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Editorial on the Research Topic

Datasets for Brain-Computer Interface Applications

Non-invasive Brain-computer interfaces are an exciting new technology that provide a channel for
communication between the brain and a computer system. They can be used as communication
devices (Chaudhary et al., 2016; Brumberg et al., 2018), rehabilitation systems (Cervera et al., 2018),
entertainment devices (Gürkök et al., 2017), and for a wide range of other applications (Finke et al.,
2009; Makeig et al., 2011).

Research in non-invasive BCIs is developing rapidly and is a highly multidisciplinary field,
involving, among others, neuroscientists, engineers, psychologists, computer scientists, and
clinicians. Continuing development of BCI technology relies on advances made in each of these
fields, which individually and collectively can contribute to improving all aspects of BCI systems
including signal acquisition, processing, classification, and user interface design.

Many individual parts of a BCI system are typically first developed and evaluated on pre-existing
datasets. However, there are only a few high quality publicly available datasets on which new
systems, tools, and technologies can be evaluated and compared. For example, the publicly available
BCI competition datasets (Sajda et al., 2003; Blankertz et al., 2004, 2006) provide an excellent set
of resources for BCI researchers and have been widely used by numerous researchers to develop
and evaluate new signal processing and classification methods (Arvaneh et al., 2013; Ghaemi et al.,
2017; Lotte et al., 2018; Sakhavi et al., 2018; Zanini et al., 2018; Zhang et al., 2018). Yet, the relatively
small size and number of such datasets introduce the risk of overfitting to methods developed and
evaluated with these datasets. In other words, the reliability and reproducibility of BCI research is
held back by a lack and sparsity of publicly available datasets.

This special issue provides a collection of descriptions of publicly available physiological datasets
recorded during development, training, and evaluation of non-invasive BCI systems from BCI
research labs around the world.

The collected datasets consist of signals recorded via a wide variety of modalities, including,
but not limited to, electroencephalography (EEG), functional near infrared spectroscopy (fNIRS),
electromyography (EMG), electrocardiography (ECG), galvanic skin response (GSR), skin
temperature measures, respiration rates, and body movement data. Many datasets include multi-
modal recordings with combinations of two or more of these signal modalities.

Data from a wide variety of different BCI paradigms are described. These include development
of novel event-related potential (ERP) and steady state visual evoked potential (SSVEP) based BCIs

5

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.732165
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.732165&domain=pdf&date_stamp=2021-09-29
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:i.daly@essex.ac.uk
https://doi.org/10.3389/fnins.2021.732165
https://www.frontiersin.org/articles/10.3389/fnins.2021.732165/full
https://www.frontiersin.org/research-topics/9784/datasets-for-brain-computer-interface-applications


Daly et al. Editorial: Datasets for Brain-Computer Interface Applications

for communication, motor imagery BCIs, affective BCIs,
collaborative BCIs, and neurofeedback-based BCIs for nicotine
addiction, as well as resting-state data.

Data on ERP-based BCIs are provided by several authors.
For example, Delijorge et al. describe an EEG-based P300-based
robotic hand control BCI; Simões et al. provide a large EEG-based
P300-based BCI dataset; Li et al. implemented an ERP-based BCI
for communication.

Motor control-based BCIs and associated datasets are also
included in this collection. For example, Brandl and Blankertz
provide an EEG dataset recorded during motor imagery while
distractions were presented to simulate day-to-day events
experienced outside the lab. Schwarz et al. made an attempt to
decode reach and grasp actions from the EEG. Ortega et al.
collected a multimodal dataset comprising EEG, fNIRS, EMG,
and movement data recorded during a force grip task.

A wide range of other types of EEG-based BCIs are also
presented. These include a dataset for a BCI based on covert
attention shifts (Reichert et al.) and an affective BCI based on

neurofeedback (Charles et al.), as well as two BCIs based on the
rapid serial visual presentation paradigm (Zhang et al.; Zheng
et al.). The collection also includes a BCI for treating nicotine

addiction via neurofeedback (Bu et al.) and a dataset of SSVEP
signals (Liu et al.).

A diverse range of paradigms were used in this collection
of studies. For example, von Lühmann et al. present a resting
state fNIRS dataset, while Parent et al. provide a multimodal
dataset, comprising EEG, ECG, and respiration activity, recorded
during a range of physical activities and induced stress. Finally,
Albuquerque et al. offer a multimodal dataset, comprising EEG,
ECG, and GSR, recorded during a mental workload paradigm.

We expect that the collected datasets will enable
novel developments and applications of BCI technology,
as well as extensive validation studies of current and
future BCIs.
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Objective: Previous studies have shown that combing with color properties may be
used as part of the display presented to BCI users in order to improve performance.
Build on this, we explored the effects of combinations of face stimuli with three
primary colors (RGB) on BCI performance which is assessed by classification accuracy
and information transfer rate (ITR). Furthermore, we analyzed the waveforms of
three patterns.

Methods: We compared three patterns in which semitransparent face is overlaid three
primary colors as stimuli: red semitransparent face (RSF), green semitransparent face
(GSF), and blue semitransparent face (BSF). Bayesian linear discriminant analysis (BLDA)
was used to construct the individual classifier model. In addition, a Repeated-measures
ANOVA (RM-ANOVA) and Bonferroni correction were chosen for statistical analysis.

Results: The results indicated that the RSF pattern achieved the highest online
averaged accuracy with 93.89%, followed by the GSF pattern with 87.78%, while the
lowest performance was caused by the BSF pattern with an accuracy of 81.39%.
Furthermore, significant differences in classification accuracy and ITR were found
between RSF and GSF (p < 0.05) and between RSF and BSF patterns (p < 0.05).

Conclusion: The semitransparent faces colored red (RSF) pattern yielded the best
performance of the three patterns. The proposed patterns based on ERP-BCI system
have a clinically significant impact by increasing communication speed and accuracy of
the P300-speller for patients with severe motor impairment.

Keywords: brain-computer interface, ERP, chromatic stimuli, semitransparent face, visual stimuli

INTRODUCTION

Brain-computer interface (BCI) systems enable their users to achieve direct communication with
others or the outside environment by brain activity alone, independent of muscle control. There are
many potential user groups for BCI systems, including, but not limited to, individuals living with
amyotrophic lateral sclerosis (ALS) who are in the locked-in state (LIS).
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The brain activity used to control a BCI can be measured
using different signal acquisition approaches such as
electroencephalogram (EEG), magnetoencephalography
(MEG), functional magnetic resonance imaging (fMRI),
electrocorticogram (ECoG), or near infrared spectroscopy
(NIRS) (Vidal, 1973, 1977; Wolpaw et al., 2002). Since EEG
signals are recorded via non-invasive electrodes placed on the
surface of the scalp, EEG-based BCI systems are very commonly
used. Three key signal components of the EEG are frequently
used for BCI control: event-related potentials (ERPs), steady-
state visual evoked potentials (SSVEP), and motor imagery (MI)
(Sutton et al., 1965; Coles and Rugg, 1995). The focus of the
present study is the ERP-based BCI.

The P300 speller, is a visual ERP-based BCI system, that can
elicit a P300 ERP component using an Oddball paradigm. The
P300 potential is the largest positive deflection with a latency
around 300 ms after the oddball stimulus onset, and is associated
with various cognitive processes such as attention, working
memory, and executive function (Van Dinteren et al., 2014). In
addition, P300-based BCI systems can evoke P100, N200, and
N400 components. The P300 speller was originally described
by Farwell and Donchin (1988). In this study, participants were
requested to watch a screen displaying a 6 × 6 matrix containing
26 letters and 10 digits. They were asked to focus on the rare target
stimuli and ignore the common non-target stimuli. Stimuli were
flashed (highlighted) in a row-column pattern (RCP). However,
the RCP results in the adjacency-distraction and double-flash
problems, which can cause false positive P300 ERPs during
flashes of non-target stimuli that are adjacent to the target.
Thus, some researchers investigated ways to avoid this issue, and
strengthen the performance of the P300 BCI system.

For example, Takano et al. identified that the color of the
stimuli could influence P300-speller system performance. They
replaced the white/gray flicker matrix with a green/blue flicker
matrix and found that the chromatic stimulus improved the
performance of the P300-speller system (Takano et al., 2009). Jin
et al. (2012) proposed a set of stimuli patterns that made use of
images of the face with different emotional content and degrees
of movement, including neutral faces, smiling faces, shaking
neutral faces, and shaking smiling faces. The results revealed that
BCIs that make use of face-based stimuli paradigms are superior
to the traditional RCP. Kaufmann et al. (2011) attempted to
overlay characters used in a P300 speller with semitransparent
images of familiar faces. This resulted in a higher classification
accuracy by evoking N170 and N400 ERPs. The N170 is a negative
voltage deflection occurring approximately 200 ms after stimulus
onset, which is generally related to motion of the stimuli (Jin
et al., 2015), speech processing (Niznikiewicz and Squires, 1996),
and vocabulary selection (Kutas and Hillyard, 1980). The N400
component occurs at 300-500 ms post-stimulus, and is connected
with face recognition (Kaufmann et al., 2011) and language
understanding (Johnson and Hamm, 2000). The influences
produced by stimuli have also been reflected in other factors,
such as, but not limited to, the inter-stimulus intervals (Sellers
et al., 2006), stimulus intensity (Cass and Polich, 1997), and
stimulus motion (Sutton et al., 1965; Martens et al., 2009). A large
number of works have attempted to design optimal paradigms

based on face stimuli to improve the performance of BCI systems.
For example, Li et al. (2015) observed that compared with a
paradigm that only used semitransparent famous faces, the green
semitransparent famous face paradigm could lead to improved
classification performance. Based on this, we further explore the
performance differences between red semitransparent face (RSF),
green semitransparent face (GSF), and blue semitransparent face
(BSF) patterns. In addition, Guo et al. (2019) investigated how
red, green, and blue (RGB) colors may be used as stimuli in a new
layout of flash patterns based on single character presentation.
They reported that the red stimuli paradigm yielded the best
performance. Thus, we hypothesize that faces, that are colored
red, can produce a higher classification accuracy compared to
patterns that combine red, green, and blue colors with faces.

Although a large number of works have attempted to
design optimal paradigms to improve the performance of BCI
systems, there are scarce studies on the pattern of chromatic
difference and face combination. In our new patterns, the
flashing row or column in the BCI display grid is overlaid with
semitransparent faces that are colored red, green, or blue and
we compare the effect of these three new spelling patterns on
BCI performance. In addition, we investigate the ERP waveforms
induced by the proposed “red semitransparent face” (RSF),
“green semitransparent face” (GSF), and “blue semitransparent
face” (BSF) patterns and evaluate the classification performance
among the three patterns.

MATERIALS AND METHODS

Participants
Twelve healthy participants (S1–S12, five females and seven
males, aged 22–25 years, mean 24 years old) with normal or
corrected to normal vision volunteered for the current study. All
participants’ native language is Mandarin Chinese, and they are
familiar with the Western characters used in the display. They
are all right-handed and had normal color vision. Before the
experiment began, all participants provided informed consent
via a process which the local ethics committee approved. Two
participants’ data was abandoned because the accuracy of three
patterns were all lower than 60%. According to Kubler et al.
(2004), these two participants may be described as “BCI-
illiterate.” Four of the ten participants (S1, S3, S6, and S7) had
participated in a BCI experiment previously. All participants were
informed of the whole experimental process in advance.

Experimental Design
A 20-inch LCD monitor (Lenovo LS2023WC) with standard
RGB gamut and 1600 × 900 resolution was used for stimuli
presentation. Its maximum luminance was set to 200cd/m2.
In the experiment, we instructed participants sit approximately
105 cm in front of the display, which was 30 cm tall (visual
angle: 16.3◦) and 48 cm wide (visual angle: 25.7◦) in a quiet
laboratory which was relatively dim with the optic intensity of
the environment approximately 40lx. Participants were asked to
relax themselves and avoid unnecessary movement throughout
the experiment. The graphical interface of the BCI was developed
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using “Qt Designer 4.8” software. The semitransparent images
of faces, painted with three primary colors, red (255,0,0), green
(0,255,0), and blue (0,0,255), were selected as stimuli, as shown
in the Figure 1, and the transparency was set to 50%. The
stimulus onset asynchrony (SOA) was set to 250 ms, and
the stimulus interval was set to 100 ms throughout all stages
of the experiment.

Figure 1A shows the interface of the 6 × 6 spelling matrix
before the experiment began; it contains 26 letters and 10 digits.
The parameters of the three patterns including background color,
the appearance and distance of characters and the stimuli style
remain the same throughout the experiment. In Figure 1B,
the pattern showed a semitransparent face colored red as the
stimulus covered the characters. For the sake of convenience,
we refer to this as the RSF pattern. Figure 1C shows the
semitransparent face colored green as the stimulus covered the

characters. This is referred to as the GSF pattern. Figure 1D
shows the semitransparent face colored blue as the stimulus
covered the characters. This is called the BSF pattern. In addition,
Figures 1B–D presented the fifth flash.

In the current study, three patterns were presented to
participants in sequence. During the experiment, participants
were requested to silently count the number of times target
characters flashed. The stimulus presentation pattern is based on
binomial coefficients (Jin et al., 2010, 2014a). The formulation
is C

(
n, k

)
= n!/k!

(
n− k

)
!, 0 ≤ k ≤ n, where n refers to the

number of flashes per trial and k refers to the number of
flashes per trial for an element in the matrix. In this study,
the combination of C (12, 2) was used to represent the 12-flash
pattern. Table 1 describes the coding of the stimulus sequence
in the 12-flash pattern with 36 flash pattern pairs. The locations
in Table 1 correspond to the locations of the 36 characters in

FIGURE 1 | The experimental pattern. (A) Character matrix; (B) Red semitransparent face (RSF) pattern; (C) Green semitransparent face (GSF) pattern; (D) Blue
semitransparent face (BSF) pattern; (E) the legend of the three stimuli. Note that in order to avoid copyright infringement, faces are portrayed with censor boxes.
(During the experiment censor boxes were not presented). In addition, (B–D) presented the fifth flash.

Frontiers in Neuroscience | www.frontiersin.org 3 January 2020 | Volume 14 | Article 549

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00054 January 30, 2020 Time: 16:54 # 4

Li et al. Chromatic (RGB) Semitransparent Face Pattern

TABLE 1 | The coding of stimulus sequence of the 12-flash pattern.

(1,4) (1,5) (1,6) (1,7) (1,8) (1,9)

(2,10) (2,5) (2,6) (2,7) (2,8) (2,9)

(3,10) (3,11) (3,6) (3,7) (3,8) (3,9)

(4,10) (4,11) (4,12) (4,7) (4,8) (4,9)

(5,10) (5,11) (5,12) (1,10) (5,8) (5,9)

(6,10) (6,11) (6,12) (3,12) (2,11) (6,9)

Figure 1A. Specifically, the first pair (1,4) in Table 1 means
the first and the fourth flash will cover character “A”. During
the offline and online block – for each of the three patterns –
the presentation sequences for each stimulus are consistent
with Table 1.

The flow diagram of the experiment is shown in Figure 2.
Each pattern was presented during both offline and online blocks.
The offline block included three runs. In each run participants
were asked to attempt to spell five targets without any break.
After each offline run, participants had 3–5 min rest. Moreover,
each target needed to be presented in 16 trials before it can be
identified, and each trial consisted of 12 stimuli flashes. In the
offline block, no feedback was displayed to the participants. The
online block contained one run, which included a spelling task
with 36 targets, each of which contained n trials, where n was
decided by online adaptive strategy (Jin et al., 2011) for each
target. Before each run began, the prompt box over the character
indicated the target character.

Given the order that the three patterns were tested in
could affect the performance, we kept split the participants
into three, uniformly sized, groups. Each group was presented
the three patterns in a different order. Table 2 lists the order
of presentation of the three patterns for all 12 participants.
Specifically, participants S1, S4, S5, and S8 attempted to use the
RSF pattern, followed by the GSF pattern, and then the BSF
pattern. Participants S2, S3, S6, and S11 used the GSF pattern,
BSF pattern, and then the RSF pattern, Finally, participants S7,
S9, S10, and S12 used the BSF pattern, RSF pattern, and then the
GSF pattern (see Table 2).

Stimulus Consistency
We prepared the interface composed of a black background
and white characters, which was used to show a traditional
P300 speller interface (Farwell and Donchin, 1988). In order
to ensure the consistency of the color lightness and saturation
across the three stimuli, we referred to G. Saravanan’s study
(Saravanan et al., 2016) which transformed RGB values to
the Hue, Saturation, and Luminance (HLS) color scale. The
conversion formula is expressed in the following equation.

R′ = R/255; G′ = G/255; B′ = B/255 (1)

Cmax = MAX
(
R′,G′,B′

)
(2)

Cmin = MIN
(
R′,G′,B′

)
(3)

1 = Cmax − Cmin (4)

The HSL values can be calculated by the following formula.

H =



0◦, 1 = 0
60◦ ×

(
G′−B′

1 + 0
)

, Cmax = R′

60◦ ×
(
B′−R′

1 + 2
)

, Cmax = G′

60◦ ×
(
R′−G′

1 + 4
)

, Cmax = B′

(5)

S =

{
0, 1 = 0
1

1−|2L−1| , other (6)

L = (Cmax + Cmin)
/

2 (7)

In this work, we calculated the corresponding values of hue,
saturation, and luminance of the three stimuli. The three stimuli
refer to the red (255,0,0), green (0,255,0), and blue (0,0,255)
colors. It is noteworthy that the background of the interface was
black with white characters and the three stimuli were consistent
in saturation and luminance while differing in hue. This is shown
in Table 3.

Electroencephalogram Acquisition
These EEG signals were recorded with g.USBamp and g.EEGcap
systems (Guger Technologies, Graz, Austria). The sample rate of
the amplifier was set as 256 Hz, the sensitivity value was100µV ,
and a third-order Butterworth band-pass filter was applied from
0.1 to 30 Hz (Munssinger et al., 2010; Halder et al., 2016). In this
paper, we chose 16 electrode positions, based on the international
10–20 system (Jin et al., 2014a), which were positioned over areas
of the brain associated with vision. These electrodes were Fz, F3,
F4, FC1, FC2, C3, Cz, C4, P3, Pz, P4, P7, P8, O1, Oz, and O2. The
ground electrode was placed at position FPz, while the reference
electrode was placed on the right mastoid (R) (Jin et al., 2010,
2012, 2015). According to Petten and Kutas (1988), the use of the
right mastoid reference leads to conclusions which are somewhat
similar to those with the average of left and right mastoids. The
electrode impedance was kept below 5 k� in the experiment
(Munssinger et al., 2010). Figure 3 shows the configuration of the
selected electrode positions.

Feature Extraction and Classification
After completing the offline block, feature extraction is used to
reduce dimensionality and hence computation time. Extracted
features were used to construct the individual classifier model,
which was applied during the online block. A band pass filter
was applied to filter the EEG between 1 and 30 Hz to reduce
high frequency noise. The filtering algorithm we applied was a
third-order Butterworth filter. In order to eliminate the impact of
electrical noise, the IIR notch filter of 50 Hz was also applied. In
order to decrease dimensionality of the data and complexity of
the classification model, the filtered EEG data was down-sampled
from 256 to 36.6 Hz by taking every 7th sample.

The first 800 ms of EEG after stimulus presentation was
extracted from each channel. This resulted in a feature vector of
size 16 × 29, where 16 is the number of channels we used and
29 is the number of sample points recorded on each channel after
down-sampling. Moreover, we used winsorizing to remove ocular
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FIGURE 2 | The flow diagram of the whole experiment.

TABLE 2 | The order of patterns for 12 participants.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

RSF 1 3 3 1 1 3 2 1 2 2 3 2

GSF 2 1 1 2 2 1 3 2 3 3 1 3

BSF 3 2 2 3 3 2 1 3 1 1 2 1

Note that “1” refers to the first pattern presented to the participant, and “2” refers
to the second pattern and “3” denotes the last.

TABLE 3 | The corresponding HSL value of the three stimuli.

R (red) G (green) B (blue) H (hue) S (saturation) L (luminance)

RSF 255 0 0 0 100 50

GSF 0 255 0 120 100 50

BSF 0 0 255 240 100 50

artifacts by filtering amplitudes which were less than or greater
than 10 and 90% of the amplitude distribution across the feature
set (Jin et al., 2014b).

In this study, we applied Bayesian linear discriminant analysis
(BLDA) to construct the individual classifier model which was
used during the online block. Due to its regularization, it can
avoid the problem of overfitting of high-dimensional data or
noise interference. Hoffmann et al. (2008) first proposed BLDA
and applied it to the P300-based BCI system effectively. In
addition, after constructing the model, the score per flash was
obtained. Within one trial, that is twelve flashes, the target flash
should achieve the highest mark.

In accordance with widely used standardized metrics for
assessing BCI performance, the classification accuracy and
information transfer rate (ITR) are applied to assess the
performance of our BCI. The ITR is defined as:

B = log2N + Acc ∗ log2Acc+ (1− Acc) ∗ log2
1− Acc
N − 1

(8)

ITR = B ∗
60
T

(9)

where N represents the total number of targets, Acc denotes
the classification accuracy, and T represents the time
performing each trial.

Online Adaptive System Setting
In order to improve system performance, an adaptive strategy
was used with the online spelling system (Jin et al., 2011).
In the online spelling system, the number of trials used to
select each character is related to the classifier output after
each trial. Specifically, when the classifier recognized the same
character on two successive trials, no new flashes are needed
and the recognized character is presented on the screen as
feedback to the BCI user. If the number of trials needed
to recognize a character reaches 16 without any pair of

FIGURE 3 | The configuration of the selected electrode positions from the
10–20 system.
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consecutive trials recognizing the same character, the classifier
will automatically choose the target recognized in the final trial.
For example, suppose that “A” is the target character which
the classifier recognized in the first trial. If the character “A”
was recognized again in the second trial, the final output will
be “A”. We can describe this process via cha (n) = cha (n− 1)
(1 < n ≤ 16).

Statistical Analysis
The One-Sample Ryan-Joiner test based on the correction
of Shapiro-Wilk was used to analyze whether the samples
were normally distributed. A Repeated-measures ANOVA (RM-
ANOVA) was chosen to evaluate the effect of stimuli pattern.
Mauchly’s test of sphericity was first used to check the data
meets the assumptions of the RM-ANOVA. If the assumption was
broken, Greenhouse-Geisser correction was performed to adjust
the degrees of freedom. Finally, we applied Bonferroni multiple
comparisons correction in post hoc tests (Kathner et al., 2015).
The alpha level was set to 0.05 after Bonferroni correction.

RESULTS

ERP Analysis
Figure 4 illustrates the grand averaged ERP amplitudes in
response to the target stimuli for ten participants over 16
electrodes across the three patterns, after applying baseline
correction with a 100 ms pre-stimulus baseline. In Figure 4, the
three colors of the curves in each channel illustrate the three
different kinds of patterns respectively. Four color blocks lie
around the peak point, which represents four types of potentials
including the vertex positive potential (VPP), the N200, P300,
and N400 potentials. We selected the latency of the potentials
as the peak point with the range (min −10 ms, max + 10 ms).
As we can see in Figure 4, the VPP components exist in
frontal and central sites while the N200 and P300 components
are centered over parietal and occipital areas. In addition, the
peak amplitude of BSF curve performed lower than RSF and
GSF curves (see Figure 4). According to studies of W. D.
Wright (Gregory, 1973) and Fuortes (Fuortes et al., 1973), the
human eye is composed of three color-sensitive cone-cell types
(red, green, and blue). These three cone types have different
responses for different stimulus wavelengths. Red cones are
more sensitive to red color, green cones are more sensitive
to green color. Among the three cone types, the red-cone
presents the best response followed closely by the green-cone,
with the blue cones having the lowest response, which may
cause the difference. Furthermore, according to a RM-ANOVA,
the P300 amplitude evoked by the RSF pattern is significantly
larger than the other two patterns (p < 0.05) on parietal and
occipital sites, corresponding to electrode P3, P7, Pz, P8, O1,
Oz, and O2.

Figure 5 shows the signed R-squared value maps from 0 to
800 ms for ten participants over 16 electrodes for each of the
three patterns, which reflects the difference between the target
and non-target stimuli over 16 channels. In order to show the
difference among R-square map for RSF, GSF, and BSF patterns,

the additional three R-square maps for the differences between
RSF and GSF pattern, between RSF and BSF pattern and between
GSF and BSF have also shown in Figure 5. The R-squared values
of the ERPs evaluate the separation between target and non-target
signals. The formula is given as:

r2
=

( √
N1N2

N1 + N2
·
mean (X1)−mean(X2)

std(X1 ∪ X2)

)2

(10)

where X1 and X2 refer to the features of class 1 and
class 2 respectively, and N1 and N2 are the number of
corresponding samples. In Figure 5, the darker the color, the
more distinct the features.

Classification Accuracy and Bit Rate
Figure 6 illustrates the classification accuracy and raw bit rates for
each of the three patterns, which were overlapped and averaged
from all trials for the ten participants based on the offline data.
This valued were acquired from 15-fold cross-validation. As
shown in Figure 6, the RSF pattern achieved the best offline
accuracy and bit rate by averaging 16 trials. This pattern also
used required the fewest the least trials to attain an accuracy
of 100%. Figure 7 depicts the classification accuracy based on
offline single trials, which shows no significant differences across
the three patterns.

In order to observe the differences between the N200, VPP,
P300, and N400 ERP components between the three patterns,
we chose channel P8 for measuring the N200, Cz for measuring
the VPP, Pz for measuring the P300 and Cz for measuring the
N400 (Farwell and Donchin, 1988; Jeffreys and Tukmachi, 1992;
Duncan et al., 2009). The selected channels generally cover the
highest ERP amplitude of the corresponding component.

Table 4 describes the averaged amplitudes of the VPP on
channel Cz, N200 on channel P8, P300 on channel Pz and
N400 on channel Cz from the peak point ± 10 ms for the ten
participants. The averaged values of VPP, P300, and N400 are
largest when the RSF pattern is used, and the stability of the
P300 during presentation of the RSF pattern is better than that
the other patterns.

Figure 8 presents the averaged contributions of the N200,
P300, and N400 components to the offline classification accuracy
for the ten participants. The N200 had a latency of 150–300 ms
after stimulation, the P300 had a latency of 300–450 ms, and
the N400 had a latency of 350–600 ms (Zhou et al., 2016). The
result of the three patterns all delineated N200 and P300 played a
pivotal role in offline classification. Moreover, the N400 potential
has positive effect on the offline classification accuracy.

Online Analysis
Table 5 shows the online accuracies, bit rates, and the averaged
numbers of trials for participants S1–S10 for each of the three
patterns. The calculated p-values indicate the significance of the
difference between each pair of accuracies. Our one-way RM-
ANOVA shows a significant effect of the factor “color” on the
online accuracy

(
F (1.30, 11.65) = 8.87, p < 0.05, eta2

= 0.50
)

and bit rate (F (1.11, 10.02) = 9.25.p < 0.05, eta2
= 0.51). The

online accuracy of the RSF pattern was significantly higher than
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FIGURE 4 | The grand averaged ERP amplitudes of targets for 10 participants over 16 electrodes among the three patterns.

FIGURE 5 | The signed R-squared value maps from 0 to 800 ms for 10 participants over 16 electrodes for each of the three patterns and for the differences of the
three patterns.
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FIGURE 6 | Classification accuracy and raw bit rate based on the offline data.

FIGURE 7 | The classification accuracy based on offline single trial classification.

that of the GSF pattern (t = 3.24, p < 0.05, df = 9) and the
BSF pattern (t = 4.39, p < 0.05, df = 9). In addition, the bit rate
of the RSF pattern was significantly higher than that of the
GSF pattern (t = 5.77, p < 0.05, df = 9) and the BSF pattern
(t = 3.93, p < 0.05, df = 9). However, there are no significant
differences in the number of average trials needed for the
classification across the three patterns. A boxplot of online
accuracies is illustrated in Figure 9.

Participants’ Feedback
At the end of the whole experiment, every participant was asked
to grade their perception of the tiredness and difficulty of each
pattern. Tiredness and difficulty were each given a rating between
1 and 3. A score of 1 corresponded to a little, a score of 2 medium,
and a score of 3 quite a lot of tiredness or difficulty. The questions

were asked in Mandarin Chinese. For the sake of distinguishing
the differences among three patterns, a non-parametric Friedman
test was applied to reveal the differences in feedback. Table 6
delineates the feedback of all participants among three patterns.

TABLE 4 | The averaged amplitudes from each ERP peak point ± 10 ms of all
participant.

RSF (µV) GSF (µV) BSF (µV)

Potential Channel Amplitude STD Amplitude STD Amplitude STD

VPP Cz 5.40 1.99 5.38 2.31 3.35 1.49

N200 P8 −3.67 2.10 −4.25 1.90 −1.28 1.01

P300 Pz 3.46 0.99 3.12 1.47 2.84 1.02

N400 Cz −4.33 1.53 −4.16 1.68 −3.97 1.52
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FIGURE 8 | The contributions on N200, P300, and N400 time windows on the classification accuracy.

TABLE 5 | Online accuracies, bit rates, and average trials analysis results.

Accuracy (%) Bit rate (bit/min) AVT

RSF GSF BSF RSF GSF BSF RSF GSF BSF

S1 100.00 94.44 91.67 31.59 27.45 27.81 2.44 2.50 2.28

S2 97.22 86.11 88.89 29.60 24.66 26.32 2.44 2.31 2.28

S3 94.44 94.44 94.44 29.11 28.39 27.45 2.31 2.39 2.50

S4 100.00 94.44 91.67 33.75 31.09 28.83 2.23 2.11 2.17

S5 91.67 77.78 75.00 24.93 18.38 17.03 2.64 2.72 2.78

S6 100.00 97.22 86.11 35.74 32.26 25.40 2.06 2.17 2.22

S7 83.33 77.78 69.44 21.47 17.31 15.28 2.58 2.94 2.72

S8 88.89 88.89 72.22 24.80 22.49 16.81 2.47 2.81 2.61

S9 100.00 100.00 66.67 35.13 34.20 14.19 2.11 2.19 2.75

S10 83.33 66.67 77.78 20.63 14.64 17.93 2.72 2.64 2.81

AVG 93.89 87.78 81.39 28.68 25.09 21.70 2.40 2.48 2.51

STD 6.78 10.65 10.32 5.50 6.74 5.90 0.22 0.29 0.24

p RSF vs. GSF GSF vs. BSF RSF vs. BSF RSF vs. GSF GSF vs. BSF RSF vs. BSF RSF vs. GSF GSF vs. BSF RSF vs. BSF

0.031 0.392 0.005 0.001 0.417 0.010 0.535 1.000 0.464

Note that AVT refers to the average number of trials used in online spelling. The p-value is obtained by applying Bonferroni correction. The bold values refer to the highest
online accuracy, bit rate, and the smallest number of trials among three patterns. In the row of “value,” the bold item indicates which item is significant.

No significant difference (χ2
= 5.034 , p > 0.05) was found

between the patterns in terms of difficulty or tiredness (χ2
=

0.636, p > 0.05).

DISCUSSION

ERP-based BCI systems have been widely investigated over
many years and some researchers have designed novel stimulus
paradigms to optimize system performance. Previous work has
indicated that familiar faces, colored green, may be used as a
part of the ERP-based BCI display pattern to achieve higher
performance than other display patterns, such as the familiar
face pattern based in P300-speller BCI system (Li et al., 2015).
Therefore, we evaluated how this paradigm was influenced by
other colors (red, green, and blue).

Related studies have indicated that, when familiar faces are
used as stimuli, they may strongly elicit several ERPs, including

the VPP, N200, P300, and N400 components. Cheng et al.
(2017) reported that the semitransparent face pattern can evoke
larger N200 components, which can contribute to improving
classification accuracy. Eimer (2000) revealed that familiar faces
could elicit an N400 in parietal and central cortical areas. In
addition, the VPP component remarkably increase for face-
related stimuli over frontal and central sites (Zhang et al., 2012).
Among the three patterns evaluated in this study, we found all
the ERP components, shown in Figure 4. Moreover, we can see
from Figure 8 that the P300, N200, and the N400 all contribute
to the classification accuracy. The results also indicate that the
RSF pattern could elicit larger P300 potentials on parietal and
occipital areas.

Generally, the performance of a BCI can be evaluated by
online accuracy and ITR. The results listed in Table 5 indicate
that the RSF pattern achieved the highest online averaged
accuracy of 93.89%, followed by the GSF pattern with 87.78%,
while the lowest accuracy was achieved with the BSF pattern
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FIGURE 9 | Boxplot of online classification accuracies, bit rates, and numbers of trials used to construct the averaged ERPs.

TABLE 6 | The feedback of all participants for each of the three patterns.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 AVG ± STD

Tiredness

RSF 2 1 1 1 2 2 3 2 1 2 1.7 ± 0.67

GSF 1 2 1 2 1 1 2 1 1 2 1.4 ± 0.52

BSF 2 2 2 1 3 2 2 3 1 3 2.1 ± 0.74

Difficulty

RSF 1 1 1 2 2 2 2 2 1 1 1.5 ± 0.53

GSF 1 1 1 1 1 2 3 1 2 2 1.5 ± 0.71

BSF 1 2 1 1 3 2 2 2 1 2 1.7 ± 0.67

Note that a score of “1” denotes a few, “2” medium, and “3” many. AVG denotes
the average and STD denotes the standard deviation.

(81.39%). Four of the participants using the RSF pattern obtained
100% online accuracy. Furthermore, the online accuracy achieved
with the RSF is significantly higher than that achieved with
the GSF pattern (p < 0.05) and the BSF pattern (p < 0.05). In
addition, significant differences in bit rate were found between
the RSF and GSF patterns (p < 0.05) and between RSF and BSF
patterns (p < 0.05). The averaged bit rate of the RSF pattern
was 38.45 bit/min, and the bit rate of the GSF pattern was
33.71 bit/min, while the bit rate of the BSF was 28.76 bit/min. Due
to the averaged presentation order of the three patterns for all
participants, the effect caused by the order of pattern presentation
can be ignored. Consequently, we may conclude that the RSF
pattern yielded the best performance of the three patterns.

In order to further explain the findings, it is necessary
to consider relevant psychological and physiological studies.
Research has shown that long-wavelength colors (e.g., red and
yellow) are more arousing than short-wavelength colors (e.g.,
blue and green) (Wilson, 1966). In our experiment, each face
stimulus was presented for more than half an hour, which
may induce some effects on the emotions of the participants.
Additionally, an association has been reported between colors
and physiological indices of cognition. For instance, the color
red is frequently associated with fire and blood which can lead
to excitement and fear (Kaiser, 1984; Camgöz et al., 2004).
Sorokowski and Szmajke (2011) found that red could improve
performance in a target-hitting task. This result indicated that

participants attempting to hit a red moving objects can achieve
better performance than participants attempting to hit blue
or black targets.

In previous studies, the green/blue chromatic flicker as a
visual stimulus yielded an 80.6% online accuracy (Takano et al.,
2009). Li et al. (2015) proposed that a translucent green familiar
face spelling paradigm could achieve an 86.1% averaged online
accuracy. This SSVEP-based BCI system used LEDs of four
different colors (red, green, blue, and yellow) flickering at
four distinct frequencies (8, 11, 13, and 15 Hz) (Mouli et al.,
2013). It was observed that the red color obtained the highest
accuracy and bit rate in most frequencies. Therefore, a novel
spelling pattern that combines chromatic difference (RGB) with
semitransparent faces resulted in consistency and efficiency in
online BCI performance and offline ERP waveform detection.

CONCLUSION

In the present work, we combined chromatic difference (RGB)
with semitransparent face stimuli to explore the performance of
different colored stimuli patterns in an ERP based BCI system.
The results demonstrated that the RSF pattern yielded the best
averaged online accuracy and ITR. In future work, we will
attempt to train offline models using neural networks to boost
the classification performance. In addition, according to Xu’s
study (Xu et al., 2018), a new BCI speller based on miniature
asymmetric visual evoked potentials (aVEPs) could reduce visual
fatigue for users. This demonstrates the feasibility to implement
an efficient BCI system. We will further explore the effect of color
preference on system performance and take user-friendliness
into account to improve the usability of BCI systems. This may
have a clinically significant impact by increasing communication
speed and accuracy of the P300-speller for patients with severe
motor impairment.
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The brain-computer interface (BCI) provides an alternative means to communicate and

it has sparked growing interest in the past two decades. Specifically, for Steady-State

Visual Evoked Potential (SSVEP) based BCI, marked improvement has been made in

the frequency recognition method and data sharing. However, the number of pubic

databases is still limited in this field. Therefore, we present a BEnchmark database

Towards BCI Application (BETA) in the study. The BETA database is composed of

64-channel Electroencephalogram (EEG) data of 70 subjects performing a 40-target

cued-spelling task. The design and the acquisition of the BETA are in pursuit of meeting

the demand from real-world applications and it can be used as a test-bed for these

scenarios.We validate the database by a series of analyses and conduct the classification

analysis of eleven frequency recognition methods on BETA. We recommend using the

metric of wide-band signal-to-noise ratio (SNR) and BCI quotient to characterize the

SSVEP at the single-trial and population levels, respectively. The BETA database can be

downloaded from the following link http://bci.med.tsinghua.edu.cn/download.html.

Keywords: brain-computer interface (BCI), steady-state visual evoked potential (SSVEP), electroencephalogram

(EEG), public database, frequency recognition, classification algorithms, signal-to-noise ratio (SNR)

1. INTRODUCTION

The brain-computer interface (BCI) provides a new way for brain interaction with the outside
world, and it is based on measuring and converting brain signals to the external commands
without involving the peripheral nervous system (Wolpaw et al., 2002). The BCI technology has
considerable scientific significance and application prospects, especially in the rehabilitation field
(Ang and Guan, 2013; Lebedev and Nicolelis, 2017) and as an alternative access method for
physically disabled people (Gao et al., 2003; Pandarinath et al., 2017). The Steady-State Visual
Evoked Potential (SSVEP) represents a stable neural response elicited by periodic visual stimuli, and
its frequency tagging attribute can be leveraged in the BCI (Cheng et al., 2002; Norcia et al., 2015).
Among a variety of BCI paradigms, the SSVEP-based BCI (SSVEP-BCI) has gained widespread
attention due to its characteristics of non-invasiveness and high signal-to-noise ratio (SNR) and
information transfer rate (ITR) (Bin et al., 2009; Chen et al., 2015a). Generally, the high-speed
performance of the BCI is accomplished by amulti-target visual speller, which achieves a reportedly
average online ITR of 5.42 bit per second (bps) (Nakanishi et al., 2018). Besides, the ease of use and
significantly lower rate of the BCI illiteracy (Lee et al., 2019) make it a promising candidate for
real-world applications.

In order to improve the performance of the BCI, rapid progress has been made to facilitate
frequency recognition of the SSVEP (Zerafa et al., 2018). Based on whether a calibration or training
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phase is required for the extraction of spatial filters, the
signal detection methods can be categorized into supervised
methods and training-free methods. The supervised methods
exploit an optimal spatial filter by a training procedure
and achieve the state-of-the-art classification performance in
the SSVEP-based BCI (Nakanishi et al., 2018; Wong et al.,
2020a). These spatial filters or projection direction can be
learned by exploiting individual training template (Bin et al.,
2011), reference signal optimization (Zhang et al., 2013), inter-
frequency variation (Yin et al., 2015), and ensemble reference
signals (Nakanishi et al., 2014; Chen et al., 2015a) in the
framework of canonical correlation analysis (CCA). Recently, the
task-related components (Nakanishi et al., 2018) and themultiple
neighboring stimuli (Wong et al., 2020a) have been utilized to
derive spatial filters in order to boost the discriminative power
of the learned model further. On the other hand, the training-
free methods perform feature extraction and classification in
one step without the training session in the online BCI. This
line of work usually use a sinusoidal reference signal, and the
detection statistics can be derived from the canonical correlation
(Bin et al., 2009) and its filter-bank form (Chen et al., 2015b),
noise energy minimization (Friman et al., 2007), synchronization
index maximization (Zhang et al., 2014), and additional spectral
noise estimation (Abu-Alqumsan and Peer, 2016).

Along with the rapid development of frequency recognition
methods, continuous efforts have been devoted to share the
SSVEP database (Bakardjian et al., 2010; Kolodziej et al., 2015;
Kalunga et al., 2016; Kwak et al., 2017; Işcan and Nikulin, 2018)
and contribute to public SSVEP database (Wang et al., 2017; Choi
et al., 2019; Lee et al., 2019). Wang et al. (2017) benchmarked a
40-target database comprising 64-channel 5-s SSVEP trials of 35
subjects who performed the offline cue-spelling task in six blocks.
Recently, Lee et al. (2019) have released a larger database of 54
subjects performing the 4-target offline and online task, and 62-
channel 4-s SSVEP data were obtained having 50 trials per class.
Choi et al. (2019) also provided a 4-target database, including
physiological data and the 6-s SSVEP data which are collected
from 30 subjects at three different frequency bands (low: 1–12Hz;
middle: 12–30 Hz; high: 30–60 Hz) during 2 days. Nevertheless,
the number of public databases in the SSVEP-BCI community
is still limited compared to other domains, such as computer
vision, where a growing number of databases plays a critical role
in the development of the discipline (Russakovsky et al., 2015).
Compared to the other BCI paradigms, e.g., the motor imagery
BCI, the SSVEP-BCI databases are also scarce (Choi et al., 2019).
Therefore, more databases are need in the SSVEP-BCI field for
the design and evaluation of methods.

To this end, we present a large BEnchmark database Towards
SSVEP-BCI Application (BETA) in this study. The BETA
database includes the data of 70 subjects performing the cued-
spelling task. As an extension of the benchmark database (Wang
et al., 2017), the number of targets is 40, and the frequency range
is from 8 to 15.8 Hz. A key feature of the proposed BETA database
is that it is developed for real-world applications. Different from
the benchmark database, the BETA consists of the data collected
outside the laboratory setting of the electromagnetic shielding
room. Since it is imperative to reduce the calibration time from

a practical perspective, the number of blocks is set to four
instead of six that are used in the benchmark. A QWERT virtual
keyboard is presented in flickers to approximate the conventional
input device better and enhance user experience. To the best
of our knowledge, so far, the BETA database has the largest
number of subjects for the SSVEP-BCI. Since a larger database
can capture the inter-subject variability better, the BETA database
makes it possible to reflect a more realistic EEG distribution and
potentially meet the demands of real-world BCI applications.

The remaining of the paper is organized as follows. First,
the data acquisition and curation procedures are presented in
section 2. The data record and availability are described in
section 3. In section 4, data validation is performed, and 11
frequency recognition methods are compared on BETA. We
discuss additional findings from the database in section 5. Finally,
the conclusions are given in section 6.

2. MATERIALS AND METHODS

2.1. Participants
Seventy healthy volunteers (42 males and 28 females) with an
average age of 25.14± 7.97 (mean± standard deviation, ranging
from 9 to 64 years) participated in our study. All the participants
had a normal or corrected to normal vision, and they all signed
a written consent before the experiment; for the participants
under 16 years old, the consent was signed by their parents.
The study was carried out in accordance with the Declaration of
Helsinki, and the protocol was approved by the Ethics Committee
of Tsinghua University (No. 20190002).

2.2. Recruitment and Inclusion Criteria
Participants were recruited on a national scale to take part in
the Brain-Computer Interface 2018 Olympics in China. The
competition was held to contest and award individuals with a
high performance of the BCI (SSVEP, P300, andMotor Imagery).
The 70 participants who participated in this study have also
participated in the second round of the contest (SSVEP-BCI
track), and none of them was naive to the SSVEP-BCI. Before
the enrollment, participants were informed that the data would
be used in non-commercial scientific research. Participants who
conformed to the experimental rules in the first round and were
available for the second round planed by the contest schedule
were included in the second round. All the participants met the
following criteria: (1) they had no history of epileptic seizures
or other neuropsychiatric disorders, (2) they had no attention-
deficit or hyperactivity disorder, and (3) they had no history of
brain injury or intracranial implantation.

2.3. Visual Speller
This study designed a 40-target BCI speller for visual stimulation.
In order to improve user experience, a graphical interface was
designed to resemble the traditional QWERT keyboard. The
virtual keyboard was presented on a 27-inch LEDmonitor (ASUS
MG279Q Gaming Monitor, 1,920 × 1,080 pixels) with a refresh
rate of 60 Hz. As illustrated in Figure 1A, 40 targets, including
10 numbers, 26 alphabets, and 4 non-alphanumeric signs (dot,
comma, backspace < and space _) were aligned in five rows,
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A B

FIGURE 1 | The QWERT virtual keyboard for a 40-target BCI speller. (A) The layout of a conventional keyboard with ten numbers, 26 alphabets and four

non-alphanumeric keys (dot, comma, backspace <, and space _) aligned in five rows. The upper rectangle is designed to present the input character. (B) The

frequency and initial phase of each target are encoded using the joint frequency and phase modulation.

with a spacing of 30 pixels. The stimuli had the dimension of 136
× 136 pixels (3.1◦× 3.1◦) for the square, and 966 × 136 pixels
(21◦× 3.1◦) for the space rectangle. The topmost blank rectangle
was for result feedback (Figure 1A).

A sampled sinusoidal stimulation method (Manyakov et al.,
2013; Chen et al., 2014) was adopted to present the visual flicker
on the screen. In general, the stimulus sequence of each flicker
can be generated by

s(f ,φ, i) =
1

2
{1+ sin[2π f (i/RefreshRate)+ φ]} (1)

where i denotes the frame index in the stimulus sequence, and
f and φ denote the frequency and phase values of the encoded
flicker that uses a joint frequency and phase modulation (JFPM)
(Chen et al., 2015a). The grayscale value of the stimulus sequence
ranges from 0 to 1, where 0 indicates dark, and 1 indicates the
highest luminance of the screen. For the 40 targets, the tagged
frequency and phase values can be respectively obtained by

fk = f0 + (k− 1) · 1f

8k = 80 + (k− 1) · 18
(2)

where the frequency interval 1f is 0.2 Hz, the phase interval
18 is 0.5 π , and k denotes the index from dot, comma, and
backspace, followed by a to z and 0–9, and space. In this work, f0
and80 are set to 8 Hz and 0, respectively. The parameters of each
target are presented in Figure 1B. The stimulus was presented
by MATLAB (MathWorks, Inc.) using Psychophysics Toolbox
Version 3 (Brainard, 1997).

2.4. Procedure
This study includes four blocks of online BCI experiments with
a cued-spelling task. The experiments were as follows. Each
block consisted of 40 trials, and there was one trial for each
stimulus target in a randomized order. Trials began with a 0.5
s cue (a red square covering the target) for gaze shift, which was
followed by flickering on all the targets, and ended with a rest
time of 0.5 s. The participants were asked to avoid eye blinking

during the flickering process. During the 0.5 s rest, the resulting
feedback, which represented one of the recognized characters,
was presented in the topmost rectangle after online processing by
a modified version of the FBCCA method (Chen et al., 2015b).
For the first 15 participants (S1–S15), the flickering lasted at least
2 s, and for the remaining 55 participants (S16–S70), it lasted at
least 3 s. In order to avoid visual fatigue, there was a short break
between two consecutive blocks.

2.5. Data Acquisition
The 64-channel EEG data were recorded by SynAmps2
(Neuroscan Inc.) according to the international 10-10 system.
The sampling rate was set 1,000 Hz, and the pass-band of the
hardware filter was 0.15–200 Hz. A built-in notch filter was
applied to remove the 50 Hz power-line noise. The event triggers
were sent from the stimulus computer to the EEG amplifier and
synchronized to the EEG data by a parallel port as an event
channel. The impedance of all the electrodes was kept below 10
k�. The vertex electrode Cz was used as a reference. During the
online experiment, nine parietal and occipital channels (Pz, PO3,
PO5, PO4, PO6, POz, O1, Oz, and O2) were selected for online
analysis to provide the feedback result. In order to record the EEG
data in real-world scenarios, the data were recorded outside the
electromagnetic shielding room.

2.6. Data Preprocessing
According to the previous study (Chen et al., 2015a,b), the
SSVEP harmonics in this paradigm have a frequency range of
up to around 90 Hz. Based on the finding, a band-pass filtering
(i.e., zero-phase forward and reverse filtering using eegfilt in
EEGLAB (Delorme andMakeig, 2004) between 3 and 100 Hz was
conducted to remove the environmental noise. Then, the epochs
were extracted from each block, and they included 0.5 s before
the stimulus onset, 2 s (for S1–S15) or 3 s (for S16–S70) of the
stimulation, and 0.5 s after the simulation. The last 0.5 s of the
epochs could contain the SSVEP data if the duration of the trial
was > 2 s (for S1–S15) or 3 s (for S16–S70). Since frequency
resolution could not affect the classification result of the SSVEP
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(Nakanishi et al., 2017), all the epochs were then down-sampled
to 250 Hz.

2.7. Metrics
The SSVEP data quality was evaluated quantitatively by the
signal-to-noise ratio (SNR) analysis and classification analysis. As
for the SNR-based analysis, in most of the previous studies (Chen
et al., 2015a,b; Xing et al., 2018), the narrow-band SNR metric
was used. The narrow-band SNR (in decibels, dB) can be defined
as a ratio of the spectral amplitude at the stimulus frequency to
the mean value of the ten neighboring frequencies (Chen et al.,
2015b)

SNR = 20log10
y(f )

∑5
k=1[y(f − 1f · k)+ y(f + 1f · k)]

(3)

where y(f ) denotes the amplitude spectrum at frequency f
calculated by the Fast Fourier Transform (FFT), and 1f denotes
the frequency resolution.

Along with the narrow-band SNR, we used the wide-band
SNR as a primary metric to characterize better both the wide-
band noise and the contribution of harmonics to the signals. The
wide-band SNR (in decibels, dB) can be defined as:

SNR = 10log10

∑k=Nh
k=1 P(k · f )

∑f=fs/2

f=0
P(f )−

∑k=Nh
k=1 P(k · f )

(4)

where Nh denotes the number of harmonics, P(fn) denotes the
power spectrum at frequency f , and fs/2 represents the Nyquist
frequency. In the wide-band SNR, the sum of power spectrum
of multiple harmonics (Nh = 5) is regarded as the signal and
the energy of full spectral band subtracted from the signal is
considered as noise.

The classification accuracy and the information transfer rate
(ITR) have been widely used in the BCI community to evaluate
the performance of different subjects and algorithms. The ITR
(in bits per min—bpm) can be obtained by (Wolpaw et al., 2002):

ITR = 60 · (log2M + Plog2P + (1− P)log2
1− P

M − 1
)/T (5)

where M denotes the number of classes, P denotes the
classification accuracy, and T (in seconds) denotes the average
target selection time. The variable T in the equation represents
the sum of gaze time and overall gaze shift time. To calculate
the theoretical ITR for offline analysis, a gaze shift time of 0.55 s
is chosen according to the previous studies (Chen et al., 2015b;
Wang et al., 2017), which was proven sufficient in an online
spelling task (Chen et al., 2015b).

2.8. Statistical Analysis
A linear regression was conducted to understand the relationship
between the SNR and ITR metrics. To meet the assumptions of
linear regression, the following procedures were conducted. A
scatter plot of SNR against ITR was diagrammed to establish the
linearity by visual inspection. The independence of residuals was
ascertained by using the Durbin-Watson test. The standardized

residuals were checked in the range of ±3 to ensure that there
were no outliers in the data. The homoscedascity was ensured
by assessing a plot of standardized residuals versus standardized
predicted values. The normality of residuals was guaranteed by
assessing a normal probability plot. The R2 and adjusted R2 were
calculated to reflect the goodness-of-fit of the regression model.
The statistical significance of the model is evaluated by analysis
of variance (ANOVA).

The ITR values obtained from different methods were
compared using a one-way repeated-measures ANOVA with
a within-subject factor of method. A Greenhouse-Geisser
correction was applied if the sphericity was violated, as assessed
byMauchly’s test of sphericity.When there was a significant main
effect (p < 0.05), post-hoc paired-sample t-tests were performed
and Bonferroni adjustment was applied for multiple comparison.
To reflect the effect size, partial eta-squared (η2) was calculated. A
Mann-Whitney U test was conducted to determine if there were
differences in the SNRmetrics. All the statistical procedures were
processed using SPSS Statistics 20 (IBM, Armonk, NY, USA).
Data were presented as mean ± standard error of the mean
(s.e.m.) unless otherwise stated.

3. RECORD DESCRIPTION

The database used in this work is freely available for scientific
research, where it is stored in the MATLAB .mat format. This
database contains 70 subjects, and each subject corresponds
to one mat file. The names of subjects are mapped to
indices from S1 to S70 for de-identification. Each file in the
database consists of a MATLAB structure array, which included
the 4-block EEG data and its counterpart supplementary
information as its fields. The website for accessing the database
is http://bci.med.tsinghua.edu.cn/download.html.

3.1. EEG Data
After data preprocessing, the EEG data were store as a 4-way
tensor, with a dimension of channel × time point × block ×

condition. Each trial included the 0.5-s data before the event
onset, and the 0.5-s data after the time window of 2 or 3 s.
For S1–S15, the time window was 2 s, and the trial length was
3 s, whereas for S16–S70, the time window was 3 s and the
trial length was 4 s. Additional information about the channel
and condition can be found in the following section about the
supplementary information.

3.2. Supplementary Information
The supplementary information is comprised of personal
information, channel information, BCI quotient, SNR, sampling
rate, and each condition’s frequency and initial phase. The
personal information contained information about the age and
gender of a subject. The channel information denoted a location
matrix (64 × 4), where the first column represented the channel
index, and the second and third columns represented the degree
and radius in polar coordinates, respectively; and the last column
represented the channel name. The SNR information consisted
of the mean narrow-band SNR and wide-band SNR values of
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A

B
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FIGURE 2 | Typical SSVEP features in the temporal, spectral, and spatial domains. (A) Time course of average 10.6-Hz SSVEP of nine parietal and occipital channels

(Pz, PO3, PO5, PO4, PO6, POz, O1, Oz, and O2). The dash line represents stimulus onset. (B) The topographic maps of SSVEP amplitudes at frequencies in the

range from the fundamental signal (10.6 Hz) to the fourth harmonic (21.2, 31.8, and 42.4 Hz). The leftmost scalp map indicates the spectral amplitude at the

fundamental frequency before stimulus. (C) The amplitude spectrum of the SSVEP of the nine channels at 10.6 Hz. Up to five harmonics are visible in the amplitude

spectrum. The averaged spectrum across channels is represented in the dark line in (A,C).

each subject, which were calculated by Equations (3) and (4),
respectively. The initial phase was given in radius.

4. DATA EVALUATION

4.1. Temporal, Spectral, and Spatial
Analysis
In order to validate the data quality by visual inspection, nine
parietal and occipital channels (Pz, PO3, PO5, PO4, PO6, POz,
O1, Oz, and O2) were selected, and epochs were averaged with
respect to the channels, blocks, and subjects. For the sake of
consistency regarding the data format, the subjects from S16 to
S70 were chosen for analysis. Figure 2A illustrates the averaged
temporal amplitude at the stimulus frequency of 10.6 Hz. After
a delay, which was in the range of 100–200 ms, at the stimulus
onset, a steady-state and time-locked characteristic could be
observed in the temporal sequence, as shown in Figure 2A. The
data between 500 and 3,500 ms were extracted and padded
with 2,000 ms zeros, yielding a 0.2 Hz spectral resolution, as
shown in Figure 2C. In the amplitude spectrum, the fundamental
frequency (10.6 Hz: 0.266 µV) and three harmonics (21.2 Hz:

0.077 µV, 31.8 Hz: 0.054 µV, 42.4 Hz: 0.033 µV) could be
distinguishable from the background EEG. Note that at high
frequencies (> 60 Hz), the amplitude of both the harmonic
signals and noise was small due to the volume conduct effect
(van den Broek et al., 1998), which is why they are not shown
in Figure 2C.

Figure 2B illustrates the topographic mappings of the
spectrum at frequencies in the range from the fundamental
signal to the fourth harmonic. The result presented in Figure 2B

indicates that fundamental and harmonic signals of the SSVEP
are distributed predominantly in the parietal and occipital
regions. The frontal and temporal regions of the topographic
maps also show an increase in the spectrum, which can represent
noise or SSVEP oscillation from the occipital region (Thorpe
et al., 2007; Liu et al., 2017). In order to characterize the response
property of the SSVEP, the amplitude spectrum is represented
as a function of stimulus frequency in Figure 3. According to
the amplitude spectrum, the spectral response of the SSVEP
decreased rapidly with the number of harmonics; namely, up to
five harmonics are visible. A dark line at the response frequency
of 50 Hz results from the notch filtering. A bright line at the
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15.8 Hz response frequency can be distractor stimulus from the
SPACE target with a larger size.

4.2. SNR Analysis
As a metric independent of different classification algorithms,
the SNR measures available stimulus-evoked components in the
SSVEP spectrum. In the SNR-based analysis, the BETA database
was compared with the benchmark database of the SSVEP-
based BCI (Wang et al., 2017). The narrow-band and wide-band
SNR values were calculated for each trial by Equations (3) and
(4), respectively. For a valid comparison, the EEG data in the
benchmark database were band-pass filtered between 3 and 100
Hz (eegfilt in EEGLAB) before epoching. Trials in this database
were padded with zeros (3 s for S1–S15, and 2 s for S16–S70)
to provide a spectral resolution of 0.2 Hz. Figure 4 illustrates
the normalized histogram of the narrow-band (Figure 4A) and
wide-band SNRs (Figure 4B) for the trials in the two databases.
For the narrow-band SNR, the BETA database had a significantly
lower SNR (3.996 ± 0.018 dB) than the benchmark database
(8.157 ± 0.024 dB), with a p-value of < 0.001, z = −142.212,
Mann-Whitney U-test. Similarly, the wide-band SNR of the
BETA database (−13.779 ± 0.013 dB) was significantly lower
than the benchmark database (−10.918 ± 0.017 dB), with a
p-value of < 0.001, z = −121.571, Mann-Whitney U-test.
This was due in part to the individual differences in the SNR
values of the two studies and in part because the EEG data were
recorded outside the electromagnetic shielding room in the BETA
database. The comparable results of the two SNR values also
demonstrate the validity of the wide-band SNR metric that takes
into account additional information on the wide-band noise
and harmonics.

In addition, the characteristics of SNR were analyzed with
respect to each stimulus frequency. For the BETA database,
the wide-band SNRs were calculated for the zero-padded trials,
and the SNR associated with each condition was obtained
by averaging the values per block and per person. Figure 5
illustrates the wide-band SNR corresponding to the 40 stimulus
frequencies. In general, a declining tendency in SNR can be
observed as the stimulus frequency increases. However, at some
stimulus frequencies, e.g., 11.6, 10.8, 12, and 9.6 Hz, the SNR
bumps up compared to their adjacent frequencies. Specifically,
the average SNR value at 15.8 Hz was elevated by 1.49 dB
compared to 15.6 Hz, which presumably was due in part to the
larger region of visual stimulation.

4.3. Phase and Visual Latency Estimation
In order to further compare the BETA database with the
benchmark database in Wang et al. (2017), we estimated
the phase and visual latency of the BETA database. Nine
consecutive stimulus frequencies in the first row of the
keyboard were selected, and the SSVEP from the Oz
channel (70 subjects) was extracted for analysis. The
comparison procedure was performed according to that
in the previous study (Wang et al., 2017) using a linear
regression between the estimated phase and stimulus
frequency (Russo and Spinelli, 1999). The visual latency for
each subject using the slope k of the linear regression is obtained

as follows:

Latency = −500 · k (6)

Figure 6 illustrates the phase as a function of the stimulus
frequency, and the bar plot of the estimated latencies
estimated by (6). The mean estimated visual latency was
124.96 ± 14.81 ms, which was close to 136.91 ± 18.4
ms of the benchmark database (Wang et al., 2017) and
approximated to 130 ms. Therefore, a 130-ms latency was
added to the SSVEP epochs for the subsequent classification
analysis.

4.4. Accuracy and ITR on Various
Algorithms
In this study, 11 frequency recognition methods, including six
supervisedmethods and five training-freemethods, were adopted
to evaluate the BETA database. For S1–S15, the epoch length
of 2 s was used for analysis, and for S16–S70, the epoch length
was 3 s. A sliding window from the stimulus onset (latency
corrected) with an interval of 0.2 s was applied to the epochs for
offline analysis.

4.4.1. Supervised Methods
We choose six supervised methods, including the task-related
component analysis (TRCA, Nakanishi et al., 2018), multi-
stimulus task-related component analysis (msTRCA, Wong
et al., 2020a), Extended CCA (Nakanishi et al., 2014), modified
Extended CCA (m-Extended CCA, Chen et al., 2015a), L1-
regularized multiway CCA (L1MCCA, Zhang et al., 2013), and
individual template-based CCA (ITCCA, Bin et al., 2011) for
comparison. The leave-one-out procedure on four blocks was
applied to each subject to calculate the accuracy and ITR.
Figure 7 illustrates the average accuracy and the ITR of the
supervised methods. The results showed that the msTRCA
outperformed other methods at data lengths < 1.4 s, and the
m-Extended CCA achieved the highest performance at data
lengths from 1.6 to 3 s. The one-way repeated measures ANOVA
revealed that there were significant differences between the
methods in the ITRs for all time windows. Specifically, for
a short time window of 0.6 s, the main effect of methods
showed there was a statistically significant difference in ITR,
F(1.895,130.728) = 186.528, p < 0.001, partial η2 = 0.730.
Post-hoc paired t-tests showed that the order was as follows:
msTRCA > TRCA > m-Extended CCA > Extended CCA >

ITCCA > L1MCCA in ITR, where “>” indicates p was <0.05
in the ITR with Bonferroni correction for pairwise comparison
between the two sides. For a medium-length time window of 1.2
s, the main effect of methods showed there was a statistically
significant difference in ITR, F(1.797,124.020) = 197.602, p <

0.001, partial η2 = 0.741. Post-hoc paired t-tests showed the
following: msTRCA / m-Extended CCA / TRCA > Extended
CCA > ITCCA > L1MCCA (msTRCA vs m-Extended CCA:
p = 0.678; m-Extended CCA vs TRCA: p = 1.000; Bonferroni
corrected). The data length corresponding to the highest ITR
varied between different methods; namely, the following results
were achieved: msTRCA: 145.26 ± 8.15 bpm at 0.6 s, TRCA:
139.58 ± 8.52 bpm at 0.6 s, m-Extended CCA: 130.58 ± 7.53
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FIGURE 3 | The amplitude spectrum as a function of stimulus frequency (frequency range: 8–15.8 Hz; frequency interval: 0.2 Hz). The spectral response of SSVEP

decreases rapidly as the number of harmonics increases and up to 5 harmonics are visible from the figure.

FIGURE 4 | Normalized histogram of narrow-band SNR (A) and wide-band SNR (B) for trials in the benchmark database and BETA. The red diagram indicates the

BETA, and the blue diagram indicates the benchmark database.
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FIGURE 5 | The wide-band SNR corresponding to the 40 stimulus frequencies (from 8 to 15.8 Hz with an interval of 0.2 Hz). A general declining tendency of SNR

with the stimulus frequency can be observed. The SNR is higher at 15.8 Hz presumably because the target has a larger shape of the region.

bpm at 0.8 s, Extended CCA: 119.17 ± 6.67 bpm at 1 s,
ITCCA: 88.72 ± 6.75 bpm at 1 s, L1MCCA: 73.42 ± 5.31 bpm
at 1.4 s).

4.4.2. Training-Free Methods
In this study, five training-free methods, including the minimum
energy combination (MEC, Friman et al., 2007), canonical
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FIGURE 6 | The phase as a function of stimulus frequency (A) and the bar plot of estimated latencies (B). The SSVEP of Oz channel at nine consecutive stimulus

frequencies (row 1 of the keyboard) is extracted for the purpose of analysis. The error bar indicates the standard deviation.

FIGURE 7 | The average classification accuracy (A) and ITR (B) for six supervised methods (msTRCA, TRCA, m-Extended CCA, Extended CCA, ITCCA, and

L1MCCA). Ten data lengths ranging from 0.2 to 3 s with an interval of 0.2 s were used for evaluation. The gaze shift time used the calculation of ITR was 0.55 s.

correlation analysis (CCA, Bin et al., 2009), multivariate
synchronization index (MSI, Zhang et al., 2014), filter bank
canonical correlation analysis (FBCCA, Chen et al., 2015b), and
canonical variates with autoregressive spectral analysis (CVARS,
Abu-Alqumsan and Peer, 2016) are compared. As illustrated in
Figure 8, the FBCCAwas superior over the othermethods at data
lengths <2 s, and the CVARS outperformed the others at data
lengths from 2 to 3 s. Significant differences in ITR were found
between the methods by the one-way repeated measures ANOVA
for all the data lengths. For a medium-length time window of
1.4 s, the main effect of methods showed there was a statistically
significant difference in ITR, F(1.876,129.451) = 79.227, p < 0.001,
partial η2 = 0.534. Post-hoc paired t-tests with Bonferroni
correction showed the following result: FBCCA > CVARS >

CCA / MSI / MEC, p < 0.05 for all pairwise comparisons except
CCA vs MSI (p = 1.000), CCA vs. MEC (p = 1.000), MSI
vs. MEC (p = 1.000). As for the training-free methods, the
highest ITR was achieved after 1.2 s, and the result was as follows:
FBCCA: 98.79± 4.49 bpm at 1.4 s, CVARS: 93.08 ± 4.39 bpm at
1.6 s, CCA: 72.54 ± 4.54 bpm at 1.8 s, MSI: 74.54 ± 4.46 bpm at
1.8 s, MEC: 73.23± 4.43 bpm at 1.8 s.

Note that for the TRCA andmsTRCA, the ensemble and filter-
bank scheme were employed by default. Therefore, to ensure a

fair comparison, the number of harmonics Nh was set to 5 in all
the methods with sinusoidal templates except the m-Extended
CCA according to Chen et al. (2015a) (Nh = 2). For all the
methods without a filter bank scheme, the trials were band-pass
filtered between 6 and 80 Hz except for the CVARS method,
which was in line with the previous study (Nakanishi et al., 2015).

4.5. Correlation Between SNR and ITR
In order to explore the relationship between the SNR and
ITR metrics, the wide-band and narrow-band SNRs were both
investigated. The maximum ITR for each subject (after averaging
the ITR values by block) from the training-free FBCCA was
chosen for the analysis. Figure 9 illustrates the scatter plots of the
narrow-band and wide-band SNRs vs the ITR. As can be seen
in Figure 9, the ITR was positively correlated with the SNR for
both the narrow-band and wide-band values. For the narrow-
band SNR, the statistical analysis reveals that the metric could
significantly predict the ITR, F(1,68) = 45.600, p < 0.001, and
the narrow-band SNR accounted for 40.1% of the variation in the
ITR with adjusted R2 = 0.393. The wide-band SNR could also
statistically significantly predict the ITR, F(1,68) = 84.944, p <

0.001, accounting for 55.5% of the variation in the ITR with
adjusted R2 = 0.549. This result indicates that the metric of a
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FIGURE 8 | The average classification accuracy (A) and ITR (B) of five training-free methods (FBCCA, CVARS, MEC, MSI, and CCA). Ten data lengths ranging from

0.2 to 3 s with an interval of 0.2 s were used for evaluation. The gaze shift time used the calculation of ITR was 0.55 s.

FIGURE 9 | The scatter plot of narrow-band SNR vs. ITR (A) and wide-band SNR vs. ITR value (B). The dash line indicates a linear model regressed on the data (A:

adjusted R2 = 0.393, p < 0.001; B: adjusted R2 = 0.549, p < 0.001). The regression indicates that the wide-band SNR correlated better with the ITR than the

narrow-band SNR.

wide-band SNR is more correlated with and can predict better
ITR than a narrow-band SNR.

4.6. BCI Quotient
The electroencephalographic signals, including the SSVEP
showed individual differences in population. In this study, we
propose a BCI quotient to characterize the subject’s capacity
to use the SSVEP-BCI measured at the population level.
Equivalent to the scoring procedure of intelligence quotient
(IQ) (Wechsler, 2008), the (SSVEP-) BCI quotient is defined
as follows:

QuotientBCI = 15 ·
SNR− µ

σ
+ 100 (7)

where SNR represents the wide-band SNR, and the mean
and standard deviation in this study are µ = −13.78 and
σ = 2.31, respectively, as shown in Figure 10. The mean
and standard deviation can be estimated more accurately for
a larger database in the future. The BCI quotient rescales
an individual’s SNR of the SSVEP to the range of normal
distribution N (100, 15). Since the BCI quotient denotes a
relative value derived from SNR, and SNR is correlated with
the ITR, the BCI quotient has the potential to measure signal

quality and performance for individuals in the SSVEP-BCI.
Higher BCI quotient values indicate a higher probability of
good BCI performance. For instance, the BCI quotients of S20
and S23 were 74.71 and 139.21, respectively, which reveals a
prior to the individual level of the ITR, i.e., 73.09 bpm for
S20 and 192.63 bpm for S23. The BCI quotients for each
subject were listed in Table S1 and the result of a regression
analysis between the BCI quotient and ITR was provided in the
Supplementary Material.

5. DISCUSSION

5.1. Data Quality and Its Applicability
Compared to the benchmark database (Wang et al., 2017), the
BETA database had lower SNR and the corresponding ITR in the
classification (for the benchmark database: FBCCA, 117.96±7.78

bpm at 1.2 s; m-Extended CCA, 190.41 ± 7.90 bpm at 0.8 s;

CCA, 90.16 ± 6.81 bpm at 1.6s; 0.55-s rest time for comparison;

Chen et al., 2015b; Wang et al., 2017). This can be expected since,
in BCI applications, neither there is actually electromagnetic

shielding condition nor can be ensured that each subject has
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FIGURE 10 | The distribution of wide-band SNR and its fitting to a normal

distribution. An individual’s SNR of the SSVEP is rescaled to the range of

normal distribution by Equation (7) to obtain the BCI quotient.

a high SNR of the SSVEP. The discrepancy in SNR was due

in part to the distinct stimulus duration, which was 2 or 3 s

for the BETA database and 5 s for the benchmark database.

However, even at the same stimulus duration (a 3-s trial after
stimulus onset for 55 subjects in the BETA and 35 subjects in the

benchmark), the BETA database had significantly lower SNR than
the benchmark database (narrow-band SNR: BETA 4.296±0.021
dB, benchmark 5.218±0.020 dB, p < 0.001, z = −34.039, Mann-
Whitney U-test; wide-band SNR: BETA −13.531 ± 0.015 dB,
benchmark−12.912± 0.015 dB, p < 0.001, z = −28.814, Mann-
Whitney U-test). Therefore, the present BETA database poses
challenges to the traditional frequency recognition methods and
provides opportunities for the development of robust frequency
recognition algorithms intended for real-world applications.

A large number of subjects in the BETA database has the
merit of reducing the over-fitting and can provide an unbiased
estimation in the evaluation of frequency recognition algorithms.
Also, a large volume of the BETA provides an opportunity for
the research on transfer learning for the purpose of exploiting
common discriminative patterns across subjects. Note that in
the BETA database, the number of blocks of each subject is
smaller than that in the benchmark database. Since reducing the
training and calibration time is critical for the BCI application,
the proposed database can serve as a test-bed for the development
of supervised frequency recognition methods based on smaller
training samples or few-shot learning. It is noteworthy that the
application scenario of the BETA database is not limited to the
40-target speller presented in the study. Namely, practitioners
can select a subset of the 40 targets (e.g., 4, 8, 12 targets) and
design customized paradigms to meet the requirements of a
variety of real-world applications. However, since the paradigm
of the BETA database falls into the category of dependent BCI
where subjects were instructed to redirect their gaze during
target selection, the gaze shifting limits its applicability for
patient users challenged by oculomotor control. Specifically for

these scenarios, gaze independent SSVEP-BCI that is based on
covert selective attention (Kelly et al., 2005; Allison et al., 2008;
Zhang et al., 2010; Tello et al., 2016) or stimulation via closed
eyes (Lim et al., 2013; Hwang et al., 2015) could be deployed,
although the information throughput is low with only 2 or 3
targets and modest accuracy. Nevertheless, the BETA database
shows its potential to unlock new applications in SSVEP-BCI for
alternative and augmentative communication.With the advent of
big data, the BETA shows promise for facilitating brain modeling
at a population level and help developing novel classification
approaches or learning methodology, such as federated learning
(Mcmahan et al., 2017) based on big data.

