labelers were provided with a detailed definition of each label
with an example (as shown in Table 1) to categorize each OCR on
the AWS SageMaker Ground Truth interface in Figure 2.

Each of the OCRs was labeled with one of the following four
labels: “Manufacturing defect,” “Problematic design or quality,”
“Bad customer service,” and “No defect information.” The labels
of “Manufacturing defect” and “Problematic design or quality”
are identified as the two main reasons for a company to initiate
product recalls [14, 15]. “Bad customer service” is also added as
one of the labels because a customer service issue is also where
customers often report issues, especially while shopping on an
online platform. The human label is able to label and determine
which label is the OCRs related to the most in the minimalist and
clean interface as shown in Figure 2.

Data Preprocessing
Data preprocessing is an essential step in turning raw text data
from OCRs into useful information that the computer can read,
and machine learning can process. After the OCRs have been
extracted from the review body, the OCRs were cleaned and
preprocessed, and then turned into digitized text representation
vectors.

Text Preprocessing and Cleaning
Human-created text data often contains inconsistent wording,
special characters, and contractions, which can contribute to
inaccurate data analysis and affect model performance [37, 44,
46]. For this reason, text preprocessing and cleaning is an
essential step in ensuring input data quality with normalizing
words and removing unnecessary characters. The following three
steps are taken in this study to improve text data quality:
1) Stemming, 2) Stop-word removal, and 3) Special character,
numeric, and empty text removal.

Stemming is an NLP technique to groups and reduces
different words with the same root and linguistic meaning
into the same word stem or root form. This study employed
the Python Natural Language Toolkit (NLTK) package
algorithms for the stemming process. The computer would
treat these different words with the same word stem as an
equal text vector representation. Stop-word removal can
remove over commonly used words in English that give no
or very little linguistic meaning to the overall context of the
given text. To avoid losing the textual message in translation,
this study used a custom-written Stop-word removal function.
Special character, numeric, and empty text removal is an NLP
technique to remove the non-text characters to improve data
quality such as “!”, “@”, “#”, and empty space. This increases the
machine learning model’s performance by only focusing on real
textual data.

The following two figures, Figures 3, 4 show an OCR before
and after these three steps were done.

The two figures, Figures 3, 4 show an OCR before and after
these three steps were done. The special character, empty text
and stop-words are removed to improve data quality.
Stemming process is also done in the text. Words such as
“replaced” are replaced with the root “replac” and “arrived”
are replaced with “arriv”. This allows the models later in the
process treat words with the same root with the same
meaning.

Text Representation
As mentioned in Text Representation, OCRs textual data have
to be turned into text representation in a digitalized format
inputting to machine learning models for computers to
recognize the information. This encoding scheme
transforms each word into a set of meaningful, real-valued
vectors to represent each word in a given text [27] This study
uses Word2Vector pre-trained datasets for mapping real
number vectors to words with similar linguistic meaning to
a closer vector scale [28]. This increases the efficiency of the
training process for the machine learning model. The data
preprocess also takes a text padding step to normalize the
length of the ORCs by padding “0” after the end of each text
representation before the OCRs are fed to the machine
learning model.

FIGURE 3 | Simple OCR before text preprocessing step.
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METHODS

Model Development and Testing
Procedures
The goal of this study is to develop and evaluate how the recurrent
neural network (RNN) classifiers and the Latent Dirichlet Allocation
(LDA) topic model can extract product defect information from
online customer reviews (OCRs). After preprocessing the data, there
were three targeted statistical models used in the research in order to
accomplish the thesis statement of providing engineers with an early
view of product defects. They include two quantitative RNN
classifiers and one Latent Dirichlet Allocation (LDA) topic
model. The first RNN classifier categorizes negative OCRs from
non-negative OCRs. The second RNN classifier categorizes OCRs
that mention defects from those that do not. The LDA topic model

provides engineers a view on groups of word items or topics that best
describe the type of defects found in a single product.

Figure 5, shows the end-to-end process as to how OCRs from
a single product is processed to extract product defect insight
using the fully trained and built models. The user of the model
would first select the specific product and do data preparation on
the dataset as described inMethods. After the data is prepared, the
data would then go though the three models as described in the
following passage in Results.

Model 1: Recurrent Neural Network Classifier for
Classifying Negative Revies From Non-Negative
Reviews
OCRs with negative sentiment has a much higher chance to
include complaints and defective issues about products as

FIGURE 4 | Simple OCR after text preprocessing step.

FIGURE 5 | End-to-end process.
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compared to OCRs with a non-negative sentiment. A classifier
built to distinguish negative OCRs from non-negative OCRs is
useful for giving engineers insight into the evidence of a product
defect. This RNN model contains five layers, as shown in
Figure 6.

The first layer is the input layer that takes input vectors.
The second layer is for word embedding, as was described in
Text Representation. The third layer is a dropout layer.
The dropout layer randomly sets the neuron’s output to 0
during each iteration of training to avoid overfitting.
The fourth layer is an LSTM layer with 128 LSTM
neurons chained in sequence for recurrently processing
information during the training step. After the information
is processed with the chained 128 LSTM units, information is

then sent to the output layer for classification. The output
layer uses one Sigmoid to separate the output into two classes,
either near 1 or near 0. This identifies the OCRs as either
negative OCRs or non-negative OCRs. This model uses the
Adaptive Moment Estimation (Adam) optimizer for
backpropagation to update the hidden LSTM layer with a
learning rate of 0.01. The whole dataset it consists of 9,000
OCRs with one-third non-negative OCRs and two-thirds
negative OCRs.

The model is then trained with 8,100 OCRs, which is 90% of
the total selected data with 50 epochs and a batch size of 32 OCRs
in each batch. A successfully trained RNN model is able to
automatically identify negative and non-negative OCRs with
no given label. This allows engineers to identify negative

FIGURE 6 | RNN model architecture and params for negative and non-negative OCRs classification.

FIGURE 7 | RNN model architecture and params for classifying OCRs that mention product defects vs. do not mention product defects.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org June 2021 | Volume 7 | Article 6328478

Fong et al. Defect Detection for Recall Insurance

107

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


OCRs from online forums or markets that only contain text
reviews but no ratings. To test the accuracy of the RNNmodel on
classifying negative OCRs from non-negative OCRs, a set of 900
OCRs are separated for testing, which is 10% of the total selected
data, with one-third non-negative OCRs and two-thirds negative
OCRs. The RNN would then predict the labels of the testing data
and compare it against the actual label.

Model 2: Recurrent Neural Network Classifier for
Classifying Reviews That Mention Product Defects
From Reviews That do not Mention Product Defects
To further investigate which negative OCRs contain product
defect or issue information, a second RNN classifier is built to
identify OCRs that provide defective product information from
OCRs that do not. This RNNmodel is similar to the first one that
contains five layers, as shown in Figure 7.

Some negative OCRs do not contain defective product
information. For example, review id #R2F8RCR0LFI7SS states:
“We bought four of these, they are just some real cheap chairs that
are overpriced.” This OCR only mentions the product is
overpriced with no other information about the product issue.
The second example is review id #R3W0KKHC5LK7K5 with the
review title as “One Star,” and a two-word review in the text body
as “Pure junk.” These do not give engineers any information
about the product itself. The RNN model is trained with the two
labels: “Defect information provided” and “No defect
information provided”. The OCRs that are manually labeled as
“Manufacturing defect,” “Problematic design or quality,” or “Bad
customer service” are considered with defective product
information provided. Otherwise, OCRs with human labels of
“No defect information” is considered as no defect information
provided.

A successfully-trained RNN model is able to automatically
identify OCRs that provide defect information from OCRs that
provide no defect information without a given label. This
allows engineers to identify and filter out OCRs that are of
value for their engineering design and product correction. To
test the accuracy of the RNN model on classifying OCRs that
mention product defects from OCRs that do not mention
product defects, a set of 900 negative OCRs, which is 10%
of the total, was used for testing. The RNN would then predict
the labels of the testing data and compare it against the
actual label.

Model 3: Latent Dirichlet Allocation Topic Model for
Providing Product Defect Insight
The Latent Dirichlet Allocation (LDA) topic model is able to
automatically offer engineers a view on groups of words, items, or
topics that best describe OCRs with defect information. The LDA
topic model builds a probabilistic text model by viewing a
document, or OCR, as a mixture of topics, each with its
distribution of topics [47]. This allows manufacturers to have
an early view of where the problem is.

The LDA topic model assumes that OCRs are represented as
random mixtures over k latent topics, where each topic is
characterized by a distribution over words [31] After a large
number of the iterative training process of reassigning words to

topics according to the multinomial distribution, the model is
converged with the K numbers of topics each with word
distribution that best describe the set of OCRs. The words that
make up the word distribution are able to tell the information
about the topics among the group of selected OCRs. This allows
engineers to have an early view on the OCRs that provided
defective information, before manually looking at each one
of them.

While LDA models are able to give a view of a list of topics
that a group of OCRs is mentioning, for its unsupervised
learning property, there is no actual label for the model to
test against. The most common evaluation metric that is used
on LDA models is topic coherence, which measures semantic
similarity among the top words that appear in the word
distribution for a single topic. This method might not
include the actual meaning of the words that tie back to
the defective information. Chang et al. suggested these
traditional topic coherence metrics are negatively
correlated with the measures of topic quality developed,
and they agree that human judgments and manual
determinations remain a better way to determine if the
LDA model is giving out informative topics among a set
of documents or OCRs [48].

To test out this LDA approach along with RNN models that
filter out OCRs that mention defective product information, a set
of OCRs of the eight top-selling home and furniture products on
Amazon were selected for testing. This process developed eight
test cases. The OCRs from each product were first filtered using
the first RNNmodel for selecting negative OCRs and then filtered
using the second RNN model for selecting OCRs that mention
defective product information. These OCRs were then inputted
into LDA for discovering essential topic information on defective
product information. The 10 highest-scoring words that build
upon the five LDA topics were used for testing purposes. Amazon
SageMaker labelers were then asked to identify if these topics, or
the group of words, are related back to the defectiveness of a
product or the details of a product itself. This method verifies
whether the output topic words are linked back to the product or
the defect itself.

RESULTS

This section provides comprehensive results of the three
presented models conducted during this study to give
engineers an early view of product defects and issues. The first
two models are recurrent neural network (RNN) classifiers that
categorize OCRs that contain product defect information. This
section also demonstrates the results of these models against the
human labels of both the model training and the model testing
stages. The last model is the Latent Dirichlet Allocation (LDA)
topic model that can extract product defect information from
OCRs. A total of eight test cases for the LDA model using the
eight bestselling products on the Amazon.com home furniture
section was used. This section presents the output of the LDA
model along with its relevance to the defective product
information.
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Model 1: Recurrent Neural Network
Classifier for Classifying Negative Reviews
From Non-Negative Reviews
The first model is the RNN classifier for sorting negative OCRs
from non-negative OCRs. Negative OCRs are defined as those
OCRs with 1 or 2-star customer ratings. Non-negative OCRs
are those defined as OCRs with three or more stars customer
ratings. The model was trained with 8,100 OCRs and was
validated with 900 OCRs, with one-third non-negative OCRs
and two-thirds negative OCRs. The 8,100 OCRs were the
training dataset reserved for training the RNN model. The
900 OCRs, which had never been trained by the model, were
the testing dataset. The model was executed for 50 epochs,
with a batch size of 32 OCRs in each batch, at a learning rate
of 0.01.

This test evaluates the performance of the RNN Model for
classifying negative reviews from non-negative reviews. The test
data that was not trained by the model was predicted after the 50
epochs compared with the output against the actual label. Table 2
shows the prediction metrics and hypothesis test of this model.
This table shows the hypothesis test of the one sample Z-tests for
a proportion at alpha 0.05 with 70% accuracy. Figure 8 shows the
ROC curve of this model.