5.2. Supervised and Training-Free Methods
In general, the state-of-the-art supervised frequency recognition
methods have the advantage of higher performance regarding
the ITR, and the training-free methods excel in ease of use.
In this study, two of the supervised methods (the m-Extended
CCA, and the Extended CCA) outperformed the five training-
free algorithms at all the data lengths. Specifically, at the short-
time window (0.2–1 s) the supervised methods (the msTRCA,
the TRCA, the m-Extended CCA, and the Extended CCA)
outperformed the training-free methods by a large margin
(see Figure S1). This was because the introduction of the
EEG training template and the learned spatial filters facilitated
the SSVEP classification. At the time window longer than
2 s (2.2–3 s), the post hoc paired t-tests showed that no
significant difference is between the m-Extended CCA and
the Extended CCA, between the FBCCA and the CVARS,
and among the ITCCA, the CCA, the MEC, and the MSI
(p > 0.05, Bonferroni corrected). Such a result suggests certain
common mathematical grounds shared by these algorithms
in principle (Wong et al., 2020b). Interestingly, as reported
in the previous study (Nakanishi et al., 2018), the TRCA
method performance decreased presumably due to the lack
of sufficient training block for subjects with low SNR. As
evidenced by the previous study (Nakanishi et al., 2018), for the
TRCA the number of training data greatly affects classification
accuracy (≈ 0.85 with 11 training blocks and ≈ 0.65 with
two training blocks for a 0.3-s time window). This implies
that methods with a sinusoidal reference template (e.g., m-
Extended CCA, Extended CCA, and FBCCA, etc.) may be
more robust than those without it (Wong et al., 2020b). To
sum up, the presented classification analysis demonstrates the
utility of different competing methods on the BETA. Besides,
the comparison of different methods on a single database
complements the previous work of Zerafa et al. (2018), where
the performance of various methods was not compared on the
same database.

5.3. SNR Comparison
The SNR-based analysis results showed that the wide-band SNR
was more correlated with the ITR than the narrow-band SNR. As
shown in Figure 4, a transition from the narrow-band SNR to the
wide-band SNR did not affect the relative relationship between
the SNRs of the two databases. Nevertheless, the wide-band SNR
metric reduces the skewness of data distribution from −0.708
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to −0.081 for benchmark database, and from −1.108 to −0.142
for the BETA database; the narrow-band SNR was followed by
the wide-band SNR, which makes the SNR characteristic be
more likely to follow the Gaussian distribution. According to
Parseval’s theorem, the spectral power of a signal is equal to
its power in the time domain, so the formulated wide-band
SNR has equivalent mathematical underpinning as a metric of
temporal SNR counterpart. Apart from its expressive power of
wide-band SNR, this metric is also intuitive in the description
of signal and noise due to the frequency tagging attribute of the
SSVEP.

6. CONCLUSION

In this paper, a BEnchmark database Towards BCI Application
(BETA) for the 40-target SSVEP-BCI paradigm is presented.
The BETA database is featured by its large number of
subjects and its paradigm that is well-suited for real-world
applications. The quality of the BETA is validated by the
typical temporal, spectral and spatial profile of the SSVEP,
together with the SNR and the estimated visual latency. The
BETA database compares eleven frequency recognition methods,
including six supervised methods and five training-free methods.
The result of classification analysis validates the data and
demonstrates the performance of different methods in one
arena as well. As for the metric to characterize the SSVEP,
we recommend adopting the wide-band SNR at the single-
trial level and use the BCI quotient at the population level.
We expect the proposed BETA database can pave the way
for the development of methods and paradigms for practical
BCI and push the boundary of the BCI toward real-world
application.
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Reaching and grasping is an essential part of everybody’s life, it allows meaningful
interaction with the environment and is key to independent lifestyle. Recent
electroencephalogram (EEG)-based studies have already shown that neural correlates
of natural reach-and-grasp actions can be identified in the EEG. However, it is
still in question whether these results obtained in a laboratory environment can
make the transition to mobile applicable EEG systems for home use. In the
current study, we investigated whether EEG-based correlates of natural reach-
and-grasp actions can be successfully identified and decoded using mobile EEG
systems, namely the water-based EEG-VersatileTM system and the dry-electrodes
EEG-HeroTM headset. In addition, we also analyzed gel-based recordings obtained
in a laboratory environment (g.USBamp/g.Ladybird, gold standard), which followed
the same experimental parameters. For each recording system, 15 study participants
performed 80 self-initiated reach-and-grasp actions toward a glass (palmar grasp) and
a spoon (lateral grasp). Our results confirmed that EEG-based correlates of reach-and-
grasp actions can be successfully identified using these mobile systems. In a single-trial
multiclass-based decoding approach, which incorporated both movement conditions
and rest, we could show that the low frequency time domain (LFTD) correlates were
also decodable. Grand average peak accuracy calculated on unseen test data yielded
for the water-based electrode system 62.3% (9.2% STD), whereas for the dry-electrodes
headset reached 56.4% (8% STD). For the gel-based electrode system 61.3% (8.6%
STD) could be achieved. To foster and promote further investigations in the field of EEG-
based movement decoding, as well as to allow the interested community to make their
own conclusions, we provide all datasets publicly available in the BNCI Horizon 2020
database (http://bnci-horizon-2020.eu/database/data-sets).

Keywords: electroencephalogram, Brain-Computer Interface, reach-and-grasp, movement-related cortical
potential, EEG systems, mobile EEG, dry electrodes, BCI data set

INTRODUCTION

The ability to reach-and-grasp is imperative for mastering any actions of daily life and represents
the basis of personal independence. It changes for the worse when this ability is taken away, e.g.,
by a motor vehicle incident, causing a traumatic spinal cord injury (SCI) at cervical level. Needless
to say, affected persons, e.g., with a high SCI, seek intervention to regain basic grasping functions
(Anderson, 2004; Snoek et al., 2004).
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A possible way to regain natural control could be a brain-
computer interface (BCI) (Wolpaw et al., 2002; Millán et al.,
2010). It enables its users to potentially control any assistive
device via voluntary modulation of the users’ own brain
signals. Brain signals are directly recorded e.g., non-invasively
via electroencephalography (EEG) at the scalp of the user
and circumvent any damaged parts of the spinal cord. It
has been shown that BCIs can be successfully applied for
communication (Birbaumer et al., 1999; Kaufmann et al., 2014;
Halder et al., 2015; Pinegger et al., 2015; Scherer et al., 2015),
however, they can also be used to generate control signals for
assistive devices such robotic arms (Meng et al., 2016) or even
upper limb motor neuroprostheses (Pfurtscheller et al., 2003;
Müller-Putz et al., 2005, 2019; Rohm et al., 2013).

Though control of the designated device could often be
successfully established, a major setback was that the control
strategies relied on rather abstract mental imaginations and
often did not have any direct connection to the intended
movement. For instance, Pfurtscheller et al. (2003) relied on
the repeated imagery of foot movements and right hand
motor imagery to control the study participants’ neuroprosthesis
attached on the left forearm. We believe that a more natural
control strategy is necessary to support an intuitive control for
end users (Müller-Putz et al., 2016). Ideally, a future control
paradigm consists of one singular non-repetitive task which
is similar to the task that has to be performed with such a
neuroprosthesis or robotic arm.

Recent investigations have shown that brain patterns of
singular upper limb movements can be identified and decoded
from EEGs’ low frequency time domain (LFTD) signals. These so
called movement-related cortical potentials (MRCPs) (Shibasaki
et al., 1980) have been shown to hold discriminable information
of upper limb movements (Ofner et al., 2017), different grasps
(Agashe et al., 2015; Jochumsen et al., 2016), different reach-
and-grasp actions (Randazzo et al., 2015; Iturrate et al., 2018;
Schwarz et al., 2018, 2019) and can even be decoded online
(Ofner et al., 2019; Schwarz et al., 2020).

However, it is still unclear whether the transition from
a controlled laboratory environment and its high channel
density recording systems to end users’ homes utilizing
small, mobile EEG systems can be made successfully. The
requirements of mobile EEG systems operated at end users’
homes are manifold: They need to be (i) easy to handle
with the help of a non-expert caregiver and (ii) low in
cost and maintenance. From a technical aspect, their (iii)
performance needs to be in the same range as their laboratory
counterparts, moreover, they (iv) need to operate in a non-
laboratory environment. Studies have evaluated usability and
performance of emerging mobile systems and compared them
to laboratory systems considered “gold standard” (Guger et al.,
2012; Pinegger et al., 2016; Di Flumeri et al., 2019). Recently,
Jochumsen et al. (2020a,b) evaluated not only the performance
of several mobile EEG systems with respect to movement
intention detection from the LFTD, but also evaluated their
usability with regards to patients, relatives and therapists.
Nevertheless, datasets eligible for quantifying different electrode
sets are rather scarce.

One of our goals of the Horizon 2020 Project MoreGrasp1

was to develop a grasp neuroprosthesis for people with SCI
which could be operated via a BCI at their homes. As such, we
took decisive efforts in designing mobile, state-of-the-art EEG
recording systems to provide MoreGrasp end users with BCI
technology at their homes (Müller-Putz et al., 2019). Based on
these developments, we were able to introduce two market ready
recording systems: the water-based electrodes EEG-VersatileTM

and the dry electrodes EEG-HeroTM.
The goals of the current study were threefold: Firstly, we

wanted to determine whether EEG based correlates of reach-and
grasp actions could be extracted. Secondly, we wanted to evaluate
whether the LFTD correlates could be successfully decoded and,
if so, the potential performance loss due to the transition from a
gel-based, gold-standard system to mobile, non gel-based EEG
systems. At last, we provide a substantial dataset of 45 study
participants recorded with three different EEG systems to the
scientific community to foster and promote the research on
EEG-based movement decoding.

For this, we assessed the feasibility of the developed recording
systems when recording natural reach-and-grasp actions. We
performed an experiment in which 45 able bodied participants
performed self-initiated reach-and-grasp actions on objects
of daily life. Fifteen participants were measured using the
mobile and water-based electrodes EEG-VersatileTM system
and 15 using the dry-electrodes EEG-HeroTM headset in an
office environment. In addition, we provide the recordings of
additional 15 able bodied study participants who used a gel
based (gold standard) system, who performed the same tasks in a
laboratory environment.

MATERIALS AND METHODS

Participants and Recordings
In total, 45 participants took part in the experiment. They were
able-bodied and right handed. All gave written informed consent
and received monetary compensation for their participation.

Gel-Based Electrodes Recordings
This study was approved by the Medical University of Graz
(EK: 30-439 ex 17/18). Recordings using the gel-based recording
system (g.tec USBamp/g.tec Ladybird system, g.tec medical
engineering GmbH, Austria) were performed at the Institute
of Neural Engineering at Graz University of Technology (see
Figure 1, left). We measured EEG of 15 able bodied, right handed,
study participants (10 male, 5 female, aged between 15 and
30, median 26 years) with 58 active electrodes positioned over
frontal, central, and parietal areas according to the 5% grid system
provided by Oostenveld and Praamstra (2001). Furthermore
we recorded the electrooculogram (EOG) using six additional
electrodes positioned infra and superior orbital to the left and
right eye and on the outer canthi. For reference we used the
right earlobe and for ground the channel AFz. All signals were
recorded using a sampling frequency of 256 Hz and prefiltered

1www.moregrasp.eu
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FIGURE 1 | Experimental setup for the three recording systems. Left image shows the recordings using the gel-based system (g.tec USBamp/g.tec Ladybird
system, g.tec medical engineering GmbH, Austria). Center image shows the water-based EEG-VersatileTM (Bitbrain, Spain). Right image shows the dry-electrodes
EEG-HeroTM system (Bitbrain, Spain). Upper right corner shows the electrodes layout. EOG was recorded in the gel- and water-based electrodes systems (six
additional electrodes positioned infra and superior orbital to the left and right eye and on the outer canthi).

using an 8th order Chebyshev filter from 0.01 to 100 Hz. We
used a notch filter at 50 Hz to suppress the power noise. All
data was synchronized using the TOBI Signal server (Breitwieser
et al., 2010). The gel based recordings provided for this study
were part of another extended study incorporating also bimanual
reach-and-grasp actions, which are not part of the current study.
Further details can be found in Schwarz et al. (2019). Force-
sensing resistor (FSR) sensors were used to record the movement
onset and the grasping time point to each object. Sensor output
was digitized using a battery operated Arduino microcontroller.

Water-Based Electrodes Recordings
(EEG-VersatileTM)
The recordings with the EEG-VersatileTM system (Bitbrain,
Spain) were conducted in the office environment of Bitbrain
(Zaragoza, Spain), guided by personnel of the Institute of Neural
Engineering, Graz University of Technology. We measured
the EEG of 15 able bodied, right handed study participants
(aged between 15 and 30, median 24 years; 8 females) using
32 water-based electrodes positioned over frontal, central and
parietal positions (see Figure 1, center). Additionally we used
six electrodes positioned infra and superior orbital and the outer
canthi to measure EOG. For reference we used the left earlobe
and for ground the channel AFz. These signals were recorded
using a sample frequency of 256 Hz and prefiltered using a 3rd
order anti-aliasing Butterworth filter with pass-band frequency
from DC to 100 Hz. Photodiode sensors were used to record
the movement onset and the grasping time point to each object.
The three photodiodes were digitized using a BiosensingTM

amplifier (Bitbrain, Spain) at a sampling rate of 256 Hz, which
was placed on the table. Time synchronization between the EEG-
EOG signals and photodiodes was made via a TTL output of the
BiosensingTM amplifier. All data was streamed via Bluetooth to
the computational unit using Bitbrain proprietary software, and
backed-up to an internal SD card to avoid data loss due to the
wireless connection.

Dry Electrodes Recordings (EEG-HeroTM)
The recordings with the EEG-HeroTM headset (Bitbrain, Spain)
were also performed in the office environment of Bitbrain

(Zaragoza, Spain), guided by personnel of the Institute of Neural
Engineering, Graz University of Technology (see Figure 1, right).
We measured 15 able bodied, right handed study participants
(aged between 15 and 30, median 27 years; 7 females) using
11 dry electrodes located over sensorimotor areas according to
the international 10/20 system (FC3, FCz, FC3, C3, C1, Cz, C2,
C4, CP3, CPz, CP4). For reference and ground we used the left
earlobe. These signals were recorded using a sample frequency of
256 Hz and prefiltered using a 3rd order anti-aliasing Butterworth
filter with pass-band frequency from DC to 100 Hz. Photodiode
sensors were used to record the movement onset and the grasping
time point to each object. The three photodiodes were digitized
using a BiosensingTM amplifier (Bitbrain, Spain) at a sampling
rate of 256 Hz, which was placed on the table. All data was
streamed via Bluetooth to the computational unit using Bitbrain
proprietary software, and backed-up to an internal SD card to
avoid data loss due to the wireless connection.

Experimental Setup and Paradigm
All recordings were performed using the same experimental
setup and followed closely the approach presented in Schwarz
et al. (2019). However for gel based recordings, the experiment
took place in a laboratory environment, where participants were
seated in a noise and electromagnetically shielded room. For
water-based and dry-electrode based recordings, the experiment
took place in a non-shielded office room. Participants were seated
on a chair in front of a table and instructed to rest their right hand
on a sensorized base position which was positioned in front of
them. On the table, we placed an empty jar and a jar with a spoon
stuck in it. Both objects were in a comfortable reaching distance
equidistant to the study participants’ right hand. Participants
were instructed to perform reach-and-grasp actions using their
right hand towards the objects placed on the table. In case of the
empty jar they grasped the objects using a palmar grasp. In case of
the spoon, they were instructed to grasp the spoon with a lateral
grasp. Though participants performed the tasks in a self-initiated
manner, we instructed them to focus their gaze on the designated
object for 2 s before initiating the reach-and-grasp action. Once
they completed the grasp, they held the object for at least 1–2 s
(see Figure 2). When they returned their hand to the starting
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FIGURE 2 | Experimental paradigm and trial timeline. Participants were instructed to gaze at the object for at least 2 s. Then they performed the reach-and-grasp
action toward a jar (palmar grasp) or a jar with a spoon stuck in it (lateral grasp), and hold the grasp for at least 1–2 s. Then they returned the hand to the sensorized
base position and prepared for the next trial.

position, a small insert on a screen showed them the number of
grasps they had already performed on the designated object. In
case of the gel-based recordings, the screen was integrated in the
table, for the other recording sessions, the screen was positioned
in front of them. Lastly, participants paused at least for 4 s before
starting a new trial (inter trial interval).

In this way we recorded 80 trials per condition (TPC)
distributed over 4 runs á 20 trials. After each run, we switched the
position of the objects presented on the table, so that each object
was on each position equally.

We also recorded 3 min of rest at the start, after the second
movement run (at half time) and at the end of the experiment,
where participants were tasked to focus their gaze on a fixation
point in the middle of the table. In addition, we recorded

horizontal and vertical eye movements as well as blinks following
the paradigms used in (Kobler et al., 2018; Schwarz et al., 2019).

Data Preprocessing and Artifact
Handling
We filtered all available data using a zero-phase 4th order
Butterworth bandpass filter with a cut-off frequency of 0.3 and
60 Hz. For gel-based and water-based recordings, we used all
available EEG and EOG channels and applied the extended
infomax ICA algorithm on the data. We removed components
associated with eye movements and blinks by visual inspection
(Lee et al., 1999; Delorme and Makeig, 2004). Note that we
refrained to apply an ICA algorithm on the dry-electrode based
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recording due to the unfavorable number of channels available
(n = 11).

We defined a window of interest (WOI) for each movement
trial of [−2 3] s with respect to the movement onset at second 0.
In addition, we extracted 81 trials from the rest recordings. The
rest trials had a duration of 5 s (i.e., similar to the duration of the
movement trials).

Subsequently we rejected potentially artifact contaminated
data by statistical parameters (Faller et al., 2012; Schwarz et al.,
2015, 2018). For each participant’s data set, regardless of the
recording system, we filtered the data between 0.3 and 35 Hz.
We rejected trials by (1) amplitude threshold (amplitude exceeds
125 µV), (2) abnormal joint probability, and (3) abnormal
kurtosis by threshold of four times the standard deviation. Trials
marked for rejection were excluded from subsequent analysis. As
a result, the following trials were rejected for each system: Gel-
based sensors (16.0%), Water-based sensors (13.2%), and Dry
sensors (8.5%).

Power Spectral Density and Time
Frequency Analysis
For each study participant, we applied a common average
reference (CAR) filter on the preprocessed EEG data.

For calculating the power spectral density (PSD) estimates,
we epoched all trials from (0 1.5) s with respect to the
movement onset. Using Welch’s method of an overlapping
segment averaging estimator, we calculated the PSD using a
1 s window and 25% overlap. We calculated the PSD average
per condition and a confidence interval using non-parametric
t-percentile bootstrap statistics (alpha = 0.05). To obtain the
grand-average PSD, we calculated the mean over the participant-
specific average and its respective confidence intervals.

For the time frequency analysis we calculated event-related
(de)synchronization (ERD/S) maps in the range from 2 to 40 Hz
(1 Hz resolution) as shown by Graimann et al. (2002). The
analysis was performed for each movement condition separately
using a specific reference interval of (−2 −1) s with respect
to the movement onset. To obtain grand-average ERD/S maps
(Pfurtscheller and Lopes da Silva, 1999), we calculated for
each frequency bin the mean over the participants ERD/S time
points and calculated confidence intervals using non-parametric
t-percentile bootstrap statistics (alpha = 0.05). The resulting
ERD/S maps show only the significant time-frequency points per
recording system.

Movement-Related Cortical Potentials
We resampled all preprocessed EEG signals to 16 Hz to save
computational load and applied a CAR filter. Thereafter, we
applied a 4th order, zero-phase Butterworth lowpass filter with
a cut-off frequency of 3 Hz. To allow meaningful comparison
across study participants we introduced a normalization step: For
each participant, we calculated the global field power (GFP) as the
standard deviation across all channels and normalized all scalp
potentials by the average GFP of the rest condition (Skrandies,
1990). We epoched all movement trials and the rest recordings
according to the WOI (−2 3) s and calculated condition specific

averages. In addition, we determined a 95% confidence interval
for each condition using non-parametric t-percentile bootstrap
statistics. We accumulated a grand average per EEG system by
calculating the mean over the participant-specific averages.

Multiclass Single-Trial Classification
The classification approach follows closely the approach
presented in Schwarz et al. (2019) and is adapted to the current
data set. We resampled all preprocessed EEG signals to 16 Hz to
save computational load and applied a CAR filter. Thereafter, we
applied a 4th order, zero-phase Butterworth lowpass filter with a
cut-off frequency of 3 Hz.

For each study participant, regardless of the recording system,
we divided all preprocessed trials of the movement conditions as
well as the rest condition in a calibration set, which consisted of
the first 66% of all recorded TPC and an unseen test set consisting
of the remaining 34% of all recorded TPC.

Using the calibration data set, we assessed the best time point
in terms of classification accuracy for training a classification
model within the WOI. For that we used a 10 times five fold cross
validation approach to divide the calibration set into training and
evaluation sets. For each time point within the WOI, we trained
an individual shrinkage based linear discriminant classification
model (sLDA) (Blankertz et al., 2011). As features, we took nine
amplitude values of all available EEG channels (Gel: 58, Water:
32, Dry: 11), from the preceding second of the actual time point
in causal steps of 0.125 s (−1:0.125:0) s. This yielded in total
522 features (9 × 58 channels) for the gel-based setup, 288
features (9 × 32 channels) for the water-based setup, and 99
(9 × 11 channels) for the dry electrodes setup. This classification
approach was applied on each time point within the WOI yielding
in 80 classification models (16 time points × 5 s WOI). To assess
the best training time point, we averaged the performance results
of all calculated folds and chose the time point with the best
average performance. The adjusted chance level was at 45.8%
[adjusted Wald interval, alpha = 0.05, (Breitwieser et al., 2012;
Müller-Putz et al., 2008)] and corrected for multiple comparisons
(n = 80 time points) using Bonferroni correction.

Thereafter, we applied the best performing classification
model on previously unseen test data, using the same
preprocessing pipeline as before. In this case, the adjusted chance
level for the test set lies at 42.8% (adjusted Wald interval,
alpha = 0.05). We show the mean classification performance of
all trials over the whole WOI.

In addition, we repeated this classification approach for
gel- and water-based recording systems with a subset of 11
channels covering the sensorimotor electrode positions of the dry
electrodes system (EEG-HeroTM).

RESULTS

Gel Based Recordings
Figure 3 (left) shows the grand average time-frequency maps
of the gel-based recordings for channels C3, Cz, and C4 with
respect to a reference interval (−2 −1) s prior to the movement
onset. Significant ERD can be seen on the three channels,
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FIGURE 3 | Frequency analysis of the gel-based recordings. (Left): Grand average of the time-frequency maps (Graimann et al., 2002) for movement conditions for
positions C3, Cz, and C4 with respect to the reference period (–2 –1) s. The black vertical line represents the movement onset. Hot colors show significant ERD (cold
colors represent significant relative increase in power [event-related synchronization (ERS)]. Significant differences with respect to the reference period were
calculated using non-parametric t-percentile bootstrap statistics (alpha = 0.05). (Right): Grand average of the PSD calculation of the reaching phase [0 1.5] s.
Colored lines represent the PSDs of the movement conditions, gray lines show the PSD of the rest condition. The shaded areas show 95% confidence intervals
which were calculated using non-parametric t-percentile bootstrap statistics (alpha = 0.05).

FIGURE 4 | Movement related cortical potentials (MRCPs) of the gel-based recordings. Grand averages (bold lines) and 95% confidence intervals (shaded areas) for
palmar (green) and lateral (blue) grasp conditions. Channels shown are FCz, C1, Cz, and C2. The black perpendicular line represents the movement onset.
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most prominent in alpha (8–12 Hz) and beta frequency range
(∼20 Hz). Alpha (mu) activity shows the most prominent ERD
on the ipsilateral side to the executing hand, whereas beta
activity shows the most prominent ERD on the contralateral
side. Figure 3 (right) shows the PSD estimates of the reaching
phase (0 1.5) s for channels C3, Cz, and C4 for both the
movement conditions and the rest condition. When comparing
the movement conditions to the rest condition, significant power
decreases can be observed mainly in the alpha and beta range.
This power decrease is stronger on the contralateral side to the
executing hand, especially for the beta frequency range.

Analysis of the MRCPs in the LFTD (see Figure 4) shows
the grand average for the palmar and lateral grasp conditions.

A negative deflection (Bereitschaftspotential, Shibasaki et al.,
1980) can be observed (time = 0 s), which starts up to one second
before the movement onset. This deflection is pronounced
strongest first over the central motor cortex at channel position
Cz, and contralateral to the executing right hand second. About
300 ms after the movement onset, a positive deflection (reafferent
potential) can be observed. Thereafter, around 1 s after the
movement onset, a second positive peak occurs before the
potential returns to baseline. On group level, no significant
differences between movement conditions could be observed.

Figure 5 summarizes the results of the single trial multiclass
decoding of both movement conditions and the rest condition
(gel-based recordings). Figure 5 (top) shows the grand average

FIGURE 5 | Single trial decoding performance of the gel-based recordings. (Top left) Grand average for the calibration data set. Black crosses show the mean
performances for the designated time point. On average, best classification performance could be reached 1 s after the movement onset (perpendicular golden line).
(Top right) Row wise normalized confusion matrix for grand average peak performance. (Bottom left) Participant-specific classification results (gray lines) and
grand average (black bold line) of the best performing classification model applied on the unseen test data set. Golden dots show participant-specific peak
performances. (Bottom right) Row wise normalized confusion matrix for the individual peak performances.
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obtained on the calibration data set and the corresponding
confusion matrix of the grand average peak performance.
On average, highest calibration performance could be reached
about 1 s after the movement onset with an average peak accuracy
of 61.1%. This is lower than the average of the participant-specific
(63.9%) peak performance, since the time of peak performance
varies between participants. Analysis of the confusion matrix
shows that the true positive rate (TPR) for the rest condition
is highest with 72.2%, exceeding the TPRs of the movement
conditions by more than 12%. In contrast, false positive rates
(FPR) for movement versus movement conditions are between
26 and 29%, exceeding FPRs of movement versus rest conditions
more than twice. Figure 5 (bottom) shows the results of the
participant-specific best performing classification models applied
on the previously unseen test data set and its corresponding
confusion matrix of the grand average of the peak performances.
Participant-specific peak performances reached on average 61.3%
around 1.1 s after the movement onset. The corresponding
confusion matrix shows again higher TPRs for classification of
the rest versus movement conditions and are within the same
range as the results of the calibration data set. However, TPRs
for movement versus movement conditions decreased, especially
for the lateral grasp condition. Table 1 depicts the participant-
specific classification results.

Water Based Recordings
Figure 6 (left) shows the grand average time-frequency maps
of the water-based recordings for channels C3, Cz, and C4
with respect to a reference interval (−2 −1) s prior to the
movement onset. Significant ERD can be found for the three
channels, especially in alpha (8–12 Hz) and beta (∼20 Hz)
band frequencies. The differences are pronounced weakest at
central electrode position Cz. Alpha (mu) activity shows the most
prominent ERD on the ipsilateral side (C4), with the strongest

TABLE 1 | Participant-specific classification results of the gel-based recordings.

Calibration set Test set

# Peak (%) STD (%) Time (s) Peak (%) STD (%) Time (s)

G01 71.2 7.6 0.2 62.3 8.2 0.3

G02 57.0 8.6 1.1 65.7 8.9 1.2

G03 57.0 7.6 1.7 54.1 7.5 1.8

G04 73.6 8.0 0.9 57.1 8.6 0.8

G05 59.9 6.8 1.3 62.2 10.4 1.2

G06 56.4 7.6 0.7 55.7 7.1 0.7

G07 53.6 8.6 0.8 56.0 7.5 1.4

G08 71.6 6.7 1.4 70.4 10.0 1.4

G09 72.0 7.9 1.1 61.8 8.9 1.1

G10 72.0 6.5 0.9 65.3 8.6 0.9

G11 60.3 9.4 0.8 58.2 6.2 0.8

G12 64.9 7.6 1.0 70.8 10.3 1.0

G13 63.8 10.1 1.4 55.2 8.7 1.3

G14 58.1 9.7 0.4 64.1 9.7 0.6

G15 66.5 7.8 1.4 60.0 7.9 1.4

Average 63.9 8.0 1.0 61.3 8.6 1.1

beta at bilateral positions (C3 and C4). Figure 6 (right) shows the
PSD estimates of the reaching phase (0 1.5) s for channels C3,
Cz, and C4 for the movement conditions and the rest condition.
Significant differences between movement conditions and rest
condition can be observed on channels in the alpha band and on
the contralateral side (C3 location) in the beta band.

Figure 7 shows the analysis of the MRCPs for channels
FCz, C1, Cz, and C2. Around 1 s before the movement onset,
the negative deflection of the BP starts and peaks around
movement onset (time = 0 s). The BP is strongest pronounced
over the central electrode position first, and contralateral to
the executing right hand second. It is clearly recognizable the
reafferent potential around 300 ms after the movement onset
followed by a second positive deflection around 1–1.5 s after the
movement onset before the potentials return back to baseline.
The morphologies of both movement conditions are similar and
bear no significant difference on group level.

Figure 8 summarizes the results of the multiclass single trial
decoding. Figure 8 (top) shows the grand average obtained on
the calibration data set and the corresponding confusion matrix
of the grand average peak performance. Grand average peak
performance reached 63.6% around 0.9 s after the movement
onset. Participant-specific peak accuracies were slightly higher
with 65.4%. The confusion matrix shows high TPRs for rest
versus movement conditions, exceeding TPRs for movement
versus movement conditions by 20%. Figure 8 (bottom) depicts
the participant-specific classification results when applying the
best performing classification model trained on the calibration
data on the unseen test set. Participant-specific peak performance
reaches on average 62.3% around 0.9 s after the movement
onset. The corresponding confusion matrix shows an even
more favorable TPR for rest versus movement conditions
with 81.4%. However, TPRs for movement versus movement
conditions decreased, especially for the palmar grasp condition.
Table 2 depicts the participant-specific classification results for
calibration and test set in detail.

Dry Electrode Recordings
Figure 9 (left) shows the grand average time-frequency maps
of the dry electrodes recordings for channels C3, Cz, and C4
with respect to a reference interval (−2 −1) s prior to the
movement onset. Significant ERD can be found on the three
channels, especially in alpha (8–12 Hz) and beta band (∼20 Hz).
Differences are weakest on central channel location Cz. Alpha
(mu) activity shows the stronger ERD on the ipsilateral side
(C4), and beta presents a stronger ERD on bilateral locations
(C3 and C4). Figure 9 (right) depicts the PSD estimates of the
reaching phase [0 1.5] for channels FCz, C1, Cz, and C2. When
looking at both movement conditions against the rest condition,
a significant power decrease for the movement conditions in
alpha and beta can be observed. This power decrease is more
pronounced bilaterally than on the central electrode position Cz.

Figure 10 shows the analysis of the MRCPs for channels
FCz, C1, Cz, and C2. A negative deflection can be observed at
movement onset (time = 0 s), which starts about 0.5 s before the
movement onset. It is strongest on the central position first and
on the contralateral side to the executing hand second. Around
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FIGURE 6 | Frequency analysis of the water-based recordings. (Left): Grand average of the time-frequency maps (Graimann et al., 2002) for movement conditions
for positions C3, Cz, and C4 with respect to the reference period (–2 –1) s. The black vertical line represents the movement onset. Hot colors show significant ERD
[cold colors represent significant relative increase in power (event-related synchronization (ERS)]. Significant differences with respect to the reference period were
calculated using non-parametric t-percentile bootstrap statistics (alpha = 0.05). (Right): Grand average of the PSD calculation of the reaching phase [0 1.5] s.
Colored lines represent the PSDs of the movement conditions, gray lines show the PSD of the rest condition. The shaded areas show 95% confidence intervals
which were calculated using non-parametric t-percentile bootstrap statistics (alpha = 0.05).

FIGURE 7 | Movement related cortical potentials (MRCPs) of the water-based recordings. Grand averages (bold lines) and 95% confidence intervals (shaded areas)
for palmar (green) and lateral (blue) grasp conditions. Channels shown are FCz, C1, Cz, and C2. The black perpendicular line represents the movement onset.
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FIGURE 8 | Single trial decoding performance of the water-based recordings. (Top left) Grand average for the calibration data set. Black crosses show the mean
performances for the designated time point. On average, best classification performance could be reached 0.9 s after the movement onset (perpendicular blue line).
(Top right) Row wise normalized confusion matrix for grand average peak performance. (Bottom left) Participant-specific classification results (gray lines) and
grand average (black bold line) of the best performing classification model applied on the unseen test data set. Blue dots show participant-specific peak
performances. (Bottom right) Row wise normalized confusion matrix for the individual peak performances.

300 ms after the movement onset, at least for electrode positions
Cz and C2, a reafferent potential can be seen before the potential
returns back to base level about 1–1.5 s after the movement
onset. The morphologies of both movement conditions show no
significant difference on group level.

Figure 11 shows the results of the multiclass single trial
decoding. Figure 11 (top) depicts the grand average performance
of the calibration data set and the confusion matrix of the
participant specific grand average peak performance. On average,

56.6% around 1 s after the movement onset could be reached.
The participant-specific peak accuracy yielded at 58.3% and
is higher due to the variation in timing of reaching peak
performance of the participants. The corresponding confusion
matrix shows increased TPRs for rest versus movement
conditions of 67.5%, whereas TPRs for movement versus
movement conditions yielded about 54%. When applying the
best performing classification model on the unseen data set
(Figure 11, bottom), participant-specific peak accuracies still
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TABLE 2 | Participant-specific classification results of the water-based recordings.

Calibration set Evaluation set

# Peak (%) STD (%) Time (s) Peak (%) STD (%) Time (s)

V01 68.2 7.9 0.9 69.0 11.1 0.9

V02 74.4 8.2 0.8 72.2 11.3 0.9

V03 60.1 8.9 0.8 56.9 7.7 0.8

V04 59.4 7.4 0.6 64.5 8.3 0.6

V05 60.7 7.3 0.8 58.1 8.5 0.8

V06 76.4 7.4 0.9 75.3 11.1 1.1

V07 68.3 8.2 1.3 66.7 11.1 1.0

V08 74.1 6.8 1.1 55.1 7.7 1.1

V09 59.7 7.5 0.8 63.4 11.5 0.9

V10 62.8 8.3 0.8 62.5 6.9 0.8

V11 68.0 8.0 0.9 64.9 10.3 1.0

V12 60.7 8.9 0.5 55.6 8.2 0.6

V13 60.9 7.6 0.4 60.0 6.9 0.3

V14 65.0 8.6 1.6 57.1 9.0 1.5

V15 61.9 7.7 0.9 53.7 8.5 0.8

Average 65.4 7.9 0.9 62.3 9.2 0.9

Columns 2–4 show peak performance (%), standard deviation (%), and time of
occurrence (s) with respect to the movement onset for the calibration set. Columns
5–7 show the same for the test set.

yielded on average 56.4%. Table 3 depicts participant-specific
performance results in detail.

Comprehensive Analysis
Behavioral Analysis
We analyzed the duration of the reach-and-grasp actions
(see Figure 12). The time information was provided by the

instrumentalized objects and extracted from all trials. Then, for
each participant and grasp type (palmar, lateral) the average
duration was calculated. We were interested in testing, for
each grasp type, the possible time differences among the three
recording systems. To do so, we computed two separate one-way
ANOVAs (for each grasp type) with three levels (gel, water, dry).

A significant effect was found in the lateral grasp
[F(2,42) = 4.6; p = 0.016]. Post hoc pairwise multiple comparison
tests using the Tukey–Kramer criterion showed a significant
effect between the gel- and water-based recordings (p = 0.015).

Performance Analysis
We used a one-way ANOVA to compare the differences in
classification accuracies among the three EEG recordings. We
used separate ANOVAs for the training and test data. We
found a significant effect in the training data [F(2,42) = 5.86;
p = 0.006]. Post hoc pairwise comparisons revealed a significant
performance decrease in the dry-electrodes recordings with
respect to the gel- (p = 0.037) and water-based recordings
(p = 0.006). Similarly, we found a significant effect in
the test data [F(2,42) = 4.14; p = 0.023], and post hoc
pairwise comparisons revealed a significant performance
decrease in the dry-electrodes recordings with respect
to the gel- (at statistical trend, p = 0.08) and water-based
(p = 0.026) recordings.

Finally, we repeated the previous statistical analysis with
the classification accuracies obtained when only using
the sensorimotor channels for classification (n = 11). The
ANOVAs testing showed no significant effects (in either
training or test data) among the three EEG recordings.
Participant specific performance results can be found in the
Supplementary Tables S1, S2.

FIGURE 9 | Frequency analysis of the dry-electrodes recordings. (Left): Grand average of the time-frequency maps (Graimann et al., 2002) for movement conditions
for positions C3, Cz, and C4 with respect to the reference period (–2 –1) s. The black vertical line represents the movement onset. Hot colors show significant ERD
(cold colors represent significant relative increase in power [event-related synchronization (ERS)]. Significant differences with respect to the reference period were
calculated using non-parametric t-percentile bootstrap statistics (alpha = 0.05). (Right): Grand average of the PSD calculation of the reaching phase [0 1.5] s.
Colored lines represent the PSDs of the movement conditions, gray lines show the PSD of the rest condition. The shaded areas show 95% confidence intervals
which were calculated using non-parametric t-percentile bootstrap statistics (alpha = 0.05).
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FIGURE 10 | Movement related cortical potentials (MRCPs) of the dry-electrode recordings. Grand averages (bold lines) and 95% confidence intervals (shaded
areas) for palmar (green) and lateral (blue) grasp conditions. Channels shown are FCz, C1, Cz, and C2. The black perpendicular line represents the movement onset.

DISCUSSION

This study confirmed that EEG based correlates of reach-
and-grasp actions can be successfully identified from the
LFTD and time-frequency domain using the water-based
EEG-VersatileTM system and the dry-electrodes EEG-HeroTM

headset. In addition, we provided a gel-based recording in
a laboratory environment (gold standard), which followed
the same experimental parameters. In a single-trial multiclass
based decoding approach, which incorporated both movement
conditions and rest, we could show that the LFTD correlates
were also decodable. Grand average peak accuracy calculated on
unseen test data yielded for the water-based electrode system
62.3% (9.2% STD), whereas for the dry-electrodes headset
reached 56.4% (8% STD). For the gel-based electrode system
61.3% (8.6% STD) could be achieved. The adjusted chance level
for this decoding approach was 45.7%, adjusted Wald interval,
alpha = 0.05 (Müller-Putz et al., 2008; Breitwieser et al., 2012).

A quantifying comparison between the individual systems
is hardly possible due to inter-subject variations and technical
factors such as the number of channels for calculating the spatial
filters in preprocessing (Gel: 58; Water: 32; Dry: 11) that might
influence the outcome. Taking this consideration into account,
the gel-based and the water-based system yielded comparable
decoding performances and, despite the decreased number of
channels of the dry-electrodes headset, the average performance

decreased only by less than 6%. Apart from these investigations,
we leave it open to the reader to compare systems. For this
we provide the complete data sets of all recordings so that the
interested community can make their own conclusions.

Time Frequency and PSD Analysis
Calculated ERD/S maps (Graimann et al., 2002) show significant
relative power changes for all recording systems. In general, the
relative power decrease (ERD) starts already up to 1 s before
the actual movement onset and is most prominent in the alpha
(mu) and beta frequency bands (Andrew and Pfurtscheller, 1995;
Florian and Pfurtscheller, 1995). For the grand average of the
gel-based recordings this power decrease is also pronounced
stronger, i.e., in terms of frequency range on the contralateral
side to the executing right hand than on central or ipsilateral
locations. Gel-based recordings showed a more pronounced ERD
on the contralateral side in beta frequency bands, which is
an expected effect reported in numerous studies (Pfurtscheller
and Lopes da Silva, 1999; Pfurtscheller and Neuper, 2001;
Müller-Putz et al., 2010). However, this phenomenon was not
visible for the water-based and dry electrodes, rather showing a
pronounced bilateral ERD (Zaepffel et al., 2013). Moreover, the
ERD, especially in the alpha band around 8–12 Hz is pronounced
stronger on the ipsilateral side in all three types of recordings
(see Supplementary Figure S1). The grand average results of the
PSD analysis show for all three investigated systems significant
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FIGURE 11 | Single trial decoding performance of the dry-electrodes recordings. (Top left) Grand average for the calibration data set. Black crosses show the mean
performances for the designated time point. On average, best classification performance could be reached 1s after the movement onset (perpendicular purple line).
(Top right) Row wise normalized confusion matrix for grand average peak performance. (Bottom left) Participant-specific classification results (gray lines) and
grand average (black bold line) of the best performing classification model applied on the unseen test data set. Purple dots show participant-specific peak
performances. (Bottom right) Row wise normalized confusion matrix for the individual peak performances.

power decreases for movement conditions when compared to
the rest condition. These differences manifest again in the alpha
and beta band range and are pronounced strongest on the
contralateral side for the gel- and water-based recordings, thus
indicating a lateralization effect measured in absolute power.
Regarding the dry electrodes, this lateralization phenomenon was
not found as a similar power decrease was measured in both
bilateral sides.

Movement-Related Cortical Potentials
Analysis of the MRCPs reveal on a grand average basis
a strong similarity between the gel-based and the water-
based recordings. Around 1 s before the movement onset a

negative deflection can be seen, most pronounced over the
central motor cortex (Bereitschaftspotential) (Kornhuber and
Deecke, 1964; Shibasaki et al., 1980; Shibasaki and Hallett,
2006). This deflection reaches its peak at the movement onset
(time = 0 s). It is strongest over central channel Cz and
on the contralateral side to the executing right hand. For
both systems, a reafferent positive potential around 300 ms
after the movement onset can be observed. It has already
been found in previous studies concerning reach-and-grasp
actions (Schwarz et al., 2018, 2019). Around 1–1.5 s, a second
positivity occurs before the potentials return to baseline. In
contrast, the MRCPs of the dry electrode recordings are on
grand average smaller and their characteristics, such as the
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FIGURE 12 | Behavioral analysis. Box-plots of the reach-and-grasp durations for all the systems. The left part shows the palmar grasp durations, whereas the right
part shows the lateral grasp ones. Statistical comparisons were carried out for each grasp type separately and significant differences are marked with an asterisk.

TABLE 3 | Participant-specific classification results of the dry-electrodes
recordings.

Calibration set Evaluation set

# Peak (%) STD (%) Time (s) Peak (%) STD (%) Time (s)

H01 63.4 8.2 1.9 53.2 7.5 1.8

H02 53.8 9.6 0.8 58.2 8.0 0.4

H03 56.4 8.2 1.1 58.2 9.2 0.9

H04 55.1 8.2 0.9 54.4 7.3 1.0

H05 54.1 8.5 0.8 48.8 6.6 0.9

H06 55.3 7.7 0.9 53.0 7.1 0.6

H07 64.5 7.5 0.6 64.6 8.1 0.8

H08 49.8 8.0 1.6 45.0 4.9 1.6

H09 65.9 8.0 0.9 62.3 7.9 1.1

H10 63.3 7.7 0.9 65.0 11.4 0.9

H11 62.3 8.4 0.7 64.6 7.8 0.8

H12 62.1 6.7 0.8 51.3 8.3 0.9

H13 56.8 6.7 1.8 51.8 8.7 2.1

H14 54.8 9.1 0.5 56.2 8.9 0.9

H15 57.5 8.2 0.7 59.5 8.5 0.9

Average 58.3 8.1 1.0 56.4 8.0 1.0

Columns 2–4 show peak performance (%), standard deviation (%) and time of
occurrence (s) with respect to the movement onset for the calibration set. Columns
5–7 show the same for the test set.

BP or the reafferent potential, although clearly identifiable, are
attenuated in comparison.

Single-Trial Decoding
The offline classification followed closely the approach initially
described in Schwarz et al. (2019) and was primarily designed
to simulate a BCI scenario. Using 66% of all available data, we
attempted to find the best performing classification model within
a WOI. Thereafter, we applied the best performing model on the
previously unseen last third of the recorded trials. Regardless of
the recording system, all study participants scored significantly
higher than the adjusted chance level (calibration set: 45.8%; test
set: 42.8%) on both calibration and test. Comprehensive statistical
analysis of the participant-specific peak performances showed
no significant differences between gel-based and water-based
recordings in both sets. Regarding the dry-electrodes headset, a
significant decreased performance was found in comparison to
the gel- and water-based systems on the calibration set, as well as
to the water-based system on the test set.

This decrease in performance for the dry-electrode system was
not unexpected, since the number of available electrodes in the
dry electrodes (n = 11) is many times smaller than for gel-based
(n = 58) or the water-based (n = 32) systems. In a previous study
we have already investigated the effect of decreasing the number
of (gel based) electrodes available for decoding (Schwarz et al.,
2018): We could show that the difference in performance between
61 gel-based electrodes (covering frontal, central, and parietal
areas of the scalp) and only 25 gel-based covering sensorimotor
areas is minimal. However, further reducing the available
electrodes to 15 led to a performance decrease comparable to the
dry-electrodes recordings in the current study.
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This goes in line with our second classification approach,
where we used only the same 11 electrodes in all recording
systems, positioned over sensorimotor areas. For both gel-based
and water-based electrode systems, the performance was in the
same range as for the dry-electrodes headset (see Supplementary
Tables S1, S2). No significant differences in performance between
recording systems could be found anymore. Unfortunately, a
direct comparison to other reach-and-grasp studies such as
(Agashe et al., 2015; Randazzo et al., 2015; Iturrate et al., 2018)
is difficult due significant differences in experimental setup and
paradigm and hence cannot be made in a serious manner.

Corresponding Data Sets
The current manuscript is accompanied by a data set of in
total 45 study participants, 15 per EEG system. In addition
to reproducibility, these datasets will allow analyses beyond
the basic analysis steps presented in this manuscript and we
encourage the scientific community to try and evaluate new
approaches. The datasets are publicly available in the BNCI
Horizon 2020 database2.

Study Limitations
In the current study, we investigated whether EEG-based
correlates of reach-and-grasp actions can be successfully
identified and decoded from three different EEG systems.
However, due to differences in the amount of available EEG
and EOG channels, preprocessing and artifact handling could
not be performed uniformly. We applied an extended Infomax
algorithm on gel-based and water-based recordings and removed
ocular based components by visual inspection. This approach
could not be performed on the dry electrode recordings, due
to the unfavorable number of channels and subsequent number
of ICA components, which did not allow a clean separation
between ocular and brain activity. Due to the multicentric design
of the study, we did not perform the evaluation of the EEG
systems on one participant population. Instead, we performed the
experiments for each EEG system on an independent group of 15
study participants. Furthermore, the object positions between the
gel-based and the water-dry electrodes systems were not exactly
replicated and is considered a minor deviation from the original
experimental protocol.

CONCLUSION

We presented an EEG dataset on natural reach-and-grasp actions
recorded with three different EEG systems – gel-based, water-
based and with dry electrodes.

The accompanying study confirmed that reach-and-grasp
actions can be successfully identified from MRCPs and time-
frequency domain using a water-based EEG-VersatileTM system
and a dry electrodes EEG-HeroTM headset. In addition, we
provided results from a gel-based recording in a laboratory
environment (gold standard), which followed the same
experimental parameters.

2http://bnci-horizon-2020.eu/database/data-sets

In a single-trial multiclass based decoding approach, which
incorporated both movement conditions and rest, we could show
that the MRCPs were also decodable. Although a quantifying
comparison between the individual systems is hardly possible
due to inter-subject variations and technical factors such as
the different number of channels among systems, the gel-
based and the water-based system yielded comparable decoding
performances. Despite the decreased number of channels of the
dry electrodes recordings, the average performance decreased
only by less than 6%. Apart from these investigations, we also
provide the complete data sets of in total 45 study participants so
that the interested community can make their own conclusions.
The data set is open access and available at the BNCI Horizon
2020 data base2.
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There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI).
Publicly available datasets are usually limited by small number of participants with few
BCI sessions. In this sense, the lack of large, comprehensive datasets with various
individuals and multiple sessions has limited advances in the development of more
effective data processing and analysis methods for BCI systems. This is particularly
evident to explore the feasibility of deep learning methods that require large datasets.
Here we present the BCIAUT-P300 dataset, containing 15 autism spectrum disorder
individuals undergoing 7 sessions of P300-based BCI joint-attention training, for a
total of 105 sessions. The dataset was used for the 2019 IFMBE Scientific Challenge
organized during MEDICON 2019 where, in two phases, teams from all over the world
tried to achieve the best possible object-detection accuracy based on the P300 signals.
This paper presents the characteristics of the dataset and the approaches followed by
the 9 finalist teams during the competition. The winner obtained an average accuracy
of 92.3% with a convolutional neural network based on EEGNet. The dataset is now
publicly released and stands as a benchmark for future P300-based BCI algorithms
based on multiple session data.

Keywords: P300, EEG, benchmark dataset, brain-computer interface, autism spectrum disorder, multi-session,
multi-subject
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INTRODUCTION

A Brain-Computer Interface (BCI) is a system that provides
a direct communication between the brain and a computer
or external device (Wolpaw and Winter Wolpaw, 2012). In
short, it must interpret brain activity and translate it into
commands that can be used to control devices or programs,
from prosthesis, orthosis, wheelchairs and other robots to a
mouse or a keyboard in a controlled computer environment
(Bamdad et al., 2015; Chaudhary et al., 2016; McFarland and
Wolpaw, 2017). Different types of neuroimaging techniques
can be used to implement BCIs, i.e., electroencephalography
(EEG), magnetoencephalography (MEG), functional Magnetic
Resonance Imaging (fMRI), functional Near-Infrared
Spectroscopy (fNIRS), among others (Zou et al., 2019). The
most common modality is the EEG, since it provides a portable,
inexpensive, non-invasive solution to measure brain activity with
high temporal resolution (Sitaram et al., 2007; Bhattacharyya
et al., 2017; Deshpande et al., 2017; Zou et al., 2019).

There are several approaches to generate brain signals that
can be interpreted and transformed into commands by the
BCIs, namely event-related potentials (the most prominent
being the P300), steady-state visual evoked potentials (SSVEP)
or event-related synchronization/desynchronization (ERS/D)
through mental imagery. The P300 approach, first attempted
by Farwell and Donchin in the 80s (Farwell and Donchin,
1988), uses an oddball paradigm where an infrequent stimulus
of interest is presented in a sequence of frequent stimuli of
non-interest. With this paradigm, a positive deflection of the
EEG measured in the central and posterior parts of the scalp
is observed approximately around 300 ms after the infrequent
stimulus of interest is presented (Guo et al., 2019; Riggins and
Scott, 2019). The most common application of P300-based BCIs
is the speller, where a matrix of letters flashing at different times
is presented to the user. An infrequent event occurs due to
selective attention to a specific target letter. Thus, a P300 potential
is elicited whenever the letter the user is paying attention to
flashes, and so the target letter can be identified by a P300
detection algorithm and then transmitted. The use-cases of P300-
based BCIs have greatly increased over the past years, from
steering a wheelchair (Lopes et al., 2016) to composing music
(Pinegger et al., 2017).

Despite the wide range of applications, there are still many
challenges facing P300-based BCIs to be used more broadly.
Achieving portable and practical BCIs that are easy to setup and
fast to calibrate is currently a research line of big interest, since
it would favorably help the adoption of this new technology in
everyday settings (Amaral et al., 2017; Nakanishi et al., 2019; Zou
et al., 2019). However, different issues causing low robustness
and reliability should be addressed for these systems to be used
in real life. Indeed, often low performance is obtained by BCI
models, even in laboratory conditions. The noise sensitivity,
non-linearity and non-stationarity characteristics of EEG signals
represent critical challenges since these properties depend both
on the subject and the environment (Yger et al., 2017). As a
consequence of non-stationarity, shifts in EEG signals across
trials and sessions occur. Therefore, robust feature extraction

techniques are needed to overcome these perturbations on the
signals (Raza et al., 2019). Moreover, inter-subject variability,
due to anatomical and physiological differences among subjects,
also represents an important challenge since it hinders the
design of participant-agnostic BCIs. Due to these main challenges
(intra- and inter-subject variabilities), most BCIs require time-
consuming calibrations to maximize their performance, which
makes the creation of one-model-fits-all solutions difficult
(Saha and Baumert, 2020).

Nevertheless, the methods used for correctly identifying
P300 signals have improved in the last years (Lotte et al.,
2018). Traditional decoding algorithms rely on separate feature
extraction and classification steps. Commonly used P300 features
are based on temporal, time-frequency and spatial domains
(Demiralp et al., 2001; Bostanov and Kotchoubey, 2006; Agapov
et al., 2016), while Linear Discriminant Analysis (LDA), Support
Vector Machine (SVM) and Multi-Layer Perceptron (MLP)
are the most prominent classifiers used in P300-based BCI
approaches. Some examples of recent improvements over
traditional methods are the use of Riemannian geometry
(Korczowski et al., 2015) or weightless neural networks (Simões
et al., 2019). Recently, deep learning techniques were transposed
from the computer vision (LeCun et al., 2015) to the EEG
decoding field. Among these new solutions, Convolutional
Neural Networks (CNN) and CNNs including recurrent layers
- such as Long Short-Term Memories (LSTM) - on top of
the convolutional extractor were used (CNN-LSTM) (Craik
et al., 2019). A key property of these algorithms is that they
automatically learn the relevant features for a given task (i.e.,
the features are learned from the input data without any a priori
feature extraction and selection) and finalize the target decoding
task in an end-to-end fashion (i.e., without separating these
steps). Nevertheless, these approaches pose some challenges: they
require many hyper-parameters to be tuned (e.g., number of
layers, number of kernels, etc.), they introduce a large number
of parameters to be optimized during training (which are also
difficult to interpret once trained) and thus, require the use of
large datasets to achieve state-of-the-art decoding performance
(Lawhern et al., 2018; Craik et al., 2019; Zhang et al., 2019).
However, few datasets can be found in the literature matching
this last requirement.

To evaluate the efficacy of new methods, authors need to
compare their results with current state-of-the-art approaches.
One viable approach is to implement both their method and
established reference methods and apply all of them to the
data of interest. Another option is to use benchmark datasets.
Benchmark datasets are publicly available data usually launched
in competition events where teams have the same information
to start with and try to achieve the best possible result with
their methods (Rakotomamonjy and Guigue, 2008). These
competitions tend to disclose these datasets afterward, allowing
both teams and other researchers to continue developing their
methods and publish results that are comparable between them,
if researchers recreate the original competition conditions on
their attempts. Thus, these datasets provide a common ground
for the research areas to assess their methods and improve the
state-of-the-art.
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One important contributor in this field has been the
Berlin Brain-Computer Interface (BBCI) group through the
organization of BCI competitions1 (Sajda et al., 2003; Blankertz
et al., 2004, 2006; Tangermann et al., 2012). The corresponding
datasets have been extensively explored and helped significantly
the improvement of methods throughout the years (Lotte
et al., 2007, 2018). Nevertheless, those datasets were limited in
terms of subjects and sessions-per-subject, thus constraining the
development of methods highly dependent on multi-session data.

In the scope of the XV Mediterranean Conference in 2019, the
International Federation of Medical and Biological Engineering
(IFMBE) launched a scientific competition based on a multi-
session dataset of P300-based BCI intervention for young adults
with autism spectrum disorder (ASD) (Amaral et al., 2018). This
intervention was aimed at the rehabilitation of joint-attention,
a core developmental skill that is altered in ASD and impacts
other skills like language development (Adamson et al., 2019).
Joint-attention refers to the ability of following social attentional
cues of other people, so one’s attention can be directed by the
interlocutor to an external object or event of interest. Amaral et al.
(2017) developed an interventional BCI based on P300 signals
that uses a virtual environment with a virtual human character
and several objects of interest to train the ability of participants to
follow the cues of the virtual character to the objects. That system
was validated in an interventional pilot study (Amaral et al.,
2018) where 15 ASD individuals underwent 7 training sessions
with this system. The database resulting from that interventional
study supported the 2019 IFMBE scientific challenge and
is now made public to the scientific community at https://
www.kaggle.com/disbeat/bciaut-p300 (doi: 10.34740/kaggle/dsv/
1375326). This paper describes the challenge and corresponding
dataset, summarizes the approaches by the competing teams and
draws some conclusions from them, challenging the BCI research
community to improve the current best performances achieved
by the participating teams.

MATERIALS AND METHODS

Experiment Description
Overview of the P300-Based BCI System
The BCI system is composed mainly by two modules: data
acquisition module and stimuli presentation module. For the
data acquisition module, we used the g.Nautilus system (g.tec
medical engineering GmbH, Austria) to record EEG data from
8 active electrodes positioned at C3, Cz, C4, CPz, P3, Pz, P4,
POz locations. The reference electrode was placed at the right
ear and the ground electrode at AFz location. Sampling rate was
set to 250 Hz and data were acquired notch-filtered at 50 Hz
and passband-filtered between 2 and 30 Hz. As for the stimuli
presentation module, we used the Vizard toolkit to create and
display a virtual environment consisting of a bedroom with
common type of furniture (shelves, a bed, a table, a chair, and
a dresser) and objects (frames, books, lights, a printer, a radio,
a ball, a door, a window, and a laptop), as shown in Figure 1.

1http://www.bbci.de/activities#competition

The objects used as stimuli throughout the experiment (and their
respective labels) were: 1. books on a shelf, 2. a radio on top of
a dresser, 3. a printer on a shelf, 4. a laptop on a table, 5. a ball
on the ground, 6. a corkboard on the wall, 7. a wooden plane
hanging from the ceiling, and 8. a picture on the wall. The virtual
environment was presented via the Oculus Rift Development Kit
2 headset (from Oculus VR).

Each block consists of the user trying to identify one of the
objects as the target. For that, K runs are repeated. One run is
composed by a single flash of each object once for 100 ms at
different times and random order, with an Inter-Stimulus Interval
(ISI) of 200 ms. Figure 2 provides a schematic for this structure.

BCI Session Flow
Fifteen participants performed 7 identical training sessions in
different days, the first four on a weekly basis and the last
three on a monthly basis. Each training session was divided in
two parts: calibration and online phase. Data from calibration
and online phases were named in the dataset as train and test
data, respectively.

The calibration phase was composed of 20 blocks, each block
containing 10 runs. Because we used 10 runs per block, a total of
200 target P300 signals and 1400 non-target signals were acquired
at this phase. With these data, the session-specific classifiers were
trained for the online phase and the number of runs per block
(K) to use on the online phase was defined. K was defined during
the online sessions of the clinical trial as the minimum number of
runs for which the classifier achieved an accuracy above 80%, in
the calibration data.

Regarding the online phase, 50 blocks were taken for each
participant using K runs per block. The value of K varied between
subjects and sessions, since it was an output of the calibration
phase, ranging from 3 to 10.

Dataset Structure and Contents
The dataset folder structure is organized by subjects, with a folder
for each subject named SBJXX, with XX varying from 01 to 15.
Within each subject folder there is a set of folders containing
the data from each session, named SYY, with YY varying from
01 to 07. Each session folder contains a separate folder for the
training and testing data, named Train and Test, respectively. The
structure and the contents of train and test folders of each session
are described in Box 1.

BOX 1 | Dataset Folder Structure.
SBJ01\
SBJ02\
..
SBJXX\

S01\
S02\

..
SYY\

Train\
Test\
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FIGURE 1 | Snapshot of the virtual environment, showing the scenario, the
virtual avatar and the objects for joint-attention targets.

Train folder
• trainData.mat – Data from the calibration phase,

structured as [channels x epoch x event], epoch
corresponding to the data samples from −200 ms to
1000 ms relative to the event stimulus onset (epoch length
of 1200 ms; 300 data samples).

• trainEvents.txt – One label per line (from 1 to 8),
corresponding to the order of the flashed objects.

• trainTargets.txt – 1 or 0 per line, indicating if the flashed
object was the target or not, respectively.

• trainLabels.txt – Label of the target object per line (from 1
to 8), one for each block.

Test folder
• testData.mat – Data from the online phase, in the same

structure as the train data.
• testEvents.txt – One label per line (from 1 to 8),

corresponding to the order of the flashed objects.
• testTargets.txt – 1 or 0 per line, indicating if the flashed

object was the target or not, respectively.
• testLabels.txt – Label of the target object per line (from 1 to

8), one for each block.
• runs_per_block.txt – File containing only one number,

corresponding to the number of runs per block used in the
online phase (from 3 to 10).

The number of epochs corresponds to # events per run ∗

# runs per block ∗ # blocks. For the training data, it represents
8 events per run ∗ 10 runs per block ∗ 20 blocks = 1600 epochs.
As for the test data, since the number of runs varies between
sessions, the number of epochs varies in consequence, in a total of
8 events per run ∗ K runs per block ∗ 50 blocks = 400 ∗ K epochs.

The channels’ order in the data matrices is C3, Cz, C4, CPz,
P3, Pz, P4, POz. The first sample of each epoch corresponds to the

FIGURE 2 | Structure of the paradigm with its subdivisions in blocks, runs and events. (A) Structure of the blocks: each block is used to identify a single target
object and is composed by K runs. (B) Structure of the runs: each run is composed by 8 events, each consisting of the flashing of one of the objects. (C) Structure
of an event: it consists of the flashing of the corresponding object by 100 ms, followed by an interval of 200 ms.
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time −200 ms relative to the stimulus onset and the last sample
to corresponds to the time 996 ms after the stimulus onset (the
last sample < 1000 ms), with a sampling rate of 250 Hz, for a
total of 300 samples.

Challenge Structure
For the 2019 IFMBE Scientific Challenge, teams were asked
to maximize the P300-based object detection accuracy for the
7 sessions of the 15 ASD participants of the BCIAUT clinical
trial. For each session, a train and test set were created, without
disclosing the true labels of the test sets. The challenge was
divided into two phases with a different number of attempts
per phase (Table 1). For phase I, sessions 1–3 were provided,
without the test labels. At the end of phase I, the true test labels
of those three sessions were made available to the participants
along with the remaining 4 sessions (4–7), the latter without the
true test labels (phase II). This way, teams could use the true
labels of the first three sessions to improve their classifiers, if
working with multi-session data. Teams were allowed to submit
5 attempts during phase I and 10 attempts during phase II. The
best submission of each team throughout the allowed attempts
on each phase was used to rank the teams. The complete dataset
(including all true labels) is now available at https://www.kaggle.
com/disbeat/bciaut-p300 (doi: 10.34740/kaggle/dsv/1375326).

Submissions and Approaches
Fourteen teams participated in phase I of the competition, while
9 teams participated in phase II and concluded the challenge.
The results shown in this manuscript refer to the phase II of
the competition. The performance metric used to compare the
performance of contesting teams was the target object detection
accuracy, computed as the ratio between the number of correct
predicted blocks and the total number of blocks to decode. Based
on the average target object accuracy across subjects and sessions,
the approaches proposed by each team were ranked up.

The following list of IDs reflects the final ranking of the
competition:

• ID-1: DB, Silvia Fantozzi and Elisa Magosso
(Borra et al., 2020a).

• ID-2: Eduardo Santamaría-Vázquez, Víctor Martínez-
Cagigal, Javier Gomez-Pilar and Roberto Hornero
(Santamaría-Vázquez et al., 2020).

• ID-3: Lucia de Arancibia, Patricia Sánchez-González,
Enrique J. Gómez, M. Elena Hernando and Ignacio Oropesa
(de Arancibia et al., 2020).

• ID-4: MB-V and Natasha M. Maurits
(Bittencourt-Villalpando and Maurits, 2020).

TABLE 1 | Timetable and number of attempts for the two phases of
the competition.

Phase Start Date End Date Number of Attempts

Phase I 01-03-2019 10:00 15-05-2019 23:59 5

Phase II 20-05-2019 10:00 30-06-2019 23:59 10

• ID-5: DK, Sebastian Michelmann, Matthias Treder and
Lorena Santamaria (Krzemiński et al., 2020).

• ID-6: AM, Miloš Ajćević, Giulia Silveri, Gaia Ciacchi,
Giulietta Morra, Joanna Jarmolowska, Piero Paolo
Battaglini and Agostino Accardo (Miladinović et al., 2020).

• ID-7: Bipra Chatterjee, Ramaswamy Palaniappan and Cota
Navin Gupta (Chatterjee et al., 2020).

• ID-8: V. Sophie Adama, Schindler Benjamin and TS
(Adama et al., 2020).

• ID-9: HZ, Shiduo Yu, Joseph Prinable, Alistair McEwan and
Petra Karlsson (Zhao et al., 2020).

For each team, a brief description of the proposed
methodology is reported:

• ID-1: Epochs were extracted between −100–1000 ms,
and the signals were downsampled to 128 Hz. The
decoding solution was based on a CNN performing
classification at the level of single trial (EEG response to a
single stimulus, without averaging). The input was a 2-D
representation composed by the EEG channels along one
dimension (spatial dimension) and time steps along the
other dimension (temporal dimension). The CNN was an
adaptation of EEGNet (Lawhern et al., 2018) trained to
discriminate between P300 and non-P300 classes. In this
CNN design, depthwise and pointwise convolutions are
used to keep the number of trainable parameters limited.
The architecture in its fundamental subnetworks and main
connections between neurons is displayed in Figure 3.
Furthermore, a detailed description of these subnetworks
including the main hyper-parameters, output activation
shapes and number of trainable parameters introduced
is reported in Table 2. The CNN is composed by 3
main subnetworks (here labeled as A, B, C), performing
different operations on the input. These include a temporal
and spatial feature extractor (Figure 3A) that learns
meaningful temporal and spatial filters, a summary feature
extractor (Figure 3B) that learns to extract temporal
summaries for each feature map of the subnetwork A
individually; and a classification module (Figure 3C) that
finalizes the classification task based on the output of
the subnetwork B. The obtained single-trial probabilities
were then averaged together across runs related to a
specific object belonging to each block, and then the
object with maximum average probability was selected,
solving the target 8-way classification task. Different intra-
subject training strategies were explored, including inter-
session (i.e., training subject-specific classifiers) and intra-
session (i.e., training session-specific classifiers) training
strategies. The top-performing solution of ID-1 was
the one adopting a subject-wise inter-session strategy.
The code of the CNN and the weights of the trained
models are available at https://github.com/ddavidebb/
IFMBE2019Challenge-BCIAUT-P300.

• ID-2: EEG signals were epoched between 0–1000 ms,
applying a baseline (−200-0 ms) normalization. The input
representation is the same as in ID-1. The task was
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FIGURE 3 | Architecture schematization of the winning solution ID-1 based on EEGNet. The represented shapes correspond to the output of each layer. Green lines
represent convolutional connections, red lines pooling connections, and blue lines dense connections. The CNN is composed by a temporal and spatial feature
extractor (A), a summary feature extractor (B) and a classification module (C).

TABLE 2 | Architecture design inspired from EEGNet and adopted in ID-1.

Subnet. Layer ID Layer Hyper-parameters # pars Output shape Activation

A A.1 Input 0 (1,8,140)

A.2 Temporal Conv2D K = 8, F = (1,65), P = (0,32) 520 (8,8,140) Linear

A.3 BatchNorm2D 16 (8,8,140)

A.4 Spatial Depthwise-Conv2D* D = 2, K = 16, F = (8,1), P = (0,0) 128 (16,1,140) Linear

A.5 BatchNorm2D 32 (16,1,140)

A.6 Activation 0 (16,1,140) Exponential Linear Units (ELU)

A.7 AvgPooling2D F = (1,4) 0 (16,1,35)

A.8 Dropout p = 0.25 0 (16,1,35)

B B.1 Temporal Depthwise-Conv2D D = 1, K = 16, F = (1,17), P = (0,8) 272 (16,1,35) Linear

B.2 Temporal Pointwise-Conv2D K = 16, F = (1,1), P = (0,0) 256 (16,1,35) Linear

B.3 BatchNorm2D 32 (16,1,35)

B.4 Activation 0 (16,1,35) ELU

B.5 AvgPooling2D 0 (16,1,4)

B.6 Dropout p = 0.25 0 (16,1,4)

C C.1 Dense N = 2 130 (2) Linear

C.2 Activation 0 (2) Softmax

K and F are the number and the size of the kernels, respectively. P is the padding size, D the depth multiplier, N the number of neurons in the dense layer and finally p the
dropout rate. Light-gray denote layers with trainable parameters. The total number of trainable parameters is 1386. *Unitary kernel max-norm constraint.

faced as a 2-way classification decoding P300 and non-
P300 classes for each trial adopting an adaptation of
the CNN proposed by Manor et al. (Manor and Geva,

2015), a CNN-LSTM and a CNN-BLSTM. Furthermore,
these deep learning architectures were compared with
a more traditional machine learning pipeline including
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SWLDA. The top-performing algorithm proposed by ID-
2 was CNN-BLSTM. This network was composed of
one convolutional layer 1-D that extracts spatio-temporal
patterns on the input, two bidirectional LSTM layers
and one dense layer. The single-trial probabilities were
averaged to obtain object-level probabilities as in ID-
1. An intra-subject and inter-session training strategy
was adopted, training subject-specific classifiers. The code
of the models and the weights of the trained models
are available at https://github.com/esantamariavazquez/
IFMBE2019Challenge-BCIAUT-P300.

• ID-3: EEG signals related to a specific object were averaged
across trials of the same block. Feature extraction was based
on temporal and time-frequency parameters. Temporal
features were extracted in epochs between 0–1000 ms by
downsampling the signals with a decimation factor of
10. In addition to temporal features, features based on
continuous wavelet transform (CWT) were extracted from
epochs between 200–712 ms. The t-CWT was computed
based on a Mexican Hat wavelet on scales corresponding to
the delta (0.5–4 Hz) and theta (4–8 Hz) bands (Demiralp
et al., 2001; Bostanov and Kotchoubey, 2006). These
temporal and time-scale features were concatenated
across channels in a single vector. Principal component
analysis (PCA) was applied for feature dimensionality
reduction, which resulted in a final vector of 120 features.
A comparison of different combinations of linear and
non-linear machine learning approaches was performed.
More specifically, linear discriminant analysis (LDA) and
support vector machines with linear kernel (LSVM), and a
more complex support vector machine with radial kernel
(RSVM) were employed. The object whose corresponding
signals yielded a higher probability of containing a P300
event was chosen as predicted target object of the block.
In addition, the effect on the accuracy of the number of
EEG events averaged was studied. An inter-session training
strategy was adopted, comparing both subject-specific and
inter-subject classifiers, as well as the use of oversampling
and boosting techniques to account for class imbalance.
LDA outperformed the other classifiers and was used
to classify the target object. Best results were obtained
for > 3 events averaged. Training subject-specific classifiers
yielded the best performance. Oversampling and boosting
did not improve the final performance of the classifiers.
The developed code and trained models are available
at: http://dev.gbt.tfo.upm.es/ioropesa/ifmbe-scientific-
challenge-competition---detection-of-p300/tree/master.

• ID-4: The approach consisted of the adaptation and
parameter optimization of an SVM-based algorithm that
was previously developed for a 4-choice BCI (Bittencourt-
Villalpando and Maurits, 2018) for target identification.
During the first phase of the challenge, the original
algorithm was adapted for 8 choices and the pre-processing
parameters were defined as follows. First, temporal features
were extracted in epochs between 0–1000 ms following
each event onset and all channels were concatenated in
a single feature vector per event for each participant and

session. Then, feature vectors containing EEG signals from
target events were pseudo-randomly averaged across blocks
belonging to the same session for noise reduction. During
the second phase of the challenge, an intra-subject and
intra-session training strategy was developed, augmenting
the dataset with other sessions’ signals, and artificially
increasing the number of targets per session by adapting
the pseudorandom averaging procedure. Eight parameters
related to data augmentation and SVM input parameters
were optimized throughout the 9 initial attempts and then
compared in terms of accuracy. The parameters’ description
and settings per attempt are detailed in Bittencourt-
Villalpando and Maurits (2020). In the last attempt, the best
performing parameter setting was selected, resulting in a
customized solution per participant and per session.

• ID-5: This solution exploited Riemannian framework
for EEG signal decoding (Korczowski et al., 2015).
The approach was computationally efficient and recently
outperformed other common state-of-the-art approaches
(Barachant et al., 2010). The Riemannian framework was
combined with the ensemble learning. The idea was to build
upon many "weak" (under-performing) classifiers and then
combine their outcomes to improve the performance of the
final model. The ensemble of 8 different data features was
constructed by combining 2 different band-pass filters (1–
20 Hz or 1–8 Hz), 2 trial lengths (from −200 to 1000 ms
or from 0 to 600 ms) and 3 different subsets of electrodes
(all, central or posterior only electrodes). Then, the ERP
prototypes were created by calculating the ERP for each
channel. Next, the regularized covariance matrices of a
single trial concatenated with the prototype were computed
and the resultant matrices were projected into the tangent
space of a reference matrix. Fisher Geodesic Discriminant
Analysis (FGDA) was used to project the matrices to a
lower-dimensional discriminative subspace. The resultant
projections were flattened to vectors and used as the
features to the ensemble learning algorithm comprising
400 LDA classifiers. The output probability was aggregated
across trials belonging to each object to decode the target
per each block. An intra-subject and intra-session training
strategy was adopted. The developed code is available at
https://github.com/dokato/bci-challange.

• ID-6: The windows mean approach was used to obtain the
temporal features on each trial. These were computed for
each electrode on 50 ms windows without overlap from
100–1000 ms. Bayesian logistic regression with automatic
relevance determination (VB-ARD) (Drugowitsch, 2013)
was used to classify the P300 event on each trial.
The method has an advantage over other regularization
techniques which need a separate validation set to eliminate
irrelevant features. Besides, this approach generates a
posterior distribution enabling the authors to model the
varying-intercept sparse feature model. The modeling
applied in this approach is similar to the one proposed
by Bishop (2006) with a variation of Automatic Relevance
Determination (ARD) that instead of using type-II
maximum likelihood (MacKay, 1992), applies full Bayesian
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treatment (Drugowitsch, 2013). The primary generative
model matches the one employed in Bishop (2006), and
the prior is selected to be non-informative, modeled by
a conjugate Gamma distribution (Drugowitsch, 2013).
This makes the model parameter-free and easy to use
without deep knowledge in the data science domain.
The advantage of this methodology is that obtained
distribution allows the authors to find the inverse of the
predictors’ covariance matrix (precision matrix) and apply
Automatic Relevance Determination (ARD) that assigns
an individual hyper-prior to each regression coefficient
separately determining their relevance and produces for
each trial a class-belonging probability. Lastly, single-trial
probabilities were averaged together across trials for each
object belonging and the one with maximum average
probability was selected. In this method, an intra-subject
and intra-session training strategy was performed. The
demo code is available at https://github.com/miladinovic/
BCILabTS under subfolder userscripts.

• ID-7: Whole signals were used (−200–1000 ms) and the
pre-stimulus mean (−200-0 ms) was removed. Signals
were filtered between 2–12 Hz and the filtered signals
were downsampled 10-times. Then, these downsampled
electrode signals were normalized epoch-wise in the range
−100–1000 ms. These temporal features were used to
classify the P300 event for each trial with BLDA, RUSBoost
and CNN. The best performing classifier for each subject
was used (subject-specific classifier). Then, a majority
voting was done to determine the target object within each
specific block. An intra-subject and inter-session training
strategy was performed.

• ID-8: EEG signals were averaged across trials related to a
specific object belonging to each block. Temporal features
were extracted for each electrode by averaging for each time
window from 200–450 ms and decimating the output with
a factor of 12. In addition, Pearson’s correlation coefficient
was computed for each electrode between the time window
of interest and the time window preceding stimulus
presentation (−200-0 ms). These temporal features and
correlation coefficients were concatenated across channels
in a single feature vector. An inter-subject and inter-
session training strategy was performed, by which a variety
of competing supervised learning techniques (decision
tree, random forest, SVM, MLP) were trained to classify
the target object within each block. From those, MLP
performed best on the given data.

• ID-9: Epochs were extracted from 0–600 ms. An additional
20 Hz low-pass filter was applied to the original data.
In addition, a custom filter was designed to address
each subject- and session-specific noise features. The
temporal features were selected using a linear support
vector regression as a pre-selector for features in the data.
A comparison between linear and non-linear methods
was performed, using SVM, LDA, 1D 4-layer CNN,
1-layer LSTM. LDA was the top-performing classification
algorithm for ID-9 and was used to classify the P300 event
for each trial. Then, the label that appeared most times

within each block was the target object to decode. An intra-
subject and intra-session training strategy was adopted.
The code is available at https://github.com/hyphenzhao/
MEDICON2019ScientificChallenge.

A summary of the top-performing method of each team
adopted for the challenge is shown in Table 3.

Statistical Analysis
For each team, the best-performing solution proposed among the
phase II attempts – in terms of target object accuracy averaged
across subjects and sessions – was selected for analysis and the
algorithms were then ranked up based on this average score.
Furthermore, the metrics scored by algorithms ID-2:9 were
compared with the winning algorithm (ID-1) using Wilcoxon
signed-rank tests. To correct for multiple tests, a false discovery
rate correction at 5% using the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995) was applied and the corrected
p-values are reported.

RESULTS

In Tables 4, 5 the accuracies of the proposed approaches
are shown, describing the decoding variability across subjects
and recording sessions. In particular, Table 4 reports for each
subject the average target object accuracy across sessions (i.e.,
performance at the level of single subjects), while Table 5 reports
for each session the average target object accuracy across subjects
(i.e., performance at the level of single session).

Averaging across sessions and across subjects, ID-1
significantly outperformed the other approaches, with less
variability across subjects and sessions. Looking at the
performance at the level of subjects, ID-1 provided the best
performance metric for 14 out of 15 subjects (for subject #4, ID-2
provided a top-performance across the proposed solutions too),
while ID-3 provided the best performance metric for 1 out of 15
subjects (subject #14).

Averaging across subjects, ID-1 significantly outperformed
the other approaches within each recording session, with less
variability across subjects and providing an average performance
above 90% for all the phase II sessions.

DISCUSSION

In this study, a large multi-session and multi-subject dataset
acquired during a P300-based BCI intervention for young
adults with ASD was presented. The evolution and the practical
application of deep learning solutions for EEG decoding depend
on the availability of large multi-subject datasets. Furthermore,
the lack of multi-session datasets hinders the design of reliable
algorithms across recording sessions. Thus, the described
dataset represents a multi-session collection of signals that
can be used as a benchmark to design accurate and reliable
data-hungry algorithms, such as deep learning solutions, for
P300 decoding tasks.
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TABLE 3 | Summary of the best-performing algorithm of each team developed for the challenge.

ID # acc. (%) Pre-processing Methodology Post-processing Training strategy Framework

ID-1 92.3 ± 1.8 • Epochs from -100 to 1000 ms
• Downsampling to128 Hz

• CNN based on EEGNet
(Lawhern et al., 2018)

• Average probability across
runs within a specific block

• Decoding of the target object
as the object with maximum
average probability

• Intra-subject and
inter-session

• Python with PyTorch

ID-2 84.3 ± 3.2 • Epochs from 0 to 1000 ms
• Baseline normalization from -200

to 0 ms

• CNN-BLSTM • Average probability across
runs within a specific block

• Decoding of the target object
as the object with maximum
average probability

• Intra-subject and
inter-session

• Python with
Scikit-learn and
Keras

ID-3 82.0 ± 2.5 • Temporal features:
◦ Ensemble averaging per block
◦ Temporal epoching from 0 to

1000 ms.
◦ Moving-average downsampling

• CWT features:
◦ Temporal epoching from 200 to

712 ms
◦ Most differential points

computed with t-Student
(t-CWT)

• Temporal features concat (200
features)

• Computation of the t-CWT
(Bostanov and Kotchoubey, 2006)
based on Mexican Hat wavelet (128
points per channel) and CWT features
concat. (1024 features)

• Feature reduction based onyh PCA
(120 features)

• LDA

• The object whose
corresponding signals yield a
higher probability of
containing a P300 was
chosen as predicted target
object of the block

• Intra-subject and
inter-session

• MATLAB with
Statistics and
Machine Learning
Toolbox and Signal
Processing Toolbox

ID-4 81.5 ± 2.6 • Epochs from 0 to 1000 ms
• Pseudorandom
• averaging of ERP segments.

• Feature vector with 2000 elements
per ERP (concat. of 8 channels*250
elements)

• SVM

• The feature vectors were
sorted according to the event
(flashed object, from 1 to 8)

• All runs per block were
averaged, per event

• The predicted target
corresponds to the event with
the highest score.

• Intra-subject and
intra-session

• Data augmentation
with other sessions’
signals and with
pseudorandom
averaging

• MATLAB with
Statistics and
Machine Learning
Toolbox 2017.

ID-5 81.2 ± 2.1 • Band-pass filtering with two
different filters (1–20 Hz or
1–8 Hz) and two variations of trial
length (whole signal or the first
600 ms after stimuli onset)

• Three subsets of electrodes were
chosen (all, central or posterior
electrodes)

• ERP prototypes were created by
calculating the ERP for each channel

• Regularized covariance matrices of a
single trial signal concatenated with
prototype were calculated

• The resultant covariance matrices
were projected into the tangent
space of a reference matrix

• FGDA was used to project the
matrices in tangent space to a
lower-dimensional discriminative
subspace. These were used as
features.

• Ensemble of 400 LDA classifiers
(taking 40% of data samples and
60% of features) operated on
ensemble of signal preprocessed in 8
different combinations

• Aggregated probability of trial
belonging to each of the
classes.

• Intra-subject and
intra-session

• MATLAB

(Continued)
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TABLE 3 | Continued

ID # acc. (%) Pre-processing Methodology Post-processing Training strategy Framework

ID-6 80.3 ± 2.2 • Epochs from 100 to 1000 ms • Temporal features computed on
50 ms windows, without overlap,
producing 18 features per channel for
each event

• VB-ARD

• Average probability across
runs within a specific block

• Decoding of the target object
as the object with maximum
average probability

• Intra-subject and
intra-session

• MATLAB
• BCILAB

ID-7 76.3 ± 2.9 • Epochs from −200–1000 ms
• Pre-stimulus mean

(−200-0 ms) was removed.
• Band-pass filtering 2–12 Hz
• Normalization epochwise to

the interval [−1,1]

• Temporal features were extracted by
downsampling with a factor of 10 the
normalized and filtered signals

• Three classifiers were trained and
tested:
◦ BLDA
◦ RUSBoost
◦ CNN

• The best performing classifier
for each subject was used

• Majority voting within each
run to determine which flash
has been classified as target
maximum number of time
and that was predicted as
target for that particular run

• Intra-subject and
inter-session

• MATLAB with
Classification App
RUSBoosted Trees

ID-8 70.0 ± 3.8 • Averaging of EEG signals
across trials related to a
specific object within each
block

• Temporal features [based on
(Krusienski et al., 2006)]: averaging
within windows from 200–450 ms; 56
features per channel (448 total)

• Pearson’s correlation coefficients:
coefficients were computed between
the time window of interest and the
time window preceding stimulus
presentation (-200-0 ms); 8 features
per channel (64 total)

• Concatenation of temporal and
Pearson’s coefficients across
channels in a single feature vector
MLP

• - • Inter-subject and
inter-session

• MATLAB
(pre-processing)

• Python with
Scikit-learn (main
algorithm)

ID-9 67.2 ± 3.3 • Epochs from 0–600 ms
• Low-pass filter 20 Hz
• Custom filter to address each

subject- and session-specific
noise features deduced from
non-target epochs

• Linear support vector regression as
feature pre-selector

• LDA

• The label that appeared most
times within each block was
the target object to decode

• Intra-subject and
intra-session

• Python with
Scikit-learn
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TABLE 4 | Performance at the level of single subject as represented by the average target object accuracies of the best approach proposed by each team.

ID # Accuracy at the level of single subject (%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 acc (mean ± SEM) p-value

ID-1 81 100 86 96 93.5 96 96.5 100 90.5 98 94 84.5 86.5 81.5 100 92.3 ± 1.8 −

ID-2 56 98 67.5 96 80 88 86.5 99 82 93 87.5 80 81 71.5 98.5 84.3 ± 3.2 0.0010

ID-3 73 95 71 91 82.5 86 85 91.5 68.5 88.5 86 80.5 60 84 87.5 82.0 ± 2.5 0.0009

ID-4 64.5 92 68 94.5 84 86 81.5 94 71 87 87 82 66 77 88 81.5 ± 2.6 0.0009

ID-5 69 91 67 88.5 79.5 82.5 83 95 82.5 81.5 85.5 79 69 78 87.5 81.2 ± 2.1 0.0009

ID-6 68 91.5 71.5 92.5 80 84 79 94.5 73.5 82.5 84 78.5 68.5 71.5 85.5 80.3 ± 2.2 0.0009

ID-7 54 93 62.5 90 73 85.5 76 88.5 71 78 80.5 78 65 65 84.5 76.3 ± 2.9 0.0009

ID-8 48 84 58 69 69.5 52 84 94 72 87.5 77 64 50 56.5 84.5 70.0 ± 3.8 0.0009

ID-9 46 85 53 77 65 66.5 67.5 89 57 72 73.5 73 59.5 47 77.5 67.2 ± 3.3 0.0009

The best decoding performance for each subject is colored with light-gray. The mean accuracy (acc) and its standard error (SEM) are reported. Wilcoxon signed-rank test
was used to compare ID-1 with ID-2:9 and the corrected p-values for multiple tests are reported.

TABLE 5 | Performance at the level of single session as represented by average target object accuracies across subjects of the best approach proposed by each team.

ID # Accuracy at the level of single session (%)

4 5 6 7

acc (mean ± SEM) p-value acc (mean ± SEM) p-value acc (mean ± SEM) p-value acc (mean ± SEM) p-value

ID-1 92.8 ± 2.4 − 90.4 ± 3.5 − 94.8 ± 1.8 − 91.1 ± 3.0 −

ID-2 85.1 ± 3.1 0.0044 82.0 ± 5.5 0.0026 90.5 ± 2.6 0.0082 79.6 ± 5.6 0.0026

ID-3 81.5 ± 3.3 0.0023 82.0 ± 4.4 0.0062 84.3 ± 2.6 0.0025 80.3 ± 3.7 0.0015

ID-4 80.3 ± 3.0 0.0015 80.7 ± 4.4 0.0037 84.9 ± 2.6 0.0015 80.1 ± 4.2 0.0020

ID-5 79.9 ± 3.3 0.0013 78.4 ± 4.2 0.0015 85.1 ± 2.4 0.0013 81.6 ± 4.2 0.0032

ID-6 78.1 ± 3.6 0.0015 79.6 ± 4.0 0.0017 83.6 ± 2.6 0.0013 80.0 ± 3.7 0.0013

ID-7 75.2 ± 3.8 0.0013 72.8 ± 4.9 0.0013 80.3 ± 2.6 0.0013 76.9 ± 3.6 0.0013

ID-8 70.5 ± 4.3 0.0013 70.3 ± 6.0 0.0013 72.7 ± 3.8 0.0013 66.5 ± 5.7 0.0013

ID-9 64.8 ± 4.3 0.0013 66.9 ± 4.5 0.0013 69.3 ± 4.2 0.0013 67.9 ± 5.4 0.0013

The best decoding performance for each recording session is colored with light-gray. The mean accuracy (acc) and its standard error (SEM) are reported. Wilcoxon
signed-rank test was used to compare ID-1 with ID-2:9 and the corrected p-values for multiple tests are reported.

In fact, the richness of the dataset enabled the use of deep
learning approaches in the context of the competition. Among
the proposed algorithms, a deep learning solution based on
a lightweight CNN (see ID-1 in Section “Submissions and
Approaches”) outperformed both a CNN-BLSTM (p = 0.001,
across subjects and sessions, see Table 4, ID-2) and more
traditional machine-learning solutions (p < 0.001, across subjects
and sessions, see Table 4). Furthermore, this was found also for
single session recordings (p < 0.005 when comparing ID-1 with
other solutions, see Table 5), with average metrics above 90% (far
above the chance level of 12.5%). The best non-deep learning
solution adopted temporal and CWT features, alongside with
PCA for dimensionality reduction and LDA for classification (see
ID-3 in Section “Submissions and Approaches”). The training
strategies performed in the approaches ID-1:3 were both intra-
subject and inter-session. In particular for the winning solution,
from the experiments between inter-session and intra-session
trainings performed by ID-1, better results were found using all
the session signals during the optimization.

When using deep learning approaches with EEG signals,
the input representation and the design of spatio-temporal

convolutions is not trivial and need to be addressed. Regarding
the input representation, the time series are related to electrodes
placed on a 3D surface. Typically, EEG signals can be represented
in three different ways to feed the input layer of a neural network
(Lawhern et al., 2018):

a. Using the original representation of all the available
electrode signals to design a 2D representation where
EEG channels are reported along one dimension (spatial
dimension) and time steps along the other dimension
(temporal dimension).

b. Using a transformed representation (e.g., time-frequency
decomposition) of all the available electrodes.

c. Using a representation as in (b) with a subset of electrodes.

Among these representations, the first one is preferred
since a representation like (b) generally increases the
dimensionality (Lawhern et al., 2018), leading to more trainable
parameters and, thus, to the need of more data or an increased
regularization. Furthermore, several hyper-parameters are
introduced depending on the transformation applied. Lastly,
representations like (c) share the main disadvantages of (b)
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with an additional needing of a priori knowledge about the
more relevant subset of electrodes to choose. Therefore,
representations that respect the scheme (a) are a good
compromise between input dimensionality and capability
to learn more general EEG features on all the electrode signals
(Lawhern et al., 2018). Among the best-performing solutions
in this competition, ID-1 and ID-2 adopted the first input
representation scheme.

Regarding the design of spatio-temporal convolutions,
depending on the information processing in the convolutional
module, three different solutions can be designed starting from
the input layer:

i. The temporal filtering is performed at first and then the
spatial filtering.

ii. The spatial filtering is performed at first and then the
temporal filtering.

iii. Mixed spatio-temporal filtering.

The CNN adopted by ID-1 used the convolutions ordering
as in (i), while the CNN-BLSTM adopted by ID-2 as in (iii).
Furthermore, among the solutions proposed by ID-2, there was
a CNN based on Manor and Geva (2015) adopting a convolution
ordering as in (ii). Thus, in this competition, the solutions based
on convolution ordering as in (i) outperformed the solutions
following (ii) and (iii) designs.

In addition, the layers of the neural network need to be
carefully designed to keep control the number of trainable
parameters and thus, to avoid overfitting when handling a
limited collection of training signals. To this aim, architectures
like EEGNet (Lawhern et al., 2018) were proposed including
optimized convolutions, such as depthwise and separable
convolutions (Chollet, 2016). The CNN adapted in ID-1 was
inspired from Lawhern et al. (2018) and introduced only 1386
trainable parameters, while the CNN-BLSTM designed by ID-
2 introduced 10113 parameters. Lastly, among the solutions
proposed by ID-2 (different from the best-performing algorithm
of ID-2), a CNN based on Manor et al. (Manor and Geva, 2015)
introduced 37428963 parameters. Therefore, in this competition
the use of a lightweight architecture to solve the target P300
decoding task was beneficial. This result is in line with the
recent growth of interest in the design of optimized layers in
CNNs for EEG decoding as proposed by Zhao et al. (2019)
and Borra et al. (2020b).

The BCIAUT-P300 dataset presents rare characteristics which
reinforce its potentialities to work as a benchmark for P300-
based BCI methods: 1) the multi-subject dimension, with
15 participants undergoing the same procedure, enable the
possibility of developing inter-subject methods for generalized
off-the-shelf applications; 2) the multi-session dimension, since
each subject repeated the same training task 7 times in
different weeks, enables the study of stability and reliability of
subject-specific BCI methods throughout time, and even the
inclusion of reinforcement learning strategies by approaching
the sessions gradually; and 3) the ASD clinical dimension,
since real-life BCI applications on ASD patients pose several
challenges, this dataset provide a test bench for data quality

and artifactual EEG data on ASD population that new projects
can use to validate its models before approaching the clinical
patients directly.

CONCLUSION

This paper presented the BCIAUT-P300 dataset which combines
multi-session and multi-subject data of 15 ASD participants using
a P300-based BCI for training joint-attention skills. The dataset
was used on the IFMBE scientific competition where 9 teams
from around the world reach the final phase and presented
their methods, which were briefly presented here. Overall, deep
learning methods were able to overcome the more traditional
machine learning approaches, with the best method obtaining
an average accuracy of 92.3%. Future studies should address the
multiple dimensions of the dataset to reduce training times while
improving accuracy.
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(2001). Wavelet analysis of oddball P300. Int. J. Psychophysiol. 39, 221–227.
doi: 10.1016/S0167-8760(00)00143-4

Deshpande, G., Rangaprakash, D., Oeding, L., Cichocki, A., and Hu, X. P. (2017).
A new generation of brain-computer interfaces driven by discovery of latent
EEG-fMRI linkages using tensor decomposition. Front. Neurosci. 11:246. doi:
10.3389/fnins.2017.00246

Frontiers in Neuroscience | www.frontiersin.org 13 September 2020 | Volume 14 | Article 56810460

https://doi.org/10.1007/978-3-030-31635-8_230
https://doi.org/10.1007/978-3-030-31635-8_230
https://doi.org/10.1111/cdev.12973
http://arxiv.org/abs/1611.00033
https://doi.org/10.3389/fnins.2018.00477
https://doi.org/10.1016/j.jneumeth.2017.07.029
https://doi.org/10.1016/j.jneumeth.2017.07.029
https://doi.org/10.3109/17483107.2014.961569
https://doi.org/10.1007/978-3-642-15995-4_78
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.4018/978-1-5225-0571-6.ch012
https://doi.org/10.4018/978-1-5225-0571-6.ch012
https://doi.org/10.1109/tnsre.2018.2855801
https://doi.org/10.1109/tnsre.2018.2855801
https://doi.org/10.1007/978-3-030-31635-8_228
https://doi.org/10.1109/TBME.2004.826692
https://doi.org/10.1109/TNSRE.2006.875642
https://doi.org/10.1007/978-3-030-31635-8_223
https://doi.org/10.1007/978-3-030-31635-8_223
https://doi.org/10.1016/j.neunet.2020.05.032
https://doi.org/10.1016/j.neunet.2020.05.032
https://doi.org/10.1016/j.clinph.2006.08.012
https://doi.org/10.1016/j.clinph.2006.08.012
https://doi.org/10.1007/978-3-030-31635-8_231
https://doi.org/10.1038/nrneurol.2016.113
https://doi.org/10.1088/1741-2552/ab0ab5
https://doi.org/10.1007/978-3-030-31635-8_227
https://doi.org/10.1007/978-3-030-31635-8_227
https://doi.org/10.1016/S0167-8760(00)00143-4
https://doi.org/10.3389/fnins.2017.00246
https://doi.org/10.3389/fnins.2017.00246
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-568104 September 30, 2020 Time: 15:32 # 14

Simões et al. BCIAUT-P300 Multi-Session Benchmark

Drugowitsch, J. (2013). Variational Bayesian inference for linear and logistic
regression. arXiv [Preprint]. Avaialble at: https://arxiv.org/abs/1310.5438
(accessed May 10, 2020).

Farwell, L., and Donchin, E. (1988). Talking off the top of your head:
toward a mental prosthesis utilizing event-related brain potentials.
Electr. Clin. Neurophysiol. 70, 510–523. doi: 10.1016/0013-4694(88)
90149-6

Guo, M., Jin, J., Jiao, Y., Wang, X., and Cichockia, A. (2019). Investigation of
visual stimulus with various colors and the layout for the oddball paradigm
in evoked related potential-based brain–computer interface. Front. Comput.
Neurosci. 13:24. doi: 10.3389/fncom.2019.00024

Korczowski, L., Congedo, M., and Jutten, C. (2015). “Single-trial classification of
multi-user P300-based brain-computer interface using riemannian geometry,”
in Proceedings of the 2015 37th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), (Piscataway, NJ: IEEE),
1769–1772.

Krusienski, D. J., Sellers, E. W., Cabestaing, F., Bayoudh, S., McFarland, D. J.,
Vaughan, T. M., et al. (2006). A comparison of classification techniques for the
P300 Speller. J. Neural Eng. 3:299.
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INTRODUCTION

Functional Near-Infrared Spectroscopy (fNIRS) is an optical neuroimaging technology that has
rapidly gained momentum within the last decades (Boas et al., 2014; Scholkmann et al., 2014;
Yücel et al., 2017). It is a non-hazardous and non-invasive optical brain imaging technique
that uses near-infrared light to measure local cortical concentration changes of oxygenated and
deoxygenated hemoglobin (HbO2/HbR), which are associated with brain metabolism (Villringer
and Chance, 1997; Ferrari and Quaresima, 2012). fNIRS has been considered a cost-effective and
mobile alternative for functional Magnetic Resonance Imaging in conventional neuroscientific
research. It is very suitable—and thus increasingly being used—for single trial analysis and Brain
Computer Interface (BCI) applications (Matthews et al., 2008; Hong et al., 2018) as a single
modality or along with Electroencephalography (EEG). While EEG and fNIRS signal processing
is essential to increase the contrast to noise ratio (CNR) of measured brain responses, the nature
of the signals and processing methods differ greatly. Hemodynamic brain responses in fNIRS
are usually masked by local and systemic physiological confounding signals, for instance from
superficial (scalp) blood flow, low frequency oscillations (Mayer waves), motion and breathing
(Elwell et al., 1999; Yücel et al., 2016; von Lühmann et al., 2019). New and increasingly complex
and powerful statistical methods are being developed that aim to remove the confounding factors
in the signal, improve CNR and increase the detection/classification accuracy of hemodynamic
responses. An objective way of validating the power of these novel methods and comparing them
with the existing ones is to use an fNIRS dataset which has all the confounding signals but also a
known hemodynamic brain response. One solution for this problem is to generate realistic fNIRS
ground truth data by modeling a hemodynamic response function (HRF) on top of real resting
state data (Gagnon et al., 2012; von Lühmann et al., 2019, 2020a,b). This approach can be used as a
good approximation for realistic fNIRS signals with evoked responses, for which the ground truth
is available. Generating such data is comparatively straight forward but requires prior knowledge in
fNIRS signal characteristics as well as experience in fNIRS signal processing. Moreover, the use of
short-separation fNIRS measurements and additional physiological signals, such as accelerometer
or photoplethysmography (PPG), has been shown to enable methods that yield improved CNR
(Yücel et al., 2015; von Lühmann et al., 2020a), but there are only few openly available multimodal
fNIRS datasets (Shin et al., 2017, 2018) and even fewer multimodal datasets that include sufficient
resting state periods to enable the approach described above. Thus, as a remedy, here we
provide such a multimodal dataset with (and without) added synthetic HRF ground truth,
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short-separation fNIRS measurements, accelerometer, and other
physiological measurement, for the data science community in
order to facilitate the validation of novel methods. We also
provide a simple code example to enable customization and
modification of the HRF ground truth in the data.

METHODS

The resting state data consists of two subsets: Dataset I, with
5min resting state data from 14 participants and Dataset II, with
10min resting state data from 14 participants. The data details
follow and are summarized in Figure 1.

Participants and Demographics
Dataset I consists of recordings from 14 healthy participants (age:
21 ± 2 years; 11 male/3 female) and Dataset II from 14 healthy
participants (age: 32 ± 19 years; 7 male/6 female/1 not reported)
with no neurological or psychological disorders.

Experimental Paradigm
Participants were seated in a comfortable chair with room light
on and were asked to look at a fixation cross on a black screen
∼50 cm in front of them. A 5-min resting state data (Dataset I)
or a 10-min resting state data (Dataset II) were recorded from
each participant.

Data Acquisition
fNIRS data were acquired using a multichannel continuous wave
fNIRS system (CW6, TechEn Inc. MA, USA) operating at 690
and 830 nm wavelengths. The system is an optical imager with
32 frequency encoded lasers (half at 690 and half at 830 nm) and
32 avalanche photo-diode detectors. The light is carried from
the system to the head probe and back via optical fiber bundles.
fNIRS data were acquired at a sample rate of 50 Hz.

DATASET I: Optode Array and Auxiliary

Measurements

Optode array
Both head optode arrays were designed utilizing AtlasViewer
software (Aasted et al., 2015) (Figure 1). The optode array for
Dataset I consisted of an elastic cap (EasyCap, Herrsching,
Germany) with 8 sources, 12 long-separation detectors (∼3 cm
apart from the source) and 2 short-separation detectors (∼1 cm
apart from the source) providing, in total, 26 long-separation and
2 short-separation channels covering the occipital lobe.

Auxiliary measurements
Systemic physiological changes and head motions of the
participants were simultaneously recorded along with the fNIRS
data using an MP160 data acquisition and analysis system
(BIOPAC Systems Inc., Goleta, CA). The pulse waveform
was recorded using a PPG100C amplifier and TSD200 PPG
pulse transducer placed on the participant’s right index finger
(BIOPAC Systems Inc., Goleta, CA). Respiration data was
collected via measuring the abdominal (or thoracic) expansion
and contraction using a RSP100C amplifier and a TSD201
respiration transducer (respiration belt) (BIOPAC Systems Inc.,

Goleta, CA) around the participant’s chest. The blood pressure
waveform was recorded using a DA100C amplifier and a TSD110
pressure transducer (BIOPAC Systems Inc., Goleta, CA) placed
on the participant’s right thumb. Head motions in x, y, z
directions were collected using an accelerometer (ADXL335,
Analog Devices Inc., Norwood, MA) secured on the head with
a headband.

DATASET II: Optode Array and Auxiliary

Measurements

Optode array
The optode array for Dataset II consisted of an elastic cap
(EasyCap, Herrsching, Germany) with 16 sources, 24 long-
separation detectors (∼3 cm apart from the source) and 8 short-
separation detectors (∼1 cm apart from the source) providing,
in total, 48 long-separation and 8 short-separation channels
covering the head from frontal to parietal regions bilaterally.

Auxiliary measurement
Head motions of the participants in x, y, z directions were
simultaneously recorded along with the fNIRS data using a 3-axis
accelerometer (ADXL335, Analog Devices Inc., Norwood, MA)
secured on the head with a headband.

Adding Synthetic HRF to the fNIRS Data
In the documented data repository, we provide the acquired
resting state data with and without synthetic HRF as well as the
scripts used for the generation of the data to enable users to
alter and re-generate ground truth HRF according to their needs.
We generate synthetic HRFs with three different amplitudes
using a gamma function with a time-to-peak of 6 s and a total
duration of 16.5 s. The shape of this synthetic HRF is also
depicted in Figure 2A. The three amplitudes are provided as
percentages (100/50/20%) of a typical average amplitude of a
task-evoked HRF (Huppert et al., 2006) and simulate varying
degrees of CNR in the data: The (100%) amplitude is equal to
+1% | −2% change from baseline intensity at 690 nm | 830 nm
leading to an HRF peak amplitude of +0.66 | −0.23µM for
HbO2 | HbR, respectively with a differential pathlength factor
of 6 (Delpy et al., 1988; Boas et al., 2004) for a 30mm source-
detector separation. For each participant in the two datasets, all
resting state data is divided into windows of 20 s length. The
HRFs are added in the intensity domain at a random onset
(0–3.5 s) within each 20 s window for a randomly selected half
of all available long separation channels after pruning with a
5 dB SNR threshold. This results in an average of 15 | 38
trials per participant and HRF amplitude in each resting state
Dataset I | II.

Data Structure and Format
Both datasets are presented in the Shared Near Infrared File
Format V1.0 Specification (snirf), which is based on the
HDF5 file format (https://github.com/fNIRS/snirf). SnirfClass
function loads the snirf object into the MATLAB environment.
Table 1 provides the list of variables in the current dataset
snirf object. The main fields of interest are: the data

field which has the fNIRS raw signal at each channel
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FIGURE 1 | Summary of dataset metadata. Red dots are fNIRS emitters, blue dots are fNIRS detectors. LS, Long-Separation; SS, Short-Separation; PPG,

Photoplethysmography; RESP, Respiration; BP, Blood Pressure; ACCEL, Accelerometer. HRF with 20, 50, and 100 % of +0.66 | −0.23µM peak HbO2/HbR

amplitude. Sensitivity profile in log10 dB.

FIGURE 2 | Overview of data quality and baseline analysis for Datasets I and II. (A) Across-trial recovered HRF estimated with tCCA GLM using Homer3 for all three

amplitudes (100, 50, 20%) (participant 33 from Dataset I and participant 98 from Dataset II - the first participant in each data set). Red: HbO2, Blue: HbR, Black

dashed: Ground Truth. (B) Mean SNR in dB across channels for all participants. Whiskers indicate standard deviation. (C) Mean Motion Ratio across channels for all

participants which indicates the ratio of motion-contaminated data to the whole data. (D) Example time course of multimodal data in Dataset I. LS, Long-separation

channel; SS, Short-separation channel; AccelX|Y|Z, Accelerometer; PPG, Photoplethysmogram; BP, Blood Pressure; RESP, Respiration.

and relevant information, the probe field which has optode
array information, the aux field which has all the auxiliary
measurements and their details, and the stim field which

has the experimental paradigm information. Please note that,
while snirf.aux(2)/(3)/(4) have AccelX, AccelY, and AccelZ
measurements for both datasets, Dataset I has PPG, blood
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TABLE 1 | Snirf object fields.

snirf.filename Filename

snirf.fileformat “hdf5”

snirf.data.dataTimeSeries Time-varying signals from all channels following the order in snirf.data.measurementList

e.g., 10th column of snirf.data.dataTimeSeries corresponds to

snirf.data.measurementList(10) which is the channel defined with sourceIndex: 2;

detectorIndex: 18 and wavelengthIndex: 1

snirf.data.time Time

snirf.data.measurementList Per-channel source-detector-wavelength information

snirf.data.measurementList.dataTypeLabel Defined as (1) for HRF added channels and (0) for no HRF channels, specifically for this dataset

e.g., to check whether HRF is added on channel 10

check snirf.data.measurementList(10).dataTypeLabel

snirf.stim.name Stimuli labels

snirf.stim.data Data stream of the stimulus channel

snirf.probe.wavelengths List of wavelengths (in nm)

snirf.probe.sourcePos Source position

snirf.probe.detectorPos Detector position

snirf.probe.sourceLabels String arrays specifying source names

snirf.probe.detectorLabels String arrays specifying detector names

snirf.aux.name Name of the auxiliary channel

e.g., to check the content of an auxiliary channel 2

snirf.aux(2).name

snirf.aux.dataTimeSeries Data acquired from the auxiliary channel

snirf.aux.time Time for auxiliary data

pressure (BP), RESP at snirf.aux(5), (6), and (7), respectively in
addition to these.

BASELINE ANALYSIS AND DATA QUALITY
ASSESSMENT

Baseline analysis and data quality assessment was performed
using the openly available Homer3 toolbox (https://github.
com/BUNPC/Homer3) (Huppert et al., 2009). HRFs
were recovered from the augmented resting state data
using the processing stream provided in the repository
(tCCA_xmpl_procStream_Gauss_noHPF.cfg under “code”

folder). This processing stream includes 0.5Hz zero phase low
pass filter with an effective order of 6, conversion to HbO2

and HbR using the modified Beer-Lambert Law (Delpy et al.,
1988; Boas et al., 2004), and subsequent HRF estimation with
the temporally embedded General Linear Model (tCCA GLM)
approach using short-distance channels and a polynomial drift
term for nuisance regression and Gaussian basis functions for
the HRF regressor (von Lühmann et al., 2020a). Figure 2A

exemplifies the resulting HRF estimates in one augmented
channel for all three amplitudes from participant 33 from
Dataset I and participant 98 from Dataset II. Data quality is
provided for each participant as across-channel average of the
Signal to Noise Ratio (SNR) in Figure 2B and as themeanmotion
ratio across channels in Figure 2C. Channel SNR is calculated
as 20 × log10 of the mean over std. of the raw intensity
signal. The motion ratio is calculated as the ratio between the

cumulative time of segments in the data that were considered to
be confounded by motion artifacts, as identified by the Homer2
function hmrMotionArtifactByChannel (with tMotion = 0.5,
tMask = 0.5, STDEVthresh = 20, AMPthresh = 5), to the total
acquisition time. Figure 2D displays a typical segment of all
available signals (z-scored) in the first participant in Dataset I.
Long and short-separation fNIRS channels exhibit typical low
frequency components and cardiac pulsation, which is also
present in the PPG and BP measurement.

SUMMARY

We reported a multimodal fNIRS resting state dataset from 28
participants, that we provide with and without added synthetic
HRF ground truth at three different amplitudes. We include
the script used for the generation of these data to enable users
to adapt this approach to their own needs. The availability of
multiple auxiliary biosignals, such as motion (accelerometer)
and PPG in the data, can be used to explore and extend
existing multimodal fNIRS-based signal processing approaches
(von Lühmann et al., 2019, 2020a). Resting fNIRS data with
added known HRF enables the validation of novel processing
methods for single trial HRF detection and BCI as well as
more general artifact rejection and preprocessing approaches and
their comparison with existing methods. This can also be useful
for methods that tackle challenges such as non-stationarities in
the amplitude and time to peak of hemodynamic responses to
a stimulus.
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This paper reports on a benchmark dataset acquired with a brain–computer interface
(BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The
dataset consists of 64-channel electroencephalogram (EEG) data from 64 healthy
subjects (sub1,. . ., sub64) while they performed a target image detection task. For
each subject, the data contained two groups (“A” and “B”). Each group contained
two blocks, and each block included 40 trials that corresponded to 40 stimulus
sequences. Each sequence contained 100 images presented at 10 Hz (10 images per
second). The stimulus images were street-view images of two categories: target images
with human and non-target images without human. Target images were presented
randomly in the stimulus sequence with a probability of 1∼4%. During the stimulus
presentation, subjects were asked to search for the target images and ignore the
non-target images in a subjective manner. To keep all original information, the dataset
was the raw continuous data without any processing. On one hand, the dataset can
be used as a benchmark dataset to compare the algorithms for target identification
in RSVP-based BCIs. On the other hand, the dataset can be used to design new
system diagrams and evaluate their BCI performance without collecting any new data
through offline simulation. Furthermore, the dataset also provides high-quality data for
characterizing and modeling event-related potentials (ERPs) and steady-state visual
evoked potentials (SSVEPs) in RSVP-based BCIs. The dataset is freely available from
http://bci.med.tsinghua.edu.cn/download.html.

Keywords: rapid serial visual presentation, brain–computer interface, electroencephalogram, target detection,
public dataset, event-related potential

INTRODUCTION

Brain–computer interfaces (BCIs) provide a direct communication and control channel between
the brain and external devices by analyzing neural activity, which has become one of the current
study hot spots (Gao et al., 2014; Chen et al., 2015a; Han et al., 2020). Electroencephalogram
(EEG) is the most widely used tool for BCIs because of its advantages such as non-invasiveness,
low cost, and high temporal resolution (Stegman et al., 2020; Zhang et al., 2020). At present,

Frontiers in Neuroscience | www.frontiersin.org 1 October 2020 | Volume 14 | Article 56800067

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.568000
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.568000
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.568000&domain=pdf&date_stamp=2020-10-02
https://www.frontiersin.org/articles/10.3389/fnins.2020.568000/full
http://bci.med.tsinghua.edu.cn/download.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-568000 September 30, 2020 Time: 16:7 # 2

Zhang et al. Benchmark Dataset for RSVP BCIs

remarkable progresses have been made in the performance and
practicability of BCIs due to the optimization of the experimental
paradigm, the improvement of the signal processing algorithm,
and the application of the machine learning method (Chen et al.,
2015b; Nakanishi et al., 2018; Zhang et al., 2018). Especially in
recent years, the emergence of free open datasets has spared
the time, money, and labor costs of data collection, thus
providing convenience for the majority of BCI researchers and
promoting the progress of algorithm development. The datasets
covered many BCI paradigms such as steady-state visual evoked
potentials (SSVEPs) (Wang et al., 2017; Lee et al., 2019), event-
related P300 potentials (Abibullaev and Zollanvari, 2019; Vaineau
et al., 2019), and motor imagery (Cho et al., 2017; Kaya et al.,
2018). In addition, there are some open multimodal datasets for
BCIs obtained synchronously with EEG (Lioi et al., 2019). As the
broad audience of these datasets, researchers in a wide range of
fields have contributed their intelligence to the BCI technology.

Rapid serial visual presentation (RSVP)-based BCI is a
special type of BCI that detects target stimuli (e.g., letters or
images) that are presented sequentially in a stream by detecting
the brain’s response to the target. RSVP is the process of
sequentially displaying images in the same spatial position
at a high presentation rate with multiple images per second
(such as 2–20 Hz) (Lees et al., 2017). In the applications that
benefit from this paradigm, computers are unable to analyze and
understand images with deep semantic and unstructured features
as successfully as humans, and the manual analysis tools are slow,
which makes the study of RSVP-BCI more and more popular in
recent decades. RSVP-BCI has been used in counterintelligence,
police, and health care that require professionals to review
objects, scenes, people, and other relevant information contained
in a large number of images (Huang et al., 2017; Singh and
Jotheeswaran, 2018; Wu et al., 2018).

Different EEG components are associated with target and non-
target stimuli (Bigdely-Shamlo et al., 2008; Cohen, 2014), and
BCI signal processing algorithms have been used to recognize
event-related potential (ERP) responses and link them to target
images. The most commonly exploited ERP in RSVP-based BCI
applications is the P300, ideally on a single-trial basis (Manor
et al., 2016). In order to detect ERPs induced by target images,
researchers have developed a variety of algorithms and evaluated
them with the data collected independently (Sajda et al., 2003;
Alpert et al., 2014; Zhao et al., 2019). Unfortunately, as far as
we know, there is still a lack of a benchmark dataset for the
RSVP-based BCI paradigm. It is always difficult to compare the
performance of different algorithms with a small amount of data.
One of the main difficulties in collecting a benchmark dataset is
the large number of system parameters in RSVP-based BCIs (e.g.,
frequency of image presentation, target definition, target sparsity
and identifiability, and number of trials and subjects). There is a
great need to collect and publish a large benchmark dataset using
the RSVP-based BCI paradigm.

This study provides an open dataset for BCI study based
on the RSVP paradigm. The characteristics of this dataset are
described as follows. (1) A large number of subjects (64 in
total) were recorded. (2) A large number of stimulation image
circles (16,000 for each subject) were included. (3) Complete

data were provided with the original continuous data without
any processing, including EEG data, electrode positions, and
subjects information. (4) Stimulus events (onsets and offsets)
were precisely synchronized to EEG data. (5) The 64-channel
whole-brain EEG data were recorded. That means that this
dataset contains a total of 64 subjects, 10,240 trials, 1,024,000
image circles, and 102,400 s of 64-channel EEG data. This dataset
provides potential opportunities for developing signal processing
and machine learning algorithms that rely on large amounts
of EEG data. These features also make it possible to study the
algorithms for ERP detection and the methods for stimulus
coding with the dataset. In addition, through offline simulation,
stimulus coding and target recognition methods can be jointly
optimized toward the highest performance of an online BCI.

The rest of this paper is organized as follows. The Methods
section introduces the experimental setup of data recording.
The Data Recording section introduces the data records and
other relevant information. The Technical Validations section
introduces the basic methods in data analysis and gives three
examples to illustrate how to use the dataset to study the methods
of target detection in RSVP-based BCIs. The Discussions and
Conclusion section summarizes and discusses the future work to
improve the dataset.

MATERIALS AND METHODS

Subjects
Sixty-four subjects (32 females; aged 19–27 years, mean
age 22 years) with normal or corrected-to-normal vision
were recruited for this study. Each subject signed a written
informed consent before the experiment and received a
monetary compensation for his or her participation. This
study was approved by the Research Ethics Committee of
Tsinghua University.

Experimental Design
This study developed an offline RSVP-BCI system. A 23.6-inch
liquid crystal display (LCD) screen was used to present visual
stimuli. The resolution of the screen was 1,920 × 1,080 pixels,
and the refresh rate was 60 Hz. The visual stimulus images were
rendered within a 1,200 × 800-pixel square in the center of the
screen. The screen area surrounding the stimuli image was gray
colored [red green blue (RGB): (128, 128, 128)].

The stimulus program was developed under MATLAB
(MathWorks, Inc.) using the Psychophysics Toolbox Ver. 3
(PTB-3) (Brainard, 1997). The stimulus images, downloaded
from the Computer Science and Artificial Intelligence Library of
MIT University, were street-view images of two categories: target
images showing human and non-target images without human.
During the experiment, subjects were asked to search for the
target images and ignore the non-target images in a subjective
manner. As previous studies have shown similar performance
between motor and non-motor response tasks (Gerson et al.,
2006), subjects in this study were required to make a manual
button press to maintain attention once detecting target images
in the RSVP task.
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Figure 1 shows the time course of the RSVP paradigm. Each
trial started with a blank for 0.5 s with a cross mark on the
center of the screen, and subjects were asked to shift their gaze
to the cross mark as soon as possible. The frequency of image
presentation was set to 10 Hz (10 images per second).

Figure 2 shows the parameter settings of the experiment for
each group. Each group covered two blocks, each containing 40
trials. Each trial contained 100 images, including one, two, three,
or four target images. Images in each trial were presented in a
random order. At the beginning of each image’s presentation, a
time marker named “event trigger” was sent by the stimulation
program to mark the current stimulus image and was recorded on
an event channel of the amplifier synchronized with EEG. There
was a short key-controlled pause between trials. The duration of
each block was about 10 min. There was an average rest time of
about 5 min between two blocks to relieve subjects’ fatigue.

Data Acquisition
Electroencephalogram data were recorded using the Synamps2
system (Neuroscan, Inc.) at a sampling rate of 1,000 Hz. All 64
electrodes were used to record EEG and were placed according
to the international 10–20 system. The reference electrode, with
the 10–20 electrode name of “Ref,” was located at the vertex.
Electrode impedances were kept below 10 k�. During the
experiment, subjects were seated in a comfortable chair in a dimly
lit soundproof room at a distance of approximately 70 cm from
the monitor. The EEG data were filtered from 0.15 to 200 Hz by
the system. The power-line noise was removed by a notch filter
at 50 Hz. It is worth to mention that the impedance of M1 and
M2 electrodes (channels of 33 and 43) was higher than 10 k� for
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FIGURE 2 | The parameter settings of the experiment for each group.

some subjects. We therefore suggest to select EEG data from the
other 62 channels for analysis, and the EEG analysis in this study
used the 62-channel data with the channel indices of [1:32 34:42
44:64] and removed the bad channels.

Data Preprocessing
The dataset was the continuous data at a sampling rate of 250 Hz,
and it was obtained from the raw EEG data (sampling rate at
1,000 Hz) after four times downsampling. For each of the datasets
from 1 to 64 (sub1,. . ., sub64), EEG data contained four blocks,
which were divided into two groups (namely, groups A and B)
in chronological order. Each group contained two blocks, and
each contained 40 trials. Each trial contained 100 circles, and
each circle corresponded to one image. For each group, the two
blocks were used for training and testing in the ERP-based target
detection, respectively. In addition, a 10-fold cross-validation
using both blocks 1 and 2 was performed to further evaluate the
classification performance.

To verify the validity of the dataset, the continuous EEG
data at a sample rate of 250 Hz were processed by a four-
order Butterworth filter with a bandwidth of [2 30] Hz. EEG
data epochs were extracted according to event triggers generated
by the stimulus program. In this study, time 0 represented the
beginning of each image stimulus period (marked by a trigger),
and the EEG data corresponding to each image (namely, one
circle) were intercepted within the time interval from −200 to
1,000 ms. The waveforms of ERPs and SSVEPs corresponding to
target and non-target images were obtained using the averaged
EEG data within the time interval of (−200 1,000) ms.

Target Classification
Single-circle EEG data were firstly processed by spatial filtering
methods, and then the target detection was realized by
classification algorithms. Four spatial filtering methods, namely,
common spatial pattern (CSP), SIgnal-to-noise ratio Maximizer
(SIM), task-related component analysis (TRCA), and principal
component analysis (PCA) whitening, were compared in this
study. The effects of the number of components (from 1 to
50) of different spatial filtering methods on the classification
performance were compared. The performance of spatial
filtering was evaluated by the followed classification results
of the classical Hierarchical Discriminant Component Analysis
(HDCA) algorithm, which was adopted as a baseline measure
of classification performance for single-circle EEG between
target and non-target images (Gerson et al., 2006; Sajda et al.,
2010). As a classical classification method widely used in
RSVP-BCIs, HDCA algorithm realizes target images recognition
based on spatial and temporal projection features of ERP
signals. EEG data were firstly divided into 100-ms data
segments, and then the feature extraction and classification were
conducted according to the spatial and temporal characteristics
of the data segments.

To evaluate the performance of the classification methods,
four classification algorithms, namely, Support Vector Machine
(SVM), Spatially Weighted Fisher linear discriminant (FLD)-
PCA (SWFP), Discriminative Canonical Pattern Matching
(DCPM), and HDCA, were compared based on this dataset.
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The EEG data used for single-circle classification were the
data in the time interval of [0, t] ms, “t” might be 200,
300,. . ., 1,000 ms. SIM algorithm was used as a basic spatial
filtering method before the performance comparison of the four
classification algorithms.

Performance Evaluation
R-square values for each time point were used to show the
separability between target and non-target stimuli. For each
subject, we selected all the target data and the same amount
of non-target data randomly selected to calculate r-square
values. For each time point, the input was composed of
two one-dimensional vectors, which were composed of target
data and non-target data, respectively. The r-square values of
each subject were calculated, and the r-square values of all
subjects were averaged to obtain the final results, as shown in
Figure 3B.

Classification performance of single-circle EEG data for target
and non-target circles was measured using the area under the
receiver operating characteristic (ROC) curve (Fawcett, 2006).
ROC curves are used when applications have an unbalanced
class distribution, which is typically the case with RSVP-BCI,
where the number of target stimulus is much smaller than that
of non-target stimuli.

Statistical Analysis
Statistical analyses were conducted using SPSS software (IBM
SPSS Statistics, IBM Corporation). One-way repeated-measures
analysis of variance (ANOVA) was used to test the difference
in the classification performances among different algorithms.
The Greenhouse–Geisser correction was applied if the data did
not conform to the sphericity assumption by Mauchly’s test of
sphericity. All pairwise comparisons were Bonferroni corrected.
Statistical significance was defined as p < 0.05.
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DATA RECORDING

EEG Data
The dataset is freely available at http://bci.med.tsinghua.edu.
cn/download.html. The dataset was the raw continuous data
without any processing. It contains 128 MATLAB MAT files
corresponding to data from all 64 subjects (approximately 15 GB
in total). Data were stored as double-precision floating-point
values in MATLAB. Each MAT file covers a group of EEG data.
There are two sets of EEG data (groups A and B) for subjects
from 1 to 64. The files were named as subject and group indices
(i.e., sub1A.mat, sub1B.mat,. . ., sub64A.mat, sub64B.mat). For
each file, the data loaded in MATLAB generate two 2-D matrices
named “EEGdata1” (block1) and “EEGdata2” (block2) with
dimensions of [64, L] (the two dimensions indicate “Electrode
index,” “Time points,” respectively) and two 2-D matrices named
“class_labels” and “trigger_positions” with dimensions of [2,
4000]. The parameter of L (the length of time points) might
be different for different blocks. The two dimensions indicate
“class labels,” in which “2” and “1” indicate “non-target images”
and “target images,” respectively. Each circle corresponds to the
EEG data of a visual stimulus image. For each group, the data
matrix consists of 8,000 circles (100 circles × 40 trials × 2
blocks), and each circle consists of 64 channels of EEG data.
A “Readme.txt” file explains the data structure and other task-
related information.

Electrode Position
The electrode positions were listed in a “64-channels.loc” file,
which contained all channel locations in polar coordinates.
Information for each electrode contained four columns:
“Electrode Index,” “Degree,” “Radius,” and “Label.” For example,
information on the first electrode was as follows: (“1,” “−18,”
“0.51111,” and “FP1”), which indicated that the degree is −18, and
the radius is 0.51111 for the first electrode (FP1). The electrode
file can be used for topographic analysis by the topoplot()
function in the EEGLAB toolbox (Delorme and Makeig, 2004).

TECHNICAL VALIDATIONS

Temporal Waveform and Amplitude
Spectrum Analysis
To evaluate the signal quality of the dataset, this study analyzed
temporal waveform and amplitude spectrum of EEG across all
subjects. EEG data were re-referenced to the average of all
electrodes. Figure 3A shows the temporal waveform of averaged
EEG across all subjects. Three representative midline electrodes
(FPz, Cz, and Oz) were selected for temporal waveforms display.
For each subject, all EEG data corresponding to target and non-
target images were averaged. Then, the averaged target and non-
target EEG data for each subject were averaged across all subjects.
Finally, the cross-subject averaged EEG data corresponding to the
non-target images were subtracted from that of the target images
to generate the target-related ERP, as shown in Figure 3A. To
better observe the temporal characters of the SSVEPs, the data

were band-pass filtered between 2 and 30 Hz within the time
window from −200 to 1,000 ms.

The EEG signals in this dataset were sensitive to target
and non-target image stimuli, and the difference of the evoked
EEG between the target and non-target image stimuli could be
reflected by the ERP components within a short data length at
specific brain regions. Figure 3A showed the temporal waveforms
of EEG for target images, non-target images, and target-related
ERP data. The waveform for non-target EEG is a near-sinusoidal
signal at 10 Hz with the characteristics of SSVEP. The frequency
and phase of the SSVEPs are stable over the 1.2-s stimulation
time. The waveforms of ERP located at FPz and Oz showed
obvious P300 (FPz: 3.18 µV, Oz: 2.54 µV) and N400 (FPz:
−3.49 µV, Oz: −1.29 µV) components. Obviously, the latencies
of P300 and N400 components in the prefrontal cortex were
significantly smaller than those in the occipital cortex. For
example, the latencies of the P300 component in FPz and Oz were
272 and 336 ms, while the latencies of the N400 component were
448 and 484 ms, respectively. While the ERP signal at Cz showed
an obvious negative peak appeared around 300 ms (latency:
328 ms, amplitude: −1.29 µV). From the scalp topographies of
amplitudes of ERP in Figure 3A, it could be found that the
areas highly sensitive to ERP response were mainly located in
the occipital region and the prefrontal region. For example, these
two regions showed significant positive potentials at 300 ms and
negative potentials at 400 and 500 ms. The sensitivity of ERPs for
the electrode in the parietal region to the stimulation of target
images was limited partly because the electrodes were close to the
reference electrode.

The results of r-square values indicated the separability
between target and non-target stimuli, as shown in Figure 3B.
R-square values indicate the importance of features, and the
larger the value, the greater the contribution to classification.
In the time range of 0–200 ms, the r-square values of the three
channels were close to 0, which indicated that the features did
not contain information valid for classification. After the time
of 200 ms, the r-square values of the three channels significantly
increased, which was consistent with the emergence of the main
components of ERP. For example, the r-square value of Oz
reached the maximum value (0.07) at 340 ms, and at the same
time, the ERP of Oz also reached the peak value (2.54 µV).
Similar results were also found in Cz and Oz. These results
indicated that the emergence of the main components of ERP was
accompanied by a greater separability between target and non-
target stimuli, and ERP was a potentially effective classification
feature. Compared with Cz, the r-square values of FPz and Oz
were larger, indicating that FPz and Oz contained more effective
information and contributed more to classification.

The results of Figure 3 indicate that the rapid periodic
stimulation in RSVP produces a brain response characterized
by a “quasi-sinusoidal” waveform whose frequency components
are constant in amplitude and phases. Figure 3C illustrates
the amplitude spectra of EEG evoked by target and non-target
images. EEG data were firstly averaged across all subjects, and
then the spectrums were calculated by Fast Fourier Transform
(FFT) method. As temporal waveforms in Figure 3A have shown
the non-target EEG as a quasi-sinusoidal signal with stable
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frequency and phase, amplitude peaks of EEG at Oz can be
observed at 10 Hz and its harmonic frequencies (i.e., 20, 30 Hz)
from the frequency information in Figure 3C. The amplitudes
of fundamental and harmonic components decreased sharply as
the response frequency increased (fundamental: 0.60 µV, second
harmonic: 0.30 µV, third harmonic: 0.10 µV). Since the signals
were filtered from 2 to 30 Hz, the amplitudes in the frequencies
above the fourth harmonic were closed to 0. Figure 3C also
illustrates the scalp topographies of amplitude of target and non-
target SSVEP at 10 Hz and its harmonic frequencies. Consistent
with previous studies (Gao et al., 2014; Chen et al., 2015a), the
occipital area shows the highest amplitude of SSVEPs. In addition
to the occipital area, lower amplitude can also be observed at the
prefrontal area for components related to stimulus frequency (at
10 and 20 Hz). These characters show very robust and reliable
frequency features for the fundamental and harmonic SSVEP
components in the dataset and suggest that the RSVP stimulation
at 10 Hz in this dataset was stable and reliable.

As the phase characteristic of SSVEPs is synchronous
(Figure 3A) and the amplitude characteristic is approximate
(Figure 3C) between target and non-target EEG, target-related
ERP signal can be extracted by subtracting non-target EEG
from target EEG signals. There were obvious similarities and
differences between EEG signals evoked by target images and
non-target images in frequency domain. The EEG signals of
target images have similar amplitudes of EEG components at the
fundamental and harmonic frequencies (fundamental: 0.58 µV,
second harmonic: 0.31 µV, third harmonic: 0.11 µV) with
that of non-target images. Furthermore, the EEG of the target
images contained more powerful low-frequency components
(<10 Hz), which were related to ERP. This character suggests
that the spectral characteristics provide useful information for the
detection of target images.

Evaluating the Performance of Spatial
Filtering Methods
Spatial filtering aims to remove signal noise and extract
task-related brain activities by using the spatial correlation
information of EEG and is frequently applied as a preprocessing
method. It has been widely used in EEG-based BCIs. Figure 4
indicated the performance of different spatial filtering methods
in the target/non-target classification task based on the HDCA
classification algorithm. Four filtering methods were used to
enhance classification performance: CSP, SIM, TRCA, and PCA
whitening. CSP consists of finding an optimum spatial filter
to maximize the variance difference between two groups of
EEG, so as to obtain effective feature vectors for classification
(Lotte and Guan, 2011). The algorithm of SIM can be intuitively
interpreted as maximizing the signal-to-noise ratio (SNR) in
the source space and is an effective tool for spatiotemporal
analysis of ERPs (Wu and Gao, 2011). TRCA is the method
that extracts task-related components efficiently by maximizing
the reproducibility during the task period and can be applied
to enhance SNRs of time-locked EEG components such as ERPs
(Nakanishi et al., 2018). PCA whitening is a simple and standard
procedure to reduce dimension of the data, and it can reduce the

C
U

A
)

%(

100

50

80

1 10 5020 30 40

Number of Components/Electrodes

90

60

70

SIM

CSP

TRCA

PCA Whitening

FIGURE 4 | The effect of components number on classification performance
(block 1 for training, block 2 for testing).

complexity by reducing the number of parameters to be estimated
(Hyvarinen and Oja, 2000).

After the spatial filtering processes, we adopted the HDCA
method, which has been widely used in EEG target image
detection based on RSVP paradigm, to classify the target and
non-target images. For the two blocks in each group of the
dataset, EEG data in block 1 were used for training (i.e., to
determine parameters of the algorithms), and EEG data in
block 2 were used for testing. In addition, both block 1 and
block 2 were used for a 10-fold cross-validation to further
evaluate the classification performance. Data from all the 62
electrodes were used as the input to the feature extraction and
classification analysis. EEG data were firstly divided into 100-ms
data segments. Then the feature extraction and classification were
conducted according to the spatial and temporal characteristics of
the data segments.

The effect of components number of the four spatial filtering
methods on classification performance was evaluated. The data
length was 400 ms [time window (0 400) ms]. By setting the
number of components in the spatial filtering methods (from 1 to
50), the variation of classification performance with the number
of components can be obtained (Figure 4). The classification
performance increased as the number of components increased,
especially when the components number was less than 10. For
example, the area under the curve (AUC) results for the SIM
method were 74.1% ± 9.2%, 78.0% ± 9.2%, 80.0% ± 8.7%,
82.0% ± 8.4%, 83.4% ± 8.3%, 84.6% ± 8.0%, 85.3% ± 7.8%,
85.7% ± 8.0%, 86.3% ± 7.9%, 86.6% ± 7.9% for the components
number from 1 to 10, respectively. Especially in the case a
small number of components, the TRCA algorithm had the
best classification performance. For example, the AUC of TRCA
was 77.0, 84.3, and 85.6 as the components number from 1 to
3, respectively, which is far larger than other methods. When
the number of components is more than 10, the classification
performance no longer changes significantly for all the four
methods, and the methods of SIM and PCA whitening show the
best performance (SIM: 87.9%, PCA whitening: 88.0%).

A one-way repeated-measures ANOVA showed that there
was a statistically significant difference in accuracies among
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the four spatial filtering methods for the component numbers
of 1 [F(2.110,268.008) = 4.648, p = 0.009] and from 2 to 50
(p < 0.001). Pairwise comparisons showed that the classification
accuracies of TRCA were significantly higher (p < 0.05) than
that of CSP for the component numbers from 2 to 50 and were
significantly higher than that of SIM and PCA whitening for the
component numbers from 1 to 6. The classification accuracies
of SIM and PCA whitening were significantly higher (p < 0.05)
than that of CSP for the component numbers from 6 to 50 and
were significantly higher than that of TRCA for the component
numbers from 11 to 50.

Figure 5 shows the results of classification performance for
the four spatial filtering methods with different data lengths of
EEG. The number of components for the four spatial filtering
methods was set to 30. Two validation methods were used, that
is, block 1 for training and block 2 for testing (Figure 5A) and a
10-fold cross-validation using both blocks 1 and 2 (Figure 5B).
For each spatial filtering method, the classification accuracy
increased obviously as the data length increased when it was
less than 500 ms. For example, in Figure 5A, the average results
of SIM for all subjects were 67.7% ± 7.3%, 80.5% ± 8.8%,
88.1% ± 8.2%, and 91.1% ± 7.2% with the data length from
200 to 500 ms, respectively. The changes of accuracy results were
no longer significant when the length of EEG data increased to
600 ms and above.

In addition, there was a significant difference in the
classification performance among the different spatial filtering
methods. The CSP method corresponded to the worst
classification performance, followed by the TRCA method.
SIM and PCA whitening methods had higher classification
performance with no statistically significant difference.
For example, in Figure 5A, the classification results were
77.2% ± 10.1%, 78.3% ± 9.4%, 80.5% ± 8.8%, and 80.7% ± 8.8%
for the data length of 300 ms in the conditions of CSP, TRCA,
SIM, and PCA whitening, respectively. The statistical difference
among CSP, SIM, and TRCA was no longer significant when
the data length was more than 500 ms. Meanwhile, the high
classification results based on EEG with short data lengths

indicated that the dataset was collected in a well-designed
experimental environment, and the collected EEG data were
of high quality.

The 10-fold cross-validation method showed similar results
to the original verification method by blocks, i.e., SIM and
PCA whitening performed best among the four spatial filtering
methods, and HDCA was the best among the four classification
methods. The difference between the two validation methods was
that the accuracies and variances of the 10-fold cross-validation
method were slightly higher and smaller than the method by
blocks, respectively. For example, the classification results for
CSP, SIM, TRCA, and PCA whitening were 66.0% ± 7.0%,
70.2% ± 7.1%, 67.9% ± 7.0%, and 70.3% ± 7.1% and
63.4% ± 7.1%, 67.7% ± 7.3%, 65.4% ± 7.3%, and 67.8% ± 7.3%
for 10-fold cross-validation method and validation method
by blocks, respectively. This was due to the fact that the
10-fold cross-validation method used more data for training
than the original verification method by blocks. Since the two
validation methods have shown similar results, we only chose
the classification results of the validation method by blocks to
perform the statistical analysis in this study.

A one-way repeated-measures ANOVA showed that there
was a statistically significant difference in accuracies among the
four spatial filtering methods for the data length of 200 ms
[F(1.326,168.403) = 76.929, p < 0.001], 300 ms [F(1.324,168.179)
= 115.527, p < 0.001], 400 ms [F(1.204,152.967) = 128.453, p <
0.001], 500 ms [F(1.333,169.256) = 124.089, p < 0.001], 600 ms
[F(1.247, 58.402) = 131.426, p< 0.001], 700 ms [F(1.248,158.528)
= 101.262, p < 0.001], 800 ms [F(1.409,178.955) = 100.214,
p < 0.001], 900 ms [F(1.404,178.285) = 99.643, p < 0.001],
and 1,000 ms [F(1.350,171.387) = 102.250, p < 0.001]. Pairwise
comparisons showed that the classification accuracies of SIM and
PCA whitening were significantly higher (p < 0.001) than those
of CSP and TRCA for the data length from 200 to 1,000 ms. The
classification accuracies of TRCA were significantly higher (p <
0.01) than that of CSP for the data length from 200 to 300 ms
and were significantly lower (p < 0.001) than that of CSP for
the data length from 400 to 1,000 ms. There was no significant
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FIGURE 5 | Performance of different data lengths for spatial filtering methods (A) Block 1 for training and block 2 for testing. (B) Result of 10-fold cross-validation
using both blocks 1 and 2.
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difference between SIM and PCA whitening for the performance
of classification.

Evaluating the Performance of
Classification Methods
In addition to the evaluation of spatial filtering methods,
the dataset can also be used to evaluate the performance of
classification methods. Figure 6 indicated the performance of
different classification methods with the EEG data length from
200 to 1,000 ms. After preprocessing with the SIM method, EEG
data for each image were classified by four different algorithms
including SVM, SWFP, DCPM, and HDCA. SVM finds a
separating hyper-plane that maximizes the margin between the
two classes. SWFP is based on a two-step linear classification
of event-related responses using FLD classifier and PCA for
dimensionality reduction (Alpert et al., 2014). DCPM performs
well in classifying the miniature AVePs by first suppressing
the common-mode noise of the background EEG and then
recognizing canonical patterns of ERPs (Xiao et al., 2020). Two
validation methods were used, that is, block 1 for training
and block 2 for testing (Figure 6A), and a 10-fold cross-
validation using both blocks 1 and 2 (Figure 6B). As shown
in Figure 6A, HDCA had the best classification performance,
while the other three algorithms had approximately a similar
classification performance. This was especially true when the data
length was less than 500 ms. For example, the AUC results for
HDCA were 67.7% ± 7.3%, 80.5% ± 8.8%, 88.1% ± 8.2%, and
91.1% ± 7.2% for single-circle EEG classification between target
and non-target images with the data length of 200, 300, 400,
and 500 ms, respectively. When the data length is greater than
500 ms, the performance of the four classification algorithms
is similar, while the classification performance of the HDCA
algorithm is still the best. Figure 6B indicated the similar results
as Figure 6A, and the only difference was that the SVM method
performed the worst.

A one-way repeated-measures ANOVA based on the
validation method by blocks showed that there was a statistically
significant difference in accuracies among the four classification
methods for the data length of 200 ms [F(2.124,269.799) =

144.651, p < 0.001], 300 ms [F(1.942,246.670) = 55.645, p <
0.001], 400 ms [F(2.095,266.046) = 42.243, p < 0.001], 500 ms
[F(2.183,277.251) = 38.436, p < 0.001], 600 ms [F(2.362,299.935)
= 35.408, p < 0.001], 700 ms [F(3,381) = 27.146, p < 0.001],
800 ms [F(2.820,358.107) = 33.019, p < 0.001], 900 ms
[F(2.601,330.287) = 29.985, p < 0.001], and 1,000 ms [F(3,381)
= 32.344, p < 0.001]. Pairwise comparisons showed that the
classification accuracies of HDCA were significantly higher (p
< 0.001) than that of SVM, SWFP, and DCPM for the data
length from 200 to 1,000 ms. The classification accuracies of
SVM were significantly higher (p < 0.05) than that of SWFP
for the data length from 400 to 1,000 ms and were significantly
higher (p < 0.05) than that of DCPM for the data length from
900 to 1,000 ms. The classification accuracies of DCPM were
significantly higher (p < 0.01) than that of SWFP for the data
length from 300 to 1,000 ms.

Evaluating the Performance of
Cross-Subject Zero-Training Methods
The dataset can be used to study zero-training classification
methods of RSVP-based BCIs. To improve the performance
of the system, most of the current RSVP-based BCIs adopt
supervised feature extraction and classification algorithms that
require system calibration. The long time in training data
collection and algorithm template extraction processes bring
challenges to system practicability and user experience. With
benefits from the large scale of the dataset that contains a
total of 64 subjects, 10,240 trials, 1,024,000 image circles, and
102,400 s of 64-channel EEG data, it is possible to extract
common information of EEG for target classification. A cross-
subject strategy can be used to design zero-training algorithms
suitable for target identification in the RSVP paradigm.

In this paper, the dataset was used to design a zero-training
classification algorithm based on a cross-subject template. The
performance was estimated using a leave-one-subject-out cross-
validation. EEG data of each subject were trained separately
to obtain his or her algorithm template parameters for the
HDCA algorithm. In the testing session, by using cross-subject
template, the EEG classification performance of one subject was
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cross-validation using both blocks 1 and 2.
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FIGURE 7 | Performance of cross-subject zero-training and self-training
methods (block 1 for training and block 2 for testing).

determined by the voting results of the algorithm templates of
the other 63 subjects, all of whom had an equal voting weight.
Figure 7 showed the performance of cross-subject zero-training
method using the HDCA algorithm. Pairwise comparisons
showed that the classification accuracies of the traditional self-
training method were significantly higher than that of the cross-
subject method for the data length of 200 ms [F(1,127) = 83.0101,
p < 0.001], 300 ms [F(1,127) = 164.440, p < 0.001], 400 ms
[F(1,127) = 195.524, p < 0.001], 500 ms [F(1,127) = 137.263,
p < 0.001], 600 ms [F(1,127) = 143.973, p < 0.001], 700 ms
[F(1,127) = 139.003, p < 0.001], 800 ms [F(1,127) = 139.555,
p < 0.001], 900 ms [F(1,127) = 151.889, p < 0.001], and 1,000 ms
[F(1,127) = 141.892, p < 0.001]. Although the performance of
cross-subject method was lower than the traditional self-training
method, it still achieved good performance for more than 80% of
AUC when the data length was more than 400 ms. For example,
the AUCs were 82.2% ± 8.4% and 90.8% ± 7.4% by using
cross-subject and self-training templates, respectively, when the
data length was 500 ms. The results indicated that a variety
of cross-subject information could be mined from the dataset.
By using the dataset appropriately, we can effectively design
algorithms that do not require system calibration. With the
mining of more effective information contained in the dataset,
it is believed that the performance of zero-training algorithm can
be further improved and even closer to the performance of the
training methods. This dataset provides sufficient data for the
development of zero-training algorithms that can promote the
practical application of RSVP-based BCIs.

DISCUSSION AND CONCLUSION

This study presents a benchmark dataset for studying RSVP-
based BCIs. Distinct ERP and SSVEP features in temporal,
frequency, and spatial domains prove the high quality of data.
The examples on evaluating classification performance further
demonstrate high efficiency of the dataset for evaluating methods
in target image detection.

In this study, continuous image stimulation was divided into
periodic segments to resist fatigue and ensure the high quality and

reliability of EEG signals. To reduce the interference of blinking
on EEG, subjects were instructed to blink between trials rather
than within the image sequence of stimuli, and they initiated
the next trial by pressing a button. At the same time, subjects
were given enough rest between blocks until they felt comfortable
to start the next block. In this study, no strict experimental
interruption time was set, which fully guaranteed the quality of
EEG signals. The impact of rest time can be considered in future
practical applications.

Besides the above technical validations proposed in this study,
the dataset can be further analyzed in a variety of different
ways. In fact, although remarkable progresses have been made in
RSVP-BCI, there are still many defects to be solved. Firstly, the
parameters of RSVP-BCI need to be optimized to meet different
application requirements; secondly, the characteristics of SSVEP
and ERP that are evoked by the RSVP paradigm require further
investigation; thirdly, the separation methods of SSVEP and ERP
are not effective. This dataset can be used for developing methods
to address these limitations. On one hand, the dataset can be
used to design system diagrams toward different applications.
The optimization of parameters is very important for the design
and implementation of a practical BCI system (Zhang and Gao,
2019; Lees et al., 2020). For example, the effect of time interval
between target images on EEG characteristics can not only inspire
the design of optimal RSVP stimulation paradigm but also deepen
the understanding of attentional blink. Regarding the phase of
the EEG, although other experimental paradigms such as SSVEP-
BCIs have already shown indicators of phase character of evoked
EEG such as latency, very few studies based on RSVP-BCIs
explored phase characters. The evoked EEG phase in the RSVP
paradigm must contain higher cognitive mechanisms, which
makes the relevant research more significant. Besides, the number
of electrodes and electrode locations can be optimized using
the 64-channel dataset. On the other hand, the dataset can be
used to develop computational models for ERPs and SSVEPs.
The high SNR of ERP and SSVEPs from the dataset could be
helpful for exploring the intrinsic properties of ERP and SSVEP
harmonics. For example, the way to characterize the phases of
the fundamental and harmonic SSVEP components still remains
unknown. Furthermore, it is of great scientific significance to
study the methods for separating ERP and SSVEP signals and
the temporal dynamics and phase relations between them. The
problem has not been well solved so far, and this dataset provides
rich resources for the related studies.