The model correctly predicted 765 OCRs out of 900 OCRs. This
was tested with a one-sample Z-test for a proportion to evaluate if
the model has an accuracy of 70% accuracy. With the area under a
ROC Curve at 0.930, the model has good predictive power. With
the p-value at 0, the hypothesis test successfully rejected the null
hypothesis, and thus this RNN classifier is sufficient in classifying
negative reviews from non-negative reviews.

Model 2: Recurrent Neural Network
Classifier for Classifying Reviews that
Mention Product Defects From Reviews
that do not Mention Product Defects
The second model is the RNN classifier for categorizing OCRs
that mention product defects from OCRs that do not mention
product defects. OCRs that mention product defects are defined
as the OCRs that are manually labeled as “Manufacturing defect,”
“Problematic design or quality,” or “Bad customer service.”OCRs
that do not mention product defects are defined as the OCRs that
are manually labeled as “No defect information”. This model was
trained with 8,100 OCRs and was validated with 900 OCRs. The
training data is the data used for training and fitting to the RNN
model. The testing data is the data used for testing the model,
which was not adjusted by the model. This model was executed
for 50 epochs, with a batch size of 32 OCRs in each batch, at a
learning rate of 0.01.

This test evaluates the performance of the RNN classifier for
classifying OCRs that mention product defects from OCRs that do
notmention product defects. The test data that was not fitted by the
model was predicted after the 50 epochs and results were compared
against the actual label. Table 3 shows the prediction metrics and
hypothesis test of this model. This table shows the hypothesis test
of the one sample Z-tests for a proportion at alpha 0.05 with 70%
accuracy. Figure 9shows the ROC curve of this model.

The model correctly predicted 779 OCRs out of 900 OCRs.
The predictive power of this model is good with the area under a
ROC Curve at 0.894. The hypothesis test was tested with one-
sample Z-tests for a proportion to evaluate if the model has an
accuracy of 70%. With the p-value at 0, the hypothesis test
successfully rejected the null hypothesis, and thus this RNN
classifier is sufficient in classifying reviews that mention
product defects from reviews that do not mention product
defects.

TABLE 2 | Prediction statistics and hypothesis test of for RNN model classifier for classifying negative OCRs from non-negative OCRs.

Prediction Statistics

True Positives 509 Testing accuracy 0.8500
False Positives 48 Testing precision 0.9156
True Negative 256 Testing F1 score 0.8851
False Negative 87 Testing recall 0.8593

One sample Z-tests for a proportion
H0: p � 0.7
H1: p > 0.7

Sample proportion 0.850000 95% confidence interval for proportion (0.826672, 0.873328)
Z-value 9,82 p-value 0.000

FIGURE 8 | ROC curve for RNN model for classifying negative OCRs
from non-negative OCRs.
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Model 3: Latent Dirichlet Allocation Topic
Model for Providing Product Defect Insight
The LDA topic model was used in this study to identify groups of
words, or topics, that best describe OCRs that have already been
identified as negative and embedded with defect information by
previous models. The selection provides the aggregated LDA
topic modeling result of the top eight furniture products on
Amazon.com as of 12th April 2020. Each product was provided
with five topics with 10 words each. Those groups of words were
validated by Amazon SageMaker human labelers to verify their
relevance to the product. Amazon SageMaker human labelers
were asked to evaluate if at least half of the group of words
retrieved by the LDA topics are relevant to detail, buying process,
usage, or defect of a furniture product.

Example Test Product: Linenspa 2 Inch Gel Infused
Memory Foam Mattress Topper, Twin
This is an example of one of the eights that were used in this
research. Linenspa 2 Inch Gel Infused Memory Foam Mattress
Topper is a polyurethane memory foammattress topper that adds
softness to the top of mattresses to enhance the sleeping
experience. This product received 12,684-star ratings at an

average of 4.7 out of five stars and 7,202 valid OCRs. The
RNN classifier for classifying negative OCRs from non-
negative OCRs identified 1,658 negative OCRs among the total
valid OCRs. The second RNN classifier for classifying reviews
that mention product defects from reviews that do not mention
product defects identified 1,363 OCRs that mention product
defects.

The LDA topic model was used to identify the five topics with
10 words each that best describe the OCRs which mention
product defects and generated a topic Coherence Value (CV)
of 0.4930. The following Table 4 shows the topics, their
supporting words, and their support weight. The topics were
also given to Amazon SageMaker human labelers for their
relevance to a furniture product or a product defect, along
with its corresponding confidence level.

Amazon SageMaker human judgment indicated five out of
five topics show words related to furniture products or
product issues. The five topics summarized the terms used
in OCRs that mention defects. Words that support topic
number five might indicate a body support problem with
the topper being too soft and the foam sinks. The following
list shows three sampled OCRs that indicate body support
problems using the word search function with the word
“support” in the data.

“Six months later the foam is squashed and offers no
support at all. She weighs less than 110 lbs. I will not buy
this pad again.” (review ID # R2MV2APVP8P9CX)

“This topper goes completely flat once you lay on it and
offers zero support.” (review ID # RYTH07FT8W7XS)

“This thing provided no support, it crushes down to
nothing anywhere there is the weight (I’m 5′9" 155 lbs
. . . Shouldn’t be an issue)” (review ID #
RRPFIQ56HYMVU)

A total of eight test product was evaluated with a one-sample
sign test in this research with a total of 32,301 ORCs ran through
this model. Amazon SageMaker human labelers were asked to
evaluate if at least half of the group of words retrieved by the LDA
topics are relevant to detail, buying process, usage, or defect of a
furniture product. Since there are eight test cases demonstrated in
this paper, one sample sign test was used for the hypothesis test.
Table 5 shows the number of relevant topics generated by each of

TABLE 3 | Prediction metrics and hypothesis test of RNN model for classifying OCRs that mention product defects from OCRs that do not mention product defects.

Prediction Statistics

True positives 579 Testing accuracy 0.8659
False positives 69 Testing precision 0.8985
True negative 200 Testing F1 score 0.9208
False negative 52 Testing recall 0.9208

One sample Z-tests for a proportion
H0: p � 0.7
H1: p > 0.7

Sample proportion 0.865556 95% confidence interval for proportion (0.843269, 0.887842)
Z-value 10.84 p-value 0.000

FIGURE 9 |ROC curve for RNNmodel for classifying OCRs that mention
product defects from OCRs that do not mention product defects.
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the eight products. The following Table 6 shows the result of the
one-sample sign test for the median.

The test products have a mean of 4.375 out of five topics and a
median of five out of five topics evaluated as relevant to a
furniture product or problematic product information. They
generated a mean topic CV of 0.4129 with all of them more

than 0.3, which indicates the words in topics are somewhat
coherent. Some test products generated a topic CV of higher
than 0.5, which indicates that they have a good coherence
between topics. This was tested with a one-sample sign test to
evaluate if the model can retrieve 70% of the topic relevant to a
furniture product or problematic product information. With the
p-value at 0.035, the hypothesis test successfully rejected the null
hypothesis, and thus, the LDAmodel can successfully retrieve key
product defect topics.

CONCLUSION

This research explored the best method to provide insurers and
manufacturers with an early view into product defects. While
there is a large number of OCRs available on social media and

TABLE 5 | Summary of test cases.

Summary of test cases

Test cases Relevance (Human Label) Topic CV Average confidence

Test case one 5 out of 5 topics are related to a furniture product 0.4930 0.948
Test case two 4 out of 5 topics are related to a furniture product 0.3583 0.950
Test case three 5 out of 5 topics are related to a furniture product 0.5162 0.948
Test case four 5 out of 5 topics are related to a furniture product 0.4256 0.950
Test case five 5 out of 5 topics are related to a furniture product 0.3959 0.944
Test case six 3 out of 5 topics are related to a furniture product 0.3503 0.946
Test case seven 4 out of 5 topics are related to a furniture product 0.3698 0.930
Test case eight 5 out of 5 topics are related to a furniture product 0.3942 0.950

TABLE 6 | Hypothesis test for LDA topic model.

One sample sign test for median

H0: η = 0.7

H1: η > 0.7

Sample (N) 8 Median 5
95% confidence interval for proportion (3.936, 5) p-value 0.035

TABLE 4 | Topic model words for LINENSPA Mattress topper.

Topic Words supporting the topic (support weight) Is this topic
relevant to the
product or a

defect? (Confidence)

Words Weight Words Weight Words Weight

1 Sleep 0.029 Pain 0.028 Bed 0.027 Yes (0.95)
Pad 0.027 Night 0.021 Use 0.016
Topper 0.014 Back_ 0.014 Hip 0.013

Pain
Help 0.013

2 Topper 0.035 Sleep 0.027 Bed 0.023 Yes (0.95)
Night 0.017 Get 0.016 Cool 0.016
Hot 0.014 Purchase 0.013 Bought 0.012
memory_foam 0.012

3 Bed 0.035 Topper 0.026 Smell 0.023 Yes (0.94)
Hour 0.021 Like 0.018 inch 0.017
Size 0.016 Open 0.016 Air 0.016
Order 0.015

4 Back 0.036 Return 0.027 Box 0.022 Yes (0.95)
Topper 0.020 Would 0.019 One 0.019
Try 0.015 Review 0.011 Amazon 0.010
Disappoint 0.010

5 Soft 0.036 Topper 0.026 Bed 0.022 Yes (0.95)
Sink 0.020 Support 0.020 Like 0.019
Foam 0.018 Firm 0.014 Really 0.014
Body 0.014
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e-commerce sites, it is difficult for insurers and manufacturers to
manually inspect those OCRs for defective information, which
will delay product recall. This research has demonstrated a novel
predictive model using RNN and LDA topic models to extract
product defects from OCRs in a fast and automatic way. As the
time to recall action increases during a product defect event, the
recovery will be more challenging [17]. This new predictive model
provides them with an early risk analysis on defective products
and defect detection mechanisms.

In summary, this research has proposed and constructed two
RNN classifiers and one LDA topic to determine if these models
can retrieve product defect information. The first RNN model
was able to identify negative OCRs, where most of these OCRs
consist of complaints and issues about the products. The second
RNN model was able to identify if the OCRs consist of one of the
following information labels about the products’ defect:
“Manufacturing defect,” “Problematic design or quality,” and
“Bad customer service.” The Latent Dirichlet Allocation (LDA)
model successfully combined the first and the second RNN
models to retrieve key defect information on OCRs that were
negative and mentioned product defect. This combined model
was able to locate the keywords of the problems and issues that
customers mentioned the most in their OCRs, which in turn
achieved the goal of providing the insurers and manufacturers
with an early view into potential product defect events.

DISCUSSION AND FUTURE WORK

The purpose of this research was to investigate the possibility of
using probabilistic models for online customer reviews to retrieve
product defect information and provide insurers and
manufacturers with insight into the defects. Other than the
two RNN models discussed earlier, this research also
attempted to build a third RNN model to identify what kind
of defect type (“Manufacturing defect,” “Problematic design or
quality,” and “Bad customer service.”) was mentioned in the
OCRs. Due to the similarity of the use of words among the OCRs
mentioning product defects, the RNN model was not able to
classify OCRs down to the defect type. It was overfitted with the
classification type that has the heaviest weight. The assumption is
that the root cause is because the words used in all three classes of
labels were so similar that the model was unable to separate the

probability space. The initial assumption was that the model
could identify the difference among these words, but that was
proven not to be the case. This limitation with this RNN approach
provided an excellent space to use the LDA model. The LDA
model, combined with the first and the second RNN models,
successfully retrieved key information on OCRs that are negative
and mention product defects.