In future work, the dataset can be improved in the following
directions. First, data evoked by stimulus images with different
frequencies will be included. In this study, the stimulation
frequency was set to the most commonly used 10 Hz. EEG
data with different frequencies may help to reveal the effect of
workload on EEG. Secondly, more types of target sparsity will
be included. As the target sparsity is set as 1∼4% in this study,
the probability of target images can be further increased to verify
the relationship between target density and the EEG signals.
Third, data records from the same group of subjects on different
days will be provided for developing the session-to-session
transfer approach (Zhao et al., 2019), which can facilitate system
calibration in an online BCI.
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1. INTRODUCTION

Research studies in the field of Brain-Computer Interfaces (BCI) mostly take place in controlled lab
environments. To move BCIs into the real world and everyday life situations it is crucial to bring
research out of those controlled environments and into more realistic scenarios.

Recently, various studies have been recorded in classrooms, cars or realistic tugboat simulators
(Blankertz et al., 2010; Brouwer et al., 2017; Ko et al., 2017; Miklody et al., 2017). Mobile BCIs even
allow participants to move freely during the recording (Lotte et al., 2009; Castermans et al., 2011;
De Vos et al., 2014; Wriessnegger et al., 2017; von Lühmann et al., 2019). Other studies have been
carried out with paralyzed, locked-in or completely locked-in users or with participants recovering
from stroke (Neuper et al., 2003; Ang et al., 2011; Leeb et al., 2013; Höhne et al., 2014; Hwang et al.,
2017; Han et al., 2019; Lugo et al., 2020).

However, so far there has not been a BCI study where distractions are investigated systematically.
We have recorded a motor imagery-based BCI study (N = 16) under five types of distractions that
mimic out-of-lab environments and a control task where no distraction was added. The secondary
tasks include watching a flickering video, searching the room for a specific number, listening to
news, closing the eyes and vibro-tactile stimulation.

Many BCI datasets have been published, e.g., in context of the BNCI Horizon 2020 initiative1, 4
BCI competitions have had a big impact on the research community (Sajda et al., 2003; Blankertz
et al., 2004, 2006; Tangermann et al., 2012) and still datasets are made available (Shin et al.,
2016; Cho et al., 2017; Kaya et al., 2018). We want to contribute further by publishing this BCI
dataset with multiple distractor conditions. This report provides a summary of the design and
experimental setup of the study.We also show group-level results on event-related synchronization
and desynchronization, results on a standard classification pipeline and power spectra for all
secondary tasks. Apart from the dataset2, code for the analysis is also publicly available3 and a
more advanced analysis can be found in Brandl et al. (2016).

1https://bnci-horizon-2020.eu/database/data-sets
2https://depositonce.tu-berlin.de/handle/11303/10934.2
3https://github.com/stephaniebrandl/bci-under-distraction
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2. METHODS

2.1. Participants
Sixteen participants (six female, average age 26.3 ± 1.9 years)
volunteered to participate in this study. Three volunteers
had previously participated in another BCI experiment. All
instructions were given in German requiring basic language
skills. Volunteers were reimbursed for their participation in
the study except for three employees of the TU Berlin
Machine Learning Group. All participants were instructed on
the experimental procedures prior to signing an informed
consent. This study was conducted according to the declaration
of Helsinki and was approved by the Ethics Committee
of the Charite-Universitätsmedizin Berlin (approval number:
EA4/012/12).

2.2. Data Acquisition
EEG signals were recorded with a Fast’n Easy Cap (EasyCap
GmbH) with 63 wet Ag/AgCl electrodes which were placed
at symmetrical positions according to the international 10–20
system (Jasper, 1958) referenced to the nose. We used two 32-
channel amplifiers (BrainAmp, BrainProducts) to amplify the
signals, which were sampled at 1,000Hz. Data was recorded in
the period of 15 April–18 July 2014 at TU Berlin and raw data
without any preprocessing was made publicly available1.

2.3. Experimental Setup
During the experiment, the participants were sitting in a
comfortable armchair at a distance of 1m in front of
a 24” computer screen. Auditory instructions were given
via headphones.

Each experimental session lasted about 3 h including
preparation and about 90 min of signal recording. Before the
main experiment, we recorded eight trials in which participants
had to alternately keep their eyes open or closed for 15 s.

The main experiment was divided into seven runs à 10 min
with 72 trials per run. One trial lasted 4.5 s and was defined
by one motor imagery task with an additional secondary task
except for the first run. The first run served as a calibration phase
without feedback and distraction tasks. The subsequent runs
included three blocks à four trials (two left and two right) of each
secondary tasks (72 trials per run). The blocks were presented in
a random order to minimize sequence effects.

2.3.1. Primary Task
At the beginning of each trial, instructions for left or right hand
motor imagination were given over headphones (links and rechts
as the instructions were in German). This was the primary task
in this study. At the end of the trial the participant received a
stop command followed by a break of 2.5 s, after which the next
trial started.

Participants were asked to choose one haptic hand movement.
Several strategies for motor imagery were presented to the
participants to choose from. The majority chose to imagine
squeezing a soft ball—other strategies involved opening a water
tap, piano playing or using a salt shaker.

Auditory online feedback was given in the six runs after the
calibration to keep the motivation up. The online feedback was

trained on the calibration data and based on Laplacian filters of
the C3 and C4 electrodes (McFarland et al., 1997) and regularized
linear discriminant analysis (RLDA, Friedman, 1989). For this,
EEG data was downsampled to 100Hz, Laplacian filters of C3
and C4 were calculated and the data was band-pass filtered in
the ranges 9–13 and 18–26Hz with a Butterworth filter of order
5. Data was then cut into epochs of 750–3,500ms and an RLDA
classifier was trained on the logarithm of variances as features.
During the feedback phase, EEG data was downsampled and
band-pass filtered as before, projected on the Laplacian filters
and the trained classifier applied on the log-variance features.
Furthermore, we applied pooled-mean adaptation to continue
training the classifier during the feedback phase (Vidaurre et al.,
2010). Classification averaged across all participants reached an
accuracy of 57.05%. Auditory feedback was given after the stop
command as decision left (Entscheidung links) or decision right
(Entscheidung rechts) during the 2.5 s break. Online classification
was performed with the BBCI toolbox in MATLAB4.

2.3.2. Secondary Tasks
We simulated a pseudo-realistic environment by adding six
secondary tasks on top of the primary motor imagery task to the
experimental setup. They were selected to cover different types of
distractions in an out-of-lab scenario.

1. Clean
This condition served as a control task where no additional
distraction was added.

2. Eyes-Closed
Participants were asked to close their eyes before the motor
imagery trial started and to keep them closed until the trial
finished. Here, we expected a power increase in the alpha band
(8–12Hz) due to the closed eyes to overlap with themotor task
related mu rhythm (8–13Hz). This task was also the primary
reason for providing all instructions and feedback auditorily
instead of visually.

3. News
Short sequences of a public newscast (Tagesschau) were played
over the headphones with current news (January/February
2014) and news from 1994. Each sequence was only played
once in each experiment. We expected the participants to be
cognitively distracted and the auditory cortex to be activated
during the motor imagery task which might influence the
motor imagery performance.
During the experiment, we did not assess active listening of
the participants.

4. Numbers
For this task, 26 sheets of paper with a randomly mixed letter-
number combination were set up on the wall in front of the
participants and also on the left and right side of the room.
This implies that participants needed to turn their head in
order to see the sheets. For each trial a new window appeared
on the screen asking the participants to search the room for a
particular letter to match with a stated number and to read
it out loud. Each combination was shown 2–3 times to all

4https://github.com/bbci/bbci_public
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FIGURE 1 | Baseline analysis for calibration data and first classification results. Left: Group-average envelopes of C3 (solid) and C4 (dashed) electrodes for right and

left motor imagery trials. Center: Group-average signed r2 values evolving over time within trials as times series for C3 and C4 (upper) and patterns for four different

intervals (lower). Right: Classification results on motor imagery data left vs. right (one dot per participant): comparison offline CSP vs. online Laplacian (upper) and

comparison CSP without distractions vs. CSP with distractions (lower).

participants. We counted how often the letters were found.
Out of 72 trials, 59.7 combinations were successfully found on
average. This task was expected to cause both a high cognitive
distraction and additional muscular artifacts.

5. Flicker
A flickering stimulus with alternating gray shades at a
frequency of 10Hz was presented on the screen. We included
this task to analyze the influence of the steady state visually
evoked potential (SSVEP) (Morgan et al., 1996).

6. Stimulation
We placed two coin vibration motors with a diameter of 3 cm
on the insides of both forearms, one over each wrist and the
other just below the elbows. To investigate the interference of
steady state vibration somatosensory evoked potential (SSVSEP,
Tobimatsu et al., 1999; Brouwer and Van Erp, 2010) on the
motor imagery task, vibrotactile stimulation was carried out
with carrier frequencies of 50 and 100Hz, each modulated at
9, 10, and 11Hz.

2.4. Baseline Analysis
We show group-level results of event-related synchronization
and desynchronization (ERS/ERD, see Figure 1) which can be
observed duringmotor imagination and execution (Pfurtscheller,
1992). Data analysis was also performed with the BBCI toolbox
for MATLAB4.

Data from the calibration session was band-pass filtered
in the frequency band of 9–13Hz with a 3rd order zero-
phase Butterworth filter and cut into epochs for each

participant individually, starting 1,000ms prior to trial
onset until 4,500ms after trial onset. The envelope was
then calculated on the group average based on the Hilbert
transformation with a moving average window of 200ms.
Baseline correction was applied, i.e., the average EEG
amplitude in the interval of 1,000ms prior to trial onset
was subtracted. The resulted smoothed envelope is presented
in Figure 1 for the electrodes C3 and C4. Here, we clearly see
desynchronization effects in C3 for right hand motor imagery
and C4 for left hand motor imagery starting around 500ms after
trial onset.

We further calculated signed biserial correlation coefficients

(r2) on the smoothed group-average envelope to determine which
EEG channels show the most discriminative information for
left and right hand motor imagery. Results can be examined in

Figure 1 where the scalp patterns of both left and right motor
cortex carry relevant class information especially in the beginning
of the trial which matches findings in the literature (Pfurtscheller,

1992). Above the scalp patterns, we show the time course over
an average of all epochs of the r2-values for C3 and C4. Here,
we can see that on average 500–2,000 ms after trial onset the

two channels carry import information to separate right and left
motor imagery as indicated by r2.

We also conducted an offline classification with Common

Spatial Patterns (CSP, Ramoser et al., 2000) in comparison to the
online classification with Laplacian filters. Individual frequency
bands between 8 and 30 Hz and time intervals between 250 and
4,500 ms after stimulus onset were selected for each participant
as described in Blankertz et al. (2007). Data was then band-pass
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FIGURE 2 | Spectral, spatial, and temporal information for all secondary tasks. Left: Normalized power spectrum averaged across participants and channels O1 and

O2, in blue for the respective secondary task and in gray for the clean condition. Center: Spatial distribution of power spectral values averaged across participants for

different frequency bands. Right: Group-average envelopes in 9–13 Hz of C3 (solid) and C4 (dashed) electrodes for right hand motor imagery.

filtered in the selected frequency band with a 3rd order zero-
phase Butterworth filter and cut into epochs. Six CSP filters were
extracted, three per class based on the “ratio-of-median” score
as described in Blankertz et al. (2007). The logarithm of the

variance of the CSP-filtered signal was then used as features and
fed into an RLDA classifier. Overall classification averaged across
all participants reached an accuracy of 61.81%. Classification
results of CSP vs. Laplacian filters are plotted in Figure 1 (61.81

Frontiers in Neuroscience | www.frontiersin.org 4 October 2020 | Volume 14 | Article 56614781

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Brandl and Blankertz Motor Imagery Under Distraction

vs. 57.05%) as well as classification of CSP on clean condition vs.
the five distraction tasks (67.08 vs. 60.76%).

In Figure 2, we show power spectra for all secondary tasks. For
each participant, power spectra were averaged across trials and
normalized channel-wise. We then extracted the power spectra
for the channels O1 and O2, averaged over the two channels and
again across participants. Alpha peaks clearly differ for eyes-closed
and numbers compared to clean. For the eyes-closed task, we see
the expected alpha peak in the range of 8–12Hz (Berger, 1929).
For the numbers task there is no clear alpha peak visible in the
occipital channels which is in line with the expected suppression
of the visual alpha rhythm during visual search. Power spectrum
for the flicker task shows a small sharp peak between 9 and 11Hz
which is very close to the frequency of the flickering video and
another even smaller peak at 20Hz which represents the second
harmonic of the flicker frequency. The news and stimulation task
do not show clear differences compared to clean.

We also show spatial distribution for different frequency
bands in the alpha range based on the peaks in the power
spectrum. For eyes-closed and flicker we see a clear activation over
the occipital and parietal cortex whereas there is no clear pattern
visible for the numbers task. Again, patterns for the news and the
stimulation task look very similar to the pattern of the clean task.

Similar to Figure 1, we show envelopes of channels C3 and
C4 for right hand motor imagery. The modulation of the
sensorimotor rhythm is still visible in all conditions as a stronger
ERD in C3 compared to C4. However, the effect is obscured by
the different artifacts. The disturbences are smallest in the news,
flicker and the stimulation tasks due to the stationary nature of the
artifacts. For the flicker task we still see a clear difference between
both channels, whereas channels are already closer for eyes-closed
and still even closer for the numbers task.

3. CONCLUSION

We recorded a motor imagery-based BCI study with 16
participants where different distraction scenarios are added
as secondary tasks to systematically investigate the influence
of those noise sources on the motor imagery performance.
We have presented group-averages that show typical ERD/ERS
effects especially during the first half of the trial over the
motor cortex, typical phenomena according to the literature. We

further show expected differences in power spectra for occipital
channels and spatial patterns for different frequency bands in
the alpha range for three of the secondary tasks. We also show
classification results of a standard CSP + RLDA classification
pipeline that clearly show that classification accuracy decreases
in the distraction tasks. All the data2 and the code3 is publicly
available and a more advanced analysis has been published in
Brandl et al. (2016).
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Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP)
have been widely used to categorize target and non-target images. However,
it is still a challenge to detect single-trial event related potentials (ERPs) from
electroencephalography (EEG) signals. Besides, the variability of EEG signal over time
may cause difficulties of calibration in long-term system use. Recently, collaborative
BCIs have been proposed to improve the overall BCI performance by fusing brain
activities acquired from multiple subjects. For both individual and collaborative BCIs,
feature extraction and classification algorithms that can be transferred across sessions
can significantly facilitate system calibration. Although open datasets are highly efficient
for developing algorithms, currently there is still a lack of datasets for a collaborative
RSVP-based BCI. This paper presents a cross-session EEG dataset of a collaborative
RSVP-based BCI system from 14 subjects, who were divided into seven groups.
In collaborative BCI experiments, two subjects did the same target image detection
tasks synchronously. All subjects participated in the same experiment twice with an
average interval of ∼23 days. The results in data evaluation indicate that adequate signal
processing algorithms can greatly enhance the cross-session BCI performance in both
individual and collaborative conditions. Besides, compared with individual BCIs, the
collaborative methods that fuse information from multiple subjects obtain significantly
improved BCI performance. This dataset can be used for developing more efficient
algorithms to enhance performance and practicality of a collaborative RSVP-based
BCI system.

Keywords: brain-computer interfaces (BCI), rapid serial visual presentation (RSVP), collaborative BCI, cross-
session transfer, event related potentials (ERP), electroencephalogram (EEG)
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INTRODUCTION

Brain-computer interfaces (BCIs) establish a communication
channel between human brain and the external world (Wolpaw
et al., 2002; Gao et al., 2014). As one of the well-known BCI
paradigms, rapid serial visual presentation (RSVP)-based BCIs
have been usually used for target image detection. Although
computer vision (CV) has become a major method to deal with
the image recognition problem recently, it consumes a large
amount of resource (image source, training time, computing
power, etc.) to get a good performance, and is still lack of
generalization ability. By contrast, human vision (HV) can
achieve general purposes of object recognition. HV can cope
with more difficult tasks and detect targets with different
characteristics (e.g., scale, lighting, background, etc.; Mathan
et al., 2008; Sajda et al., 2010; Pohlmeyer et al., 2011). Human
visual system can recognize objects with just a glance (Oliva,
2005) and detect targets in under 150 ms (Thorpe et al., 1996).
However, manual image analysis is slow because of the motor
response time, and the variability of response time makes it
difficult to locate the target images in RSVP tasks (Gerson et al.,
2005; Mathan et al., 2008; Sajda et al., 2010). Therefore, RSVP-
based BCIs, which have stronger generalization ability and are
faster than behavioral response, have become a useful method to
detect targets by using the human brain activities. By presenting
multiple images sequentially in a high presentation rate (e.g., 10
images per second), the RSVP-based BCI can enhance the target
detection performance of HV (Lees et al., 2018).

In earlier times, RSVP was often used to do behavioral research
focusing on attentional blink (AB; Broadbent and Broadbent,
1987; Chun and Potter, 1995; Jolicoeur, 1998) and manual
target detection (Lawrence, 1971; Broadbent and Broadbent,
1987). With the rapid development of computer technology
and electroencephalography (EEG)-based BCIs, RSVP was
introduced to design BCI systems for target detection. The
RSVP-based BCI is realized by single-trial event related potential
(ERP) detection. ERPs typically contain multiple components
with different temporal and spatial characters. In an RSVP-based
BCI system, the P300 component, which occurs approximately
300 ms after the target stimulation, is the major ERP component
used for target detection (Picton, 1992; Chun and Potter, 1995).
Since the system performance of RSVP-based BCIs can be
influenced by many factors such as presentation rate (Sajda
et al., 2003; Acqualagna et al., 2010; Lees et al., 2019), target
probability (Cecotti et al., 2011), stimulus onset asynchrony and
stimulus repetition (Cecotti et al., 2014a), image size (Rousselet
et al., 2004; Serre et al., 2007), type of targets (Lees et al.,
2019), saccadic eye movements (Bigdely-Shamlo et al., 2008),
attention blink (Broadbent and Broadbent, 1987; Chun and
Potter, 1995; Jolicoeur, 1998), and other subjective or objective
factors (Jolicoeur, 1998; Acqualagna et al., 2010; Touryan et al.,
2011), the experimental paradigm should be carefully designed.

Besides the design of system paradigm, the main challenge
in RSVP-based BCIs is single-trial ERP detection. In the RSVP-
based BCI system, multi-channel EEG recording leads to a
high dimensionality of features, and the small number of trials
is always not sufficient for solving the classification problem

toward accurate ERP detection (Huang et al., 2011). To deal
with the problem of single-trial ERP detection, suitable signal
processing and classification algorithms are required to extract
discriminative information from single-trial data and improve
the performance in classifying target and non-target trials.
Various algorithms have been proposed and developed for the
RSVP-based BCIs (Lees et al., 2018; Lotte et al., 2018). Major
feature extraction algorithms include xDAWN (Rivet et al.,
2009), signal-to-noise ratio (SNR) maximizer for ERP (SIM; Wu
and Gao, 2011), common spatial pattern (CSP; Ramoser et al.,
2000), independent component analysis (ICA; Makeig et al.,
1996), and etc. Typical classification algorithms include spatially
weighted fisher’s linear discriminant (FLD)-principal component
analysis [PCA; spatially weighted FLD-PCA (SWFP); Alpert et al.,
2013], support vectors machine (SVM; Burges, 1998), linear
discriminate analysis (LDA; Blankertz et al., 2011), hierarchical
discriminant component analysis (HDCA; Sajda et al., 2010),
convolutional neural network (CNN; Cecotti and Graser, 2010;
Cecotti et al., 2014b), and etc. Since real targets can only appear
once in the RSVP paradigm, averaging across multiple trials
is not practical in the RSVP-based BCIs. By combining brain
activities of multiple subjects, collaborative BCIs can improve
the performance of single-trial ERP detection (Wang and Jung,
2011). A series of studies have demonstrated collaborative BCIs
for target detection and decision making (Wang et al., 2011;
Yuan et al., 2012; Matran-Fernandez et al., 2013; Cecotti and
Rivet, 2014; Poli et al., 2014; Touyama, 2014; Valeriani et al.,
2015, 2016, 2017; Bhattacharyya et al., 2019). For both individual
and collaborative RSVP-based BCIs, system calibration remains
another big challenge in practical applications. It has been
claimed that high variability of EEG makes it difficult to transfer
models across different sessions (Krauledat et al., 2008). Besides,
the training session in system calibration is time-consuming
and the system performance may probably decrease over time
(Bigdely-Shamlo et al., 2008; Huang et al., 2011; Zhao et al.,
2019). Therefore, it is of great significance to develop efficient
algorithms to solve the cross-session classification problem in the
RSVP-based BCIs.

Recently, open BCI datasets have pushed forward the
development of data processing algorithms. However, there are
very few freely available datasets for the RSVP-based BCIs
(Acqualagna and Blankertz, 2013; Matran-Fernandez and Poli,
2017). To our knowledge, a benchmark dataset for collaborative
RSVP-based BCIs is still missing. Besides, the existing datasets
only provide data recorded from a single session, which is not
suitable for studying the problem of cross-session transfer. This
paper therefore presents a cross-session dataset for collaborative
RSVP-based BCIs. The dataset has the following characteristics:
(1) EEG data from two subjects were recorded simultaneously
with a collaborative BCI where two subjects performed the same
target detection tasks synchronously, (2) two separate sessions
were recorded for each of seven groups (14 subjects) on two
different days with an average interval of ∼23 days, and (3)
whole-head 62-channel EEG data were recorded and the raw data
were provided without further processing. Note that, all event
triggers for target and non-target images were synchronously
marked in the EEG data. Therefore, the data epochs extracted
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from both subjects could be precisely synchronized. During the
experiments, subjects were asked to find target images with
human in street images sequences presented at 10 Hz (10 images
per second). The experiment included three blocks, and each
block contained 14 trials. Each trial had 100 images, including 4
target images. In total, the dataset contains 84 blocks (1,176 trials)
of data recorded from 14 subjects. The dataset can be especially
useful for studying cross-session ERP detection algorithms for
both individual and collaborative RSVP-based BCI systems.

The rest of this paper is organized as follows. Section
“Methods” explains the experimental paradigm, data acquisition,
the algorithms in data analysis, and the criterion in performance
evaluation. Section “Data Record” describes the data record
and other relevant information. Section “Data Evaluation”
presents results of BCI performance in data evaluation.
Section “Conclusion and Discussions” concludes and
discusses future works.

METHODS

Participants
Fourteen healthy subjects (10 females, mean age: 24.9 ± 1.5 years,
all right-handed) with normal or corrected-to-normal vision
participated in the experiments. The subjects were divided into
seven groups with two subjects in each group. For each group, the
experiments contained two sessions recorded on different days.
For all groups, the average time interval between two sessions was
∼23 days. All subjects were asked to read and sign an informed
consent form before the experiment. This study was approved by
the Ethics Committee of Tsinghua University.

Collaborative System
Figure 1 illustrates the diagram of the online collaborative
BCI system. The system consists of four major components:

Stimulation module, Operation module, Data Acquisition
module, and Command and Data Analysis module. The system
performs the following steps: (1) The Command and Data
Analysis module waits for keypress information from the
Stimulation modules to start a trial; (2) The Command and Data
Analysis module sends synchronous commands to the Operation
and Stimulation modules; (3) The Stimulation modules present
the RSVP stimuli to the subjects and (4) send event triggers
to the Data Acquisition modules; (5) The Operation modules
send control commands to the Data Acquisition modules and
(6) record EEG data from the subjects; (7) The Operation
modules receive EEG data from the Data Acquisition modules
and (8) transfer to the Command and Data Analysis module;
(9) The Command and Data Analysis module analyzes data
and outputs online collaborative decisions. Data packages and
commands are sent using transmission control protocol/internet
protocol (TCP/IP) and triggers are sent using parallel ports. In
the collaborative experiment, two subjects watched the same
RSVP stimuli synchronously, and EEG data from them were
fused to improve the overall detection performance. The same
stimulations were presented to the two subjects using two
separate computers. To synchronize EEG data from the two
subjects, event triggers from the two stimulation computers were
sent separately. The Command and Data Analysis module sent
messages to synchronize the other modules. Therefore, although
the Stimulation, Operation, and Data Acquisition modules were
separated for each subject, the Command and Data analysis
module fused the EEG data from two subjects and performed
collaborative target detection in real time.

Collaborative Experiment Design
The stimulation pattern of the RSVP paradigm is shown in
Figure 2. The stimulation is presented by a 24.5-inch liquid
crystal display (LCD) monitor with a resolution of 1,920 × 1,080
and a vertical refresh rate of 60 Hz. The images were downloaded

FIGURE 1 | System diagram of the collaborative brain-computer interfaces (BCI) system.
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from the internet. The stimulation was generated using the
Psychophysics Toolbox Ver. 3 (PTB-3; Brainard, 1997). Street
scene images were presented at 10 Hz (10 images per second) in
the center of the screen within a 1,200 × 800-pixel square. The
images containing human were regarded as target images.

The procedures of the collaborative experiments are depicted
as follows. Subjects were asked to sit comfortably approximately
70 cm in front of the screen. When the subjects were ready,
both of them were supposed to press keys to start one trial.
The stimulation would not begin until both subjects pressed
keys. If one subject pressed the key first, he or she had to wait
for the second subject’s keypress to start the trial at the same
time. After receiving two keypresses, the command module sent
commands to the stimulation modules to start the same image
sequence presentation synchronously to two subjects. As shown
in Figure 2, a cross symbol appeared at the center of the screen
for 500 ms to make subjects fix their sights, then the RSVP
stimulation began. Each trial contained 100 images (10 s at the
rate of 10 Hz), including four target images. The images shown
in the first and last 1 s in one trial were all non-target images
to avoid the target from appearing during the onset or offset of
steady-state visual evoked potentials (SSVEP) evoked by RSVP.
The interval of two target images was at least 500 ms to reduce
the influence of the attention blink (Broadbent and Broadbent,
1987; Chun and Potter, 1995; Lees et al., 2018). Subjects were
asked to press keys immediately after they detected a target.
The keypress task was used to make subjects concentrate on
target detection. Since there was a time delay between the target
image and keypress, the keypress within 500ms after a target
image was considered a correct response to the target image
during the experiments. In the experiments, subjects needed to
find four targets from 100 images and made four keystrokes. If
the subjects missed some targets, the system would show the
missed targets at the end of the trial. For the same group of
subjects, the experiments included two sessions on different days,
where the stimulation paradigms were totally same. The RSVP
stimulation was presented in blocks. Each session consisted of
three blocks and each block contained 14 trials (1,400 images,

FIGURE 2 | The overview of rapid serial visual presentation (RSVP)
stimulation. The images are presented at 10 Hz. Subjects were asked to press
the key immediately when finding a target. The sample of target is highlighted
with a red frame.

including 56 targets). Subjects were allowed to take a short rest
after each block. During the experiment, the first block was
used for training, while the second and the third blocks were
used for testing. In the testing blocks, online classification results
were provided by the Command and Data Analysis module. The
online visual feedback was a 3 × 3 image matrix including nine
images with the highest scores among the 100 images in each trial.

Data Acquisition
The EEG data from two subjects were simultaneously recorded by
two Neuroscan Synamps2 systems. 64-electrode EEG caps based
on the 10–20 system were used to record 62-channel EEG data
(M1 and M2 were not used) from two subjects. The reference
electrode was at the vertex. The impedances of the electrodes
were kept under 10 k�. The sample rate was 1,000 Hz. A notch
filter at 50 Hz was used to remove the common power-line noise.
The pass-band of the amplifier was set to 0.15–200 Hz. All the
event triggers were transmitted and marked on the EEG data by
parallel ports. Two stimulation computers sent triggers separately
to the two EEG systems. The dataset provides raw data from the
experiments without any processing.

Data Preprocessing
To validate the quality of the data through performance
evaluation, data preprocessing was performed as follows. The
EEG data were first down-sampled to 250 Hz. After that, epochs
corresponding to all images were extracted according to the
event triggers. Each epoch began at 0.2 second before the event
trigger, and ended at 1 second after the event trigger. The epochs
were band-pass filtered within 2–30 Hz. For the analysis of EEG
characteristics, the EEG data were re-referenced to the average
of all electrodes [i.e., common average reference (CAR)], and the
ERP waveforms were plotted using data at Cz. For performance
evaluation, the time window 0–500 ms after the event trigger of
each epoch was extracted for feature extraction and classification.

Data Analysis
Individual Data Analysis
In this paper, several existing algorithms were utilized for feature
extraction and classification. The HDCA algorithm, which can
extract both spatial and temporal features, has been widely used
in the RSVP-based BCIs (Lees et al., 2018; Zhao et al., 2019;
Sajda et al., 2010). In our previous study, the combination of SIM
and HDCA was employed to deal with the cross-session transfer
problem (Zhao et al., 2019). SIM can extract the EEG components
that maximize the SNR of ERPs (Wu and Gao, 2011). In this
paper, several other feature extraction algorithms including CSP,
task-related component analysis (TRCA), and PCA whitening
were employed for comparison. CSP can build a spatial filter to
extract features from two classes toward the best discrimination
(Ramoser et al., 2000). TRCA is a method to extract task-related
components by maximizing the reproducibility of repetitive tasks
(Nakanishi et al., 2018). PCA whitening is usually used before
ICA to reduce the complexity of the classification problem
(Hyvärinen and Oja, 2000). To estimate performance for each
subject, the first block of data was used for training and the other
two blocks were used for testing.
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Collaborative Data Analysis
The diagrams of collaborative data analysis are depicted in
Figure 3. For the collaborative experiments, the EEG data of two
subjects were fused by three methods: ERP averaging, feature
concatenating, and voting (Wang and Jung, 2011). ERP averaging
and feature concatenating are centralized methods, which fuse
the data before further feature extraction and classification
algorithms. Voting is a distributed method, which analyzes data
of each subject first and then fuses the scores generated by
the individual classifiers. In the ERP averaging method, the
synchronous data epochs of two subjects were averaged. In
the feature concatenating method, data epochs of two subjects
were concatenated for further analysis. In the voting method,
the weighted sum of the output scores of the classifiers of two
subjects were used for classification, and the weights were the
performance [i.e., area under curve (AUC)] of each subject
from the training procedure. During the experiments, the online
feedback, which consisted of nine images with the highest output
scores, was calculated using the voting method.

Cross-Session Data Analysis
For the cross-session data analysis, the algorithms used for
evaluation were the same as the separate experiments. However,
the number of components extracted by the feature extraction
algorithms (e.g., spatial filtering methods such as CSP, TRCA, and
SIM) was optimized separately for each algorithm. The number of
components can influence the cross-session performance because
of the cross-session variability of EEG data. To estimate the cross-
session performance, the first block of data on Day 1 was used for
training and the second and third blocks on Day 2 were used for
testing. The validation strategy was the same for individual and
collaborative data analysis.

Metric
This paper used the area under receiver operating characteristic
(ROC) to evaluate the BCI performance. This metric is suitable
for the RSVP paradigm where the class distribution is unbalanced
(Lees et al., 2018). AUC can reflect the relationship between true

positive rate (TPR) and false positive rate (FPR). In the RSVP-
based BCI system, higher AUC indicates better performance.

DATA RECORD

EEG Data
The dataset is freely available at https://doi.org/10.6084/m9.
figshare.12824771.v1. The dataset is about 6.58 GB including
collaborative and cross-session data from 14 subjects. All data are
saved as MATLAB MAT files. The sample rate is 1,000 Hz and
all data are raw data without any processing. Each file is named
as “Group index + Session index” (i.e., G1D1.mat, G1D2.mat,
. . ., G7D2.mat). “Gn” is the nth group (totally seven). “D1” and
“D2” indicate the first and second sessions respectively. Each file
contains two cells named “Sa” and “Sb” indicating two subjects
in the group. Each 1 × 3 cell array (“Sa” and “Sb”) contains
three blocks of data recorded in one session. Each element in
the cell array corresponds to one block of data. Each element is
a matrix with a dimension of [63, N], which indicates 62-channel
EEG data and a trigger channel with a length of N. N of each
matrix is different because of the different experiment duration,
but N of a group of subjects in the same block is the same. For
the trigger channel, the onset of target image is defined as “1”
and the onset of non-target image is defined as “2.” Since each
element corresponds to one block, each matrix contains data of
14 trials (1,400 image events, including 56 targets). Details of data
information are also summarized in a “Readme.txt” file.

Supplementary Information
Three supplementary files are provided including subject
information and channel location, and the image set. Subject
information is saved in a “sub_info.txt” file, which includes the
gender, age, handedness, group, and the interval between the
two sessions. Channel locations are saved in a “62-channels.loc”
file, in which the information for each channel consists of four
columns: channel index, degree, radius, and label. The origin
is at Cz (i.e., the radius is 0). The image set used for RSVP
stimulation is also included in the supplementary files and

FIGURE 3 | (A) Centralized and (B) distributed diagrams of collaborative data analysis.
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saved in a “Image.zip” file. Target and non-target images are
saved in two folders.

DATA EVALUATION

Individual BCI Performance
Within-Session Individual Performance
Figure 4 shows the EEG characteristics on Day 1 (D1) and
Day 2 (D2) related to targets and non-targets using the average
data of all subjects. Figure 4A shows the time course of scalp
map series of average ERP amplitudes. It is clearly shown that
the P300 component peaked around 400 ms and was mainly
distributed at the central-parietal areas. Figure 4B shows the
average ERP waveform at Cz. The waveform shows large N2
and P3 components after the target onset, which are obviously
higher than other ERP components. Figure 4C shows the
spectrum of ERPs at Cz calculated by fast Fourier transform
(FFT). The EEG power mainly focuses at a low frequency range
under 10 Hz with a peak around 4 Hz. It should be noted
that there are frequency peaks at 10 Hz and its harmonic

frequencies, which means there are SSVEP components in ERPs.
Figures 4D–F show the EEG characteristics related to the non-
target images. Figure 4D shows the average topographic map
series, which indicate significant distribution of SSVEPs mainly
focused at the occipital area. The average EEG waveform at Cz
in Figure 4E indicates strong SSVEP components evoked by
the 10 Hz RSVP stimulation. Figure 4F shows the spectrum of
the average EEG waveform at Cz with peaks at 10 Hz and its
harmonic frequencies. In summary, EEG signals are different
when subjects watch target and non-target images. During the
RSVP task, SSVEP components are dominant when there are
no targets, while the ERP components (i.e., N2 and P3) are
evoked when detecting a target. For target images, the amplitude
of ERPs are significantly higher than SSVEPs (Figure 4C). The
amplitudes of SSVEPs for target and non-target images are close
(Figures 4C,F).

The within-session BCI performance of individual
classification is illustrated in Figure 5. For each subject, the
first block of data is used for training and the other two blocks
are used for testing. Four feature extraction methods are
combined with HDCA for comparison: (1) CSP, (2) TRCA, (3)

FIGURE 4 | Electroencephalogram (EEG) characteristics averaged across subjects corresponding to two sessions (Day 1 and Day 2). (A) Time course of
topographic maps of average event related potentials (ERPs) related to target images. (B) Average ERP waveform for targets at Cz. (C) Spectrum of ERPs for
targets at Cz. (D) Time course of topographic maps of average EEG waveforms related to non-target images. (E) Average EEG waveform for non-target images at
Cz. (F) Spectrum of the average EEG waveform for non-target images at Cz.

Frontiers in Neuroscience | www.frontiersin.org 6 October 2020 | Volume 14 | Article 57946989

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-579469 October 17, 2020 Time: 20:10 # 7

Zheng et al. Cross-Session Dataset for Collaborative BCIs

PCA, and (4) SIM. Because the number of components (i.e.,
the number of spatial filters) can influence the performance,
all the component numbers are calculated, and the number
of components with the maximum AUC values is shown in
Figure 5. For each feature extraction method, the numbers
of used components in the within-session conditions (D1–
D1, D2–D2) and the cross-session condition (D1–D2) are
different (CSP: 50, 50, 13; TRCA: 7, 3, 3; PCA: 24, 36, 14;
SIM: 24, 36, 21). For the within-session classification, the
combination methods cannot outperform the standard HDCA
algorithm. Feature extraction algorithms can help to enhance
the average performance (e.g., max 1AUC = 0.018 when using
the SIM + HDCA method on Day 1), but the improvement is
not substantial.

Cross-Session Individual Performance
The cross-session variances of EEG are illustrated in Figure 4.
In Figure 4A, ERP scalp map series for the two sessions (Day
1 and Day 2) show similar spatial and temporal trends, but
also indicate different amplitudes and spatial distributions. In
Figure 4B, differences in amplitudes and latencies of ERP
components (i.e., N2 and P3) can be observed. The correlation
of two average ERP waveforms in the two sessions still obtains
a high correlation coefficient of 0.90. The spectral distributions
shown in Figure 4C are consistent for the two sessions. The
cross-session differences of SSVEPs related to the non-target
images can be observed in Figures 4D–F. There are cross-
session differences in terms of spatial distributions, amplitudes
and latencies. The correlation coefficient of waveforms is 0.82.
Although peaks of the spectra in both sessions are at 10 Hz
and its harmonic frequencies, the peak amplitudes in the
two sessions seem different in Figure 4F. The consistency
of ERP characteristics across sessions suggests it is possible
to transfer information from a previous session to facilitate
system calibration.

The cross-session BCI performance of individual experiments
is illustrated in Figure 5. Compared with the within-session

FIGURE 5 | Receiver operating characteristic (ROC) performance of different
feature extraction and classification algorithms in cross-session analysis with
individual classification. The color bars of each method indicate performance
of within-session (Day 1 and Day 2) and cross-session classification. The error
bars indicate standard deviations.

performance, the cross-session performance decreases sharply
due to the non-stationarity of EEG over time. For example,
the AUC for HDCA decreases from 0.90 (Day 1 and Day
2) to 0.67. As described above, feature extraction algorithms
do not improve the within-session performance, but the PCA
and SIM algorithms significantly improve the cross-session
classification performance. As shown in Figure 5, AUC values
of the SIM + HDCA (0.86 ± 0.06) and PCA + HDCA
(0.86 ± 0.06) methods are significantly better than HDCA
(0.67 ± 0.11), CSP + HDCA (0.69 ± 0.11) and TRCA + HDCA
(0.71 ± 0.13; p < 0.001). There is no significant difference
between SIM + HDCA and PCA + HDCA (p > 0.05). Figure 6
shows an example of the relationship between AUC and the
number of components when using the combination of SIM
and HDCA algorithms. For the within-session condition, AUC
increases as the number of components in SIM increases until
AUC saturates when the number of components increases
to about 30. However, for the cross-session condition, AUC
first increases from 0.74 with 1 component, reaches a peak
value of 0.87 with 21 components, and then decreases to
0.67 with 62 components. This finding indicates that not all
spatial filters are suitable for cross-session transfer. Figure 7
shows averaged waveforms of the 1st–20th components from
one subject extracted by SIM in the cross-session condition.
It is clear that the first several components show strong ERP
components. When the spatial filters obtained from Day 1
are directly applied to Day 2, the first several components
have high cross-session correlation coefficients. For example,
for the 1st–5th components, the correlation coefficients are
0.98, 0.98, 0.93, 0.93, and 0.73 respectively. However, the
correlation coefficients decrease at the latter components (e.g.,
the correlation coefficients are less than 0.5 for the 9th–
20th components). Therefore, the first several components
that show stable ERP characters in both sessions contribute
most to the cross-session classification. The involvement of
latter components that exhibit large difference between two
sessions cannot improve the classification performance. On
the contrary, the increase of feature dimension might increase

FIGURE 6 | Number of components-area under curve (AUC) curve of the
SIM + hierarchical discriminant component analysis (HDCA) algorithm in
cross-session individual data analysis. The x axis indicates the number of
components selected from the spatial filters calculated by the SIM algorithm.
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FIGURE 7 | Average waveforms of components extracted by the SIM algorithm of one subject. The waveforms indicate the 1st–20th components of Day 1 and Day
2 extracted by the spatial filters obtained from data on Day 1.

the risk of overfitting and thereby deteriorates the cross-
session performance.

Collaborative BCI Performance
Within-Session Collaborative Performance
Example data recorded on Day 1 from subject 1 (Sub1) and
subject 2 (Sub2) are used to analyze the EEG features for different
subjects. The preprocessing procedures were the same as those
in Figure 4. Figure 8 illustrates the common and different
characters of EEG signals for Sub1 and Sub2. Specifically,
Figures 8A–C show the ERP characteristics related to target
images. As shown in Figure 8A, the time courses of topographic
map series for both subjects show generally similar patterns.
During about 200–400 ms after the target onset, N2 and
P3 components are dominant over the central-parietal areas.
There is clear difference in amplitudes and latencies for ERP
waveforms at Cz (Figure 8B), which leads to a correlation
coefficient of 0.83. Figure 8C shows the spectral distributions
of ERPs at Cz. EEG powers for the two subjects are mainly
under 10 Hz with slight difference, and the amplitudes of
SSVEP components are very different. Figures 8D–F show the
EEG characteristics related to non-target images. For SSVEP
components evoked by non-target images, individual difference
can be observed regarding to scalp topographic maps, amplitudes
and latencies, as well as spectral distributions. As shown in
Figure 8E, the correlation coefficient of EEG waveforms is 0.45.
The low correlation can be attributed to the amplitude and
latency difference of the fundamental and harmonic SSVEP
components shown in Figures 8E,F. These results suggest

that, as expected, the collaborative classification will improve
the individual classification by fusing useful information from
multiple subjects. However, the individual difference should be
carefully considered in designing the data fusion method.

The results of collaborative BCI performance are illustrated
in Figure 9. For each group, the first block of data is used
for training and the other two blocks are used for testing. The
classification algorithm is SIM + HDCA (m = 30, according to
the individual results in Figure 6). The feature fusion methods
include ERP averaging, feature concatenating, and voting. As
shown in Figure 9, all feature fusion algorithms can significantly
improve the average individual performance (Single subject:
0.91 ± 0.03, ERP averaging: 0.94 ± 0.04, Feature concatenating:
0.94 ± 0.03, Voting: 0.94 ± 0.02, p < 0.001). The voting method
achieves the highest AUC value. The performance of multi-
subject collaborative experiments can be simulated by regrouping
the subjects into new groups with more members. In addition
to the individual condition and the collaborative condition with
two subjects, all 14 subjects are regrouped to groups with 3–14
subjects. Since the number of random combinations is too large
to compute, the maximum number of random groups with a fixed
number of subjects in one group is set to 100. The simulation
results in Figure 10 show that AUC increases significantly when
the number of subjects is small, but AUC saturates (over 0.99 for
both sessions) when the number of subjects reaches 5.

Cross-Session Collaborative Performance
The results of collaborative BCI performance in the cross-
session condition are illustrated in Figure 11. The classification
algorithm is SIM + HDCA (m = 21, according to the
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FIGURE 8 | Electroencephalogram (EEG) characteristics for a group of subjects (Subject 1 and Subject 2) on Day 1. (A) Time course of topographic maps of
average event related potentials (ERPs) related to target images. (B) Average ERP waveform for targets at Cz. (C) Spectrum of ERPs for targets at Cz. (D) Time
course of topographic maps of average EEG waveform related to non-target images. (E) Average EEG waveform for non-target images at Cz. (F) Spectrum of the
average EEG waveform for non-target images at Cz.

individual results in Figure 6). As shown in Figure 11, all
feature fusion algorithms can significantly improve the average
performance of single subject (Single subject: 0.85 ± 0.06, ERP
averaging: 0.87 ± 0.05, Feature concatenating: 0.90 ± 0.05,
Voting: 0.90 ± 0.06, p < 0.05), and the voting method
obtains the best performance. The ERP averaging method
may be affected by the individual difference of amplitude
and latency of ERPs, while the feature concatenating method
increases the feature dimension which might increase the risk
of overfitting. The voting method can avoid these problems by
fusing the output scores together instead of fusing the EEG
features. With the voting method, the cross-session collaborative
performance is only slightly lower than the within-session
collaborative performance and the difference is not significant
(AUC: 0.90 ± 0.06 vs. 0.94 ± 0.02, p> 0.05). These results suggest
that the cross-session method is efficient for the collaborative
BCI. The simulated cross-session performance of a multi-subject
BCI system is further shown in Figure 10. By increasing
the number of subjects, the collaborative performance for the
cross-session condition can also be significantly improved. The
cross-session condition achieves similar performance to the
within-session condition (Day 1) when the number of subjects
increases to 10.

FIGURE 9 | Area under curve (AUC) of different feature fusion methods in the
collaborative data analysis. The classification algorithm is SIM + hierarchical
discriminant component analysis (HDCA; m = 30). The asterisks indicate that
the performance of the fusion method is significantly higher than the single
subject (***:p < 0.001). The error bars indicate standard deviations.

CONCLUSION AND DISCUSSION

This study presents a cross-session dataset of a collaborative
RSVP-based BCI. The results illustrate the distinct spatial and
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FIGURE 10 | Simulated performance of multi-subject collaborative data
analysis. The x axis indicates the number of subjects in each group. The
feature fusion method is voting. The error bars indicate standard deviations.

FIGURE 11 | Cross-session area under curve (AUC) of different feature fusion
methods in the collaborative data analysis. The classification algorithm is
SIM + hierarchical discriminant component analysis (HDCA; m = 21). The
asterisks indicate that the performance of the fusion method is significantly
higher than the single subject (*: p < 0.05, **: p < 0.01, ***: p < 0.001). The
error bars indicate standard deviations.

temporal features of ERPs related to target and non-target
images. The comparison between different feature extraction
and classification algorithms indicates that the combination of
spatial filtering algorithms and HDCA can achieve good BCI
performance in the individual condition, and the collaborative
method can further improve the system performance by
fusing information from multiple subjects. In the cross-session
validation, the system performance can be optimized by selecting
the number of components in the process by SNR maximizer for
ERPs (SIM) algorithm. With the voting method, the cross-session
collaborative performance is very close to the within-session
collaborative performance (AUC: 0.90 vs 0.94). Although the
cross-session AUC is still lower than the within-session AUC, the
cross-session transfer can totally eliminate the system calibration
procedure, which can substantially improve the practicality of the
RSVP-based BCIs.

Since single-trial EEG data are recorded by multiple electrodes
with various spatial and temporal features, suitable feature
extraction and classification algorithms play important roles
for ERP detection. In this paper, the SIM + HDCA algorithm

achieves the best performance, but there is still room for
improvement. First, the SSVEP component might contribute to
ERP detection. As shown in the results, the single-trial EEG
in RSVP tasks includes both ERPs and SSVEPs. However, the
existing algorithms focus on the ERP components and ignore
the SSVEP components in target detection. The difference
of SSVEPs between target and non-target images requires
further investigation by dissociating SSVEPs and ERPs (Zhang
et al., 2018). Second, the number of components after spatial
filtering was selected manually toward the highest AUC averaged
across subjects and groups. The performance could be further
improved by optimizing the number of components for each
individual or group. In addition, the best number of components
can be determined automatically by the algorithm toward a
practical application.

The collaborative BCI method can be further improved by
considering the following three directions. First, the feature
fusion method can be improved by considering new features
such as subject-to-subject synchronization or the response time
of subjects (Poli et al., 2014; Valeriani et al., 2017). For instance,
the EEG data of multiple subjects can be aligned by dynamic
time warping (DTW) or canonical time warping (CTW) to
synchronize the brain activities (Zhou and Torre, 2009). Second,
the efficiency of the collaborative system can be optimized. For
example, the BCI performance can be improved by collaborative
paradigms with more subjects. However, a tradeoff between
performance improvement and costs, which include equipment
and labor costs in simultaneous EEG recording from multiple
subjects, should be considered. When an individual subject
achieves a high AUC value, the collaborative system can only
obtain a minor improvement. Instead of the collaborative
paradigm where the subjects perform the same detection tasks,
another paradigm is to assign different tasks to each subject.
This mode of division can improve the total efficiency of
target detection tasks by reducing total time, but the individual
performance remains the same. Third, CV can be combined with
the RSVP-based BCI system. By optimally combining CV and
HV, the system performance can be further improved (Sajda et al.,
2010; Pohlmeyer et al., 2011).

In addition to the validation of collaborative and cross-session
BCI performance in this study, this dataset can be used to
study the following topics: (1) brain dynamics of ERPs and
SSVEPs in the RSVP-based BCI paradigm, (2) data analysis
algorithms for single-trial ERP detection, (3) data fusion methods
for collaborative BCIs, and (4) transfer learning algorithms for
the cross-session ERP-based BCIs.
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Brain-computer interfaces (BCIs) have achieved important milestones in recent years, but the
majority of breakthroughs in the continuous control of movement have focused on invasive neural
interfaces with motor cortex or peripheral nerves. In contrast, non-invasive BCIs have primarily
made progress in continuous decoding using event-related data, while the direct decoding of
movement command or muscle force from brain data is an open challenge. Multi-modal signals
from human cortex, obtained frommobile brain imaging that combines oxygenation and electrical
neuronal signals, do not yet exploit their full potential due to the lack of computational techniques
able to fuse and decode these hybrid measurements. To stimulate the research community and
machine learning techniques closer to the state-of-the-art in artificial intelligence, we release
herewith a holistic data set of hybrid non-invasive measures for continuous force decoding: the
Hybrid Dynamic Grip (HYGRIP) data set.We aim to provide a complete data set that comprises the
target force for the left/right-hand cortical brain signals in form of electroencephalography (EEG)
with high temporal resolution and functional near-infrared spectroscopy (fNIRS), which captures
in higher spatial resolution a BOLD-like cortical brain response, as well as the muscle activity
(EMG) of the grip muscles, the force generated at the grip sensor (force), and confounding noise
sources, such as breathing and eye movement activity during the task. In total, 14 right-handed
subjects performed a uni-manual dynamic grip force task within 25–50% of each hand’s maximum
voluntary contraction. HYGRIP is intended as a benchmark with two open challenges and research
questions for grip-force decoding. The first is the exploitation and fusion of data from brain
signals spanning very different timescales, as EEG changes about three orders of magnitude
faster than fNIRS. The second is the decoding of whole-brain signals associated with the use
of each hand and the extent to which models share features for each hand or, conversely, are
different for each hand. Our companion code makes the exploitation of the data readily available
and accessible to researchers in the BCI, neurophysiology, and machine learning communities.
HYGRIP can thus serve as a test bed for the development of BCI decoding algorithms and responses
fusing multimodal brain signals. The resulting methods will help understand limitations and
opportunities to benefit people in health and indirectly inform similar methods, answering the
particular needs of people in disease.
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INTRODUCTION

Brain-computer interfaces (BCIs) offer communication pathways
for people with motor disorders to regain agency in their
body and environment (Wolpaw et al., 2002). Since their
first demonstration almost 50 years ago (Vidal, 1973, 1977;
Wolpaw et al., 2000), BCIs have undergone a steady evolution.
Invasive BCIs have achieved significant milestones in continuous
signal read out from nervous system activity such as speech
decoding (Guenther et al., 2009; Bocquelet et al., 2016;
Anumanchipalli et al., 2019), robotic or own arm continuous
control (Pfurtscheller et al., 2003; Hochberg et al., 2012), and
even grip control with touch sense recovery (Ganzer et al.,
2020). Non-invasive BCIs have also succeeded in the continuous
control of trajectories after users learned to modulate event-
related desynchronization (ERD) (Wolpaw andMcFarland, 2004;
Royer et al., 2010; Meng et al., 2016). However, while force
is central to motor control (Westling and Johansson, 1984;
Ostry and Feldman, 2003), its continuous non-invasive decoding
is still challenging even in the offline case, and only modest
accuracies have been reported using electroencephalography
(EEG) (Paek et al., 2019). Previous attempts at decoding force
from non-invasive measures have focused on the classification
of discrete force variables using EEG (Jochumsen et al., 2013;
Wang et al., 2017). In the hybrid case of recording cortical brain
signals non-invasively, by combining EEG and functional near-
infrared spectroscopy (fNIRS), Yin et al. (2015) showed that
the combination of both measures increased the classification
accuracies of different forces featured during imagined hand
clenching by 1–5% compared to EEG or fNIRS alone. However,
the lack of methods successfully integrating both measures in
continuous decoding is still limiting the benefits of hybrid setups
(Ahn and Jun, 2017).

We have shown that combining both multi-modal BCI
(e.g., Thomik et al., 2013; Belić and Faisal, 2015; Xiloyannis
et al., 2017) and the use of state-of-the-art machine learning—
from introducing Deep Learning for EEG-BCI in 2015 (Walker
et al., 2015) to data-efficient methods for BCI decoding that
minimize the need for collecting data from individual end users
(Xiloyannis et al., 2017; Ortega et al., 2018)—can help BCI
research if data is collected with a machine learning use in mind.
To stimulate the development of advanced multi-modal BCI
techniques we present the Hybrid Dynamic Grip (HYGRIP) data
set1. HYGRIP includes hybrid non-invasive and co-located brain
activity measures as well as the hand contraction and muscular
electrical behavioral activities during a hand-grip task with fast
dynamics. The companion repository2 digests the raw data into
a format that makes it at a data readiness level suitable for
immediate use by machine learning engineers (Lawrence, 2017)
without having to go through a lengthy process of cleanup and
reshaping of the data, which we believe will facilitate drawing in
more data science and machine learning experts to the exciting
problem of BCI.

1Raw data (2.8 h of data- worth time, 328 trials and 14 subjects) available at https://

doi.org/10.6084/m9.figshare.12383639.v1.
2Companion code available at: https://gitlab.doc.ic.ac.uk/bbl/hygrip.git.

PARTICIPANTS

Fourteen (N = 14, anonymized IDs from A to N) healthy,
right-handed volunteers participated in the production of this
data set. Handedness was confirmed by the Edinburgh inventory
(Oldfield, 1971) for all participants. None reported a history of
neurological, cardio-respiratory, or physical disorders. Imperial
College Research Ethics Committee approved all procedures,
and all participants gave their written informed consent. The
experiment complied with the Declaration of Helsinki for human
experimentation and national and applicable international data
protection rules.

MOTOR CONTROL TASK

Themotor task consists of a left/right-hand grip, each hand being
a different condition in the experiment. The task consisted of
10 consecutive contraction (1.55 s)/relaxation (0.55 s) periods
that introduced rapid changes of force. Subjects were instructed
and received visual feedback to exert forces in the 25–50% of
their maximum voluntary contraction (MVC) following the pace
of the 1.55 s contraction/0.55 s relaxation periods. The 25–
50% MVC target range acted as a soft margin within which the
subjects had to produce a contraction rather than a varying force
they had to track. TheMVC target range was implemented in this
way to reduce the effect of visual feedback during the task that was
provided through a computer screen for contractions out of the
task range.

Due to the velocity of the contraction/relaxation periods, we
do not consider each period a single trial but the consecutive 10
periods as a single trial of the task emphasizing the velocity of
the execution. Note also that the much slower fNIRS signals need
longer times to show a response, and using each single period
independently of previous ones could hinder the resolution of
the response. Participants were also instructed to prioritize the
gripping pace rather than accurately matching the visual cues
since the latter was too demanding for the levels of contraction
required. Details follow.

Subjects sat in front of the computer screen with their arms
relaxed and ergonomically hanging down, i.e., the arms were
naturally straight downwards while holding the force transducer
(Figures 1A,B). Subjects were instructed to keep this relaxed
posture and reminded to maintain it throughout the experiment.

At the start of the experiment, subjects were asked to produce
their maximum voluntary contraction (MVC) with each hand.
The MVC was used to calibrate the feedback for each hand
independently. To obtain reliable MVC estimates, MVC grips
were repeated 10 times for 1 s with each hand and following
paced auditory cues. The MVC was computed as the average of
themaximum force across the 10 trials. For the experimental task,
participants had to generate unimanual hand-grip contractions
in the 25–50% MVC range during the 21 s gripping period.
The contraction was computed as the ratio Force/MVC. The
hand used for the grip varied randomly between trials with
equal probability. The force transducer was handed by the
experimenter to the subject within their immediate reach before
each trial and removed after trial completion.
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FIGURE 1 | (A) (Left) Experimental setup with visual feedback. (Top right) Task and data set details. (Bottom right) Task execution across subjects time-locked to the

“Go” cue at t = 0 s. (B) Sensor layout and EEG and fNIRS sensor arrangement. fNIRS light sources and detectors are placed in a 5× 5 symmetrical grid leaving a

required 3 cm distance. EEG electrodes, red circles, are placed between each pair of sources and detectors overlaying the fNIRS sensing area so fNIRS and EEG

measures are co-located. Each grid is centered around C3 and C4 for the respective hemisphere. (C) A subject’s full stack of neurobehavioral data (5 s, selected

channels per modality for readability). (Top-bottom) Force target for the right hand; force produced by subject’s right hand; EMG channels from right forearm; EEG

channels; HbO (oxyhemoglobin); HbR (deoxygenated hemoglobin); EOG with two eye blinks; breathing from chest strap stretch sensor. Units in the bottom x-axis and

each corresponding y-axis.
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A computer screen in front of the participants delivered the
feedback at an approximate 60 Hz refreshing rate (Figure 1B). A
cross indicating the center of the screen was used as fixation point
during the experiment and subjects were instructed to stare at it
to avoid eye movements. A white discontinuous circumference
was used as a visual target and appeared at either side of the cross
ipsilateral to the hand to be used in each trial. This visual target
matched the 25–50% of the maximum voluntary contraction
(MVC) of the subject for that hand and paced the contraction-
relaxation periods. When the visual target appeared (shown for
1.55 s) the instruction was to contract and, when it disappeared
(not shown for 0.55 s), to relax. A red filled circle indicated
the real-time contraction level and subjects aimed to fill the
discontinuous target circle with red. Visual feedback was only
coupled to grips outside the desired range of contraction (25–
50% MVC) making the red circle bigger or smaller than the
target. Otherwise, the red circled filled the white discontinuous
circumference within the target range of contraction.

Each trial of the task consisted of 10 consecutive contraction
(1.55 s) and relaxation (0.55 s) periods (total, 21 s) with one
hand (Figure 1A). The dynamic grip was executed with the hand
indicated at the beginning of the trial by synthetic voice 2.5 s
before the “Go” signal (used as the origin of time, t = 0 s, for
each trial). All participants did a balanced amount of left- and
right-hand trials of at least 10 (max. 13) trials per hand. We
limited the number of trials to avoid effects of muscular fatigue
given the relatively high contractions that the task demanded.
Left and right-hand conditions were pseudorandomized across
trials to avoid anticipation and interference between conditions.
The refreshing rate of the visual feedback overlaid with the force
produced in real-time. Each trial was followed by a randomized
resting period uniformly distributed between 15 and 21 s, to avoid
phasic constructive interference of systemic artifacts, e.g., Mayer
waves, in the brain responses.

DATA COLLECTION PIPELINE AND

METHODS

We recorded multiple signals representing brain activity, motor
behavior, and confounds (Figures 1C, 2A–C). The signals
capturing brain activity consisted of electroencephalography
(EEG) and functional near-infrared spectroscopy (fNIRS). Motor
behavior was captured by the force sensor on which the
subjects gripped and surface electromyography on both forearms.
Potential confounds interfering (breathing and EOG) with EEG
and fNIRS were also recorded. A total of three recording
devices were used to record all the signals. fNIRS was recorded
using a NIRScout system (NIRx Medizintechnik GmbH, Berlin,
Germany). EEG, EMG, and EOG were recorded together with an
ActiChamp amplifier (BrainProducts, Berlin, Germany). Force
and breathing were recorded with a PowerLab 4/25T system
(ADInstruments, Castle Hill, Australia). To synchronize the
devices, the same computer used to present the task and visual
feedback was used to send time-stamping signals to the three
devices simultaneously at the beginning and end of the recording
and every “Go” cue and were stored by each device in its time

reference. The timestamps are used to locate the positions of
the same event across different devices and align the measures
to the events shown in the computer used to present the task.
The sampling frequencies (12.5 Hz for fNIRS and 4 kHz for
remaining measures) were selected so that they had a common
divisor facilitating the resampling processes without the need to
round up due to inexact divisors.

Brain Signals
All brain signals were non-invasively recorded. A custom 3D
printed (formlabs Form2, Formlabs Inc., Somerville, MA 02143,
USA) holder made of flexible resin (formlabs RS-F2-FLGR-02)
was used to align the fNIRS and EEG sensors to approximately
target similar cortical areas (Figure 1B). The sensor layout was
configured to result in 12 hybrid EEG-fNIRS recording locations
per hemisphere. These locations were homogeneously spread
with a 3 cm separation creating a grid. Each hemispherical
grid was centered around the corresponding 10-20 system
C3 and C4 location.

fNIRS signals were recorded using a NIRScout system (NIRx
Medizintechnik GmbH, Berlin, Germany). We used a total of
12 optodes per hemisphere (10 sources and eight detectors
in total) sampling at 12.5 Hz. An optode is a source-detector
pair 3 cm apart from each other (allowing light to reach an
approximate 1.5 cm depth into the skull). fNIRS sources and
sensors were laid out to result in 12 optodes. The sources and
sensors were symmetrically laid around C3 and C4 positions
according to the International 10-20 system leaving an inter-
optode distance of 3 cm (Figure 1B). Two wavelengths (wl1 =

760 nm, wl2 = 850 nm) continuous functional near-infrared
spectroscopy (fNIRS) was used to obtain optical absorption
densities that were transformed to oxy-hemoglobin [HbO] and
deoxy-hemoglobin concentrations [HbR] using the modified
Beer-Lambert Law (Cope et al., 1988). The raw optical densities
are also provided in the data set.

An ActiChamp amplifier (BrainProducts, Berlin, Germany)
operating at 4 kHz (running software BrainVision, v1.20.0801)
was used to record EEG. Twelve EEG sensors per hemisphere
were placed in between each sensor-detector fNIRS pair
overlaying the region measured by that optode (Figure 1B). The
reference in our setup corresponds to the standard Cz 10-20
position (Nomenclature, 1991; Klem et al., 1999). The signals
were down-pass filtered and downsampled to 1 kHz in the
data set.

To enable EEG and fNIRS sensors to record cortical activity
from the same cortical locations, we used a non-standard sensor
arrangement covering the bilateral motor cortex (Figure 1B). We
used a custom sensor holder 3D printed in flexible resin that for
every recording channel allowed the EEG sensor to sit on top
of the cortical area targeted by a corresponding fNIRS source-
detector pair. Namely, for every fNIRS source-detector pair, an
EEG electrode was placed in between. Each holder consisted of
a 5 × 5 grid of circular holes whose centers were 1.5 cm apart
allowing the required 3 cm separation between fNIRS source-
detector pairs with an EEG sensor occupying a hole in between.
The positions in the 5 × 5 grid marked in red in Figure 1B

correspond to the physical location of EEG electrodes and
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the approximate recording areas of EEG electrodes and fNIRS
source-detector pairs. Physical locations of fNIRS sources and
detectors are marked, respectively by “S” and “D” in Figure 1B.
A total of 12 recording sites were used per hemisphere due to
the limitation of space to fit the multi-modal sensors together. A
holder was placed on each hemisphere and held in position using
elastics. The disposition of every sensing point is symmetrical to
the scalp mid-line, and each grid is centered in the corresponding
C3 or C4 site depending on the side so that the central hole
overlaid the respective central position. C3 and C4 were located
per subject following the 10-20 standard (Nomenclature, 1991;
Klem et al., 1999), i.e., at a 20% of the distance between the
pre-auricular points passing over the top of the head from the
mid-line. The spherical coordinates of the standard positions are
provided in the data set.

Motor Signals
We recorded the grip force and muscular electrical activity to
represent motor behavior during the task.

Bilateral bipolar surface electromyography (EMG) was
recorded over the longitudinal axis (+ distal and − proximal)
of the muscle belly of the flexor digitorum superficialis (4 kHz,
on the Aux channels of the BrainVision ActiChamp) placed
in the anterior and posterior forearm faces (Figure 1B). Before
electrode placement, the skin was cleaned with abrasive pads and
alcohol to eliminate dead skin cells and fat impact on electrical
recording quality. EMG signals were down-pass filtered and
downsampled to 1 kHz in the data set.

The dynamic gripping task was conducted using a
continuously recorded grip force transducer (PowerLab
4/25T, ADInstruments, Castle Hill, Australia) sampling at
1 kHz. The signal was also used to provide real-time visual
display feedback to the subject and the target force level they
were asked to produce (Figure 1A). The Maximum Voluntary
Contraction (MVC) force for each subject’s hand was measured
and computed using the same transducer. The recorded force
signals, in Volts, were down-pass filtered and downsampled to
50 Hz in the published data set.

Recording of Potential Confounds (EOG

and Breathing)
To complete the picture provided by the data, we recorded
potential confounds in the brain and motor behavior signals of
interest. The pulse and breathing rate have an impact at the
body level on the concentration of hemoglobin and therefore
can have an impact on brain and scalp levels of hemoglobin
concentration. Whereas pulse is easily removed in the fNIRS
analysis band (0.01–0.25 Hz), the breathing rate can overlap
with it (Pinti et al., 2019). Sources of muscular electrical activity
can spread to the EEG sensors and include eye muscles and
skeletal muscles. Thus, we consider electrooculography (EOG),
which also carries information on blinks, and breathing as pure
confounds. However, EMG might also leak into the EEG sensors
and can carry confound information at the same time it provides
behavioral information.

Electrooculography (EOG)
Bipolar EOG was recorded on the vertical axis (top+, bottom−)
of the right eye for all subjects (4 kHz, BrainVision ActiChamp,
BrainProducts GmbH, Germany). The signal was down-pass
filtered and downsampled to 1 kHz before being included in
the data set. We note that the EOG of participant “I” is absent.
Nonetheless, this participant was included as the impact of the
EOG in the recording locations can be less severe than for
frontal recording sites can be corrected using techniques like
Independent Component Analysis (ICA) (Onton and Makeig,
2006).

Breathing
We captured breathing as the chest diametrical changes during
inspiration and expiration. A variable resistor placed inside
an elastic strap adjusted around the chest at the level of the
Xiphoid process (Figure 1B) was used to record the expansion
and contraction of the thoracic cage (1 kHz, PowerLab 4/25T,
ADInstruments, Castle Hill, Australia). The signal was down-
pass filtered and downsampled to 50 Hz before being included
in the data set.

DATA SET OVERVIEW

The data set, provided as a single hard-disk file (HDF), has
undergone very little processing to avoid biasing future analyses.
Here, we make the raw data available and provide companion
code that preprocesses the raw data into a readily usable data
set (Data Readiness Level C). Preprocessing comprises down-
sampling to reduce storage space and the formatting of data,
recorded events, and other meta-data from different devices
so that all data followed the same format regardless of their
device origin. Further preprocessing can be directly applied using
the utils python package provided, making the data readily
available to exploit in popular python machine learning packages
as pytorch and tensorflow.

Companion Code
The utils package only depends on the public python
packages, h5py, numpy, scipy, scikitlearn,
matplotlib, which need to be installed. The notebook
presentation.ipynb contains a thorough explanation and
examples of how the tools in utils can be used to process the
data and depends on jupyter. A conda environment.yml
file is provided with all dependencies to facilitate installation.
All together make the data readily available to exploit, i.e., Data
Readiness Level C (Lawrence, 2017).

Data Set Organization
The data set file structure follows a tree-like organization in three
levels. In the first and third levels, the data set contains meta-
data in string format that can be accessed via the attributes of the
level. The first level is the data set itself and the shared attributes
across subjects measures, e.g., sampling frequencies and units,
and other information such as the channel grid disposition and a
template of hybrid sensor spherical coordinates over the scalp. In
the second level, the data set is organized in one group per subject
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indexed by their anonymized ID (i.e., 14 groups with keys A to N)
and contain no attributes. In the third level, each group contains
a subgroup for each measure (e.g., keys frc for force and eeg
for EEG) containing the data in numeric format and an attribute
called events containing the times at which a timestamp
was received during the recording (e.g., “relax,” “left-hand,”
“right-hand”) and the “begin” and “end” timestamps indicating
the beginning and end of the recording session, also numeric.
In particular, the events group contains a second numeric
attribute MVC containing the maximum voluntary contraction
value for each hand.

Data Validation Preprocessing Pipeline
The following preprocessing was applied to the raw signals in the
data set to obtain the brief analysis in Figure 2, which can be
reproduced using the companion notebook. After preprocessing
all signals, epochs were extracted from 5 s before the “Go”
instruction to 25 s after.

fNIRS
The optical intensity, Î

λ

ij, for each wavelength, λ, was low-pass
filtered below 0.25 Hz with a 7th order elliptical filter. Changes in
optical densities per wavelength, 1ODλ

ij(t), were obtained using

1ODλ
ij(t) = −log

(
Î
λ

ij(t) / Ī
λ
ij

)
(1)

with i and j the indices of valid sensor-detector pairs respectively,

t the time and Ī
λ
ij the average of the optical intensity 1 s prior to

the “Go” instruction. Oxygenated and deoxygenated hemoglobin
concentration changes, 1HbO and 1HbR, respectively, were
computed solving the modified Beer-Lambert law (Cope et al.,
1988),

1ODλ
ij = Lλ

ijDPF
λ(ǫλ

HbR1HbR+ ǫλ
HbO1HbO) (2)

with DPFλ, the dimensionless differential path-length factor
accounting for the reduction in intensity due to scattering tissues
(DPF760 = 5.98 and DPF850 = 7.54); ǫλ

Hb, the molar extinction
coefficient for each hemoglobin and wavelength in mol−1cm−1

accounting for the absorption of light (ǫ760HbO = 1486.6, ǫ760HbR =

3843.7, ǫ850HbO = 2526.4, and ǫ850HbR = 1798.6); and L the source-
detector distance in cm (L = 3cm). After this preprocessing, the
average and the standard error of the mean across subjects for
each hand condition and hemoglobin type were plotted in the
corresponding position of the 2D layout (Figure 2A). We can
observe an increase and decrease of HbO with the task onset
(t = 0 s) and end (t = 21 s), respectively. We can also identify
several peaks in the average response which might be a result
of the on-off dynamics of the task which might introduce small
variations on the global trend of Hb variations. Opposite changes
can be observed for HbR at a smaller scale.

EEG
EEG was first downsampled to 250 Hz (with anti-aliasing down-
pass filtering). Notch filters were applied at the mains (50 Hz) and
fNIRS (12.5Hz) frequencies and their harmonics. EEGwas finally
high-pass filtered above 1 Hz using a 5th order Butterworth filter.

ICA was used in two stages to remove components correlated
first with EOG and second with EMG. ICA related preprocessing
only affected the signals used to compute the mixing matrix,
which was then applied to the data going through the main EEG
pipeline. For EOG, both the EOG and EEG were downsampled
to 25 Hz. A maximum of 1 independent component correlated
above 0.3 (in absolute values) with the EOG was rejected.
For EMG, both the EMG and EEG were downsampled to
125 Hz. The rejection of components was stricter to ensure EMG
was not contaminating the data. One component was rejected
whenever its correlation magnitude with any of the recorded
EMG channels was >10−4. Figure 2B presents the averaged
spectrogram across subjects for the right-hand condition (the
left-hand condition can be found in the notebook) for the mu
band (8–13 Hz). Interestingly, the on-off nature of the task might
be introducing periodic variations of power in the mu band due
to desynchronization (Pfurtscheller et al., 2006).

EMG
The EMG was also first downsampled to 250 Hz (with anti-
aliasing down-pass filtering), and it was then high-pass filtered
with a 17th order Butterworth filter of above 110 Hz. To generate
Figure 2C we computed the Hilbert envelope of the signal and
used it to obtain decibels of power density referred to the
mean power of the signal during the epoch. We finally averaged
these power densities across subjects per hand condition and
arm location of the electrodes. The active EMG (i.e., those
corresponding to the arm used during each hand condition) carry
a similar amount of power density for each hand condition. The
passive electrodes have a much flatter amount of power density
during the task and instead have clear peaks at the beginning and
end of the trials when the subjects were allowed to relax.

Force
The force signal was band-pass filtered between 10−4 and 9 Hz
(second order elliptical filter). Once epochs were extracted, it was
again high-pass filtered above 10−3 Hz to remove any remaining
offset. These low high-pass frequencies were selected to preserve
the squared shape of the forces, which are very rich in low
frequencies. Once the offset was removed, voluntary contraction
values were obtained by dividing the resulting forces by the
maximum voluntary contraction force recorded at the beginning
of the trial. Figure 1A shows the gathered trials for all subjects per
hand condition. Subjects mostly engaged with the task in timing
and contraction values with the left condition presenting slightly
more overshoots. Although the task is conceptually simple, the
provision of only partial visual feedback and its fast on-off
nature contributed to higher variability in the behavior within
the desired levels of contraction. We consider these aspects to be
more representative of natural force applications where feedback
is more proprioceptive and changes in force can be fast and span
a wider range than discrete target levels.

Other Signals (EOG and Breathing)
EOG was downsampled (with prior anti-aliasing filtering) to
50 Hz. Then filtered using an 8th order high-pass filter above
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FIGURE 2 | (A) Cross-subject average of HbO and HbR changes across trials, time-locked to the “Go” cue (t = 0 s) of each trial. Each trial consists of 10

contraction/relaxation periods (21 s of activity starting at the “Go” cue). HbO increases during the task and HbR decreases at a smaller scale, both start returning to

baseline after the 21 s of activity. Units in top-left. (B) Cross-subject mu-band spectrogram averaged across right-hand trials as in (B). Periodic desynchronizations

can be observed. Units in top-left. (C) Averaged EMG spectral density across trials as in (A,B) showing similar power density for the active muscles controlling the

hands. (D) Brain and behavior correlation matrix computed on the force onset (−1 s to 1 s around the “Go” cue) showing only significant (p < 0.001) correlations. It

shows a contralateral change in correlation values between HbO and HbR and force and the time-locked mu desynchronization event represented as the negative

correlation between force and the EEG mu power band. (E) Confounds correlation matrix showing only significant (p < 0.001) correlations computed along the task

(t = [−1, 20] s around the “Go” cue) for the right hand condition. Correlations between brain signals and confounds are non-significant (α = 0.001).
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1 Hz. Breathing was also low-pass filtered with a 6th order
Butterworth filter below 0.25 Hz.

Correlations Across Multi-Modal Signals

and Validation
After preprocessing, signals were correlated to characterize a
“brain and behavior” or neurobehavioral correlation (EEG,
fNIRS, EMG, and force in Figure 2D) and a “confounds”
correlation structure (EEG, fNIRS, EOG, and breathing in
Figure 2E). EEG and EMG underwent additional filtering and
spectral density computation similarly to that used for the EMG
plots. For EEG the mu (8–12 Hz), beta (12–30 Hz), and gamma
(60–125 Hz) bands spectral densities were extracted. Then,
signals were downsampled to the lowest sampling frequency
in the data set, i.e., 12.5 Hz, and cropped between −1 and
1 s (“Go” cue at t = 0 s) to focus on the onset of motor
activity in the case of the “brain and behavior” correlation
and between −1 and 21 s for the “confounds.” The signals
were finally normalized. For each hand condition, the “brain
and behavior” correlation (Figure 2D) was computed over the
appended observations corresponding to the t = [−1, 1] s
crops for all combinations of the left and right hemisphere
mu, beta, and gamma EEG power bands and HbO and HbR,
the right- and left-arm EMG and force. For the brain signals,
channels 4 and 16 (Figure 1B) were selected as representative
of the corresponding hemisphere activity. A similar process was
used for the “confounds” correlation for the t = [−1, 20] s. A
significance level α = 0.001 is set and only significant correlation
values are shown.

There is a very small correlation between brain signals and
confounds (< 0.03 in absolute values, not shown due to lack
of significance α = 0.001, Figure 2E). This suggests that
the confounds do not interfere with the recorded signals after
applying the standard preprocessing pipeline to the raw data.

The key observations of our data can be found for the
“brain and behavior” correlation (Figure 2D). For considering
the interaction between brain signals (fNIRS and EEG) and
task measure (force) we need to bear in mind that the time
scales of fNIRS and EEG are very different (seconds vs.
milliseconds). In the EEG domain, it is known that motor
activity onsets are reflected in EEG power features. In our
data, we observe significant strong anti-correlation (r ≈ −0.3,
p < 0.001) between the EEG power in the mu band and
the force which indicates that passing from a resting state
(high mu power) to motor activity (low mu power) is properly
captured by these spectral features when we look at a time
window from −1 to 1 s around the Go cue. This decrease
in power, also known as mu event-related desynchronization
(mu-ERD), is due to the desynchronization of neuronal activity
(Pfurtscheller et al., 2006), and it shows that the EEG is aligned
with the force, helping to further confirm the validity of our
data set.

However, when the correlation is computed focusing on
the 20 s of the task (from 0 s before the Go cue to 20 s
after), the EEG mu-ERD is not significant (p > 0.001). Only
the beta band (12–30 Hz), known to be synchronized with

motor activity (Kristeva-Feige et al., 2002), appears with a low
level positive correlation (r ≈ 0.04 − 0.05, p < 0.001).
The lack of mu-ERD and force correlation during the 20 s of
continuous contraction/relaxations might be a consequence of
the velocity at which the sequential contractions/relaxations were
executed, not leaving enough time to the motor cortex to reach
a synchronized equilibrium state before it was desynchronized
again. Furthermore, this can also indicate that mu frequencies
(8–12 Hz) are not fast enough to track this kind of subtle
phase changes and a justification to develop more precise
algorithms or feature extractors as suggested by Paek et al.
(2019).

In the fNIRS domain ±1 s around the “Go” cue, we also
observe a typical HbO/HbR anticorrelation (r ≈ 0.15, p <

0.001) (Jasdzewski et al., 2003; Huppert et al., 2006) in the
structure with higher magnitudes present for the contralateral
hemisphere to the hand used. The HbO/HbR anticorrelation
is stronger in the right hemisphere for the left hand although
also present in the left hemisphere, and it is stronger in
the right hemisphere. This suggests that the dominant right
hand may engage the left hemisphere while the non-dominant
left hand engages both hemispheres with a preference for
the contralateral one. HbO and HbR also show significant
correlation with the force (r ≈ 0.2 − 0.3, p < 0.001). In
particular, HbR, which is more specific than HbO (Hirth et al.,
1997), also shows higher anticorrelation with the force for the
contralateral hemisphere.

Finally, there is a strong significant correlation (r ≈ 0.7,
p < 0.001) between the EMGpower envelopes of the active hands
and the force which supports the synchronization of the different
devices used to record these measures.

This brief analysis aims to validate the data set and present
some of its features. We encourage the community to develop
algorithms to better understand the rich temporal relationships
between brain signals spanning very different time scales
and physical origins present in the data set with BCI and
neuroimaging purposes.
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This work presents the design, implementation, and evaluation of a P300-based

brain-machine interface (BMI) developed to control a robotic hand-orthosis. The purpose

of this system is to assist patients with amyotrophic lateral sclerosis (ALS) who cannot

open and close their hands by themselves. The user of this interface can select one

of six targets, which represent the flexion-extension of one finger independently or the

movement of the five fingers simultaneously. We tested offline and online our BMI on

eighteen healthy subjects (HS) and eight ALS patients. In the offline test, we used the

calibration data of each participant recorded in the experimental sessions to estimate

the accuracy of the BMI to classify correctly single epochs as target or non-target

trials. On average, the system accuracy was 78.7% for target epochs and 85.7% for

non-target trials. Additionally, we observed significant P300 responses in the calibration

recordings of all the participants, including the ALS patients. For the BMI online test,

each subject performed from 6 to 36 attempts of target selections using the interface. In

this case, around 46% of the participants obtained 100% of accuracy, and the average

online accuracy was 89.83%. The maximum information transfer rate (ITR) observed in

the experiments was 52.83 bit/min, whereas that the average ITR was 18.13 bit/min.

The contributions of this work are the following. First, we report the development and

evaluation of a mind-controlled robotic hand-orthosis for patients with ALS. To our

knowledge, this BMI is one of the first P300-based assistive robotic devices with multiple

targets evaluated on people with ALS. Second, we provide a database with calibration

data and online EEG recordings obtained in the evaluation of our BMI. This data is

useful to develop and compare other BMI systems and test the processing pipelines

of similar applications.

Keywords: brain-machine interface, electroencephalography, evoked potentials, P300, amyotrophic lateral

sclerosis, signal processing, artificial intelligence, hand-orthosis

1. INTRODUCTION

Since the early developments of BMIs, one of the most promising applications of this technology
is the use of neuroprosthetic devices to assist people with reduced mobility. There is a consensus
among researchers of this area that BMIs may significantly improve the lives of patients who suffer
neuromuscular disorders such as ALS. Even so, despite all the efforts in the last three decades to
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design and implement reliable BMI systems, the goal of
developing functional neuroprostheses has not been reached
yet. Researchers and engineers must solve many technical and
practical problems before bringing this technology into everyday
life. Some open issues concerning the development of robust
brain-controlled applications are the ability of the system to
interpret the user’s intentions accurately, the time to process and
analyze brain signals, and the stability of performance over time
(Murphy et al., 2016).

A BMI is a system that translates cerebral activity into
commands to communicate with an external device, bypassing
the normal neuromuscular pathways (Wolpaw et al., 2002; Aydin
et al., 2018). There are various techniques to register brain signals,
but the non-invasive neuroimage modality most widely used
in BMI applications is electroencephalography (EEG) because
of its high temporal resolution, low cost, and mobility (Flores
et al., 2018; Xiao et al., 2019). Among EEG-based BMIs, the
P300 paradigm is one of the most popular techniques for
building applications with multiple options because it allows
achieving high accuracies without the need for long calibration
sessions (Hwang et al., 2013; De Venuto et al., 2018). Compared
with other paradigms, P300-based BMIs have higher bit rates
than motor imagery interfaces, while the stimulation technique
for evoking P300 potentials is less visually fatiguing than the
method used to elicit steady-state visually evoked potentials
(Cattan et al., 2019).

The P300 signal is an event-related potential (ERP)
component observed in the electroencephalogram elicited
about 300 ms after the perception of an oddball or relevant
auditory, visual, or somatosensory stimulus (Cattan et al., 2019).
Typically, in a P300-based BMI, characters, syllables, or icons
presented on a computer screen flash randomly one at a time
while the user focuses attention on one particular graphical
element (target stimulus). Each flashing stimulus represents
an option, action, or command that the system can execute.
The user selects one option of the interface by counting or
performing a cognitive task every time the target stimulus is
highlighted. Because the target option flashes randomly, this
stimulus produces a P300 evoked potential synchronized with
the flickering event in the timeline. In this way, a P300-based
BMI identifies which option is evoking an ERP to decode the
user’s intentions and perform the desired action.

Numerous published works have reported examples of P300-
based BMIs for communication and control, including spellers
(Kleih et al., 2016; Poletti et al., 2016; Okahara et al., 2017; Flores
et al., 2018; Guy et al., 2018; Deligani et al., 2019; Shahriari
et al., 2019), authentication systems (Yu et al., 2016; Gondesen
et al., 2019), assistive robots (Arrichiello et al., 2017), smart
home environments (Achanccaray et al., 2017; Masud et al.,
2017; Aydin et al., 2018), neurogames (Venuto et al., 2016),
remote vehicles (De Venuto et al., 2017; Nurseitov et al., 2017),
wheelchairs (De Venuto et al., 2018), and robotic arms (Tang
et al., 2017; Garakani et al., 2019). Because the development of
assistive technologies for motor-impaired people is one of the
major purposes of BMI research, some groups have evaluated
similar applications in clinical environments on people with
neurological disorders or reduced mobility. Regarding medical

applications, we can find P300-based BMIs for ALS (Liberati
et al., 2015; Schettini et al., 2015; Poletti et al., 2016; Guy et al.,
2018; Deligani et al., 2019; Shahriari et al., 2019; McFarland,
2020), Alzheimer’s (Venuto et al., 2016), spinocerebellar ataxia
(Okahara et al., 2017), and post-stroke paralysis (Kleih et al.,
2016; Achanccaray et al., 2017; Flores et al., 2018). Recently,
P300-based BMIs have also been proposed for rehabilitation
contexts (Kleih et al., 2016), and diagnosis/evaluation purposes
(Poletti et al., 2016; Venuto et al., 2016; Deligani et al., 2019;
Shahriari et al., 2019).

Some studies have stated the benefits of orthoses for ALS
patients (Tanaka et al., 2013; Ivy et al., 2014); however, the
implementation of BMI-controlled robotic hand-orthoses for
this target population remains underexplored in comparison
to the application of these systems for other neuromotor
disorders. Moreover, most of the recent published BMIs for
ALS are designed for communication purposes (Vaughan, 2020).
Similarly, while the employment of BMI-controlled hand-
orthoses is well-known in other neuromotor conditions (e.g.,
stroke recovery), the effect of the use of these systems in ALS
patients remains poorly investigated. A critical step toward the
development of practical robotic neuroprostheses for people with
ALS is the evaluation of this technology in different scenarios. It is
essential to determine if ALS patients can operate this particular
mind-controlled application and evaluate the possible effect of a
hand-orthosis on the user’s experience and performance.

This work presents the development and evaluation of a
P300-based BMI coupled with a robotic hand-orthosis device.
The purpose of this system is to assist people with ALS to
perform movements of individual fingers of one hand, or more
complex tasks that involve a sequence of actions of one or more
fingers. Eighteen healthy participants and eight ALS patients
conducted an experiment in which they tested the proposed BMI
selecting a sequence of actions that the robotic hand-orthosis
executed. In the evaluation of this BMI, we considered six types
of operations: the flexion-extension of individual fingers, and the
flexion-extension of the five fingers simultaneously.

In the experiments, we recorded the data used in the training
phase of the BMI, and the EEG signals measured during the
online tests. The training data was used to evaluate offline
the performance of the classification model implemented in
the BMI to discriminate between target and non-target epochs.
Additionally, we analyzed the P300 responses of the participants
to determine if there are subjects without clear evoked potentials.
In the online tests, we calculated the classification accuracy and
the selection times of the BMI. It is important to say that some
selections were made without connecting the hand-orthosis to
the system to evaluate the effect of the robotic device in the online
accuracy of the BMI.

To our knowledge, our system is the first P300-based BMI
that allows ALS patients to perform sequences of movements of
individual or two or more digits simultaneously; it is important
to consider the advantage of our system to allow the individual
movement of the digits since ALS is associated with the
degeneration of the corticospinal tract (Sarica et al., 2017) that
allows to perform the fine finger motor tasks (Levine et al., 2012).
Besides, being a P300-based system, the calibration precises a
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FIGURE 1 | Hardware components of the BMI: (1) EEG recording system (EEG cap, active electrodes, and amplifier), (2) Hand of Hope orthosis, (3) monitor to display

the GUI, and (4) computer to process EEG signals, synchronize the stimuli, and send control commands. (A) System elements in direct contact with users. (B) Setup

of the BMI elements.

minimum time consuming calibration, reducing the fatigue of
patients in comparison with other systems.

Another contribution of this work is the dataset obtained
in the experimental sessions of the proposed BMI. This dataset
contains the training data and the online recordings of 26
participants. The calibration samples are useful to evaluate
different machine learning models of P300-based BMIs, whereas
the online signals can be used to test practical systems without the
need for real participants. The relevance of this database resides
in the importance of providing high-quality EEG observations
that represent both control and ALS groups. Any researcher may
evaluate other P300-based BMIs and verify if their proposals can
correctly identify the user’s intentions in online conditions.

The remainder of this paper is divided into three sections.
Section 2 describes the hardware and software components of
the mind-controlled hand-orthosis, and the experimental setup
under which we tested the BMI. Section 3 shows the results
obtained from the system evaluation, while section 4 discusses
the implications of the results and the conclusions derived from
this work.

2. MATERIALS AND METHODS

2.1. Brain-Machine Interface
The proposed system consists of a P300-based BMI coupled
with a Hand Of Hope robotic arm (Rehab-Robotics Company,
China). This hand-orthosis is a therapeutic device with five
DC linear motors designed initially for the rehabilitation of
post-stroke patients (Aggogeri et al., 2019). There is a detailed
description of the Hand of Hope and its functionality in Ho et al.
(2011). To communicate the orthosis with the BMI, we enabled
a wireless communication channel to send the position of each
motor during the execution of one movement or sequence of
movements. In this way, the user selects one action to perform
with the hand-orthosis using the P300-based interface.

Figure 1 sketches the components of the mind-controlled
hand-orthosis, and how the users interact with them. The main
hardware components of the interface are:

• An EEG recording system (a g.GAMMASYS active wet
electrode arrangement and a g.USBamp amplifier provided
by g.tec medical engineering GmbH, Austria). For this study,
the sampling rate was 256 Hz, and we used eight monopolar
electrodes, placed according to the 10–20 international system
at positions Fz, Cz, P3, Pz, P4, PO7, PO8, and Oz. The ground
electrode was located at AFz, and the reference electrode on
the right earlobe.

• A Hand of Hope robotic arm. The users can wear the robotic
device on any hand.

• A monitor that displays the graphical user interface (GUI) of
the BMI.

• A computer that processes the EEG signals, synchronizes the
stimulus presentation, and sends the control commands to the
hand-orthosis.

The software elements of this system, including the GUI, were
implemented in-house using C++.

The GUI of the BMI (shown in Figure 2) provides the
instructions to operate the system, presents the flashing elements,
and displays visual feedback. In this GUI, gray circles positioned
on a graphical illustration of the hand-orthosis represent the
available options (i.e., actions or movements of the robotic
device). Since the orthosis can be used on any hand, the GUI can
display the image of a left or right hand, according to the side
where the robotic device would be placed.

It is possible to program different movements or actions
for the hand-orthosis. The system can move each finger
independently or perform multiple movements at the same time.
For this study, we evaluated the BMI using six options: the
individual flexion-extension of each finger, and the simultaneous
flexion-extension of the five fingers. The five gray circles placed
over the fingers represent the individual movements, whereas the
circle over the palm corresponds to the hand opening and closing.

In this system, the stimulation method used to elicit evoked
responses is the dummy face pattern (Chen et al., 2015, 2016),
which consists of a yellow happy face icon that replaces for
a short time a gray circle selected randomly. In one flashing
cycle, the happy face icon is shown for 75 ms, and then all
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the gray circles appear for 75 ms (see Figure 3). The users
are instructed to choose freely one movement or action of the
robotic device by counting how many times the happy face is
displayed on the desired option. If the system detects a P300
response for one action, the flashing stops for 4 s, while the
hand-orthosis performs the corresponding movement. Then, the
interface restarts the random flashing and waits for another
evoked response. The same routine is repeated continuously
during the regular operation of the BMI.

The detection of evoked responses consists of a sequence
of processing steps necessary to extract relevant information
from the measured EEG signals. Figure 4 summarizes the

FIGURE 2 | View of the GUI. The screen shows six flashing gray circles

(possible options) placed over the image of a left or right hand wearing the

orthosis. The bar located at the lower part of the GUI presents the instructions

to operate the BMI and feedback.

different stages implemented in our BMI to analyze and classify
electrophysiological data. Firstly, when one option flashes, the
system extracts the EEG epoch (or trial) around this event and
applies some pre-processing and feature extraction techniques
on this data segment. Then, a classification model evaluates the
computed characteristics to obtain the label that represents the
class of the processed epoch (target or non-target). A third class
is also considered in this design (artifact) to indicate if a trial
is contaminated by noise or muscle artifacts. Finally, the BMI
processes this label to determine whether the flashing stimulus
is eliciting evoked responses. If there is a P300 evoked potential,
the BMI sends the respective control signals to the robotic device.
This processing pipeline is based on the classification approach
described in Mendoza-Montoya (2017).

The following describes the processing stages of the BMI, and
the component of the interface that interacts with the robotic
device. Also, we present the calibration routine implemented to
train the system.

2.1.1. EEG Pre-processing
In the pre-processing stage, the BMI extracts three band-limited
components using FIR filters with cut-off frequencies between 4
and 14, 20–40, and 4–40 Hz. Then, when one flashing occurs, the
samples around the time-window of the event are separated so
that the epoched signals contain 800ms of post-stimulus samples,
starting from the stimulus onset. The result of this processing
step are signals X4−14 =

[
x4−14
e (t)

]
∈ R

ne×nt , X20−40 =[
x20−40
e (t)

]
∈ R

ne×nt , and X4−40 =
[
x4−40
e (t)

]
∈ R

ne×nt ,
where e represents the electrode position (e = 1, 2, 3, . . . , ne),
ne is the number of electrodes or channels, t is the time index
(t = 1, 2, 3, . . . , nt), and nt is the number of samples.

The next step is the epoch validation, which is necessary to
determine if the EEG trial is not contaminated bymuscle artifacts
or other sources of noise. Here, the BMI calculates the peak-to-
peak voltage v

pp
e , the standard deviation σe, and the power ratio

re of each channel as follows:

FIGURE 3 | Representation of the dummy face pattern method for visual stimulation. The visual stimulus remain active during 75 ms on one option selected randomly

(A). Between each stimulus, there is a period of 75 ms where all circles remain gray colored (B).
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FIGURE 4 | Processing stages of the BMI. Once acquired the EEG signals, they go through the pre-processing, feature extraction, and classification stages. Based

on the results of the classifier, the interface controller synchronizes the visual stimuli and sends control commands via WiFi to the orthosis. If the BMI detects a target

option, the GUI provides visual feedback to the user, and the orthosis provides tactile feedback.

v
pp
e = maxt

(
x4−40
e (t)

)
−mint

(
x4−40
e (t)

)
, (1)

σe =

√
1

nt − 1

∑nt

t=1

(
x4−40
e (t)− µe

)2
, (2)

re =

∑nt
t=1

(
x20−40
e (t)

)2

∑nt
t=1

(
x4−40
e (t)

)2 , (3)

where

µe =
1

nt

nt∑

t=1

x4−40
e (t). (4)

The system classifies as “artifact” any epoch with one or more
channels for which v

pp
e > 200 µV, σe > 50 µV, or re > 0.7.

In this case, the trial is not processed and evaluated by the
machine learning model of the BMI. On the other hand, if the
epoch passes the validation, i.e., the calculated metrics for all
channels are below the threshold levels, the system downsamples
X4−14 using a decimation factor of four to obtain signal Y =[
ye (t)

]
∈ R

ne×n̂t , where n̂t is the number of time points after
the downsampling.

2.1.2. Feature Extraction
The system implements an algorithm of spatial filtering based
on canonical correlation analysis (CCA) for feature extraction.
This approach is effective in reducing the data dimensionality
and increasing the classification accuracy (Spüler et al., 2014;
Mendoza-Montoya, 2017). Spatial filtering is a technique that
finds linear combinations or projections of a set of signals in

such a way that the new signals in the projected space have better
separability between classes or another improved property. Given
column vector w = [we] ∈ R

ne with ne spatial weights, the
projected signal ỹ (t) is obtained as follows:

ỹ (t) =

ne∑

e=1

weye(t). (5)

In our BMI, the spatial weights increases the correlation between
epochs of the target option and the expected ERP response of
this class. Let Y target =

{
Y1,Y2,Y3, . . . ,Yntarget

}
be a set with

ntarget pre-processed observations free of artifacts of the target
class obtained from raw calibration data (Yk =

[
ye,k (t)

]
∈

R
ne×n̂t ). The average ERP waveform Y

target
∈ R

ne×n̂t of these
observations is:

y
target
e (t) =

1

ntarget

ntarget∑

k=1

ye,k (t). (6)

The training epochs of the target class and their average
ERP waveform are concatenated to build matrices U =

[Y1,Y2, . . . ,Yntarget ]
T and V = [Y

target
,Y

target
, . . . ,Y

target
]T of

dimensions
(
n̂t · ntarget

)
× ne, where T denotes transpose. CCA

is applied to calculate vectors w and w̃ that maximize the
correlation between Uw and Vw̃. Here, the system uses w as
spatial filter to transform the pre-processed epoch.

Because CCA produces ne spatial filters, the system selects the
best nw projections which correspond to the highest correlation
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values (1 6 nw 6 ne). To evaluate the system performance, we
set nw = 4. In this way, after the spatial filtering, the BMI obtains
the projected signal Ỹ ∈ R

nw×n̂t .

2.1.3. Classification
To classify one flashing event, the machine learning model of
the BMI evaluates the corresponding signal Ỹ and returns a
label or category L ∈

{
target, non-target

}
, indicating whether

the flickering option is a target stimulus. This operation is only
applied to trials free of noise or artifacts. For non-valid epochs,
the assigned label is “artifact.”

The system uses the regularized version of the linear
discriminant analysis (RLDA) (Lotte and Guan, 2009) to
distinguish between the target and non-target epochs. This binary
model has been employed previously to detect P300 potentials
(Zhumadilova et al., 2017) and classify other electrophysiological
responses (Cho et al., 2018). In this stage, the classifier evaluates

only a small subset Z =

{
z1, z2, . . . , znf

}
of nf features, selected

from the nw × n̂t spatially filtered variables (zi ∈
{
ỹe (t)

}
).

This dimensionality reduction is necessary to prevent over-
fitting and reduce the complexity of the machine learning model
(Tyagi and Nehra, 2017).

During the system calibration, the BMI chooses the
characteristics to evaluate in the classification stage using
the forward-backward stepwise (SW) method for variable
selection (James et al., 2015). This algorithm starts with an empty
classification model without variables and incorporates the one
that contributes best to the model performance according to
a scoring criterion. Then, the best feature that is not in the
model and improves the performance criterion significantly is
incorporated. If none of the candidate variables help to enhance
the classifier, the model is not modified. In the next step, the
variable that is in the model that may be excluded without
reducing the actual scoring significantly is removed. Again, the
feature set is not altered when it is not possible to discard one
feature without worsening the model. These steps are repeated
until no more changes in the feature set are possible. In this
framework, the features selection and the model training are
performed simultaneously.

2.1.4. Interface Controller
The label obtained in the classification stage might be used
directly to determine the action or movement to produce with
the robotic device. However, because the accuracy of the machine
learning model is typically below 90%, the risk of executing an
incorrect action is high. It is essential to consider that there is
only one target stimulus and multiple non-target options so that
before evaluating an epoch of the desired option, the model must
detect correctlymultiple instances of the non-target class. For this
reason, the system processes the history of labels to determine
if there is enough evidence that the user wants to select one
particular option.

The interface controller is the element of the BMI that receives
the labels of the flashing events and determines which action
must perform the hand-orthosis. Additionally, it generates the
control signals necessary to perform the selected movements or

actions and synchronizes the state of the GUI to produce visual
feedback. This component decides when the hand-orthosis must
be activated and which movement or sequence of movements it
must execute.

When the system processes one flashing event, the interface
controller evaluates the number of times that each option has
been classified as target and non-target responses. Only the
last ten flashing events of each flashing symbol free of artifacts
are considered in this counting. One option is selected if the
following conditions are satisfied:

• The corresponding gray circle of the analyzed option
has flashed at least five times (minimum number of
processed epochs).

• At least 70% of the flashing events of this option has been
classified as target stimuli (target class threshold).

• The responses of each of the other flashing circles have
been classified 60% of the time as non-target (non-target
class threshold).

If the controller detects a P300 response for one particular option,
the flashing sequence is interrupted, providing visual feedback
to the user about the selection. Subsequently, the hand-orthosis
executes the chosen routine, and the flashing sequence restarts
for another selection.

2.1.5. Calibration Routine
The operation of the BMI requires a set of spatial filters and a
classification model to process and evaluate the epochs of the
flashing events. To find these components, the system provides
a calibration routine in which the user focuses attention on
target options while the BMI records the subject’s brain signals.
This routine replicates the operational conditions of the BMI
without activating the hand-orthosis. It uses the same GUI with
six options, the stimulation method is the dummy face pattern,
and the happy face icon appears for 75 ms alternating with 75 ms
of no visual stimulus. Because the hand-orthosis is not necessary
to train the interface, this device is disabled, and the user is not
instructed to wear it.

The calibration routine is divided into eight training
sequences or runs. A run (shown in Figure 5) starts with a
fixation cross to indicate that a training sequence has begun.
Then, the interface presents a target option (selected randomly
by the interface), followed by short preparation time. Next, the
options flash randomly one after another for 30 s. Here, the
user must count mentally how many times the happy smile icon
appears on the specified target option. Finally, the user rests for a
few seconds before the next run. At the end, the training dataset
contains 264 epochs of the target class and 1,320 trials of the
non-target class.

After completing the calibration routine, the system processes
and validates the dataset to train the machine learning model
of the BMI (see Figure 6). Firstly, the system pre-processes the
complete dataset to obtain downsampled epochs free of artifacts
of both classes. Next, the spatial filters are calculated using the
set of observations of the target class. Then, the calculated filters
are applied to the extracted epochs of both classes. Finally, the
spatially filtered observations are used to find the optimal subset
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FIGURE 5 | Steps of a single training sequence (training run). The complete calibration consists of eight runs and lasts 320 s. At the end of the calibration routine, the

training dataset contains 264 epochs of the target class and 1,320 trials of the non-target class.

FIGURE 6 | Processing stages for system calibration. The information contained in a calibration dataset is pre-processed and analyzed to obtain a set of spatial filters

and a classification model. These two components are necessary to operate the BMI and control the hand-orthosis.

of features of the classifier and the parameters of this model. Once
the classification model is trained, the BMI is ready to operate
online and send control commands to the hand-orthosis.

2.2. Participants
To evaluate the proposed mind-controlled hand-orthosis, we
conducted an experiment in which HS and people with ALS
tested the brain-machine interface. In this study, we included
eighteen healthy participants (10 females and eight males, aged
between 19 and 63 years old, mean age 32.7) and eight ALS
patients (three females and five males, aged between 49 and
72 years old, mean age 59.6), all with normal or corrected
vision. Table 1 shows the age range of each participant, and
the characteristics of the ALS patients. Study subjects had no
previous experience with any brain-machine interface.

ALS participants were selected from the patients attending
the TecSalud ALS Multidisciplinary Clinic (Martínez et al., 2020)
considering the disease duration and disability level as inclusion
criteria. According to this criterion, the eight participants had,
at the time of the tests, a disease duration from 2 to 3 years,
and a general disability level ranged from mild to moderate
(according to the ALSFRS-R scores). Both, HS and ALS groups
volunteered for the study and provided informed consent
before the experimental sessions. This study followed the ethical
principles of theWorldMedical Association (WMA) Declaration
of Helsinki (WMA, 2013).

2.3. Experimental Design
The experiments were carried out in a dedicated medical room
at Zambrano-Hellion Medical Center. HS and patients who
could walk without help or a wheelchair were asked to sit in
a comfortable chair approximately one meter apart from the
22 inch LCD monitor of the BMI. For patients that needed
assistance, the room space was adapted to accommodate a
wheelchair close to the robotic device in front of the monitor.

Before starting the experiments, participants were informed
about the general instructions of the different tasks and were
asked to avoid unnecessary movements when they had to focus
attention on the interface.

Figure 7 summarizes the different stages of one experimental
session. After placing the EEG cap and preparing the wet
electrodes, the experimenter instructed the participants to
calibrate the BMI and perform a short free validation. In this
test, subjects selected freely any option of the interface and
notified if the system detected the desired action correctly. The
purpose of the free selections was to obtain information about
the detection times and demonstrate the users that the BMI is
effectively responding to their intentions. Participants repeated at
least three times the free target selection before continuing with
the experiment.

In the next stages of the experiment (online tests), subjects
were indicated to focus attention on the specified target option
until the BMI recognized a P300 response for one of the flashing
elements. All online attempts (shown in Figure 8) are similar to
the calibration runs. The interface presented a fixation cross to
indicate the beginning of a test run, followed by the presentation
of the target option and preparation time. Then, the random
flashing started, and the BMI tried to recognize an evoked
response. If the system detected in <30 s the correct option,
the hand-orthosis performed the selected movement; otherwise,
nothing happened. Finally, there were 5 s of resting time before
starting another attempt.

Some online runs were performed with the robotic device
disabled. In these cases, subjects did not wear the hand-orthosis,
and the system did not send the control signals to the device.
Table 1 indicates the number of online attempts performed by
each participant with and without the Hand of Hope. In this way,
we collected three datasets for each participant, the calibration
data, the online test data without the robotic device, and the EEG
recordings with the hand-orthosis.
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TABLE 1 | Characteristics of the participants.

Target detection attempts

Subject Age range

(years)

Without

orthosis

With

orthosis

Total

HS1 21-25 12 18 30

HS2 61-65 18 18 36

HS3 21-25 12 18 30

HS4 16-20 12 12 24

HS5 16-20 12 12 24

HS6 51-55 18 18 36

HS7 46-50 12 12 24

HS8 51-55 18 18 36

HS9 26-30 18 12 30

HS10 26-30 12 12 24

HS11 21-25 18 18 36

HS12 61-65 18 18 36

HS13 16-20 18 6 24

HS14 16-20 18 18 36

HS15 21-25 18 18 36

HS16 26-30 18 12 30

HS17 21-25 18 18 36

HS18 21-25 18 6 24

ALSFRS-R Years from

symptoms

onset

Hand

motor

impairment

ALS1 46-50 0 12 12 44 2 mild

ALS2 56-60 0 12 12 35 2 moderate

ALS3 61-65 0 6 6 40 2 moderate

ALS4 56-60 0 12 12 33 2 advanced

ALS5 46-50 18 12 30 26 2 advanced

ALS6 71-75 18 18 36 35 2 moderate

ALS7 61-65 18 18 36 42 2 moderate

ALS8 61-65 12 12 24 39 3 moderate

This table specifies the age range of each participant and the number of online validation runs performed for each condition of orthosis usage. The column “Total” indicates the total

number of validation runs performed among both conditions. For patients, the last three columns indicate the ALS Functional Rating Scale Score (ALSFRS-R) score, the years from the

onset of the ALS symptoms, and the level of motor impairment of the hands measured as mild (no observable to sporadic symptoms), moderate (visible symptoms), or advanced (no

residual movement).

FIGURE 7 | Different stages of the experiment designed for evaluating the mind-controlled hand-orthosis. An experimental session started with the subject

preparation and system setup. Then, the participant trained the BMI and tested the interface freely. Finally, the experiment concluded with the online tests. A complete

experiment lasted approximately from 30 to 55min.

2.4. Data Analysis
2.4.1. ERP Analysis
The calibration data recorded in our experiments was used to
analyze the ERP responses of each participant. In this study, we
pre-processed and validated the training epochs of the target and
non-target classes to calculate the average waveforms of both

conditions. To determine the ERPs, we used the filtered signals
obtained with the bandpass filter of 4–40 Hz. We considered
200 ms of pre-stimulus samples and 800 ms of post-stimulus
time points.

Significant ERP peaks were identified through a statistical test
of the ERP amplitude at each time point and channel with the
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FIGURE 8 | Graphical representation of a single test run. During the random flashing, the BMI tried to detect an evoked potential while the participant focused

attention on the specified target option. If the system detected the correct option, the robotic device performed the selected action. If the target was not detected

within 30 s during the random flashing, the system went directly to the rest period before starting a new test run with the fixation cross.

corresponding probability density function (PDF) of the pre-
stimulus interval. We estimated the PDF of the pre-stimulus
segment of each channel with the non-parametric kernel density
estimation method (Bowman and Azzalini, 1997). The upper and
lower limits of the PDFs were then computed for a significance
level of α = 0.05, i.e., significant ERP responses are those for
which the probability values under the PDF of the corresponding
pre-stimulus are higher than 1− α/2 or smaller than α/2.

Significant ERP responses in the target class indicate that the
interface is eliciting evoked potentials when the subject perceives
a flashing event of a target option. On the other hand, it is
expected not to observe significant evoked potentials in the
non-target class because the subject is not attending these events.

2.4.2. Classification Model Evaluation
In this study, we evaluated the accuracy of the machine learning
model of the BMI for each subject by applying five-fold cross-
validation on the calibration data (Berrar, 2019). This method is
useful to estimate the prediction error and accuracy of a model
when the number of available observations is limited, and it is
not possible to split the complete dataset into training data and
test data. For this assessment, we report the accuracy acci of
each class i ∈

{
target, non-target

}
(the proportion of samples

of class i predicted in this class correctly), and the weighted
model accuracy accw = 0.5 × (acctarget + accnon-target). We
used the weighted accuracy because the training data sets are
highly unbalanced, and we want to avoid a bias toward the
non-target class.

Additionally, the significance levels of the model accuracies
were calculated with a permutation test (Good, 2006). In this
methodology, the null hypothesis indicates that observations of
both classes are exchangeable so that any random permutation of
the class labels produces similar accuracies to the obtained with
the non-permuted data. The alternative hypothesis is accepted
when the model accuracy is an extreme value in the empirical
distribution built with m random permutations. When the

alternative hypothesis is accepted, we can say that the cross-
validated accuracy is above the chance level.

2.4.3. Online Evaluation
We assessed the online BMI performance in terms of selection
accuracies, detection times and ITR. These parameters are
computed through Equations (7)–(9), where acconline is the online
accuracy, nsel is the number of correctly selected targets, natt is
the number of attempts to select a target or test runs, B is the
information-rate transmitted (bits), nc is the number of flashing
circles, and tavg is the average time from target indication to target
selection (detection time in seconds).

acc =
nsel

natt
× 100%. (7)

B = log2nc + (acc)(log2acc)+ (1− acc)log2
1− acc

nc − 1
. (8)

ITR = 60×
B

tavg
. (9)

3. RESULTS

3.1. ERP Responses
Figure 9 shows the results of the ERP analysis for one of the
healthy subjects (HS6) and one of the ALS patients (ALS2). This
analysis is presented for all channels separately for the target
and non-target conditions. For the two participants, significant
positive and negative peaks (p < 0.05, two-tail test) are observed
in the ERP for the target condition (top figures), while no
significant ERP peaks (p > 0.05, two-tail test) are observed in
the non-target condition (bottom figures).

For the healthy subject HS2, the ERP in the target condition
shows (i) a positive peak between 250 and 450 ms in all channels
(the P300 response), (ii) a negative peak between 450 and 550
ms in the frontal Fz and the central Cz channels (possibly a
late negativity), and (iii) an early negativity around 200 and 250
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FIGURE 9 | ERP responses for all channels for the target (upper panels) and non-target (bottom panels) conditions for (A) the healthy participant HS6 and (B) the

patient ALS2. Green and red areas in the ERP for the target condition are the positive and negative peaks that presented significant differences (p < 0.05, two tail test)

with the estimated PDF of the baseline period. No significant peaks are observed in the ERP for the non-target condition.

ms in the parieto-occipital (PO7 and PO8) and occipital (Oz)
channels. Note that none of these features are observed in the
non-target condition.

For the patient ALS2, the ERP in the target condition shows
(i) the positive peak representing the P300 response between 250
and 450 ms in the frontal Fz and the central Cz channels, and (ii)
an early negativity around 200 and 250 ms in the frontal and the
central (Fz and Cz), the parieto-occipital (PO7 and PO8) and the
occipital (Oz) channels. Note that these significant peaks are not
observed in the non-target condition.

Similar observations are also present in the rest of the
participants and indicate the existence of significant task-related
evoked activity that is used by the proposed BMI system to
recognize the stimulus the user is attending.

3.2. Classification Model Accuracy
Table 2 contains the classification accuracies estimated with five-
fold cross-validation for each participant. The mean accuracy for

the target class was 78.7%, for the non-target class was 85.7%, and
the weighted accuracy was 82.2%. Only the model performance
for two participants was below 70% (HS17 and ALS3), whereas
three participants obtained accuracies above 90% (HS6, HS7,
and HS10). The best classifier performance was 95.8%, and
the worst was 66.5%. All these results are similar to those
reported in other similar works (Wang and Chakraborty, 2017;
Won et al., 2018).

In the permutation tests, the classification accuracies for
all participants were significant (p < 0.001, 10,000 random
permutations). These results indicate that the machine learning
model implemented in our BMI can discriminate between EEG
epochs of the target and non-target classes. However, if we want
to avoid selection errors in the online operation, it is important to
consider amulti-trial strategy because the error rates are not zero.
For this reason, the interface controller processes consecutive
labels returned by the classification stage to determine the
desired option.
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TABLE 2 | Classification accuracies (%) estimated with cross-validation for the

target and non-target classes.

Subject Target Non-target Mean

HS1 76.1 85.1 80.6

HS2 76.2 85.3 80.8

HS3 85.3 90.4 87.8

HS4 81.4 88.6 85.0

HS5 78.7 85.3 82.0

HS6 93.3 98.4 95.8

HS7 90.5 95.2 92.8

HS8 86.3 90.5 88.4

HS9 83.8 87.9 85.9

HS10 87.0 94.4 90.7

HS11 77.2 85.5 81.4

HS12 75.7 81.3 78.5

HS13 72.5 78.9 75.7

HS14 87.2 91.2 89.2

HS15 71.9 79.4 75.7

HS16 73.7 80.4 77.1

HS17 61.6 76.1 68.9

HS18 71.2 81.5 76.3

ALS1 80.9 87.6 84.2

ALS2 71.5 76.3 73.9

ALS3 63.2 69.8 66.5

ALS4 79.5 86.7 83.1

ALS5 73.0 83.4 78.2

ALS6 86.5 91.5 89.0

ALS7 84.5 89.9 87.2

ALS8 77.8 86.5 82.2

Mean 78.7 85.7 82.2

Std 7.8 6.5 7.1

The fourth column indicates the model accuracy (mean value).

Finally, we performed a Wilcoxon rank sum test and no
significant differences were observed between the classification
accuracies of the HS group and the ALS group (p = 0.60). We
can say from this result that ALS participants can operate the BMI
just as HS would.

3.3. Online Performance and Detection
Times
Tables 3, 4 summarize the results obtained in the online
evaluation of the proposed BMI. The distribution of the
online accuracies, detection times, and ITRs are represented
in Figure 10. From these results, we can observe that around
46% of the participants achieved an accuracy of 100% in the
online tasks. The mean online accuracy was 89.83%, and only
three participants obtained accuracies below 75% (HS16, HS17,
and ALS5). We can say from this performance evaluation that
the implemented BMI decodes the user’s intentions effectively
in most cases, and users could manipulate the hand-orthosis
without much hassle in more complex tasks. However, it is

TABLE 3 | Online classification performance obtained in the evaluation of the

mind-controlled hand-orthosis.

Accuracy (%)

ID Without

orthosis

With

orthosis

Total

HS1 75.00 83.33 80.00

HS2 100.00 88.89 94.44

HS3 100.00 100.00 100.00

HS4 100.00 100.00 100.00

HS5 100.00 100.00 100.00

HS6 100.00 100.00 100.00

HS7 100.00 100.00 100.00

HS8 100.00 100.00 100.00

HS9 100.00 91.67 96.67

HS10 100.00 100.00 100.00

HS11 88.89 100.00 94.44

HS12 94.44 88.89 91.67

HS13 83.33 83.33 83.33

HS14 100.00 100.00 100.00

HS15 72.22 77.78 75.00

HS16 66.67 58.33 63.33

HS17 50.00 44.44 47.22

HS18 88.89 66.67 83.33

ALS1 NA 83.33 83.33

ALS2 NA 75.00 75.00

ALS3 NA 100.00 100.00

ALS4 NA 100.00 100.00

ALS5 77.78 66.67 73.33

ALS6 100.00 100.00 100.00

ALS7 100.00 88.89 94.44

ALS8 100.00 100.00 100.00

Mean 90.78 88.35 89.83

Std 14.12 15.38 13.87

Results are reported separately for each condition of orthosis usage (with or without

orthosis). The fourth column (total) includes the results for all the test runs regardless

of if the orthosis was used or not. NA indicates absence of validation runs under that

experimental condition. The last two rows show the mean and standard deviation (std) of

the accuracies.

essential to improve the system performance for those users who
can not achieve high detection rates.

One way to increase online accuracy is to modify the detection
criteria of the interface controller. The number of processed
epochs and thresholds for target and non-target classes determine
the balance between detection times and classification errors. For
instance, if we decrease the non-target class threshold, we can
reduce the number of online errors, but it is possible to see higher
detection times. Our BMI can customize these parameters for
each subject, but for this study, we used the same parameters for
all participants.

The average detection time observed in our experiments was
8.54 s, whereas the ITR was 18.13 bit/min. The best and worst
times were 2.98 and 13.15 s, and the minimum and maximum
ITRs were 2.19 and 52 bit/min. Other studies have reported
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TABLE 4 | Average detection times and ITRs obtained in the online evaluation of the proposed BMI.

ID Average selection time (s) ITR (bit/min)

Without

orthosis

With

orthosis

Total Without

orthosis

With

orthosis

Total

HS1 10.22 11.26 10.87 7.01 8.25 7.72

HS2 10.67 12.47 11.52 14.53 8.78 11.18

HS3 5.43 7.62 6.74 28.56 20.37 23.01

HS4 6.35 6.72 6.54 24.43 23.08 23.73

HS5 8.68 13.56 11.12 17.86 11.44 13.95

HS6 2.94 3.03 2.98 52.83 51.20 52.00

HS7 4.18 4.61 4.40 37.08 33.63 35.27

HS8 4.33 6.49 5.41 35.82 23.91 28.67

HS9 10.56 12.21 11.18 14.69 9.72 12.32

HS10 3.10 4.93 4.02 50.01 31.43 38.60

HS11 10.13 11.05 10.62 10.80 14.04 12.13

HS12 7.61 8.50 8.04 16.92 12.87 14.75

HS13 13.41 12.34 13.14 6.93 7.52 7.07

HS14 3.57 5.94 4.76 43.45 26.10 32.61

HS15 9.54 11.19 10.40 6.84 7.00 6.89

HS16 11.28 15.50 12.84 4.75 2.47 3.67

HS17 7.51 12.61 9.91 3.39 1.45 2.19

HS18 13.84 10.40 13.15 7.91 5.15 7.06

ALS1 NA 9.80 9.80 NA 9.48 9.48

ALS2 NA 8.72 8.72 NA 8.21 8.21

ALS3 NA 7.40 7.40 NA 20.96 20.96

ALS4 NA 10.12 10.12 NA 15.33 15.33

ALS5 9.56 14.83 11.47 8.19 3.61 5.91

ALS6 4.39 5.72 5.06 35.31 27.10 30.66

ALS7 4.84 7.19 5.94 32.05 15.23 21.67

ALS8 6.16 5.56 5.86 25.17 27.90 26.46

Mean 7.65 9.22 8.54 22.02 16.39 18.13

Std 3.26 3.30 3.03 15.34 11.69 12.50

NA indicates absence of validation runs under that experimental condition. The last two rows show the mean and standard deviation (std) of the detection times and ITRs.

FIGURE 10 | Boxplots of the (A) accuracy, (B) target detection time, and (C) ITR values of the BMI online test. N indicates the number of participants who performed

the experiment under each condition.
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similar results for P300-based BMIs. If we consider that the target
population of this technology is people with ALS, these response
times are acceptable for many applications such as spellers and
smart houses. In the case of a hand-orthosis, it is clear that
it is not possible to implement an active fine control for the
robotic device. However, users can select complete movements
or sequences of actions using our interface. For this reason,
we consider that the detection times and ITRs of our system
are suitable for the movements or actions contemplated in
our BMI.

Performing a Wilcoxon rank sum test to compare the HS
group and the ALS group, we do not observe significant
differences in any of the three performancemetrics studied in this
work. Online accuracies (p = 0.95), detection times (p = 0.52),
and ITRs (p = 0.93) are similar among groups; consequently, we
cannot say the BMI performance is significantly affected by the
disease, at least for the disability level of the participants included
in this study.

Finally, considering the 22 subjects who performed the
experiment without and with orthosis, we carried out a paired t-
test to analyze the differences in the system performance between
not wearing and wearing the hand-orthosis. While no significant
differences in accuracy were found between these two conditions
(t = 1.69, df = 21, p = 0.1), the study suggests a significant
impact on the detection times (t = −3.67, df = 21, p = 0.001)
and ITRs (t = 3.82, df = 21, p = 0.001) produced by the use
of the orthosis. These differences may be explained by induced
noise mixed with the EEG when the participant wears the hand-
orthosis. The linear motors and the power supply of the robotic
device produce noise components that can be observed in the
electroencephalogram. In this way, the system detects and rejects
contaminated epochs more often when the device is turned on
and in contact with the user’s skin, increasing the detection time.
Fortunately, the penalization in the system performance is only
1.57 s, which is not a problem in a P300-based BMI if we consider
the typical reaction times of these systems.

4. DISCUSSION

In this work, we presented the development and evaluation
of a P300-based BMI coupled with a robotic hand-orthosis.
With this system, ALS patients can manipulate each finger of
a hand mentally or perform a sequence of movements of one
or more fingers. Because the BMI uses the P300 paradigm, the
number of possible movements is not limited, and the BMI can
provide a range of options for different needs. Our system is
able to perform the thumb opposition movement or movements
with any combination of fingers, we can also configure the
orthosis to be initially closed and perform the extension-flexion
of the fingers, the initial position and angular range of the
movements of the orthosis can also be controlled, this allows
to adapt the system to the individual characteristics of the
users (e.g., spasticity, rigidity, level of hand motor impairment),
however, for this initial evaluation, we wanted to test the
general performance of the interface at the most individual
level (single finger movements) and with the most complex

movement (all fingers simultaneously), having a total of six
possible movements.

In the experiments conducted with HS and ALS patients, we
observed event-related activity for the target class in the EEG
recordings of all the participants. Additionally, the classification
accuracies estimated with cross-validation were above the chance
level for all subjects. Finally, in the online tests, both HS and
ALS participants were able to control the hand-orthosis with
the interface. Only three subjects obtained online accuracies
below 75%, and 46% of the study subjects completed all the
test runs without errors. These results indicate that our interface
can discriminate successfully between target and non-target
flashing events, and we can expect that most healthy people
and ALS patients with mild to moderate general disability levels
(according to the ALSFRS-R scale) are potential users of this
assistive technology. After the tests, the users were informally
asked about their experience; being the first experience of
the subjects with a BMI technology, most of them showed
amazement, many of them showed deeply interested and asked
about the details of operation and current state of this technology.
Some users reported mild eyestrain during the BMI training
stage, but all reported feeling physically comfortable during
the test.

In this kind of application, it is essential to achieve high
accuracies to avoid the user’s frustration and increase the chance
of acceptance of this technology for daily life use. Although most
of the participants obtained low error rates in the conducted
experiments, we must find strategies to improve the system
performance for users with low classification accuracies. As long
as the training data contains observable event-related activity for
the target class and the classification model accuracy is above the
chance level, we can modify the detection criteria implemented
in the interface controller to improve the online performance
and adapt the interface to the user’s needs. Another possibility
would be the modification of the stimulus presentation and
the graphical user interface. Some studies have suggested that
variations in the visual stimuli characteristics produce variations
in the ERPs waveforms, and thus an impact on the BMI
performance (Speier et al., 2017; Li et al., 2020).

To our knowledge, this is the first report of a non-invasive
P300-based system with multiple possible selections coupled
with a robotic hand-orthosis that has been tested with ALS
patients. Despite there are previous recent reports of P300-BMIs
to control hand-orthosis or artificial hands (Stan et al., 2015;
Syrov et al., 2019), these systems were tested only with healthy
people, and consider applications mainly for stroke survivors.
Stan et al. (2015) presented a system where a hand-orthosis
is controlled through a P300-based BMI; however, the system
contains only three possible selections (turn on, close, and open
orthosis) that allow the flexion-extension of the five fingers
simultaneously, while our system allows the passive flexion-
extension of a single finger at a time. The evaluation of these
fine motor movements is particularly important in ALS patients
since this disease is directly associated with the degeneration of
the corticospinal tract (Sarica et al., 2017), which is involved
in fine digital movements (Levine et al., 2012). Syrov et al.
(2019) developed a P300-BMI approach to control each finger of
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an wired, artificial phantom hand which does not perform the
passive flexion-extension of the users fingers. In their system,
the visual stimuli are shown through LEDs placed directly on
the fingers of the artificial hand; this configuration, in addition
to the absence of wireless communication to the robotic hand,
could bring additional difficulties to test the system with ALS
patients due to their motor limitations. On the other hand, Gull
et al. (2018) proposed a prototype intended to be used with ALS
patients that includes a BMI and a robotic glove to assist hand
grasping; nevertheless, the robotic glove (Nilsson et al., 2012)
covers only three fingers (thumb, middle, and ring), and the
implementation of the BMI paradigm, glove control, and clinical
tests were reported inconclusive.

The datasets of each participant collected in this study
are publicly available with the idea of contributing to
the development of new processing and classification
methods for BMI systems. The inclusion of datasets
of ALS participants increases the available information
containing EEG recordings for BMI purposes and
facilitates the improvement of BMI-based tools for patients.
Furthermore, the ERPs could be used to investigate
potential electrophysiological biomarkers of ALS (McCane
et al., 2015; Lange et al., 2016), which would help to
understanding the neurodegenerative mechanisms of
the disease.

In conclusion, the results presented in this work show the
capability of our mind-controlled hand-orthosis to be used with
no need of adaptations for ALS patients with moderate level
of disability. Future work will focus on increasing the sample
size of ALS users and investigating the effect of longitudinal
use of the system on patients. We will also modify the available
options of the interface to test more realistic scenarios. Our
system could represent the basis for developing more practical
tools, such as a portable orthosis that responds to other
biosignals in addition to the EEG and that is adaptable to
the degree of disability of the users. Our system could also
be modified to communicate with other wireless systems (e.g.,
smart homes).

For this initial evaluation, we tested our system’s effectiveness
and efficiency in terms of accuracy and ITR, respectively; for
our future work, we will adopt an user-centered design (UCD)
approach (Liberati et al., 2015; Schettini et al., 2015; Riccio
et al., 2016; Kübler et al., 2020) and include the evaluation of
satisfaction by consulting and registering the opinion of primary
(ALS patients) and secondary (caregivers) end-users through
formal interviews. Feedback from patients and their caregivers
will help to develop a more customizable system according to
the individual characteristics and needs of each user. The UCD
approach will also help us to properly identify and correct the
present limitations in order to improve the usability of our system
in daily life.
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Covert Spatial Attention Shifts
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Hans-Jochen Heinze1,2,5, Hermann Hinrichs1,2,3,5 and Stefan Dürschmid1,5

1 Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany, 2 Center for Behavioral Brain
Sciences, Magdeburg, Germany, 3 Research Campus STIMULATE, Magdeburg, Germany, 4 Institute for Medical
Engineering, Otto-von-Guericke University, Magdeburg, Germany, 5 Department of Neurology, Otto-von-Guericke University,
Magdeburg, Germany

Regaining communication abilities in patients who are unable to speak or move is
one of the main goals in decoding brain waves for brain-computer interface (BCI)
control. Many BCI approaches designed for communication rely on attention to visual
stimuli, commonly applying an oddball paradigm, and require both eye movements
and adequate visual acuity. These abilities may, however, be absent in patients who
depend on BCI communication. We have therefore developed a response-based
communication BCI, which is independent of gaze shifts but utilizes covert shifts of
attention to the left or right visual field. We recorded the electroencephalogram (EEG)
from 29 channels and coregistered the vertical and horizontal electrooculogram. Data-
driven decoding of small attention-based differences between the hemispheres, also
known as N2pc, was performed using 14 posterior channels, which are expected to
reflect correlates of visual spatial attention. Eighteen healthy participants responded to
120 statements by covertly directing attention to one of two colored symbols (green
and red crosses for “yes” and “no,” respectively), presented in the user’s left and right
visual field, respectively, while maintaining central gaze fixation. On average across
participants, 88.5% (std: 7.8%) of responses were correctly decoded online. In order
to investigate the potential influence of stimulus features on accuracy, we presented the
symbols with different visual angles, by altering symbol size and eccentricity. The offline
analysis revealed that stimulus features have a minimal impact on the controllability of
the BCI. Hence, we show with our novel approach that spatial attention to a colored
symbol is a robust method with which to control a BCI, which has the potential to
support severely paralyzed people with impaired eye movements and low visual acuity
in communicating with their environment.

Keywords: visual spatial attention, brain-computer interface, stimulus features, N2pc, canonical correlation
analysis, gaze-independent, BCI
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INTRODUCTION

A brain-computer interface (BCI) that can be controlled
independently of gaze shifts could constitute a helpful assistive
device for persons who suffer from severe neurological disorders.
However, most developments in the field of BCI presume that
the users can move their eyes. One of the most extensively
studied brain signals is the steady-state-visual-evoked potential
(SSVEP; Müller-Putz et al., 2005; Lin et al., 2007; Vialatte
et al., 2010; Zhu et al., 2010), because its signal-to-noise ratio
is relatively high, and low training effort is required to set up
the decoder. It is commonly used in overt BCI control, since
during covert attention paradigms, the behavioral performance,
the SSVEP amplitude and BCI accuracy are comparatively
reduced (Kelly et al., 2004; Walter et al., 2012). Another
prominent example is the matrix speller, which was initially
introduced by Farwell and Donchin (1988) and utilizes the
P300 response to detect the time point at which the stimulus
is presented at the target symbol location, on which the users’
attention is focused. Overt attention has also been shown
to enable more reliable control than covert attention using
matrix spellers (Brunner et al., 2010; Treder and Blankertz,
2010). Reliability is greater during overt compared with covert
attention due to the additional modulation of early visual
event-related potential (ERP) components according to the
focus of attention (Treder and Blankertz, 2010; Frenzel et al.,
2011), which is deemed to result from greater central than
peripheral visual acuity. Hence, paradigms have been developed,
which make use of more centrally located presentations (Treder
et al., 2011b). For example, rapid serial visual presentation
has been applied to detect a target in a series of rapidly
presented symbols (Acqualagna et al., 2010; Lin et al., 2018).
The disadvantage of this paradigm is that target presentations
could be missed due to the attentional blink (Raymond et al.,
1992). Moreover, in general, vision-based BCIs require good
visual acuity, even if they are gaze-independent, but potential
users frequently suffer from impaired vision (Halder et al.,
2016). For this reason, auditory (Kübler et al., 2009; Halder
et al., 2010, 2016; Hill et al., 2014) and tactile variants
(Brouwer and van Erp, 2010; Jin et al., 2020) of the oddball
paradigm have been investigated, with the finding that they
provide inferior performance compared to BCIs based on visual
stimuli (Severens et al., 2014).

In summary, a great deal of research into BCIs is dependent
upon participants’ ability to execute eye movements. This
requirement, however, largely neglects the fact that the main aim
in BCI development is to provide a means of communication and
control for patients in whom the ability to execute eye movements
is impaired. Recently, it has been shown that spatial attention
to peripherally presented colored stimuli permits reliable, gaze-
independent control of a four class BCI (Reichert et al., 2020a).
The paradigm takes advantage of the fact that shifts in attention
to targets that pop up in the periphery of the visual field evoke
slight interhemispheric differences in brain activity, depending
on the side where the target was presented. This phenomenon has
been intensively investigated in visual search experiments, where
targets were presented in a search display among distractors,

e.g., (Heinze et al., 1990; Luck and Hillyard, 1994a; Luck and
Ford, 1998). Specifically, it has been found that in parieto-
occipital regions contralateral to the presented target, 180–300 ms
after onset, a stronger negative deflection compared to ipsilateral
sites can be measured with the electroencephalogram (EEG).
This component is known as the N2pc (Luck and Hillyard,
1994b) and is assumed to reflect the attentional selection of
target features (Eimer, 1996). The fact that paying attention
to simple features like color evokes spatially different ERPs
depending on the visual hemifield where it was presented,
suggests that the N2pc may be suited to gaze-independent BCI
control. However, the potential advantages of using shifts in
spatial attention have not yet been systematically evaluated for
use in BCI control. The ability to classify several positions of
peripherally presented targets has been evaluated using alpha
activity (van Gerven and Jensen, 2009; Treder et al., 2011a)
and ERPs (Fahrenfort et al., 2017). Classification of hemispheric
differences, depending on the hemifield in which the target
was presented, has been successfully applied for target detection
in aerial images (Matran-Fernandez and Poli, 2017), for the
detection of the tilt of Gabor patches (Xu et al., 2016) as well as
in visual search for colored digits (Awni et al., 2013) and circles
(Tian et al., 2019). While data in these studies were analyzed
offline, to our knowledge, only one study has implemented
a gaze-independent closed-loop BCI based on N2pc detection
(Reichert et al., 2020a), where participants performed a two-
dimensional navigation task. Here we extend this initial work
to evaluate how stimulus size and eccentricity modulate the
N2pc, which could alter the accuracy of the BCI. Specifically,
we implemented a BCI for binary communication, suitable
for responding to dichotomous questions. We hypothesize that
hemispheric differences related to spatial attention are largely
independent of stimulus size. This would permit the BCI to be
operated with relatively large stimuli such that patients with low
visual acuity can control the system. While the potential role of
distractors in the composition of the N2pc has been investigated
in a number of studies, with conclusions remaining controversial
(Luck et al., 1997; Hopf et al., 2002; Hickey et al., 2009; Mazza
et al., 2009), there have been no systematic investigations of
the impact of symbol size and only one recent study exploring
the impact of target eccentricity on the N2pc component
(Papaioannou and Luck, 2020). However, BCI accuracy might
depend on stimulus features, as such a dependency has been
revealed using BCIs based on the P300 potential. For instance,
accuracy was increased when faces were presented as stimuli as
opposed to character flashes or meaningless images (Kaufmann
et al., 2011), when luminance and chromatic features were
combined (Takano et al., 2009) and when 3D stereo visual
stimuli were presented as opposed to 2D stimuli (Qu et al.,
2018). In contrast, symbol size and inter-symbol distance appears
to have no general effect on the performance (Salvaris and
Sepulveda, 2009). In the BCI experiment presented here, we
varied symbol sizes and eccentricities to investigate whether
such stimulus features have an impact on classification accuracy,
and if so, to determine the optimal set of stimulus features
to prevent poor performance due to inappropriate parameter
choices in future studies.
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MATERIALS AND METHODS

Participants and Recordings
Eighteen healthy participants (10 female, 19 to 38 years, mean
age: 27 years) took part in the study. All participants had normal
or corrected to normal vision and reported no neurological
impairment. They gave written informed consent and were paid
for their participation. The study was approved by the Ethics
Committee of the Otto-von-Guericke University, Magdeburg.

Participants were seated in an acoustically shielded and
dimly lit cabin and viewed a 24” display (ASUS VG248QE)
from a distance of 70 cm. Visual stimuli were registered by a
photodiode to synchronize screen events with the EEG. The EEG
was recorded from 29 Ag/AgCl electrodes, placed at standard
positions of an extended 10–20 montage, using a BrainAmp
DC Amplifier (Brain Products GmbH, Germany). Electrode
measurements were referenced against the right mastoid and
sampled at 250 Hz. Furthermore, the vertical and horizontal EOG
(hEOG) was recorded simultaneously to register eye movements.
Parallel to the recordings, EEG signals were transferred through
TCP/IP to the BCI client.

EOG Calibration
Before the experiment started, we recorded the EOG while
participants were presented with a cross which they were asked
to track with their gaze, and which changed its position every
1,250 ms. The position displacement relative to the center varied
from 1 degree to 7 degrees horizontally and in 30% of trials
we additionally displaced the cross by 2 degrees of visual angle
vertically. Three times the cross was replaced by a circle, and
participants were asked to perform an eye blink immediately.
In total, 40 gaze shifts and three blinks were performed in an
unpredictable order, resulting in approximately 1 min of EOG
calibration. This procedure provided us with calibration data
which characterize the strength of EOG signals as a function of
gaze shift angle. We used these data to evaluate the degree of
unintentional eye movement during BCI control.

Stimulus and Task
Participants were asked to respond to yes/no questions or
statements by shifting their attention to a green +-cross to
respond with “yes” or to a red × -cross to respond with “no”
(see Figure 1). The first 96 questions and statements could be
objectively answered with “yes” or “no,” e.g., “Is Berlin a city?”. To
reduce the probability that there is a bias toward one particular
answer, each question or statement also had a counterpart (e.g.,
“Is Berlin a continent?”), such that the numbers of expected
“yes” and “no” answers were balanced. The last 24 questions
could only be answered by the participant subjectively (e.g.,
“Are you a vegetarian?”), which constituted a demonstration
of real-world application. Note that a correct answer was not
relevant for the BCI. The BCI only evaluated the attentional
shift, as decoded from the EEG and fed the result back to
the participants. In turn, participants evaluated whether their
intended response and the BCI feedback matched. A button press
with the index finger indicated correct BCI feedback and a button

press with the middle finger indicated that the feedback was not
correct. Sixteen participants were native German speakers and
were presented with questions in German. Two participants were
not German but fluent in English, and we presented the same
questions in English.

Each trial started with presentation of a question. The
participants had time to select the response and direct their gaze
on the upper or lower but central fixation cross corresponding
to the answer until they pressed a button to start the stimulus
sequence. The differently colored fixation crosses were presented
to help the participant to keep the target in mind during the
entire trial. For example, if the participants decided to answer
with yes, they directed their gaze to the green central fixation
cross and focused their attention on the green +-cross, which
was presented randomly left or right, during the whole stimulus
sequence that followed. A single stimulus sequence comprised
a series of ten stimuli, which was found previously to provide a
good trade-off between stimulation time and accuracy (Reichert
et al., 2020a). A single stimulus display thus consisted of a red× -
cross presented in the left or right visual field and a green+-cross
presented at the opposite visual field. The position at which the
cross symbols appeared was surrounded by 8 gray dots, which
were uninterruptedly presented throughout the whole trial to
indicate the position where the stimulus would appear. In each
stimulus display, we presented both a red and a green cross, one
to the left and one to the right. Across the stimulus sequence,
the colors were pseudo-randomly allocated to visual fields, with
the restriction that the number of left/right presentations was
balanced for both colors and that the same color was presented in
the same visual field in a maximum of three consecutive stimulus
displays. Each stimulus display was presented for 250 ms with a
stimulus onset asynchrony of 850 ms, jittered by 0–250 ms. For an
example stimulus sequence see the Supplementary Material. The
horizontal position α and size of the stimuli ϕ was constant within
a trial but varied between trials. We used four different ϕ levels,
i.e., four symbol sizes which we define in visual angles (ϕ1 = 0.45◦,
ϕ2 = 0.90◦, ϕ3 = 1.36◦, and ϕ4 = 1.81◦) and five different α levels,
i.e., five eccentricities which we define in visual angles (α1 = 4◦,
α2 = 5.5◦, α3 = 7◦, α4 = 8.5◦, and α5 = 10◦). See also Figure 2
for a definition of parameters α and ϕ. We combined parameters
ϕj with αj and with αj+1, j = 1. . .4, such that 8 parameter pairs
were tested. Each parameter set was applied in random order,
three times per block, resulting in 24 trials per block. After
the stimulus sequence was presented, feedback “yes” or “no” as
decoded with the BCI, was presented. The participants confirmed
the correctness of the feedback as described above. The resulting
response was considered the ground truth, which we used to train
and evaluate the BCI.

The first two blocks were conducted to acquire data to train
the classifier. Therefore, we did not present questions in those
blocks but instructed the participant to shift attention to the green
symbol in the first block and to the red symbol in the second
block. Afterward, we presented five blocks with 24 questions or
statements each, except for one participant who performed only
three question blocks due to technical issues. The classifier was
initially trained with data from the first two blocks and retrained
after each trial.
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FIGURE 1 | Structure of one trial. The trial started with a dichotomous question. The participant started the stimulation sequence by button press. After the stimulus
presentation was finished, the BCI determined the target symbol, and the corresponding feedback was presented. Finally, participants indicated its correctness by
responding with a further button press. See also the Supplementary Material for a video demonstration.

FIGURE 2 | Parameter definition for eccentricity α and symbol size ϕ, both
defined as visual angles. The participant’s gaze is directed to one of the upper
central crosses.

Processing of EEG Data
In order to prevent hemispheric differences induced by a
unilateral reference electrode, we re-referenced the EEG data to
the average of left and right mastoid. Although we recorded 29
channels to provide full head coverage as open data (Reichert
et al., 2020b), we used only 14 parieto-occipital channels (O9,
O10, CP1, CP2, Pz, P3, P4, P7, P8, PO3, PO4, PO7, PO8, and
Oz) to decode the shifts in visual attention. The EEG data
corresponding to a stimulus sequence of a trial were cut out
according to the start and stop events that we sent as trigger
signals to the EEG device before and after presentation of the
stimulus sequence. A 4th order zero-phase IIR Butterworth
bandpass filter between 1.0 and 12.5 Hz was applied to the data,
which were then resampled to 50 Hz. The stimulus onsets were
determined from the signal sent by the photodiode. Afterward,
the time series data were epoched starting from stimulus onset
to 750 ms after stimulus onset. Since this resulted in 38 sampling
points involving 14 channels, we can write an epoch as a matrix
Xi ∈ R38×14. Since the epochs of one trial, represented by a

sequence of ten stimuli, refer to the same target item, data of
one trial are composed of ten epochs. Epochs in which the green
symbol was presented on the left and the red symbol on the
right were labeled with yi = 1, while epochs in which the red and
green symbols were presented the other way around were labeled
with yi = −1.

Decoding Approach
In this section we first describe the estimation of the decoding
model, which is performed each time the classifier is trained –
online and during the folds of cross validation. Afterward, we
describe how to apply this model to unseen data – both to
present online feedback and also to decode left-out trials in a cross
validation. An implementation of the decoding approach can be
found in the publicly available data set (Reichert et al., 2020b).

Model Estimation
We use canonical correlation analysis (CCA) to estimate spatial
filters and canonical components from training data. The use of
CCA has been proven efficient in the past for decoding SSVEPs
(Nakanishi et al., 2015) and ERPs (Spüler et al., 2014; Xu et al.,
2018; Xiao et al., 2020). The approach presented here is derived
from our previous work (Reichert et al., 2016, 2017) and closely
related to the approach recently published (Reichert et al., 2020a).
CCA successively determines coefficient vectors a and b that
linearly combine two sets of variables X and Y such that the
correlation of Xa and Yb is maximal:

(u, v) = argmax
a,b

corr(Xa,Yb) (1)

where u and v are the resulting canonical variables. In the
present implementation, X represents the concatenation of
EEG epochs and a serves as a spatial filter. To reveal the
hemispheric differences that characterize the shift of attention
to the left or right visual field, the difference wave following left
target presentations and right target presentations is commonly
computed. We model the difference wave by composing a
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matrix Y that is a concatenation of identity matrices I ∈ R38×38

weighted with the labels yi, where yiI indicates that the participant
paid attention to the green symbol and −yiI indicates that the
participant paid attention to the red symbol. The kth column in
the variable set Y represents the kth time point after stimulus
onset in an epoch and can be considered a concatenation of
impulse functions, i.e., a vector of zeros being at the kth sample 1
if the target was presented left and -1 if the target was presented
right. With this matrix, the difference waves for each channel in
X, composed of n epochs per hemifield of target presentation,
can be easily calculated as X̂ = n−1YTX. However, since we want
to determine optimal spatial filters, we apply CCA to X and Y
using the MATLAB R© function canoncorr of the Statistics and
Machine Learning ToolboxTM. As a result, we reveal 14 vectors a,
whose elements can be used as channel weights and 14 vectors b,
whose elements depict the canonical difference waves. Since the
canonical correlation decreases with each iteration of the CCA
algorithm, we retain only vectors that achieve a significance level
p < 0.1 according to the canoncorr function. This procedure is
performed with an arbitrary training set of trials to estimate the
weight vectors a and b needed to classify the attended symbol.

Decoding a Sequence of Attention Shifts
After we have determined a and b from training data, the target
of a new sequence is detected as follows. We concatenate the
epochs of the trial as X′ and concatenate the corresponding
weighted identity matrix yiI as Y ′, i.e., we initially assume that
the green symbol was the target symbol. We then calculate
the Pearson product-moment correlation ρ of X′a and Y ′b
for all vectors we retained after CCA and calculate the mean
correlation ρ̄. The stimulus sequences were designed such that
the target randomly changed between the visual hemifields.
Because there are only two alternatives, which were presented
simultaneously on opposite sites, the sequence for red targets
is the reverse of the sequence for green targets. Thus, if ρ̄>0,
the canonical difference waves of the EEG correlate with the
canonical difference waves of the model functions corresponding
to the sequence of green symbols, as assumed when modeling
Y ′, and indicating that the participant intended to respond “yes.”
If ρ̄ < 0, the canonical difference waves of the EEG correlate
with the canonical difference waves of the model functions
corresponding to the sequence of red symbols, and we present
“no” as feedback.

Evaluation of BCI Performance
During the experiment, we decoded all trials that followed the
first two training blocks and presented the result as feedback.
For this online decoding, we involved all available trials we had
recorded by that time and did not discriminate between stimulus
features. In contrast, we performed offline decoding by leave-
one-out cross-validation (LOOCV) and determined decoding
accuracies that can be achieved by varying stimulus features. To
compare the outcomes using small training subsets with those
achieved with larger training sets, we matched the sample sizes
by random selection of trials from the larger training set. We
repeated the random selection one hundred times and averaged
the decoding accuracies achieved in the LOOCVs.

We performed ANOVA and paired Wilcoxon signed rank
tests to evaluate the impact of stimulus features. To determine
the chance level of the decoder empirically, we performed
a permutation test. Specifically, we randomly permuted
the labels “yes” and “no,” which also implies randomized
“target left” and “target right” assignments and performed
LOOCV. This procedure was repeated 500 times. Afterward, we
determined the 95% confidence interval from the distribution of
decoding accuracies.