Future research may consider improving and refining the
accuracy of both the RNN classifiers and the LDA topic model
and addressing the main outstanding problem identified in
this research: the RNN classifier model for identifying defect
types. RNN classifiers may be improved by adding multiple
LSTM layers to construct a deeper neural network
architecture. The accuracy may be improved this way,
although the training time may increase. RNN classifiers
may also be improved by training on a larger supervised
dataset, while this would involve more manual labor work.
The other neural network architectures such as Convolutional
Neural Network layers can also be explored in future research
for increasing the performance of identifying defective
products. The deficiency for the RNN classifier that was
attempted to identify defect types could be solved by
constructing term frequency word lists for each defect type.
Abrahams et al. have developed a set of smoke words,
specifically for auto defect and auto safety issues, to
identify whether OCRs mentioned defect or safety issues
[24]. This method may be harder for particular classifiers
to differentiate “Manufacturing defect” from “Problematic
design or quality,” since they have a very similar use of
words in the OCRs.
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Using Machine Learning to Analyze
Merger Activity
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An unprecedented amount of access to data, “big data (or high dimensional data),” cloud
computing, and innovative technology have increased applications of artificial intelligence
in finance and numerous other industries. Machine learning is used in process automation,
security, underwriting and credit scoring, algorithmic trading and robo-advisory. In fact,
machine learning AI applications are purported to save banks an estimated $447 billion by
2023. Given the advantages that AI brings to finance, we focused on applying supervised
machine learning to an investment problem. 10-K SEC filings are routinely used by
investors to determine the worth and status of a company–Warren Buffett is frequently
cited to read a 10-K a day. We sought to answer–“Can machine learning analyze more
than thousands of companies and spot patterns? Can machine learning automate the
process of human analysis in predicting whether a company is fit to merge? Can machine
learning spot something that humans cannot?” In the advent of rising antitrust discussion
of growing market concentrations and the concern for decrease in competition, we
analyzed merger activity using text as a data set. Merger activity has been traditionally
hard to predict in the past. We took advantage of the large amount of publicly available
filings through the Securities Exchange Commission that give a comprehensive summary
of a company, and used text, and an innovative way to analyze a company. In order to
verify existing theory and measure harder to observe variables, we look to use a text
document and examined a firm’s 10-K SEC filing. To minimize over-fitting, the L2 LASSO
regularization technique is used. We came up with a model that has 85% accuracy
compared to a 35% accuracy using the “bag-of-words” method to predict a company’s
likelihood of merging fromwords alone on the same period’s test data set. These steps are
the beginnings of tackling more complicated questions, such as “Which section or topic of
words is the most predictive?” and “What is the difference between being acquired and
acquiring?” Using product descriptions to characterize mergers further into horizontal and
vertical mergers could eventually assist with the causal estimates that are of interest to
economists. More importantly, using language and words to categorize companies could
be useful in predicting counterfactual scenarios and answering policy questions, and could
have different applications ranging from detecting fraud to better trading.
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1 INTRODUCTION

AI applications are changing the financial services industry. Fraud
detection and compliance, banking chatbots and robo-advisory
services, and algorithmic trading are just a few applications that
leverage artificial intelligence in their solutions. Consumer finance
has benefited from increased security provided by AI’s ability to
prevent fraud and cyber-security threats in a quantity unnoticed
and unrecognizable by humans. Corporate finance has benefited
through AI’s ability to answer prediction questions–whether it is
the future of loan risks or stock price, AI has been able to power
strong portfolios and minimize risk of loan underwriting. AI has
been key in improving process automation, where intelligent
character recognition makes it possible to automate routine
chores that are time-consuming and prone to mistakes. JP
Morgan Chase, a leading financial firm, developed Robotic
Process Automation to extract data and a Contract Intelligence
(COiN) platform to leverage natural language processing (NLP),
processing legal documents and extracting essential data. 360,000
labor hours reading 12,000 contracts was cut down to just a few
hours. To better detect accounting fraud, the SEC is now using
topic models. They draw on text mining and NLP to help us
understand the behavioral incentives of different market
participants. These are unsupervised learning techniques, and
these applications can be used to learn from past violations of
regulations and predict new ones. Insider trading and cartel
detection are examples. In our case, we will be using supervised
machine learning to determine new irregularities in company
behavior–merging and acquiring.

From 1982 to 2012, industries in manufacturing, retail trade,
wholesale trade, services, finance, and utilities and transportation
reported remarkably consistent upward trends in concentration in
each sector. The relationship between trends in concentration and
competition have presented two hypotheses: an increase in
concentration indicates a decline in competition, or a
concentration increase reflects the forces of competition and
has presented economies of scale. To begin to answer the
question of which hypothesis reflects the current trends of large
incumbent firms and their gains in market share, we sought to
examine characteristics of a firm that predicted merger activity.
Prediction is particularly useful to answer a merger question in two
ways–first, it allows the examination of a counter-factual, or in this
case, a merger retrospective. Second, predicting scenarios of
mergers that might lessen competition in the future aids with
preventing the loss of potential competition.

Anti-trust economists are generally interested in enforcing
stricter merger policy to protect consumers. For instance, a
firm’s growing market power could drive up prices and lower
wages and standards of living. It is in societal interest that antitrust
authorities are able to identify and punish collusion in order to
promote competition. Vertical mergers are often seen as socially
desirable, while horizontal mergers are not. The answer of how to
enforce horizontal mergers is an empirical question that is
answered by examining merger retrospectives–which mergers
harmed customers by lessening competition?

Gentzkow, Kelly, and Taddy (2018) detailed the importance of
causal inference compared to prediction in economics.

Commonly, economists are more interested in the “how” of a
question. They detail how increased data sources could
supplement traditional data, especially in finance economics.
“For social scientists, the information encoded in text is a rich
complement to the more structured kinds of data traditionally
used in research, and recent years have seen an explosion of
empirical economics research using text as data. In finance, text
from financing news, social media, and company filings is used to
predict asset price movements and study the causal impact of new
information.” In our case, we are using company filings in order
to predict merger activity and study the causal impact of this new
data set.

With the newly available quantities of digital text, we sought
textual data that could complement current financial data of firm
characteristics. Often times, firm characteristics have been
measured using financial data and stock prices. Unique aspects
of a firm, we conjectured, such as culture, heavy legal
involvement, or product descriptions are not as easy to
identify through just numerical values alone. A financial value
is one number, and it is hard to distinguish specific characteristics
of a firm other than profits. A firm’s 10-K SEC filing, an annual
document required by the government for all firms to complete,
details around 15 items and five distinct sections that includes
business, risk factors, selected financial data, management’s
discussion and analysis of financial condition and results of
operations and financial statements and supplementary data.
Using text data to supplement current available datasets of a
firm, we hypothesized, could gain more insight to the qualities of
a firm that predict merger activity. As a next step, we plan on
categorizing the acquisitions to horizontal or vertical mergers
using detailed product descriptions, or determining which section
of a 10-K document has the most predictive ability.

To analyze the text, we modeled the methods after those
described by Gentzkow, Kelly, and Taddy (2017). After
transforming the text into arrays of words, we further reduce
the dimensionality by using LASSO techniques to select words
that are promising prediction variables. To select the best model
penalized by the LASSO, we used cross-validation techniques to
select the best performing regressor variables.

2 MOTIVATION

The application of machine learning and textual analysis is
unique to economics in two ways.

First, economics commonly does not look at prediction
problems. Text data differs from other kinds of economics
data in that it is inherently high dimensional. While this is
useful for prediction, this makes it difficult for any sort of
causal analysis because the high dimensionality of the data
makes ordinary least squares (OLS) and other traditional
economics techniques infeasible. The main category of interest
is causal inference, or identification. “Economics journals
emphasize the use of methods with formal properties of a type
that many of the ML methods do not naturally deliver. This
includes large sample properties of estimators and tests, including
consistency, normality, and efficiency.” [1–4] The object of
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interest is a causal effect, which can be quantified with semi-
parametric estimates, or when the number of covariates are large
relative to the observation. However, ML and prediction could
still provide benefits to economic analysis.

ML could improve empirical analysis to selection functional
form flexibly. ML could estimate and compare many models,
which is different from economics, where a research will pick a
model based on hypothesis and estimate it once. ML also could
evaluate the simpler questions of prediction and classification
tasks. More work needs to be done to apply an algorithmic
approach to economic problems, as they says, but using ML
“could provide the best of both worlds: the model selection is data
driven, systematic, and a wide range of models are considered;
yet, the model selection is fully documented, and confidence
intervals take into account the entire algorithm. ML is a very
powerful tool for data-driven model selection.”

Second, an increased amount of data and the different types of
data will become available to economists. Text data and increasing
digitization suggest new identification questions to be answered,
and digitization is leading the amounts of big data that can be used
in economics. According to Gentzkow, Kelly, and Taddy, “In
industrial organization and marketing, text from advertisements
and product reviews is used to study the drivers of consumer
decision making. In political economy, text from politicians’
speeches is used to study the dynamics of political agendas and
debate. The most important way that text differs from the kinds of
data often used in economics is that text is inherently high
dimensional.” In our case, text is a new form of data in
economics that was previously unused. 10-K SEC filings are just
a case example of how text can be used to supplement the
traditional economic database. The 10-K document also has
significance in the role of an investment banker or analyst–they
are commonly read over and used to determine the worth of a
company and to evaluate the landscape of the business. The
document includes pages and pages of what the company itself,
the expert in their own business, summarizes and even discloses a
risk factor analysis. As to abide by legal guidelines, companies are
incentivized to be as thorough and exhaustive as possible as to
avoid misleading stakeholders. Previously, only financial data and
stock prices were examined in order to analyze a company. To
measure harder to observe variables that are not just captured in
financial variables, we propose using a text document and examine
a firm’s 10-K SEC filing. Statistical learning technique also offers an
advantage by taking into account many aspects of the data.

Our procedure uses big data. We use tens of thousands of
disclosures, and even more words in order to obtain predictive
regressors from the text. We propose to use LASSO as a
regularization technique, which has been more successful than
the bag-of-words method and RIDGE regression. We used the
K-fold cross validation in order to obtain the best hyper-
parameter.

Three common ways of looking at merger types are to
categorize them into horizontal, vertical and conglomerate
mergers. Merger motives are primarily due to financial
considerations for the profit maximizing firm, and these
considerations are driven by increasing market power,
exploiting economies of scale, and eliminating managerial

inefficiency. Other motivations include risk reduction by
diversifying activity, government policy, and principal-agent
problems in which company managers have different interests
from the stakeholders and prefer to instead maximize their own
income. To examine theoretical models of mergers we have three
groups. The first are neoclassical models, which propose that
merger waves come from political, economic, industrial, or
regulatory shocks. The second are models that demonstrate
herding, hubris or agency problems and propose takeovers are
led by managerial inefficiency. The third are models that reflect
capital market development and attribute mergers to market
timing. The second may be hard to measure through words alone.

2.1 Neoclassical Models–A Look at Merger
Theory
Coase (1937) is an early proponent of the model suggesting that
takeover activity is driven by technological change. A later model
by Gort (1969) claims that economic disturbances, such as market
disequilibrium, may cause wholesale industry restructuring.

Jovanovic and Rousseau (2001, 2002) builds on Gort’s theory,
and developed the Q-theory of takeovers, which posits that
economic and technological changes cause a higher degree of
corporate growth opportunities. Such changes may cause capital
to be reallocated to more productive and efficient firms. What
about situations that do not fall into any of these categories?
These is where the regularization and the selection of predictive
variables could reveal situations that have been unprecedented in
previous patterns.

2.2 Related Work
Gentzkow and Shapiro popularized the use of text as data by
measuring a previously difficult to observe variable, media slant.
They determined whether a newspaper was more Republican or
Democratic, and then used words that captured slant to
incorporate in a demand function that maximizes newspaper
profits to predict consumer behavior. This was compared with an
actual profit maximizing choice to validate economic preference,
and it was found that consumers had a preference for newspapers
that were like-minded.

[5] determine firm similarity and product differentiation
through textual analysis and found that estimating patterns of
similarities in this method performed better than SIC or NAICS
codes. However, SIC and NAICS codes have major drawbacks of
being too broad. First, neither reclassifies firms significantly over
time as the product market evolves. Second, neither can easily
accommodate innovations that create entirely new product
markets. In the late 1990s, hundreds of new technology and
web-based firms were grouped into a large and nondescript
SIC-based “business services” industry. Third, SIC and NAICS
impose transitivity even though two firms that are rivals to a third
firm might not be rivals. Hoberg and Phillips further examined
asset complementaries as a way to analyze merger pairs and further
predict merger activity.

[6] use market conditions to test the effects of uncertainty on
acquisition by using a firm’s financial data that includes size,
stock returns, and dividends to find that assets and being in a high
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acquisition industry increases the probability of being acquired.
The model yields R-squared of around 0.02.

Previous attempts to explain merger activity have yielded a
Psuedo R-squared that ranges from 0.01 to 0.09. [7–9].

[10] are the first to use words alone to predict merger activity.
The authors cite a number of papers that use various financial
information to predict merger activity and note “predicting target
firms with any accuracy has proven difficult” (Betton, Eckbo, and
Thorburn, 2008). In their study, they use one specific section of a
company’s 10-K SEC filing, the firm’s Management Discussion
and Analysis and two-word phrases to fit their model. Their text
uses the frequency of words appearing on a document and
transform the counts with a logarithm function to account for
any right-hand skew. Their main discovery supports the Q-theory
of takeovers and find that firms that are struggling financially are
more likely to be acquired. Their models range from a 0.01 to a
0.07 R-squared.

None of these past works, however, uses the entire document.
Our dataset is also the most recent. Our dataset is from 2013 to
2017, and the landscape for technology and business is arguably
much different from 10 years ago. Previous works have also
attempted to evaluate the accuracy of a model by using Pseudo
R-squared, still attempting to retain some interpretability from
the data. We propose using accuracy to measure predictive
success. Future studies could include different measures of
accuracy, such as sensitivity and specificity, or measuring an
ROC curve. No method also uses tf-idf to transform the text data.
Tf-idf accounts for common and rare words and considers how
important a word is to the document. This adds some
transformation to text data that could reduce noise and add
significant information to the regression.

Theoretically, neoclassical models have pointed to the ways
that increase the likelihood of a firmmerging with another. These
changes have been hard to measure in the past, and accordingly
have not had confident estimates about the magnitude of an effect
or a conclusion on the sign. Thus, we turn to a different empirical
investigation.

The central contributions of this study are 1) an application of
machine learning in economics to uncover a new field of policy
and prediction questions previously unanswered, and 2) using
text as a new dataset previously unused in economics.

3 DATA

The estimates presented below are based on US SEC filings for the
periods of 2013–2016. Merger activity are based on aggregate U.S.
data from 2013 to 2017 (Table 1).

3.1 Representing Text as Data
3.2.1 Cleaning
We performed the standard cleaning to transform the 10-K filings
into a text corpus data set. Punctuation and common words were
removed, white space was stripped, and all words were
transformed for lower characters. We defined each observation
as a 10-K SEC filing - this is our document for cleaning.

3.2.2 Tf-Idf
The method used to represent the documents was filtering first
by “tf-idf”, or “term-frequency inverse-document-frequency”.
This method excludes both common (“a”, “the”, “and”) and rare
(“sesquipedalian”, “phantasm”) words. Rare words are excluded
to optimize model fit, as their marginal value of meaning often
exceeds adding more features to the model. Common words that
appear with most documents will have a low tf-idf score, and
words that have a low tf-idf score will be cut off from the
document. This technique has proven to be very useful in
practice as it reduces the number of features to something
more manageable [11].

Term Frequency1: Measures how frequently a term occurs
in a document. Since every document is different in length, it
is possible that a term would appear much more times in
long documents than shorter ones. Thus, the term frequency
is often divided by the document length (aka. the total
number of terms in the document) as a way of
normalization.

Inverse Document Frequency: Measures how important a
term is. While computing TF, all terms are considered equally
important. However it is known that certain terms, such as “is”,
“of”, and “that”, may appear a lot of times but have little
importance. Thus we need to weigh down the frequent terms
while scaling up the rare ones.

Term.Frequency(t) � Number of times term t appears in a document
TotalNumber of terms in the document

(1)

Inverse.Document.Frequency(t) � log
Total Number of documents

Number of documents with term t in it
( ) (2)

tfidfij � tfij × idfij (3)

3.3 10-K Filings
We start off with textual data because of the use of 10-K’s by
investment bankers and investors to determine company value.
The 10-K differs from other documents such the annual
shareholders report in length, detail, and scrutiny and are
meant to be lengthy, detailed, and not easily digestible.
Successful fund managers have cited reading the 10-K as a
way to gauge worthwhile investments and have listed notable
sections in the Management Discussion and Analysis, the
chairman’s letter, the risk factor analysis, proxy statements,
earnings adjustments and even footnotes. See Table 2 for the
full 10-K description.

We use the entire document in our findings. Total
observations are 22,418. We try to test whether there is a way

TABLE 1 | Observation count broken down, from years 2013–2017.

Observation count

Involved in a merger (Total) Not involved (Total)
5,379 17,073
Training observations Test observations
4,303 13,658

1Source of definition of tf-idf comes from http://www.tfidf.com/
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to develop an automated decision support system for helping the
human process determining the characteristics of a company and
then use these new predictors to predict merger activity. Natural
language processing techniques are ways to quantify business
phrases such as “synergies” in a more robust manner or at least in
a different way compared to previous methods.

Merger events are drawn through Thomson Reuters’ SDC
Platinum database. Firms that have been recorded as involved
with merger activity are labeled, and those that have not are also
marked accordingly.

4 MODEL

Three major steps were taken, in the following order, as modeled
by [11]:

1. Represent raw text (documents) as numerical array C.
2. Map C to predicted values of V̂ of unknown outcomes V.
3. Use V̂ in subsequent descriptive of causal analysis.

The first step was completed using the cleaning and tf-idf
method described in section 3.

4.1 The LASSO
We decided on using the LASSO over ridge or elastic net. In our
case, we wanted to come up with a limited set of words that
predicted merger activity. The high dimensionality.

The LASSO, or the Least Absolute Shrinkage and Selection
Operator, imposes a restriction on a high-dimensional linear
model. The model is penalized by the size of the model through
the absolute values of the coefficients [12]. define the LASSO as

β̂ � arg min
β

∑
N

n�1
yi −∑

p

j�1
xi,jbj⎛⎝ ⎞⎠

2

+ λ∑
p

j�1
|βj|cj (4)

where λ > 0 is the “penalty level” and cj are the “penalty loadings.”
[13, 14] discuss how the LASSO corresponds to 1) a quadratic loss
function, 2) a class of linear functions (over some fixed set of
possible variables), and 3) a regularizer which is the sum of
absolute values of coefficients. This absolute-value regularizer
shrinks many coefficients to zero, yielding an approximately
sparse linear framework.

With regularization techniques such as the LASSO comes the
advantage of allowing for “wide” data, where there are more
regressor variables than observations themselves, such as the case

TABLE 2 | Detailed description of a 10-K filing.

Name Section description

10-K Section descriptions

Item 1–Business This describes the business of the company: Who and what the company does, what subsidiaries it owns,
and what markets it operates in. It may also include recent events, competition, regulations, and labor issues.
(Some industries are heavily regulated, have complex labor requirements, which have significant effects on
the business). Other topics in this section may include special operating costs, seasonal factors, or insurance
matters

Item 1A–Risk factors Here, the company lays anything that could go wrong, likely external effects, possible future failures to meet
obligations, and other risks disclosed to adequately warn investors and potential investors

Item 1B–Unresolved staff comments
Item 2–Properties This section lays out the significant properties, physical assets, of the company. This only includes physical

types of property, not intellectual or intangible property
Item 3–Legal proceedings Here, the company discloses any significant pending lawsuit or other legal proceeding. References to these

proceedings could also be disclosed in the risks section or other parts of the report
Item 4–Mine safety disclosures This section requires some companies to provide information about mine safety violations or other regulatory

matters
Item 5–Market Gives highs and lows of stock, in a simple statement. Market for Registrant’s common equity, related

stockholder matters and issuer purchases of equity securities
Item 6–Consolidated financial data In this section financial data showing consolidated records for the legal entity as well as subsidiary companies
Item 7–Management’s discussion and analysis of financial
condition and results of operations

Here, management discusses the operations of the company in detail by usually comparing the current
period versus prior period. These comparisons provide a reader an overview of the operational issues of what
causes such increases or decreases in the business

Item 8–Financial statements Here, also, is the going concern opinion. This is the opinion of the auditor as to the viability of the company.
Look for “unqualified opinion” expressed by auditor. This means the auditor had no hesitations or
reservations about the state of the company, and the opinion is without any qualifications (unconditional)
1. Independent auditor’s report
2. Consolidated statements of operation
3. Consolidated balance sheets
4. Other accounting reports and notes

10-K Section names–items 9–15

Item 9. Changes in and disagreements with accountants on
accounting and financial disclosure

Item 9A. Controls and
procedures

Item 9B. Other information

Item 10. Directors, executive officers and corporate governance Item 11. Executive compensation Item 12. Security ownership of certain beneficial owners and
management and related stockholder matters

Item 13. Certain relationships and related transactions, and
director independence

Item 14. Principal accounting
fees and services

Item 15. Exhibits, financial statement schedules signatures
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with the text data from the SEC filings. Using such machine
learning techniques effectively allows for the data to speak for
itself–the LASSO could potentially uncover generalizable patterns
that were not specified by the economist in advance.

However, there are limitations to using the LASSO [13]. detail
how correlations between variables must be limited. There are two
particularly strong assumptions for the LASSO to hold - that first,
only a few variables are relevant, and second, none of the irrelevant
covariates can be even moderately related to the set of relevant
ones. This leaves danger of interpreting the β

̂
parameters naively.

As increasingly flexible methods are used, variance will
increase and bias decreases. Traditional models want no bias.
Machine learning allows some bias and reduces variability (e.g.,
Lasso, Ridge). The model is penalized for size, i.e., how many
coefficients is put into the equation. To adjust, a different sample
once a model is selected to test for goodness of fit. In order to
ensure that the model we created has external validity, we use
cross-validation training techniques and separate the dataset to a
training set and a test set.

4.1.1 Cross-Validation
In order to select the optimal λ, we used the K-fold cross-
validation technique. This splits our sample into 10 subsets,
and then fit a model 10 times excluding each subset in
turn. With this, 10 mean squared errors were obtained by
verifying the accuracy of the model fit on the subset that was
left out for 100 values of λ. The value of λ which minimizes the
average error was selected as the λ in the final prediction model.