EOG Analysis
We pursued two strategies to evaluate a potential impact
of eye movements on BCI performance. First, we applied
our decoding approach to the EOG data that we recorded
during the experiment and compared the accuracy achieved
with that achieved with the parieto-occipital EEG. Second, we
compared the EOG recorded during the experiment with the
EOG calibration data that we recorded prior to the experiment.
Therefore, we calculated the deflection of the hEOG as follows.
The hEOG data were segmented according to the cue in the
EOG calibration and each single stimulus in the BCI experiment,
respectively. We involved a time interval of 750 ms length starting
from the cue or stimulus onset and performed baseline correction
according to the first 100 ms. Afterward, we selected the 25
highest absolute values across the interval, which corresponds to
100 ms of strongest hEOG deflection, and averaged these values.

RESULTS

Online BCI Performance
On average, 88.5% (σ = 7.8%) of participants’ responses were
correctly decoded with our decoding approach. Individual
decoding accuracies ranged from 70.8% to 90.3%, while the
chance level was 50%. The average accuracy corresponds to an
information transfer rate of 3.02 bit/min, neglecting the time
for asking questions and providing feedback. The decoding
accuracy of questions with subjective answers (µ = 88.4%,
σ = 8.4%) did not significantly differ from decoding accuracies
of questions with obvious answers (p = 0.905; µ = 88.5%, and
σ = 8.0%). Because we presented the same number of “yes”
and “no” questions with objective answers in each run except
in the last run, where answers were initially unknown, the
sample sizes of the two classes were balanced, which reduces the
probability that class sizes bias the classification. Consequently,
the true positive rate of both classes was not statistically different
(p = 0.298; “yes”: µ = 89.4%, σ = 8.9%; “no”: µ = 87.5%, and
σ = 8.1%), indicating that the decoder was not biased. The
reported decoding accuracies are summarized in Figure 3.

During the experiment, we retrained the classifier after each
trial starting from the third run to provide the maximum number
of trials available for model estimation. In practical use, the
retraining would not be possible since we would not know the
ground truth of the user’s intention. Therefore, we estimated the
accuracy that can be achieved with only two runs of training by
repeatedly performing a LOOCV with matched sample size. On
average, 85.3% (σ = 11.1%) of trials were correctly decoded, which
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FIGURE 3 | Average decoding accuracies achieved online, validated on the
entire data set, separated for objective and subjective questions, and
separated for green and red targets. No significant differences were found for
any sub group.

demonstrates that the retraining of the classifier improved the
overall performance of the BCI significantly (p < 0.05).

Evaluation of Stimulus Features
By using LOOCV, we maximize the amount of training data
available for estimation of the spatial filters and the canonical
difference waves required for detection of the attended symbol.
We opted for LOOCV, because the number of samples available
is small when validating subsets according to stimulus features.
When all eccentricities and symbol sizes were included, as was the
case for the online decoding, we achieved an average decoding
accuracy of 88.6% (σ = 8.1%) using LOOCV. With this full
data set, we performed a permutation test for each participant,
which resulted in an upper threshold of 59.9% (σ = 0.8%) on
average for the chance level. To investigate the impact of the
stimulus’ eccentricity, we performed LOOCV involving only
trials where stimuli were presented at a specific visual angle,
irrespective of symbol size. Likewise, we performed the same
analysis for the stimulus feature symbol size. To prevent bias
in the evaluation of the performance of a subset due to larger
sample sizes in the training data, we matched the sample sizes
as described in (2.6). As a result, we found that, on average over
participants, the eccentricities α1 = 4◦ and α5 = 10◦ resulted in
slightly lower decoding accuracies, but there was no significant
difference between visual angles α (Figure 4A). For the symbol
size feature, there was also no statistically significant difference
(Figure 4B). Furthermore, to increase the sample size of the
training data set, we grouped each visual angle with its adjacent
visual angle. While the accuracies were generally higher with
these larger data sets, presumably due to a better generalizable
model estimation, decoding accuracies did not statistically differ
between tested visual angles. The symbol size groups ϕ2/ϕ3
and ϕ3/ϕ4 achieved statistically significantly higher accuracies

FIGURE 4 | Average decoding accuracies achieved with variations in stimulus
features (A) eccentricity and (B) symbol size. Dark gray bars indicate that only
trials with that parameter (eccentricity or symbol size) were included in the
analysis, but the other parameter varied (symbol size or eccentricity). Light
gray bars indicate that in the analysis, trials associated with the two adjacent
visual angles were included (e.g., 4◦ and 5.5◦). Error bars indicate the
standard error of the mean. Blue rectangles indicate the mean and the
standard error of accuracies achieved with all stimulus features involved but
sample sizes of the training data sets matched. The dotted line denotes the
upper bound of the guessing level, as determined using a permutation test.

compared to ϕ1/ϕ2 (p< 0.05, uncorrected). When comparing the
parameter subsets, involving all trials but with matched sample
size, only α3 = 7◦ and α3/α4 resulted in statistically significantly
higher accuracies.

Finally, we also evaluated the performance of each parameter
pair used in the experiment. Note that only 3 trials per run
were available for each pair, resulting in 21 trials available
for LOOCV. A 2-way ANOVA revealed no significant effect
of the factors eccentricity (p = 0.98, F4,143 = 0.1) or symbol
size (p = 0.72, F3,143 = 0.45). In Table 1, we show the
results of the single parameter combinations. None of the
combinations was significantly superior to another combination.
Only the parameter combination (ϕ3, α3) achieved statistically
significant higher decoding accuracy (p < 0.05, uncorrected)
compared to classification independent from stimulus features
with matched sample size. Each of the combinations achieved
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TABLE 1 | Decoding accuracy achieved with single parameter pairs (standard deviation in parenthesis).

Visual angle α1 α2 α3 α4 α5

ϕ1 77.7 (17.9) % 79.3 (16.9) % – – –

ϕ2 – 83.2 (13.0) % 82.5 (15.4) % – –

ϕ3 – – 79.6 (15.5) % 79.7 (14.6) % —

ϕ4 – – – 83.4 (17.6) % 80.4 (17.4) %

FIGURE 5 | EOG analysis. (A) Individual decoding accuracies achieved with EOG and with parieto-occipital EEG. EOG decoding accuracies for participants 6 and
14 were above 90% but below those achieved using EEG. Error bars indicate the 95% confidence interval of a permutation test. (B) Individual horizontal EOG
deflections. Here the same two participants also show higher deflections during BCI use, but they are still below the deflection measured when 1◦ movements were
requested in a calibration procedure. All other participants show almost no deflections during BCI use. (C) EOG difference wave between left and right target
presentation. Participants 6 and 14 show considerably higher EOG deflection compared to the average. (D) PO7/PO8 difference wave. Participants 6 and 14 show
the N2pc component (dashed vertical line), typically evoked during spatial attention shifts, similar to the average but with higher positive deflection afterward.
(E) Deflection of the EOG as a function of the angle of gaze shift during EOG calibration. Error bars in (B,E) indicate the standard error of the mean.

individual maximum decoding accuracy in at least two
participants. From the distribution of classification results
independent from stimulus features with matched sample size,
we repeatedly draw 8 decoding accuracies (in analogy to the
8 combinations) and determined the average of the maxima.
This simulates the probability that a maximum value was
achieved by an advantageous drawing of trials. We found no
significant difference between maxima achieved with parameter
combinations and maxima achieved by randomly drawing eight
trial subsets from the entire data set. All these results indicate that
the differences in stimulus features chosen in this study have no
significant impact on the decoding accuracy achieved with the
spatial attention paradigm.

Impact of Eye Movements
The use of only parieto-occipital electrodes reduces the
probability that eye movements have a systematic impact on
the decoding accuracy. However, we pursued two additional
strategies to explore a potential impact of eye movements.
Firstly, if eye movements nonetheless played a substantial role
in discrimination of visual attention shifts, decoding the EOG
data should result in higher accuracies than the EEG channels
over brain areas attributed to visual processing. Therefore, we
applied the same decoding approach to the EOG signals as
we applied to the parieto-occipital EEG channels. The average
decoding accuracy of 63.0% (σ = 13.6%) is significantly lower
than that achieved using EEG data (p < 0.001). Notably, for
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two of the participants, classification of EOG data resulted in
an accuracy of above 90%, but the EEG accuracy was higher
still for those participants (see Figure 5A for details). For the
remaining participants, EOG decoding accuracy was within or
slightly above the confidence interval for chance as determined
by a permutation test.

In a second analysis, we determined the deflection of the
hEOG during the experiment, according to the presentation
side of the target, and compared it with the hEOG deflection
obtained from defined eye movements. We found that most of
the participants showed almost no hEOG deflection. Specifically,
it was much lower than the smallest gaze angle of 1◦, which
we tested in the EOG calibration session. This finding is in
concordance with the results obtained applying our decoding
approach to EOG data only, leading to accuracies close to the
guessing level for most of the participants. The two participants
who showed high decoding accuracy based on EOG channels also
showed highest hEOG deflections, but still below that of 1◦ gaze
angle (Figure 5B). To further provide evidence that the BCI was
not influenced by eye movements, even in the two participants
showing higher EOG deflections compared to the remaining
participants, we show the difference waves (ipsilateral target
presentation subtracted from contralateral target presentations)
of the hEOG (Figure 5C) and of the EEG signal at PO7/PO8
(Figure 5D) for these participants and compare it with the
average signals from the remaining participants. While the hEOG
was much larger in these two participants compared to the
group average, the difference wave at PO7/PO8 shows the typical
N2pc component around 288 ms, which is a marker for shifts
in spatial attention. However, the eye movements also might
propagate to these channels as indicated by the larger positive
deflection. Finally, we show the hEOG deflections as a function
of the gaze angle obtained in an EOG calibration session in
Figure 5E. Comparison indicates that if participants had shifted
their gaze directly to the target with the lowest eccentricity
(α1 = 4◦), an average hEOG deflection of 61.4 µV (σ = 23.2 µV)
would be apparent. However, the average deflection during the
BCI experiment was much lower (<1 µV for 13 participants,
<1.5 µV for 3 participants, <8 µV for 1 participant and <15 µV
for 1 participant).

DISCUSSION

The BCI implementation presented here, demonstrates that
questions can reliably be answered with “yes” or “no” simply by
directing visual spatial attention to one of two simultaneously
presented colored symbols. Sensitivity to differences in stimulus
features, specifically to the size and eccentricity of presented
symbols, could not be found with statistical evidence. However,
large symbols tended to lead to more accurate decoding, which
suggests that even for persons with impaired vision, attention
to a perceived color in the left or right visual hemifield might
be sufficient to determine the shift of spatial attention for
reliable communication.

Although the information transfer rate of binary classification
is low by definition, communication on a “yes” or “no” basis could

provide important assistance in maintaining social interaction for
persons who cannot otherwise communicate. The fact that the
BCI can be controlled independently of gaze shifts and is thus
potentially accessible to severely disabled potential users may be
deemed to compensate for the low information transfer. Gaze-
independent BCIs with two answer options have indeed been
implemented using several other modalities. For example, the
covert shift of attention to auditory stimuli has been decoded
using EEG-based BCIs, achieving a bit rate of 2.46 bit/min and
an accuracy of 78.5% (Halder et al., 2010), which is below the
performance achieved with our visual spatial attention approach.
Another auditory approach achieved 4.98 bit/min neglecting
inter-trial gaps and 85% and 77% accuracy, respectively, (Hill and
Schölkopf, 2012; Hill et al., 2014). Using motor imagery of hand
and foot movement to respond to auditorily presented questions,
only two of ten healthy participants achieved effective control
(Müller-Putz et al., 2013). In further studies, covert speech
was performed in the form of mental repetition of the words
“yes” and “no,” which resulted in decoding accuracies of 63.2%
(Sereshkeh et al., 2017a) and 69.3% (Sereshkeh et al., 2017b).
An independent BCI based on SSVEPs and a non-spatial visual
attention paradigm has produced an accuracy of 72.6% (Zhang
et al., 2010). A new vibrotactile stimulation paradigm achieved
an accuracy of 76.7% and a bit rate of 1.35 bit/min in comparison
to the benchmark paradigm where accuracy was 65.6% and the
bit rate was 0.61 bit/min (Jin et al., 2020). Vibrotactile stimuli
were also tested for communication in six locked-in syndrome
patients (Lugo et al., 2014), where the grand average accuracy
was reported to reach 55.3%. In a follow-up study, an 86.7%
decoding accuracy was achieved with vibrotactile stimulation and
83.3% using motor imagery in healthy controls, but only 63.1%
accuracy was achieved with vibrotactile stimulation and 58.2%
with motor imagery in a patient group (Guger et al., 2017). This
dramatic reduction in decoding accuracy was seen in patients
suffering from a motor neuron disease when the somatosensory
and motor cortex were involved in the control strategy, but it
remains unclear whether such a reduction in accuracy would also
be expected using visual spatial attention to provide responses.
In a case study investigating the ability of a completely locked-in
patient to communicate “yes” and “no” by thinking the answer,
over 70% accuracy was achieved using functional near infrared
spectroscopy (Gallegos-Ayala et al., 2014). This approach was
further investigated with healthy subjects where an accuracy of
75% was achieved (Hwang et al., 2016). While there is no firm
evidence that it is possible to discriminate in EEG signals between
simply thinking “yes” or “no,” we have shown that the direction of
visual spatial attention can be clearly discriminated, with a 88.5%
decoding accuracy, on a binary basis in EEG recordings from
healthy participants. Future studies are required to determine
applicability in patient groups.

Importantly, the results of the current study suggest that the
decoding of spatial attention shifts is largely independent of
several empirically chosen parameters for stimulus presentation.
The parameter choices were made according to commonly
reported measures in N2pc-relevant literature (Luck and
Hillyard, 1994b; Eimer, 1996; Luck et al., 1997; Hickey et al.,
2009; Mazza et al., 2009; Grubert et al., 2017; Donohue et al.,
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2018; Drisdelle and Jolicoeur, 2019). The independence of BCI
performance from stimulus features is indicated by the high
accuracy achieved online, where we trained and tested the
BCI using all trial types irrespective of the symbol size and
eccentricity. However, since the number of samples available to
train a classifier was higher for the whole data set than that
available for subsets that represent specific stimulus features,
the trained model might have been estimated with better
generalizability, leading to a higher accuracy. We therefore
reduced the number of samples used to train the classifier
on data including all possible stimulus features to match the
sample sizes of the subsets based on particular stimulus features.
None of the subsets of trials associated with single parameters
for stimulus features led to significantly different accuracy
when averaged across participants but we found a marginal
significance for the eccentricity 7 ◦. The combination of two
subsets of adjacent parameter values increased the accuracy
compared to single subsets but again, the major increase can
be attributed to the greater number of samples. In a recent
study, magnified and non-magnified symbols were presented at
different eccentricities showing different amplitudes at different
eccentricities, but no interaction was found between eccentricity
and magnification (Papaioannou and Luck, 2020), i.e., the N2pc
amplitude accompanying larger symbols did not differ from that
observed when smaller symbols were employed. This lack of
difference is in accord with our finding that alterations in symbol
size did not result in a significant change in decoding accuracy,
which makes the paradigm potentially suitable for persons who
suffer from impaired vision, because the perception of the target
color, as the to be attended feature, in the left or right visual field,
independent of symbol shape, might be sufficient to decode the
attention shift of those persons. Furthermore, visually impaired
people might not be able to discriminate between different
symbols in the same visual hemifield, which is why we did not
present competing distractors, although they are assumed to
increase relevant hemispherical differences in the EEG (Luck
et al., 1997). In our experiment, participants achieved reliable
control without presentation of competing distractors. Whether
distractors could lead to a further increase in accuracy is one
of the questions for future studies. Regarding eccentricity, there
was trend in our data to better discrimination of spatial attention
when targets were presented in the range of five to nine degrees
visual angle. Papaioannou and Luck (2020) investigated the effect
of eccentricities at visual angles smaller than 4◦ (which was the
smallest in our study) and found that the N2pc amplitude was
constant, even for stimuli near the midline, but the amplitude
was significantly smaller at 8◦ visual angle. In contrast, the post-
N2pc positivity was significantly larger at 8◦. The difference in
our findings could be explained by the fact that the algorithm
we used automatically determined the relevant features from
the EEG and thus, it is not clear whether the N2pc or the
post-N2pc positivity is the main feature that discriminated
between attention shifts with the different eccentricities. Further
investigations are required in this regard. Also, the parameter
space might be extended in future studies to determine individual
boundaries at which the attentional shift is detectable from short
sequences of stimuli. While decoding accuracy is reduced in

visual P300-based BCIs with increasing eccentricity of the target
(Treder and Blankertz, 2010) this study suggests that N2pc-based
BCIs, which depend on shifted stimuli, are largely insensitive
to eccentricity.

We evaluated the hEOG to exclude the possibility that eye
movements have an impact on BCI control. For this purpose,
we recorded defined saccades in a short session before the
actual experiment. The hEOG amplitudes we recorded were in
accordance with the findings of Lins et al. (1993). The hEOG
activity we measured during BCI control was less in amplitude
than measurements during execution of 1◦ saccades for all
participants and close to zero for most of the participants.
Only two participants unintentionally performed small saccades
(below 1◦) during BCI control, which might have biased the
decoding accuracy, but their decoding accuracy using EEG was
nonetheless greater than using EOG. However, since we involved
only parieto-occipital electrodes showing the typical time course
observed during visual spatial attention, it is unlikely that BCI
control was achieved by eye movements.

The BCI we propose here is suited to communication of
responses to yes/no questions simply by directing visual spatial
attention to a colored, peripherally presented symbol in persons
who are unable to move their eyes and has the potential to
be used in the absence of high visual acuity. Our data suggest
that the decoding accuracy of visual spatial attention is largely
independent of symbol size and eccentricity. The new approach
could potentially serve as an assistive communication technique
for patients suffering from severe motor neuron diseases. Future
work should involve evaluation of decoding accuracy in visually
impaired individuals.

CONCLUSION

We implemented a BCI that decodes binary decisions from
a short series of ERPs that solely reflect processes of spatial
attention. We found that the symbol size and eccentricity of
the bilaterally presented stimuli have a minimal impact on the
overall accuracy of the BCI. Consequently, attention to simple
features like color, independent of the stimulus’ shape, might
be sufficient to control such a BCI, rendering it promising for
visually impaired end-users.
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Assessment of mental workload is crucial for applications that require sustained attention

and where conditions such as mental fatigue and drowsiness must be avoided. Previous

work that attempted to devise objective methods to model mental workload were

mainly based on neurological or physiological data collected when the participants

performed tasks that did not involve physical activity. While such models may be useful

for scenarios that involve static operators, they may not apply in real-world situations

where operators are performing tasks under varying levels of physical activity, such as

those faced by first responders, firefighters, and police officers. Here, we describeWAUC,

a multimodal database of mental Workload Assessment Under physical aCtivity. The

study involved 48 participants who performed the NASA Revised Multi-Attribute Task

Battery II under three different activity level conditions. Physical activity was manipulated

by changing the speed of a stationary bike or a treadmill. During data collection, six

neural and physiological modalities were recorded, namely: electroencephalography,

electrocardiography, breathing rate, skin temperature, galvanic skin response, and blood

volume pulse, in addition to 3-axis accelerometry. Moreover, participants were asked

to answer the NASA Task Load Index questionnaire after each experimental section,

as well as rate their physical fatigue level on the Borg fatigue scale. In order to bring

our experimental setup closer to real-world situations, all signals were monitored using

wearable, off-the-shelf devices. In this paper, we describe the adopted experimental

protocol, as well as validate the subjective, neural, and physiological data collected. The

WAUC database, including the raw data and features, subjective ratings, and scripts to

reproduce the experiments reported herein will be made available at: http://musaelab.

ca/resources/.

Keywords: mental workload, operator functional state, workload assessment, wearable sensors, multi-modal

database, ambulant subjects

1. INTRODUCTION

The ability of humans to perform activities in an effective and sustainable way is crucial in situations
where tasks are not fully automatic. Inmany scenarios, human performancemight be safety-critical
for human lives, such as in the case of tasks performed by aircraft pilots, firefighters, and
first responders. In these cases, monitoring and quantifying the current capability of a subject
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to correctly perform a task may be critical to prevent accidents
and, consequently, save lives. In this context, the Operator
Functional State (OFS) (Hockey, 2003a) research framework
can be used to breakdown the relationship between human
performance and the level of difficulty of the respective task
(Ting et al., 2009). According to Hockey (2003b), OFS can be
defined as “the variable capacity of the operator for effective task
performance in response to task and environmental demands,
and under the constraints imposed by cognitive and physiological
processes that control and energize behavior.” The operator
functional state can be thus seen as the resulting interaction
between a subject and a task, given specific environmental (e.g.,
noise, movement, and temperature) and psychophysiological
(e.g., sleep loss, illness, fatigue, and anxiety) conditions. While
the interplay between human, task, and environment influences
task performance, as a compensatory mechanism attempts to
sustain task performance levels, this change of resource allocation
might increase psychophysiological activation (Ting et al., 2009).
The capability of reliably monitoring OFS is key to constraining
work shifts and adapting task demand levels, thus ensuring that
operators are safely and optimally performing the designated
tasks (Wilson and Russell, 2003a).

OFS is also defined as the processes that mediate task
performance under stress and high workload (Hockey, 2003a).
In this work, we are interested in the impact of mental
workload (MW) on the operator functional state. Across several
definitions in the literature, MW can be summarized as a
construct that encompasses one’s capability of performing a task
along with the mental strain required for performing it under
specific environmental conditions (Cain, 2007). The interest on
studying this specific aspect that influences OFS stems from the
importance of maintaining its balance during task execution. In
case the operator needs to employ high levels of mental resources
in order to achieve a required task performance for a long time,
this might increase fatigue levels to such a point that the operator
is no longer able to successfully perform the task. On the other
hand, if the task is not demanding enough, it can lead to boredom
and lack of engagement, which could also affect the operator’s
performance (Wilson and Russell, 2003a; Jasper et al., 2016).
However, devising an objective strategy to assess MW is still
an open challenge. One of the main reasons is its subjectivity,
as different factors such as previous experience and temporal
pressure might affect how each subject perceives the level of
difficulty when performing a task (Charles and Nixon, 2019).

Mental workload can be assessed via subjective ratings,
task performance outcomes, and psychophysiological measures.
Each method considers different inputs and presents different
time resolutions. Among those, strategies based on monitoring
psychophysiological signals collected with wearable devices
present the best temporal resolution, as they may capture OFS
changes even before they are reflected in task performance (Ting
et al., 2009). In the literature, clinical-grade devices are frequently
employed to monitor psychophysiological responses (Yin and
Zhang, 2017; Hefron et al., 2018). However, these devices usually
require a long time to be setup, are not comfortable to be
worn for extended periods, and might not allow the monitored
subject to walk freely to perform their tasks. Thus, when

considering real-world scenarios, where it is not possible to use
clinical-grade devices to collect the required data, the use of
wearable technology becomes key to enable MW monitoring.
A further barrier to the wide deployment of MW models in
real-world scenarios lies in the mismatch between training and
testing conditions, as the former have typically relied on static
subjects (usually sitting on a chair) performing tasks that do
not demand intensive body movement. Representative examples
include tasks such as theN-back (Milner, 1998) and the Cabin Air
Management System (Sauer et al., 2000). As such, current models
do not explicitly take into account factors such as movement
artifacts and the interplay between physical activity andMW, and
thus it is not possible to directly apply them in situations that
involve ambulant subjects.

In order to decrease the gap between current research on

MW assessment based on psychophysiological signals and real-

world applications, here we describe a dataset collected using
consumer-grade wearable devices in conditions that combine
manipulation of MW levels with different levels of physical
strain. The study involved 48 subjects and six neural and

physiological modalities were acquired (electroencephalography,
electrocardiography, breathing rate, skin temperature, galvanic
skin response, and blood volume pulse), in addition to 3-

axis accelerometry. Moreover, after each experimental session,

subjective ratings of MW using the NASA Task Load Index
questionnaire (Hart and Staveland, 1988) and physical fatigue

using the Borg Scale (Borg, 1982) were collected.
We focus on providing resources for allowing the

development of different strategies for assessing MW. By
monitoring psychophysiological responses to tasks that gauge
distinct levels of MW, it is possible to employ the collected

signals to compute features that act as a proxy to quantify how
much the OFS was affected by the respective change in the task.
More specifically, we developed an experimental protocol using

the Multi-Attribute Task Battery II (MATB-II) (Santiago-Espada
et al., 2011) in which participants performed a cognitive task

under two levels of MW (low, high) and under three levels of
physical activity (no, medium, high) by either walking/running
on a treadmill or riding a stationary bike. Recent works (e.g.,
Wilson and Russell, 2003b; Cassenti et al., 2010) have shown that
the MATB-II better elicits MW than tasks typically reported in
the literature, such as the N-back task (Milner, 1998), mental
rotation (Johnson, 1990), and visual search (Shepard and
Metzler, 1971). This experimental design allows investigating
questions that remain elusive in the MW assessment literature,
such as the interplay between different modalities, and the
impact of increased physical activity and movement on MW
correlates in terms of added artifacts, as well as what additional
mental resources are drawn by the physical activity.

In the following, we summarize the main contributions of the
WAUC dataset:

• Experimental setting more closely resembling real-world
applications where mental and physical workload are
simultaneously considered.

• Large number of participants (48) in comparison to
similar studies.
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• Two different physical activity modulators tested, namely,
stationary bike and treadmill.

• Multiple signals modalities are provided, all time-
synchronized during the collection process, to allow for
multi-modal MWmodels to be developed.

• Ground-truth values for both mental and physical workload
are provided, as well as perceived values measured via
subjective ratings.

The remainder of this paper is organized as follows: in section
2, we provide a brief literature review on MW assessment and
existing datasets. In section 3, we describe the experimental
protocol. In sections 4, 5, respectively, we describe the
experiments performed to validate the WAUC dataset and
present the results. Conclusions are given in section 6.

2. RELATED WORK

In this section, we provide a brief overview of the literature
related to the proposed dataset. We describe MW assessment
methods based on subjective ratings, as well as methods that
utilize neural and physiological data as source of information.
Our dataset comprises multiple modalities collected from
ambulant subjects, and to the best of our knowledge, no
similar experimental setting was previously proposed in the MW
assessment literature. Thus, due to lack of closely related work,
we decided to highlight in this section previous work that utilized
data collected when subjects were performing similar tasks to
the ones considered in our experimental protocol. At last, we
briefly describe similar datasets that providedmultiple neural and
physiological modalities but were not proposed with the aim of
performing MW assessment.

2.1. Subjective Mental Workload
Assessment
Given the importance of maintaining balanced levels of MW for
successful and safe performance of critical tasks, several works
in the literature proposed strategies for assessing this dimension
of the OFS. Part of this previous work proposed to tackle
the MW assessment problem using subjective measurements
collected while the task was being performed. Such methods
rely on participants periodically filling in a questionnaire with
ratings related to their current OFS. Popular examples are the
Subjective Workload Assessment Technique (SWAT) (Reid and
Nygren, 1988), the NASA Task Load Index (NASA-TLX) (Hart
and Staveland, 1988), and the Modified Cooper–Harper Scale
(Wierwille and Casali, 1983). These methods feature a multi-
scale grading of multiple MW aspects. One main drawback
of using such questionnaires across multiple sessions, however,
is that they do not take into account relative changes in the
ratings for each time the subject answers the questions. In order
to circumvent this issue, Vidullch et al. (1991) proposed the
Subjective Workload Dominance (SWORD) technique, which
consists of comparing pairs of tasks to build the so-called
judgment matrix and then computing a final workload index.
Similarly to the SWORD questionnaire, SWAT and NASA-TLX

ratings can also be aggregated in order to provide a single
workload measure.

Even though themethods based on subjective ratings collected
at the same time the task is executed present a low-cost and easy-
to-implement alternative to assess MW, this strategy presents
critical limitations. As highlighted by Borghini et al. (2014),
attending to a secondary rating task might increase the levels
of working memory required to perform the main task. Thus,
the sole act of filling the questionnaires may be responsible to
changes in the reported MW. Moreover, those methods do not
allow for continuous MW assessment and have poor temporal
resolution. While reducing the intervals at which the operator
needs to provide feedback could lead to improved temporal
resolution, this may actually increase workload due to the
number of interruptions to the task being performed.

2.2. Mental Workload Assessment From
Neural and Physiological Data
Due to the aforementioned limitations of measuring subjective
ratings in real-time during task performance, neural and
physiological data collection and analysis have emerged as
a promising alternative. Electroencephalography (EEG), for
example, has been frequently used to monitor MW mostly
due to its high temporal resolution in comparison to other
neuroimaging techniques (Teplan et al., 2002). Recent work
on EEG-based MW assessment has suggested that using hand-
engineered features combined with a classifier to predict MW
levels can achieve a satisfactory performance. Zhang et al. (2016)
combined EEG spectral features with ensembles of Support
Vector Machines to devise subject-specific workload models.
Their proposed strategy achieved an average classification
performance of 76.7% (5 classes) across seven subjects. The
recent literature on EEG-based MW assessment has also been
trying to leverage advances in representation learning methods
powered by deep neural networks. Almogbel et al. (2018), for
example, utilized convolutional neural networks to classify MW
states on a task that simulates vehicle driving. Raw EEG was
employed and the best model described in the paper obtained
95.3% accuracy on a binary classification task considering the
single subject considered in the experimental protocol.

In addition to EEG, physiological responses related to heart
rate changes andmeasured by electrocardiogram (ECG) have also
been considered for MWmodeling. Heart rate variability (HRV)
is frequently employed as a correlate for MW based on cardiac
activity. HRV has been shown to successfully capture changes in
the sympathetic–parasympathetic balance and to be lowered by
an increase inMW levels (Chaumet et al., 2019). In the context of
controlling unmanned aerial vehicles, Jasper et al. (2016) verified
whether HRV could be used as a predictor of operator MW in
this scenario. Each one of the 20 participants simultaneously
controlled multiple vehicles while their ECG was monitored.
Paired t-tests between HRVs obtained in different parts of the
experiment (e.g., planning and executing the task) confirmed
the expected effect of lower HRV values as MW increased in
terms of required vigilance and situational awareness. In addition
to studying the relationship between HRV and MW, Castaldo
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et al. (2017) also assessed its correlation with performance of
repetitive tasks. Their study showed that eight HRV features, such
as themean of RR intervals and approximated entropy, presented
a strong correlation with task performance (with p > 0.05),
which suggests that HRV can also be used as a predictor of how
successfully operators will execute a task.

Other studies in the operator functional state monitoring
literature have attempted to leverage the complementary between
different neural and physiological modalities to achieve improved
MW assessment. In their study, Wilson and Russell (2003b)
combined EEG, heart rate, eye movement, and respiration rate
to model MW elicited using the MATB-II task. Features such
as EEG power spectral density and ECG interbeat intervals
were used as input to a neural network. The average achieved
classification accuracy was 84.3% (high or low MW levels) with
a training set, which simultaneously considered data from all
subjects. Furthermore, Hogervorst et al. (2014) proposed to use
subject-specific models to model MW for the N-back task based
on EEG, ECG, skin conductance, respiration, and eye-related
measures. Their findings, however, showed that the fusion of
different modalities did not improve the performance on MW
prediction in comparison to using individual signals.

2.3. Physical Activity During EEG
Monitoring
The interest on employing EEG-based brain-computer interfaces
to real-world applications where ambulant subjects are
considered motivated a diverse body of work. Matthews
et al. (2008) developed a low-power portable EEG monitoring
device capable of long-term signal acquisition. Data were
collected while subjects walked on a treadmill at a speed of
2 mph and performed mental tasks such as divide a number
by 7 or played a first person video game. A performance of
approximately 80% accuracy for binary MW (high or low)
assessment was achieved. Snyder et al. (2015) aimed to isolate
and investigate the effect of movement artifacts on EEG data. The
proposed experimental protocol involved 10 subjects walking
on a treadmill at four different speeds. Since the goal was to
obtain pure gait-related artifacts, no mental task was performed
during the experiment. Their analysis showed that independent
component analysis yielded accurate localization for most of the
artifacts components. Zink et al. (2016) studied the differences
on brain activity due to movement and cognitive effort by
proposing an experimental protocol that collected EEG while
subjects were cycling on stationary bikes or freely biking. While
biking, subjects were asked to perform a three-class oddball
auditory task. EEG analysis showed a reduction in the P300
component in cases where subjects were performing physical
activity on an unconstrained environment, suggesting that there
exists an interplay between increase in cognitive load stemming
from freely biking and perceived task difficulty.

2.4. Related Datasets
To the best of our knowledge, there is no publicly available
multi-modal dataset for MW assessment based on wearables. In
contrast, for orthogonal aspects of human cognitive states, such

as emotion and affective states, there are a few popular multi-
modal datasets with modalities similar to the ones collected here.
As examples, we highlight the DEAP (Koelstra et al., 2011) and
MAHNOB-HCI (Soleymani et al., 2011) databases. Both analyze
human affective states and were recorded while subjects watched
videos. In the case of DEAP, music video clips were used. For
MAHNOB-HCI, in turn, videos clips were taken from different
movies. In both datasets, modalities such as EEG, galvanic skin
response (GSR), skin temperature, and breathing rate were made
available and time-synchronized. In all cases, subjects were asked
to remain still and seated while watching the video clips.

3. METHODS AND MATERIALS

3.1. Participants
As the experimental protocol involved sustained physical and
mental strain for a considerable period of time, recruited subjects
were submitted to a pre-screening process in order to prevent any
potential risk during the data collection. Hence, candidates with
cardiovascular diseases, neurological disorders, history of feeling
dizzy, or fainting were not considered for the experiment. After
the screening process, four participants were discarded and 48
were selected. Based on self-identified gender and the assigned
physical activity modality (i.e., bike or treadmill) used during the
experiment, a total of 22 participants used the treadmill (9 male,
13 female) and 26 performed the experiment using the bike (16
male, 10 female). The average age among the participants was
27.4± 6.6 years old. In order to avoid gender bias in our dataset,
we intended to have a close number of male and female subjects,
however, no candidate was rejected or accepted to participate in
our experiment due to gender-related reasons. All participants
consented to participating in the study and were remunerated
(10 CAD/hour) for the time they spent at the experiment facility.
The experimental protocol was approved by the Ethics Review
Boards of INRS, Université Laval and the PERFORM Centre
(Concordia University), the latter being the location in which
data were collected.

Prior to arriving at the experiment facility, participants were
advised to wear comfortable sportswear, and to not drink
caffeinated beverages for at least 2 h prior to the beginning of
the data collection. Before starting the task tutorial, participants
were asked to read and sign (in case of agreement) a consent
form containing a brief description of the goals of our project
and allowing the use and sharing of the collected data for
research purposes.

3.2. Experimental Protocol
The experimental protocol aimed at simultaneously modulating
mental and physical workload. Participants executedmental tasks
while performing physical activity. A full factorial (2 MW levels
× 3 Physical strain levels) design was employed to capture
main effects and interactions. The data collection protocol was
preceded by a tutorial to make the participants familiar with the
tasks. The tutorial consisted of slides presentation to explain the
experimental procedure and the tasks to be executed. Subjects
were allowed to take as much time as necessary to go through
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the tutorial and to ask the experimenters as many questions
as needed.

After ensuring the participant understood the tasks to
be performed, the next step involved donning the devices.
Subjects were first asked to wear a BioHarness 3 chest strap
(Zephyr, USA) that integrates the ECG, breathing rate, and
acceleration monitoring. Next, an Enobio portable 8-channel
wireless EEG headset (Neuroelectrics, Spain) was placed. While
electrode connections were checked and calibrated via the
device’s companion software, a second experimenter placed the
E4 wristband (Empatica, USA) responsible to monitor skin
temperature, GSR, and blood volume pulse (BVP).

To guarantee participants’ safety during the experiment, a
safety harness was placed at the participant’s chest following the
devices placement step mentioned above. This was only the case
for the participants assigned to the treadmill task. For those
assigned to the stationary bike, they were asked to adjust the
seat according to their preference. In all cases, the height of the
screen was adjusted lastly according to participants preferences.
Figures 1A,B illustrate the experimental layout for the bike and
treadmill, respectively, once all devices and safety features are in
place. Before starting the data collection, each subject performed
a practice session that corresponded to playing MATB-II for 10
min. While subjects were practicing, the experimenter observed
whether they were capable of correctly performing each task.

Three levels of physical activity were considered: no
movement, medium (treadmill: 3 km/h, bike: 50 rpm), and high
movement (treadmill: 5 km/h, bike: 70 rpm). Since in the case
of the stationary bike it was not possible to set the physical
activity level for a fixed value during the experiment, we leveraged
the training phase prior to each experimental section to let
each participant get used to the speeds required during the
data collection. Moreover, during each trial, the experimenter
monitored whether the participant was deviating more than 5
rpm from the required speed and alerted the participant in case
it did.

With respect to the MW levels elicited by MATB-II, two levels
were considered, namely, low and high MW according to the
task difficulty. In total, six possible combinations of joint MW
and physical activity levels were tested. The experiment was
then split into six sessions, each one corresponding to one of
the six combinations previously described. The order in which
each session was executed was counterbalanced among all the
participants to avoid any ordering biases.

Before each session, data corresponding to two baseline
periods were collected. During the first baseline, there were
neither physical nor mental activity. Participants were asked
to stand still and relax during 60 s. Following this relaxation
period, the second baseline was recorded where the subject was
asked to start moving according to the corresponding physical
activity level assigned to the current session, but without at
MW manipulation. Recordings of the second baseline period
only began once the activity level reached a stable period and
the recording then lasted for 2 min. Lastly, the experimenter
gave the joystick to the participant and the 10-min session of
combined mental physical effort started. After each task, a 5-
min break was given. During this resting period, participants

were asked to perform a subjective evaluation corresponding to
the past task by filling the NASA-TLX questionnaire. They also
reported their perceived fatigue level based on the Borg scale.
Overall, the duration of each experimental session comprising
the baselines, task, and subjective evaluation was 18 min, and
the complete experimental protocol lasted roughly 2 h. Figure 2
summarizes the entire experiment and shows the duration in
minutes corresponding to each part of a complete session.

3.3. Stimuli
The MATB-II (Santiago-Espada et al., 2011) was employed
for modulating the MW level on the participants. This set of
tasks was originally devised to simulate different activities that
need to be performed by an aircraft pilot. In our experiment,
different mental strain levels are elicited by requiring the subjects
to simultaneously perform three of the (four available) tasks
involved in MATB-II, namely, system monitoring, tracking,
and resource management. Figure 3 shows a screenshot of the
MATB-II interface, as seen by the participant. Note the top-
right part of the screen was not used for the purposes of this
study. An Xbox 360 controller was used to perform the three
concurrent activities.

The system monitoring task (see top-left part of Figure 3)
requires the participant to monitor four sliders and report
deviations from their normal state. The two warning lights (seen
as F5 and F6 in the figure) were not used in this study. In their
normal states, sliders oscillate around the center position. In their
deviation state, sliders start oscillating around the top or the
bottom of the panel. Participants had to use the directional pad
of the controller to report deviations (one direction was assigned
to each slider). When reported, the concerned slider reverted to
its normal state. In case the deviated sliders were not reported
within 10 s, they were reverted to their normal state and a false
alarm was recorded.

The tracking task (top-middle part of Figure 3), in turn,
requires the participant to keep a target (a circular aim) within
a square bounding box. As the trials progressed, the target
started to move randomly. Participants had to use the joystick
part of their controller to bring the target back near the center
of the square. Lastly, the resource management task (bottom-
center part of Figure 3) simulates the control of fuel reservoirs.
Participants are asked to control pumps (which are subject to
failure during the task) to transfer fuel across 6 reservoirs in order
to keep the content levels of two main tanks (A and B) below
a certain threshold. In particular, they were instructed to keep
the level of the main tanks as close as possible to 2,500 units
(this level is indicated by ticks on the sides of tanks A and B).
However, fuel gradually depleted from tanks A and B. To keep the
tanks at the aimed level, participants could use 8 pumps (labeled
1–8) to transfer fuel between the reservoirs. To activate pumps,
participants had to use the second joystick of the controller to
move the cursor and “click” on the pumps. When turned on, the
pumpwould turn green. Pumps were configured to fail from time
to time. When a pump failed, it turned red and was disabled.
Pumps were automatically enabled for use after a while and the
participant could resume using it if needed.
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FIGURE 1 | Experimental set-up illustration for (A) bike and (B) treadmill sessions.

FIGURE 2 | Schematic of the steps executed by a participant during the experiment.

Modulation of the MW level relied on changing parameters
in MATB-II. For example, for low MW cases, sliding bars speed,
aim speed, volume of fuel in the reservoirs, and failure rate of the
pumps were set to lower values. In the case of high MW, on the
other hand, those parameters were set to larger values.

3.4. Subjective Evaluation
As mentioned previously, each experimental session within our
protocol included a subjective evaluation. During this step, the
NASA Task Load Index (NASA-TLX) questionnaire (Hart and
Staveland, 1988) was employed. This set of questions was devised
with the main purpose of providing a subjective metric for MW,
which is less participant-specific and takes into account different
factors resulting in mental strain.

The NASA-TLX questionnaire consists of the evaluation of
six factors considered to impact MW, namely, mental demand,
physical demand, temporal demand, performance, effort, and

frustration. Subjects were asked to perform a self-evaluation
of their mental/physical state with respect to each of these six
dimensions using a 21-point scale.

In addition to the NASA-TLX questionnaire, we also
employed the Borg fatigue scale (Borg, 1982) to assess the
participant’s fatigue level. They were asked to answer the
following question using a scale from 6 to 20: “What physical
effort and level of physical fatigue did the last segment impose
on you?” We collected fatigue ratings before and after the 5-min
break taken at the end of each experimental session.

3.5. Devices
In this study, three wireless wearable devices were employed
to acquire data from 7 different modalities, as summarized in
Table 1. The table also shows the sampling rate used during
the data collection for each modality. The open-source software
MuLES (Cassani et al., 2015) was utilized in order to allow
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FIGURE 3 | Illustration of the Multi-Task Attribute Battery II (MATB-II) interface (figure obtained from NASA’s website https://matb.larc.nasa.gov/).

TABLE 1 | Devices used in the data collection along with the respective acquired

modalities and sampling rate.

Modality Sampling rate (Hz)

Enobio EEG 500

Empatica E4

Skin temperature 4

Galvanic skin response 4

Blood volume pulse 64

Acceleration 32

Bioharness3

ECG 250

Breathing rate 25

3-axis acceleration 18

simultaneous and synchronized acquisition of data streams from
all devices. MuLES was also used to generate the synchronized
markers indicating the beginning and the end of each phase
of the experimental protocol. More details about each device is
given below.

3.5.1. Enobio Headset
EEG data were collected using the 8-channel Neurolelectrics
Enobio portable headset (Ruffini et al., 2007). The acquisition

sampling rate was set to 500 Hz. Electrode positions according
to the 10–20 system were P3, T9, AF7, FP1, FP2, AF8,
T10, and P4. References were placed at Fpz and Nz. Since
our study involved physical activity, we decided to use
wet electrodes on the regions that would be likely affected
by sweat during the experiments to avoid signal quality
issues (Shu et al., 2019). Therefore, frontal and temporal
regions were monitored using wet electrodes, while dry
electrodes were used in the parietal region. Figures 1A,B

illustrate Enobio’s placement on the participant’s head during
the experiment.

3.5.2. E4 Wristband
The E4 wristband from Empatica was used to sample skin
temperature, GSR, BVP, and acceleration at 4, 4, 64, and 32
Hz, respectively. The E4 was placed either on the left or right
wrist, according to the participant’s preference. In Figure 1A,
it is possible to see the E4 positioned on the subject’s right
wrist. In the case of participants assigned to the treadmill, the
E4 position was monitored during the experiment breaks in
order to assure skin contact was not lost due to arm movements
while running.
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3.5.3. BioHarness3
The Bioharness3 acquired ECG, breathing rate, and acceleration
at 250, 25, and 18 Hz, respectively. The device was supported by
a chest belt containing two wet electrodes, one approximately
placed at the tip of the sternum and another on the left side
of the chest, both in direct contact with the skin. The length
of the belt was carefully adjusted to avoid it from moving
during the experiment. In Figure 1B, it is possible to observe
the position of BioHarness3 belt across the subject’s chest area.
Note that this is for visual purposes only and in the actual
experimental sessions, the belt was placed in direct contact with
the participant’s skin.

4. VALIDATION OF COLLECTED DATA

4.1. Validation Steps
In this section, we provide an overview of the analysis performed
to validate the collected data, both in terms of subjective
ratings and psychophysiological recordings. To validate the
data obtained from the subjective evaluations, a mixed model
analysis of variance (ANOVA) was used for each NASA-TLX
dimension and the Borg scale values. As this experiment
aimed to test the effect of different experimental conditions
on the collected subjective ratings, a repeated measures design
was used in order to take into account the within-subject
variability on the data. For each aspect considered in the
subjective evaluation, MW (with low or high levels) and physical
workload (with no, medium, high intensity) were considered
as within-subject independent variables, whereas equipment
(bike or treadmill) was considered as the between-subject
independent variable.

In addition to the ANOVA, we empirically analyzed
the changes on the distribution of NASA-TLX dimensions
ratings for each different physical strain level. With this
analysis, a visual depiction of how different physical activity
levels impact the subjective perception of different NASA-
TLX factors can be seen. To this end, each rating was
first mapped to a binary value (low or high), considering
as threshold the respective average rating calculated per
subject taking into account all experimental sessions. We
then presented for each physical workload level the total
number of sessions rated as high for low/high MW sessions.
Moreover, we performed the same analysis considering the
subjects grouped according to the equipment to manipulate
physical strain.

Validation then proceeded by attempting to perform
binary classification of MW levels using features commonly
reported in the literature and exploring the changes in
performance resultant from varying physical workload
conditions. It is important to emphasize that as the goal
of this paper is to describe the new dataset and validate
its use for the purpose intended, achieving state-of-the-art
MW level prediction performance is not a priority and
exploring the use of new features and/or classifiers is left for
future work.

In the following subsection, the features used for benchmark
MW classification are described.

4.2. Features
For EEG data, signals were downsampled to 250 Hz and
bandpass filtered with a bandwidth 1–45 Hz. Wavelet-enhanced
Independent Component Analysis (wICA) (Castellanos and
Makarov, 2006) was used to reduce the impact ocular and
muscular artifacts as it has shown reliable performance
on MW assessment across different groups of features
(Albuquerque et al., 2019). As the multi-task nature of
MATB-II requires frequent changes in gaze position during
the experiment, using an enhancement method capable
of removing eye-related artifacts is of great importance.
Features were then computed from the wICA-enhanced signal
over 4-s long epochs with no overlap between consecutive
windows. For classifying mental and physical workload levels,
classical spectral features were considered, namely power
spectral density (PSD) at delta (1–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–45 Hz)
frequency sub-bands.

In the case of the physiological modalities collected using
the Empatica E4, features were computed over 30-s windows
with no overlap between consecutive windows. Mean, median,
standard deviation, maximum, andminimum values over the 30-
s window were considered as features for classification. In the
case of skin temperature, acquired signals were pre-processed to
remove high-amplitude peaks artifacts.

For the ECG signal, in turn, a bandpass filter was performed
between 5 and 25 Hz to enhance the QRS complex peaks.
Visual analysis was then used to remove segments with no
clear RR intervals. This was followed by an energy-based
QRS detection algorithm (Behar et al., 2014), which is an
adaption of the popular Pan & Tompkins algorithm (Pan
and Tompkins, 1985). The RR series obtained was further
filtered to remove outliers using range-based detection (≥ 280
and ≤ 1, 500 ms), moving average outlier detection, and
a filter based on percent change in consecutive RR values
(≤ 20%), as implemented in Behar et al. (2018). Finally,
benchmark time- and frequency-domain heart rate variability
(HRV) features were extracted from each session using 5-min
windows with a 4-min overlap. The HRV feature set and the
window size selection was done based on recommendations
made in Camm et al. (1996). The time domain features
included mean, standard deviation, and coefficient of variation,
while the frequency domain features were high frequency
power (HF), normalized HF, low frequency power (LF),
normalized LF, very low frequency power, and the ratio
between HF/LF.

For the breathing signal, downsampling was first performed
from 18 to 6 Hz. A low-pass filter was then applied to remove
noise (Chebychev, 2 Hz, 8th order). Following this, descriptive
statistical features that include, average, median, standard
deviation, minimum, maximum, delta, range, coefficient of
kurtosis, and skewness of the signal were calculated. Further,
breathing spectrum is sometimes divided into four equally spaced
bands between 0 and 0.4 Hz. To explore influence of higher
frequency, the spectrum was divided into 5 equally spaced bands
between 0 and 1 Hz and power in each of the bands was used as a
spectral breathing feature.
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5. VALIDATION RESULTS AND
DISCUSSION

5.1. Subjective Ratings Analysis
5.1.1. Repeated Measures ANOVA
Table 2 reports the results for multiple mixed model ANOVA1

performed on the subjective ratings in terms of partial effect
size (η2p) and p-value. We observe that all evaluated subjective
ratings were significantly (p < 0.001) affected by changes
in the type of equipment used to modulate physical strain
levels. Similarly, a significant effect (with p < 0.05) of MW
(represented as MW in the table) manipulation was found for all
subjective ratings. Physical workload (PW), in turn, was found
to significantly affect (with p < 0.05) all subjective ratings
except Performance. By observing the descriptive statistics of
this factor in Table A1 in the Appendix, it can be seen that
for all physical activity levels, the average of this NASA-TLX
dimension was approximately equal to 15 and 12 for low and high
MW sessions, respectively. Interestingly, mental demand ratings
are significantly changed by manipulation on physical strain,
which indicates that there might be an interplay between physical
activity and perceivedMW, further confirming the importance of
collecting the proposed dataset. No significant interactions were
found between MW and equipment, as well as between physical
activity and equipment. Finally, no interactions between MW
and physical activity were found for all subjective measurements
except Effort.

5.1.2. Distribution of Binary TLX Dimensions
Figure 4 shows the percentage of “high” ratings for each
NASA-TLX dimension, considering low and high MW sessions
separately (represented in blue and orange, respectively). In order
to inspect the effect of changes in physical activity, each radar
chart accounts only for data collected under a single physical
activity level. Intuitively, we expect highMWsessions to present a
higher number of “high” ratings for some of the TLX dimensions
such as mental demand. On the other hand, in the case of
performance, we suppose a lower number of “high” ratings will
be obtained for high MW sessions.

Overall, when comparing the radar charts for data obtained
under different physical activity conditions, we notice that the
number of high-rated sessions for mental demand increased.
Thus, participants found high physical workload sessions more
demanding than sessions where there was no physical activity
to be performed. We believe this aspect further indicates that
mental and physical workload are confounded and this particular
relationship should be closely investigated by future research
using the described dataset. Moreover, it is possible to observe
that the number of “high” ratings for factor Performance has
not drastically changed when physical workload increased.
As we previously highlighted, this was similarly observed
in the results obtained by the ANOVA study presented in
Table 2. We believe this indicates that, as described by the

1Although the residuals from the obtained model are not Gaussian according to

the Kolmorov–Smirnov test (with significance level of 95%), we observed that the

histograms of residuals present a shape similar to a Gaussian distribution for all

the considered subjective measures, except Frustration.

OFS framework, participants need to increase their physical
and mental demand in order to maintain a certain overall
performance level.

Moreover, as subjects performed physical activity using either
a treadmill (n = 22) or a stationary bike (n = 26), radar
charts for binary TLX ratings are also computed based on the
equipment. Different patterns are expected based on equipment
used, as for example, participants on the treadmill were holding
the controller, thus could not use their arms to help with balance,
which could induce changes in cognitive load. Radar charts
obtained with treadmill and bike data are shown in Figures 5,
6, respectively. Overall, distributions are found to be indeed
different for most of the dimensions/experimental conditions for
both equipment. More specifically, by comparing Figures 5A,
6A, it can be seen that for sessions where no physical activity was
required and a low MW task was performed, a higher percentage
of subjects rated the Mental Demand dimension as high for the
treadmill case. Despite the fact most of subjects rated this sessions
as low physical demand, it is believed that this indicates that as
subjects were standing during these sessions, this “extra” physical
strain (in comparison to the bike) might be the responsible
for increasing the perceived mental demand. Interestingly, in
the case high MW sessions performed using a stationary bike,
a higher percentage of subjects rated the Effort dimension
as high.

5.2. Classification of MATB-II Mental
Workload Levels
Binary MW classification (low vs. high values) was explored
using the MATB-II difficulty level as the ground truth. We
consider three different cross-validation strategies to train and
evaluate classifiers: (i) Mixed-subjects: we pool the data from
all subjects and use a five-fold cross-validation scheme to split
it. This process is repeated 50 times after shuffling the dataset
to obtain different cross-validation folds. We report the average
performance across the 50 repetitions. (ii) Intra-subject: We
train one classifier per subject using five-fold cross-validation and
report the average performance across all subjects. (iii) Leave-
one-subject-out: Classifiers are trained with data from all but
one subject and then evaluated on data from the subject left
out. In this case, we report the average performance across the
models obtained when each subject was left out of training.
In all cases, Random Forest classifiers with 15 estimators were
employed and the performance achieved in terms of the area
under the receiving operator curve (AUC) is reported in terms
of the average and standard deviation. Notice that it was not
possible to apply intra-subject and leave-one-subject-out cross-
validation schemes on models trained with ECG and breathing
features because the number of data points per subject after
feature extraction was considerably low (only two examples per
experimental session).

Table 3 presents the classification results obtained using
features computed from each modality individually for the no,
medium, and high physical workload conditions, as well as
for all conditions combined. Overall, we observe that EEG
and breathing features presented the best average performance
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TABLE 2 | Partial effect size (η2
p ) obtained from repeated measures analysis of variance (ANOVA) for subjective ratings (MW, mental workload; PW, physical workload).

Equipment MW MW × Equipment PW PW × Equipment MW × PW

NASA-TLX

Mental demand 0.897∗ 0.555∗ 0.002 0.219∗ 0.006 0.026

Physical demand 0.857∗ 0.231∗ 0.003 0.723∗ 0.055 0.014

Temporal demand 0.866∗ 0.602∗ < 0.001 0.350∗ 0.022 0.002

Performance 0.952∗ 0.679∗ 0.015 0.062 0.005 0.042

Effort 0.909∗ 0.593∗ 0.013 0.376∗ 0.031 0.066†

Frustration 0.739∗ 0.445∗ 0.022 0.097† 0.008 0.041

Borg scale
Before break 0.967∗ 0.437∗ 0.006 0.719∗ 0.056 0.006

After break 0.961∗ 0.174† 0.059 0.619∗ 0.062 0.038

*p-value ≤ 0.001,
†
0.001 < p-value ≤ 0.05, NO SYMBOL: p-value > 0.05.

FIGURE 4 | Percentage of high-rated TLX dimensions (using the average value as threshold) per physical activity level. In this case, subjects that performed physical

activity using both bike and treadmill are considered. (A) No physical activity. (B) Medium physical activity. (C) High physical activity.

FIGURE 5 | Percentage of high-rated TLX dimensions (using the average value as threshold) per physical activity level. In this case, subjects that performed physical

activity using only the treadmill are considered. (A) No physical activity. (B) Medium physical activity. (C) High physical activity.

and lowest standard deviation while BVP presented the
lowest average performance. Interestingly, classifiers trained
on all the conditions combined resulted in the lowest
performance, suggesting that a hierarchical classification scheme
may be needed where physical workload is first estimated
and a PW-specific MW classifier is used. These findings
corroborate the hypothesis of an interplay between mental and
physical workload.

As expected, we observe that individualized models (intra-
subject cross-validation) yielded the best performance across
all considered modalities. However, this approach requires

collecting data and training an MW classifier for each new
subject to be monitored, which makes it less practical for real-
world applications scenarios. From this perspective, leave-one-
subject-out cross-validation appears to be the best strategy to
be adopted, since no calibration is required prior to using the
obtained MW classifier on new subjects. On the other hand, the
overall poor performance of the obtained classifiers under this
cross-validation scheme as presented in Table 3 indicates that
even though the considered features showed predictive power
for MW for individual subjects, they are not robust to cross-
subject variability.
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FIGURE 6 | Percentage of high-rated TLX dimensions (using the average value as threshold) per physical activity level. In this case, subjects that performed physical

activity using only the bike are considered. (A) No physical activity. (B) Medium physical activity. (C) High physical activity.

TABLE 3 | Mean and standard deviation of area under the receiving operator curve (AUC) values obtained for binary mental workload classification when considering a

model trained with data from all subjects, one model per subject and leave-one-subject-out validation.

Modality Condition AUC—Mixed subjects AUC—Intra-subject AUC—Leave-one-subject-out

EEG

No 0.774± 0.008 0.823± 0.139 0.523± 0.073

Med 0.936± 0.004 0.927± 0.110 0.511± 0.093

High 0.945± 0.004 0.929± 0.099 0.518± 0.112

All 0.868± 0.004 0.805± 0.147 0.500± 0.049

Temperature

No 0.679± 0.026 0.846± 0.258 0.514± 0.142

Med 0.641± 0.028 0.830± 0.279 0.509± 0.125

High 0.656± 0.026 0.787± 0.303 0.506± 0.122

All 0.594± 0.016 0.632± 0.282 0.514± 0.069

GSR

No 0.712± 0.025 0.882± 0.233 0.498± 0.144

Med 0.761± 0.027 0.923± 0.169 0.522± 0.159

High 0.692± 0.026 0.827± 0.256 0.557± 0.135

All 0.661± 0.015 0.711± 0.264 0.519± 0.068

BVP

No 0.580± 0.029 0.720± 0.255 0.512± 0.109

Med 0.624± 0.029 0.751± 0.258 0.539± 0.078

High 0.584± 0.028 0.744± 0.249 0.494± 0.098

All 0.562± 0.016 0.644± 0.183 0.481± 0.065

ECG

No 0.778± 0.016

- -
Med 0.780± 0.018

High 0.753± 0.026

All 0.748± 0.011

Breathing

No 0.913± 0.011

- -
Med 0.892± 0.013

High 0.903± 0.012

All 0.865± 0.011

In comparison to previous work that also consideredMATB-II
to modulate mental strain, we observe that the results presented
in Table 3 are in-line with the performances previously reported
in the literature for experimental setting that considered static
subjects. Specifically, Wilson and Russell (2003b) obtained 87.2%
using only EEG spectral features, while we were able to achieve
an average accuracy of 86.8% when taking into account all the
physical workload levels altogether and a model trained using
mixed subjects cross-validation (as inWilson and Russell, 2003b).

Similarly to our results, Wilson and Russell (2003b) also observed
a decrease in the classification performance when only features
computed from physiological modalities were considered. Note
that although we obtained similar findings, the study in
Wilson and Russell (2003b) only involved seven participants,
as opposed to 48 in our case, and different approaches were
considered to extract features and design classifiers, rendering
the reported performance not directly comparable with results
presented herein.
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When observing the effect of increasing physical workload
on the classification results, it can be seen that, in the case
of mixed-subjects and intra-subject cross-validation schemes,
EEG-based models obtained better performance when physical
strain increased. This might be caused by an increase in the
actual perceived MW during the task due to the extra effort not
only in performing the physical activity, but also, for example,
the increased mental resources used to avoid falling from the
treadmill. This, added to the findings presented by Zink et al.
(2016), which observed a decrease in the P300 component of EEG
data in case subjects were biking in an outdoor environment,
provides further evidence of the existence of an interplay
between physical activity and perceived MW. For the other
physiological features, in turn, the best classification performance
was usually achieved in the no/medium PW condition. As the
literature on movement artifact removal is more scarce for
physiological signals, the findings in Table 3 suggest that new
enhancement algorithmsmay be needed, particularly for the high
PW conditions.

5.3. Comparing Classification
Performance: Bike vs. Treadmill
Recent research has shown that a human’s attention to targets
is reduced when walking relative to when standing still, due to
processing demands produced by visual and inertial stimulation
(Ladouce et al., 2019). As such, varyingMWprediction capability
is hypothesized based on the physical activity equipment
used. Table 4 shows the resulting AUC values for binary MW
classification when using the treadmill or the stationary bike,
as well as with both conditions combined. As can be seen, for
all modalities, except ECG and breathing, average AUC values
were higher in the treadmill condition. For EEG, these findings
corroborate those of Ladouce et al. (2019).

5.4. Multi-Modal Mental Workload
Classification
Lastly, we investigate whether performing MW classification
on features computed from different modalities improves the
obtained performance. For that, we consider feature-level
fusion of EEG, skin temperature, GSR, and BVP features.
To synchronize the features between modalities collected with
different sampling rates, we average consecutive data points in
order to obtain a single data point for each window of 60 s.
This process resulted in a total of 10 examples per experimental
session, each containing 47 features (32 EEG + 15 from the
peripheral signals). In Table 5, we present the resulting AUC for
models trained using mixed subjects and leave-one-subject-out
cross-validation strategies. Note that we did not include ECG
and breathing rate features as this would result in too few data
points per subject. Moreover, we did not consider inter-subject
cross-validation in this experiment for similar reasons.

When comparing the results presented in Table 3 and Table 5,
we observe that considering features from multiple modality
provided an improvement in the classification performance in
almost all the considered cases. Interestingly, we observe that
in the case of mixed subjects cross-validation, the multi-modal

TABLE 4 | Mean and standard deviation of area under the receiving operator

curve (AUC) values obtained for binary mental workload classification under

different signal modalities and physical activity equipment.

Modality Equipment AUC

EEG

Treadmill 0.924± 0.005

Bike 0.801± 0.007

All 0.868± 0.004

Temperature

Treadmill 0.629± 0.022

Bike 0.626± 0.023

All 0.594± 0.016

GSR

Treadmill 0.735± 0.022

Bike 0.666± 0.020

All 0.661± 0.015

Bike 0.534± 0.024

All 0.562± 0.016

ECG

Treadmill 0.762± 0.017

Bike 0.773± 0.013

All 0.748± 0.011

Breathing

Treadmill 0.875± 0.012

Bike 0.876± 0.013

All 0.865± 0.011

TABLE 5 | Mean and standard deviation of area under the receiving operator

curve (AUC) values obtained for binary mental workload classification

simultaneously considering EEG, skin temperature, GSR, and BVP features.

AUC—Cross-subject AUC—Leave-one-subject out

No 0.993± 0.006 0.561± 0.159

Med 0.998± 0.001 0.540± 0.253

High 0.998± 0.002 0.542± 0.217

All 0.995± 0.003 0.463± 0.115

approach presented improved robustness to an increase physical
workload levels, indicating that the simultaneous use of multiple
modalities to perform MW assessment might be key to design
reliable systems.

5.5. Future Research Directions
We believe the WAUC dataset will enable research on several
aspects of mobile brain–machine interfaces for practical everyday
settings. The following list summarizes the main topics and
problems that can be explored within further in-depth analysis
of the WAUC dataset:

• Investigate the interplay between physical activity and MW on
neural and physiological responses.

• Study the impact of physical strain on the interplay between
increased levels of expertise on performing MATB-II and
perceived MW (Borghini et al., 2017).

• Develop EEG artifact removal strategies that specifically
address noise generated by physical activity for signals
collected with low-density devices.

• Devise methods to detect variations on the intensity of MW
instead of classifying a specific level.
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• Leverage recent developments of deep neural networks to
learn representations, which are invariant to subject-specific
information in order to improve the performance under
real-world scenarios where data from a new subject are not
available at training time.

• Develop features tailored to improve robustness to movement
artifacts and cross-subject variability.

• Devise models that are able to adapt to changes in the signal-
to-noise ratio, as well as to new subjects.

6. CONCLUSIONS

Operator function state monitoring is critical for optimizing
human resources allocation to improve task performance while
preserving well-being and safety. In this paper, we focus on
the MW component of OFS and propose WAUC, an open
multi-modal dataset for assessing the MW under conditions that
more closely resemble real-world scenarios. More specifically,
the database provides researchers with data from 48 participants,
covering seven different modalities measured using off-the-shelf
wearable devices, while participants performed six different
MW (high/low) vs. physical workload (no/medium/high)
tasks, either on a treadmill or a stationary bike. The modalities
include electroencephalogram, ECG, breathing rate, skin
temperature, GSR, BVP, and 3-axis accelerometry. The
MATB-II assessment was used to modulate MW level.
Each participant also provided subjective workload ratings
using the NASA-TLX questionnaire, as well as Borg fatigue
scale ratings.

Besides describing the experimental procedure, detailed
validation analysis of the recorded subjective ratings and neuro-
physiological signals is also provided, along with a number of

research directions that can be followed from theWAUC dataset.
The database is available to the research community at: http://
musaelab.ca/resources/.
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APPENDIX

TABLE A1 | Subjective ratings descriptive statistics (mean and standard deviation) for subjects that used the treadmill (top rows) and bike (bottom rows) during the

experiment.

No PW Medium PW High PW

Low MW High MW Low MW High MW Low MW High MW

Treadmill

NASA-TLX

Mental demand 8.41± 5.66 11.27± 6.63 10.36± 5.09 13.41± 5.92 11.23± 5.07 15.50± 3.56

Physical demand 4.32± 5.05 5.36± 5.66 8.23± 4.89 9.00± 5.12 14.59± 4.75 15.41± 4.54

Temporal demand 7.23± 6.05 10.27± 6.91 8.41± 4.59 11.68± 5.91 11.41± 5.48 15.05± 4.34

Performance 16.36± 4.10 12.27± 4.12 14.95± 4.13 11.05± 3.90 15.14± 4.11 12.14± 4.28

Effort 8.86± 5.76 11.68± 5.56 11.45± 4.64 13.64± 5.19 13.91± 4.51 16.36± 3.55

Frustration 6.64± 6.64 8.64± 6.77 6.59± 5.75 10.32± 7.17 7.86± 6.56 10.18± 6.73

Borg Scale
Before break 8.05± 2.77 13.59± 2.77 10.09± 3.04 11.36± 2.98 8.86± 3.21 14.77± 2.16

After break 8.95± 3.20 12.64± 2.85 9.27± 2.37 10.00± 2.62 8.64± 3.33 12.95± 3.11

Bike

NASA-TLX

Mental demand 6.40± 3.44 10.12± 4.00 9.00± 4.71 11.36± 4.70 9.24± 4.99 12.60± 4.56

Physical demand 3.04± 2.59 3.44± 3.22 7.96± 3.79 8.84± 4.79 11.00± 5.40 12.92± 4.81

Temporal demand 5.44± 3.48 9.20± 4.02 8.20± 4.53 11.20± 5.37 9.56± 4.84 12.80± 4.86

Performance 17.20± 4.01 12.60± 4.43 15.20± 4.07 12.72± 4.43 15.08± 4.56 12.88± 4.56

Effort 6.48± 4.11 11.20± 4.05 10.48± 4.48 12.52± 5.12 11.12± 5.37 13.40± 4.44

Frustration 4.28± 3.25 6.88± 5.09 6.00± 4.12 9.12± 6.02 8.60± 5.39 8.56± 4.71

Borg Scale
Before break 7.20± 1.58 12.40± 2.69 10.36± 2.02 11.24± 2.73 8.56± 2.53 12.92± 2.66

After break 6.96± 1.24 11.16± 2.58 8.92± 2.10 10.20± 2.71 8.00± 2.18 11.32± 2.58
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With the burgeoning of wearable devices and passive body/brain-computer interfaces

(B/BCIs), automated stress monitoring in everyday settings has gained significant

attention recently, with applications ranging from serious games to clinical monitoring.

With mobile users, however, challenges arise due to other overlapping (and potentially

confounding) physiological responses (e.g., due to physical activity) that may mask the

effects of stress, as well as movement artifacts that can be introduced in the measured

signals. For example, the classical increase in heart rate can no longer be attributed solely

to stress and could be caused by the activity itself. This makes the development of mobile

passive B/BCIs challenging. In this paper, we introduce PASS, a multimodal database

of Physical Activity and StresS collected from 48 participants. Participants performed

tasks of varying stress levels at three different activity levels and provided quantitative

ratings of their perceived stress and fatigue levels. To manipulate stress, two video

games (i.e., a calm exploration game and a survival game) were used. Peripheral physical

activity (electrocardiography, electrodermal activity, breathing, skin temperature) as well

as cerebral activity (electroencephalography) were measured throughout the experiment.

A complete description of the experimental protocol is provided and preliminary analyses

are performed to investigate the physiological reactions to stress in the presence of

physical activity. The PASS database, including raw data and subjective ratings has

been made available to the research community at http://musaelab.ca/pass-database/.

It is hoped that this database will help advance mobile passive B/BCIs for use in

everyday settings.

Keywords: neurophysiology, wearables, physical activity, stress, body/brain-computer interfaces, heart rate

variability, electroencephalography (EEG), electrodermal activity
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1. INTRODUCTION

Brain-computer interfaces (BCIs) are systems that provide
communication and control abilities to users without relying
on the brain’s normal output pathways (Wolpaw et al., 2000).
BCIs are typically divided into two categories (Tan and Nijholt,
2010): active or passive. Active BCIs are systems where users
must actively modulate their brain responses in order to control
the BCI. Passive BCIs, in turn, monitor the user’s implicit states,
thus do not require the user to perform any specific task.
More recently, some researchers have started to use the term
“Body/brain-computer interfaces” (B/BCIs) to extend the inputs
of BCI to the rest of the physiological system (e.g., Feng et al.,
2016).

Physiological measures and passive body/brain-computer
interfaces offer tremendous possibilities for monitoring
individual functional states. In recent years, several works have
shown that physiological measures can be used to assess e.g.,
the operator functional state of workers (i.e., workload, stress,
fatigue), videogame player fun level, or even health markers
(Banaee et al., 2013; Gagnon et al., 2016; Harrivel et al., 2017;
Fortin-Côté et al., 2018). Moreover, it has been demonstrated
that such assessment can be leveraged to augment interactions
with intelligent systems, such as adaptive videogames or adaptive
workload management systems (Parnandi and Gutierrez-Osuna,
2015; Aricò et al., 2016). Wearables further push this progress
by increasing portability and accessibility of neurophysiological
measures, while reducing the cost associated with such systems.

There are many challenges, however, with relying on
neurophysiological measures and passive B/BCIs in realistic
settings where the user is mobile and multi-tasking. The
first relates to the question of multidimensionality of
psychological states (Matthews et al., 2015) where different
emotions and psychological conditions are combined. While the
multidimensionality of psychological states can be well-captured
with questionnaires, it becomes harder with metrics derived
from neurophysiological models. One example of this is the
overlapping of e.g., physical activity and stress on heart rate and
heart rate variability. An additional challenge lies on the artifacts
that are generated once experiments are performed outside
controlled laboratory settings with sensors that are sensitive to
e.g., movement artifacts (Sun et al., 2010; Falk et al., 2016).

The first goal of this project is to provide a multimodal dataset
where affective stress and physical activity are both modulated.
To date, there are no publicly-available datasets that explore the
concurrent modulation of affective stress and physical activity
and the impact it has on physiological measures and on artifact
generation. We aim to fill this gap. The second goal of this
article is to provide a dataset that mimics realistic settings to
support “in-the-wild” B/BCI development. To do so, we used
a realistic task setting (i.e., playing video games) and used off-
the-shelf wearable devices. Modalities used in this study include
electroencephalography, cardiac activity, electrodermal activity,
breathing information, and skin temperature.

In this paper, we describe PASS, a multimodal database
of Physical Activity and StresS. Here, we present the
experimental protocol used, descriptive statistics of the recorded

neurophysiological signals under the varying conditions, and
also introduce preliminary results on the use of machine learning
to model stress that is robust to different physical activity
confounding factors. The database has been made publicly
available at http://musaelab.ca/pass-database/, along with stress
and physical fatigue questionnaire responses provided by
the participants.

In the remainder of this paper, we first provide background
on the theory and physiological measures of stress in section
2, followed by a description of the current challenges in
stress monitoring in section 3. Next, a full description of the
experimental design and the methodology used to perform the
data collection is presented in section 4. Validation of the dataset
is presented in section 5, including analyses on the physiological
and subjective data gathered. Results are then discussed in
section 6 and conclusions drawn in section 7.

2. BACKGROUND

2.1. Theory of Stress
Stress is a psychological concept that has received a tremendous
level of scientific attention throughout its history. One could
argue that this attention is well-placed, as stress is well-
known to have several negative effects on individual health and
performance. While many definitions of stress exist, it can be
generally defined as an ensemble of coping responses to react to
a perceived threat (Lazarus and Folkman, 1984).

While some amount of stress is inevitable, extended or
acute exposure to stress is known to be associated with several
health problems such as cardiovascular diseases, respiratory
diseases, and autoimmune diseases (Schneiderman et al.,
2005). Investigations of occupational stress in many countries
have shown that a large proportion of the population is
exposed to detrimental levels of stress through their work
environment (Jones et al., 2016), increasing absenteeism and
turnover intention (Jamal, 2007). Finally, stress is associated with
psychological disorders like depression (Caspi et al., 2003).