4.2 Final Prediction Model
Given our explanatory variables, our prediction y will have a
binary value: 1 for a prediction that a firm will be involved in the
merger as either a target or be the takeover company, 0 for a
prediction that will not. The final formula is:

β̂ � argmax
β

∑
N

n�1
log p(yi|xi) + λ1‖β‖1 (5)

To model the relationship between p(X) � Pr(Y � 1|X) and X,
we use the logistic regression:

p(y � 1|x) � exp(β0 + βτx)
1 + exp(β0 + βτx) �

1
exp(−β0 − βτx) (6)

To fit this logistic regression, the parameters are fit through a
maximum likelihood function:

l(β0, β1) � ∏
i:yi�1

p(xi) ∏
i′:y′i�0

(1 − p(xi′)) (7)

5 RESULTS

Seeing the low prediction rate of our original theory, we decided
to try to find the best prediction model instead. With this result,
the LASSO selected 12 words as predictors (Table 3). Given the
size of the estimates and the nature of tf-idf, the results are
difficult to interpret and the best method to find the predictors of
a firm’s potential to merge would probably be to feed the
individual 10-K document into the code and observe each
result on a case by case basis. However, perhaps the word
“but” could signify a struggling firm - perhaps management
needs to explain poor performance by using the word “but” a
lot to argue in favor of the firm.

5.1 N-Grams Representation
Originally, we represented words using the bag-of-words method
(Table 4). This technique represents words in terms of frequency,
wherewordij is an element in the dictionary vector that appears j times
in document i.

Example2, where the text of document i is:
Good night, good night! Parting is such sweet sorrow.
After stemming, removing stop words, and removing

punctuation, we might be left with “good night good night
part sweet sorrow.” The bag-of-words representation
would then have cij � 2 for j ∈ {good, night}, cij � 1 for j ∈
{part, sweet,sorrow}, and cij � 0 for all other words in the
vocabulary.

5.2 Comparing Words to Financial Variables
To test whether words supplemented financial datasets when
describing a firm or could completely replace financial variables
entirely when looking to predict merger activity, we used financial
variables to predict merger accuracy to compare it to textual
accuracy (Table 5). Financial variable accuracy yielded a 85%
success rate. However, the interpretability of the variables is
different from the text regression, and offers different insight.
This suggests text supplementing financial variables could be a
powerful combination.

5.3 Attempts to Verify Existing Merger
Theory
Originally, we had personally narrowed down a dictionary of
words without using tf-idf in order to attempt to use some

TABLE 3 | Words picked by the LASSO, tf-idf.

iii Reasonable Director Security But Chief

−263.634 −21.447 −9.736 −7.983 −4.556 1.599
Indicate Controls Disclosures Procedures Registered Disclosure
39.172 44.864 146.363 192.412 390.211 1, 648.075

With this model, an accuracy rate of 85% was obtained. Further versions will include sensitivity and specificity.

2Example from [17].
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amount of theory to drive the variables that would go into
the model.

To verify Jovanic and Rousseau’s theory on take-overs for the
financially deteriorating firm, we hypothesized that one would
look for characteristics that signal a poorly performing firm. To
study whether firms abide by diversification incentives or
horizontal and vertical merger incentives, one would prefer
information on the specifics on a firm such as product
descriptions and equipment. While examining a principal
agent problem, one would look for information detailing
management and executive leadership.

We looked for this information in the 10-K sections that
described who and what the company does, subsidiaries it owns,
and what markets it operates in, recent events, competition,
regulations, and labor issues, operating costs, season factors,
and insurance matters as well as a section describing the
properties and physical assets of the company. To aid with
examining management concerns, the documents contain two

TABLE 4 | LASSO results, Bag of Words method.

Test 2007 Unrecognized Improvements 2005 Testing
−0.086 −0.080 −0.079 −0.069 −0.065 −0.064
Out 2006 2018 Accounted Allocated Component
−0.062 −0.061 −0.057 −0.044 −0.041 −0.041
Contributions Competition Respective Longlived Locations 102
−0.039 −0.038 −0.035 −0.032 −0.031 −0.030
Discounted Combined Next Areas Strategy Yield
−0.030 −0.030 −0.029 −0.029 −0.027 −0.025
Then Trends Retirement Earned Environment Par
−0.025 −0.025 −0.023 −0.023 −0.023 −0.023
Treasury Protection Final Investing Cumulative Low
−0.023 −0.022 −0.022 −0.020 −0.020 −0.020
Performed Impaired Several Maturities Leased Supplemental
−0.020 −0.020 −0.019 −0.018 −0.018 −0.018
Weightedaverage Assumed Reflected Outside Primary Directly
−0.017 −0.017 −0.017 −0.017 −0.016 −0.015
Domestic Registration Acquired Summary Competitors Institutions
−0.013 −0.013 −0.011 −0.011 −0.010 −0.010
Termination Taxable Active Developed North Resulted
−0.009 −0.009 −0.008 −0.007 −0.007 −0.006
Designed Generated Classified Delivery Measures Therefore
−0.006 −0.005 −0.004 −0.004 −0.004 −0.003
Excluding Although Sources Highly Law Building
−0.003 −0.003 −0.003 −0.002 −0.002 −0.001
Restrictions Completion Lives Projected Recovery Detriment
−0.001 −0.001 −0.001 −0.0003 −0.0001 −0.0001
Right Professional Covered Authorized Consist Need
−0.00003 −0.00002 0.0001 0.0003 0.001 0.002
Individual Reflect 10q 1934 Application Dependent
0.003 0.005 0.007 0.007 0.009 0.009
Unless Actions Treatment Organizations Ending Contained
0.010 0.010 0.011 0.011 0.012 0.016
Approach Proxy Major Recognize name Proprietary
0.016 0.017 0.018 0.022 0.022 0.026
Timing Variable Strategic Gaap Transfer Standard
0.027 0.032 0.035 0.045 0.048 0.059
Evaluate 2017 Entitled Adoption Early Fasb
0.075 0.113 0.136 0.142 0.155 0.290
Goods 2019
0.204 0.604

Using this method, an accuracy rate of 35% was yielded.

TABLE 5 | Financial regression.

Dependent variable

Merged (boolean)

Assets 0.002
(0.001)

Cash −0.0004
(0.002)

Net receivables −0.020*
(0.012)

Retained earnings 0.001*
(0.001)

Current liabilities 0.001
(0.001)

Constant −4.518ppp
(0.620)

Observations 884
Log Likelihood −21.866
Akaike Inf. Crit. 55.733

Note: *p < 0.1; ppp < 0.05; pppp < 0.01.
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pertinent sections: certain relationships and related transactions
and director independence and directors, executive officers and
corporate governance.

With this kind of motivation in mind, we used the bag of
word techniques in attempt to verify existing theory. We assume
that phrases such as “technological”, “commercial”,
“marketing”, “integrated”, “data”, “development”,
“electronically”, “technical”, and “support” are proxies for
technological change as proposed by Coase (1937).
“Liabilities”, “loan”, “losses”, “expense”, “adversely”,
“adverse”, “negatively”, “fail”, “deteriorate”, “risk”, and
“depreciation” are used to test Q-theory of takeovers.
“Global”, “established”, “minimum”, “competitive”, “holders”,
“forward looking”, “comparable”, “health”, “international”,
“respect”, “power”, “properties”, “longterm”, “exceed”, and
“trends” are used to test for market power theory.
“Promotion”, “training”, “managerial”, “finance” are phrases
that test for management inefficiency. We also test directly for
mention of acquisition with “acquired”, “consolidated”,
“accumulated”, “aggregate”, “integrated”, “cumulative”,
“portfolio”, “spread”. For market conditions and any anti-
trust considerations, we examine words such as “fluctuations”
and “sarbanesoxley”. These proxy variables have limitations of
having poor correlation with my intended variable of interest.
As these are one-word phrases, it is difficult to directly measure
the extent in which it describes the characteristic we wish to
examine. For instance, “risk” is used to test for signs of a
financially deteriorating firm, but perhaps the phrase “risk”
was used in the phrase “little risk”. This method, however,
did not achieve a high accuracy rate.

Traditionally, machine learning estimation works best in
creating a predictive model. The trade-offs of creating a
flexible, nonparametric predictive model are that causal
interpretations are often lost. Linear regression is relatively
inflexible approach but easy to interpret. Flexible models avoid
assumptions of a particular functional form for a model, but
require a large number of observations and are more difficult to
interpret.

6 LIMITATIONS

The limitations of this work are primarily definitional–defining
accuracy in a more rigorous way, such as using sensitivity and
specificity. Sensitivity would determine the accuracy of the
amount of mergers correctly identified that would have
merged. Specificity rates would determine the accuracy of
determining the rate of non-mergers–the number of
companies who are predicted to not merged over the amount
that did not merge. This requires increased programming
capabilities that a future paper could take into account. This
limits how we can exactly we can interpret the prediction model.
Using 2-word tokens, or two-word phrases, might also provide
more information that we’d like to take as a next step. However,
as Gentzkow, Kelly, and Taddy (2018) note, this might create
memory and computational limitations, but could provide more
insight on merger activity.

There are four potential next steps that we hope to take this
research.

The first is to attempt to find the best predictive model by
using different machine learning techniques. So far, we have
used a penalized linear model to predict merger activity.
However, there are also nonlinear regression methods such as
generalized linear models, support vector machines, regression
trees, and deep learning. There are also Bayesian regression
methods such as the spike-and-slab, as well as topic modeling
techniques such as Linear Discriminant Analysis. So far, the
LASSO method is just one technique amongst the numerous
machine learning methods.

The next direction is to attempt to predict horizontal and
vertical mergers through product descriptions [15]. have
discovered the limitations to categorize firms through
traditional SIC and NAICS descriptions. For example, the
descriptions do not reclassify firms over time as the product
market evolves, or accommodate innovations that create entirely
new product markets. Using product descriptions could
potentially better determine whether a merger was horizontal
or vertical, a pressing antitrust issue.

The third is to use the words to proxy characteristics of a firm
in an index, the same way [16–19] measured slant.

This would be to see if there’s a way to predict specific types of
mergers to prevent “loss of future competition occurred when a
large incumbent firm acquires a highly capable firm operating in
an adjacent space.”

The equation would look like:

P(y � 1|x) � Financial variables + Location +HHI

+Heavy Legal Involvement + Product Type (8)

To give an example, we took a look at two 10-k’s in 2013–Dish
Network and Echostar. we predicted that maybe Dish would
acquire Echostar eventually after reading the 10-K, and sure
enough, they bought Echostar’s DBS and OTT assets in 2017.
A few phrases that stood out: “ku-band payload,” “xrbl taxomony
extension,” “high thorough geostationary,” “satellite orbit,”
“transponder service agreements” showed up, both were a
“colorado corporation”, and given the variations of “subscriber
services” and “customer subscriptions” that showed up in Dish’s
10-k, Dish probably has more incentive to acquire to satisfy their
customer base. “Treble damages” also showed up frequently in
Echostar’s 10-K.

Lastly, merger types are usually well defined. However, a lot of
“unusual” merger activity have occurred recently. For example:
Amazon and Whole Foods, Intel and Caring.com, Delta Airlines
and Refinery Phillips 66. Perhaps the “culture” of a firm would
have to do with those who choose to engage in conglomerate
mergers. This would be a textual exercise, where one would search
for stylistic preferences and firm values. The equation might look
like:

p(y � 1|x) � β ×Words(Culture) + α × Financial.Variables + c

× Industry.Type + ϵ
(9)
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7 CONCLUSION

Previously, merger activity has been hard to define and predict. We
believe, however, with more granular data that captures information
about a company that financial variables could not, NLP and applied
machine learning could begin to chip away at harder to understand
cases of mergers. Our use of LASSO and tf-idf on a text regression
produced favorable results and interpretability different from financial
variables alone. We found that poor performance predicted merger
likelihood because of a struggling firm becoming likely to become a
takeover target. We found that tf-idf was favorable for prediction
purposes compared to bag-of-words, and that financial variables also
added prediction power. Machine learning, like in our case, can be
applied to problems that were traditionally difficult to solve and offer
insight that past datasets could not. Text is a powerful data source that
could capture a lot of missing information that limited past research
endeavors.We believe that an important transformation of economics
and applied finance is underway.
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AVA: A Financial Service Chatbot
Based on Deep Bidirectional
Transformers
Shi Yu*, Yuxin Chen and Hussain Zaidi

The Vanguard Group, Malvern, PA, United States

We develop a chatbot using deep bidirectional transformer (BERT) models to handle client
questions in financial investment customer service. The bot can recognize 381 intents,
decides when to say I don’t know, and escalate escalation/uncertain questions to human
operators. Our main novel contribution is the discussion about the uncertainty measure for
BERT, where three different approaches are systematically compared with real problems.
We investigated two uncertainty metrics, information entropy and variance of dropout
sampling, in BERT, followed by mixed-integer programming to optimize decision
thresholds. Another novel contribution is the usage of BERT as a language model in
automatic spelling correction. Inputs with accidental spelling errors can significantly
decrease intent classification performance. The proposed approach combines
probabilities from masked language model and word edit distances to find the best
corrections for misspelled words. The chatbot and the entire conversational AI system are
developed using open-source tools and deployed within our company’s intranet. The
proposed approach can be useful for industries seeking similar in-house solutions in their
specific business domains. We share all our code and a sample chatbot built on a public
data set on GitHub.