Besides health considerations, several researchers have
described intricate links between stress and human performance.
Stress has been shown to influence cognitive performance,
such as memory. Authors suggest that high arousal could
enhance memory consolidation, but could hamper memory
recall (Wolf, 2009). Anxiety is also linked with poorer manual
dexterity (Kneller et al., 2012; Skirbekk et al., 2012). In
job settings, stress is associated with lower job performance
(Jamal, 2007). Despite these results, some findings suggest
that stress might be beneficial in some circumstances. Using
a crisis management simulation, authors investigated the link
between stress (i.e., time pressure) and team communication.
They found that stress increases communication quantity and
efficiency. They do, however, underline that frequent requests
for information are associated with poorer task performance
(Pfaff, 2012). Stress also influences academic performance. A
recently published longitudinal study showed that children
and adolescents undergoing an anxiety treatment therapy were
associated with better academic performance (Swan et al., 2018).
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In the literature, stress is conceptualized in various ways.
First, stress can refer to shorter-term activation, caused by
more immediate situations (e.g., solving a problem). On the
other hand, stress can also relate to longer-term straining states
(i.e., chronic stress, occupational stress), caused by adverse
life or job situations (e.g., disease, mourning, layoff) or by
prolonged exposure to short-term stress (Schneiderman et al.,
2005; Schubert et al., 2009). In experimental settings, most
researchers use validated stressors to induce stress in participants.
For example, the cold-pressor test which requires participants to
submerge limbs in near-frozen water for a short period of time
has been used in several studies investigating stress (McRae et al.,
2006; Duncko et al., 2009; Dierolf et al., 2017).

Validated stressors can elicit two forms of stress: mental
stress and affective stress. Mental stress refers to situations
that require reflection and problem-solving abilities (Sun et al.,
2010; Al-Shargie et al., 2016). For example, the stroop task
or mental arithmetic task, are designed to stress individuals
by requiring mental effort (Visnovcova et al., 2014). Mental
stress is closely tied to the concept of mental workload. Mental
workload can be difficult to define (Young et al., 2015). In
general, it can be considered as the level of mental resources
required to meet a specific performance (Young et al., 2015).
On the other hand, affective stress relates to anxiety, fear or
discomfort. Such stressors include the Trier Social Stress Task
(Kudielka et al., 2007). The Trier Social Stress Task requires
individuals to perform tasks, such as oral presentations or mental
arithmetic, in front of fake experts. Affective stress is generally
associated with emotions of negative valence (Hwang et al., 2018),
with various levels of arousal. Therefore, affective stressors also
include viewing emotionally loaded stimuli, such as pictures,
movies, or sentences (Wolf, 2009).

2.2. Physiological Measures of Stress
Stress can be assessed using subjective measures. Various
questionnaires have been developed to measure stress related to
tasks (Matthews and Campbell, 2010) or anxiety (Spielberger,
2010). Subjective measures have the advantage of being simple
and to offer direct access to cognition; however, they are also
known to be biased. Furthermore, they require interruptions.
Physiological measures, on the other hand, are objective and
can be taken continuously, without interruptions. As such,
several recent studies have proposed physiology-based models,
sometimes achieving fairly high detection accuracy (Smets et al.,
2019).

2.2.1. Neurophysiological Measures
Stress generates a wide range of physiological reactions that
can be leveraged to measure its intensity in individuals. It can
be assessed using electroencephalography (EEG), but elicited
patterns are very dependant on the type of stressor used. Task
demand and temporal pressure are often associated with a
decrease in the alpha band power in various cerebral regions,
including frontal, central and parietal, and associated with
an increase in theta at frontal and parietal regions (Borghini
et al., 2014; Al-Shargie et al., 2016). Individuals performing
the Montreal Imaging Stress Task (mental arithmetic combined

with negative social feedback) have been shown to exhibit
greater relative gamma band power in prefrontal, temporal,
and parietal regions (Minguillon et al., 2016). Similarly, the
gamma band is associated with worry. Individuals suffering
from generalized anxiety disorder undergoing a worry task (self-
selected worrying thought) exhibited greater gamma power in
temporal and parietal lobes (Oathes et al., 2008). In another
study, prefrontal asymmetry of participants performing a virtual
reality surveillance task was investigated (Brouwer et al., 2011).
During stressful moments (i.e., a bomb explosion combined with
negative feedback), alpha asymmetry of prefrontal regions (F7-
F8) was significantly higher than during non-stressful moments.
Prefrontal asymmetry was also associated with stress in other
studies, such as participant performing the Maastricht Acute
Stress Task (Quaedflieg et al., 2015). While not investigated
directly in studies involving stress, amplitude modulation
features of EEG have shown discriminative power for valence and
arousal measurement (Clerico et al., 2018), as well as workload
(Albuquerque et al., 2018). Stress is also known to influence
event-related potentials, for example, during sustained attention
tasks (Righi et al., 2009). Apart from EEG, stress can be measured
using other neurophysiological measures, such as functional
near-infrared spectroscopy (Al-Shargie et al., 2016; Parent et al.,
2019a).

2.2.2. Cardiac Measures
Stress is well-known to increase heart rate. Heart rate is often
derived from the electrocardiography (ECG) signal. ECG consists
of placing electrodes on the skin tomeasure the voltage difference
caused by the electrical activity of the heart. Heart rate can also be
measured using photoplethysmography by measuring variations
of the light absorption of the skin. Apart from heart rate, stress
is known to influence heat-rate variability (Kreibig et al., 2007;
Castaldo et al., 2015). Heart rate variability is the analysis of the
changes in heart rhythm. Heart rate variability does not usually
refer to a specific feature, but a family of features, each describing
various aspects of cardiac activity. As such, stress is known to
increase the standard deviation of inter-beat intervals (SDNN)
or reduce the root mean square of inter-beat intervals (RMSSD)
(Castaldo et al., 2015). Stress also influences frequency-domain
features of heart rate variability, as the ratio between low and high
frequency power (Castaldo et al., 2015). Blood pressure is also
influenced by stress. Fear is known to increase both systolic and
diastolic blood pressure (Kreibig et al., 2007). In a simulation of
computer work containing stressful and non-stressful sessions, it
was shown that blood pressure increased during work sessions
compared to rest, but did not decrease during non-stressful
sessions (Hjortskov et al., 2004).

2.2.3. Breathing Measures
Breathing rate increases under stress (Rainville et al., 2006;
Homma and Masaoka, 2008). Furthermore, anxious individuals
tend to breathe faster during anticipatory stress than less anxious
individuals (Homma and Masaoka, 2008). Studies have also
shown that respiratory variability is higher and more random
during mental stress and worry (Vlemincx et al., 2013). In the
same line of thought, fear is associated with higher standard
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deviation of breathing amplitude (Rainville et al., 2006). Sighing
seems more present during stress (Vlemincx et al., 2013). It is
suggested that sighing might act as a reset to irregular respiration
pattern encountered during stress.

2.2.4. Electrodermal Measures
Stress also has effects on sweating, which can be measured using
electrodermal activity (EDA). EDA is described as the electrical
conductance of the skin, which is modulated by the level of
sweat. Sweat is well-known to be influenced by physical activity.
However, it is suggested that sweat glands are controlled by
the sympathetic system. EDA is thus considered as a proxy to
observe the sympathetic activation of individuals. Besides the
electrodermal level (i.e., the “amount” of sweat on the skin), EDA
can be described in greater details by analyzing electrodermal
responses. Electrodermal responses are brief “peaks” of sweat
that occurs in response to a stimulus. They can be specific (i.e.,
related to a known event) or non-specific (Boucsein, 2012).
Typically, short-term stressors used in laboratory settings, such
as the cold pressor or stroop task, or fearful states tend to
increase electrodermal level, non-specific response frequency,
as well as response amplitude (Kreibig et al., 2007; Reinhardt
et al., 2012; Posada-Quintero et al., 2016b, 2018a). While still not
very common, some authors have investigated frequency domain
features of the EDA. Overall, results suggest that the stressors
influence mostly the 0.045 to 0.15 Hz band (Posada-Quintero
et al., 2016a). Frequency domain features of EDA are said to be
sometimes more sensitive to stress than classical time-domain
features (Posada-Quintero et al., 2016b, 2018a).

2.2.5. Thermal Measures
In reaction to stress, mammals, including humans, typically
have a reduced temperature in peripheral regions, while the
temperature of the face and core region rises (Marazziti et al.,
1992; Vianna and Carrive, 2005; Kreibig et al., 2007; Nakamura,
2011). It is theorized that this reaction is caused by a constriction
of the peripheral arterioles, which could reduce blood loss if a
wound occurred.

3. CURRENT CHALLENGES

3.1. Multidimensionality of Stress
It is challenging to fully separate mental stress from affective
stress, as all mental tasks will still trigger even a low amount of
anxiety in individuals. Conversely, affective stress will probably
trigger even a small amount of mental activity, whether it is
due to assessing the threat, planning a response or simply
diverting attention to less stressful states. Yet, both types of
stress have different implications. For example, authors suggest
that mental forms of stress (like engagement) correlate with
working memory performance while affective forms of stress
(like distress) negatively correlate with performance (Qin et al.,
2009; Matthews and Campbell, 2010). On the physiological level,
it is suggested that mental effort is associated with sympatho-
adrenal-medullary axis (epinephrine and norepinephrine) while
affective stressors are more associated with the hypothalamus-
pituitary-adrenal (cortisol) axis. While there is not an extensive

amount of literature to support this, it can be surmised that high
mental stress with minimal affective stress might lead to positive
outcomes (like task completion) while high affective stress
without much mental activation is not beneficial in any way. This
view was supported by some authors investigating physiological
differences between mental effort and distress (Frankenhaeuser,
1986; Gaillard and Wientjes, 1994; Matthews et al., 2015)
and does, to a certain extent, resemble the eustress/distress
dissociation proposed by Hans Seyle in his classical work on
stress (Selye, 1985).

Subjective tools attempt to distinguish between these nuances
of stress. The NASA-TLX questionnaire, for example, features a
“Frustration” axis, covering affective load among more cognitive
ones (Hart, 2006). The Dundee Stress State Questionnaire also
distinguishes more mental stress (i.e., engagement) from affective
forms (i.e., distress, worry) (Matthews and Campbell, 2010). In
contrast, physiological measures of stress, despite being well-
documented, are rarely interpreted in a multidimensional way
(Matthews et al., 2015). Distinguishingmental and affective stress
using physiology remains a challenge today. The separation of
mental and affective stress goes beyond the scope of this database
description work, thus henceforth, the term “stress” will be
used to comprise their combined effects. Notwithstanding, future
work can explore such separation with multimodal tools (e.g.,
Parent et al., 2019b).

3.2. Stress Detection in Laboratory and
Ambulatory Settings
Given the numerous effects of stress on the human body,
research has focused on trying to propose models to detect
stress based on physiology. In a recent article (Smets et al.,
2019), the authors reviewed 25 papers that investigated this
research question over the last several years. Comparing the
performance of each model investigated in these studies can
be difficult as several factors can differ between studies. First,
as detailed previously, different stressors can be used. Second,
models use different physiological modalities and, in some
cases, different combinations of modalities. Models also differ in
terms of classification scheme (i.e., within participants, between
participants) and classification levels. Most studies propose
models that distinguish between a resting state and a stressful
task. However, some studies attempt to classify multiple levels of
stress (e.g., low, medium, high) and others use regression models
to measure a stress level (e.g., Hovsepian et al., 2015). Finally,
as described by Smets et al. (2019), the majority of papers focus
on laboratory settings, while only a select few have attempted to
detect stress in ambulatory settings.

In laboratory settings, classification accuracy of stress
detection models can reach fairly high levels. In a recent example,
researchers used a portable wristband, recording heart and
electrodermal activity, to detect affective stress induced by the
Trier Social Stress Task. They reported achieving an area under
the receiver operating characteristic curve of 0.87 (Ollander et al.,
2016). In another case, researchers used ECG and EEG to classify
the affective state of individuals playing a survival horror game
(Vachiratamporn et al., 2013). Six different affective states were
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classified. Authors reported up to 90% classification accuracy
using ECG and up to 73% using EEG. In a recent study, the
Muse headband (i.e., the same low-cost EEG system used in
this study) was used to classify the subjective stress level of
participants (Arsalan et al., 2019). Authors reported accuracy
as high as 92% on a two-class classification task. Finally, by
using EEG and near-infrared spectroscopy, detection of mental
stressors with accuracy near 95% (i.e., distinguishing between
control and stress) has been reported in Al-Shargie et al. (2016).

In ambulatory settings, however, performance is usually lower.
Nonetheless, the topic gained scientific attention in the last
few years, improving the potential of ambulant stress detection
models. In two recent examples, portables sensors (i.e., a chest
strap, a wristband) were used to detect stress in ambulatory
settings (Hovsepian et al., 2015; Gjoreski et al., 2016). Models
reached, respectively, a 0.72 correlation coefficient or 76%
classification accuracy at detecting self-reported stress (i.e., two-
class classification). In a recent study, EEG asymmetry was
used to monitor arousal and valence of individuals in the
presence of physical activity (i.e., construction workers) (Hwang
et al., 2018). While comparison to ground truth is difficult in
naturalistic situations, the authors suggest that this method had
potential to assess emotional state of individuals, especially for
valence detection.

Despite advances in ambulant stress detection, several
challenges are still in the way of a highly robust stress detection
model. As suggested by Smets et al. (2019), movement and
physical activity are the most obvious limitations of stress
detection models. Some models are configured to not predict
stress if physical activity is detected (Hovsepian et al., 2015),
thus not only biasing error rate measures, but also preventing
stress detection in the presence of physical activity. Other models
are configured to receive contextual data (such as physical
activity), improving accuracy in exchange of manual input in
the model (Gjoreski et al., 2016). However, very few papers have
investigated stress detection in the presence of varying levels of
physical activity.

Movement and physical activity affect physiological measures
in three different ways. First, physiological measures are
influenced by the direct consequences of physical activity. When
individuals start to perform physical activity, the body triggers
a series of physiological mechanisms to shift from a rest state
to an active state. The most obvious example is the increase in
heart rate caused by physical exertion (Bernardi et al., 1996).
Since physical activity requires energy, the heart must beat faster
to deliver more supplies to muscle cells, fetch more oxygen
and reject more CO2 in the lungs. The skin sweat will also be
increased to dissipate excess of heat caused by physical activity
(Neto et al., 2010). The response of the central system will also be
affected, as some areas of the brain will be required to coordinate
limb movements.

Second, physiological measures are influenced by shifts
in psychological states that come with physical activity. For
example, it has been shown that performing physical tasks, such
as lifting boxes, will draw mental resources (DiDomenico and
Nussbaum, 2008). In relation with this paper, there is also some
evidence that physical activity can reduce long term stress and

anxiety (Pedersen and Saltin, 2015). While scientific attention is
mostly oriented towards long-term benefits of physical exercise
regarding stress, evidence also suggests the presence of short-
term effects (Salmon, 2001). Individuals are most likely to report
having a better mood immediately after exercise. Some factors
modulate this relationship. Having a poor mood before exercise
usually causes a sharper improvement in mood after exercise. On
the other hand, performing at higher intensity than habitual level
can deteriorate mood.

Finally, movement and physical activity alter physiological
recordings through noise or signal loss. If the device uses
electrodes (e.g., EEG, ECG, EDA), these might lose contact with
the skin, briefly or continuously, and alter the measured signal
(Castellanos and Makarov, 2006; Gwin et al., 2010). The nature
of the physical task might also displace, disable or even damage
sensors. If the data is transmitted wirelessly, signal loss might
be encountered when the distance between the emitter and the
receiver is too high or when an obstacle is present between them.

4. METHODS AND MATERIALS

4.1. Motivation and Overview
The experiment discussed in this paper sought to elicit affective
stress. Common stressors used in psychophysiology (e.g., Stroop
task, n-back task) were excluded since they were not sufficiently
independent from mental stress. In a similar way, time pressure
(sometime used as a stressor) was also discarded since higher
time pressure can sometimes lead to higher mental effort. To
support “in-the-wild” B/BCI development, we also sought to
use a realistic task setting. Therefore, a survival video game
was selected as a stressor. Video games have already been used
in affect research, and, as in our case, in combination with
physiological measures. Survival video games also allow for a
short-duration experimental design (compared to studies that
focus on more chronic, long-term stressors).

More specifically, the experiment consisted of playing video
games while pedaling on a stationary bike. Two experimental
variables were manipulated: stress and physical activity intensity.
There were two stress levels (no stress/stressful) and three
physical activity levels (0, 18, 24 km/h). Participants performed all
six combinations in counterbalanced order. Each trial lasted 10
min. Physiological activity and subjective ratings were recorded
throughout the experiment. The following sections will provide
more details about the experimental design.

4.2. Stress Manipulation
Stress was modulated by switching between two video games: a
non-stressful one, serving as a control condition, and a stressful
one. The non-stressful game used was TIMEframe. TIMEframe
is a commercially available exploration/puzzle game developed
by Random Seed Games (Random Seed Games, 2015). In
TIMEframe, players must explore ruins of an abandoned city and
find artifacts. The game is played from a first-person perspective
and controls are similar to other first-person games. Several
elements made TIMEframe a prime choice for a non-stressful
game. First, there are no significant threats in the game, as the
players’ personas can not be harmed or die. Also, the music
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FIGURE 1 | Screenshot from TIMEframe.

is soft and the environment is bright and peaceful. To further
decrease stress, players were told that the number of artifacts they
found would not matter and would not be recorded. The game
was controlled with an Xbox One controller. Figure 1 shows a
screenshot of the game.

On the other hand, the stressful game used was Outlast.
Outlast is a commercially available survival game developed by
Red Barrels (Red Barrels Games, 2013). Like TIMEframe, Outlast
is viewed from a first-person perspective and controlled in a
similar fashion (albeit, slightly more complex than TIMEframe).
The goal of the game is to navigate in a creepy asylum and
evade capture/harm by its dangerous inmates. In Outlast, players
cannot fight, they can only avoid, escape or hide from enemies.
The game features several elements to increase stress, such as
an eerie music/sound design and a horror-style environment.
Some in-game areas are also poorly lit, requiring players to use
a limited night vision mode. The experiment room ambient
light was also dimmed to further increase stress. Outlast is
deterministic and features a fairly linear playthrough, increasing
the similitude of experience between participants. Once again, the
game was played with an Xbox One controller. Figure 2 depicts
two screenshots of the game, one showing normal and the other
(bottom) night vision mode.

Video games have been used in psychophysiological studies
for some years (e.g., Carroll et al., 1987). Still, their potential
as stressors is fairly unexplored. One study found that video
games can elicit similar effects to common stressors such as
the Trier Social Stress Task (Guitard et al., 2010). On the other
hand, some studies have suggested that they have the potential
to stress individuals in a way that differ from commonly used

stressors, calling for more investigation on the subject (Porter
and Goolkasian, 2019). The TIMEframe/Outlast manipulation
was designed with stress in mind. However, this manipulation
might have elicited other aspects of cognition, such as workload,
engagement or enjoyment.

4.3. Physical Activity Manipulation
Physical activity was induced by asking participants to pedal
on a stationary bike. The bike used featured an adjustable seat,
a resistance setting and a display. The resistance was set to
its minimum value (no resistance) to maximize reproducibility
of the experiment. Since the participant held a controller
throughout the experiment, the bike handles were unused and
were flipped (see Figure 3). The bike display was set to show
speed (in km/h).

Physical activity was modulated by changing the required
speed at which participants pedaled on the bike. Our ultimate
goal was to induce physical activity and artifacts to the sensors,
though not to a point of making the data completely unusable.
Therefore, three levels of physical activity were used. In the first
level, the speed was 0 km/h; participants were simply told to
sit on the bike and not pedal. At the second level, participants
were told to maintain a target speed of 18 km/h. At the third
level, the target speed was raised to 24 km/h. During a pilot
study, we found that these speeds provided the optimal trade-off
in signal quality and movement artifact generation. While most
of the physical effort was made by the legs of participants, the
fact that they had to hold the controller in their hand inevitably
created head sways and movements. Since it can be difficult to
maintain a constant speed, a tolerance of ±2 km/h was allowed.
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FIGURE 2 | Screenshot from Outlast showing normal (top) and night vision modes (bottom).

Experimenters warned participants who drifted from the target
speed during the trials. Despite focusing on the video games, the
pilot study showed that most participants were able to maintain
speed within the tolerance levels.

4.4. Counterbalancing
Each participant completed all six combinations of stress (no
stress, stressful) and physical activity (0, 18, 24 km/h). The
order of these conditions was counterbalanced and pseudo-
randomized. All conditions from the same video game were

performed subsequently. This was designed to avoid constant
psychophysiological shifts between calm and stressful states.
Doing so also allowed participants to learn the controls of one
video game at a time instead of two. Each condition lasted
10 min. In TIMEframe, there were no differences in the three
times participants played the game except that participants were
told not to seek the same artifacts as previous sessions. For
Outlast, a different scene (start point) was selected for each of the
three times that participants played the game. Table 1 describes
the three in-game start points. While it is technically possible
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FIGURE 3 | Experimental setup from the front (left). Experimental setup from the back (right). BioHarness 3 not shown since worn under the shirt.

TABLE 1 | Description of the three starting points used in Outlast.

Scene In-game description

Admin After being thrown out the window (admin block).

Ward After waking up in the male ward cell.

Sewers After the valve puzzle (chased by Chris).

for a participant to reach another condition start point before
finishing the conditions, they were sufficiently distanced, so it
never happened for any participant.

4.5. Physiological Measures
As mentioned earlier, one of the goals of this study is to
provide a database that is captured using off-the-shelf devices.
Four wearable physiological devices were used in this study.
A BioHarness 3 was used to measure cardiac and respiratory
activity. The BioHarness 3 is a chest strap worn directly on
the skin. It measures heart activity through ECG at a sampling
frequency of 250 Hz. Respiration is recorded by measuring the
extension of the chest strap (18Hz). Besides ECG and respiration,
3-axis acceleration (100 Hz) is also recorded by the device (these
signals were not used in the current study). An E4 wristband

was also used. The E4 records blood volume pulse through
photoplethysmography (64 Hz), as well as skin temperature
(4 Hz). Two electrodes, located inside the bracelet, also record
galvanic skin responses (4 Hz). Cerebral activity was recorded
using a Muse headband. This headband records EEG activity
using 4 electrodes (TP9, AF7, AF8, and TP10) with reference
to Fpz, at a 220 Hz sampling rate. From our past experience
with the Muse headband, we have found that re-referencing the
signals to electrodes over the temporal lobes (TP9 or TP10) could
negatively impact the EEG recordings, as these signals are more
prone tomovement artifacts. Therefore, the acquired EEG signals
were not re-referenced prior to analyses. The BioHarness 3, E4
and Muse data were streamed to a nearby laptop using Bluetooth
protocol. Data was recorded using the MuSAE Lab EEG Server
(MuLES), which was also used to send triggers marking the
beginning and end of trials (Cassani et al., 2015).

4.6. Subjective Measures
Beside physiological measures, subjective measures were also
collected. Two questionnaires were used: the NASA-TLX and
the BORG. NASA-TLX is a questionnaire designed to measure
workload of individuals. The original version features six
questions, which must be answered on a 21-point Likert scale.
In this experiment, two additional questions related to stress and
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TABLE 2 | Stress and fear questions added to the NASA-TLX questionnaire.

Label (English) Question (English)

Stress How stressful was the task?

Fear How scary was the task?

Label (French) Question (French)

Stress À quel point la tâche était-elle stressante?

Peur À quel point la tâche était-elle effrayante?

fear were added to suit the research questions of the project.
Table 2 shows the extra questions used. These questions were
asked in French to all participants who spoke French as their
first language.

4.7. Experimental Procedure
Forty-eight participants were invited to perform an experiment
at Université Laval (Quebec City, Canada). Participants were
recruited using mailing lists. Candidates with heart or respiratory
problems or having neurological/psychological disorders were
excluded from the experiment. Given the nature of the
stressor, precautions were taken to make sure participants
were comfortable playing Outlast. People with a history of
aversive reaction to horror (e.g., panic attacks, related phobia
or just unease with featured themes) were excluded from
the experiment. To avoid bias, participants who played either
TIMEframe or Outlast in the past could not participate in the
study. During the tutorial, participants were given warning about
the expected features of the stressor. The tutorial reminded
participants that they could interrupt their involvement at any
moment without prejudice. Experimenters were also trained to
check participant’s well-being during Outlast’s practice, game
sessions and breaks. The experimental protocol was approved
by the Ethics Review Boards of the Institut national de
la recherche scientifique (INRS; Reference number: CER-16-
425), the PERFORM Center (Concordia University; Reference
number: 30006772) and Université Laval (Reference number:
2016-274). Participants gave written consent to participate in the
study and were remunerated for their time.

Participants were greeted and invited to fill a consent
form and demographic questionnaires. After these, they were
briefed on the experimental procedure. Once done, physiological
sensors were donned and configured in a particular order. The
BioHarness 3 chest-strap (Zephyr, USA) and the E4 wristband
(Empatica, USA) were donned first on the participant, as
they were deemed less susceptible to be disrupted during the
installation of the other devices. Afterward, participants were
invited to adjust the height of the stationary bicycle seat. The
TV monitor height was then adjusted in order for the screen
to be at the participant’s eye level. Finally, the Muse headband
(Interaxon, Canada) was donned on participants forehead. The
experimenter made sure the headband was positioned correctly
and was comfortable for the participant.

Participants were then invited to perform a task tutorial
(in the form of a PowerPoint presentation). In order to
avoid information overload, this tutorial only contained the
information about the first video game they were set to play.
After the tutorial, participants were invited to practice the first
game they were set to play in order to become familiar with
the controls. This lasted between 5 and 15 min, depending on
participants. Once done, participants completed their first three
conditions (the three physical activity levels for the first game).
Each of these conditions lasted 10 min. A 2-min baseline was
performed before each condition. This baseline consisted in
performing the same level of physical activity as the upcoming
condition, but without playing any game. Conditions were
performed with minimal disruption. The experimenter warned
participants who pedaled too slowly or too fast. Additionally,
the experimenter tipped players who got stuck for too long in
a specific spot. After each condition, participants were invited
to complete the two subjective measures questionnaires (NASA-
TLX and BORG) and take a short break (roughly 5 min).

Once the three conditions of the first game were completed,
participants were presented the tutorial of the second game
and performed the remaining three conditions. Two reasons
motivated a design in which all conditions of the same game were
done subsequently like this. First, we wanted to avoid overloading
or confusing participants with shifting game mechanics and
controls. Second, we wanted to minimize the lagged effects
of stress. Stress is known to influence physiological response
even after the stressor is removed (Tassorelli et al., 1995;
Qin et al., 2009). While these lagged effects cannot be fully
removed from the design, the 5 min breaks between conditions
and the non-alternating game conditions helped alleviate this.
Figure 3 shows the experimental setup used. Figure 4 shows the
experimental sequence.

4.8. Physiological Signal Recording
Physiological signals were recorded using the MuSAE Lab EEG
Server (MuLES) software (Cassani et al., 2015). MuLES is a
LabVIEW software designed to ease simultaneous recording of
EEG and other physiological signals. It allows data acquisition
of various devices as well as real-time streaming of physiological
signal. In our case, data was streamed to a custom-made
MATLAB script designed to input markers delimiting the
beginning and the end of all experiment trials. Once the data
collection finished, a lab assistant manually verified all markers
to make sure they correctly matched the experimental trials.

4.9. Signal Processing and Feature
Calculation
Physiological signals were loaded in MATLAB using a custom-
made parser and trimmed to keep only the relevant parts
(baseline and trials). For trials, signals were trimmed into two
epochs of 5 min. Baselines were trimmed into epochs of variable
length (more or less 2 min).

For the processing of EEG signals, previous works (e.g.,
Snyder et al., 2015; Bono et al., 2016) have shown that artifact
removal methods based on the independent component analysis
(ICA) can be successfully employed to enhance EEG data in
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FIGURE 4 | Diagram showing the experimental sequence. After the initial setup, participants completed a training of their first game (5–15 min). They then performed

the 3 levels of physical activity for this game. The order of physical activity level was counterbalanced. Each condition lasted 10 min. A 5-min break was inserted

between conditions. Before every condition, participants did a 2-min baseline in which they did the same level of physical activity as the upcoming condition, but

without playing the game. Half of the participants began with TIMEframe. The other half began with Outlast.

scenarios where artifacts due to physical activity are present.
Among these methods, the wavelet-enhanced ICA method,
(Castellanos and Makarov, 2006), allows automated artifact
removal, and has been proven effective in different scenarios
where EEG was acquired with low-density wearable devices (e.g.,
Cassani et al., 2017; Rosanne et al., 2019). The parameter used for
the wICAmethod in our experiments relied in a threshold K = 1
set empirically.

For EEG feature extraction, prefrontal (AF7–AF8) alpha and
theta absolute power, and relative gamma power (all locations)
were computed since they are known to be associated with
stress (Borghini et al., 2014; Minguillon et al., 2016). Prefrontal
asymmetry has also been found to be associated with stress
(Brouwer et al., 2011) and was computed here between AF8 and
AF7. Asymmetry between TP9 and TP10 was also computed
for exploratory purposes. Coherence (alpha and beta band)
have also been associated with stress in parietal and occipital
regions (Giannakakis et al., 2015). As such, it was decided to
compute coherence in the closest region available (TP9–TP10)
in four frequency subbands (alpha, beta, gamma, and theta).
Finally, amplitude modulation features were also computed as
per (Falk et al., 2012). Focus is placed here on two specific
amplitude modulation features, namely beta modulated by delta
(represented as beta-delta) and gamma-delta, given insights
reported in Falk et al. (2012), Clerico et al. (2018), andMinguillon
et al. (2016). Table 3 summarizes the EEG features computed,
as well as our hypotheses of expected behavior under stress.
Expected behavior does not account for possible effects of
physical activity.

For the ECG signals, in turn, a variation of the Pan-Tompkins
algorithm was used to obtain the interbeat interval time series
(Behar et al., 2018). Interbeat intervals were subsequently
processed to remove outliers and improbable points. Heart
rate variability features, frequently investigated as correlates
of stress, were then computed (Castaldo et al., 2015). These
features include the heart rate, the standard deviation of interbeat

TABLE 3 | EEG features and their expected behavior under stress.

Type Feature Effect

Absolute power

Alpha (AF7) ↓ (Borghini et al., 2014)

Theta (AF7) ↑ (Borghini et al., 2014)

Alpha (AF8) ↓ (Borghini et al., 2014)

Theta (AF8) ↑ (Borghini et al., 2014)

Relative power

Gamma (AF7) ↑ (Minguillon et al., 2016)

Gamma (AF8) ↑ (Minguillon et al., 2016)

Gamma (TP9) ↑ (Minguillon et al., 2016)

Gamma (TP10) ↑ (Minguillon et al., 2016)

Asymmetry
Alpha (AF7-AF8) ↑ (Brouwer et al., 2011)

Alpha (TP9-TP10) –

Coherence

Alpha (TP9-TP10) ↑ (Giannakakis et al., 2015)

Beta (TP9-TP10) ↓ (Giannakakis et al., 2015)

Gamma (TP9-TP10) –

Theta (TP9-TP10) –

Amplitude modulation

Beta-delta (AF7) –

Gamma-delta (AF7) –

Beta-delta (AF8) –

Gamma-delta (AF8) –

Beta-delta (TP9) –

Gamma-delta (TP9) –

Beta-delta (TP10) –

Gamma-delta (TP10) –

Expected behaviors do not account for possible effects of physical activity.

intervals, the power of the high frequency band, and the
low-frequency to high-frequency (LF/HF) ratio. Moreover, the
breathing signal from the BioHarness 3 was downsampled
from 18 to 6 Hz and filtered to remove noise (low-pass,
Chebychev, 2 Hz, 8th order). Features previously shown to be
modulated by stress were then computed, including breathing
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TABLE 4 | Peripheral features and their expected behavior under stress.

Modality Feature Effect

Heart

Heart rate ↑ (Castaldo et al., 2015)

SDNN ↑ (Castaldo et al., 2015)

HF power ↓ (Castaldo et al., 2015)

LF/HF ↑ (Castaldo et al., 2015)

Breathing

Breathing rate ↑ (Rainville et al., 2006)

Variability ↑ (Vlemincx et al., 2013)

Sigh rate ↑ (Vlemincx et al., 2013)

Electrodermal

Level ↑ (Reinhardt et al., 2012)

Number of responses ↑ (Reinhardt et al., 2012)

Rel. LF power ↑ (Posada-Quintero et al., 2016a)

Temperature
Average temperature ↓ (Kreibig et al., 2007)

Temperature delta ↓ (Kreibig et al., 2007)

Blood volume pulse
Minimum BVP ↑ (Kreibig et al., 2007)

Maximum BVP ↑ (Kreibig et al., 2007)

Expected behaviors does not account for possible effects of physical activity.

rate (computed by counting the peaks of the filtered signals);
breathing variability, computed using sample entropy (m = 2,
r = 0.5) (Vlemincx et al., 2013); and sigh rate, where a sigh is
defined as a breath where the amplitude exceeded one standard
deviation of the normal breathing amplitude for the condition.

From the E4 wristband, the electrodermal signal was first
filtered (low-pass, Chebychev, 1 Hz, 8th order) and the features
computed include the electrodermal level (normalized average
of the baselines) and the number of electrodermal responses
(Boucsein, 2012). In addition, relative low frequency power
(0.045–0.15 Hz, LF power) was also computed since recent works
suggest that it might be associated with stress (Posada-Quintero
et al., 2016a). The E4 wristband was also used to measure
temperature. No particular processing was performed on the skin
temperature signal. Since stress is known to affect temperature, it
was decided to compute the average temperature level and the
delta (difference between the end and the initial temperature of
a condition) temperature (Kreibig et al., 2007). Moreover, blood
volume pulse level was normalized in reference to the average of
all baselines of each participant. The minimum and maximum
blood volume pulse levels were computed to approximate
relative diastolic and systolic pressures. Table 4 summarizes the
peripheral features computed, as well as our hypotheses of
expected behavior under stress. As previously, expected behaviors
do not account for possible effects of physical activity.

4.10. Database Availability
The PASS database is part of a larger project on operator
functional state monitoring aimed at building models that
take into account mental workload, stress and physical fatigue.
In a related work, we describe the WAUC dataset, which
presents an experimental protocol to modulate mental workload
and physical activity (Albuquerque et al., submitted). Both
datasets are available online for download at http://musaelab.

ca/pass-database/. Both the PASS and WAUC databases include
raw physiological signals, subjective responses, and additional
documentation, such as markers information.

4.11. Modeling
To assess the discriminatory power of the explored features,
machine learning models were developed for stress level
classification, i.e., classifying between no-stress (TIMEframe)
and stress (Outlast) conditions. All physical activity levels were
combined in our analyses. This was done in order to see if it
was possible to classify stress even if the current level of physical
activity is unknown by the classifier. Accounting for missing data,
there were 264 samples for TIMEframe and 248 samples for
Outlast. Here, a support vector classifier was used (Smets et al.,
2019) and two testing schemes were implemented: k-fold and
leave-one-participant-out (LOPO).

Both the k-fold and the LOPO scheme used a nested cross-
validation scheme. For the k-fold, samples were folded in five-
folds for testing. The remaining 4 folds of the samples (for each
testing fold) were subdivided again into five-folds to perform the
validation. One fifth of these were used for validation. The rest
was used for training. For the LOPO scheme, samples were folded
per participant for testing. One fifth of the remaining participants
(for each testing fold) was used for validation. The rest were
used for training. Model hyperparameters (box constraint and
lambda) were optimized using Bayesian optimization.

Models are tested using various feature subsets, namely one
model per EEG feature subtype (total of five models), one
per peripheral feature subtype (five total), one model for all
combined EEG features, one model for all combined peripheral
features, and, lastly, one model fusing both the EEG and
peripheral features. Cohen’s kappa is used to gauge classifier
performance. Cohen’s kappa is a measure that express the
agreement between true class labels and models prediction
(Billinger et al., 2012). This measure is commonly used in the
B/BCI literature (Schlögl et al., 2005; Hasan et al., 2015). A
Cohen’s kappa of 0 means that the model is doing no better than
chance (i.e., the accuracy would be close to 50% if classes were
balanced). A Cohen’s kappa of 1 means that the model is perfect
(i.e., 100% accuracy).

5. DATABASE VALIDATION:
EXPERIMENTAL RESULTS

The majority of the participants completed all six experimental
conditions. Five participants decided to not perform the Outlast
scenario and two participants did not fully complete TIMEframe
scenarios. The most common stated cause for early interruption
was nausea (possibly induced by the proximity with the screen).

Only one participant reported smoking. No participant
reported suffering from hypertension. Subjective weight was
reported on a four-point scale (insufficient, normal, excess,
great excess). Participants reported having either a normal
weight (36 participants) or an excess of weight (11 participants).
One participant did not answer the weight question and none

Frontiers in Neuroscience | www.frontiersin.org 11 December 2020 | Volume 14 | Article 542934158

http://musaelab.ca/pass-database/
http://musaelab.ca/pass-database/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parent et al. Multimodal Database of Physical Activity and Stress

TABLE 5 | Descriptive statistics of subjectives measures.

Variable
Condition average (stress–physical activity)

Low-0 km/h Low-18 km/h Low-24 km/h High-0 km/h High-18 km/h High-24 km/h

NASA-TLX

Mental demand 3.8± 0.8 4.1± 1.0 4.4± 0.7 11.1± 1.2 11.2± 1.1 11.6± 1.3

Physical demand 2.4± 0.9 5.4± 0.8 8.2± 1.0 3.1± 0.8 7.5± 1.1 9.8± 1.4

Temporal demand 3.1± 0.7 4.0± 0.8 4.4± 1.0 9.5± 1.5 10.0± 1.3 11.4± 1.4

Performance 11.2± 1.7 11.6± 1.5 11.2± 1.7 12.6± 1.7 13.1± 1.4 12.3± 1.5

Effort 6.8± 1.5 7.6± 1.3 8.6± 1.2 11.1± 1.4 11.5± 1.1 12.4± 1.2

Frustration 4.2± 1.3 4.2± 1.2 4.1± 1.3 9.4± 1.6 9.4± 1.6 10.0± 1.5

Stress* 2.3± 0.6 2.5± 0.6 2.4± 0.6 13.5± 1.6 13.0± 1.4 13.2± 1.4

Fear* 1.1± 0.1 1.1± 0.1 1.1± 0.1 12.2± 1.7 11.3± 1.5 12.6± 1.5

BORG

After condition 7.0± 0.6 8.5± 0.6 9.8± 0.7 8.1± 0.6 10.0± 0.7 11.2± 0.7

After break 7.0± 0.4 8.0± 0.6 8.8± 0.7 8.1± 0.6 8.9± 0.7 10.1± 0.8

*Stress and fear are not part of the original NASA-TLX. See Table 2.

reported an insufficient weight or a great excess of weight.
A majority of participants reported doing at least 30 min of
exercise per day (33 participants, one did not answer). Regarding
job activity levels, twenty-five participants reported having a
sedentary job (e.g., office job), 13 reported having a low physical
job (e.g., housekeeping, woodworking), and only three reported
having a moderate physical job (e.g., construction, farming). No
participant reported having a heavy-physical job (e.g., carpentry).

Moreover, in the original experimental design, all three scenes
used in Outlast (i.e., Admin, Ward, Sewers) were intended to
be considered as high stress conditions. It is possible, however,
that some scenes were not as stressful as others. To verify
this, a preliminary set of repeated measures models were fitted
using only the data from Outlast session. This set used the
NASA-TLX stress and fear questions as independent variable.
Physical activity levels (0, 18, 24 km/h) and condition (Admin,
Ward, Sewers) were used as dependant variables. Results of the
repeated measure ANOVA suggest that there were no differences
between all three Outlast scenes (pstress > 0.05, pfear > 0.05).
Therefore, all Outlast scenes will be pooled under high stress in
the subsequent analysis.

The following section will detail the results of the subjective,
neurophysiological and peripheral measures, as well as the
modeling analysis in order to validate the protocol and database.

5.1. Subjective Results
Table 5 reports the average scores and the mean confidence
interval (confidence level of 95%) of the two subjective
questionnaires across all six conditions. As can be seen, while
the stress levels of the video games had an effect on the reported
physical demand scores, the different physical activity levels
produced no difference in the reported stress levels scores.

To better understand the effects of stress and physical activity
had on subjective measures, a series of repeated measures
ANOVAs are performed on NASA-TLX and BORG responses.
For dimensions of the subjective rating that did not have

normally distributed residuals, we performed a Friedman non-
parametric test (Table 6). Stress, physical activity level and the
interaction between both are used as independent variables.
Greenhouse-Geisser correction of the p values was used when
assumption of sphericity was violated. The significance level was
(p < 0.005) after Bonferroni correction was used for multiple
comparisons. Results show that the stress manipulation had an
effect on most of the subjective variables (except performance) as
well as on the two BORGmeasures. Physical activity had an effect
on NASA-TLX physical demand, temporal demand, and effort,
as well as on the two BORG measures. No relevant interaction
was found.

5.2. EEG Results
Table 7 reports the average values and the mean confidence
interval (confidence level of 95%) of the selected EEG features
across all six conditions. To analyze these results, repeated
measures ANOVA is performed with the same independent
variables as for Table 6. Greenhouse-Geisser correction of the
p values was used when assumption of sphericity was violated.
The significance level was (p < 0.0028) after Bonferroni
correction was used for multiple comparisons. Table 8 reports
the ANOVA results.

As can be seen, prefrontal absolute power of alpha and theta
was not significantly altered by the experimental manipulations.
The ANOVA did not reveal any effects on relative prefrontal
gamma. However, results suggest that relative gamma in
temporal-parietal regions was higher during the stress condition
(TP9, p < 0.001, η2p = 0.30; TP10, p < 0.001, η2p = 0.30),
although they were not affected by physical activity, but an
interaction was present at this location (p = 0.002, η2p = 0.17).
The asymmetry and coherence features did not reveal any effect
or interaction. Amplitudemodulation features showed sensitivity
to the stress manipulation. This sensitivity appeared higher for
gamma modulated by delta for temporal-parietal regions (TP9,
p < 0.001, η2p = 0.28; TP10, p < 0.001, η2p = 0.28). Globally,
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TABLE 6 | Results of repeated measures ANOVA for subjective measures.

Independent variable
Stress Physical activity Stress × Physical activity

F p η
2
p F p η

2
p F p η

2
p

NASA-TLX

Mental demand‡ 244.9 < 0.001 0.85 3.6 0.031 0.08 0.3 0.722 0.00

Physical demand†,‡,⋄ 21.8 < 0.001 0.35 103.4 < 0.001 0.72 3.2 0.046 0.07

Temporal demand‡,⋄ 106.0 < 0.001 0.72 8.6 < 0.001 0.17 0.6 0.533 0.01

Performance 6.6 0.013 0.14 0.6 0.525 0.01 0.1 0.854 0.00

Effort†,‡,⋄ 66.8 < 0.001 0.62 8.8 < 0.001 0.18 0.2 0.767 0.00

Frustration 53.9 < 0.001 0.57 0.5 0.557 0.01 0.5 0.564 0.01

Stress∗ 237.1 < 0.001 0.85 0.1 0.894 0.00 0.0 0.927 0.00

Fear∗ 209.4 < 0.001 0.83 2.7 0.067 0.06 2.8 0.063 0.06

BORG

After condition†,‡,⋄ 36.2 < 0.001 0.47 58.0 < 0.001 0.59 2.3 0.101 0.05

After break†,‡,⋄ 20.2 < 0.001 0.33 20.0 < 0.001 0.33 0.3 0.700 0.00

∗Stress and fear are not part of the original NASA-TLX. See Table 2.
†Difference found for multiple comparison test (Tukey-Kramer) between 0 and 18 km/h (p < 0.05).
‡Difference found for multiple comparison test (Tukey-Kramer) between 0 and 24 km/h (p < 0.05).
⋄Difference found for multiple comparison test (Tukey-Kramer) between 18 and 24 km/h (p < 0.05).

TABLE 7 | Descriptive statistics of EEG features.

Variable (unit)
Condition average (stress–physical activity)

Low-0 km/h Low-18 km/h Low-24 km/h High-0 km/h High-18 km/h High-24 km/h

Abs. power (dB)

Alpha (AF7) 0.60± 0.38 0.68± 0.40 0.67± 0.41 0.70± 0.44 0.60± 0.38 0.52± 0.36

Theta (AF7) 1.14± 0.71 1.28± 0.73 1.28± 0.76 1.31± 0.82 1.09± 0.72 0.99± 0.66

Alpha (AF8) 0.87± 0.23 1.02± 0.28 0.96± 0.27 1.04± 0.27 0.88± 0.28 0.95± 0.26

Theta (AF8) 1.66± 0.44 1.94± 0.52 1.84± 0.50 1.97± 0.51 1.73± 0.53 1.83± 0.48

Rel. power (10−3)

Gamma (AF7) 179.4± 32.6 178.1± 35.7 166.1± 33.6 200.4± 38.1 161.1± 37.2 163.8± 38.3

Gamma (AF8) 250.8± 38.5 228.6± 41.1 221.3± 40.6 225.5± 34.4 200.0± 37.8 222.5± 39.7

Gamma (TP9) 56.3± 20.9 40.7± 10.4 52.0± 13.1 79.9± 21.0 55.5± 13.2 56.3± 15.5

Gamma (TP10) 54.5± 11.1 38.4± 9.7 41.7± 10.1 70.0± 14.8 50.2± 12.5 52.8± 13.3

Asymmetry (dB)

Alpha (AF7-AF8) 0.90± 0.45 0.90± 0.43 0.88± 0.44 0.89± 0.48 0.82± 0.43 0.90± 0.47

Alpha (TP9-TP10) −0.04± 0.12 0.02± 0.11 0.04± 0.11 0.11± 0.19 0.01± 0.15 0.00± 0.15

Coherence (–)

Alpha (TP9-TP10) 0.53± 0.06 0.53± 0.06 0.52± 0.05 0.49± 0.07 0.49± 0.06 0.48± 0.07

Beta (TP9-TP10) 0.34± 0.05 0.30± 0.04 0.28± 0.04 0.31± 0.06 0.27± 0.05 0.27± 0.05

Gamma (TP9-TP10) 0.30± 0.06 0.25± 0.05 0.23± 0.04 0.28± 0.06 0.23± 0.04 0.21± 0.04

Theta (TP9-TP10) 0.65± 0.06 0.67± 0.06 0.66± 0.06 0.61± 0.07 0.63± 0.07 0.60± 0.08

AM (10−3)

Beta-delta (AF7) 83.8± 10.2 75.6± 9.1 77.1± 10.9 89.4± 10.0 80.2± 10.4 76.5± 10.4

Gamma-delta (AF7) 81.3± 12.2 82.7± 14.2 78.3± 12.6 91.2± 14.7 78.3± 14.6 79.1± 15.5

Beta-delta (AF8) 74.3± 6.2 66.1± 5.1 66.9± 6.0 79.7± 5.1 71.8± 5.8 73.9± 5.8

Gamma-delta (AF8) 98.9± 12.4 90.4± 13.4 88.2± 13.2 101.2± 10.6 82.5± 11.9 89.4± 12.9

Beta-delta (TP9) 62.4± 8.6 54.7± 11.5 56.7± 12.0 73.1± 10.6 60.9± 11.5 60.4± 11.4

Gamma-delta (TP9) 35.7± 9.2 27.9± 9.5 32.4± 10.5 43.7± 11.5 34.8± 10.8 34.4± 11.8

Beta-delta (TP10) 59.8± 8.2 52.1± 9.5 52.3± 10.4 71.9± 9.3 58.2± 10.6 59.0± 11.0

Gamma-delta (TP10) 31.5± 7.6 26.0± 8.7 27.7± 9.1 39.8± 9.3 31.6± 9.3 31.9± 9.3
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TABLE 8 | Results of repeated measures analysis of variance for EEG features.

Independent variable Stress Physical activity Stress × physical activity

F p η
2
p F p η

2
p F p η

2
p

Abs. power

Alpha (AF7) 0.4 0.533 0.01 0.9 0.409 0.02 0.8 0.442 0.02

Theta (AF7) 0.3 0.559 0.01 0.8 0.438 0.02 0.7 0.475 0.02

Alpha (AF8) 0.0 0.949 0.00 0.5 0.587 0.01 3.9 0.026 0.10

Theta (AF8) 0.0 0.961 0.00 0.2 0.762 0.01 2.9 0.059 0.08

Rel. power

Gamma (AF7) 2.1 0.159 0.05 1.3 0.281 0.03 2.8 0.076 0.07

Gamma (AF8)†,‡ 0.6 0.802 0.00 5.2 0.009 0.13 2.0 0.139 0.05

Gamma (TP9) 15.1 < 0.000 0.30 2.3 0.130 0.06 7.3 0.002 0.17

Gamma (TP10)† 15.7 < 0.001 0.30 7.0 0.004 0.16 0.7 0.476 0.02

Asymmetry

Alpha (AF7-AF8) 1.14 0.293 0.03 0.8 0.452 0.02 0.02 0.846 0.00

Alpha (TP9-TP10) 0.6 0.457 0.02 0.2 0.762 0.00 1.0 0.356 0.03

Coherence

Alpha (TP9-TP10) 4.7 0.037 0.12 0.1 0.932 0.00 0.2 0.844 0.00

Beta (TP9-TP10)† 2.1 0.159 0.05 5.0 0.018 0.12 0.5 0.951 0.00

Gamma (TP9-TP10)†,‡ 1.4 0.247 0.04 10.0 < 0.001 0.22 0.9 0.409 0.02

Theta (TP9-TP10) 4.9 0.032 0.12 0.1 0.909 0.00 0.7 0.488 0.02

AM

Beta-delta (AF7) 2.9 0.099 0.07 2.6 0.096 0.07 2.7 0.082 0.07

Gamma-delta (AF7) 4.1 0.051 0.10 0.6 0.518 0.02 3.1 0.061 0.08

Beta-delta (AF8)†,‡ 6.8 0.014 0.16 8.0 < 0.001 0.18 0.1 0.943 0.00

Gamma-delta (AF8)†,‡ 0.5 0.482 0.01 5.6 0.008 0.13 1.9 0.149 0.05

Beta-delta (TP9) 6.9 0.012 0.16 2.1 0.097 0.07 1.5 0.222 0.04

Gamma-delta (TP9) 13.8 < 0.001 0.28 1.7 0.196 0.05 5.3 0.008 0.13

Beta-delta (TP10)† 8.9 0.005 0.20 3.6 0.043 0.09 1.4 0.262 0.04

Gamma-delta (TP10)† 14.3 < 0.001 0.28 4.4 0.019 0.11 2.1 0.140 0.05

†Difference found for multiple comparison test (Tukey-Kramer) between 0 and 18 km/h (p < 0.05).
‡Difference found for multiple comparison test (Tukey-Kramer) between 0 and 24 km/h (p < 0.05).

amplitude modulation was elevated by stress and lowered by
physical activity.

5.3. Peripheral Results
Table 9 reports the average values and the mean confidence
interval (confidence level of 95%) of the selected peripheral
features across all six conditions. As previously, repeated
measures ANOVA is performed with Greenhouse-Geisser
correction of the p values was used when assumption of
sphericity was violated. The significance level was (p < 0.0036)
after Bonferroni correction was used for multiple comparisons.
Table 10 reports the ANOVA results.

For the cardiac features, ANOVA suggests that heart rate
rose as physical activity was more intense (p < 0.001, η2p =

0.23). The SDNN was also significantly higher during high
stress (p = 0.002, η2p = 0.23) and decreased with more

intense physical activity (p < 0.001, η2p = 0.19). No effects
or interactions were detected for spectral features of heart rate
variability (HR, LF/HF ratio). Breathing rate was higher in
the stress condition (p < 0.001, η2p = 0.26) and higher

during physical activity, although it was not affect by physical
activity. ANOVA revealed an effect of physical activity on sigh
rate (p = 0.002, η2p = 0.17). Table 9 suggests that sigh
rate was higher in presence of physical activity, but slightly
higher for the 18 km/h level of physical activity. No effects or
interaction was detected for breathing variability. Electrodermal
features did not reveal any effect of experimental conditions,
although some positive trends could be observed (e.g., number
of responses, pstress = 0.077, pphysical = 0.071; Rel. LF
power, pstress = 0.074, pphysical = 0.091). Temperature
also did not appear to vary across the two experimental
manipulations. However, results suggest that the temperature
delta was significantly affected by the stress manipulation
(p = 0.003, η2p = 0.23). More specifically, temperature delta
was much lower during high stress conditions. ANOVA also
suggested that minimum and maximum BVP were much higher
during high stress conditions (minimum, p < 0.001, η2p =

0.30; maximum, p = 0.003, η2p = 0.23). No effect of
physical activity or interaction was found for temperature or
BVP features.
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TABLE 9 | Descriptive statistics of peripheral measures.

Variable (unit)
Condition average (stress–physical activity)

Low-0 km/h Low-18 km/h Low-24 km/h High-0 km/h High-18 km/h High-24 km/h

Cardiac

Heart rate (bpm) 85.0± 3.9 91.5± 4.0 94.6± 4.2 86.7± 4.1 92.9± 4.0 95.5± 4.1

SDNN (ms) 46.5± 5.6 37.3± 4.5 36.3± 5.0 53.8± 6.3 42.0± 4.6 41.0± 5.9

HF power (ms2) 7.1± 1.8 9.1± 2.7 9.0± 2.2 6.1± 1.7 6.4± 1.5 8.1± 2.6

LF/HF (–) 4.3± 0.7 3.9± 0.8 3.7± 0.8 4.4± 1.1 4.7± 1.1 4.3± 1.1

Breathing

Breathing rate (breath/min) 22.4± 1.5 26.0± 1.6 24.9± 1.1 23.4± 1.4 27.0± 1.5 25.7± 1.4

Variability (–) 0.71± 0.10 0.83± 0.09 0.74± 0.10 0.71± 0.09 0.81± 0.10 0.73± 0.11

Sigh rate (min−1 ) 2.36± 0.25 3.26± 0.38 2.88± 0.25 2.23± 0.23 2.84± 0.34 2.60± 0.27

EDA

Level (–) 0.96± 0.22 1.06± 0.39 1.29± 0.37 1.07± 0.24 1.24± 0.30 1.10± 0.21

Number of peaks (n) 46.6± 3.0 49.2± 2.4 48.8± 1.8 47.3± 2.4 50.7± 1.7 50.6± 1.3

Rel. LF power (–) 0.10± 0.02 0.15± 0.03 0.12± 0.03 0.13± 0.03 0.16± 0.03 0.16± 0.03

Skin temperature

Temperature (◦C) 33.8± 0.6 33.6± 0.5 33.6± 0.4 33.6± 0.6 33.4± 0.5 33.4± 0.5

Temperature delta (◦C) 0.34± 0.11 0.24± 0.11 0.22± 0.12 0.13± 0.10 0.12± 0.13 0.12± 0.10

Blood volume pulse

Minimum BVP (–) 0.68± 0.13 0.78± 0.12 0.82± 0.17 0.91± 0.19 0.95± 0.15 1.01± 0.24

Maximum BVP (–) 0.72± 0.14 0.86± 0.14 0.91± 0.17 0.94± 0.19 0.88± 0.13 1.07± 0.22

TABLE 10 | Results of repeated measures analysis of variance for peripheral measures.

Independent variable
Stress Physical activity Stress × Physical activity

F p η
2
p F p η

2
p F p η

2
p

Cardiac

Heart rate†,‡ 2.7 0.109 0.07 10.5 < 0.001 0.23 0.2 0.831 0.00

SDNN†,‡ 10.8 0.002 0.23 8.2 < 0.001 0.19 0.2 0.837 0.00

HF power 2.0 0.172 0.06 2.1 0.133 0.06 1.2 0.308 0.04

LF/HF 1.7 0.198 0.05 0.3 0.693 0.01 0.7 0.470 0.02

Breathing

Breathing rate† 12.9 < 0.001 0.26 5.6 0.007 0.13 0.3 0.727 0.01

Breathing variability 0.3 0.589 0.01 1.4 0.262 0.04 0.3 0.704 0.01

Sigh rate† 6.0 0.019 0.14 7.2 0.002 0.17 0.5 0.587 0.01

EDA

EDA Level 0.4 0.522 0.01 0.6 0.479 0.02 2.2 0.130 0.06

EDA responses 3.3 0.077 0.09 2.9 0.071 0.08 0.4 0.639 0.01

EDA Rel. LF power 3.4 0.074 0.09 2.5 0.091 0.07 0.2 0.828 0.01

Skin temperature

Temperature 3.2 0.082 0.08 1.0 0.359 0.03 0.2 0.817 0.00

Temperature delta 10.4 0.003 0.23 0.7 0.479 0.02 0.7 0.504 0.02

Blood volume pulse

Minimum BVP 14.2 < 0.001 0.30 0.9 0.402 0.03 0.5 0.568 0.02

Maximum BVP 9.9 0.003 0.23 1.6 0.222 0.04 1.5 0.238 0.04

† Difference found for multiple comparison test (Tukey-Kramer) between 0 and 18 km/h (p < 0.05).
‡ Difference found for multiple comparison test (Tukey-Kramer) between 0 and 24 km/h (p < 0.05).
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5.4. Modeling Results
A two-way ANOVA is performed using feature subsets and
testing schemes as dependent variables. Results from the ANOVA
suggest the presence of a significant difference between at least
two features subsets (p < 0.001), between the two schemes (p <

0.001) and an interaction between both factors (p < 0.001). To
further understand these results, a multiple comparison analysis
is performed and Tukey’s honest significant difference is used
to correct multiple comparisons. Figure 5 shows the results of
these multiple comparisons. For k-fold, the best classification
performance was obtained using either all features (κavg = 0.46,
acc = 0.73%) or all EEG features (κavg = 0.49, acc = 0.74%).
Amplitude modulation features were the best single type of
feature type (κavg = 0.29, acc = 0.65%), significantly surpassing
the combination of all peripheral features (κavg = 0.22, acc =

0.61%), as well as all other single type of features (except relative
power features, κavg = 0.25, acc = 0.63%). Cardiac features
yielded the best performance for single peripheral feature type
(κavg = 0.18, acc = 0.60%), surpassing EDA, BVP, absolute
power and asymmetry features (which all yielded relatively
poor results, κavg < 0.10, accavg = 0.53%). Peripheral
features provided the most stable results across the two testing
schemes. EEG features, on the other hand, all performed very
poorly under the LOPO scheme, suggesting that subject-specific
models are needed, or more advanced normalization strategies
(Albuquerque et al., 2019a).

6. DISCUSSION

As stated in the introduction, this project features twomain goals.
First, we want to provide a dataset where stress and physical
activity are jointly modulated. We also seek to allow exploration
of physical activity on artifact generation. Second, we want to
provide a dataset that mimics realistic settings to support “in-the-
wild” B/BCI development. In the following section, we provide a
discussion of the analysis that were performed in order to better
characterize the dataset.

6.1. Subjective Analysis
The important effect of the stress manipulation on the
custom stress and fear questions suggest that the experimental
manipulation was successful. The stress manipulation also had
an important effect on mental demand. This result might have
been caused by the games design. Despite being similar in terms
of game style (first person exploration games), Outlast featured
more complex environmental design (e.g., dead ends, hidden
passages) than TIMEframe. Outlast also had more complex
controls (e.g., using the night mode, running), which might
also explain the increased perceived physical demand. Despite
knowing that the two games had a predetermined duration
(10 min), participants felt that Outlast caused higher temporal
demand than TIMEframe. This result might be due to the escape
scenes (i.e., escaping from chasing enemies) that were present
in all three Outlast scenarios. Overall, it is clear that the stress
manipulation caused a high affective stress state, as well as
induced some mental stress. This highlights the difficulty in
experimentally separating the two forms of stress, a limitation

shared with other popular protocols, such as the Trier Social
Stress Task (Kudielka et al., 2007).

The physical activity manipulation was also successful, this
can be appreciated even with the p values corrected for multiple
comparisons between the three level. The descriptive statistics
and the straightforward difference between physical activity
levels (0, 18, and 24 km/h) suggest that the participants did
feel more physical demand as activity levels increased. Results
suggest that participants felt a slightly higher temporal demand
as physical activity rose. It is important to keep in mind
that the higher speed, like any physical activity manipulation,
might have induced a higher mental demand on participants.
This might have translated into higher subjective temporal
demand. Moreover, the effect of physical activity on the effort
rating was expected to be higher. However, is it possible that
some participants considered this question to concern mental
effort, while others physical effort, thus canceling out any
potential effects.

6.2. EEG Analysis
Absolute power of alpha and theta did not vary significantly
under stress. Since these features were only computed in
prefrontal regions, it is possible that they were strongly affected
by ocular artifacts. In fact, all prefrontal features computed did
not reveal much sensitivity to stress. It could be argued that
the task visual load was too high to fully remove all artifacts,
suggesting that prefrontal sensitivity to stress could be higher
when eyes are closed compared to when eyes are open, as it was
reported in Brouwer et al. (2011).

The difference between mental and affective stressors might
also explain the absence of effects on prefrontal alpha and theta.
In Borghini et al. (2014), the authors mention that the expected
decrease of alpha and increase of theta are observed in situation
where the task demand is higher. In Giannakakis et al. (2015),
authors report several significant differences on absolute power
of alpha, beta and theta bands using a more affective than mental
stressor (i.e., video segments). Like in Borghini et al. (2014),
they do observe lower alpha power in frontal regions (i.e., F3).
However, they did not report differences in the locations used in
this study. Following this hypothesis, it is also possible that the
two video games induced similar mental stress on participants,
making it difficult to observe a difference. Additionally, it is also
possible that physical activity reduced the experienced stress,
thus making it more difficult to be detected. Finally, physical
activity might have induced movement on the headset, leading to
a poorer contact between the electrodes and the skin. This indeed
is a limitation of using the Muse headband.

Notwithstanding, stress had a very clear effect on temporal-
parietal relative gamma (on both sides). These results are in line
with the hypothesis (see Table 3) that relative gamma would rise
under stress as per (Minguillon et al., 2016), where the authors
focus more on the role of prefrontal relative gamma (rather
than temporal-parietal, like in the present study). However, they
do report that relative gamma also increased in temporal and
parietal regions. In Minguillon et al. (2016), it is suggested
that prefrontal relative gamma could be an indicator of mental
stress, rather than affective stress (a result supported by previous
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FIGURE 5 | Classification performance (Cohen’s kappa) of different feature subsets.

studies, Başar-Eroglu et al., 1996). In another work, temporal
and parietal gamma were found to be higher in presence
of an affective stressor (Oathes et al., 2008). Given that the
current study focused more on affective stress, it is possible
that participants experienced similar mental stress in the two
games played; this hypothesis is based on the stress level effect
on the temporal relative gamma, and the no effect of prefrontal
relative gamma. As suggested before, it is possible that ocular and
physical activity artifacts seen here prevented detecting a stress
effect on prefrontal relative gamma. Moreover, the removal of
those artifacts with wICA could have negatively impacted the
high frequency components in EEG signals in the prefrontal
region (Muthukumaraswamy, 2013; Cassani et al., 2014; Rosanne
et al., 2019). Together, these results suggest that stress “in-
general” might be associated with the gamma band and that
the prefrontal/temporal-parietal predominance might indicate
whether this stress is more mental or affective. Further work
would be required to confirm this.

Under stress, interhemispheric temporal-parietal coherence
(TP9-TP10) was slightly lower, suggesting a less similar
neuronal activity between the two regions. This result goes
against the hypothesis formulated in Table 3 (Giannakakis
et al., 2015). In Giannakakis et al. (2015), authors found that
alpha coherence was higher during stressful video segments
compared to relaxed segments (although in parietal region,
P3-P4). However, coherence behavior under stress is not
well-documented in the literature. In Travis et al. (2010),
parietal interhemispheric alpha1 (7.5–10.0 Hz) coherence
was higher during meditation compared to control. While
we cannot directly compare the TIMEframe game to

meditation, it could be argued that the relaxed states enhance
interhemispheric coherence.

Lastly, amplitude modulation features yielded several
interesting results. Globally, amplitude modulation rose during
stress conditions. The apparent larger increase observed on
temporal-parietal regions might, once again, have been caused
by the hypothesized greater influence of ocular and physical
activity artifacts on prefrontal electrodes. Consistent with relative
gamma effects, amplitude modulation effects were also greater
when observed in the gamma band. It could be argued that the
high amplitude modulation observed on gamma (TP9-TP10)
are due to fluctuation in experienced stress during the Outlast
play session (as opposed to TIMEframe, which induced had a
lower and more leveled stress level). In this paper, we explored
only a subset of possible amplitude modulation features (i.e.,
delta-modulated) and future work should explore alternate
features. For mental workload assessment, for example, they also
showed to be important (Albuquerque et al., 2019b).

6.3. Peripheral Analysis
The increased heart rate observed with physical activity confirms
that the physical activity manipulation was effective. As expected,
SDNN also rose during high stress conditions (Castaldo et al.,
2015). This result reinforces the utility of SDNN as an index of
affective stress. However, the observed decrease of SDNN under
higher physical activity levels suggest that this feature could have
higher predictive power if physical activity of individuals was
unknown. Despite being shown sensible to stress in other studies
(Kreibig et al., 2007), spectral features of heart rate variability
(i.e., HF power, LF/HF ratio) were not significantly affected by the
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stress manipulations. Since physical activity is known to change
heart rate variability, it is possible that physical activity acted as a
confounding factor (Pichon et al., 2004). For example, in Pichon
et al. (2004), the LF/HF ratio is reported to decrease as physical
activity rises. This behavior might have canceled the expected
increase that was hypothesized in Table 3. It is also possible that
the relatively fast changes in physical activity intensity prevented
these features from reaching temporal stability. In addition,
the LF/HF ratio has received some criticism as a measure of
cognitive and physical aspects of stress, as its correspondence
to psychological and physiological states of a person is not
unique, and by combining LF and HF one degree of freedom
is lost. Future studies could explore the effects on LF and HF
separately (von Rosenberg et al., 2017) or investigate potentially
more relevant features for ambulant users (e.g., Tiwari et al.,
2019, 2020). Finally, it is also possible that spectral features of
heart rate variability are more associated with mental stressors
than affective stressors. The hypothesis made in Table 3 are
based on Castaldo et al. (2015), which predominantly features
mental stressors.

As expected, breathing rate rose under higher physical activity
conditions. In concordance with our hypothesis, stress increased
the breathing rate (Rainville et al., 2006). The effect size of
stress on breathing rate was higher than from physical activity.
Surprisingly, sigh rate was lower during stressful conditions,
which is opposed to our formulated hypothesis (Vlemincx et al.,
2013). Participants might have sighed only once the threat was
removed (i.e., after the condition). Given that Outlast’s played
character is often chased and threatened, it is also possible that
participants unconsciously held their breath as not tomake noise.
The absence of effect on breathing variability might have been
caused by the parameters used to compute sample entropy (m,
and r). In Vlemincx et al. (2013), authors mentioned that they
used m = 2 and r = 0.4 and these were the parameters used
herein. However, it is uncertain if these parameters are optimal
for all situations.

The absence of significant effects of stress and physical activity
on all electrodermal features was counter-intuitive, as both stress
and physical activity have been shown to induce changes in
EDA patterns. Placement of the electrodes might partially explain
the lack of concordance with the literature. In stress related
experiments, electrodes are often placed on the fingers (e.g.,
Kreibig et al., 2007; Posada-Quintero et al., 2016b, 2018a) or
on the foot (e.g., Reinhardt et al., 2012). In setups involving
physical activity, it can be more practical to use a wristband (e.g.,
Gjoreski et al., 2016) as was the case with the current study). It
is also possible that the combined affective stressor and physical
activity saturated the EDA levels, thus creating a ceiling effect and
preventing variability. In Posada-Quintero et al. (2018b), physical
activity wasmanipulated while EDAwas recorded.While authors
did observe significant difference between the different physical
activity levels, they mention that the electrodermal level and
the number of responses did not have the sensitivity of spectral
features. Physical activity might have also introduced artifacts to
the electrodermal measure. Precautions were taken to prevent
this: the wrist band was sufficiently tightened to prevent slippage
and filtering was applied to the signal to remove higher frequency

noise. Finally, it is possible that alternate frequency bands could
have achieved improved discriminability. As spectral analysis
of EDA is still a relatively undocumented domain, further
improvements may be possible.

Lastly, the hypothesis that temperature would be lower during
high stress condition (see Table 4) was not confirmed. This could
be due to the counter-effect of physical activity, which is known
to increase body temperature (Lim et al., 2008) even in areas
not directly involved in the effort (Chudecka and Lubkowska,
2012). In line with the hypothesis, however, temperature rose
much more slowly during stress conditions. As stated in section
2, this could be due to a constriction of the limb arterioles,
intended to reduce blood flow in peripheral regions during fight-
or-flight situations. This observation matches the increase in
blood volume pulse that was induced during stress conditions
(Kreibig et al., 2007). It is interesting to note that none of the
temperature and blood volume pulse measures were significantly
affected by physical activity. Given the short duration of the
experimental conditions and the relatively low intensity of the
physical task, this behavior is likely not to generalize to all forms
of physical activity.

6.4. Modeling Analysis
The goal of themodeling analysis described here was to perform a
first validation of the discriminative power of neurophysiological
features for stress monitoring under physical activity, and not
necessarily to obtain state-of-the-art results (Smets et al., 2019).
As such, default classifier parameters were used and classical
SVMs were tested. Our ongoing study involves the use of
multimodal fusion and classifier optimization to further improve
results. The interested reader is referred to Parent et al. (2019b)
for more details.

Interestingly, while both EEG and peripheral feature subsets
showed similar effect size under stress (η

p
2 ≈ 0.25), classification

performance differed largely between them. For example,
while peripheral features resulted in lower stress prediction
performance under the k-fold setting relative to EEG, they
generalized better to unseen users in the LOPO scheme. This
sensitivity has been reported previously for EEG-based mental
workload models (Albuquerque et al., 2019a).

Combining all EEG feature subsets also significantly improved
classification results, thus corroborating results reported in the
mental workload literature (Albuquerque et al., 2019b). On the
other hand, combining EEG with peripheral features did not
result in performance gains. Peripheral measures, such as heart
rate variability and/or electrodermal activity are often viewed as
generic indicators of sympathetic and parasympathetic activation
(Billman, 2011; Posada-Quintero et al., 2016a), thus they may
provide limited concurrent sources of information, especially in
the presence of physical activity.

Moreover, as stated previously, the amplitude modulation
features were shown to result in the highest performance under
the k-fold setting. Here, only a subset of possible AM features was
computed and recent work has suggested that alternate bands
can be useful for valence and arousal prediction (Clerico et al.,
2018). Future work will explore the full potential of the amplitude
modulation features for stress prediction under physical activity.
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Within the peripheral modality, cardiac features resulted in
the best performance under both testing paradigms. Here, only
four cardiac features were explored and relied on time- and
frequency-based content. There have been recent innovations
in HRV analysis showing that non-linear features may provide
improved robustness to noisy data (Tobon et al., 2017), thus
improved performance may still be achieved; this is left for
future work.

Overall, the modeling analysis results presented herein
confirm that affective stressors can induce detectable effects on
neuro-physiological signals, despite being in the presence of
quickly shifting physical activity. It is hoped that the database
provided will allow for other researchers to help advance the
knowledge of physiological stress monitoring in the presence
of physical activity. This could have important implications for
operator functional state monitoring for e.g., first responders.

Lastly, we performed a sanity check to explore the intensity
of confound between stress and physical activity. To this
end, we performed feature ranking using the recursive feature
elimination algorithm. We first found the most important
features for stress level detection and trained a classifier on
these features to classify physical activity level; we found a
Cohen’s kappa value of 0.14. In turn, we found the best
features for physical activity level classification and used
those features to classify stress level; we found a Cohen’s
kappa of 0.07. Future work could explore the use of physical
activity-level aware classification for improved accuracy, as
in Sun et al. (2010).

6.5. Future Research Directions
We believe the PASS dataset analysis unlocked many questions
and challenges that can be further addressed and investigated by
future work. In the following, we summarize some of the research
avenues that can be derived from our proposed dataset:

• Design analyses that aim to disentangle the effects of
affective and mental stress components on subjective,
neurophysiological, and peripheral measures (e.g., evaluate
whether different modalities are affected by affective and
mental stress in distinct ways);

• Devise EEG artifact removal approaches for data acquired with
low-density devices which are also suitable to remove noise
generated by physical activity;

• Assess the effect of different EEG referencing approaches on
stress detection;

• Explore new features, including (but not limited to), EEG
amplitudemodulation features that have been linked tomental
workload (Albuquerque et al., 2018) or new movement-robust
heart rate variability features (Tiwari et al., 2020);

• Develop representation learning pipelines tailored to improve
robustness to movement artifacts and inter-subject variability;

• Account for the interplay between stress levels and physical
activity by devising stress classification strategies which are
conditioned on the current physical activity intensity;

• Explore different state-of-the-art classification schemes and
hyperparameter tuning strategies.

7. CONCLUSIONS

The dataset described herein was designed to support the
development of physiological stress monitoring models for
ambulant users. Two different videogames were used as stress
modulators under three physical activity conditions. Our
validation results suggest that accurate disambiguation between
affective and mental stress effects could be observed even under
varying physical activity levels. Validation experiments show
features derived from the database to not only corroborate
results previously reported in the literature, but to also provide
new insights on stress elicitation under physical activity. Lastly,
preliminary classification results with popular features and
classical classifiers show the promise of stress monitoring of
ambulant users with the use of off-the-shelf wearable devices. The
collected database, comprised of raw signals, subjective ratings,
and triggers, is available for download at http://musaelab.ca/pass-
database/.
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Prefrontal cortex (PFC) asymmetry is an important marker in affective neuroscience and

has attracted significant interest, having been associated with studies of motivation,

eating behavior, empathy, risk propensity, and clinical depression. The data presented

in this paper are the result of three different experiments using PFC asymmetry

neurofeedback (NF) as a Brain-Computer Interface (BCI) paradigm, rather than a

therapeutic mechanism aiming at long-term effects, using functional near-infrared

spectroscopy (fNIRS) which is known to be particularly well-suited to the study of PFC

asymmetry and is less sensitive to artifacts. From an experimental perspective the

BCI context brings more emphasis on individual subjects’ baselines, successful and

sustained activation during epochs, and minimal training. The subject pool is also drawn

from the general population, with less bias toward specific behavioral patterns, and no

inclusion of any patient data. We accompany our datasets with a detailed description of

data formats, experiment and protocol designs, as well as analysis of the individualized

metrics for definitions of success scores based on baseline thresholds as well as

reference tasks. The work presented in this paper is the result of several experiments

in the domain of BCI where participants are interacting with continuous visual feedback

following a real-time NF paradigm, arising from our long-standing research in the field of

affective computing. We offer the community access to our fNIRS datasets from these

experiments. We specifically provide data drawn from our empirical studies in the field

of affective interactions with computer-generated narratives as well as interfacing with

algorithms, such as heuristic search, which all provide a mechanism to improve the ability

of the participants to engage in active BCI due to their realistic visual feedback. Beyond

providing details of the methodologies used where participants received real-time NF

of left-asymmetric increase in activation in their dorsolateral prefrontal cortex (DLPFC),

we re-establish the need for carefully designing protocols to ensure the benefits of NF

paradigm in BCI are enhanced by the ability of the real-time visual feedback to adapt to

the individual responses of the participants. Individualized feedback is paramount to the

success of NF in BCIs.

Keywords: functional near infrared spectroscopy (fNIRS), PFC asymmetry, visual feedback (VF), neurofeedback

(NF), dataset
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1. INTRODUCTION AND RATIONALE

There is growing interest in sharing datasets for Brain-Computer
Interfaces (BCI), to facilitate comparison of technical approaches.
Their availability is of particular relevance for applications in
which there is significant diversity of practice and lack of
standardized protocols, such as Neurofeedback (NF) (Ros et al.,
2020).

Such datasets make it possible to explore and compare
signal acquisition and dynamics, baselining, thresholding, and
categorization: this has the potential to identify experimental
difficulties and best practice, beyond reproducibility issues.

Among the various neural signals that support BCI, the
availability of fNIRS dataset remains scarce (Bak et al., 2019),
despite its growing popularity, both for BCI (Naseer and Hong,
2015) and NF applications (Kohl et al., 2020).

In this paper, we introduce three datasets obtained as part of
fNIRS BCI experiments. The originality of these datasets is that
they were produced in a BCI context yet using a NF paradigm,
in which users control their Prefrontal Cortex (PFC) asymmetry.
The use of a NF approach to BCI is characterized by an emphasis
on RoI activation over long-term effects, often with minimal
training compared to clinical uses of NF. It is of particular interest
when the RoI signal is not under direct volitional control, as the
NF channel assists the user in controlling the signal. Moreover,
the feedback channel can be embedded in the interface design
itself for added realism. Frontal asymmetry is an important brain
signal which has a long history in BCI, for the measure of valence,
approach or cognitive workload, and NF. Since frontal signals
are of the main elements of fNIRS, this dataset has validity
beyond the specific context it has been produced in, which is PFC
asymmetry NF.

After a reminder of key concepts in NF, which includes a
short discussion of current thinking in fNIRS NF, we discuss
the potential interest of our datasets to the wider fNIRS and NF
community, and describe several data formats supported by our
dataset to facilitate processing by various software packages and
data-oriented programming languages. In the remainder of the
text we will refer to our three datasets as follow:

• ANG (Aranyi et al., 2015b) is derived from an anger-
expressing BCI experiment.

• RAP (Aranyi et al., 2016) investigates rapport with a virtual
character endowed with full facial expressions.

• HEU (Cavazza et al., 2017) uses BCI input to a hybrid human-
AI system.

1.1. PFC Asymmetry in Neuroscience
Research
One of the major challenges for BCI is to relate neural
signals to specific cognitive processes, or to an element of user
experience. For affective BCI, this is rendered even more difficult
by the weakness of locationist hypotheses (Lindquist et al.,
2012). However, there is substantial evidence linking prefrontal
cortex (PFC) asymmetry to the approach/withdrawal dimension
(Davidson, 2004): the paradox being that an area associated to
high-level integrative cognitive processes is also the locus of

a rather basic dimension. This dimension has been shown to
underpin higher-level behavioral elements including motivation,
risk-taking, aggression, and empathy. Moreover, it has been
associated to clinical conditions, such as addiction, eating
disorders, gambling and depression. While PFC asymmetry has
been primarily associated with approach/withdrawal it has also
been shown to be highly correlated with valence, as well as
cognitive workload.

Historically, interest in PFC asymmetry has stemmed from
research in affective and social neuroscience. Another significant
use of PFC asymmetry has been early NF experiments, primarily
for the treatment of depression (Rosenfeld et al., 1995).
PFC asymmetry has been later adopted as a BCI technology
taking advantage of the above results, and has been used for
affective computing (Mühl andHeylen, 2009) cognitive workload
measurement (Fishburn et al., 2014; Peck et al., 2014; Barth et al.,
2016; Maior et al., 2020) or assessment of aesthetic response
(Karran et al., 2015; Cartocci et al., 2016).

Most of early work on PFC NF has taken place using EEG
signals. There are several reasons for that: despite the lack of
spatial resolution, it is still possible to capture a meaningful PFC
asymmetry signal from F3 and F4 electrodes. The existence of a
stable PFC asymmetry EEG baseline in the alpha spectrum and
the trait and state properties of the signal (Coan and Allen, 2002)
facilitates the design of PFC NF experiments. With the increasing
availability of fNIRS equipment, it appeared as an interesting
alternative to EEG with less sensitivity to a range of artifacts
and increased specificity and spatial resolution considering that
the RoI is close to the surface hence easily accessible to infrared
sensors. Sitaram et al. (2009) were amongst the first to suggest
that signals based on metabolic activity could be equally suited
to BCI than electrical signals. fNIRS has become the method of
choice as DLPFC is readily accessible via lateral optodes (Ernst
et al., 2013). It has been used as a measurement tool (Hirshfield
et al., 2007) and as a BCI (Solovey et al., 2009; Afergan et al., 2014;
Naseer andHong, 2015; Hong et al., 2020) to support NF research
and even clinical experiments.

1.2. Neurofeedback Concepts
Our dataset has been entirely produced through NF BCI
experiments and it is worth summarizing some of the main
concepts attached to NF technical implementations and subject
behavior. In naïve terms, NF consists in facilitating the activation
of a region of interest in the subject’s brain through the real-
time display of a feedback signal that represents how successful
they are in activating that region1. NF is generally considered an
operant conditioningmechanism, and subjects tend to develop or
improve this ability through training, although this ability shows
great individual variability, some subjects demonstrating it from
the very first testing sessions while others hardly develop it, a
phenomenon close to BCI illiteracy (Lee et al., 2014; Trambaiolli
et al., 2018).

1We are primarily considering here NF systems for which there is an element of

regional specificity or spatial resolution, which is generally the case for fNIRS and

fMRI-based NF.
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The essential components of a NF installation (Sitaram et al.,
2017) include a sensing device (EEG, fNIRS, FMRI, MEG)
that captures a signal measuring the RoI activity, a software
component analysing NF performance (by comparing the RoI
signal to a baseline or reference), and a feedback system which
maps the performance measure to a feedback channel giving
the user an indication on how well they are activating the
target region.

If we leave aside the case of motor areas, most NF experiments
require the activation of areas which are not under direct
volitional control2 [for instance, the amydgala (Zotev et al.,
2016), insula (Lawrence et al., 2014), PFC (Barth et al., 2016),
Anterior Cingulate Cortex (Mathiak et al., 2015; Zilverstand
et al., 2017)]. Initially, subjects may use cognitive strategies to
facilitate the activation of the target RoI and subsequently guide
themselves on the feedback signal to sustain that activation.
A cognitive strategy is essentially a set of thought contents
which are known to facilitate the activation of the RoI, albeit
not always specifically. For instance, imagining a gesture would
activate corresponding pre-motor areas, pleasant autobiographic
memories can affect PFC asymmetry, concentrating on your
inner self may activate the insula (Lawrence et al., 2014), and
achieving a relaxed state may decrease the amygdala activity.
Cognitive strategies may be suggested by the experimenter, or
may be discovered by the subjects themselves based on the (often
partial) experimental brief they have been given (Autenrieth
et al., 2020). Some of the cognitive strategies may actually lack
specificity: for PFC asymmetry in which valence and approach
may be confounded, the use of positive autobiographic memories
as a cognitive strategy may actually bias activation from a valence
perspective. Similarly, different strategies may lead to the same
region activation (Lawrence et al., 2014).

Barth et al. (2016) have identified no less than 17 different
cognitive strategies used by subjects during a PFCNF experiment
(not involving PFC asymmetry). These were often workload-
oriented and included verbal fluency tasks, calculating, and
naming terms in certain categories. Only two subjects used
emotional or arousing strategies, probably due to the fact that
there were no affective or motivational element in that PFC
experiment: subjects were given visual feedback of their own PFC
through an activation heat map, and told to increase activation.
Another possible explanation is that subjects may have been
influenced in their choice of cognitive strategies by a preliminary
working memory task undertaken prior to the actual experiment.

The cognitive strategies adopted by our subjects are specific to
each experiment and, short of being dictated by the experimenter,
were influenced by the context of the experiment and some high-
level instructions given. In the ANG dataset, subjects naturally
expressed anger at the designated character, while in the RAP
dataset they tried various positive mental attitudes toward the
agent. Finally, in the HEU dataset, they had to express motivation
or eagerness and developed various strategies, such as mentally
encouraging participants in a race.

2The following list includes NF experiments based on hemodynamic signals, fMRI

or fNIRS.

The NF loop operates by measuring the level of activation,
and mapping it onto the feedback signal, so that it reflects in
real-time how successful the subject is in activating the RoI.
The NF literature, despite its abundance, rarely discusses in-
depth this mapping process/function, which is in general a linear
mapping between the activation range above the baseline to the
variation range of visual feedback. For instance, in our ANG
experiment we run preliminary experiments measuring signal
variation and define a variation range using the PFC asymmetry
signal’s standard deviation, in a subject-specific fashion.

There has been growing interest in the nature of the NF
feedback channel which can be acoustic (Rosenfeld et al., 1995),
or more often, visual. In the latter case, the primary consideration
is in the use of abstract symbology or visually realistic signal. To
refine this distinction, we propose to categorize the type of visual
feedback by taking into account its degree of integration with the
interactive application controlled by the BCI (see Figure 1 for
visual details).

Abstract feedback is the dominantmodality inNF, and resorts
to various gauges or abstract geometrical shapes whose size vary
with the activation signal (Trambaiolli et al., 2018), or even
screen color (Sakatani et al., 2013). Some feedback can be visually
realistic but not semantically related, as in Li et al. (2019). Even
feedback based of visualizing target brain areas as in (Barth et al.,
2016) should fall in this category. Abstract feedback is primarily
used in clinical applications or fundamental NF investigation: in
BCI, abstract symbology tends to be disconnected from the main
application, unless some metaphor can be established between
the abstract shape and an element of the application. For instance,
in our HEU dataset, the width of the triangle used for visual
feedback is a metaphor of the heuristic search space (Cavazza
et al., 2017).

Semantic feedback corresponds to more realistic visual
feedback which can relate to the affective signals captured by
the BCI signal. For instance, in our ANG dataset visual feedback
consists in altering the visibility of the character against which
anger has to be expressed after an animation showing his evil
nature is shown to the subject.

Finally, Task-related feedback refers to experimental
conditions in which the BCI input is naturally embedded in the
interaction process, for instance with a visual feedback which is
part of the interface operation rather than added-on symbology.
In our RAP dataset, the overall task consists in non-verbal
communication with an agent with the agent’s non-verbal
behavior actually constituting the feedback signal, making the
feedback signal indistinguishable from the task itself. This comes
at the cost of losing some real-time properties of the feedback
signal, but the benefits of visual realism may actually outweigh
this loss by far. In previous work with a different yet compatible
signal [fMRI-derived EEG known as electrical fingerprint
(Keynan et al., 2019)], we have suggested that some complex
visual interfaces may have signal filtering abilities (Yamin et al.,
2017).

While visually realistic feedback has been shown to facilitate
NF performance via increased competence rather than simple
engagement (Cohen et al., 2016) there is no evidence that it
would distort the process compared to abstract feedback, which
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FIGURE 1 | NF Feedback categorization: abstract [HEU], semantic [ANG], and task-related [RAP].

is why we consider our datasets as representative examples of
generic interest. Moreover, visually realistic feedback with a social
component (such as in our RAP dataset) has been shown to
foster good NF responses even with minimal training (Mathiak
et al., 2015). Finally, more speculative explanations could involve
improved reward encoding with realistic visual feedback, in some
cases even resonating with reward encoding in the RoI itself
(Cavazza, 2018), in particular in the case of DLPFC (Tanaka et al.,
2006; Aupperle et al., 2015).

NF signals tend to fluctuate significantly during an epoch.
There have been several theoretical hypotheses underlying their
dynamics, such as the difficulty to activate the region, the
difficulty to sustain that activation, and the extent to which
feedback could assist or even hinder the process (Hinterberger
et al., 2004). Some researchers have hypothesized a control theory
model for NF (Ros et al., 2014), in which oscillations would be
explained by the response of the controller outside of a steady
state mode. BCI uses of NF signal can operate with shorter
epochs as no long-term effects are sought, and the actual duration
tends to be a compromise between application requirements and
signal acquisition.

2. ORIGINS OF DATA

2.1. Common Description of fNIRS NF
Experiments
Based on previous literature (Ruocco et al., 2014), including
literature applying HbO to affect-related manipulation in the
DLPFC (Tuscan et al., 2013), and to approach/withdrawal-
related experimental manipulation (Morinaga et al., 2007), and
based on our pilot study (Aranyi et al., 2015a), we elected to use
HbO for real-time application; we based post-hoc analyses on the
same metric for consistency.

Note that this measure is relative to a baseline (Ayaz et al.,
2010), this has important practical consequences in defining and
quantifying NF success. For example, as this operationalization
of asymmetry yields interval-level data, a ratio of task/no-task
signals for defining and quantifying success (for instance Sarkheil
et al., 2015) cannot be applied.

In our previous work corresponding to the three datasets
ANG, RAP, HEU, we have used a specific terminology in which
baseline referred to signal value at rest. In some experiments,

we used a reference epoch to calculate the signal variation,
which in some instances required the subject to watch a similar
environment to the one used during NF epochs, sometimes also
involving a neutral cognitive task, such as counting. It should also
be noted that some datasets have considered PFC asymmetry to
be zero for the baseline whilst there is evidence of default PFC
asymmetry values even in fNIRS (Zohdi et al., 2020) something
which was readily captured in EEG experiments (Cavazza et al.,
2014) but needs to be redefined on a session or even epoch basis
when using hemodynamic signals.

In all these experiments NF is used for its ability to produce
a signal with a clear interpretation in cognitive terms. We are
using PFC asymmetry as a dimensional marker of approach,
the actual cognitive feature under consideration (or analysis)
being determined by the experimental context, and the nature of
the feedback signal. For instance, an experiment on anger will
measure approach (dissociated from valence) (Harmon-Jones,
2007), while in an experiment on empathy, approach can be used
as a proxy measurement (Cavazza et al., 2014).

It is worth discussing again the main differences between
clinical NF and BCI NF, the latter still being an emerging
application within the broader field of BCI technology.
In terms of experimental protocol and validation, clinical
NF tends to rely on sham feedback as a control group,
under the hypothesis that appropriate feedback provides the
reward signal that mediates long-term effects. The clinical
context implies and allows the use of repeated sessions with
significant training, which increases the number of responders:
on the other hand, BCI NF dedicates limited time to
subjects training and leaves non-responders to the various
categories of BCI illiteracy (Lee et al., 2014; Trambaiolli et al.,
2018; Autenrieth et al., 2020), concentrating instead on the
responders’ behavior.

2.2. Representativity and Interest of the
Dataset
In this section, we are briefly discussing the relevance and
potential community interest of our datasets, considering the
increasing popularity of fNIRS and in particular fNIRS NF. We
will be basing this discussion primarily on the recent review of
fNIRS NF by Kohl et al. (2020), which collected a significant
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FIGURE 2 | (A) Overview of the apparatus used in our experiments: fNIR Optical Brain Imaging System (fNIR400) by Biopac Systems with one PC dedicated to the

data acquisition, and one PC dedicated to running the simulation and visualization of the stimulus presented in real-time to the subjects. (B) The 16-channel sensor

placed on the subjects’ forehead (C) showing the selected channels for the calculation of the asymmetry values.

number of studies and highlights variants in different core aspects
of NF3.

Firstly, most of the studies reported in the review use HbO,
which is also the case for our three datasets (Aranyi et al., 2015a).
Recently (Tachtsidis and Scholkmann, 2016) have suggested that
HbO alone might be insufficient to cover the widest range of
experimental situation, but this recent observation has not yet
been fully taken up in the community.

The duration of NF epoch in Kohl et al. (2020) ranges from 5
to 40 s (the latter actually corresponding to our own RAP dataset,
although its actual useful duration is 33 s), with the majority of
epochs (30%) lasting 30 s. Duration of epochs in our datasets are
30 s [HEU], 15 s [ANG], and 33 s [RAP].

Our subject population was primarily drawn from healthy
subjects, which were also overrepresented in Kohl et al. (2020)’s
review (76%). Our target RoI also proves to be one of the most
studied ones, as 59% of the studies reviewed trained participants
to regulate parts of the PFC.

Our three datasets also cover a range of cognitive strategies,
ranging from explicitly expressing a given feeling [ANG],
engaging with a virtual character [RAP], or expressing
motivation [HEU]. We collected post-experiment user feedback
(Autenrieth et al., 2020) on the actual cognitive strategies they
used for NF: it highlighted a mix of through contents related to
both approach and positive valence, apparently influenced by
the visual nature of the application. Users reported various sorts
of mental “cheering” as if encouraging runners during a race, as

3This review already includes one of our own experiments corresponding to the

RAP dataset.

well as the use of more abstract thinking strategies to generate a
feeling of eagerness, such as reminiscence of appetitive stimuli or
pleasant memories.

3. DETAILED EXPERIMENTS

3.1. Apparatus
For the three experiments presented here, we used an fNIR
Optical Brain Imaging System (fNIR400) by Biopac Systems
for data acquisition. Raw fNIRS data and oxygenation values
were collected with 2 Hz sampling rate (using COBI Studio and
FnirSoft), and was sent to the bespoke experimental software over
TCP/IP (using FnirSoft DAQ Tools) (Figure 2A). A 16-channel
sensor with a fixed 2.5 cm source-detector separation was placed
on the subjects’ forehead. For real-time application we used
measurements of changes in HbO concentration, as opposed to
deoxygenated or total hemoglobin (HbR and HbT, respectively)
(Figures 2B,C). Values of HbO concentration changes were
averaged over the four leftmost and four rightmost channels
(located over the left and right DLPFC, respectively) to derive
a simple metric of inter-hemispheric difference in the level of
HbO change that could account for left prefrontal asymmetry
(i.e., Asymmetry = L− R).

A bespoke graphical user interface was developed using C#
and Windows WPF for each of the experiment, which includes
a real-time visualization of HbO changes and asymmetry values.
All these variables are logged during the experiment to facilitate
the post-processing of the collected data. This graphical user
interface was also used to manage the running of the experiment
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FIGURE 3 | Experimental setup for the ANG experiment (see Figure 1 [ANG] for overall visual feedback setup).

FIGURE 4 | Protocol design for the ANG experiment.

itself, which included displaying the required epochs (text,
image, video, or more complex visualization) and managing
their duration and the synchronization of all the software
components. Finally, this interface was also used to implement
visual feedback.

For the positioning of the different devices in relation to the
subjects, we followed the recommendations of Solovey et al.
(2009) regarding the use of fNIRS in a HCI setting. Subjects were
seated∼47′′ (120 cm) from a 24′′ flat monitor in a dimly-lit, quiet
(but not soundproof) room in a comfortable chair to minimize
movements, with the fNIRS probe positioned over their forehead
and covered with non-transparent fabric to prevent ambient
light reaching the sensors. Subjects were instructed to refrain
from moving their limbs, frowning and talking during data
collection blocks.

3.2. Anger-Based NF—[ANG]
3.2.1. Subjects
This experiment (Aranyi et al., 2015b) was conducted with
twelve English-speaking adult subjects originally, though one
subject had to be excluded due to technical problems.
Thus, the effective sample size was eleven subjects (five
females, mean age = 33.55 years, SD = 11.53, range: [24;
59]). Subjects had no history of psychiatric conditions and
were right-handed. They all provided written consent prior
to participation.

3.2.2. Protocol
Full details of the protocol design can be found in Aranyi et al.
(2015b), but we will outline the essential details here (Figure 3
for the details of the overall setup). Subjects were instructed that
they would go through a sequence of blocks, each comprising
three main epochs: Rest, View and NF (Figure 4). During Rest,
the baseline for calculatingHbO data is acquired for the block as a
whole. TheView epochs correspond to control conditions, during
which the subjects watch an idle animation of the character while
given a cognitive task, counting, that keeps them in a neutral
state, hence providing a reference for prefrontal asymmetry
levels. Finally, the NF epochs consist in subjects expressing anger
toward the character and receiving visual feedback. Each subject
completed two training blocks to get acquainted to the task,
followed by six blocks for the experiment itself, during which
HbO asymmetry was monitored and recorded.

3.2.3. Results
We treated a block as successful if the mean of asymmetry values
during the NF epoch was statistically significantly larger than
the mean of asymmetry values during the View epoch within
the same block (Figure 5). As opposed to simply comparing
asymmetry scores duringNF to the overall baseline, we compared
asymmetry scores between the successive View and NF epochs
because the visual stimulus was very similar (and conceptually
the same) in the two epochs. Moreover, we set conditions
for controlling subjects’ cognitive activity during these epochs
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FIGURE 5 | Results from the post-hoc analysis of the ANG experiment, illustrating the dynamics of PFC asymmetry over the whole experiment for successful blocks

(Left) and unsuccessful blocks (Right) successful blocks demonstrates a significant increase of the left-side oxygenation compared to unsuccessful blocks.

(counting during View and expressing anger duringNF), whereas
thought processes during Rest were not controlled. Thus, the
View epoch served as a control condition within each block.
Because the hemodynamic response measured by fNIRS occurs
in ∼7 s, we discarded the first 7 s of data in each View and
NF epoch for determining block success. The system determined
block success by performing an independent t-test on the set
of asymmetry scores collected during successive View and NF
epochs within a block. In particular, it calculated mean and
standard deviation of asymmetry scores in both epochs, and
then calculated the t value. Since removing the first 7 s left
15 s of data per epoch (at least 29 data points sampled at
2 Hz), the software used the t critical value of 2.05 with 28
degrees of freedom for p (two-tailed) = 0.05 as a threshold for
success. Furthermore, to quantify the extent of block success
by expressing the distance of the distribution of asymmetry
scores during successive View and NF epochs, the experimental
software calculated the Cohen’s d effect-size measure, which
is the difference between two means divided by the pooled
standard deviation. This way we characterized each block with
a dichotomous success value (success/fail) and a continuous
success score (Cohen’s d or d for short) that reflects the distance
between the distribution of asymmetry values between View and
NF epochs within the same block.

3.3. Virtual Agent—[RAP]
3.3.1. Subjects
This experiment (Aranyi et al., 2016) was conducted with
eighteen English-speaking adult subjects, though data from one
subject was discarded due to technical problems during data
collection. Thus, the effective sample size was seventeen subjects
(eight females, mean age = 35.11 years, SD = 11.25, range:
[21; 60]). Subjects were right-handed and were not treated for
psychiatric conditions.

3.3.2. Protocol
Figure 6 provides an overview of the details of the overall setup.
The experimental task consisted in completing eight identical

blocks (preceded by a practice block which was not analyzed).
The structure of the blocks is presented in Figure 7. Each block
included three epochs: Rest, View, and Engage. During Rest
epochs, subjects were instructed to look at a crosshair located in
the center of a gray screen to try to clear their head of thoughts
and relax. During View epochs, subjects were instructed to keep
looking at the agent while carrying out a simple mental counting
task (counting backwards from 500 by increments of a given
integer). This task was included to control for unwanted mental
processes. During Engage epochs, subjects were instructed to
engage with the ECA through positive thinking, and to “cheer
her up” with their thoughts. We were deliberately vague with
support instructions in order to allow subjects to develop their
own cognitive strategies. After completing each block, subjects
were asked to describe their strategies in general terms. During
Engage epochs, subjects received real-time feedback of their
left-asymmetry. To ensure consistent mapping of individual
variations in left-asymmetry onto the feedback signal, we used the
range of variation of HbO asymmetry during the View epoch in
each block to determine the mapping of the level of engagement
from the user to the visual feedback signal. This was calculated
by the experimental software during the last 3 s of the Rest epoch
between the View and Engage epochs. We defined the minimum
point for mapping Min as the mean of left-asymmetry values
during the View epoch plus 1.28 times their standard deviation.
In normally distributed asymmetry scores, this threshold would
result in no feedback for 90% of the spontaneous asymmetry
variations during the reference (View) epoch. To determine the
maximum Max point for mapping, we increased the threshold
asymmetry value for feedback Min by the variation range of
asymmetry values during the View epoch. Asymmetry values
within the range [Min; Max] during the Engage epoch were
mapped linearly onto the ECA’s facial expression, with the same
2Hz frequency as the acquisition of asymmetry values.

3.3.3. Results
Subjects were instructed to refrain from talking, frowning and
moving their limbs during fNIRS data collection periods within
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FIGURE 6 | (A,B) Experimental setup for the RAP experiment (see Figure 1 [RAP] for overall visual feedback setup).

FIGURE 7 | Protocol design for the RAP experiment.

FIGURE 8 | Results from the post-hoc analysis of the RAP experiment, illustrating the dynamics of PFC asymmetry over the whole experiment for successful blocks

(Left) and unsuccessful blocks (Right) successful blocks demonstrates a significant increase of the left-side oxygenation compared to unsuccessful blocks.

the protocol. Additionally, we applied a sliding-window motion
artifact rejection (SMAR) to each channel used for calculating
the asymmetry metric which was inspected post-hoc to identify
motion artifacts during NF. For post-hoc analyses, raw data
were low-pass filtered using a finite impulse response filter
with order 20 and 0.1 Hz cut-off frequency (Ayaz et al.,
2010). For this experiment (Aranyi et al., 2016), we used a
sliding-window motion artifact rejection (SMAR) procedure,
which rejected motion-affected periods in the fNIRS signal.
This was an experiment which had greater potential for upper

body movement as the subject could try to align to the
agent non-verbal behavior which also included head and upper
body motion.

Moreover, we have applied a counting task during reference
epochs rather than passive visualization: while counting
tasks are known to activate the PFC (Barth et al., 2016)
they are also neutral toward affective and motivational
aspects, which allows us to claim greater specificity for
measuring NF activation compared to our reference epoch
(Figure 8).
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FIGURE 9 | Experimental setup for the HEU experiment (see Figure 1 [HEU] for overall visual feedback setup). A* represent is artificial intelligence search algorithm.

FIGURE 10 | Protocol design for the HEU experiment.

3.4. Motivational BCI—[HEU]
3.4.1. Subjects
This experiment (Cavazza et al., 2017) was conducted with eleven
adults (three females; mean age = 37.18 years, SD = 11.21,
range= [20; 52]) who were right-handed, reported no treatment
history for psychiatric conditions and provided written consent
prior to participation. Subjects were seated in a dimly-lit room
in a comfortable chair to minimize movements, with the fNIRS
probe positioned over their forehead and covered with non-
transparent fabric to prevent ambient light reaching the sensors.

3.4.2. Protocol
HbO values were averaged over the four leftmost and the
four rightmost channels (located over the left and right
dorsolateral prefrontal cortex, respectively). Average right HbO
was subtracted from average left HbO to derive a simple, real-
time prefrontal asymmetry score rejecting differential changes
in oxygenation. We developed bespoke experimental software
for generating real-time feedback and interfacing with the
WA* algorithm (Figure 9). Response time is an important

component of NF systems; however, (Zotev et al., 2016)
reported successful fMRI-based NF despite the ∼7 s delay
of the BOLD signal. Since delay using fNIRS is comparable,
we sought inspiration from the experimental protocol of
(Zotev et al., 2016). The overall protocol design for the
experiment is described in Cavazza et al. (2017) and in
Figure 10.

3.4.3. Results
Out of all 66 blocks completed by the eleven subjects, 38 (58%)
contained an NF epoch with statistically significant left-side
asymmetry; these blocks were considered successful. Each subject
had at least one successful block, and eight subjects (73%) had
at least three successful blocks (i.e., half of blocks successful).
No subject achieved NF success on all six blocks. Since fNIRS
signals are relative values, it can be difficult to compare them
across subjects (Sakatani et al., 2013); moreover, the magnitude
of oxygenation changes can also differ substantially across blocks
within the same subject (Figure 11). Our mapping strategy was
designed to mitigate the issue of comparability.
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FIGURE 11 | Results from the post-hoc analysis of the HEU experiment, illustrating the dynamics of PFC asymmetry over the whole experiment for successful blocks

(Left) and unsuccessful blocks (Right) successful blocks demonstrates a significant increase of the left-side oxygenation compared to unsuccessful blocks.

4. DATA FORMATS AND DATASETS

4.1. Data Formats
The benefits of offering datasets to the BCI community must
allow for the data to be easily manageable by all, which
includes requirements, such as the ability to process the data
with a wide range of modern software, in our case this
includes Matlab or R, and also the ability to account for latest
offerings in terms of programming languages, such as Python
or Julia.

Other initiatives have supported the exchange of NIRS
data, for instance the Shared Near Infrared Spectroscopy
Format (SNIRF)4, developed by the Society for functional
Near Infrared Spectroscopy. In an effort to facilitate the
sharing of NIRS data, they have developed the Shared
Near Infrared Spectroscopy Format (SNIRF). It follows a
hierarchical data format—HDF5 which is a general purpose,
machine-independent standard for storing scientific data in
files, developed by the National Center for Supercomputing
Applications (NCSA). As well as SNIRF, they have also
developed two other text-based alternatives for platforms
that do not support HDF5—JNIRS and BNIRS which
are JSON and binary JSON files with the forementioned
file extensions.

We have opted for a more portable and lightweight
alternative to HDF5: JSON. To facilitate access to our
data, we also provide binary data files for the most
commonly used scientific languages—R, MATLAB,
Python and Julia. The binary data allows for instant
access to the data without the prerequisite of being
familiar with HDF5 or JSON and acquainted with the
necessary libraries that are needed to load the data in any
given environment.

4https://github.com/fangq/snirf/blob/master/snirf_specification.md

Unlike SNIRF, which follows a generic filing-like hierarchical
data structure, we have taken an object-oriented approach to
structuring our data. This approach is self-contained and is
descriptive of our experiments as we have objects that define a
subject, an experimental block and an epoch (Figure 12). This
approach facilitates the understanding and possible analysis of
the data, as we have included as many properties as needed for
ease of use and to accurately depict our experiments, such as a
Boolean value property which indicates whether an experimental
block was characterized as successful or not, the unfiltered HbO
values for each channel used and the filtered asymmetry scores
used during the NF epoch—and many more.

Our intention was to provide datasets ready for use, i.e.,
requiring minimum data wrangling prior to analysis. Though
SNIRF provides a generic mechanism to share NIRS data, one
would still need to extract relevant information and restructure
the data depending on the intended data analysis. Our data
format also reflects the fact that we are sharing fNIRS data in a
NF context, and supports additional annotations typical of NF
on top of RoI signal dynamics (in this case, PFC activity).

Thus, we decided to provide our datasets in multiple file
formats so as to expand the usability of our datasets across
software and languages—we therefore provide our data as files
for MatLab (file extension .mat), R (file extension .RData), JSON
(file extension .json), Pickle (file extension .pckl), and Julia (file
extension .jld).

In this section, we provide details of the overall structure of the
datasets, as well as highlighting detailing specificities, in order to
make them as accessible as possible for further processing and
analysis using programming languages Python or Julia, or from
recognized data processing and analysis packages, such as Matlab
and R. We first present generic data which are common to all our
experiments, then we provide details about the specific Subjects
data, as well as Blocks and Epochs, and finishing with a short
discussion on Time Series (see framework and structural datasets
details in Figure 12, as well as a summary of both the experiments
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FIGURE 12 | Diagram providing details of the structure of the overall datasets. The only difference in structures are shown in the blocks data, where (a) is specific to

both [ANG] and [RAP] experiments, whilst (b) is specific to the [HEU] experiment.
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TABLE 1 | Comparison table of overall protocol and analysis settings for the three experiments.

Experiment HEU ANG RAP

Threshold 0 Dynamic (M + 1.28*SD) Dynamic (M + 1.28*SD)

Maximum 1.1 (fixed) Dynamic (min + range) Dynamic (min + range)

Practice 3 blocks 2 blocks 1 block

N blocks 6 6 8

Baseline task Rest Rest Rest

Reference epoch No Yes Yes

Test Parametric Parametric Bootstrapping

Success test Real-time Real-time Post-hoc

Filtering No No Yes (FIR, SMAR, detrending)

Success measure r d r

Delay treatment Remove 7 s Remove 7 s Windowing

Effective NF epoch length 33 s 15 s (+15 s reference task) 40 s (+40 s reference task)

N subjects 11 11 17

Block success 58% 58% 58%

Subject success 73% 73% 70%

TABLE 2 | Comparison table of participants’ demographic information for the

three experiments.

Experiment HEU ANG RAP

N subjects 11 11 17

N female subjects 3 5 8

Mean age 37.18 33.55 35.11

SD age 11.21 11.53 11.25

Range [20; 52] [24; 59] [21; 60]

settings in Table 1 and participants’ demographic information in
Table 2).

4.2. Generic Data
4.2.1. Sampling Rate and Number of Channels
By default, our fNIR system records two wavelengths and dark
current for each 16 optodes, totalling 48 measurements for
each sampling period. Although the sampling rate of the latest
generation systems can be up to 10 Hz, our experiments were
recorded at 2Hz sampling rate (Sampling_rate). Although the
fNIR system provides full data for all 16 optodes, as we only
consider data for the calculation of the asymmetry scores, we
here provide HbO data for eight optodes (Number_of_channels).
Asymmetry calculations are derived from the four leftmost and
four rightmost optodes, as a difference of Left minus Right (see
Figures 2B,C).

4.2.2. Asymmetry Data and Filtering
The asymmetry data (Asymmetry_data) calculated in real-time
during the experiments is provided in the datasets as a tensor
in the following format (subject, time, blocks). This subset
constitutes the asymmetry data for all subjects and all blocks
in the experiment considered. Each epoch within has been
resampled and the data has been filtered using FIR filter
kernel (Filter_kernel) applied as a low-pass filter to each raw
channel data.

4.2.3. Time and Blocks
All data provided includes timestamps in the form of a
normalized time vector (Time) which is the temporal reference
for all data in the experimental blocks considered. As described
in detail for each protocol design in the previous section, we
also record the number of experimental blocks for each subject
(Number_of_blocks). These individual subject blocks also include
the practice blocks. Practice blocks were actual blocks, as per
the experimental design, used as a prior task for the subjects to
acquaint themselves with the task which was expected from them.
Subjects were not directly influenced by the experimenter during
these blocks, but were given the opportunity to discover what the
realtime system consisted of, overall. Although, practice blocks
were also logged in our original data, we do not include them
here, since they were not part of our original analysis.

4.2.4. Markers
All our experiments include the very important markers data
(Markers), which has been set consistently across our three
experiments. It is provided as a collection of marker IDs, which
include the “num,” being the marker number used to label the
time series, as well as a “description” providing details of the
epoch they refer to (e.g., 54 is “NF epoch”). These marker IDs are
generated during the experiments so as to facilitate the extraction
of the blocks from the raw data for the post-analysis. Marker
data (Marker) is provided as a vector of the markers for each
data point, so as to be able to label individual data points with
the allocated reference marker, which then provides the details of
which epoch they refer to.

4.3. Subjects
The all-important data recorded per subject is being made
available on a per subject basis. For each subject we provide
a reference (id) which is the subject’s unique identifier. This
identifier was generated following the convention “MDDN,”
where M is the number of the month of the day the experiment
took place, DD is the day of the experiment, and N is the subject
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order on the day of the experiment—(i.e., 3,241 is the 1st subject
to take part in the experiment on the 24th of March. This method
of anonymizing the subjects’ details were deemed sufficient to
be able to retrieve the subject’s data if they had decided, at
any point, to retract their data from the experiment analysis.
(Channel_data) is a tensor in the format (channel, time, blocks)
containing the channels for all blocks. Each epoch within has
been resampled and the data has been filtered. The asymmetry
information provided (Asymmetry_data) is amatrix in the format
(time x blocks) containing the asymmetry data for all blocks.
Each epoch within has been resampled and the data has been
filtered. As expected from any data information, time stamps are
also provided for each data entry (Time), which is a normalized
time vector providing temporal labeling for the “Channel data”
and “Asymmetry data” time series. Then, as presented previously,
we also include marker data (Marker) as a vector of markers
for segmenting the “Channel data” and “Asymmetry data” time
series. And finally, (Blocks) is a collection of all blocks data. This
is presented in the next section.

4.4. Blocks
Blocks are characterized by their identifier (Block_number) which
describes the order of the block (starting at zero). We define
a boolean variable (Success) indicating whether the block was
successful based on the actual success criteria defined for the
considered experiment (refer to the above sections for details of
the definition of the success criteria). (Whole_block) is a variable
which contains the data for the whole block (details are provided
in the next section on Epochs). As we have presented in the
details of the experiments above, the two important epochs are
provided here as View (View_epoch), being a variable which
provides the details of the View epoch data only, after having
been segmented from the Whole_block, and the NF epoch data
(NF_epoch), being a variable which provides the details of the
NF epoch data only, after having been segmented from the
Whole_block. Contrary to the HEU experiment, in both the ANG
and RAP experiments, mapping is defined between the realtime
asymmetry value processed and the feedback value, which is
calculated on the basis of a [Min; Max] range—determined
in realtime from the reference View epoch. Thus these two
experiment datasets also include the following information for
each block:

• (Mapping_min) is the value calculated as the lower bound
value as: theMean of the View epoch + 1.28 standard deviation
of View epoch.

• (Mapping_max) is the value calculated as the upper bound
value as: the Mapping min value + range of the View epoch.

• (Mapping_feedback) is the actual NF signal value mapped to
the feedback.

4.5. Epochs
After having described the details of the actual structure of the
data presented in the blocks, we are providing details for the
epoch data points. We note that Whole_block, View_epoch, and

NF_epoch follow the same data structure. (Time) is the un-
normalized time vector containing the exact time each data point
was recorded during the experiment. This provides accurate
and detailed overview of the actual recordings and affords
possibilities for the potential further analysis. (Marker) is a vector
of markers allowing for the segmentation of time, HbO filtered
and unfiltered, Average left, Average right, and asymmetry values.
(HbO) provides a matrix of the low-pass filtered HbO channel
data in the format channel x time. (HbO_unfiltered) provides
the same matrix format for the unfiltered HbO channel data.
(Average_left) is the average value of the four leftmost optodes.
(Average_right) is the average value of the four rightmost optodes.
And finally, (Asymmetry) is the actual asymmetry value generated
as the difference of Average_left and Average_right.

4.6. Time Series Discussion
The ANG dataset differentiates between approach and valence,
albeit not perfectly, and could be used to experiment whether
differences of magnitude take place by removing the valence
component. In the HEU dataset, NF success above baseline
is used primarily as a trigger so could be of interest on
comparative study of NF dynamics but perhaps less onNF epoch-
based validation. The RAP dataset is closer to previous EEG
experiments (Cavazza et al., 2014) and the one with perhaps
the most potential for confounding various aspects of PFC
asymmetry in terms of its dimensional interpretation (approach,
valence). On the other hand, it has some of the longest fNIRS
NF epochs (Kohl et al., 2020) and is a good candidate to study
signal dynamics.

5. CONCLUSIONS

We have described three datasets for fNIRS PFC asymmetry,
which correspond to one of the most investigated signals
in social and affective neuroscience and also one of the
main areas for fNIRS NF. Although the focus of our BCI
experiments were primarily on the motivational dimension, the
DLPFC signals can also be of interest to researchers requiring
comparative data when investigating cognitive workload or
other dimensions, such as valence. As these datasets cover
different NF variants, they should be valuable to investigate
signal dynamics across epochs of different lengths as well as
issues around baselining and reference epochs. Since they all
have been previously analyzed as part of various publications
(Aranyi et al., 2015b, 2016; Cavazza et al., 2017), they can also
support experiments with various statistical methods for post-
hoc epoch validation. We have endeavored to facilitate this
through the various formats we have embedded data into, which
should support various processing pipelines in data analysis or
machine learning.
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Compared with the traditional neurofeedback paradigm, the cognition-guided
neurofeedback brain–computer interface (BCI) is a novel paradigm with significant effect
on nicotine addiction. However, the cognition-guided neurofeedback BCI dataset is
extremely lacking at present. This paper provides a BCI dataset based on a novel
cognition-guided neurofeedback on nicotine addiction. Twenty-eight participants are
recruited and involved in two visits of neurofeedback training. This cognition-guided
neurofeedback includes two phases: an offline classifier construction and a real-
time neurofeedback training. The original electroencephalogram (EEG) raw data of
two phases are provided and evaluated in this paper. The event-related potential
(ERP) amplitude and channel waveform suggest that our BCI dataset is of good
quality and consistency. During neurofeedback training, the participants’ smoking cue
reactivity patterns have a significant reduction. The mean accuracy of the multivariate
pattern analysis (MVPA) classifier can reach approximately 70%. This novel cognition-
guided neurofeedback BCI dataset can be used to develop comparisons with other
neurofeedback systems and provide a reference for the development of other BCI
algorithms and neurofeedback paradigms on addiction.

Keywords: brain-computer interface, cognition-guided neurofeedback, nicotine addiction, electro
encephalogram, public dataset

INTRODUCTION

The brain–computer interface (BCI) is a hardware and software system integrated as the interface
between the brain and the computer (Janapati et al., 2020). Considering time sensitivity and device
portability, BCI system generally uses electroencephalogram (EEG), electrocorticogram (ECoG),
functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS),
magnetoencephalography (MEG), and positron emission tomography (PET) as imaging methods.
Among them, EEG is the most widely used BCIs (Kwon et al., 2020). ECoG can collect purer signal
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than EEG, but it is invasive (Korostenskaja et al., 2014). Although
fMRI and fNIRS have high spatial resolution, their temporal
resolution is low (Cui et al., 2011). Besides, MEG and PET require
large and expensive equipment and are not suitable for large-scale
applications (Stam, 2010).

Nowadays, BCI system includes ERP, steady-state visually
evoked potential (SSVEP), motor imagery (MI), and emotional
BCI. In recent years, BCI-related fields have developed.
Neurofeedback, as the predecessor of BCI, is applied to improve
normal cognitive abilities, such as the enhancement of attention
and working memory (Hsueh et al., 2016). It is also more and
more used in the field of psychiatry studies, such as depression
(Trambaiolli et al., 2021), anxiety (Gadea et al., 2020), addiction
(Posson, 2019), etc.

Previous addiction-related neurofeedback datasets were
usually based on fixed EEG or fMRI signals. Traditional EEG-
based neurofeedback usually focuses on arousal/anxiety
symptom in drug addiction by regulating α, α/θ, and
sensorimotor rhythm (SMR)/β signals (Sokhadze et al., 2008).
Real-time fMRI neurofeedback usually focuses on the activation
of anterior cingulate cortex (ACC) or functional connectivity of
bilateral ACC, medial prefrontal cortex (mPFC), orbitofrontal
cortex (OFC), etc. (Martz et al., 2020). These datasets mentioned
above have the following problems:

• No cognition task is performed to disclose the relationship
between signals and behaviors/cognition components.

• Individual differences are not considered as all the
subjects use a single and fixed signal to regulate the
addiction behaviors.

• The efficacy of the traditional neurofeedback urges to be
further improved in the treatment of addiction, as it is only
rated as “probably efficacious.”

Therefore, it is of vital importance to propose a novel
neurofeedback paradigm.

We attempt to resolve the shortcomings of traditional
neurofeedback by proposing the EEG cognition-guided
neurofeedback based on a cue reactivity model. According
to this model, when smokers are presented with visual, taste,
or tactile cues related to smoking, they will have significant
cue reactivity (physiological and physical reaction). Similar
reactivity is found in healthy control subjects to non-drug
evocative stimuli (Garavan et al., 2000). Cue reactivity leads to
impulsive behavior in drug-seeking behavior as well as relapse
(Chiamulera, 2005). The cue reactivity task is usually used to
induce cue reactivity of participants. In our study, we used a
smoking cue reactivity task to induce specific cue reactivity. Cue
reactivity has multiple EEG features including both time- (e.g.,
P300, slow positive wave) and frequency-domain (e.g., alpha
oscillation) features. Compared with the single signal, combing
with multiple features (both time and frequency domain) using
multivariate pattern analysis can better enhance sensitivity of
detecting a particular brain activity pattern (Littel et al., 2012;
Campanella et al., 2014). Our cognition-guided neurofeedback
regulated the multiple signals induced by the specific cue
reactivity. Therefore, the cognition-guided neurofeedback

process included a specific addiction-related cognitive model
(cue reactivity model). Based on this model, we performed
the cognitive task (cue reactivity task) to obtain the specific
addiction-related brain activities represented by multiple EEG
features. In addition, this paradigm achieved a good intervention
effect for smokers: the number of cigarettes consumed per day
decreased 30.6, 38.2, and 27.4% compared with the baseline (pre-
neurofeedback) at 1 week, 1 month, and 4 months follow-up (Bu
et al., 2019). Our BCI dataset is based on a novel neurofeedback
paradigm, which is closed loop, individualized, and MVPA based.
Previous researchers have proposed a framework for cognitive
neurofeedback in food cravings (Sokunbi, 2014; Ihssen et al.,
2017) and cocaine addiction (Kirschner et al., 2018), but most of
these studies are based on fMRI.

According to the cue reactivity model, smoking behavior
enhances the conditional value of smoking cues, which is
specifically reflected at two levels (Supplementary Figure 1):

• Bottom–up automatic processing to activate
attentional functions.

• Top–down modulation of sensory inputting and motor
controlling from cortical area.

According to conditioned reflex learning theory (Rees and
Heather, 1995; Versace et al., 2017), the craving for cigarettes
induced by smoking cues may partly relate to the conditioned
reflex established by learning to associate smoking-related cues
with smoking behavior (Karelitz, 2020). The reinforcement
of smoking behavior also enhances the conditioned value
of smoking cues, which automatically activates the attention
function from the bottom to up. Besides, previous fMRI study
has reported the regulation of cue-induced cravings from the top
to down (Li et al., 2013).

Different from other neutral neurofeedback (for example,
the height of the column is used for neurofeedback visual
signals) (Zotev et al., 2014), we used an adaptive closed-
loop method to develop our cognition-guided neurofeedback
in the process of self-regulation training (Bu et al., 2019).
The essence of this method is that when the participants’
task performance decreased, the program would arouse the
participants’ attention and alertness by increasing the difficulty
of the current task (deBettencourt et al., 2015). We established
a mapping relationship between the probabilistic score and the
11 pictures (the probabilistic score was positively correlated with
the desiring rating of the picture). Participants’ brain activity state
toward smoking cues was reflected as smoking-related pictures
with different craving levels. At the same time, the picture would
affect the brain activity pattern in the next trial, which was
mapped to the corresponding smoking-related picture. In other
words, we amplified the consequence of neurofeedback training:
rewarding successful downregulation by reducing difficulty and
punishing unsuccessful downregulation by increasing difficulty
to activate participants’ self-monitoring ability. By this way, an
adaptable closed-loop effect was formed, which is one of the
characteristics of our cognition-guided neurofeedback.

Neurofeedback intervention methods may produce different
effects in different participants. Different visits of the same
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participant will also lead to different EEG signals (Gruzelier,
2014). Considering the individual differences of neurofeedback
intervention and changeable craving of a specific participant,
our neurofeedback paradigm built an individual model for each
visit of each participant, which eliminated individual differences
to a great extent. Each subject had exclusive classifier, and
the regulated EEG signals (time and frequency domain) were
obtained from his/her own cue reactivity task. The model
used by the subject was reconstructed in the current cycle.
Traditional neurofeedback regulated fixed signal, which may be
not suitable in some subjects. Individual classification is one of
the characteristics of our cognition-guided neurofeedback.

Traditional dependent neurofeedback usually includes single
signal. There are also researches about neurofeedback based
on network features, such as the algorithm based on common
spatial pattern (CSP) and local characteristic-scale decomposition
(LCD) developed by Ai et al. (2019). Addiction is a complex
pattern of brain activity, rather than just being related to a
certain electrical brain signal, such as P300 (Littel et al., 2012)
and α power (Cui et al., 2013). The development of a classifier
with more features or variables is particularly important. MVPA
classifier is used to extract features of different dimensions from
cue reactivity task (Zafar et al., 2017). This algorithm based
on machine learning can detect the brain reactivity patterns
in response to smoking and neutral stimulus more sensitively
(Sitaram et al., 2017).

Our novel paradigm has a good performance and shows
significant short- and long-term effects (Bu et al., 2019), but
so far, there is a lack of novel neurofeedback-related datasets.
Sharing these datasets online can facilitate comparison with
other neurofeedback datasets, promote parameter optimization
process, and help optimize the BCI algorithm. Single data may
be limited. More datasets shared online can also be applied to
big data models to get better results. In addition, BCI datasets
are also instructive for BCI hardware development. In the field
of psychiatry, more datasets on clinical nicotine addiction are
needed to promote the study of addiction mechanisms, especially
smoking cue reactivity mechanisms.

In this paper, we provide a novel dataset based on a cognition-
guided, closed-loop, and individualized neurofeedback, which is
based on MVPA classifier. The dataset includes EEG data of two
phases: the cue reactivity task and the real-time neurofeedback
training. In addition, we evaluated the quality of EEG data in
our dataset by ERP and topographic map analysis. A linear
correlation is used to indicate the trend of probabilistic score in
neurofeedback training. Prediction accuracies of each participant
are used to evaluate the classification power. The publication
of novel cognition-guided neurofeedback dataset is of vital
importance to the development of this field.

MATERIALS AND METHODS

Participants
In this study, 28 participants (male; mean age, 23.7 years)
were recruited through online advertisements and posters by
the criteria listed below. The score of Fagerstrom Test for

Nicotine Dependence (FTND) of the 28 subjects were 4.6 ± 1.9
(mean ± SD, Table 1). Since there are only a few female
smokers (2.7%) in China, we recruited only male participants
for this experiment. This study was approved by the Human
Ethics Committee of the University of Science and Technology
of China (USTC). According our records, no participant
reported uncomfortable feelings after neurofeedback training
(Bu et al., 2019).

Selection criteria were as follows:

• Smoking 10 cigarettes or more per day for at least 2 years
• Right-handedness
• 18–40 years old
• Normal or corrected-to-normal vision
• Normal mental and physical health condition assessed by

the Mini-International Neuropsychiatric Interview (MINI).

Exclusion criteria were as follows:

• Chronic neurological, psychiatric, or medical disease
• Taking any drugs in the past 3 months
• Unable to perform EEG for any reasons.

Experimental Design
We developed a novel cognition-guided neurofeedback
paradigm on nicotine addiction. Participants were involved
in two continuous visits over 2 days. In each visit,
participants experienced a two-phase procedure shown in
Figure 1C: offline classifier construction and real-time EEG
neurofeedback training.

Before the formal experiment, we prepared 330 pictures
(210 × 180 pixels), including 150 smoking-related pictures (e.g.,
holding a cigarette in hand), 150 paired neutral pictures (e.g.,
holding a pencil in hand), and 30 pictures of animals (e.g.,
cat). The selection of these pictures mainly referred to the
previous work on addiction of our laboratory (Zhang, 2011).
To eliminate the possible impact of visual information, these
smoking pictures and neutral pictures were matched as much as
possible in terms of visual information such as background color,
brightness, and object orientation. We recruited 20 participants
to evaluate the craving degree of these pictures. The picture
evaluation procedure is shown in Figure 2A. Eleven pictures
were selected for real-time EEG neurofeedback training from 150
smoking-related pictures. They were listed in ascending order of
the craving score given by the participants (Figure 2B).

TABLE 1 | Demographic information of 28 participants.

Characteristic Value

Age (years) 23.7 (3.8)

Education (years) 14.8 (2.5)

Cigarettes (day) 14.1 (4.5)

Cigarette use (years) 7.1 (3.9)

FTND score 4.6 (1.9)

Values were mean and values in parentheses were 1 standard deviation (SD).
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FIGURE 1 | Two phases for one neurofeedback visit: offline model construction and real-time neurofeedback training. (A) Offline classifier construction phase.
(B) Real-time EEG neurofeedback training phase. (C) Experimental protocol in one visit. NF, neurofeedback.

FIGURE 2 | Evaluation of nicotine related cues. (A) Picture evaluation protocol and procedure. Participants pressed the button to start a new trial. They had 5 s to
move the mouse to change the position of the triangle on the line to give an appropriate score according to their craving to this picture. Then, they had about 2 s to
rest and wait for the next trial. (B) Eleven selected pictures listed in ascending order of craving score.
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Offline Classifier Construction
Offline classifier construction consisted of two parts: the smoking
cue reactivity task and the support vector machines (SVMs)
classifier training (Figure 1A). EEG data collected from cue
reactivity task were used to train the classifier.

The smoking cue reactivity task was block design. Three
smoking and neutral blocks each were assessed in a pseudo-
randomized order (neutral, smoking, smoking, neutral, smoking,
and neutral). There were 55 trials in each block, and participants
were requested to focus on the pictures as much as possible.
Among them, 50 trials were smoking or neutral cues. Another
five randomly distributed trials were animal cues, which were
used to improve the concentration of participants on the task.
They were asked to press the space button of the keyboard quickly
and accurately when seeing animal cues (the main objects are
animals, such as cats and dogs) and press the space button of
the keyboard quickly and accurately. At the same time, EEG
data were collected during each block. In the block interval,
participants had 90 s of rest. The smoking cue reactivity program
was written by Psychophysics Toolbox1 for MATLAB (version
2016a, MathWorks Inc., Natick, MA, United States).

EEG data were processed offline in order to remove noise
using EEGLAB (more details and parameters will be mentioned
in Data processing). Permutation test was performed to extract
features in time and frequency domain from the processed
data (α = 0.05). Specifically, we compared EEG data collected
from smoking and neutral blocks to obtain significantly different
features in time (amplitude) and frequency (power) domain.
These statistically significant features were transferred to cluster
features via cluster-based statistic (maximum cluster-level mass)
and imported into the classifier in the form of a column vector
to train a personalized SVM classifier to recognize brain activity
patterns in response to smoking stimuli. This step was calculated
using the MATLAB function fitcsvm (Bu et al., 2019). Sixty
channels (64 standard channels except for CB1, CB2, HEOG, and
VEOG) were used to construct the model. In order to evaluate
the classification effectiveness of the classifier, we used 20% of the
trials to calculate the prediction accuracy in each cross-validation
cycle. This step repeated five times for each participant.

Real-Time EEG Neurofeedback Training
The neurofeedback training phase comprised eight same cycles
in total, including 40 trials (80 s) and a rating (60 s) in each
phase. Before the first trial, we carried out a practice cycle
to make sure that participants understand the experimental
requirements (Figure 3).

The real-time neurofeedback signal of each trial was updated
every 2 s, including 1 s of real-time EEG acquisition and
classification each. Online preprocessing (the same with offline
processing mentioned above) was performed to remove noise.
Processed EEG raw data were put into the classifier. Based on the
SVM classifier, a probabilistic score (range, 0–1) was returned to
characterize the similarity probability between the current brain
activity and the brain activity pattern of smoking measured in
smoking cue reactivity task. The probabilistic score was presented
to participants in real time as a moving point in the feedback

1http://psychtoolbox.org/

FIGURE 3 | One scene of a participant in the phase of neurofeedback
regulation training. A participant is wearing EEG cap and watching
neurofeedback display. A camera to monitor the status of the participant.

line at the bottom of the screen (Figure 1B). In order to prevent
drastic changes of the line, the value of each point was obtained
by averaging the value of the current point and the previous
2 points, and the first 2 points in the line were fixed 0.5 (no
previous points to be averaged). At the same time, based on
this value, the corresponding type of picture was displayed on
the top of the screen according to adaptive closed-loop design.
A higher probabilistic score corresponded to a picture with a
higher craving level. This closed-loop neurofeedback program
was written by Psychophysics Toolbox for MATLAB.

In this phase, participants were asked to downregulate the
line repeatedly and continuously while fixating the picture. If
one strategy failed to downgrade the line well, they needed
to change the strategy until they found the most effective
one. After finishing training and rating cycles (Figure 1C),
participants were asked to record 10 mental strategies that
may effectively downregulate the neurofeedback signals. To
improve the initiative of participants, we informed them about
the rewards they can get for completing the experiment in
advance. Participants who completed eight cycles would receive
a reward of up to 140 RMB according to their performance
(proportional to mean probabilistic score). After completing a
cycle, participants would have a rest for 1 min.

Data Acquisition
EEG raw data were collected using a SynAmps RT amplifier
(NeuroScan, Inc., Sterling, VA, United States), and an electrode
cap was with 64 Ag/AgCl electrodes located according to
international 10–20 system. Additionally, the left (M1) and
right mastoids (M2) were also recorded. The impedance of all
electrodes was kept under 5 k� based on the reference electrode
attached to the tip of the nose. The EOG was recorded by
VEOG (above and below the left eye) and HEOG (lateral to
the outer canthi of both eyes) using four electrodes (VEOL,
VEOU, HEOL, and HEOR). In order to reduce the influence of
electromagnetic interference on EEG signals, we grounded the
AFz electrode. The sampling rate of the EEG raw data was 250 Hz.
In neurofeedback sessions, EEG raw signals were collected
with the same parameters and sent to MATLAB program
using NeuroScan Access SDK (NeuroScan, Inc., Sterling, VA,
United States).
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FIGURE 4 | Analysis of ERP amplitude and topographic map of cue reactivity task. (A) ERP waveform and topographic maps of the first visit of cue reactivity task
phase. (B) ERP waveform and topographic maps of the second visit of cue reactivity task phase.

FIGURE 5 | The distribution of the SNR of Pz channel (µ = 59.39, σ = 29.10).
There were 55 runs of 28 subjects. There was no significant difference
between the distribution and the normal distribution by KS test (p = 0.29).

Data Processing
The EEG raw data processing was conducted by EEGLAB
toolbox (version 14_1_1b) for MATLAB. The preprocessing steps
included high-pass filter (0.5 Hz), epoch (−200 to 1,000 ms, −200
to 0 ms as prestimulus interval to conduct baseline correction),

and blink artifacts (using a conventional recursive least squares
algorithm). ERP analysis was also conducted in EEGLAB. Epochs
containing the amplitude changes exceeding ±100 mV were
rejected. The ERPs were grand averaged based on different
types of stimulus (smoking and neutral) across participants. The
power characteristics of the time–frequency domain were mainly
obtained based on the wavelet analysis algorithm. The frequency
of the EEG data was divided into five ranges: alpha, low beta, high
beta, low gamma, and high gamma waves.

Data Evaluation
At the offline classifier construction phase of the cue reactivity
task, EEG raw data were collected, and the signal-to-noise ratio
(SNR) of Pz channel was calculated to verify the quality of the
data (Hu et al., 2010). EEG epochs from −200 to 1,000 ms
were preprocessed and averaged to calculate ERP waveforms
separately for two visits. Besides, topographic maps were shown
every 200 ms in the time window of 0–1,000 ms. Processed EEG
data were imported to the classifier, and fivefold cross-validation
accuracy was used to calculate its prediction accuracy.

In neurofeedback training phase, 1-s EEG data were
preprocessed and shown at only channels located on the frontal
midline. Topographic maps were shown every 200 ms in the
time window of 0–1,000 ms. These 1-s EEG data were inputted
to the personalized classifier model built in the offline phase,
and a probabilistic score of smoking cue reactivity patterns
was given. The score reflected the matching degree between
the participant’s current brain activity pattern and the pattern
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FIGURE 6 | Channel waveform and topographic map of real-time neurofeedback training phase.

FIGURE 7 | The statistically significant features used to construct the classifier. (A) The features of each subject in the time domain; (B) the features in the alpha
(8–13 Hz) frequency band; (C) the features in the low beta (14–20 Hz) frequency band; (D) the features in the high beta (21–30 Hz) frequency band; (E) the features
in the low gamma (31–48 Hz) frequency band; (F) the features in the high-gamma (52–80 Hz) frequency band.
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FIGURE 8 | Within two visit of neurofeedback learning, participants tried to reduce the probabilistic score (r = −0.1545, p = 0.0010). Error bar: SD; shaded area:
95% CI.

FIGURE 9 | The accuracy of the classifier for each participant. Horizontal line:
average; error bar: SE.

while viewing smoking cues in cue reactivity task. A high score
indicated closely matched patterns. After training, the correlation
between decreased P300 amplitudes (pre–post) and decreased
craving score [score of tobacco craving questionnaire (TCQ), pre
vs. post] was performed.

Statistical Analysis
Statistical analysis was conducted in Statistics and machine
learning toolbox in MATLAB. The comparison of features
was performed with a non-parametric permutation test. The
correlation of probabilistic score and training cycles was
analyzed using Pearson’s correlation. The comparison between
the prediction accuracy and chance level used one-sample

FIGURE 10 | The correlation between the mean decreased P300 amplitudes
and decreased craving score (r = 0.43).

Student’s t-test. The normality test was based on Kolmogorov–
Smirnov (KS) test. Fivefold cross-validation was used to calculate
the classification accuracy of the classifier. The reported p-values
were all two-tailed. The significant threshold α is 0.05.

RESULTS

EEG Data Evaluation
The database is 3.96 GB, including 2.44 GB EEG data of cue
reactivity task, 1.52 GB EEG data of neurofeedback, 16.8 kB
demographic data, and 1.81 kB channel location file. Twenty-
eight subjects were included in this database. The cue reactivity
data were divided into two files: “cue reactivity_1.zip” and
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“cue reactivity_2.zip.” Each subject had two runs, and each
run contained six CNT files, which could be read in EEGLAB
toolbox. The neurofeedback data were in “nf_eeg.zip.” Each
subject had two runs, and each run contained eight EEG
MAT files (channel∗time), which can be read in MATLAB. To
facilitate subsequent data processing, electrode-position file and
marker information were also provided. The channel location
file named “chan62.zip,” the baseline demographic and clinical
characteristics named “baseline.mat,” and trigger information file
named “trigger.md” can be found in the root directory.

Figures 4A,B show the ERP amplitude and topographic map
of cue reactivity task in the first and second visits. The data of the
two visits have good consistency. The P300 component of ERP
caused by addictive substance-related cues is usually a feature of
substance use disorders, and the P300 amplitude is found to be
related to the craving for smoking (Littel et al., 2012; Campanella
et al., 2014). In our research, the P300 ERP component induced
by smoking cues can be observed at approximately 300–550 ms.
We evaluated the distribution of the Pz-SNR (Figure 5). KS test
was performed to check the normality of distribution. There was
no significant difference between the data distribution and the
normal distribution (p = 0.29).

Channel waveform and topographic map of preprocessed
1-s real-time neurofeedback training data of eight channels
(including FPz, Fz, FCz, Cz, CPz, Pz, POz, and Oz) are shown
in different color to express brain electrical activity. We used the
data of the 10th trial, the first cycle, the first visit (run1) of subject
1 (s1) as an example (Figure 6).

Feature Extraction Evaluation
These time (Figure 7A) and frequency domain (Figures 7B–F)
features from 28 participants were used to construct the classifier.
For each block diagram, the abscissa represents the time
information (ms), and the ordinate represents electrode channel
information (60 channels) respectively. The yellow and blue
areas in the figure represent the characteristic signals that were
statistically significant with smoking > non-smoking conditions
and the characteristic signal that was statistically significant with
smoking < non-smoking conditions (α = 0.05), respectively.

Neurofeedback Performance Evaluation
Participants were trained for 16 cycles in two visits. In each trial
of the neurofeedback cycle, the average score of 40 probabilistic
scores was recorded as neurofeedback performance in the
respective cycle. We performed a linear regression analysis on the
probabilistic score and the training cycles. A significant negative
correlation (r = −0.1545, p = 0.0010) was found, which showed
that the match probability (the current brain activity patterns
and the patterns when viewing smoking cues) decreased with
training progressed (Figure 8). In other words, the difference in
brain activity patterns between viewing the smoking cues and the
neutral cue was smaller after neurofeedback training.

Classifier Power Evaluation
Each point in Figure 9 represents fivefold cross-validation
accuracy of one participant. The accuracy of the classifier varies
between 0.5409 and 0.8427, with a mean accuracy of 0.6935.

One-sample t-test showed a significant difference between the
prediction accuracy and the chance level (p = 4.4176 × 10−14).

CONCLUSION AND DISCUSSION

In this paper, we developed a novel cognition-guided
neurofeedback paradigm. Neurofeedback technology is an
effective method to regulate brain signals and neuroplasticity,
which involves brain networks of reward, control, and learning
(Sitaram et al., 2017). Among them, dorsolateral prefrontal
cortex (dlPFC) and posterior parietal cortex (PPC) in the
control network will be activated during the execution of
the strategy, and the learning network [mainly includes the
dorsal striatum (DS)] is responsible for strategy learning
in neurofeedback. The theoretical models of neurofeedback
learning include operant (or instrumental) learning, motor
learning, dual process theory, awareness theory, global
workspace theory, and skill learning theory (Sitaram et al.,
2017). These theoretical models are not mutually exclusive
but compatible. Operant learning can be regarded as part
of the dual process theory, which includes automatically
process and controlled process (Enriquez-Geppert et al., 2017).
Normally, approximately 15–30% of subjects do not respond
to neurofeedback/BCI (Weber et al., 2011). Strategies are
extremely important for neurofeedback. In the process of
neurofeedback learning, strategies may promote or hinder
neurofeedback learning, depending on the appropriate degree
of scheduling cognitive resources in the process (Gaume et al.,
2016; Davelaar, 2018).

In our implicit neurofeedback, the significant negative
correlation (r = −0.1545, p = 0.0010) of the probabilistic
score and training cycles demonstrates good neurofeedback
learning effect. It also shows that the brain activity pattern
in response to smoking stimuli represented by EEG signals
can be successfully downregulated after two neurofeedback
trainings. This is similar to previous rt-fMRI neurofeedback
studies based on visual perception and attention brain
activity patterns (deBettencourt et al., 2015; Amano et al.,
2016). Our research also shows that the changes in brain
patterns influenced addictive behaviors. The subjects’ TCQ
craving score and P300 amplitude decreased significantly
after neurofeedback training (Bu et al., 2019), and there
was a positive correlation between them (Figure 10). The
results revealed the relationship between neural signals and
behavioral indicators.

In particular, previous neurofeedback studies based on the
regulation of brain activity patterns focused on training normal
subjects to improve their cognitive abilities. The results of our
study further extended these findings to patients with mental
illness (smoking addicts), which also had the potential to regulate
brain activity patterns. Our dataset provided important support
for the extension of neurofeedback training of multivariable brain
activity pattern regulation to clinical research in the future.

This dataset is of high quality and good integrity. In order
to reduce artifacts as much as possible and improve the
SNR, we added simple cognitive activities while performing
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the cue reactivity task to ensure that the collected data
were brain electrical signals from the experiment rather
than distractions. Additionally, in the cue reactivity task
phase and the neurofeedback training phase, an intertrial
interval (ITI) was used to eliminate the detention effect of
the previous trial and gave participants a certain time to rest
until they felt comfortable enough for the next trial. During
the experiment, participants were instructed to blink and
swallow as little as possible to obtain purer EEG raw data.
As can be seen in Figure 4, ERP waveforms and topographic
maps have strong consistency and repeatability between
visits. In addition, we checked the strategies reported by the
participants and the surveillance video during neurofeedback
and found that no subjects used the strategies that were
not allowed, such as not watching the screen. The decline
in smoking cue reactivity patterns and the relatively high
model prediction accuracy provided a guarantee for the
intervention effect and method reliability of neurofeedback
BCI. Nevertheless, the dataset also had some limitations.
Considering that the prevalence among female smokers
in China was very low (2.7%), we only recruited male
participants. The dataset we present is the first cognition-
guided neurofeedback BCI dataset on nicotine addiction to
our knowledge. Participants completing two separate visits of
training showed improvement in smoking cue reactivity patterns.
High-quality EEG raw data are provided, and the classifier is
evaluated and proven to have relatively high classification
accuracy. Our two-visit, cognition-guided neurofeedback BCI
can be compared with other neurofeedback paradigms to develop
new neurofeedback systems.

Our previous research extracted the characteristics of the EEG
signal in the time and frequency domains for SVM modeling. As
far as we know, the cue reactivity task is commonly studied in
substance addiction (Hardy et al., 2017). The dataset we provided
contains the participants’ brain electrical activity exposed to
both smoking-related cues and neutral cues. There are other
methods to analyze the dataset, such as the microstate (Michel,
2018) and source analysis (Zhou et al., 2019). These methods
can be implemented on this dataset to discover mechanisms of
nicotine addiction. The EEG data provided in this study can be
used to verify other existing models or optimize parameters. In
addition, the dataset can be used to development other ERP-
based BCI algorithms.

In future research, BCI datasets can still be improved from
the following aspects. First, a higher number of channels and
sampling rate can be applied to obtain higher BCI bandwidth.
Second, the extraction of feature can be improved. Different
network connection of participants toward smoking and neutral
cues can be incorporated into classification features to obtain
a higher degree of discrimination (Ai et al., 2019). Third,
SVM classifier was used in this study, and a relatively high
classification accuracy rate was obtained. Subsequent studies
can use other machine learning method to obtain higher
model prediction rates, such as logistic regression and decision
tree. For example, a feature extraction method was developed
based on autoregression and used random forest classifiers
to identify the EEG features of patients with epilepsy with

a best accuracy of 97.352% (Zhang et al., 2017). Fourth,
this study conducted two visits of neurofeedback training,
which was mainly based on skill learning theory (Hinterberger
et al., 2005; Koralek et al., 2012) and previous MRI research
(Young et al., 2017a,b). In future BCI studies, longer training
periods can be used to evaluate the impact of training
time on neurofeedback effects. Finally, this study used a
simple floating line as the visual form of neurofeedback.
Nowadays, BCI is moving in the direction of gamification
(de Castro-Cros et al., 2020), which is also the direction for
future BCI datasets.

In conclusion, our novel neurofeedback BCI dataset has a
significant contribution to this field. We offer the community
access to our EEG data from our BCI experiment. The
neurofeedback protocol that we developed and applied is based
on the long-term research on nicotine addiction of our group and
will act as a reference for subsequent neurofeedback BCI research.
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