Keywords: chabot, BERT, rasa, bayesian learning, intent classification

1 INTRODUCTION

Since their first appearances decades ago [1–3], chatbots have always been marking the apex of
artificial intelligence as forefront of all major AI revolutions, such as human–computer interaction,
knowledge engineering, expert system, natural language processing, natural language understanding,
deep learning, and many others. Open-domain chatbots, also known as chitchat bots, can mimic
human conversations to the greatest extent in topics of almost any kind, thus are widely engaged for
socialization, entertainment, emotional companionship, and marketing. Earlier generations of open-
domain bots, such as those mentioned in Ref [3, 4], relied heavily on hand-crafted rules and recursive
symbolic evaluations to capture the key elements of human-like conversation. New advances in this
field are mostly data-driven and end-to-end systems based on statistical models and neural
conversational models [5] aim to achieve human-like conversations through a more scalable and
adaptable learning process on free-form and large data sets [5], such as those given in Ref [6–9]
and [10].

Unlike open-domain bots, closed-domain chatbots are designed to transform existing processes that
rely on human agents. Their goals are to help users accomplish specific tasks, where typical examples
range from order placement to customer support; therefore, they are also known as task-oriented bots
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[5].Many businesses are excited about the prospect of using closed-
domain chatbots to interact directly with their customer base,
which comes with many benefits such as cost reduction, zero
downtime, or no prejudices. However, there will always be
instances where a bot will need a human’s input for new
scenarios. This could be a customer presenting a problem it has
never expected for [11], attempting to respond to a naughty input,
or even something as simple as incorrect spelling. Under these
scenarios, expected responses from open-domain and closed-
domain chatbots can be very different: a successful open-
domain bot should be “knowledgeable, humorous, and
addictive,” whereas a closed-domain chatbot ought to be
“accurate, reliable, and efficient.” One main difference is the
way of handling unknown questions. A chitchat bot would
respond with an adversarial question such as Why do you ask
this? and keep the conversation going and deviate back to the topics
under its coverage [12]. A user may find the chatbot is out-
smarting, but not very helpful in solving problems. In contrast,
a task-oriented bot is scoped to a specific domain of intents and
should terminate out-of-scope conversations promptly and
escalate them to human agents.

This article presents AVA (a Vanguard assistant), a task-
oriented chatbot supporting phone call agents when they
interact with clients on live calls. Traditionally, when phone
agents need help, they put client calls on hold and consult
experts in a support group. With a chatbot, our goal is to
transform the consultation processes between phone agents
and experts to an end-to-end conversational AI system. Our
focus is to significantly reduce operating costs by reducing the call
holding time and the need of experts, while transforming our
client experience in a way that eventually promotes client self-
provisioning in a controlled environment. Understanding intents
correctly and escalating escalation intents promptly are key to its
success. Recently, the NLP community has made many
breakthroughs in context-dependent embeddings and
bidirectional language models like ELMo, OpenAI, GPT,
BERT, RoBERTa, DistilBERT, XLM, and XLNet [1, 13–21]. In
particular, the BERT model [1] has become a new NLP baseline
including sentence classification, question answering, named-
entity recognition and many others. To our knowledge, there
are few measures that address prediction uncertainties in these
sophisticated deep learning structures, or explain how to achieve
optimal decisions on observed uncertainty measures. The off-the-
shelf softmax outputs of these models are predictive probabilities,
and they are not a valid measure for the confidence in a network’s
predictions [22–25], which are important concerns in real-world
applications [11].

Our main contribution in this study is applying advances in
Bayesian deep learning to quantify uncertainties in BERT intent
predictions. Formal methods like stochastic gradient (SG)-
MCMC [23, 26–30] and variational inference (VI) [22, 31–33]
extensively discussed in the literature may require modifying the
network. In conventional neural networks, the parameters are
estimated by a single point value obtained using backpropagation
with stochastic gradient descent (SGD), whereas Bayesian deep
learning assumes a prior over model parameters and then data are
used to compute a distribution over each of these parameters.

However, for BNNs with thousands of parameters, computing the
posterior is intractable due to the complexity in computing the
marginal likelihood [34]. SG-MCMC and VI methods propose
two different solutions to address the aforementioned complexity.
SG-MCMC mitigates the need to compute gradients on full data
set by using mini-batches for gradient computation, which
enables easier computation (with the same computational
complexity as SGD), but still lacks the ability to capture
complex distributions in the parameter space. VI performs
Bayesian inference by using a computationally tractable
“variational” distribution q(θ) to approximate the posterior,
and the capacity of uncertainty representation is limited by the
variational distribution. Re-implementation of the entire BERT
model for Bayesian inference is a non-trivial task, so here we took
the Monte Carlo dropout (MCD) approach [22] to approximate
variational inference, whereby dropout is performed at training
and test time, using multiple dropout masks. Our dropout
experiments are compared with two other approaches (entropy
and dummy class), and the final implementation is determined
among the trade-off between accuracy and efficiency. Recently,
similar MCD dropout approach has been proposed for
transformer models to calibrate speech detection outcomes [35].

We also investigate the usage of BERT as a language model to
decipher spelling errors. Most vendor-based chatbot solutions
embed an additional layer of service, where device-dependent
error models and N-gram language models [36] are utilized for
spell checking and language interpretation. At the representation
layer, WordPiece model [37] and byte pair rncoding (BPE) model
[38, 39] are common techniques to segment words into smaller
units; thus, similarities at the sub-word level can be captured by NLP
models and generalized on out-of-vocabulary (OOV) words. Our
approach combines efforts of both sides: words corrected by the
proposed language model are further tokenized by the WordPiece
model to match pretrained embeddings in BERT learning.

Despite all advances of chatbots, industries like finance and
health care are concerned about cyber security because of the
large amount of sensitive information entered during chatbot
sessions. Task-oriented bots often require access to critical
internal systems and confidential data to finish specific tasks.
Therefore, 100% on-premise solutions that enable full
customization, monitoring, and smooth integration are
preferable than cloud solutions. In this study, the proposed
chatbot is designed using RASA open-source version and
deployed within our enterprise intranet. Using RASA’s
conversational design, we hybridize RASA’s chitchat module
with the proposed task-oriented conversational systems
developed on Python, TensorFlow, and PyTorch. We believe
our approach can provide some useful guidance for industries to
contemplate adopting chatbot solutions in their business
domains.

2 BACKGROUND

Recent breakthroughs in NLP research are driven by two
intertwined directions: Advances in distributed representations,
sparked by the success of word embeddings [40, 41], character
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embeddings [42–44], and contextualized word embeddings [1,
19, 45], have successfully tackled the curse of dimensionality in
modeling complex language models. Advances of neural network
architecture, represented by CNN [46–48], attention mechanism
[49], and transformer as the seq2seq model with parallelized
attentions [50], have defined the new state-of-the-art deep
learning models for NLP.

Principled uncertainty estimation in regression [51],
reinforcement learning [52], and classification [53] are active
areas of research with a large volume of work. The theory of
Bayesian neural networks [54, 55] provides the tools and
techniques to understand model uncertainty, but these techniques
come with significant computational costs as they double the
number of parameters to be trained. The authors of Ref [22]
showed that a neural network with dropout turned on at test
time is equivalent to a deep Gaussian process, and we can obtain
model uncertainty estimates from such a network by multiple-
sampling the predictions of the network at test time. Non-
Bayesian approaches to estimate the uncertainty are also shown
to produce reliable uncertainty estimates [56]; our focus in this study
is on Bayesian approaches. In classification tasks, the uncertainty
obtained from multiple sampling at test time is an estimate of the
confidence in the predictions similar to the entropy of the
predictions. In this study, we compare the threshold for
escalating a query to a human operator using model uncertainty
obtained from dropout-based chatbot against setting the threshold
using the entropy of the predictions. We choose dropout-based
Bayesian approximation because it does not require changes to the
model architecture, does not add parameters to train, and does not
change the training process as compared to other Bayesian
approaches. We minimize noise in the data by employing
spelling correction models before classifying the input. Further,
the labels for the user queries are human-curated with minimal
error. Hence, our focus is on quantifying epistemic uncertainty in
AVA, rather than aleatoric uncertainty [57]. We use mixed-integer
optimization to find a threshold for human escalation of a user query
based on the mean prediction and the uncertainty of the prediction.
This optimization step, once again, does not requiremodifications to
the network architecture and can be implemented separately from
model training. In other contexts, it might be fruitful to have an
integrated escalation option in the neural network [58], and we leave
the trade-offs of integrated reject option and non-Bayesian
approaches for future work.

Similar approaches in spelling correction, besides those
mentioned in Section 1, are reported in Deep Text Corrector
[59] that applies a seq2seq model to automatically correct small
grammatical errors in conversational written English. Optimal
decision threshold learning under uncertainty is studied in Ref
[60] as reinforcement learning and iterative Bayesian
optimization formulations.

3 SYSTEM OVERVIEW AND DATA SETS

3.1 Overview of the System
Figure 1 illustrates system overview of AVA. The proposed
conversational AI will gradually replace the traditional

human–human interactions between phone agents and internal
experts and eventually allow clients self-provisioning interaction
directly to the AI system. Now, phone agents interact with AVA
chatbots deployed on Microsoft Teams in our company intranet,
and their questions are preprocessed by a sentence completion
model (introduced in Section 6) to correct misspellings. Then,
inputs are classified by an intent classification model (Sections 4,
Sections 5), where relevant questions are assigned predicted intent
labels, and downstream information retrieval and questioning
answering modules are triggered to extract answers from a
document repository. Escalation questions are escalated to human
experts following the decision thresholds optimized using methods
introduced in Section 5. This article only discusses the intent
classification model and the sentence completion model.

3.2 Data for Intent Classification Model
Training data for AVA’s intent classification model is collected,
curated, and generated by a dedicated business team from
interaction logs between phone agents and the expert team. The
whole process takes about one year to finish. In total, 22,630 questions
are selected and classified to 381 intents, which compose the relevant
question set for the intent classification model. Additionally, 17,395
questions are manually synthesized as escalation questions, and none
of them belongs to any of the aforementioned 381 intents. Each
relevant question is hierarchically assigned with three labels from Tier
1 to Tier 3. In this hierarchy, there are five unique Tier-1 labels,
107 Tier-2 labels, and 381 Tier-3 labels. Our intent classification
model is designed to classify relevant input questions into 381 Tier-3
intents and then trigger downstream models to extract appropriate
responses. The five Tier-1 labels and the numbers of intents included
in each label are account maintenance (9,074), account permissions
(2,961), transfer of assets (2,838), banking (4,788), tax FAQ (2,969). At
Tier-1, general business issues across intents are very different, but at
the Tier-3 level, questions are quite similar to each other, where
differences are merely at the specific responses. Escalation questions,
compared to relevant questions, have two main characteristics:

• Some questions are relevant to business intents but
unsuitable to be processed by conversational AI. For
example, in Table 1, question “How can we get into an
account with only one security question?” is related to call
authentication in account permission, but its response needs
further human diagnosis to collect more information. These
types of questions should be escalated to human experts.

• Out-of-scope questions. For example, questions like “What
is the best place to learn about Vanguard’s investment
philosophy?” or “What is a hippopotamus?” are totally
outside the scope of our training data, but they may still
occur in real-world interactions.

3.3 Textual Data for Pretrained Embeddings
and Sentence Completion Model
Inspired by the progress in computer vision, transfer learning has
been very successful in NLP community and has become a
common practice. Initializing deep neural network with
pretrained embeddings and fine-tuning the models toward
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task-specific data are proven methods in multitask NLP learning.
In our approach, besides applying off-the-shelf embeddings from
Google BERT and XLNet, we also pretrain BERT embeddings
using our company’s proprietary text to capture special semantic
meanings of words in the financial domain. Three types of textual
data sets are used for embeddings training:

• SharePoint text: About 3.2G bytes of corpora scraped from
our company’s internal SharePoint websites, including Web
pages, Word documents, ppt slides, pdf documents, and
notes from internal CRM systems.

• Emails: About 8G bytes of customer service emails are
extracted.

• Phone call transcriptions: We apply AWS to transcribe
500 K client service phone calls, and the transcription
text is used for training.

All embeddings are trained in case-insensitive settings.
Attention and hidden layer dropout probabilities are set to 0.1,
hidden size is 768, attention heads and hidden layers are set to 12,
and vocabulary size is 32,000 using SentencePiece tokenizer. On
AWS P3.2xlarge instance, each embeddings is trained for one
million iterations and takes about one week CPU time to finish.
More details about parameter selection for pretraining are available
in the GitHub code. The same pretrained embeddings are used to
initialize BERTmodel training in intent classification and also used
as language models in sentence completion.

4 INTENT CLASSIFICATION
PERFORMANCE ON RELEVANT
QUESTIONS

Using only relevant questions, we compare various popular
model architectures to find one with the best performance on
5-fold validation. Not surprisingly, BERT models generally

FIGURE 1 | End-to-end conceptual diagram of AVA.

TABLE 1 | Example questions used in AVA intent classification model training.

T1 label T2 label T3 label Questions

Account
maintenance

Call authentication Type 2 Am I allowed to give the client their social security number?
Call authentication Type 5 Do the web security questions need to be reset by the client if their web access is blocked?
Web reset Type 1 How many security questions are required to be asked to reset a client’s web security questions?

Account permission Call authentication Type 2 How are the web security questions used to authenticate a client?
Agent
incapactiated

Type 3 Is it possible to set up agent certification for an incapacitated person on an individual Roth 401 k?

TAX FAQ Miscellaneous What is Do I need my social security number on the 1099MISC form?
Transfer of asset Unlike registrations Type 2 Does the client need to provide special documentation if they want to transfer from one account to another

account?
Brokerage transfer Type 3 Is there a list of items that need to be included on a statement to transfer an account?

Banking Add owner Type 4 Once a bank has been declined how can we authorize it?
Add/change/delete Type 3 Does a limited agent have authorization to adjust bank info?

Escalation – – How can we get into an account with only one security question?
– – Am I able to use my Roth IRA to set up a margin account?
– – What is the best place to learn about Vanguard’s investment philosophy?

TABLE 2 | Comparison of intent classification performance. BERT and XLNet
models were all trained for 30 epochs using batch size 16.

Model Performance

BERT small + SharePoint embeddings 0.944
BERT small + Google embeddings 0.949
BERT large + Google embeddings 0.954
XLNet large + Google embeddings 0.927
LSTM with attention + Word2Vec 0.913
LSTM + Word2Vec 0.892
Logistic regression + TFIDF 0.820
Xgboost + TFIDF 0.760
Naive Bayes + TFIDF 0.661
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produce much better performance than other models
(Table 2). Large BERT (24-layer, 1024-hidden, and 16-
heads) has a slight improvement over small BERT (12-layer,
768-hidden, and 12-heads) but less preferred because of
expensive computations. To our surprise, XLNet, a model
reported outperforming BERT in multitask NLP, performs 2
percent lower on our data.

BERT models initialized by proprietary embeddings
converge faster than those initialized by off-the-shelf
embeddings (Figure 2A). And embeddings trained on
company’s SharePoint text perform better than those built
on Emails and phone call transcriptions (Figure 2B). Using
larger batch size 32) enables models to converge faster and
leads to better performance.

5 INTENT CLASSIFICATION
PERFORMANCE INCLUDING ESCALATION
QUESTIONS

We have shown how the BERT model outperforms other
models on real data sets that only contain relevant

questions. The capability to handle 381 intents
simultaneously at 94.5% accuracy makes it an ideal intent
classifier candidate in a chatbot. This section describes how we
quantify uncertainties on BERT predictions and enable the bot
to detect escalation questions. Three approaches are
compared:

• Predictive entropy: We measure uncertainty of
predictions using Shannon entropy H � −∑K

k�1pik log pik,
where pik is the prediction probability of ith sample to kth
class. Here, pik is softmax output of the BERT network
[56]. A higher predictive entropy corresponds to a greater
degree of uncertainty. Then, an optimally chosen cutoff
threshold applied on entropies should be able to separate
the majority of in-sample questions and escalation
questions.

• Dropout: We apply Monte Carlo (MC) dropout by doing
100 Monte Carlo samples. At each inference iteration, a
certain percent of the set of units drop out. This
generates random predictions, which are interpreted
as samples from a probabilistic distribution [22].
Since we do not employ regularization in our
network, τ−1 in Eq. 7 in Ref [22] is effectively zero
and the predictive variance is equal to the sample
variance from stochastic passes. We could then
investigate the distributions and interpret model
uncertainty as mean probabilities and variances.

• Dummy class: We simply treat escalation questions as a
dummy class to distinguish them from original questions.
Unlike entropy and dropout, this approach requires
retraining of BERT models on the expanded data set
including dummy class questions.

5.1 Experimental Setup
All results mentioned in this section are obtained using
BERT small + SharePoint embeddings (batch size 16). In
entropy and dropout approaches, both relevant questions
and escalation questions are split into five folds, where four
folds (80%) of relevant questions are used to train the BERT
model. Then, among that 20% held-out relevant questions,
we further split them into five folds, where 80% of them
(equal to 16% of the entire relevant question set) are
combined with four folds of escalation questions to learn
the optimal decision variables. The learned decision
variables are applied on BERT predictions of the
remaining 20% (906) of held-out relevant questions and
held-out escalation questions (4,000), to obtain the test
performance. In the dummy class approach, the BERT
model is trained using four folds of relevant questions
plus four folds of escalation questions and tested on the
same amount of test questions as entropy and dropout
approaches.

5.2 Optimizing Entropy Decision Threshold
To find the optimal threshold cutoff b, we consider the following
quadratic mixed-integer programming problem

FIGURE 2 |Comparison of test set accuracy using different embeddings
and batch sizes.
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min
x,b

∑i,k(xik − lik)2
s.t. xik � 0 if Ei ≥ b, for k in 1, . . . ,K

xik � 1 if Ei ≥ b, for k � K + 1
xik ∈ {0, 1}
∑K+1

k�1 xik � 1 ∀i in 1, . . . ,N
b≥ 0

. (1)

to minimize the quadratic loss between the predictive assignments
xik and true labels lik. In Eq. 1, i is the sample index, k is class (intent)
indices, xik isN × (K + 1) binarymatrix, and lik is alsoN × (K + 1),
where the first K columns are binary values and the last column is a
uniform vector δ, which represents the cost of escalating questions.
Normally, δ is a constant value smaller than 1, which encourages the
bot to escalate questions, rather than making mistaken predictions.
The first and second constraints of Eq. 1 force an escalation label
when entropy Ei ≥ b. The third and fourth constraints restrict xik as
binary variables and ensure the sum for each sample is 1.
Experimental results (Figure 3) indicate that Eq. 1 needs more
than 5,000 escalation questions to learn a stabilized b. The value of
escalation cost δ has a significant impact on the optimal b value and
in our implementation is set to 0.5.

5.3 Monte Carlo Dropout
In the BERT model, dropout ratios can be customized at
encoding, decoding, attention, and output layers. A
combinatorial search for optimal dropout ratios is
computationally challenging. Results reported in the article are
obtained through simplifications with the same dropout ratio
assigned and varied on all layers. Our MC dropout experiments
are conducted as follows:

1. Change dropout ratios in encoding/decoding/attention/
output layer of BERT

2. Train the BERT model on 80% of relevant questions for 10 or
30 epochs

3. Export and serve the trained model by TensorFlow serving
4. Repeat inference 100 times on questions, average the results

per each question to obtain mean probabilities and standard
deviations, and then average the deviations for a set of
questions.

According to the experimental results illustrated in Figure 4,
we make three conclusions: 1) Epistemic uncertainty estimated by
MCD reflects question relevance: when inputs are similar to the
training data, there will be low uncertainty, while data are
different from the original, training data should have higher
epistemic uncertainty. 2) Converged models (more training
epochs) should have similar uncertainty and accuracy no
matter what drop ratio is used. 3) The number of epochs and
dropout ratios are important hyper-parameters that have
substantial impacts on uncertainty measure and predictive
accuracy and should be cross-validated in real applications.

min
x,c,d

∑i,k(xik − lik)2

s.t. αik � { 0 if Pik ≤ c, for k in 1, . . . ,K
1 if otherwise

βik � { 0 if Vik ≥ d, for k in 1, . . . ,K
1 if otherwise

xik � 0 if αik � 0 OR βik � 0
xik � 1 if αik � 1 AND βik � 1
∑K+1

k xik � 1 ∀i in 1, . . . ,N
1≥ c≥ 0
1≥ d ≥ 0

. (2)

We use mean probabilities and standard deviations obtained
from models where dropout ratios are set to 10% after 30 epochs
of training to learn optimal decision thresholds. Our goal is to
optimize lower bound c and upper bound d and designate a
question as relevant only when the mean predictive probability
Pik is larger than c and standard deviation Vik is lower than d.
Optimizing c and d, on a 381-class problem, is much more
computationally challenging than learning entropy threshold
because the number of constraints is proportional to class
number. As shown in Eq. 2, we introduce two variables α and
β to indicate the status of mean probability and deviation
conditions, and the final assignment variable x is the logical
AND of α and β. Solving 2) with more than 10 k samples is very
slow (shown in Supplementary Appendix), so we use 1,500
original relevant questions and increase the number of
escalation questions from 100 to 3,000. For performance
testing, the optimized c and d are applied as decision variables

FIGURE 3 |Optimizing the entropy threshold to detect escalation questions. As shown in (A), in-sample test questions and escalation questions have very different
distributions of predictive entropies. Subfigure (B) shows how test accuracies, evaluated using decision variables b solved by (1) on BERT predictions on test data,
change when different numbers of escalation questions are involved in training. Subfigure (C) shows the impact of δ on the optimized thresholds when the number of
escalation questions increase optimization. Usually, to safeguard making wrong predictions in client-facing applications, δ is set to a value smaller than 1 because 1
means the cost of making wrong predictions is the same as spending human effort on a question. In contrast, a value 0.5 means the cost of wrong predictions is two
times larger than human answering cost. Such a cost is guided by business reasons, and different δ could lead to different optimal thresholds.
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on samples of BERT predictions on test data. Performance from
dropout is presented in Table 3 and Supplementary Appendix.
Our results showed a decision threshold optimized from Eq. 2
involving 2000 escalation questions and gave the best F1 score
(0.754), and we validated it using the grid search and confirmed
its optimality (shown in Supplementary Appendix).

5.4 Dummy Class Classification
Our third approach is to train a binary classifier using both
relevant questions and escalation questions in the BERT model.
We use a dummy class to represent those 17,395 escalation
questions and split the entire data sets, including relevant and
escalation, into five folds for training and test.

Performance of the dummy class approach is compared with
entropy and dropout approaches (Table 3). Deciding an optimal
number of escalation questions involved in threshold learning is
non-trivial, especially for entropy and dummy class approaches.
Dropout does not need as many escalation questions as entropy
does to learn the optimal threshold mainly because the number of
constraints in Eq. 2 is proportional to the class number (381), so
the number of constraints is large enough to learn a suitable
threshold on small samples. (To support this conclusion, we
present extensive studies in Supplementary Appendix on a 5-
class classifier using Tier one intents.) The dummy class approach
obtains the best performance, but its success assumes the learned
decision boundary can be generalized well to any new escalation
questions, which is often not valid in real applications. In
contrast, entropy and dropout approaches only need to treat a

binary problem in the optimization and leave the intent
classification model intact. The optimization problem for
entropy approach can be solved much more efficiently and is
selected as the solution for our final implementation.

It is certainly possible to combine dropout and entropy approach,
for example, to optimize thresholds on entropy calculated from the
average mean of MCD dropout predictions. Furthermore, it is
possible that the problem defined in Eq. 2 can be simplified by
proper reformulation and can be solved more efficiently, which will
be explored in our future works.

6 SENTENCE COMPLETION USING
LANGUAGE MODEL

6.1 Algorithm
We assume misspelled words are all OOV words, and we can
transform them as [MASK] tokens and use bidirectional language
models to predict them. Predicting masked word within
sentences is an inherent objective of a pretrained bidirectional
model, and we utilize the masked language model API in the
Transformer package [61] to generate the ranked list of candidate
words for each [MASK] position. The sentence completion
algorithm is illustrated in Algorithm 1.

6.2 Experimental Setup
For each question, we randomly permutate two characters in the
longest word, the next longest word, and so on. In this way, we

FIGURE 4 | Classification accuracy and uncertainties obtained from Monte Carlo dropout.

TABLE 3 | Performance of cross-comparison of three approaches evaluated on test data of the same size (906 relevant questions plus 4,000 escalation questions).
Precision/recall/F1 scores were calculated assuming relevant questions are true positives. In entropy and dropout optimization processes, δ is set to 0.5. Other delta
values for the dropout approach are listed in Supplementary Appendix.

Number of escalation
questions in training

Entropy Dropout Dummy class

1,000 5,000 8,000 10,000 100 1,000 2000 3,000 1,000 5,000 8,000 10,000

Optimal entropy cutoff b 2.36 1.13 0.85 0.55 – – – – – – – –

Optimal mean probability cutoff c – – – – 0.8172 0.6654 0.7921 0.0459 – – – –

Optimal standard cutoff d – – – – 0.1533 0.0250 0.0261 0.0132 – – – –

Mean accuracy in 381 classes 91.9% 88.3% 85.6% 81.7% 88.41% 80.13% 80.24% 74.72% 94.2% 93.7% 87.7% 82%
Accuracy of the dummy class 79.25% 91.2% 93.25% 95.2% 86.69% 91.83% 91.95% 92.57% 73.6% 94.5% 99.4% 99.6%
Precision (binary classification) 51.4% 70.2% 74.7% 79.8% 90.7% 68.8% 68.9% 63.7% 81% 95.3% 99.5% 99.6%
Recall (binary classification) 96.7% 91.3% 88.1% 83.5% 93.9% 82.7% 83.2% 84.7% 99.7% 98.7% 92.6% 86%
F1 score (binary classification) 0.671 0.794 0.808 0.816 0.738 0.751 0.754 0.727 0.894 0.967 0.959 0.923

Bold values represent best performance.
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generate one to three synthetic misspellings in each question. We
investigate intent classification accuracy changes on these questions,
and how our sentence completion model can prevent performance
changes. All models are trained using relevant data (80%) without
misspellings and validated on synthetic misspelled test data. Five
settings are compared: 1) no correction: classification performance
without applying any autocorrection; 2) no LM: autocorrections
made only by word edit distance without using masked language
model; 3) BERT SharePoint: autocorrections made by masked LM
using pretrained SharePoint embeddings together with word edit
distance; 4) BERT Email: autocorrections using pretrained email
embeddings together with word edit distance; and 5) BERT Google:
autocorrections using pretrained Google small uncased embedding
data together with word edit distance.

We also need to decide what is an OOV or what should be
included in our vocabulary. After experiments, we set our vocabulary
as words from four categories: 1) All words in the pretrained
embeddings; 2) all words that appear in training questions; 3)
words that are all capitalized because they are likely to be proper
nouns, fund tickers, or service products; 4) all words start with
numbers because they can be tax forms or specific products (e.g.,
1099b and 401 k). The purposes of including 3) and 4) are to avoid
autocorrection on those keywords that may represent significant
intents. Any word falls outside these four groups is considered as an
OOV. During our implementation, we keep monitoring the OOV
rate, defined as the ratio of OOV occurrences to total word counts in
recent 24 h. When it is higher than 1%, we apply manual
intervention to check chatbot log data.

We also need to determine two additional parameters M, the
number of candidate tokens prioritized bymasked languagemodel,
and B, the beam size in our sentence completion model. In our
approach, we setM and B to the same value, and it is benchmarked
from 1 to 10 k by test sample accuracy. Notice that whenM and B

are large, and when there are more than two OOVs, beam search
becomes very inefficient in Algorithm 1. To simplify this, instead of
finding the optimal combinations of candidate tokens that
maximize the joint probability argmax∏d

i�1pi, we assume they
are independent and apply a simplified algorithm (shown in
Supplementary Appendix) on single OOV separately.

In additional to BERT, we also implemented a conventional
spelling correction algorithm using Google Web 1 T n-gram [62].
We used the longest common subsequence (LCS) string matching
algorithm [63] and compared a variety of best combinations of
n-grams report in the article. The experimental setting is identical as
the one we set up for BERT models: We apply auto-spelling
correction algorithms on synthetic misspelled test data (20%),
and then the intent classification accuracy performance is
evaluated using the BERT SharePoint model trained on 80%
relevant data without misspellings for 10 epochs. As shown in
Table 4, n-gram models do not provide comparable performance
as BERT language models, and the most complicated hybrid n-gram
models (5-4-3 g and 5-4-3-2 g) [63] is not comparable to Google
BERT model and far worse than BERT SharePoint model.

An further improved version of sentence completion algorithm
to maximize joint probability is our future research. In this article,
we have not considered situations when misspellings are not OOV.
Detecting improper words or improper grammar in a sentence
may need evaluation of metrics such as perplexity or sensibleness
and specificity average (SSA) [10], and the simple word matching
algorithm can be much generalized as reinforcement
learning–based approach [64].

TABLE 4 | Comparison of intent classification accuracy using the best BERT
model vs. conventional n-gram models.

Model Single OOV Two OOVs Three OOVs

BERT SharePoint 0.934 0.882 0.849
5 G 0.755 0.719 0.622
5-4 G 0.817 0.731 0.643
5-4-3 G 0.823 0.752 0.646
5-4-3-2 G 0.826 0.755 0.643

TABLE 5 | Benchmark of intent classification API performance across different
models in real-time application. Each model is tested using 10 threads,
simulating 10 concurrent users, for a duration of 10 min. In this test, models are
not served asMonte Carlo sampling, so the inference is done only once. All models
are hosted on identical AWSm5.4xlarge CPU instances. As seen, the simplest
model (6A-6H, six attention layers and six hidden layers) can have a double
throughput rate and half latency than the original BERT small model, and the
accuracy performance only drops 1.6%. The performance is evaluated using
JMeter at the client side, and APIs are served using Domino Lab 3.6.17 Model
API. Throughput indicates how many API responses being made per second.
Latency is measured as time elapse between request sent till response
received at client side.

Model Performance Throughput Average latency (ms)

12A-12H 0.944 8.9/s 1,117
6A-12H 0.941 9.0/s 1,108
12A-9H 0.934 11.8/s 843
3A-9H 0.933 12.0/s 831
3A-12H 0.930 9.1/s 1,097
6A-6H 0.928 18.1/s 552
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6.3 RESULTS

According to the experimental results illustrated inFigure 5, pretrained
embeddings are useful to increase the robustness of intent prediction
on noisy inputs. Domain-specific embeddings contain much richer
context-dependent semantics that helps OOVs get properly corrected
and leads to better task-oriented intent classification performance.
Benchmark shows B ≥ 4000 leads to the best performance for our
problem. Based on this, we apply SharePoint embeddings as the
language model in our sentence completion module.

7 IMPLEMENTATION

The chatbot has been implemented fully inside our company network
using open-source tools including RASA [65], TensorFlow, and
PyTorch in Python environment. All backend models (sentence
completion model, intent classification model, and others) are
deployed as RESTful APIs in AWS SageMaker. The front end of
chatbot is launched on Microsoft Teams, powered by Microsoft Bot
Framework andMicrosoft AzureDirectory, and connected to backend
APIs in AWS environment. All our BERT model trainings, including
embeddings pretraining, are based on BERT TensorFlow running on
AWSP3.2xlarge instance. The optimization procedure usesGurobi 8.1
running on AWS C5.18xlarge instance. The BERT language model
API in the sentence completionmodel is developed using Transformer
2.1.1 package on PyTorch 1.2 and TensorFlow 2.0.

During our implementation, we further explore how the intent
classification model API can be served in real applications under
budget. We gradually reduce the numbers of attention layer and
hidden layer in the original BERT small model (12 hidden layers
and 12 attention heads) and create several smaller models. By
reducing the number of hidden layers and attention layers in half,
we see a remarkable 100% increase in performance (double the
throughput and half the latency) with the cost of only 1.6% drop
in intent classification performance (Table 5).

8 CONCLUSION

Our results demonstrate that optimized uncertainty thresholds applied
on BERT model predictions are promising to escalate escalation
questions in task-oriented chatbot implementation, meanwhile the
state-of-the-art deep learning architecture provides high accuracy on

classifying into a large number of intents. Another feature we
contribute is the application of BERT embeddings as the language
model to automatically correct small spelling errors in noisy inputs,
and we show its effectiveness in reducing intent classification errors.
The entire end-to-end conversational AI system, including two
machine learning models presented in this article, is developed
using open-source tools and deployed as in-house solution. We
believe those discussions provide useful guidance to companies
that are motivated to reduce dependency on vendors by leveraging
state-of-the-art open-source AI solutions in their business.

We will continue our explorations in this direction, with particular
focuses on the following issues: 1) Current fine-tuning and decision
threshold learning are two separate parts, and we will explore the
possibility to combine them as a new cost function in BERT model
optimization. 2) Dropout methodology applied in our article belongs to
approximated inferencemethods,which is a crude approximation to the
exact posterior learning in parameter space. We are interested in a
Bayesian version of BERT, which requires a new architecture based on
variational inference using tools like TFP TensorFlow Probability. 3)
Maintaining chatbot production systemwould need a complex pipeline
to continuously transfer and integrate features from deployed model to
new versions for new business needs, which is an uncharted territory for
all of us. 4) Hybridizing “chitchat” bots, using state-of-the-art progresses
in deep neural models, with task-oriented machine learning models is
important for our preparation of client self-provisioning service.
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